
TI DSP/BIOS Lab

By:
David Waldo

TI DSP/BIOS Lab

By:
David Waldo

Online:
< http://cnx.org/content/col11265/1.5/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by David Waldo. It is licensed under the

Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: February 20, 2011

PDF generated: February 20, 2011

For copyright and attribution information for the modules contained in this collection, see p. 93.

Table of Contents

1 Code Composer Studio Projects

1.1 Code Composer Studio v4 DSP/BIOS Project . 1
1.2 Code Composer Studio v4 DSP/BIOS and C6713 DSK . 22

2 Lab 1

2.1 TI DSP/BIOS LOG Module . 41
2.2 LOG Lab . 42

3 Lab 2

3.1 TI DSP/BIOS TSK Module . 45
3.2 TI DSP/BIOS SEM Module . 51
3.3 TSK SEM Lab . 56

4 Lab 3

4.1 TI DSP/BIOS QUE Module . 63
4.2 QUE Lab . 68

5 Lab 4
5.1 Microsoft Visual Basic Tasks and Semaphores . 73
5.2 Visual Basic Threads and Semaphores Lab . 77

6 Lab 5
6.1 Microsoft Visual Basic Queues . 81
6.2 Microsoft Visual Basic Delegates . 84
6.3 Microsoft Visual Basic Queue Lab . 87
6.4 Microsoft Visual Basic Delegate Lab . 89

Index . 92
Attributions . 93

iv

Chapter 1

Code Composer Studio Projects

1.1 Code Composer Studio v4 DSP/BIOS Project1

1.1.1 Introduction

This module describes how to create a Code Composer Studio (CCS) project that executes a simple
DSP/BIOS based program. The target will be the TI simulator and the processor used is the TMS320C67xx.

1.1.2 Create a DSP/BIOS CCS project

To create a CCS project select File->New->CCS Project.

Figure 1.1: Screenshot of CCS Project menu

1This content is available online at <http://cnx.org/content/m36660/1.3/>.

1

2 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

This will bring up a window where you can enter the name of the project. The location selected is the
default location for project �les. Press Next.

Figure 1.2: CCS Project name and location

Since the example uses the TMS320C67xx processor the project type selected is C6000. The project
con�gurations are Debug and Release. Select the Next button.

3

Figure 1.3: Type of CCS project

If there are any project dependencies they are selected on the next screen. Select the Next button.

4 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.4: CCS Project dependencies

On the Project Settings Screen, select the items that pertain to the type of project to be created. Since
the project will be executed selectOutput Type: Executable. The processor type is TMS320C67xx so the
Device Variant is Generic C67xx Device. This project will use Little Endian. The code generation
tools are the latest version (in this case TI v7.0.3). The runtime support library is selected to match the
device variant and the endianness selected. The library can be selected automatically. Press Next.

5

Figure 1.5: Project settings window

Since the project will be based on DSP/BIOS an empty DSP/BIOS example project. This will set up
project parameters for DSP/BIOS.

6 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.6

After the projects settings have been set, select Finish and the project will show up in the C/C++
Projects view.

7

Figure 1.7: C/C++ projects view

1.1.3 Add a DSP/BIOS con�guration �le

The easiest way to set up DSP/BIOS in a CCS project is to use the DSP/BIOS con�guration tool. This
generates a �le with a .tcf extension that is included in the project. This �le will generate code that gets
included in the project for setting up DSP/BIOS. It also generates a header �le that can be included in other
C/C++ �les. For the �le name dspbiosproject.tcf the header �le name will be dspbiosprojectcfg.h.

To create a DSP/BIOS con�guration �le, select File->New->DSP/BIOS v5.xx Con�guration File
(you may need to select File->New->Other �rst, then select DSP/BIOS v5.xx Con�guration File).
This will bring up a dialog where the name of the �le is entered.

Figure 1.8: DSP/BIOS Con�guration �le name

There are default con�guration �les for di�erent devices. For this example the C67xx simulator is used.
The con�guration will have 16Mbytes of SDRAM in the memory section. Select Next and a dialog for the

8 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

DSP/BIOS features will come up.

Figure 1.9: DSP/BIOS platform for default settings

Figure 1.10: DSP/BIOS features selection

Select Finish and a new �le is created with the default con�guration and is added to the project and
the con�guration tool is opened.

9

Figure 1.11: DSP/BIOS con�guration tool

In the con�guration tool is where the DSP/BIOS objects are set up. In this example there are only two
objects that will be set up. The �rst is a trace log that is common to many DSP/BIOS projects. The second
is a task object that will be used to print to the log.

To set up the LOG object, expand the Instrumentation item and right click on the LOG item. Select
Insert LOG and give the LOG object the name trace.

10 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.12: Insert LOG menu item

11

Figure 1.13

12 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.14: DSP/BIOS con�guration tool showing the trace LOG object

Next insert a task (TSK) object and give it the name TSK0.

13

Figure 1.15: Inserting a TSK object

14 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.16: TSK object

In order for the TSK object to be associated with a function the Task function name must be changed.
Right click on the TSK0 object and select Properties. Under the Function tab, type _funTSK0. Be sure
to include the underscore at the beginning of the name. The C program function name will be funTSK0 but
the assembly code name will have an underscore at the beginning. Be sure to note that the name of the task
object and the name of the function that it uses cannot be the same name. In this example the object name
is TSK0 and the function name if funTSK0.

After the objects have been set up, save and close the con�guration �le.
When your project gets built, the con�guration �le automatically generates �les. One of these �les is a

header �le that can be used in your programs. If your con�guration �le is named file.tcf then the header
�le that gets made will be called filecfg.h. In the source �les that use the DSP/BIOS object this header
�le can be included. Use a statement like:

#include "filecfg.h"

1.1.4 Add code �les

When using DSP/BIOS in a project, very little code is in the main function. Other objects are used like
tasks and interrupts. In this example a simple task will be made that prints to a LOG bu�er. Create a new

15

C program �le. Select File->New->Source File.

Figure 1.17: New source �le

The New Source File dialog opens and you can enter the source �le name. Add a .c extension for a C
program �le. The source folder should be the folder of your project. Select Finish and a new �le is opened.

16 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.18: New source �le dialog

Enter the C code. The �le must contain a main function. After entering the code, save the �le.

#include <std.h>
#include <log.h>
#include <tsk.h>
#include "dspbiosprojectcfg.h" //header generated by dspbiosproject.tcf

void main(void){

LOG_printf(&trace,"In main function");

return;

}

void funTSK0(void){

LOG_printf(&trace,"In TSK0");

return;

}

17

In the code above, note that the header �le dspbiosprojectcfg.h is included. This is the header �le
generated by the DSP/BIOS con�guration �le. Also, the function funTSK0 is the function that will be
executed when TSK0 gets scheduled to run.

1.1.5 Create a target con�guration

In order to build and run your project you need to have a target con�guration. This �le will contain
information about the emulator that will be used and the target processor. In this module the target
con�guration will be the TI simulator for the C6713 processor.

First select File->New->Target Con�guration File.

Figure 1.19: Open new target con�guration �le

In the New Target Con�guration dialog enter the con�guration �le name ending in the .ccxml �le
extension. Put the �le in the project directory. Select Finish and a new target con�guration �le opens.

18 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.20: Target con�guration dialog

In the target con�guration, select the connection needed (simulator or some type of emulator, etc.) and
the type of device. In this example the TI simulator is used with the C6713 little endian simulator device.
Select Save when done.

19

Figure 1.21: Target con�guration setup

Now the target con�guration is in the project.

20 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.22: Project �les

1.1.6 Debug the project

To start a debug session either select Target->Debug Active Project or press the debug icon in the menu
bar.

Figure 1.23: Debug icon

When the debug session starts the code �les are compiled and linked into an executable �le and the �le
is loaded onto the target. The initialization code is executed and the program is halted at the beginning of
the main function.

21

Figure 1.24: Debugging session

In order to be able to see the LOG print text the real time analysis (RTA) data stream must be turned
on. Select Tools->RTA->Print Logs which will open up the LOG print window. Select the Stream
RTA data button on the right part of the menu bar. The icon is depressed in the �gure.

Figure 1.25: Turn on the RTA data stream

Icons on the debug window can be used to run the program and other debugging tools.

22 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.26: Debugging tools

Press the green arrow to run the program. The main function will be executed and the program will leave
the main function. After the main function executes the TSK0 object is schedule and the tsk0 function is
executed. Both functions print to the trace LOG object. The output can be viewed in the Printf Logs
window.

Figure 1.27: Printf Logs output window

1.2 Code Composer Studio v4 DSP/BIOS and C6713 DSK2

1.2.1 Introduction

This module describes the TMS320C6713 DSK development board and how to use it in a Code Composer
Studio (CCS) v4 project that uses DSP/BIOS. An example project is included.

1.2.2 Reading

• TMS320C6713 DSK Technical Reference
• SLWS106D: TLV320AIC23 Technical Manual
• SPRA677: A DSP/BIOS AIC23 Codec Device Driver for the TMS320C6713 DSK
• SPRU616: DSP/BIOS Driver Developer's Guide
• SPRA846: A DSP/BIOS EDMA McBSP Device Driver for TMS320C6x1x DSPs

2This content is available online at <http://cnx.org/content/m36656/1.2/>.

23

1.2.3 Project Files

The �les refered to in this module can be found in this ZIP �le: DSK6713_audio.zip3

1.2.4 DSK Hardware

The following �gure shows the block diagram of the TMS320C6713 DSK hardware. The heart of the DSK
is the TMS320C6713 DSP chip which runs at 225 MHz. The DSP is in the center of the block diagram
and connects to external memory through the EMIF interface. There are several devices connected to this
interface. One device is a 16 Mbyte SDRAM chip. This memory, along with the internal DSP memory, will
be where code and data are stored.

On the DSK board there is a TLV320AIC23 (AIC23) 16-bit stereo audio CODEC (coder/decoder). The
chip has a mono microphone input, stereo line input, stereo line output and stereo headphone output. These
outputs are accessible on the DSK board. The AIC23 �gure shows a simpli�ed block diagram of the AIC23
and its interfaces. The CODEC interfaces to the DSP through its McBSP serial interface. The CODEC is a
16-bit device and will be set up to deliver 16-bit signed 2's complement samples packed into a 32-bit word.
Each 32-bit word will contain a sample from the left and right channel in that order. The data range is from
- 2(16−1) to (2(16−1)-1) or -32768 to 32767.

Figure 1.28: TMS320C613 DSK Block Diagram taken from TMS320C6713 DSK Technical Reference

3http://cnx.org/content/m36656/latest/DSK6713_audio.zip

24 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.29: Simpli�ed AIC23 CODEC Interface taken from TMS320C6713 DSK Technical Reference

1.2.5 DSK6713 Audio Project Framework

The following �gure shows a diagram of the software that will be used in this module. Texas Instruments
has written some drivers for the McBSP that get data from the AIC23 and write data to the AIC23. The
input data is put into an input stream (input bu�er) and the output data is read from an output stream
(output bu�er). The signal processing software simply needs to get a bu�er from the input stream, process
the data, then put the resulting bu�er in the output stream.

The project is set up using DSP/BIOS, a real time operating systems developed by TI. This module
does not explain how to use DSP/BIOS but it will explain what objects are used in this project. The main
objects are an input stream, inStream, an output stream, outStream, and a task, TSK_processing, which
uses the function processing().

25

Figure 1.30: Block diagram of the signal processing framework.

There are a few things that can be easily modi�ed by the user in the main program �le DSK6713_audio.c.

1.2.5.1 CODEC Setup

The CODEC can be set up for di�erent inputs and di�erent sample rates. In the program there is a variable
that sets up the registers in the CODEC:

DSK6713_EDMA_AIC23_DevParams AIC23CodecConfig ={

0x0000AB01, //VersionId

0x00000001, //cacheCalls

0x00000008, //irqId

AIC23_REG0_DEFAULT,

AIC23_REG1_DEFAULT,

AIC23_REG2_DEFAULT,

AIC23_REG3_DEFAULT,

AIC23_REG4_LINE,// Use the macro for Mic or Line here

AIC23_REG5_DEFAULT,

AIC23_REG6_DEFAULT,

AIC23_REG7_DEFAULT,

AIC23_REG8_48KHZ,// Set the sample rate here

AIC23_REG9_DEFAULT,

0x00000001, //intrMask

0x00000001 //edmaPriority

26 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

};

This is set up to use the Line In as the input with the macro AIC23_REG4_LINE. If the microphone input
is needed then change this macro to AIC23_REG4_MIC. The sample rate is set to 48kHz with the macro
AIC23_REG8_48KHZ. This sample rate can be changed by changing the line to one of the following macros:

AIC23_REG8_8KHZ

AIC23_REG8_32KHZ

AIC23_REG8_44_1KHZ

AIC23_REG8_48KHZ

AIC23_REG8_96KHZ

1.2.5.2 Signal Processing Function

The main part of the software is an in�nite loop inside the function processing(). The loop within the
function is shown here.

while(1) {

/* Reclaim full buffer from the input stream */

if ((nmadus = SIO_reclaim(&inStream, (Ptr *)&inbuf, NULL)) < 0) {

SYS_abort("Error reclaiming full buffer from the input stream");

}

/* Reclaim empty buffer from the output stream to be reused */

if (SIO_reclaim(&outStream, (Ptr *)&outbuf, NULL) < 0) {

SYS_abort("Error reclaiming empty buffer from the output stream");

}

// Even numbered elements are the left channel (Silver on splitter)

// and odd elements are the right channel (Gold on splitter).

/* This simply moves each channel from the input to the output. */

/* To perform signal processing, put code here */

for (i = 0; i < CHANLEN; i++) {

outbuf[2*i] = inbuf[2*i];// Left channel (Silver on splitter)

outbuf[2*i+1] = inbuf[2*i+1];// Right channel (Gold on splitter)

}

/* Issue full buffer to the output stream */

if (SIO_issue(&outStream, outbuf, nmadus, NULL) != SYS_OK) {

SYS_abort("Error issuing full buffer to the output stream");

}

/* Issue an empty buffer to the input stream */

if (SIO_issue(&inStream, inbuf, SIO_bufsize(&inStream), NULL) != SYS_OK) {

SYS_abort("Error issuing empty buffer to the input stream");

}

}

This loop simply gets bu�ers to be processed with the SIO_reclaim commands, processes them, and puts
them back with the SIO_issue commands. In this example the data is simply copied from the input bu�er

27

to the output bu�er. Since the data comes in as packed left and right channels, the even numbered samples
are the left channel and the odd numbered samples are the right channel. So the command that copies the
left channel is:

outbuf[2*i] = inbuf[2*i];// Left channel (Silver on splitter)

Suppose you wanted to change the function so that the algorithm just ampli�es the left input by a factor of
2. Then the program would simply be changed to:

outbuf[2*i] = 2*inbuf[2*i];// Left channel (Silver on splitter)

Notice that there is a for loop within the in�nite loop. The loop is executed CHANLEN times. In the example
code, CHANLEN is 256. So the block of data is 256 samples from the left channel and 256 samples from
the right channel. When writing your programs use the variable CHANLEN to determine how much data to
process.

1.2.5.3 Bu�er Sizes

In the program �le is a macro that is used to de�ne the size of the bu�ers that are in the inStream and
outStream bu�ers. The macro is

#define CHANLEN 256// Number of samples per channel

The CCS project uses TI's device drivers described in SPRA846. In the TI document SPRA846 it states
that "If bu�ers are placed in external memory for use with this device driver they should be aligned to a
128 bytes boundary. In addition the bu�ers should be of a size multiple of 128 bytes as well for the cache to
work optimally." If the SIO streams inStream and outStream are in external memory then the bu�er sizes
need to adhere to this requirement. If the streams are placed in internal memory then they can be any size
desired as long as there is enough memory.

Suppose you want to keep the bu�ers in external memory but change the size. As an example, you want
to change the length of each channel to 512 (multiple of 128). Then change CHANLEN to 512 and then open
the con�guration �le DSK6713_audio.tcf and examine the properties for inStream.

28 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.31: DSP/BIOS SIO object inStream properties

Notice that the bu�er size is 1024. This was for a channel length of 256. In the C6713 a Minimum
Addressable Data Unit (MADU) is an 8-bit byte. The bu�er size is in MADUs. Since each sample from the
codec is 16-bits (2 MADUs) and there is a right channel and a left channel, the channel length is multiplied
by 4 to get the total bu�er size needed in MADUs. 256*4 = 1024. If you want to change the channel length
to 512 then the bu�er size needs to be 512*4 = 2048. Simply change the bu�er size entry to 2048. Leave
the alignment on 128. The same change must be made to the outStream object so that the bu�ers have the
same size so change the bu�er size in the properties for the outStream object also.

Suppose you have an algorithm that processes a block of data at a time and the bu�er size is not a
multiple of 128. To make the processing easier, you could make the stream bu�er sizes the size you need
for your algorithm. In this case, the stream objects must be placed in internal memory. As an example
suppose you want a channel length of 94. Set the CHANLEN macro to 94 and then open the con�guration �le
DSK6713_audio.tcf and examine and modify the properties for inStream and outStream. The bu�er size
will now be 94*4 = 376 and the bu�er memory segment must be change from external RAM (SDRAM) to
the internal RAM (IRAM).

29

Figure 1.32: DSP/BIOS SIO object inStream properties showing IRAM

1.2.6 Chip Support Library

The example project uses the Chip Support Library (CSL) which is an application programming interface
(API) used for con�guring and controlling the DSP on-chip peripherals. In order to use the CSL there are
several things that must be done �rst.

Download and install the CSL. The CSL is labeled SPRC090 and can be found at
http://focus.ti.com/docs/toolsw/folders/print/sprc090.html4 .
Under Windows, the CSL can be installed in the directory in your CCS install directory such as

C:\Program Files\Texas Instruments\C6xCSL or another directory of your choosing.

4http://focus.ti.com/docs/toolsw/folders/print/sprc090.html

30 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

1.2.7 Project Setup

1.2.7.1 Make an empty DSP/BIOS project

To create a CCS project select File->New->CCS Project.
This will bring up a window where you can enter the name of the project. The location selected is the

default location for project �les. Press Next.

Figure 1.33: CCS Project name and location

Since the example uses the TMS320C67xx processor the project type selected is C6000. The project
con�gurations are Debug and Release. Select the Next button.

31

Figure 1.34: Type of CCS project

Select the Next button.
On the Project Settings Screen, select the items that pertain to the type of project to be created. Since

the project will be executed selectOutput Type: Executable. The processor type is TMS320C67xx so the
Device Variant is Generic C67xx Device. This project will use Little Endian. The code generation
tools are the latest version (in this case TI v7.0.3). The runtime support library is selected to match the
device variant and the endianness selected. Automatic will pick the correct library. Press Next.

32 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.35

Since the project will be based on DSP/BIOS an empty DSP/BIOS example project. This will set up
project parameters for DSP/BIOS.

33

Figure 1.36

Copy �les from zip �le to project directory. When they are copied to the project directory the �les may
be added to the project automatically but you could add them manually.There should be 5 �les added to
the project.

1.2.7.2 Set up the CSL

Some options in the project need to be changed in order to use the CSL. To get the the project properties
select Project->Properties. Add the include �les directory to the search path by selecting Include
Options under C6000 Compiler and then clicking the green plus sign and typeing in the directory name.
In the example the include directory is C:\Program Files\Texas Instruments\C6xCSL\include.

34 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.37: Project properties: Include search path

The CSL needs to know what chip is being used so the chip name needs to be de�ned. Click on Prede�ned
Symbols under C6600 Compiler. Click the green plus sign and add the name CHIP_6713.

35

Figure 1.38: Project properties: Pre-de�ned name

Finally, include the chip support library �le csl6713.lib which is in the directory C:\Program
Files\Texas Instruments\C6xCSL\lib_3x.

1.2.7.3 Stack and heap sizes

To get the the project properties select Project->Properties. Change the stack and heap sizes to 0x400 by
selecting Basic Options under C6000 Linker.

36 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.39: Heap and stack size

1.2.7.4 Target Con�guration

In order to load the code onto the DSK board a target con�guration must be created. To make a target
con�guration for the C6713 DSK board select File->New->Target Con�guation File and then select
the connection and board as shown in the following �gure. When done, click Save.

37

Figure 1.40: Target Con�guration Setup

1.2.8 Debug/test the project

To start a debug session either select Target->Debug Active Project or press the debug icon in the menu
bar.

38 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Figure 1.41: Debug icon

When the debug session starts the code �les are compiled and linked into an executable �le and the �le
is loaded onto the target. The initialization code is executed and the program is halted at the beginning of
the main function.

39

Figure 1.42: Debug session

Press the run button and the data should be input from the selected input port and output to the LINE
OUT port. Connect an appropriate input sourse to the input port and connect the LINE OUT to speakers
or an oscilloscope. Run the program and verify the I/O.

40 CHAPTER 1. CODE COMPOSER STUDIO PROJECTS

Chapter 2

Lab 1

2.1 TI DSP/BIOS LOG Module1

2.1.1 Introduction

This module describes the basics of the TI DSP/BIOS LOG module.

2.1.2 Reading

• SPRU423 TMS320 DSP/BIOS Users Guide: Read the section Event Log Manager (LOG Module)

2.1.3 LOG Module

When running a real-time application it is desirable to not interrupt the processing while attempting to
monitor or debug code. Printing to the standard I/O is very time consuming on the processor. The LOG
module helps reduce this time. Formatting of the display takes place on the host computer rather than on
the DSP. Data is stored in real-time to a bu�er on the DSP and then during idle time it is transferred to
the host computer. On the host computer the print statements are formatted and displayed.

The main functions used in the LOG module are LOG_printf and LOG_printf4. They work very similar
to the C printf function. In order to print using the LOG module a LOG object must be de�ned. To
create a new LOG object open the con�guration �le and right click on Instrumentation->LOG and select
Insert LOG. This will create a LOG object called LOG0. The name of the object can be changed. On
the properties window for the object the bu�er length is in words and sets the length of the bu�er. The
bu�er can be either a circular bu�er, which contains the last messages written to the object, or �xed, which
contains the �rst messages written to the bu�er. A circular bu�er allows messages to be sent continually.
Each message writes 4 words of data. The format of the function call is

LOG_printf(LOG_Obj *log,String format,arg0,arg1)

LOG_printf4(LOG_Obj *log,String format,arg0,arg1,arg2,arg3);

where the String format is a usual C printf format string with the conversion characters given in Table
1.

1This content is available online at <http://cnx.org/content/m36668/1.1/>.

41

42 CHAPTER 2. LAB 1

Conversion Character Description

%d Signed integer

%x Unsigned hexadecimal integer

%u Unsigned integer

%o Unsigned octal integer

%s Character string. This character can only be used
with constant string pointers.

%r Symbol from symbol table

%p pointer

Table 2.1

When using objects de�ned with the con�guration tool the code must include de�nitions of the objects
and the header �le log.h. The con�guration tool generates a header �le that contains the de�nitions. For
instance, the �le log.tcf would generate the �le logcfg.h. If an object called LOG0 was created, then the
�le would contain

extern far LOG_Obj LOG0;

Include the con�guration header �le in your code and you won't need to make the de�nitions yourself. A
call the the print function might look like this

LOG_printf(&LOG0,"Hello world");

To view the message log select Tools->RTA->Printf Logs.

2.2 LOG Lab2

2.2.1 Introduction

This lab module will help you become familiar with TI DSP/BIOS LOG module and its use.

2.2.2 Reading

• SPRU423 TMS320 DSP/BIOS Users Guide: Read the section Event Log Manager (LOG Module)

2.2.3 Lab Module Prerequisites

None

2.2.4 Laboratory

• Follow the procedure in Code Composer Studio v4 DSP/BIOS Project (Section 1.1) to create a new CCS
DSP/BIOS project. Name the project loglab. Your project should have a DSP/BIOS con�guration
�le named loglab.tcf.

• Create a LOG object called trace. Use the default length of 64 and the logtype circular.

2This content is available online at <http://cnx.org/content/m36670/1.2/>.

43

• Add a task to the con�guration. This is part of the TSK module but you don't need to know about the
module to be able to do this lab. Add a task by right clicking on Scheduling->TSK and selecting
Insert TSK. A new task should be added called TSK0.

• Specify the function the task will run by right clicking on TSK0 and bringing up its properties. On
the Function tab next to Task Function type in the function name _logTSK. This will specify the C
function logTSK as the function it will call.

• Create a main.c �le and include a main function that does nothing and a function logTSK. The main
structure of the �le is

#include <std.h>
#include <log.h>
#include <tsk.h>
#include "loglabcfg.h"

main()

{

}

logTSK()

{

/* your code here */

}

• Write a loop in the logTSK function that loops 20 times and writes some text indicating that the loop
number is being printed and print the loop number. For instance, have it print

Loop Number 0

Loop Number 1

Loop Number 2

...

• Start the debug session.
• Open the log view by selecting Tools->RTA->Printf Logs.
• Run the program and record the results.

44 CHAPTER 2. LAB 1

Chapter 3

Lab 2

3.1 TI DSP/BIOS TSK Module1

3.1.1 Introduction

DSP/BIOS provides several di�erent managers manage threads of execution. One of them is the Task
Manager (TSK). This module explains the basics of TSK objects and use. This module only explains the
use of static TSK objects which are set up using the con�guration tool.

3.1.2 Reading

• SPRU423 TMS320 DSP/BIOS Users Guide: Read the section on Tasks

3.1.3 TSK Module

Tasks are independent threads of code that conceptually run concurrently. The processor time is shared
among the tasks. Each task has a priority which is used to determine which task gets processor time.

Each task has its own stack to store local variables, nesting function calls and for saving the task state
when it is preempted. The stack size can be set individually for each task.

A task is always in one of four states

• Running, which means the task is the one actually executing on the system's processor;
• Ready, which means the task is scheduled for execution subject to processor availability;
• Blocked, which means the task cannot execute until a particular event occurs within the system; or
• Terminated, which means the task is �terminated� and does not execute again.

Figure 1 shows a state transition diagram for a task. There is only one thread in the TSK_RUNNING
state. When a task is in the TSK_RUNNING state all the other tasks in the TSK_READY state are at
the same or lower priority. When a task of higher priority enters the TSK_READY state a preemption
immediately occurs and the running task enters the TSK_READY state and the higher priority task enters
the TSK_RUNNING state. Tasks can become blocked when a resource is unavailable or when some other
event that causes blocking occurs. Semaphores are used to synchronize access to resources and can cause a
task to block. When the resource becomes available the task enters the TSK_READY state.

1This content is available online at <http://cnx.org/content/m36678/1.3/>.

45

46 CHAPTER 3. LAB 2

Figure 3.1: State transition diagram for a task

To create a TSK object, open the con�guration �le, right click on Scheduling->TSK and select Insert
TSK. You can right click on the object and select Properties to change its properties. Set the TSK priority
on the General tab. Click on the Function tab and put the function name (preceded by an underscore) in for
the function you want to handle the TSK. Figure 2 shows a view of the con�guration �le where the TSKs
can be seen in their corresponding priority. Notice that the TSK_idle is priority 0 and it is reserved. This
is the idle task.

When your program runs, the tasks with the same priority will get initialized in the order that they are
shown in the con�guration tool.

47

Figure 3.2: Con�guration �le showing TSKs and priorities

There are many functions in the TSK module. Some of the more commonly used ones are:

• TSK_disable - Disable DSP/BIOS task scheduler
• TSK_enable - Enable DSP/BIOS task scheduler
• TSK_yield - Yield processor to equal priority task
• TSK_sleep - Delay execution of the current task

As an example, suppose there are two task at the same priority as shown in the con�guration �le in Figure 3.
To set up the threads of execution, change the Function properties to _funTSK0 for task TSK0 and _funTSK1
for task TSK1 as shown in Figure 4.

48 CHAPTER 3. LAB 2

Figure 3.3: Con�guration tool showing two tasks at Priority 1

49

Figure 3.4: Function name for the Task

Then the main.c �le will need two functions funTSK0 and funTSK1 as shown in the following listing.

#include <std.h>
#include <log.h>
#include <tsk.h>
#include "tskcfg.h"

Void main()

{

}

Void funTSK0()

{

LOG_printf(&trace, "TSK0 Start");

TSK_yield();

LOG_printf(&trace, "TSK0 Main");

TSK_yield();

LOG_printf(&trace, "TSK0 Finish");

}

Void funTSK1()

{

50 CHAPTER 3. LAB 2

LOG_printf(&trace, "TSK1 Start");

TSK_yield();

LOG_printf(&trace, "TSK1 Main");

TSK_yield();

LOG_printf(&trace, "TSK1 Finish");

}

When the program starts, the TSK0 runs �rst since it is the �rst on the list under Priority 1. It will print
one statement and then yield to another task at the same priority, which will be TSK1. TSK1 will then
begin its execution. The result of the whole run is:

TSK0 Start

TSK1 Start

TSK0 Main

TSK1 Main

TSK0 Finish

TSK1 Finish

3.1.4 Viewing Objects

Whe debugging a project it is important to see the characteristics of the components in your project. When
using DSP/BIOS in CCS it is possible to view the DSP/BIOS objects and their properties using the RTSC
Object Viewer (ROV). RTSC is Real Time Software Components which is a standard for developing software
modules/libraries.

To view the DSP/BIOS v5.x objects and properties in the debug mode, select Tools->ROV. This will
bring up a window that looks like the following �gure.

Figure 3.5: RTSC Object Viewer

This �gure shows the TSK module and the two tasks in the project. Notice the di�erent properties that
can be seen for each task.

51

3.2 TI DSP/BIOS SEM Module2

3.2.1 Introduction

The DSP/BIOS real-time operating system provides for inter-task synchronization through the use of
semaphores. The module that provides this function is the SEM module. This module will describe the
basic use of SEM objects that are initialized in the con�guration tool.

3.2.2 Reading

• SPRU423 TMS320 DSP/BIOS Users Guide: Read the section on Semaphores.

3.2.3 SEM Module

Semaphores provide a way for intertask communication and synchronization. They are used to coordinate
access to a shared resource being accessed by multiple tasks. The SEM objects are counting semaphores
which means they keep a record of the number of corresponding resources available.

There are two main functions for using a semaphore once it has been created.

• SEM_pend is used to wait for a semaphore. If the semaphore has a positive value, this function will sim-
ply decrement the semaphore and return. If the value of the semaphore is 0, the task calling SEM_pend

is blocked and its state is changed to TSK_BLOCKED. The timeout parameter to SEM_pend allows
the task to wait until a timeout occurs, wait inde�nitely (SYS_FOREVER), or not wait at all. SEM_pend's
return value is used to indicate if the semaphore was signaled successfully.

• SEM_post is used to signal a semaphore. If a particular task is waiting for the semaphore (in the
TSK_BLOCKED state), SEM_post removes the task from the semaphore queue and puts it on the
ready queue (in the TSK_READY state). In this case, the semaphore remains at 0. If no tasks are
waiting, SEM_post simply increments the semaphore count and returns.

To create an SEM object, open the con�guration �le, right click on Syncronization-> SEM and select
Insert SEM. You can right click on the object and select Properties to change its properties. The following
�gure shows a semaphore, SEM0, in the con�guration tool with an initial value of 1.

2This content is available online at <http://cnx.org/content/m36686/1.5/>.

52 CHAPTER 3. LAB 2

Figure 3.6: Semaphore in con�guration tool

As an example, suppose there are two tasks, TSK0 and TSK1, that are at the same priority. When
program execution begins, TSK0 starts �rst. The semaphore, SEM0, is initialized to 1. The following code
is used for the two tasks.

funTSK0(){

1 LOG_printf(&trace,"TSK0 Start");

2 SEM_pend(&SEM0,SYS_FOREVER);

3 LOG_printf(&trace,"TSK0 1");

4 SEM_pend(&SEM0);

11 LOG_printf(&trace,"TSK0 2");

12 SEM_post(&SEM0);

13 SEM_post(&SEM0);

14 LOG_printf(&trace,"TSK0 3");

15 SEM_post(&SEM0);

16 LOG_printf(&trace,"TSK0 Finish");

}

funTSK1(){

5 LOG_printf(&trace,"TSK1 Start");

6 SEM_post(&SEM0);

7 LOG_printf(&trace,"TSK1 1");

8 SEM_post(&SEM0);

9 SEM_pend(&SEM0);

10 SEM_pend(&SEM0);

17 LOG_printf(&trace,"TSK1 2");

18 LOG_printf(&trace,"TSK1 Finish");

}

53

The following table shows the order of execution, the state of the two tasks, the value of the semaphore
and any output printed. The Code Line # indicates which line of code is executed. The line in the table
indicates the result after the line of code is executed. For instance, the line 1 indicates that the following
line of code is executed:

1 LOG_printf(&trace,"TSK0 Start");

In the table, the TSK0 is in the TSK_RUNNING (E) state, TSK1 is in the TSK_READY (R) state, the
semaphore has a value of 1 and the line causes the output "TSK0 Start". The next line of code to execute is

2 SEM_pend(&SEM0,SYS_FOREVER);

The other states for the tasks are TSK_BLOCKED (B) and TSK_TERMINATED (T).

Code Line # TSK0 State TSK1 State SEM0 Output

1 E R 1 TSK0 Start

2 E R 0

3 E R 0 TSK0 1

4 B E 0

5 B E 0 TSK1 Start

6 R E 0

7 R E 0 TSK 1

8 R E 1

9 R E 0

10 E B 0

11 E B 0 TSK0 2

12 E R 0

13 E R 1

14 E R 1 TSK0 3

15 E R 2

16 E R 2 TSK0 Finish

17 T E 2 TSK1 2

18 T T 2 TSK1 Finish

Table 3.1

3.2.4 Semaphore as a resource monitor

There are a couple common practical uses for semaphores. One of those uses is to count how many items
are on a queue. The other is to restrict tasks from accessing a resource at the same time.

54 CHAPTER 3. LAB 2

3.2.4.1 Queue count

Suppose there are two tasks in your system, TSK_Send and TSK_Receive and there is one queue between
them, QUE0. To keep track of how many elements are on the queue there is a counting semaphore, SEM0.
The semaphore is initialized to 0. See Figure 1.

Figure 3.7: Tasks and queue

When TSK_Send puts a message on the queue, it will perform a SEM_post(&SEM0) which will incre-
ment the count on the semaphore. Before the TSK_Receive tries to get a message o� the queue it will
perform a SEM_pend(&SEM0,SYS_FOREVER). This will decrement the count on the semaphore every time the
TSK_Receive takes a message o� the queue. If there are no messages on the queue, SEM0 will be 0 and
the task will block. This will cause the task to wait until the TSK_Send task puts another message on the
queue.

3.2.4.2 Resource sharing

When two tasks share a resource, it may be necessary for the tasks have mutually exclusive access to the
resource. In this case, a semaphore can be used to acquire access to the resourse or lock access to a resource.

Suppose there are two tasks with the same priority in your system, TSK0 and TSK1. There is a Resource
that the two tasks share. A semaphore, SEM0, will be used to aquire access to the resource. The semaphore
is initialized to 1. See Figure 2.

Figure 3.8: Two tasks sharing a resource

In order for the tasks to have mutually exclusive access to the resource, each task must perform a
SEM_pend(&SEM0,SYS_FOREVER) before using the resource and a SEM_post(&SEM0) after using the resource.

Examine the following code that does NOT use a semaphore when writing to the resource.

int Resource[4];

Void funTSK0()

{

Resource[0]=0;

55

Resource[1]=1;

TSK_yield();

Resource[2]=2;

Resource[3]=3;

}

Void funTSK1()

{

Resource[0]=4;

Resource[1]=5;

Resource[2]=6;

Resource[3]=7;

}

When the tasks �nish the contents of the array Resource will be [4,5,2,3]. Clearly, we would like it to be
either [0,1,2,3] or [4,5,6,7]. To �x this, add the semaphore.

int Resource[4];

Void funTSK0()

{

SEM_pend(&SEM0,SYS_FOREVER);

Resource[0]=0;

Resource[1]=1;

TSK_yield();

Resource[2]=2;

Resource[3]=3;

SEM_post(&SEM0);

}

Void funTSK1()

{

SEM_pend(&SEM0,SYS_FOREVER);

Resource[0]=4;

Resource[1]=5;

Resource[2]=6;

Resource[3]=7;

SEM_post(&SEM0);

}

When the tasks �nish the contents of the array Resource will be [4,5,6,7]. The reason for this is that after
TSK0 performs a TSK_yield, TSK1 tries to perform a SEM_pend but gets blocked. At that point TSK0
continues running and �nishes with the resource. Then TSK1 begins to run and writes the complete array.

3.2.5 Viewing Objects

Whe debugging a project it is important to see the characteristics of the components in your project. When
using DSP/BIOS in CCS it is possible to view the DSP/BIOS objects and their properties using the RTSC
Object Viewer (ROV). RTSC is Real Time Software Components which is a standard for developing software
modules/libraries.

56 CHAPTER 3. LAB 2

To view the DSP/BIOS v5.x objects and properties in the debug mode, select Tools->ROV. This will
bring up a window that looks like the following �gure.

Figure 3.9: RTSC Object Viewer

This �gure shows the SEM module and the semaphore in the project. Notice the di�erent properties
that can be seen for each semaphore.

3.3 TSK SEM Lab3

3.3.1 Introduction

This lab module will help you become familiar with the TI DSP/BIOS TSK module and SEM module.

3.3.2 Reading

• SPRU423 TMS320 DSP/BIOS Users Guide: Read the sections on Semaphores and Tasks.

3.3.3 Lab Module Prerequisites

None

3.3.4 Laboratory

3.3.4.1 Part 1

• In this part we will create two tasks that will have the same priority and will run independent of each
other.

• Follow the procedure in Code Composer Studio v4 DSP/BIOS Project (Section 1.1) to create a new CCS
DSP/BIOS project. Name the project tsklab. Your project should have a DSP/BIOS con�guration
�le named tsklab.tcf.

3This content is available online at <http://cnx.org/content/m36695/1.1/>.

57

• Create a LOG object by right clicking on Instrumentation->LOG and selecting Insert LOG. Change
the name to trace. Set its properties to have a length of 128 and be a �xed bu�er.

• Create two TSKs with the following properties

1. Name: TSK0, priority: 1, function: _funTSK0.
2. Name: TSK1, priority: 1, function: _funTSK1.

• Create a main.c �le and include a main function that does nothing.
• In the main.c �le make functions for your TSKs, funTSK0 and funTSK1. Each function should print

to the trace LOG object once at the beginning of the function to indicate that the particular TSK is
starting and once at the end of the function to indicate that the particular TSK is ending.

• Add code to each task that loops 5 times and prints to trace the task number and the loop number
each time through the loop. It should look something like:

TSK0 Number 0

TSK0 Number 1

...

• The basic structure of main.c should be:

#include <std.h>
#include "tsklabcfg.h"

void main()

{

}

void funTSK0()

{

/* code here */

}

void funTSK1()

{

/* code here */

}

• Start the debug session.
• Open the log view by selecting Tools->RTA->Printf Logs.
• Run the program and record the results.

3.3.4.2 Part 2

• In this part we will change the tasks so that they yield to each other within their loops.
• Have in your system two TSKs with the following properties

58 CHAPTER 3. LAB 2

1. Name: TSK0, priority: 1, function: _funTSK0.
2. Name: TSK1, priority: 1, function: _funTSK1.
3. Each yields to the other in their loop.

• Copy the main.c �le from above to a new �le main2.c. Exclude the main.c from your project build.
• Change the code so that the two tasks yield to each other within the loop. Put a print statement

before the yield and one after the yield so you will know when the function has completed the loop.
Do this for subsequent parts of this lab also.

• Start the debug session.
• Open the log view by selecting Tools->RTA->Printf Logs.
• Run the program and record the results.

3.3.4.3 Part 3

• In this part we will change the tasks so that one is a higher priority than the other. They yield to each
other in their loops.

• Have in your system two TSKs with the following properties

1. Name: TSK0, priority: 2, function: _funTSK0.
2. Name: TSK1, priority: 1, function: _funTSK1.
3. Each yields to the other in their loop.

• This part will still be executing main2.c.
• Set TSK0 to a higher priority than the other.
• Start the debug session.
• Open the log view by selecting Tools->RTA->Printf Logs.
• Run the program and record the results.
• Does the execution appear di�erent from part 2?

3.3.4.4 Part 4

• In this part you will add a semaphore to the program. One task will pend on the semaphore and the
other will post to the semaphore.

• Have in your system two TSKs with the following properties

1. Name: TSK0, priority: 1, function: _funTSK0.
2. Name: TSK1, priority: 1, function: _funTSK1.
3. TSK0 pends on the semaphore and TSK1 posts to the semaphore in the loop.

• Have in your system a semaphore with the following properties

1. Name: SEM0, initial value: 1

• Name your new main �le main4.c.
• Remove the task yield from each task.
• Use SYS_FOREVER for the timeout on the pend.
• Put TSK0 �rst in the priority list in the con�guration �le. This will cause it to run �rst.
• Start the debug session.
• Open the log view by selecting Tools->RTA->Printf Logs.
• Run the program and record the results.

59

3.3.4.5 Part 5

• In this part you change the initial value on the semaphore and observe what happens.
• Have in your system two TSKs with the following properties

1. Name: TSK0, priority: 1, function: _funTSK0.
2. Name: TSK1, priority: 1, function: _funTSK1.
3. TSK0 pends on the semaphore and TSK1 posts to the semaphore.

• Semaphore with the following properties

1. Name: SEM0, initial value: 2, 3 (run multiple times to get these).

• Change the semaphore initial value to 2.
• Start the debug session.
• Open the log view by selecting Tools->RTA->Printf Logs.
• Run the program and record the results.
• Run the program with di�erent SEM0 initial values.
• What happens with the di�erent initial values?

3.3.4.6 Part 6

• In this part you will make the task that posts to the semaphore a higher priority.
• Two TSKs with the following properties
• Have in your system two TSKs with the following properties

1. Name: TSK0, priority: 1, function: _funTSK0.
2. Name: TSK1, priority: 2, function: _funTSK1.
3. TSK0 pends on the semaphore and TSK1 posts to the semaphore.

• Semaphore with the following properties

1. Name: SEM0, initial value: 1

• Make the task that is posting a higher priority than the other.
• Start the debug session.
• Open the log view by selecting Tools->RTA->Printf Logs.
• Run the program and record the results.

60 CHAPTER 3. LAB 2

3.3.4.7 Part 7

• In this part you will make the task that pends on the semaphore a higher priority.
• Have in your system two TSKs with the following properties

1. Name: TSK0, priority: 2, function: _funTSK0.
2. Name: TSK1, priority: 1, function: _funTSK1.
3. TSK0 pends on the semaphore and TSK1 posts to the semaphore.

• Semaphore with the following properties

1. Name: SEM0, initial value: 2

• Start the debug session.
• Open the log view by selecting Tools->RTA->Printf Logs.
• Run the program and record the results.

3.3.4.8 Part 8

• In this part you will run the code that is given for each task and then document for each step through
the code the state of the tasks and semaphore and any output that is printed.

• Have in your system two TSKs with the following properties

1. Name: TSK0, priority: 1, function: _funTSK0.
2. Name: TSK1, priority: 1, function: _funTSK1.

• Put TSK0 �rst in the priority list in the con�guration �le. This will cause it to run �rst.
• Semaphore with the following properties

1. Name: SEM0, initial value: 1

• Use the followng code for your tasks.

void funTSK0()

{

LOG_printf(&trace,"TSK0 Starting");

SEM_post(&SEM0);

LOG_printf(&trace,"TSK0 1");

SEM_pend(&SEM0,SYS_FOREVER);

LOG_printf(&trace,"TSK0 2");

SEM_pend(&SEM0,SYS_FOREVER);

SEM_pend(&SEM0,SYS_FOREVER);

LOG_printf(&trace,"TSK0 3");

SEM_post(&SEM0);

LOG_printf(&trace,"TSK0 Finish");

}

funTSK1(){

61

LOG_printf(&trace,"TSK1 Start");

SEM_post(&SEM0);

LOG_printf(&trace,"TSK1 1");

SEM_pend(&SEM0,SYS_FOREVER);

SEM_post(&SEM0);

SEM_pend(&SEM0,SYS_FOREVER);

LOG_printf(&trace,"TSK1 2");

LOG_printf(&trace,"TSK1 Finish");

}

• Fill out the following table as you run your program.

Code Line # TSK0 State TSK1 State SEM0 Output

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table 3.2

3.3.5 Laboratory Write-up

• For each part of this lab, explain the setup of the objects and what they are doing. Explain the results
in great detail showing values for things like the semaphore count and why the task is running.

62 CHAPTER 3. LAB 2

Chapter 4

Lab 3

4.1 TI DSP/BIOS QUE Module1

4.1.1 Introduction

This module describes the basics of the Queue (QUE) module in DSP/BIOS v5.x. It also shows how to use
the MEM module to allocate memory for queue elements.

4.1.2 Reading

• SPRU423 TMS320 DSP/BIOS Users Guide: Read the section title Queues
• SPRU403 TMS320C6000 DSP/BIOS 5.x Application Programming Interface (API) Reference Guide:

Reference the sections on QUE and MEM

4.1.3 QUE Module

The QUE module provides a way to manage linked lists of data objects. A linked list is a group of objects
where an object in the list has information about the previous and next elements in the list as demonstrated
in Figure 1. A linked list can be used to implement bu�ers that operate in a FIFO, LIFO, LILO and FILO
manner, to name a few. Many times it is used in a FIFO manner.

Figure 4.1: Diagram of a linked list

The basic element in a queue structure is a QUE_Elem which is de�ned by

1This content is available online at <http://cnx.org/content/m36908/1.1/>.

63

64 CHAPTER 4. LAB 3

typedef struct QUE_Elem {

struct QUE_Elem *next;

struct QUE_Elem *prev;

} QUE_Elem;

This de�nition is in the header �le que.h which must be included in the source �le.
A message or object put on a queue is a structure that has as its �rst element a QUE_Elem. The message

is de�ned by the user's code. An example would be:

typedef struct MsgObj {

QUE_Elem elem; /* first field for QUE */

Int val; /* message value */

} MsgObj, *Msg;

To put a message at the end of a queue use the function QUE_put and to remove a message from the beginning
of the queue use QUE_get. These two functions allow the queue to be used as a First In First Out (FIFO)
bu�er.

Here is another example of a message structure. Notice that you can put anything else in the struture
for your message as long as the QUE_Elem element is the �rst in the structure.

typedef struct MsgObj {

QUE_Elem elem; /* first field for QUE */

float array[100]; /* message array */

} MsgObj, *Msg;

When creating messages it may be necessary to get a segment of memeory to store the message. The following
code can be used to allocate memory for a message and put it on a queue.

Msg msg; // pointer to a MsgObj, this doesn't allocate memory for a message

msg = MEM_alloc(0, sizeof(MsgObj), 0); // Allocate memory for the object

if (msg == MEM_ILLEGAL) {

SYS_abort("Memory allocation failed!\n");
}

/* fill the message with data here */

/* This puts the address of the message in the queue */

QUE_put(&queue, msg);

In order to use the MEM module the header �le mem.h must be included in the source �le. The MEM_alloc
gets a segment of memory from the memory manager and returns a pointer to the segment. The address
gets put into the msg pointer so that when we access the object it points to segment of memeory.

QUE_put puts the address of the message object on the queue. This function only copies the message
pointer in order to minimize the amount of processing needed to put the message on the queue.

Before trying to get a message from a queue, the code should check to see if there is a message available
on the queue. The following code makes this check and then gets the message from the queue.

if (QUE_empty(&queue)) { // Check to see if the queue is empty

LOG_printf(&trace,"queue error\n"); // Print something if it is empty

// If the queue is empty you probably will not want to proceed

}

msg = QUE_get(&queue); // If there is a message, dequeue it

65

// use the message here

// After using the message, free the memory

// This tells MEM_free the location of the msg and size so it

// can remove it from memory

MEM_free(0, msg, sizeof(MsgObj)); // Free up the memory

Functions QUE_put and QUE_get are atomic in that they add and remove elements from the queue with
interrupts turned o�. Therefore there should not be a problem of more than one task trying to access the
queue at the same time. The function QUE_get is also non-blocking so the tasks should determine if there
are any elements on the queue before calling QUE_get.

A semaphore can be used to count the number of elements on a queue and be used to block a task that
needs access to a queue. Figure 2 shows how one task TSK0 will write to a queue, QUE0, and the other task
TSK1 will read from the queue. Also, the semaphore QUE0_SEM is used to keep track of how many elements are
on the queue. After TSK0 puts a message on the queue it will call SEM_post and increment the semaphore.
Before reading from the queue, TSK1 will call SEM_pend on the semaphore and if the task does not block,
there is an element on the queue. If there are no elements on the queue, the task will block on the semaphore.

Figure 4.2: Queue and semaphore setup

For the setup with one queue and one semaphore notice that if the program ran for a long time the code
would have to continually allocate memory for a message and then de-allocate it when it was done using the
message. This could take up a substantial amount of time and could cause fragmentation of the memory
space. A better method is to have two queues where one queue holds messages that are free and one holds
messages that contain data being transmitted from one task to another. Figure 3 shows the same setup in
Figure 2 except there is now a queue that contains free messages or empty messages.

66 CHAPTER 4. LAB 3

Figure 4.3: Free message queue setup

During the initialization phase of the program, memory for empty messages is allocated and the messages
are put in the QUE_Free queue and the semaphore QUE_Free_SEM is incremented for each message put on
the queue. When TSK0 needs to send a message to TSK1 it will check QUE_Free_SEM to see if there are
any free messages. If not, it will block. If there are free messages it will take one o� of QUE_Free after
the QUE_Free_SEM is decremented and then �ll the message with data and put it on the queue QUE0. The
semaphore QUE0_SEM is incremented after the message is put on QUE0.

The task TSK1 will block on QUE0_SEM until task TSK1 puts a message on the queue. Then it will decrement
the semaphore and use the message. When it is done it will put the message on QUE_Free and increment its
semaphore.

4.1.4 Example

This is a very simple example to demonstrate the structure of a program that uses queues. In the example
we will assume that DSP/BIOS has been set up with two tasks, TSK0 and TSK1, and one queue, QUE0.
The two tasks have the same priority and TSK0 is set to execute �rst. The code for the example follows.

#include <std.h> // Target definition header

#include <sys.h> // DSP/BIOS config/error header

#include <log.h> // LOG module header

#include <mem.h> // MEM module header

#include <que.h> // QUE module header

#include <tsk.h> // TSK module header

#include "QUE_Examplecfg.h" // header generated by QUE_Example.tcf config file

typedef struct MsgObj {

QUE_Elem elem; /* first field for QUE */

Int val; /* message value */

} MsgObj, *Msg;

67

Void main()

{

}

// TSK0 will generate two messages and put them on the queue

Void funTSK0()

{

Msg msg; // Pointer to the message object

// allocate memory for first message

msg = MEM_alloc(0, sizeof(MsgObj), 0);

if (msg == MEM_ILLEGAL) {

// If the memory allocation fails, abort

SYS_abort("Memory allocation failed!\n");
}

msg->val = 1; // put the message number in the message

// print the message number

LOG_printf(&trace, "Writing message %d", msg->val);

// Put the message on the queue

QUE_put(&QUE0, msg);

// repeat for the second message

msg = MEM_alloc(0, sizeof(MsgObj), 0);

if (msg == MEM_ILLEGAL) {

// If the memory allocation fails, abort

SYS_abort("Memory allocation failed!\n");
}

msg->val = 2; // put the message number in the message

// print the message number

LOG_printf(&trace, "Writing message %d", msg->val);

// Put the message on the queue

QUE_put(&QUE0, msg);

}

// TSK1 will get two messages from the queue

Void funTSK1()

{

Msg msg; // Pointer to the message object

// If the queue is empty, we should not proceed

if (QUE_empty(&QUE0)) {

LOG_printf(&trace,"TSK1 queue error");

return; // This will make the task terminate

}

// Get the message off the queue

msg = QUE_get(&QUE0);

// print value in the message

LOG_printf(&trace, "Reading message %d", msg->val);

// Since we are done with the message, free the memory

MEM_free(0, msg, sizeof(MsgObj));

// Repeat for the second message

68 CHAPTER 4. LAB 3

// If the queue is empty, we should not proceed

if (QUE_empty(&QUE0)) {

LOG_printf(&trace,"TSK1 queue error");

return; // This will make the task terminate

}

// Get the message off the queue

msg = QUE_get(&QUE0);

// print value in the message

LOG_printf(&trace, "Reading message %d", msg->val);

// Since we are done with the message, free the memory

MEM_free(0, msg, sizeof(MsgObj));

}

It is important to free the memory of each message after it is used so that the memory does not get used
up. The result of the run follows.

Writing message 1

Writing message 2

Reading message 1

Reading message 2

4.2 QUE Lab2

4.2.1 Introduction

This lab module will help you become familiar with the TI DSP/BIOS v5.x QUE module. Code Composer
Studio v4 is used in this module.

4.2.2 Reading

• SPRU423 TMS320 DSP/BIOS Users Guide: Read the section title Queues

4.2.3 Lab Module Prerequisites

This lab module uses aspects of the TSK and SEM modules.

4.2.4 Laboratory

4.2.4.1 Part 1

• In this part you will be creating two TSKs were one will generate some data and send it to the other
TSK in a queue. The transmitting TSK will generate 5 messages to send to the receiving TSK which
will print out the content of the message.

• Follow the procedure in Code Composer Studio v4 DSP/BIOS Project (Section 1.1) to create a new
CCS DSP/BIOS project. Your project should have a DSP/BIOS v5.x con�guration �le using the
ti.platforms.sim67xx template (or another appropriate template).

• Create a LOG object by right clicking on Instrumentation->LOG and selecting Insert LOG. Change
the name to trace. Set its properties to have a length of 512 and be a �xed bu�er.

2This content is available online at <http://cnx.org/content/m36842/1.1/>.

69

• Change the LOG_system object to have a length of 512.
• If using the simulator then change the RTDX interface to Simulator by right clicking on Input/Output-

>RTDX and bringing up the properties. Change the RTDX mode to Simulator. If you do not do this
then when you load your program you will see the error RTDX application does not match
emulation protocol. If you are loading onto an EVM or DSK you leave the setting on JTAG.

• Create a QUE object by right clicking on Syncronization->QUE and selecting Insert QUE. This will
create a queue called QUE0. There are no properties to set (unless you want to change the comment).

• Create two TSKs with the following properties

• Name: TSK0, priority: 1, function: _funTSK0.
• Name: TSK1, priority: 1, function: _funTSK1.

• On the priority list make sure that TSK0 is �rst.
• Create a main.c �le and include a main function that does nothing.
• At the top of main.c make a global structure for your message as follows:

typedef struct MsgObj {

QUE_Elem elem; /* first field for QUE */

Int val; /* message value */

} MsgObj, *Msg;

• In the main.c �le make functions for your TSKs, funTSK0 and funTSK1.
• In funTSK0, which will generate the data, create a loop that will loop 5 times and in the loop have it:

1. Allocate memory for a new message
2. Fill the message value with the message number. Use a command like: "msg->val = ..."

3. Print to the trace LOG which message is being generated
4. Put the message on the queue QUE0

• In funTSK1, which will receive the data, create a loop that will loop 5 times and in the loop have it:

1. Check to see if there is a message on the queue and if not then print an error message to the trace

LOG and return. This will cause the task to be done running and enter the terminated state.
2. Get the message from the queue QUE0
3. Print which message number was read
4. Free the bu�er that was used for the message

• Start the debug session.
• Open the log view by selecting Tools->RTA->Printf Logs.
• Run the program and record the results.
• Describe in detail the processing that is occurring.

4.2.4.2 Part 2

• Change the priority of TSK1 to 2.
• Start the debug session.
• Run the program and record the results.
• How does the execution change? Describe in detail.

70 CHAPTER 4. LAB 3

4.2.4.3 Part 3

• In this part you will be adding a semaphore to synchronize the two tasks using the queue. The
semaphore will keep track of how many messages are in the queue.

Figure 4.4: Setup for Part 3

• Copy the main.c �le from above to a new �le main3.c. Remove the main.c from your project and
add main3.c.

• Add a semaphore to your con�guration �le and call it QUE0_SEM. It should be initialized to 0.
• Keep the priority of TSK0 set to 1 and TSK1 set to 2.
• In main3.c change the following:

1. In funTSK0 after the QUE_put add a SEM_post for QUE0_SEM.
2. In funTSK1 delete the code that checks to see if there is a message on the queue and replace it with a

SEM_pend for QUE0_SEM. Use SYS_FOREVER for the timeout on the pend.

• Start the debug session.
• Run the program and record the results.
• Describe in detail the processing that is occurring.

4.2.4.4 Part 4

• Notice that in Part 3 that if the program ran for a long time that the code would have to continually
allocate memory for a message and then de-allocate it when it was done using the message. This could
take up a substantial amount of time and could cause fragmentation of the memory space. A better
method is to have two queues where one queue holds messages that are free and one holds messages
that contain data being transmitted from one task to another. In this part you will be adding another
queue which will be initialized by adding some free messages to it. Also, another semaphore will be
added to track the number of free messages on the free queue.

71

Figure 4.5: Setup for Part 4 with a free message queue

• Copy the main3.c �le from above to a new �le main4.c. Remove the main3.c from your project and
add main4.c.

• Add another semaphore to your con�guration �le and call it QUE_Free_SEM. It should be initialized to
0.

• Create a QUE object and call it QUE_Free.
• Change the priority of TSK1 to 1 and make sure TSK0 is �rst in the list.
• To the main function add code that loops 3 times and adds 3 messages to the queue QUE_Free. You

will need to allocate memory for the messages. Be sure to post to QUE_Free_SEM after adding the
message to the queue. This will set up the free messages to be used in the program. These messages
can then be used and reused without having to allocate and free memory over and over again.

• In the function funTSK0 delete the code that allocates a message and replace it will code that pends
on QUE_Free_SEM and then gets a message from QUE_Free.

• In the function funTSK1 delete the code that frees the message bu�er and replace it will code that puts
the message on QUE_Free and then posts to QUE_Free_SEM.

• Start the debug session.
• Run the program and record the results.
• Describe in detail the processing that is occurring.

72 CHAPTER 4. LAB 3

Chapter 5

Lab 4

5.1 Microsoft Visual Basic Tasks and Semaphores1

5.1.1 Introduction

Microsoft Visual Basic provides resources for managing threads and semaphores. This module will give a basic
overview of threads and semaphores in Visual Basic (VB). This module presents threads and semaphores in
VB in a very simplistic manner. There are much better ways to use threads in VB but they will be presented
here in a way that makes the programs much easier to write. The threads described here will be methods
of the Form class. This is what makes the programming very simple. Threads should/could be classes on
their own but it is not necessary. This module is not intended to make you pro�cient in using threads and
semaphores in Visual Basic.

5.1.2 Reading

• System.Threading Namespace: http://msdn.microsoft.com/en-us/library/system.threading.aspx2

• Semaphore Class: http://msdn.microsoft.com/en-us/library/system.threading.semaphore.aspx3

• Thread Class: http://msdn.microsoft.com/en-us/library/system.threading.thread.aspx4

• Console WriteLine method: http://msdn.microsoft.com/en-us/library/586y06yf.aspx5

5.1.3 Module Prerequisites

It would be helpful to have completed the TSK and SEM modules for the DSP/BIOS operating system but
it is not necessary if you are familiar with tasks and semaphores.

5.1.4 Visual Basic Threads

A thread is simply a separate method or function that gets executed apart from the main program �ow.
There can be many threads executing simultaneously in a system. In VB the System.Threading namespace
needs to be imported into the program. This is done by putting the following at the very top of your code:

Imports System.Threading

1This content is available online at <http://cnx.org/content/m37030/1.1/>.
2http://msdn.microsoft.com/en-us/library/system.threading.aspx
3http://msdn.microsoft.com/en-us/library/system.threading.semaphore.aspx
4http://msdn.microsoft.com/en-us/library/system.threading.thread.aspx
5http://msdn.microsoft.com/en-us/library/586y06yf.aspx

73

74 CHAPTER 5. LAB 4

If this is not included at the top of your program then it will not know what threads are.
The following is the basic structure of your program for this lab. Each part of the example code is

described in the comments.

' This imports the threading namespace so the program knows about threads

Imports System.Threading

' This is the class that executes the form for the program

Public Class Form1

' This is a definition of a thread. The thread object is thread1 and

' it uses the method Task1() below as its code.

Dim thread1 As New Thread(AddressOf Task1)

' When the form program starts or is loaded the following function is

' called. This is where you can put the commands to set up our program.

' The code for starting up the threads can be put here.

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

' Make this a background thread so it automatically

' aborts when the main program stops.

thread1.IsBackground = True

' Set the thread priority

thread1.Priority = ThreadPriority.Lowest

' This command starts the thread. The method Task1() then

' starts to execute.

thread1.Start()

End Sub

Private Sub Task1()

' This is where your code goes for this thread

End Sub

End Class

The real-time operating system in Visual Studio is not a deterministic operating system. This means that
you cannot be sure of how the threads will execute. Windows assigns time to threads at the same priority
in a round-robin fashion. When threads at a particular level do not need to execute the operating system
assigns time to lower priority threads.

5.1.5 Visual Basic Semaphores

Semaphores in VB are used to control access to a resource. They act as a counting semaphore except that
there is a maximum value that the semaphore can have. This value is set when the semaphore is declared.
The following is an example of the de�nition of a semaphore.

Dim Sem As New Semaphore(1, 2)

This de�nes a semaphore object named Sem that has a maximum value of 2 and an initial value of 1. The
main methods for using the semaphore are WaitOne() and Release(). The WaitOne() method decrements
the semaphore and the Release()method increases it. If the value of the semaphore is 0 when the WaitOne()
method is called the thread will block. When the Release() method is called when a thread is blocked on the

75

semaphore, it will unblock a thread without incrementing the semaphore. If the Release() method is called
too any times and the semaphore value is increased past the maximum value, a SemaphoreFullException

exception will occur. This module does not discuss how to handle the exception.
The main way to use the semaphore is shown in the following example.

Dim Sem As New Semaphore(1, 1)

Sem.WaitOne()

' Use the protected resource here

Sem.Release()

5.1.6 Writing to the console

To write to the console use function calls such as

Console.WriteLine("Name = {0}, hours = {1:hh}", My.Name, DateTime.Now)

The �xed text is "Name = " and ", hours = ". The format items are "{0}", whose index is 0, which corre-
sponds to the object My.Name, and "{1:T}", whose index is 1, which corresponds to the object DateTime.Now.
The format T will print the time in the long time format. An example of the output is:

Name = Form1, Time = 5:50:54 PM

5.1.7 Example

This simple example uses Visual Studio 2010 and VB.NET Framework 4. Create a Form Application and
enter the following code:

Imports System.Threading

Public Class Form1

Dim thread1 As New Thread(AddressOf Task)

Dim thread2 As New Thread(AddressOf Task)

Dim Sem As New Semaphore(1, 1)

' When the form program starts or is loaded the following function is

' called. This is where you can put the commands to set up our program.

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

' Make this a background thread so it automatically

' aborts when the main program stops.

thread1.IsBackground = True

' Set the thread priority to lowest

thread1.Priority = ThreadPriority.Lowest

' Start the thread

thread1.Start("thread1")

' Make this a background thread so it automatically

' aborts when the main program stops.

76 CHAPTER 5. LAB 4

thread2.IsBackground = True

' Set the thread priority to lowest

thread2.Priority = ThreadPriority.Lowest

' Start the thread

thread2.Start("thread2")

End Sub

Private Sub Task(ByVal name As Object)

While 1

' wait on the semaphore

Sem.WaitOne()

' Print the name of this thread and the current time

Console.WriteLine("Name = {0}, Time1 = {1:T}", name, DateTime.Now)

' Sleep to 2 seconds

Thread.Sleep(2000)

Console.WriteLine("Name = {0}, Time2 = {1:T}", name, DateTime.Now)

' Release the semaphore

Sem.Release()

End While

End Sub

End Class

This program will start up two threads, thread1 and thread2. Each thread will execute the method Task()

and will pass the name of the thread. This will allow each thread to print something di�erent even though
they execute the same method. A semaphore is use to prevent the other thread from interrupting the two
print statements. The two print statements for the thread should always print after each other. The following
shows the results of the run. Note that the two times always print together.

Name = thread1, Time1 = 6:17:16 PM

Name = thread1, Time2 = 6:17:18 PM

Name = thread1, Time1 = 6:17:18 PM

Name = thread1, Time2 = 6:17:20 PM

Name = thread1, Time1 = 6:17:20 PM

Name = thread1, Time2 = 6:17:22 PM

Name = thread2, Time1 = 6:17:22 PM

Name = thread2, Time2 = 6:17:24 PM

Name = thread2, Time1 = 6:17:24 PM

Name = thread2, Time2 = 6:17:26 PM

Name = thread2, Time1 = 6:17:26 PM

Name = thread2, Time2 = 6:17:28 PM

The following shows the loop with the semaphore statements removed.

While 1

' Print the name of this thread and the current time

Console.WriteLine("Name = {0}, Time1 = {1:T}", name, DateTime.Now)

77

' Sleep to 2 seconds

Thread.Sleep(2000)

Console.WriteLine("Name = {0}, Time2 = {1:T}", name, DateTime.Now)

End While

This causes a printout like the following. Notice the two prints do not occur next to each other.

Name = thread2, Time1 = 6:20:44 PM

Name = thread1, Time1 = 6:20:44 PM

Name = thread2, Time2 = 6:20:46 PM

Name = thread1, Time2 = 6:20:46 PM

Name = thread1, Time1 = 6:20:46 PM

Name = thread2, Time1 = 6:20:46 PM

Name = thread2, Time2 = 6:20:48 PM

Name = thread1, Time2 = 6:20:48 PM

Name = thread1, Time1 = 6:20:48 PM

Name = thread2, Time1 = 6:20:48 PM

Name = thread2, Time2 = 6:20:50 PM

Name = thread2, Time1 = 6:20:50 PM

Name = thread1, Time2 = 6:20:50 PM

Name = thread1, Time1 = 6:20:50 PM

5.2 Visual Basic Threads and Semaphores Lab6

5.2.1 Introduction

This lab module will help you become familiar with the basics of threads and semaphores in Microsoft Visual
Basic(V). The exercises are written assuming you are using Visual Basic 2005 and the .NET Framework
version 2.0 (or later). Some older versions will work the same, but you may need to �gure out some
di�erences. It should work with newer version also.

5.2.2 Module Prerequisites

It would be helpful to have completed the TSK and SEM modules for the DSP/BIOS operating system but
it is not necessary if you are familiar with tasks and semaphores.

5.2.3 Labratory

5.2.3.1 Part 1

• In this part you will make a project that will have two threads that will run at the same priority and
print to the console. Examine how the threads at the same priority execute in a round-robin fashion.

• Start up Visual Studio and create a new Visual Basic project.
• Create two threads and start them up with the same priority, Lowest.
• In each thread make a continuous while loop and print the thread name in the loop. Your code can

look like this.

6This content is available online at <http://cnx.org/content/m37075/1.1/>.

78 CHAPTER 5. LAB 4

While 1

Console.WriteLine("Thread1")

End While

5.2.3.2 Part 2

• In this part you will make a project with three threads. The �rst two threads will write to a single
array. The data that each thread writes will be di�erent. The third thread will print the contents of
the array. Without locking the resource the threads will not write to the array completely before the
other thread writes to it also. The contents of the array will be a mix of data from each thread.

• Start up Visual Studio and create a new Visual Basic project.
• Create three threads and start them up with the same priority, Lowest.
• Make an integer array in the Form1 class. This should be just below the class statement.

Dim IntArray(100) As Integer

• In the �rst thread, make an in�nite loop and within the loop write the numbers 1-100 (count) into the
array. Have the tread sleep for 10 ms each loop too.

Dim count As Integer

While 1

For count = 1 To 100

Thread.Sleep(10)

IntArray(count) = count

Next

End While

• In the second thread, make an in�nite loop and within the loop write the numbers 100-count into the
array. Have the tread sleep for 10 ms each loop too.

• In the third thread, have it pause for ten seconds or so (Thread.Sleep(10000)) and then print the
values from the array. Do this one time.

• Run the program and observe whether the array values get written and printed in order.
• You may not notice but the printing could get interrupted by the other threads.

5.2.3.3 Part 3

• In this part you will add a semaphore to the previous project so that the data gets written to the array
without interruption. Also, the data will get printed without interruption.

• Start up Visual Studio and create a new Visual Basic project.
• Copy all the code from the previous part into this new project.
• To the code in the previous part, add a semaphore with a maximum value of 1 and an initial value of

1.
• For the threads that write to the array, add a WaitOne() call before the for loop that writes to the

array and a Release() call after the for loop.
• For the thread that prints the array data, add a WaitOne() call before the printing of the array and a

Release() call after the printing.
• Run the program and observe whether the array values get printed in order.

79

5.2.4 Laboratory Write-up

• Print out your projects' code.
• Explain what is happening in each part.

80 CHAPTER 5. LAB 4

Chapter 6

Lab 5

6.1 Microsoft Visual Basic Queues1

6.1.1 Introduction

This module describes the basics of Visual Basic queues and also describes the AutoResetEvent event.

6.1.2 Reading

• Queue Class: http://msdn.microsoft.com/en-us/library/system.collections.queue.aspx2

• Queue members: http://msdn.microsoft.com/en-us/library/system.collections.queue_members.aspx3

• Queue.Synchronized Method: http://msdn.microsoft.com/en-us/library/system.collections.queue.synchronized.aspx4

• AutoResetEvent Class: http://msdn.microsoft.com/en-us/library/system.threading.autoresetevent.aspx5

6.1.3 Queues

Queues in Visual Basic (VB) are very simple to work with and very �exible. De�ning a queue object is done
with the following command:

Dim myQ As New Queue

This creates a single queue object named myQ. The main methods described in this module are:

myQ.Enqueue()

myQ.Dequeue()

The Enqueue method puts items on the queue and the Dequeue method takes items o� the queue. With
these two methods the queue works as a �rst-in-�rst-out (FIFO) type of queue. A property of the queue
object that is very useful is the count property:

myQ.count

1This content is available online at <http://cnx.org/content/m37101/1.1/>.
2http://msdn.microsoft.com/en-us/library/system.collections.queue.aspx
3http://msdn.microsoft.com/en-us/library/system.collections.queue_members.aspx
4http://msdn.microsoft.com/en-us/library/system.collections.queue.synchronized.aspx
5http://msdn.microsoft.com/en-us/library/system.threading.autoresetevent.aspx

81

82 CHAPTER 6. LAB 5

This returns the number of items in the queue.
VB queues are not thread safe. This means that the operating system does not prevent multiple

threads from modifying a queue at the same time. This can cause problems if you have multiple threads
reading and writing to the same queue.

If you have multiple threads removing items from a queue you can run into problems. If a thread
accesses the count property and it says there is an object on the queue and then the thread tries to access
that element, another thread may remove it from the queue before the �rst thread has a chance to access it.
If there is only one thread that removes items from a queue you will not have this problem.

To assure that a queue is thread safe you should use the Synchronizedmethod of the queue. This method
returns a wrapper for the queue that assures that the queue is thread safe. It does not �x the problem where
two threads are taking items o� the queue at the same time though. To use the Synchronized method �rst
make a queue object and then make an object with the Synchronized method.

Dim myQ As New Queue

Dim mySyncdQ As Queue = Queue.Synchronized(myQ)

The queue mySyncdQ is a thread safe queue.
To synchronize threads that communicate using a queue, there is a need for the writing thread to inform

the reading thread that there is something available on the queue. This signaling prevents the reading thread
from wasting time checking to see if anything is available on the queue. The reading thread will simply wait
to be signaled that something is on the queue and then it will access the queue. To do this you can use an
AutoResetEvent event.

From the MSDN help �les: "AutoResetEvent allows threads to communicate with each other by signaling.
Typically, this communication concerns a resource to which threads need exclusive access. A thread waits
for a signal by calling WaitOne on the AutoResetEvent. If the AutoResetEvent is in the non-signaled state,
the thread blocks, waiting for the thread that currently controls the resource to signal that the resource is
available by calling Set. Calling Set signals AutoResetEvent to release a waiting thread. AutoResetEvent
remains signaled until a single waiting thread is released, and then automatically returns to the non-signaled
state. If no threads are waiting, the state remains signaled inde�nitely. If a thread calls WaitOne while the
AutoResetEvent is in the signaled state, the thread does not block. The AutoResetEvent releases the thread
immediately and returns to the non-signaled state. There is no guarantee that every call to the Set method
will release a thread. If two calls are too close together, so that the second call occurs before a thread has
been released, only one thread is released. It is as if the second call did not happen. Also, if Set is called
when there are no threads waiting and the AutoResetEvent is already signaled, the call has no e�ect."

To create an AutoResetEvent event use a command like:

Dim mySyncdQEvent As New AutoResetEvent(False)

This will create an AutoResetEvent event called mySyncdQEvent with the initial value of False. When
your code writes to a queue you can use the Set method to signal to the reader thread that something is on
the queue. The reader thread can use the WaitOne method to wait to be signaled. The code for the writer
thread to put something on the queue and then signal the event is:

mySyncdQ.Enqueue(Something)

mySyncdQEvent.Set()

The reader thread can use code like:

mySyncdQEvent.WaitOne()

While mySyncdQ.Count

Console.WriteLine(mySyncdQ.Dequeue())

End While

83

This will wait until something is available on the queue and then take all the items in the queue o� and
print the contents. This assumes that there is only one reader for the queue. If you have more than one
reader for the queue you will need to lock the resource before using it. This is not explained here.

6.1.4 Example

This example starts with a VB Form application that contains one TextBox named TextBox1. Double
clicking on the TextBox will open the code view and make a TextBox1_TextChanged method. As you type
into the TextBox this method will be executed for each character that changes.

The example has one queue called myQ and is used as a synchronized queue with mySyncdQ. There is also
a thread named thread1 that is started that runs the method ThreadMethodReceive. This method will
remove items from the queue and print them to the console.

Every time the text changes in the TextBox the TextBox1_TextChanged method puts the contents of
the TextBox onto the queue and signals a AutoResetEvent named mySyncdQEvent. The thread thread1

calls the method WaitOne for the AutoResetEvent event. This will cause the thread to block until there is
something on the queue.

Imports System.Threading

Public Class Form1

' Thread that will receive the messages that are put on the queue

Dim thread1 As New Thread(AddressOf ThreadMethodReceive)

' Queue where message will be stored

Dim myQ As New Queue

' Thread safe queue that will be used

Dim mySyncdQ As Queue = Queue.Synchronized(myQ)

' Event used to syncronize the TextBox putting items on the queue and the thread

Dim mySyncdQEvent As New AutoResetEvent(False)

' Method executed when the form is loaded

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

' Make this a background thread so it automatically

' aborts when the main program stops.

thread1.IsBackground = True

' Set the thread priority to lowest

thread1.Priority = ThreadPriority.Lowest

' Start the thread

thread1.Start()

End Sub

' Thread that runs seperate from the Form1 thread

Private Sub ThreadMethodReceive()

' Loop forever

While 1

' Half second pause before checking the sync event

Thread.Sleep(500)

' Wait on the sync event. If something has been put on

' the queue there will be an event.

mySyncdQEvent.WaitOne()

' Continue removing items from the queue until it is empty

While mySyncdQ.Count

' Print the items removed from the queue

84 CHAPTER 6. LAB 5

Console.WriteLine(mySyncdQ.Dequeue())

End While

End While

End Sub

Private Sub TextBox1_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles TextBox1.TextChanged

' Put the content of the text box on the queue

mySyncdQ.Enqueue(TextBox1.Text)

' Signal that something has been added to the queue.

mySyncdQEvent.Set()

End Sub

End Class

6.2 Microsoft Visual Basic Delegates6

6.2.1 Introduction

When developing Visual Basic applications in a multithreaded invironment it may be necessary for a thread
to access a GUI object in the form thread. However it is not possible for the thread to access the object
directly so it must us a delegate that runs in the thread that handles the GUI object. This module describes
the very basics of how to use delegate methods so that more than one thread may access a GUI object.

6.2.2 Reading

• Delegate Class: http://msdn.microsoft.com/en-us/library/system.delegate.aspx7

• Control Class: http://msdn.microsoft.com/en-us/library/system.windows.forms.control.aspx8

• Control Class Invoke method: http://msdn.microsoft.com/en-us/library/zyzhdc6b.aspx9

6.2.3 Background

When a simple Visual Basic (VB) GUI application is made, there is a form class that handles all the GUI
controls. This form class is a thread that handles all the interaction with the controls. It is possible to have
other threads in our application. However, it is not possible for the other threads to have direct access to
the GUI controls. The reason for this is it could be possible for the form thread and the other thread to try
and change the same control at the same time.

To �x the problem of accessing the same control from two threads, a delegate function is made in the
thread that handles the control object. The delegate function is invoked by other threads and the delegate
function operates in the thread that handles the control object.

From the MSDN: "Delegates are similar to function pointers in C or C++ languages. Delegates encap-
sulate a reference to a method inside a delegate object. The delegate object can then be passed to code
that calls the referenced method, and the method to be invoked can be unknown at compile time. Unlike
function pointers in C or C++, delegates are object-oriented, type-safe, and more secure."

6This content is available online at <http://cnx.org/content/m37100/1.1/>.
7http://msdn.microsoft.com/en-us/library/system.delegate.aspx
8http://msdn.microsoft.com/en-us/library/system.windows.forms.control.aspx
9http://msdn.microsoft.com/en-us/library/zyzhdc6b.aspx

85

"The Delegate Class represents a delegate, which is a data structure that refers to a static method or to
a class instance and an instance method of that class."

6.2.4 Visual Basic Delegates

Suppose you have a TextBox control object in your Form called TextBox1. You can change the text in the
TextBox by issuing a command like this:

TextBox1.Text = "New Text In Text Box"

This will change the Text property of the TextBox control object. When this is done within the Form thread
everything works as expected. For instance, suppose you have a button in your Form called Button1. Then
in the click method for that button you could have something like this:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

TextBox1.Text = "I just got clicked"

End Sub

This would all take place within the Form thread. The Form thread is the thread that created the TextBox
control and the Button control so this is all within the same thread.

Suppose now you have a thread that you started that runs separate from the Form thread. If the thread
tries to change the TextBox object you will get an error. If the thread looked like the following code, there
would be a problem.

Private Sub Task1()

TextBox1.Text = "Task Text"

End Sub

The problem occurs because the thread Task1 is running separate from the Form thread so the Form thread
and the Task1 thread could change the TextBox object at the same time.

To �x this problem you can use a Delegate that points to a function that runs in the Form thread.
Suppose the code was changed to the following:

' This defines a delegate subroutine that takes an integer as its input

Delegate Sub InvokeDelegate(ByVal myStr As String)

' This makes an instance of the delegate that points to the address

' of the InvokeMethod function. When the delegate is invoked it will

' run the InvokeMethod method on the thread that owns the window handle.

Dim IDel As New InvokeDelegate(AddressOf InvokeMethod)

Private Sub Task1()

' The Invoke method executes the specified

' delegate on the thread that owns the control's

' underlying window handle

TextBox1.Invoke(IDel, "Task Text")

End Sub

Public Sub InvokeMethod(ByVal myStr As String)

TextBox1.Text = myStr

End Sub

86 CHAPTER 6. LAB 5

This code section does not contain the whole program since it doesn't show starting the Task1 thread, etc.
Lets look at the code one line at a time.

Delegate Sub InvokeDelegate(ByVal myStr As String)

This line de�nes a delegate that will have one parameter on its input and that parameter will be passed by
value and is a string. The delegate type is called InvokeDelegate. The name of the delegate type can be
anything.

Dim IDel As New InvokeDelegate(AddressOf InvokeMethod)

This line creates an instance of the delegate type de�ned above (InvokeDelegate). The method or
function it uses for the instance is the static method InvokeMethod which is de�ned later in the code. This
means that IDel is an instance of a delegate and the instance is a static method de�ned by InvokeMethod.
When IDel is used it will execute an InvokeMethod method.

TextBox1.Invoke(IDel, "Task Text")

Control objects have a method called Invoke. This method will execute a delegate on the thread that
created the object. So, we �rst create a delegate IDel and then when the Invoke method is called for the
TextBox1 object, the IDel delegate gets executed on the thread that created the TextBox1 control. This
thread happens to be the Form thread. The Invoke method will not continue until the delegate completes.

If you don't want the calling thread to wait for the delegate to �nish you can use the control method
BeginInvoke.

Public Sub InvokeMethod(ByVal myStr As String)

TextBox1.Text = myStr

End Sub

This is the method that is used for the delegate. Notice that it has the same input as de�ned above (a string
input passed by value). The method simply takes the input string and assigns it to the TextBox1.Text

property.

6.2.5 Example

In this simple example there will be a Form that contains a TextBox. Also, a thread will be started that
periodically writes to the TextBox. The TexBox is created by the Form thread and while the Form is running
you can enter text into the TextBox. However, periodically the other thread will write to the TextBox and
clear anything that has been typed into it.

Since the thread is seperate from the Form thread, there needs to be a delegate that the thread uses to
write to the TextBox.

Imports System.Threading

Public Class Form1

' This defines the thread that will run method ThreadMethod

Dim thread As New Thread(AddressOf ThreadMethod)

' This defines a delegate type that takes an integer as its input.

' The delegate type is named DelegateType.

Delegate Sub DelegateType(ByVal myStr As String)

' This makes an instance of the delegate type that points to the address

87

' of the DelegateMethod method. When the delegate is invoked it will

' run the InvokeMethod method on the thread that owns the window handle.

Dim IDel As New DelegateType(AddressOf DelegateMethod)

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

' When the form loads the other thread will be set up and started

' Make this thread a background thread so it automatically

' aborts when the main program stops.

thread.IsBackground = True

' Set the thread priority to lowest

thread.Priority = ThreadPriority.Lowest

' Start the thread

thread.Start()

End Sub

' This method is the thread that runs separate from the Form1 thread.

' It continues to run and every 5 seconds it invokes the delegate that

' runs in the Form1 thread.

Private Sub ThreadMethod()

' The Invoke method executes the specified

' delegate on the thread that owns the control's

' underlying window handle

While 1

Thread.Sleep(5000)

TextBox1.Invoke(IDel, "Task Text")

End While

End Sub

' This method runs in the Form1 thread

Public Sub DelegateMethod(ByVal myStr As String)

TextBox1.Text = myStr

End Sub

End Class

6.3 Microsoft Visual Basic Queue Lab10

6.3.1 Introduction

This lab module will help you become familiar with the basics of queues in Microsoft Visual Basic. The
exercises are written assuming you are using Visual Basic 2005 and the .NET Framework version 2.0 (or
later). Some older versions will work the same, but you may need to �gure out some di�erences. It should
work with newer version also.

6.3.2 Module Prerequisites

You should complete the Visual Basic Threads and Semaphores lab before this one.

10This content is available online at <http://cnx.org/content/m37103/1.1/>.

88 CHAPTER 6. LAB 5

6.3.3 Labratory

6.3.3.1 Part 1

• In this part you will just put some items on a queue and then take them o� and print them.
• Start up Visual Studio and create a new Visual Basic project.
• In the Form1 class make a queue variable and then a synchronized queue.
• In the Form1_Load method put the following objects on the queue:

1. The string "Hello"
2. The string "World"
3. The number 23
4. The string "Twenty Three"

• Now make a for loop that iterates using the Count property of the queue.
• Inside the loop, dequeue items from the queue and print them to the console.
• Run your program and record the results.

6.3.3.2 Part 2

• In this part you will create two threads where one thread will write to a queue and the other will take
the items o� and print them. No synchronization will be done in this part. The reading thread will
need to keep checking to see if there is anything on the queue.

• Start up Visual Studio and create a new Visual Basic project.
• In the Form1 class make a queue variable and then a synchronized queue. Use the synchronized queue.
• Make two threads in the Form1 class and start them up in the Form1_Load method.
• In the method for the �rst thread:

1. make a counter variable
2. make a loop that loops forever
3. in the loop increment the counter
4. in the loop put the counter value on the queue

• In the method for the second thread:

1. make a loop that loops forever
2. in the loop make an if statement that checks the count property of the queue
3. if the count value is not zero, take an element o� the queue and print it
4. if the count value is zero, print a statement that says there was nothing on the queue

• Run your program and record the results.

89

6.3.3.3 Part 3

• In this part you will create two threads where one thread will write to a queue and the other will take
the items o� and print them. Synchronization will be done in this part. The reading thread will wait
until there is something on the queue then take all the elements o� and print them. The writing thread
will signal the reading thread when it puts something on the queue.

• Start up Visual Studio and create a new Visual Basic project.
• In the Form1 class make a queue variable and then a synchronized queue. Use the synchronized queue.
• In the Form1 class make an AutoResetEvent event variable that will be used to synchronize the two

threads.
• Make two threads in the Form1 class and start them up in the Form1_Load method.
• In the method for the �rst thread:

1. make a counter variable
2. make a loop that loops forever
3. in the loop: increment the counter, put the counter value on the queue, print a statement telling what

was written, signal the AutoResetEvent event with the Set method

• In the method for the second thread:

1. make a loop that loops forever
2. in the loop print a statement saying that the task is about to wait
3. have the thread wait for the AutoResetEvent event by calling the WaitOne method
4. after the WaitOne call, make another while loop that keeps removing items from the queue as long as

the count is greater than zero
5. print the value of the element taken o� the queue to the console

• Run your program and record the results.

6.3.3.4 Part 4

• This uses the code from the previous part.
• After writing the value to the queue, have the �rst thread sleep for 100 ms using the command

Thread.Sleep(100)

• Run your program and record the results.

6.4 Microsoft Visual Basic Delegate Lab11

6.4.1 Introduction

This lab module will help you become familiar with the basics of delegates in Microsoft Visual Basic(V).
The exercises are written assuming you are using Visual Basic 2005 and the .NET Framework version 2.0 (or
later). Some older versions will work the same, but you may need to �gure out some di�erences. It should
work with newer version also.

11This content is available online at <http://cnx.org/content/m37102/1.1/>.

90 CHAPTER 6. LAB 5

6.4.2 Module Prerequisites

You should complete the Visual Basic Threads and Semaphores lab before this one.

6.4.3 Labratory

6.4.3.1 Part 1

• In this part you will make a project with a thread that will try to change a TextBox text without
using a delegate method. When the thread tries to change the TextBox text it won't work because the
TextBox control is not handled by the thread.

• Start up Visual Studio and create a new Visual Basic project.
• On the GUI, put a new TextBox. By default it should have the name TextBox1.
• Create a thread called Task1 and start the thread in the Form1_Load method.
• In the thread method Task1, assign a string to the TextBox.
• Run your program and observe what happens. You should get an error when the thread tries to access

the TextBox control. Record what the error says.

6.4.3.2 Part 2

• In this part we will make a delegate that will allow the thread to change the text in the TextBox.
• Either start a new project or modify the one from the previous part. What you should have in your

project is:

1. A TextBox on the GUI with the name TextBox1.
2. A thread called Task1 that is started in the Form1_Load method.

• Add commands to de�ne a delegate type and an instance of a delegate. If you want to use the names
shown here you can. These statements should be right under the beginning of the Form1 class (right
after "Public Class Form1").

Delegate Sub DelegateType(ByVal myStr As String)

Dim IDel As New DelegateType(AddressOf DelegateMethod)

• Make a new DelegateMethod method that takes a string as an input and uses it to change the text of
the TextBox.

• In the Task1 method, use the TextBox1 to invoke the delegate method. Have it write the text "Task
Text" to the TextBox.

• Run your program and observe that the text "Task Text" gets written to the TextBox.

6.4.3.3 Part 3

• In this part we will make a simple clock. All we will do is continuously get the current time and write
it to the TextBox.

• In this part we will have everything that is in the previous part so you can start where it left o�. Your
project should have:

1. A TextBox on the GUI with the name TextBox1.

91

2. A thread that uses the Task1 method that is started in the Form1_Load method.
3. Commands to de�ne a delegate and an instance of a delegate.
4. A delegate method that writes the input string to the TextBox.

• In the thread, we will have it get the current date/time and the write it to the TextBox.
• Put the following commands that will de�ne objects to get the current date/time.

Dim count As Integer

Dim dispDt As DateTime

Dim datePatt As String = "M/d/yyyy hh:mm:ss tt"

Dim dtString As String

• In the thread make a continuous while loop that puts the date into the string dtString and then sends
that string to the delegate. To get the date use the command:

dispDt = DateTime.Now ' get the time now

dtString = dispDt.ToString(datePatt) ' Convert the date to a string

• In the while loop make the thread sleep for 100 ms so that it is not doing too much processing. It will
get the time/date and write it to the TextBox every 100 ms.

• Run your program and observe that the text displays the date/time and that the seconds change.

92 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A AutoResetEvent, � 6.1(81)

C C programming, � 1.2(22)
C6000, � 1.2(22)
C6713, � 1.2(22)
C67x, � 1.2(22)
C6x, � 1.2(22)
CCS, � 1.1(1), � 4.1(63)
Code Composer Studio, � 1.1(1), � 3.1(45),
� 4.1(63)

D Delegate, � 6.2(84), � 6.4(89)
DSK, � 1.2(22)
DSP, � 1.1(1), � 1.2(22), � 2.1(41), � 2.2(42),
� 3.1(45), � 3.2(51), � 3.3(56), � 4.1(63)
DSP/BIOS, � 1.1(1), � 2.1(41), � 2.2(42),
� 3.1(45), � 3.2(51), � 3.3(56), � 4.1(63),
� 4.2(68)

L Lab, � 4.2(68)
LOG, � 2.1(41), � 2.2(42)

M Microsoft, � 5.1(73), � 5.2(77), � 6.1(81),
� 6.2(84), � 6.3(87), � 6.4(89)

Q QUE, � 4.2(68)

QUE module, � 4.1(63)
Queue, � 4.1(63), � 4.2(68), � 6.1(81), � 6.3(87)

R RTOS, � 3.2(51)

S SEM, � 3.2(51), � 3.3(56)
Semaphore, � 3.2(51), � 3.3(56), � 5.1(73),
� 5.2(77)

T Task, � 3.3(56)
Texas Instruments, � 1.2(22), � 4.1(63),
� 4.2(68)
Thread, � 5.1(73), � 5.2(77), � 6.2(84),
� 6.3(87), � 6.4(89)
Threading, � 6.2(84), � 6.3(87), � 6.4(89)
TI, � 1.1(1), � 1.2(22), � 2.1(41), � 2.2(42),
� 3.1(45), � 3.2(51), � 3.3(56), � 4.1(63),
� 4.2(68)
TSK, � 3.1(45), � 3.3(56)

V VB, � 5.2(77), � 6.2(84), � 6.3(87)
Visual Basic, � 5.1(73), � 5.2(77), � 6.1(81),
� 6.2(84), � 6.3(87), � 6.4(89)
Visual Studio, � 5.1(73), � 6.1(81)

ATTRIBUTIONS 93

Attributions

Collection: TI DSP/BIOS Lab
Edited by: David Waldo
URL: http://cnx.org/content/col11265/1.5/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Code Composer Studio v4 DSP/BIOS Project"
By: David Waldo
URL: http://cnx.org/content/m36660/1.3/
Pages: 1-22
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "Code Composer Studio v4 DSP/BIOS and C6713 DSK"
By: David Waldo
URL: http://cnx.org/content/m36656/1.2/
Pages: 22-39
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "TI DSP/BIOS LOG Module"
By: David Waldo
URL: http://cnx.org/content/m36668/1.1/
Pages: 41-42
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "LOG Lab"
By: David Waldo
URL: http://cnx.org/content/m36670/1.2/
Pages: 42-43
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "TI DSP/BIOS TSK Module"
By: David Waldo
URL: http://cnx.org/content/m36678/1.3/
Pages: 45-50
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "TI DSP/BIOS SEM Module"
By: David Waldo
URL: http://cnx.org/content/m36686/1.5/
Pages: 51-56
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

94 ATTRIBUTIONS

Module: "TSK SEM Lab"
By: David Waldo
URL: http://cnx.org/content/m36695/1.1/
Pages: 56-61
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "TI DSP/BIOS QUE Module"
By: David Waldo
URL: http://cnx.org/content/m36908/1.1/
Pages: 63-68
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "QUE Lab"
By: David Waldo
URL: http://cnx.org/content/m36842/1.1/
Pages: 68-71
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "Microsoft Visual Basic Tasks and Semaphores"
By: David Waldo
URL: http://cnx.org/content/m37030/1.1/
Pages: 73-77
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "Visual Basic Threads and Semaphores Lab"
By: David Waldo
URL: http://cnx.org/content/m37075/1.1/
Pages: 77-79
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "Microsoft Visual Basic Queues"
By: David Waldo
URL: http://cnx.org/content/m37101/1.1/
Pages: 81-84
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "Microsoft Visual Basic Delegates"
By: David Waldo
URL: http://cnx.org/content/m37100/1.1/
Pages: 84-87
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 95

Module: "Microsoft Visual Basic Queue Lab"
By: David Waldo
URL: http://cnx.org/content/m37103/1.1/
Pages: 87-89
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

Module: "Microsoft Visual Basic Delegate Lab"
By: David Waldo
URL: http://cnx.org/content/m37102/1.1/
Pages: 89-91
Copyright: David Waldo
License: http://creativecommons.org/licenses/by/3.0/

TI DSP/BIOS Lab
This is an Oklahoma Christian University course that uses TI's DSP/BIOS for real-time systems.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

