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Introduction to Statistical Signal

Processing1

Digital Signal Processing

• Digital ≡ sampled, discrete-time, quantized
• Signal ≡ waveform, sequnce of measurements or observations
• Processing ≡ analyze, modify, �lter, synthesize

Examples of Digital Signals

• sampled speech waveform
• "pixelized" image
• Dow-Jones Index

DSP Applications

• Filtering (noise reduction)
• Pattern recognition (speech, faces, �ngerprints)
• Compression

A Major Di�culty

In many (perhaps most) DSP applications we don't have complete or perfect knowledge of the signals we
wish to process. We are faced with many unknowns and uncertainties.

Examples

• noisy measurements
• unknown signal parameters
• noisy system or environmental conditions
• natural variability in the signals encountered

1This content is available online at <http://cnx.org/content/m11947/1.3/>.
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Functional Magnetic Resonance Imaging

Figure 1: Challenges are measurement noise and intrinsic uncertainties in signal behavior.

How can we design signal processing algorithms in the face of such uncertainty?
Can we model the uncertainty and incorporate this model into the design process?
Statistical signal processing is the study of these questions.

Modeling Uncertainty

The most widely accepted and commonly used approach to modeling uncertainty is Probability Theory
(although other alternatives exist such as Fuzzy Logic).

Probability Theory models uncertainty by specifying the chance of observing certain signals.
Alternatively, one can view probability as specifying the degree to which we believe a signal re�ects the

true state of nature.

Examples of Probabilistic Models

• errors in a measurement (due to an imprecise measuring device) modeled as realizations of a Gaussian
random variable.

• uncertainty in the phase of a sinusoidal signal modeled as a uniform random variable on [0, 2π).
• uncertainty in the number of photons stiking a CCD per unit time modeled as a Poisson random

variable.

Statistical Inference

A statistic is a function of observed data.

Example
Suppose we observe N scalar values x1, . . . , xN . The following are statistics:

• −
x= 1

N

∑N
n=1 xn (sample mean)

• x1, . . . , xN (the data itself)
• min {x1, . . . , xN} (order statistic)
• (x1

2 − x2sin (x3), e−(x1x3))

A statistic cannot depend on unknown parameters.

Probability is used to model uncertainty.
Statistics are used to draw conclusions about probability models.
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Figure 2

Probability models our uncertainty about signals we may observe.
Statistics reasons from the measured signal to the population of possible signals.

Statistical Signal Processing

• Step 1 - Postulate a probability model (or models) that reasonably capture the uncertainties at hand
• Step 2 - Collect data
• Step 3 - Formulate statistics that allow us to interpret or understand our probability model(s)

In this class

The two major kinds of problems that we will study are detection and estimation. Most SSP problems
fall under one of these two headings.

Detection Theory

Given two (or more) probability models, which on best explains the signal?

Examples

1. Decode wireless comm signal into string of 0's and 1's
2. Pattern recognition

• voice recognition
• face recognition
• handwritten character recognition
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3. Anomaly detection

• radar, sonar
• irregular, heartbeat
• gamma-ray burst in deep space

Estimation Theory

If our probability model has free parameters, what are the best parameter settings to describe the signal
we've observed?

Examples

1. Noise reduction
2. Determine parameters of a sinusoid (phase, amplitude, frequency)
3. Adaptive �ltering

• track trajectories of space-craft
• automatic control systems
• channel equalization

4. Determine location of a submarine (sonar)
5. Seismology: estimate depth below ground of an oil deposit

Example : Detection Example
Suppose we observe N tosses of an unfair coin. We would like to decide which side the coin favors,
heads or tails.

• Step 1 - Assume each toss is a realization of a Bernoulli random variable.

Pr [Heads] = p = 1− Pr [Tails]

Must decide p = 1
4 vs. p = 3

4 .
• Step 2 - Collect data x1, . . . , xN

xi = 1 ≡ Heads

xi = 0 ≡ Tails

• Step 3 - Formulate a useful statistic

k =
N∑
n=1

xn

If k < N
2 , guess p = 1

4 . If k >
N
2 , guess p = 3

4 .

Example : Estimation Example
Suppose we take N measurements of a DC voltage A with a noisy voltmeter. We would like to
estimate A.

• Step 1 - Assume a Gaussian noise model

xn = A+ wn

where wn ∼ N (0, 1).
• Step 2 - Gather data x1, . . . , xN
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• Step 3 - Compute the sample mean,

A =
1
N

N∑
n=1

xn

and use this as an estimate.

In these examples (Example (Detection Example) and Example (Estimation Example)), we solved detection
and estimation problems using intuition and heuristics (in Step 3).

This course will focus on developing principled and mathematically rigorous approaches to detection and
estimation, using the theoretical framework of probability and statistics.

Summary

• DSP ≡ processing signals with computer algorithms.
• SSP ≡ statistical DSP ≡ processing in the presence of uncertainties and unknowns.
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Chapter 1

Preliminaries

1.1 Review of Linear Algebra1

Vector spaces are the principal object of study in linear algebra. A vector space is always de�ned with
respect to a �eld of scalars.

1.1.1 Fields

A �eld is a set F equipped with two operations, addition and mulitplication, and containing two special
members 0 and 1 (0 6= 1), such that for all {a, b, c} ∈ F

1. a. (a+ b) ∈ F
b. a+ b = b+ a
c. (a+ b) + c = a+ (b+ c)
d. a+ 0 = a
e. there exists −a such that a+−a = 0

2. a. ab ∈ F
b. ab = ba
c. (ab) c = a (bc)
d. a · 1 = a
e. there exists a−1 such that aa−1 = 1

3. a (b+ c) = ab+ ac

More concisely

1. F is an abelian group under addition
2. F is an abelian group under multiplication
3. multiplication distributes over addition

1.1.1.1 Examples

Q, R, C

1.1.2 Vector Spaces

Let F be a �eld, and V a set. We say V is a vector space over F if there exist two operations, de�ned
for all a ∈ F , u ∈ V and v ∈ V :

1This content is available online at <http://cnx.org/content/m11948/1.2/>.
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8 CHAPTER 1. PRELIMINARIES

• vector addition: (u, v) → (u+ v) ∈ V
• scalar multiplication: (a,v) → av ∈ V

and if there exists an element denoted 0 ∈ V , such that the following hold for all a ∈ F , b ∈ F , and u ∈ V ,
v ∈ V , and w ∈ V

1. a. u+ (v + w) = (u+ v) + w
b. u+ v = v + u
c. u+ 0 = u
d. there exists −u such that u+−u = 0

2. a. a (u+ v) = au+ av
b. (a+ b)u = au+ bu
c. (ab)u = a (bu)
d. 1 · u = u

More concisely,

1. V is an abelian group under plus
2. Natural properties of scalar multiplication

1.1.2.1 Examples

• RN is a vector space over R
• CN is a vector space over C
• CN is a vector space over R
• RN is not a vector space over C

The elements of V are called vectors.

1.1.3 Euclidean Space

Throughout this course we will think of a signal as a vector

x =


x1

x2

...

xN

 =
(
x1 x2 . . . xN

)T

The samples {xi} could be samples from a �nite duration, continuous time signal, for example.
A signal will belong to one of two vector spaces:

1.1.3.1 Real Euclidean space

x ∈ RN (over R)

1.1.3.2 Complex Euclidean space

x ∈ CN (over C)
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1.1.4 Subspaces

Let V be a vector space over F .
A subset S ⊆ V is called a subspace of V if S is a vector space over F in its own right.

Example 1.1
V = R2, F = R, S = any line though the origin.

Figure 1.1: S is any line through the origin.

Are there other subspaces?

Theorem 1.1:
S ⊆ V is a subspace if and only if for all a ∈ F and b ∈ F and for all s ∈ S and t ∈ S, (as+ bt) ∈ S

1.1.5 Linear Independence

Let u1, . . . , uk ∈ V .
We say that these vectors are linearly dependent if there exist scalars a1, . . . , ak ∈ F such that

k∑
i=1

aiui = 0 (1.1)

and at least one ai 6= 0.
If (1.1) only holds for the case a1 = · · · = ak = 0, we say that the vectors are linearly independent.

Example 1.2

1


1

−1

2

− 2


−2

3

0

+ 1


−5

7

−2

 = 0

so these vectors are linearly dependent in R3.

1.1.6 Spanning Sets

Consider the subset S = {v1, v2, . . . , vk}. De�ne the span of S

< S > ≡ span (S) ≡

{
k∑
i=1

aivi | ai ∈ F

}
Fact: < S > is a subspace of V .

Example 1.3

V = R3, F = R, S = {v1, v2}, v1 =


1

0

0

, v2 =


0

1

0

 ⇒ < S > = xy-plane.
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Figure 1.2: < S > is the xy-plane.

1.1.6.1 Aside

If S is in�nite, the notions of linear independence and span are easily generalized:
We say S is linearly independent if, for every �nite collection u1, . . . , uk ∈ S, (k arbitrary) we have(

k∑
i=1

aiui = 0

)
⇒ ai = 0

The span of S is

< S > =

{
k∑
i=1

aiui | ai ∈ F ∧ ui ∈ S ∧ (k <∞)

}
note: In both de�nitions, we only consider �nite sums.

1.1.7 Bases

A set B ⊆ V is called a basis for V over F if and only if

1. B is linearly independent
2. < B > = V

Bases are of fundamental importance in signal processing. They allow us to decompose a signal into building
blocks (basis vectors) that are often more easily understood.
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Example 1.4
V = (real or complex) Euclidean space, RN or CN .

B = {e1, . . . , eN} ≡ standard basis

ei =



0
...

1
...

0


where the 1 is in the ith position.

Example 1.5
V = CN over C.

B = {u1, . . . , uN}
which is the DFT basis.

uk =


1

e−(i2π k
N )

...

e−(i2π k
N (N−1))


where i =

√
−1.

1.1.7.1 Key Fact

If B is a basis for V , then every v ∈ V can be written uniquely (up to order of terms) in the form

v =
N∑
i=1

aivi

where ai ∈ F and vi ∈ B.

1.1.7.2 Other Facts

• If S is a linearly independent set, then S can be extended to a basis.
• If < S > = V , then S contains a basis.

1.1.8 Dimension

Let V be a vector space with basis B. The dimension of V , denoted dim (V ), is the cardinality of B.

Theorem 1.2:
Every vector space has a basis.

Theorem 1.3:
Every basis for a vector space has the same cardinality.

⇒ dim (V ) is well-de�ned.
If dim (V ) <∞, we say V is �nite dimensional.
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1.1.8.1 Examples

vector space �eld of scalars dimension

RN R

CN C

CN R

Table 1.1

Every subspace is a vector space, and therefore has its own dimension.

Example 1.6
Suppose (S = {u1, . . . , uk}) ⊆ V is a linearly independent set. Then

dim (< S > ) =

Facts

• If S is a subspace of V , then dim (S) ≤ dim (V ).
• If dim (S) = dim (V ) <∞, then S = V .

1.1.9 Direct Sums

Let V be a vector space, and let S ⊆ V and T ⊆ V be subspaces.
We say V is the direct sum of S and T , written V = S ⊕ T , if and only if for every v ∈ V , there exist

unique s ∈ S and t ∈ T such that v = s+ t.
If V = S ⊕ T , then T is called a complement of S.

Example 1.7

V = C ′ = {f : R→ R|f is continuous}

S = even funcitons inC ′

T = odd funcitons inC ′

f (t) =
1
2

(f (t) + f (−t)) +
1
2

(f (t)− f (−t))

If f = g + h = g′ + h′, g ∈ S and g′ ∈ S, h ∈ T and h′ ∈ T , then g − g′ = h′ − h is odd and even,
which implies g = g′ and h = h′.

1.1.9.1 Facts

1. Every subspace has a complement
2. V = S ⊕ T if and only if

a. S ∩ T = {0}
b. < S, T > = V

3. If V = S ⊕ T , and dim (V ) <∞, then dim (V ) = dim (S) + dim (T )
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1.1.9.2 Proofs

Invoke a basis.

1.1.10 Norms

Let V be a vector space over F . A norm is a mapping V → F , denoted by ‖ · ‖, such that forall u ∈ V ,
v ∈ V , and λ ∈ F

1. ‖ u ‖> 0 if u 6= 0
2. ‖ λu ‖= |λ| ‖ u ‖
3. ‖ u+ v ‖≤‖ u ‖ + ‖ v ‖

1.1.10.1 Examples

Euclidean norms:
x ∈ RN :

‖ x ‖=

(
N∑
i=1

xi
2

) 1
2

x ∈ CN :

‖ x ‖=

(
N∑
i=1

(|xi|)2

) 1
2

1.1.10.2 Induced Metric

Every norm induces a metric on V
d (u, v) ≡‖ u− v ‖

which leads to a notion of "distance" between vectors.

1.1.11 Inner products

Let V be a vector space over F , F = R or C. An inner product is a mapping V × V → F , denoted < ·, · >,
such that

1. < v, v >≥ 0, and < v, v >= 0⇔ v = 0
2. < u, v >= < v, u >
3. < au+ bv, w >= a < (u,w) > +b < (v, w) >

1.1.11.1 Examples

RN over R:

< x, y >=
(
xT y

)
=

N∑
i=1

xiyi

CN over C:

< x, y >=
(
xHy

)
=

N∑
i=1

xiyi
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If
(
x = (x1, . . . , xN )T

)
∈ C, then

xH ≡


x1

...

xN


T

is called the "Hermitian," or "conjugate transpose" of x.

1.1.12 Triangle Inequality

If we de�ne ‖ u ‖=< u, u >, then
‖ u+ v ‖≤‖ u ‖ + ‖ v ‖

Hence, every inner product induces a norm.

1.1.13 Cauchy-Schwarz Inequality

For all u ∈ V , v ∈ V ,
| < u, v > | ≤‖ u ‖‖ v ‖

In inner product spaces, we have a notion of the angle between two vectors:(
∠ (u, v) = arccos

(
< u, v >

‖ u ‖‖ v ‖

))
∈ [0, 2π)

1.1.14 Orthogonality

u and v are orthogonal if
< u, v >= 0

Notation: u ⊥ v.
If in addition ‖ u ‖=‖ v ‖= 1, we say u and v are orthonormal.
In an orthogonal (orthonormal) set, each pair of vectors is orthogonal (orthonormal).

Figure 1.3: Orthogonal vectors in R2.

1.1.15 Orthonormal Bases

An Orthonormal basis is a basis {vi} such that

< vi, vi >= δij =

 1 if i = j

0 if i 6= j
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Example 1.8
The standard basis for RN or CN

Example 1.9
The normalized DFT basis

uk =
1√
N


1

e−(i2π k
N )

...

e−(i2π k
N (N−1))



1.1.16 Expansion Coe�cients

If the representation of v with respect to {vi} is

v =
∑
i

aivi

then
ai =< vi, v >

1.1.17 Gram-Schmidt

Every inner product space has an orthonormal basis. Any (countable) basis can be made orthogonal by the
Gram-Schmidt orthogonalization process.

1.1.18 Orthogonal Compliments

Let S ⊆ V be a subspace. The orthogonal compliment S is

S⊥ = {u | u ∈ V ∧ (< u, v >= 0) ∧ v ∈ S }

S⊥ is easily seen to be a subspace.
If dim (v) <∞, then V = S ⊕ S⊥.

aside: If dim (v) =∞, then in order to have V = S ⊕ S⊥ we require V to be a Hilbert Space.

1.1.19 Linear Transformations

Loosely speaking, a linear transformation is a mapping from one vector space to another that preserves
vector space operations.

More precisely, let V , W be vector spaces over the same �eld F . A linear transformation is a mapping
T : V →W such that

T (au+ bv) = aT (u) + bT (v)

for all a ∈ F , b ∈ F and u ∈ V , v ∈ V .
In this class we will be concerned with linear transformations between (real or complex) Euclidean

spaces, or subspaces thereof.

1.1.20 Image

image (T ) = {w | w ∈W ∧ T (v) = wfor some v }
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1.1.21 Nullspace

Also known as the kernel:
ker (T ) = {v | v ∈ V ∧ (T (v) = 0)}

Both the image and the nullspace are easily seen to be subspaces.

1.1.22 Rank

rank (T ) = dim (image (T ))

1.1.23 Nullity

null (T ) = dim (ker (T ))

1.1.24 Rank plus nullity theorem

rank (T ) + null (T ) = dim (V )

1.1.25 Matrices

Every linear transformation T has a matrix representation. If T : EN → EM , E = R or C, then T is
represented by an M ×N matrix

A =


a11 . . . a1N

...
. . .

...

aM1 . . . aMN


where (a1i, . . . , aMi)

T = T (ei) and ei = (0, . . . , 1, . . . , 0)T is the ith standard basis vector.

aside: A linear transformation can be represented with respect to any bases of EN and EM ,
leading to a di�erent A. We will always represent a linear transformation using the standard bases.

1.1.26 Column span

colspan (A) =< A > = image (A)

1.1.27 Duality

If A : RN → RM , then
ker⊥ (A) = image

(
AT
)



17

Figure 1.4

If A : CN → CM , then
ker⊥ (A) = image

(
AH
)

1.1.28 Inverses

The linear transformation/matrix A is invertible if and only if there exists a matrix B such that AB =
BA = I (identity).

Only square matrices can be invertible.

Theorem 1.4:
Let A : FN → FN be linear, F = R or C. The following are equivalent:

1. A is invertible (nonsingular)
2. rank (A) = N
3. null (A) = 0
4. detA 6= 0
5. The columns of A form a basis.

If A−1 = AT (or AH in the complex case), we say A is orthogonal (or unitary).

1.2 The Bayesian Paradigm2

Statistical analysis is fundamentally an inversion process. The objective is to the "causes"�parameters of the
probabilistic data generation model�from the "e�ects"�observations. This can be seen in our interpretation
of the likelihood function.

Given a parameter θ, observations are generated according to

p (x |θ)

The likelihood function has the same form as the conditional density function above

l (θ|x) ≡ p (x |θ)
2This content is available online at <http://cnx.org/content/m11444/1.7/>.
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except now x is given (we take measurements) and θ is the variable. The likelihood function essentially
inverts the role of observation (e�ect) and parameter (cause).

Unfortunately, the likelihood function does not provide a formal framework for the desired inversion.
One problem is that the parameter θ is supposed to be a �xed and deterministic quantity while the

observation x is the realization of a random process. So their role aren't really interchangeable in this
setting.

Moreover, while it is tempting to interpret the likelihood l (θ|x) as a density function for θ, this is not
always possible; for example, often ∫

l (θ|x) dθ →∞

Another problematic issue is the mathematical formalization of statements like: "Based on the measure-
ments x, I am 95% con�dent that θ falls in a certain range."

Example 1.10
Suppose you toss a coin 10 times and each time it comes up "heads." It might be reasonable to
say that we are 99% sure that the coin is unfair, biased towards heads.

Formally:
H0 : θ ≡ prob heads > 0.5

x ∼

 N∑
x

 θ
P
x(1− θ)N−

P
x

which is the binomial likelihood.
p (θ > 0.5 |x) =?

The problem with this is that
p (θ ∈ H0 |x)

implies that θ is a random, not deterministic, quantity. So, while "con�dence" statements are very
reasonable and in fact a normal part of "everyday thinking," this idea can not be supported from
the classical perspective.

All of these "de�ciencies" can be circumvented by a change in how we view the parameter θ.
If we view θ as the realization of a random variable with density p (θ ), then Bayes Rule (Bayes, 1763)

shows that

p (θ |x) =
p (x |θ) p (θ )∫
p (x |θ) p (θ ) dθ

Thus, from this perspective we obtain a well-de�ned inversion: Given x, the parameter θ is distributing
according to p (θ |x).

From here, con�dence measures such as p (θ ∈ H0 |x) are perfectly legitimate quantities to ask for.

De�nition 1.1: Bayesian statistical model
A statistical model compose of a data generation model, p (x |θ), and a prior distribution on the
parameters, p (θ ).
The prior distriubtion (or prior for short) models the uncertainty in the parameter. More speci�cally,

p (θ ) models our knowledge�or lack thereof�prior to collecting data.
Notice that

p (θ |x) =
p (x |θ) p (θ )

p (x )
∝ p (x |θ) p (θ )

since the data x are known, p (x ) is just a constant. Hence, p (θ |x) is proportional to the likelihood
function multiplied by the prior.

Bayesian analysis has some signi�cant advantages over classical statistical analysis:
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1. properly inverts the relationship between causes and e�ects
2. permits meaningful assessments in con�dence regions
3. enables the incorporation of prior knowledge into the analysis (which could come from previous exper-

iments, for example)
4. leads to more accurate estimators (provided the prior knowledge is accurate)
5. obeys the Likelihood and Su�ciency principles

Example 1.11

xn = A+Wn , n = {1, . . . , N}

Wn ∼ N
(
0, σ2

)
iid.

A =
1
N

N∑
n=1

xn

MVUB and MLE estimator. Now suppose that we have prior knowledge that −A0 ≤ A ≤ A0. We
might incorporate this by forming a new estimator

∼
A=


−A0 if A < −A0

A if −A0 ≤A ≤ A0

A0 if A > A0

(1.2)

This is called a truncated sample mean estimator of A. Is
∼
A a better estimator of A than the

sample mean A?

Let p (a ) denote the density of A. Since A = 1
N

∑
xn, p (a ) = N

(
A, σ

2

N

)
. The density of

∼
A is

given by

∼
p (a) = Pr

[
A ≤ −A0

]
δ (a+A0) + p (a ) I{−A0≤α≤A0} + Pr

[
A ≥ A0

]
δ (a−A0) (1.3)

(a) (b)

Figure 1.5
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Now consider the MSE of the sample mean A.

MSE
(
A
)

=
∫ ∞
−∞

(a−A)2
p (a ) da (1.4)

1.2.1 Note

1.
∼
A is biased (Figure 1.6).

2. Although A is MVUB,
∼
A is better in the MSE sense.

3. Prior information is aptly described by regarding A as a random variable with a prior distribution
U (−A0, A0), which implies that we know −A0 ≤ A ≤ A0, but otherwise A is abitrary.

(a) (b)

Figure 1.6: (a) Mean of A = A. (b) Mean of
∼
A6= A.
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1.2.2 The Bayesian Approach to Statistical Modeling

Figure 1.7: Where w is the noise and x is the observation.

Example 1.12

xn = A+Wn , n = {1, . . . , N}
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Figure 1.8

Prior distribution allows us to incorporate prior information regarding unknown paremter�
probable values of parameter are supported by prior. Basically, the prior re�ects what we believe
"Nature" will probably throw at us.

1.2.3 Elements of Bayesian Analysis

(a) - joint distribution
p (x, θ ) = p (x |θ) p (θ )

(b) - marginal distributions

p (x ) =
∫
p (x |θ) p (θ ) dθ

p (θ ) =
∫
p (x |θ) p (θ ) dx

where p (θ ) is a prior.
(c) - posterior distribution

p (θ |x) =
p (x, θ )
p (x )

=
p (x |θ) p (θ )∫
p (x |θ) p (θ ) dx

Example 1.13

p (x |θ) =

 n

x

 θx(1− θ)n−x , θ ∈ [0, 1]

which is the Binomial likelihood.

p (θ ) =
1

B (α, β)
θα−1(1− θ)β−1
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which is the Beta prior distriubtion and B (α, β) = Γ(α)Γ(β)
Γ(α+β)

Figure 1.9: This re�ects prior knowledge that most probable values of θ are close to α
α+β

.

1.2.3.1 Joint Density

p (x, θ ) =

 n

x


B (α, β)

θα+x−1(1− θ)n−x+β−1

1.2.3.2 marginal density

p (x ) =

 n

x

 Γ (α+ β)
Γ (α) Γ (β)

Γ (α+ x) Γ (n− x+ β)
Γ (α+ β + n)

1.2.3.3 posterior density

p (θ |x) =
θα+x−1θβ+n−x−1

B (α+ x, β + n− x)

where B (α+ x, β + n− x) is the Beta density with parameters α′ = α+ x and β′ = β + n− x

1.2.4 Selecting an Informative Prior

Clearly, the most important objective is to choose the prior p (θ ) that best re�ects the prior knowledge
available to us. In general, however, our prior knowledge is imprecise and any number of prior densities may
aptly capture this information. Moreover, usually the optimal estimator can't be obtained in closed-form.

Therefore, sometimes it is desirable to choose a prior density that models prior knowledge and is nicely
matched in functional form to p (x |θ) so that the optimal esitmator (and posterior density) can be expressed
in a simple fashion.
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1.2.5 Choosing a Prior

1. Informative Priors

• design/choose priors that are compatible with prior knowledge of unknown parameters

2. Non-informative Priors

• attempt to remove subjectiveness from Bayesian procedures
• designs are often based on invariance arguments

Example 1.14
Suppose we want to estimate the variance of a process, incorporating a prior that is amplitude-scale
invariant (so that we are invariant to arbitrary amplitude rescaling of data). p (s ) = 1

s satisi�es
this condition. σ2 ∼ p (s ) ⇒ Aσ2 ∼ p (s ) where p (s ) is non-informative since it is invariant to
amplitude-scale.

1.2.6 Conjugate Priors

1.2.6.1 Idea

Given p (x |θ), choose p (θ ) so that p (θ |x) ∝ p (x |θ) p (θ ) has a simple functional form.

1.2.6.2 Conjugate Priors

Choose p (θ ) ∈P, where P is a family of densities (e.g., Gaussian family) so that the posterior density also
belongs to that family.

De�nition 1.2: conjugate prior
p (θ ) is a conjugate prior for p (x |θ) if p (θ ) ∈P ⇒ p (θ |x) ∈P

Example 1.15

xn = A+Wn , n = {1, . . . , N}

Wn ∼ N
(
0, σ2

)
iid. Rather than modeling A ∼ U (−A0, A0) (which did not yield a closed-form estimator) consider

p (A ) =
1√

2πσA2
e
−1

2σA
2 (A−µ)2
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Figure 1.10

With µ = 0 and σA = 1
3A0 this Gaussian prior also re�ects prior knowledge that it is unlikely

for |A| ≥ A0.

The Gaussian prior is also conjugate to the Gaussian likelihood

p (x |A) =
1

(2πσ2)
N
2
e
−1
2σ2

PN
n=1 (xn−A)2

so that the resulting posterior density is also a simple Gaussian, as shown next.
First note that

p (x |A) =
1

(2πσ2)
N
2
e
−1
2σ2

PN
n=1 xne

−1
2σ2

„
NA2−2NA

−
x

«

where
−
x= 1

N

∑N
n=1 xn.

p (A |x) = p(x |A)p(A )R
p(x |A)p(A )dA

= e

−1
2

 
1
σ2

„
NA2−2NA

−
x

«
+ 1
σA

2 (A−µ)2
!

R∞
−∞ e

−1
2

 
1
σ2

„
NA2−2NA

−
x

«
+ 1
σA

2 (A−µ)2
!
dA

= e
−1
2 Q(A)R∞

−∞ e
−1
2 Q(A)dA

(1.5)

where Q (A) = N
σ2A

2 − 2NA
−
x

σ2 + A2

σA2 − 2µA
σA2 + µ2

σA2 . Now let

σA|x
2 ≡ 1

N
σ2 + 1

σA2

µA|x
2 ≡

(
N

σ2

−
x +

µ

σA2

)
σA|x

2

Then by "completing the square" we have

Q (A) = 1
σA|x2

(
A2 − 2µA|xA+ µA|x

2
)
− µA|x

2

σA|x2 + µ2

σA2

= 1
σA|x2

(
A− µA|x

)2 − µA|x
2

σA|x2 + µ2

σA2

(1.6)
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Hence,

p (A |x) =
e
−1

2σA|x2 (A−µA|x)2

e
−1
2

„
µ2

σA
2−

µA|x
2

σA|x
2

«

∫∞
−∞ e

−1
2σA|x2 (A−µA|x)2

e
−1
2

„
µ2

σA
2−

µA|x
2

σA|x
2

«
dA

where −1
2σA|x2

(
A− µA|x

)2
is the "unnormalized" Gaussian density and −1

2

(
µ2

σA2 −
µA|x

2

σA|x2

)
is a constant, inde-

pendent of A. This implies that

p (A |x) =
1√

2πσA|x2
e
−1

2σA|x
2 (A−µA|x)2

where A|x ∼ N
(
µA|x, σA|x

2
)
. Now

A = E [A | x ]

=
∫
Ap (A |x) dA

= µA|x

=
N
σ2
−
x+ µ

σA
2

N
σ2 + 1

σA
2

= σA
2

σA2+σ2
N

−
x +

σ2
N

σA2+σ2
N

µ

= α
−
x −1µ

(1.7)

Where 0 < α = σA
2

σA2+σ2
N

< 1

Interpretation

1. When there is little data σA
2 � σ2

N α is small and A = µ.

2. When there is a lot of data σA
2 � σ2

N , α ' 1 and A =
−
x.

1.2.7 Interplay Between Data and Prior Knowledge

Small N →A favors prior.

Large N →A favors data.

1.2.8 The Multivariate Gaussian Model

The multivariate Gaussian model is the most important Bayesian tool in signal processing. It leads directly
to the celebrated Wiener and Kalman �lters.

Assume that we are dealing with random vectors x and y. We will regard y as a signal vector that is to
be estimated from an observation vector x.

y plays the same role as θ did in earlier discussions. We will assume that y is p×1 and x is N×1.
Furthermore, assume that x and y are jointly Gaussian distributed x

y

 ∼ N

 0

0

 ,

 Rxx Rxy

Ryx Ryy


E [x] = 0, E [y] = 0, E

[
xxT

]
= Rxx, E

[
xyT

]
= Rxy, E

[
yxT

]
= Ryx, E

[
yyT

]
= Ryy.

R ≡

 Rxx Rxy

Ryx Ryy
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Example 1.16
x = y +W , W ∼ N

(
0, σ2I

)
p (y ) = N (0, Ryy)

which is independent ofW . E [x] = E [y]+E [W ] = 0, E
[
xxT

]
= E

[
yyT

]
+E

[
yWT

]
+E

[
WyT

]
+

E
[
WWT

]
= Ryy + σ2I, E

[
xyT

]
= E

[
yyT

]
+ E

[
WyT

]
= Ryy = E

[
yxT

]
. x

y

 ∼ N

 0

0

 ,

 Ryy + σ2I Ryy

Ryy Ryy


From our Bayesian perpsective, we are interested in p (y |x).

p (y |x) = p(x,y )
p(x )

= (2π)−
N
2 (2π)−

p
2 (detR)

−1
2 e

−1
2

0@ xT yT
1AR−1

0BBBBB@
x

y

1CCCCCA
(2π)−

N
2 (detRxx)

−1
2 e
−1
2 xTRxx−1x

(1.8)

In this formula we are faced with

R−1 =

 Rxx Rxy

Ryx Ryy

−1

The inverse of this covariance matrix can be written as Rxx Rxy

Ryx Ryy

−1

=

 Rxx
−1 0

0 0

+

 (
−Rxx

−1
)
Rxy

I

Q−1
(

(−Ryx)Rxx I
)

where Q ≡ Ryy − RyxRxxRxy. (Verify this formula by applying the right hand side above to R to
get I.)

1.3 Su�ciency

1.3.1 Su�cient Statistics3

1.3.1.1 Introduction

Su�cient statistics arise in nearly every aspect of statistical inference. It is important to understand them
before progressing to areas such as hypothesis testing and parameter estimation.

Suppose we observe an N -dimensional random vector X, characterized by the density or mass function
f θ (x ), where θ is a p-dimensional vector of parameters to be estimated. The functional form of f (x ) is
assumed known. The parameter θ completely determines the distribution of X. Conversely, a measurement
x of X provides information about θ through the probability law f θ (x ).

3This content is available online at <http://cnx.org/content/m11481/1.7/>.
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Example 1.17

Suppose X =

 X1

X2

, where Xi ∼ N (θ, 1) are IID. Here θ is a scalar parameter specifying the

mean. The distribution of X is determined by θ through the density

f θ (x ) =
1√
2π
e−

(x1−θ)
2

2
1√
2π
e−

(x2−θ)
2

2

On the other hand, if we observe x =

 100

102

, then we may safely assume θ = 0 is highly unlikely.

The N -dimensional observation X carries information about the p-dimensional parameter vector θ. If p < N ,
one may ask the following question: Can we compress x into a low-dimensional statistic without any loss
of information? Does there exist some function t = T (x), where the dimension of t is M < N , such that t
carries all the useful information about θ?

If so, for the purpose of studying θ we could discard the raw measurements x and retain only the low-
dimensional statistic t. We call t a su�cient statistic. The following de�nition captures this notion
precisely:

De�nition 1.3:
Let X1, . . . , XM be a random sample, governed by the density or probability mass function f (x |θ).
The statistic T (x) is su�cient for θ if the conditional distribution of x, given T (x) = t, is
independent of θ. Equivalently, the functional form of f θ | t (x ) does not involve θ.
How should we interpret this de�nition? Here are some possibilities:

1.3.1.1.1

1. Let f θ (x, t ) denote the joint density or probability mass function on (X,T (X)). If T (X) is a su�cient
statistic for θ, then

f θ (x ) = f θ (x, T (x) )

= f θ | t (x ) f θ ( t )

= f (x |t) f θ ( t )

(1.9)

Therefore, the parametrization of the probability law for the measurement x is manifested in the parametriza-
tion of the probability law for the statistic T (x).

1.3.1.1.2

2. Given t = T (x), full knowledge of the measurement x brings no additional information about θ. Thus,
we may discard x and retain on the compressed statistic t.

1.3.1.1.3

3. Any inference strategy based on f θ (x ) may be replaced by a strategy based on f θ ( t ).
Example 1.18

1.3.1.1.1 Binary Information Source

(Scharf, pp.78[6]) Suppose a binary information source emits a sequence of binary (0 or 1) valued,
independent variables x1, . . . , xN . Each binary symbol may be viewed as a realization of a Bernoulli
trial: xn ∼ Bernoulli (θ), iid. The parameter θ ∈ [0, 1] is to be estimated.
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The probability mass function for the random sample x = (x1, . . . , xN )T is

f θ (x ) =
N∏
n=1

f θ (xn )
N∏
n=1

θk(1− θ)N−k (1.10)

where k =
∑N
n=1 xn is the number of 1's in the sample.

We will show that k is a su�cient statistic for x. This will entail showing that the conditional
probability mass function f θ |k (x ) does not depend on θ.

The distribution of the number of ones in N independent Bernoulli trials is binomial:

f θ (k ) =

 N

k

 θk(1− θ)N−k

Next, consider the joint distribution of (x,
∑
xn). We have

f θ (x ) = f θ

(
x,
∑

xn

)
Thus, the conditional probability may be written

f θ |k (x ) = f θ (x,k )
f θ (k )

= f θ (x )
f θ (k )

= θk(1−θ)N−k0BB@ N

k

1CCAθk(1−θ)N−k

= 10BB@ N

k

1CCA

(1.11)

This shows that k is indeed a su�cient statistic for θ. The N values x1, . . . , xN can be replaced
by the quantity k without losing information about θ.

Exercise 1.1
In the previous example (Example 1.18), suppose we wish to store in memory the information we
possess about θ. Compare the savings, in terms of bits, we gain by storing the su�cient statistic k
instead of the full sample x1, . . . , xN .

1.3.1.2 Determining Su�cient Statistics

In the example above (Example 1.18), we had to guess the su�cient statistic, and work out the conditional
probability by hand. In general, this will be a tedious way to go about �nding su�cient statistics. Fortunately,
spotting su�cient statistics can be made easier by the Fisher-Neyman Factorization Theorem (Section 1.3.2).

1.3.1.3 Uses of Su�cient Statistics

Su�cient statistics have many uses in statistical inference problems. In hypothesis testing, the Likelihood
Ratio Test4 can often be reduced to a su�cient statistic of the data. In parameter estimation, the Minimum
Variance Unbiased Estimator (Section 4.1.1) of a parameter θ can be characterized by su�cient statistics
and the Rao-Blackwell Theorem5 .

4http://workshop.molecularevolution.org/resources/lrt.php
5http://en.wikipedia.org/wiki/Rao-Blackwell_theorem
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1.3.1.4 Minimality and Completeness

Minimal su�cient statistics are, roughly speaking, su�cient statistics that cannot be compressed any more
without losing information about the unknown parameter. Completeness is a technical characterization of
su�cient statistics that allows one to prove minimality. These topics are covered in detail in this6 module.

Further examples of su�cient statistics may be found in the module on the Fisher-Neyman Factorization
Theorem (Section 1.3.2).

1.3.2 The Fisher-Neyman Factorization Theorem7

Determining a su�cient statistic (Section 1.3.1) directly from the de�nition can be a tedious process. The
following result can simplify this process by allowing one to spot a su�cient statistic directly from the
functional form of the density or mass function.

Theorem 1.5: Fisher-Neyman Factorization Theorem
Let f θ (x ) be the density or mass function for the random vector x, parametrized by the vector
θ. The statistic t = T (x) is su�cient for θ if and only if there exist functions a (x) (not depending
on θ) and b θ ( t ) such that

f θ (x ) = a (x) b θ ( t )

for all possible values of x.

In an earlier example (Example 1.18) we computed a su�cient statistic for a binary communication source
(independent Bernoulli trials) from the de�nition. Using the above result, this task becomes substantially
easier.

Example 1.19

1.3.2.1 Bernoulli Trials Revisited

Suppose xn ∼ Bernoulli (θ) are IID, , n = 1, . . . , N . Denote x = (x1, . . . , xn)T . Then

f θ (x ) =
∏N
n=1 θ

xn(1− θ)1−xn

= θk(1− θ)N−k

= a (x) b θ (k )

(1.12)

where k =
∑N
n=1 xn, a (x) = 1, and b θ (k ) = θk(1− θ)N−k. By the Fisher-Neyman factorization

theorem, k is su�cient for θ.

The next example illustrates the appliction of the theorem to a continuous random variable.

Example 1.20

1.3.2.1 Normal Data with Unknown Mean

Consider a normally distributed random sample x1, . . . , xN ∼ N (θ, 1), IID, where θ is unknown.

The joint pdf of x = (x1, . . . , xn)T is

f θ (x ) =
N∏
n=1

f θ (xn ) =
(

1
2π

)N
2

e
−1
2

PN
n=1 (xn−θ)2

6http://en.wikipedia.org/wiki/Completeness
7This content is available online at <http://cnx.org/content/m11480/1.6/>.
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We would like to rewrite f θ (x ) is the form of a (x) b θ ( t ), where dim (t) < N . At this point
we require a trick-one that is commonly used when manipulating normal densities, and worth

remembering. De�ne
−
x= 1

N

∑N
n=1 xn, the sample mean. Then

f θ (x ) =
(

1
2π

)N
2 e
−1
2

PN
n=1

„
xn−

−
x+
−
x−θ

«2

=
(

1
2π

)N
2 e
−1
2

PN
n=1

„
xn−

−
x

«2

+2

„
xn−

−
x

«„
−
x−θ

«
+

„
−
x−θ

«2 (1.13)

Now observe ∑N
n=1

(
xn−

−
x
)(−

x −θ
)

=
(−
x −θ

)∑N
n=1 xn−

−
x

=
(−
x −θ

)(−
x − −x

)
= 0

(1.14)

so the middle term vanishes. We are left with

f θ (x ) =
(

1
2π

)N
2

e
−1
2

PN
n=1

„
xn−

−
x

«2

e
−1
2

PN
n=1

„
−
x−θ

«2

where a (x) =
(

1
2π

)N
2 e
−1
2

PN
n=1

„
xn−

−
x

«2

, b θ ( t ) = e
−1
2

PN
n=1

„
−
x−θ

«2

, and t = x. Thus, the sample
mean is a one-dimensional su�cient statistic for the mean.

1.3.2.1 Proof of Theorem

First, suppose t = T (x) is su�cient for θ. By de�nition, f θ |T (x)=t (x ) is independent of θ. Let f θ (x, t )
denote the joint density or mass function for (X,T (X)). Observe f θ (x ) = f θ (x, t ). Then

f θ (x ) = f θ (x, t )

= f θ | t (x ) f θ ( t )

= a (x) b θ ( t )

(1.15)

where a (x) = f θ | t (x ) and b θ ( t ) = f θ ( t ). We prove the reverse implication for the discrete case only.
The continuous case follows a similar argument, but requires a bit more technical work (Scharf, pp.82[7];
Kay, pp.127[2]).

Suppose the probability mass function for x can be written

f θ (x ) = a (x) b θ (x )

where t = T (x). The probability mass function for t is obtained by summing f θ (x, t ) over all x such that
T (x) = t:

f θ ( t ) =
∑
T (x)=t f θ (x, t )

=
∑
T (x)=t f θ (x )

=
∑
T (x)=t a (x) b θ ( t )

(1.16)

Therefore, the conditional mass function of x, given t, is

f θ | t (x ) = f θ (x,t )
f θ ( t )

= f θ (x )
f θ ( t )

= a(x)P
T (x)=t a(x)

(1.17)

This last expression does not depend on θ, so t is a su�cient statistic for θ. This completes the proof.
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note: From the proof, the Fisher-Neyman factorization gives us a formula for the conditional
probability of x given t. In the discrete case we have

f (x |t) =
a (x)∑

T (x)=t a (x)

An analogous formula holds for continuous random variables (Scharf, pp.82[7]).

1.3.2.2 Further Examples

The following exercises provide additional examples where the Fisher-Neyman factorization may be used to
identify su�cient statistics.

Exercise 1.2
Uniform Measurements
Suppose x1, . . . , xN are independent and uniformly distributed on the interval [θ1, θ2]. Find a

su�cient statistic for θ = (θ1, θ2)T .

note: Express the likelihood f θ (x ) in terms of indicator functions.

Exercise 1.3
Poisson
Suppose x1, . . . , xN are independent measurements of a Poisson random variable with intensity
parameter θ:

f θ (x ) =
e−θθx

x!
, x = 0, 1, 2, . . .

1.3.2.2.1

Find a su�cient statistic t for θ.

1.3.2.2.2

What is the conditional probability mass function of x, given t, where x = (x1, . . . , xN )T ?
Exercise 1.4
Normal with Unknown Mean and Variance
Consider x1, . . . , xN ∼ N

(
µ, σ2

)
, IID, where θ1 = µ and θ2 = σ2 are both unknown. Find a

su�cient statistic for θ = (θ1, θ2)T .

note: Use the same trick as in Example 1.20.
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Signal Representation and Modeling

2.1 Signal Classi�cations and Properties1

2.1.1 Introduction

This module will begin our study of signals and systems by laying out some of the fundamentals of signal clas-
si�cation. It is essentially an introduction to the important de�nitions and properties that are fundamental
to the discussion of signals and systems, with a brief discussion of each.

2.1.2 Classi�cations of Signals

2.1.2.1 Continuous-Time vs. Discrete-Time

As the names suggest, this classi�cation is determined by whether or not the time axis is discrete (countable)
or continuous (Figure 2.1). A continuous-time signal will contain a value for all real numbers along the
time axis. In contrast to this, a discrete-time signal2, often created by sampling a continuous signal, will
only have values at equally spaced intervals along the time axis.

Figure 2.1

1This content is available online at <http://cnx.org/content/m10057/2.21/>.
2"Discrete-Time Signals" <http://cnx.org/content/m0009/latest/>
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2.1.2.2 Analog vs. Digital

The di�erence between analog and digital is similar to the di�erence between continuous-time and discrete-
time. However, in this case the di�erence involves the values of the function. Analog corresponds to a
continuous set of possible function values, while digital corresponds to a discrete set of possible function
values. An common example of a digital signal is a binary sequence, where the values of the function can
only be one or zero.

Figure 2.2

2.1.2.3 Periodic vs. Aperiodic

Periodic signals3 repeat with some period T , while aperiodic, or nonperiodic, signals do not (Figure 2.3).
We can de�ne a periodic function through the following mathematical expression, where t can be any number
and T is a positive constant:

f (t) = f (T + t) (2.1)

The fundamental period of our function, f (t), is the smallest value of T that the still allows (2.1) to be
true.

3"Continuous Time Periodic Signals" <http://cnx.org/content/m10744/latest/>
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(a)

(b)

Figure 2.3: (a) A periodic signal with period T0 (b) An aperiodic signal

2.1.2.4 Finite vs. In�nite Length

As the name implies, signals can be characterized as to whether they have a �nite or in�nite length set of
values. Most �nite length signals are used when dealing with discrete-time signals or a given sequence of
values. Mathematically speaking, f (t) is a �nite-length signal if it is nonzero over a �nite interval

t1 < f (t) < t2

where t1 > −∞ and t2 < ∞. An example can be seen in Figure 2.4. Similarly, an in�nite-length signal,
f (t), is de�ned as nonzero over all real numbers:

∞ ≤ f (t) ≤ −∞

Figure 2.4: Finite-Length Signal. Note that it only has nonzero values on a set, �nite interval.
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2.1.2.5 Causal vs. Anticausal vs. Noncausal

Causal signals are signals that are zero for all negative time, while anticausal are signals that are zero for
all positive time. Noncausal signals are signals that have nonzero values in both positive and negative time
(Figure 2.5).

(a)

(b)

(c)

Figure 2.5: (a) A causal signal (b) An anticausal signal (c) A noncausal signal
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2.1.2.6 Even vs. Odd

An even signal is any signal f such that f (t) = f (−t). Even signals can be easily spotted as they
are symmetric around the vertical axis. An odd signal, on the other hand, is a signal f such that
f (t) = −f (−t) (Figure 2.6).

(a)

(b)

Figure 2.6: (a) An even signal (b) An odd signal

Using the de�nitions of even and odd signals, we can show that any signal can be written as a combination
of an even and odd signal. That is, every signal has an odd-even decomposition. To demonstrate this, we
have to look no further than a single equation.

f (t) =
1
2

(f (t) + f (−t)) +
1
2

(f (t)− f (−t)) (2.2)

By multiplying and adding this expression out, it can be shown to be true. Also, it can be shown that
f (t) + f (−t) ful�lls the requirement of an even function, while f (t) − f (−t) ful�lls the requirement of an
odd function (Figure 2.7).

Example 2.1
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(a)

(b)

(c)

(d)

Figure 2.7: (a) The signal we will decompose using odd-even decomposition (b) Even part: e (t) =
1
2

(f (t) + f (−t)) (c) Odd part: o (t) = 1
2

(f (t)− f (−t)) (d) Check: e (t) + o (t) = f (t)
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2.1.2.7 Deterministic vs. Random

A deterministic signal is a signal in which each value of the signal is �xed and can be determined by a
mathematical expression, rule, or table. Because of this the future values of the signal can be calculated
from past values with complete con�dence. On the other hand, a random signal4 has a lot of uncertainty
about its behavior. The future values of a random signal cannot be accurately predicted and can usually
only be guessed based on the averages5 of sets of signals (Figure 2.8).

(a)

(b)

Figure 2.8: (a) Deterministic Signal (b) Random Signal

Example 2.2
Consider the signal de�ned for all real t described by

f (t) = {
sin (2πt) /t t ≥ 1

0 t < 1
(2.3)

This signal is continuous time, analog, aperiodic, in�nite length, causal, neither even nor odd, and,
by de�nition, deterministic.

2.1.3 Signal Classi�cations Summary

This module describes just some of the many ways in which signals can be classi�ed. They can be continuous
time or discrete time, analog or digital, periodic or aperiodic, �nite or in�nite, and deterministic or random.
We can also divide them based on their causality and symmetry properties. There are other ways to classify
signals, such as boundedness, handedness, and continuity, that are not discussed here but will be described
in subsequent modules.

4"Introduction to Random Signals and Processes" <http://cnx.org/content/m10649/latest/>
5"Random Processes: Mean and Variance" <http://cnx.org/content/m10656/latest/>
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2.2 Signal Models

2.2.1 Linear Models6

Finding an MVUB estimator is a very di�cult task, in general. However, a large number of signal processing
problems can be respresented by a linear model of the data.

2.2.1.1 Importance of Class of Linear Models

1. MVUB estimator within this class is immediately evident
2. Statistical performance analysis of linear models is very straightforward

2.2.1.2 General Form of Linear Model (LM)

x = Hθ + w

where x is the observation vector, H is the known matrix (observation or system matrix), θ is the
unknown parameter vector, and w is the vector of White Guassian noise w ∼ N

(
0, σ2I

)
.

Example 2.3

xn = A+Bn + wn , n ∈ {1, . . . , N}

x =


x1

...

xN



w =


w1

...

wN


θ =

 A

B



H =


1 1

1 2
...

...

1 N



2.2.1.3 Probability Model for LM

x = Hθ + w

x ∼ p (x |θ) = N
(
Hθ, σ2I

)
6This content is available online at <http://cnx.org/content/m11432/1.2/>.
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2.2.1.4 CRLB and NVUB Estimator

θ = g (x) the MVUB estimator i�
∂ logp (x |θ)

∂θ
= I (θ) (g (x)− θ)

In the case of the LM,

∂ logp (x |θ)
∂θ

=
(
− 1

2σ2

)
∂
(
xTx− 2xTHθ + θTHTHθ

)
∂θ

Now using identities
∂
(
bT θ
)

∂θ
= b

∂
(
θTAθ

)
∂θ

= 2Aθ

for A symmetric.
We have

∂ logp (x |θ)
∂θ

=
1
σ2

(
HTx−HTHθ

)
Assuming HTH is invertible

∂ logp (x |θ)
∂θ

=
HTH

σ2

((
HTH

)−1
HTx− θ

)
which leads to

MVUB Estimator

θ =
(
HTH

)−1
HTx(2.4)

Fisher Information Matrix

I (θ) =
HTH

σ2
(2.5)

< θ
2

>= Cθ = (I (θ))−1 = σ2
(
HTH

)−1

Theorem 2.1: MVUB Estimator for the LM
If the observed data can be modeled as

x = Hθ + w

where w ∼ N
(
0, σ2I

)
and H is invertible. Then, the MVUB estimator is

θ =
(
HTH

)−1
HTx

and the covariance of θ is
Cθ = σ2

(
HTH

)−1

and θ attains the CRLB.

note: θ ∼ N
(
θ, σ2

(
HTH

)−1
)
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2.2.1.5 Linear Model Examples

Example 2.4: Curve Fitting

Figure 2.9

Model:
x (tn) = θ1 + θ2tn + · · ·+ θptn

p−1 + w (tn) , n ∈ {1, . . . , N}

where θ1 + θ2tn + · · ·+ θptn
p−1 is a (p− 1)st

-order polynomial and w (tn) ∼ N
(
0, σ2

)
idd. There-

fore,
x = Hθ + w

x =


x (t)
...

x (tn)



θ =


θ1

θ2

...

θp



H =


1 t1 . . . t1

p−1

1 t2 . . . t2
p−1

...
...

. . .
...

1 tN . . . tN
p−1


where H is the Vandermonde matrix. The MVUB estimator for θ is

θ =
(
HTH

)−1
HTx

Example 2.5: System Identi�cation

Figure 2.10

H (z) =
m−1∑
k=0

h [k] z−k



43

x [n] =
m−1∑
k=0

h [k]u [n− k] + w [n] , n ∈ {0, . . . , N − 1}

Where w [n] ∼ N
(
0, σ2

)
idd. Given x and u, estimate h.

In matrix form

x =


u [0] 0 . . . 0

u [1] u [0] . . . 0
...

...
. . .

...

u [N − 1] u [N − 2] . . . u [N −m]




h [0]
...
...

h [N −m]

+ w

where 
u [0] 0 . . . 0

u [1] u [0] . . . 0
...

...
. . .

...

u [N − 1] u [N − 2] . . . u [N −m]

 = H

and 
h [0]
...
...

h [N −m]

 = θ

MVUB estimator

θ =
(
HTH

)−1
HTx(2.6)

< θ
2

>= σ2
(
HTH

)−1
= C^

θ

An important question in system identi�cation is how to choose the input u [n] to "probe" the
system most e�ciently.

First note that

σ
(
θi

)2

= ei
TC^

θ

ei

where ei = (0, . . . , 0, 1, 0, . . . , 0)T . Also, since C^
θ

−1 is symmetric positive de�nite, we can factor it

by
C^
θ

−1 = DTD

where D is invertible.7 Note that (
ei
TDT

(
DT
)−1

ei

)2

= 1 (2.7)

The Schwarz inequality shows that (2.7) can become

1 ≤
(
ei
TDTDei

) (
ei
TD−1

(
DT
)−1

ei

)
(2.8)

7Cholesky factorization
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1 =
(
ei
TC^

θ

−1ei

)(
ei
TC^

θ

ei

)
which leads to

σ
(
θi

)2

≥ 1
eiTC^

θ

−1ei
=

σ2

(HTH)i,i

The minimum variance is achieved when equality is attained in (2.8). This happens only if η1 = Dei
is proportional to η2 = DT ei. That is, η1 = Cη2 for some constant C. Equivalently,

DTDei = cieu , i ∈ {1, 2, . . . ,m}

DTD = C^
θ

−1 =
HTH

σ2

which leads to
HTH

σ2
ei = ciei

Combining these equations in matrix form

HTH = σ2


c1 0 . . . 0

0 c2 . . . 0

0 0 . . . cm


Therefore, in order to minimize the variance of the MVUB estimator, u [n] should be chosen to
make HTH diagonal.

(
HTH

)
i,j

=
N∑
n=1

u [n− i]u [n− j] , i ∧ j ∈ {1, . . . ,m}

For large N , this can be approximated to

(
HTH

)
i,j
'
N−1−|i−j|∑

n=0

u [n]u [n+ |i− j|]

using the autocorrelation of seq. u [n].

note: u [n] = 0 for n < 0 and n > N − 1, letting limit of sum −∞, ∞ gives approx.

These steps lead to

HTH ' N


ruu [0] ruu [1] . . . ruu [m− 1]

ruu [1] ruu [0] . . .
...

...
...

. . .
...

ruu [m− 1] ruu [m− 2] . . . ruu [0]
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where


ruu [0] ruu [1] . . . ruu [m− 1]

ruu [1] ruu [0] . . .
...

...
...

. . .
...

ruu [m− 1] ruu [m− 2] . . . ruu [0]

 is the Toeplitz autocorrelation matrix and

ruu [n] =
1
N

N−1−k∑
n=0

u [n]u [n+ k]

For HTH to be diagonal, we require r [k] = 0, k 6= 0. This condition is approximately realized if
we take u [n] to be a pseudorandom noise sequence (PRN)8. Furthermore, the PRN sequence
simpli�es the estimator computation:

θ =
(
HTH

)−1
HTx

θ '
I

Nruu [0]
HTx

which leads to

h [i] ' 1
Nruu [0]

N−1−i∑
n=0

u [n− i]x [n]

where
∑N−1−i
n=0 u [n− i]x [n] = Nrux [i]. rux [i] is the cross-correlation between input and output

sequences.
Hence, the approximate MVUB estimator for large N with a PRN input is

h [i] =
rux [i]
ruu [0]

, i ∈ {0, 1, . . . ,m− 1}

rux [i] =
1
N

N−1−i∑
n=0

u [n]x [n+ i]

ruu [0] =
1
N

N−1∑
n=0

u2 [n]

2.2.1.6 CRLB for Signal in White Gaussian Noise

xn = sn (θ) + wn , n ∈ {1, . . . , N}

p (x |θ) =
1

(2πσ2)
N
2
e−( 1

2σ2
PN
n=1 (xn−sn(θ))2)

∂ logp (x |θ)
∂θ

=
1
σ2

N∑
n=1

(xn − sn (θ))
∂sn (θ)
∂θ

∂2logp (x |θ)
∂θ2

=
1
σ2

N∑
n=1

(
(xn − sn (θ))

∂2sn (θ)
∂θ2

−
(
∂sn (θ)
∂θ

)2
)

8maximal length sequences
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E

[
∂2logp (x |θ)

∂θ2

]
= −

(
1
σ2

N∑
n=1

(
∂sn (θ)
∂θ

)2
)

σ
(
θ
)2

≥ σ2∑N
n=1

(
∂sn(θ)
∂θ

)2



Chapter 3

Detection Theory

3.1 Hypothesis Testing1

Suppose you measure a collection of scalars x1, . . . , xN . You believe the data is distributed in one of two
ways. Your �rst model, call it H0, postulates the data to be governed by the density f0 (x) (some �xed
density). Your second model, H1, postulates a di�erent density f1 (x). These models, termed hypotheses,
are denoted as follows:

H0 : xn ∼ f0 (x) , n = 1 . . . N

H1 : xn ∼ f1 (x) , n = 1 . . . N

A hypothesis test is a rule that, given a measurement x, makes a decision as to which hypothesis best
"explains" the data.

Example 3.1
Suppose you are con�dent that your data is normally distributed with variance 1, but you are
uncertain about the sign of the mean. You might postulate

H0 : xn ∼ N (−1, 1)

H1 : xn ∼ N (1, 1)

These densities are depicted in Figure 3.1.

1This content is available online at <http://cnx.org/content/m11531/1.6/>.
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Figure 3.1

Assuming each hypothesis is a priori equally likely, an intuitively appealing hypothesis test is

to compute the sample mean
−
x= 1

N

∑N
n=1 xn, and choose H0 if

−
x≤ 0, and H1 if

−
x> 0. As we will

see later, this test is in fact optimal under certain assumptions.

3.1.1 Generalizations and Nomenclature

The concepts introduced above can be extended in several ways. In what follows we provide more rigorous
de�nitions, describe di�erent kinds of hypothesis testing, and introduce terminology.

3.1.1.1 Data

In the most general setup, the observation is a collection x1, . . . , xN of random vectors. A common as-
sumption, which facilitates analysis, is that the data are independent and identically distributed (IID). The
random vectors may be continuous, discrete, or in some cases mixed. It is generally assumed that all of the
data is available at once, although for some applications, such as Sequential Hypothesis Testing2, the data
is a never ending stream.

2"Sequential Hypothesis Testing" <http://cnx.org/content/m11242/latest/>
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3.1.1.2 Binary Versus M-ary Tests

When there are two competing hypotheses, we refer to a binary hypothesis test. When the number of
hypotheses is M ≥ 2, we refer to an M-ary hypothesis test. Clearly, binary is a special case of M -ary, but
binary tests are accorded a special status for certain reasons. These include their simplicity, their prevalence
in applications, and theoretical results that do not carry over to the M -ary case.

Example 3.2

3.1.1.2.1 Phase-Shift Keying

Suppose we wish to transmit a binary string of length r over a noisy communication channel. We
assign each of the M = 2r possible bit sequences to a signal sk, k = {1, . . . ,M} where

skn = cos
(

2πf0n+
2π (k − 1)

M

)
This symboling scheme is known as phase-shift keying (PSK). After transmitting a signal across
the noisy channel, the receiver faces an M -ary hypothesis testing problem:

H0 : x = s1 + w

...

HM : x = sM + w

where w ∼ N
(
0, σ2I

)
.

In many binary hypothesis tests, one hypothesis represents the absence of a ceratin feature. In such cases,
the hypothesis is usually labelled H0 and called the null hypothesis. The other hypothesis is labelled H1

and called the alternative hypothesis.

Example 3.3

3.1.1.2.1 Waveform Detection

Consider the problem of detecting a known signal s = (s1, . . . , sN )T in additive white Gaussian
noise (AWGN). This scenario is common in sonar and radar systems. Denoting the data as x =
(x1, . . . , xN )T , our hypothesis testing problem is

H0 : x = w

H1 : x = s+ w

where w ∼ N
(
0, σ2I

)
. H0 is the null hypothesis, corresponding to the absence of a signal.
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3.1.1.3 Tests and Decision Regions

Consider the general hypothesis testing problem where we have N d-dimensional observations x1, . . . , xN
and M hypotheses. If the data are real-valued, for example, then a hypothesis test is a mapping

φ :
(
Rd
)N → {1, . . . ,M}

For every possible realization of the input, the test outputs a hypothesis. The test φ partitions the input
space into a disjoint collection R1, . . . , RM , where

Rk = {(x1, . . . , xN ) |φ (x1, . . . , xN ) = k}

The sets Rk are called decision regions. The boundary between two decision regions is a decision bound-
ary. Figure 3.2 depicts these concepts when d = 2, N = 1, and M = 3.

Figure 3.2

3.1.1.4 Simple Versus Composite Hypotheses

If the distribution of the data under a certain hypothesis is fully known, we call it a simple hypothesis. All
of the hypotheses in the examples above are simple. In many cases, however, we only know the distribution
up to certain unknown parameters. For example, in a Gaussian noise model we may not know the variance
of the noise. In this case, a hypothesis is said to be composite.

Example 3.4
Consider the problem of detecting the signal

sn = cos (2πf0 (n− k))n = {1, . . . , N}

where k is an unknown delay parameter. Then

H0 : x = w

H1 : x = s+ w

is a binary test of a simple hypothesis (H0) versus a composite alternative. Here we are assuming
wn ∼ N

(
0, σ2

)
, with σ2 known.

Often a test involving a composite hypothesis has the form

H0 : θ = θ0

H1 : θ 6= θ0

where θ0 is �xed. Such problems are called two-sided because the composite alternative "lies on both sides
of H0." When θ is a scalar, the test

H0 : θ ≤ θ0

H1 : θ > θ0
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is called one-sided. Here, both hypotheses are composite.

Example 3.5
Suppose a coin turns up heads with probability p. We want to assess whether the coin is fair
(p = 1

2 ). We toss the coin N times and record x1, . . . , xN (xn = 1 means heads and xn = 0 means
tails). Then

H0 : p =
1
2

H1 : p 6= 1
2

is a binary test of a simple hypothesis (H0) versus a composite alternative. This is also a two-sided
test.

3.1.2 Errors and Probabilities

In binary hypothesis testing, assuming at least one of the two models does indeed correspond to reality, there
are four possible scenarios:

Case 1 - H0 is true, and we declare H0 to be true
Case 2 - H0 is true, but we declare H1 to be true
Case 3 - H1 is true, and we declare H1 to be true
Case 4 - H1 is true, but we declare H0 to be true

In cases 2 and 4, errors occur. The names given to these errors depend on the area of application. In
statistics, they are called type I and type II errors respectively, while in signal processing they are known
as a false alarm or a miss.

Consider the general binary hypothesis testing problem

H0 : x ∼ fθ (x) , θ ∈ Θ0

H1 : x ∼ fθ (x) , θ ∈ Θ1

If H0 is simple, that is, Θ0 = {θ0}, then the size (denoted α), also called the false-alarm probability
(PF ), is de�ned to be

α = PF = Pr [θ 0, declareH1]

When Θ0 is composite, we de�ne

α = PF = supθ∈Θ0
(Pr [θ,declareH1])

For θ ∈ Θ1, the power (denoted β), or detection probability (PD), is de�ned to be

β = PD = Pr [θ,declareH1]

The probability of a type II error, also called the miss probability, is

PM = 1− PD

If H1 is composite, then β = β (θ) is viewed as a function of θ.
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3.1.3 Criteria in Hypothesis Testing

The design of a hypothesis test/detector often involves constructing the solution to an optimization problem.
The optimality criteria used fall into two classes: Bayesian and frequent.

Representing the former approach is the Bayes Risk Criterion (Section 3.2.2). Representing the latter is
the Neyman-Pearson Criterion (Section 3.2.4.1). These two approaches are developed at length in separate
modules.

3.1.4 Statistics Versus Engineering Lingo

The following table, adapted from Kay, p.65[3], summarizes the di�erent terminology for hypothesis testing
from statistics and signal processing:

Statistics Signal Processing

Hypothesis Test Detector

Null Hypothesis Noise Only Hypothesis

Alternate Hypothesis Signal + Noise Hypothesis

Critical Region Signal Present Decision Region

Type I Error False Alarm

Type II Error Miss

Size of Test (α) Probability of False Alarm (PF )

Power of Test (β) Probability of Detection (PD)

Table 3.1

3.2 Criteria

3.2.1 Criteria in Hypothesis Testing3

The criterion used in the previous section - minimize the average cost of an incorrect decision - may seem to
be a contrived way of quantifying decisions. Well, often it is. For example, the Bayesian decision rule depends
explicitly on the a priori probabilities; a rational method of assigning values to these - either by experiment
or through true knowledge of the relative likelihood of each model - may be unreasonable. In this section, we
develop alternative decision rules that try to answer such objections. One essential point will emerge from
these considerations: the fundamental nature of the decision rule does not change with choice of
optimization criterion. Even criteria remote from error measures can result in the likelihood ratio test
(see this problem4). Such results do not occur often in signal processing and underline the likelihood ratio
test's signi�cance.

3.2.1.1 Maximum Probability of a Correct Decision

As only one model can describe any given set of data (the models are mutually exclusive), the probability
of being correct Pc for distinguishing two models is given by

Pc = Pr [say M0 when M0 true] + Pr [say M1 when M1 true]

3This content is available online at <http://cnx.org/content/m11228/1.4/>.
4"Statistical Hypothesis Testing: Problems", Exercise 3 <http://cnx.org/content/m11271/latest/#problem3>
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We wish to determine the optimum decision region placement Expressing the probability correct in terms of
the likelihood functions p r |Mi

(r ), the a priori probabilities, and the decision regions,

Pc =
∫
π0p r |M0 (r ) dr +

∫
π1p r |M1 (r ) dr

We want to maximize Pc by selecting the decision regions <0 and <0. The probability correct is maximized
by associating each value of r with the largest term in the expression for Pc. Decision region <0, for example,
is de�ned by the collection of values of r for which the �rst term is largest. As all of the quantities involved
are non-negative, the decision rule maximizing the probability of a correct decision is

note: Given r, chooseMi for which the product πip r |Mi
(r ) is largest.

Simple manipulations lead to the likelihood ratio test.

p r |M1 (r )
p r |M0 (r )

M1

≷
M0

π0

π1

Note that if the Bayes' costs were chosen so that Cii = 0 and Cij = C, ( i 6= j), we would have the same
threshold as in the previous section.

To evaluate the quality of the decision rule, we usually compute the probability of error Pe rather than
the probability of being correct. This quantity can be expressed in terms of the observations, the likelihood
ratio, and the su�cient statistic.

Pe = π0

∫
p r |M0 (r ) dr + π1

∫
p r |M1 (r ) dr

= π0

∫
p Λ |M0 (Λ) dΛ + π1

∫
p Λ |M1 (Λ) dΛ

= π0

∫
p Υ |M0 (Υ) dΥ + π1

∫
p Υ |M1 (Υ) dΥ

(3.1)

When the likelihood ratio is non-monotonic, the �rst expression is most di�cult to evaluate. When mono-
tonic, the middle expression proves the most di�cult. Furthermore, these expressions point out that the
likelihood ratio and the su�cient statistic can be considered a function of the observations r; hence, they are
random variables and have probability densities for each model. Another aspect of the resulting probability
of error is that no other decision rule can yield a lower probability of error. This statement is
obvious as we minimized the probability of error in deriving the likelihood ratio test. The point is that these
expressions represent a lower bound on performance (as assessed by the probability of error). This probabil-
ity will be non-zero if the conditional densities overlap over some range of values of r, such as occurred in the
previous example. In this region of overlap, the observed values are ambiguous: either model is consistent
with the observations. Our "optimum" decision rule operates in such regions by selecting that model which
is most likely (has the highest probability) of generating any particular value.

3.2.1.2 Neyman-Pearson Criterion

Situations occur frequently where assigning or measuring the a priori probabilities Pi is unreasonable. For
example, just what is the a priori probability of a supernova occurring in any particular region of the sky?
We clearly need a model evaluation procedure which can function without a priori probabilities. This kind
of test results when the so-called Neyman-Pearson criterion is used to derive the decision rule. The ideas
behind and decision rules derived with the Neyman-Pearson criterion (Neyman and Pearson[5]) will serve us
well in sequel; their result is important!

Using nomenclature from radar, where modelM1 represents the presence of a target andM0 its absence,
the various types of correct and incorrect decisions have the following names (Woodward, pp. 127-129[8]).5

Detection - we say it's there when it is; PD = Pr (say M1|M1 true)
5In hypothesis testing, a false-alarm is known as a type I error and a miss a type II error.
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False-alarm - we say it's there when it's not; PF = Pr (say M1|M0 true)
Miss - we say it's not there when it is; PM = Pr (say M0|M1 true)

The remaining probability Pr [ say M0 | M0 true] has historically been left nameless and equals 1 − PF .
We should also note that the detection and miss probabilities are related by PM = 1 − PD. As these are
conditional probabilities, they do not depend on the a priori probabilities and the two probabilities PF and
PD characterize the errors when any decision rule is used.

These two probabilities are related to each other in an interesting way. Expressing these quantities in
terms of the decision regions and the likelihood functions, we have

PF =
∫
p r |M0 (r ) dr

PD =
∫
p r |M1 (r ) dr

As the region <1 shrinks, both of these probabilities tend toward zero; as <1 expands to engulf the entire
range of observation values, they both tend toward unity. This rather direct relationship between PD and
PF does not mean that they equal each other; in most cases, as <1 expands, PD increases more rapidly than
PF (we had better be right more often than we are wrong!). However, the "ultimate" situation where a rule
is always right and never wrong (PD = 1, PF = 0) cannot occur when the conditional distributions overlap.
Thus, to increase the detection probability we must also allow the false-alarm probability to increase. This
behavior represents the fundamental tradeo� in hypothesis testing and detection theory.

One can attempt to impose a performance criterion that depends only on these probabilities with the
consequent decision rule not depending on the a priori probabilities. The Neyman-Pearson criterion assumes
that the false-alarm probability is constrained to be less than or equal to a speci�ed value α while we attempt
to maximize the detection probability PD.

max< 1 {< 1, PD} , PF ≤ α

A subtlety of the succeeding solution is that the underlying probability distribution functions may not be
continuous, with the result that PF can never equal the constraining value α. Furthermore, an (unlikely)
possibility is that the optimum value for the false-alarm probability is somewhat less than the criterion value.
Assume, therefore, that we rephrase the optimization problem by requiring that the false-alarm probability
equal a value α′ that is less than or equal to α.

This optimization problem can be solved using Lagrange multipliers (see Constrained Optimization6);
we seek to �nd the decision rule that maximizes

F = PD + λ (PF − α′)

where λ is the Lagrange multiplier. This optimization technique amounts to �nding the decision rule that
maximizes F , then �nding the value of the multiplier that allows the criterion to be satis�ed. As is usual in
the derivation of optimum decision rules, we maximize these quantities with respect to the decision regions.
Expressing PD and PF in terms of them, we have

F =
∫
p r |M1 (r ) dr + λ

(∫
p r |M0 (r ) dr − α′

)
= − (λα′) +

∫
p r |M1 (r ) + λp r |M0 (r ) dr

(3.2)

To maximize this quantity with respect to <1, we need only to integrate over those regions of r where the in-
tegrand is positive. The region <1 thus corresponds to those values of r where p r |M1 (r ) > −

(
λp r |M0 (r )

)
and the resulting decision rule is

p r |M1 (r )
p r |M0 (r )

M1

≷
M0

(−λ)

6"Constrained Optimization" <http://cnx.org/content/m11223/latest/>
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The ubiquitous likelihood ratio test again appears; it is indeed the fundamental quantity in hypothesis
testing. Using the logarithm of the likelihood ratio or the su�cient statistic, this result can be expressed as
either

ln (Λ (r))
M1

≷
M0

ln (−λ)

or

Υ (r)
M1

≷
M0

γ

We have not as yet found a value for the threshold. The false-alarm probability can be expressed in terms
of the Neyman-Pearson threshold in two (useful) ways.

PF =
∫∞
−λ p Λ |M0 (Λ) dΛ

=
∫∞
γ
p Υ |M0 (Υ) dΥ

(3.3)

One of these implicit equations must be solved for the threshold by setting PF equal to α′. The selection
of which to use is usually based on pragmatic considerations: the easiest to compute. From the previous
discussion of the relationship between the detection and false-alarm probabilities, we �nd that to maximize
PD we must allow α′ to be as large as possible while remaining less than α. Thus, we want to �nd the
smallest value of −λ (note the minus sign) consistent with the constraint. Computation of the threshold is
problem-dependent, but a solution always exists.

Example 3.6
An important application of the likelihood ratio test occurs when r is a Gaussian random vector
for each model. Suppose the models correspond to Gaussian random vectors having di�erent mean
values but sharing the same identity covariance.

• M0: r ∼ N
(
0, σ2I

)
• M1: r ∼ N

(
m,σ2I

)
Thus, r is of dimension L and has statistically independent, equal variance components. The vector
of means m = (m0, . . . ,mL−1)T distinguishes the two models. The likelihood functions associated
this problem are

p r |M0 (r ) =
L−1∏
l=0

1√
2πσ2

e
−
“

1/2( rlσ )2
”

p r |M1 (r ) =
L−1∏
l=0

1√
2πσ2

e
−
„

1/2
“
rl−ml
σ

”2
«

The likelihood ratio Λ (r) becomes

Λ (r) =
∏L−1
l=0 e

−
„

1/2
“
rl−ml
σ

”2
«

∏L−1
l=0 e

−
“

1/2( rlσ )2
”

This expression for the likelihood ratio is complicated. In the Gaussian case (and many others), we
use the logarithm the reduce the complexity of the likelihood ratio and form a su�cient statistic.

ln (Λ (r)) =
∑L−1
l=0 −1/2 (rl−ml)2

σ2 + 1/2 rl
2

σ2

= 1
σ2

∑L−1
l=0 mlrl − 1

2σ2

∑L−1
l=0 ml

2
(3.4)
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The likelihood ratio test then has the much simpler, but equivalent form

L−1∑
l=0

(mlrl)
M1

≷
M0

(
σ2ln (η)

)
+ 1/2

L−1∑
l=0

ml
2

To focus on the model evaluation aspects of this problem, let's assume means be equal to a positive
constant: ml = m (0).7

L−1∑
l=0

rl
M1

≷
M0

(
σ2

m
ln (η)

)
+
Lm

2

Note that all that need be known about the observations {rl} is their sum. This quantity is the
su�cient statistic for the Gaussian problem: Υ (r) =

∑
rl and γ = σ2ln

(
η
m

)
+ Lm

2 .
When trying to compute the probability of error or the threshold in the Neyman-Pearson crite-

rion, we must �nd the conditional probability density of one of the decision statistics: the likelihood
ratio, the log-likelihood, or the su�cient statistic. The log-likelihood and the su�cient statistic are
quite similar in this problem, but clearly we should use the latter. One practical property of the suf-
�cient statistic is that it usually simpli�es computations. For this Gaussian example, the su�cient
statistic is a Gaussian random variable under each model.

• M0: Υ (r) ∼ N
(
0, Lσ2

)
• M1: Υ (r) ∼ N

(
Lm,Lσ2

)
To �nd the probability of error from (3.1), we must evaluate the area under a Gaussian probability
density function. These integrals are succinctly expressed in terms of Q (x), which denotes the
probability that a unit-variance, zero-mean Gaussian random variable exceeds x (see Probability
and Stochastic Processes8). As 1−Q (x) = Q (−x), the probability of error can be written as

Pe = π1Q

(
Lm− γ√

Lσ

)
+ π0Q

(
γ√
Lσ

)
An interesting special case occurs when π0 = 1/2 = π1. In this case, γ = Lm

2 and the probability
of error becomes

Pe = Q

(√
Lm

2σ

)
As Q (·) is a monotonically decreasing function, the probability of error decreases with increasing

values of the ratio
√
Lm
2σ . However, as shown in this �gure9, Q (·) decreases in a nonlinear fashion.

Thus, increasing m by a factor of two may decrease the probability of error by a larger or a smaller
factor; the amount of change depends on the initial value of the ratio.

To �nd the threshold for the Neyman-Pearson test from the expressions given on (3.3), we need
the area under a Gaussian density.

PF = Q
(

γ√
Lσ2

)
= α′

(3.5)

As Q (·) is a monotonic and continuous function, we can now set α′ equal to the criterion value α
with the result

γ =
√
LσQ−1 (α)

7Why did the authors assume that the mean was positive? What would happen if it were negative?
8"Foundations of Probability Theory: Basic De�nitions" <http://cnx.org/content/m11245/latest/>
9"The Gaussian Random Variable", Figure 1 <http://cnx.org/content/m11250/latest/#�g1>
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where Q−1 (·) denotes the inverse function of Q (·). The solution of this equation cannot be per-
formed analytically as no closed form expression exists for Q (·) (much less its inverse function);
the criterion value must be found from tables or numerical routines. Because Gaussian problems
arise frequently, the Table 3.2 accompanying table provides numeric values for this quantity at the
decade points.

x Q−1 (x)

10−1 1.281

10−2 2.396

10−3 3.090

10−4 3.719

10−5 4.265

10−6 4.754

Table 3.2: The table displays interesting values for Q−1 (·) that can be used to determine thresholds in the
Neyman-Pearson variant of the likelihood ratio test. Note how little the inverse function changes for

decade changes in its argument; Q (·) is indeed very nonlinear.

The detection probability is given by

PD = Q

(
Q−1 (α)−

√
Lm

σ

)

3.2.2 The Bayes Risk Criterion in Hypothesis Testing10

The design of a hypothesis test/detector often involves constructing the solution to an optimization problem.
The optimality criteria used fall into two classes: Bayesian and frequent.

In the Bayesian setup, it is assumed that the a priori probability of each hypothesis occuring (πi) is
known. A cost Cij is assigned to each possible outcome:

Cij = Pr [sayHi whenHj true]

The optimal test/detector is the one that minimizes the Bayes risk, which is de�ned to be the expected cost
of an experiment:

−
C=

∑
i,j

CijπiPr [sayHi whenHj true]

In the event that we have a binary problem, and both hypotheses are simple (Section 3.1.1.4: Simple
Versus Composite Hypotheses), the decision rule that minimizes the Bayes risk can be constructed explicitly.
Let us assume that the data is continuous (i.e., it has a density) under each hypothesis:

H0 : x ∼ f0 (x)

H1 : x ∼ f1 (x)

Let R0 and R1 denote the decision regions (Section 3.1.1.3: Tests and Decision Regions) corresponding to
the optimal test. Clearly, the optimal test is speci�ed once we specify R0 and R1 = R0

′.

10This content is available online at <http://cnx.org/content/m11533/1.6/>.



58 CHAPTER 3. DETECTION THEORY

The Bayes risk may be written

−
C =

∑1
ij=0 Cijπi

∫
fj (x) dx

=
∫
C00π0f0 (x) + C01π1f1 (x) dx+

∫
C10π0f0 (x) + C11π1f1 (x) dx

(3.6)

Recall that R0 and R1 partition the input space: they are disjoint and their union is the full input space.
Thus, every possible input x belongs to precisely one of these regions. In order to minimize the Bayes
risk, a measurement x should belong to the decision region Ri for which the corresponding integrand in the
preceding equation is smaller. Therefore, the Bayes risk is minimized by assigning x to R0 whenever

π0C00f0 (x) + π1C01f1 (x) < π0C10f0 (x) + π1C11f1 (x)

and assigning x to R1 whenever this inequality is reversed. The resulting rule may be expressed concisely
as

Λ (x) ≡ f1 (x)
f0 (x)

H1

≷
H0

π0 (C10 − C00)
π1 (C01 − C11)

≡ η

Here, Λ (x) is called the likelihood ratio, η is called the threshold, and the overall decision rule is called
the Likelihood Ratio Test11 (LRT). The expression on the right is called a threshold.

Example 3.7
An instructor in a course in detection theory wants to determine if a particular student studied
for his last test. The observed quantity is the student's grade, which we denote by r. Failure may
not indicate studiousness: conscientious students may fail the test. De�ne the models as

• M0: did not study
• M1: did study

The conditional densities of the grade are shown in Figure 3.3.

Figure 3.3: Conditional densities for the grade distributions assuming that a student did not study
(M0) or did (M1) are shown in the top row. The lower portion depicts the likelihood ratio formed from
these densities.

11http://workshop.molecularevolution.org/resources/lrt.php
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Based on knowledge of student behavior, the instructor assigns a priori probabilities of π0 = 1
4

and π1 = 3
4 . The costs Cij are chosen to re�ect the instructor's sensitivity to student feelings:

C01 = 1 = C10 (an erroneous decision either way is given the same cost) and C00 = 0 = C11. The
likelihood ratio is plotted in Figure 3.3 and the threshold value η, which is computed from the a
priori probabilities and the costs to be 1

3 , is indicated. The calculations of this comparison can be
simpli�ed in an obvious way.

r

50

M1

≷
M0

1
3

or

r
M1

≷
M0

50
3

= 16.7

The multiplication by the factor of 50 is a simple illustration of the reduction of the likelihood ratio
to a su�cient statistic. Based on the assigned costs and a priori probabilities, the optimum decision
rule says the instructor must assume that the student did not study if the student's grade is less
than 16.7; if greater, the student is assumed to have studied despite receiving an abysmally low
grade such as 20. Note that as the densities given by each model overlap entirely: the possibility of
making the wrong interpretation always haunts the instructor. However, no other procedure will
be better!

A special case of the minimum Bayes risk rule, the minimum probability of error rule (Section 3.2.3), is
used extensively in practice, and is discussed at length in another module.

3.2.2.1 Problems

Exercise 3.1
Denote α = Pr [declareH1 whenH0 true] and β = Pr [declareH1 whenH1 true]. Express the Bayes

risk
−
C in terms of α and β, Cij , and πi. Argue that the optimal decision rule is not altered by

setting C00 = C11 = 0.
Exercise 3.2
Suppose we observe x such that Λ (x) = η. Argue that it doesn't matter whether we assign x to
R0 or R1.

3.2.3 Minimum Probability of Error Decision Rule12

Consider the binary hypothesis test
H0 : x ∼ f0 (x)

H1 : x ∼ f1 (x)

Let πi, denote the a priori probability of hypothesis Hi. Suppose our decision rule declares "H0 is the true
model" when x ∈ R0, and it selects H1 when x ∈ R1, where R1 = R0

′. The probability of making an error,
denoted Pe, is

Pe = Pr [declareH0 andH1 true] + Pr [declareH1 andH0 true]

= Pr [H1]Pr [H0 | H1] + Pr [H0]Pr [H1 | H0]

=
∫
π1f1 (x) dx+

∫
π0f0 (x) dx

(3.7)

In this module, we study the minimum probability of error decision rule, which selects R0 and R1 so as to
minimize the above expression.

12This content is available online at <http://cnx.org/content/m11534/1.11/>.
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Since an observation x falls into one and only one of the decision regions Ri, in order to minimize Pe, we
assign x to the region for which the corresponding integrand in (3.7) is smaller. Thus, we select x ∈ R0 if
π1f1 (x) < π0f0 (x), and x ∈ R1 if the inequality is reversed. This decision rule may be summarized concisely
as

Λ (x) ≡ f1 (x)
f0 (x)

H1

≷
H0

π0

π1
≡ η

Here, Λ (x) is called the likelihood ratio, η is called a threshold, and the overall decision rule is called
the Likelihood Ratio Test13 .

Example 3.8

3.2.3.1 Normal with Common Variance, Uncommon Means

Consider the binary hypothesis test of a scalar x

H0 : x ∼ N
(
0, σ2

)
H1 : x ∼ N

(
µ, σ2

)
where µ and σ2 are known, positive quantities. Suppose we observe a single measurement x. The
likelihood ratio is

Λ (x) =
1√

2πσ2
e
− (x−µ)2

2σ2

1√
2πσ2

e
− x2

2σ2

= e
1
σ2

“
µx−µ

2

2

” (3.8)

and so the minimum probability of error decision rule is

e
1
σ2

“
µx−µ

2

2

” H1

≷
H0

π0

π1
= η

The expression for Λ (x) is somewhat complicated. By applying a sequence of monotonically in-
creasing functions to both sides, we can obtain a simpli�ed expression for the optimal decision rule
without changing the rule. In this example, we apply the natural logarithm and rearrange terms
to arrive at

x
H1

≷
H0

σ2

µ
ln (η) +

µ

2
≡ γ

Here we have used the assumption µ > 0. If µ < 0, then dividing by µ would reverse the inequalities.
This form of the decision rule is much simpler: we just compare the observed value x to a

threshold γ. Figure 3.4 depicts the two candidate densities and a possible value of γ. If each
hypothesis is a priori equally likely (π0 = π1 = 1

2 ), then γ = µ
2 . Figure 3.4 illustrates the case

where π0 > π1 (γ > µ
2 ).

13http://workshop.molecularevolution.org/resources/lrt.php
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(a)

(b)

Figure 3.4: The two candidate densities, and a threshold corresponding to π0 > π1

If we plot the two densities so that each is weighted by its a priori probability of occuring, the
two curves will intersect at the threshold γ (see Figure 3.5). (Can you explain why this is? Think
back to our derivation of the LRT). This plot also o�ers a way to visualize the probability of error.
Recall

Pe =
∫
π1f1 (x) dx+

∫
π0f0 (x) dx

=
∫
π1f1 (x) dx+

∫
π0f0 (x) dx

= π1PM + π0PF

(3.9)

where PM and PF denote the miss and false alarm probabilities, respectively. These quantities are
depicted in Figure 3.5.



62 CHAPTER 3. DETECTION THEORY

Figure 3.5: The candidate densities weighted by their a priori probabilities. The shaded region is the
probability of error for the optimal decision rule.

We can express PM and PF in terms of the Q-function14 as

Pe = π1Q

(
µ− γ
σ

)
+ π0Q

(γ
σ

)
When π0 = π1 = 1

2 , we have γ = µ
2 , and the error probability is

Pe = Q
( µ

2σ

)
Since Q (x) is monotonically decreasing, this says that the "di�culty" of the detection problem
decreases with decreasing σ and increasing µ.

In the preceding example, computation of the probability of error involved a one-dimensional integral. If we
had multiple observations, or vector-valued data, generalizing this procedure would involve multi-dimensional
integrals over potentially complicated decision regions. Fortunately, in many cases, we can avoid this problem
through the use of su�cient statistics (Section 1.3.1).

Example 3.9
Suppose we have the same test as in the previous example (Example 3.8), but now we have N
independent observations:

H0 : xn ∼ N
(
0, σ2

)
, n = 1, . . . , N

H1 : xn ∼ N
(
µ, σ2

)
, n = 1, . . . , N

14"The Q-function" <http://cnx.org/content/m11537/latest/>
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where µ > 0 and σ2 > 0 and both are known. The likelihood ratio is

Λ (x) =
QN
n=1

1√
2πσ2

e
− (xn−µ)2

2σ2

QN
n=1

1√
2πσ2

e
− xn

2

2σ2

= e
−1
2σ2

PN
n=1 (xn−µ)2

e
−1
2σ2

PN
n=1 xn

2

= e
1

2σ2
PN
n=1 2xnµ−µ2

= e
1
σ2

“
µ
PN
n=1 xn−

Nµ2

2

”
(3.10)

As in the previous example (Example 3.8), we may apply the natural logarithm and rearrange
terms to obtain an equivalent form of the LRT:

t ≡
N∑
n=1

xn
H1

≷
H0

σ2

µ
ln (η) +

Nµ

2
≡ γ

The scalar quantity t is a su�cient statistic for the mean. In order to evaluate the probability of
error without resorting to a multi-dimensional integral, we can express Pe in terms of t as

Pe = π1Pr [ t < γ | H1 true] + π0Pr [ t > γ | H0 true]

Now t is a linear combination of normal variates, so it is itself normal. In particular, we have

t = Ax, where
(

1 . . . 1
)
is an N -dimensional row vector of 1's, and x is multivariate normal

with mean 0 or µ = (µ, . . . , µ)T , and covariance σ2I. Thus we have

t|H0 ∼ N
(
A0, Aσ2IAT

)
= N

(
0, Nσ2

)
t|H1 ∼ N

(
Aµ,Aσ2IAT

)
= N

(
Nµ,Nσ2

)
Therefore, we may write Pe in terms of the Q-function15 as

Pe = π1Q

(
Nµ− γ√

Nσ

)
+ π0Q

(
γ√
Nσ

)
In the special case π0 = π1 = 1

2 ,

Pe = Q

(√
Nµ

σ

)
Since Q is monotonically decreasing, this result provides mathematical support for something that
is intuitively obvious: The performance of our decision rule improves with increasing N and µ, and
decreasing σ.

note: In the context of signal processing, the foregoing problem may be viewed as the problem of
detecting a constant (DC) signal in additive white Gaussian noise:

H0 : xn = wn, n = 1, . . . , N

H1 : xn = A+ wn, n = 1, . . . , N

where A is a known, �xed amplitude, and wn ∼ N
(
0, σ2

)
. Here A corresponds to the mean µ in

the example.

The next example explores the minimum probability of error decision rule in a discrete setting.

Example 3.10

15"The Q-function" <http://cnx.org/content/m11537/latest/>
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3.2.3.1 Repetition Code

Suppose we have a friend who is trying to transmit a bit (0 or 1) to us over a noisy channel. The
channel causes an error in the transmission (that is, the bit is �ipped) with probability p, where
0 ≤ p < 1

2 , and p is known. In order to increase the chance of a successful transmission, our friend
sends the same bit N times. Assume the N transmissions are statistically independent. Under
these assumptions, the bits you receive are Bernoulli random variables: xn ∼ Bernoulli (θ). We are
faced with the following hypothesis test:

H0 θ = p 0 sent

H1 θ = 1− p 1 sent

Table 3.3

We decide to decode the received sequence x = (x1, . . . , xN )T by minimizing the probability of
error. The likelihood ratio is

Λ (x) =
QN
n=1 (1−p)xnp1−xnQN
n=1 p

xn (1−p)1−xn

= (1−p)kpN−k

pk(1−p)N−k

=
(

1−p
p

)2k−N
(3.11)

where k =
∑N
n=1 xn is the number of 1s received.

note: k is a su�cient statistic (Section 1.3.1) for θ.

The LRT is (
1− p
p

)2k−N H1

≷
H0

π0

π1
= η

Taking the natural logarithm of both sides and rearranging, we have

k
H1

≷
H0

N

2
+

1
2

ln (η)

ln
(

1−p
p

) = γ

In the case that both hypotheses are equally likely, the minimum probability of error decision is the
"majority-vote" rule: Declare H1 if there are more 1s than 0s, declare H0 otherwise. In the event
k = γ, we may decide arbitrarily; the probability of error is the same either way. Let's adopt the
convention that H0 is declared in this case.

To compute the probability of error of the optimal rule, write

Pe = π0Pr [declareH1 | H0 true] + π1Pr [declareH0 | H1 true]

= π0Pr [k > γ | H0 true] + π1Pr [k ≤ γ | H1 true]
(3.12)

Now k is a binomial random variable, k ∼ Binomial (N, θ), where θ depends on which hypothesis
is true. We have

Pr [k > γ | H0] =
∑N
k=bγc+1 f0 (k)

=
∑N
k=bγc+1

 N

k

 pk(1− p)N−k
(3.13)

and

Pr [k ≤ γ | H1] =
bγc∑
k=0

 N

k

 (1− p)kpN−k
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Using these formulae, we may compute Pe explicitly for given values of N , p, π0 and π1.

3.2.3.1 MAP Interpretation

The likelihood ratio test is one way of expressing the minimum probability of error decision rule. Another
way is

Rule 3.1:
Declare hypothesis i such that πifi (x) is maximal.

This rule is referred to as the maximum a posteriori, or MAP rule, because the quantity πifi (x) is
proportional to the posterior probability of hypothesis i. This becomes clear when we write πi = Pr [Hi]
and fi (x) = f (x|Hi). Then, by Bayes rule, the posterior probability of Hi given the data is

Pr [Hi | x] =
Pr [Hi] f (x|Hi)

f (x)

Here f (x) is the unconditional density or mass function for x, which is e�ectively a constant when trying to
maximiaze with respect to i.

According to the MAP interpretation, the optimal decision boundary is the locus of points where the
weighted densities (in the continuous case) πifi (x) intersect one another. This idea is illustrated in Exam-
ple 3.9.

3.2.3.2 Multiple Hypotheses

One advantage the MAP formulation of the minimum probability of error decision rule has over the LRT
is that it generalizes easily to M -ary hypothesis testing. If we are to choose between hypotheses Hi, i =
{1, . . . ,M}, the optimal rule is still the MAP rule (Rule 3.1, p. 65)

3.2.3.3 Special Case of Bayes Risk

The Bayes risk criterion (Section 3.2.2) for constructing decision rules assigns a cost Cij to the outcome
of declaring Hi when Hj is in e�ect. The probability of error is simply a special case of the Bayes risk
corresponding to C00 = C11 = 0 and C01 = C10 = 1. Therefore, the form of the minimum probability of
error decision rule is a specialization of the minimum Bayes risk decision rule: both are likelihood ratio tests.
The di�erent costs in the Bayes risk formulation simply shift the threshold to favor one hypothesis over the
other.

3.2.3.4 Problems

Exercise 3.3
Generally speaking, when is the probability of error zero for the optimal rule? Phrase your answer
in terms of the distributions underlying each hypothesis. Does the LRT agree with your answer in
this case?

Exercise 3.4
Suppose we measure N independent values x1, . . . , xN . We know the variance of our measurements
(σ2 = 1), but are unsure whether the data obeys a Laplacian or Gaussian probability law:

H0 : f0 (x) =
1√
2
e−(
√

2|r|)

H1 : f1 (x) =
1√
2π
e−

r2
2
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3.2.3.4.1

Show that the two densities have the same mean and variance, and plot the densities on the same
graph.

3.2.3.4.2

Find the likelihood ratio.

3.2.3.4.3

Determine the decision regions for di�erent values of the threshold η. Consider all possible values
of η > 0

note: There are three distinct cases.

3.2.3.4.4

Draw the decision regions and decision boundaries for η =
{

1
2 , 1, 2

}
.

3.2.3.4.5

Assuming the two hypotheses are equally likely, compute the probability of error. Your answer
should be a number.

Exercise 3.5

3.2.3.4.1 Arbitrary Means and Covariances

Consider the hypothesis testing problem

H0 : x ∼ N (µ0,Σ0)

H1 : x ∼ N (µ1,Σ1)

where µ0 ∈ Rd and µ0 ∈ Rd, and Σ0, Σ1 are positive de�nite, symmetric d×d matrices. Write down
the likelihood ratio test, and simplify, for the following cases. In each case, provide a geometric
description of the decision boundary.

3.2.3.4.1.1

Σ0 = Σ1, but µ0 6= µ1.

3.2.3.4.1.2

µ0 = µ1, but Σ0 6= Σ1.
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3.2.3.4.1.3

µ0 6= µ1 and Σ0 6= Σ1.

Exercise 3.6
Suppose we observe N independent realizations of a Poisson random variable k with intensity
parameter λ:

f (k) =
e−λλk

k!
We must decide which of two intensities is in e�ect:

H0 : λ = λ0

H1 : λ = λ1

where λ0 < λ1.

3.2.3.4.1

Give the minimum probability of error decision rule.

3.2.3.4.2

Simplify the LRT to a test statistic involving only a su�cient statistic. Apply a monotonically
increasing transformation to simplify further.

3.2.3.4.3

Determine the distribution of the su�cient statistic under both hypotheses.

note: Use the characteristic function to show that a sum of IID Poisson variates is again Poisson
distributed.

3.2.3.4.4

Derive an expression for the probability of error.

3.2.3.4.5

Assuming the two hypotheses are equally likely, and λ0 = 5 and λ1 = 6, what is the minimum
number N of observations needed to attain a probability of error no greater than 0.01?

note: If you have numerical trouble, try rewriting the log-factorial so as to avoid evaluating the
factorial of large integers.

Exercise 3.7
In Example 3.10, suppose π0 = π1 = 1

2 , and p = 0.1. What is the smallest value of N needed to
ensure Pe ≤ 0.01?
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3.2.4 Neyman-Person

3.2.4.1 The Neyman-Pearson Criterion
16

In hypothesis testing (Section 3.1), as in all other areas of statistical inference, there are two major schools
of thought on designing good tests: Bayesian and frequentist (or classical). Consider the simple binary
hypothesis testing problem

H0 : x ∼ f0 (x)

H1 : x ∼ f1 (x)

In the Bayesian setup, the prior probability πi = Pr [Hi] of each hypothesis occurring is assumed known.
This approach to hypothesis testing is represented by the minimum Bayes risk criterion (Section 3.2.2) and
the minimum probability of error criterion (Section 3.2.3).

In some applications, however, it may not be reasonable to assign an a priori probability to a hypothesis.
For example, what is the a priori probability of a supernova occurring in any particular region of the sky?
What is the prior probability of being attacked by a ballistic missile? In such cases we need a decision rule
that does not depend on making assumptions about the a priori probability of each hypothesis. Here the
Neyman-Pearson criterion o�ers an alternative to the Bayesian framework.

The Neyman-Pearson criterion is stated in terms of certain probabilities (Section 3.1.2: Errors and
Probabilities) associated with a particular hypothesis test. The relevant quantities are summarized in Table
3.4. Depending on the setting, di�erent terminology is used.

Statistics Signal Processing

Probability Name Notation Name Notation

P0 (declareH1) size α false-alarm probability PF

P1 (declareH1) power β detection probability PD

Table 3.4

Here Pi (declareHj) dentoes the probability that we declare hypothesis Hj to be in e�ect when Hi is
actually in e�ect. The probabilities P0 (declareH0) and P1 (declareH0) (sometimes called the miss proba-
bility), are equal to 1−PF and 1−PD, respectively. Thus, PF and PD represent the two degrees of freedom
in a binary hypothesis test. Note that PF and PD do not involve a priori probabilities of the hypotheses.

These two probabilities are related to each other through the decision regions (Section 3.1.1.3: Tests and
Decision Regions). If R1 is the decision region for H1, we have

PF =
∫
f0 (x) dx

PD =
∫
f1 (x) dx

The densities fi (x) are nonnegative, so as R1 shrinks, both probabilities tend to zero. As R1 expands, both
tend to one. The ideal case, where PD = 1 and PF = 0, cannot occur unless the distributions do not overlap
(i.e.,

∫
f0 (x) f1 (x) dx = 0). Therefore, in order to increase PD, we must also increase PF . This represents

the fundamental tradeo� in hypothesis testing and detection theory.

Example 3.11
Consider the simple binary hypothesis test of a scalar measurement x:

H0 : x ∼ N (0, 1)
16This content is available online at <http://cnx.org/content/m11548/1.2/>.
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H1 : x ∼ N (1, 1)

Suppose we use a threshold test

x
H1

≷
H0

γ

where γ ∈ R is a free parameter. Then the false alarm and detection probabilities are

PF =
∫ ∞
γ

1√
2π
e−

t2
2 dt = Q (γ)

PD =
∫ ∞
γ

1√
2π
e−

(t−1)2

2 dt = Q (γ − 1)

where Q denotes the Q-function17. These quantities are depicted in Figure 3.6.

(a)

(b)

Figure 3.6: False alarm and detection values for a certain threshold.

Since the Q-function is monotonicaly decreasing, it is evident that both PD and PF decay to
zero as γ increases. There is also an explicit relationship

PD = Q
(
Q−1 (PF )− 1

)
17"The Q-function" <http://cnx.org/content/m11537/latest/>
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A common means of displaying this relationship is with a receiver operating characteristic
(ROC) curve, which is nothing more than a plot of PD versus PF (Figure 3.7).

Figure 3.7: ROC curve for this example.

3.2.4.1.1 The Neyman-Pearson Lemma: A First Look

The Neyman-Pearson criterion says that we should construct our decision rule to have maximum probability
of detection while not allowing the probability of false alarm to exceed a certain value α. In other words,
the optimal detector according to the Neyman-Pearson criterion is the solution to the following constrainted
optimization problem:

3.2.4.1.1.1 Neyman-Pearson Criterion

max {PD} , such thatPF ≤ α (3.14)

The maximization is over all decision rules (equivalently, over all decision regions R0, R1). Using di�erent
terminology, the Neyman-Pearson criterion selects the most powerful test of size (not exceeding) α.

Fortunately, the above optimization problem has an explicit solution. This is given by the celebrated
Neyman-Pearson lemma, which we now state. To ease the exposition, our initial statement of this result
only applies to continuous random variables, and places a technical condition on the densities. A more
general statement is given later in the module.

Theorem 3.1: Neyman-Pearson Lemma: initial statement
Consider the test

H0 : x ∼ f0 (x)

H1 : x ∼ f1 (x)
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where fi (x) is a density. De�ne Λ (x) = f1(x)
f0(x) , and assume that Λ (x) satis�es the condition that

for each γ ∈ R, Λ (x) takes on the value γ with probability zero under hypothesis H0. The solution
to the optimization problem in (3.14) is given by

Λ (x) =
f1 (x)
f0 (x)

H1

≷
H0

η

where η is such that

PF =
∫
f0 (x) dx = α

If α = 0, then η =∞. The optimal test is unique up to a set of probability zero under H0 and H1.

The optimal decision rule is called the likelihood ratio test. Λ (x) is the likelihood ratio, and η is a
threshold. Observe that neither the likelihood ratio nor the threshold depends on the a priori probabilities
Pr [Hi]. they depend only on the conditional densities fi and the size constraint α. The threshold can often
be solved for as a function of α, as the next example shows.

Example 3.12
Continuing with Example 3.11, suppose we wish to design a Neyman-Pearson decision rule with
size constraint α. We have

Λ (x) =
1√
2π
e−

(x−1)2
2

1√
2π
e−

x2
2

= ex−
1
2

(3.15)

By taking the natural logarithm of both sides of the LRT and rarranging terms, the decision rule
is not changed, and we obtain

x
H1

≷
H0

ln (η) +
1
2
≡ γ

Thus, the optimal rule is in fact a thresholding rule like we considered in Example 3.11. The
false-alarm probability was seen to be

PF = Q (γ)

Thus, we may express the value of γ required by the Neyman-Pearson lemma in terms of α:

γ = Q−1 (α)

3.2.4.1.2 Su�cient Statistics and Monotonic Transformations

For hypothesis testing involving multiple or vector-valued data, direct evaluation of the size (PF ) and power
(PD) of a Neyman-Pearson decision rule would require integration over multi-dimensional, and potentially
complicated decision regions. In many cases, however, this can be avoided by simplifying the LRT to a test
of the form

t
H1

≷
H0

γ

where the test statistic t = T (x) is a su�cient statistic (Section 1.3.1) for the data. Such a simpli�ed
form is arrived at by modifying both sides of the LRT with montonically increasing transformations, and by
algebraic simpli�cations. Since the modi�cations do not change the decision rule, we may calculate PF and
PD in terms of the su�cient statistic. For example, the false-alarm probability may be written

PF = Pr [declareH1]

=
∫
f0 (t) dt

(3.16)
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where f0 (t) denotes the density of t under H0. Since t is typically of lower dimension than x, evaluation of
PF and PD can be greatly simpli�ed. The key is being able to reduce the LRT to a threshold test involving
a su�cient statistic for which we know the distribution.

Example 3.13

3.2.4.1.2.1 Common Variances, Uncommon Means

Let's design a Neyman-Pearson decision rule of size α for the problem

H0 : x ∼ N
(
0, σ2I

)
H1 : x ∼ N

(
µ1, σ2I

)
where µ > 0, σ2 > 0 are known, 0 = (0, . . . , 0)T , 1 = (1, . . . , 1)T are N -dimensional vectors, and I
is the N×N identity matrix. The likelihood ratio is

Λ (x) =
QN
n=1

1√
2πσ2

e
− (xn−µ)2

2σ2

QN
n=1

1√
2πσ2

e
− xn

2

2σ2

= e
−
PN
n=1

(xn−µ)2

2σ2

e
−
PN
n=1

xn2

2σ2

= e
1

2σ2
PN
n=1 2xnµ−µ2

= e
1
σ2

“
−Nµ

2

2 +µ
PN
n=1 xn

”
(3.17)

To simplify the test further we may apply the natural logarithm and rearrange terms to obtain

t ≡
N∑
n=1

xn
H1

≷
H0

σ2

µ
ln (η) +

Nµ

2
≡ γ

note: We have used the assumption µ > 0. If µ < 0, then division by µ is not a monotonically
increasing operation, and the inequalities would be reversed.

The test statistic t is su�cient (Section 1.3.1) for the unknown mean. To set the threshold γ, we
write the false-alarm probability (size) as

PF = Pr [t > γ] =
∫
f0 (t) dt

To evaluate PF , we need to know the density of t under H0. Fortunately, t is the sum of normal
variates, so it is again normally distributed. In particular, we have t = Ax, where A = 1T , so

t ∼ N
(
A0, A

(
σ2I
)
AT
)

= N
(
0, Nσ2

)
under H0. Therefore, we may write PF in terms of the Q-function18 as

PF = Q

(
γ√
Nσ

)
The threshold is thus determined by

γ =
√
NσQ−1 (α)

18"The Q-function" <http://cnx.org/content/m11537/latest/>
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Under H1, we have
t ∼ N

(
A1, A

(
σ2I
)
AT
)

= N
(
Nµ,Nσ2

)
and so the detection probability (power) is

PD = Pr [t > γ] = Q

(
γ −Nµ√

Nσ

)
Writing PD as a function of PF , the ROC curve is given by

PD = Q

(
Q−1 (PF )−

√
Nµ

σ

)

The quantity
√
Nµ
σ is called the signal-to-noise ratio. As its name suggests, a larger SNR corre-

sponds to improved performance of the Neyman-Pearson decision rule.

note: In the context of signal processing, the foregoing problem may be viewed as the problem of
detecting a constant (DC) signal in additive white Gaussian noise:

H0 : xn = wn, n = 1, . . . , N

H1 : xn = A+ wn, n = 1, . . . , N

where A is a known, �xed amplitude, and wn ∼ N
(
0, σ2

)
. Here A corresponds to the mean µ in

the example.

3.2.4.1.3 The Neyman-Pearson Lemma: General Case

In our initial statement of the Neyman-Pearson Lemma, we assumed that for all η, the set {x, x | Λ (x) = η }
had probability zero under H0. This eliminated many important problems from consideration, including
tests of discrete data. In this section we remove this restriction.

It is helpful to introduce a more general way of writing decision rules. Let φ be a function of the data
x with φ (x) ∈ [0, 1]. φ de�nes the decision rule "declare H1 with probability φ (x)." In other words, upon
observing x, we �ip a "φ (x) coin." If it turns up heads, we declare H1; otherwise we declare H0. Thus far,
we have only considered rules with φ (x) ∈ {0, 1}

Theorem 3.2: Neyman-Pearson Lemma
Consider the hypothesis testing problem

H0 : x ∼ f0 (x)

H1 : x ∼ f1 (x)

where f0 and f1 are both pdfs or both pmfs. Let α ∈ [0, 1) be the size (false-alarm probability)
constraint. The decision rule

φ (x) =


1 if Λ (x) > η

ρ if Λ (x) = η

0 if Λ (x) < η

is the most powerful test of size α, where η and ρ are uniquely determined by requiring PF = α. If
α = 0, we take η =∞, ρ = 0. This test is unique up to sets of probability zero under H0 and H1.
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When Pr [Λ (x) = η] > 0 for certain η, we choose η and ρ as follows: Write

PF = Pr [Λ (x) > η] + ρPr [Λ (x) = η]

Choose η such that
Pr [Λ (x) > η] ≤ α ≤ Pr [Λ (x) ≥ η]

Then choose ρ such that
ρPr [Λ (x) = η] = α− Pr [Λ (x) < η]

Example 3.14

3.2.4.1.3.1 Repetition Code

Suppose we have a friend who is trying to transmit a bit (0 or 1) to us over a noisy channel. The
channel causes an error in the transmission (that is, the bit is �ipped) with probability p, where
0 ≤ p < 1

2 , and p is known. In order to increase the chance of a successful transmission, our friend
sends the same bit N times. Assume the N transmissions are statistically independent. Under
these assumptions, the bits you receive are Bernoulli random variables: xn ∼ Bernoulli (θ). We are
faced with the following hypothesis test:

H0 : θ = p (0 sent)

H1 : θ = 1− p (1 sent)

We decide to decode the received sequence x = (x1, . . . , xN )T by designing a Neyman-Pearson rule.
The likelihood ratio is

Λ (x) =
QN
n=1 (1−p)xnp1−xnQN
n=1 p

xn (1−p)1−xn

= (1−p)kpN−k

pk(1−p)N−k

=
(

1−p
p

)2k−N
(3.18)

where k =
∑N
n=1 xn is the number of 1s received.

note: k is a su�cient statistic (Section 1.3.1) for θ.

The LRT is (
1− p
p

)2k−N H1

R
H0

η

Taking the natural logarithm of both sides and rearranging, we have

k
H1

R
H0

N

2
+

1
2

ln (η)

ln
(

1−p
p

) = γ

The false alarm probability is

PF = Pr [k > γ] + ρPr [k = γ]

=
∑N
k=γ+1

 N

k

 pk(1− p)N−k + ρ

 N

γ

 pγ(1− p)N−γ
(3.19)
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γ and ρ are chosen so that PF = α, as described above.
The corresponding detection probability is

PD = Pr [k > γ] + ρPr [k = γ]

=
∑N
k=γ+1

 N

k

 (1− p)kpN−k + ρ

 N

γ

 (1− p)γpN−γ
(3.20)

3.2.4.1.4 Problems

Exercise 3.8
Design a hypothesis testing problem involving continous random variables such that

Pr [Λ (x) = η] > 0 for certain values of η. Write down the false-alarm probability as a function of
the threshold. Make as general a statement as possible about when the technical condition (p. 70)
is satis�ed.

Exercise 3.9
Consider the scalar hypothesis testing problem

H0 : x ∼ f0 (x)

H1 : x ∼ f1 (x)

where

fi (x) =
1

π
(

1 + (x− i)2
) , i = {0, 1}

3.2.4.1.4.1

Write down the likelihood ratio test.

3.2.4.1.4.2

Determine the decision regions as a function of η1 for all η > 0. Draw a representative of each.
What are the "critical" values of η?

note: There are �ve distinct cases.

3.2.4.1.4.3

Compute the size and power (PF and PD) in terms of the threshold η1 and plot the ROC.

note: ∫
1

1 + x2
dx = arctan (x)
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3.2.4.1.4.4

Suppose we decide to use a simple threshold test x
H1

≷
H0

η instead of the Neyman-Pearson rule. Does

our performance H0 su�er much? Plot the ROC for this decision rule on the same graph as for the
previous (Section 3.2.4.1.4.3) ROC.

Exercise 3.10
Suppose we observe N independent realizations of a Poisson random variable k with intensity
parameter λ:

f (k) =
e−λλk

k!
We must decide which of two intensities is in e�ect:

H0 : λ = λ0

H1 : λ = λ1

where λ0 < λ1.

3.2.4.1.4.1

Write down the likelihood ratio test.

3.2.4.1.4.2

Simplify the LRT to a test statistic involving only a su�cient statistic. Apply a monotonically
increasing transformation to simplify further.

3.2.4.1.4.3

Determine the distribution of the su�cient statistic under both hypotheses.

note: Use the characteristic function to show that a sum of IID Poisson variates is again Poisson
distributed.

3.2.4.1.4.4

Derive an expression for the probability of error.

3.2.4.1.4.5

Assuming the two hypotheses are equally likely, and λ0 = 5 and λ1 = 6, what is the minimum
number N of observations needed to attain a false-alarm probability no greater than 0.01?

note: If you have numerical trouble, try rewriting the log-factorial so as to avoid evaluating the
factorial of large integers.

Exercise 3.11
In Example 3.13, suppose p = 0.1. What is the smallest value of N needed to ensure PF ≤ 0.01?
What is PD in this case?

3.3 Detection with Unknowns



Chapter 4

Estimation Theory

4.1 Minimum Variance Unbiased Estimation

4.1.1 The Minimum Variance Unbiased Estimator1

4.1.1.1 In Search of a Useful Criterion

In parameter estimation, we observe an N -dimensional vector X of measurements. The distribution of
X is governed by a density or probability mass function f θ (x ), which is parameterized by an unknown
parameter θ. We would like to establish a useful criterion for guiding the design and assessing the quality

of an estimator θ (x). We will adopt a classical (frequentist) view of the unknown parameter: it is not itself
random, it is simply unknown.

One possibility is to try to design an estimator that minimizes the mean-squared error, that is, the
expected squared deviation of the estimated parameter value from the true parameter value. For a scalar
parameter, the MSE is de�ned by

MSE
(
θ, θ
)

= E

[(
θ (x)−θ

)2
]

(4.1)

For a vector parameter θ, this de�nition is generalized by

MSE
(
θ, θ
)

= E

[(
θ (x)−θ

)T (
θ (x)−θ

)]
(4.2)

The expectation is with respect to the distribution of X. Note that for a given estimator, the MSE is a
function of θ.

While the MSE is a perfectly reasonable way to assess the quality of an estimator, it does not lead to a
useful design criterion. Indeed, the estimator that minimizes the MSE is simply the estimator

θ (x) = θ(4.3)

Unfortunately, this depends on the value of the unknown parameter, and is therefore not realizeable! We
need a criterion that leads to a realizeable estimator.

note: In the Bayesian Approach to Parameter Estimation, the MSE is a useful design rule.

1This content is available online at <http://cnx.org/content/m11426/1.6/>.
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4.1.1.2 The Bias-Variance Decomposition of the MSE

It is possible to rewrite the MSE in such a way that a useful optimality criterion for estimation emerges.
For a scalar parameter θ, [Insert 1] This expression is called the bias-variance decomposition of the
mean-squared error. The �rst term on the right-hand side is called the variance of the estimator, and the
second term on the right-hand side is the square of the bias of the estimator. The formal de�nition of these
concepts for vector parameters is now given:

Let θ be an estimator of the parameter θ.

De�nition 4.1: variance
The variance of θ is [Insert 2]

De�nition 4.2: bias
The bias of θ is [Insert 3]

The bias-variance decomposition also holds for vector parameters: [Insert 4] The proof is a straighforward
generalization of the argument for the scalar parameter case.

Exercise 4.1
Prove the bias-variance decomposition of the MSE for the vector parameter case.

4.1.1.3 The Bias-Variance Tradeo�

The MSE decomposes into the sum of two non-negative terms, the squared bias and the variance. In general,
for an arbitrary estimator, both of these terms will be nonzero. Furthermore, as an estimator is modi�ed so
that one term increases, typically the other term will decrease. This is the so-called bias-variance tradeo�.
The following example illustrates this e�ect.

Example 4.1

Let
∼
A= α 1

N

∑N
n=1 xn, where xn = A+ wn, wn ∼ N

(
0, σ2

)
, and α is an arbitrary constant.

Let's �nd the value of α that minimizes the MSE.

MSE
(∼
A
)

= E

[(∼
A −A

)2
]

(4.4)

note:

∼
A= αSN , SN ∼ N

(
A, σ

2

N

)
MSE

(∼
A
)

= E

[
∼
A

2
]
− 2E

[∼
A
]
A+A2

= α2E
[

1
N2

∑N
i,j=1 xixj

]
− 2αE

[
1
N

∑N
n=1 xn

]
A+A2

= α2 1
N2

∑N
i,j=1E [xixj ]− 2α× 1

N

∑N
n=1E [xn] +A2

(4.5)

E [xixj ] =

 A2 + σ2 if i = j

A2 if i 6= j

MSE
(∼
A
)

= α2
(
A2 + σ2

N

)
− 2αA2 +A2

= α2σ2

N + (α− 1)2
A2

(4.6)

σ
(∼
A
)2

=
α2σ2

N

Bias2
(∼
A
)

= (α− 1)2
A2
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∂MSE
(∼
A
)

∂α
=

2ασ2

N
+ 2 (α− 1)A2 = 0

α∗ =
A2

A2 + σ2

N

(4.7)

The optimal value α∗ dpends on the unknown parameter A! Therefore the estimator is not realiz-
able.

Note that the problematic dependence on the parameter enters through the Bias component of
the MSE. Therefore, a reasonable alternative is to constrain the estimator to be unbiased, and then
�nd the estimator that produces the minimum variance (and hence provides the minimum MSE
among all unbiased estimators).

note: Sometimes no unbiased estimator exists, and we cannot proceed at all in this direction.

In this example, note that as the value of α varies, one of the squared bias or variance terms increases,
while the other one decreases. Futhermore, note that the dependence of the MSE on the unknown
parameter is manifested in the bias.

4.1.1.4 Unbiased Estimators

Since the bias depends on the value of the unknown parameter, it seems that any estimation criterion
that depends on the bias would lead to an unrealizable estimator, as the previous example (Example 4.1)
suggests (although in certain cases realizable minimum MSE estimators can be found). As an alternative to
minimizing the MSE, we could focus on estimators that have a bias of zero. In this case, the bias contributes
zero to the MSE, and in particular, it does not involve the unknown parameter. By focusing on estimators
with zero bias, we may hope to arrive at a design criterion that yields realizable estimators.

De�nition 4.3: unbiased
An estimator θ is called unbiased if its bias is zero for all values of the unknown parameter.
Equivalently, [Insert 5]

For an estimator to be unbiased we require that on average the estimator will yield the true value of
the unknown parameter. We now give some examples.

The sample mean of a random sample is always an unbiased estimator for the mean.

Example 4.2
Estimate the DC level in the Guassian white noise.

Suppose we have data x1, . . . , xN and model the data by

xn = A+ wn , n ∈ {1, . . . , N}

where A is the unknown DC level, and wn ∼ N
(
σ, σ2

)
.

The parameter is −∞ < A <∞.
Consider the sample-mean estimator:

A =
1
N

N∑
n=1

xn

Is A unbiased? Yes.
Since E [·] is a linear operator,

E
[
A
]

=
1
N

N∑
n=1

E [xn] =
1
N

N∑
n=1

A = A
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Therefore, A is unbiased!

What does the unbiased restriction really imply? Recall that θ = g (x), a function of the data.
Therefore,

E
[
θ
]

= θ

and

E
[
θ
]

=
∫
g (x) p (x |θ) dx = θ

Hence, to be unbiased, the estimator (g (·)) must satisfy an integral equation involving the densities
p (x |θ).

It is possible that an estimator can be unbiased for some parameter values, but be biased for
others.

The bias of an estimator may be zero for some values of the unknown parameter, but not others. In this
case, the estimator is not an unbiased estimator.

Example 4.3

∼
A=

1
2N

N∑
n=1

xn

E
[∼
A
]

=
1
2
A =

 0 if (A = 0)⇒ unbiased

1
2A if (A 6= 0)⇒ biased

An unbiased estimator is not necessarily a good estimator.

Some unbiased estimators are more useful than others.

Example 4.4

xn = A+ wn , wn ∼ N
(
σ, σ2

)
A1= x1

E
[
A1

]
= A

A2=
1
N

N∑
n=1

xn

E
[
A2

]
= A

σ
(
A1

)2

= σ2

σ
(
A2

)2

=
σ2

N

Both estimators are unbiased, but A2 has a much lower variance and therefore is a better estimator.

note: A1 (N) is inconsistent. A2 (N) is consistent.
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4.1.1.5 Minimum Variance Unbiased Estimators

Direct minimization of the MSE generally leads to non-realizable estimators. Since the dependence of an
estimator on the unknown parameter appears to come from the bias term, we hope that constraining the
bias to be zero will lead to a useful design criterion. But if the bias is zero, then the mean-squared error is
just the variance. This gives rise to the minimum variance unbiased estimator (MVUE) for θ.

De�nition 4.4: MVUE
An estimator θ is the minimum variance unbiased estimator if it is unbiased and has the
smallest variance of any unbiased estimator for all values of the unknown parameter. In other
words, the MVUE satis�es the following two properties: [Insert 6]

The minimum variance unbiased criterion is the primary estimation criterion in the classical (non-
Bayesian) approach to parameter estimation. Before delving into ways of �nding the MVUE, let's �rst
consider whether the MVUE always exists.

4.1.1.6 Existence of the MVUE

The MVUE does not always exist. In fact, it may be that no unbiased estimators exist, as the following
example demonstrates.

Place [Insert 7] here and make it an example (5).
Even if unbiased estimators exist, it may be that no single unbiased estimator has the minimum variance

for all values of the unknown parameter.
Place [Insert 8] here and make it an example (6).

Exercise 4.2
Compute the variances of the estimators in the previous examples. Using the Cramer-Rao Lower
bound, show that one of these two estimators has minimum variance among all unbiased estima-
tors. Deduce that no single realizable estimator can have minimum variance among all unbiased
estimators for all parameter values (i.e., the MVUE does not exist). When using the Cramer-Rao
bound, note that the likelihood is not di�erentable at θ = 0.

4.1.1.7 Methods for Finding the MVUE

Despite the fact that the MVUE doesn't always exist, in many cases of interest it does exist, and we need
methods for �nding it. Unfortunately, there is no 'turn the crank' algorithm for �nding MVUE's. There are,
instead, a variety of techniques that can sometimes be applied to �nd the MVUE. These methods include:

1. Compute the Cramer-Rao Lower Bound, and check the condition for equality.
2. Find a complete su�cient statistic and apply the Rao-Blackwell Theorem.
3. If the data obeys a general linear model, restrict to the class of linear unbiased estimators, and �nd

the minimum variance estimator within that class. This method is in general suboptimal, although
when the noise is Gaussian, it produces the MVUE.

4.1.2 The Cramer-Rao Lower Bound2

The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance of any unbiased estimator.
This can be extremely useful in several ways:

1. If we �nd an estimator that achieves the CRLB, then we know that we have found an MVUB estimator!

2This content is available online at <http://cnx.org/content/m11429/1.4/>.
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2. The CRLB can provide a benchmark against which we can compare the performance of any unbiased
estimator. (We know we're doing very well if our estimator is "close" to the CRLB.)

3. The CRLB enables us to rule-out impossible estimators. That is, we know that it is physically impos-
sible to �nd an unbiased estimator that beats the CRLB. This is useful in feasibility studies.

4. The theory behind the CRLB can tell us if an estimator exists that achieves the bound.

4.1.2.1 Estimator Accuracy

Consider the likelihood function p (x |θ), where θ is a scalar unknown (parameter). We can plot the likelihood
as a function of the unknown, as shown in Figure 4.1.

Figure 4.1

The more "peaky" or "spiky" the likelihood function, the easier it is to determind the unknown parameter.

Example 4.5
Suppose we observe

x = A+ w

where w ∼ N
(
σ, σ2

)
and A is an unknown parameter. The "smaller" the noise w is, the easier it

will be to estimate A from the observation x.
Suppose A = 3 and σ = 1/3.

Figure 4.2

Given this density function, we can easily rule-out estimates of A greater than 4 or less than 2,
since it is very unlikely that such A could give rise to out observation.

On the other hand, suppose σ = 1.

Figure 4.3

In this case, it is very di�cult to estimate A. Since the noise power is larger, it is very di�cult
to distinguish A from the noise.

The key thing to notice is that the estimation accuracy of A depends on σ, which in e�ect
determines the peakiness of the likelihood. The more peaky, the better localized the data is about
the true parameter.
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To quantify the notion, note that the peakiness is e�ectively measured by the negative of the
second derivative of the log-likelihood at its peak, as seen in Figure 4.4.

Figure 4.4

Example 4.6

x = A+ w

logp (x |A) =
(
−log

√
2πσ2

)
− 1

2σ2
(x−A)2

(4.8)

∂ logp (x |A)
∂A

=
1
σ2

(x−A)

−∂
2logp (x |A)

∂A2
=

1
σ2

(4.9)

The curvature increases as σ2 decreases (curvature=peakiness).

In general, the curavture will depend on the observation data; −∂
2logp(x |A)

∂θ2 is a function of x.
Therefore, an average measure of curvature is more appropriate.

−E
[
∂2logp (x |θ)

∂θ2

]
(4.10)

This average-out randomness due to the data and is a function of θ alone.

We are now ready to state the CRLB theorem.

Theorem 4.1: Cramer-Rao Lower Bound Theorem
Assume that the pdf p (x |θ) satis�es the "regularity" condition

E

[
∂ logp (x |θ)

∂θ

]
= 0

where the expectation is take with respect to p (x |θ). Then, the variance of any unbiased estimator

θ must satisfy

σ
(
θ
)2

≥ 1

−E
[
∂2logp(x |θ)

∂θ2

] (4.11)

where the derivative is evaluated at the true value of θ and the expectation is with respect to
p (x |θ). Moreover, an unbiased estimator may be found that attains the bound for all θ if and
only if

∂ logp (x |θ)
∂θ

= I (θ) (g (θ)− θ) (4.12)

for some functions g and I.

The corresponding estimator is MVUB and is given by θ = g (x), and the minimum variance is
1
I(θ) .
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Example

x = A+ w

where
w ∼ N

(
0, σ2

)
θ = A

E

[
∂ logp
∂θ

]
= E

[
1
σ2

(x−A)
]

= 0

CRLB =
1

−E
[
∂2logp
∂θ2

] =
1
1
σ2

= σ2

Therefore, any unbiased estimator A has σ
(
A
)2

≥ σ2. But we know that A = x has σ
(
A
)2

= σ2.

Therefore, A = x is the MVUB estimator.

note:

θ = A

I (θ) =
1
σ2

g (x) = x

Proof:
First consider the reguarity condition:

E

[
∂ logp (x |θ)

∂θ

]
= 0

note:

E

[
∂ logp (x |θ)

∂θ

]
=
∫

∂ logp (x |θ)
∂θ

p (x |θ) dθ =
∫

∂p (x |θ)
∂θ

dθ

Now assuming that we can interchange order of di�erentiation and integration

E

[
∂ logp (x |θ)

∂θ

]
=
∂
∫
p (x |θ) dθ
∂θ

=
∂1
∂θ

= 0

So the regularity condition is satis�ed whenever this interchange is possible3; i.e., when derivative
is well-de�ned, fails for uniform density.

Now lets derive the CRLB for a scalar parameter α = g (θ), where the pdf is p (x |θ). Consider
any unbiased estimator of α:

α ∈
(
E
[
α
]

= α = g (θ)
)

Note that this is equivalent to ∫
αp (x |θ) dx = g (θ)

3This is simply the Fundamental Theorem of Calculus applied to p (x |θ). So long as p (x |θ) is absolutely continuous
with respect to the Lebesgue measure, this is possible.
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where α is unbiased. Now di�erentiate both side∫
α
∂p (x |θ)

∂θ
dx =

∂g (θ)
∂θ

or ∫
α
∂ logp (x |θ)

∂θ
p (x |θ) dx =

∂g (θ)
∂θ

Now, exmploiting the regularity condition,∫ (
α−α

) ∂ logp (x |θ)
∂θ

p (x |θ) dx =
∂g (θ)
∂θ

(4.13)

since ∫
α
∂ logp (x |θ)

∂θ
p (x |θ) dx = αE [logp (x |θ)] = 0

Now apply the Cauchy-Schwarz inequality to the integral above (4.13):(
∂g (θ)
∂θ

)2

=
(∫ (

α−α
) ∂ logp (x |θ)

∂θ
p (x |θ) dx

)2

(
∂g (θ)
∂θ

)2

≤
∫ (

α−α
)2

p (x |θ) dx
∫ (

∂ logp (x |θ)
∂θ

)p(x |θ)
dθ

σ
(
α
)2

is
∫ (

α−α
)2

p (x |θ) dx, so

σ
(
α
)2

≥

(
∂g(θ)
∂θ

)2

E

[(
∂ logp(x |θ)

∂θ

)2
] (4.14)

Now we note that

E

[(
∂ logp (x |θ)

∂θ

)2
]

= −E
[
∂2logp (x |θ)

∂θ2

]
Why? Regularity condition.

E

[
∂ logp (x |θ)

∂θ

]
=
∫

∂ logp (x |θ)
∂θ

p (x |θ) dx = 0

Thus,

∂
∫ ∂ logp(x |θ)

∂θ p (x |θ) dx
∂θ

= 0

or ∫
∂2logp (x |θ)

∂θ2
p (x |θ) +

∂ logp (x |θ)
∂θ

∂p (x |θ)
∂θ

dx = 0

Therefore,

−E
[
∂2logp (x |θ)

∂θ2

]
=
∫

∂ logp (x |θ)
∂θ

∂ logp (x |θ)
∂θ

p (x |θ) dx = E

[(
∂ logp (x |θ)

∂θ

)2
]

Thus, (4.14) becomes

σ
(
α
)2

≥

(
∂g(θ)
∂θ

)2

−E
[
∂2logp(x |θ)

∂θ2

]
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note: If g (θ) = θ, then numerator is 1.

Example: DC Level in White Guassian Noise

xn = A+ wn , n ∈ {1, . . . , N}

where
wn ∼ N

(
0, σ2

)
p (x |A) =

1

(2πσ2)
N
2
e−( 1

σ2
PN
n=1 (xn−A)2)

∂ logp (x |A)
∂A

=
∂
((
−log

(
2πσ2

)N
2
)
− 1

2σ2

∑N
n=1 (xn −A)2

)
∂A

=
1
σ2

N∑
n=1

xn −A

E

[
∂ logp (x |A)

∂A

]
= 0

∂2logp (x |A)
∂A2

= −N
σ2

Therefore, the variance of any unbiased estimator satis�es:

σ
(
A
)2

≥ σ2

N

The sample-mean estimator A = 1
N

∑N
n=1 xn attains this bound and therefore is MVUB.

Corollary 4.1:
When the CRLB is attained

σ
(
θ
)2

=
1

I (θ)

where

I (θ) = −E
[
∂2logp (x |θ)

∂θ2

]
The quantity I (θ) is called Fisher Information that x contains about θ.
Proof:
By CRLB Theorem,

σ
(
θ
)2

=
1

−E
[
∂2logp(x |θ)

∂θ2

]
and

∂ logp (x |θ)
∂θ

= I (θ)
(
θ−θ

)
This yields

∂2logp (x |θ)
∂θ2

=
∂I (θ)
∂θ

(
θ−θ

)
− I (θ)

which in turn yields

−E
[
∂2logp (x |θ)

∂θ2

]
= I (θ)
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So,

σ
(
θ
)2

=
1

I (θ)

The CRLB is not always attained.

Example 4.7: Phase Estimation

xn = Acos (2πf0n+ φ) + wn , n ∈ {1, . . . , N}

The amplitude and frequency are assumed known

wn ∼ N
(
0, σ2

)
idd.

p (x |φ) =
1

(2πσ2)
N
2
e−( 1

2σ2
PN
n=1 xn−Acos(2πf0n+φ))

∂ logp (x |φ)
∂φ

=
(
− A
σ2

) N∑
n=1

xnsin (2πf0n+ φ)− A

2
sin (4πf0n+ φ)

∂2logp (x |φ)
∂φ2

=
(
− A
σ2

) N∑
n=1

xncos (2πf0n+ φ)−Acos (2πf0n+ 2φ)

−E
[
∂2logp (x |φ)

∂φ2

]
=
A2

σ2

N∑
n=1

1/2 + 1/2cos (4πf0n+ 2φ)− cos (4πf0n+ 2φ)

Since I (φ) = −E
[
∂2logp(x |φ)

∂φ2

]
,

I (φ) ' NA2

2σ2

because 1
N

∑
cos (4πf0n) ' 0 , 0 < f0 < k Therefore,

σ

(
φ

)2

≥ 2σ2

NA2

In this case, it can be shown that there does not exist a g such that

∂ logp (x |φ)
∂φ

6= I (φ) (g (x)− φ)

Therefore, an unbiased phase estimator that attains the CRLB does not exist.
However, a MVUB estimator may still exist�only its variance will be larger than the CRLB.

4.1.2.2 E�ciency

An estimator which is unbiased and attains the CRLB is said to be e�cient.

Example 4.8
Sample-mean estimator is e�cient.

Example 4.9
Supposed three unbiased estimators exist for a param θ.
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Figure 4.5

Figure 4.6

Example 4.10: Sinusoidal Frequency Estimation

sn (f0) = Acos (2πf0n+ φ) , 0 < f0 < 1/2

xn = sn (f0) + wn , n ∈ {1, . . . , N}

A and φ are known, while f0 is unknown.

σ

(
f0

)2

≥ σ2

A2
∑N
n=1 (2πnsin (2πf0n+ φ))2

Suppose A2

σ2 = 1 (SNR), where N = 10 and φ = 0.

Figure 4.7: Some frequencies are easier to estimator (lower CRLB, but not necessarily just lower bound)
than others.

4.1.2.3 CRLB for Vector Parameter

θ =


θ1

θ2

...

θp


θ is unbiased, i.e.,

E
[
θi

]
= θi , i ∈ {1, . . . , p}
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4.1.2.4 CRLB

σ
(
θi

)2

≥ (I (θ))−1
i,i

where

I (θ)i,j = −E
[
∂2logp (x |θ)

∂θi∂θj

]
I (θ) is the Fisher Information Matrix.

Theorem 4.2: Cramer-Rao Lower Bound - Vector Parameter
Assume the pdf p (x |φ) satis�es the "regularity" condition

E

[
∂ logp (x |θ)

∂θ

]
= 0

Then the convariance matrix of any unbiased estimator θ satis�es

C^
θ

− (I (θ))−1 ≥ 0

(meaning C^
θ

− (I (θ))−1
is p.s.d.) The Fisher Information matrix is

I (θ)i,j = −E
[
∂2logp (x |θ)

∂θ2

]
Furthermore, θ attains the CRLB ( C^

θ

= (I (θ))−1
) i�

∂ logp (x |θ)
∂θ

= I (θ) (g (x)− θ)

and

θ = g (x)

Example: DC Level in White Guassian Noise

xn = A+ wn , n ∈ {1, . . . , N}

A is unknown and wn ∼ N
(
0, σ2

)
, where σ2 is unknown.

θ =

 A

σ2



logp (x |θ) =
(
−
(
N

2
log (2π)

))
− N

2
logσ2 − 1

2σ2

N∑
n=2

(xn −A)2

∂ logp (x |θ)
∂A

=
1
σ2

N∑
n=1

xn −A

∂ logp (x |θ)
∂σ2

= −N
σ2

+
1

2σ4

N∑
n=1

(xn −A)2

(
∂2logp (x |θ)

∂A2
= −N

σ2

)
→ −N

σ2
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(
∂2logp (x |θ)

∂A∂σ2
= −

(
1
σ4

N∑
n=1

xn −A

))
→ 0

(
∂2logp (x |θ)

∂σ22 =
N

2σ4
− 1
σ6

N∑
n=1

(xn −A)2

)
→ − N

2σ4

Which leads to

I (θ) =

 N
σ2 0

0 N
2σ4


σ
(
A
)2

≥ σ2

N

σ

(
σ2

)2

≥ 2σ4

N

Note that the CRLB for A is the same whether or not σ2 is known. This happens in this case due
to the diagonal nature of the Fisher Information Matrix.

In general the Fisher Information Matrix is not diagonal and consequently the CRLBs will
depend on other unknown parameters.

4.2 Maximum Likelihood Estimation4

Themaximum likelihood estimator (MLE) is an alternative to the minimum variance unbiased estimator
(MVUE). For many estimation problems, the MVUE does not exist. Moreover, when it does exist, there is
no systematic procedure for �nding it. In constrast, the MLE does not necessarily satisfy any optimality
criterion, but it can almost always be computed, either through exact formulas or numerical techniques. For
this reason, the MLE is one of the most common estimation procedures used in practice.

The MLE is an important type of estimator for the following reasons:

1. The MLE implements the likelihood principle.
2. MLEs are often simple and easy to compute.
3. MLEs have asymptotic optimality properties (consistency and e�ciency).
4. MLEs are invariant under reparameterization.
5. If an e�cient estimator exists, it is the MLE.
6. In signal detection with unknown parameters (composite hypothesis testing), MLEs are used in imple-

menting the generalized likelihood ratio test (GLRT).

This module will discuss these properties in detail, with examples.

4.2.1 The Likelihood Principle

Supposed the data X is distributed according to the density or mass function p (x |θ). The likelihood
function for θ is de�ned by

l (θ |x) ≡ p (x |θ)
At �rst glance, the likelihood function is nothing new - it is simply a way of rewriting the pdf/pmf of X.
The di�erence between the likelihood and the pdf or pmf is what is held �xed and what is allowed to vary.
When we talk about the likelihood, we view the observation x as being �xed, and the parameter θ as freely
varying.

4This content is available online at <http://cnx.org/content/m11446/1.5/>.
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note: It is tempting to view the likelihood function as a probability density for θ, and to think
of l (θ |x) as the conditional density of θ given x. This approach to parameter estimation is called
�ducial inference, and is not accepted by most statisticians. One potential problem, for example,
is that in many cases l (θ |x) is not integrable (

∫
l (θ |x) dθ →∞) and thus cannot be normalized.

A more fundamental problem is that θ is viewed as a �xed quantity, as opposed to random. Thus,
it doesn't make sense to talk about its density. For the likelihood to be properly thought of as a
density, a Bayesian approach is required.

The likelihood principle e�ectively states that all information we have about the unknown parameter θ is
contained in the likelihood function.

Rule 4.1: Likelihood Principle
The information brought by an observation x about θ is entirely contained in the likelihood function
p (x |θ). Moreover, if x1 and x2 are two observations depending on the same parameter θ, such
that there exists a constant c satisfying p (x1 |θ) = cp (x2 |θ) for every θ, then they bring the same
information about θ and must lead to identical estimators.

In the statement of the likelihood principle, it is not assumed that the two observations x1 and x2 are
generated according to the same model, as long as the model is parameterized by θ.

Example 4.11
Suppose a public health o�cial conducts a survey to estimate 0 ≤ θ ≤ 1, the percentage of the
population eating pizza at least once per week. As a result, the o�cial found nine people who
had eaten pizza in the last week, and three who had not. If no additional information is available
regarding how the survey was implemented, then there are at least two probability models we can
adopt.

1. The o�cial surveyed 12 people, and 9 of them had eaten pizza in the last week. In this case,
we observe x1 = 9, where

x1 ∼ Binomial (12, θ)

The density for x1 is

f (x1 |θ) =

 12

x1

 θx1(1− θ)12−x1

2. Another reasonable model is to assume that the o�cial surveyed people until he found 3
non-pizza eaters. In this case, we observe x2 = 12, where

x2 ∼ NegativeBinomial (3, 1− θ)

The density for x2 is

g (x2 |θ) =

 x2 − 1

3− 1

 θx2−3(1− θ)3

The likelihoods for these two models are proportional:

` (θ |x1) ∝ ` (θ |x2) ∝ θ9(1− θ)3

Therefore, any estimator that adheres to the likelihood principle will produce the same estimate
for θ, regardless of which of the two data-generation models is assumed.

The likelihood principle is widely accepted among statisticians. In the context of parameter estimation, any
reasonable estimator should conform to the likelihood principle. As we will see, the maximum likelihood
estimator does.

note: While the likelihood principle itself is a fairly reasonable assumption, it can also be de-
rived from two somewhat more intuitive assumptions known as the su�ciency principle and the
conditionality principle. See Casella and Berger, Chapter 6[1].
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4.2.2 The Maximum Likelihood Estimator

The maximum likelihood estimator θ (x) is de�ned by

θ = argmax
θ
l (θ |x)

Intuitively, we are choosing θ to maximize the probability of occurrence of the observation x.

note: It is possible that multiple parameter values maximize the likelihood for a given x. In that
case, any of these maximizers can be selected as the MLE. It is also possible that the likelihood
may be unbounded, in which case the MLE does not exist.

The MLE rule is an implementation of the likelihood principle. If we have two observations whose likelihoods
are proportional (they di�er by a constant that does not depend on θ), then the value of θ that maximizes
one likelihood will also maximize the other. In other words, both likelihood functions lead to the same
inference about θ, as required by the likelihood principle.

Understand that maximum likelihood is a procedure, not an optimality criterion. From the de�nition
of the MLE, we have no idea how close it comes to the true parameter value relative to other estimators.
In constrast, the MVUE is de�ned as the estimator that satis�es a certain optimality criterion. However,
unlike the MLE, we have no clear produre to follow to compute the MVUE.

4.2.3 Computing the MLE

If the likelihood function is di�erentiable, then θ is found by di�erentiating the likelihood (or log-likelihood),
equating with zero, and solving:

∂ logl (θ |x)
∂θ

= 0

If multiple solutions exist, then the MLE is the solution that maximizes logl (θ |x), that is, the global
maximizer.

In certain cases, such as pdfs or pmfs with an esponential form, the MLE can be easily solved for. That
is,

∂ logl (θ |x)
∂θ

= 0

can be solved using calculus and standard linear algebra.

Example 4.12: DC level in white Guassian noise
Suppose we observe an unknown amplitude in white Gaussian noise with unknown variance:

xn = A+ wn

n ∈ {0, 1, . . . , N − 1}, where wn ∼ N
(
0, σ2

)
are independent and identically distributed. We

would like to estimate

θ =

 A

σ2


by computing the MLE. Di�erentiating the log-likelihood gives

∂ logp (x |θ)
∂A

=
1
σ2

N∑
n=1

xn −A

∂ logp (x |θ)
∂σ2

= −N
σ2

+
1

2σ4

N∑
n=1

(xn −A)2
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Equating with zero and solving gives us our MLEs:

A =
1
N

N∑
n=1

xn

and

σ2 =
1
N

N∑
n=1

(
xn− A

)2

note: σ2 is biased!

As an exercise, try the following problem:

Exercise 4.3
Suppose we observe a random sample x = (x1, . . . , xN )T of Poisson measurements with intensity
λ: Pr [xi = n] = e−λ λ

n

n! , n ∈ {0, 1, 2, . . . }. Find the MLE for λ.

Unfortunately, this approach is only feasible for the most elementary pdfs and pmfs. In general, we may
have to resort to more advanced numerical maximization techniques:

1. Newton-Raphson iteration
2. Iteration by the Scoring Method
3. Expectation-Maximization Algorithm

All of these are iterative techniques which posit some initial guess at the MLE, and then incrementally
update that guess. The iteration procedes until a local maximum of the likelihood is attained, although in
the case of the �rst two methods, such convergence is not guaranteed. The EM algorithm has the advantage
that the likelihood is always increased at each iteration, and so convergence to at least a local maximum
is guaranteed (assuming a bounded likelihood). For each algorithm, the �nal estimate is highly dependent
on the initial guess, and so it is customary to try several di�erent starting values. For details on these
algorithms, see Kay, Vol. I [4].

4.2.4 Asymptotic Properties of the MLE

Let x = (x1, . . . , xN )T denote an IID sample of size N , and each sample is distributed according to p (x |θ).
Let θN denote the MLE based on a sample x.

Theorem 4.3: Asymptotic Properties of MLE

If the likelihood ` (θ |x) = p (x |θ) satis�es certain "regularity" conditions5, then the MLE θN is

consistent, and moreover, θN converges in probability to θ, where

θ ∼ N
(
θ, (I (θ))−1

)
where I (θ) is the Fisher Information matrix evaluated at the true value of θ.

Since the mean of the MLE tends to the true parameter value, we say the MLE is asymptotically
unbiased. Since the covariance tends to the inverse Fisher information matrix, we say the MLE is asymp-
totically e�cient.

In general, the rate at which the mean-squared error converges to zero is not known. It is possible
that for small sample sizes, some other estimator may have a smaller MSE.The proof of consistency is an
application of the weak law of large numbers. Derivation of the asymptotic distribution relies on the central
limit theorem. The theorem is also true in more general settings (e.g., dependent samples). See, Kay, Vol.
I, Ch. 7[4] for further discussion.

5The regularity conditions are essentially the same as those assumed for the Cramer-Rao lower bound (Section 4.1.2): the
log-likelihood must be twice di�erentiable, and the expected value of the �rst derivative of the log-likelihood must be zero.
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4.2.5 The MLE and E�ciency

In some cases, the MLE is e�cient, not just asymptotically e�cient. In fact, when an e�cient estimator
exists, it must be the MLE, as described by the following result:

Theorem 4.4:
If θ is an e�cient estimator, and the Fisher information matrix I (θ) is positive de�nite for all θ,

then θ maximizes the likelihood.
Proof:
Recall the θ is e�cient (meaning it is unbiased and achieves the Cramer-Rao lower bound) if and
only if

∂ ln (p (x |θ))
∂θ

= I (θ)
(
θ−θ

)
for all θ and x. Since θ is assumed to be e�cient, this equation holds, and in particular it holds

when θ =θ (x). But then the derivative of the log-likelihood is zero at θ =θ (x). Thus, θ is a critical
point of the likelihood. Since the Fisher information matrix, which is the negative of the matrix

of second order derivatives of the log-likelihood, is positive de�nite, θ must be a maximum of the
likelihood.

An important case where this happens is described in the following subsection.

4.2.5.1 Optimality of MLE for Linear Statistical Model

If the observed data x are described by
x = Hθ + w

where H is N × p with full rank, θ is p× 1, and w ∼ N (0, C), then the MLE of θ is

θ =
(
HTC−1H

)−1
HTC−1x

This can be established in two ways. The �rst is to compute the CRLB for θ. It turns out that the condition

for equality in the bound is satis�ed, and θ can be read o� from that condition.
The second way is to maximize the likelihood directly. Equivalently, we must minimize

(x−Hθ)TC−1 (x−Hθ)

with respect to θ. Since C−1 is positive de�nite, we can write C−1 = UTΛU = DTD, where D = Λ
1
2U ,

where U is an orthogonal matrix whose columns are eigenvectors of C−1, and Λ is a diagonal matrix with
positive diagonal entries. Thus, we must minimize

(Dx−DHθ)T (Dx−DHθ)

But this is a linear least squares problem, so the solution is given by the pseudoinverse of DH:

θ =
(

(DH)T (DH)
)−1

(DH)T (Dx)

=
(
HTC−1H

)−1
HTC−1x

(4.15)

Exercise 4.4
Consider X1, . . . , XN ∼ N

(
s, σ2I

)
, where s is a p× 1 unknown signal, and σ2 is known. Express

the data in the linear model and �nd the MLE s for the signal.
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4.2.6 Invariance of MLE

Suppose we wish to estimate the function w = W (θ) and not θ itself. To use the maximum likelihood
approach for estimating w, we need an expression for the likelihood ` (w |x) = p (x |w). In other words, we
would need to be able to parameterize the distribution of the data by w. If W is not a one-to-one function,
however, this may not be possible. Therefore, we de�ne the induced likelihood

` (w |x) = maxθ {θ,W (θ) = w} ` (θ |x)

The MLE w is de�ned to be the value of w that maximizes the induced likelihood. With this de�nition, the
following invariance principle is immediate.

Theorem 4.5:
Let θ denote the MLE of θ. Then w = W

(
θ
)
is the MLE of w = W (θ).

Proof:
The proof follows directly from the de�nitions of θ and w. As an exercise, work through the logical
steps of the proof on your own.
Example
Let x = (x1, . . . , xN )T where

xi ∼ Poisson (λ)

Given x, �nd the MLE of the probability that x ∼ Poisson (λ) exceeds the mean λ.

W (λ) = Pr [x > λ] =
∞∑

n=bλ+1c

e−λ
λn

n!

where bzc = largest integer ≤ z. The MLE of w is

w =
∑

n=bλ+1c
∞
e−λ

(λ)n
n!

where λ is the MLE of λ:

λ =
1
N

N∑
n=1

xn

Be aware that the MLE of a transformed parameter does not necessarily satisfy the asymptotic prop-
erties discussed earlier.

Exercise 4.5
Consider observations x1,. . .,xN , where xi is a p-dimensional vector of the form xi = s+wi where
s is an unknown signal and wi are independent realizations of white Gaussian noise:

wi ∼ N
(
0, σ2Ip×p

)
Find the maximum likelihood estimate of the energy E = sT s of the unknown signal.
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4.2.7 Summary of MLE

The likelihood principle states that information brought by an observation x about θ is entirely contained in
the likelihood function p (x |θ). The maximum likelihood estimator is one e�ective implementation of the
likelihood principle. In some cases, the MLE can be computed exactly, using calculus and linear algebra,
but at other times iterative numerical algorithms are needed. The MLE has several desireable properties:

• It is consistent and asymptotically e�cient (as N →∞ we are doing as well as MVUE).
• When an e�cient estimator exists, it is the MLE.
• The MLE is invariant to reparameterization.

4.3 Bayesian Estimation

4.3.1 Bayesian Estimation6

We are interested in estimating θ given the observation x. Naturally then, any estimation strategy will be
based on the posterior distribution p (θ |x). Furthermore, we need a criterion for assessing the quality of
potential estimators.

4.3.1.1 Loss

The quality of an estimate θ is measured by a real-valued loss function: L
(
θ, θ
)
. For example, squared

error or quadratic loss is simply L
(
θ, θ
)

=
(
θ− θ

)T (
θ− θ

)
4.3.1.2 Expected Loss

Posterior Expected Loss:

E
[
L
(
θ, θ
)
| x
]

=
∫
L
(
θ, θ
)
p (θ |x) dθ

Bayes Risk:

E
[
L
(
θ, θ
)]

=
∫ ∫

L
(
θ, θ
)
p (θ |x) p (x ) dθdx

=
∫ ∫

L
(
θ, θ
)
p (x |θ) p (θ ) dxdθ

= E
[
E
[
L
(
θ, θ
)
| x
]] (4.16)

The "best" or optimal estimator given the data x and under a speci�ed loss is given by

θ = argmin
θ
E
[
L
(
θ, θ
)
| x
]

Example 4.13: Bayes MSE

BMSE
(
θ
)
≡
∫ ∫ (

θ− θ
)2

p (θ |x) dθp (x ) dx

Since p (x ) ≥ 0 for every x, minimizing the inner integral
∫

(θ − E [θ])2
p (θ |x) dθ =

E
[
L
(
θ, θ
)
| x
]
(where E

[
L
(
θ, θ
)
| x
]
is the posterior expected loss) for each x, minimizes the

6This content is available online at <http://cnx.org/content/m11660/1.2/>.
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overall BMSE.

∂
R “

θ−θ
”2
p( θ |x)dθ

∂θ
=

∫ ∂

„“
θ−θ

”2
p( θ |x)

«
∂θdθ

= −2
∫ (

θ− θ
)
p (θ |x) dθ

(4.17)

Equating this to zero produces

θ =
∫
θp (θ |x) dθ ≡ E [θ | x ]

The conditional mean (also called posterior mean) of θ given x!

Example 4.14

xn = A+Wn , n ∈ {1, . . . , N}

Wn ∼ N
(
0, σ2

)
prior for unknown parameter A:

p (a ) = U (−A0, A0)

p (x |A) =
1

(2πσ2)
N
2
e
−1
2σ2

PN
n=1 (xn−A)2

p (A |x) =


1

2A0(2πσ2)
N
2
e
−1
2σ2

PN
n=1 (xn−A)2

RA0
−A0

1

2A0(2πσ2)
N
2
e
−1
2σ2

PN
n=1 (xn−A)2

dA
if |A| ≤ A0

0 if |A| > A0

Minimum Bayes MSE Estimator:

A = E [A | x ]

=
∫∞
−∞ ap (A |x) dA

=

RA0
−A0

A 1

2A0(2πσ2)
N
2
e
−1
2σ2

PN
n=1 (xn−A)2

dA

RA0
−A0

1

2A0(2πσ2)
N
2
e
−1
2σ2

PN
n=1 (xn−A)2

dA

(4.18)

Notes

1. No closed-form estimator
2. As A0 →∞, A→ 1

N

∑N
n=1 xn

3. For smaller A0, truncated integral produces an A that is a function of x, σ2, and A0

4. As N increases, σ
2

N decreases and posterior p (A |x) becomes tightly clustered about 1
N

∑
xn.

This implies A→ 1
N

∑
n xn as n→∞ (the data "swamps out" the prior)
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4.3.1.3 Other Common Loss Functions

4.3.1.3.1 Absolute Error Loss

(Laplace, 1773)

L
(
θ, θ
)

= |θ− θ |

E
[
L
(
θ, θ
)
| x
]

=
∫∞
−∞ |θ− θ |p (θ |x) dθ

=
∫ θ“θ−θ”p( θ |x)dθ+

R
θ
∞(θ−θ)p( θ |x)dθ

−∞

(4.19)

Using integration-by-parts it can be shown that

∫ θ
“
θ−θ

”
p( θ |x)dθ=

R θP ( θ<y |x)dy
−∞

−∞∫
θ
∞“

θ−θ
”
p( θ |x)dθ=

R
θ
∞
P ( θ>y |x)dy

where P (θ < y |x) and P (θ > y |x) are a cumulative distributions. So,

E
[
L
(
θ, θ
)
| x
]

=
∫ θP ( θ<y |x)dy+

R
θ
∞
P ( θ>y |x)dy

−∞

Take the derivative with respect to θ implies P
(
θ <θ |x

)
= P

(
θ >θ |x

)
which implies that the optimal θ

under absolute error loss is posterior median.

4.3.1.3.2 '0-1' Loss

L
(
θ, θ
)

=

 0 if θ = θ

1 if θ 6= θ
= I{θ̂ 6=θ}

E
[
L
(
θ, θ
)
| x
]

= E
[
I{θ̂ 6=θ} | x

]
= Pr

[
θ 6= θ | x

]
which is the probability that θ 6= θ given x. To minimize '0-1' loss we must choose θ to be the value of θ

with the highest posterior probability, which implies θ 6= θ with the smallest probability.
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Figure 4.8

The optimal estimator θ under '0-1' loss is the maximum a posteriori (MAP) estimator�the value of
θ where p (θ |x) is maximized.

4.3.2 LMMSE

4.3.2.1 Wiener Filtering and the DFT
7

4.3.2.1.1 Connecting the Vector Space and Classical Wiener Filters

Suppose we observe
x = y + w

which are all N × 1 vectors and where w ∼ N
(
0, σ2I

)
. Given x we wish to estimate y. Think of y as a

signal in additive white noise w. x is a noisy observation of the signal.
Taking a Bayesian approach, put a prior on the signal y:

y ∼ N (0, Ryy)

which is independent of noise w. The minimum MSE (MMSE) estimator is

y = RyxRxx
−1x

Under the modeling assumptions above

Ryx = E
[
y(y + w)T

]
= E

[
yyT

]
+ E

[
ywT

]
= E

[
yyT

]
= Ryy

(4.20)

7This content is available online at <http://cnx.org/content/m11462/1.5/>.
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since E
[
ywT

]
= 0 and since y and w are zero-mean and independent.

Rxx = E
[
xxT

]
= E

[
(y + w) (y + w)T

]
= E

[
yyT

]
+ E

[
ywT

]
+ E

[
wyT

]
+ E

[
wwT

]
= Ryy +Rww

(4.21)

since E
[
wwT

]
= Rww. Hence

y = Ryy(Ryy +Rww)−1
x = Hoptx

Where Hopt is the Wiener �lter. Recall the frequency domain case

Hopt (f) =
Syy (f)

Syy (f) + Sww (f)

Now let's look at an actual problem scenario. Suppose that we know a priori that the signal y is smooth
or lowpass. We can incorporate this prior knowledge by carefully choosing the prior covariance Ryy.

Recall the DFT

Yk =
1√
N

N∑
n=0

Yke
−(i2π knN ) , k = 0, . . . , N − 1

or in vector notation
Yk =< y, uk > , k = 0, . . . , N − 1

where uk =

„
1 ei2π

k
N ei2π

2k
N . . . ei2π

(N−1)k
N

«H
√
N

(H dehotes Hermitian transpose)

note: < uk, uk >= uk
Huk = 1, < uk, ul >= uk

Hul = 0 , k 6= l , i.e., {uk} , k = 0, . . . , N −1
is an orthonormal basis.

The vector uk spans the subspace corresponding to a frequency band centered at frequency fk = 2πk
N

("digital" frequency on [0, 1]). If we know that y is lowpass, then

E
[
(‖< y, uk >‖)2

]
= E

[
(‖ Yk ‖)2

]
should be relatively small (compared to E

[
(‖< y, u0 >‖)2

]
) for high frequencies.

Let
σk

2 = E
[
(‖< y, uk >‖)2

]
A lowpass model implies σ0

2 > σ1
2 > · · · > σN

2

2, assuming N even, and conjugate symmetry implies

σN−j
2 = σj

2 , j = 1, . . . , N2 Furthermore, let's model the DFT coe�cients as zero-mean and independent

E [Yk] = 0

E
[
YkYl

]
=

 σk
2 if l = k

0 if l 6= k

This completely speci�es our prior
y ∼ N (0, Ryy)

Ryy = UDU
T
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where

D =


σ0

2 0 . . . 0

0 σ1
2 . . . 0

...
...

. . .
...

0 0 . . . σN−1
2


and

U =
(
u0 u1 . . . uN−1

)
note:

Y = UHy

is the DFT and
y = UY

is the inverse DFT.

With this prior on y the Wiener �lter is

y = UDUH
(
UDUH + σ2I

)−1
x

Since U is a unitary matrix UUH = I and therefore

y = UDUH
(
U
(
D + σ2I

)
UH
)−1

x

= UDUHU
(
D + σ2I

)−1
UHx

= UD
(
D + σ2I

)−1
UHx

(4.22)

8 Now take the DFT of both sides

Y = UH y = D
(
D + σ2I

)−1
X

where X = UHx and is the DFT of x. Both D and D + σ2I are diagonal so

Y k=
dk,k

dk,k + σ2
Xk =

σk
2

σk2 + σ2
Xk

Hence the Wiener �lter is a frequency (DFT) domain �lter

Y k= HkXk

where Xk is the kth DFT coe�cient of x and the �lter response at digital frequency 2πk
N is

Hk =
σk

2

σk2 + σ2

Assuming σ0
2 > σ1

2 > · · · > σN
2

2 and σN−j
2 = σj

2 , j = 1, . . . , N2 . The �lter's response is a digital
lowpass �lter!

8If A, B, C are all invertible, compatible matrices, then (ABC)−1 = C−1B−1A−1. U−1 = UH ,
`
UH

´−1
= U .
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A Digital Lowpass Filter!

Figure 4.9

4.3.2.1.2 Summary of Wiener Filter

Problem: Observe x = y + w
Recover/estimate signal y.
Classical Wiener Filter (continuous-time):

H (ω) =
Syy (ω)

Syy (ω) + Sww (ω)

where y (t) and w (t) are stationary processes.
Vector Space Wiener Filter:

H = Ryy(Ryy +Rww)−1

Wiener Filter and DFT: (Rww = σ2I). If Ryy = UDUH , where U is DFT, then H is a discrete-time
�lter whose DFT is given by

Hk =
∑N−1
n=0 hne

i2π k
N

= dk,k
dk,k+σ2

(4.23)

Here, dk,k plays the same role as Syy (ω).

4.3.2.2 Kalman Filters
9

The Kalman �lter is an important generalization of the Wiener �lter. Unlike Wiener �lters, which are
designed under the assumption that the signal and noise are stationary, the Kalman �lter has the ability
to adapt itself to non-stationary environments.

9This content is available online at <http://cnx.org/content/m11438/1.7/>.
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The Kalman �lter can be viewed as a sequential minimum MSE estimator of a signal in additive noise.
If the signal and noise are jointly Gaussian, the then Kalman �lter is optimal in a minimum MSE sense
(minimizes expected quadratic loss).

If the signal and/or noise are non-Gaussian, then the Kalman �lter is the best linear estimator (linear
estimator that minimizes MSE among all possible linear estimators).

4.3.2.2.1 Dynamical Signal Models

Recall the simple DC signal estimation problem.

xn = A+ wn , n = {0, . . . , N − 1} (4.24)

Where A is the unknown DC level and wn is the white Gaussian noise. A could represent the voltage of a DC
power supply. We know how to �nd several good estimators of A given the measurements {x0, . . . , xN−1}.

In practical situations this model may be too simplistic. the load on the power supply may charge over
time and there will be other variations due to temperature and component aging.

To account for these variations we can employ a more accurate measurement model:

xn = An + wn , n = {0, . . . , N − 1} (4.25)

where the voltage An is the true voltage at time n.
Now the estimation problem is signi�cantly more complicated since we must estimate {A0, . . . , AN−1}.

Suppose that the true voltage An does not vary too rapidly over time. Then successive samples of An will
not be too di�erent, suggesting that the voltage signal displays a high degree of correlation.

This reasoning suggests that it may be reasonable to regard the sequence {A0, . . . , AN−1}, as a realization
of a correlated (not white) random process. Adopting a random process model for An allows us to pursue a
Bayesian approach to the estimation problem (Figure 4.10 (Voltage Varying Over Time)).

Voltage Varying Over Time

Figure 4.10
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Using the model in (4.25), it is easy to verify that the maximum likelihood and MVUB esitmators are
given by

An= xn(4.26)

Our estimate is simply the noisy measurements! No averaging takes place, so there is no noise reduction.
Let's look at the example again, Figure 4.11 (True Voltage Varying Over Time).

True Voltage Varying Over Time

Figure 4.11

The voltage An is varying about an average value of 10V. Assume this average value is known and write

An = 10 + yn (4.27)

Where yn is a zero-mean random process. Now a simple model for yn which allows us to specify the
correlation between samples is the �rst-order Gauss-Markov prcoess model:

yn = ayn−1 + un , n = {1, 2, . . . } (4.28)

Where un ∼ N
(
0, σu2

)
iid (white Gaussian noise process). To initialize the process we take y0 to be the

realization of a Gaussian random variable: y0 ∼ N
(
0, σy2

)
. un is called the driving or excitation noise.

The model in (4.28) is called the dynamical or state model. The current output yn depends only on the
state of the system at the previous time, or yn−1, and the current input un (Figure 4.12).
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Figure 4.12

y1 = ay0 + u0

y2 = ay1 + u1

= a (ay0 + u0) + u1

= a2y0 + au1 + u2

(4.29)

...

yn = an+1y0 +
n∑
k=1

akun−k

E [yn] = an+1E [y0] +
∑n
k=1 a

kE [un−k]

= 0
(4.30)

Correlation:

E [ymyn] = E
[(
am+1y0 +

∑m
k=1 a

kum−k
) (
an+1y0 +

∑n
l=1 a

lun−l
)]

= E
[
am+n+2y0

2
]

+ E
[∑m

k=1

∑n
l=1 a

k+lum−kun−l
] (4.31)

E [um−kun−l] =

 σn
2 if m− k = n− l

0 otherwise
(4.32)

If m > n, then

E [ymyn] = am+n+2σy
2 + am−nσu

2
n∑
k=1

a2k (4.33)

If |a| > 1, then it's obvious that the process diverges (variance → ∞). This is equivalent to having a pole
outside the unit circle shown in Figure 4.13.

Figure 4.13



106 CHAPTER 4. ESTIMATION THEORY

So, let's assume |a| < 1 and hence a stable system. Thus as m and n get large

am+n+2σy
2 → 0

Now let m− n = τ . Then for m and n large we have

E [ymyn] = aτσu
2
∑n
k=1 a

2k

= aτ+2σu
2

1−a2

(4.34)

This shows us how correlated the process is:

|a| → 1⇒ heavily correlated (or anticorrelated)

|a| → 0⇒ weakly correlated

How can we use this model to help us in our estimation problem?

4.3.2.2.2 The Kalman Filter

Let's look at a more general formulation of the problem at hand. Suppose that we have a vector-valued
dynamical equation

yn+1 = Ayn + bun (4.35)

Where yn is p× 1 dimensional, A is p× p, and b is p× 1. The initial state vector is Y0 ∼ N (0, R0), where
R0 is the covariance matrix and un ∼ N

(
0, σu2

)
iid (white Gaussian excitation noise). This reduces to

the case we just looked at when p = 1. This model could represent a pth order Gauss-Markov process:

yn−1 = a1yn + a2yn−1 + · · ·+ apyn−p+1 + un (4.36)

De�ne

yn =



yn−p+1

yn−p+2

...

yn−1

yn


(4.37)

Then,

yn+1 = Ayn + bun

=



0 1 0 . . . . . . 0

0 0 1 0 . . . 0
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

0 0 . . . . . . 0 1

a1 a2 . . . . . . ap−1 ap





yn−p+1

yn−p+2

...

...

yn−1

yn


+



0
...
...
...

0

1


+ un

(4.38)

Here A is the state transition matrix. Since yn is a linear combination of Gaussian vectors:

yn = A2y0 +
n∑
k=1

Ak−1bun−k (4.39)
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We know that yn is also Gaussian distributed with mean and covariance Rn = E
[
ynyn

T
]
, Yn ∼ N (, Rn).

The covariance can be recursively computed from the basic state equation:

Rn+1 = ARnA
T + σu

2bbT (4.40)

Assume that measurements of the state are available:

xn = CT yn + wn (4.41)

Where wn ∼ N
(
0, σw2

)
iid independant of {un} (white Gaussian observation noise).

For example, if C = (0, . . . , 0, 1)T , then

xn = yn + wn (4.42)

Where xn is the observation, yn is the signal, and wn is the noise. Since our model for the signal is Gaussian
as well as the observation noise, it follows that xn ∼ N

(
0, σn2

)
, where σn

2 = CTRnC + σw
2 (Figure 4.14

(Block Diagram)).

Block Diagram

Figure 4.14

Kalman �rst posed the problem of estimating the state of yn from the sequence of measurements

xn =


x0

...

xn


To derive the Kalman �lter we will call upon the Gauss-Markov Theorem.

First note that the conditional distribution of yn given xn is Gaussian:

yn|xn ∼ N
(
yn|n, Pn|n

)
Where yn|n is the conditional mean and Pn|n is the covariance.

We know that this is the form of the conditional distribution because yn and xn are jointly Gaussian
distributed.

note:

yn|xn ∼ N
(
yn|n, Pn|n

)
where yn is the signal samples yn, . . . , yn−p+1, xn is the observations/measurements xn, . . . , xn−p+1,

and yn|n is the best (minimum MSE) estimator of yn given xn.
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This is all well and good, but we need to know what the conditional mean and covariance are explicitly. So

the problem is now to �nd/compute yn|n and Pn|n. We can take advantage of the recursive state equation

to obtain a recursive procedure for this calculation. To begin, consider the "predictor" yn|n−1:

yn|xn−1 ∼ N
(
yn|n−1, Pn|n−1

)
Where yn is the signal samples, {yn, . . . , yn−p+1}, xn−1 is the observations {xn−1, . . . , xn−p}, and yn|n−1 is

the best min MSE estimator of yn given xn−1. Although we don't know what forms yn|n−1 and Pn|n−1 have,
we do know two important facts:

1. The predictor yn|n−1 acts as a su�cient statistic for yn. That is, we can replace xn−1 (the data)

with yn|n−1 (the predictor). In other words, all the relevant information in xn−1 pertaining to yn is

summarized by the predictor yn|n−1, which is, of course, a function of xn−1.

2. The predictor yn|n−1 and the prediction error en|n−1 = yn − yn|n−1 are orthogonal (the orthogo-

nality principle of minimum MSE estimators ⇒
(
E
[
yn|n−1 en|n−1

T
]

= 0
)
⇒ error is orthogonal to

estimator).

Moreover,

yn = yn|n−1 +en|n−1(4.43)

Since all quantities are zero-mean,
en|n−1 ∼ N

(
0, Pn|n−1

)
where Pn|n−1 is the covariance of yn|xn−1 and "variability" of yn about the predictor yn|n−1. Therefore,

yn|n−1∼ N
(
0, Rn − Pn|n−1

)
Where Rn is the covariance of Yn. Now suppose that we have the predictor yn|n−1 computed and a new
measurement is made:

xn = CT yn + wn

= CT
(
yn|n−1 +en|n−1

)
+ wn

(4.44)

note: yn|n−1, en|n−1, and wn are all orthogonal.

We can express all relevant quantities in the matrix equation
yn

yn|n−1

xn

 =


I I 0

0 I 0

CT CT 1




en|n−1

yn|n−1

wn

 (4.45)

Now because of the orthogonality, the covariance

E




en|n−1

yn|n−1

wn




en|n−1

yn|n−1

wn


T
 =


Pn|n−1 0 0

0 Rn − Pn|n−1 0

0 0 σw
2

 (4.46)
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Combining this with the matrix (4.45) shows that

E




yn

yn|n−1

xn




yn

yn|n−1

xn


T
 =


Rn Pn|n−1 RnC

Pn|n−1

... . . .

CTRn
... Sn

 (4.47)

note:

(
yn, yn|n−1, xn

)T
are jointly Gaussian with the covariance in (4.47) and means zero.

Where

Pn|n−1= Rn − Pn|n−1 (4.48)

Sn =

 Pn|n−1 Pn|n−1 C

CTPn|n−1 σw
2

 (4.49)

We now have all the quantities necessary to compute our recursive estimator using the Gauss-Markov
Theorem.

We will now derive a recursion for conditional distribution of yn given yn|n−1 (best estimate based on past

observations) and xn (current observation). We know that yn|
(
yn|n−1, xn

)
is Gaussian (since all quantities

are jointly Gaussian). Let's denote this conditional distribution by

yn|
(
yn|n−1, xn

)
∼ N

(
yn|n, Pn|n

)
Applying the Gauss-Markov Theorem we �nd

yn|n=

 Pn|n−1

RnC

T

Sn
−1

 yn|n−1

xn

 (4.50)

which is the best estimator of yn given yn|n−1 and xn. The inverse of Sn is given by

Sn
−1 =

 (
Pn|n−1

)−1

0

0 0

+ γn
−1

 −C
1

 −CT
1

T

(4.51)

where

γn
−1 = σn

2 − CT
(
Rn − Pn|n−1

)
C

= CTPn|n−1C + σw
2

(4.52)

note: σn
2 = CTRnC + σw

2

Substituting this inverse formula into (4.50) yields

yn|n= yn|n−1 +Pn|n−1Cγn
−1
(
xn − CT yn|n−1

)
(4.53)

The Gauss-Markov Theorem also gives us an expression for Pn|n:

Pn|n = Rn −

 Pn|n−1

RnC

T

Sn
−1

 Pn|n−1

CTRn

 (4.54)
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and upon substituting (4.50) for Sn
−1 we get

Pn|n = Pn|n−1 − γn−1Pn|n−1CC
TPn|n−1 (4.55)

Note that both expressions contain the quantity

Kn = Pn|n−1Cγn
−1 (4.56)

which is the so-called Kalman gain.
Using the Kalman gain, the Kalman recursions are given by

yn|n= yn|n−1 +Kn

(
xn − CT yn|n−1

)
(4.57)

Pn|n = Pn|n−1 − γnKnKn
T (4.58)

The recursions are complete except for de�nitions of yn|n−1 and Pn|n−1.

yn|n−1 = E [yn|xn−1]

= E [Ayn−1 + bun−1|xn−1]

= Ayn−1|n−1

(4.59)

Pn|n−1 = E

[(
yn − yn|n−1

)(
yn − yn|n−1

)T]
= APn−1|n−1A

T + σn
2bbT

(4.60)

Now we can summarize the Kalman �lter:

1. (4.57), where yn|n is the best estimate if yn given observations up to time n.
2. (4.59)
3. (4.56)
4. (4.52)
5. (4.58)
6. (4.60)

Measurements/observation model:
xn = yn + wn

wn ∼ N
(
0, σw2

)
(C = 1).

Example 4.15: First-order Gauss-Markov Process

yn+1 = ayn + un

Where yn+1 is a time-varying voltage, un ∼ N
(
0, σn2

)
, and σu = 0.1. (a = 0.99) ⇒

highly correlated process. (A = a, b = 1).
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Figure 4.15

Kalman Filtering Equations

1. Pn|n−1 = a2Pn−1|n−1 + σn
2 (q (n) in MATLAB code)

2. γn
−1 = Pn|n−1 + σw

2 (g (n) in MATLAB code)

3. Pn|n = Pn|n−1 − γn−1Pn|n−1
2 (p (n) in MATLAB code)

4. Kn = Pn|n−1γn
−1 (k (n) in MATLAB code)

5. yn|n−1= ayn−1|n−1 (py (n) in MATLAB code)

6. yn|n= yn|n−1 +Kn

(
xn − yn|n−1

)
(ey (n) in MATLAB code)

Initialization: ey (1) = 0, q (1) = σu
2
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Figure 4.16



Chapter 5

Adaptive Filtering

5.1 Introduction to Adaptive Filtering1

The Kalman �lter is just one of many adaptive �ltering (or estimation) algorithms. Despite its elegant
derivation and often excellent performance, the Kalman �lter has two drawbacks:

1. The derivation and hence performance of the Kalman �lter depends on the accuracy of the a priori

assumptions. The performance can be less than impressive if the assumptions are erroneous.
2. The Kalman �lter is fairly computationally demanding, requiring O

(
P 2
)
operations per sample. This

can limit the utility of Kalman �lters in high rate real time applications.

As a popular alternative to the Kalman �lter, we will investigate the so-called least-mean-square (LMS)
adaptive �ltering algorithm.

The principle advantages of LMS are

1. No prior assumptions are made regarding the signal to be estimated.
2. Computationally, LMS is very e�cient, requiring O (P ) per sample.

The price we pay with LMS instead of a Kalman �lter is that the rate of convergence and adaptation to
sudden changes is slower for LMS than for the Kalman �lter (with correct prior assumptions).

1This content is available online at <http://cnx.org/content/m11433/1.5/>.
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5.1.1 Adaptive Filtering Applications

5.1.1.1 Channel/System Identi�cation

Channel/System Identi�cation

Figure 5.1

5.1.1.2 Noise Cancellation

Suppression of maternal ECG component in fetal ECG (Figure 5.2).

Figure 5.2: Cancelling maternal heartbeat in fetal electrocardiography (ECG): position of leads.
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Figure 5.3

y is an estimate of the maternal ECG signal present in the abdominal signal (Figure 5.4).

Figure 5.4: Results of fetal ECG experiment (bandwidth, 3-35Hz; sampling rate, 256Hz): (a)reference
input (chest lead); (b)primary input (abdominal lead); (c)noise-canceller output.
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5.1.1.3 Channel Equalization

Channel Equalization

Figure 5.5

5.1.1.4 Adaptive Controller

Adaptive Controller

Figure 5.6: Here, the reference signal is the desired output. The adaptive controller adjusts the
controller gains (�lter weights) to keep them appropriate to the system as it changes over time.

5.1.2 Iterative Minimization

Most adaptive �ltering alogrithms (LMS included) are modi�cations of standard iterative procedures for
solving minimization problems in a real-time or on-line fashion. Therefore, before deriving the LMS
algorithm we will look at iterative methods of minimizing error criteria such as MSE.

Conider the following set-up:
xk : observation
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yk : signal to be estimated

5.1.2.1 Linear estimator

yk= w1xk + w2xk−1 + · · ·+ wpxk−p+1(5.1)

Figure 5.7

Impulse response of the �lter:
. . . , 0, 0, w1, w2, . . . wp, 0, 0, . . .

5.1.2.2 Vector notation

yk= xk
Tw(5.2)

Where

xk =


xk

xk−1

...

xk−p+1


and

w =


w1

w2

...

wp



5.1.2.3 Error signal

ek = yk − yk
= yk − xkTw

(5.3)
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5.1.2.4 Assumptions

(xk, yk) are jointly stationary with zero-mean.

5.1.2.5 MSE

E
[
ek

2
]

= E
[(
yk − xkTw

)2]
= E

[
yk

2
]
− 2wTE [xkyk] + wTE

[
xkxk

T
]
w

= Ryy − 2wTRxy + wTRxxw

(5.4)

Where Ryy is the variance of yk
2, Rxx is the covariance matrix of xk, and Rxy = E [xkyk] is the cross-

covariance between xk and yk

note: The MSE is quadratic in W which implies the MSE surface is "bowl" shaped with a unique
minimum point (Figure 5.8).

Figure 5.8

5.1.2.6 Optimum Filter

Minimize MSE: (
∂E

[
ek

2
]

∂w
= 2Rxy + 2Rxxw = 0

)
⇒
(
wopt = Rxx

−1Rxy

)
(5.5)

Notice that we can re-write (5.5) as
E
[
xkxk

Tw
]

= E [xkyk] (5.6)

or

E
[
xk
(
yk − xkTw

)]
= E [xkek]

= 0
(5.7)
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Which shows that the error signal is orthogonal to the input xk (by the orthogonality principle of
minimum MSE estimator).

5.1.2.7 Steepest Descent

Although we can easily determine wopt by solving the system of equations

Rxxw = Rxy (5.8)

Let's look at an iterative procedure for solving this problem. This will set the stage for our adaptive �ltering
algorithm.

We want to minimize the MSE. The idea is simple. Starting at some initial weight vector w0, iteratively
adjust the values to decrease the MSE (Figure 5.9 (In One-Dimension)).

In One-Dimension

Figure 5.9

We want to move w0 towards the optimal vector wopt. In order to move in the correct direction, we
must move downhill or in the direction opposite to the gradient of the MSE surface at the point w0. Thus,
a natural and simple adjustment takes the form

w1 = w0 −
1
2
µ
∂E

[
ek

2
]

∂w
|w=w0

(5.9)

Where µ is the step size and tells us how far to move in the negative gradient direction (Figure 5.10).
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Figure 5.10

Generalizing this idea to an iterative strategy, we get

wk = wk−1 −
1
2
µ
∂E

[
ek

2
]

∂w
|w=wk−1

(5.10)

and we can repeatedly update w: w0, w1, . . . , wk. Hopefully each subsequent wk is closer to wopt. Does the
procedure converge? Can we adapt it to an on-line, real-time, dynamic situation in which the signals may
not be stationary?

5.2 LMS Algorithm Analysis2

5.2.1 Objective

Minimize instantaneous squared error

ek
2 (w) =

(
yk − xkTw

)2
(5.11)

5.2.2 LMS Algorithm

wk= wk−1 +µxkek(5.12)

Where wk is the new weight vector, wk−1 is the old weight vector, and µxkek is a small step in the
instantaneous error gradient direction.

2This content is available online at <http://cnx.org/content/m11439/1.4/>.
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5.2.3 Interpretation in Terms of Weight Error Vector

De�ne
vk = wk − wopt (5.13)

Where wopt is the optimal weight vector and

εk = yk − xkTwopt (5.14)

where εk is the minimum error. The stochastic di�erence equation is:

vk = Ivk−1 + µxkεk (5.15)

5.2.4 Convergence/Stability Analysis

Show that (tightness)
limit
B→∞

max {Pr [‖ vk ‖≥ B]} = 0 (5.16)

With probability 1, the weight error vector is bounded for all k.
Chebyshev's inequality is

Pr [‖ vk ‖≥ B] ≤
E
[
(‖ vk ‖)2

]
B2

(5.17)

and

Pr [‖ vk ‖≥ B] =
1
B2

(
(‖ E [vk] ‖)2 + σ (vk)2

)
(5.18)

where (‖ E [vk] ‖)2
is the squared bias. If (‖ E [vk] ‖)2+σ (vk)2

is �nite for all k, then limit
B→∞

Pr [‖ vk ‖≥ B] =

0 for all k.
Also,

σ (vk)2 = tr
(
E
[
vkvk

T
])

(5.19)

Therefore σ (vk)2
is �nite if the diagonal elements of Γk ≡ E

[
vkvk

T
]
are bounded.

5.2.5 Convergence in Mean

‖ E [vk] ‖→ 0 as k → ∞. Take expectation of (5.15) using smoothing property to simplify the calculation.
We have convergence in mean if

1. Rxx is positive de�nite (invertible).
2. µ < 2

λmax(Rxx) .

5.2.6 Bounded Variance

Show that Γk = E
[
vkvk

T
]
, the weight vector error covariance is bounded for all k.

note: We could have E [vk] → 0, but σ (vk)2 → ∞; in which case the algorithm would not be
stable.

Recall that it is fairly straightforward to show that the diagonal elements of the transformed covariance
Ck = UΓkUT tend to zero if µ < 1

λmax(Rxx) (U is the eigenvector matrix of Rxx; Rxx = UDUT ). The

diagonal elements of Ck were denoted by γk,i , i = {1, . . . , p} .

note: σ (vk)2 = tr (Γk) = tr
(
UTCkU

)
= tr (Ck) =

∑p
i=1 γk,i
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Thus, to guarantee boundedness of σ (vk)2
we need to show that the "steady-state" values γk,i → (γi <∞).

We showed that

γi =
µ
(
α+ σε

2
)

2× (1− µλi)
(5.20)

where σε
2 = E

[
εk

2
]
, λi is the i

th eigenvalue of Rxx (Rxx = U


λ1 . . . 0
...

. . .
...

0 . . . λp

UT ), and α = cσε
2

1−c .

0 < c =
1
2

p∑
i=1

µλi
1− µλi

< 1 (5.21)

We found a su�cient condition for µ that guaranteed that the steady-state γi's (and hence σ (vk)2
) are

bounded:

µ <
2
3∑p
i=1 λi

Where
∑p
i=1 λi = tr (Rxx) is the input vector energy.

With this choice of µ we have:

1. convergence in mean
2. bounded steady-state variance

This implies
limit
B→∞

max {Pr [‖ vk ‖≥ B]} = 0 (5.22)

In other words, the LMS algorithm is stable about the optimum weight vector wopt.

5.2.7 Learning Curve

Recall that
ek = yk − xkTwk−1 (5.23)

and (5.14). These imply
ek = εk − xkT vk−1 (5.24)

where vk = wk − wopt. So the MSE

E
[
ek

2
]

= σε
2 + E

[
vk−1

Txkxk
T vk−1

]
= σε

2 + E
[
E
[
vk−1

Txkxk
T vk−1 | xnεn , n < k

]]
= σε

2 + E
[
vk−1

TRxxvk−1

]
= σε

2 + E
[
tr
(
Rxxvk−1vk−1

T
)]

= σε
2 + tr (RxxΓk−1)

(5.25)

Where (tr (RxxΓk−1) ≡ αk−1)→
(
α = cσε

2

1−c

)
. So the limiting MSE is

ε∞ = limit
k→∞

E
[
ek

2
]

= σε
2 + cσε

2

1−c

= σε
2

1−c

(5.26)
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Since 0 < c < 1 was required for convergence, ε∞ > σε
2 so that we see noisy adaptation leads to an MSE

larger than the optimal

E
[
εk

2
]

= E
[(
yk − xkTwopt

)2]
= σε

2
(5.27)

To quantify the increase in the MSE, de�ne the so-called misadjustment:

M = ε∞−σε2
σε2

= ε∞
σε2
− 1

= α
σε2

= c
1−c

(5.28)

We would of course like to keep M as small as possible.

5.2.8 Learning Speed and Misadjustment Trade-o�

Fast adaptation and quick convergence require that we take steps as large as possible. In other words, learning
speed is proportional to µ; larger µ means faster convergence. How does µ a�ect the misadjustment?

To guarantee convergence/stability we require

µ <
2
3∑p

i=1 λi (Rxx)

Let's assume that in fact µ� 1Pp
i=1 λi

so that there is no problem with convergence. This condition implies

µ� 1
λi

or µλi � 1 , i = {1, . . . , p} . From here we see that

c =
1
2

p∑
i=1

µλi
1− µλi

' 1
2
µ

p∑
i=1

λi � 1 (5.29)

This misadjustment

M =
c

1− c
' c =

1
2
µ

p∑
i=1

λi (5.30)

This shows that larger step size µ leads to larger misadjustment.
Since we still have convergence in mean, this essentially means that with a larger step size we "converge"

faster but have a larger variance (rattling) about wopt.

5.2.9 Summary

small µ implies

• small misadjustment in steady-state
• slow adaptation/tracking

large µ implies

• large misadjustment in steady-state
• fast adaptation/tracking
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Example 5.1

wopt =

 1

1


xk ∼ N

0,

 1 0

0 1


yk = xk

Twopt + εk

εk ∼ N (0, 0.01)

5.2.1 LMS Algorithm

initialization w0 =

 0

0

 and wk = wk−1 + µxkek , k ≥ 1 , where ek = yk − xkTwk−1

Learning Curve

Figure 5.11: µ = 0.05

LMS Learning Curve

Figure 5.12: µ = 0.3

Comparison of Learning Curves

Figure 5.13
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Glossary

B Bayesian statistical model

A statistical model compose of a data generation model, p (x |θ), and a prior distribution on the
parameters, p (θ ).

bias

The bias of θ is [Insert 3]

C conjugate prior

p (θ ) is a conjugate prior for p (x |θ) if p (θ ) ∈P ⇒ p (θ |x) ∈P

I idd

independent and identically distributed

L

Let X1, . . . , XM be a random sample, governed by the density or probability mass function
f (x |θ). The statistic T (x) is su�cient for θ if the conditional distribution of x, given
T (x) = t, is independent of θ. Equivalently, the functional form of f θ | t (x ) does not involve θ.

M MVUE

An estimator θ is the minimum variance unbiased estimator if it is unbiased and has the
smallest variance of any unbiased estimator for all values of the unknown parameter. In other
words, the MVUE satis�es the following two properties: [Insert 6]

U unbiased

An estimator θ is called unbiased if its bias is zero for all values of the unknown parameter.
Equivalently, [Insert 5]

V variance

The variance of θ is [Insert 2]
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