Statistical Learning Theory

Collection Editor:
Robert Nowak

Statistical Learning Theory

Collection Editor:
Robert Nowak

Authors:

Rui Castro
Robert Nowak
Aarti Singh

Online:
< http://cnx.org/content/col10532/1.3/ >

CONNEXIONS

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Robert Nowak. It is licensed under the
Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: April 10, 2009

PDF generated: February 4, 2011

For copyright and attribution information for the modules contained in this collection, see p. 163.

Table of Contents

1 Basic Elements of Statistical Decision Theory and Statistical Learning

D OT Y ..ttt e e e e e e e 1
2 Elements of Statistical Learning Theoryo. it 7
3 Introduction to Classification and Regressioncoiiiiiiiiiiiiieniiiiiienns 11
4 Introduction to Complexity Regularization 21
5 An Example of the Use of Sieves for Complexity Regularization in De-

603 1) 5 29
6 Plug-In Classifier and Histogram Classifier i i, 35
7 Probably Approximately Correct (PAC) Learningc.cooiiiiiniriiiinienenen... 43
8 Chernoff’s Bound and Hoeffding’s Inequality i, 49
9 Classification Error Bounds e 57
10 Error Bounds in Countably Infinite Spaces 61
11 Complexity Regularization 67
12 DECISION THEES ...ttt ittt e et e et et e et e e e e e 71
13 Complexity Regularization for Squared Error Losso i i 85
14 Maximum Likelihood Estimation it et 91
15 Maximum Likelihood and Complexity Regularization 97
16 Denoising II: Adapting to Unknown Smoothness oL, 107
17 Nonlinear Approximation and Wavelet Analysisc..o it an. 115
18 Vapnik-Chervonenkis Theory et 129
19 The Vapnik-Chervonenkis Inequality i i 135
20 Applications of VC Bound e 139
21 Lower Performance Bounds for Estimators i i, 145
GlOSS ALY .t e e e 158
Bibliograp iy ..o e 160
IndeX oo e e e e 162

AUt ONS .. oo 163

iv

Chapter 1

Basic Elements of Statistical Decision
Theory and Statistical Learning Theory’

Throughout this module, let X denote the input to a decision-making process and Y denote the correct
response or output (e.g., the value of a parameter, the label of a class, the signal of interest). We assume
that X and Y are random variables or random vectors with joint distribution Px y (z,y), where z and y
denote specific values that may be taken by the random variables X and Y, respectively. The observation X
is used to make decisions pertaining to the quantity of interest. For the purposes of illustration, we will focus
on the task of determining the value of the quantity of interest. A decision rule for this task is a function f
that takes the observation X as input and outputs a prediction of the quantity Y. We denote a decision rule

by Y or f(X), when we wish to indicate explicitly the dependence of the decision rule on the observation.
We will examine techniques for designing decision rules and for analyzing their performance.

1.1 Measuring Decision Accuracy: Loss and Risk Functions

The accuracy of a decision is measured with a loss function. For example, if our goal is to determine the
value of Y, then a loss function takes as inputs the true value Y and the predicted value (the decision)

Y= f(X) and outputs a non-negative real number (the “loss”) reflective of the accuracy of the decision. Two
of the most commonly encountered loss functions include:

1. 0/11oss: £y (Y, Y> = I. | which is the indicator function taking the value of 1 when Y# Y and
Y#Y

~

taking the value 0 when ¥ (X) =Y.

2. squared error loss: £ (Y, Y) = ||y =Y ||3, which is simply the sum of squared differences between

the elements of Y and Y.

The 0/1 loss is commonly used in detection and classification problems, and the squared error loss is more
appropriate for problems involving the estimation of a continuous parameter. Note that since the inputs to
the loss function may be random variables, so is the loss.

A risk R (f) is a function of the decision rule f, and is defined to be the expectation of a loss with respect
to the joint distribution Px y (x,y). For example, the expected 0/1 loss produces the probability of error

LThis content is available online at <http://cnx.org/content/m16263/1.3/>.

CHAPTER 1. BASIC ELEMENTS OF STATISTICAL DECISION THEORY
AND STATISTICAL LEARNING THEORY

risk function; i.e., a simply calculation shows that Roy1 (f) = E [(Iz(x)zy] =Pr(f (X) #Y). The expected
squared error loss produces the mean squared error MSE risk function, Ry (f) = E [|| f(X) —Y [j3].

Optimal decisions are obtained by choosing a decision rule f that minimizes the desired risk function.
Given complete knowledge of the probability distributions involved (e.g., Px,y (z,y)) one can explicitly or
numerically design an optimal decision rule, denoted f*, that minimizes the risk function.

1.2 The Maximum Likelihood Principle

The conditional distribution of the observation X given the quantity of interest Y is denoted by Pxy (z[y).
The conditional distribution Pxy (z|y) can be viewed as a generative model, probabilistically describing the
observations resulting from a given value, y, of the quantity of interest. For example, if y is the value of
a parameter, the Px|y (x|y) is the probability distribution of the observation X when the parameter value
is set to y. If X is a continuous random variable with conditional density px|y (x|y) or a discrete random
variable with conditional probability mass function (pmf) pxy (x|y), then given a value y we can assess the
probability of a particular measurment value y by the magnitude of either the conditional density or pmf.

In decision making problems, we know the value of the observation, but do not know the value y.
Therefore, it is appealing to consider the conditional density or pmf as a function of the unknown values y,
with X fixed at its observed value. The resulting function is called the likelihood function. As the name
suggests, values of y where the likelihood function is largest are intuitively reasonable indicators of the true
value of the unknown quantity, which we will denote by y*. The rationale for this is that these values would
produce conditional densities or pmfs that place high probability on the observation X = x.

The Maximum Likelihood Estimator (MLE) is defined to be the value of y that maximizes the likelihood
function; i.e., in the continuous case

~

y(X) = ng;lxpxw (Xly) (1.1)
with an analogous definition for the discrete case by replacing the conditional density with the conditional

pmf. The decision rule ¥ (X) is called an “estimator,” which is common in decision problems involving a
continuous parameter. Note that maximizing the likelihood function is equivalent to minimizing the negative
log-likelihood function (since the logarithm is a monotonic transformation). Now let y* denote the true value
of Y. Then we can view the negative log-likelihood as a loss function

(L (y,y") = —logpxyy (X|y) (1.2)

where the dependence on y* on the right hand side is embodied in the observation X on the left. An

interesting special case of the MLE results when the conditional density Pxy (X|y) is a Gaussian, in which
case the negative log-likelihood corresponds to a squared error loss function.

Now let us consider the expectation of this loss, with respect to the conditional distribution Pxy (X|y*):

~E [logpxyy (XIy)] = [log (55) pxiy (aly”) da (1.3)

The true value y* minimizes the expected negative log-likelihood (or, equivalently, maximizes the expected
log-likelihood). To see this, compare the expected log-likelihood of y* with that of any other value y:

* X "
E [logpxy (X|y*) — logpx)y (X|y)] = E [log (pipfjﬂ(&f’y))ﬂ
= Jlog (ZED) by (aly*) do - (1.4)

x|y (z|y)
= KL (pxpy (2ly) ,px)y (2]y))

The quantity KL (px)y (#|y*),px|y (z]y)) is called the Kullback-Leibler (KL) divergence between the con-
ditional density function px|y (z|y*) and px|y (z|y). The KL divergence is non-negative, and zero if and

only if the two densities are equal [1]. So, we see that the KL divergence acts as a sort of risk function in
the context of Maximum Likelihood Estimation.

1.3 The Cramer-Rao Lower Bound

The MLE is based on finding the value for Y that maximizes the likelihood function. Intuitively, if the
maximum point is very distinct, say a well isolated peak in the likelihood function, then the easier it will be

to distinguish the MLE from alternative decisions. Consider the case in which Y is a scalar quantity. The

2
“peakiness” of the log-likelihood function can be gauged by examining its curvature, —Mggxi';my), at the

point of maximum likelihood. The higher the curvature, the more peaky is the behavior of the likelihood
function at the maximum point. Of course, we hope that the MLE will be a good predictor (decision)
for the unknown true value y*. So, rather than looking at the curvature of the log-likelihood function at
the maximum likelihood point, a more appropriate measure of how easily it will be to distinguish y* from
the alternatives is the expected curvature of the log-likelihood function evaluated at the value y*. The
expectation taken over all possible observations with respect to the conditional density pxy (x|y*). This

2 .
quantity, denoted I (y*) = F [f%y‘;’(l‘y)} l|y=y+, is called the Fisher Information (FI). In fact, the FI
provides us with an important performance bound known as the Cramer-Rao Lower Bound (CRLB).

The CRLB states that under some mild regularity assumptions about the conditional density function

px|y (z]y), the variance of any unbiased estimator is bounded from below by the inverse of the I (y*)[5], [4],

[3]- Recall that an unbiased estimator is any estimator Y that satisfies F [Y} = y*. The CRLB tells us is
that

var (;) > % (1.5)

If Y is a vector-valued quantity, then the expected negative Hessian matrix (matrix of partial second
derivatives) of the log-likelihood function is called the Fisher Information Matrix (FIM), and a similar
inequality tells us that the variance of each component of any unbiased estimator of y* is bounded below by
the corresponding diagonal element of the inverse of the FIM. Since the MSE of an unbiased estimator is
equal to its variance, we see that the CRLB provides a very useful lower bound on the best MSE performance
that we can hope to achieve. Thus, the CRLB is often used as a comparison point for evaluating estimators.
It may or may not be possible to achieve the CRLB, but if we find a decision rule that does, we know
that it also minimizes the MSE risk among all possible unbiased estimators. In general, it may be difficult
to compute the CRLB, but in certain important cases it is possible to find closed-form or computational
solutions.

1.4 Bayesian Decision Theory

Bayesian Decision Theory provides a formal system for integrating prior knowledge and observed obser-
vations. For the purposes of illustration we will focus on problems involving continuous variables and
observations, but extensions to discrete cases are straightforward (simple replace probability densities with
probability mass functions, and integrals with summations). The key elements of Bayesian methods are:

1. a prior probability density function py (y) describing a priori knowledge of probable states for the
quantity Y;

2. the likelihood function pyy (z|y), as described above;

3. the posterior density function py|x (y|z).

CHAPTER 1. BASIC ELEMENTS OF STATISTICAL DECISION THEORY
AND STATISTICAL LEARNING THEORY

The posterior density is a function of the prior and likelihood, obtained according to Bayes rule:

pxy (zy) py (¥)

prix (o) = T el oy (o) 4y (16)
The posterior is an indicator of probable values for Y, based on the prior knowledge and the observation.
Several options exist for deriving a specific estimate of Y using the posterior. The mean value of the posterior
density is one common choice (commonly called the posterior mean). The posterior mean is the decision
rule that minimizes the expected squared error loss (MSE risk) function. The value y where the posterior
density is maximized is another popular estimator (commonly called the Maximum A Posteriori (MAP)
estimator). Note that the denominator of the posterior is independent of y, so the MAP estimator is simply
the maximizer of the product of the likelihood and the prior. Therefore, if the prior is a constant function,
the MAP estimator and MLE coincide.

1.5 Statistical Learning

In all of the methods described above, we assumed some amount of knowledge about the distributions of the
observation X and quantity of interest Y. Such knowledge can come from a careful analysis of the physical
characteristics of the problem at hand, or it can be gleaned from previous experience. However, there are
situations where it is difficult to model the physics of the problem and we may not have enough experience
to develop complete and accurate probability models. In such cases, it is natural to adopt a statistical
learning approach [2], [7].

Statistical learning methods are based on developing decision rules or estimators based only on a collection
of training examples, rather than predetermined probability models. Statistical learning methods are often
said to be distribution-free, since they do not assume particular probability models. The canonical set-up
for statistical learning is as follows. We begin with a collection of training examples, {(X;, Y;)}" ;, which are
assumed to be independently and identically distributed according to an unknown probability distribution
Pxy (z,y). If we knew Px y (z,y), then we could compute a desired risk function and design an optimal
decision rule using the methods described above. In essence, the training examples give us a glimpse at the
underlying distribution, but our knowledge of it is far from complete. We cannot exactly compute a risk
function, and therefore we cannot derive a corresponding optimal decision rule.

There are at least two ways to proceed at this point. One possibility is to use the training examples to
estimate the joint probability distribution, and then use this estimate to derive an decision rule. Unfortu-
nately, the (general-purpose) problem of estimating a distribution is often more difficult from a limited pool
of data than is the problem of designing a specific-purpose decision rule. For this reason, a second possibility
is more commonly favored in practice. Rather than estimating the complete distribution, one can use the
training examples to directly design a decision rule. More precisely, perhaps the most common approach is
to use the training examples to compute an estimate of the desired risk function.

Suppose that we are interested in minimizing a particular risk function. Recall that the risk is the

expected value of a chosen loss function. Let ¢ (Y,Y) denote the loss, and let f(X) denote a candidate

decision function, mapping observations to predictions about Y (i.e., Y= f(X)). The empirical risk
function is constructed from the training examples as follows:
~ 1 n
R(f) = ~> €(f(X),Y). (17)
i=1
This is simply the average loss of the decision rule f over the set of training examples. Note that since the

training examples are independent and identically distributed, the expected value of the empirical risk is
equal to the true risk R (f) = E[£(f (X),Y)]. Moreover, we known (according to the law of large numbers)

that the empirical risk tends to the true risk as the size of the training sample increases. These facts lend
support to the idea of choosing a decision rule to minimize the empirical risk.

Empirical risk minimization (ERM) is just this process. Given a collection of possible decision rules, say
F, ERM selects a decision rule according to

fon = argg’teigR (f)- (1.8)

~

The selected rule, f,,, obviously depends on the given set of training examples, and therefore it is itself a

random quantity. The theoretically optimal counterpart to f, is the decision rule that minimizes the true
risk

= arggnei;zR(f). (1.9)

The central problem in statistical learning is to quantify how close f, performs relative to f*. Note that
R(f*)<R| f, |, since f* minimizes the true risk. Thus, one way to gauge the performance of f, relative

to f* is to show that there exists small positive values € and § such that with probability at least 1 — § we
have

R(}n> < R(f*) e (1.10)

If an inequality of this form holds, then we say that f,, is a Probability Approximately Correct (PAC)
decision rule [6].

To show that the empirical risk minimizer is a PAC decision rule, we first must understand how closely
the empirical risk matches the true risk. First, let us consider the empirical and true risk of the decision rule
f- Assume that the loss function is bounded between 0 and 1 (possibly after a suitable normalization). Then
the empirical risk function is a sum of independent random variables bounded between 0 and 1. Hoeffding’s
inequality is a bound on the deviations of such random sums from their corresponding mean values [2]. In
this case, the mean value is the true risk of f, and Hoeffding’s inequality states that

P <|1:2(f) —R(f)]| >g) < 2e72 (1.11)

Another equivalent statement is that the inequality | R (f) — R(f)| < e holds with probability at least
1—2¢2ne”, Thus, the two risks are probably close together, and the greater the number of training examples,
n, the closer they are.

Now we would like a similar condition to hold for all f € F, since ERM optimizes over the entire collection
F. Suppose that F is a finite collection of decision rules. Let |F| denote the number of rules in F. The
probability that the difference between the true and empirical risks, of one or more of the decision rules,

exceeds ¢ is bounded by the sum of the probabilities of each individual event of the form | R (f)—R (f)]| > &,
the so-called Union of Events bound. Therefore, with probability at least 1 — |F|2¢=2"" we have that

~

|R(f)—R(f)|<e (1.12)

CHAPTER 1. BASIC ELEMENTS OF STATISTICAL DECISION THEORY
AND STATISTICAL LEARNING THEORY

for all f € F. Equivalently, setting 6 = 2|F |e‘2”52, we have that with probability at least 1 — ¢ and for all
fer

R()-R(f)| < \/logf| +log (2/9), (1.13)

2n

Notice that the two risks are uniformly close together, and the closeness indicated by the bound increases
as n increases and decreases as the number of decision rules in F increases. In fact, the bound scales with
log|F|, and so it is reasonable to interpret the logarithm of the number of decision rules under consideration
as a measure of the complexity of the class.

~

Now using this bound, we can show that f, is a PAC decision rule as follows. Note that with probability

at least 1 — ¢
R <fn> < R (fn> + log\flgifg@/é)

~ e 1.14)
* log|F|+log(2/6 (
R(f) og \2:9(/)

* log|F|+log(2/6
S R(f)+2 gl \2n9(/)

IN

where the first inequality follows since the true and empirical risks are close for all f € F, and in particular for

~

f ., the second inequality holds since by definition f, minimizes the empirical risk, and the third inequality
holds again since the empirical risk is close to the true risk for all f, in this case for f* in particular. So, we

have shown that f,, is PAC.

PAC bounds of this form can be extended in many directions, for example to infinitely large or uncountable
classes of decision rules, but the basic ingredients of the theory are essentially like those demonstrated above.
The bottom line is that empirical risk minimization is a reasonable approach, provided one has access to
a sufficient number of training examples and the number, or more generally the complexity, of the class of
decision rules under consideration is not too great.

1.6 Further reading

Excellent treatments of classical decision and estimation theory can be found in a number of textbooks [5],
[4], [3], [1]. For references on statistical learning theory, outstanding textbooks are also available [2], [7], [6]
for further reading.

Chapter 2

Elements of Statistical Learning Theory

2.1 Three Elements of Statistical Data Analysis

1. Probabilistic Formulation: of learning from data and prediction problems.
2. Performance Characterization:: e concentration inequalities
e uniform deviation bounds
e approximation theory
e rates of convergence
3. Practical Algorithms: that run in polynomial time (e.g., decision trees, wavelet methods, support
vector machines).

2.2 Learning from Data

To formulate the basic learning from data problem, we must specify several basic elements: data spaces,
probability measures, loss functions, and statistical risk.

2.2.1 Data Spaces
Learning from data begins with a specification of two spaces:
X = Input Space (2.1)

Y = Output Space. (2.2)

The input space is also sometimes called the “feature space” or “signal domain.” The output space is also
called the “class label space,” “outcome space,” “response space,” or “signal range.”

Example 2.1

X =R? d-dimensional Euclidean space of “feature vectors” (2.3)

Y ={0,1} two classes or “class labels” (2.4)

I This content is available online at <http://cnx.org/content/m16269,1.2/>.

8 CHAPTER 2. ELEMENTS OF STATISTICAL LEARNING THEORY

Example 2.2

X =R one-dimensional signal domain (e.g., time-domain) (2.5)

Y =R real-valued signal (2.6)

A classic example is estimating a signal f in noise:

Y=f(X)+W (2.7)

where X is a random sample point on the real line and W is a noise independent of X.

2.2.2 Probability Measure and Expectation

Define a joint probability distribution on X x Y denoted Px y. Let (X,Y’) denote a pair of random variables
distributed according to Px y. We will also have use for marginal and conditional distributions. Let Px
denote the marginal distribution on X, and let Py|x denote the conditional distribution of Y given X.
For any distribution P, let p denote its density function with respect to the corresponding dominating
measure; e.g., Lebesgue measure for continuous random variables or counting measure for discrete
random variables.

Define the expectation operator:

Exy [f(X.Y)] = / f (,9) dPy y (z,y) = / f (@,9) pxy (@,y) dedy. (2.8)

We will also make use of corresponding marginal and conditional expectations such as Fx and Fy|x.
Wherever convenient and obvious based on context, we may drop the subscripts (e.g., E instead of Ex y)
for notational ease.

2.2.3 Loss Functions

A loss function is a mapping

{:YxY—R. (2.9)

Example 2.3
In binary classification problems,) = {0,1}. The 0/1 loss function is usually used: £ (y1,y2) =
1y, y,, where 14 is the indicator function which takes a value of 1 if condition A is true and zero

~

otherwise. We typically will compare a true label y with a prediction ¥, in which case the 0/1 loss
simply counts misclassifications.

Example 2.4
In regression or estimation problems,) = R. The squared error loss function is often employed:
C(y1,y2) = (y1 — y=2) 2, the square of the difference between y; and ys. In application, we are

interested in a true value y in comparison to an estimate ¥.

2.2.4 Statistical Risk

The basic problem in learning is to determine a mapping f : X —) that takes an input = € X and predicts
the corresponding output y €). The performance of a given map f is measured by its expected loss or risk:

R(f)=Exy [((f(X),Y)]. (2.10)

The risk tells us how well, on average, the predictor f performs with respect to the chosen loss function. A
key quantity of interest is the mininum risk value, defined as

R = infR(f) (2.11)

where the infinum is taking over all measurable functions.

2.2.5 The Learning Problem

Suppose that (X, Y) are distributed according to Px y ((X,Y) ~ Px y for short). Our goalis to find a map so
that f (X) =~ Y with high probability. Ideally, we would chose f to minimize the risk R (f) = E[¢ (f (X),Y)].
However, in order to compute the risk (and hence optimize it) we need to know the joint distribution Px y.
In many problems of practical interest, the joint distribution is unknown, and minimizing the risk is not
possible.

Suppose that we have some exemplary samples from the distribution. Specifically, consider n samples
X;, Y, distributed independently and identically (iid) according to the otherwise unknown Px y. Let us
call these samples training data, and denote the collection by D,, = X;,Y;" ;. Let’s also define a collection
of candidate mappings F. We will use the training data D,, to pick a mapping f, € F that we hope will be
a good predictor. This is sometimes called the Model Selection problem. Note that the selected model f,
is a function of the training data:

fo (X) = f(X;Dy), (2.12)
which is what the subscript n in f, refers to. The risk of f, is given by

R(fn) =Exy [t (fn (X),Y)]. (2.13)

Note that since f,, depends on D,, in addition to a new random pair (X,Y’), the risk is a random variable
(i.e., a function of the training data D,,). Therefore, we are interested in the expected risk, computed over
random realizations of the training data:

Ep, [R(fn)]- (2.14)

We hope that f, produces a small expected risk.

The notion of expected risk can be interpreted as follows. We would like to define an algorithm (a model
selection process) that performs well on average, over any random sample of n training data. The expected
risk is a measure of the expected performance of the algorithm with respect to the chosen loss function. That
is, we are not gauging the risk of a particular map f € F, but rather we are measuring the performance of
the algorithm that takes any realization of training data and selects an appropriate model in F.

This course is concerned with determining “good” model spaces F and useful and effective model selection
algorithms.

10

CHAPTER 2. ELEMENTS OF STATISTICAL LEARNING THEORY

Chapter 3

Introduction to Classification and
Regression'

3.1 Pattern Classification

Recall that the goal of classification is to learn a mapping from the feature space, X', to a label space,).
This mapping, f, is called a classifier. For example, we might have

X = Rf
(3.1)
y = {0,1}.
We can measure the loss of our classifier using 0 — 1 loss; i.e.,
~ 1,y
¢ (yy> 1. =1 rY (3.2)
Recalling that risk is defined to be the expected value of the loss function, we have
R(f)=Exy [t(f(X),Y)] = Exy [1iyx02vy] = Pxy (f (X) #Y). (33)

The performance of a given classifier can be evaluated in terms of how close its risk is to the Bayes’ risk.
Definition 3.1: (Bayes’ Risk)
The Bayes’ risk is the infimum of the risk for all classifiers:

R = in FR(f). (3.4)

We can prove that the Bayes risk is achieved by the Bayes classifier.

Definition 3.2: Bayes Classifier
The Bayes classifier is the following mapping:

b @1
fr@ =1 0, otherwise (8.5)
where
n(r)=Pyix (Y =1X=u1). (3.6)

LThis content is available online at <http://cnx.org/content/m16272/1.2/>.

11

12

CHAPTER 3. INTRODUCTION TO CLASSIFICATION AND REGRESSION

Note that for any x, f* () is the value of y € {0,1} that maximizes Pxy (¥ = y|X = z).
Theorem 3.1: Risk of the Bayes Classifier

R(f*)=R". (3.7)
Proof:
Let g (z) be any classifier. We will show that
P(g(X)#YIX =2) > P(f* () £ Y|X = a). (3.8)
For any g,

P(g(X) #Y|X =2) 1= P(Y =g(X)|X =)

= 1-[P(Y=1,g(X)=1X=2)+P(Y =0,9(X) = 0|X = 2)]

= 1= B ly=nlpeo-nlX =] + Elpyglyo-alX =2 o
= 1= [lg@=0F Ly=nX = 2] + Lig@w=0 F [1iy=oy|X = 2]]
= 1= [g=nP (Y = 11X = 2) + Lg(@)=0) P (Y = 0|X = z)]
= 1= [Lg(m)=1)71 (2) + Lig(m)=0y (1 =7 (2))]
Next consider the difference
P(g(x) #Y|X =) - P(f" (z) #Y[X =2)
(@) [1{p-@=1y = Lg=13] + (1 =1 (@) [1¢p@)=0) = Lg(a)=0}]
(3.10)
1(@) (L @=13 = Lgw=13] = (1 = n(@)) [1{p+@=1} = Lg@)=1}]
20 (2) = 1) (Lgp@)=13 = Yg()=13) »
where the second equality follows by noting that 1;4)—0y = 1 — 1{4(2)=1}- Next recall
. L n(z)=1/2
o (@) =A{ o (3.11)
0, otherwise
For x such that n (z) > 1/2, we have
(2n(z) — 1) <l{f*(ac)=1} = Lg(@)=1} > (3.12)
1 ~—~00r1
>0
>0
and for = such that n (z) < 1/2, we have
(2n(z) —1) (1{]‘*(:6)—1} — 1{g(a)=1} >, (3.13)
" \——0 ~—~—%or1

<0

<0

13

which implies

(2n () = 1) (L p=(@)=1} — L{g(x)=1}) =0 (3.14)

or

P(g(X)£Y|X =) 2 P(f" () £ Y|X = 2). (3.15)

Note that while the Bayes classifier achieves the Bayes risk, in practice this classifier is not realizable
because we do not know the distribution Pxy and so cannot construct 7 (z).
3.2 Regression

The goal of regression is to learn a mapping from the input space, X, to the output space,). This mapping,
f, is called a estimator. For example, we might have

X = R4
Yy = R.

(3.16)

We can measure the loss of our estimator using squared error loss; i.e.,

- a2
l (?/y) = (y y) . (3.17)
Recalling that risk is defined to be the expected value of the loss function, we have
R(f) = Exy [(f (X),Y)] = Exy |(f (X) = V)] (3.18)

The performance of a given estimator can be evaluated in terms of how close the risk is to the infimum of
the risk for all estimator under consideration:

R = in FR(f). (3.19)

Theorem 3.2: Minimum Risk under Squared Error Loss (MSE)
Let f* (x) = Eypx [V|X = 4]

R(f*) = R*. (3.20)

14 CHAPTER 3. INTRODUCTION TO CLASSIFICATION AND REGRESSION
Proof:

R(f) = Exy {(f (X) —Y)z}
- Ex By ix |(F (X) - Y)?lx]]
= Bx [Byx [(£(X) = Byix [VIX] + Byjx [V]X] - ¥)*[X]

Ex| Ey|x [(f (X) - BEy|x [Y|X])2|X}
= +2By|x [(f (X) = Byx [Y[X]) (Byx [YX] - Y) |X] (3.21)
+Ey|x [(EYlX Y]X] - Y)2|X}

Ex| PEyix [(f (X) = By|x [Y|X])2|X]
— +2 (f (X) = Byix [Y[X]) x 0
+Ey|x [(EYlX [Y]X] - Y)2|X}

- Exy [(£(X) = Byix VIX)®] + R ().

Example

Thus if f* (z) = By |x [Y|X = 2], then R(f*) = R*, as desired.

3.3 Empirical Risk Minimization

Definition 3.3: Empirical Risk
Let {X;,Yi} (S Pxy be a collection of training data. Then the empirical risk is defined as

Rall) =23 007 (X)), V). (3:22)

Empirical risk minimization is the process of choosing a learning rule which minimizes the empirical
risk; i.e.,

~ ~

o= argmink (). (323)

Example 3.1: Pattern Classification
Let the set of possible classifiers be

F={z s sign (wz):weR} (3.24)
and let the feature space, X, be [0, 1]d or R%. If we use the notation f,, (z) = sign (w’x), then the
set of classifiers can be alternatively represented as

F ={fw:weR. (3.25)

In this case, the classifier which minimizes the empirical risk is

~

fo =

~

argmin Rn (f)

— in L5 . ,
= argmin o 3Ty Lsigntu x),)-

°
e o
° ° A
[
o
° e O
o
o o ©
o o
o}
° o
5 o
o
o
¢}
o
o
o
o ° o

Figure 3.1: Example linear classifier for two-class problem.

Example 3.2: Regression
Let the feature space be

and let the set of possible estimators be

X =10,1]

F = {degree d polynomials on [0, 1]}.

In this case, the classifier which minimizes the empirical risk is

~

n

Alternatively, this can be expressed as

~

arg min %
weRH!

argminRn (f)

= int S X;)—Y)2
arg'gﬂez}_}n Zz:l (f(z) z)

i (wo +wi X + o+ wg X3 — Yi)2

arg min || Vw —Y |?
weRAHL

15

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

16 CHAPTER 3. INTRODUCTION TO CLASSIFICATION AND REGRESSION

where V is the Vandermonde matrix

1 X, .. X¢
1 Xy .. X¢§

V=1| . (3.31)
1 X, . Xx¢

The pseudoinverse can be used to solve for w:

w=(V'V)'VY. (3.32)

A polynomial estimate is displayed in Figure 3.2.

k=3

02

04 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9

Figure 3.2: Example polynomial estimator. Blue curve denotes f*, magenta curve is the polynomial

fit to the data (denoted by dots).

3.4 Overfitting

Suppose F, our collection of candidate functions, is very large. We can always make

~

7}?}”%" (f)

smaller by increasing the cardinality of F, thereby providing more possibilities to fit to the data.
Consider this extreme example: Let F be all measurable functions. Then every function f for which

(3.33)

Fla)={ Y; r=X; fori=1,...n (3.34)

any value, otherwise

has zero empirical risk (R, (f) =
input X .

0). However, clearly this could be a very poor predictor of Y for a new

Example 3.3: Classification Overfitting

Consider the classifier in Figure 3.3; this demonstrates overfitting in classification. If the data
were in fact generated from two Gaussian distributions centered in the upper left and lower right
quadrants of the feature space domain, then the optimal estimator would be the linear estimator
in Figure 3.1; the overfitting would result in a higher probability of error for predicting classes of

future observations.

Figure 3.3: Example of overfitting classifier. The classifier’s decision boundary wiggles around in order
to correctly label the training data, but the optimal Bayes classifier is a straight line.

Example 3.4: Regression Overfitting
Below is an m-file that simulates the polynomial fitting. Feel free to play around with it to get an

idea of the overfitting problem.

% poly fitting
%~ rob~nowak~~1/24/04
clear
close™all

%~ generate~and plot™"true" function

t~="(0:.001:1)’;

f7="exp(-5*(t-.3).72)+.5*xexp(-100*(t-.5) .72)+.5*exp(-100* (t-.75) ."2) ;

figure(1)
plot(t,f)

% generate™n"training~data~& plot
n~="10;

sig™="0.1;"%"std"of "noise
x~=".97*rand(n,1)+.01;

17

vy ="exp(-5%(x-.3).72)+.5%exp(-100*(x-.5) .72) +.5*exp(-100* (x-.75) ."2) +sig*randn(size(x)) ;

figure(1)
clf
plot(t,f)
hold”on

18 CHAPTER 3. INTRODUCTION TO CLASSIFICATION AND REGRESSION

plot(x,y,’.?)

%~fit"with”polynomial~of ~order~k~~ (poly~degree~up~to~k-1)

k=3;

forTi=1:k

v ,i)T="x.7(1-1)
end

P ="1inv (V> *V)*V’ xy;
forTi=1:k
Ve (e ,i) ="t 7 (i-1)
end

yh™="Vt*p;
figure(1)

clf

plot(t,f)

hold”on
plot(x,y,’.?)
plot(t,yh,’m’)

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 09 1

0 0.1 0.2 03 0.4 0.5 06 0.7 0.8 09 1
(©)
k=7
5 T T T T T T T T T
OPO‘?\’\%
o5 1
"o 4
‘\
15 |
\
\
|
\
120 \‘,
\
|
|
125 1
|
[0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.4: Example polynomial fitting problem. Blue curve is f*, magenta curve is the polynomial fit
to the data (dots). (a) Fitting a polynomial of degree d = 0: This is an example of underfitting (b)d = 2

(AN Ad=4(A) d=6- Thicic an exambdle of overfittine The embpirical loce ie zero b1t clearlv the ectimator

19

20

CHAPTER 3. INTRODUCTION TO CLASSIFICATION AND REGRESSION

Chapter 4

Introduction to Complexity
Regularization'

4.1 Competing Goals: The Bias-Variance Tradeofft

We ended the previous lecture (Chapter 3) with a brief discussion of overfitting. Recall that, given a set of n
data points, D,,, and a space of functions (or models) F, our goal in solving the learning from data problem

being taken over the distribution Pxy on the data points D,. One approach to avoiding overfitting is to

restrict F to some subset of all measurable function. To gauge the performance of a given f in this case, we
examine the difference between the expected risk of f and the Bayes’ risk (called the excess risk).

w(n)] - (e

The approximation error term quantifies the performance hit incurred by imposing restrictions on F.
The estimation error term is due to the randomness of the training data, and it expresses how well the

~

~

is to choose a function f, € F which minimizes the expected risk E , where the expectation is

E

R <fn>] - mffefR(f)> + (inferR(f) — RY) (4.1)

approximation error

estimation error

chosen function f, will perform in relation to the best possible f in the class F. This decomposition into
stochastic and approximation errors is similar to the bias-variance tradeoff which arises in classical estimation
theory. The approximation error is like a bias squared term, and the estimation error is like a variance term.
By allowing the space Fto be large? we can make the approximation error as small as we want at the cost
of incurring a large estimation error. On the other hand, if Fis very small then the approximation error will
be large, but the estimation error may be very small. This tradeoff is illustrated in Figure 4.1.

LThis content is available online at <http://cnx.org/content/m16274/1.2/>.
2When we say Fis large, we mean that |F|, the number of elements in F, is large.

21

22 CHAPTER 4. INTRODUCTION TO COMPLEXITY REGULARIZATION

estimation
error

approximation
error

v

Complexity of F

Figure 4.1: Illustration of tradeoff between estimation and approximation errors as a function of the
size (complexity) of the F.

Why is this the case? We do not know the true distribution Pxy on the data, so instead of minimizing
the expected risk of we design a predictor by minimizing the empirical risk:

~ ~

fu = argminRa(f), (4.2)

Ra(f) = LY 0(f(X).Y:).

~

If Fis very large then R,, (f) can be made arbitrarily small and the resulting f, can “overfit” to the data

since Ry, (f) is not a good estimator of the true risk R <fn> .

23

Prediction 4
Error
***************** true risk
empirical risk -
| -
B — -
underfitting Best overfitting Complexity
Model

Figure 4.2: Illustration of empirical risk and the problem of overfitting to the data.

The behavior of the true and empirical risks, as a function of the size (or complexity) of the space F, is
illustrated in Figure 4.2. Unfortunately, we can’t easily determine whether we are over or underfitting just
by looking at the empirical risk.

4.2 Strategies To Avoid Overfitting

Picking

~ ~

= j 4.3
Fn = argminRn (f) (4.3)
is problematic if Fis large. We will examine two general approaches to dealing with this problem:

1. Restrict the size or dimension of F(e.g., restrict Fto the set of all lines, or polynomials with maximum
degree d). This effectively places an upper bound on the estimation error, but in general it also places
a lower bound on the approximation error.

2. Modify the empirical risk criterion to include an extra cost associated with each model (e.g., higher
cost for more complex models):

~

fn = arg?}%eig{Rn(f)JrC(f)}- (4.4)

The cost is designed to mimic the behavior of the estimation error so that the model selection procedure
avoids models with a estimation error. Roughly this can be interpreted as trying to balance the tradeoff
illustrated in Figure 4.1. Procedures of this type are often called complexity penalization methods.

24 CHAPTER 4. INTRODUCTION TO COMPLEXITY REGULARIZATION

Example 4.1
Revisit the polynomial regression example (Lecture 2, Ex. 4) (Example 3.4: Regression Over-
fitting), and incorporate a penalty term C (f) which is proportional to the degree of f, or the
derivative of f. In essence, this approach penalizes for functions which are too “wiggly”, with the
intuition being that the true function is probably smooth so a function which is very wiggly will
overfit the data.

How do we decide how to restrict or penalize the empirical risk minimization process? Ap-
proaches which have appeared in the literature include the following.

4.2.1 Method of Sieves

Perhaps the simplest approach is to try to limit the size of Fin a way that depends on the number of training
data n. The more data we have, the more complex the space of models we can entertain. Let the class of
candidate functions grow with n. That is, take

Fi,Fo,--- , Fny - (4_5)

where |F;| grows as i — oco. In other words, consider a sequence of spaces with increasing complexity or
degrees of freedom depending on the number of training data samples, n.

Given samples {X;,Y;}7; ii.d. distributed according to Pxy, select f € F, to minimize the empirical
risk

~ ~

fn :argjpg%]{n (f). (4.6)

In the next lecture (Chapter 5) we will consider an example using the method of sieves. The basic idea is to
design the sequence of model spaces in such a way that the excess risk decays to zero as n — oo. This sort
of idea has been around for decades, but Grenander’s method of sieves is often cited as a nice formalization
of the idea: Abstract Inference, Wiley, New York.

4.2.2 Complexity Penalization Methods
4.2.2.1 Bayesian Methods

In certain cases, the empirical risk happens to be a (log) likelihood function, and one can then interpret the
cost C (f) as reflecting prior knowledge about which models are more or less likely. In this case, e=¢(f) is
like a prior probability distribution on the space F. The cost C (f) is large if f is highly improbable, and
C (f) is small if f is highly probable.

Alternatively, if we restrict Fto be small, and denote the space of all measurable functions as F = FUF€,
then it is essentially as if we have placed a uniform prior over all functions in F, and zero prior probability
on the functions in F°.

4.2.2.2 Description Length Methods

Description length methods represent each f with a string of bits. More complicated functions require more
bits to represent. Accordingly, we can then set the cost ¢ (f) proportional to the number of bits needed to
describe f (the description length). This results in what is known as the minimum description length
(MDL) approach where the minimum description length is given by

min{R. (f)+C (/)}. (47)

25

In the Bayesian setting, p (f) o< e"¢/) can be interpreted as a prior probability density on F, with more
complex models being less probable and simpler models being more probable. In that sense, both the
Bayesian and MDL approaches have a similar spirit.

4.2.2.3 Vapnik-Cervonenkis Dimension

The Vapnik-Cervonenkis (VC) dimension measures the complexity of a class Frelative to a random sample
of n training data. For example, take Fto be all linear classifiers in 2-dimensional feature space. Clearly, the
space of linear classifiers is infinite (there are an infinite number of lines which can be drawn in the plane).
However, many of these linear classifiers would assign the same labels to the training data.

The number of unique labellings of the training data that can be achieved with linear classifiers is, in
fact, finite. A line can be defined by picking any pair of training points, as illustrated in Figure 4.3. Two
classifiers can be defined from each such line: one that outputs a label “1” for everything on or above the
line, and another that outputs “0” for everything on or above. There exist (Z) such pairs of training points,
and these define all possible unique labellings of the training data. Therefore, there are at most 2 (g) unique
linear classifiers for any random set of n 2-dimensional features (the factor of 2 is due to the fact that for
each linear classifier there are 2 possible assignments of the labelling).

/7
/7
+1 P
PN
7
/7 -
[] 7/
Ve
Ve
/7
Ve
/
_® °
[) /s
Ve
/7
/7
Ve
/7
/s [)
Ve
/7
/7
Ve
/7
/7

Figure 4.3: Fitting a linear classifier to 2-dimensional data. There are an infinite number of such
classifiers. We can generate a linear classifier by choosing two data points, drawing a line with both
points on one side, and declaring all points on or above the line to be “+1” (or “—1”) and all points below
the line to be “—1" (or “+17).

26 CHAPTER 4. INTRODUCTION TO COMPLEXITY REGULARIZATION

/ 1 //
/ +
ey 'X/
121 P
/ s -1
U s
I A
/ s
/ e
/ s
/ /
/ //" []
’ y
/ //
/ s
[°
///
71
!
s
/

Figure 4.4: From the discussion in the previous figure, we see that the two linear classifiers depicted
in this figure are equivalent for this set of data points, and hence relative to the set of n training data
there are only on the order of n? unique linear classifiers.

Thus, instead of infinitely many linear classifiers, we realize that as far as a random sample of n training
data is concerned, there are at most

= n(n-1) (4.8

unique linear classifiers. That is, using linear classification rules, there are at most n (n — 1) ~ n? unique

label assignments for n data points. If we like, we can encode each possibility with log,n (n — 1) & 2logyn
bits. In d dimensions there are 2 (3) hyperplane classification rules which can be encoded in roughly dlog,n
bits. Roughly speaking, the number of bits required for encoding each model is the VC dimension. The
remarkable aspect of the VC dimension is that it is often finite even when F is infinite (as in this example).

If Xhas d dimensions in total, we might consider linear classifiers based on 1,2,--- ,d features at a time.
Lower dimensional hyperplanes are less complex than higher dimensional ones. Suppose we set

Fi1 = linear classifiers using 1 feature
F> = linear classifiers using 2 features . (4.9)
and so on

These spaces have increasing VC dimensions, and we can try to balance the empirical risk and a cost function

depending on the VC dimension. Such procedures are often referred to as Structural Risk Minimization.
This gives you a glimpse of what the VC dimension is all about. In future lectures we will revisit this topic
in greater detail.

27

4.2.3 Hold-out Methods
The basic idea of “hold-out” methods is to split the n samples D = {X;,Y;}"; into a training set, Dy, and
a test set, Dy .

DT = {XH)/Z}:'LM DV = {Xh)/i}?:erl : (410)

Now, suppose we have a collection of different model spaces {F,} indexed by A € A (e.g., F is the set of
polynomials of degree d, with A = d), or suppose that we have a collection of complexity penalization criteria

Ly (f) indexed by X (e.g.let Ly (f) =R (f) + Ac(f), with A € RT). We can obtain candidate solutions
using the training set as follows. Define

~

R (f) = XL 0(f(X0),Y)) (4.11)
and take
fa = arg}g__ng(f) (4.12)
or
fxo = argmin{Rm (f) + e (f)} - (4.13)

This provides us with a set of candidate solutions {f,}. Then we can define the hold-out error estimate
using the test set:

Rv(f) = s Liem C(f(X0),Y0), (4.14)

~ ~

and select the “best” model to be f= f. where
A

A = argm)%'nRV <fA> . (4.15)
This type of procedure has many nice theoretical guarantees, provided both the training and test set grow
with n.
4.2.3.1 Leaving-one-out Cross-Validation

A very popular hold-out method is the so call “leaving-one-out cross-validation” studied in depth by Grace
Wahba (UW-Madison, Statistics). For each A we compute

~(k)

_ LS Y (4.16)
I argmin; Z;;k C(f(X3),Ys)+AC(f)
or
~(k)
= in LS 0(F (X)), Y. (4.17)
I arg;gggnzi;k (f (Xi),Y:)

Then we have cross-validation function

V() 7 Lk (W (x) ,Yk)
A* = argm)%'nV N).

(4.18)

28 CHAPTER 4. INTRODUCTION TO COMPLEXITY REGULARIZATION

4.3 Summary

To summarize, this lecture gave a brief and incomplete survey of different methods for dealing with the issues
of overfitting and model selection. Given a set of training data, D, = {X;,Y;}", our overall goal is to find

= argv}lei}zR(f) (4.19)

from some collection of functions, F. Because we do not know the true distribution Pxy underlying the
data points D,,, it is difficult to get an exact handle on the risk, R (f). If we only focus on minimizing the

empirical risk R (f) we end up overfitting to the training data. Two general approaches were presented.

1. In the first approach we consider an indexed collection of spaces {Fx},c, such that the complexity of
F) increases as A increases, and

lim F = F. (4.20)

A solution is given by
.= ; 4.21
fxe =arg min Rn (f) (4.21)

where either * is a function which increases with n,
No= A(m), (4.22)

or * is chosen by hold-out validation.
2. The alternative approach is to incorporate a penalty term into the risk minimization problem formula-
tion. Here we consider an indexed collection of penalties {Cy}, ., satisfying the following properties:

a. C\: F—RT;
b. For each f € F and A1 < Ay we have Cy, (f) < Cy, (f);
c. There exists A\g € A such that C), (f) =0 for all f € F.

In this formulation we find a solution

fa = argmink. () +Cx (f). (4.23)

where either A* = X (n), a function growing the number of data samples n, or A* is selected by hold-out
validation.

4.4 Consistency

If an estimator or classifier f,. satisfies

E

R(fk*>1 — infR(f) as n — oo, (4.24)

feF

then we say that f,. is F-consistent with respect to the risk R. When the context is clear, we will simply

say that f is consistent.

Chapter 5

An Example of the Use of Sieves for
Complexity Regularization in Denoising’

Consider the following setting. Let
Y = f*(X)+ W, (5.1)
where X is a random variable (r.v.) on X =[0,1], W is ar.v. on) = R, independent of X and satisfying
EW]=0 and E[W?]=0%< . (5.2)
Finally let f* :[0,1] — R be a function satisfying
|7 (&) = f*(s)| < Llt — s|, Vt,s €[0,1], (5.3)

where L > 0 is a constant. A function satisfying condition (5.3) is said to be Lipschitz on [0, 1]. Notice that
such a function must be continuous, but it is not necessarily differentiable. An example of such a function
is depicted in Figure 5.1(a).

I This content is available online at <http://cnx.org/content/m16261,1.3/>.

29

30

CHAPTER 5. AN EXAMPLE OF THE USE OF SIEVES FOR COMPLEXITY
REGULARIZATION IN DENOISING

Figure 5.1: Example of a Lipschitz function, and our observations setting. (a) random sampling of f*,
the points correspond to (X;,Y:), ¢ = 1,...,n; (b) deterministic sampling of f*, the points correspond

to (i/n,Y;), i=1,..,n.

Note that
EY[X =2 = E[f"(X)+W[X =1
= FE[f*(x)+W|X =2z (5.4)
fr@)+ EW] = f*(z).
Consider our usual setup: Estimate f* using n training examples
i..d.
Xi, Yy, ~ Pxy,
X Yk, ar (5.5)

}/i = f* (X,L) + Wi, 1= {1, ...,n},

where “%" means independently and identically distributed. Figure 5.1(a) illustrates this setup.
In many applications we can sample X = [0, 1] as we like, and not necessarily at random. For example

31

we can take n samples uniformly on [0,1]

i

r; = o 7;:1,...,77,,
i = fz)+W; (5.6)
= f (%) + W;.
We will proceed with this setup (as in Figure 5.1(b)) in the rest of the lecture.
Our goal is to find f,, such that E [H fr- fn||2] — 0, as n — 0 (here || - || is the usual Lo-norm; i.e.,
* p 1 * p
£ = fall® = Jo 1F7 () = fu ()] dt).
Let
F ={f: f is Lipschitz with constant L}. (5.7)
The Risk is defined as
1
ROV =I5=F 1P = [1 = rwPae 69

The Expected Risk (recall that our estimator f,, is based on {z;,Y;} and hence is a r.v.) is defined as

Finally the Empirical Risk is defined as

R =13 (f (;) - Yi>2. (5.10)

=1

E =F

| f* - fnﬂ : (5.9)

Let 0 < m; < mg <mg < --- be a sequence of integers satisfying m,, — oo as n — oo, and k,m,, = n for
some integer k, > 0. That is, for each value of n there is an associated integer value m,,. Define the Sieve
]:17 -7:23]:37 ey

Mn
j=1
F, is the space of functions that are constant on intervals
1
Ij,mn = |:] 7]> ’ .] = 1) ceey M. (512)
My My

From here on we will use m and k instead of m,, and k,, (dropping the subscript n) for notational ease.
Define

fu(®) = ¢ 1ger,,y, Where =z S of (n> (5.13)

Jj=1 iiieljm

Note that f, € F,.

CHAPTER 5. AN EXAMPLE OF THE USE OF SIEVES FOR COMPLEXITY

52 REGULARIZATION IN DENOISING

Example 5.1: Exercise 1

Upper bound || f* — f,|%.

I =f 1P = Jo 117 (&) = fa (0) Pt
- ST U0~ fa) Pt
- S () e
= ;nlffjmf* kzzfelﬂnf*(
= j 1fljm(‘Zz—eljm (f* (

j:l flj,m (E iteljm |f r (%)

iy (e, m) at

- 27:1 flj,m(ﬁ)

S E(E) = (5)

)2 dt (5.14)

IN

The above implies that || f* — an2 — 0 as n — oo, since m = m,, — 0o as n — o0o. In words, with n
sufficiently large we can approximate f* to arbitrary accuracy using models in F,, (even if the functions we
are using to approximate f* are not Lipschitz!).

For any f € Fp,,f = Z;”:l ¢j 1gier, .}, we have

Rn(f)=%z P CER O (5.15)

~ ~

Let f, = argminser, Rn (f). Then

L 1
t)=> ¢ilyer,,y, where ¢;= - Y; (5.16)

Example 5.2: Exercise 2
Show (5.16).

Note that F |:Cj:| = c;f and therefore F

fn (t)] = fn (t). Lets analyze now the expected risk of

E||f - fn||2] =

H f*_fn+fn_fn||2‘|

= = FflPHE| fu— fall?| +2E

<f* fnvfnff >]
(5.17)

I = fallP + B | fo = ful?| +2< f* = fu E

fn_fn] >

= H f**fn||2+E

H fn - fn||2] ’

~

where the final step follows from the fact that E | f,, (t)] = fn (). A couple of important remarks

pertaining the right-hand-side of equation (5.17): The first term, || f* — fu||?, corresponds to the
approximation error, and indicates how well can we approximate the function f* with a function
from F,. Clearly, the larger the class F,, is, the smallest we can make this term. This term is

~

precisely the squared bias of the estimator f,. The second term, E ||| f, — fn||2 , is the estimation

error, the variance of our estimator. We will see that the estimation error is small if the class of
possible estimators F,, is also small.
The behavior of the first term in (5.17) was already studied. Consider the other term:

~ ~ 2
| fn_fn||2] = B[yl ®—fu®)] dt

.2
= E ZT:lfIMJC;_Cﬂ dt

E

33

= Yin g, Bllg - Cj|2} dt - (5.18)
m E[w?
= Zj:l f]]m [k }dt
< Y S, Fd
= Yiing=% =%
Combining all the facts derived we have
B L? m 1 m
E|| £ _fn|2‘| < — + 52 =0 (max{Z,) (5.19)
m n m2’ n

This equation used Big-O notation.

What is the best choice of m? If m is small then the approximation error (i.e., O (1/m?)) is
going to be large, but the estimation error (i.e., O (m/n)) is going to be small, and vice-versa.
This two conflicting goals provide a tradeoff that directs our choice of m (as a function of n). In
Figure 5.2 we depict this tradeoff. In Figure 5.2(a) we considered a large m,, value, and we see that
the approximation of f* by a function in the class F,, can be very accurate (that is, our estimate
will have a small bias), but when we use the measured data our estimate looks very bad (high
variance). On the other hand, as illustrated in Figure 5.2(b), using a very small m,, allows our
estimator to get very close to the best approximating function in the class F,,, so we have a low
variance estimator, but the bias of our estimator (i.e., the difference between f,, and f*) is quite
considerable.

34

CHAPTER 5. AN EXAMPLE OF THE USE OF SIEVES FOR COMPLEXITY
REGULARIZATION IN DENOISING

(b)

Figure 5.2: Approximation and estimation of f* (in blue) for n = 60. The function f, is depicted in

green and the function f,, is depicted in red. In (a)we have m = 60 and in (b) we have m = 6.

We need to balance the two terms in the right-hand-side of (5.19) in order to maximize the rate
of decay (with n) of the expected risk. This implies that -1y = ™ therefore m,, = n'/? and the
Mean Squared Error (MSE) is

Bl fu= | =0 (n72?). (5.20)
So the sieve Fy, Fa, --- with
Fo={f:ft)=> ¢ Lz sy ¢ €R}, (5.21)
j=1

produces a F-consistent estimator for f* = E[Y|X + z] € F.

It is interesting to note that the rate of decay of the MSE we obtain with this strategy cannot be
further improved by using more sophisticated estimation techniques (that is, n~2/? is the minimax
MSE rate for this problem). Also, rather surprisingly, we are considering classes of models F,, that
are actually not Lipschitz, therefore our estimator of f* is not a Lipschitz function, unlike f* itself.

Chapter 6

Plug-In Classifier and Histogram
Classifier'

We return to the topic of classification, and we assume an input (feature) space X and a binary output (label)
space Y = {0,1}. Recall that the Bayes classifier (which minimizes the probability of misclassification) is
defined by

. 1, PY=1X=x)>1/2
fr(x) =A , : (6.1)
, otherwise
Throughout this section, we will denote the conditional probability function by
n(z) = PY=1X=xz). (6.2)

6.1 Plug-in Classifiers

One way to construct a classifier using the training data {X;,Y;}",_; is to estimate n (x) and then plug-it
into the form of the Bayes classifier. That is obtain an estimate,

Mo () =1 (2;{ X3, Yi}"i21) (6.3)
and then form the “plug-in" classification rule

~

1, 1n(x)>1/2 .

0, otherwise

fx)=A (6.4)

REMARK: The function 7 (x) is generally more complicated than the ultimate classification rule
(binary-valued), as we can see

n o X —[0,1]

fooox—{01} (65)

L This content is available online at <http://cnx.org/content/m16280/1.2/>.

35

36 CHAPTER 6. PLUG-IN CLASSIFIER AND HISTOGRAM CLASSIFIER

Therefore, in this sense plug-in methods are solving a more complicated problem than necessary. However,
plug-in methods can perform well, as demonstrated by the next result.

Theorem 6.1: Plug-in Classifier
Let 7 be an approximation to 7, and consider the plug-in rule

L @) =12

fla) =4 0, otherwise (6.6)

Then,
R(f)— R <2E(n(z) — 7 (z)]] (6.7)

where
R(f) = P{X)#Y) 6
R = R(f")=infR(f) (6.8)

Proof:

Consider any z € R%. In proving the optimality of the Bayes classifier f* in Lecture 2 (Chapter 3),
we showed that

P(f(x)#2Y|X =2)=P(f*(x) 2Y|X =2) = 2n(z)—1) [1{p@)=1} — Yr@)=1}] (6.9)

which is equivalent to

P(f(x)#Y|X =2) = P(f*(x) 2Y[|X =2) = [2n(z) = 1 1{p-@)2f)}> (6.10)

since f* (z) =1 whenever 27 (z) — 1 > 0. Thus,

P(f(X)#Y)-R" = [ga2[n(2) = 1/2[1 (0)£f2)Px () dx
where px (z) is the marginal density of X
Jra2ln (@) =7 (2) 15 @)%y Px (2) do (6.11)
Jra2ln(z) =7 (z) [px (z) dz
2E|n (X) =7 (X)]

IN A

where the first inequality follows from the fact

f@)# f (@) = |n(@)—0@)|=nx)-1/2 (6.12)
and the second inequality is simply a result of the fact that 1y« (;)-f(s)} is either O or 1.

37

1/2

0 >X

Figure 6.1: Pictorial illustration of |n(x) — 7 (z)| > |n(x) — 1/2| when f (z) # f* (). Note that the
inequality P (f(X)#Y) - R* < [Rra2ln () — 7 (2) [1{f*(@2)~f(2)}Px () dz shows that the excess risk
is at most twice the integral over the set where f* (z) # f(z). The difference |n(xz) — 7 (z) | may be
arbitrarily large away from this set without effecting the error rate of the classifier. This illustrates the
fact that estimating n well everywhere (i.e., regression) is unnecessary for the design of a good classifier
(we only need to determine where n crosses the 1/2-level). In other words, “classification is easier than
regression.”

The theorem shows us that a good estimate of 17 can produce a good plug-in classification rule.
By “good" estimate, we mean an estimator 77 that is close to 7 in expected L;-norm.

6.2 The Histogram Classifier

Let’s assume that the (input) features are randomly distributed over the unit hypercube X = [0, 1]d (note
that by scaling and shifting any set of bounded features we can satisfy this assumption), and assume that
the (output) labels are binary, i.e., Y = {0,1}. A histogram classifier is based on a partition the hypercube

[0, 1]d into M smaller cubes of equal size.
Example 6.1: Partition of hypercube in 2 dimensions

Consider the unit square [0, 1]2 and partition it into M subsquares of equal area (assuming M is
a squared integer). Let the subsquares be denoted by {Q;}, i =1,..., M.

38 CHAPTER 6. PLUG-IN CLASSIFIER AND HISTOGRAM CLASSIFIER

=172
M

0 Hl

<172
M

Figure 6.2: Example of hypercube [0,1]> in M equally sized partition

Define the following piecewise-constant estimator of 7 (x):

~ M~
M (2) =Y Pilizeq, (6.13)
j=1

where

~

P, = Z?:l 1{Xi€Q_17K:1})

E?:l 1{Xi€Qj}

(6.14)

Like our previous denoising examples, we expect that the bias of 7,, will decrease as M increases,
but the variance will increase as M increases.

Theorem 6.2: Consistency of Histogram Classifiers
If M — oo and §; — oo as n — oo, then the histogram classifier risk converges to the Bayes risk
for every distribution Pxy with marginal density px (z) > ¢, for some constant ¢ > 0.2
What the theorem tells us is that we need the number of partition cells to tend to infinity (to
insure that the bias tends to zero), but they can’t grow faster than the number of samples (i.e., we
want the number of samples per box tending to infinity to drive the variance to zero).
Proof:

Let Pj =

~

n(x (z)dz
Jom@px (@) (the theoretical analog of P;) and define

fijx(a:)dz

M
()= Pilueg, (6.15)
j=1

~

The function 7 is the theoretical analog of 7 (i.e., the function obtained by averaging n over the

2 Actually, the result holds for every distribution Pxy . For the more general theorem, refer to Theorem 6.1 in A probabilistic
Theory of Pattern Recognition by Luc Devroye, Laszlo6 Gyérfi and Gabor Lugosi.

39

partition cells). By the triangle inequality,

B |11, (%) — ()] < E[ﬂvn (X) 7 (X) |] © B[, () - g (X)) (6.16)

Approzxzimation Error

Estimation Error

Let’s first bound the estimation error. For any z € [0,1]%, let @ (z) denote the histogram bin in
which z falls in. Define the random variable

N (z) = Z 1ixeq)) (6.17)
=1

~

If Q (xz) = Q,, then this random variable is simply nP;. Note that

"=

B (x) (6.18)
where B (z) == Y1 | 1{x,cQ(x), vi=1} = 2i:X:eQ()Yi- B (z) is simply the number of samples

in cell @ (x) labelled 1. Now 7, (z) is a fairly complicated random variable, but the conditional
distribution of B (z) given N (z) is relatively simple. Note that

B(z) | N (z) =k ~ Binomial (k,7 (z)) (6.19)

since 77 (z) is the probability of a sample in @ (z) having the label 1 and we are conditioning on
the event of observing k samples in @ ().
Now consider the conditional expectation

) Eﬁﬁgg—mx))uv(x):k}, k>0
B[@ - |V @ =k < 620
1, k=0 (since 0 <7 (z)<1)
Next note that
3G -a@|IN@ =k = B[22 -7@)]IN @ =4

= BB~ kj@)||N(@)=k
——
B[B(x)] (6.21)

=

IN
Bl

E B (@) - k(@) | | N (2) =

conditional variance of B(x)

1
by the Jensen’s inequality, E[|Z]] < (E [|Z]?])*.
Therefore,

N>

e[-1 v 1] < 4umtr o’

_ /() (1= (x))
k

(6.22)

40 CHAPTER 6. PLUG-IN CLASSIFIER AND HISTOGRAM CLASSIFIER

and

R A)
B|ln @ -7 ¥ @0 =] < { (6.2
1, k=0
or in other words,
. o

Bl @-n@ V@ =k <TI0 + w028
Now taking expectation with respect to N (z)
By |E[m@-n@iv@=k|| < B[] ¢ e

PIN(@)=0) < B[Aslwien] + POV@=0) < JPIN@ <K +
1 p(N(2)> k) + P(N(z)=0)
—_—

Now a key fact is that for any & > 0, P(N <k) — 0 as n — oo. This follows from the
assumption that the marginal density px (x) > ¢, for some constant ¢ > 0, and §; — 00 as n — oc.
This result is easily verified by contradiction. If P (N < k) — ¢ > 0 as n — oo, then Px (z) > 0 is
contradicted. Thus, for any ¢ > 0 there exists a k > 0 such that ;1= <eand P(N <k) <eforn
sufficiently large. Therefore, for n sufficiently large and every z € [0, l]d,

E [I;M (z) =7 (x) |} < 3e (6.26)

where the expectation is with respect to the distribution of the sample {X;,Y;}" ;. Thus,

E [|7A7n (X) —-7(X) @ < 3¢ (6.27)

where the expectation is now with respect to the distribution of the sample and the marginal
distribution of X.

Next consider the approximation error E [|7,, (X) — 1 (X)|], where the expectation is over X
alone. The function 1 may not itself be continuous, but there is another function 7. that is uniformly
continuous and such that F [|n. (X) — 7 (X)|] < e. Recall that uniformly continuous functions can
be well approximated by piecewise constant functions.

By the triangle inequality,

Eln—nll < E[7—7.[] + E{[7. = nell + Ellne —nl] (6.28)
—_—— —_————
<e <e by design

where 7], () = Z;nzl [fQjﬁs (37) px (:c) daz’] lizeq;y

EIF(X) -7 (X0 = X7 [[o,In@) —n: @) lpx (@) dz] 1peqy

3

(6.29)

IN

41

and since 7). is uniformly continuous,

B[(X)=n(X)[] = XL [, (@) = (2) [Lieq,px (z) d
< Z]M=1 0P (x€@;), whered depends on M (6.30)
= 4, since ZJM:1 P(Xe@;)=1

By taking M sufficiently large, § can be made arbitrarily small. So for large M, § < e.
Thus, we have shown

Efn(X)—n(X)|] <3¢ (6.31)
for sufficiently large M. Since € > 0 was arbitrary, we have shown that taking

~

- 1, ny(x)>1/2
fn (@) =A{ (6.32)
0, otherwise
satisfies
p (fn (X) # Y) —P(f"(X)#£Y) < 2B |[n,(X)-n(X)|| =0 (6.33)
if
M — 0
(6.34)
i — 00 asn— oo
Note: P|f,(X)#Y | =F|1 ~ 1 is the expected risk of f, with expectation over the

{f (X)#Y}
distributions of (X,Y) and {X,,Y;}I ;.

42

CHAPTER 6. PLUG-IN CLASSIFIER AND HISTOGRAM CLASSIFIER

Chapter 7

Probably Approximately Correct (PAC)
Learning'

7.1 Introduction

7.1.1 Overview of the Learning Problem

The fundamental problem in learning from data is proper Model Selection. As we have seen in the previous
lectures, a model that is too complex could overfit the training data (causing an estimation error) and a
model that is too simple could be a bad approximation of the function that we are trying to estimate (causing
an approximation error). The estimation error arises because of the fact that we do not know the true joint
distribution of data in the input and output space, and therefore we minimize the empirical risk (which, for
each candidate model, is a random number depending on the data) and estimate the average risk again from
the limited number of training samples we have. The approximation error measures how well the functions
in the chosen model space can approximate the underlying relationship between the output space on the
input space, and in general improves as the “size” of our model space increases.

7.1.2 Lecture Outline

In the preceding lectures, we looked at some solutions to deal with the overfitting problem. The basic
approach followed was the Method of Sieves, in which the complexity of the model space was chosen as a
function of the number of training samples. In particular, both the denoising and classification problems
we looked at consider estimators based on histogram partitions. The size of the partition was an increasing
function of the number of training samples. In this lecture, we will refine our learning methods further
introduce model selection procedures that automatically adapt to the distribution of the training data,
rather than basing the model class solely on the number of samples. This sort of adaptivity will play a major
role in the design of more effective classifiers and denoising methods. The key to designing data-adaptive
model selection procedures is obtaining useful upper bounds on the estimation error. To this end, we will
introduce the idea of “Probably Approximately Correct” learning methods.

7.2 Recap: Method of Sieves

The method of Sieves underpinned our approaches in the denoising problem and in the histogram classifi-
cation problem. Recall that the basic idea is to define a sequence of model spaces Fi, Fa, ...of increasing

LThis content is available online at <http://cnx.org/content/m16282/1.2/>.

43

44 CHAPTER 7. PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

complexity, and then given the training data {X;,Y;}?; select a model according to

~ ~

fn= a?“g}?gifriRn (f)- (7.1)

The choice of the model space F,, (and hence the model complexity and structure) is determined completely

by the sample size n, and does not depend on the (empirical) distribution of training data. This is a major

limitation of the sieve method. In a nutshell, the method of sieves tells us to average the data in a certain

way (e.g., over a partition of X’) based on the sample size, independent on the sample values themselves.
In general, learning basically comprises of two things:

1. Averaging data to reduce variability
2. Deciding where (or how) to average

Sieves basically force us to deal with (2) a priori (before we analyze the training data). This will lead
to suboptimal classifiers and estimators, in general. Indeed deciding where/how to average is the really
interesting and fundamental aspect of learning; once this is decided we have effectively solved the learing
problem. There are at least two possibilities for breaking the rigidity of the method of sieves, as we shall see
in the following section.

7.3 Data Adaptive Model Spaces

7.3.1 Structural Risk Minimization (SRM)

The basic idea is to select F,, based on the training data themselves. Let F7, Fa, ...be a sequence of model
spaces of increasing sizes/complexities with

lim inf R(f)=R". (7.2)
k—><>0fe_7:k
Let
=) n 7-3
frk argmin R (f) (7.3)

be a function from Fj that minimizes the empirical risk. This gives us a sequence of selected models

fnas fna - Also associate with each set Fy a value C), > 0 that measures the complexity or “size” of the
set Fr. Typically, C,, is monotonically increasing with k (since the sets are of increasing complexity) and
decreasing with n (since we become more confident with more training data). More precisely, suppose that
the C,, 1 chosen so that

fE€FK

p <sup |Rn (f) = R(F)[> Cn,k> <9 (7.4)
for some small 6 > 0. Then we may conclude that with very high probability (at least 1 — ¢) the empirical
risk Ry, is within C,, ;, of R uniformly on the class Fj. This type of bound suffices to bound the estimation

error (variance) of the model selection process of the form R (f) < R, (f) + Cn k, and SRM selects the final

model by minimizing this bound over all functions in UkZI}"k. The selected model is given by f ., where
n,k
k= argmin{ R (fn,k) + Cnk}- (7.5)

A typical example could be the use of VC dimension to characterize the complexity of the collection of
model spaces i.e.,C), is derived from a bound on the estimation error.

45

7.3.2 Complexity Regularization

Consider a very large class of candidate models F. To each f € F assign a complexity value C,, (f). Assume
that the complexity value is chosen so that

p <sup|IA%n (=R >Cn (f)) <. (7.6)

feF

This probability bound also implies an upper bound on the estimation error and complexity regularization
is based on the criterion

~ ~

fn= m“ggneig{Rn (f)+Cn(f)} (7.7)

Complexity Regularization and SRM are very similar and equivalent in certain instances. A distinguishing
feature of SRM and complexity reqularization techniques is that the complexity and structure of the model
is not fixed prior to examining the data; the data aid in the selection of the best complexity. In fact, the key
difference compared to the Method of Sieves is that these techniques can allow the data to play an integral
role in deciding where and how to average the data.

7.4 Probably Approximately Correct (PAC) learning

Probability bounds of the forms in (7.4) and (7.6) are the foundation for SRM and complexity regularization
techniques. The simplest of these bounds are known as PAC bounds in the machine learning community.

7.4.1 Approximation and Estimation Errors
In order to develop complexity regularization schemes we will need to revisit the estimation error / approx-

imation error trade-off. Let f,, = argmingscr Ry (f) for some space of models F.

R <fn> -k =R (J%) —infrerR(f) + infrerR(f) — R (7.8)

approximation error

estimation Error

The approximation error depends on how close f* is close to F, and without making assumptions, this
is unknown. The estimation error is quantifiable, and depends on the complexity or size of F. The error
decomposition is illustrated in Figure 7.1. The estimation error quantifies how much we can “trust” the
empirical risk minimization process to select a model close to the best in a given class.

46 CHAPTER 7. PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

est err.

total err.

inf R(f)

feF R*

approx err.

Figure 7.1: Relationship between the errors

Probability bounds of the forms in (7.4) and (7.6) guarantee that the empirical risk is uniformly close to
the true risk, and using (7.4) and (7.6) it is possible to show that with high probability the selected model

f,, satisfies

fEFkK
R(fn> —inf R(f) < Cn(f). (7.10)
fEFK

7.4.2 The PAC Learning Model

The estimation error will be small if R (f n) is close to inf ;e xR (f). PAC learning expresses this as follows.

We want f,, to be a “probably approximately correct” (PAC) model from F. Formally, we say that f,, is e
accurate with confidence 1 — 4, or (e,d) —PAC for short, if

P (R (;‘n> —infR(f) > e) < 0. (7.11)

feF

This says that the difference between R (fn> and inf e rR (f) is greater than e with probability less than
0. Sometimes, especially in the machine learning community, PAC bounds are stated as, “with probability
of at least 1 — 0, |[R f, | —infrerR(f)| <€

To introduce PAC bounds, let us consider a simple case. Let Fconsist of a finite number of models, and
let |F| denote that number. Furthermore, assume that min;crR (f) = 0.

47

Example 7.1
F= set of all histogram classifiers with M bins = |F| = 2.

?m';_LR (f) = 0= 3 a classifier in F that has a zero probability of error (7.12)
€

Theorem 7.1: R
Assume |F| < oo and mingerR(f) = 0, where R(f) = P(f(X)#Y). Let f, =

argminger Ry (f), where Ry, (f) = 23" | 1(#(x,)2v;}- Then for every n and € > 0,

P <R (}n> >e> < | Fle™™ = 4. (7.13)

~

Proof:
Since mingerR (f) = 0, it follows that R, <fn> = 0. In fact, there may be several f € F such

that]A%n(f):O. Let Q:{f:]%n(f):o}.

P <R (fn> > e) < P (UseglR () > e})

~

P (Ufef{R (f) > € Ru(f)= 0}>

< Efe]—':R(f)>E P (Rn (f) = 0)
= IFl.(1—e)"

The last inequality follows from the fact that if R(f) = P (f (X) #Y) > ¢, then the probability
that n i.i.d. samples will satisfy f (X) =Y is less than or equal to (1 — ¢)". Note that this is simply

the probability that R, (f) = &
obtain the desired result.

Note that for n sufficiently large, § = |F|e~"¢ is arbitrarily small. To achieve a (e, §)-PAC bound
log|F|—logd

Dy 1(¢(x,)2v;y = 0. Finally apply the inequality 1 —z < e™* to

for a desired € > 0 and 6 > 0 we require at least n = training examples.

Corollary 7.1:
Assume that |F| < co and mingcrR (f) = 0. Then for every n

(i)
Proof:

Recall that for any non-negative random variable Z with finite mean, E [Z] = fooo P(Z >t)dt.

< 1—|—log|‘7-"|.

E (7.15)

n

48 CHAPTER 7. PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

This follows from an application of integration by parts.

R (}n)] P (R (}n> > t) dt
I P <R (}n> > t) dt+ [P <R <}n> > t) dt, for any u >0
(7.16)

<1

E

u+ | F| [e mdt
= U+ @e_"“

Minimizing with respect to u produces the smallest upper bound with u = %

Chapter 8

Chernoft’s Bound and Hoeftding’s
Inequality

8.1 Introduction

8.1.1 Motivation

In the last lecture (Chapter 7) we consider a learning problem in which the optimal function belonged to a
finite class of functions. Specifically, for some collection of functions Fwith finite cardinality |F| < oo, we
have

minR(f)=0= f*eF. 8.1
mink (f) f (8.1)
This is almost always not the situation in the real-world learning problems. Let us suppose we have a finite
collection of candidate functions F. Furthermore, we do not assume that the optimal function f*, which
satisfies

R(f*) = i?}fR (f) (8.2)

where the inf is taken over all measurable functions, is a member of F. That is, we make few, if any,

assumptions about f*. This situation is sometimes termed as Agnostic Learning. The root of the word
agnostic literally means not known. The term agnostic learning is used to emphasize the fact that often,
perhaps usually, we may have no prior knowledge about f*. The question then arises about how we can
reasonably select an f € F in this setting.

8.1.2 The Problem

The PAC style bounds discussed in the previous lecture (Chapter 7), offer some help. Since we are selecting

a function based on the empirical risk, the question is how close is R, (f) to R(f)Vf € F. In other words,
we wish that the empirical risk is a good indicator of the true risk for every function in F. If this is case,
the selection of f that minimizes the empirical risk

~ ~

In= arg}?gijg:/Rn (f) (8.3)

LThis content is available online at <http://cnx.org/content/m16264,/1.2/>.

49

50 CHAPTER 8. CHERNOFF’S BOUND AND HOEFFDING’S INEQUALITY

should also yield a small true risk, that is, R < fn> should be close to minscrR (f). Finally, we can thus

state our desired situation as

P ()@gggI R (f) - R(| >) < (8.4)

~

for small values of ¢ and ¢. In other words, with probability at least 1 — 4, | R, (f) — R(f)| > e,
Vf € F. In this lecture, we will start to develop bounds of this form. First we will focus on bounding

P<| RAn (f)—R(f)] >5> for one fixed f € F.

8.2 Developing Initial Bounds

To begin, let us recall the definition of empirical risk for {X;,Y;}"_, be a collection of training data. Then
the empirical risk is defined as

Ra ()= 7 Y 00 (X0, Y0). (85

Note that since the training data {X;,Y;}? ; are assumed to be i.i.d. pairs, the terms in the sum are i.i.d
random variables.
Let

Li=((f (X),Y)). (.6)

The collection of losses {L;}? ; is i.i.d according to some unknown distribution (depending on the un-
known joint distribution of (X,Y) and the loss function). The expectation of L; is E[¢(f (X;),Y;)] =
E(f(X),Y)] = R(f), the true risk of f. For now, let’s assume that f is fixed.

E Ry, (f)

ZEWf (Xi),Yi)] = ZE[Li] = R(f) (8.7)

~

We know from the strong law of large numbers that the average (or empirical mean) R, (f) converges

almost surely to the true mean R (f). That is, R, (f) — R(f) almost surely as n — co. The question is
how fast.
8.3 Concentration of Measure Inequalities

Concentration inequalities are upper bounds on how fast empirical means converge to their ensemble coun-
terparts, in probability. The area of the shaded tail regions in Figure 1 is P <| R, (f)—R(f)|> s). We

are interested in finding out how fast this probability tends to zero as n — oco.

51

R(M - & I R(Nte
R(D

Figure 8.1: Distribution of R, (f)

At this stage, we recall Markov’s Inequality. Let Z be a nonnegative random variable.

E[Z]

fooo zp (z) dz
f; zp(2)dz+ [2p(2) dz
0+t [, 2p(2)dz

tP(Z > t)
ElZ]
t

%

= P(Z >1t)
= P (7% >1?)

IN

E[gﬂ

IN

Take

~

Z=|Rn(f) —R(f)| and t=e¢

E[Rn(f)R(f)Q}

IA

2

var (Rn (f))
S N 7/

22
L.
ity var(#)
- =
var(£(X),Y)
ne?

P<|z$n<f>—R<f>|zs>

2
— 9L
ne2

(8.10)

So, the probability goes to zero at a rate of at least n~'. However, it turns out that this is an extremely

52 CHAPTER 8. CHERNOFF’S BOUND AND HOEFFDING’S INEQUALITY

loose bound. According to the Central Limit Theorem

P:n(f):;zn:Li—»N(R(f),an%> as n— oo (8.11)
i=1

in distribution. This suggests that for large values of n,

P <| R, (f)—R(f)| >) ~0 () . (8.12)

That is, the Gaussian tail probability is tending to zero exponentially fast.

8.4 Chernoff’s Bound

Note that for any nonnegative random variable Z and ¢t > 0,

E sZ
P(Z>t)=P (e >e) < [it] , Vs >0 by Markov’s inequality. (8.13)
e

Chernoff’s bound is based on finding the value of s that minimizes the upper bound. If Z is a sum of
independent random variables. For example, say

2= (%) %) - R =n (B (1)~ R0 (5.14)
i=1
then the bound becomes
P, (Lo BL) > 1) < -5t [+ T 1= BILD) < 6w
e [r, B [esE=PILD] | from independence.
Thus, the problem of finding a tight bound boils down to finding a good bound for E [s3(Ei=FIL:d)],

Chernoff (°52), first studied this situation for binary random variables. Then, Hoeffding (’63) derived a more
general result for arbitrary bounded random variables.

8.5 Hoeffding’s Indequality

Theorem 8.1: Hoeffding’s Inequality
Let Z3, Zs, ..., Zn be independent bounded random variables such that Z; € [a;, b;] with probability
1. Let S, = > | Z;. Then for any ¢ > 0, we have

2¢2

P (IS0 = B[Sa]| =) < 26 S o)™, (8.16)

Proof:
The key to proving Hoeffding’s inequality is the following upper bound: if Z is a random variable
with E[Z] =0 and a < Z < b, then

52(b—a,)2

E[e?] <e 5 . (8.17)
This upper bound is derived as follows. By the convexity of the exponential function,

_ h—
e’ < %eSb + - 265“7 for a <z <b. (8.18)

eih’.
| z
a
Figure 8.2: Convexity of exponential function.
Thus,
E [esz] < E [—%:;} e+ E {%} e’
et — et since E[Z] =0
= (1 -0+ 063(1”“)) e 03(b—a) " where § = T
Now let

u=s(b—a) and define ¢(u)=—0u+log(l—0+6e").

Then we have

E [esZ] < (1 Y +ees(b—a)) e—GS(b—a) _ e(ﬁ(u)_

To minimize the upper bound let’s express ¢ (u) in a Taylor’s series with remainder :

¢m)=¢an+ua(m+f%a1@ for some v € [0, 1]

¢ (u) = —94‘%#&(“):0
” fe fe*
¢ (u) = T=0+0c" (1-0+0e)?
— fe* (1 o e)
1—60+0ev 1—0+40ev
= p(1—p)
Now, ¢~ (u) is maximized by
fe 1 » 1
= —_— = — < —.
P= T g0 277 W=]

53

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

54 CHAPTER 8. CHERNOFF’S BOUND AND HOEFFDING’S INEQUALITY

So,
> s%(b—a)’
<z =—=3 8.25
¢(u) < 3 S (8.25)
Z s2(b—a)2
=E[e?] <e 5 . (8.26)
Now, we can apply this upper bound to derive Hoeffding’s inequality.
P (Sn —-FE [Sn] > t) < e st H?:l E [es(Li_E[Li])}
s2(bs —a.)2
S 675t 1—[?,:1 6¥
—a;)?
= estes” T it (8.27)

—2¢2
eZiz1 (bi—a;)?

i Y VR
by choosing s = ST ()

—2¢2
Similarly, P (E [Sn] — S, > t) < eXi1 (i=2)® | This completes the proof of the Hoeffding’s theorem.
Example
Application
Let Z; = 1¢(x,)2v, — R(f), as in the classification problem. Then for a fixed f, it follows from
Hoeffding’s inequality (i.e., Chernoff’s bound in this special case) that

P<| R (f)—R(f)|>6> = P(IS.— BlSa]] 2 2)

= P(|S,— E[S,]| > ne) . (8.28)
_2(ne)?

< 2e " w
26—27152

Now, we want a bound like this to hold uniformly for all f € F. Assume that F is a finite
collection of models and let |F| denote its cardinality. We would like to bound the probability that

maz¢er| Ry (f) — R(f)| > €. Note that the event

{magl Bu () =R (N ze} = {U B ()= R())| 2z} (8.29)
ferx
Therefore
P\maz| B (f)=R(f)lze) = PlUprlBa(H)-R(HIze] < (830

IN

Yoper P By (f) = R(f)| = €|, the “union of events” bound
2\F|e‘2n52, by Hoeffding’s inequality.

Thus, we have shown that with probability at least 1 — 2|F|e*2”52, VfeF

| Bn () = R(f)| <e. (8.31)

And accordingly, we can be reasonably confident in selecting f from F based on the empirical risk

function R,,.

55

96

CHAPTER 8. CHERNOFF’S BOUND AND HOEFFDING’S INEQUALITY

Chapter 9

Classification Error Bounds'

9.1 Recap: Classifier design

Given a set of training data {X;,Y;}7 ; and a finite collection of candidate functions F, select f, € F that
(hopefully) is a good predictor for future cases. That is

~ ~

fn= argglei}an (f) (9.1)

~

where R, (f) is the empirical risk. For any particular f € F, the corresponding empirical risk is defined as

1 n
Ru(f) == Lpcxosviy 9.2)

i=1

9.2 Hoeffding’s inequality

Hoeffding’s inequality (Chernofft’s bound in this case) allows us to gauge how close R, (f) is to the true risk
of f, R(f), in probability

P (u%n ()~ R(f)| >) < 2072 (9.3)

Since our selection process involves deciding among all f € F, we would like to gauge how close the
empirical risks are to their expected values. We can do this by studying the probability that one or more of
the empirical risks deviates significantly from its expected value. This is captured by the probability

P (pagli, ()~ (D= <). (0.4
Note that the event
ngan (f)=R(f)|=¢ (9.5)

LThis content is available online at <http://cnx.org/content/m16265,/1.2/>.

57

58 CHAPTER 9. CLASSIFICATION ERROR BOUNDS

is equivalent to union of the events

U IR (F) ~ R()| >). (9.6)

fer
Therefore, we can use Bonferonni’s bound (aka the “union of events” or “union” bound) to obtain

~

P (maglha (=R 22) = P (Uperlia (- RO 2 <)

< Syer P (I (- RO 2) ©7)
< Zfe]—' 26—27152
-~ 2| Fle—2ne’

where |F| is the number of classifiers in F. In the proof of Hoeffding’s inequality we also obtained a one-sided
inequality that implied

P (R (f) = Rn(f) = s) < e (9.8)
and hence
P “ R (f)>¢e) < |Fle 2 .
(mag R (5) - R () 2 <) < 7l 9.9)
We can restate the inequality above as follows, For all f € F and for all § > 0 with probability at least 1 —§
h log|F| +log (1/6
R(P) < (1) + T oo (0] (9.10)

This follows by setting § = |F \6_2"‘52 and solving for e. Thus with a high probability (1 — ¢), the true risk for
all f € F is bounded by the empirical risk of f plus a constant that depends on ¢ > 0, the number of training
samples n, and the size 7. Most importantly the bound does not depend on the unknown distribution Pxy .
Therefore, we can call this a distribution-free bound.

9.3 Error Bounds

We can use the distribution-free bound above to obtain a bound on the expected performance of the
minimum empirical risk classifier

~ ~

fn = argminkn (f)- (9.11)

We are interested in bounding

E
feF

R <}n>1 —minR (f) (9.12)

the expected risk of f, minus the minimum risk for all f € F. Note that this difference is always non-negative

since f,, is at best as good as

= arg?iez’;__zR (f). (9.13)

59

Recall that Vf € F and Vd > 0, with probability at least 1 — §

~

R(f) < Rn (f) +C(F,n,0) (9.14)
where
C(Fin.s) = \/loglf 2209(1/5). 9.15)

In particular, since this holds for all f € F including f,,,

R (}n> < IA%n (J:n> + C (F,n,0) (9.16)

and for any other f € F

R <f> < Ru(f) +C(Fon.0) (9.17)

since Ry <fn> < Rn (f)Vf € F. In particular,

R <}> < JA%n (f*)+ C(F,n,6) (9.18)

where f* = argminse s R (f).
Let Q denote the set of events on which the above inequality holds. Then by definition

s
R (f) CR(PY R (f) R () + B () — RO
. R (9.20)
(i) i

since £ {Rn (f*)} = R (f*). The quantity above is bounded as follows.

E|R (fn> - ;%n (f*)] = E|R (fn> - JA%n (f7) 192

E|R (f) “ R0 P(@) < E R (f) R ()10

P(Q)>1-6. (9.19)

We can now bound E — R(f*) as follows

E

E

P + (921

+9

60 CHAPTER 9. CLASSIFICATION ERROR BOUNDS

~

since P(2) <1,1—-P(Q) géandR<fn> —]:zn(f*) <1

o)] < o) (e
< C (F,n,0)
Thus
E|R (}n> — ;%n (9 <C(F,n,d)+0. (9.23)
So we have
E|R (fnﬂ —minR(f) < \/logm ;é"g 1/0) 15 vs>o. (9.24)

In particular, for 6 = y/1/n, we have

< \/M, since \/E—F\/gjgx/i,/x—l— , Vaz,y>0

E

9.4 Application: Histogram Classifier

Let F be the collection of all classifiers with M equal volume cells. Then |F| = 2™, and the histogram
classification rule

“ Lo
=) — 1 : 2
Tu=aropey <n Zi:l {f(xt#m) (9.26)
satisfies
) . Mlog2 + 2 4 logn
EF|R — R < 2
(f)] min (f) < \/ - (9.27)

which suggests the choice M = logyn (balancing Mlog2 with logn), resulting in

R (fnﬂ —minR(f) =0 (l"j") . (9.28)

E

Chapter 10

Error Bounds in Countably Infinite
Spaces'

10.1 Introduction

In the last lecture (Chapter 9), we studied bounds of the following form: for any § > 0, with probability at
least 1 — 6,

- log|F| + log (%
R(f)an(f)+\/w , VfeF (10.1)
which led to upper bounds on the estimation error of the form
P , log|F| + log (n) + 2
E — < . 10.2
R<fn>] g”ggR(f) < \/ - (10.2)

The key assumptions made in deriving the error bounds were:

(1): bounded loss function
(ii): finite collection of candidate functions

The bounds are valid for every Pxy and are called distribution-free .

10.2 Deriving Bounds for Countably Infinite Spaces

In this lecture we will generalize the previous results in a powerful way by developing bounds applicable to
possibly infinite collections of candidates. To start let us suppose that F is a countable, possibly infinite,
collection of candidate functions. Assign a positive number c(f) to each f € F, such that

Z e) < 0. (10.3)
fer

The numbers c(f) can be interpreted as

(i): measures of complexity

(ii): -log of prior probabilities
(iii): codelengths

IThis content is available online at <http://cnx.org/content/m16271/1.2/>.

61

62 CHAPTER 10. ERROR BOUNDS IN COUNTABLY INFINITE SPACES

In particular, if P(f) is the prior probability of f then

e~ (—logn(f)) _ »(f) (10.4)

so ¢ (f) = —logp (f) produces
e W =N"p(f)=1 (10.5)
fer feF

Now recall Hoeffding’s inequality. For each f and every € > 0

P (R (f) = Ru(f) = 8) < e e (10.6)
or for every § > 0
P (R(f) —Ru(f) 2 0927(1“)) <. (10.7)
Suppose § > 0 is specified. Using the values c(f) for f € F, define
5(f) =eWs. (10.8)
Then we have
~ log ﬁ
Pl R() - Ra(h) > gn) <5(f). (10.9)

Furthermore we can apply the union bound as follows

P(;gg{RU)—fi%n(f)— l""%‘“”}zO> < P(Ufeme—}a:n(f)z “9(2;@))
). (10.10)

IN

erP <R(f) - .;zn (f) = log(z(z%)

< > rerd(f) :Zfefeic(f)(szd
So for any § > 0 with probability at least 1 — §, we have that Vf € F

log(zﬁ)
n . 10.11
c(f)+log(}) ()
2n

IN
=
3

=
+

R(f)

Il
=
3
=
+

Special Case
Suppose F is finite and ¢ (f) = log|F| Vf € F. Then

e i 1
e “’:Zelg‘ﬂzzm:l (10.12)

fer feF feF

and

5(f) = — (10.13)

63

which implies that for any § > 0 with probability at least 1 — §, we have

~ log|F| + log (st
R(f) < Ra(f)+ o)

VfeF. (10.14)

Note that this is precisely the bound we derived in the last lecture (Chapter 9).

Choosing c(f)

The generalized bounds allow us to handle countably infinite collections of candidate functions, but we
require that

D e < o0, (10.15)
fer

Of course, if ¢ (f) = —logp (f) where p (f) is a proper prior probability distribution then we have

d e =1 (10.16)

feF

However, it may be difficult to design a probability distribution over an infinite class of candidates. The
coding perspective provides a very practical means to this end.

Assume that we have assigned a uniquely decodable binary code to each f € F, and let ¢(f) denote the
codelength for f. That is, the code for f is c(f) bits long. A very useful class of uniquely decodable codes
are called prefix codes .

Definition 10.1: Prefix Code

A code is called a prefix code if no codeword is a prefix of any other codeword.
Example: From Cover & Thomas 91

Consider an alphabet of symbols, say A, B,C, and D and the codebooks below

Symbol Singular Nonsingular But Not | Uniquely Decodable But| Prefix Code
Codebook | Uniquely Decodable Not a Prefix Code
A 0 0 10 0
B 0 010 00 10
C 0 01 11 110
D 0 10 110 1110
Figure 10.1

In the singular codebook we assign the same codeword to each symbol - a system that is obviously
flawed! In the second case, the codes are not singular but the codeword 010 could represent B or
CA or AD. Hence it is not a uniquely decodable codebook.

The third and fourth cases are both examples of uniquely decodable codebooks, but the fourth
has the added feature that no codeword is a prefix of another. Prefix codes can be decoded from
left to right since each codeword is “self-punctuating" - in this case with a zero to indicate the end
of each word.

To design a uniquely decodable codebook in general is as challenging as the problem of selecting
c(f) to satisfy

D e < o0, (10.17)
fer

64 CHAPTER 10. ERROR BOUNDS IN COUNTABLY INFINITE SPACES

However, prefix codes can often be easily designed or specified and they are inherently decodable.
Moreover, prefix codes satisfy an important inequality called the Kraft Inequality .

10.3 The Kraft Inequality

For any binary prefix code, the codeword lengths ¢y, co, ... satisfy

o0
d o<l (10.18)
i=1

Conversely, given any ci, co, ... satisfying the inequality above we can construct a prefix code with these

codeword lengths. We will prove this result a bit later, but now let’s see how this is useful in our learning
problem.

Assume that we have assigned a binary prefix codeword to each f € F, and let c(f) denote the bit-length
of the codeword for f. Set & (f) = 27°Y)§. Then

- log(<A~ - log(=t
P(Uper ROV = Rt 2 V) < Sy (RO - o= V2EE)
< Zfef‘S(f) :ZfefQ_c(f)(S:a
This implies that for any § > 0 with probability at least 1 — § we have Vf € F
-~ —
RN < Raln)+y/ 0]
. o (10.20)
= Rn (f) + c(f) 092: 09(3)
Application
Let Fi, F1, ... be a sequence of finite sets of candidate functions with |F;| < |Fi| < ... We can design

prefix codes as follows. Use the codes 0, 10, 110, 1110, ... to encode the subscript ¢ in |F;|. For each class
| F;|, construct a set of binary codewords of length [log,|F|] to uniquely encode each function in F;. Then,
encode any given function f by first using the code for ¢ corresponding to the smallest F; that f belongs to,
followed by the length [log,|F|] codeword for f € F;. This is a prefix code.

Example 10.1: Histogram Classifiers
X=[0,1]¢, Y={0,1}. Let F, k=1, 2, ... denote the collection of histogram classification rules with
k equal volume bins. We can use the following codebook for the index k.

k Prefix Code
1 0

2 10

3 110

4 1110

Figure 10.2

65

And follow this codeword with k = logy|F3| bits to indicate which of the 2* possible histogram
rules is under consideration. Thus for any f € Fj for some k > 1 there is a prefix code of length

c(f)=k+k=2k bits. (10.21)
It follows that for any ¢ > 0 with probability at least 1 — ¢ we have Vf € U@lfk
- 2k log2 + log (%
R(f) < Rn (f)+\/ ! 5 (3) (10.22)

where ky is the number of bins in histogram corresponding to f. Contrast with the bound we had
for the class of m bin histograms alone: with probability > 1 — 9§, Vf € F,,

~ mlog2 + log (ﬁ)

R(f) < Ra(f)+ o . (10.23)

Notice the bound for all histograms rules is almost as good as the bound for only the m-bin rules.
That is, when k; = m the bounds are within a factor of V2. On the other hand, the new bound is
a big improvement, since it also gives us a guide for selecting the number of bins.

Proof 10.1: Proof of the Kraft Inequality

We will prove that for any binary prefix code, the codeword lengths c1, c2, ... satisfy), ,27% < 1.
The converse is easy to prove also, but it not central to our purposes here (for a proof, see Cover
& Thomas ’91). Consider a binary tree like the one shown below.

Root

000 001

Figure 10.3

The sequence of bit values leading from the root to a leaf of the tree represents a codeword.
The prefix condition implies that no codeword is a descendant of any other codeword in the tree.
Let cpaz be the length of the longest codeword (also the number of branches to the deepest leaf)
in the tree.

66

CHAPTER 10. ERROR BOUNDS IN COUNTABLY INFINITE SPACES

Consider a leaf 7 in the tree at level ¢;. This leaf would have 2°me=—¢ descendants at level
Cmaz- Furthermore, for each leaf the set of possible descendants at level ¢4, is disjoint (since no
codeword can be a prefix of another). Therefore, since the total number of possible leafs at level
Cmaz 18 2°me® we have

Z 9Cmaz—Ci < 9Cmaw = Z 27¢% <1 (10.24)

i€leafs i€leafs

which proves the case when the number of codewords is finite.
Suppose now that we have a countably infinite number of codewords. Let by bs ... b., be the
ith codeword and let

ri=y b2 (10.25)
Jj=1

be the real number corresponding to the binary expansion of the codeword. We can associate
the interval [r;,r; + 27¢) with the ith codeword. This is the set of all real numbers whose binary
expansion begins with by ba ... b.,. Since this is a subinterval of [0,1], and all such subintervals
corresponding to prefix codewords are disjoint, the sum of their lengths must be less than or equal
to 1. This proves the case where the number of codewords is infinite.

Chapter 11

Complexity Regularization’

11.1 Review: PAC Bounds

Consider a finite collection of models F, and recall the basic PAC bound: for any § > 0, with probability at
least 1 —§

R(f) < Ry (f) +/ 2dZEoaQ/O) - ype F (11.1)
where
Bulf) = LY 0(7(X0),Y) -
R(f) = E(f(X),Y)]

and the loss £ is assumed to be bounded between 0 and 1. Note that we can write the inequality above as:

R —
R(f) < Ra (f) + /2 5) (11.3)
Letting 05 = %, we have:
R(f) < Rn (f) + /22520 (11.4)

This is precisely the form of Hoeffding’s inequality, with d¢ in place of the usual §. In effect, in order to
have Hoeffding’s inequality hold with probability 1 — ¢ for all f € F, we must distribute the “J-budget” or
“confidence-budget” over all f € F (in this case, evenly distributed):

Yierds = LpertH (11.5)
_ 5

However, to apply the union bound, we do not need to distribute § evenly among the candidate models.
We only require:

dijerbp = 90 (11.6)

So, if p(f) are positive numbers satisfying Zfef_p(f) = 1, then we can take d; = p(f)d. This provides
two advantages:

LThis content is available online at <http://cnx.org/content/m16266,/1.2/>.

67

68 CHAPTER 11. COMPLEXITY REGULARIZATION

1. By choosing p (f) larger for certain f, we can preferentially treat those candidates
2. We do not need F to be finite and we only require } ;. zp (f) =1

Prefix codes are one way to achieve this. If we assign a binary prefix code of length ¢ (f) to each f € F,
then the values p (f) = 27 satisfy > rerp (f) <1 according to the Kraft inequality.
The main point of this lecture is to examine how PAC bounds of the form w.p. > 1 —§

- o()log2+log(1/6 i
R(f) < Rn (f) + ()02-;9(/) : VfeF (11.7)

can be used to select a model that comes close to achieving the best possible performace

infR(f) (11.8)

fer
Let f,, be the model selected from F using the training data {X;,Y;}? ;. We will specify this model in a
moment, but keep in mind that it is not necessarily the model with minimum empirical risk as before. We
would like to have

E R<fn>] —mnfR(f) (11.9)
fer
as small as possible. First, for any § > 0, define
.5 R
fn = argmin{Rn (f) +C(f,n,0)} (11.10)
fe
where
_ c(f)log2+log(1/d
C(f,n,d) = () 9;; 9(1/9) (11.11)
Then w.p. >1—-6
R(f)<Ru(f)+C(fin,8) , VfeF (11.12)
and in particular,
6 . 8 5
R{fp| SRa|fu| +C| frimd] (11.13)
5
so, by the definition of f,, Vf € F
~0 N
R(f.] <R+ CLn0) . (11.14)

We will make use of the inequality above in a moment. First note that Vf € F
N ~6 ~ ~
Blr(f)|-r0) = B|R{f) - R0()] + B[R0 ()~ RO (1115

~

The second term is exactly 0, since F [Rn (f)] = R(f).

~6 .
Now consider the first term E |R | f,, | — Rn (f)| - Let Q be the set of events on which

N

69

R\ f, Sén(f)—c(f,n,é),er}' (11.16)

From the bound above, we know that P () > 1 —§. Thus,

- /.6 ~) .
= %) R

ENR([] = Ra(f)]Q2° (1= P(Q)) < C(fno) +

5 (sinceogR, R§1,P(Q)g1and1—P(Q)§5):,/%ﬂlog(l/‘”w:
c(f)logQ—‘r%logn

o + \/%; (by setting 6 = \%)

We can summarize our analysis with the following theorem.

Theorem 11.1: Complexity Regularized Model Selection
Let F be a countable collection of models, and assign a positive number ¢ (f) to each f € F such
that ZfefQ*C(f) < 1. Define the minimum complexity regularized risk model

P : c(f)log2+3logn 11.18
f., arg;rLeZ}l{Rn (f)+ 2n ()
Then,
E R<fn>‘| < an{R(f)+ WjLﬁ} (11.19)
feF
This shows that
- c o Liogn
R (f) + /) 2los2+ sloon (11.20)

is a reasonable surrogate for

R(f) + DR (1121

Example: Histogram Classifiers

Let X = [0, 1]d be the input space and Y = {0, 1} be the output space. Let Fj, k =1, 2, ... denotes
the collection of histogram classification rules with k equal volume bins. One choice of prefix code
for this example is: £k = 1 = code = 0,k = 3 = code = 10,k = 3 = code = 110 and so on
Then, if first code is corresponding to k = f € Fy, followed by k = log,|Fy| bits to indicate which
of the 2* histogram rules in Fj, is under consideration, we have

f € Fi=c(f) =2k bits (11.22)

70 CHAPTER 11. COMPLEXITY REGULARIZATION

Let f,, be the model that solves the minimization i.e.,

. 2klog2+3logn 11.23

That is, for each k, let

~(k) ~

fo = argmin Rn (f) (11.24)

Then select the best k according to
~(k)

2 - 1
ko= argmin{Ry | f, |+ P (11.25)

and set

~ A(’f) (11.26)
o = [

Then,

E

R <}n>] < inf{minR(f) + \/@Jr =} (11.27)

It is a simple exercise to show that if d = 2 and the Bayes decision boundary is a 1-d curve, then
by setting k = y/n and selecting the best f from F . /m we have

E

R(}nﬂ = O (n"'/%) (11.28)

NOTE: The complexity regularized classifier f, adaptively achieves this rate, without user inter-
vention.

Chapter 12

Decision Trees'

12.1 Minimum Complexity Penalized Function

Recall the basic results of the last lectures: let X and) denote the input and output spaces respectively.
Let X € X and Y € X be random variables with unknown joint probability distribution Pxy. We would like
to use X to “predict” Y. Consider a loss function 0 < ¢ (y1,y2) < 1, Vy1,y2 € Y. This function is used to
measure the accuracy of our prediction. Let F be a collection of candidate functions (models), f : X —).
The expected risk we incur is given by R (f) = Exy [£(f (X),Y)]. We have access only to a number of i.i.d.

n

samples, {X;,Y;}7_;. These allow us to compute the empirical risk R, (f) = + 37" | ((f (X:),Y).

Assume in the following that F is countable. Assign a positive number ¢ (f) to each f € F such that
ZfefQ*C(f) < 1. If we use a prefix code to describe each element of F and define ¢ (f) to be the codeword
length (in bits) for each f € F, the last inequality is automatically satisfied.

We define the minimum complexity penalized estimator as

1. (12.1)

L . c(f)log2 + 3logn
fn= arg%Zg{Rn (f)+ \/ ™

As we showed previously we have the bound

- , c(f)log2 + logn 1
E < — . 12.2
R (fnﬂ < min{R(f) +\/ o + 7 (12.2)
The performance (risk) of f,, is on average better than
. c(fz)log2 + logn 1
— 12.
R(fn)+\/ e (12,3
where
= (R () + c(f)log2 + %logn} (12.4)
n = argmin o™ . .

If it happens that the optimal function, that is

ff=arg min R(f), (12.5)

f measurable

LThis content is available online at <http://cnx.org/content/m16287,/1.2/>.

71

72 CHAPTER 12. DECISION TREES

is close to an f € F with a small ¢ (f), then f, will perform almost as well as the optimal function.

Example 12.1
Suppose f* € F, then
Furthermore if ¢ (f*) = O (logn) then

logn

*)lo L1ogn
E SR(f*)+\/C(f)192+QZg L (12.6)

2n vn

gR(f*)+0<,/lOg”>, (12.7)

offset of the optimal risk.

()

R*= inf R(f). (12.8)

f measurable

E

that is, only within a small O

In general, we can also bound the excess risk E — R*, where R* is the Bayes risk,

By subtracting R* (a constant) from both sides of the inequality

- 1
E|R (fnﬂ < %ig{R(f) + \/C(f) log;:r logn - %} (12.9)
we obtain
- 1
E|R (fn> B <min{R(f)~ R + \/cm log;j glogn | %}. (12.10)

Note that two terms in this upper bound: R(f) — R* is a bound on the approximation error
of a model f, and remainder is a bound on the estimation error associated with f. Thus, we
see that complexity regularization automatically optimizes a balance between approximation and
estimation errors. In other words, complexity regularization is adaptive to the unknown tradeoff
between approximation and estimation.

12.2 Classification

Consider the particularization of the above to a classification scenario. Let X = [0,1]%, = {0,1} and
14 (y,y> =1 . . Then R(f) = Exy [1{;(x)2v}] = P(f (X) #Y). The Bayes risk is given by
{v#y}
R*= inf R(f). (12.11)

f measurable

As it was observed before, the Bayes classifier (i.e., a classifier that achieves the Bayes risk) is given by

P(Y=1X=2z)>

(12.12)
P(Y=1X=2)<

cin b
f ($>_{O,

(SIS

This classifier can be expressed in a different way. Consider the set G* = {z : P(Y =1|X =z) > 1/2}.
The Bayes classifier can written as f* (r) = 1{;¢g+}. Therefore the classifier is characterized entirely by the

73

set G*, if X € G* then the “best” guess is that Y is one, and vice-versa. The boundary of this set corresponds
to the points where the decision is harder. The boundary of G* is called the Bayes Decision Boundary.
In Figure 12.1(a) this concept is illustrated. If n(xz) = P (Y = 1|X = x) is a continuous function then the
Bayes decision boundary is simply given by {z : P (Y =1|X =z) = 1/2}. Clearly the structure of the
decision boundary provides important information on the difficulty of the problem.

X =[0,1]?

Bayes Decision
Boundary

o o
o S .
° o =TT ‘\0\ o
o, o o o L4
o o ' o o © 3
1
0% o ! © ,9’ o
e ®©O0 0 .0 .
o ' ' .
oe, : o e Bayes Decision
1
o O @1 ° | Boundary
o \ e © @
o 2 . ‘2/0
\
o. 0O ® o o O 60 o
N AY
o oo o o o O \Cf o (i o
o o o o 0 V%0 o
e O o, ® @ . or o5 ©° 4
ocoieo ® _-7 0 o
° o °© o0 2 o

Figure 12.1: (a) The Bayes classifier and the Bayes decision boundary ; (b) Example of the i.i.d.
training pairs.

74 CHAPTER 12. DECISION TREES

12.2.1 Empirical Classifier Design

Given n i.i.d. training pairs, {X;,Y;} ;, we want to construct a classifier f,, that performs well on average,

i.e., we want F

R (fn>1 as close to R* as possible. In Figure 12.1(b) an example of the i.i.d. training

pairs is depicted.

The construction of a classifier boils down to the estimation of the Bayes decision boundary. The
histogram rule, discussed in a previous lecture, approaches the problem by subdividing the feature space
into small boxes and taking a majority vote of the training data in each box. A typical result is depicted in
Figure 12.2(a).

The main problem with the histogram rule is that it is solving a more complicated problem than it is
actually necessary. We do not need to determine the correct label for each individual box directly (the
histogram rule is essentially estimating 1 (z)). In principle we only need to locate the decision boundary and
assign the correct label on either side (notice that the accuracy of a majority vote over a region increases
with the size of the region). The next example illustrates this.

Example 12.2: Three Different Classifiers
The pictures below correspond to the approximation of the Bayes classifier by three different
classifiers:

Histogram Classifier

00

—|2|a|o|o|o|o|o
alald|olo|o]olo
~|alo|o|o|o|o|o
alalalafolo]olo
~|ala|o|o|o|o|o
alalala3o|olo

—~ |2 o|lo|o|o|o
_L_L_L_L‘ooo

(a)

Linear Classifier

(b)
Tree Classifier
0
1
0 To.
LA
00 0.1
-+ 0 — 1
AT 1
[1
1 1 1
(©)

Figure 12.2: (a) Histogram classifier ; (b) Linear classifier; (c)Tree classifier.

The linear classifier and the tree classifier (to be defined formally later) both attack the problem
of finding the boundary more directly than the histogram classifier, and therefore they tend to
produce much better results in theory and practice. In the following we will demonstrate this for
classification trees.

76 CHAPTER 12. DECISION TREES

12.3 Binary Classification Trees
Binary classification trees are constructed by a two-step process:

1. Tree growing
2. Tree pruning

The basic idea is to first grow a very large, complicated tree classifier, that explains the the training data
very accurately, but has poor generalization characteristics, and then prune this tree, to avoid overfitting.

12.3.1 Growing Trees

The growing process is based on recursively subudividing the feature space. Usually the subdivisions are
splits of existing regions into two smaller regions (i.e., binary splits) and usually the splits are perpendicular
to one of the feature axes. An example of such construction is depicted in Figure 12.3.

—> —> —> and so on...

Figure 12.3: Growing a recursive binary tree (X = [0,1]%).

Often the splitting process is based on the training data, and is designed to separate data with different
labels as much as possible. It such constructions, the “splits,” and hence the tree-structure itself, are data
dependent. Alternatively, the splitting and subdivision could be independent from the training data. The
latter approach is the one we are going to investigate in detail, and we will consider Dyadic Decision Trees
and Recursive Dyadic Partitions (depicted in Figure 12.4) in particular.

Until now we have been referring to trees, but did not make clear how do trees relate to partitions. It
turns out that any decision tree can be associated with a partition of the input space X and vice-versa. In
particular, a Recursive Dyadic Partition (RDP) can be associated with a (binary) tree. In fact, this is the
most efficient way of describing a RDP. In Figure 12.4 we illustrate the procedure. Each leaf of the tree
corresponds to a cell of the partition. The nodes in the tree correspond to the various partition cells that
are generated through in the construction of the tree. The orientation of the dyadic split alternates between
the levels of the tree (for the example of Figure 12.4, at the root level the split is done in the horizontal axis,
at the level below that (the level of nodes 2 and 3) the split is done in the vertical axis, and so on...). The
tree is called dyadic because the splits of cells are always at the midpoint along one coordinate axis, and
consequently the sidelengths of all cells are dyadic (i.e., powers of 2).

77

Figure 12.4: Example of Recursive Dyadic Partition (RDP) growing (X = [0, 1]°).

In the following we are going to consider the 2-dimensional case, but all the results can be easily general-
ized for the d-dimensional case (d > 2), provided the dyadic tree construction is defined properly. Consider
a recursive dyadic partition of the feature space into k boxes of equal size. Associated with this partition
is a tree T. Minimizing the empirical risk with respect to this partition produces the histogram classifier
with k equal-sized bins. Consider also all the possible partitions corresponding to pruned versions of the tree
T. Minimizing the empirical risk with respect to those other partitions results in other classifiers (dyadic
decision trees) that are fundamentally different than the histogram rule we analyzed earlier.

12.3.2 Pruning

Let F be the collection of all possible dyadic decision trees corresponding to recursive dyadic partitions of
the feature space. Each such tree can be prefix encoded with a bit-string proportional to the number of leafs
in the tree as follows; encode the structure of the tree in a top-down fashion: (i) assign a zero at each branch
node and a one at each leaf node (terminal node) (ii) read the code in a breadth-first fashion, top-down,
left-right. Figure 12.5 exemplifies this coding strategy. Notice that, since we are considering binary trees,
the total number of nodes is twice the number of leafs minus one, that is, if the number of leafs in the tree
is k then the number of nodes is 2k — 1. Therefore to encode a tree with k leafs we need 2k — 1 bits.

Since we want to use the partition associated with this tree for classification we need to assign a decision
label (either zero or one) to each leaf. Hence, to encode a decision tree in this fashion we need 3k — 1 bits,
where k is the number of leafs. For a tree with k leafs the first 2k — 1 bits of the codeword encode the tree
structure, and the remaining k bits encode the classification labels. This is easily shown to be a prefix code,
therefore we can use this under our classification scenario.

78 CHAPTER 12. DECISION TREES

=) 000111011

Figure 12.5: Illustration of the tree coding technique: example of a tree and corresponding prefix code.

Let

K

fo= arg?}”teig{Rn (f)+ o I (12.13)

- \/(3k —1)log2 + %logn

This optimization can be solved through a bottom-up pruning process (starting from a very large initial tree
To) in O (|Ty|?) operations, where |Tp| is the number of leafs in the initial tree. The complexity regularization
theorem tells us that

E

B , (3k — 1) log2 + %logn 1
R (fnﬂ < %Q{R(f) + \/ o P+ T (12.14)

12.4 Comparison between Histogram Classifiers and Classification
Trees

In the following we will illustrate the idea behind complexity regularization by applying the basic theorem
to histogram classifiers and classification trees (using our setup above).

Consider the classification setup described in "Classification" (Section 12.2: Classification), with X =
0, 1]".

12.4.1 Histogram Risk Bound

Recall the setup and results of a previous lecture?. Let

FH = {histogram rules with k2 bins}. (12.15)

Then |FH| = 2 Let FH = U,Ql}",f. We can encode each element f of F¥ with cg (f) = k + k? bits,
where the first k bits indicate the smallest k such that f € FT and the following k? bits encode the labels
of each bin. This is a prefix encoding of all the elements in .

2The description here is slightly different than the one in the previous lecture.

79

We define our estimator as

~H kK
fon=In, (12.16)
where
~(k) ~
fn = argf@;’_an (f), (12.17)
k
and
- . - (k + k) log2 + tlogn
k= argrlg?{Rn fn + o™ }.(12.18)

~H

Therefore f, minimizes

- \/CH (f)log2 + %logn

R (f)+ 5 , (12.19)
over all f € FH. We showed before that
E|R (fH> ~ R* < min {R(f) - R* + \/CH (f)log2 + slogny | 1 (12.20)
" T feFH 2n N '

To proceed with our analysis we need to make some assumptions on the intrinsic difficulty of the problem.
We will assume that the Bayes decision boundary is a “well-behaved” 1-dimensional set, in the sense that
it has box-counting dimension one (see Appendix "Box Counting Dimension" (Section 12.6: Box Counting
Dimension)). This implies that, for an histogram with k2 bins, the Bayes decision boundary intersects less
than Ck bins, where C is a constant that does not depend on k. Furthermore we assume that the marginal
distribution of X satisfies Px (4) < K|A|, for any measurable subset A C [0,1]>. This means that the
samples collected do not accumulate anywhere in the unit square.
Under the above assumptions we can conclude that

. . K CK
k
Therefore
i (k + k2)log2 + Llogn 1
E R(fn> —~R* < CK/k+ 5 - +%. (12.22)

We can balance the terms in the right side of the above expression using k = n'/* (for n large) therefore

~H
E|R (fn> —-R" =0 (n_1/4) , as n — oo. (12.23)

80 CHAPTER 12. DECISION TREES

12.4.2 Dyadic Decision Trees

Now let’s consider the dyadic decision trees, under the assumptions above, and contrast these with the
histogram classifier. Let

FiI' = {tree classifiers with k leafs}. (12.24)
Let FT' = J,s,F{ - We can prefix encode each element f of FT with cr (f) = 3k — 1 bits, as described
before. a
Let
. <k)
In=la 7 (12.25)
where
~(k) ~
fn =argmin Ry (f), (12.26)
feFy,
and
“ ~ ~(k) 1
. (3k —1)log2 + 3logn
= (12.2
k argr}:&zz?{Rn In +\/ o +.(12.27)
T
Hence f, minimizes
- c log2 + Llogn
R (f) +\/ 7 (f)log2 + 5log , (12.28)
2n
over all f € FT. Moreover
- cr (f)log2 + Llogn 1
- 1
E —R* < mi - R* = . 12.2
R(fn> R* < Jpggg{R(f) R +\/ o }+\/ﬁ (12.29)

If the Bayes decision boundary is a 1-dimensional set, as in "Histogram Risk Bound" (Section 12.4.1:
Histogram Risk Bound), there exists a tree with at most 8Ck leafs such that the boundary is contained in
at most Ck squares, each of volume 1/k%. To see this, start with a tree yielding the histogram partition
with k2 boxes (i-.e., the tree partitioning the unit square into k2 equal sized squares). Now prune all the
nodes that do not intersect the boundary. In Figure 12.6 we illustrate the procedure. If you carefully bound
the number of leafs you need at each level you can show that you will have in total less than 8Ck leafs. We
conclude then that there exists a tree with at most 8Ck leafs that has the same risk as a histogram with
O (k?) bins. Therefore, using (12.14) we have

(s

We can balance the terms in the right side of the above expression using k =n

(1)

E

2n N

1/3

(3(8Ck) —1)log2 + logn N 1

~R* < CK/k+ \/ (12.30)

(for n large) therefore

E “R* =0 (n*1/3) , as n — oo (12.31)

81

0 01,1 1 00000O0OO0OOO0O1TO0O1T1T111

0101

(b)

Figure 12.6: Illustration of the tree pruning procedure: (a) Histogram classification rule, for a partition
with 16 bins, and corresponding binary tree representation (with 16 leafs). (b) Pruned version of the
histogram tree, yielding exactly the same classification rule, but now requiring only 6 leafs. (Note: The
trees where constructed using the procedure of Figure)

12.5 Final Comments

Trees generally work much better than histogram classifiers. This is essentially because they provide much
more efficient ways of approximating the Bayes decision boundary (as we saw in our example, under reason-
able assumptions on the Bayes boundary, a tree encoded with O (k) bits can describe the same classifier as
an histogram that requires O (k?) bits).

The dyadic decision trees studied here are different than classical tree rules, such as CART or C4.5.
Those techniques select a tree according to

~ ~ ~(k)
k= arng?{Rn fn | +ak}, (12.32)

for some o > 0 whereas ours was roughly

A - ~(k)
k= argrgﬂz{Rn fo | +aVE}, (12.33)
for a ~ 312052. The square root penalty is essential for the risk bound. No such bound exists for CART

or C4.5 . Moreover, recent experimental work has shown that the square root penalty often performs better

82 CHAPTER 12. DECISION TREES

in practice. Finally, recent results show that a slightly tighter bounding procedure for the estimation error
can be used to show that dyadic decision trees (with a slightly different pruning procedure) achieve a rate of

(0)

which turns out to be the minimax optimal rate (i.e., under the boundary assumptions above, no method
can achieve a faster rate of convergence to the Bayes error).

E

—-R* =0 (n_1/2) , as n — oo, (12.34)

12.6 Box Counting Dimension

The notion of dimension of a sets arises in many aspects of mathematics, and it is particularly relevant to
the study of fractals (that besides some important applications make really cool t-shirts). The dimension
somehow indicates how we should measure the contents of a set (length, area, volume, etc...). The box-
counting dimension is a simple definition of the dimension of a set. The main idea is to cover the set
with boxes with sidelength r. Let N (r) denote the smallest number of such boxes, then the box counting
dimension is defined as

. logN (r)

. 12.
r—0 —logr (12:35)

Although the boxes considered above do not need to be aligned on a rectangular grid (and can in fact
overlap) we can usually consider them over a grid and obtain an upper bound on the box-counting dimension.
To illustrate the main ideas let’s consider a simple example, and connect it to the classification scenario
considered before.

Let f :[0,1] — [0,1] be a Lipschitz function, with Lipschitz constant L (i.e., |f (a) — f ()| < L|a —
b|, Va,b € [0,1]). Define the set

A={z=(z1,22) 122 = f (z1)}, (12.36)

that is, the set A is the graphic of function f.

Consider a partition with k2 squared boxes (just like the ones we used in the histograms), the points in
set A intersect at most C’k boxes, with C" = (1 + [L]) (and also the number of intersected boxes is greater
than k). The sidelength of the boxes is 1/k therefore the box-counting dimension of A satisfies

. . logC'k
dimp (A) < lim =gy

= lim 10 ool (12.37)

= 1.

The result above will hold for any “normal” set A C [0, 1]2 that does not occupy any area. For most sets the
box-counting dimension is always going to be an integer, but for some “weird” sets (called fractal sets) it is
not an integer. For example, the Koch curve has box-counting dimension log (4) /log (3) = 1.26186.... This
means that it is not quite as small as a 1-dimensional curve, but not as big as a 2-dimensional set (hence
occupies no area).

To connect these concepts to our classification scenario consider a simple example. Let n(z) =
P (Y =1]X = z) and assume 7 (z) has the form

77(3?)=%+x2—f(x1)7 Vo = (z1,22) € X, (12.38)

where f : [0,1] — [0, 1] is Lipschitz with Lipschitz constant L. The Bayes classifier is then given by

(@) = 1@)>1/20 = Lao> f(an)}- (12.39)

83

This is depicted in Figure 12.7. Note that this is a special, restricted class of problems. That is,
we are considering the subset of all classification problems such that the joint distribution Pxy satisfies
P(Y =1|X =x)=1/24 29 — f (z1) for some function f that is Lipschitz. The Bayes decision boundary is
therefore given by

A={z=(z1,22) 122 = f (z1)}. (12.40)

Has we observed before this set has box-counting dimension 1.

Figure 12.7: Bayes decision boundary for the setup described in Appendix .

84

CHAPTER 12. DECISION TREES

Chapter 13

Complexity Regularization for Squared
Error Loss'

13.1 Complexity Regularization in Regression

Recall the classification problem. In Lecture 6 (Chapter 7), where we assumed that mingczR (f) = 0, we
obtained the PAC bound Vf € F

P{R (fn> > e} < |Fle ™. (13.1)
From Corrolary 1 in Lecture 6 (Corollary 7.1, p. 47),
B 1
E|R (fnﬂ < Lt loglF|. (13.2)
n

In Lectures 7 (Chapter 8) and 8 (Chapter 9), we dropped the assumption that mingerR (f) = 0 and
obtained, Vf € F

P{R (;"n) > e} < |Fle e, (13.3)

This led to

E

< \/log|.7-"| + logn + 2. (13.4)

n

R <fn> —minR (f)

fEF

Hoeffding’s inequality was central to our analysis of learning under bounded loss functions. In many
regression and signal estimation problems it is natural to consider squared error loss functions (rather than
0/1 or absolute error). In such cases, we will need to derive bounds using different techniques.

Example 13.1

To illustrate the distinction between classification and regression, consider a simple, scalar signal
plus noise problem. Consider Y; = 0+W,, i =1,--- n, where 0 is a fixed unknown scalar parameter
and the W; are independent, zero-mean, unit variance random variables. Let Y = 1/n) . | Y;.

LThis content is available online at <http://cnx.org/content/m16267,/1.2/>.

85

CHAPTER 13. COMPLEXITY REGULARIZATION FOR SQUARED ERROR

86 LOSS

Then, according to the Central Limit Theorem, Y is distributed approximately N (6,1/n). A simple
tail-bound on the Gaussian distribution gives us

_ 1
PY-0>c)=P(W>e) < je/, (13.5)

which implies that
PV -0 >¢) < e"</2 (13.6)

This is a bound on the deviations of the squared error err? = |[Y — 9|2. Notice that the exponential
decay rate is a function of € rather than €2, as in Hoeffding’s inequality. The squared error con-
centration inequality implies that E [[Y — 0]*] = O (1) (just write E [err?] = [J° P (err? > t) dt).
Therefore, in regression with a squared error loss, we can hope to get a rate of convergence as fast
as n~! instead of n='/2. The reason is simply because we are using an squared error loss instead
of the 0/1 or absolute error loss.

To begin our investigation into regression and function estimation, let us consider the following.
Let X = R? and)) = R. Take Fsuch that f € F is a map f : R? — R. We have training data

ii.d. . .
{X;, Y}, "X" Pxy. As our loss function, we take the squared error, i.e.,

L (X0),Yi) = (f (X)) = Y)". (13.7)
The risk is then the MSE:
R(f)=E[(f(X)-Y)]. (13.8)
We know that the function f* that minimizes the MSE is just the conditional expectation of Y
given X:
ff=E[Y|X =2]. (13.9)

Now let R* = R(f*). We would like to select an f, € F using the training data {X;,Y;}? ; such

that the excess risk

is small. Let’s consider the difference between the empirical risks:

E —~R*>0 (13.10)

(f* (X)) = Y)*. (13.11)

n
=1

=1 i
~

Note that F [R (f)— R (f*)} = R(f) — R(f*). Hence, by the Strong Law of Large Numbers
(SLLN), we know that

~ ~

R(f)=R()—R()-R(f) (13.12)

as n — 0o. But how fast is this convergence?

87

We will derive a PAC style bound for the difference R (f)— R (f*) — (R(f) — R(f*)). The
following derivation is from Barron 1991. The excess risk and it empirical counterpart will be
denoted by

r(f,f*)=R(f) - R(f")
. - . (13.13)

r (£ 1) =R (f)— R (f)

Note that r (f, f*) is the sum of independent random variables:

r(f,f7) = —%ZUi, (13.14)
=1

~

where U; = —(Y}—]"()Q))2 + (Yi—f*(Xi))Z. Therefore, r(f,f*)— r (f,f*) =

& ic1 (Ui — EU)).
We are looking for a PAC bound of the form

P (r(f,f*) () > 5) < (13.15)

If the variables U; are bounded, then we can apply Hoeffding’s inequality. However, a more useful
bound for our regression problem can be derived if the the variables U; satisfy the following moment
condition:

var (G3) oy ez (13.16)

E[lUi-EU]*] <
for some h > 0.
The moment condition can be difficult to verify in general, but it does hold, for example, for
bounded random variables. If (13.16) holds, then the Craig-Bernstein (CB) inequality states:

n

P (1 S Ui-EU) > 4+ 5 (G ZUi)) <e (13.17)

n <~ ne 2(1—-¢)

for 0 < eh < ¢ < 1 and t > 0. This shows that the tail decays exponentially in t, rather than
exponentially in t2. Recall Hoeffding’s inequality:

P (1 En: (Zi — EZi]) > t) < e (13.18)

n n
042
It % < 1, then % < t, which implies e+~ > e~t. This indicates that the CB inequality may
be much tighter than Hoeffding’s. To use the CB inequality, we need to bound the variance of
L3 Ui Note that

var (U;) = var (—(Y;- (X)) (Y — (Xl-))?) : (13.19)

Assumption 1

The support of Y and the range f(X) is in a known interval of length b.
Proposition 1

With the above assumption, (13.16) holds with h = %.

CHAPTER 13. COMPLEXITY REGULARIZATION FOR SQUARED ERROR

88
LOSS
Proposition 2
Again, with the above assumption, it may be shown that
var (U;) < 50°r (f, f*). (13.20)

You can write U; as

Ui = 2Yf(X;) = 2Vif* (X,) + f7(X)° —f() 2Yf() 2Yf*(i)+ (8.21)
27 (X)) = fX)° - f(X)P + 2f X; 1) =
2(Yi = f (X)) (f (Xi) = f* (X0) = (f (X,

Note that the variance of U; is upper-bounded by its second moment. Also note that the covariance of
the two terms above is zero:

E[2(Yi = £ (X)) (f (X)) = f* (X0) (f (X3) = f* (X2))°] E[1yT3)
= Ex [Byx 1T
= Ex [ThEyx [T1]] (13.22)
= Ex [T % 0]
= 0
This is evident when you recall that f* (X;) = E[Y|X = X;]. Now we can bound the second moments of
T, and T5 :

E[1] = 4B[((Y - f* (X)) (f (X:) - f* (X0))?]
) 2

(X
(13.23)
B[] = B |(f(X) = £ (x.)']

IA
>

B (f (X)) = £ (X))?]
So var (U;) < 5b*°E [(f (X;) — f* (Xz))z} . The final step is to see that

r (5,1 = E[U] = Bx [Byx U] = B [(/ (X2) - £ (X2))°] . (13.24)
Thus, n var (1 Y1, U;) <5b%r (f, f*). And therefore, we can say that, with probability at least 1 — e,

~ 2 r *
r(fif)—r(f,f)< LA 565(1_(];)” (13.25)

ne
In other words, with probability at least 1 — § (where § = e™?),

logs | 5 b r(f, [*)

ne 2(1-¢) (13.26)

r(fuf*)_ r (f7f*) <
Now, suppose we have assigned positive numbers ¢ (f) to each f € F satisfying the Kraft inequality:

> 2 <, (13.27)
feFr

89

Note that (13.26) holds Vé > 0. In particular, we let 6 be a function of f:

§(f) =27y, (13.28)

So we can use this § along with the procedure introduced in Lecture 9 (Chapter 10) (i.e., Union of events
bound followed by the Kraft inequality) to obtain the following. For all f € F,¥§ > 0,

c(f)log2+log% N 5¢ b% r (f, f*)

L) —) < 13.29
T (L) - i (13.29)
with probability at least 1 — 5. Now set c =€ h = 21’; and assume ¢ < ;0>. Then define
5e b2
=— <1 13.30
“T30-0 " (13.30)
Now, after using « and rearranging terms, we have:
o . c(f)log2 +logx
(1= a)r (f, f7) <7 (f,f7) + S22 (13.31)
We want to choose f to minmize this upper bound. So take
B o c(f)log2
= n — 1. 13.32
fn = argmin{Rn () + — —} (13.32)

So, with probability at least 1 — 4,

. /A c<fn>l092+log(15
(1—a)r <fn,f*> (fmf*> L (13.33)
r

(« f*)+ c(f;:)log2+log%

n? eEn

IN
<

IA

+ c(f)log2 }

ne

where f = argminser{R (f)

Now we use the Craig-Bernstein inequality to bound the difference between r (f¥, f*) and r (f, f*) :
With probability at least 1 — 4,

~ l l
r (fn, [7) Sr(fﬁ,f*)+ar(f;,f*)+m. (13.34)

ne
Now we can again use the union bound to combine (13.33) and (13.34): With probability at least 1 —24,Vé >
0,

P 1 *) log2 + 2logl/§
r(fn,f*> < 1RO (g gy 4 Cln)log2 4+ 2logl/0 (13.35)
l1—«a ne
Now set§:e%€t,then we have
- 1 * l 2 —net
P(r <fn,f*> - +ar(f;,f*)+c(f”)og>t> < 2e7F, (13.36)
1—« ne

Integrating, we get

E

IN

TSP >t dt

r (f,,,f*> — e (g “‘”]
(13.37)

0o —net
Jo 2e72
4

ne

CHAPTER 13. COMPLEXITY REGULARIZATION FOR SQUARED ERROR

90 LOSS
To sum up, we have shown that for & < 15,
< _— .
P r(fmfﬂ_(l_a)rm,fw o241, (13.39
or,
P 1+a\ . . c(f)log2, 4
E < | — —_ — 13.
T<fmf)1_(1a> mintr (7,77 + S92y 4 2 (13.39)
since a < 1. Or, in expanded form:
E R(h) ~R(f) < (5) min{R() - R() + 0y 40 (13.40)
Notice that if f* € F and if ¢ (f*) is not too large (e.g., ¢ (f*) = logn), then we have E | R (fn> —R(f*) =

O (n~tlogn), within a logarithmic factor of the parametric rate of convergence!

Chapter 14

Maximum Likelihood Estimation’

In the last lecture (Chapter 13) we derived a risk (MSE) bound for regression problems; i.e., select an
f € F so that E [(£(X) - Y)ﬂ - E [(£ (X) - Y)z] is small, where f* (z) = E[V|X = x]. The result is
summarized below.

Theorem 14.1: Complexity Regularization with Squared Error Loss
Let X = RY Y = [-b/2,b/2], {X;,Yi} iid, Pxy unknown, F = {collection of candidate
functions},

FiRY S Y, R(f):E[(f(X)—Y)2 . (14.1)

Let ¢(f), f € F, be positive numbers satisfying Zf€f2_c(f) < 1, and select a function from F
according to

£ = argmin{ R, () + £ CUH92y (14.2)

~

with e < % and R, (f) = L 30, (f (X;) = i)?. Then,

()]

_ cb?
where oo = T=2b%2/3 -

E

“R() < (} - C“) min{R (1)~ k(1) + - CUO2y 4 o () (14.3)

14.1 Maximum Likelihood Estimation

The focus of this lecture is to consider another approach to learning based on maximum likelihood estimation.
Consider the classical signal plus noise model:

Yi:f<;)+Wi,i=l,---,n (14.4)

where W; are iid zero-mean noises. Furthermore, assume that W; ~ P (w) for some known density P (w).
Then

v r(v-1(2)) =P (14.5)

LThis content is available online at <http://cnx.org/content/m16276,/1.2/>.

91

92 CHAPTER 14. MAXIMUM LIKELIHOOD ESTIMATION

since Y; — f (L) = W,.
A very common and useful loss function to consider is

3

~ 1 n
= " (~logPy, (Y; (14.6)
=1

Minimizing R, with respect to f is equivalent to maximizing

=3 togPy, (1) (14.7)
or .

[P x). (14.8)

=1

Thus, using the negative log-likelihood as a loss function leads to maximum likelihood estimation. If the
W; are iid zero-mean Gaussian r.v.s then this is just the squared error loss we considered last time. If the
W, are Laplacian distributed e.g. P (w) o eIl then we obtain the absolute error, or L, loss function. We
can also handle non-additive models such as the Poisson model

U /)"

Pyl (i/n)) = e~

(14.9)

In this case

—logP (Yi|f (i/n)) = f(i/n) — Yilog (f (i/n)) + constant (14.10)

which is a very different loss function, but quite appropriate for many imaging problems.
Before we investigate maximum likelihood estimation for model selection, let’s review some of the basic
concepts. Let © denote a parameter space (e.g., © = R), and assume we have observations

Y Y Py (y), i=1,---,n (14.11)

where 6* € © is a parameter determining the density of the {Y;}. The ML estimator of 6* is

~

On

argniis [[i=1 Po (Y3)
= argmar i logPy (Y;) (14.12)
€
=) " —logPy (V7).
argmin 3 ;_, —logPy (Yi)

maximizes the expected log-likelihood. To see this, let’s compare the expected log-likelihood of 8* with
any other 6 € ©.

EllogPy- (Y) ~logPy (Y)] = E [tog%: 8]
flogilﬁ*(yy)) Py (y) dy
K (Py, Pp«) the KL divergence

> 0 with equality iff Py~ = Py.

(14.13)

Why?

Py Pa(
—F [log Ige(yy))} = {log Peg* (yy))}
< logE [zi:i(fg)}

= log [Py(y)dy =0
= K(PQ,PQ*) >0

~

On the other hand, since §,, maximizes the likelihood over 8 € ©, we have

Therefore,

Or re-arranging

n

i=1 On
071,

0n On

1 — Py (Y;)
P | < |5 VY KPP).
K(P ,P9>_ nZlogPA) (, 9>

0n

Notice that the quantity

is an empirical average whose mean is K (Py, Py~). By the law of large numbers, for each 6 € O,

n

721 Pg*

- P* ' a.s
Zl o K (Py, Ppe)| “5 0.

If this also holds for the sequence {6,}, then we have

Py (Y,
K(PA PQ*> < Zloge()—K<PA ,P9*> —0asn — oo

which implies that

0n
GTL

which often implies that

On — 0"

in some appropriate sense (e.g., point-wise or in norm).

Zz P"* : Zlogpg*) — logP~ (Y;) <0.

1 Py (Y7)
— E log———~ — K | P~ , Pp- K(|P. Py-] <0

93

(14.14)

(14.15)

(14.16)

(14.17)

(14.18)

(14.19)

(14.20)

(14.21)

(14.22)

94 CHAPTER 14. MAXIMUM LIKELIHOOD ESTIMATION

Example 14.1: Gaussian Distributions
1 g2
P () = e
n iid
=R, {Yi}iL; ~ P (y)

K (P, Py-) = [log 58 Py (y) dy

J =07 - w=0] P () dy

Ep- [y —0)°] - Eo- [y - 0]
Eg- [Y2—2Y0+ 0% —1/2

= (6" 41/2-2070+62—1/2

- (0 —6)?

= 0" maximizes E [logPy (Y)] wrt6 € ©

On

argmaar{~ (Y — 0)°}
= argmin{S (i - 0%}
= %Z?:l Yi

14.1.1 Hellinger Distance

The KL divergence is not a distance function.

K(P91’P92)7QK(P92’P91)

Therefore, it is often more convenient to work with the Hellinger metric,

H(Py,, Py,) = (/ (le - Pé)Qdy)é.

The Hellinger metric is symmetric, non-negative and

H(P91aP92):H(P927P91)

(14.23)

(14.24)

(14.25)

(14.26)

(14.27)

(14.28)

(14.29)

(14.30)

and therefore it is a distance measure. Furthermore, the squared Hellinger distance lower bounds the KL

divergence, so convergence in KL divergence implies convergence of the Hellinger distance.

Proposition 1

H2 (P917P92) SK(P91?P92>

(14.31)

Proof:

H (P, Pp,) = (\/Pgl — /P, (4)2d
= fP91 dy—i—ngz dy—Zf v/ Po, (y)\/Po, (y)dy
= 2-2[/Py, (y)\/Po, (y)dy, since [Py (y)dy =1V
2 (1 Eo, [V/Po, (V) /Po, (¥)D

< 2log (E92 { Py, (Y) /Py, (Y)D , sincel —x < —logz
< 2FEp, [log\/sz (Y) /Py, (Y)} , by Jensen’s inequality

Ey, [ZOQ (P92 (Y) /P91 (Y))] = K (P91’P92)

Note that in the proof we also showed that

1 (o) =2 (1= [VR Vo

and using the fact logx < z — 1 again, we have

H (Py,, Py,) < —2log (/ mmdy) :

The quantity inside the log is called the affinity between Py, and Pp,:

A(Po,, Poy) = / /Por)/ Pa @)dy.

This is another measure of closeness between Py, and Py, .

Example 14.2: Gaussian Distributions

1
Py (y) = ;67@79)2

—2log [\/Pa, (y)\/Po, (y)dy

3 1
—2log [(ﬁe—(y—&y) 2 (%6_@_92)2) ® 4y

= —2log (f \}%e[(y_gl)%r(y_gﬁz] dy

= —2log (f ﬁe_[(y_(%geg))z‘*(%zﬁ)z]dy)

= —2loge_(91;92)2

= 1(01 — 02)°
= —2logA (P, Ps,) = 1(61 — 62)* for Gaussian distributions
= H (Py,, Py,) < (61 — 05)° for Gaussian.

Example 14.3: Poisson Distributions
If Py(y) = 6—9%’9 >0, then

—2logA (Py,, Ps,) = (f NN)

95

(14.32)

(14.33)

(14.34)

(14.35)

(14.36)

(14.37)

(14.38)

(14.39)

96 CHAPTER 14. MAXIMUM LIKELIHOOD ESTIMATION

Summary)
Y; % p,. (14.40)

1. Maximum likelihood estimator maximizes the empirical average
1 n
— E logPy (Y;) (14.41)
n
i=1

(our empirical risk is negative log-likelihood)
2. 0* maximizes the expectation

E (14.42)

1 n
= logPy (Y;)
n =1

(the risk is the expected negative log-likelihood)

IS 0.
- > logPy (V) “¥ E (14.43)
=1

1 n
— Py (Y;
n;wg 9(1)

so we expect some sort of concentration of measure.
. In particular, since

e

1 - P@* (}/z) a.s.

AN K (P,, Py- 14.44
nZ;OQPe(Yi)H (Po, Po~) ()

we might expect that K (PA ,P9*> — 0 for the sequence of estimates {P~ }2° ;.
0n 0n

So, the point is that maximum likelihood estimator is just a special case of a loss function in
learning. Due to its special structure, we are naturally led to consider KL divergences, Hellinger
distances, and Affinities.

Chapter 15

Maximum Likelihood and Complexity
Regularization'

15.1 Review : Maximum Likelihood Estimation
In the last lecture (Chapter 14), we have n i.i.d observations drawn from an unknown distribution

}/; ,L}Vd Do+) Z = {17 ,TL} (151)

where 6* € ©. (15.2)
With loss function defined as 1 (0,Y;) = —logpy (Y;), the empirical risk is

-
= =N logpe (Y)) . 15.
R n;ng"() (15.3)

Essentially, we want to choose a distribution from the collection of distributions within the parameter space
that minimizes the empirical risk,i.e., we would like to select

P~ €P={po}pco (15.4)
9’7l
where
0,= arg min - ; logpy (Y3) . (15.5)
The risk is defined as
R(0) = E[1(0,Y)] = —E[logpe (Y)] - (15.6)
Note that 6* minimizes R (0) over ©.
0 = argmin — E[logps (Y)]
0e® (15.7)

= argmin — [logpe (y) - pe- (y) dy.

I This content is available online at <http://cnx.org/content/m16275,/1.2/>.

97

CHAPTER 15. MAXIMUM LIKELIHOOD AND COMPLEXITY

% REGULARIZATION

Finally, the excess risk of 6 is defined as

R(0) - R(0") = / 1og?) .) dy = K (oo, o) (15.8)
o (y)
We recognized that the excess risk corresponding to this loss function is simply the Kullback-Leibler (KL)
Divergence or Relative Entropy, denoted by K (pg,,ps,). It is easy to see that K (pg,,py,) is always
non-negative and is zero if and only if pg, = py,. KL divergence measures how different two probability
distributions are and therefore is natural to measure convergence of the maximum likelihood procedures.
However, K (pg,,ps,) is not a distance metric because it is not symmetric and does not satisfy the triangle
inequality. For this reason, two other quantities play a key role in maximum likelihood estimation, namely
Hellinger Distance and Affinity.
The Hellinger distance is defined as

1
2

i n,0) = ([(Voo @)= Vo @)) (15.9)

We proved that the squared Hellinger distance lower bounds the KL divergence:

H? (p91>p92) < K(p917p92)

, (15.10)
H? (po,,po,) < K (po,,po,) -

The affinity is defined as

A (p017p92) = / V Po; - Do, (y) dy . (1511)

we also proved that

H? (po,, pa,) < —2log (A (pe, . pa,)) - (15.12)

Example 15.1: Gaussian Distribution

Y is Gaussian with mean 6 and variance o2.

(1) = ———e 5 (15.13)
= e 20 . .
Po (Y g2
First, look at
Po, 1 2 2
log—= = — (0] —65) —2(6, — 0 . 15.14
og vt = o5 (6~ 88) ~2(61 ~ 62) (15.14)

Then,
K (p91 7p92) = E92 |:log %}
2_p2 _
= 912052 . 2(9210292)/y - po, (y) dy
D —
E[Y]=0,

02-0,)>

- L (024 03— 20,0y) = %)
(y—01)2 1/2 (y—62)2 1/2
_QZOQA(penp@z) = —2109 f <21r02 emﬂ) ' (\/2;76 207) dy

_(w-ep? (y—0y)?

= —2log (f \/ﬁe 102 o dy

= —2log (f Vino?

01—605\2
= —2loge” 27
(01—02)°

Lot [ty e (g

)

= 402 :%K(p017p92) 2H2 (p017p¢92) M

99

(15.15)

15.2 Maximum likelihood estimation and Complexity regularization

Suppose that we have n i.i.d training samples, {X;,Y;}7 b PXY -
Using conditional probability, pxy can be written as

pxy (z,y) = px (v) Py |X=z (y) -

Let’s assume for the moment that px is completely unknown, but py|x—, (y) has a special form:

Py|x=z () = Pf+(z) (¥)

where py|x—5 (y) is a known parametric density function with parameter f* (z).

Example 15.2: Signal-plus-noise observation model

Yi=f"(X)+W, ,i=1,..,n

where W; "5 A (0,0?) and X; i DX .

Y|X = x ~ Poisson(f* (z))

The likelihood loss function is

L(f(z),y) = —logpxy (X,Y)
= —logpx (X) —logpyx (Y|X)
—logpx (X) —logpgx) (Y) -

(15.16)

(15.17)

(15.18)

(15.19)

(15.20)

(15.21)

CHAPTER 15. MAXIMUM LIKELIHOOD AND COMPLEXITY

100 REGULARIZATION

The expected loss is

E(f(X),Y)] = Ex [Eyx [[(f (X),Y)|X = a]]
Ex [Byx [40ng (x) —logpsay (V)X = 2]] (15.22)
= —Ex[logpx (X Ex [Ey|x [logpsa) (V)| X ==] |
= —Ex UOSJPX (X) 1= E [logpsx) (Y)] -
Notice that the first term is a constant with respect to f.
Hence, we define our risk to be
R(f) = —E [logpsx) (V)]
= —Ex [Ey|x [logpsa) V)| X =2] | (15.23)
= — [([logps@) (W) Pre) (v) dy) px (z) da.
The function f* minimizes this risk since f () = f* (z) minimizes the integrand.
Our empirical risk is the negative log-likelihood of the training samples:
Ru(F)= 23" ~logpsxy (Y0 (15.24
i=1

The value % is the empirical probability of observing X = Xj.

Often in function estimation, we have control over where we sample X. Let’s assume that

= [0, 1]d and) = R. Suppose we sample X uniformly with n = m? samples for some positive
integer m (i.e., ,take m evenly spaced samples in each coordinate).

Let @; ;i = 1,...,n denote these sample points, and assume that Y; ~ p-(s,) (y). Then, our
empirical risk is

1 n n
= Zl(f (z:),Yi) = %Z —logpy(z) (Vi) - (15.25)
=1 i=1

Note that x; is now a deterministic quantity.
Our risk is

R(f) = _% ? B [logpf(ii) (Y;)]
= le i=1 U logpy(a) (Yi) - Ppe(as) (i) dyi] .
The risk is minimized by f*. However, f* is not a unique minimizer. Any f that agrees with f*
at the point {z;,Y;} also minimizes this risk.
Now, we will make use of the following vector and shorthand notation. The uppercase Y denotes
a random variable, while the lowercase y and x denote deterministic quantities.

(15.26)

Y, % T1
Yo Y2 T

Y =] y=] T =] (15.27)
Yn Yn Ln

Then,
pr(Y) =1, p(Yilf (z;)) (random)
pr(y) =I[1i—; p (vl f (%)) (deterministic) .

101

With this notation, the empirical risk and the true risk can be written as

RAn (f) = —Llogps (V) .
R(f) = —LElogpy (V)] (15.28)

—L [logps (y) - py- (y) dy.

15.3 Error Bound

Suppose that we have a pool of candidate functions F, and we want to select a function f from F using the

training data. Our usual approach is to show that the distribution of R,, (f) concentrates about its mean
as n grows. First, we assign a complexity c(f) > 0 to each f € F so that >,27¢/) < 1. Then, apply the
union bound to get a uniform concentration inequality holding for all models in F. Finally, we use this
concentration inequality to bound the expected risk of our selected model.

We will essentially accomplish the same result here, but avoid the need for explicit concentration inequal-
ities and instead make use of the information-theoretic bounds.

We would like to select an f € F so that the excess risk is small.

0 < R(f)—R(f*)
= L1Ellogps- (Y) —logps (Y)]

_ 1 ps=(Y)
= ~FE {log (V) }

= +K (g ps+)

(15.29)

where

K (py,py-) = Z (/ log= 22 “Dfe (i) (Yi) dyi) (15.30)

— D) (Yi)

K(ppar) Pre(ar))

is again the KL divergence.
Unfortunately, as mentioned before, K (ps,ps-) is not a true distance. So instead we will focus on the
expected squared Hellinger distance as our measure of performance. We will get a bound on

S (82 0)0 0] = 30 ([(Voreen @0 = o 00)). 153

15.4 Maximum Complexity-Regularized Likelihood Estimation

Theorem 15.1: Li-Barron 2000, Kolaczyk-Nowak 2002
Let {x;,Y;}" ; be a random sample of training data with {Y;} independent,

Yivppey i) i=1.0n (15.32)

for some unknown function f*.

102

CHAPTER 15. MAXIMUM LIKELIHOOD AND COMPLEXITY

REGULARIZATION

Suppose we have a collection of candidate functions F, and complexities ¢(f) > 0,f € F,

satisfying
Z 2l <1
fer

Define the complexity-regularized estimator

fa=arg mm{** Z logpy (Y3) +
=1

2¢(f)log2

Then,

LB (0 (V) ppe (V)] < ~2Ellog (A(ps (V) - (¥)
< min{K (pg,ps-) + 24002}

Before proving the theorem, let’s look at a special case.

Example 15.3: Gaussian noise

Suppose Y; = f (;) + Wi ,W; "% &N (0,0%).
(1) 1 (wi-— f())2
T i) = ——=€ 202
Py \Y forg?
Using results from example 1 (Example 15.1: Gaussian Distribution), we have
—2logA <pA (Y) y D+ (Y)> = Z?:l —2logA <pA (Yl) yPf*(xs) (Y1)>
fn fn(WZ)

= Y - 2logf\/ D (e (Yi) dyi

2
107 i (fn (z:) = f* (%)) :

lOgA(}?Aapf*)] Z (fn (wi) — f* (CL’J)
fn i=1

Then,

2
—ZE
n

We also have,

VK (pppp) = f X, Uk
—logpy (V) = o, eSO

Combine everything together to get

N 2
fn=argmin{— Z X)) +20(f)log2}.

feF n 202 n

(15.33)

(15.34)

(15.35)

(15.36)

(15.37)

(15.38)

(15.39)

(15.40)

The theorem tells us that

R e (< mm{lz (f (m) = f* (2:))° n 2¢(f) log2

4n 4 - o2 feF n = 202 n
i—

}

or

n

" kf s m)] Smin(2 3 () - 7)P+ SN2

Now let’s come back to the proof.

Proof 15.1:
H? (pmpf*> = < — /Dy y) dy
fa \/

< —2log</ /p P (
af finity
=
EH2<p P >]<2E log !
~,Df* <
Fa S o~) -pre (y) dy
fn
Now, define the theoretical analog of f,:
1 2¢(f)log2
n — -K 3 * - J-
fn = argmin{ =K (py.pp) + —= ——}
Since
L= ind—1] y) & 2¢(flog2
f argmin{—;logpy (V) + =574

= argmaz{5 (logps (V) = 2¢(f) log2)}
= argmagz{; (logp; (Y) = 2¢(f) log2)}
argr;Leaﬁ_:{log (ps(Y)- e*‘:(f)logz)}

argmaz{/ps (V) - e=ties2}

we can see that

—c <fAn> log2
p~ (Y)e

fn
P, (Y)e—clfn)log2

103

(15.41)

(15.42)

(15.43)

(15.44)

(15.45)

(15.46)

(15.47)

(15.48)

CHAPTER 15. MAXIMUM LIKELIHOOD AND COMPLEXITY

104 REGULARIZATION

Then can write

2 R . < L
E|H <p ,Df)] < 2E |log f\/pA<y)-pf*<y>dy
fn Afn
\/m(f) (15.49)
< 2F |log = L ‘

VPin (V)e—ctmios2 " [o ppe dy
f'”/

ps=(Y)

Now, simply multiply the argument inside the log by) to get
/D ~ (Y —c(f;)togﬂ
E\H?p~,ps < 2E |log R Tmtegs " L
f VP (V) y/ppe (v) emeUmltosz o f \/p ~ W) (W) dy
" fn

E |log (g;g;)} +2¢(fn) log2

p~(Y) *C(sz)lf)ﬂ
+2F |log In < (15.50)

/e (Y) ’ f\/p (y)pex(y) dy

f'n/
= K (pg,,pg+) + 2¢(fn) log2

p~ (V) *C(f;)lf)ﬂ
fn . e
Ve (V) [\/p ~ (y)ps=(y) dy
f’Vl

+2F |log

The terms K (py,,ps+) + 2¢(fn)log2 are precisely what we wanted for the upper bound of the
theorem. So, to finish the proof we only need to show that the last term is non-positive. Applying
Jensen’s inequality, we get

~)
D~ (Y) —c| fn |log2 _ N pf'n
2k |1 fn (& <9 B e\ fn |log2 ppx(Y)
og : < 2log e .
VoY) [Ip- (y)-pye (y)dy [fp~ () ps (y)dy

fn fn

~

Both Y and f,, are random, which makes the expectation difficult to compute. However, we can

simplify the problem using the union bound, which eliminates the dependence on f,:

P ~ (Y) 7c(f/;)log2 Pf(y)
—c(f)log2 \/ Pgx (YY)
£ 2log | E Zfefe (f)teg T

fn . . <
v TP @rer@d B 1) Py () dy
f’Vl
E pf(Y)
= 2log [27c<f>M77 (15.52)
e TN/Pr @) pre () dy
= 2log (Z rer 27c<f>)
< 0.

105

where the last two lines come from

pi) | _ [|ps () B
Elm _/M'Pﬂ () dy—/ pr(y)-ps- (y)dy (15.53)

> 2P< (15.54)
ferF

and

CHAPTER 15. MAXIMUM LIKELIHOOD AND COMPLEXITY

106 REGULARIZATION

Chapter 16

Denoising 1I: Adapting to Unknown
Smoothness'

16.1 Review: Denoising in Smooth Function Spaces I - Method of
Sieves

Suppose we make noisy measurements of a smooth function:

Yi=f"(x;))+W;, i={1,..,n}, (16.1)
where
W "% N (0,07) (16.2)
and
)
(X)), 16.3
() .
The unknown function f* is a map
fr:00,1] — R. (16.4)

In Lecture 4 (Chapter 5), we consider this problem in the case where f* was Lipschitz on [0,1]. That is, f*
satisfied

lf @)= f*(s)| < Ljt—s|, V¥t ,se]|0,1] (16.5)
where L > 0 is a constant. In that case, we showed that by using a piecewise constant function on a partition

1
of n3 equal-size bins Figure 16.1 we were able to obtain an estimator f,, whose mean square error was

E|| f*—J:‘nII2 =O(n‘§). (16.6)

I This content is available online at <http://cnx.org/content/m16268,1.2/>.

107

108 CHAPTER 16. DENOISING II: ADAPTING TO UNKNOWN SMOOTHNESS

Figure 16.1: Example of the piecewise constant approximation of f*

In this lecture we will use the Maximum Complexity-Regularized Likelihood Estimation result we derived
in Lecture 14 (Chapter 15) to extend our denoising scheme in several important ways.
To begin with let’s consider a broader class of functions.

16.2 Holder Spaces

For 0 < a < 1, define the space of functions
H (Ca) = {If] < Co : sup!L +|},‘1)|J T@1 < oy (16.7)
z,h

for some constant C, < oo and where f € L,,.H® above contains functions that are bounded, but less
smooth than Lipschitz functions. Indeed, the space of Lipschitz functions can be defined as H' (o = 1)

x+h)—f(z
() = (1 < s sup!EE DO < oy (169
z,h
for C; < oo. Functions in H! are continuous, but those in H%, a < 1, are not in general.
Let’s also consider functions that are smoother than Lipschitz. If « = 143, where 0 < 3 < 1, then define

L of
"oz
In other words, H*,1 < « < 2, contains Lipschitz functions that are also differentiable and their derivatives
are Holder smooth with smoothness 8 = o — 1.

And finally, let

H® (Cy) ={f € H' (C,) € H? (C,)}. (16.9)

H(C) = 15 e i o)) (16.10)

contain functions that have continuous derivatives, but that are not necessarily twice-differentiable.
If f € H*(Cy), 0 < a < 2, then we say that f is Holder—a smooth with Hélder constant C,,. The notion
of Hélder smoothness can also be extended to o > 2 in a straightforward way.

109

Note: If a; < ap then

feH™ = feH™, (16.11)

Summarizing, we can describe Hélder spaces as follows. If f* € H* (C,,) for some 0 < a < 2 and C,, < o0,
then

(i): 0<a<1 |5 () = f*(s)| < Calt — s
(ii): 1 <a <2 ‘%(t)—%(s)‘ < Ot — s[>

Note that in general there is a natural relationship between the Holder space containing the function and
the approximation class used to estimate the function. Here we will consider functions which are Holder—a
smooth where 0 < a < 2 and work with piecewise linear approximations. If we were to consider smoother
functions, a > 2 we would need consider higher order approximation functions, i.e. quadratic, cubic, etc.

16.3 Denoising Example for Signal-plus-Gaussian Noise Observation
Model

Now let’s assume f* € H* (C,,) for some unknown a (0 < o < 2); i.e. we don’t know how smooth f* is. We
will use our observations

Yi=f"(z;)) + Wy, i={1,....,n}, (16.12)
to construct an estimator f,. Intuitively, the smoother f* is, the better we should be able to estimate it.
Can we take advantage of extra smoothness in f* if we don’t know how smooth it is? The smoother f* is,
the more averaging we can perform to reduce noise. In other words for smoother f* we should average over
larger bins. Also, we will need to exploit the extra smoothness in our approximation of f*. To that end, we
will consider candidate functions that are piecewise linear functions on uniform partitions of [0,1]. Let

|[f|<C: fis piecewise linear on [0, %), [1,2),...[52,1) and the Y (16.13)

Fr=A
coefficients of each line segment are quantized to%logn bits.

110 CHAPTER 16. DENOISING II: ADAPTING TO UNKNOWN SMOOTHNESS

[¢]

vn
levels
<
0

L L
(i=1)/k ik

Figure 16.2: Example on the quantization of f on interval [1217 %)

The start and end points of each line segment are each one of /n discrete values, as indicated in Fig-
ure 16.2. Since each line may start at any of the \/n levels and terminate at any of the y/n levels, there are

a total of n possible lines for each segment.
Given that there are k intervals we have

|Fi| = n* = log | Fi| = klogn.

Therefore we can use klogn bits to describe a function f € Fy.
Let

F=J A

k>1
Construct a prefix code for every f € F by
(1) Use 000-- -1 to encode the smallest k such that f € F
——

k bits

(ii) Use klogn bits to encode which element of Fj we are considering.

Thus, if f € Fj, then the prefix code associated with f has codeword length

c(f) =k + klogn = k (1 + logn)
which satisfies the Kraft Inequality

Z 9—c(f) <1.

feF

(16.14)

(16.15)

(16.16)

(16.17)

(16.18)

111

Now we will apply our complexity regularization result to select a function f,, from F and bound its risk.
We are assuming Gaussian errors, so

1; 2
—logpy (Vi) = W + constant. (16.19)

We can ignore the constant term and so our empirical selection is
- n i 2
AN f ()T 2¢(f) log2

_ 1 , 16.20
fa arg?}gg{n' 1 552 + — ()

We can compute f, according to:
Fork=1,...,n

~ (k) ~

L5~ Y- /()

= ; = in — 16.21
fa argmin Ry (f) argmin 2 552 (16.21)
then select
. S (N 2k (1 + logn) 1og2
k=arg min {R, | f, |+ g od } (16.22)
k=1,...,n n
and finally
A (16.23)

Because the KL divergence and —2log affinity simply reduce to squared error in the Gaussian case (Lecture

~

14) (Chapter 15), we arrive at a relatively simple bound on the mean square error of f,,

() ()] O ()

1

The first term in the brackets above is related to the error incurred by approximating f* by an element of
F. The second term is related to the estimation error involved with the model selection process.
Let’s focus on the approximation error. First, suppose f* € H*(C,) for 1 < a < 2. Let f; be the

“best" piecewise linear approximation to f*, with k pieces on intervals [0, +), [1,2),... [5:2,1) . Consider
the difference between f* and f; on one such interval, say [*71,+). By applying Taylor’s theorem with

remainder we have

)= f (;) N 86];* (t) (t_ Z) (16.25)

for t € [©2, 1) and some t’ € [t, %] . Define

&
k() =1 (;) + %’: <;> (t ~ ;) : (16.26)

112 CHAPTER 16. DENOISING II: ADAPTING TO UNKNOWN SMOOTHNESS

Note that f; (¢) is not necessarily the best piecewise linear approximation to f*, just good enough for our
purposes. Then using the fact that f* € H* (Cy,), for t € [i — 1/k,i/k) we have

FO-FO0 = S -5 - -
< l af* t _ af* i
- k ‘ ff () ?2_(1’“) (16.27)
= 5Calt —
a—1 —a
< ()T =Cuk
So, for all t € [0, 1]
1f7 (@) = fr ()] < Cak™. (16.28)
Now let fi be the element of Fj, closest to f; (fy is the quantized version of f;)
@) = fe @) = 1) = £ @)+ fi () = fr @)
< O = O @) = fr (@) (16.29)
—a 1
< Cok™ + 7
since we used %logn bits to quantize the endpoints of each line segment. Consequently,
PO = frOF < @) = f@F 20 @) = £ @ @ = S OF+ 1 (0 = fu @) (16.30)
217.—2a | 1 :
< Cok™™ + 200 "7 + 5
Thus it follows that
2 _ . w2 8a2c(f)log2 o 9o 4C0.k™ 2 802k (logn + 1)log2
= — — I < e 4 - . (16.
?;Zﬁ{nZ(f(z/n) £ (i/n))* + ” } <202k + N ” (16.31)

The first and last terms dominate the above expression. Therefore, the upper bound is minimized when
1
k=2* and £ are balanced. This is accomplished by choosing k = [n?+71 |. Then it follows that

2 i N\, 8o%c(f)log2, 2
}E%{n;(f <n)_f (n)) +f}—0(n ot logn). (16.32)

If o = 2 then we have
1 n ~ . . 2
1 e
| (n () (2)

If f*€ H*(C,) for 0 < o <1, let f be the following piecewise constant approximation to f*. Let

=0 (n*%zogn) . (16.33)

fa@)y=f* (;) on interval [Z_kl, ;) . (16.34)

Then

= r ()
Colt— £]" (16.35)
Cok.

|f (&) = fi ()]

IN

IN

113

Repeating the same reasoning as in the 1 < a < 2 case, we arrive at

7112 E (}n (1)-r (;))2 = 0 (n~ ¥ logn) (16.36)

for 0 < a < 1. In particular, for a = 1 we get

:LZ:E (}n (:L) g (;))2 0 (n—%gogn) (16.37)

within a logarithmic factor of the rate we had before (in Lecture 4 (Chapter 5)) for that case!

16.4 Summary

1. f, can be computed by finding least-square line fits to the data on partitions of the form
[0,2), [, 2) .- [51,1) for k = 1,...,n, and then selecting the best fit by the k that gives the

minimum of the complexity regularization criterion.

2. If f* € H*(C,) for some 0 < a < 2, then

MSE (}n> - iiE (}n <;) — (;))2 =0 (n*#‘illogn) . (16.38)

3. f,, automatically picks the optimal number of bins. Essentially f,, (indirectly) estimates the smoothness

of f* and produces a rate which is near minimax optimal ! (n™ 257 is the best possible).
4. The larger « is the faster the convergence and the better the denoising !

114 CHAPTER 16. DENOISING II: ADAPTING TO UNKNOWN SMOOTHNESS

Chapter 17

Nonlinear Approximation and Wavelet
Analysis'

17.1 Review

In Lecture 4 (Chapter 5) and 15 (Chapter 16), we investigated the problem of denoising a smooth signal in
additive white noise. In Lecture 4 (Chapter 5), we considered Lipschitz functions and showed that by filling
constants on a uniform partition of width n~/3 we can achieve an n=2/ rate of MSE convergence.

In Lecture 15 (Chapter 16), we considered Holder-a smooth functions, and we demonstrated that by
automatically selecting partition width and using polynomial fits we can obtain a MSE convergence rate of
n—2e/20+1 gyubstantially better when o > 1. Also important is the fact that we don’t need to know the value

of « a priori. The estimator f,, is fundamentally different than its counterpart in Lecture 4 (Chapter 5).

In both cases f,, (t) is a linear function (polynomial on constant fit) of the data in each interval of the
underlying partition. In Lecture 4 (Chapter 5), the partition was independent of the data, and so the overall
estimator is a linear function of the data .

However, in Lecture 15 (Chapter 16) the partition itself was selected based on the data. Consequently,

fn (t) is a non-linear function of the data . Linear estimators (linear functions of the data) cannot adapt to
unknown degrees of smoothness. In this lecture, we lay the groundwork for one more important extension
in the denoising application - spatial adaptivity. That is, we would like to construct estimators that not
only adapt to unknown degrees of global smoothness, but that also adapt to spatially varying degrees of
smoothness.

We will focus on the approximation theoretic aspects of the problem in this lecture, considering tree-
based approximations and wavelet expansions. In the next lecture (Chapter 21), we will apply these results
to the denoising problem, this will bring us up to date with the current state-of-the-art in denoising and
non-parametric estimation.

Recall that Holder spaces contain smooth functions that are well approximated with polynomials or
piecewise polynomial functions. Holder spaces are quite large and contain many interesting signals. However,
Holder spaces are still inadequate in many applications. Often, we encounter functions that are not smooth
everywhere; they contain discontinuities, jumps, spikes, etc. Indeed, the "singularities" (or non-smooth
points) can be the most interesting and informative aspects of the functions.

Example 17.1
Functions not smooth everywhere.

LThis content is available online at <http://cnx.org/content/m16278,/1.3/>.

115

116 CHAPTER 17. NONLINEAR APPROXIMATION AND WAVELET ANALYSIS

spike
£t

otherwize smooth

—+

Z,.._- L smoothly varvingn intensty

= except for edges

(b)

Figure 17.1: Example of functions not smooth everywhere. (a) 1-D Case (b) 2-D Case

Furthermore, functions of interest may possess different degrees of smoothness in different re-
gions.

Example 17.2
Functions with different degrees of smoothness.

117

=
=

£D)

:

-—H”‘.U.‘:il

(b)

Figure 17.2: Example of functions having different degrees of smoothness. (a) 1-D Case (b) 2-D Case

17.2 NonLinear Approximation via Trees

Let B (Cy,) denote the set of all functions that are H* (C,) everywhere except on a set of measure zero. To
simplify the notation, we won’t explicitly identify the domain (e.g., [0,1] or [0, 1]d); that will be clear from
the context.

Example 17.3: Sets of measure zero

118 CHAPTER 17. NONLINEAR APPROXIMATION AND WAVELET ANALYSIS

Fit)

//'c'

-7 t
a point has measure
zeron 1-D

(a)

a smoaoth curve has
fMEASUre Zera i 2-1)

(b)

Figure 17.3: Sets of measure zero. (a) 1-D Case (b) 2-D Case

Let’s consider a 1-D case first.

Let f € B*(C,) and consider approximating f by a piecewise polynomial function on a uniform
partition.

If f is Holder-a smooth everywhere, then by using an appropriate partition width k~! and
fitting degree [«] polynomials on each interval we have an approximation f; satisfying

1f () = fu ()| < Cak™ (17.1)

and

If = fillz, = O (k). (17.2)

119

ft)

b 4

172 t

Figure 17.4: Smooth curve with a discontinuity.

However, if there is a discontinuity then for ¢ in the interval containing the discontinuity the
difference

(&) = fu (®)] (17.3)

will not be small.

Example 17.4
Suppose f is piecewise Lipschitz and f; ia a piecewise constant.

120 CHAPTER 17. NONLINEAR APPROXIMATION AND WAVELET ANALYSIS

e
Figure 17.5
f&) = fu@®)]~A (17.4)

where A is a constant equal to average of f on right and left side of discontinuity in this interval.

= If = fillZ, =0 (k) (17.5)

where k! is the width of the interval. Notice this rate is quite slow.

This problem naturally suggests the following remedy: use very small intervals near discontinu-
ities and larger intervals in smooth regions. Specifically, suppose we use intervals of width k=2¢ to
contain the discontinuities and the intervals of width £~! elsewhere. Then accordingly piecewise
polynomial approximation fk satisfies

1S = fullz, = O (k7). (17.6)

We can accomplish this need for "adaptive resolution" or "multiresolution" using recursive parti-
tions and trees.

17.3 Recursive Dyadic Partitions

We discussed this idea already in our examination of classification trees. Here is the basic idea again,
graphically.

121

0 1
142
0 ' 1
114
1/8 !
+-+——+1——1t
0 1
complete EDF cotresponding tree
0 1
pruned EDP
cotresponding tree

Figure 17.6: Complete and pruned RDP along with their correspnding tree structures.

Consider a function f € B*(C,) that contains no more than m points of discontinuity, and is H* (Cy)
away from these points.

Lemma 17.1:

Consider a complete RDP with n intervals, then there exists an associated pruned RDP with

O (klogn) intervals, such that an associated piecewise degree [a/] polynomial approximation (f),,
has a squared approximation error of O (min (k=2%,n71)).
Proof:

Assume n > k > m. Divide [0, 1] into k intervals. If f is smooth on a particular interval I, then

[f ()= () =0 (K> Vtel (17.7)

In intervals that contain a discontinuity, recursively subdivide into two until the discontinuity is

122 CHAPTER 17. NONLINEAR APPROXIMATION AND WAVELET ANALYSIS

contained in an interval of width n~'. This process results in at most logan addition subintervals
per discontinuity, and the squared approximation error is O (k — 2«) on all of them accept the m
intervals of width n~! containing the discontinuities where the error is O (1) at each point.

Thus, the overall squared Lo norm is

1f = fullz, = O (min (k2%,n"")) (17.8)

and there are at most k 4 logon intervals in the partition. Since k>m, we can upperbound the
number of intervals by 2klogan.
Note that if the initial complete RDP has n ~ k2¢ intervals, then the squared error is O (kfza).
Thus, we only incur a factor of 2alogk additional leafs and achieve the same overall approxima-
tion error as in the H* (C,) case. We will see that this is a small price to pay in order to handle
not only smooth functions, but also piecewise smooth functions.

17.4 Wavelet Approximations
Let f € L2([0,1]); [f2(t)dt < cc.
A wavelet approximation is a series of the form
27
f:CoJrZZ < fivjk > Uik (17.9)
>0 k=1

where ¢, is a constant (co = fol f dt),

1
< f, Yk > :/0 @)y, (t)dt (17.10)

and the basis functions ;5 are orthonormal, oscillatory signals, each with an associated scale 277 and
position k277, 1, is called the wavelet at scale 277 and position k277.

Example 17.5: Haar Wavelets

Yk (1) = 277 (Lses (h-1) 273 (h-1/2))) — Litelz—3 (k-1/2).2-3]}) (17.11)

123
Wik (t)

pILER §

k2
(k-1)27 ¢

_0iiZ 4

Figure 17.7: Haar Wavelet

1
/ Yk (t)dt =0 (17.12)
JO
1 k2~7 ,
/ P2 (t)dt = / 29dt =1 (17.13)
o (k—1)2-3
1
/ 1ﬁj,k (t) wl,m (f) dt = j,l-(sk,m (17-14)
0

NoTE: 1If f is constant on [277 (k —1),277k], then

/f%‘,k (t)=0. (17.15)
Suppose f is piecewise constant with at most m discontinuities. Let
J—1 27
fr=co+ Y > <[k > i (17.16)

=0 k=1

124 CHAPTER 17. NONLINEAR APPROXIMATION AND WAVELET ANALYSIS

Then, f; has at most m.J non-zero wavelet coefficients; i.e., < f, 1, > = 0 for all but mJ terms,
since at most one Haar Wavelet at each scale senses each point of discontinuity. Said another way,
all but at most m of the wavelets at each scale have support over constant regions of f.

£ itself will be piecewise constant with discontinuities only possible occurring at end points of
the intervals [277 (k —1),277k]. Therefore, in this case

If = fsllz, =0 (277). (17.17)
Daubechies wavelets are the extension of the Haar wavelet idea. Haar wavelets have one "vanishing
moment":
1
/ Yk = 0. (17.18)
0

Daubechies wavelets are "smoother" basis functions with extra vanishing moments. The
Daubechies-N wavelet has IV vanishing moments.

1
/ thp rdt = 0forl =0,1,..., N — 1. (17.19)
0

The Daubechies-1 wavelet is just the Haar case.
If f is a piecewise degree < N polynomial with at most m pieces, then using the Daubechies-IV
wavelet system.

f=fillz, =00277): (17.20)
and
J—1 27
fr(t) =co+ Z Z < fobjik > vjk () (17.21)
=0 k=1

has at most O (mJ) non-zero wavelet coefficients. f; is called the Discrete Wavelet Transform
(DWT) approximation of f. The key idea is the same as we saw with trees.

17.5 Sampled Data

We can also use DWT’s to analyze and represent discrete, sampled functions. Suppose,

f=1f/n), f(2/n),.... f(n/n)] (17.22)
then we can write f as
logan—1 279
f=cot D Y <fd, >0, (17.23)
j=0 k=1
where
U= ik (1) 05k (2) i ()] (1724

is a discrete time analog of the continuous time wavelets we considered before. In particular,

n

> it (1) =0,1=0,1,..,N — 1 (17.25)

=1

125

for the Daubechies-NV discrete wavelets.

<ft,,> =, (17.26)

Thus, we also have an analogous approximation result: If f are samples from a piecewise degree < N poly-
nomial function with a finite number m of discontinuities, then f has O (m.J) non-zero wavelet coeflicients.

17.6 Approximating functions with wavelets

Suppose f € B (C,) and has a finite number of discontinuities. Let f, denote piecewise degree-N (N = [«])
polynomial approximation to f with O (k) pieces; a uniform partition into k equal length intervals followed
by addition splits at the points of discontinuity.

A
£t)

L 4

172 t

extra break pt at discontty

Figure 17.8
Then
F)—f, =0 (k&?a)) vt e [0,1] (17.27)
= [f(i/n) — fp(i/n) =0 (k2*)i=1,...n (17.28)

= 1/nllf = £ |17, = O (k) (17.29)

126 CHAPTER 17. NONLINEAR APPROXIMATION AND WAVELET ANALYSIS

and ip has O (klogan) non-zero coefficients according to our previous analysis.

17.7 Wavelets in 2-D

Suppose f is a 2-D image that is piecewise polynomial:

poly

edge

poly

Figure 17.9

A pruned RDP of k squares decorated with polyfits gives

f=fellZ, =0 (k). (17.30)

127

Figure 17.10

resolution 1/
sidelength along edge

Let f = [f (i/k,j/k); =, sample range.

k

Fu () = 3" F /b, §/KE) Liseliotymismali—1 kg i}

then

ij=1

||f - fn”%Q =0 (k‘_l)

(17.31)

(17.32)

O (1) error on k of the k? pixels, near zero elsewhere. The DWT of f has O (k) non-zero wavelet coefficients.

0 (Qj) at scale 277,57 = 0,1, ..., logn.

128 CHAPTER 17. NONLINEAR APPROXIMATION AND WAVELET ANALYSIS

Chapter 18

Vapnik-Chervonenkis Theory

18.1 Review of Past Lecture

In our past lectures we considered collections of candidate function F that were either finite or enumerable.
We then constructed penalties, usually codelengths, for each candidate ¢ (f), f € F, such that ZfefZC(f) <1
This allowed us to derive uniform concentration inequalities over the entire set F using the union bound.
However, in many cases the collections F may be uncountably infinite. A simple example is the collection
F of a single threshold classifier in 1-d having the form

fe(z) = Liasey (18.1)

and their complements

fs(t) = liocsy (18.2)

Thus, F contains an uncountable number of classifiers, and we cannot apply the union bound argument in
such cases.

18.2 Two Ways to Proceed

18.2.1 Discretize or Quantize the Collection

Example 18.1
To quantize F

Fq = {fa f (Z) = 1{1§1/Qii€{0,1,...,q}}} (183)
q is positive, such that Vf, € F,

/If —fal < ¢/q (18.4)

if the density of x is bounded by ¢ > 0. ¢ < n'/2.

LThis content is available online at <http://cnx.org/content/m16284/1.2/>.

129

130 CHAPTER 18. VAPNIK-CHERVONENKIS THEORY

18.2.2 Identical Empirical Errors

Consider the fact that given only n training data, many of the classifiers in such a collection may produce
identical empirical errors. Also, many f € F will produce identical label assignments on the data. We will
have at most 2™ unique labels.

f is uncountable, its interceptions are countable and bounded by 2. n intervals with 2 classifier per
interval.

The number of distinct labeling assignments that a class F can produce on a set of n points is denoted

S(F,n) < 2" (18.5)

The VC dimension is logS (F,n). Specifically, VC (F) = k, where k is largest integer such that S (F, k) = 2*
Ex. 2n=2"n=2,VC(F) = 2.
Ex. Consider

F = {f o f (x) = 1{$2t}07“f (IL‘) = 1{z<t}»t S [07 1]} (18.6)

Let q be a positive integer and

Fo={f: (@) =1gsiqgorf (x) = Lizcijqy,i €1{0,1,...,q}} (18.7)

and,

=2 +1). (18.8)
Moreover, for any f € F there exists an f; € F, such that

i/q
15 @ = fu (o) o < /(=1y (189)

Now suppose we have n training data and suppose f* € F. We know that in general, the minimum empirical
risk classifier will converge to the Bayes classifier at the rate of n=/2 or slower. Therefore, it is unnecessary
to drive the approximation error down faster than n~/2 So, we can restrict our attention of Fp-1/2 and,
provided that the density of x is bound above. We have

minger ., R(f) = R(f") < qumin/ |f* (z) — f () |dz < ¢/nt/? (18.10)

Vapnik-Chervonenkis theory is based not on explicitly quantizing the collection of candidate functions, but

rather on recognizing that the richness of F is limited in a certain sense by the number of training data.
Indeed, given n i.i.d. training data, there are at most 2™ different binary labelings. Therefore, any collection
F may be divided into 2" subsets of classifiers that are "equilvalent" with respect to the training data. In
many cases a collection may not even be capable of producing 2" different labellings.

18.3 Example

Consider X = [0, 1].

F={f:f@) =1uspnorf () =1yt € [0, 1]} (18.11)

Suppose we have n training data: (z1,...,2,) € [0,1]. With z* denotes the location of each training point
in [0,1]. Associated with each x is a label y € {0,1}. Any classifier in F will label all points to the left of a
number ¢ € [0,1] as "1" or "0", and points to the right as "0" or "1", respectively. For ¢ € [0, 1), all points
are either labelled "0" or "1". For ¢ € (z1,z2), x; is labelled "0" or "1" and xs...x,, are label "1" or "0" and
so on. We see that there are exactly 2n different labellings; far less than 2!

131

The number of different labellings that a class F can produce on a set of n training data is a measure of
the "effective size" of F. The Vapnik-Chervonenkis (VC) dimension of F is proportional to the log of the
effective size. Let V (F,n) denote the VC dimension of F, typically a constant, independent of n. The VC
inequality states that for all f € F

P (|JA%n (f)=R(f)| > 5) < 8eV(Fh)gmne’/32, (18.12)

This type of uniform concentration inequality can be used in a similar fashion to our use of Hoeffding’s
inequality plus union bound.

18.4 Hyperplane Classifiers

We will go into the details of VC Theory next lecture (Chapter 18), and the remainder of this lecture will
introduce the key ideas with an example Consider the following setup. Let X = [0, 1]d, Y ={0,1} Let

F = {f : f (x) = 1{sz+w0>0}} (1813)
with wy and we R4 This is the collection of all hyperplane classifiers. F is infinite and uncountable.
Suppose that we have n training data
{Xa, Yy (18.14)

There are at most 2 (Z) unique classifiers in F with respect to these data. To see this, consider d arbitrary
data points x1, ..., 7;,, and let w’z + wy > 0 be a hyperplane containing these points. To be specific, take
the hyperplane with

[[wow]| = 1. (18.15)

this hyperplane coincides with two possible classification rules:

h (ZC) = 1{wa+w0>0} (18.16)

f2 (LC) = 1{wTa:+wo<O} (1817)

Each d-tuple of training data produces two distinct classifiers, assuming the data are not co-linear. Thus,
there are at most 2 (") unique classifiers in F with respect to the training data. (All other f € F produce
the same labels and empirical risk as one of the classifiers.) Let’s enumerate the unique hyperplane classifiers

f1, veey f2*(3)’ and let

fo=arg min Ry(f) (18.18)
fe{firnr2 ()}
and let
R* =infrerR(f) (18.19)
and define
f*=argminscrR (f) (18.20)

If multiple f € F achieve R*, pick f* to be one of them in an arbitrary fixed number.

132 CHAPTER 18. VAPNIK-CHERVONENKIS THEORY

Theorem 18.1:
Assume that P, has a density, but that the distribution of (x,y) is other arbitrary. If n > d and

2d/n < e <1 then
P <R <fn> —R(f) > a) < e (2 (Z) + 1) e e/, (18.21)

NoOTE: The assumption that P, has a density insures that no d+1 points are co-planar. This in

turn, guarantees that there are exactly 2 (7)) unique classifier and that the 2 (7)) under consideration

are fully representative of all possible classifiers in F, with respect to the data.

Proof:
The proof is a specialization of the basic ingredients of VC Theory to the case at hand. Here we
follow the proof in DGL ’96. First we note that,

R (h) -R(f")=R (fn> - IA-‘in <fn> + IA%n (fn> —R(f") (18.22)
<R (JA’:TL) -]%n (JAC) + JA%nf* —R(f*)+d/n (18.23)

and since R, fn> < Rn(f)+d/nfor any f € F

d

<maziy () (R (f)- ("R) <fi>> +("R) (/) - RUM) +d/n.(18.29)

n

P <R (f) ~R() >s) (18.25)

n

Therefore, by the union bound:

2(q -~ -
< (Z) P <R(fi) — Rn (fi) > 5/2) +P (Rn (f)=R(f")+d/n> 6/2) : (18.26)
i=1
We can bound the second term of the above bound using Chernoft’s/Hoeffding’s inequality:
P(;%n (f")—R(f") >5/2—d/n> (18.27)
< e~ 2n(e/2=d/n)? (18.28)
< e2deg—ne’/2, (18.29)

Next, let’s bound one of the terms in the summation. For example, take

P (R) = B (f3) > <s/2>) | (18.30)

Note that by symmetry all 2 (Z) terms will have identical bounds. Since the bounds are indepen-
dent of P,y.

133

Assume that f; is determined by the first d data points x4, ...,24. By the smoothing property
of expectations we can write,

P <R (fi) = Rn (f) > s/2> —E [P (R(fi) R (f) > /20, wd>] . (18.31)

From here, we will bound the conditional probability inside the expectation. Let
(X 1 7Yf) s (X;, Y;) be d additional random samples that are independent and identically dis-
tributed as the data (X1,Y1), ..., (Xa,Ya). {X;,Y; }&, are often called the "ghost sample" since
they are not actually observed. They are a fictious sample leads to a simple bound on the conditional
probability. Define if i < d

(x.7) = (x1.%)) (1832
orifi>d
(XQ,Y{) = (X;,Y:). (18.33)
That is, {X%,Yiy}?zl agrees with our observed data on i>d, but the first d samples are replaced
with the ghost sample. Then,
P (R~ o (5) > 22l (18.34)
<P (R(fi) —1/n Y Ly > /2071, zd> (18.35)
i=d+1
SP(R(fi) = 1/nY g (oi)y, +d/n > e/221, xd> (18.36)
1
—p <R(f¢) - (AR) (f1) > t/2 — d/nla1, xd) (18.37)
where,
R, (f1) = 1/”; 1{f1 (ml);é%} (18.38)

Note that n (AR) (f1) is binomially distributed with mean R (f;) and it is independent of
n

z1,...,xq Therefore,

PR = R, (1) > /2 — d/nlor, . 24 (18.39)
PR = R, (1) > t/2— d/nlz, .24 (18.40)
< 672n(5/27d/n)2 (1841)

< e2degmne’/2, (18.42)

134 CHAPTER 18. VAPNIK-CHERVONENKIS THEORY

p <R (}n> —R*> s) (18.43)

In conclusion,

a3

2(%)

<SP (R(f)i R () > 5/2) 4P (R (F*) = R(f*) +d/n > 5/2> (18.44)
=1

<2 (Z) 62(15677162/2 + 62d667n62/2 (1845)

= e (2 (Z) + 1) e /2, (18.46)

Lastly, Corollary If n > d, then

E < V/2(d+1) (logn +2) /n. (18.47)

R (fn> —minger R (f)

Chapter 19

The Vapnik-Chervonenkis Inequality’

19.1 The Vapnik-Chervonenkis Inequality

The VC inequality is a powerful generalization of the bounds we obtained for the hyperplane classifier in the
previous lecture (Chapter 21). The basic idea of the proof is quite similar. Before starting the inequality,
we need to introduce the concept of shatter coefficients and VC dimension .

19.2 Shatter Coefficients

Let A be a collection of subsets of R?, definition : The n!" shatter coefficient of A is defined by

Sl — maz N {{xh...,xn}ﬂA,AsA}’. (19.1)

T1y.eey T €

The shatter coefficients are a measure of the richness of the collection A. S4 (n) is the largest number of
different subsets of a set of n points that can be generated by intersecting the set with elements of A.

Example 19.1
In 1-d, Let A = {(—o00,t],te R} Possible subsets of {1, ...,z } generated by intersecting with sets
of the form (—oo,t] are {1, ...,z }, {z1, ..., ®n-1}, ..., {z1}, ¢. Hence Sg(n) =n+ 1.

Example 19.2
In 2-d, Let A = { all rectangles in R?}

Consider a set {x1, x2, o3, x4} of training points. If we arrange the four points into the corner
of a diamond shape. It’s easy to see that we can find a rectangle in R? to cover any subsets of the
four points as the above picture, i.e. Sy (4) = 2* = 16.

Clearly, S4 (n) =2",n =1, 2, 3 as well.

However, for n = 5,54 (n) < 2°. This is because we can always select four points such that the
rectangle, which just contains four of them, contains the other point. Consequently, we cannot find
a rectangle classifier which contains the four outer points and does not contain the inner point as
shown above.

Note the S4 < 2.

If {{z1,...,xn} A, Ac A}| = 2™ then we say that A shatters xy, ..., zp.

LThis content is available online at <http://cnx.org/content/m16283,/1.2/>.

135

136 CHAPTER 19. THE VAPNIK-CHERVONENKIS INEQUALITY

19.3 VC Dimension

Definition 19.1: The VC dimension
V4 of a collection of sets A is defined as the largest interger n such that S4 (n) = 2™,

Example
A={(—00,t] ;teR},Sa4=n+1hence V4 =1.

Example
A = { all rectangles in R?}.
Sa=2"n=1,2,3,4and Sy < 2", n =4, Hence V4 = 4.
The VC dimension provides a useful bound on the growth of the shatter coeflicients.

19.4 Sauer’s Lemma:

n
Let A be a collection of set with VC dimension V4 < co. Then ¥n,S4 (n) < ZY;“O , also Sy (n) <

(n+1)", vn.

19.5 VC Dimension and Classifiers

Let F be a collection of classifiers of the form f : R? — {0,1} Define A = {{z : f(z) = 1} x {0} U{z :
f(x) =0} x {1}, fe F} In words, this is collection of subsets of X’ x) for which on feF maps the features
x to a label opposite of y. The size of A expresses the richness of 7. The larger A is the more likely it is
that there exists an feF for which R(f) = P(f (X) #Y) is close to the Bayes risk R* = P(f*(X) #Y)
where f* is the Bayes classifier. The n'* shatter coefficient of F is defined as S (n) = S4 (n) and the VC
dimesion of F is defined as Vr = V4.

Example 19.3
linear (hyperplane) classifiers in R?

Consider d = 2. Let n be the number of training points, it is easy to see that when n = 1, let A
be as above. By using linear classifiers in R?, it is easy to see that we can assign 1 to all possible
subsets {{z1}, ¢} and 0 to their complements. Hence Sx (1) = 2.

When n = 2, we can also assign 1 to all possible subsets {{z1,22}, {z1}, {22}, ¢} and 0 to their
complements, and vice versa. Hence Sz (2) = 4 = 22

When n = 3, we can arrange arrange the point x1, x2, x3(non-colinear) so that the set of linear
classifiers shatters the three points, hence Sr (3) = 8 = 23

When n = 4, no matter where the points x1, x2, T3, 4 and what designated binary values
Y1, Y2, Y3, Y4 are. It’s clear that A does not shatter the four points. To see the claim, first observe
that the four points will form a 4-gon (if the four points are co-linear, or if the three points are
co-linear then clearly linear classifiers cannot shatter the points). The two points that belong to
the same diagonal lines form 2 groups and no linear classifier can assign different values to the 2
groups. Hence Sr (4) < 16 = 2* and Vr = 3.

We state here without proving it that in general the class of linear classifiers in R has Vir = d+1.

19.6 The VC Inequality

137

Let X1, ,..., X, be i.i.d. R%valued random variables. Denote the common distribution of X;,1 < i <
n by u(A) = P(X,eA) for any subset A C R?. Similarly, define the empirical distribution u, (A) =

% Z? 1{X¢EA} .
Theorem 19.1: VC '71
For any probablilty measure p and collection of subsets A, and for any € > 0.

sup ne?
P(i (4) = 1 (A)] >s> < 884 (n) e/

Ac A
and
sup log28 4 (n
E i (4) — p(A)]| < 2120284 (1)
Ac A n

Before giving a proof to the theorem. We present a Corollary.
Corollary 19.1:

(19.2)

(19.3)

Let F be a collection of classifiers of the formf : R? — {0,1} with VC dimension VF < oo, Let

R(f)=P(f(X)#Y)and Rn (f) = 2 37 1{#(x,)£vi}> Where X;,Y;, 1 <i < n are iid. with joint

distribution Pxy .
Define
argmin

fn= feF Rn(f)

Then

- inf Vxlog (n+ 1) + log2
R - R 4 .
)] o a2

Proof:
Let A={{z: f(z) =1} x {0} H{z: f(z) =0} x {1}, fe 7}
Note that

P(f(X)#Y) = P((X,Y) e A) := u(A)
where A = {z: f (z) = 1} x {0} U{z : f (z) = 0} x {1}.

Similarly,
I I
— 2 M #vy = 5 D v eay = (A).
1 1
Therefore, according to the VC theorem.

sup

feF

E

2 [log28 4(n)

_ l0og2SF(n)
= 2 n

B (f) - R(f)'

=
3
=
I
=
=
I
IN

(19.4)

(19.5)

(19.6)

(19.7)

138 CHAPTER 19. THE VAPNIK-CHERVONENKIS INEQUALITY

Since Vi < 00,87 (n) < (n+1)"” and

sup

feF

E

< 2\/V¢log (n —; 1)+ 1092. (19.5)

R () —R(f)‘

w(s) - ()

Next, note that

R(ffn)— ™ R
feF

R (fn>— R
feF

+{ 3“7; (fzn (f) R(f))
fe . (19.9)

~ ~ - sup -
< <fn>—Rn (f) | (7 1)~ 501
sup
< > MR- R0
Therefore,
- inf sup |~
E R(fnﬂ e R(f) < 2E feF Rn(f)R(f)‘ (19.10)

4 Vrlog(n+1)+log2
n

IN

Chapter 20

Applications of VC Bound'

20.1 Linear Classifiers

Suppose F— {linear classifiers in R%}, then we have

Vr=d+1, f, :arg?nei;_LRn (f) (20.1)
I R(}n> _j;Z;R(f)34\/(d+1)log(2+1)+1092- (20.2)

20.2 Generalized Linear Classifiers

Normally, we have a feature vector X € R%. A hyperplane in R provides a linear classifier in R?. Nonlinear
classifiers can be obtained by a straightforward generalization.

Let ¢1,---,0,, d > d be a collection of functions mapping R? — R. These functions, applied to a
feature X € R?, produce a generalized set of features, ¢ = (¢1 (X), 2 (X), -+, ¢y (X)) For example, if

y

X = (z1,22) , then we could consider d' = S and ¢ = (21,2, 3122, 2%, 23) € R°. We can then construct a

linear classifier in the higher dimensional generalized feature space RY .
The VC bounds immediately extend to this case, and we have for 7> = { generalized linear classifiers

based on maps ¢ : RY — R¢ },

R(;‘n>1 —inf R(f) <4\/(d7+1)log(n+1)+log2. (20.3)

feF n

E

20.3 Half-Space Classifiers

Theorem 20.1: Steele 75, Dudley ’78
Let Gbe a finite-dimensional vector space of real-valued functions on R%, The class of sets
A={{z:9(z) >0} :g € G} has VC dimension > dim(G).

LThis content is available online at <http://cnx.org/content/m16262,/1.2/>.

139

140 CHAPTER 20. APPLICATIONS OF VC BOUND

Proof:
It is sufficient to show that no set of n = dim (G) + 1 points can be shattered by .A. Take any n
points and for each g € G, define the vector V, = (g (1), - , g9 (xn)).

The set {V, : g € G} is a linear subspace of R™ of dimension < dim (G) = n — 1. Therefore,
there exists a non-zero vector a = (ag, -+ ,a,) € R™ such that > | ;g (z;) = 0. We can assume

that at least one of these o is negative (if all are positive, just negate the sum). We can then

re-arrange this expression as ;.\ 50 (Ti) = D ;... co — g (T4)-
Now suppose that there exists a g € G such that the set {x : g (x) > 0} selects precisely the =7
on the left-hand side above. Then all terms on the left are non-negative and all the terms on the

right are non-positive. Since « is non-zero, this is a contradiction. Therefore, x4, -+ , x, cannot be
shattered by sets in {z : g () > 0}, g € G. 6.375pt0.0pt6.375pt
Example

Consider half-spaces in R? of the foom A = {z € R? : x; > b,i € {1,---,d},b € R}. Each
half-space can be described by

T
g(x):[07"'707170a"'70] —b (204)
Tq
=dim(G)=d+1, Vi<d+1 (20.5)
20.4 Tree Classifiers
Let
T, = {recursive rectangular partitions of RY with k+1 cells} (20.6)

Let T € 7;. Each cell of T results from splitting a rectangular region into two smaller rectangles parallel to
one of the coordinate axes.

Example 20.1
TecT3,d=2.

Each additional split is analogous to a half-space set. Therefore, each additional split can
potentially shatter d 4+ 1 points. This implies that

Vi, < (d+1)k. (20.7)

Example 20.2
d=1.
k = 1 split shatters two points.
k = 2 splits shatters three points < 4.

141

20.5 VC Bound for Tree Classifiers

Fi = {tree classifiers with k+1 leafs on R?} (20.8)
P d+1)kl log2
E\R(f,)] - mfR(f)<4\/(+ 1) Klogn + log2 (20.9)
fEFK n
Exercise 20.1 (Solution on p. 143.)

How can we decide what dimension to choose for a generalized linear classifier?
How many leafs should be used for a classification tree?

20.6 Structural Risk Minimization (SRM)

SRM is simply complexity regularization using VC type bounds in place of Chernoff’s bound or other
concentration inequalities.
The basic idea is to consider a sequence of sets of classifiers F7,F, ..., of increasing VC dimensions
Ve < Vg, < ... Then for each £ = 1,2, ... we find the minimum empirical risk classifier
~(k) “
= ; 20.10
fn = argmin Rn (f) (20.10)

and then select the final classifier according to

~ ~ (k)
32VE (1 1
k= argmin{ R (tn >+\/ nllognt 1, (20.11)

n

o <k)
and f, = is the final choice.

n —Jn

The basic rational is that we know

(k)
. VAl

Ry | f. | = inf R(f) <y 2220 (20.12)
feFu n

where C” is a constant.
The end result is that

E

P ,) Vr logn + 4
< _ .
R (fnﬂ < min{min B (f) +16/ == ——} (20.13)

analogous to our pervious complexity regularization results, except that codelengths are replaced by VC
dimensions.

In order to prove the result we use the VC probability concentration bound and assume that A =
> k>1VF, < oo. This enables a union bounding argument and leads to a risk bound of the form given above.

20.7 Key Point of VC Theory

Complexity of classes depends on richness (shattering capability) relative to a set of n arbitrary points. This
allows us to effectively “quantize" collections of functions in a slightly data-dependent manner.

142 CHAPTER 20. APPLICATIONS OF VC BOUND

20.8 Application to Trees

Let
Fr. ={k leaf decision trees in R}, Vg < (d+1)(k+1) (20.14)
~(k) -
= in R, 20.1
fn = argminRn (f) (20.15)
k= argmin <mmR(f) + \/32 (d+1)(k—1)(logn + ”) (20.16)
k>1 \ feF n
Then
o <k>
fn=Fn (20.17)
satisfies
B . . (d+1)(k—1)logn + 4
< .
E |R (f,L)] < min (}E%R(f) + 16\/ o™ (20.18)
compare with
- . . (3k — 1) log2 + %logn
< .
E\R (fn>] - ,’ZLZZ? (fedyadic%zﬁaf treesR (f) + \/ 2n (20 19)

from Lecture 11 (Chapter 12).

143

Solutions to Exercises in Chapter 20

Solution to Exercise 20.1 (p. 141)
Complexity Regularization using VC bounds!

144 CHAPTER 20. APPLICATIONS OF VC BOUND

Chapter 21

Lower Performance Bounds for
Estimators’

21.1 Lower Performance Bounds

In other modules, estimators/predictors are analyzed, in order to obtain upper bounds on their performance.

These bounds are of the form:
m ‘7LE d

where v > 0. We would like to know if these bounds are tight, in the sense that there is no other estimator
that is significantly better. To answer this, we need lower bounds like

< Cn— (21.1)

infsupE [d (}n,f>] >cn? (21.2)

~ feF

n

We assume we have the following ingredients:

*: Class of models, F C §. F is a class of models containing the “true" model and is a subset of some bigger
class S. E.g. F could be the class of Lipschitz density functions or distributions Pxy satisfying the
box-counting condition.

*: An observation model, Py, indexed by f € F. P; denotes the distribution of the data under model f.
E.g. in regression and classification, this is the distribution of Z = (X1,Y7,---,X,,,Y,,) C Z. We will
assume that Py is a probability measure on the measurable space (Z, B).

*: A performance metric d (.,.). > 0. If you have a model estimate f,,, then the performance of that model

estimate relative to the true model f is d <fn, f) E.g.

1/2

~ ~ ~ 2
Regression: d(fn,f>=||fn—f||2= / (fn(x)—f(x)> de (21.3)

Classification: d (}n, f) =R (C;n> — R = /A |2n (z) — 1|dPx () (21.4)

GnAG*

LThis content is available online at <http://cnx.org/content/m17357/1.3/>.

145

146 CHAPTER 21. LOWER PERFORMANCE BOUNDS FOR ESTIMATORS

As before, we are interested in the risk of a learning rule, in particular the maximal risk given as:

d (f f)] = sup / d (ffn (2) ,f> dP; () (21.5)

where f,, is a function of the observations Z and E; denotes the expectation with respect to Py.
~ feF

The main goal is to get results of the form
d (fn, f)] > cs, (21.6)

where ¢ > 0 and s, — 0 as n — oo. The inf is taken over all estimators, i.e. all measurable functions

supE
feF

Ry 2 infsupE

fniZ2—38.
Suppose we have shown that

liminf s, 'RY >¢>0 (A lower bound) (21.7)

and also that for a particular estimator f,

lim sup sglsupEf [d (?n, f)] <C (21.8)
n— oo f@}'
= lim sup s, 'R} < C, (21.9)
n—oo

We say that s, is the optimal rate of convergence for this problem and that f, attains that rate.

NOTE: Two rates of convergence ¥,, and ¥ are equivalent, i.e. ¥,, = U, iff

0 < liminf < lim sup — < (21.10)

D
n— oo “I/n n—o00 ¥

21.1.1 General Reduction Scheme

Instead of directly bounding the expected performance, we are going to prove stronger probability bounds
of the form

infsupPy <d (fn,f> > sn> >c>0 (21.11)
~" feF

These bounds can be readily converted to expected performance bounds using Markov’s inequality:

e
Py (d (fn,f> > sn> <—+t JJ (21.12)

Sn

Therefore it follows:

infsupEy; [d (fn,f>] > infsups, Py <d (fn,f> > sn> > csy (21.13)
~ feF ~ feF
fn fn

147

21.1.1.1 First Reduction Step

Reduce the original problem to an easier one by replacing the larger class F with a smaller finite class
{fo, -+, fm} C F. Observe that

infsupPy d| fro,f | =sn]| =inf sup Prld|f..f]|=sn (21.14)
~ feF ~ fel{fo, fm}
f f

n n

The key idea is to choose a finite collection of models such that the resulting problem is as hard as the
original, otherwise the lower bound will not be tight.

21.1.1.2 Second Reduction Step

Next, we reduce the problem to a hypotheses test. Ideally, we would like to have something like

infsupPy (d <}n, f) > sn> >inf sup Py, (;Ln (Z) # j) (21.15)

~ feF ~ {0, , M}

n n

The inf is over all measurable test functions

hot Z—{0,--- M} (21.16)

and Py, | hn (Z) # j) denotes the probability that after observing the data, the test infers the wrong

hypothesis.
This might not always be true or easy to show, but in certain scenarios it can be done. Suppose d(.,.)
is a semi-distance, i.e. it satisfies

(i): d((_fig) =d (g, f) > 0 (Symmetric)
' d(f.f)=0 (21.17)

(iii): d(f,g9) <d(h, f)+d(h,g) (Triangle inequality)

. A
Eg with f7g : Rd - Rad(fvg) = ||f - g||2
Lemma 21.1:
Suppose d(.,.) is a semi-distance. Also suppose that we have constructed fo,- -, far s.t.

d(f;, fx) > 28y, Vj # k. Take any estimator f,, and define the test: ¥*o f :Z — {0,--- , M} as

e (]A"n> = argmind (;‘n,fJ) (21.18)

Then U* <fn> # j, implies d (fn,fj> > Sp.

Suppose U* (fn> # jU+27FAldk £ j: d (}n, fk> <d <}n,fj>. Now

250 < d(fj, fr) < d <fn7fj> +d (fn,fk> <2d (fn,fj> (21.19)

148 CHAPTER 21. LOWER PERFORMANCE BOUNDS FOR ESTIMATORS

. d <f fj> > 5, (21.20)

The previous lemma implies that

i (1) o) 2 (v (1) #9) 212)

zyf}fgg iz ((fn f;) s) inf omax Py, ((f fg> s)
!

Therefore,

S .
> inf max Pg | ¥ f, j
et ((>7£ > (21.22)
- . ‘ .
= S 0y P <h" s ‘7>
hn
é PeM

s

~

The third step follows since we are replacing the class of tests defined by U* (fn> by a larger

~

class of ALL possible tests h,, and hence the inf taken over the larger class is smaller.

Now our goal throughout is going to be to find lower bounds for P, as.

So we need to construct fo,--- , far s.t. d(fj, fx) > 28, j # k and P. pr > ¢ > 0. Observe that
this requires careful construction since the first condition necessitates that f; and fi are far from
each other, while the second condition requires that f; and fj are close enough so that it is harder
to distinguish them based on a given sample of data, and hence the probability of error P, s is
bounded away from 0.

We now try to lower bound the probability of error P ;. We first consider the case M = 1,
corresponding to binary hypothesis testing.

M = 1: Let Py and P; denote the two probability measures, i.e. distributions of the data under models
0 and 1. Clearly if P and P; are very “close", then it is hard to distinguish the two hypotheses, and so P ;
is large.

A natural measure between probability measures is the total variation , defined as:

V (P, P1) = SZP|PO (A)— P (A)| = sz:p|/Ap0 (Z)—p1(Z)dv (Z) | (21.23)

where pg and p; are the densities of Py and P; with respect to a common dominating measure v and A
is any subset of the domain. We will lower bound the probability of error P, ; using the total variation
distance. But first, we establish the following lemma.

Lemma 21.2: Scheffe’s lemma

V(Po, 1) = 5 [Ipo(2)—pi(2)|dv(Z) =35 [lpo—pil

21.24
= 1 — [min (po,p1) ()

149

Recall the definition of the total variation distance:

V (P, P1) = SUP|/ po — il (21.25)
A A

Observe that the set A maximizing the right hand side is given by either {Z € Z : py (Z) >
pi(£)}or{Z € Z:p1(Z) > po(2)}-
Let us pick Ag ={Z € Z :py(Z) > p1(Z)}. Then

1
V(Po,Pl):/ PO—P1=—/ Po—p1:§/|]90—]91| (21.26)
Ao Ag
For the second part, notice that

| 0 if po () < 1 (2)
Z) —man Z), Z)) = 21.27
Pz EN g n@ in@ e e
Now consider
1= [mino.pn) = [20(2) = min 0 (2) .00 (2) = [30(2) = (2)0(2) =V (Po.P) (2128

We are now ready to tackle the lower bound on P, ;. In this case, we consider all tests h, (Z) :

Z — {0,1}. Equivalently, we can define h, (Z) = 14 (Z), where A is any subset of the domain.

Py = Z?fge{ré?ax,M},P] (hn # .]) > 7'7}f (épo <hn # O) + P (hn # 1))

hn hn
= LinfPy(1a(2) #0)+ P (14(2) #1)
A y (21.29)
= izzfpo (A)+ Py (A°)
= %i?}tfl—(.ﬂ (A) = Py (A))
- 1=V (P, P))

So if Py is close to Py, then V (P, P1) is small and the probability of error P, ; is large.
This is interesting, but unfortunately, it is hard to work with total variation, especially for multi-
variate distributions. Bounds involving the Kullback-Leibler divergence are much more convenient.

2)
7)

K (Pi||Ro) = /109£;E p1(Z)dv(Z) = /log%pl (21.30)

The following Lemma relates total variation, affinity and KL divergence.

Lemma 21.3:
1=V (Py, P1) > 342 (Po, 1) > gexp (=K (P1||Ry))

150 CHAPTER 21. LOWER PERFORMANCE BOUNDS FOR ESTIMATORS

For the first inequality,
A2 (P07P1) = (f\/lTpl)Q 2
(J v/min (po, p1) maz (po, 1)
<f V/min (po, p1)y/max (po,p1))

< J min (po,p1) [maz (po,p1) by Cauchy-Schwarz inequality (21.31)
= [min(po,p1) (2 — [min (po,p1)) o min(po,p1)+ [maz(po,p1)=[po+[p1=2
< 2 [min (po, p1)
= 2(1 -V (Py, P))
For the second inequality,
42 (Po, 1) = (f vporn)”
exp (log(f \/M)2>
= exp (2log ([\/popr))
= exp (2l09 (f %j’pl)) (21.32)
> exp (2flog (\/ij?) p1> by Jensen’s inequality

= exp (7flog (\/,’;i;) p1>

— exp (—K (P1||P))

Putting everything together, we now have the following Theorem:

Theorem 21.1:
Let F be a class of models, and suppose we have observations Z distributed according to Py,

feF. Letd| f,,f| be the performance measure of the estimator f, (Z) relative to the true

model f. Assume also d(.,.) is a semi-distance. Let fo, f1 € F be s.t. d(fo, f1) > 2s,. Then

infsupPy <d <]A”n,f> > sn> > inf maz Py, (d (}mfj) > sn>
~ feF ~ je{0,1} (21.33)

I Ia
> Texp (—K (Pp, || Py,)

V

How do we use this theorem?
Choose fo, f1 such that K (P1||P) < «, then P, ; is bounded away from 0 and we get a bound

or, after Markov’s

infsupPy <d (fn,f> > sn> >c>0 (21.34)
~ feF

infsupEs

~ feF

d <}n,f>] > CSp (21.35)
In

To apply the theorem, we need to design fo, f1 s.t. d(fo, f1) > 2s,, and exp (—K (Pp,||Py,)) > 0.
To reiterate, the design of fy, f1 requires careful construction so as to balance the tradeoff between

151

the first condition which requires fy, f1 to be far apart, and the second condition which requires
fo, f1 to be close to each other.

Example
Lets use this theorem in a problem we are familiar with. Let X € [0,1] and Y|X = 2 ~
Bernoulli (7 (x)), where n (z) = P (Y = 1|X = z).

Suppose G* = [t*,1]. We proved that under these assumptions and an upper bound on the

density of X, the Chernoff bounding technique yielded an expected error rate for ERM

- l
E [R (Gn) - R*} ~0 (05”) (21.36)
Is this the best possible rate?

Construct two models in the above class (denote it by P), P)(g, and P)({l}), For both take
Px ~ Uniform ([0, 1]) and 5y = 1/2 — a, nay = 1/2 4+ a(a > 0), so G = @, G} = [0, 1].
We are interested in controlling the excess risk

R (Gn> _R(GY) = / 120 () — 1|dPy (x) (21.37)
GnAG*
Note that if the true underlying model is either P)((O; or P)%),, we have:
R; (Gn> —R; (G;) = /A 12 (z) — 1|dz = 2a/A dx = 2ada (Gn, G;) (21.38)
GnACT GnAG]

Proposition 1
da (.,.) is a semi-distance.

It suffices to show that d(G1,G2) = d(G2,G1) > 0, d(G,G) = OVG and d(G1,G2) < d(G1,G3) +
d(Gs,G3). The first two statements are obvious. The last one (triangle inequality) follows from the fact
that GlAGQ g (GlAGg) U (G3AGQ)

Suppose this was not the case, then 3z : © € G1AGs s.t. © ¢ G1AG3 and « ¢ GoAG3. In other words,

T € (GlAGg) N (GlAG:;)C n (GQAG;),)C (2139)
Since SAT = (SNT°) U (S°NT), we have:

z € [(GiNGSU(GNG)IN[(GEUG3) N (G UGS N[(GSUGs) N (G2 UGY)]
S [Gl n (Gf U Gg) n Gg N (GQ U Gg)] U [G{i n (G1 U Gg) NGy N (G% U Gg)] (21 40)
€ [G1NGsNGyNGE UGS NGEN Gy N Gy '
€ @, a contradiction
Lets look at the first reduction step:
) PlRG,) —R(G*) > s, > g P | R; n) — R (G%) > s,
zizfigg < (G> ()_8) Zflfjgl{g?{}J(J(G> i (G) 5)
Gn Gn R (21.41)
z?fjg}g’:{}Pj (dA (Gn,G]> > sn/2a>
Gn

So we can work out a bound on da and then translate it to excess risk.

152 CHAPTER 21. LOWER PERFORMANCE BOUNDS FOR ESTIMATORS

Lets apply Theorem 1 (Theorem 21.1, p. 150). Note that da (G§,G7) = 1 and let Py 2 P$1)7Y1,_,,7X"7n
A
and Pr 2 Py)y oy

(1)
— Pxy,vy,- Xn,Yn(leylw"‘vXn7Yn)

K (Pi||Po) = Ei |log—) I T
xl Yl X vy (X1 Y1, X0 V)
Pi) v (X1,Y1) p(l) ”(Xn,Yn):|

PR L (X1 Y1) i) o (Xn.Yn)

X1,Y,
— Z El |:lngX) Y; (X Y):|
- i=1

= [E; {log
(21.42)
S?Q(X Yi)
pyix (Y1|X1)
= nEl |:l z;)X(Y1|X1):|

Pyix
Now p§}|)X Y1=1X;) = 1/2 4+ a and p$|>X (Y1 =1|X;) = 1/2 — a. Also under model 1, ¥; ~
Bernoulli (1/2 + a). So we get:

K (PiIP) = n[(1/2+0)logi/3%% + (1/2 — a) log 1537
= n[2alog (1/2 + a) — 2alog (1/2 — a))
- 2nalog e (21.43)
< 2na (%;"’Z - 1)
= 477,0, m
Let a = 1/y/n and n > 16, then K (P1||Py) < 4nt =7 o 1/f < 16.
Using Theorem 1 (Theorem 21.1, p. 150), since da (G§, G7) = 1, we get:
- 1
infmaxP; (dA (Gn,G;> > 1/2) 1€ e 16 (21.44)
AT
Gn
Taking s, = 1/4/n, this implies
- 1
infsupP (R <G > R(G*) > 1/f) - (21.45)
~ pe’P 4:
G’Vl
or, after Markov’s inequality
infsupE [R (c:*) (G*)] L6 1 (21.46)
infsu - —e P — .
nei n 1 Un
G”L

Therefore, apart from the logn factor, ERM is getting the best possible performance.

Reducing the initial problem to a binary hypothesis testing does not always work. Sometimes we need
M hypotheses, with M — oo as n — oco. If this is the case, we have the following theorem:

Theorem 2 Let M > 2. {fo, -+, f;} € F be such that

d(fj, fx) > 2s,, where d is a semi-distance.
: M K (Pj||Py) < alogM, with 0 < a < 1/8.

Then
infsupPy (d <}n,f> > sn> > infmazP; (d <]Afn,f7> > sn>
o feF - (21.47)

I ,
A (1-20-2,/z87) > 0

V

>
= 1+vVM

153

We will use this theorem to show that the estimator of Lecture 4 (Chapter 5) is optimal. Recall the setup
of Lecture 4 (Chapter 5). Let

F={f:1f(t) = f(s)| < Lt — s|vt, s} (21.48)

i.e. the class of Lipschitz functions with constant L. Let

x;=1i/n, i=1---,n (21.49)

Yi=f(x:) +W; (21.50)
E[W;] = 0,E [W?] = 6% < oo, W;, W; are indepedent if i # j. In that lecture, we constructed an estimator

f,, such that

supk ||1£, — fII*| = 0 (n=%/%) (21.51)
feF

Is this the best we can do?
We are going to construct a collection fy, -+, far € F and apply Theorem 2. Notice that the metric of

interest is d (fn,f> =||f,, — fll, a semi-distance. Let W; %iN(O,O'Q). Let m € N, h =1/m and define

Lh L
K (z) = (2 - L|33> Lizj<nse = §|h = 22|13 <n /2 (21.52)

154 CHAPTER 21. LOWER PERFORMANCE BOUNDS FOR ESTIMATORS

Lh/2

-h/2 h/2

Figure 21.1

Note that |K (a) — K (b)| < L|a — b|, Ya,b. The subclass we are going to consider are functions of the
form

155

f wix)

Figure 21.2

i.e. “bump" functions. Let © = {0,1}" be the collection of binary vectors of length m, e.g. w =
(1,0,1,---,0) € Q. Define

fu () = iwiK (a: - g (2i — 1)) (21.53)

Note that for w,w’ € Q,

1/2
d wy Jw') = w — Jw’ = (1 ’ni ’LUi_'U}tzK2 (E—E2Z—1)
(Fus ur) = |lfuw = furl Jo 2%y (wi —wg) K2 (w — 5 (2 = 1)) (21.54)
= p(w,w)y\/ [K?(x)dx
where p (w,w’) is the Hamming distance, p (w,w’) = 37" | |w; — w;|? = Y1 |w; — w;|. Now
2 ME o, o 2 hP L2 g
K =2 Lez*dx = 2L =—h 21.55
/ (@) /0 v 3.8 12 (21.55)
S0
A (Fus fur) = 10 (0, 07) 2= /2 (21.56)
wy Jw) \/ﬁ

Since || = 2", the number of functions in our class is 2. Turns out, we do not need to consider all

functions f,,,w € €, but only a select few. Using all the functions leads to a looser lower bound of the form
n~!, which corresponds to the parametric rate. The problem under consideration is non-parametric, and
hence we expect a slower rate of convergence. To get a tighter lower bound, the following result is of use:

156 CHAPTER 21. LOWER PERFORMANCE BOUNDS FOR ESTIMATORS

Lemma 21.4: Varshamov-Gilbert ’62
Let m > 8. There exists a subset {w®), .- w®™)} of Q such that w® = (0,0, ,0),

0 (wugw(k)) > % VO<j<k<Mand M >2"/8 (21.57)

What this lemma says is that there are many (~ 2™) sequences in 2 that are very different (i.e.
p (w(j),w(k)) ~ m). We are going to use the lemma to construct a useful set of hypotheses. Let
{w® ... w1} be the class of sequences in the lemma and define

A)
52 fuw, je{0,- M} (21.58)
We now need to look at the conditions of Theorem 2 and choose m appropriately.
First note that for j # k,

L L
d(fj. fr) = \/p (W), w®) h3/2 mf —3/2:4—\/6771—1 (21.59)
Now let P; 2 P | . je{0,---,M}. Then

m

pgf) Y,
K (Pj||Py) = E; {logw}
)
= XiaE [log J(of] = 5z Yoy f2 () (21.60)
< T#Z?:l (%) = 802 h2 = 80_2nm —2

Now notice that logM > log2 (from Lemma). We want to choose m such that

M
1 L? m
— g K (Pj||Py) < —2nm72 < a—log2 < alogM (21.61)
M 80 8
This gives
L2 1/3
n> (o) = Con” (21.62

so take m = |Con'/? 4+ 1]. Now

d(fj, fu) > Fm 1> 2const n~'/3 for n > ng (const) (21.63)
Therefore,
infsupPy (|| f, — fI| > const n=/3) >¢>0 (21.64)
~" feF
IFn
or,
infsupPy | ||f, — FII? = const n=23) > ¢>0 (21.65)
~ feF
fn

or after Markov’s inequality,

infsupEs ||| f,, — fII°| = ¢ const n=%/? (21.66)
~ feF
fn

157

Therefore, the estimator constructed in class attains the optimal rate of convergence.

158 GLOSSARY

Glossary

((Bayes’ Risk)

The Bayes’ risk is the infimum of the risk for all classifiers:
R*=infR(f). (3.4)
f
We can prove that the Bayes risk is achieved by the Bayes classifier.

B Bayes Classifier
The Bayes classifier is the following mapping:

IO S (35
0, otherwise
where
n(x)=Pyx (Y =1X=z). (3.6)

Note that for any x, f* (z) is the value of y € {0,1} that maximizes Pxy (Y = y|X = z).

E Empirical Risk
Let {X;,Yi}~, w Pxy be a collection of training data. Then the empirical risk is defined as
~ 1 n
Ra(f) = =D L(F(X3),Y5). (3:22)
i=1

Empirical risk minimization is the process of choosing a learning rule which minimizes the
empirical rigk; i.e.,

~ ~

fn = argmin Ry (f). (3.23)

P Prefix Code
A code is called a prefix code if no codeword is a prefix of any other codeword.

Example: From Cover & Thomas ’91Consider an alphabet of symbols, say A, B,C, and D and
the codebooks below

This is an unsupported media type. To view, please see http://cnx.org/content/m16271 /latest/

Figure 10.1

In the singular codebook we assign the same codeword to each symbol - a system that is
obviously flawed! In the second case, the codes are not singular but the codeword 010 could
represent B or CA or AD. Hence it is not a uniquely decodable codebook.

GLOSSARY 159

The third and fourth cases are both examples of uniquely decodable codebooks, but the fourth
has the added feature that no codeword is a prefix of another. Prefix codes can be decoded from
left to right since each codeword is “self-punctuating" - in this case with a zero to indicate the
end of each word.

To design a uniquely decodable codebook in general is as challenging as the problem of selecting
c(f) to satisfy

D e < o0, (10.17)
feF

However, prefix codes can often be easily designed or specified and they are inherently
decodable. Moreover, prefix codes satisfy an important inequality called the Kraft Inequality .

T The VC dimension
V4 of a collection of sets A is defined as the largest interger n such that S4 (n) = 2".
Ezample: A= {(—o00,t] ;teR},S4=n+1hence V4 =1.
Example: A = { all rectangles in R?}.
S4=2"n=1,2,3,4and Sy < 2", n =4, Hence V4 = 4.
The VC dimension provides a useful bound on the growth of the shatter coefficients.

160 BIBLIOGRAPHY

Bibliography

[1] T. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.

[2] L. Devroye, L. Gyrfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Spring, New York,
1996.

[3] S. M. Kay. Fundamentals of Statistical Signal Processing. Prentice Hall, 1993.

[4] E. L. Lehmann. Theory of Point Estimation. Wiley, New York, 1983.

[5] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. Wiley, New York, 1968.
[6] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142, 1984.

[7] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

161

162 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.

apples, § 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

—~

(Bayes’ Risk), 11

B Bayes Classifier, 11
bayesian decision theory, § 1(1)
bias-variance tradeoff, § 4(21)
binary classification trees, § 12(71)

C Chernoff’s Bound, § 8(49)

classification, § 3(11), § 6(35), § 12(71),

§ 19(135), § 21(145)
classification error bounds, § 9(57)
classifier, § 6(35)

complexity regularization, § 5(29), § 11(67),

§ 13(85), § 15(97)

D decision theory, § 12(71)
decision trees, § 12(71)
denoising, § 5(29), § 16(107)

E Empirical Risk, 14, § 15(97)
empirical risk minimization, § 3(11)

H half-space classifiers, § 20(139)
hellinger distance, § 14(91)
Hoeffding’s Inequality, § 8(49), § 9(57)
holder spaces, § 16(107)
hyperplane classifiers, § 18(129)

K kraft inequality, § 10(61)
kullback-leibler divergence, § 14(91)

L lower performance bounds, § 21(145)

M maximum likelihood, § 1(1)

maximum likelihood estimation, § 14(91),
§ 15(97)

maximum penalized likelihood estimator,
§ 16(107)

model selection, § 21(145)

P PAC Learning, § 7(43)
pattern classification, § 3(11)
Prefix Code, 63
probability measure, § 2(7)
probably approximately correct learning,
§ 7(43)
pruning, § 12(71)

R regression, § 3(11), § 13(85), § 21(145)

S shatter coefficients, § 19(135)
sieves, § 5(29)
statistical decision theory, § 1(1)
statistical learning, § 2(7)
statistical learning theory, § 1(1)
statistical risk, § 2(7)

T The Vapnik-Chervonenkis Inequality,
§ 19(135)
The VC dimension, 136
tree classifiers, § 20(139)

V' Vapnik-Chervonenkis, § 20(139)
Vapnik-Chervonenkis Theory, § 18(129)
vc bound, § 20(139)
ve dimension, § 19(135), § 20(139)

W wavelet analysis, § 17(115)

ATTRIBUTIONS 163
Attributions

Collection: Statistical Learning Theory

Edited by: Robert Nowak

URL: http://cnx.org/content /col10532/1.3/

License: http://creativecommons.org/licenses/by/2.0/

Module: "Basic Elements of Statistical Decision Theory and Statistical Learning Theory"
By: Robert Nowak

URL: http://cnx.org/content /m16263,/1.3/

Pages: 1-6

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Elements of Statistical Learning Theory"
By: Robert Nowak

URL: http://cnx.org/content/m16269/1.2/

Pages: 7-9

Copyright: Robert Nowak

License: http://creativecommons.org/licenses,/by/2.0/

Module: "Introduction to Classification and Regression"
By: Robert Nowak

URL: http://cnx.org/content/m16272/1.2/

Pages: 11-20

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Introduction to Complexity Regularization"
By: Robert Nowak

URL: http://cnx.org/content/m16274,/1.2/

Pages: 21-28

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "An Example of the Use of Sieves for Complexity Regularization in Denoising"
By: Robert Nowak

URL: http://cnx.org/content/m16261/1.3/

Pages: 29-34

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Plug-In Classifier and Histogram Classifier"
By: Robert Nowak

URL: http://cnx.org/content,/m16280/1.2/

Pages: 35-41

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

164

Module: "Probably Approximately Correct (PAC) Learning"
By: Robert Nowak

URL: http://cnx.org/content/m16282/1.2/

Pages: 43-48

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Chernoff’s Bound and Hoeffding’s Inequality"
By: Robert Nowak

URL: http://cnx.org/content/m16264,/1.2/

Pages: 49-55

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Classification Error Bounds"

By: Robert Nowak

URL: http://cnx.org/content/m16265,/1.2/

Pages: 57-60

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Error Bounds in Countably Infinite Spaces"
By: Robert Nowak

URL: http://cnx.org/content/m16271/1.2/

Pages: 61-66

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Complexity Regularization"

By: Robert Nowak

URL: http://cnx.org/content/m16266,/1.2/

Pages: 67-70

Copyright: Robert Nowak

License: http://creativecommons.org/licenses,/by/2.0/

Module: "Decision Trees"

By: Robert Nowak

URL: http://cnx.org/content /m16287,/1.2/

Pages: 71-83

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Complexity Regularization for Squared Error Loss"
By: Robert Nowak

URL: http://cnx.org/content/m16267,/1.2/

Pages: 85-90

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

ATTRIBUTIONS

ATTRIBUTIONS

Module: "Maximum Likelihood Estimation"

By: Robert Nowak

URL: http://cnx.org/content/m16276,/1.2/

Pages: 91-96

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Maximum Likelihood and Complexity Regularization"
By: Robert Nowak

URL: http://cnx.org/content/m16275/1.2/

Pages: 97-105

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Denoising IT: Adapting to Unknown Smoothness"
By: Robert Nowak

URL: http://cnx.org/content /m16268,/1.2/

Pages: 107-113

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Nonlinear Approximation and Wavelet Analysis"
By: Robert Nowak

URL: http://cnx.org/content/m16278/1.3/

Pages: 115-127

Copyright: Robert Nowak

License: http://creativecommons.org/licenses,/by/2.0/

Module: "Vapnik-Chervonenkis Theory"

By: Robert Nowak

URL: http://cnx.org/content/m16284,/1.2/

Pages: 129-134

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "The Vapnik-Chervonenkis Inequality"

By: Robert Nowak

URL: http://cnx.org/content/m16283,/1.2/

Pages: 135-138

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Applications of VC Bound"

By: Robert Nowak

URL: http://cnx.org/content/m16262/1.2/

Pages: 139-143

Copyright: Robert Nowak

License: http://creativecommons.org/licenses/by/2.0/

Module: "Lower Performance Bounds for Estimators"
By: Robert Nowak, Aarti Singh, Rui Castro

URL: http://cnx.org/content/m17357/1.3/

Pages: 145-157

Copyright: Robert Nowak, Aarti Singh, Rui Castro
License: http://creativecommons.org/licenses,/by/2.0/

165

About Connexions

Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions’s modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

