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Chapter 1

Basic Elements of Statistical Decision
Theory and Statistical Learning Theory1

Throughout this module, let X denote the input to a decision-making process and Y denote the correct
response or output (e.g., the value of a parameter, the label of a class, the signal of interest). We assume
that X and Y are random variables or random vectors with joint distribution PX,Y (x, y), where x and y
denote speci�c values that may be taken by the random variables X and Y , respectively. The observation X
is used to make decisions pertaining to the quantity of interest. For the purposes of illustration, we will focus
on the task of determining the value of the quantity of interest. A decision rule for this task is a function f
that takes the observation X as input and outputs a prediction of the quantity Y . We denote a decision rule

by
^
Y or f (X), when we wish to indicate explicitly the dependence of the decision rule on the observation.

We will examine techniques for designing decision rules and for analyzing their performance.

1.1 Measuring Decision Accuracy: Loss and Risk Functions

The accuracy of a decision is measured with a loss function. For example, if our goal is to determine the
value of Y , then a loss function takes as inputs the true value Y and the predicted value (the decision)
^
Y= f (X) and outputs a non-negative real number (the �loss�) re�ective of the accuracy of the decision. Two
of the most commonly encountered loss functions include:

1. 0/1 loss: `0/1

(
^
Y , Y

)
= I^

Y 6=Y
, which is the indicator function taking the value of 1 when

^
Y 6= Y and

taking the value 0 when
^
Y (X) = Y .

2. squared error loss: `2

(
^
Y , Y

)
= ‖

^
Y −Y ‖22, which is simply the sum of squared di�erences between

the elements of
^
Y and Y .

The 0/1 loss is commonly used in detection and classi�cation problems, and the squared error loss is more
appropriate for problems involving the estimation of a continuous parameter. Note that since the inputs to
the loss function may be random variables, so is the loss.

A risk R (f) is a function of the decision rule f , and is de�ned to be the expectation of a loss with respect
to the joint distribution PX,Y (x, y). For example, the expected 0/1 loss produces the probability of error

1This content is available online at <http://cnx.org/content/m16263/1.3/>.
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risk function; i.e., a simply calculation shows that R0/1 (f) = E
[(

If(X)6=Y
]

= Pr (f (X) 6= Y ) . The expected
squared error loss produces the mean squared error MSE risk function, R2 (f) = E

[
‖ f (X)− Y ‖22

]
.

Optimal decisions are obtained by choosing a decision rule f that minimizes the desired risk function.
Given complete knowledge of the probability distributions involved (e.g., PX,Y (x, y)) one can explicitly or
numerically design an optimal decision rule, denoted f∗, that minimizes the risk function.

1.2 The Maximum Likelihood Principle

The conditional distribution of the observation X given the quantity of interest Y is denoted by PX|Y (x|y).
The conditional distribution PX|Y (x|y) can be viewed as a generative model, probabilistically describing the
observations resulting from a given value, y, of the quantity of interest. For example, if y is the value of
a parameter, the PX|Y (x|y) is the probability distribution of the observation X when the parameter value
is set to y. If X is a continuous random variable with conditional density pX|Y (x|y) or a discrete random
variable with conditional probability mass function (pmf) pX|Y (x|y), then given a value y we can assess the
probability of a particular measurment value y by the magnitude of either the conditional density or pmf.

In decision making problems, we know the value of the observation, but do not know the value y.
Therefore, it is appealing to consider the conditional density or pmf as a function of the unknown values y,
with X �xed at its observed value. The resulting function is called the likelihood function. As the name
suggests, values of y where the likelihood function is largest are intuitively reasonable indicators of the true
value of the unknown quantity, which we will denote by y∗. The rationale for this is that these values would
produce conditional densities or pmfs that place high probability on the observation X = x.

The Maximum Likelihood Estimator (MLE) is de�ned to be the value of y that maximizes the likelihood
function; i.e., in the continuous case

^
y (X) = argmax

y
pX|Y (X|y) (1.1)

with an analogous de�nition for the discrete case by replacing the conditional density with the conditional

pmf. The decision rule
^
y (X) is called an �estimator,� which is common in decision problems involving a

continuous parameter. Note that maximizing the likelihood function is equivalent to minimizing the negative
log-likelihood function (since the logarithm is a monotonic transformation). Now let y∗ denote the true value
of Y . Then we can view the negative log-likelihood as a loss function

`L (y, y∗) = − logpX|Y (X|y) (1.2)

where the dependence on y∗ on the right hand side is embodied in the observation X on the left. An
interesting special case of the MLE results when the conditional density PX|Y (X|y) is a Gaussian, in which
case the negative log-likelihood corresponds to a squared error loss function.

Now let us consider the expectation of this loss, with respect to the conditional distribution PX|Y (X|y∗):

−E
[
logpX|Y (X|y)

]
=

∫
log
(

1
pX|Y (x|y)

)
pX|Y (x|y∗) dx (1.3)

The true value y∗ minimizes the expected negative log-likelihood (or, equivalently, maximizes the expected
log-likelihood ). To see this, compare the expected log-likelihood of y∗ with that of any other value y:

E
[
logpX|Y (X|y∗)− logpX|Y (X|y)

]
= E

[
log
(
pX|Y (X|y∗)
pX|Y (X|y)

)]
=

∫
log
(
pX|Y (x|y∗)
pX|Y (x|y)

)
pX|Y (x|y∗) dx

= KL
(
pX|Y (x|y∗) , pX|Y (x|y)

) . (1.4)

The quantity KL
(
pX|Y (x|y∗) , pX|Y (x|y)

)
is called the Kullback-Leibler (KL) divergence between the con-

ditional density function pX|Y (x|y∗) and pX|Y (x|y). The KL divergence is non-negative, and zero if and
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only if the two densities are equal [1]. So, we see that the KL divergence acts as a sort of risk function in
the context of Maximum Likelihood Estimation.

1.3 The Cramer-Rao Lower Bound

The MLE is based on �nding the value for Y that maximizes the likelihood function. Intuitively, if the
maximum point is very distinct, say a well isolated peak in the likelihood function, then the easier it will be
to distinguish the MLE from alternative decisions. Consider the case in which Y is a scalar quantity. The

�peakiness� of the log-likelihood function can be gauged by examining its curvature, −∂
2logpX|Y (x|y)

∂y2 , at the
point of maximum likelihood. The higher the curvature, the more peaky is the behavior of the likelihood
function at the maximum point. Of course, we hope that the MLE will be a good predictor (decision)
for the unknown true value y∗. So, rather than looking at the curvature of the log-likelihood function at
the maximum likelihood point, a more appropriate measure of how easily it will be to distinguish y∗ from
the alternatives is the expected curvature of the log-likelihood function evaluated at the value y∗. The
expectation taken over all possible observations with respect to the conditional density pX|Y (x|y∗). This

quantity, denoted I (y∗) = E
[
−∂

2logpX|Y (x|y)

∂y2

]
|y=y∗ , is called the Fisher Information (FI). In fact, the FI

provides us with an important performance bound known as the Cramer-Rao Lower Bound (CRLB).
The CRLB states that under some mild regularity assumptions about the conditional density function

pX|Y (x|y), the variance of any unbiased estimator is bounded from below by the inverse of the I (y∗)[5], [4],

[3]. Recall that an unbiased estimator is any estimator
^
Y that satis�es E

[
^
Y

]
= y∗. The CRLB tells us is

that

var

(
^
Y

)
≥ 1

I (y∗)
. (1.5)

If Y is a vector-valued quantity, then the expected negative Hessian matrix (matrix of partial second
derivatives) of the log-likelihood function is called the Fisher Information Matrix (FIM), and a similar
inequality tells us that the variance of each component of any unbiased estimator of y∗ is bounded below by
the corresponding diagonal element of the inverse of the FIM. Since the MSE of an unbiased estimator is
equal to its variance, we see that the CRLB provides a very useful lower bound on the best MSE performance
that we can hope to achieve. Thus, the CRLB is often used as a comparison point for evaluating estimators.
It may or may not be possible to achieve the CRLB, but if we �nd a decision rule that does, we know
that it also minimizes the MSE risk among all possible unbiased estimators. In general, it may be di�cult
to compute the CRLB, but in certain important cases it is possible to �nd closed-form or computational
solutions.

1.4 Bayesian Decision Theory

Bayesian Decision Theory provides a formal system for integrating prior knowledge and observed obser-
vations. For the purposes of illustration we will focus on problems involving continuous variables and
observations, but extensions to discrete cases are straightforward (simple replace probability densities with
probability mass functions, and integrals with summations). The key elements of Bayesian methods are:

1. a prior probability density function pY (y) describing a priori knowledge of probable states for the
quantity Y ;

2. the likelihood function pX|Y (x|y), as described above;
3. the posterior density function pY |X (y|x).
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The posterior density is a function of the prior and likelihood, obtained according to Bayes rule:

pY |X (y|x) =
pX|Y (x|y) pY (y)∫
pX|Y (x|y) pY (y) dy

. (1.6)

The posterior is an indicator of probable values for Y , based on the prior knowledge and the observation.
Several options exist for deriving a speci�c estimate of Y using the posterior. The mean value of the posterior
density is one common choice (commonly called the posterior mean). The posterior mean is the decision
rule that minimizes the expected squared error loss (MSE risk) function. The value y where the posterior
density is maximized is another popular estimator (commonly called the Maximum A Posteriori (MAP)
estimator). Note that the denominator of the posterior is independent of y, so the MAP estimator is simply
the maximizer of the product of the likelihood and the prior. Therefore, if the prior is a constant function,
the MAP estimator and MLE coincide.

1.5 Statistical Learning

In all of the methods described above, we assumed some amount of knowledge about the distributions of the
observation X and quantity of interest Y . Such knowledge can come from a careful analysis of the physical
characteristics of the problem at hand, or it can be gleaned from previous experience. However, there are
situations where it is di�cult to model the physics of the problem and we may not have enough experience
to develop complete and accurate probability models. In such cases, it is natural to adopt a statistical
learning approach [2], [7].

Statistical learning methods are based on developing decision rules or estimators based only on a collection
of training examples, rather than predetermined probability models. Statistical learning methods are often
said to be distribution-free, since they do not assume particular probability models. The canonical set-up
for statistical learning is as follows. We begin with a collection of training examples, {(Xi, Yi)}ni=1, which are
assumed to be independently and identically distributed according to an unknown probability distribution
PX,Y (x, y). If we knew PX,Y (x, y), then we could compute a desired risk function and design an optimal
decision rule using the methods described above. In essence, the training examples give us a glimpse at the
underlying distribution, but our knowledge of it is far from complete. We cannot exactly compute a risk
function, and therefore we cannot derive a corresponding optimal decision rule.

There are at least two ways to proceed at this point. One possibility is to use the training examples to
estimate the joint probability distribution, and then use this estimate to derive an decision rule. Unfortu-
nately, the (general-purpose) problem of estimating a distribution is often more di�cult from a limited pool
of data than is the problem of designing a speci�c-purpose decision rule. For this reason, a second possibility
is more commonly favored in practice. Rather than estimating the complete distribution, one can use the
training examples to directly design a decision rule. More precisely, perhaps the most common approach is
to use the training examples to compute an estimate of the desired risk function.

Suppose that we are interested in minimizing a particular risk function. Recall that the risk is the

expected value of a chosen loss function. Let `

(
^
Y , Y

)
denote the loss, and let f (X) denote a candidate

decision function, mapping observations to predictions about Y (i.e.,
^
Y= f (X)). The empirical risk

function is constructed from the training examples as follows:

^
R (f) =

1
n

n∑
i=1

` (f (Xi) , Yi) . (1.7)

This is simply the average loss of the decision rule f over the set of training examples. Note that since the
training examples are independent and identically distributed, the expected value of the empirical risk is
equal to the true risk R (f) = E [` (f (X) , Y )]. Moreover, we known (according to the law of large numbers)
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that the empirical risk tends to the true risk as the size of the training sample increases. These facts lend
support to the idea of choosing a decision rule to minimize the empirical risk.

Empirical risk minimization (ERM) is just this process. Given a collection of possible decision rules, say
F , ERM selects a decision rule according to

^
fn = argmin

f∈F

^
R (f) . (1.8)

The selected rule,
^
fn, obviously depends on the given set of training examples, and therefore it is itself a

random quantity. The theoretically optimal counterpart to
^
fn is the decision rule that minimizes the true

risk

f∗ = argmin
f∈F

R (f) . (1.9)

The central problem in statistical learning is to quantify how close
^
fn performs relative to f∗. Note that

R (f∗) ≤ R

(
^
fn

)
, since f∗ minimizes the true risk. Thus, one way to gauge the performance of

^
fn relative

to f∗ is to show that there exists small positive values ε and δ such that with probability at least 1− δ we
have

R

(
^
fn

)
≤ R (f∗) + ε. (1.10)

If an inequality of this form holds, then we say that
^
fn is a Probability Approximately Correct (PAC)

decision rule [6].
To show that the empirical risk minimizer is a PAC decision rule, we �rst must understand how closely

the empirical risk matches the true risk. First, let us consider the empirical and true risk of the decision rule
f . Assume that the loss function is bounded between 0 and 1 (possibly after a suitable normalization). Then
the empirical risk function is a sum of independent random variables bounded between 0 and 1. Hoe�ding's
inequality is a bound on the deviations of such random sums from their corresponding mean values [2]. In
this case, the mean value is the true risk of f , and Hoe�ding's inequality states that

P

(
|
^
R (f)−R (f) | > ε

)
≤ 2e−2nε2 . (1.11)

Another equivalent statement is that the inequality |
^
R (f) − R (f) | ≤ ε holds with probability at least

1−2e−2nε2 . Thus, the two risks are probably close together, and the greater the number of training examples,
n, the closer they are.

Now we would like a similar condition to hold for all f ∈ F , since ERM optimizes over the entire collection
F . Suppose that F is a �nite collection of decision rules. Let |F| denote the number of rules in F . The
probability that the di�erence between the true and empirical risks, of one or more of the decision rules,

exceeds ε is bounded by the sum of the probabilities of each individual event of the form |
^
R (f)−R (f) | > ε,

the so-called Union of Events bound. Therefore, with probability at least 1− |F|2e−2nε2 we have that

|
^
R (f)−R (f) | ≤ ε (1.12)
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for all f ∈ F . Equivalently, setting δ = 2|F|e−2nε2 , we have that with probability at least 1− δ and for all
f ∈ F

|
^
R (f)−R (f) | ≤

√
log|F|+ log (2/δ)

2n
. (1.13)

Notice that the two risks are uniformly close together, and the closeness indicated by the bound increases
as n increases and decreases as the number of decision rules in F increases. In fact, the bound scales with
log|F|, and so it is reasonable to interpret the logarithm of the number of decision rules under consideration
as a measure of the complexity of the class.

Now using this bound, we can show that
^
fn is a PAC decision rule as follows. Note that with probability

at least 1− δ

R

(
^
fn

)
≤

^
R

(
^
fn

)
+
√

log|F|+log(2/δ)
2n

≤
^
R (f∗) +

√
log|F|+log(2/δ)

2n

≤ R (f∗) + 2
√

log|F|+log(2/δ)
2n

(1.14)

where the �rst inequality follows since the true and empirical risks are close for all f ∈ F , and in particular for
^
fn, the second inequality holds since by de�nition

^
fn minimizes the empirical risk, and the third inequality

holds again since the empirical risk is close to the true risk for all f , in this case for f∗ in particular. So, we

have shown that
^
fn is PAC.

PAC bounds of this form can be extended in many directions, for example to in�nitely large or uncountable
classes of decision rules, but the basic ingredients of the theory are essentially like those demonstrated above.
The bottom line is that empirical risk minimization is a reasonable approach, provided one has access to
a su�cient number of training examples and the number, or more generally the complexity, of the class of
decision rules under consideration is not too great.

1.6 Further reading

Excellent treatments of classical decision and estimation theory can be found in a number of textbooks [5],
[4], [3], [1]. For references on statistical learning theory, outstanding textbooks are also available [2], [7], [6]
for further reading.



Chapter 2

Elements of Statistical Learning Theory1

2.1 Three Elements of Statistical Data Analysis

1. Probabilistic Formulation: of learning from data and prediction problems.
2. Performance Characterization:: • concentration inequalities

• uniform deviation bounds
• approximation theory
• rates of convergence

3. Practical Algorithms: that run in polynomial time (e.g., decision trees, wavelet methods, support
vector machines).

2.2 Learning from Data

To formulate the basic learning from data problem, we must specify several basic elements: data spaces,
probability measures, loss functions, and statistical risk.

2.2.1 Data Spaces

Learning from data begins with a speci�cation of two spaces:

X ≡ Input Space (2.1)

Y ≡ Output Space. (2.2)

The input space is also sometimes called the �feature space� or �signal domain.� The output space is also
called the �class label space,� �outcome space,� �response space,� or �signal range.�

Example 2.1

X = Rd d-dimensional Euclidean space of �feature vectors� (2.3)

Y = {0, 1} two classes or �class labels� (2.4)

1This content is available online at <http://cnx.org/content/m16269/1.2/>.
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Example 2.2

X = R one-dimensional signal domain (e.g., time-domain) (2.5)

Y = R real-valued signal (2.6)

A classic example is estimating a signal f in noise:

Y = f (X) +W (2.7)

where X is a random sample point on the real line and W is a noise independent of X.

2.2.2 Probability Measure and Expectation

De�ne a joint probability distribution on X ×Y denoted PX,Y . Let (X,Y ) denote a pair of random variables
distributed according to PX,Y . We will also have use for marginal and conditional distributions. Let PX
denote the marginal distribution on X, and let PY |X denote the conditional distribution of Y given X.
For any distribution P , let p denote its density function with respect to the corresponding dominating
measure; e.g., Lebesgue measure for continuous random variables or counting measure for discrete
random variables.

De�ne the expectation operator:

EX,Y [f (X,Y )] ≡
∫
f (x, y) dPX,Y (x, y) =

∫
f (x, y) pX,Y (x, y) dxdy. (2.8)

We will also make use of corresponding marginal and conditional expectations such as EX and EY |X .
Wherever convenient and obvious based on context, we may drop the subscripts (e.g., E instead of EX,Y )

for notational ease.

2.2.3 Loss Functions

A loss function is a mapping

` : Y × Y 7→ R. (2.9)

Example 2.3
In binary classi�cation problems, Y = {0, 1}. The 0/1 loss function is usually used: ` (y1, y2) =

1y1 6=y2 , where 1A is the indicator function which takes a value of 1 if condition A is true and zero

otherwise. We typically will compare a true label y with a prediction
^
y, in which case the 0/1 loss

simply counts misclassi�cations.

Example 2.4
In regression or estimation problems, Y = R. The squared error loss function is often employed:
` (y1, y2) = (y1 − y2) 2, the square of the di�erence between y1 and y2. In application, we are

interested in a true value y in comparison to an estimate
^
y.
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2.2.4 Statistical Risk

The basic problem in learning is to determine a mapping f : X 7→ Y that takes an input x ∈ X and predicts
the corresponding output y ∈ Y. The performance of a given map f is measured by its expected loss or risk:

R (f) ≡ EX,Y [` (f (X) , Y )] . (2.10)

The risk tells us how well, on average, the predictor f performs with respect to the chosen loss function. A
key quantity of interest is the mininum risk value, de�ned as

R∗ = inf
f
R (f) (2.11)

where the in�num is taking over all measurable functions.

2.2.5 The Learning Problem

Suppose that (X,Y ) are distributed according to PX,Y ((X,Y ) ∼ PX,Y for short). Our goal is to �nd a map so
that f (X) ≈ Y with high probability. Ideally, we would chose f to minimize the risk R (f) = E [` (f (X) , Y )].
However, in order to compute the risk (and hence optimize it) we need to know the joint distribution PX,Y .
In many problems of practical interest, the joint distribution is unknown, and minimizing the risk is not
possible.

Suppose that we have some exemplary samples from the distribution. Speci�cally, consider n samples
Xi, Yi

n
i=1 distributed independently and identically (iid) according to the otherwise unknown PX,Y . Let us

call these samples training data, and denote the collection by Dn ≡ Xi, Yi
n
i=1. Let's also de�ne a collection

of candidate mappings F . We will use the training data Dn to pick a mapping fn ∈ F that we hope will be
a good predictor. This is sometimes called the Model Selection problem. Note that the selected model fn
is a function of the training data:

fn (X) = f (X;Dn) , (2.12)

which is what the subscript n in fn refers to. The risk of fn is given by

R (fn) = EX,Y [` (fn (X) , Y )] . (2.13)

Note that since fn depends on Dn in addition to a new random pair (X,Y ), the risk is a random variable
(i.e., a function of the training data Dn). Therefore, we are interested in the expected risk, computed over
random realizations of the training data:

EDn [R (fn)] . (2.14)

We hope that fn produces a small expected risk.
The notion of expected risk can be interpreted as follows. We would like to de�ne an algorithm (a model

selection process) that performs well on average, over any random sample of n training data. The expected
risk is a measure of the expected performance of the algorithm with respect to the chosen loss function. That
is, we are not gauging the risk of a particular map f ∈ F , but rather we are measuring the performance of
the algorithm that takes any realization of training data and selects an appropriate model in F .

This course is concerned with determining �good� model spaces F and useful and e�ective model selection
algorithms.
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Chapter 3

Introduction to Classi�cation and
Regression1

3.1 Pattern Classi�cation

Recall that the goal of classi�cation is to learn a mapping from the feature space, X , to a label space, Y.
This mapping, f , is called a classi�er. For example, we might have

X = Rd

Y = {0, 1}.
(3.1)

We can measure the loss of our classi�er using 0− 1 loss; i.e.,

`

(
^
y, y

)
= 1

{ ŷ 6=y}
= {

1,
^
y 6= y

0,
^
y= y

. (3.2)

Recalling that risk is de�ned to be the expected value of the loss function, we have

R (f) = EXY [` (f (X) , Y )] = EXY
[
1{f(X) 6=Y }

]
= PXY (f (X) 6= Y ) . (3.3)

The performance of a given classi�er can be evaluated in terms of how close its risk is to the Bayes' risk.

De�nition 3.1: (Bayes' Risk)
The Bayes' risk is the in�mum of the risk for all classi�ers:

R∗ = inf
f
R (f) . (3.4)

We can prove that the Bayes risk is achieved by the Bayes classi�er.

De�nition 3.2: Bayes Classi�er
The Bayes classi�er is the following mapping:

f∗ (x) = {
1, η (x) ≥ 1/2

0, otherwise
(3.5)

where
η (x) ≡ PY |X (Y = 1|X = x) . (3.6)

1This content is available online at <http://cnx.org/content/m16272/1.2/>.
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Note that for any x, f∗ (x) is the value of y ∈ {0, 1} that maximizes PXY (Y = y|X = x).
Theorem 3.1: Risk of the Bayes Classi�er

R (f∗) = R∗. (3.7)

Proof:
Let g (x) be any classi�er. We will show that

P (g (X) 6= Y |X = x) ≥ P (f∗ (x) 6= Y |X = x) . (3.8)

For any g,

P (g (X) 6= Y |X = x) = 1− P (Y = g (X) |X = x)

= 1− [P (Y = 1, g (X) = 1|X = x) + P (Y = 0, g (X) = 0|X = x)]

= 1−
[
E
[
1{Y=1}1{g(X)=1}|X = x

]
+ E

[
1{Y=0}1{g(X)=0}|X = x

]]
= 1−

[
1{g(x)=1}E

[
1{Y=1}|X = x

]
+ 1{g(x)=0}E

[
1{Y=0}|X = x

]]
= 1−

[
1{g(x)=1}P (Y = 1|X = x) + 1{g(x)=0}P (Y = 0|X = x)

]
= 1−

[
1{g(x)=1}η (x) + 1{g(x)=0} (1− η (x))

]
. (3.9)

Next consider the di�erence

P (g (x) 6= Y |X = x)− P (f∗ (x) 6= Y |X = x)

=

η (x)
[
1{f∗(x)=1} − 1{g(x)=1}

]
+ (1− η (x))

[
1{f∗(x)=0} − 1{g(x)=0}

]
=

η (x)
[
1{f∗(x)=1} − 1{g(x)=1}

]
− (1− η (x))

[
1{f∗(x)=1} − 1{g(x)=1}

]
=

(2η (x)− 1)
(
1{f∗(x)=1} − 1{g(x)=1}

)
,

(3.10)

where the second equality follows by noting that 1{g(x)=0} = 1− 1{g(x)=1}. Next recall

f∗ (x) = {
1, η (x) ≥ 1/2

0, otherwise
. (3.11)

For x such that η (x) ≥ 1/2, we have

(2η (x)− 1)︸ ︷︷ ︸
≥0

(
1{f∗(x)=1}︸ ︷︷ ︸

1

− 1{g(x)=1}︸ ︷︷ ︸
0or1

)
︸ ︷︷ ︸

≥0

(3.12)

and for x such that η (x) < 1/2, we have

(2η (x)− 1)︸ ︷︷ ︸
<0

(
1{f∗(x)=1}︸ ︷︷ ︸

0

− 1{g(x)=1}︸ ︷︷ ︸
0or1

)
︸ ︷︷ ︸

≤0

, (3.13)
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which implies

(2η (x)− 1)
(
1{f∗(x)=1} − 1{g(x)=1}

)
≥ 0 (3.14)

or

P (g (X) 6= Y |X = x) ≥ P (f∗ (x) 6= Y |X = x) . (3.15)

Note that while the Bayes classi�er achieves the Bayes risk, in practice this classi�er is not realizable
because we do not know the distribution PXY and so cannot construct η (x).

3.2 Regression

The goal of regression is to learn a mapping from the input space, X , to the output space, Y. This mapping,
f , is called a estimator. For example, we might have

X = Rd

Y = R.
(3.16)

We can measure the loss of our estimator using squared error loss; i.e.,

`

(
^
y, y

)
=
(
y−

^
y

)2

. (3.17)

Recalling that risk is de�ned to be the expected value of the loss function, we have

R (f) = EXY [` (f (X) , Y )] = EXY

[
(f (X)− Y )2

]
. (3.18)

The performance of a given estimator can be evaluated in terms of how close the risk is to the in�mum of
the risk for all estimator under consideration:

R∗ = inf
f
R (f) . (3.19)

Theorem 3.2: Minimum Risk under Squared Error Loss (MSE)
Let f∗ (x) = EY |X [Y |X = x]

R (f∗) = R∗. (3.20)
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Proof:

R (f) = EXY

[
(f (X)− Y )2

]
= EX

[
EY |X

[
(f (X)− Y )2|X

]]
= EX

[
EY |X

[(
f (X)− EY |X [Y |X] + EY |X [Y |X]− Y

)2|X]]

=

EX [ EY |X

[(
f (X)− EY |X [Y |X]

)2|X]
+2EY |X

[(
f (X)− EY |X [Y |X]

) (
EY |X [Y |X]− Y

)
|X
]

+EY |X
[(
EY |X [Y |X]− Y

)2|X]

=

EX [ EY |X

[(
f (X)− EY |X [Y |X]

)2|X]
+2
(
f (X)− EY |X [Y |X]

)
× 0

+EY |X
[(
EY |X [Y |X]− Y

)2|X]
= EXY

[(
f (X)− EY |X [Y |X]

)2]+R (f∗) .

(3.21)

Example
Thus if f∗ (x) = EY |X [Y |X = x], then R (f∗) = R∗, as desired.

3.3 Empirical Risk Minimization

De�nition 3.3: Empirical Risk

Let {Xi, Yi}ni=1
iid∼ PXY be a collection of training data. Then the empirical risk is de�ned as

^
Rn (f) =

1
n

n∑
i=1

` (f (Xi) , Yi) . (3.22)

Empirical risk minimization is the process of choosing a learning rule which minimizes the empirical
risk; i.e.,

^
fn = argmin

f∈F

^
Rn (f) . (3.23)

Example 3.1: Pattern Classi�cation
Let the set of possible classi�ers be

F = {x 7→ sign
(
w'x

)
: w ∈ Rd} (3.24)

and let the feature space, X , be [0, 1]d or Rd. If we use the notation fw (x) ≡ sign
(
w'x

)
, then the

set of classi�ers can be alternatively represented as

F = {fw : w ∈ Rd}. (3.25)
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In this case, the classi�er which minimizes the empirical risk is

^
fn = argmin

f∈F

^
Rn (f)

= arg min
w∈Rd

1
n

∑n
i=1 1{sign(w'Xi) 6=Yi}.

(3.26)

Figure 3.1: Example linear classi�er for two-class problem.

Example 3.2: Regression
Let the feature space be

X = [0, 1] (3.27)

and let the set of possible estimators be

F = {degree d polynomials on [0, 1]}. (3.28)

In this case, the classi�er which minimizes the empirical risk is

^
fn = argmin

f∈F

^
Rn (f)

= argmin
f∈F

1
n

∑n
i=1 (f (Xi)− Yi)2

.
(3.29)

Alternatively, this can be expressed as

^
w = arg min

w∈Rd+1

1
n

∑n
i=1

(
w0 + w1Xi + ...+ wdX

d
i − Yi

)2
= arg min

w∈Rd+1
‖ V w − Y ‖2

(3.30)
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where V is the Vandermonde matrix

V =


1 X1 ... Xd

1

1 X2 ... Xd
2

...
...

. . .
...

1 Xn ... Xd
n

 . (3.31)

The pseudoinverse can be used to solve for
^
w:

^
w=

(
V 'V

)−1
V 'Y. (3.32)

A polynomial estimate is displayed in Figure 3.2.

Figure 3.2: Example polynomial estimator. Blue curve denotes f∗, magenta curve is the polynomial
�t to the data (denoted by dots).

3.4 Over�tting

Suppose F , our collection of candidate functions, is very large. We can always make

min
f∈F

^
Rn (f) (3.33)

smaller by increasing the cardinality of F , thereby providing more possibilities to �t to the data.
Consider this extreme example: Let F be all measurable functions. Then every function f for which

f (x) = {
Yi, x = Xi for i = 1, ..., n

any value, otherwise
(3.34)

has zero empirical risk (
^
Rn (f) = 0). However, clearly this could be a very poor predictor of Y for a new

input X .
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Example 3.3: Classi�cation Over�tting
Consider the classi�er in Figure 3.3; this demonstrates over�tting in classi�cation. If the data
were in fact generated from two Gaussian distributions centered in the upper left and lower right
quadrants of the feature space domain, then the optimal estimator would be the linear estimator
in Figure 3.1; the over�tting would result in a higher probability of error for predicting classes of
future observations.

Figure 3.3: Example of over�tting classi�er. The classi�er's decision boundary wiggles around in order
to correctly label the training data, but the optimal Bayes classi�er is a straight line.

Example 3.4: Regression Over�tting
Below is an m-�le that simulates the polynomial �tting. Feel free to play around with it to get an
idea of the over�tting problem.

%~poly~fitting

%~rob~nowak~~1/24/04

clear

close~all

~

%~generate~and~plot~"true"~function

t~=~(0:.001:1)';

f~=~exp(-5*(t-.3).^2)+.5*exp(-100*(t-.5).^2)+.5*exp(-100*(t-.75).^2);

figure(1)

plot(t,f)

~

%~generate~n~training~data~&~plot

n~=~10;

sig~=~0.1;~%~std~of~noise

x~=~.97*rand(n,1)+.01;

y~=~exp(-5*(x-.3).^2)+.5*exp(-100*(x-.5).^2)+.5*exp(-100*(x-.75).^2)+sig*randn(size(x));

figure(1)

clf

plot(t,f)

hold~on



18 CHAPTER 3. INTRODUCTION TO CLASSIFICATION AND REGRESSION

plot(x,y,'.')

~

%~fit~with~polynomial~of~order~k~~(poly~degree~up~to~k-1)

k=3;

for~i=1:k

~~~~V(:,i)~=~x.^(i-1);

end

p~=~inv(V'*V)*V'*y;

~

for~i=1:k

~~~~Vt(:,i)~=~t.^(i-1);

end

yh~=~Vt*p;

figure(1)

clf

plot(t,f)

hold~on

plot(x,y,'.')

plot(t,yh,'m')

~
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(a)

(b)

(c)

(d)

Figure 3.4: Example polynomial �tting problem. Blue curve is f∗, magenta curve is the polynomial �t
to the data (dots). (a) Fitting a polynomial of degree d = 0: This is an example of under�tting (b)d = 2
(c) d = 4 (d) d = 6: This is an example of over�tting. The empirical loss is zero, but clearly the estimator
would not do a good job of predicting y when x is close to one.
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Chapter 4

Introduction to Complexity
Regularization1

4.1 Competing Goals: The Bias-Variance Tradeo�

We ended the previous lecture (Chapter 3) with a brief discussion of over�tting. Recall that, given a set of n
data points, Dn, and a space of functions (ormodels) F , our goal in solving the learning from data problem

is to choose a function
^
fn ∈ F which minimizes the expected risk E

[
R

(
^
fn

)]
, where the expectation is

being taken over the distribution PXY on the data points Dn. One approach to avoiding over�tting is to
restrict F to some subset of all measurable function. To gauge the performance of a given f in this case, we
examine the di�erence between the expected risk of f and the Bayes' risk (called the excess risk).

E

[
R

(
^
fn

)]
−R∗ =

(
E

[
R

(
^
fn

)]
− inff∈FR (f)

)
︸ ︷︷ ︸

estimation error

+
(
inff∈FR (f)−R∗

)︸ ︷︷ ︸
approximation error

(4.1)

The approximation error term quanti�es the performance hit incurred by imposing restrictions on F .
The estimation error term is due to the randomness of the training data, and it expresses how well the

chosen function
^
fn will perform in relation to the best possible f in the class F . This decomposition into

stochastic and approximation errors is similar to the bias-variance tradeo� which arises in classical estimation
theory. The approximation error is like a bias squared term, and the estimation error is like a variance term.
By allowing the space Fto be large2 we can make the approximation error as small as we want at the cost
of incurring a large estimation error. On the other hand, if F is very small then the approximation error will
be large, but the estimation error may be very small. This tradeo� is illustrated in Figure 4.1.

1This content is available online at <http://cnx.org/content/m16274/1.2/>.
2When we say F is large, we mean that |F|, the number of elements in F , is large.

21



22 CHAPTER 4. INTRODUCTION TO COMPLEXITY REGULARIZATION

Figure 4.1: Illustration of tradeo� between estimation and approximation errors as a function of the
size (complexity) of the F .

Why is this the case? We do not know the true distribution PXY on the data, so instead of minimizing
the expected risk of we design a predictor by minimizing the empirical risk:

^
fn = argmin

f∈F

^
Rn (f) ,

^
Rn (f) = 1

n

∑n
i=1 ` (f (Xi) , Yi) .

(4.2)

If F is very large then
^
Rn (f) can be made arbitrarily small and the resulting

^
fn can �over�t� to the data

since
^
Rn (f) is not a good estimator of the true risk R

(
^
fn

)
.
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Figure 4.2: Illustration of empirical risk and the problem of over�tting to the data.

The behavior of the true and empirical risks, as a function of the size (or complexity) of the space F , is
illustrated in Figure 4.2. Unfortunately, we can't easily determine whether we are over or under�tting just
by looking at the empirical risk.

4.2 Strategies To Avoid Over�tting

Picking

^
fn = argmin

f∈F

^
Rn (f) (4.3)

is problematic if F is large. We will examine two general approaches to dealing with this problem:

1. Restrict the size or dimension of F(e.g., restrict Fto the set of all lines, or polynomials with maximum
degree d). This e�ectively places an upper bound on the estimation error, but in general it also places
a lower bound on the approximation error.

2. Modify the empirical risk criterion to include an extra cost associated with each model (e.g., higher
cost for more complex models):

^
fn = argmin

f∈F
{
^
Rn (f) + C (f)}. (4.4)

The cost is designed to mimic the behavior of the estimation error so that the model selection procedure
avoids models with a estimation error. Roughly this can be interpreted as trying to balance the tradeo�
illustrated in Figure 4.1. Procedures of this type are often called complexity penalization methods.
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Example 4.1
Revisit the polynomial regression example (Lecture 2, Ex. 4) (Example 3.4: Regression Over-
�tting), and incorporate a penalty term C (f) which is proportional to the degree of f , or the
derivative of f . In essence, this approach penalizes for functions which are too �wiggly�, with the
intuition being that the true function is probably smooth so a function which is very wiggly will
over�t the data.

How do we decide how to restrict or penalize the empirical risk minimization process? Ap-
proaches which have appeared in the literature include the following.

4.2.1 Method of Sieves

Perhaps the simplest approach is to try to limit the size of F in a way that depends on the number of training
data n. The more data we have, the more complex the space of models we can entertain. Let the class of
candidate functions grow with n. That is, take

F1,F2, · · · ,Fn, · · · (4.5)

where |Fi| grows as i → ∞. In other words, consider a sequence of spaces with increasing complexity or
degrees of freedom depending on the number of training data samples, n.

Given samples {Xi, Yi}ni=1 i.i.d. distributed according to PXY , select f ∈ Fn to minimize the empirical
risk

^
fn = argmin

f∈Fn

^
Rn (f) . (4.6)

In the next lecture (Chapter 5) we will consider an example using the method of sieves. The basic idea is to
design the sequence of model spaces in such a way that the excess risk decays to zero as n→∞. This sort
of idea has been around for decades, but Grenander's method of sieves is often cited as a nice formalization
of the idea: Abstract Inference, Wiley, New York.

4.2.2 Complexity Penalization Methods

4.2.2.1 Bayesian Methods

In certain cases, the empirical risk happens to be a (log) likelihood function, and one can then interpret the
cost C (f) as re�ecting prior knowledge about which models are more or less likely. In this case, e−C(f) is
like a prior probability distribution on the space F . The cost C (f) is large if f is highly improbable, and
C (f) is small if f is highly probable.

Alternatively, if we restrict Fto be small, and denote the space of all measurable functions as F = F∪Fc,
then it is essentially as if we have placed a uniform prior over all functions in F , and zero prior probability
on the functions in Fc.

4.2.2.2 Description Length Methods

Description length methods represent each f with a string of bits. More complicated functions require more
bits to represent. Accordingly, we can then set the cost c (f) proportional to the number of bits needed to
describe f (the description length). This results in what is known as the minimum description length
(MDL) approach where the minimum description length is given by

min
f∈F
{
^
Rn (f) + C (f)}. (4.7)
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In the Bayesian setting, p (f) ∝ e−C(f) can be interpreted as a prior probability density on F , with more
complex models being less probable and simpler models being more probable. In that sense, both the
Bayesian and MDL approaches have a similar spirit.

4.2.2.3 Vapnik-Cervonenkis Dimension

The Vapnik-Cervonenkis (VC) dimension measures the complexity of a class Frelative to a random sample
of n training data. For example, take Fto be all linear classi�ers in 2-dimensional feature space. Clearly, the
space of linear classi�ers is in�nite (there are an in�nite number of lines which can be drawn in the plane).
However, many of these linear classi�ers would assign the same labels to the training data.

The number of unique labellings of the training data that can be achieved with linear classi�ers is, in
fact, �nite. A line can be de�ned by picking any pair of training points, as illustrated in Figure 4.3. Two
classi�ers can be de�ned from each such line: one that outputs a label �1� for everything on or above the
line, and another that outputs �0� for everything on or above. There exist

(
n
2

)
such pairs of training points,

and these de�ne all possible unique labellings of the training data. Therefore, there are at most 2
(
n
2

)
unique

linear classi�ers for any random set of n 2-dimensional features (the factor of 2 is due to the fact that for
each linear classi�er there are 2 possible assignments of the labelling).

Figure 4.3: Fitting a linear classi�er to 2-dimensional data. There are an in�nite number of such
classi�ers. We can generate a linear classi�er by choosing two data points, drawing a line with both
points on one side, and declaring all points on or above the line to be �+1� (or �−1�) and all points below
the line to be �−1� (or �+1�).
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Figure 4.4: From the discussion in the previous �gure, we see that the two linear classi�ers depicted
in this �gure are equivalent for this set of data points, and hence relative to the set of n training data
there are only on the order of n2 unique linear classi�ers.

Thus, instead of in�nitely many linear classi�ers, we realize that as far as a random sample of n training
data is concerned, there are at most

2
(
n
2

)
= 2n!

(n−2)!2!

= n (n− 1)
(4.8)

unique linear classi�ers. That is, using linear classi�cation rules, there are at most n (n− 1) ≈ n2 unique
label assignments for n data points. If we like, we can encode each possibility with log2n (n− 1) ≈ 2log2n
bits. In d dimensions there are 2

(
n
d

)
hyperplane classi�cation rules which can be encoded in roughly dlog2n

bits. Roughly speaking, the number of bits required for encoding each model is the VC dimension. The
remarkable aspect of the VC dimension is that it is often �nite even when F is in�nite (as in this example).

If Xhas d dimensions in total, we might consider linear classi�ers based on 1, 2, · · · , d features at a time.
Lower dimensional hyperplanes are less complex than higher dimensional ones. Suppose we set

F1 = linear classi�ers using 1 feature

F2 = linear classi�ers using 2 features

· · · and so on

. (4.9)

These spaces have increasing VC dimensions, and we can try to balance the empirical risk and a cost function
depending on the VC dimension. Such procedures are often referred to as Structural Risk Minimization.
This gives you a glimpse of what the VC dimension is all about. In future lectures we will revisit this topic
in greater detail.
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4.2.3 Hold-out Methods

The basic idea of �hold-out� methods is to split the n samples D ≡ {Xi, Yi}ni=1 into a training set, DT , and
a test set, DV .

DT = {Xi, Yi}mi=1, DV = {Xi, Yi}ni=m+1 . (4.10)

Now, suppose we have a collection of di�erent model spaces {Fλ} indexed by λ ∈ Λ (e.g., Fλ is the set of
polynomials of degree d, with λ = d), or suppose that we have a collection of complexity penalization criteria

Lλ (f) indexed by λ (e.g.,let Lλ (f) =
^
R (f) + λc (f), with λ ∈ R+). We can obtain candidate solutions

using the training set as follows. De�ne

^
Rm (f) =

∑m
i=1 ` (f (Xi) , Yi) (4.11)

and take

^
fλ = argmin

f∈Fλ

^
Rm (f) (4.12)

or

^
fλ = argmin

f∈F
{
^
Rm (f) + λc (f)} . (4.13)

This provides us with a set of candidate solutions {
^
fλ}. Then we can de�ne the hold-out error estimate

using the test set:

^
RV (f) = 1

n−m+1

∑n
i=m+1 ` (f (Xi) , Yi) , (4.14)

and select the �best� model to be
^
f=

^
f^
λ

where

^
λ = argmin

λ

^
RV

(
^
fλ

)
. (4.15)

This type of procedure has many nice theoretical guarantees, provided both the training and test set grow
with n.

4.2.3.1 Leaving-one-out Cross-Validation

A very popular hold-out method is the so call �leaving-one-out cross-validation� studied in depth by Grace
Wahba (UW-Madison, Statistics). For each λ we compute

^
f

(k)

λ = argmin
f∈F

1
n

∑n
i=1
i 6=k

` (f (Xi) , Yi) + λC (f) (4.16)

or

^
f

(k)

λ = argmin
f∈Fλ

1
n

∑n
i=1
i6=k

` (f (Xi) , Yi) . (4.17)

Then we have cross-validation function

V (λ) = 1
n

∑n
k=1 `

(
f

(k)
λ (Xk) , Yk

)
λ∗ = argmin

λ
V (λ) .

(4.18)
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4.3 Summary

To summarize, this lecture gave a brief and incomplete survey of di�erent methods for dealing with the issues
of over�tting and model selection. Given a set of training data, Dn = {Xi, Yi}ni=1, our overall goal is to �nd

f∗ = argmin
f∈F

R (f) (4.19)

from some collection of functions, F . Because we do not know the true distribution PXY underlying the
data points Dn, it is di�cult to get an exact handle on the risk, R (f). If we only focus on minimizing the

empirical risk
^
R (f) we end up over�tting to the training data. Two general approaches were presented.

1. In the �rst approach we consider an indexed collection of spaces {Fλ}λ∈Λ such that the complexity of
Fλ increases as λ increases, and

lim
λ→∞

Fλ = F . (4.20)

A solution is given by
^
fλ∗ = arg min

f∈Fλ∗

^
Rn (f) (4.21)

where either λ∗ is a function which increases with n,

λ∗ = λ (n) , (4.22)

or λ∗ is chosen by hold-out validation.
2. The alternative approach is to incorporate a penalty term into the risk minimization problem formula-

tion. Here we consider an indexed collection of penalties {Cλ}λ∈Λ satisfying the following properties:

a. Cλ : F → R+;
b. For each f ∈ F and λ1 < λ2 we have Cλ1 (f) ≤ Cλ2 (f);
c. There exists λ0 ∈ Λ such that Cλ0 (f) = 0 for all f ∈ F .

In this formulation we �nd a solution

^
fλ∗ = argmin

f∈F

^
Rn (f) + Cλ∗ (f) , (4.23)

where either λ∗ = λ (n), a function growing the number of data samples n, or λ∗ is selected by hold-out
validation.

4.4 Consistency

If an estimator or classi�er
^
fλ∗ satis�es

E

[
R

(
^
fλ∗

)]
→ inf

f∈F
R (f) as n→∞, (4.24)

then we say that
^
fλ∗ is F-consistent with respect to the risk R. When the context is clear, we will simply

say that
^
f is consistent.



Chapter 5

An Example of the Use of Sieves for
Complexity Regularization in Denoising1

Consider the following setting. Let

Y = f∗ (X) +W, (5.1)

where X is a random variable (r.v.) on X = [0, 1], W is a r.v. on Y = R, independent of X and satisfying

E [W ] = 0 and E
[
W 2
]

= σ2 <∞. (5.2)

Finally let f∗ : [0, 1]→ R be a function satisfying

|f∗ (t)− f∗ (s) | ≤ L|t− s|, ∀t, s ∈ [0, 1] , (5.3)

where L > 0 is a constant. A function satisfying condition (5.3) is said to be Lipschitz on [0, 1]. Notice that
such a function must be continuous, but it is not necessarily di�erentiable. An example of such a function
is depicted in Figure 5.1(a).

1This content is available online at <http://cnx.org/content/m16261/1.3/>.
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CHAPTER 5. AN EXAMPLE OF THE USE OF SIEVES FOR COMPLEXITY

REGULARIZATION IN DENOISING

(a)

(b)

Figure 5.1: Example of a Lipschitz function, and our observations setting. (a) random sampling of f∗,
the points correspond to (Xi, Yi) , i = 1, ..., n; (b) deterministic sampling of f∗, the points correspond
to (i/n, Yi) , i = 1, ..., n.

Note that

E [Y |X = x] = E [f∗ (X) +W |X = x]

= E [f∗ (x) +W |X = x]

= f∗ (x) + E [W ] = f∗ (x) .

(5.4)

Consider our usual setup: Estimate f∗ using n training examples

{Xi, Yi}ni=1
i.i.d.∼ PXY ,

Yi = f∗ (Xi) +Wi, i = {1, ..., n},
(5.5)

where
i.i.d.∼ means independently and identically distributed. Figure 5.1(a) illustrates this setup.

In many applications we can sample X = [0, 1] as we like, and not necessarily at random. For example
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we can take n samples uniformly on [0,1]

xi = i
n , i = 1, ..., n ,

Yi = f (xi) +Wi

= f
(
i
n

)
+Wi.

(5.6)

We will proceed with this setup (as in Figure 5.1(b)) in the rest of the lecture.

Our goal is to �nd
^
fn such that E

[
‖ f∗ −

^
fn‖

2

]
→ 0, as n → 0 (here ‖ · ‖ is the usual L2-norm; i.e.,

‖ f∗ −
^
fn‖

2 =
∫ 1

0
|f∗ (t)−

^
fn (t) |

2

dt).
Let

F = {f : f is Lipschitz with constant L}. (5.7)

The Risk is de�ned as

R (f) =‖ f∗−f ‖2 =
∫ 1

0

|f∗ (t)− f (t) |2dt. (5.8)

The Expected Risk (recall that our estimator
^
fn is based on {xi, Yi} and hence is a r.v.) is de�ned as

E

[
R

(
^
fn

)]
= E

[
‖ f∗ −

^
fn‖

2

]
. (5.9)

Finally the Empirical Risk is de�ned as

^
Rn (f) =

1
n

n∑
i=1

(
f

(
i

n

)
− Yi

)2

. (5.10)

Let 0 < m1 ≤ m2 ≤ m3 ≤ · · · be a sequence of integers satisfying mn → ∞ as n → ∞, and knmn = n for
some integer kn > 0. That is, for each value of n there is an associated integer value mn. De�ne the Sieve
F1, F2, F3, ...,

Fn = {f : f (t) =
mn∑
j=1

cj 1{ j−1
mn
≤t< j

mn
}, cj ∈ R}. (5.11)

Fn is the space of functions that are constant on intervals

Ij,mn ≡
[
j − 1
mn

,
j

mn

)
, j = 1, ...,mn. (5.12)

From here on we will use m and k instead of mn and kn (dropping the subscript n) for notational ease.
De�ne

fn (t) =
m∑
j=1

c∗j 1{t∈Ij,m}, where c∗j =
1
k

∑
i: in∈Ij,m

f∗
(
i

n

)
. (5.13)

Note that fn ∈ Fn.
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REGULARIZATION IN DENOISING

Example 5.1: Exercise 1
Upper bound ‖ f∗ − fn‖2.

‖ f∗−f ‖2 =
∫ 1

0
|f∗ (t)− fn (t) |2dt

=
∑m
j=1

∫
Ij,m
|f∗ (t)− fn (t) |2dt

=
∑m
j=1

∫
Ij,m
|f∗ (t)− c∗j |

2
dt

=
∑m
j=1

∫
Ij,m

∣∣∣f∗ (t)− 1
k

∑
i: in∈Ij,m

f∗
(
i
n

)∣∣∣2dt
=

∑m
j=1

∫
Ij,m

(
1
k

∣∣∣∑i: in∈Ij,m

(
f∗ (t)− f∗

(
i
n

))∣∣∣)2

dt

≤
∑m
j=1

∫
Ij,m

(
1
k

∑
i: in∈Ij,m

∣∣f∗ (t)− f∗
(
i
n

)∣∣)2

dt

≤
∑m
j=1

∫
Ij,m

(
1
k

∑
i: in∈Ij,m

L
m

)2

dt

=
∑m
j=1

∫
Ij,m

(
L
m

)2
dt

=
∑m
j=1

1
m

(
L
m

)2
=
(
L
m

)2
.

(5.14)

The above implies that ‖ f∗ − fn‖2 → 0 as n → ∞, since m = mn → ∞ as n → ∞. In words, with n
su�ciently large we can approximate f∗ to arbitrary accuracy using models in Fn (even if the functions we
are using to approximate f∗ are not Lipschitz!).

For any f ∈ Fn,f =
∑m
j=1 cj 1{t∈Ij,m}, we have

^
Rn (f) =

1
n

m∑
j=1

 ∑
i: in∈Ij,m

(cj − Yi)2

 . (5.15)

Let
^
fn = argminf∈Fn

^
Rn (f) . Then

^
fn (t) =

m∑
j=1

^
cj 1{t∈Ij,m}, where

^
cj =

1
k

∑
i: in∈Ij,m

Yi (5.16)

Example 5.2: Exercise 2
Show (5.16).

Note that E

[
^
cj

]
= c∗j and therefore E

[
^
fn (t)

]
= fn (t). Lets analyze now the expected risk of

^
fn:

E

[
‖ f∗ −

^
fn‖

2

]
= E

[
‖ f∗ − fn + fn −

^
fn‖

2

]

= ‖ f∗ − fn‖2 + E

[
‖ fn −

^
fn‖

2

]
+ 2E

[
< f∗ − fn, fn −

^
fn >

]

= ‖ f∗ − fn‖2 + E

[
‖ fn −

^
fn‖

2

]
+ 2 < f∗ − fn, E

[
fn −

^
fn

]
>

= ‖ f∗ − fn‖2 + E

[
‖ fn −

^
fn‖

2

]
,

(5.17)
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where the �nal step follows from the fact that E

[
^
fn (t)

]
= fn (t). A couple of important remarks

pertaining the right-hand-side of equation (5.17): The �rst term, ‖ f∗ − fn‖2, corresponds to the
approximation error, and indicates how well can we approximate the function f∗ with a function
from Fn. Clearly, the larger the class Fn is, the smallest we can make this term. This term is

precisely the squared bias of the estimator
^
fn. The second term, E

[
‖ fn −

^
fn‖

2

]
, is the estimation

error, the variance of our estimator. We will see that the estimation error is small if the class of
possible estimators Fn is also small.

The behavior of the �rst term in (5.17) was already studied. Consider the other term:

E

[
‖ fn −

^
fn‖

2

]
= E

[∫ 1

0
|fn (t)−

^
fn (t) |

2

dt

]

= E

[∑m
j=1

∫
Ij,m
|c∗j −

^
cj |

2

dt

]
=

∑m
j=1

∫
Ij,m

E

[
|c∗j −

^
cj |2

]
dt

=
∑m
j=1

∫
Ij,m

E[W 2]
k dt

≤
∑m
j=1

∫
Ij,m

σ2

k dt

=
∑m
j=1

1
m
σ2

k = σ2

k = m
n σ

2

. (5.18)

Combining all the facts derived we have

E

[
‖ f∗ −

^
fn‖

2

]
≤ L2

m2
+

m

n
σ2 = O

(
max{ 1

m2
,
m

n
}
)
. (5.19)

This equation used Big-O notation.
What is the best choice of m? If m is small then the approximation error (i.e., O

(
1/m2

)
) is

going to be large, but the estimation error (i.e., O (m/n)) is going to be small, and vice-versa.
This two con�icting goals provide a tradeo� that directs our choice of m (as a function of n). In
Figure 5.2 we depict this tradeo�. In Figure 5.2(a) we considered a large mn value, and we see that
the approximation of f∗ by a function in the class Fn can be very accurate (that is, our estimate
will have a small bias), but when we use the measured data our estimate looks very bad (high
variance). On the other hand, as illustrated in Figure 5.2(b), using a very small mn allows our
estimator to get very close to the best approximating function in the class Fn, so we have a low
variance estimator, but the bias of our estimator (i.e., the di�erence between fn and f∗) is quite
considerable.
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(a)

(b)

Figure 5.2: Approximation and estimation of f∗ (in blue) for n = 60. The function fn is depicted in

green and the function
^
fn is depicted in red. In (a)we have m = 60 and in (b) we have m = 6.

We need to balance the two terms in the right-hand-side of (5.19) in order to maximize the rate
of decay (with n) of the expected risk. This implies that 1

m2 = m
n therefore mn = n1/3 and the

Mean Squared Error (MSE) is

E

[
‖ fn −

^
fn‖

2

]
= O

(
n−2/3

)
. (5.20)

So the sieve F1, F2, · · · with

Fn = {f : f (t) =
mn∑
j=1

cj 1{ j−1
mn
≤t< j

mn
}, cj ∈ R}, (5.21)

produces a F-consistent estimator for f∗ = E [Y |X + x] ∈ F .
It is interesting to note that the rate of decay of the MSE we obtain with this strategy cannot be

further improved by using more sophisticated estimation techniques (that is, n−2/3 is theminimax
MSE rate for this problem). Also, rather surprisingly, we are considering classes of models Fn that
are actually not Lipschitz, therefore our estimator of f∗ is not a Lipschitz function, unlike f∗ itself.
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Plug-In Classi�er and Histogram
Classi�er1

We return to the topic of classi�cation, and we assume an input (feature) space X and a binary output (label)
space Y = {0, 1}. Recall that the Bayes classi�er (which minimizes the probability of misclassi�cation) is
de�ned by

f∗ (x) = {
1, P (Y = 1|X = x) ≥ 1/2

0, otherwise
. (6.1)

Throughout this section, we will denote the conditional probability function by

η (x) ≡ P (Y = 1|X = x) . (6.2)

6.1 Plug-in Classi�ers

One way to construct a classi�er using the training data {Xi, Yi}ni=1 is to estimate η (x) and then plug-it
into the form of the Bayes classi�er. That is obtain an estimate,

^
ηn (x) = η (x; {Xi, Yi}ni=1) (6.3)

and then form the �plug-in" classi�cation rule

^
f (x) = { 1,

^
η (x) ≥ 1/2

0, otherwise
. (6.4)

Remark: The function η (x) is generally more complicated than the ultimate classi�cation rule
(binary-valued), as we can see

η : X → [0, 1]

f : X → {0, 1}
. (6.5)

1This content is available online at <http://cnx.org/content/m16280/1.2/>.
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Therefore, in this sense plug-in methods are solving a more complicated problem than necessary. However,
plug-in methods can perform well, as demonstrated by the next result.

Theorem 6.1: Plug-in Classi�er
Let η̃ be an approximation to η, and consider the plug-in rule

f (x) = {
1, η̃ (x) ≥ 1/2

0, otherwise
. (6.6)

Then,

R (f)−R∗ ≤ 2E [|η (x)− η̃ (x) |] (6.7)

where

R (f) = P (f (X) 6= Y )

R∗ = R (f∗) = inf
f
R (f)

. (6.8)

Proof:
Consider any x ∈ Rd. In proving the optimality of the Bayes classi�er f∗ in Lecture 2 (Chapter 3),
we showed that

P (f (x) 6= Y |X = x)− P (f∗ (x) 6= Y |X = x) = (2η (x)− 1)
[
1{f∗(x)=1} − 1{f(x)=1}

]
, (6.9)

which is equivalent to

P (f (x) 6= Y |X = x)− P (f∗ (x) 6= Y |X = x) = |2η (x)− 1| 1{f∗(x) 6=f(x)}, (6.10)

since f∗ (x) = 1 whenever 2η (x)− 1 > 0. Thus,

P (f (X) 6= Y )−R∗ =
∫

Rd2|η (x)− 1/2|1{f∗(x)6=f(x)}pX (x) dx

where pX (x) is the marginal density of X

≤
∫

Rd2|η (x)− η̃ (x) |1{f∗(x)6=f(x)}pX (x) dx

≤
∫

Rd2|η (x)− η̃ (x) |pX (x) dx

= 2E [|η (X)− η̃ (X) |]

(6.11)

where the �rst inequality follows from the fact

f (x) 6= f∗ (x) ⇒ |η (x)− η̃ (x) | ≥ |η (x)− 1/2| (6.12)

and the second inequality is simply a result of the fact that 1{f∗(x)6=f(x)} is either 0 or 1.
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Figure 6.1: Pictorial illustration of |η (x) − η̃ (x) | ≥ |η (x) − 1/2| when f (x) 6= f∗ (x). Note that the
inequality P (f (X) 6= Y ) − R∗ ≤

R
Rd

2|η (x) − η̃ (x) |1{f∗(x)6=f(x)}pX (x) dx shows that the excess risk
is at most twice the integral over the set where f∗ (x) 6= f (x). The di�erence |η (x) − η̃ (x) | may be
arbitrarily large away from this set without e�ecting the error rate of the classi�er. This illustrates the
fact that estimating η well everywhere (i.e., regression) is unnecessary for the design of a good classi�er
(we only need to determine where η crosses the 1/2-level). In other words, �classi�cation is easier than
regression.�

The theorem shows us that a good estimate of η can produce a good plug-in classi�cation rule.
By �good" estimate, we mean an estimator η̃ that is close to η in expected L1-norm.

6.2 The Histogram Classi�er

Let's assume that the (input) features are randomly distributed over the unit hypercube X = [0, 1]d (note
that by scaling and shifting any set of bounded features we can satisfy this assumption), and assume that
the (output) labels are binary, i.e., Y = {0, 1}. A histogram classi�er is based on a partition the hypercube

[0, 1]d into M smaller cubes of equal size.

Example 6.1: Partition of hypercube in 2 dimensions
Consider the unit square [0, 1]2 and partition it into M subsquares of equal area (assuming M is
a squared integer). Let the subsquares be denoted by {Qi}, i = 1, ...,M .
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Figure 6.2: Example of hypercube [0, 1]2 in M equally sized partition

De�ne the following piecewise-constant estimator of η (x):

^
ηn (x) =

M∑
j=1

^
P j1{x∈Qj} (6.13)

where

^
P j =

∑n
i=1 1{Xi∈Qj ,Yi=1}∑n
i=1 1{Xi∈Qj}

. (6.14)

Like our previous denoising examples, we expect that the bias of
^
ηn will decrease as M increases,

but the variance will increase as M increases.

Theorem 6.2: Consistency of Histogram Classi�ers
If M →∞ and n

M →∞ as n→∞, then the histogram classi�er risk converges to the Bayes risk
for every distribution PXY with marginal density pX (x) ≥ c, for some constant c > 0.2.

What the theorem tells us is that we need the number of partition cells to tend to in�nity (to
insure that the bias tends to zero), but they can't grow faster than the number of samples (i.e., we
want the number of samples per box tending to in�nity to drive the variance to zero).
Proof:

Let Pj ≡
R
Qj
η(x)pX(x)dxR
Qj
pX(x)dx

(the theoretical analog of
^
P j) and de�ne

η (x) =
M∑
j=1

Pj 1{x∈Qj} (6.15)

The function η is the theoretical analog of
^
η (i.e., the function obtained by averaging η over the

2Actually, the result holds for every distribution PXY . For the more general theorem, refer to Theorem 6.1 inA probabilistic

Theory of Pattern Recognition by Luc Devroye, László Györ� and Gábor Lugosi.
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partition cells). By the triangle inequality,

E

[
|
^
ηn (X)− η (X) |

]
≤ E

[
|
^
ηn (X)− η (X) |

]
︸ ︷︷ ︸

EstimationError

+ E [|ηn (X)− η (X) |]︸ ︷︷ ︸
ApproximationError

(6.16)

Let's �rst bound the estimation error. For any x ∈ [0, 1]d, let Q (x) denote the histogram bin in
which x falls in. De�ne the random variable

N (x) =
n∑
i=1

1{Xi∈Q(x)} (6.17)

If Q (x) = Qj , then this random variable is simply n
^
P j . Note that

^
ηn (x) =

1
N (x)

B (x) (6.18)

where B (x) ==
∑n
i=1 1{Xi∈Q(x), Yi=1} =

∑
i:Xi∈Q(x)Yi. B (x) is simply the number of samples

in cell Q (x) labelled 1. Now
^
ηn (x) is a fairly complicated random variable, but the conditional

distribution of B (x) given N (x) is relatively simple. Note that

B (x) |N (x) = k ∼ Binomial (k, η (x)) (6.19)

since η (x) is the probability of a sample in Q (x) having the label 1 and we are conditioning on
the event of observing k samples in Q (x).

Now consider the conditional expectation

E

[∣∣∣∣^ηn (x)− η (x)

∣∣∣∣ | N (x) = k

]
≤ {

E
[∣∣∣B(x)
N(x)
− η (x)

∣∣∣ | N (x) = k
]
, k > 0

1, k = 0 (since 0 ≤ η (x) ≤ 1)

(6.20)

Next note that

E
[∣∣∣B(x)
N(x) − η (x)

∣∣∣ | N (x) = k
]

= E
[∣∣∣B(x)

k − η (x)
∣∣∣ | N (x) = k

]
= E

 1
k |B (x)− kη (x)︸ ︷︷ ︸

E[B(x)]

| | N (x) = k



≤ 1
k

E [|B (x)− kη(x) |2 | N (x) = k
]

︸ ︷︷ ︸
conditional variance of B(x)


1
2

(6.21)

by the Jensen's inequality, E [|Z|] ≤
(
E
[
|Z|2

]) 1
2 .

Therefore,

E
[∣∣∣B(x)
N(x) − η (x)

∣∣∣ | N (x) = k
]
≤ 1

k (kη (x) (1− η (x)))
1
2

=
√

η(x)(1−η(x))
k

(6.22)
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and

E

[
|
^
ηn (x)− η (x) | | N (x) = k

]
≤ {

√
η(x)(1−η(x)

k , k > 0

1, k = 0

(6.23)

or in other words,

E

[
|
^
ηn (x)− η (x) | | N (x) = k

]
≤

√
η (x) (1− η (x)

N (x)
1{N(x)>0} + 1{N(x)=0} (6.24)

Now taking expectation with respect to N (x)

EN

[
E

[
|
^
ηn (x)− η (x) |N (x) = k

]]
≤ EN

[√
η(x)(1−η(x)

N(x)
1{N(x)>0}

]
+

P (N (x) = 0) ≤ E

[
1

2
√
N(x)

1{N(x)>0}

]
+ P (N (x) = 0) ≤ 1

2
P (N (x) ≤ k) +

1
2
√
k
P (N (x) > k)︸ ︷︷ ︸

≤1

+ P (N (x) = 0)

(6.25)

Now a key fact is that for any k > 0, P (N ≤ k) → 0 as n → ∞. This follows from the
assumption that the marginal density pX (x) ≥ c, for some constant c > 0, and n

M →∞ as n→∞.
This result is easily veri�ed by contradiction. If P (N ≤ k)→ q > 0 as n→∞, then PX (x) > 0 is
contradicted. Thus, for any ε > 0 there exists a k > 0 such that 1

2
√
k
< ε and P (N ≤ k) < ε for n

su�ciently large. Therefore, for n su�ciently large and every x ∈ [0, 1]d,

E

[
|
^
ηn (x)− η (x) |

]
< 3ε (6.26)

where the expectation is with respect to the distribution of the sample {Xi, Yi}ni=1. Thus,

E

[
|
^
ηn (X)− η (X) |

]
< 3ε (6.27)

where the expectation is now with respect to the distribution of the sample and the marginal
distribution of X.

Next consider the approximation error E [|ηn (X)− η (X) |], where the expectation is over X
alone. The function η may not itself be continuous, but there is another function ηε that is uniformly
continuous and such that E [|ηε (X)− η (X) |] < ε. Recall that uniformly continuous functions can
be well approximated by piecewise constant functions.

By the triangle inequality,

E [|η − η|] ≤ E [|η − ηε|]︸ ︷︷ ︸
≤ε

+ E [|ηε − ηε|] + E [|ηε − η|]︸ ︷︷ ︸
≤ε by design

(6.28)

where ηε (x) =
∑m
j=1

[∫
Qj
ηε
(
x'
)
pX
(
x'
)
dx'
]
1{x∈Qj}.

E [|η (X)− ηε (X) |] =
∑m
j=1

[∫
Qj
|η (x)− ηε (x) |pX (x) dx

]
1{x∈Qj}

≤ ε
(6.29)
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and since ηε is uniformly continuous,

E [|ηε (X)− ηε (X) |] =
∑M
j=1

∫
Qj
|ηε (x)− ηε (x) |1{x∈Qj}pX (x) dx

≤
∑M
j=1 δ P (x ∈ Qj) , where δ depends on M

= δ, since
∑M
j=1 P (X ∈ Qj) = 1

(6.30)

By taking M su�ciently large, δ can be made arbitrarily small. So for large M , δ ≤ ε.
Thus, we have shown

E [|η (X)− η (X) |] < 3ε (6.31)

for su�ciently large M . Since ε > 0 was arbitrary, we have shown that taking

^
fn (x) = {

1,
^
ηn (x) ≥ 1/2

0, otherwise

(6.32)

satis�es

P

(
^
fn (X) 6= Y

)
− P (f∗ (X) 6= Y ) ≤ 2E

[
|
^
ηn (X)− η (X) |

]
→ 0 (6.33)

if

M → ∞
n
M → ∞ as n→∞

(6.34)

Note: P

(
^
fn (X) 6= Y

)
= E

[
1
{
^
f (X) 6=Y }

]
is the expected risk of

^
f , with expectation over the

distributions of (X,Y ) and {Xi, Yi}ni=1.
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Chapter 7

Probably Approximately Correct (PAC)
Learning1

7.1 Introduction

7.1.1 Overview of the Learning Problem

The fundamental problem in learning from data is proper Model Selection. As we have seen in the previous
lectures, a model that is too complex could over�t the training data (causing an estimation error) and a
model that is too simple could be a bad approximation of the function that we are trying to estimate (causing
an approximation error). The estimation error arises because of the fact that we do not know the true joint
distribution of data in the input and output space, and therefore we minimize the empirical risk (which, for
each candidate model, is a random number depending on the data) and estimate the average risk again from
the limited number of training samples we have. The approximation error measures how well the functions
in the chosen model space can approximate the underlying relationship between the output space on the
input space, and in general improves as the �size� of our model space increases.

7.1.2 Lecture Outline

In the preceding lectures, we looked at some solutions to deal with the over�tting problem. The basic
approach followed was the Method of Sieves, in which the complexity of the model space was chosen as a
function of the number of training samples. In particular, both the denoising and classi�cation problems
we looked at consider estimators based on histogram partitions. The size of the partition was an increasing
function of the number of training samples. In this lecture, we will re�ne our learning methods further
introduce model selection procedures that automatically adapt to the distribution of the training data,
rather than basing the model class solely on the number of samples. This sort of adaptivity will play a major
role in the design of more e�ective classi�ers and denoising methods. The key to designing data-adaptive
model selection procedures is obtaining useful upper bounds on the estimation error. To this end, we will
introduce the idea of �Probably Approximately Correct� learning methods.

7.2 Recap: Method of Sieves

The method of Sieves underpinned our approaches in the denoising problem and in the histogram classi�-
cation problem. Recall that the basic idea is to de�ne a sequence of model spaces F1, F2, ...of increasing

1This content is available online at <http://cnx.org/content/m16282/1.2/>.
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complexity, and then given the training data {Xi, Yi}ni=1 select a model according to

^
fn= argmin

f∈Fn

^
Rn (f) . (7.1)

The choice of the model space Fn (and hence the model complexity and structure) is determined completely
by the sample size n, and does not depend on the (empirical) distribution of training data. This is a major
limitation of the sieve method. In a nutshell, the method of sieves tells us to average the data in a certain
way ( e.g., over a partition of X ) based on the sample size, independent on the sample values themselves.

In general, learning basically comprises of two things:

1. Averaging data to reduce variability
2. Deciding where (or how) to average

Sieves basically force us to deal with (2) a priori (before we analyze the training data). This will lead
to suboptimal classi�ers and estimators, in general. Indeed deciding where/how to average is the really
interesting and fundamental aspect of learning; once this is decided we have e�ectively solved the learing
problem. There are at least two possibilities for breaking the rigidity of the method of sieves, as we shall see
in the following section.

7.3 Data Adaptive Model Spaces

7.3.1 Structural Risk Minimization (SRM)

The basic idea is to select Fn based on the training data themselves. Let F1, F2, ...be a sequence of model
spaces of increasing sizes/complexities with

lim
k→∞

inf
f∈Fk

R (f) = R∗. (7.2)

Let

^
fn,k = argmin

f∈Fk

^
Rn (f) (7.3)

be a function from Fk that minimizes the empirical risk. This gives us a sequence of selected models
^
fn,1,

^
fn,2, · · · Also associate with each set Fk a value Cn,k > 0 that measures the complexity or �size� of the

set Fk. Typically, Cn,k is monotonically increasing with k (since the sets are of increasing complexity) and
decreasing with n (since we become more con�dent with more training data). More precisely, suppose that
the Cn,k chosen so that

P

(
sup
f∈Fk

|
^
Rn (f)−R (f) | > Cn,k

)
< δ (7.4)

for some small δ > 0. Then we may conclude that with very high probability (at least 1− δ) the empirical

risk
^
Rn is within Cn,k of R uniformly on the class Fk. This type of bound su�ces to bound the estimation

error (variance) of the model selection process of the form R (f) ≤
^
Rn (f) +Cn,k, and SRM selects the �nal

model by minimizing this bound over all functions in
⋃
k≥1Fk. The selected model is given by

^
f
n,
^
k

, where

^
k= argmin

k≥1
{
^
Rn

(
^
fn,k

)
+ Cn,k}. (7.5)

A typical example could be the use of VC dimension to characterize the complexity of the collection of
model spaces i.e.,Cn,k is derived from a bound on the estimation error.
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7.3.2 Complexity Regularization

Consider a very large class of candidate models F . To each f ∈ F assign a complexity value Cn (f). Assume
that the complexity value is chosen so that

P

(
sup
f∈F
|
^
Rn (f)−R (f) | > Cn (f)

)
< δ. (7.6)

This probability bound also implies an upper bound on the estimation error and complexity regularization
is based on the criterion

^
fn = argmin

f∈F
{
^
Rn (f) + Cn (f)}. (7.7)

Complexity Regularization and SRM are very similar and equivalent in certain instances. A distinguishing
feature of SRM and complexity reqularization techniques is that the complexity and structure of the model
is not �xed prior to examining the data; the data aid in the selection of the best complexity. In fact, the key
di�erence compared to the Method of Sieves is that these techniques can allow the data to play an integral
role in deciding where and how to average the data.

7.4 Probably Approximately Correct (PAC) learning

Probability bounds of the forms in (7.4) and (7.6) are the foundation for SRM and complexity regularization
techniques. The simplest of these bounds are known as PAC bounds in the machine learning community.

7.4.1 Approximation and Estimation Errors

In order to develop complexity regularization schemes we will need to revisit the estimation error / approx-

imation error trade-o�. Let
^
fn = argminf∈F

^
Rn (f) for some space of models F .

R

(
^
fn

)
−R∗ = R

(
^
fn

)
− inff∈FR (f)︸ ︷︷ ︸

estimation Error

+ inff∈FR (f)−R∗︸ ︷︷ ︸
approximation error

(7.8)

The approximation error depends on how close f∗ is close to F , and without making assumptions, this
is unknown. The estimation error is quanti�able, and depends on the complexity or size of F . The error
decomposition is illustrated in Figure 7.1. The estimation error quanti�es how much we can �trust� the
empirical risk minimization process to select a model close to the best in a given class.



46 CHAPTER 7. PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

Figure 7.1: Relationship between the errors

Probability bounds of the forms in (7.4) and (7.6) guarantee that the empirical risk is uniformly close to
the true risk, and using (7.4) and (7.6) it is possible to show that with high probability the selected model
^
fn satis�es

R

(
^
fn

)
− inf
f∈Fk

R (f) ≤ C (n, k) (7.9)

or

R

(
^
fn

)
− inf
f∈Fk

R (f) ≤ Cn (f) . (7.10)

7.4.2 The PAC Learning Model

The estimation error will be small if R

(
^
fn

)
is close to inff∈FR (f). PAC learning expresses this as follows.

We want
^
fn to be a �probably approximately correct� (PAC) model from F . Formally, we say that

^
fn is ε

accurate with con�dence 1− δ, or (ε, δ)−PAC for short, if

P

(
R

(
^
fn

)
− inf
f∈F

R (f) > ε

)
< δ. (7.11)

This says that the di�erence between R

(
^
fn

)
and inff∈FR (f) is greater than ε with probability less than

δ. Sometimes, especially in the machine learning community, PAC bounds are stated as, �with probability

of at least 1− δ, |R

(
^
fn

)
− inff∈FR (f) | ≤ ε�

To introduce PAC bounds, let us consider a simple case. Let Fconsist of a �nite number of models, and
let |F| denote that number. Furthermore, assume that minf∈FR (f) = 0.
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Example 7.1
F= set of all histogram classi�ers with M bins ⇒ |F| = 2M .

min
f∈F

R (f) = 0⇒ ∃ a classi�er in F that has a zero probability of error (7.12)

Theorem 7.1:

Assume |F| < ∞ and minf∈FR (f) = 0, where R (f) = P (f (X) 6= Y ). Let
^
fn =

argminf∈F
^
Rn (f), where

^
Rn (f) = 1

n

∑n
i=1 1{f(Xi)6=Yi}. Then for every n and ε > 0,

P

(
R

(
^
fn

)
> ε

)
≤ |F|e−nε ≡ δ. (7.13)

Proof:

Since minf∈FR (f) = 0, it follows that
^
Rn

(
^
fn

)
= 0. In fact, there may be several f ∈ F such

that
^
Rn (f) = 0. Let G = {f :

^
Rn (f) = 0}.

P

(
R

(
^
fn

)
> ε

)
≤ P

(⋃
f∈G{R (f) > ε}

)
= P

(⋃
f∈F{R (f) > ε,

^
Rn (f) = 0}

)
= P

(⋃
f∈F :R(f)>ε{

^
Rn (f) = 0}

)
≤

∑
f∈F :R(f)>ε P

(
^
Rn (f) = 0

)
≤ |F|. (1− ε)n

(7.14)

The last inequality follows from the fact that if R (f) = P (f (X) 6= Y ) > ε, then the probability
that n i.i.d. samples will satisfy f (X) = Y is less than or equal to (1− ε)n. Note that this is simply

the probability that
^
Rn (f) = 1

n

∑n
i=1 1{f(Xi)6=Yi} = 0. Finally apply the inequality 1− x ≤ e−x to

obtain the desired result.
Note that for n su�ciently large, δ = |F|e−nε is arbitrarily small. To achieve a (ε, δ)-PAC bound

for a desired ε > 0 and δ > 0 we require at least n = log|F|−logδ
ε training examples.

Corollary 7.1:
Assume that |F| <∞ and minf∈FR (f) = 0. Then for every n

E

[
R

(
^
fn

)]
≤ 1 + log|F|

n
. (7.15)

Proof:
Recall that for any non-negative random variable Z with �nite mean, E [Z] =

∫∞
0
P (Z > t) dt.
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This follows from an application of integration by parts.

E

[
R

(
^
fn

)]
=

∫∞
0
P

(
R

(
^
fn

)
> t

)
dt

=
∫ u

0
P

(
R

(
^
fn

)
> t

)
︸ ︷︷ ︸

≤1

dt+
∫∞
u
P

(
R

(
^
fn

)
> t

)
dt, for any u > 0

≤ u+ |F|
∫∞
u
e−ntdt

= u+ |F|
n e
−nu

(7.16)

Minimizing with respect to u produces the smallest upper bound with u = log|F|
n



Chapter 8

Cherno�'s Bound and Hoe�ding's
Inequality1

8.1 Introduction

8.1.1 Motivation

In the last lecture (Chapter 7) we consider a learning problem in which the optimal function belonged to a
�nite class of functions. Speci�cally, for some collection of functions Fwith �nite cardinality |F| ≤ ∞, we
have

min
f∈F

R (f) = 0⇒ f∗ ∈ F . (8.1)

This is almost always not the situation in the real-world learning problems. Let us suppose we have a �nite
collection of candidate functions F . Furthermore, we do not assume that the optimal function f∗, which
satis�es

R (f∗) = inf
f
R (f) (8.2)

where the inf is taken over all measurable functions, is a member of F . That is, we make few, if any,
assumptions about f∗. This situation is sometimes termed as Agnostic Learning. The root of the word
agnostic literally means not known. The term agnostic learning is used to emphasize the fact that often,
perhaps usually, we may have no prior knowledge about f∗. The question then arises about how we can
reasonably select an f ∈ F in this setting.

8.1.2 The Problem

The PAC style bounds discussed in the previous lecture (Chapter 7), o�er some help. Since we are selecting

a function based on the empirical risk, the question is how close is
^
Rn (f) to R (f)∀f ∈ F . In other words,

we wish that the empirical risk is a good indicator of the true risk for every function in F . If this is case,
the selection of f that minimizes the empirical risk

^
fn= argmin

f∈Fn

^
Rn (f) (8.3)

1This content is available online at <http://cnx.org/content/m16264/1.2/>.
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should also yield a small true risk, that is, R

(
^
fn

)
should be close to minf∈FR (f). Finally, we can thus

state our desired situation as

P

(
max
f∈Fn

|
^
Rn (f)−R (f) | > ε

)
< δ, (8.4)

for small values of ε and δ. In other words, with probability at least 1 − δ, |
^
Rn (f) − R (f) | > ε,

∀f ∈ F . In this lecture, we will start to develop bounds of this form. First we will focus on bounding

P

(
|
^
Rn (f)−R (f) | > ε

)
for one �xed f ∈ F .

8.2 Developing Initial Bounds

To begin, let us recall the de�nition of empirical risk for {Xi, Yi}ni=1 be a collection of training data. Then
the empirical risk is de�ned as

^
Rn (f) =

1
n

n∑
i=1

` (f (Xi) , Yi) . (8.5)

Note that since the training data {Xi, Yi}ni=1 are assumed to be i.i.d. pairs, the terms in the sum are i.i.d
random variables.

Let

Li = ` (f (Xi) , Yi) . (8.6)

The collection of losses {Li}ni=1 is i.i.d according to some unknown distribution (depending on the un-
known joint distribution of (X,Y) and the loss function). The expectation of Li is E [` (f (Xi) , Yi)] =
E [` (f (X) , Y )] = R (f), the true risk of f . For now, let's assume that f is �xed.

E

[
^
Rn (f)

]
=

1
n

n∑
i=1

E [` (f (Xi) , Yi)] =
1
n

n∑
i=1

E [Li] = R (f) (8.7)

We know from the strong law of large numbers that the average (or empirical mean)
^
Rn (f) converges

almost surely to the true mean R (f) . That is,
^
Rn (f) → R (f) almost surely as n → ∞. The question is

how fast.

8.3 Concentration of Measure Inequalities

Concentration inequalities are upper bounds on how fast empirical means converge to their ensemble coun-

terparts, in probability. The area of the shaded tail regions in Figure 1 is P

(
|
^
Rn (f)−R (f) | > ε

)
. We

are interested in �nding out how fast this probability tends to zero as n→∞.
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Figure 8.1: Distribution of
^
Rn (f)

At this stage, we recall Markov's Inequality. Let Z be a nonnegative random variable.

E [Z] =
∫∞

0
zp (z) dz

=
∫ t

0
zp (z) dz +

∫∞
u
zp (z) dz

≥ 0 + t
∫∞
t
zp (z) dz

= tP (Z ≥ t)
⇒ P (Z ≥ t) ≤ E[Z]

t

⇒ P
(
Z2 ≥ t2

)
≤ E[Z2]

t2

(8.8)

Take

Z = |
^

Rn (f) −R (f) | and t = ε (8.9)

P

(
|
^
Rn (f)−R (f) | ≥ ε

)
≤

E

24| ^
Rn(f)−R(f)|2

35
ε2

≤
var

0@^Rn(f)

1A
ε2

=
Pn
i=1 var(

Li
n )

ε2

= var(`(X),Y )
nε2

= σ2
L

nε2

. (8.10)

So, the probability goes to zero at a rate of at least n−1. However, it turns out that this is an extremely
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loose bound. According to the Central Limit Theorem

^
Rn (f) =

1
n

n∑
i=1

Li → N

(
R (f) ,

σ2
L

n

)
as n→∞ (8.11)

in distribution. This suggests that for large values of n,

P

(
|
^
Rn (f)−R (f) | ≥ ε

)
≈ O

(
e
− nε2

2σ2
L

)
. (8.12)

That is, the Gaussian tail probability is tending to zero exponentially fast.

8.4 Cherno�'s Bound

Note that for any nonnegative random variable Z and t > 0,

P (Z ≥ t) = P
(
esZ ≥ est

)
≤
E
[
esZ
]

est
, ∀s > 0 by Markov's inequality. (8.13)

Cherno�'s bound is based on �nding the value of s that minimizes the upper bound. If Z is a sum of
independent random variables. For example, say

Z =
n∑
i=1

(` (f (Xi) , Yi)−R (f)) = n

(
^
Rn (f)−R (f)

)
(8.14)

then the bound becomes

P (
∑n

i=1 (Li − E [Li]) ≥ t) ≤ e−stE
[
es

Pn
i=1(Li−E[Li])

]
≤

e−st
∏n

i=1E
[
es(Li−E[Li])

]
, from independence.

(8.15)

Thus, the problem of �nding a tight bound boils down to �nding a good bound for E
[
ss(Li−E[Li])

]
.

Cherno� ('52), �rst studied this situation for binary random variables. Then, Hoe�ding ('63) derived a more
general result for arbitrary bounded random variables.

8.5 Hoe�ding's Indequality

Theorem 8.1: Hoe�ding's Inequality
Let Z1, Z2, ..., Zn be independent bounded random variables such that Zi ∈ [ai, bi] with probability
1. Let Sn =

∑n
i=1 Zi. Then for any t > 0, we have

P (|Sn − E [Sn] | ≥ t) ≤ 2e
− 2t2Pn

i=1 (bi−ai)
2
. (8.16)

Proof:
The key to proving Hoe�ding's inequality is the following upper bound: if Z is a random variable
with E [Z] = 0 and a ≤ Z ≤ b, then

E
[
esZ
]
≤ e

s2(b−a)2
8 . (8.17)

This upper bound is derived as follows. By the convexity of the exponential function,

esz ≤ z − a
b− a

esb +
b− z
b− a

esa, for a ≤ z ≤ b. (8.18)
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Figure 8.2: Convexity of exponential function.

Thus,

E
[
esZ
]
≤ E

[
Z−a
b−a

]
esb + E

[
b−Z
b−a

]
esa

= b
b−ae

sa − a
b−ae

sb , since E [Z] = 0

=
(
1− θ + θes(b−a)

)
e−θs(b−a) , where θ = −a

b−a

. (8.19)

Now let

u = s (b− a) and de�ne φ (u) ≡ −θu+ log (1− θ + θeu) . (8.20)

Then we have

E
[
esZ
]
≤
(

1− θ + θes(b−a)
)
e−θs(b−a) = eφ(u). (8.21)

To minimize the upper bound let's express φ (u) in a Taylor's series with remainder :

φ (u) = φ (0) + uφ' (0) +
u2

2
φ'' (v) for some v ∈ [0, u] (8.22)

φ' (u) = −θ + θeu

1−θ+θeu ⇒ φ' (u) = 0

φ'' (u) = θeu

1−θ+θeu −
θeu

(1−θ+θeu)2

= θeu

1−θ+θeu

(
1− θeu

1−θ+θeu

)
= ρ (1− ρ)

. (8.23)

Now, φ'' (u) is maximized by

ρ =
θeu

1− θ + θeu
=

1
2
⇒ φ'' (u) ≤ 1

4
. (8.24)
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So,

φ (u) ≤ u2

8
=
s2(b− a)2

8
(8.25)

⇒ E
[
esZ
]
≤ e

s2(b−a)2
8 . (8.26)

Now, we can apply this upper bound to derive Hoe�ding's inequality.

P (Sn − E [Sn] ≥ t) ≤ e−st
∏n
i=1E

[
es(Li−E[Li])

]
≤ e−st

∏n
i=1 e

s2(bi−ai)
2

8

= e−stes
2Pn

i=1
(bi−ai)

2

8

= e
−2t2Pn

i=1 (bi−ai)
2

by choosing s = 4tPn
i=1 (bi−ai)2

(8.27)

Similarly, P (E [Sn]− Sn ≥ t) ≤ e
−2t2Pn

i=1 (bi−ai)
2
. This completes the proof of the Hoe�ding's theorem.

Example
Application
Let Zi = 1f(Xi)6=Yi − R (f) , as in the classi�cation problem. Then for a �xed f, it follows from
Hoe�ding's inequality (i.e., Cherno�'s bound in this special case) that

P

(
|
^
Rn (f)−R (f) | ≥ ε

)
= P

(
1
n |Sn − E [Sn] | ≥ ε

)
= P (|Sn − E [Sn] | ≥ nε)

≤ 2e−
2(nε)2

n

= 2e−2nε2

. (8.28)

Now, we want a bound like this to hold uniformly for all f ∈ F . Assume that F is a �nite
collection of models and let |F| denote its cardinality. We would like to bound the probability that

maxf∈F |
^
Rn (f)−R (f) | ≥ ε. Note that the event

{max
f∈F
|
^
Rn (f)−R (f) | ≥ ε} ≡ {

⋃
f∈F

|
^
Rn (f)−R (f) | ≥ ε}. (8.29)

Therefore

P

(
max
f∈F
|
^
Rn (f)−R (f) | ≥ ε

)
= P

(⋃
f∈F |

^
Rn (f)−R (f) | ≥ ε

)
≤

∑
f∈F P

(
|
^
Rn (f)−R (f) | ≥ ε

)
, the �union of events� bound ≤

2|F |e−2nε2 , by Hoe�ding's inequality.

(8.30)

Thus, we have shown that with probability at least 1− 2|F |e−2nε2 , ∀f ∈ F

|
^
Rn (f)−R (f) | < ε. (8.31)
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And accordingly, we can be reasonably con�dent in selecting f from F based on the empirical risk

function
^
Rn.
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Chapter 9

Classi�cation Error Bounds1

9.1 Recap: Classi�er design

Given a set of training data {Xi, Yi}ni=1 and a �nite collection of candidate functions F , select
^
fn ∈ F that

(hopefully) is a good predictor for future cases. That is

^
fn= argmin

f∈F

^
Rn (f) (9.1)

where
^
Rn (f) is the empirical risk. For any particular f ∈ F , the corresponding empirical risk is de�ned as

^
Rn (f) =

1
n

n∑
i=1

1{f(Xi)6=Yi}. (9.2)

9.2 Hoe�ding's inequality

Hoe�ding's inequality (Cherno�'s bound in this case) allows us to gauge how close
^
Rn (f) is to the true risk

of f , R (f), in probability

P

(
|
^
Rn (f)−R (f) | ≥ ε

)
≤ 2e−2nε2 . (9.3)

Since our selection process involves deciding among all f ∈ F , we would like to gauge how close the
empirical risks are to their expected values. We can do this by studying the probability that one or more of
the empirical risks deviates signi�cantly from its expected value. This is captured by the probability

P

(
max
f∈F
|
^
Rn (f)−R (f) | ≥ ε

)
. (9.4)

Note that the event

max
f∈F
|
^
Rn (f)−R (f) | ≥ ε (9.5)

1This content is available online at <http://cnx.org/content/m16265/1.2/>.
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is equivalent to union of the events

⋃
f∈F

{|
^
Rn (f)−R (f) | ≥ ε}. (9.6)

Therefore, we can use Bonferonni's bound (aka the �union of events� or �union� bound) to obtain

P

(
max
f∈F
|
^
Rn (f)−R (f) | ≥ ε

)
= P

(⋃
f∈F |

^
Rn (f)−R (f) | ≥ ε

)
≤

∑
f∈F P

(
|
^
Rn (f)−R (f) | ≥ ε

)
≤

∑
f∈F 2e−2nε2

= 2|F|e−2nε2

(9.7)

where |F| is the number of classi�ers in F . In the proof of Hoe�ding's inequality we also obtained a one-sided
inequality that implied

P

(
R (f)−

^
Rn (f) ≥ ε

)
≤ e−2nε2 (9.8)

and hence

P

(
max
f∈F

R (f)−
^
Rn (f) ≥ ε

)
≤ |F|e−2nε2 . (9.9)

We can restate the inequality above as follows, For all f ∈ F and for all δ > 0 with probability at least 1− δ

R (f) ≤
^
Rn (f) +

√
log|F|+ log (1/δ)

2n
. (9.10)

This follows by setting δ = |F|e−2nε2 and solving for ε. Thus with a high probability (1− δ), the true risk for
all f ∈ F is bounded by the empirical risk of f plus a constant that depends on δ > 0, the number of training
samples n, and the size F . Most importantly the bound does not depend on the unknown distribution PXY .
Therefore, we can call this a distribution-free bound.

9.3 Error Bounds

We can use the distribution-free bound above to obtain a bound on the expected performance of the
minimum empirical risk classi�er

^
fn = argmin

f∈F

^
Rn (f) . (9.11)

We are interested in bounding

E

[
R

(
^
fn

)]
−min

f∈F
R (f) (9.12)

the expected risk of
^
fn minus the minimum risk for all f ∈ F . Note that this di�erence is always non-negative

since
^
fn is at best as good as

f∗ = argmin
f∈F

R (f) . (9.13)
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Recall that ∀f ∈ F and ∀δ > 0, with probability at least 1− δ

R (f) ≤
^
Rn (f) + C (F , n, δ) (9.14)

where

C (F , n, δ) =

√
log|F|+ log (1/δ)

2n
. (9.15)

In particular, since this holds for all f ∈ F including
^
fn,

R

(
^
fn

)
≤

^
Rn

(
^
fn

)
+ C (F , n, δ) (9.16)

and for any other f ∈ F

R

(
^
fn

)
≤

^
Rn (f) + C (F , n, δ) (9.17)

since
^
Rn

(
^
fn

)
≤

^
Rn (f)∀f ∈ F . In particular,

R

(
^
fn

)
≤

^
Rn (f∗) + C (F , n, δ) (9.18)

where f∗ = argminf∈FR (f).
Let Ω denote the set of events on which the above inequality holds. Then by de�nition

P (Ω) ≥ 1− δ. (9.19)

We can now bound E

[
R

(
^
fn

)]
−R (f∗) as follows

E

[
R

(
^
fn

)]
−R (f∗) = E

[
R

(
^
fn

)
−
^
Rn (f∗) +

^
Rn (f∗)−R (f∗)

]

= E

[
R

(
^
fn

)
−
^
Rn (f∗)

] (9.20)

since E

[
^
Rn (f∗)

]
= R (f∗). The quantity above is bounded as follows.

E

[
R

(
^
fn

)
−

^
Rn (f ∗)

]
= E

[
R

(
^
fn

)
−

^
Rn (f ∗) |Ω

]
P (Ω) +

E

[
R

(
^
fn

)
−

^
Rn (f ∗) |Ω

]
P
(
Ω
)
≤ E

[
R

(
^
fn

)
−

^
Rn (f ∗) |Ω

]
+ δ

(9.21)
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since P (Ω) ≤ 1, 1− P (Ω) ≤ δ and R

(
^
fn

)
−
^
Rn (f∗) ≤ 1

E

[
R

(
^
fn

)
−
^
Rn (f∗) |Ω

]
≤ E

[
R

(
^
fn

)
−
^
Rn

(
^
fn

)
|Ω

]
≤ C (F , n, δ)

. (9.22)

Thus

E

[
R

(
^
fn

)
−
^
Rn (f∗)

]
≤ C (F , n, δ) + δ. (9.23)

So we have

E

[
R

(
^
fn

)]
−min

f∈F
R (f) ≤

√
log|F|+ log (1/δ)

2n
+ δ, ∀δ > 0. (9.24)

In particular, for δ =
√

1/n, we have

E

[
R

(
^
fn

)]
−min

f∈F
R (f) ≤

√
log|F|+logn

2n + 1√
n

≤
√

log|F|+logn+2
n , since

√
x+
√
y ≤
√

2
√
x+ y, ∀ x, y > 0

. (9.25)

9.4 Application: Histogram Classi�er

Let F be the collection of all classi�ers with M equal volume cells. Then |F| = 2M , and the histogram
classi�cation rule

^
fn = argmin

f∈F

(
1
n

n∑
i=1

1{f(Xi) 6=Yi}

)
(9.26)

satis�es

E

[
R

(
^
fn

)]
−min

f∈F
R (f) ≤

√
Mlog2 + 2 + logn

n
(9.27)

which suggests the choice M = log2n (balancing Mlog2 with logn), resulting in

E

[
R

(
^
fn

)]
−min

f∈F
R (f) = O

(√
logn

n

)
. (9.28)



Chapter 10

Error Bounds in Countably In�nite
Spaces1

10.1 Introduction

In the last lecture (Chapter 9), we studied bounds of the following form: for any δ > 0, with probability at
least 1− δ,

R (f) ≤
^
Rn (f) +

√
log|F|+ log

(
1
δ

)
2n

, ∀f ∈ F (10.1)

which led to upper bounds on the estimation error of the form

E

[
R

(
^
fn

)]
−min

f∈F
R (f) ≤

√
log|F|+ log (n) + 2

n
. (10.2)

The key assumptions made in deriving the error bounds were:

(i): bounded loss function
(ii): �nite collection of candidate functions

The bounds are valid for every PXY and are called distribution-free .

10.2 Deriving Bounds for Countably In�nite Spaces

In this lecture we will generalize the previous results in a powerful way by developing bounds applicable to
possibly in�nite collections of candidates. To start let us suppose that F is a countable, possibly in�nite,
collection of candidate functions. Assign a positive number c(f) to each f ∈ F , such that∑

f∈F

e−c(f) <∞. (10.3)

The numbers c(f) can be interpreted as

(i): measures of complexity
(ii): -log of prior probabilities
(iii): codelengths

1This content is available online at <http://cnx.org/content/m16271/1.2/>.
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In particular, if P(f) is the prior probability of f then

e−(−logp(f)) = p (f) (10.4)

so c (f) ≡ −logp (f) produces ∑
f∈F

e−c(f) =
∑
f∈F

p (f) = 1. (10.5)

Now recall Hoe�ding's inequality. For each f and every ε > 0

P

(
R (f)−

^
Rn (f) ≥ ε

)
≤ e−2nε2 (10.6)

or for every δ > 0

P

R (f)−
^
Rn (f) ≥

√
log
(

1
δ

)
2n

 ≤ δ. (10.7)

Suppose δ > 0 is speci�ed. Using the values c(f) for f ∈ F , de�ne

δ (f) = e−c(f)δ. (10.8)

Then we have

P

R (f)−
^
Rn (f) ≥

√√√√ log
(

1
δ(f)

)
2n

 ≤ δ (f) . (10.9)

Furthermore we can apply the union bound as follows

P

(
sup
f∈F
{R (f)−

^
Rn (f)−

√
log(1/δ(f))

2n } ≥ 0

)
≤ P

(⋃
f∈F R (f)−

^
Rn (f) ≥

√
log( 1

δ(f) )
2n

)
≤

∑
f∈F P

(
R (f)−

^
Rn (f) ≥

√
log( 1

δ(f) )
2n

)
≤

∑
f∈F δ (f) =

∑
f∈F e

−c(f)δ = δ

. (10.10)

So for any δ > 0 with probability at least 1− δ, we have that ∀f ∈ F

R (f) ≤
^
Rn (f) +

√
log( 1

δ(f) )
2n

=
^
Rn (f) +

√
c(f)+log( 1

δ )
2n

. (10.11)

Special Case
Suppose F is �nite and c (f) = log|F| ∀f ∈ F . Then∑

f∈F

e−c(f) =
∑
f∈F

e−log|F| =
∑
f∈F

1
|F|

= 1 (10.12)

and

δ (f) =
δ

|F|
(10.13)
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which implies that for any δ > 0 with probability at least 1− δ, we have

R (f) ≤
^
Rn (f) +

√√√√ log|F|+ log
(

1
δ(f)

)
2n

, ∀f ∈ F . (10.14)

Note that this is precisely the bound we derived in the last lecture (Chapter 9).
Choosing c(f)
The generalized bounds allow us to handle countably in�nite collections of candidate functions, but we

require that ∑
f∈F

e−c(f) <∞. (10.15)

Of course, if c (f) = −logp (f) where p (f) is a proper prior probability distribution then we have∑
f∈F

e−c(f) = 1. (10.16)

However, it may be di�cult to design a probability distribution over an in�nite class of candidates. The
coding perspective provides a very practical means to this end.

Assume that we have assigned a uniquely decodable binary code to each f ∈ F , and let c(f) denote the
codelength for f . That is, the code for f is c(f) bits long. A very useful class of uniquely decodable codes
are called pre�x codes .

De�nition 10.1: Pre�x Code
A code is called a pre�x code if no codeword is a pre�x of any other codeword.
Example: From Cover & Thomas '91
Consider an alphabet of symbols, say A,B,C, and D and the codebooks below

Symbol Singular Nonsingular But Not Uniquely Decodable But Prefix Code

Codebook Uniquely Decodable Not a Prefix Code

A 0 0 10 0

B 0 010 00 10

C 0 01 11 110

D 0 10 110 1110

Figure 10.1

In the singular codebook we assign the same codeword to each symbol - a system that is obviously
�awed! In the second case, the codes are not singular but the codeword 010 could represent B or
CA or AD. Hence it is not a uniquely decodable codebook.

The third and fourth cases are both examples of uniquely decodable codebooks, but the fourth
has the added feature that no codeword is a pre�x of another. Pre�x codes can be decoded from
left to right since each codeword is �self-punctuating" - in this case with a zero to indicate the end
of each word.

To design a uniquely decodable codebook in general is as challenging as the problem of selecting
c(f) to satisfy ∑

f∈F

e−c(f) <∞. (10.17)
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However, pre�x codes can often be easily designed or speci�ed and they are inherently decodable.
Moreover, pre�x codes satisfy an important inequality called the Kraft Inequality .

10.3 The Kraft Inequality

For any binary pre�x code, the codeword lengths c1, c2, ... satisfy

∞∑
i=1

2−ci ≤ 1. (10.18)

Conversely, given any c1, c2, ... satisfying the inequality above we can construct a pre�x code with these
codeword lengths. We will prove this result a bit later, but now let's see how this is useful in our learning
problem.

Assume that we have assigned a binary pre�x codeword to each f ∈ F , and let c(f) denote the bit-length
of the codeword for f . Set δ (f) = 2−c(f)δ. Then

P

(⋃
f∈F R (f)−

^
Rn (f) ≥

√
log( 1

δ(f) )
2n

)
≤

∑
f∈F P

(
R (f)−

^
Rn (f) ≥

√
log( 1

δ(f) )
2n

)
≤

∑
f∈F δ (f) =

∑
f∈F 2−c(f)δ = δ

. (10.19)

This implies that for any δ > 0 with probability at least 1− δ we have ∀f ∈ F

R (f) ≤
^
Rn (f) +

√
log( 1

δ(f) )
2n

=
^
Rn (f) +

√
c(f)log2+log( 1

δ )
2n

. (10.20)

Application
Let F1, F1, ... be a sequence of �nite sets of candidate functions with |F1| < |F1| < ... We can design
pre�x codes as follows. Use the codes 0, 10, 110, 1110, ... to encode the subscript i in |Fi|. For each class
|Fi|, construct a set of binary codewords of length dlog2|F|e to uniquely encode each function in Fi. Then,
encode any given function f by �rst using the code for i corresponding to the smallest Fi that f belongs to,
followed by the length dlog2|F|e codeword for f ∈ Fi. This is a pre�x code.

Example 10.1: Histogram Classi�ers
X=[0,1]d, Y={0,1}. Let Fk, k=1, 2, ... denote the collection of histogram classi�cation rules with
k equal volume bins. We can use the following codebook for the index k.

k Prefix Code

1 0

2 10

3 110

4 1110

. .

. .

. .

Figure 10.2
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And follow this codeword with k = log2|Fk| bits to indicate which of the 2k possible histogram
rules is under consideration. Thus for any f ∈ Fk for some k ≥ 1 there is a pre�x code of length

c (f) = k + k = 2k bits. (10.21)

It follows that for any δ > 0 with probability at least 1− δ we have ∀f ∈
⋃
k≥1Fk

R (f) ≤
^
Rn (f) +

√
2kf log2 + log

(
1
δ

)
2n

(10.22)

where kf is the number of bins in histogram corresponding to f . Contrast with the bound we had
for the class of m bin histograms alone: with probability ≥ 1− δ, ∀f ∈ Fm

R (f) ≤
^
Rn (f) +

√√√√mlog2 + log
(

1
δ(f)

)
2n

. (10.23)

Notice the bound for all histograms rules is almost as good as the bound for only the m-bin rules.
That is, when kf = m the bounds are within a factor of

√
2. On the other hand, the new bound is

a big improvement, since it also gives us a guide for selecting the number of bins.

Proof 10.1: Proof of the Kraft Inequality
We will prove that for any binary pre�x code, the codeword lengths c1, c2, ... satisfy

∑
k≥12−ck ≤ 1.

The converse is easy to prove also, but it not central to our purposes here (for a proof, see Cover
& Thomas '91). Consider a binary tree like the one shown below.

0 1

0 1 0 1

0 1

000 001

Root

111001

Figure 10.3

The sequence of bit values leading from the root to a leaf of the tree represents a codeword.
The pre�x condition implies that no codeword is a descendant of any other codeword in the tree.
Let cmax be the length of the longest codeword (also the number of branches to the deepest leaf)
in the tree.
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Consider a leaf i in the tree at level ci. This leaf would have 2cmax−ci descendants at level
cmax. Furthermore, for each leaf the set of possible descendants at level cmax is disjoint (since no
codeword can be a pre�x of another). Therefore, since the total number of possible leafs at level
cmax is 2cmax , we have ∑

i∈leafs

2cmax−ci ≤ 2cmax ⇒
∑
i∈leafs

2−ci ≤ 1 (10.24)

which proves the case when the number of codewords is �nite.
Suppose now that we have a countably in�nite number of codewords. Let b1 b2 ... bci be the

ith codeword and let

ri =
ci∑
j=i

bj2−j (10.25)

be the real number corresponding to the binary expansion of the codeword. We can associate
the interval [ri, ri + 2−ci) with the ith codeword. This is the set of all real numbers whose binary
expansion begins with b1 b2 ... bci . Since this is a subinterval of [0, 1], and all such subintervals
corresponding to pre�x codewords are disjoint, the sum of their lengths must be less than or equal
to 1. This proves the case where the number of codewords is in�nite.



Chapter 11

Complexity Regularization1

11.1 Review: PAC Bounds

Consider a �nite collection of models F , and recall the basic PAC bound: for any δ > 0, with probability at
least 1− δ

R (f) ≤
^
Rn (f) +

√
log|F|+log(1/δ)

2n , ∀f ∈ F (11.1)

where

^
Rn (f) = 1

n

∑n
i=1 ` (f (Xi) , Yi)

R (f) = E [` (f (X) , Y )]
(11.2)

and the loss ` is assumed to be bounded between 0 and 1. Note that we can write the inequality above as:

R (f) ≤
^
Rn (f) +

√
log( |F|δ )

2n
(11.3)

Letting δf = δ
|F| , we have:

R (f) ≤
^
Rn (f) +

√
log(1/δf )

2n
(11.4)

This is precisely the form of Hoe�ding's inequality, with δf in place of the usual δ. In e�ect, in order to
have Hoe�ding's inequality hold with probability 1 − δ for all f ∈ F , we must distribute the �δ-budget� or
�con�dence-budget� over all f ∈ F (in this case, evenly distributed):∑

f∈F δf =
∑
f∈F

δ
|F|

= δ
(11.5)

However, to apply the union bound, we do not need to distribute δ evenly among the candidate models.
We only require: ∑

f∈F δf = δ (11.6)

So, if p (f) are positive numbers satisfying
∑
f∈Fp (f) = 1, then we can take δf = p (f) δ. This provides

two advantages:

1This content is available online at <http://cnx.org/content/m16266/1.2/>.
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1. By choosing p (f) larger for certain f , we can preferentially treat those candidates
2. We do not need F to be �nite and we only require

∑
f∈Fp (f) = 1

Pre�x codes are one way to achieve this. If we assign a binary pre�x code of length c (f) to each f ∈ F ,
then the values p (f) = 2−c(f) satisfy

∑
f∈Fp (f) ≤ 1 according to the Kraft inequality.

The main point of this lecture is to examine how PAC bounds of the form w.p. ≥ 1− δ

R (f) ≤
^
Rn (f) +

√
c(f)log2+log(1/δ)

2n , ∀f ∈ F (11.7)

can be used to select a model that comes close to achieving the best possible performace

inf
f∈F

R (f) (11.8)

Let
^
fn be the model selected from F using the training data {Xi, Yi}ni=1. We will specify this model in a

moment, but keep in mind that it is not necessarily the model with minimum empirical risk as before. We
would like to have

E

[
R

(
^
fn

)]
− inf
f∈F

R (f) (11.9)

as small as possible. First, for any δ > 0, de�ne

^
f

δ

n = argmin
f∈F
{
^
Rn (f) + C (f, n, δ)} (11.10)

where

C (f, n, δ) ≡
√

c(f)log2+log(1/δ)
2n

(11.11)

Then w.p. ≥ 1− δ

R (f) ≤
^
Rn (f) + C (f, n, δ) , ∀f ∈ F (11.12)

and in particular,

R

^
f

δ

n

 ≤ ^
Rn

^
f

δ

n

+ C

^
f

δ

n, n, δ

 , (11.13)

so, by the de�nition of
^
f

δ

n, ∀f ∈ F

R

^
f

δ

n

 ≤ ^
Rn (f) + C (f, n, δ) . (11.14)

We will make use of the inequality above in a moment. First note that ∀f ∈ F

E

R
^
f

δ

n

−R (f) = E

R
^
f

δ

n

− ^
Rn (f)

+ E

[
^
Rn (f)−R (f)

]
(11.15)

The second term is exactly 0, since E

[
^
Rn (f)

]
= R (f).
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Now consider the �rst term E

R
^
f

δ

n

− ^
Rn (f)

 . Let Ω be the set of events on which

R

^
f

δ

n

 ≤ ^
Rn (f)− C (f, n, δ) , ∀ f ∈ F (11.16)

From the bound above, we know that P (Ω) ≥ 1− δ. Thus,

E

[
R

(
^
f

δ

n

)
−

^
Rn (f)

]
= E

[
R

(
^
f

δ

n

)
−

^
Rn (f) |Ω

]
P (Ω) +

E

[
R

(
^
f

δ

n

)
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Rn (f) |Ωc

]
(1− P (Ω)) ≤ C (f, n, δ) +

δ

(
since 0 ≤ R,

^
R≤ 1, P (Ω) ≤ 1 and 1− P (Ω) ≤ δ

)
=
√

c(f)log2+log(1/δ)
2n

+ δ =√
c(f)log2+ 1

2
logn

2n
+ 1√

n

(
by setting δ = 1√

n

)

(11.17)

We can summarize our analysis with the following theorem.

Theorem 11.1: Complexity Regularized Model Selection
Let F be a countable collection of models, and assign a positive number c (f) to each f ∈ F such

that
∑
f∈F2−c(f) ≤ 1. De�ne the minimum complexity regularized risk model

^
fn = argmin

f∈F
{
^
Rn (f) +

√
c(f)log2+ 1

2 logn

2n } (11.18)

Then,

E

[
R

(
^
fn

)]
≤ inf

f∈F
{R (f) +

√
c(f)log2+ 1

2 logn

2n + 1√
n
} (11.19)

This shows that

^
Rn (f) +

√
c(f)log2+ 1

2 logn

2n
(11.20)

is a reasonable surrogate for

R (f) +
√

c(f)log2+ 1
2 logn

2n
(11.21)

Example: Histogram Classi�ers
Let X = [0, 1]d be the input space and Y = {0, 1} be the output space. Let Fk, k = 1, 2, ... denotes
the collection of histogram classi�cation rules with k equal volume bins. One choice of pre�x code
for this example is: k = 1 ⇒ code = 0, k = 3 ⇒ code = 10, k = 3 ⇒ code = 110 and so on ....
Then, if �rst code is corresponding to k ⇒ f ∈ Fk, followed by k = log2|Fk| bits to indicate which
of the 2k histogram rules in Fk is under consideration, we have

f ∈ Fk ⇒ c (f) = 2k bits (11.22)
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Let
^
fn be the model that solves the minimization i.e.,

min
k≥1
{min
f∈Fk

^
Rn (f) +

√
2klog2+ 1

2 logn

2n } (11.23)

That is, for each k, let

^
f

(k)

n = argmin
f∈Fk

^
Rn (f) (11.24)

Then select the best k according to

^
k = argmin

k≥1
{
^
Rn

^
f

(k)

n

+
√

2klog2+ 1
2 logn

2n } (11.25)

and set

^
fn =

^
f

0@^k
1A

n

(11.26)

Then,
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[
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(
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fn

)]
≤ inf

k≥1
{min
f∈Fk

R (f) +
√

2klog2+ 1
2 logn

2n + 1√
n
} (11.27)

It is a simple exercise to show that if d = 2 and the Bayes decision boundary is a 1-d curve, then
by setting k =

√
n and selecting the best f from F√n we have

E

[
R

(
^
fn

)]
= O

(
n−1/4

)
(11.28)

note: The complexity regularized classi�er
^
fn adaptively achieves this rate, without user inter-

vention.



Chapter 12

Decision Trees1

12.1 Minimum Complexity Penalized Function

Recall the basic results of the last lectures: let X and Y denote the input and output spaces respectively.
Let X ∈ X and Y ∈ X be random variables with unknown joint probability distribution PXY . We would like
to use X to �predict� Y . Consider a loss function 0 ≤ ` (y1, y2) ≤ 1, ∀y1, y2 ∈ Y. This function is used to
measure the accuracy of our prediction. Let F be a collection of candidate functions (models), f : X → Y.
The expected risk we incur is given by R (f) ≡ EXY [` (f (X) , Y )]. We have access only to a number of i.i.d.

samples, {Xi, Yi}ni=1. These allow us to compute the empirical risk
^
Rn (f) ≡ 1

n

∑n
i=1 ` (f (Xi) , Yi).

Assume in the following that F is countable. Assign a positive number c (f) to each f ∈ F such that∑
f∈F2−c(f) ≤ 1. If we use a pre�x code to describe each element of F and de�ne c (f) to be the codeword

length (in bits) for each f ∈ F , the last inequality is automatically satis�ed.
We de�ne the minimum complexity penalized estimator as

^
fn ≡ argmin

f∈F
{
^
Rn (f) +

√
c (f) log2 + 1

2 logn

2n
}. (12.1)

As we showed previously we have the bound

E

[
R

(
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fn

)]
≤ min

f∈F
{R (f) +

√
c (f) log2 + 1

2 logn

2n
+

1√
n
}. (12.2)

The performance (risk) of
^
fn is on average better than

R (f∗n) +

√
c (f∗n) log2 + 1

2 logn

2n
+

1√
n
, (12.3)

where

f∗n = argmin
f∈F
{R (f) +

√
c (f) log2 + 1

2 logn

2n
}. (12.4)

If it happens that the optimal function, that is

f∗ = arg min
f measurable

R (f) , (12.5)

1This content is available online at <http://cnx.org/content/m16287/1.2/>.
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is close to an f ∈ F with a small c (f), then
^
fn will perform almost as well as the optimal function.

Example 12.1
Suppose f∗ ∈ F , then

E

[
R

(
^
fn

)]
≤ R (f∗) +

√
c (f∗) log2 + 1

2 logn

2n
+

1√
n
. (12.6)

Furthermore if c (f∗) = O (logn) then

E

[
R

(
^
fn

)]
≤ R (f∗) +O

(√
logn

n

)
, (12.7)

that is, only within a small O

(√
logn
n

)
o�set of the optimal risk.

In general, we can also bound the excess risk E

[
R

(
^
fn

)]
−R∗, where R∗ is the Bayes risk,

R∗ = inf
f measurable

R (f) . (12.8)

By subtracting R∗ (a constant) from both sides of the inequality

E
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(
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fn

)]
≤ min

f∈F
{R (f) +

√
c (f) log2 + 1

2 logn

2n
+

1√
n
} (12.9)

we obtain

E

[
R

(
^
fn

)]
−R∗ ≤ min

f∈F
{R (f)−R∗ +

√
c (f) log2 + 1

2 logn

2n
+

1√
n
}. (12.10)

Note that two terms in this upper bound: R (f) − R∗ is a bound on the approximation error
of a model f , and remainder is a bound on the estimation error associated with f . Thus, we
see that complexity regularization automatically optimizes a balance between approximation and
estimation errors. In other words, complexity regularization is adaptive to the unknown tradeo�
between approximation and estimation.

12.2 Classi�cation

Consider the particularization of the above to a classi�cation scenario. Let X = [0, 1]d, Y = {0, 1} and

`

(
^
y, y

)
≡ 1

{ ŷ 6=y}
. Then R (f) = EXY

[
1{f(X)6=Y }

]
= P (f (X) 6= Y ). The Bayes risk is given by

R∗ = inf
f measurable

R (f) . (12.11)

As it was observed before, the Bayes classi�er (i.e., a classi�er that achieves the Bayes risk) is given by

f∗ (x) = {
1, P (Y = 1|X = x) ≥ 1

2

0, P (Y = 1|X = x) < 1
2

. (12.12)

This classi�er can be expressed in a di�erent way. Consider the set G∗ = {x : P (Y = 1|X = x) ≥ 1/2}.
The Bayes classi�er can written as f∗ (x) = 1{x∈G∗}. Therefore the classi�er is characterized entirely by the
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set G∗, if X ∈ G∗ then the �best� guess is that Y is one, and vice-versa. The boundary of this set corresponds
to the points where the decision is harder. The boundary of G∗ is called the Bayes Decision Boundary.
In Figure 12.1(a) this concept is illustrated. If η (x) = P (Y = 1|X = x) is a continuous function then the
Bayes decision boundary is simply given by {x : P (Y = 1|X = x) = 1/2}. Clearly the structure of the
decision boundary provides important information on the di�culty of the problem.

(a)

(b)

Figure 12.1: (a) The Bayes classi�er and the Bayes decision boundary ; (b) Example of the i.i.d.
training pairs.
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12.2.1 Empirical Classi�er Design

Given n i.i.d. training pairs, {Xi, Yi}ni=1, we want to construct a classi�er
^
fn that performs well on average,

i.e., we want E

[
R

(
^
fn

)]
as close to R∗ as possible. In Figure 12.1(b) an example of the i.i.d. training

pairs is depicted.
The construction of a classi�er boils down to the estimation of the Bayes decision boundary. The

histogram rule, discussed in a previous lecture, approaches the problem by subdividing the feature space
into small boxes and taking a majority vote of the training data in each box. A typical result is depicted in
Figure 12.2(a).

The main problem with the histogram rule is that it is solving a more complicated problem than it is
actually necessary. We do not need to determine the correct label for each individual box directly (the
histogram rule is essentially estimating η (x)). In principle we only need to locate the decision boundary and
assign the correct label on either side (notice that the accuracy of a majority vote over a region increases
with the size of the region). The next example illustrates this.

Example 12.2: Three Di�erent Classi�ers
The pictures below correspond to the approximation of the Bayes classi�er by three di�erent
classi�ers:
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(a)

(b)

(c)

Figure 12.2: (a) Histogram classi�er ; (b) Linear classi�er; (c)Tree classi�er.

The linear classi�er and the tree classi�er (to be de�ned formally later) both attack the problem
of �nding the boundary more directly than the histogram classi�er, and therefore they tend to
produce much better results in theory and practice. In the following we will demonstrate this for
classi�cation trees.
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12.3 Binary Classi�cation Trees

Binary classi�cation trees are constructed by a two-step process:

1. Tree growing
2. Tree pruning

The basic idea is to �rst grow a very large, complicated tree classi�er, that explains the the training data
very accurately, but has poor generalization characteristics, and then prune this tree, to avoid over�tting.

12.3.1 Growing Trees

The growing process is based on recursively subudividing the feature space. Usually the subdivisions are
splits of existing regions into two smaller regions (i.e., binary splits) and usually the splits are perpendicular
to one of the feature axes. An example of such construction is depicted in Figure 12.3.

Figure 12.3: Growing a recursive binary tree (X = [0, 1]2).

Often the splitting process is based on the training data, and is designed to separate data with di�erent
labels as much as possible. It such constructions, the �splits,� and hence the tree-structure itself, are data
dependent. Alternatively, the splitting and subdivision could be independent from the training data. The
latter approach is the one we are going to investigate in detail, and we will consider Dyadic Decision Trees
and Recursive Dyadic Partitions (depicted in Figure 12.4) in particular.

Until now we have been referring to trees, but did not make clear how do trees relate to partitions. It
turns out that any decision tree can be associated with a partition of the input space X and vice-versa. In
particular, a Recursive Dyadic Partition (RDP) can be associated with a (binary) tree. In fact, this is the
most e�cient way of describing a RDP. In Figure 12.4 we illustrate the procedure. Each leaf of the tree
corresponds to a cell of the partition. The nodes in the tree correspond to the various partition cells that
are generated through in the construction of the tree. The orientation of the dyadic split alternates between
the levels of the tree (for the example of Figure 12.4, at the root level the split is done in the horizontal axis,
at the level below that (the level of nodes 2 and 3) the split is done in the vertical axis, and so on...). The
tree is called dyadic because the splits of cells are always at the midpoint along one coordinate axis, and
consequently the sidelengths of all cells are dyadic (i.e., powers of 2).
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Figure 12.4: Example of Recursive Dyadic Partition (RDP) growing (X = [0, 1]2).

In the following we are going to consider the 2-dimensional case, but all the results can be easily general-
ized for the d-dimensional case (d ≥ 2), provided the dyadic tree construction is de�ned properly. Consider
a recursive dyadic partition of the feature space into k boxes of equal size. Associated with this partition
is a tree T . Minimizing the empirical risk with respect to this partition produces the histogram classi�er
with k equal-sized bins. Consider also all the possible partitions corresponding to pruned versions of the tree
T . Minimizing the empirical risk with respect to those other partitions results in other classi�ers (dyadic
decision trees) that are fundamentally di�erent than the histogram rule we analyzed earlier.

12.3.2 Pruning

Let F be the collection of all possible dyadic decision trees corresponding to recursive dyadic partitions of
the feature space. Each such tree can be pre�x encoded with a bit-string proportional to the number of leafs
in the tree as follows; encode the structure of the tree in a top-down fashion: (i) assign a zero at each branch
node and a one at each leaf node (terminal node) (ii) read the code in a breadth-�rst fashion, top-down,
left-right. Figure 12.5 exempli�es this coding strategy. Notice that, since we are considering binary trees,
the total number of nodes is twice the number of leafs minus one, that is, if the number of leafs in the tree
is k then the number of nodes is 2k − 1. Therefore to encode a tree with k leafs we need 2k − 1 bits.

Since we want to use the partition associated with this tree for classi�cation we need to assign a decision
label (either zero or one) to each leaf. Hence, to encode a decision tree in this fashion we need 3k − 1 bits,
where k is the number of leafs. For a tree with k leafs the �rst 2k − 1 bits of the codeword encode the tree
structure, and the remaining k bits encode the classi�cation labels. This is easily shown to be a pre�x code,
therefore we can use this under our classi�cation scenario.
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Figure 12.5: Illustration of the tree coding technique: example of a tree and corresponding pre�x code.

Let

^
f

∗

n= argmin
f∈F
{
^
Rn (f) +

√
(3k − 1) log2 + 1

2 logn

2n
}. (12.13)

This optimization can be solved through a bottom-up pruning process (starting from a very large initial tree
T0) in O

(
|T0|2

)
operations, where |T0| is the number of leafs in the initial tree. The complexity regularization

theorem tells us that

E

[
R

(
^
fn

)]
≤ min

f∈F
{R (f) +

√
(3k − 1) log2 + 1

2 logn

2n
}+

1√
n
. (12.14)

12.4 Comparison between Histogram Classi�ers and Classi�cation
Trees

In the following we will illustrate the idea behind complexity regularization by applying the basic theorem
to histogram classi�ers and classi�cation trees (using our setup above).

Consider the classi�cation setup described in "Classi�cation" (Section 12.2: Classi�cation), with X =
[0, 1]2.

12.4.1 Histogram Risk Bound

Recall the setup and results of a previous lecture2. Let

FHk = {histogram rules with k2 bins}. (12.15)

Then |FHk | = 2k
2
. Let FH =

⋃
k≥1FHk . We can encode each element f of FH with cH (f) = k + k2 bits,

where the �rst k bits indicate the smallest k such that f ∈ FHk and the following k2 bits encode the labels
of each bin. This is a pre�x encoding of all the elements in FH .

2The description here is slightly di�erent than the one in the previous lecture.
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We de�ne our estimator as

^
f

H

n =
^
f

^
k

n , (12.16)

where
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(k)

n = arg min
f∈FHk

^
Rn (f) , (12.17)

and

^
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}.(12.18)

Therefore
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H

n minimizes
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√
cH (f) log2 + 1

2 logn

2n
, (12.19)

over all f ∈ FH . We showed before that
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−R∗ ≤ min
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{R (f)−R∗ +
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cH (f) log2 + 1
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n
. (12.20)

To proceed with our analysis we need to make some assumptions on the intrinsic di�culty of the problem.
We will assume that the Bayes decision boundary is a �well-behaved� 1-dimensional set, in the sense that
it has box-counting dimension one (see Appendix "Box Counting Dimension" (Section 12.6: Box Counting
Dimension)). This implies that, for an histogram with k2 bins, the Bayes decision boundary intersects less
than Ck bins, where C is a constant that does not depend on k. Furthermore we assume that the marginal
distribution of X satis�es PX (A) ≤ K|A|, for any measurable subset A ⊆ [0, 1]2. This means that the
samples collected do not accumulate anywhere in the unit square.

Under the above assumptions we can conclude that

min
f∈FHk

R (f)−R∗ ≤ K

k2
Ck =

CK

k
. (12.21)

Therefore
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. (12.22)

We can balance the terms in the right side of the above expression using k = n1/4 (for n large) therefore
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n

)]
−R∗ = O

(
n−1/4

)
, as n→∞. (12.23)
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12.4.2 Dyadic Decision Trees

Now let's consider the dyadic decision trees, under the assumptions above, and contrast these with the
histogram classi�er. Let

FTk = {tree classi�ers with k leafs}. (12.24)

Let FT =
⋃
k≥1FTk . We can pre�x encode each element f of FT with cT (f) = 3k − 1 bits, as described

before.
Let

^
f

T

n=
^
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0@^k
1A

n , (12.25)

where
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n = arg min
f∈FTk

^
Rn (f) , (12.26)

and
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Hence
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n minimizes

^
Rn (f) +

√
cT (f) log2 + 1

2 logn

2n
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over all f ∈ FT . Moreover
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. (12.29)

If the Bayes decision boundary is a 1-dimensional set, as in "Histogram Risk Bound" (Section 12.4.1:
Histogram Risk Bound), there exists a tree with at most 8Ck leafs such that the boundary is contained in
at most Ck squares, each of volume 1/k2. To see this, start with a tree yielding the histogram partition
with k2 boxes (i.e., the tree partitioning the unit square into k2 equal sized squares). Now prune all the
nodes that do not intersect the boundary. In Figure 12.6 we illustrate the procedure. If you carefully bound
the number of leafs you need at each level you can show that you will have in total less than 8Ck leafs. We
conclude then that there exists a tree with at most 8Ck leafs that has the same risk as a histogram with
O
(
k2
)
bins. Therefore, using (12.14) we have
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. (12.30)

We can balance the terms in the right side of the above expression using k = n1/3 (for n large) therefore
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−R∗ = O
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)
, as n→∞. (12.31)
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(a)

(b)

Figure 12.6: Illustration of the tree pruning procedure: (a) Histogram classi�cation rule, for a partition
with 16 bins, and corresponding binary tree representation (with 16 leafs). (b) Pruned version of the
histogram tree, yielding exactly the same classi�cation rule, but now requiring only 6 leafs. (Note: The
trees where constructed using the procedure of Figure )

12.5 Final Comments

Trees generally work much better than histogram classi�ers. This is essentially because they provide much
more e�cient ways of approximating the Bayes decision boundary (as we saw in our example, under reason-
able assumptions on the Bayes boundary, a tree encoded with O (k) bits can describe the same classi�er as
an histogram that requires O

(
k2
)
bits).

The dyadic decision trees studied here are di�erent than classical tree rules, such as CART or C4.5.
Those techniques select a tree according to

^
k= argmin

k≥1
{
^
Rn

^
f

(k)

n

+ αk}, (12.32)

for some α > 0 whereas ours was roughly

^
k= argmin

k≥1
{
^
Rn

^
f

(k)

n

+ α
√
k}, (12.33)

for α ≈
√

3log2
2n . The square root penalty is essential for the risk bound. No such bound exists for CART

or C4.5 . Moreover, recent experimental work has shown that the square root penalty often performs better
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in practice. Finally, recent results show that a slightly tighter bounding procedure for the estimation error
can be used to show that dyadic decision trees (with a slightly di�erent pruning procedure) achieve a rate of

E

[
R

(
^
f

T

n

)]
−R∗ = O

(
n−1/2

)
, as n→∞, (12.34)

which turns out to be the minimax optimal rate (i.e., under the boundary assumptions above, no method
can achieve a faster rate of convergence to the Bayes error).

12.6 Box Counting Dimension

The notion of dimension of a sets arises in many aspects of mathematics, and it is particularly relevant to
the study of fractals (that besides some important applications make really cool t-shirts). The dimension
somehow indicates how we should measure the contents of a set (length, area, volume, etc...). The box-
counting dimension is a simple de�nition of the dimension of a set. The main idea is to cover the set
with boxes with sidelength r. Let N (r) denote the smallest number of such boxes, then the box counting
dimension is de�ned as

lim
r→0

logN (r)
−logr

. (12.35)

Although the boxes considered above do not need to be aligned on a rectangular grid (and can in fact
overlap) we can usually consider them over a grid and obtain an upper bound on the box-counting dimension.
To illustrate the main ideas let's consider a simple example, and connect it to the classi�cation scenario
considered before.

Let f : [0, 1] → [0, 1] be a Lipschitz function, with Lipschitz constant L (i.e., |f (a) − f (b) | ≤ L|a −
b|, ∀a, b ∈ [0, 1]). De�ne the set

A = {x = (x1, x2) : x2 = f (x1)}, (12.36)

that is, the set A is the graphic of function f .
Consider a partition with k2 squared boxes (just like the ones we used in the histograms), the points in

set A intersect at most C 'k boxes, with C ' = (1 + dLe) (and also the number of intersected boxes is greater
than k). The sidelength of the boxes is 1/k therefore the box-counting dimension of A satis�es

dimB (A) ≤ lim
1/k→0

logC'k
−log(1/k)

= lim
k→∞

logC'+log(k)
log(k)

= 1.

(12.37)

The result above will hold for any �normal� set A ⊆ [0, 1]2 that does not occupy any area. For most sets the
box-counting dimension is always going to be an integer, but for some �weird� sets (called fractal sets) it is
not an integer. For example, the Koch curve has box-counting dimension log (4) /log (3) = 1.26186.... This
means that it is not quite as small as a 1-dimensional curve, but not as big as a 2-dimensional set (hence
occupies no area).

To connect these concepts to our classi�cation scenario consider a simple example. Let η (x) =
P (Y = 1|X = x) and assume η (x) has the form

η (x) =
1
2

+ x2 − f (x1) , ∀x ≡ (x1, x2) ∈ X , (12.38)

where f : [0, 1]→ [0, 1] is Lipschitz with Lipschitz constant L. The Bayes classi�er is then given by

f∗ (x) = 1{η(x)≥1/2} ≡ 1{x2≥f(x1)}. (12.39)
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This is depicted in Figure 12.7. Note that this is a special, restricted class of problems. That is,
we are considering the subset of all classi�cation problems such that the joint distribution PXY satis�es
P (Y = 1|X = x) = 1/2 + x2 − f (x1) for some function f that is Lipschitz. The Bayes decision boundary is
therefore given by

A = {x = (x1, x2) : x2 = f (x1)}. (12.40)

Has we observed before this set has box-counting dimension 1.

Figure 12.7: Bayes decision boundary for the setup described in Appendix .
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Chapter 13

Complexity Regularization for Squared
Error Loss1

13.1 Complexity Regularization in Regression

Recall the classi�cation problem. In Lecture 6 (Chapter 7), where we assumed that minf∈FR (f) = 0, we
obtained the PAC bound ∀f ∈ F

P{R

(
^
fn

)
> ε} ≤ |F|e−nε. (13.1)

From Corrolary 1 in Lecture 6 (Corollary 7.1, p. 47),

E

[
R

(
^
fn

)]
≤ 1 + log|F|

n
. (13.2)

In Lectures 7 (Chapter 8) and 8 (Chapter 9), we dropped the assumption that minf∈FR (f) = 0 and
obtained, ∀f ∈ F

P{R

(
^
fn

)
> ε} ≤ |F|e−2nε2 . (13.3)

This led to

E

[
R

(
^
fn

)
−min

f∈F
R (f)

]
≤
√
log|F|+ logn+ 2

n
. (13.4)

Hoe�ding's inequality was central to our analysis of learning under bounded loss functions. In many
regression and signal estimation problems it is natural to consider squared error loss functions (rather than
0/1 or absolute error). In such cases, we will need to derive bounds using di�erent techniques.

Example 13.1
To illustrate the distinction between classi�cation and regression, consider a simple, scalar signal
plus noise problem. Consider Yi = θ+Wi, i = 1, · · · , n, where θ is a �xed unknown scalar parameter
and the Wi are independent, zero-mean, unit variance random variables. Let Y = 1/n

∑n
i=1 Yi.

1This content is available online at <http://cnx.org/content/m16267/1.2/>.
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Then, according to the Central Limit Theorem, Y is distributed approximately N (θ, 1/n). A simple
tail-bound on the Gaussian distribution gives us

P
(
Y − θ > ε

)
= P (W > ε) ≤ 1

2
e−nε

2/2, (13.5)

which implies that

P
(
|Y − θ|2 > ε

)
≤ e−nε

2/2. (13.6)

This is a bound on the deviations of the squared error err2 = |Y − θ|2. Notice that the exponential
decay rate is a function of ε rather than ε2, as in Hoe�ding's inequality. The squared error con-
centration inequality implies that E

[
|Y − θ|2

]
= O

(
1
n

)
(just write E

[
err2

]
=
∫∞

0
P
(
err2 > t

)
dt).

Therefore, in regression with a squared error loss, we can hope to get a rate of convergence as fast
as n−1 instead of n−1/2. The reason is simply because we are using an squared error loss instead
of the 0/1 or absolute error loss.

To begin our investigation into regression and function estimation, let us consider the following.
Let X = Rd and Y = R. Take Fsuch that f ∈ F is a map f : Rd 7→ R. We have training data

{Xi, Yi}ni=1
i.i.d.∼ PXY . As our loss function, we take the squared error, i.e.,

l (f (Xi) , Yi) = (f (Xi)− Yi)2
. (13.7)

The risk is then the MSE:

R (f) = E
[
(f (X)− Y )2

]
. (13.8)

We know that the function f∗ that minimizes the MSE is just the conditional expectation of Y
given X:

f∗ = E [Y |X = x] . (13.9)

Now let R∗ = R (f∗) . We would like to select an
^
fn ∈ F using the training data {Xi, Yi}ni=1 such

that the excess risk

E

[
R

(
^
fn

)]
−R∗ ≥ 0 (13.10)

is small. Let's consider the di�erence between the empirical risks:

^
R (f)−

^
R (f∗) =

1
n

n∑
i=1

(f (Xi)− Yi)2 − 1
n

n∑
i=1

(f∗ (Xi)− Yi)2
. (13.11)

Note that E

[
^
R (f)−

^
R (f∗)

]
= R (f) − R (f∗) . Hence, by the Strong Law of Large Numbers

(SLLN), we know that

^
R (f)−

^
R (f∗)→ R (f)−R (f∗) (13.12)

as n→∞. But how fast is this convergence?
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We will derive a PAC style bound for the di�erence
^
R (f)−

^
R (f∗) − (R (f)−R (f∗)) . The

following derivation is from Barron 1991. The excess risk and it empirical counterpart will be
denoted by

r (f, f∗) = R (f)−R (f∗)
^
r (f, f∗) =

^
R (f)−

^
R (f∗)

. (13.13)

Note that
^
r (f, f∗) is the sum of independent random variables:

^
r (f, f∗) = − 1

n

n∑
i=1

Ui, (13.14)

where Ui = −(Yi − f (Xi))
2 + (Yi − f∗ (Xi))

2
. Therefore, r (f, f∗)− ^

r (f, f∗) =
1
n

∑n
i=1 (Ui − E [Ui]) .
We are looking for a PAC bound of the form

P
(
r (f, f∗)− ^

r (f, f∗) > ε

)
< δ. (13.15)

If the variables Ui are bounded, then we can apply Hoe�ding's inequality. However, a more useful
bound for our regression problem can be derived if the the variables Ui satisfy the following moment
condition:

E
[
|Ui − E [Ui] |k

]
≤ var (Ui)

2
k! hk−2 (13.16)

for some h > 0.
The moment condition can be di�cult to verify in general, but it does hold, for example, for

bounded random variables. If (13.16) holds, then the Craig-Bernstein (CB) inequality states:

P

(
1
n

n∑
i=1

(Ui − E [Ui]) ≥
t

nε
+
nε var

(
1
n

∑
Ui
)

2 (1− c)

)
≤ e−t, (13.17)

for 0 < εh ≤ c < 1 and t > 0. This shows that the tail decays exponentially in t, rather than
exponentially in t2. Recall Hoe�ding's inequality:

P

(
1
n

n∑
i=1

(Zi − E [Zi]) ≥
t

n

)
≤ e

−2t2
n . (13.18)

If t
n � 1, then t2

n � t, which implies e
−2t2
n � e−t. This indicates that the CB inequality may

be much tighter than Hoe�ding's. To use the CB inequality, we need to bound the variance of
1
n

∑n
i=1 Ui. Note that

var (Ui) = var
(
−(Yi − f (Xi))

2 + (Yi − f∗ (Xi))
2
)
. (13.19)

Assumption 1
The support of Y and the range f(X) is in a known interval of length b.
Proposition 1

With the above assumption, (13.16) holds with h = 2b2

3 .
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Proposition 2
Again, with the above assumption, it may be shown that

var (Ui) ≤ 5b2r (f, f∗) . (13.20)

You can write Ui as

Ui = 2Yif (Xi) − 2Yif
∗ (Xi) + f ∗(Xi)

2 − f(Xi)
2 = 2Yif (Xi) − 2Yif

∗ (Xi) +
2f ∗(Xi)

2 − f ∗(Xi)
2 − f(Xi)

2 + 2f (Xi) f
∗ (Xi) − 2f (Xi) f

∗ (Xi) =
2 (Yi − f ∗ (Xi)) (f (Xi)− f ∗ (Xi))− (f (Xi)− f ∗ (Xi))

2.

(13.21)

Note that the variance of Ui is upper-bounded by its second moment. Also note that the covariance of
the two terms above is zero:

E
[
2 (Yi − f∗ (Xi)) (f (Xi)− f∗ (Xi)) (f (Xi)− f∗ (Xi))

2
]

= E [T1T2]

= EX
[
EY |X [T1T2]

]
= EX

[
T2EY |X [T1]

]
= EX [T2 ∗ 0]

= 0

(13.22)

This is evident when you recall that f∗ (Xi) = E [Y |X = Xi] . Now we can bound the second moments of
T1 and T2 :

E [T1] = 4E
[
((Yi − f∗ (Xi)) (f (Xi)− f∗ (Xi)))

2
]

= 4E
[
(Yi − f∗ (Xi))

2(f (Xi)− f∗ (Xi))
2
]

≤ 4E
[
b2(f (Xi)− f∗ (Xi))

2
]

E [T2] = E
[
(f (Xi)− f∗ (Xi))

4
]

= E
[
(f (Xi)− f∗ (Xi))

2(f (Xi)− f∗ (Xi))
2
]

≤ E
[
b2(f (Xi)− f∗ (Xi))

2
]

. (13.23)

So var (Ui) ≤ 5b2E
[
(f (Xi)− f∗ (Xi))

2
]
. The �nal step is to see that

r (f, f∗) = E [Ui] = EX
[
EY |X [Ui]

]
= E

[
(f (Xi)− f∗ (Xi))

2
]
. (13.24)

Thus, n var
(

1
n

∑n
i=1 Ui

)
≤ 5b2r (f, f∗) . And therefore, we can say that, with probability at least 1− e−t,

r (f, f∗)− ^
r (f, f∗) ≤ t

n ε
+

5ε b2 r (f, f∗)
2 (1− c)

. (13.25)

In other words, with probability at least 1− δ (where δ = e−t),

r (f, f∗)− ^
r (f, f∗) ≤

log 1
δ

n ε
+

5ε b2 r (f, f∗)
2 (1− c)

. (13.26)

Now, suppose we have assigned positive numbers c (f) to each f ∈ F satisfying the Kraft inequality:∑
f∈F

2−c(f) ≤ 1. (13.27)
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Note that (13.26) holds ∀δ > 0. In particular, we let δ be a function of f:

δ (f) = 2−c(f)δ. (13.28)

So we can use this δ along with the procedure introduced in Lecture 9 (Chapter 10) (i.e., Union of events
bound followed by the Kraft inequality) to obtain the following. For all f ∈ F ,∀δ > 0,

r (f, f∗)− ^
r (f, f∗) ≤

c (f) log2 + log 1
δ

n ε
+

5ε b2 r (f, f∗)
2 (1− c)

(13.29)

with probability at least 1− δ. Now set c = ε h = 2b2 ε
3 and assume ε < 6

19b2 . Then de�ne

α =
5ε b2

2 (1− c)
< 1. (13.30)

Now, after using α and rearranging terms, we have:

(1− α) r (f, f∗) ≤^r (f, f∗) +
c (f) log2 + log 1

δ

ε n
. (13.31)

We want to choose f to minmize this upper bound. So take

^
fn = argmin

f∈F
{
^
Rn (f) +

c (f) log2
nε

}. (13.32)

So, with probability at least 1− δ,

(1− α) r

(
^
fn, f

∗

)
≤ ^

r

(
^
fn, f

∗

)
+

c

0@^f n
1Alog2+log 1

δ

ε n

≤ ^
r (f∗n, f

∗) + c(f∗n)log2+log 1
δ

ε n

(13.33)

where f∗n = argminf∈F{R (f) + c(f)log2
nε }.

Now we use the Craig-Bernstein inequality to bound the di�erence between
^
r (f∗n, f

∗) and r (f∗n, f
∗) :

With probability at least 1− δ,

^
r (f∗n, f

∗) ≤ r (f∗n, f
∗) + α r (f∗n, f

∗) +
log
(

1
δ

)
nε

. (13.34)

Now we can again use the union bound to combine (13.33) and (13.34): With probability at least 1−2δ,∀δ >
0,

r

(
^
fn, f

∗

)
≤ 1 + α

1− α
r (f∗n, f

∗) +
c (f∗n) log2 + 2log1/δ

nε
. (13.35)

Now set δ = e
−nεt

2 , then we have

P

(
r

(
^
fn, f

∗

)
− 1 + α

1− α
r (f∗n, f

∗) +
c (f∗n) log2

nε
≥ t

)
≤ 2e

−nεt
2 . (13.36)

Integrating, we get

E

[
r

(
^
fn, f

∗

)
− 1+α

1−αr (f∗n, f
∗) + c(f∗n)log2

nε

]
≤

∫∞
0
P ( ” ≥ t) dt

≤
∫∞

0
2e
−nεt

2

= 4
nε

. (13.37)
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To sum up, we have shown that for ε < 6
19b2 ,

E

[
r

(
^
fn, f

∗

)]
≤
(

1 + α

1− α

)
r (f∗n, f

∗) +
c (f∗n) log2 + 4

nε
, (13.38)

or,

E

[
r

(
^
fn, f

∗

)]
≤
(

1 + α

1− α

)
min
f∈F
{r (f, f∗) +

c (f) log2
nε

}+
4
nε
, (13.39)

since α < 1. Or, in expanded form:

E

[
R

(
^
fn

)]
−R (f∗) ≤

(
1+α
1−α

)
min
f∈F
{R (f)−R (f∗) + c(f)log2

nε }+ 4
nε . (13.40)

Notice that if f∗ ∈ F and if c (f∗) is not too large (e.g., c (f∗) ≈ logn), then we have E

[
R

(
^
fn

)]
−R (f∗) =

O
(
n−1logn

)
, within a logarithmic factor of the parametric rate of convergence!



Chapter 14

Maximum Likelihood Estimation1

In the last lecture (Chapter 13) we derived a risk (MSE) bound for regression problems; i.e., select an

f ∈ F so that E
[
(f (X)− Y )2

]
− E

[
(f∗ (X)− Y )2

]
is small, where f∗ (x) = E [Y |X = x]. The result is

summarized below.

Theorem 14.1: Complexity Regularization with Squared Error Loss
Let X = Rd, Y = [−b/2, b/2], {Xi, Yi}ni=1 iid, PXY unknown, F = {collection of candidate

functions},

f : Rd → Y, R (f) = E
[
(f (X)− Y )2

]
. (14.1)

Let c (f), f ∈ F , be positive numbers satisfying
∑
f∈F2−c(f) ≤ 1, and select a function from F

according to

^
fn = argmin{

^
Rn (f) +

1
ε

c (f) log2
n

}, (14.2)

with ε ≤ 3
5b2 and

^
Rn (f) = 1

n

∑n
i=1 (f (Xi)− Yi)2

. Then,

E

[
R

(
^
fn

)]
−R (f∗) ≤

(
1 + α

1− α

)
min
f∈F
{R (f)−R (f∗) +

1
ε

c (f) log2
n

}+O
(
n−1

)
(14.3)

where α = εb2

1−2b2ε/3 .

14.1 Maximum Likelihood Estimation

The focus of this lecture is to consider another approach to learning based on maximum likelihood estimation.
Consider the classical signal plus noise model:

Yi = f

(
i

n

)
+Wi, i = 1, · · · , n (14.4)

where Wi are iid zero-mean noises. Furthermore, assume that Wi ∼ P (w) for some known density P (w).
Then

Yi ∼ P
(
y − f

(
i

n

))
≡ Pfi (y) (14.5)

1This content is available online at <http://cnx.org/content/m16276/1.2/>.
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since Yi − f
(
i
n

)
= Wi.

A very common and useful loss function to consider is

^
Rn (f) =

1
n

n∑
i=1

(−logPfi (Yi)) . (14.6)

Minimizing
^
Rn with respect to f is equivalent to maximizing

1
n

n∑
i=1

logPfi (Yi) (14.7)

or

n∏
i=1

Pfi (Yi) . (14.8)

Thus, using the negative log-likelihood as a loss function leads to maximum likelihood estimation. If the
Wi are iid zero-mean Gaussian r.v.s then this is just the squared error loss we considered last time. If the
Wi are Laplacian distributed e.g. P (w) ∝ e−|w|, then we obtain the absolute error, or L1, loss function. We
can also handle non-additive models such as the Poisson model

Yi ∼ P (y|f (i/n)) = e−f(i/n) [f (i/n)]y

y!
. (14.9)

In this case

−logP (Yi|f (i/n)) = f (i/n)− Yilog (f (i/n)) + constant (14.10)

which is a very di�erent loss function, but quite appropriate for many imaging problems.
Before we investigate maximum likelihood estimation for model selection, let's review some of the basic

concepts. Let Θ denote a parameter space (e.g., Θ = R), and assume we have observations

Yi
iid∼ Pθ∗ (y) , i = 1, · · · , n (14.11)

where θ∗ ∈ Θ is a parameter determining the density of the {Yi}. The ML estimator of θ∗ is

^
θn = argmax

θ∈Θ

∏n
i=1 Pθ (Yi)

= argmax
θ∈Θ

∑n
i=1 logPθ (Yi)

= argmin
θ∈Θ

∑n
i=1−logPθ (Yi) .

(14.12)

^
θ maximizes the expected log-likelihood. To see this, let's compare the expected log-likelihood of θ∗ with
any other θ ∈ Θ.

E [logPθ∗ (Y )− logPθ (Y )] = E
[
log Pθ∗ (Y )

Pθ(Y )

]
=

∫
log Pθ∗ (y)

Pθ(y) Pθ∗ (y) dy

= K (Pθ, Pθ∗) the KL divergence

≥ 0 with equality i�Pθ∗ = Pθ.

(14.13)
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Why?

−E
[
log Pθ∗ (y)

Pθ(y)

]
= E

[
log Pθ(y)

Pθ∗ (y)

]
≤ logE

[
Pθ(y)
Pθ∗ (y)

]
= log

∫
Pθ (y) dy = 0

⇒ K (Pθ, Pθ∗) ≥ 0

(14.14)

On the other hand, since
^
θn maximizes the likelihood over θ ∈ Θ, we have

n∑
i=1

log
Pθ∗ (Yi)
P^
θn

(Yi)
=

n∑
i=1

logPθ∗ (Yi)− logP^
θn

(Yi) ≤ 0. (14.15)

Therefore,

1
n

n∑
i=1

log
Pθ∗ (Yi)
P^
θn

(Yi)
−K

(
P^
θn

, Pθ∗

)
+K

(
P^
θn

, Pθ∗

)
≤ 0 (14.16)

or re-arranging

K

(
P^
θn

, Pθ∗

)
≤

∣∣∣∣∣∣∣
1
n

n∑
i=1

log
Pθ∗ (Yi)
P^
θn

(Yi)
−K

(
P^
θn

, Pθ∗

)∣∣∣∣∣∣∣ . (14.17)

Notice that the quantity

1
n

n∑
i=1

log
Pθ∗ (Yi)
Pθ (Yi)

(14.18)

is an empirical average whose mean is K (Pθ, Pθ∗). By the law of large numbers, for each θ ∈ Θ,∣∣∣∣∣ 1n
n∑
i=1

log
Pθ∗ (Yi)
Pθ (Yi)

−K (Pθ, Pθ∗)

∣∣∣∣∣ a.s.→ 0. (14.19)

If this also holds for the sequence {
^
θn}, then we have

K

(
P^
θn

, Pθ∗

)
≤

∣∣∣∣∣∣∣
1
n

∑
log

Pθ∗ (Yi)
P^
θn

(Yi)
−K

(
P^
θn

, Pθ∗

)∣∣∣∣∣∣∣→ 0 asn→∞ (14.20)

which implies that

P^
θn

→ Pθ∗ (14.21)

which often implies that

^
θn → θ∗ (14.22)

in some appropriate sense (e.g., point-wise or in norm).
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Example 14.1: Gaussian Distributions

Pθ∗ (y) =
1√
π
e−(y−θ∗)2 (14.23)

Θ = R, {Yi}ni=1
iid∼ Pθ∗ (y) (14.24)

K (Pθ, Pθ∗) =
∫
log Pθ∗ (y)

Pθ(y) Pθ∗ (y) dy

=
∫ [

(y − θ)2 − (y − θ∗)2
]
Pθ∗ (y) dy

= Eθ∗
[
(y − θ)2

]
− Eθ∗

[
(y − θ∗)2

]
= Eθ∗

[
Y 2 − 2Y θ + θ2

]
− 1/2

= (θ∗)2 + 1/2− 2θ∗θ + θ2 − 1/2

= (θ∗ − θ)2

(14.25)

⇒ θ∗maximizesE [logPθ (Y )] wrt θ ∈ Θ (14.26)

^
θn = argmax

θ
{−
∑

(Yi − θ)2}

= argmin
θ
{
∑

(Yi − θ)2}

= 1
n

∑n
i=1 Yi

(14.27)

14.1.1 Hellinger Distance

The KL divergence is not a distance function.

K (Pθ1 , Pθ2) 6= K (Pθ2 , Pθ1) (14.28)

Therefore, it is often more convenient to work with the Hellinger metric,

H (Pθ1 , Pθ2) =
(∫ (

P
1
2
θ1
− P

1
2
θ2

)2

dy

) 1
2

. (14.29)

The Hellinger metric is symmetric, non-negative and

H (Pθ1 , Pθ2) = H (Pθ2 , Pθ1) (14.30)

and therefore it is a distance measure. Furthermore, the squared Hellinger distance lower bounds the KL
divergence, so convergence in KL divergence implies convergence of the Hellinger distance.
Proposition 1

H2 (Pθ1 , Pθ2) ≤ K (Pθ1 , Pθ2) (14.31)
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Proof:

H (Pθ1 , Pθ2) =
∫ (√

Pθ1 (y)−
√
Pθ2 (y)

)2

dy

=
∫
Pθ1 (y) dy +

∫
Pθ2 (y) dy − 2

∫ √
Pθ1 (y)

√
Pθ2 (y)dy

= 2− 2
∫ √

Pθ1 (y)
√
Pθ2 (y)dy, since

∫
Pθ (y) dy = 1∀θ

= 2
(

1− Eθ2
[√

Pθ1 (Y ) /Pθ2 (Y )
])

≤ 2log
(
Eθ2

[√
Pθ2 (Y ) /Pθ1 (Y )

])
, since 1− x ≤ −logx

≤ 2Eθ2
[
log
√
Pθ2 (Y ) /Pθ1 (Y )

]
, by Jensen's inequality

= Eθ2 [log (Pθ2 (Y ) /Pθ1 (Y ))] ≡ K (Pθ1 , Pθ2)

(14.32)

Note that in the proof we also showed that

H (Pθ1 , Pθ2) = 2
(

1−
∫ √

Pθ1 (y)
√
Pθ2 (y)dy

)
(14.33)

and using the fact logx ≤ x− 1 again, we have

H (Pθ1 , Pθ2) ≤ −2log
(∫ √

Pθ1 (y)
√
Pθ2 (y)dy

)
. (14.34)

The quantity inside the log is called the a�nity between Pθ1 and Pθ2 :

A (Pθ1 , Pθ2) =
∫ √

Pθ1 (y)
√
Pθ2 (y)dy. (14.35)

This is another measure of closeness between Pθ1 and Pθ2 .

Example 14.2: Gaussian Distributions

Pθ (y) =
1
π
e−(y−θ)2 (14.36)

−2log
∫ √

Pθ1 (y)
√
Pθ2 (y)dy

= −2log
∫ (

1√
π
e−(y−θ1)2

) 1
2
(

1√
π
e−(y−θ2)2

) 1
2
dy

= −2log

(∫
1√
π
e
−
»

(y−θ1)2

2 +
(y−θ2)2

2

–
dy

)
= −2log

(∫
1√
π
e
−
h
(y−( θ1+θ2

2 ))2
+( θ1−θ22 )2i

dy

)
= −2loge−( θ1−θ22 )2

= 1
2 (θ1 − θ2)2

(14.37)

⇒ −2logA (Pθ1 , Pθ2) = 1
2 (θ1 − θ2)2

for Gaussian distributions

⇒ H (Pθ1 , Pθ2) ≤ 1
2 (θ1 − θ2)2

for Gaussian.
(14.38)

Example 14.3: Poisson Distributions
If Pθ (y) = e−θ θ

y

y! , θ ≥ 0, then

−2logA (Pθ1 , Pθ2) =
(√

θ1 −
√
θ2

)2

. (14.39)
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Summary

Yi
iid∼ Pθ∗ (14.40)

1. Maximum likelihood estimator maximizes the empirical average

1
n

n∑
i=1

logPθ (Yi) (14.41)

(our empirical risk is negative log-likelihood)
2. θ∗ maximizes the expectation

E

[
1
n

n∑
i=1

logPθ (Yi)

]
(14.42)

(the risk is the expected negative log-likelihood)
3.

1
n

n∑
i=1

logPθ (Yi)
a.s.→ E

[
1
n

n∑
i=1

logPθ (Yi)

]
(14.43)

so we expect some sort of concentration of measure.
4. In particular, since

1
n

n∑
i=1

log
Pθ∗ (Yi)
Pθ (Yi)

a.s.→ K (Pθ, Pθ∗) (14.44)

we might expect that K

(
P^
θn

, Pθ∗

)
→ 0 for the sequence of estimates {P^

θn

}∞n=1.

So, the point is that maximum likelihood estimator is just a special case of a loss function in
learning. Due to its special structure, we are naturally led to consider KL divergences, Hellinger
distances, and A�nities.



Chapter 15

Maximum Likelihood and Complexity
Regularization1

15.1 Review : Maximum Likelihood Estimation

In the last lecture (Chapter 14), we have n i.i.d observations drawn from an unknown distribution

Yi
i.i.d.∼ pθ∗ , i = {1, ..., n} (15.1)

where θ∗ ∈ Θ. (15.2)

With loss function de�ned as l (θ, Yi) = −logpθ (Yi), the empirical risk is

^
Rn= − 1

n

n∑
i=1

logpθ (Yi) . (15.3)

Essentially, we want to choose a distribution from the collection of distributions within the parameter space
that minimizes the empirical risk,i.e., we would like to select

p^
θn

∈ P = {pθ}θ∈Θ (15.4)

where

^
θn= argmin

θ∈Θ
−

n∑
i=1

logpθ (Yi) . (15.5)

The risk is de�ned as

R (θ) = E [l (θ, Y )] = −E [logpθ (Y )] . (15.6)

Note that θ∗ minimizes R (θ) over Θ.

θ∗ = argmin
θ∈Θ

− E [logpθ (Y )]

= argmin
θ∈Θ

−
∫
logpθ (y) · pθ∗ (y) dy.

(15.7)

1This content is available online at <http://cnx.org/content/m16275/1.2/>.

97



98
CHAPTER 15. MAXIMUM LIKELIHOOD AND COMPLEXITY

REGULARIZATION

Finally, the excess risk of θ is de�ned as

R (θ)−R (θ∗) =
∫
log

pθ∗ (y)
pθ (y)

pθ∗ (y) dy ≡ K (pθ, pθ∗) . (15.8)

We recognized that the excess risk corresponding to this loss function is simply theKullback-Leibler (KL)
Divergence or Relative Entropy, denoted by K (pθ1 , pθ2). It is easy to see that K (pθ1 , pθ2) is always
non-negative and is zero if and only if pθ1 = pθ2 . KL divergence measures how di�erent two probability
distributions are and therefore is natural to measure convergence of the maximum likelihood procedures.
However, K (pθ1 , pθ2) is not a distance metric because it is not symmetric and does not satisfy the triangle
inequality. For this reason, two other quantities play a key role in maximum likelihood estimation, namely
Hellinger Distance and A�nity.

The Hellinger distance is de�ned as

H (pθ1 , pθ2) =
(∫ (√

pθ1 (y)−
√
pθ2 (y)

)2

dy

) 1
2

. (15.9)

We proved that the squared Hellinger distance lower bounds the KL divergence:

H2 (pθ1 , pθ2) ≤ K (pθ1 , pθ2)

H2 (pθ1 , pθ2) ≤ K (pθ2 , pθ1) .
(15.10)

The a�nity is de�ned as

A (pθ1 , pθ2) =
∫ √

pθ1 · pθ2 (y) dy . (15.11)

we also proved that

H2 (pθ1 , pθ2) ≤ −2log (A (pθ1 , pθ2)) . (15.12)

Example 15.1: Gaussian Distribution
Y is Gaussian with mean θ and variance σ2.

pθ (y) =
1√

2πσ2
e−

(y−θ)2

2σ2 . (15.13)

First, look at

log
pθ2
pθ1

=
1

2σ2

[(
θ2

1 − θ2
2

)
− 2 (θ1 − θ2) y

]
. (15.14)
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Then,

K (pθ1 , pθ2) = Eθ2

[
log

pθ2
pθ1

]
= θ21−θ

2
2

2σ2 − 2(θ1−θ2)
2σ2

∫
y · pθ2 (y) dy︸ ︷︷ ︸
E[Y ]=θ2

= 1
2σ2

(
θ2

1 + θ2
2 − 2θ1θ2

)
= (θ21−θ2)

2

2σ2 .

−2log A (pθ1 , pθ2) = −2log

(∫ (
1√

2πσ2 e
− (y−θ1)2

2σ2

)1/2

·
(

1√
2πσ2 e

− (y−θ2)2

2σ2

)1/2

dy

)
= −2log

(∫
1√

2πσ2 e
− (y−θ1)2

4σ2 − (y−θ2)2

4σ2 dy

)
= −2log

(∫
1√

2πσ2 e
− 1

2σ2

h
(y− θ1+θ2

2 )2
+( θ1−θ22 )2i

dy

)
= −2log e−

( θ1−θ22 )2

2σ2

= (θ1−θ2)2

4σ2 = 1
2K (pθ1 , pθ2) ≥ H2 (pθ1 , pθ2) .

(15.15)

15.2 Maximum likelihood estimation and Complexity regularization

Suppose that we have n i.i.d training samples, {Xi, Yi}ni=1
i.i.d.∼ pXY .

Using conditional probability, pXY can be written as

pXY (x, y) = pX (x) · pY |X=x (y) . (15.16)

Let's assume for the moment that pX is completely unknown, but pY |X=x (y) has a special form:

pY |X=x (y) = pf∗(x) (y) (15.17)

where pY |X=x (y) is a known parametric density function with parameter f∗ (x).

Example 15.2: Signal-plus-noise observation model

Yi = f∗ (Xi) +Wi , i = 1, ..., n (15.18)

where Wi
i.i.d.∼ N

(
0, σ2

)
and Xi

i.i.d.∼ pX .

pf∗(x) (y) =
1√

2πσ2
e−

(y−f∗(x))2

2σ2 (15.19)

Y |X = x ∼ Poisson(f∗ (x))

pf∗(x) (y) = e−f
∗(x) [f∗ (x)]y

y!
. (15.20)

The likelihood loss function is

l (f (x) , y) = −log pXY (X,Y )

= −log pX (X)− log pY |X (Y |X)

= −log pX (X)− log pf(X) (Y ) .

(15.21)
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The expected loss is

E [l (f (X) , Y )] = EX
[
EY |X [l (f (X) , Y ) |X = x]

]
= EX

[
EY |X

[
−log pX (x)− log pf(x) (Y ) |X = x

] ]
= −EX [ log pX (X) ]− EX

[
EY |X

[
log pf(x) (Y ) |X = x

] ]
= −EX [ log pX (X) ]− E

[
log pf(X) (Y )

]
.

(15.22)

Notice that the �rst term is a constant with respect to f .
Hence, we de�ne our risk to be

R (f) = −E
[
log pf(X) (Y )

]
= −EX

[
EY |X

[
log pf(x) (Y ) |X = x

] ]
= −

∫ (∫
log pf(x) (y) · pf∗(x) (y) dy

)
pX (x) dx .

(15.23)

The function f∗ minimizes this risk since f (x) = f∗ (x) minimizes the integrand.
Our empirical risk is the negative log-likelihood of the training samples:

^
Rn (f) =

1
n

n∑
i=1

− log pf(Xi) (Yi) . (15.24)

The value 1
n is the empirical probability of observing X = Xi.

Often in function estimation, we have control over where we sample X. Let's assume that
X = [0, 1]d and Y = R. Suppose we sample X uniformly with n = md samples for some positive
integer m (i.e., ,take m evenly spaced samples in each coordinate).

Let xi ,i = 1, ..., n denote these sample points, and assume that Yi ∼ pf∗(xi) (y). Then, our
empirical risk is

^
Rn (f) =

1
n

n∑
i=1

l (f (xi) , Yi) =
1
n

n∑
i=1

− log pf(xi) (Yi) . (15.25)

Note that xi is now a deterministic quantity.
Our risk is

R (f) = − 1
n

∑n
i=1 E

[
log pf(xi) (Yi)

]
= − 1

n

∑n
i=1

[∫
log pf(xi) (yi) · pf∗(xi) (yi) dyi

]
.

(15.26)

The risk is minimized by f∗. However, f∗ is not a unique minimizer. Any f that agrees with f∗

at the point {xi, Yi} also minimizes this risk.
Now, we will make use of the following vector and shorthand notation. The uppercase Y denotes

a random variable, while the lowercase y and x denote deterministic quantities.

Y =


Y1

Y2

...

Yn

 y =


y1

y2

...

yn

 x =


x1

x2

...

xn

 (15.27)

Then,
pf (Y ) =

∏n
i=1 p (Yi|f (xi)) (random)

pf (y) =
∏n
i=1 p (yi|f (xi)) (deterministic) .
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With this notation, the empirical risk and the true risk can be written as

^
Rn (f) = − 1

n logpf (Y ) .

R (f) = − 1
nE [logpf (Y )]

= − 1
n

∫
logpf (y) · pf∗ (y) dy .

(15.28)

15.3 Error Bound

Suppose that we have a pool of candidate functions F , and we want to select a function f from F using the

training data. Our usual approach is to show that the distribution of
^
Rn (f) concentrates about its mean

as n grows. First, we assign a complexity c (f) > 0 to each f ∈ F so that
∑

2−c(f) ≤ 1. Then, apply the
union bound to get a uniform concentration inequality holding for all models in F . Finally, we use this
concentration inequality to bound the expected risk of our selected model.

We will essentially accomplish the same result here, but avoid the need for explicit concentration inequal-
ities and instead make use of the information-theoretic bounds.

We would like to select an f ∈ F so that the excess risk is small.

0 ≤ R (f)−R (f∗)

= 1
nE [logpf∗ (Y )− logpf (Y )]

= 1
nE
[
log

pf∗ (Y )

pf (Y )

]
≡ 1

nK (pf , pf∗)

(15.29)

where

K (pf , pf∗) =
n∑
i=1

(∫
log

pf∗(xi) (yi)
pf(xi) (yi)

· pf∗(xi) (yi) dyi

)
︸ ︷︷ ︸

K
“
pf(xi)

,pf∗(xi)

”
(15.30)

is again the KL divergence.
Unfortunately, as mentioned before, K (pf , pf∗) is not a true distance. So instead we will focus on the

expected squared Hellinger distance as our measure of performance. We will get a bound on

1
n
E
[
H2 (pf (Y ) , pf∗ (Y ))

]
=

1
n

n∑
i=1

(∫ (√
pf(xi) (yi)−

√
pf∗(xi) (yi)

)2

dyi

)
. (15.31)

15.4 Maximum Complexity-Regularized Likelihood Estimation

Theorem 15.1: Li-Barron 2000, Kolaczyk-Nowak 2002
Let {xi, Yi}ni=1 be a random sample of training data with {Yi} independent,

Yi ∼ pf∗(xi) (yi) , i = 1, ..., n (15.32)

for some unknown function f∗.
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Suppose we have a collection of candidate functions F , and complexities c (f) > 0, f ∈ F ,
satisfying ∑

f∈F

2−c(f) ≤ 1. (15.33)

De�ne the complexity-regularized estimator

^
fn≡ argmin

f∈F
{− 1

n

n∑
i=1

log pf (Yi) +
2c (f) log2

n
} . (15.34)

Then,

1
nE
[
H2 (pf (Y ) , pf∗ (Y ))

]
≤ − 2

nE [log (A (pf (Y ) , pf∗ (Y )))]

≤ min
f∈F
{ 1
nK (pf , pf∗) + 2c(f)log2

n } .
(15.35)

Before proving the theorem, let's look at a special case.

Example 15.3: Gaussian noise

Suppose Yi = f (xi) +Wi ,Wi
i.i.d.∼ N

(
0, σ2

)
.

pf(xi) (yi) =
1√

2πσ2
e−

(yi−f(xi))
2

2σ2 . (15.36)

Using results from example 1 (Example 15.1: Gaussian Distribution), we have

−2logA

(
p^
fn

(Y ) , pf∗ (Y )

)
=

∑n
i=1 − 2logA

(
p^
fn(xi)

(Yi) , pf∗(xi) (Yi)

)
=

∑n
i=1 − 2log

∫ √
p^
fn(xi)

(yi) · pf∗(xi) (yi) dyi

= 1
4σ2

∑n
i=1

(
^
fn (xi)− f∗ (xi)

)2

.

(15.37)

Then,

− 2
n
E

[
log A

(
p^
fn

, pf∗

)]
=

1
4σ2n

n∑
i=1

E

( ^
fn (xi)− f∗ (xi)

)2
 . (15.38)

We also have,

1
nK (pf , pf∗) = 1

n

∑n
i=1

(f(xi)−f∗(xi))2
2σ2

−log pf (Y ) =
∑n
i=1

(Yi−f(Xi))
2

2σ2 .
(15.39)

Combine everything together to get

^
fn= argmin

f∈F
{ 1
n

n∑
i=1

(Yi − f (Xi))
2

2σ2
+

2c (f) log2
n

} . (15.40)
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The theorem tells us that

1
4n

n∑
i=1

E


(
^
fn (xi)− f∗ (xi)

)2

σ2

 ≤ minf∈F
{ 1
n

n∑
i=1

(f (xi)− f∗ (xi))
2

2σ2
+

2c (f) log2
n

} (15.41)

or

1
n

n∑
i=1

E

( ^
fn (xi)− f∗ (xi)

)2
 ≤ min

f∈F
{ 2
n

n∑
i=1

(f (xi)− f∗ (xi))
2 +

8σ2c (f) log2
n

}. (15.42)

Now let's come back to the proof.

Proof 15.1:

H2

(
p^
fn

, pf∗

)
=

∫ (√
p^
fn

(y)−
√
pf∗ (y)

)2

dy

≤ −2log

(∫ √
p^
fn

(y) · pf∗ (y) dy

)
︸ ︷︷ ︸

affinity

(15.43)

⇒ (15.44)

E

[
H2

(
p^
fn

, pf∗

)]
≤ 2E

log
 1∫ √

p^
fn

(y) · pf∗ (y) dy


 . (15.45)

Now, de�ne the theoretical analog of
^
fn:

fn = argmin
f∈F
{ 1
n
K (pf , pf∗) +

2c (f) log2
n

}. (15.46)

Since

^
fn = argmin

f∈F
{− 1

n logpf (Y ) + 2c(f)log2
n }

= argmax
f∈F
{ 1
n (logpf (Y )− 2c (f) log2)}

= argmax
f∈F
{ 1

2 (logpf (Y )− 2c (f) log2)}

= argmax
f∈F
{log

(√
pf (Y ) · e−c(f)log2

)
}

= argmax
f∈F
{
√
pf (Y ) · e−c(f)log2}

(15.47)

we can see that

√
p^
fn

(Y )e
−c

0@^fn
1Alog2

√
pfn (Y )e−c(fn)log2

≥ 1 . (15.48)



104
CHAPTER 15. MAXIMUM LIKELIHOOD AND COMPLEXITY

REGULARIZATION

Then can write

E

[
H2

(
p^
fn

, pf∗

)]
≤ 2E

log
 1R r

p

f̂n

(y)·pf∗ (y) dy



≤ 2E

log

r
p

f̂n

(Y )e

−c

0B@f̂n
1CAlog2

√
pfn (Y )e−c(fn)log2

· 1R r
p

f̂n

·pf∗ dy



 .
(15.49)

Now, simply multiply the argument inside the log by
√

pf∗ (Y )

pf∗ (Y ) to get

E

[
H2

(
p^
fn

, pf∗

)]
≤ 2E

log
√pf∗ (Y )√

pfn (Y )

r
p

f̂n

(Y )

√
pf∗ (Y )

e

−c

0B@f̂n
1CAlog2

e−c(fn)log2 · 1R r
p

f̂n

(y)·pf∗ (y) dy




= E
[
log
(
pf∗ (Y )

pfn (Y )

)]
+ 2c (fn) log2

+ 2E

log

r
p

f̂n

(Y )

√
pf∗ (Y )

· e

−c

0B@f̂n
1CAlog2R r

p

f̂n

(y)·pf∗ (y) dy




= K (pfn , pf∗) + 2c (fn) log2

+ 2E

log

r
p

f̂n

(Y )

√
pf∗ (Y )

· e

−c

0B@f̂n
1CAlog2R r

p

f̂n

(y)·pf∗ (y) dy


 .

(15.50)

The terms K (pfn , pf∗) + 2c (fn) log2 are precisely what we wanted for the upper bound of the
theorem. So, to �nish the proof we only need to show that the last term is non-positive. Applying
Jensen's inequality, we get

2E

log

√
p^
fn

(Y )√
pf∗ (Y )

· e
−c

0@^fn
1Alog2

∫ √
p^
fn

(y) · pf∗ (y) dy


 ≤ 2log

E
e
−c

0@^fn
1Alog2

·

√
p

f̂n

(Y )

pf∗ (Y )∫ √
p^
fn

(y) · pf∗ (y) dy


 .

(15.51)

Both Y and
^
fn are random, which makes the expectation di�cult to compute. However, we can

simplify the problem using the union bound, which eliminates the dependence on
^
fn:

2E

log

r
p

f̂n

(Y )

√
pf∗ (Y )

· e

−c

0B@f̂n
1CAlog2R r

p

f̂n

(y)·pf∗ (y) dy


 ≤ 2log

E
∑

f∈F e
−c(f)log2 ·

r
pf (Y )
pf∗ (Y )R √

pf (y)·pf∗ (y) dy


= 2log

∑
f∈F 2−c(f)

E

»r
pf (Y )
pf∗ (Y )

–
R √

pf (y)·pf∗ (y) dy


= 2log

(∑
f∈F 2−c(f)

)
≤ 0.

(15.52)
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where the last two lines come from

E

[√
pf (Y )
pf∗ (Y )

]
=
∫ √

pf (y)
pf∗ (y)

· pf∗ (y) dy =
∫ √

pf (y) · pf∗ (y) dy (15.53)

and ∑
f∈F

2−c(f) ≤ 1. (15.54)
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Chapter 16

Denoising II: Adapting to Unknown
Smoothness1

16.1 Review: Denoising in Smooth Function Spaces I - Method of
Sieves

Suppose we make noisy measurements of a smooth function:

Yi = f∗ (xi) +Wi, i = {1, ..., n}, (16.1)

where

Wi
i.i.d.∼ N

(
0, σ2

)
(16.2)

and

xi =
(
i

n

)
. (16.3)

The unknown function f∗ is a map

f∗ : [0, 1]→ R. (16.4)

In Lecture 4 (Chapter 5), we consider this problem in the case where f∗ was Lipschitz on [0, 1] . That is, f∗

satis�ed

|f∗ (t)− f∗ (s) | ≤ L|t− s|, ∀t, s ∈ [0, 1] (16.5)

where L > 0 is a constant. In that case, we showed that by using a piecewise constant function on a partition

of n
1
3 equal-size bins Figure 16.1 we were able to obtain an estimator

^
fn whose mean square error was

E

[
‖ f∗ −

^
fn‖

2

]
= O

(
n−

2
3

)
. (16.6)

1This content is available online at <http://cnx.org/content/m16268/1.2/>.
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Figure 16.1: Example of the piecewise constant approximation of f∗

In this lecture we will use the Maximum Complexity-Regularized Likelihood Estimation result we derived
in Lecture 14 (Chapter 15) to extend our denoising scheme in several important ways.

To begin with let's consider a broader class of functions.

16.2 Hölder Spaces

For 0 < α < 1, de�ne the space of functions

Hα (Cα) = {|f | < Cα : sup
x,h

|f (x+ h)− f (x) |
|h|α

≤ Cα} (16.7)

for some constant Cα < ∞ and where f ∈ L∞.H
α above contains functions that are bounded, but less

smooth than Lipschitz functions. Indeed, the space of Lipschitz functions can be de�ned as H1 (α = 1)

H1 (C1) = {|f | < C1 : sup
x,h

|f (x+ h)− f (x) |
|h|

≤ C1} (16.8)

for C1 <∞. Functions in H1 are continuous, but those in Hα, α < 1, are not in general.
Let's also consider functions that are smoother than Lipschitz. If α = 1+β, where 0 < β < 1, then de�ne

Hα (Cα) = {f ∈ H1 (Cα) :
∂f

∂x
∈ Hβ (Cα)}. (16.9)

In other words, Hα, 1 < α < 2, contains Lipschitz functions that are also di�erentiable and their derivatives
are Hölder smooth with smoothness β = α− 1.

And �nally, let

H2 (C2) = {f :
∂f

∂x
∈ H1 (C2)} (16.10)

contain functions that have continuous derivatives, but that are not necessarily twice-di�erentiable.
If f ∈ Hα (Cα), 0 < α ≤ 2, then we say that f is Hölder−α smooth with Hölder constant Cα. The notion

of Hölder smoothness can also be extended to α > 2 in a straightforward way.
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Note: If α1 < α2 then

f ∈ Hα2 ⇒ f ∈ Hα1 . (16.11)

Summarizing, we can describe Hölder spaces as follows. If f∗ ∈ Hα (Cα) for some 0 < α ≤ 2 and Cα <∞,
then

(i): 0 < α ≤ 1 |f∗ (t)− f∗ (s) | ≤ Cα|t− s|α

(ii): 1 < α ≤ 2
∣∣∣∂f∗∂x (t)− ∂f∗

∂x (s)
∣∣∣ ≤ Cα|t− s|α−1

Note that in general there is a natural relationship between the Hölder space containing the function and
the approximation class used to estimate the function. Here we will consider functions which are Hölder−α
smooth where 0 < α ≤ 2 and work with piecewise linear approximations. If we were to consider smoother
functions, α > 2 we would need consider higher order approximation functions, i.e. quadratic, cubic, etc.

16.3 Denoising Example for Signal-plus-Gaussian Noise Observation
Model

Now let's assume f∗ ∈ Hα (Cα) for some unknown α (0 < α ≤ 2); i.e. we don't know how smooth f∗ is. We
will use our observations

Yi = f∗ (xi) +Wi, i = {1, ..., n}, (16.12)

to construct an estimator
^
fn. Intuitively, the smoother f∗ is, the better we should be able to estimate it.

Can we take advantage of extra smoothness in f∗ if we don't know how smooth it is? The smoother f∗ is,
the more averaging we can perform to reduce noise. In other words for smoother f∗ we should average over
larger bins. Also, we will need to exploit the extra smoothness in our approximation of f∗. To that end, we
will consider candidate functions that are piecewise linear functions on uniform partitions of [0, 1] . Let

Fk = {
|f | ≤ C : f is piecewise linear on

[
0, 1

k

)
,
[

1
k ,

2
k

)
, ...
[
k−1
k , 1

)
and the

coe�cients of each line segment are quantized to 1
2 logn bits.

}. (16.13)
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Figure 16.2: Example on the quantization of f on interval
ˆ

i−1
k
, i

k

´

The start and end points of each line segment are each one of
√
n discrete values, as indicated in Fig-

ure 16.2. Since each line may start at any of the
√
n levels and terminate at any of the

√
n levels, there are

a total of n possible lines for each segment.
Given that there are k intervals we have

|Fk| = nk ⇒ log |Fk| = klogn. (16.14)

Therefore we can use klogn bits to describe a function f ∈ Fk.
Let

F =
⋃
k≥1

Fk. (16.15)

Construct a pre�x code for every f ∈ F by

(i) Use 000 · · · 1︸ ︷︷ ︸
k bits

to encode the smallest k such that f ∈ Fk

(ii) Use klogn bits to encode which element of Fk we are considering.

(16.16)

Thus, if f ∈ Fk, then the pre�x code associated with f has codeword length

c (f) = k + klogn = k (1 + logn) (16.17)

which satis�es the Kraft Inequality ∑
f∈F

2−c(f) ≤ 1. (16.18)
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Now we will apply our complexity regularization result to select a function
^
fn from F and bound its risk.

We are assuming Gaussian errors, so

−logpf (Yi) =

(
Yi − f

(
i
n

))2
2σ2

+ constant. (16.19)

We can ignore the constant term and so our empirical selection is

^
fn = argmin

f∈F
{ 1
n

n∑
i=1

(
Yi − f

(
i
n

))2
2σ2

+
2c (f) log2

n
}. (16.20)

We can compute
^
fn according to:

For k = 1, ..., n

^
f

(k)

n = argmin
f∈Fk

^
Rn (f) = argmin

f∈Fk

1
n

n∑
i=1

(
Yi − f

(
i
n

))2
2σ2

(16.21)

then select

^
k= arg min

k=1,...,n
{
^
Rn

^
f

(k)

n

+
2k (1 + logn) log2

n
} (16.22)

and �nally

^
fn =

^
f

0@^k
1A

n . (16.23)

Because the KL divergence and −2log a�nity simply reduce to squared error in the Gaussian case (Lecture

14) (Chapter 15), we arrive at a relatively simple bound on the mean square error of
^
fn

1
n

n∑
i=1

E

(^fn( in
)
− f∗

(
i

n

))2
 ≤ min

f∈F
{ 2
n

n∑
i=1

(
f

(
i

n

)
− f∗

(
i

n

))2

+
8σ2c (f) log2

n
}. (16.24)

The �rst term in the brackets above is related to the error incurred by approximating f∗ by an element of
F . The second term is related to the estimation error involved with the model selection process.

Let's focus on the approximation error. First, suppose f∗ ∈ Hα (Cα) for 1 < α ≤ 2. Let f∗k be the
�best" piecewise linear approximation to f∗, with k pieces on intervals

[
0, 1

k

)
,
[

1
k ,

2
k

)
, ...
[
k−1
k , 1

)
. Consider

the di�erence between f∗ and f∗k on one such interval, say
[
i−1
k , ik

)
. By applying Taylor's theorem with

remainder we have

f∗ (t) = f∗
(
i

k

)
+
∂f∗

∂x

(
t'
)(

t− i

k

)
(16.25)

for t ∈
[
i−1
k , ik

)
and some t' ∈

[
t, ik
]
. De�ne

f∗k (t) ≡ f∗
(
i

k

)
+
∂f∗

∂x

(
i

k

)(
t− i

k

)
. (16.26)
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Note that f∗k (t) is not necessarily the best piecewise linear approximation to f∗, just good enough for our
purposes. Then using the fact that f∗ ∈ Hα (Cα), for t ∈ [i− 1/k, i/k) we have

|f∗ (t)− f∗k (t)| =
∣∣∣∂f∗∂x (t') (t− i

k

)
− ∂f∗

∂x

(
i
k

) (
t− i

k

)∣∣∣
≤ 1

k

∣∣∣∂f∗∂x (t')− ∂f∗

∂x

(
i
k

)∣∣∣
≤ 1

kCα
∣∣t' − i

k

∣∣α−1

≤ 1
kCα

(
1
k

)α−1 = Cαk
−α.

(16.27)

So, for all t ∈ [0, 1]

|f∗ (t)− f∗k (t)| ≤ Cαk−α. (16.28)

Now let fk be the element of Fk closest to f∗k (fk is the quantized version of f∗k )

|f∗ (t)− fk (t)| = |f∗ (t)− f∗k (t) + f∗k (t)− fk (t)|
≤ |f∗ (t)− f∗k (t)|+ |f∗k (t)− fk (t)|
≤ Cαk

−α + 1√
n

(16.29)

since we used 1
2 logn bits to quantize the endpoints of each line segment. Consequently,

|f∗ (t)− f∗k (t)|2 ≤ |f∗ (t)− f∗k (t)|2 + 2 |f∗ (t)− f∗k (t)| |f∗k (t)− fk (t)|+ |f∗k (t)− fk (t)|2

≤ C2
αk
−2α + 2Cα k

−α
√
n

+ 1
n .

(16.30)

Thus it follows that

min
f∈Fk

{ 2
n

n∑
i=1

(f (i/n)− f∗ (i/n))2+
8σ2c (f) log2

n
} ≤ 2C2

αk
−2α+

4Cαk−α√
n

+
2
n

+
8σ2k (logn+ 1) log2

n
. (16.31)

The �rst and last terms dominate the above expression. Therefore, the upper bound is minimized when

k−2α and k
n are balanced. This is accomplished by choosing k = bn

1
2α+1 c. Then it follows that

min
f∈Fk

{ 2
n

n∑
i=1

(
f

(
i

n

)
− f∗

(
i

n

))2

+
8σ2c (f) log2

n
} = O

(
n−

2α
2α+1 logn

)
. (16.32)

If α = 2 then we have

1
n

n∑
i=1

E

(^fn( in
)
− f∗

(
i

n

))2
 = O

(
n−

4
5 logn

)
. (16.33)

If f∗ ∈ Hα (Cα) for 0 < α ≤ 1, let f∗k be the following piecewise constant approximation to f∗. Let

f∗k (t) ≡ f∗
(
i

n

)
on interval

[
i− 1
k

,
i

k

)
. (16.34)

Then

|f∗ (t)− f∗k (t)| =
∣∣f∗ (t)− f∗

(
i
n

)∣∣
≤ Cα

∣∣t− i
n

∣∣α
≤ Cαk

−α.

(16.35)
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Repeating the same reasoning as in the 1 < α ≤ 2 case, we arrive at

1
n

n∑
i=1

E

(^fn( in
)
− f∗

(
i

n

))2
 = O

(
n−

2α
2α+1 logn

)
(16.36)

for 0 < α ≤ 1. In particular, for α = 1 we get

1
n

n∑
i=1

E

(^fn( in
)
− f∗

(
i

n

))2
 = O

(
n−

2
3 logn

)
(16.37)

within a logarithmic factor of the rate we had before (in Lecture 4 (Chapter 5)) for that case!

16.4 Summary

1.
^
fn can be computed by �nding least-square line �ts to the data on partitions of the form[
0, 1

k

)
,
[

1
k ,

2
k

)
, ...
[
k−1
k , 1

)
for k = 1, ..., n, and then selecting the best �t by the

^
k that gives the

minimum of the complexity regularization criterion.
2. If f∗ ∈ Hα (Cα) for some 0 < α ≤ 2, then

MSE

(
^
fn

)
=

1
n

n∑
i=1

E

(^fn( in
)
− f∗

(
i

n

))2
 = O

(
n−

2α
2α+1 logn

)
. (16.38)

3.
^
fn automatically picks the optimal number of bins. Essentially

^
fn (indirectly) estimates the smoothness

of f∗ and produces a rate which is near minimax optimal ! (n−
2α

2α+1 is the best possible).
4. The larger α is the faster the convergence and the better the denoising !
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Chapter 17

Nonlinear Approximation and Wavelet
Analysis1

17.1 Review

In Lecture 4 (Chapter 5) and 15 (Chapter 16), we investigated the problem of denoising a smooth signal in
additive white noise. In Lecture 4 (Chapter 5), we considered Lipschitz functions and showed that by �lling
constants on a uniform partition of width n−1/3 we can achieve an n−2/3 rate of MSE convergence.

In Lecture 15 (Chapter 16), we considered Holder-α smooth functions, and we demonstrated that by
automatically selecting partition width and using polynomial �ts we can obtain a MSE convergence rate of
n−2α/2α+1, substantially better when α > 1. Also important is the fact that we don't need to know the value

of α a priori. The estimator
^
fn is fundamentally di�erent than its counterpart in Lecture 4 (Chapter 5).

In both cases
^
fn (t) is a linear function (polynomial on constant �t) of the data in each interval of the

underlying partition. In Lecture 4 (Chapter 5), the partition was independent of the data, and so the overall
estimator is a linear function of the data .

However, in Lecture 15 (Chapter 16) the partition itself was selected based on the data. Consequently,
^
fn (t) is a non-linear function of the data . Linear estimators (linear functions of the data) cannot adapt to
unknown degrees of smoothness. In this lecture, we lay the groundwork for one more important extension
in the denoising application - spatial adaptivity. That is, we would like to construct estimators that not
only adapt to unknown degrees of global smoothness, but that also adapt to spatially varying degrees of
smoothness.

We will focus on the approximation theoretic aspects of the problem in this lecture, considering tree-
based approximations and wavelet expansions. In the next lecture (Chapter 21), we will apply these results
to the denoising problem, this will bring us up to date with the current state-of-the-art in denoising and
non-parametric estimation.

Recall that Holder spaces contain smooth functions that are well approximated with polynomials or
piecewise polynomial functions. Holder spaces are quite large and contain many interesting signals. However,
Holder spaces are still inadequate in many applications. Often, we encounter functions that are not smooth
everywhere; they contain discontinuities, jumps, spikes, etc. Indeed, the "singularities" (or non-smooth
points) can be the most interesting and informative aspects of the functions.

Example 17.1
Functions not smooth everywhere.

1This content is available online at <http://cnx.org/content/m16278/1.3/>.
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(a)

(b)

Figure 17.1: Example of functions not smooth everywhere. (a) 1-D Case (b) 2-D Case

Furthermore, functions of interest may possess di�erent degrees of smoothness in di�erent re-
gions.

Example 17.2
Functions with di�erent degrees of smoothness.
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(a)

(b)

Figure 17.2: Example of functions having di�erent degrees of smoothness. (a) 1-D Case (b) 2-D Case

17.2 NonLinear Approximation via Trees

Let Bα (Cα) denote the set of all functions that are Hα (Cα) everywhere except on a set of measure zero. To

simplify the notation, we won't explicitly identify the domain (e.g., [0, 1] or [0, 1]d); that will be clear from
the context.

Example 17.3: Sets of measure zero
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(a)

(b)

Figure 17.3: Sets of measure zero. (a) 1-D Case (b) 2-D Case

Let's consider a 1-D case �rst.
Let f ∈ Bα (Cα) and consider approximating f by a piecewise polynomial function on a uniform

partition.
If f is Holder-α smooth everywhere, then by using an appropriate partition width k−1 and

�tting degree dαe polynomials on each interval we have an approximation fk satisfying

|f (t)− fk (t) | ≤ Cαk−α (17.1)

and

||f − fk||2L2
= O

(
k−2α

)
. (17.2)
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Figure 17.4: Smooth curve with a discontinuity.

However, if there is a discontinuity then for t in the interval containing the discontinuity the
di�erence

|f (t)− fk (t) | (17.3)

will not be small.

Example 17.4
Suppose f is piecewise Lipschitz and fk ia a piecewise constant.
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Figure 17.5

|f (t)− fk (t) | ≈ ∆ (17.4)

where ∆ is a constant equal to average of f on right and left side of discontinuity in this interval.

⇒ ||f − fk||2L2
= O

(
k−1

)
(17.5)

where k−1 is the width of the interval. Notice this rate is quite slow.
This problem naturally suggests the following remedy: use very small intervals near discontinu-

ities and larger intervals in smooth regions. Speci�cally, suppose we use intervals of width k−2α to
contain the discontinuities and the intervals of width k−1 elsewhere. Then accordingly piecewise
polynomial approximation f̃k satis�es

||f − f̃k||2L2
= O

(
k−2α

)
. (17.6)

We can accomplish this need for "adaptive resolution" or "multiresolution" using recursive parti-
tions and trees.

17.3 Recursive Dyadic Partitions

We discussed this idea already in our examination of classi�cation trees. Here is the basic idea again,
graphically.
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Figure 17.6: Complete and pruned RDP along with their correspnding tree structures.

Consider a function f ∈ Bα (Cα) that contains no more than m points of discontinuity, and is Hα (Cα)
away from these points.

Lemma 17.1:
Consider a complete RDP with n intervals, then there exists an associated pruned RDP with

O (klogn) intervals, such that an associated piecewise degree dαe polynomial approximation ˜(f)k,
has a squared approximation error of O

(
min

(
k−2α, n−1

))
.

Proof:
Assume n > k > m. Divide [0, 1] into k intervals. If f is smooth on a particular interval I, then

|f (t)− f̃k (t) | = O
(
k−2α

)
∀t ∈ I. (17.7)

In intervals that contain a discontinuity, recursively subdivide into two until the discontinuity is
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contained in an interval of width n−1. This process results in at most log2n addition subintervals
per discontinuity, and the squared approximation error is O (k − 2α) on all of them accept the m
intervals of width n−1 containing the discontinuities where the error is O (1) at each point.

Thus, the overall squared L2 norm is

||f − f̃k||2L2
= O

(
min

(
k−2α, n−1

))
(17.8)

and there are at most k + log2n intervals in the partition. Since k>m, we can upperbound the
number of intervals by 2klog2n.

Note that if the initial complete RDP has n ≈ k2α intervals, then the squared error is O
(
k−2α

)
.

Thus, we only incur a factor of 2αlogk additional leafs and achieve the same overall approxima-
tion error as in the Hα (Cα) case. We will see that this is a small price to pay in order to handle
not only smooth functions, but also piecewise smooth functions.

17.4 Wavelet Approximations

Let f ∈ L2 ([0, 1]);
∫
f2 (t) dt <∞.

A wavelet approximation is a series of the form

f = co +
∑
j≥0

2j∑
k=1

< f,ψj,k > ψj,k (17.9)

where co is a constant
(
co =

∫ 1

0
f (t) dt

)
,

< f,ψj,k > =
∫ 1

0

f (t)ψj,k (t) dt (17.10)

and the basis functions ψj,k are orthonormal, oscillatory signals, each with an associated scale 2−j and
position k2−j . ψj,k is called the wavelet at scale 2−j and position k2−j .

Example 17.5: Haar Wavelets

ψj,k (t) = 2j/2
(
1{t∈[2−j(k−1),2−j(k−1/2)]} − 1{t∈[2−j(k−1/2),2−jk]}

)
(17.11)
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Figure 17.7: Haar Wavelet

∫ 1

0

ψj,k (t) dt = 0 (17.12)

∫ 1

0

ψ2
j,k (t) dt =

∫ k2−j

(k−1)2−j
2jdt = 1 (17.13)

∫ 1

0

ψj,k (t)ψl,m (t) dt = δj,l.δk,m (17.14)

Note: If f is constant on
[
2−j (k − 1) , 2−jk

]
, then

∫
fψj,k (t) = 0. (17.15)

Suppose f is piecewise constant with at most m discontinuities. Let

fJ = co +
J−1∑
j=0

2j∑
k=1

< f,ψj,k > ψj,k. (17.16)
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Then, fJ has at most mJ non-zero wavelet coe�cients; i.e., < f,ψj,k > = 0 for all but mJ terms,
since at most one Haar Wavelet at each scale senses each point of discontinuity. Said another way,
all but at most m of the wavelets at each scale have support over constant regions of f .

fJ itself will be piecewise constant with discontinuities only possible occurring at end points of
the intervals

[
2−J (k − 1) , 2−Jk

]
. Therefore, in this case

||f − fJ ||2L2
= O

(
2−J

)
. (17.17)

Daubechies wavelets are the extension of the Haar wavelet idea. Haar wavelets have one "vanishing
moment": ∫ 1

0

ψj,k = 0. (17.18)

Daubechies wavelets are "smoother" basis functions with extra vanishing moments. The
Daubechies-N wavelet has N vanishing moments.∫ 1

0

tlψj,kdt = 0forl = 0, 1, ..., N − 1. (17.19)

The Daubechies-1 wavelet is just the Haar case.
If f is a piecewise degree ≤ N polynomial with at most m pieces, then using the Daubechies-N

wavelet system.

||f − fJ ||2L2
= O

(
2−J

)
; (17.20)

and

fJ (t) = co +
J−1∑
j=0

2j∑
k=1

< f,ψj,k > ψj,k (t) (17.21)

has at most O (mJ) non-zero wavelet coe�cients. fJ is called the Discrete Wavelet Transform
(DWT) approximation of f . The key idea is the same as we saw with trees.

17.5 Sampled Data

We can also use DWT's to analyze and represent discrete, sampled functions. Suppose,

f = [f (1/n) , f (2/n) , ..., f (n/n)] (17.22)

then we can write f as

f = co +
log2n−1∑
j=0

2j∑
k=1

< f, ψ
j,k

> ψ
j,k

(17.23)

where

ψ
j,k

= [ψj,k (1) , ψj,k (2) , ..., ψj,k (n)] (17.24)

is a discrete time analog of the continuous time wavelets we considered before. In particular,

n∑
i=1

ilψj,k (i) = 0, l = 0, 1, ..., N − 1 (17.25)
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for the Daubechies-N discrete wavelets.

< f, ψ
j,k

> = fTψ
j,k

(17.26)

Thus, we also have an analogous approximation result: If f are samples from a piecewise degree ≤ N poly-
nomial function with a �nite number m of discontinuities, then f has O (mJ) non-zero wavelet coe�cients.

17.6 Approximating functions with wavelets

Suppose f ∈ Bα (Cα) and has a �nite number of discontinuities. Let fp denote piecewise degree-N (N = dαe)
polynomial approximation to f with O (k) pieces; a uniform partition into k equal length intervals followed
by addition splits at the points of discontinuity.

Figure 17.8

Then

|f (t)− fp (t) |2 = O
(
k(−2α)

)
∀t ∈ [0, 1] (17.27)

⇒ |f (i/n)− fp(i/n) |2 = O
(
k−2α

)
i = 1, ..., n (17.28)

⇒ 1/n||f − f
p
||2L2

= O
(
k−2α

)
(17.29)
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and f
p
has O (klog2n) non-zero coe�cients according to our previous analysis.

17.7 Wavelets in 2-D

Suppose f is a 2-D image that is piecewise polynomial:

Figure 17.9

A pruned RDP of k squares decorated with poly�ts gives

||f − fk||2L2
= O

(
k−1

)
. (17.30)
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Figure 17.10

Let f =
[
f (i/k, j/k)ni,j=1 sample range.

fn (t) =
k∑

i,j=1

f (i/k, j/kk) 1{t∈[i−1/k,i/k)x[j−1/k,j/k)} (17.31)

then

||f − fn||2L2
= O

(
k−1

)
(17.32)

O (1) error on k of the k2 pixels, near zero elsewhere. The DWT of f has O (k) non-zero wavelet coe�cients.

O
(
2j
)
at scale 2−j , j = 0, 1, ..., logn.
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Chapter 18

Vapnik-Chervonenkis Theory1

18.1 Review of Past Lecture

In our past lectures we considered collections of candidate function F that were either �nite or enumerable.
We then constructed penalties, usually codelengths, for each candidate c (f), f ∈ F , such that

∑
f∈F2c(f) ≤ 1

This allowed us to derive uniform concentration inequalities over the entire set F using the union bound.
However, in many cases the collections F may be uncountably in�nite. A simple example is the collection
F of a single threshold classi�er in 1-d having the form

ft (x) = 1{x≥t} (18.1)

and their complements

fs (t) = 1{x<s}. (18.2)

Thus, F contains an uncountable number of classi�ers, and we cannot apply the union bound argument in
such cases.

18.2 Two Ways to Proceed

18.2.1 Discretize or Quantize the Collection

Example 18.1
To quantize F

Fq = {f, f (x) = 1{x≤1/qii∈{0,1,...,q}}} (18.3)

q is positive, such that ∀fq ∈ Fq ∫
|f − fq| ≤ c/q (18.4)

if the density of x is bounded by c > 0. q < n1/2.

1This content is available online at <http://cnx.org/content/m16284/1.2/>.
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18.2.2 Identical Empirical Errors

Consider the fact that given only n training data, many of the classi�ers in such a collection may produce
identical empirical errors. Also, many f ∈ F will produce identical label assignments on the data. We will
have at most 2n unique labels.

f is uncountable, its interceptions are countable and bounded by 2n. n intervals with 2 classi�er per
interval.

The number of distinct labeling assignments that a class F can produce on a set of n points is denoted

S (F , n) ≤ 2n (18.5)

The VC dimension is logS (F , n). Speci�cally, V C (F) = k, where k is largest integer such that S (F , k) = 2k

Ex. 2n = 2n, n = 2, V C (F) = 2.
Ex. Consider

F = {f : f (x) = 1{x≥t}orf (x) = 1{x<t}, t ∈ [0, 1]} (18.6)

Let q be a positive integer and

Fq = {f : f (x) = 1{x≥i/q}orf (x) = 1{x<i/q}, i ∈ {0, 1, ..., q}} (18.7)

and,

|fq| = 2 (q + 1) . (18.8)

Moreover, for any f ∈ F there exists an f1 ∈ Fq such that∫
|f (x)− fq (x) |dx ≤

∫ i/q

(i−1)/q

1dx = 1/q. (18.9)

Now suppose we have n training data and suppose f∗ ∈ F . We know that in general, the minimum empirical
risk classi�er will converge to the Bayes classi�er at the rate of n−1/2 or slower. Therefore, it is unnecessary
to drive the approximation error down faster than n−1/2 So, we can restrict our attention of Fn−1/2 and,
provided that the density of x is bound above. We have

minf∈F
n−1/2R (f)−R (f∗) ≤ Cfqmin

∫
|f∗ (x)− f (x) |dx ≤ c/n1/2. (18.10)

Vapnik-Chervonenkis theory is based not on explicitly quantizing the collection of candidate functions, but
rather on recognizing that the richness of F is limited in a certain sense by the number of training data.
Indeed, given n i.i.d. training data, there are at most 2n di�erent binary labelings. Therefore, any collection
F may be divided into 2n subsets of classi�ers that are "equilvalent" with respect to the training data. In
many cases a collection may not even be capable of producing 2n di�erent labellings.

18.3 Example

Consider X = [0, 1].

F = {f : f (x) = 1{x≥t}orf (x) = 1{x<t}t ∈ [0, 1]} (18.11)

Suppose we have n training data: (x1, ..., xn) ∈ [0, 1]. With xs denotes the location of each training point
in [0,1]. Associated with each x is a label y ∈ {0, 1}. Any classi�er in F will label all points to the left of a
number t ∈ [0, 1] as "1" or "0", and points to the right as "0" or "1", respectively. For t ∈ [0, x1), all points
are either labelled "0" or "1". For t ∈ (x1, x2), x1 is labelled "0" or "1" and x2...xn are label "1" or "0" and
so on. We see that there are exactly 2n di�erent labellings; far less than 2n!
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The number of di�erent labellings that a class F can produce on a set of n training data is a measure of
the "e�ective size" of F . The Vapnik-Chervonenkis (VC) dimension of F is proportional to the log of the
e�ective size. Let V (F , n) denote the VC dimension of F , typically a constant, independent of n. The VC
inequality states that for all f ∈ F

P

(
|
^
Rn (f)−R (f) | > ε

)
≤ 8eV (F,h)e−nε

2/32. (18.12)

This type of uniform concentration inequality can be used in a similar fashion to our use of Hoe�ding's
inequality plus union bound.

18.4 Hyperplane Classi�ers

We will go into the details of VC Theory next lecture (Chapter 18), and the remainder of this lecture will

introduce the key ideas with an example Consider the following setup. Let X = [0, 1]d, Y = {0, 1} Let

F = {f : f (x) = 1{wT x+w0>0}} (18.13)

with w0 and w∈ Rd+1 This is the collection of all hyperplane classi�ers. F is in�nite and uncountable.
Suppose that we have n training data

{Xi, Yi}ni=1. (18.14)

There are at most 2
(
n
d

)
unique classi�ers in F with respect to these data. To see this, consider d arbitrary

data points x1, ..., xid , and let wTx + w0 > 0 be a hyperplane containing these points. To be speci�c, take
the hyperplane with

||w0w|| = 1. (18.15)

this hyperplane coincides with two possible classi�cation rules:

f1 (x) = 1{wT x+w0>0} (18.16)

f2 (x) = 1{wT x+w0<0} (18.17)

Each d-tuple of training data produces two distinct classi�ers, assuming the data are not co-linear. Thus,
there are at most 2 ∗

(
n
d

)
unique classi�ers in F with respect to the training data. (All other f ∈ F produce

the same labels and empirical risk as one of the classi�ers.) Let's enumerate the unique hyperplane classi�ers
f1, ..., f2∗(nd ), and let

^
fn = arg min

f∈{f1,...,f2(nd )}

^
Rn (f) (18.18)

and let

R∗ = inff∈FR (f) (18.19)

and de�ne

f∗ = argminf∈FR (f) (18.20)

If multiple f ∈ F achieve R∗, pick f∗ to be one of them in an arbitrary �xed number.
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Theorem 18.1:
Assume that Px has a density, but that the distribution of (x, y) is other arbitrary. If n ≥ d and

2d/n ≤ ε ≤ 1 then

P

(
R

(
^
fn

)
−R (f) > ε

)
≤ e2dε

(
2
(n
d

)
+ 1
)
e−nε

2/2. (18.21)

Note: The assumption that Px has a density insures that no d+1 points are co-planar. This in
turn, guarantees that there are exactly 2

(
n
d

)
unique classi�er and that the 2

(
n
d

)
under consideration

are fully representative of all possible classi�ers in F , with respect to the data.

Proof:
The proof is a specialization of the basic ingredients of VC Theory to the case at hand. Here we
follow the proof in DGL '96. First we note that,

R

(
^
fn

)
−R (f∗) = R

(
^
fn

)
−
^
Rn

(
^
fn

)
+
^
Rn

(
^
fn

)
−R (f∗) (18.22)

≤ R

(
^
fn

)
−
^
Rn

(
^
fn

)
+
^
Rnf

∗ −R (f∗) + d/n (18.23)

and since
^
Rn

(
^
fn

)
≤

^
Rn (f) + d/n for any f ∈ F

≤ maxi=1,...,2(nd )

(
R (fi)−

(
^R
)

n

(fi)

)
+
(
^R
)

n

(f∗)−R (f∗) + d/n.(18.24)

Therefore, by the union bound:

P

(
R

(
^
fn

)
−R (f∗) > ε

)
(18.25)

≤
2(nd )∑
i=1

P

(
R (fi)−

^
Rn (fi) > ε/2

)
+ P

(
^
Rn (f∗)−R (f∗) + d/n > ε/2

)
. (18.26)

We can bound the second term of the above bound using Cherno�'s/Hoe�ding's inequality:

P

(
^
Rn (f∗)−R (f∗) > ε/2− d/n

)
(18.27)

≤ e−2n(ε/2−d/n)2 (18.28)

≤ e2dεe−nε
2/2. (18.29)

Next, let's bound one of the terms in the summation. For example, take

P

(
R (fi)−

^
Rn (fi) > (ε/2)

)
. (18.30)

Note that by symmetry all 2
(
n
d

)
terms will have identical bounds. Since the bounds are indepen-

dent of Pxy.
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Assume that f1 is determined by the �rst d data points x14, ..., xd. By the smoothing property
of expectations we can write,

P

(
R (fi)−

^
Rn (f) > ε/2

)
= E

[
P

(
R (fi)−

^
Rn (fi) > ε/2|x1, ..., xd

)]
. (18.31)

From here, we will bound the conditional probability inside the expectation. Let(
X”

1 , Y
”
1

)
, ...,

(
X”
d , Y

”
d

)
be d additional random samples that are independent and identically dis-

tributed as the data (X1, Y1) , ..., (Xd, Yd). {X”
i , Y

”
i }di=1 are often called the "ghost sample" since

they are not actually observed. They are a �ctious sample leads to a simple bound on the conditional
probability. De�ne if i ≤ d (

X
'

i , Y
'

i

)
=
(
X”
i , Y

”
i

)
(18.32)

or if i > d (
X

'

i , Y
'

i

)
= (Xi, Yi) . (18.33)

That is, {X '

i , Y
'

i }di=1 agrees with our observed data on i>d, but the �rst d samples are replaced
with the ghost sample. Then,

P

(
R (fi)−

^
Rn (f1) > ε/2|x1, ..., xd

)
(18.34)

≤ P

(
R (fi)− 1/n

n∑
i=d+1

1f1(xi)6=yi > ε/2|x1, ..., xd

)
(18.35)

≤ P

(
R (fi)− 1/n

n∑
1

1f1(xi)6=yi + d/n > ε/2|x1, ..., xd

)
(18.36)

= P

(
R (fi)−

(
^R
)'

n
(f1) > t/2− d/n|x1, ..., xd

)
(18.37)

where,

^
R

'

n (f1) = 1/n
n∑
i=1

1{f1
“
x

'

i

”
6=y'

i}
. (18.38)

Note that n
(
^R
)'

n
(f1) is binomially distributed with mean R (f1) and it is independent of

x1, ..., xd Therefore,

P

R (fi)−
^
R

'

n (f1) > ε/2− d/n|x1, ..., xd

 (18.39)

= P

R (fi)−
^
R

'

n (f1) > t/2− d/n|x1, ..., xd

 (18.40)

≤ e−2n(ε/2−d/n)2 (18.41)

≤ e2dεe−nε
2/2. (18.42)
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In conclusion,

P

(
R

(
^
fn

)
−R∗ > ε

)
(18.43)

≤
2(nd )∑
i=1

P

(
R(f)i −

^
Rn (ti) > ε/2

)
+ P

(
^
Rn (f∗)−R (f∗) + d/n > ε/2

)
(18.44)

≤ 2
(n
d

)
e2dεe−nε

2/2 + e2dεe−nε
2/2 (18.45)

= e2dε
(

2
(n
d

)
+ 1
)
e−nε

2/2. (18.46)

Lastly, Corollary If n ≥ d, then

E

[
R

(
^
fn

)
−minf∈FR (f)

]
≤
√

2 (d+ 1) (logn+ 2) /n. (18.47)



Chapter 19

The Vapnik-Chervonenkis Inequality1

19.1 The Vapnik-Chervonenkis Inequality

The VC inequality is a powerful generalization of the bounds we obtained for the hyperplane classi�er in the
previous lecture (Chapter 21). The basic idea of the proof is quite similar. Before starting the inequality,
we need to introduce the concept of shatter coe�cients and VC dimension .

19.2 Shatter Coe�cients

Let A be a collection of subsets of Rd, de�nition : The nth shatter coe�cient of A is de�ned by

SA (n) =
max

x1, ..., xn εRd

∣∣∣{{x1, ..., xn}
⋂
A,A εA}

∣∣∣ . (19.1)

The shatter coe�cients are a measure of the richness of the collection A. SA (n) is the largest number of
di�erent subsets of a set of n points that can be generated by intersecting the set with elements of A.

Example 19.1
In 1-d, Let A = {(−∞, t] , t εR} Possible subsets of {x1, ..., xn} generated by intersecting with sets
of the form (−∞, t] are {x1, ..., xn}, {x1, ..., xn−1}, ..., {x1}, φ. Hence Sd (n) = n+ 1.

Example 19.2
In 2-d, Let A = { all rectangles in R2}

Consider a set {x1, x2, x3, x4} of training points. If we arrange the four points into the corner
of a diamond shape. It's easy to see that we can �nd a rectangle in R2 to cover any subsets of the
four points as the above picture, i.e. SA (4) = 24 = 16.

Clearly, SA (n) = 2n, n = 1, 2, 3 as well.
However, for n = 5,SA (n) < 25. This is because we can always select four points such that the

rectangle, which just contains four of them, contains the other point. Consequently, we cannot �nd
a rectangle classi�er which contains the four outer points and does not contain the inner point as
shown above.

Note the SA ≤ 2n.
If |{{x1, ..., xn}

⋂
A,A εA}| = 2n then we say that A shatters x1, ..., xn.

1This content is available online at <http://cnx.org/content/m16283/1.2/>.
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19.3 VC Dimension

De�nition 19.1: The VC dimension
VA of a collection of sets A is de�ned as the largest interger n such that SA (n) = 2n.
Example
A = {(−∞, t] ; t εR},SA = n+ 1 hence VA = 1.

Example
A = { all rectangles in R2}.
SA = 2n, n = 1, 2, 3, 4 and SA ≤ 2n, n = 4, Hence VA = 4.
The VC dimension provides a useful bound on the growth of the shatter coe�cients.

19.4 Sauer's Lemma:

Let A be a collection of set with VC dimension VA < ∞. Then ∀n,SA (n) ≤
∑VA
i=0

 n

i

, also SA (n) ≤

(n+ 1)VA ,∀n.

19.5 VC Dimension and Classi�ers

Let F be a collection of classi�ers of the form f : Rd → {0, 1} De�ne A = {{x : f (x) = 1} × {0}
⋃
{x :

f (x) = 0} × {1}, f εF} In words, this is collection of subsets of X ×Y for which on fεF maps the features
x to a label opposite of y. The size of A expresses the richness of F . The larger A is the more likely it is
that there exists an fεF for which R (f) = P (f (X) 6= Y ) is close to the Bayes risk R∗ = P (f∗ (X) 6= Y )
where f∗ is the Bayes classi�er. The nth shatter coe�cient of F is de�ned as SF (n) = SA (n) and the VC
dimesion of F is de�ned as VF = VA.

Example 19.3
linear (hyperplane) classi�ers in Rd

Consider d = 2. Let n be the number of training points, it is easy to see that when n = 1, let A
be as above. By using linear classi�ers in R2, it is easy to see that we can assign 1 to all possible
subsets {{x1}, φ} and 0 to their complements. Hence SF (1) = 2.

When n = 2, we can also assign 1 to all possible subsets {{x1, x2}, {x1}, {x2}, φ} and 0 to their
complements, and vice versa. Hence SF (2) = 4 = 22.

When n = 3, we can arrange arrange the point x1, x2, x3(non-colinear) so that the set of linear
classi�ers shatters the three points, hence SF (3) = 8 = 23

When n = 4, no matter where the points x1, x2, x3, x4 and what designated binary values
y1, y2, y3, y4 are. It's clear that A does not shatter the four points. To see the claim, �rst observe
that the four points will form a 4-gon (if the four points are co-linear, or if the three points are
co-linear then clearly linear classi�ers cannot shatter the points). The two points that belong to
the same diagonal lines form 2 groups and no linear classi�er can assign di�erent values to the 2
groups. Hence SF (4) < 16 = 24 and VF = 3.

We state here without proving it that in general the class of linear classi�ers inRd has VF = d+1.
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19.6 The VC Inequality

Let X1, , ..., Xn be i.i.d. Rd-valued random variables. Denote the common distribution of Xi, 1 ≤ i ≤
n by µ (A) = P (X1 εA) for any subset A ⊂ Rd. Similarly, de�ne the empirical distribution µn (A) =
1
n

∑n
1 1{XiεA}.
Theorem 19.1: VC '71
For any probablilty measure µ and collection of subsets A, and for any ε > 0.

P

 sup

AεA
|µn (A)− µ (A)| > ε

 ≤ 8SA (n) e−nε
2/32 (19.2)

and

E

 sup

AεA
|µn (A)− µ (A)|

 ≤ 2

√
log2SA (n)

n
(19.3)

Before giving a proof to the theorem. We present a Corollary.

Corollary 19.1:
Let F be a collection of classi�ers of the formf : Rd → {0, 1} with VC dimension VF < ∞, Let

R (f) = P (f (X) 6= Y ) and
^
Rn (f) = 1

n

∑n
1 1{f(Xi)6=Yi}, where Xi, Yi, 1 ≤ i ≤ n are i.i.d. with joint

distributionPXY .
De�ne
^
fn =

argmin

fεF

^
Rn (f).

Then

E

[
R

(
^
fn

)]
−

inf

fεF
R (f) ≤ 4

√
VF log (n+ 1) + log2

n
. (19.4)

Proof:
Let A = {{x : f (x) = 1} × {0}

⋃
{x : f (x) = 0} × {1}, f εF}

Note that

P (f (X) 6= Y ) = P ((X,Y ) εA) := µ (A) (19.5)

where A = {x : f (x) = 1} × {0}
⋃
{x : f (x) = 0} × {1}.

Similarly,

1
n

n∑
1

1{f(Xi) 6= Yi} =
1
n

n∑
1

1{(Xi,Yi) ε A} := µ (A) . (19.6)

Therefore, according to the VC theorem.

E

 sup

f εF

∣∣∣∣^Rn (f)−R (f)
∣∣∣∣
 = E

 sup

A εA
|µn (A)− µ (A)|

 ≤ 2
√

log2SA(n)
n

= 2
√

log2SF (n)
n

(19.7)
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Since VF <∞,SF (n) ≤ (n+ 1)VF and

E

 sup

fεF

∣∣∣∣^Rn (f)−R (f)
∣∣∣∣
 ≤ 2

√
VF log (n+ 1) + log2

n
. (19.8)

Next, note that

R

(
^
fn

)
−

inf

f εF
R (f) =

[
R

(
^
fn

)
−
^
Rn

(
^
fn

)]
+

^Rn(^fn
)
−

inf

f εF
R (f)


=

[
R

(
^
fn

)
−
^
Rn

(
^
fn

)]
+

 sup

f εF

(
^
Rn

(
^
fn

)
−R (f)

)
≤

[
R

(
^
fn

)
−
^
Rn

(
^
fn

)]
+

 sup

f εF

(
^
Rn (f)−R (f)

)
≤ 2

sup

f εF

∣∣∣∣^Rn (f)−R (f)
∣∣∣∣

. (19.9)

Therefore,

E

[
R

(
^
fn

)]
−

inf

f εF
R (f) ≤ 2E

 sup

f εF

∣∣∣∣^Rn (f)−R (f)
∣∣∣∣


≤ 4
√

VF log(n+1)+log2
n

. (19.10)



Chapter 20

Applications of VC Bound1

20.1 Linear Classi�ers

Suppose F= {linear classi�ers in Rd}, then we have

VF = d+ 1,
^
fn = argmin

f∈F

^
Rn (f) (20.1)

E

[
R

(
^
fn

)]
− inf
f∈F

R (f) ≤ 4

√
(d+ 1) log (n+ 1) + log2

n
. (20.2)

20.2 Generalized Linear Classi�ers

Normally, we have a feature vector X ∈ Rd. A hyperplane in Rd provides a linear classi�er in Rd. Nonlinear
classi�ers can be obtained by a straightforward generalization.

Let φ1, · · · , φd' , d
' ≥ d be a collection of functions mapping Rd → R. These functions, applied to a

feature X ∈ Rd, produce a generalized set of features, φ = (φ1 (X) , φ2 (X) , · · · , φd' (X))'. For example, if

X = (x1, x2)', then we could consider d' = S and φ =
(
x1, x2, x1x2, x

2
1, x

2
2

)' ∈ R5. We can then construct a

linear classi�er in the higher dimensional generalized feature space Rd'

.
The VC bounds immediately extend to this case, and we have for F ' = { generalized linear classi�ers

based on maps φ : Rd → Rd'

},

E

[
R

(
^
fn

)]
− inf
f∈F '

R (f) ≤ 4

√
(d' + 1) log (n+ 1) + log2

n
. (20.3)

20.3 Half-Space Classi�ers

Theorem 20.1: Steele '75, Dudley '78
Let Gbe a �nite-dimensional vector space of real-valued functions on Rd. The class of sets
A = {{x : g (x) ≥ 0} : g ∈ G} has VC dimension ≥ dim(G).

1This content is available online at <http://cnx.org/content/m16262/1.2/>.
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Proof:
It is su�cient to show that no set of n = dim (G) + 1 points can be shattered by A. Take any n
points and for each g ∈ G, de�ne the vector Vg = (g (x1) , · · · , g (xn)).

The set {Vg : g ∈ G} is a linear subspace of Rn of dimension ≤ dim (G) = n − 1. Therefore,
there exists a non-zero vector α = (α1, · · · , αn) ∈ Rn such that

∑n
i=1 αig (xi) = 0. We can assume

that at least one of these αSi is negative (if all are positive, just negate the sum). We can then
re-arrange this expression as

∑
i:αi≥0αig (xi) =

∑
i:αi<0 − αig (xi).

Now suppose that there exists a g ∈ G such that the set {x : g (x) ≥ 0} selects precisely the xSi
on the left-hand side above. Then all terms on the left are non-negative and all the terms on the
right are non-positive. Since α is non-zero, this is a contradiction. Therefore, x1, · · · , xn cannot be
shattered by sets in {x : g (x) ≥ 0}, g ∈ G. 6.375pt0.0pt6.375pt
Example
Consider half-spaces in Rd of the form A = {x ∈ Rd : xi ≥ b, i ∈ {1, · · · , d}, b ∈ R}. Each
half-space can be described by

g (x) = [0, · · · , 0, 1, 0, · · · , 0]


x1

...

xd

− b (20.4)

⇒ dim (G) = d+ 1, VA ≤ d+ 1. (20.5)

20.4 Tree Classi�ers

Let

Tk = {recursive rectangular partitions of Rd with k + 1 cells} (20.6)

Let T ∈ Tk. Each cell of T results from splitting a rectangular region into two smaller rectangles parallel to
one of the coordinate axes.

Example 20.1
T ∈ T3, d = 2.

Each additional split is analogous to a half-space set. Therefore, each additional split can
potentially shatter d+ 1 points. This implies that

VTk ≤ (d+ 1) k. (20.7)

Example 20.2
d = 1.
k = 1 split shatters two points.
k = 2 splits shatters three points < 4.
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20.5 VC Bound for Tree Classi�ers

Fk = {tree classifiers with k + 1 leafs on Rd} (20.8)

E

[
R

(
^
fn

)]
− inf
f∈Fk

R (f) ≤ 4

√
(d+ 1) klogn+ log2

n
. (20.9)

Exercise 20.1 (Solution on p. 143.)

How can we decide what dimension to choose for a generalized linear classi�er?
How many leafs should be used for a classi�cation tree?

20.6 Structural Risk Minimization (SRM)

SRM is simply complexity regularization using VC type bounds in place of Cherno�'s bound or other
concentration inequalities.

The basic idea is to consider a sequence of sets of classi�ers F1,F2, ..., of increasing VC dimensions
VF1 ≤ VF2 ≤ .... Then for each k = 1, 2, ... we �nd the minimum empirical risk classi�er

^
f

(k)

n = argmin
f∈Fk

^
Rn (f) (20.10)

and then select the �nal classi�er according to

^
k= argmin

k≥1
{
^
Rn

(
^
t

(k)

n

)
+

√
32VFk (logn+ 1)

n
} (20.11)

and
^
fn ≡

^
f

0@^k
1A

n is the �nal choice.
The basic rational is that we know

Rn

^
f

(k)

n

− inf
f∈Fk

R (f) ≤ C '

√
VFk logn

n
(20.12)

where C ' is a constant.
The end result is that

E

[
R

(
^
fn

)]
≤ min

k≥1
{min
f∈Fk

R (f) + 16

√
VFk logn+ 4

2n
} (20.13)

analogous to our pervious complexity regularization results, except that codelengths are replaced by VC
dimensions.

In order to prove the result we use the VC probability concentration bound and assume that 4 =∑
k≥1VFk <∞. This enables a union bounding argument and leads to a risk bound of the form given above.

20.7 Key Point of VC Theory

Complexity of classes depends on richness (shattering capability) relative to a set of n arbitrary points. This
allows us to e�ectively �quantize" collections of functions in a slightly data-dependent manner.
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20.8 Application to Trees

Let

Fk = {k leaf decision trees in Rd}, VFk ≤ (d+ 1) (k + 1) (20.14)

^
f

(k)

n = argmin
f∈Fk

^
Rn (f) (20.15)

^
k= argmin

k≥1

(
min
f∈Fk

R (f) +

√
32 (d+ 1) (k − 1) (logn+ 1)

n

)
(20.16)

Then

^
fn =

^
f

0@^k
1A

n (20.17)

satis�es

E

[
R

(
^
fn

)]
≤ min

k≥1

(
min
f∈Fk

R (f) + 16

√
(d+ 1) (k − 1) logn+ 4

2n

)
(20.18)

compare with

E

[
R

(
^
fn

)]
≤ min

k≥1

 min
f∈dyadic k leaf trees

R (f) +

√
(3k − 1) log2 + 1

2 logn

2n

 (20.19)

from Lecture 11 (Chapter 12).
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Solutions to Exercises in Chapter 20

Solution to Exercise 20.1 (p. 141)
Complexity Regularization using VC bounds!
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Chapter 21

Lower Performance Bounds for
Estimators1

21.1 Lower Performance Bounds

In other modules, estimators/predictors are analyzed, in order to obtain upper bounds on their performance.
These bounds are of the form:

min
f∈F

E

[
d

(
^
fn, f

)]
≤ Cn−γ (21.1)

where γ > 0. We would like to know if these bounds are tight, in the sense that there is no other estimator
that is signi�cantly better. To answer this, we need lower bounds like

inf
^
f n

sup
f∈F

E

[
d

(
^
fn, f

)]
≥ cn−γ (21.2)

We assume we have the following ingredients:

*: Class of models, F ⊆ S. F is a class of models containing the �true" model and is a subset of some bigger
class S. E.g. F could be the class of Lipschitz density functions or distributions PXY satisfying the
box-counting condition.

*: An observation model, Pf , indexed by f ∈ F . Pf denotes the distribution of the data under model f .
E.g. in regression and classi�cation, this is the distribution of Z = (X1, Y1, · · · , Xn, Yn) ⊆ Z. We will
assume that Pf is a probability measure on the measurable space (Z,B).

*: A performance metric d (., .) . ≥ 0. If you have a model estimate
^
fn, then the performance of that model

estimate relative to the true model f is d

(
^
fn, f

)
. E.g.

Regression: d

(
^
fn, f

)
= ||

^
fn − f ||2 =

∫ (^fn (x)− f (x)

)2

dx

1/2

(21.3)

Classi�cation: d

(
^
fn, f

)
= R

(
^
Gn

)
−R∗ =

∫
^
Gn∆G∗

|2η (x)− 1|dPX (x) (21.4)

1This content is available online at <http://cnx.org/content/m17357/1.3/>.
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As before, we are interested in the risk of a learning rule, in particular the maximal risk given as:

sup
f∈F

Ef

[
d

(
^
fn, f

)]
= sup
f∈F

∫
d

(
^
fn (Z) , f

)
dPf (Z) (21.5)

where
^
fn is a function of the observations Z and Ef denotes the expectation with respect to Pf .

The main goal is to get results of the form

R∗n
∆= inf

^
f n

sup
f∈F

E

[
d

(
^
fn, f

)]
≥ csn (21.6)

where c > 0 and sn → 0 as n → ∞. The inf is taken over all estimators, i.e. all measurable functions
^
fn : Z → S.

Suppose we have shown that

lim inf
n→∞

s−1
n R∗n ≥ c > 0 (A lower bound) (21.7)

and also that for a particular estimator fn

lim sup
n→∞

s−1
n sup

f∈F
Ef
[
d
(
fn, f

)]
≤ C (21.8)

⇒ lim sup
n→∞

s−1
n R∗n ≤ C, (21.9)

We say that sn is the optimal rate of convergence for this problem and that fn attains that rate.

note: Two rates of convergence Ψn and Ψ'
n are equivalent, i.e. Ψn ≡ Ψ'

n i�

0 < lim inf
n→∞

Ψn

Ψ'
n

≤ lim sup
n→∞

Ψn

Ψ'
n

<∞ (21.10)

21.1.1 General Reduction Scheme

Instead of directly bounding the expected performance, we are going to prove stronger probability bounds
of the form

inf
^
f n

sup
f∈F
Pf

(
d

(
^
fn, f

)
≥ sn

)
≥ c > 0 (21.11)

These bounds can be readily converted to expected performance bounds using Markov's inequality:

Pf

(
d

(
^
fn, f

)
≥ sn

)
≤

Ef

[
d

(
^
fn, f

)]
sn

(21.12)

Therefore it follows:

inf
^
f n

sup
f∈F

Ef

[
d

(
^
fn, f

)]
≥ inf

^
f n

sup
f∈F

snPf

(
d

(
^
fn, f

)
≥ sn

)
≥ csn (21.13)
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21.1.1.1 First Reduction Step

Reduce the original problem to an easier one by replacing the larger class F with a smaller �nite class
{f0, · · · , fM} ⊆ F . Observe that

inf
^
f n

sup
f∈F
Pf

(
d

(
^
fn, f

)
≥ sn

)
≥ inf

^
f n

sup
f∈{f0,··· ,fM}

Pf

(
d

(
^
fn, f

)
≥ sn

)
(21.14)

The key idea is to choose a �nite collection of models such that the resulting problem is as hard as the
original, otherwise the lower bound will not be tight.

21.1.1.2 Second Reduction Step

Next, we reduce the problem to a hypotheses test. Ideally, we would like to have something like

inf
^
f n

sup
f∈F
Pf

(
d

(
^
fn, f

)
≥ sn

)
≥ inf

^
f n

sup
j∈{0,··· ,M}

Pfj

(
^
hn (Z) 6= j

)
(21.15)

The inf is over all measurable test functions

^
hn : Z → {0, · · · ,M} (21.16)

and Pfj

(
^
hn (Z) 6= j

)
denotes the probability that after observing the data, the test infers the wrong

hypothesis.
This might not always be true or easy to show, but in certain scenarios it can be done. Suppose d (., .)

is a semi-distance, i.e. it satis�es

(i): d (f, g) = d (g, f) ≥ 0 (Symmetric)
(ii):

d (f, f) = 0 (21.17)

(iii): d (f, g) ≤ d (h, f) + d (h, g) (Triangle inequality)

E.g. with f, g : Rd → R, d (f, g) ∆= ||f − g||2.
Lemma 21.1:
Suppose d (., .) is a semi-distance. Also suppose that we have constructed f0, · · · , fM s.t.

d (fj , fk) ≥ 2sn, ∀j 6= k. Take any estimator
^
fn and de�ne the test: Ψ∗ ◦

^
fn : Z → {0, · · · ,M} as

Ψ∗
(
^
fn

)
= argmin

j
d

(
^
fn, fj

)
(21.18)

Then Ψ∗
(
^
fn

)
6= j, implies d

(
^
fn, fj

)
≥ sn.

Suppose Ψ∗
(
^
fn

)
6= j[U+27FA]∃k 6= j : d

(
^
fn, fk

)
≤ d

(
^
fn, fj

)
. Now

2sn ≤ d (fj , fk) ≤ d

(
^
fn, fj

)
+ d

(
^
fn, fk

)
≤ 2d

(
^
fn, fj

)
(21.19)
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⇒ d

(
^
fn, fj

)
≥ sn (21.20)

The previous lemma implies that

Pfj

(
d

(
^
fn, fj

)
≥ sn

)
≥ Pfj

(
Ψ∗
(
^
fn

)
6= j

)
(21.21)

Therefore,

inf
^
f n

sup
f∈F
Pfj

(
d

(
^
fn, fj

)
≥ sn

)
≥ inf

^
f n

max
f∈{f0,··· ,fM}

Pfj

(
d

(
^
fn, fj

)
≥ sn

)

≥ inf
^
f n

max
j∈{0,··· ,M}

Pfj

(
Ψ∗
(
^
fn

)
6= j

)

≥ inf
^
hn

max
j∈{0,··· ,M}

Pj

(
^
hn 6= j

)
∆= Pe,M

(21.22)

The third step follows since we are replacing the class of tests de�ned by Ψ∗
(
^
fn

)
by a larger

class of ALL possible tests
^
hn, and hence the inf taken over the larger class is smaller.

Now our goal throughout is going to be to �nd lower bounds for Pe,M .
So we need to construct f0, · · · , fM s.t. d (fj , fk) ≥ 2sn, j 6= k and Pe,M ≥ c > 0. Observe that

this requires careful construction since the �rst condition necessitates that fj and fk are far from
each other, while the second condition requires that fj and fk are close enough so that it is harder
to distinguish them based on a given sample of data, and hence the probability of error Pe,M is
bounded away from 0.

We now try to lower bound the probability of error Pe,M . We �rst consider the case M = 1,
corresponding to binary hypothesis testing.

M = 1: Let P0 and P1 denote the two probability measures, i.e. distributions of the data under models
0 and 1. Clearly if P0 and P1 are very �close", then it is hard to distinguish the two hypotheses, and so Pe,1
is large.

A natural measure between probability measures is the total variation , de�ned as:

V (P0, P1) = sup
A
|P0 (A)− P1 (A) | = sup

A
|
∫
A

p0 (Z)− p1 (Z) dν (Z) | (21.23)

where p0 and p1 are the densities of P0 and P1 with respect to a common dominating measure ν and A
is any subset of the domain. We will lower bound the probability of error Pe,1 using the total variation
distance. But �rst, we establish the following lemma.

Lemma 21.2: Sche�e's lemma

V (P0, P1) = 1
2

∫
|p0 (Z)− p1 (Z) |dν (Z) = 1

2

∫
|p0 − p1|

= 1−
∫
min (p0, p1)

(21.24)
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Recall the de�nition of the total variation distance:

V (P0, P1) = sup
A
|
∫
A

p0 − p1| (21.25)

Observe that the set A maximizing the right hand side is given by either {Z ∈ Z : p0 (Z) ≥
p1 (Z)} or {Z ∈ Z : p1 (Z) ≥ p0 (Z)}.

Let us pick A0 = {Z ∈ Z : p0 (Z) ≥ p1 (Z)}. Then

V (P0, P1) =
∫
A0

p0 − p1 = −
∫
Ac0

p0 − p1 =
1
2

∫
|p0 − p1| (21.26)

For the second part, notice that

p0 (Z)−min (p0 (Z) , p1 (Z)) = {
0 if p0 (Z) ≤ p1 (Z)

p0 (Z)− p1 (Z) if p0 (Z) ≥ p1 (Z)
(21.27)

Now consider

1−
∫
min (p0, p1) =

∫
p0 (Z)−min (p0 (Z) , p1 (Z)) =

∫
A0

p0 (Z)− p1 (Z) dν (Z) = V (P0, P1) (21.28)

We are now ready to tackle the lower bound on Pe,1. In this case, we consider all tests
^
hn (Z) :

Z → {0, 1}. Equivalently, we can de�ne
^
hn (Z) = 1A (Z), where A is any subset of the domain.

Pe,1 = inf
^
hn

max
j∈{0,··· ,M}

Pj

(
^
hn 6= j

)
≥ inf

^
hn

(
1
2P0

(
^
hn 6= 0

)
+ P1

(
^
hn 6= 1

))

= 1
2 inf
A
P0 (1A (Z) 6= 0) + P1 (1A (Z) 6= 1)

= 1
2 inf
A
P0 (A) + P1 (Ac)

= 1
2 inf
A

1− (P1 (A)− P0 (A))

= 1
2 (1− V (P0, P1))

(21.29)

So if P0 is close to P1, then V (P0, P1) is small and the probability of error Pe,1 is large.
This is interesting, but unfortunately, it is hard to work with total variation, especially for multi-

variate distributions. Bounds involving the Kullback-Leibler divergence are much more convenient.

K (P1||P0) =
∫
log

p1 (Z)
p0 (Z)

p1 (Z) dν (Z) =
∫
log

p1

p0
p1 (21.30)

The following Lemma relates total variation, a�nity and KL divergence.

Lemma 21.3:
1− V (P0, P1) ≥ 1

2A
2 (P0, P1) ≥ 1

2exp (−K (P1||P0))
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For the �rst inequality,

A2 (P0, P1) =
(∫ √

p0p1

)2
=

(∫ √
min (p0, p1)max (p0, p1)

)2

=
(∫ √

min (p0, p1)
√
max (p0, p1)

)2

≤
∫
min (p0, p1)

∫
max (p0, p1) by Cauchy-Schwarz inequality

=
∫
min (p0, p1)

(
2−

∫
min (p0, p1)

)
∵
R
min(p0,p1)+

R
max(p0,p1)=

R
p0+

R
p1=2

≤ 2
∫
min (p0, p1)

= 2 (1− V (P0, P1))

(21.31)

For the second inequality,

A2 (P0, P1) =
(∫ √

p0p1

)2
= exp

(
log
(∫ √

p0p1

)2)
= exp

(
2log

(∫ √
p0p1

))
= exp

(
2log

(∫ √
p0
p1
p1

))
≥ exp

(
2
∫
log
(√

p0
p1

)
p1

)
by Jensen's inequality

= exp
(
−
∫
log
(√

p1
p0

)
p1

)
= exp (−K (P1||P0))

(21.32)

Putting everything together, we now have the following Theorem:

Theorem 21.1:
Let F be a class of models, and suppose we have observations Z distributed according to Pf ,

f ∈ F . Let d

(
^
fn, f

)
be the performance measure of the estimator

^
fn (Z) relative to the true

model f . Assume also d (., .) is a semi-distance. Let f0, f1 ∈ F be s.t. d (f0, f1) ≥ 2sn. Then

inf
^
f n

sup
f∈F
Pf

(
d

(
^
fn, f

)
≥ sn

)
≥ inf

^
f n

max
j∈{0,1}

Pfj

(
d

(
^
fn, fj

)
≥ sn

)

≥ 1
4exp (−K (Pf1 ||Pf0))

(21.33)

How do we use this theorem?
Choose f0, f1 such that K (P1||P0) ≤ α, then Pe,1 is bounded away from 0 and we get a bound

inf
^
f n

sup
f∈F
Pf

(
d

(
^
fn, f

)
≥ sn

)
≥ c > 0 (21.34)

or, after Markov's

inf
^
f n

sup
f∈F

Ef

[
d

(
^
fn, f

)]
≥ csn (21.35)

To apply the theorem, we need to design f0, f1 s.t. d (f0, f1) ≥ 2sn and exp (−K (Pf1 ||Pf0)) > 0.
To reiterate, the design of f0, f1 requires careful construction so as to balance the tradeo� between
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the �rst condition which requires f0, f1 to be far apart, and the second condition which requires
f0, f1 to be close to each other.
Example
Lets use this theorem in a problem we are familiar with. Let X ∈ [0, 1] and Y |X = x ∼
Bernoulli (η (x)), where η (x) = P (Y = 1|X = x).

Suppose G∗ = [t∗, 1]. We proved that under these assumptions and an upper bound on the
density of X, the Cherno� bounding technique yielded an expected error rate for ERM

E
[
R

(
^
Gn

)
−R∗

]
= O

(√
logn

n

)
(21.36)

Is this the best possible rate?

Construct two models in the above class (denote it by P), P (0)
XY and P

(1)
XY . For both take

PX ∼ Uniform ([0, 1]) and η(0) = 1/2− a, η(1) = 1/2 + a(a > 0), so G∗0 = ∅, G∗1 = [0, 1].
We are interested in controlling the excess risk

R

(
^
Gn

)
−R (G∗) =

∫
^
Gn∆G∗

|2η (x)− 1|dPX (x) (21.37)

Note that if the true underlying model is either P
(0)
XY or P

(1)
XY , we have:

Rj

(
^
Gn

)
−Rj

(
G∗j
)

=
∫
^
Gn∆G∗j

|2ηj (x)− 1|dx = 2a
∫
^
Gn∆G∗j

dx = 2ad∆

(
^
Gn, G

∗
j

)
(21.38)

Proposition 1
d∆ (., .) is a semi-distance.

It su�ces to show that d (G1, G2) = d (G2, G1) ≥ 0, d (G,G) = 0∀G and d (G1, G2) ≤ d (G1, G3) +
d (G3, G2). The �rst two statements are obvious. The last one (triangle inequality) follows from the fact
that G1∆G2 ⊆ (G1∆G3) ∪ (G3∆G2).

Suppose this was not the case, then ∃x : x ∈ G1∆G2 s.t. x /∈ G1∆G3 and x /∈ G2∆G3. In other words,

x ∈ (G1∆G2) ∩ (G1∆G3)c ∩ (G2∆G3)c (21.39)

Since S∆T = (S ∩ T c) ∪ (Sc ∩ T ), we have:

x ∈ [(G1 ∩Gc2) ∪ (Gc1 ∩G2)] ∩ [(Gc1 ∪G3) ∩ (G1 ∪Gc3)] ∩ [(Gc2 ∪G3) ∩ (G2 ∪Gc3)]

∈ [G1 ∩ (Gc1 ∪G3) ∩Gc2 ∩ (G2 ∪Gc3)] ∪ [Gc1 ∩ (G1 ∪Gc3) ∩G2 ∩ (Gc2 ∪G3)]

∈ [G1 ∩G3 ∩G2 ∩Gc3] ∪ [Gc1 ∩Gc3 ∩G2 ∩G3]

∈ ∅, a contradiction

(21.40)

Lets look at the �rst reduction step:

inf
^
Gn

sup
p∈P

P

(
R

(
^
Gn

)
−R (G∗) ≥ sn

)
≥ inf

^
Gn

max
j∈{0,1}

Pj

(
Rj

(
^
Gn

)
−Rj

(
G∗j
)
≥ sn

)

= inf
^
Gn

max
j∈{0,1}

Pj

(
d∆

(
^
Gn, G

∗
j

)
≥ sn/2a

) (21.41)

So we can work out a bound on d∆ and then translate it to excess risk.
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Lets apply Theorem 1 (Theorem 21.1, p. 150). Note that d∆ (G∗0, G
∗
1) = 1 and let P0

∆= P
(0)
X1,Y1,··· ,Xn,Yn

and P1
∆= P

(1)
X1,Y1,··· ,Xn,Yn .

K (P1||P0) = E1

[
log

p
(1)
X1,Y1,··· ,Xn,Yn

(X1,Y1,··· ,Xn,Yn)

p
(0)
X1,Y1,··· ,Xn,Yn

(X1,Y1,··· ,Xn,Yn)

]
= E1

[
log

p
(1)
X1,Y1

(X1,Y1)···p(1)Xn,Yn (Xn,Yn)

P
(0)
X1,Y1

(X1,Y1)···p(0)Xn,Yn (Xn,Yn)

]
=

∑n
i=1 E1

[
log

p
(1)
Xi,Yi

(Xi,Yi)

p
(0)
Xi,Yi

(Xi,Yi)

]
= nE1

[
log

p
(1)
Y |X(Y1|X1)

p
(0)
Y |X(Y1|X1)

]
(21.42)

Now p
(1)
Y |X (Y1 = 1|X1) = 1/2 + a and p

(0)
Y |X (Y1 = 1|X1) = 1/2 − a. Also under model 1, Y1 ∼

Bernoulli (1/2 + a). So we get:

K (P1||P0) = n
[
(1/2 + a) log 1/2+a

1/2−a + (1/2− a) log 1/2−a
1/2+a

]
= n [2alog (1/2 + a)− 2alog (1/2− a)]

= 2nalog 1/2+a
1/2−a

≤ 2na
(

1/2+a
1/2−a − 1

)
= 4na2 1

1/2−a

(21.43)

Let a = 1/
√
n and n ≥ 16, then K (P1||P0) ≤ 4n 1

n
1

1/2−1/
√
n
≤ 16.

Using Theorem 1 (Theorem 21.1, p. 150), since d∆ (G∗0, G
∗
1) = 1, we get:

inf
^
Gn

max
j
Pj

(
d∆

(
^
Gn, G

∗
j

)
≥ 1/2

)
≥ 1

4
e−16 (21.44)

Taking sn = 1/
√
n, this implies

inf
^
Gn

sup
p∈P

P

(
R

(
^
Gn

)
−R (G∗) ≥ 1/

√
n

)
≥ 1

4
e−16 (21.45)

or, after Markov's inequality

inf
^
Gn

sup
p∈P

E
[
R

(
^
Gn

)
−R (G∗)

]
≥ 1

4
e−16 1√

n
(21.46)

Therefore, apart from the logn factor, ERM is getting the best possible performance.
Reducing the initial problem to a binary hypothesis testing does not always work. Sometimes we need

M hypotheses, with M →∞ as n→∞. If this is the case, we have the following theorem:
Theorem 2 Let M ≥ 2. {f0, · · · , fM} ∈ F be such that

.: d (fj , fk) ≥ 2sn, where d is a semi-distance.

.: 1
M

∑M
j=1K (Pj ||P0) ≤ αlogM , with 0 < α < 1/8.

Then

inf
^
f n

sup
f∈F

Pf

(
d

(
^
fn, f

)
≥ sn

)
≥ inf

^
f n

max
j
Pj

(
d

(
^
fn, fj

)
≥ sn

)

≥
√
M

1+
√
M

(
1− 2α− 2

√
α

logM

)
> 0

(21.47)
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We will use this theorem to show that the estimator of Lecture 4 (Chapter 5) is optimal. Recall the setup
of Lecture 4 (Chapter 5). Let

F = {f : |f (t)− f (s) | ≤ L|t− s|∀t, s} (21.48)

i.e. the class of Lipschitz functions with constant L. Let

xi = i/n, i = 1, · · · , n (21.49)

Yi = f (xi) +Wi (21.50)

E [Wi] = 0,E
[
W 2
i

]
= σ2 <∞,Wi,Wj are indepedent if i 6= j. In that lecture, we constructed an estimator

^
fn such that

sup
f∈F

E

[
||
^
fn − f ||

2

]
= O

(
n−2/3

)
(21.51)

Is this the best we can do?
We are going to construct a collection f0, · · · , fM ∈ F and apply Theorem 2. Notice that the metric of

interest is d

(
^
fn, f

)
= ||

^
fn − f ||, a semi-distance. Let Wi

iid∼ N
(
0, σ2

)
. Let m ∈ N, h = 1/m and de�ne

K (x) =
(
Lh

2
− L|x|

)
I|x|≤h/2 =

L

2
|h− 2x|I|x|≤h/2 (21.52)
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Figure 21.1

Note that |K (a) −K (b) | ≤ L|a − b|, ∀a, b. The subclass we are going to consider are functions of the
form
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Figure 21.2

i.e. �bump" functions. Let Ω = {0, 1}m be the collection of binary vectors of length m, e.g. w =
(1, 0, 1, · · · , 0) ∈ Ω. De�ne

fw (x) =
m∑
i=1

wiK

(
x− h

2
(2i− 1)

)
(21.53)

Note that for w,w' ∈ Ω,

d (fw, fw') = ||fw − fw' || =
(∫ 1

0

∑m
i=1

(
wi − w'

i

)2
K2
(
x− h

2 (2i− 1)
))1/2

=
√
ρ (w,w')

√∫
K2 (x) dx

(21.54)

where ρ
(
w,w'

)
is the Hamming distance, ρ

(
w,w'

)
=
∑m
i=1 |wi − w'

i|2 =
∑m
i=1 |wi − w'

i|. Now∫
K2 (x) = 2

∫ h/2

0

L2x2dx = 2L2 h3

3 · 8
=
L2

12
h3 (21.55)

so

d (fw, fw') =
√
ρ (w,w')

L√
12
h3/2 (21.56)

Since |Ω| = 2n, the number of functions in our class is 2n. Turns out, we do not need to consider all
functions fw, w ∈ Ω, but only a select few. Using all the functions leads to a looser lower bound of the form
n−1, which corresponds to the parametric rate. The problem under consideration is non-parametric, and
hence we expect a slower rate of convergence. To get a tighter lower bound, the following result is of use:
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Lemma 21.4: Varshamov-Gilbert '62
Let m ≥ 8. There exists a subset {w(0), · · · , w(M)} of Ω such that w(0) = (0, 0, · · · , 0),

ρ
(
w(j), w(k)

)
≥ m

8
, ∀0 ≤ j < k ≤M and M ≥ 2m/8. (21.57)

What this lemma says is that there are many (∼ 2m) sequences in Ω that are very di�erent (i.e.
ρ
(
w(j), w(k)

)
∼ m). We are going to use the lemma to construct a useful set of hypotheses. Let

{w(0), · · · , w(M)} be the class of sequences in the lemma and de�ne

fj
∆= fw(j) , j ∈ {0, · · · ,M} (21.58)

We now need to look at the conditions of Theorem 2 and choose m appropriately.
First note that for j 6= k,

d (fj , fk) =
√
ρ
(
w(j), w(k)

) L√
12
h3/2 ≥

√
m

8
L√
12
m−3/2 =

L

4
√

6
m−1 (21.59)

Now let Pj
∆= P

(j)
Y1,··· ,Ym , j ∈ {0, · · · ,M}. Then

K (Pj ||P0) = Ej
[
log

p
(j)
Y1,··· ,Ym

p
(0)
Y1,··· ,Ym

]
=

∑n
i=1 Ej

[
log p

(j)Yi

p
(0)
Yi

]
= 1

2σ2

∑n
i=1 f

2
j (xi)

≤ 1
2σ2

∑n
i=1

(
Lh
2

)2
= L2

8σ2nh
2 = L2

8σ2nm
−2

(21.60)

Now notice that logM ≥ m
8 log2 (from Lemma ). We want to choose m such that

1
M

M∑
j=1

K (Pj ||P0) ≤ L2

8σ2
nm−2 < α

m

8
log2 ≤ αlogM (21.61)

This gives

m >

(
L2

ασ2log2

)1/3

n1/3 := C0n
1/3 (21.62)

so take m = bC0n
1/3 + 1c. Now

d (fj , fk) ≥ L

4
√

6
m−1 ≥ 2const n−1/3 for n ≥ n0 (const) (21.63)

Therefore,

inf
^
f n

sup
f∈F

Pf

(
||
^
fn − f || ≥ const n−1/3

)
≥ c > 0 (21.64)

or,

inf
^
f n

sup
f∈F

Pf

(
||
^
fn − f ||

2 ≥ const n−2/3

)
≥ c > 0 (21.65)

or after Markov's inequality,

inf
^
f n

sup
f∈F

Ef

[
||
^
fn − f ||

2

]
≥ c · const n−2/3 (21.66)
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Therefore, the estimator constructed in class attains the optimal rate of convergence.
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Glossary

( (Bayes' Risk)

The Bayes' risk is the in�mum of the risk for all classi�ers:

R∗ = inf
f
R (f) . (3.4)

We can prove that the Bayes risk is achieved by the Bayes classi�er.

B Bayes Classi�er

The Bayes classi�er is the following mapping:

f∗ (x) = {
1, η (x) ≥ 1/2

0, otherwise
(3.5)

where
η (x) ≡ PY |X (Y = 1|X = x) . (3.6)

Note that for any x, f∗ (x) is the value of y ∈ {0, 1} that maximizes PXY (Y = y|X = x).

E Empirical Risk

Let {Xi, Yi}ni=1
iid∼ PXY be a collection of training data. Then the empirical risk is de�ned as

^
Rn (f) =

1
n

n∑
i=1

` (f (Xi) , Yi) . (3.22)

Empirical risk minimization is the process of choosing a learning rule which minimizes the
empirical risk; i.e.,

^
fn = argmin

f∈F

^
Rn (f) . (3.23)

P Pre�x Code

A code is called a pre�x code if no codeword is a pre�x of any other codeword.

Example: From Cover & Thomas '91Consider an alphabet of symbols, say A,B,C, and D and
the codebooks below

This is an unsupported media type. To view, please see http://cnx.org/content/m16271/latest/

Figure 10.1

In the singular codebook we assign the same codeword to each symbol - a system that is
obviously �awed! In the second case, the codes are not singular but the codeword 010 could
represent B or CA or AD. Hence it is not a uniquely decodable codebook.
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The third and fourth cases are both examples of uniquely decodable codebooks, but the fourth
has the added feature that no codeword is a pre�x of another. Pre�x codes can be decoded from
left to right since each codeword is �self-punctuating" - in this case with a zero to indicate the
end of each word.

To design a uniquely decodable codebook in general is as challenging as the problem of selecting
c(f) to satisfy ∑

f∈F

e−c(f) <∞. (10.17)

However, pre�x codes can often be easily designed or speci�ed and they are inherently
decodable. Moreover, pre�x codes satisfy an important inequality called the Kraft Inequality .

T The VC dimension

VA of a collection of sets A is de�ned as the largest interger n such that SA (n) = 2n.

Example: A = {(−∞, t] ; t εR},SA = n+ 1 hence VA = 1.

Example: A = { all rectangles in R2}.
SA = 2n, n = 1, 2, 3, 4 and SA ≤ 2n, n = 4, Hence VA = 4.
The VC dimension provides a useful bound on the growth of the shatter coe�cients.
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