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Chapter 1

Probability Distributions

1.1 Aims and Motivation for the Course1

We aim to:

• Develop a theory which can characterize the behavior of real-world Random Signals and Pro-
cesses;

• Use standard Probability Theory for this.

Random signal theory is important for

• Analysis of signals;
• Inference of underlying system parameters from noisy observed data;
• Design of optimal systems (digital and analogue signal recovery, signal classi�cation, estimation ...);
• Predicting system performance (error-rates, signal-to-noise ratios, ...).

Example 1.1: Speech signals
Use probability theory to characterize that some sequences of vowels and consonants are more
likely than others, some waveforms more likely than others for a given vowel or consonant. Please
see Figure 1.1.

Use this to achieve: speech recognition, speech coding, speech enhancement, ...

1This content is available online at <http://cnx.org/content/m10983/2.4/>.
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2 CHAPTER 1. PROBABILITY DISTRIBUTIONS

Figure 1.1: Four utterances of the vowel sound 'Aah'.

Example 1.2: Digital communications
Characterize the properties of the digital data source (mobile phone, digital television transmitter,
...), characterize the noise/distortions present in the transmission channel. Please see Figure 1.2.

Use this to achieve: accurate regeneration of the digital signal at the receiver, analysis of the
channel characteristics ...



3

Figure 1.2: Digital data stream from a noisy communications Channel.

Probability theory is used to give a mathematical description of the behavior of real-world systems which
involve elements of randomness. Such a system might be as simple as a coin-�ipping experiment, in which
we are interested in whether 'Heads' or 'Tails' is the outcome, or it might be more complex, as in the study
of random errors in a coded digital data stream (e.g. a CD recording or a digital mobile phone).

The basics of probability theory should be familiar from the IB Probability and Statistics course. Here
we summarize the main results from that course and develop them into a framework that can encompass
random signals and processes.

1.2 Probability Distributions2

The distribution PX of a random variable X is simply a probability measure which assigns probabilities to
events on the real line. The distribution PX answers questions of the form:

What is the probability that X lies in some subset F of the real line?
In practice we summarize PX by its Probability Mass Function - pmf (for discrete variables only),

Probability Density Function - pdf (mainly for continuous variables), or Cumulative Distribution
Function - cdf (for either discrete or continuous variables).

2This content is available online at <http://cnx.org/content/m10984/2.8/>.
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1.2.1 Probability Mass Function (pmf)

Suppose the discrete random variable X can take a set of M real values {x1, . . . , xM}, then the pmf is
de�ned as:

pX (xi) = Pr [X = xi]

= PX ({xi})
(1.1)

where
∑M
i=1 pX (xi) = 1. e.g. For a normal 6-sided die, M = 6 and pX (xi) = 1

6 . For a pair of dice being
thrown, M = 11 and the pmf is as shown in (a) of Figure 1.3.
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Figure 1.3: Examples of pmfs, cdfs and pdfs: (a) to (c) for a discrete process, the sum of two dice; (d)
and (e) for a continuous process with a normal or Gaussian distribution, whose mean = 2 and variance
= 3.
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1.2.2 Cumulative Distribution Function (cdf)

The cdf can describe discrete, continuous or mixed distributions of X and is de�ned as:

FX (x) = Pr [X ≤ x]

= PX ((−∞, x])
(1.2)

For discrete X:

FX (x) =
∑
i

{pX (xi) | xi ≤ x} (1.3)

giving step-like cdfs as in the example of (b) of Figure 1.3.
Properties follow directly from the Axioms of Probability:

1. 0 ≤ FX (x) ≤ 1
2. FX (−∞) = 0, FX (∞) = 1
3. FX (x) is non-decreasing as x increases
4. Pr [x1 < X ≤ x2] = FX (x2)− FX (x1)
5. Pr [X > x] = 1− FX (x)

where there is no ambiguity we will often drop the subscript X and refer to the cdf as F (x).

1.2.3 Probability Density Function (pdf)

The pdf of X is de�ned as the derivative of the cdf:

fX (x) =
d

dx
FX (x) (1.4)

The pdf can also be interpreted in derivative form as δ (x)→ 0:

fX (x) δ (x) = Pr [x < X ≤ x+ δ (x)]

= FX (x+ δ (x))− FX (x)
(1.5)

For a discrete random variable with pmf given by pX (xi):

fX (x) =
M∑
i=1

pX (xi) δ (x− xi) (1.6)

An example of the pdf of the 2-dice discrete random process is shown in (c) of Figure 1.3. (Strictly the
delta functions should extend vertically to in�nity, but we show them only reaching the values of their areas,
pX (xi).)

The pdf and cdf of a continuous distribution (in this case the normal or Gaussian distribution) are
shown in (d) and (e) of Figure 1.3.

note: The cdf is the integral of the pdf and should always go from zero to unity for a valid
probability distribution.

Properties of pdfs:

1. fX (x) ≥ 0
2.
∫∞
−∞ fX (x) dx = 1

3. FX (x) =
∫ x
−∞ fX (α) dα

4. Pr [x1 < X ≤ x2] =
∫ x2

x1
fX (α) dα

As for the cdf, we will often drop the subscript X and refer simply to f (x) when no confusion can arise.
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1.3 Conditional Probabilities and Bayes' Rule3

If A and B are two separate but possibly dependent random events, then:

1. Probability of A and B occurring together = Pr [A,B]
2. The conditional probability of A, given that B occurs = Pr [A | B]
3. The conditional probability of B, given that A occurs = Pr [B | A]

From elementary rules of probability (Venn diagrams):

Pr [A,B] = Pr [A | B]Pr [B]

= Pr [B | A]Pr [A]
(1.7)

Dividing the right-hand pair of expressions by Pr [B] gives Bayes' rule:

Pr [A | B] =
Pr [B | A]Pr [A]

Pr [B]
(1.8)

In problems of probabilistic inference, we are often trying to estimate the most probable underlying model for
a random process, based on some observed data or evidence. If A represents a given set of model parameters,
and B represents the set of observed data values, then the terms in (1.8) are given the following terminology:

• Pr [A] is the prior probability of the model A (in the absence of any evidence);
• Pr [B] is the probability of the evidence B;
• Pr [B | A] is the likelihood that the evidence B was produced, given that the model was A;
• Pr [A | B] is the posterior probability of the model being A, given that the evidence is B.

Quite often, we try to �nd the model A which maximizes the posterior Pr [A | B]. This is known as
maximum a posteriori or MAP model selection.

The following example illustrates the concepts of Bayesian model selection.

Example 1.3: Loaded Dice
Problem:

Given a tub containing 100 six-sided dice, in which one die is known to be loaded towards the
six to a speci�ed extent, derive an expression for the probability that, after a given set of throws,
an arbitrarily chosen die is the loaded one? Assume the other 99 dice are all fair (not loaded in any
way). The loaded die is known to have the following pmf:

pL (1) = 0.05

{pL (2) , . . . , pL (5)} = 0.15

pL (6) = 0.35

Here derive a good strategy for �nding the loaded die from the tub.
Solution:
The pmfs of the fair dice may be assumed to be:

pF (i) =
1
6
, i = {1, . . . , 6}

3This content is available online at <http://cnx.org/content/m10985/2.8/>.
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Let each die have one of two states, S = L if it is loaded and S = F if it is fair. These are our two
possiblemodels for the random process and they have underlying pmfs given by {pL (1) , . . . , pL (6)}
and {pF (1) , . . . , pF (6)} respectively.

After N throws of the chosen die, let the sequence of throws be ΘN = {θ1, . . . , θN}, where each
θi ∈ {1, . . . , 6}. This is our evidence.

We shall now calculate the probability that this die is the loaded one. We therefore wish to �nd
the posterior Pr [S = L | ΘN ].

We cannot evaluate this directly, but we can evaluate the likelihoods, Pr [ΘN | S = L] and
Pr [ΘN | S = F ], since we know the expected pmfs in each case. We also know the prior proba-
bilities Pr [S = L] and Pr [S = F ] before we have carried out any throws, and these are {0.01, 0.99}
since only one die in the tub of 100 is loaded. Hence we can use Bayes' rule:

Pr [S = L | ΘN ] =
Pr [ΘN | S = L]Pr [S = L]

Pr [ΘN ]
(1.9)

The denominator term Pr [ΘN ] is there to ensure that Pr [S = L | ΘN ] and Pr [S = F | ΘN ]
sum to unity (as they must). It can most easily be calculated from:

Pr [ΘN ] = Pr [ΘN , S = L] + Pr [ΘN , S = F ]

= Pr [ΘN | S = L]Pr [S = L] + Pr [ΘN | S = F ]Pr [S = F ]
(1.10)

so that

Pr [S = L | ΘN ] = Pr[ ΘN | S=L]Pr[S=L]
Pr[ ΘN | S=L]Pr[S=L]+Pr[ ΘN | S=F ]Pr[S=F ]

= 1
1+RN

(1.11)

where

RN =
Pr [ΘN | S = F ]Pr [S = F ]
Pr [ΘN | S = L]Pr [S = L]

(1.12)

To calculate the likelihoods, Pr [ΘN | S = L] and Pr [ΘN | S = F ], we simply take the product
of the probabilities of each throw occurring in the sequence of throws ΘN , given each of the two
modules respectively (since each new throw is independent of all previous throws, given the model).
So, after N throws, these likelihoods will be given by:

Pr [ΘN | S = L] =
N∏
i=1

pL (θi) (1.13)

and

Pr [ΘN | S = F ] =
N∏
i=1

pF (θi) (1.14)

We can now substitute these probabilities into the above expression for RN and include
Pr [S = L] = 0.01 and Pr [S = F ] = 0.99 to get the desired a posteriori probability
Pr [S = L | ΘN ] after N throws using (1.11).

We may calculate this iteratively by noting that

Pr [ΘN | S = L] = Pr [ΘN−1 | S = L] pL (θn) (1.15)

and
Pr [ΘN | S = F ] = Pr [ΘN−1 | S = F ] pF (θn) (1.16)

so that

RN = RN−1
pF (θn)
pL(θn)

(1.17)
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where R0 = Pr[S=F ]
Pr[S=L] = 99. If we calculate this after every throw of the current die being

tested (i.e. as N increases), then we can either move on to test the next die from the tub if
Pr [S = L | ΘN ] becomes su�ciently small (say <

(
10−4

)
) or accept the current die as the loaded

one when Pr [S = L | ΘN ] becomes large enough (say > (0.995)). (These thresholds correspond
approximately to RN > 104 and RN < 5× 10−3 respectively.)

The choice of these thresholds for Pr [S = L | ΘN ] is a function of the desired tradeo� between
speed of searching versus the probability of failure to �nd the loaded die, either by moving on to
the next die even when the current one is loaded, or by selecting a fair die as the loaded one.

The lower threshold, p1 = 10−4, is the more critical, because it a�ects how long we spend before
discarding each fair die. The probability of correctly detecting all the fair dice before the loaded
die is reached is (1− p1)n ' 1−np1, where n ' 50 is the expected number of fair dice tested before
the loaded one is found. So the failure probability due to incorrectly assuming the loaded die to be
fair is approximately np1 ' 0.005.

The upper threshold, p2 = 0.995, is much less critical on search speed, since the loaded
result only occurs once, so it is a good idea to set it very close to unity. The failure prob-
ability caused by selecting a fair die to be the loaded one is just 1 − p2 = 0.005. Hence the
overall failure probability = 0.005 + 0.005 = 0.01

note: In problems with signi�cant amounts of evidence (e.g. large N), the evidence probability
and the likelihoods can both get very very small, su�cient to cause �oating-point under�ow on
many computers if equations such as (1.13) and (1.14) are computed directly. However the ratio
of likelihood to evidence probability still remains a reasonable size and is an important quantity
which must be calculated correctly.

One solution to this problem is to compute only the ratio of likelihoods, as in (1.17). A more
generally useful solution is to compute log(likelihoods) instead. The product operations in the
expressions for the likelihoods then become sums of logarithms. Even the calculation of likelihood
ratios such as RN and comparison with appropriate thresholds can be done in the log domain.
After this, it is OK to return to the linear domain if necessary since RN should be a reasonable
value as it is the ratio of very small quantities.
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Figure 1.4: Probabilities of the current die being the loaded one as the throws progress (20th die is
the loaded one). A new die is selected whenever the probability falls below p1.
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Figure 1.5: Histograms of the dice throws as the throws progress. Histograms are reset when each
new die is selected.
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1.4 Joint and Conditional cdfs and pdfs4

1.4.1 Cumulative distribution functions

We de�ne the joint cdf to be
F (x, y) = Pr [(X ≤ x) ∧ (Y ≤ y)] (1.18)

and conditional cdf to be
F (x|y) = Pr [X ≤ x | Y ≤ y] (1.19)

Hence we get the following rules:

• Conditional probability (cdf):

F (x|y) = Pr [X ≤ x | Y ≤ y]

= F (x,y)
FY (y)

(1.20)

• Bayes Rule (cdf):

F (x|y) =
F (y|x)F (x)

F (y)
(1.21)

• Total probability (cdf):
F (x,∞) = F (x) (1.22)

which follows because the event Y ≤ ∞ itself forms a partition of the sample space.

Conditional cdf's have similar properties to standard cdf's, i.e.

FX|Y (−∞|y) = 0

FX|Y (∞|y) = 1

1.4.2 Probability density functions

We de�ne joint and conditional pdfs in terms of corresponding cdfs. The joint pad is de�ned to be

f (x, y) =
∂2F (x, y)
∂x∂y

(1.23)

and the conditional pdf is de�ned to be

f (x|y) =
∂ dF (x|Y=y)

d

∂x
(1.24)

where
F ′ (x|Y = y) = Pr [X ≤ x | Y = y]

Note that F ′ (x|Y = y) is di�erent from the conditional cdf F (x|Y = y), previously de�ned, but there is a
slight problem. The event, Y = y, has zero probability for continuous random variables, hence probability
conditional on Y = y is not directly de�ned and F ′ (x|Y = y) cannot be found by direct application of
event-based probability. However all is OK if we consider it as a limiting case:

F ′ (x|Y = y) = limit
δ(y)→0

Pr [X ≤ x | y < Y ≤ y + δ (y)]

= limit
δ(y)→0

F (x,y+δ(y))−F (x,y)
FY (y+δ(y))−FY (y)

=
∂F (x,y)
∂y

fY (y)

(1.25)

4This content is available online at <http://cnx.org/content/m10986/2.8/>.
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Joint and conditional pdfs have similar properties and interpretation to ordinary pdfs:

f (x, y) > 0

∫ ∫
f (x, y) dxdy = 1

f (x|y) > 0

∫
f (x|y) dx = 1

note: From now on interpret
∫
as
∫∞
−∞ unless otherwise stated.

For pdfs we get the following rules:

• Conditional pdf:

f (x|y) =
f (x, y)
f (y)

(1.26)

• Bayes Rule (pdf):

f (x|y) =
f (y|x) f (x)

f (y)
(1.27)

• Total Probability (pdf): ∫
f (y|x) f (x) dx =

∫
f (y, x) dx

= f (y)
∫
f (x|y) dx

= f (y)

(1.28)

The �nal result is often referred to as the Marginalisation Integral and f (y) as the Marginal
Probability.
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Chapter 2

Random Vectors, Signals and Functions

2.1 Random Vectors1

Random Vectors are simply groups of random variables, arranged as vectors. E.g.:

X =
(
X1 . . . Xn

)T
(2.1)

where X1, . . . Xn are n separate random variables.
In general, all of the previous results can be applied to random vectors as well as to random scalars, but

vectors allow some interesting new results too.

Figure 2.1: pdfs of (a) a 2-D normal distribution and (b) a Rayleigh distribution, corresponding to
the magnitude of the 2-D random vectors.

1This content is available online at <http://cnx.org/content/m10988/2.5/>.
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2.1.1 Example - Arrows on a target

Suppose that arrows are shot at a target and land at random distances from the target centre. The horizontal
and vertical components of these distances are formed into a 2-D random error vector. If each component of
this error vector is an independent variable with zero-mean Gaussian pdf of variance σ2, calculate the pdf's
of the radial magnitude and the phase angle of the error vector.

Let the error vector be

X =
(
X1 X2

)T
(2.2)

X1 and X2 each have a zero-mean Gaussian pdf given by

f (x) =
1√

2πσ2
e−

x2

2σ2 (2.3)

Since X1 and X2 are independent, the 2-D pdf of X is

fX (x1, x2) = f (x1) f (x2)

= 1
2πσ2 e

− x1
2+x2

2

2σ2

(2.4)

In polar coordinates
x1 = rcos (θ)

and
x2 = rsin (θ)

To calculate the radial pdf, we substitute r =
√
x1

2 + x2
2 in the above 2-D pdf to get:

Pr [r < R < r + δ (r)] =
∫ r+δ(r)

r

∫ π

−π
fX (x1, x2)RdθdR (2.5)

where ∫ r+δ(r)

r

∫ π

−π
fX (x1, x2)RdθdR ' δ (r)

∫ π

−π

1
2πσ2

e−
r2

2σ2 rdθ =
1
σ2
re−

r2

2σ2 δ (r)

Hence the radial pdf of the error vector is:

fR (r) =
limit
δ(r)→0

Pr[r<R<r+δ(r)]

δ(r)

= 1
σ2 re

− r2

2σ2

(2.6)

This is a Rayleigh distribution with variance = 2σ2 (these are two components of X, each with variance
σ2).

The 2-D pdf of X depends only on r and not on θ, so the angular pdf of the error vector is constant over
any 2π interval and is therefore

fΘ (θ) =
1

2π
so that ∫ π

−π
fΘ (θ) dθ = 1
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2.2 Random Signals2

Random signals are random variables which evolve, often with time (e.g. audio noise), but also with distance
(e.g. intensity in an image of a random texture), or sometimes another parameter.

They can be described as usual by their cdf and either their pmf (if the amplitude is discrete, as in a
digitized signal) or their pdf (if the amplitude is continuous, as in most analogue signals).

However a very important additional property is how rapidly a random signal �uctuates. Clearly a slowly
varying signal such as the waves in an ocean is very di�erent from a rapidly varying signal such as vibrations
in a vehicle. We will see later in Section 2.3 how to deal with these frequency dependent characteristics of
randomness.

For the moment we shall assume that random signals are sampled at regular intervals and that each
signal is equivalent to a sequence of samples of a given random process, as in the following examples.

2This content is available online at <http://cnx.org/content/m10989/2.5/>.
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Figure 2.2: Detection of signals in noise: (a) the transmitted binary signal; (b) the binary signal after
�ltering with a half-sine receiver �lter; (c) the channel noise after �ltering with the same �lter; (d) the
�ltered signal plus noise at the detector in the receiver.
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Figure 2.3: The pdfs of the signal plus noise at the detector for the two ± (1). The vertical dashed
line is the detector threshold and the shaded area to the left of the origin represents the probability of
error when data = 1.

2.2.1 Example - Detection of a binary signal in noise

We now consider the example of detecting a binary signal after it has passed through a channel which adds
noise. The transmitted signal is typically as shown in (a) of Figure 2.2.

In order to reduce the channel noise, the receiver will include a lowpass �lter. The aim of the �lter is
to reduce the noise as much as possible without reducing the peak values of the signal signi�cantly. A good
�lter for this has a half-sine impulse response of the form:

h (t) =


π

2Tb
sin
(
πt
Tb

)
if 0 ≤ t ≤ Tb

0 otherwise
(2.7)

Where Tb = bit period.
This �lter will convert the rectangular data bits into sinusoidally shaped pulses as shown in (b) of

Figure 2.2 and it will also convert wide bandwidth channel noise into the form shown in (c) of Figure 2.2.
Bandlimited noise of this form will usually have an approximately Gaussian pdf.

Because this �lter has an impulse response limited to just one bit period and has unit gain at zero
frequency (the area under h (t) is unity), the signal values at the center of each bit period at the detector
will still be ± (1). If we choose to sample each bit at the detector at this optimal mid point, the pdfs of the
signal plus noise at the detector will be shown in Figure 2.3.

Let the �ltered data signal be D (t) and the �ltered noise be U (t), then the detector signal is

R (t) = D (t) + U (t) (2.8)

If we assume that + (1) and −1 bits are equiprobable and the noise is a symmetric zero-mean process, the
optimum detector threshold is clearly midway between these two states, i.e. at zero. The probability of error
when the data = + (1) is then given by:

Pr [ error | D = + (1)] = Pr [R (t) < 0 | D = + (1)]

= FU (−1)

=
∫ −1

−∞ fU (u) du

(2.9)
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where FU and fU are the cdf and pdf of U . This is the shaded area in Figure 2.3.
Similarly the probability of error when the data = −1 is then given by:

Pr [ error | D = −1] = Pr [R (t) > 0 | D = −1]

= 1− FU (+ (1))

=
∫∞

1
fU (u) du

(2.10)

Hence the overall probability of error is:

Pr [error] = Pr [ error | D = + (1)]Pr [D = + (1)] + Pr [ error | D = −1]Pr [D = −1]

=
∫ −1

−∞ fU (u) duPr [D = + (1)] +
∫∞

1
fU (u) duPr [D = −1]

(2.11)

since fU is symmetric about zero

Pr [error] =
∫ ∞

1

fU (u) du (Pr [D = + (1)] + Pr [D = −1]) =
∫ ∞

1

fU (u) du

To be a little more general and to account for signal attenuation over the channel, we shall assume that the
signal values at the detector are ± (v0) (rather than ± (1)) and that the �ltered noise at the detector has a
zero-mean Gaussian pdf with variance σ2:

fU (u) =
1√

2πσ2
e−

u2

2σ2 (2.12)

and so

Pr [error] =
∫∞
v0
fU (u) du

=
∫∞
v0
σ
fU (σu)σdu

= Q
(
v0
σ

) (2.13)

where

Q (x) =
1√
2π

∫ ∞
x

e−
u2
2 du (2.14)

This integral has no analytic solution, but a good approximation to it exists and is discussed in some detail
in Section 2.3.

From (2.13) we may obtain the probability of error in the binary detector, which is often expressed as
the bit error rate or BER. For example, if Pr [error] = 2 × 103, this would often be expressed as a bit
error rate of 2× 103, or alternatively as 1 error in 500 bits (on average).

The argument ( v0
σ ) in (2.13) is the signal-to-noise voltage ratio (SNR) at the detector, and the BER

rapidly diminishes with increasing SNR (see Figure 2.4).

2.3 Approximation Formulae for the Gaussian Error Integral, Q(x)3

A Gaussian pdf with unit variance is given by:

f (x) =
1√
2π
e−

x2
2 (2.15)

The probability that a signal with a pdf given by f (x) lies above a given threshold x is given by the Gaussian
Error Integral or Q function:

Q (x) =
∫ ∞
x

f (u) du (2.16)

3This content is available online at <http://cnx.org/content/m11067/2.4/>.
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There is no analytical solution to this integral, but it has a simple relationship to the error function, erf (x),
or its complement, erfc (x), which are tabulated in many books of mathematical tables.

erf (x) =
2√
π

∫ x

0

e−u
2
du (2.17)

and

erfc (x) = 1− erf (x)

= 2√
π

∫∞
x
e−u

2
du

(2.18)

Therefore,

Q (x) = 1
2erfc

(
x√
2

)
= 1

2

(
1− erf

(
x√
2

)) (2.19)

Note that erf (0) = 0 and erf (∞) = 1, and therefore Q (0) = 0.5 and Q (x)→ 0 very rapidly as x becomes
large.

It is useful to derive simple approximations to Q (x) which can be used on a calculator and avoid the
need for tables.

Let v = u− x, then:
Q (x) =

∫∞
0
f (v + x) dv

= 1√
2π

∫∞
0
e−

v2+2vx+x2
2 dv

= e−
x2
2√

2π

∫∞
0
e−(vx)e−

v2
2 dv

(2.20)

Now if x� 1, we may obtain an approximate solution by replacing the e−
v2
2 term in the integral by unity,

since it will initially decay much slower than the e−(vx) term. Therefore

Q (x) <
e−

x2
2

√
2π

∫ ∞
0

e−(vx)dv =
e−

x2
2

√
2πx

(2.21)

This approximation is an upper bound, and its ratio to the true value of Q (x) becomes less than 1.1 only
when x > 3, as shown in Figure 2.4. We may obtain a much better approximation to Q (x) by altering the
denominator above from (

√
2πx) to ( 1.64x+

√
0.76x2 + 4) to give:

Q (x) ' e−
x2
2

1.64x+
√

0.76x2 + 4
(2.22)

This improved approximation gives a curve indistinguishable from Q (x) in Figure 2.4 and its ratio to the
true Q (x) is now within ± (0.3%) of unity for all x ≥ 0 as shown in Figure 2.5. This accuracy is su�cient
for nearly all practical problems.
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Figure 2.4: Q (x) and the simple approximation of (2.21).
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Figure 2.5: The ration of the improved approximation of Q (x) in (2.22) to the true value, obtained
by numerical integration.
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Chapter 3

Expectations, Moments, and

Characteristic Functions

3.1 Expectation1

Expectations form a fundamental part of random signal theory. In simple terms the Expectation Operator
calculates the mean of a random quantity although the concept turns out to be much more general and
useful than just this.

If X has pdf fX (x) (correctly normalised so that
∫∞
−∞ fX (x) dx = 1), its expectation is given by:

E [X] =
∫∞
−∞ xfX (x) dx

=
−
X

(3.1)

For discrete processes, we substitute this previous equation (1.6) in here to get

E [X] =
∫∞
−∞ x

∑M
i=1 pX (xi) δ (x− xi) dx

=
∑M
i=1 xipX (xi)

=
−
X

(3.2)

Now, what is the mean value of some function, Y = g (X)?
Using the result of this previous equation2 for pdfs of related processes Y and X:

fY (y) d (y) = fX (x) d (x) (3.3)

Hence (again assuming in�nite integral limits unless stated otherwise)

E [g (X)] = E [Y ]

=
∫
yfY (y) dy

=
∫
g (x) fX (x) dx

(3.4)

This is an important result which allows us to use the Expectation Operator for many purposes including
the calculation of moments and other related parameters of a random process.

Note, expectation is a Linear Operator:

E [ag1 (X) + bg2 (X)] = aE [g1 (X)] + bE [g2 (X)] (3.5)

1This content is available online at <http://cnx.org/content/m11068/2.4/>.
2"Functions of Random Variables", (2) <http://cnx.org/content/m11066/latest/#eq19>

25
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3.2 Important Examples of Expectation3

We get Moments of a pdf by setting g (X) = Xn in this previous equation (3.4),

nth order moment

E [Xn] =
∫
xnfX (x) dx (3.6)

• n = 1: 1st order moment, E [x] = Mean value
• n = 2: 2nd order moment, E

[
x2
]
= Mean-squared value (Power or energy)

• n > 2: Higher order moments, E [xn], give more detail about fX (x).

3.2.1 Central Moments

Central moments are moments about the centre or mean of a distribution,

nth order central moment

E

[(
X−

−
X

)n]
=
∫ (

x−
−
X

)n
fX (x) dx (3.7)

Some important parameters from central moments of a pdf are:

• Variance, n = 2:

σ2 = E

[(
X−

−
X

)2
]

=
∫ (

x−
−
X

)2

fX (x) dx

=
∫
x2fX (x) dx− 2

−
X
∫
xfX (x) dx+

(
−
X

)2 ∫
fX (x) dx

= E
[
X2
]
− 2
(
−
X

)2

+
(
−
X

)2

= E
[
X2
]
−
(
−
X

)2

(3.8)

• Standard deviation, σ =
√

variance.
• Skewness, n = 3:

γ =

E

[(
X−

−
X

)3
]

σ3
(3.9)

γ = 0 if the pdf of X is symmetric about
−
X, and becomes more positive if the tail of the distribution

is heavier when X >
−
X.

• Kurtosis (or excess), n = 4:

κ =

E

[(
X−

−
X

)4
]

σ4
− 3 (3.10)

κ = 0 for a Gaussian pdf and becomes more positive for distributions with heavier tails.

note: Skewness and kurtosis are normalized by dividing the central moments by appropriate
powers of σ to make them dimensionless. Kurtosis is usually o�set by −3 to make it zero for
Gaussian pdfs.

3This content is available online at <http://cnx.org/content/m11069/2.3/>.
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3.2.2 Example: Central Moments of a Normal Distribution

The normal (or Gaussian) pdf with zero mean is given by:

fX (x) =
1√

2πσ2
e−

x2

2σ2 (3.11)

What is the nth order central moment for the Gaussian?
Since the mean is zero, the nth order central moment is given by

E [Xn] =
∫
xnfX (x) dx

= 1√
2πσ2

∫
xne−

x2

2σ2 dx
(3.12)

fX (x) is a function of x2 and therefore is symmetric about zero. So all the odd-order moments will integrate
to zero (including the lst-order moment, giving zero mean). The even-order moments are then given by:

E [Xn] =
2√

2πσ2

∫ ∞
0

xne−
x2

2σ2 dx (3.13)

where n is even. The integral is calculated by substituting u = x2

2σ2 to give:∫∞
0
xne−

x2

2σ2 dx = 1
2

(
2σ2
)n+1

2
∫∞

0
u
n−1

2 e−udu

= 1
2

(
2σ2
)n+1

2 Γ
(
n+1

2

) (3.14)

Here Γ (z) is the Gamma function, which is de�ned as an integral for all real z > 0 and is rather like the
factorial function but generalized to allow non-integer arguments. Values of the Gamma function can be
found in mathematical tables. It is de�ned as follows:

Γ (z) =
∫ ∞

0

uz−1e−udu (3.15)

and has the important (factorial-like) property that

Γ (z + 1) = zΓ (z) , z 6= 0 (3.16)

Γ (z + 1) = z! , z ∈ Z ∧ (z > 0) (3.17)

The following results hold for the Gamma function (see below for a way to evaluate Γ
(

1
2

)
etc.):

Γ
(

1
2

)
=
√
π (3.18)

Γ (1) = 1 (3.19)

and hence

Γ
(

3
2

)
=
√
π

2
(3.20)

Γ (2) = 1 (3.21)

Hence

E [Xn] =

 0 if n = odd
1√
π

(
2σ2
)n

2 Γ
(
n+1

2

)
if n = even

(3.22)
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• Valid pdf, n = 0:
E
[
X0
]

= 1√
π

Γ
(

1
2

)
= 1

(3.23)

as required for a valid pdf.

note: The normalization factor 1√
2πσ2 in the expression for the pdf of a unit variance

Gaussian (e.g. (3.11)) arises directly from the above result.

• Mean, n = 1:
E [X] = 0 (3.24)

so the mean is zero.
• Variance, n = 2:

E

[(
X−

−
X

)2
]

= E
[
X2
]

= 1√
π

(
2σ2
)

Γ
(

3
2

)
= 1√

π

(
2σ2
) √π

2

= σ2

(3.25)

Therefore standard deviation =
√

variance = σ.
• Skewness, n = 3:

E
[
X3
]

= 0 (3.26)

so the skewness is zero.
• Kurtosis, n = 4:

E

[(
X−

−
X

)4
]

= E
[
X4
]

= 1√
π

(
2σ2
)2Γ

(
5
2

)
= 1√

π

(
2σ2
)2 3
√
π

4

= 3σ4

(3.27)

Hence

κ =
E

»„
X−

−
X

«4–
σ4 − 3

= 3− 3

= 0

(3.28)

3.2.3 Evaluation of the Gamma Function

From the de�nition of Γ and substituting u = x2:

Γ
(

1
2

)
=

∫∞
0
u−

1
2 e−udu

=
∫∞

0
x−1e−x

2
2xdx

= 2
∫∞

0
e−x

2
dx

=
∫∞
−∞ e−x

2
dx

(3.29)
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Using the following squaring trick to convert this to a 2-D integral in polar coordinates:

Γ2
(

1
2

)
=

∫∞
−∞ e−x

2
dx
∫∞
−∞ e−y

2
dy

=
∫∞
−∞

∫∞
−∞ e−(x2+y2)dxdy

=
∫ π
−π
∫∞

0
e−r

2
rdrdθ

= 2π
(
− 1

2

)
e−r

2 |∞0
= π

(3.30)

and so (ignoring the negative square root):

Γ
(

1
2

)
=
√
π ' 1.7725 (3.31)

Hence, using Γ (z + 1) = zΓ (z):

Γ
({

3
2
,

5
2
,

7
2
,

9
2
, . . .

})
=
{

1
2
√
π,

3
4
√
π,

15
8
√
π,

105
16
√
π, . . .

}
(3.32)

The case for z = 1 is straightforward:

Γ (1) =
∫∞

0
u0e−udu

= −e−u|∞0
= 1

(3.33)

so
Γ ({2, 3, 4, 5, . . . }) = {1, 2, 6, 24, . . . } (3.34)

3.3 Sums of Random Variables4

Consider the random variable Y formed as the sum of two independent random variables X1 and X2:

Y = X1 +X2 (3.35)

where X1 has pdf f1 (x1) and X2 has pdf f2 (x2).
We can write the joint pdf for y and x1 by rewriting the conditional probability formula:

f (y, x1) = f (y|x1) f1 (x1) (3.36)

It is clear that the event 'Y takes the value y conditional upon X1 = x1' is equivalent to X2 taking a value
y − x1 (since X2 = Y −X1). Hence

f (y|x1) = f2 (y − x1) (3.37)

Now f (y) may be obtained using the Marginal Probability formula (this equation (1.28) from this
discussion of probability density functions (Section 1.4.2: Probability density functions)). Hence

f (y) =
∫
f (y|x1) f1 (x1) dx1

=
∫
f2 (y − x1) f1 (x1) dx1

= f2 ∗ f1

(3.38)

4This content is available online at <http://cnx.org/content/m11070/2.3/>.
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This result may be extended to sums of three or more random variables by repeated application of the above
arguments for each new variable in turn. Since convolution is a commutative operation, for n independent
variables we get:

f (y) = fn ∗ (fn−1 ∗ · · · ∗ f2 ∗ f1)

= fn ∗ fn−1 ∗ · · · ∗ f2 ∗ f1

(3.39)

An example of this e�ect occurs when multiple dice are thrown and the scores are added together. In the
2-dice example of the sub�gures a,b,c of this �gure (Figure 1.3) in the discussion of probability distributions,
we saw how the pmf approximated a triangular shape. This is just the convolution of two uniform 6-point
pmfs for each of the two dice.

Similarly if two variables with Gaussian pdfs are added together, we shall show in the discussion (Sec-
tion 3.4.2: Summation of two or more Gaussian random variables) of the summation of two or more Gaussian
random variables that this produces another Gaussian pdf whose variance is the sum of the two input vari-
ances.

3.4 Characteristic Functions5

You have already encountered the Moment Generating Function of a pdf in the Part IB probability
course. This function was closely related to the Laplace Transform of the pdf.

Now we introduce the Characteristic Function for a random variable, which is closely related to the
Fourier Transform of the pdf.

In the same way that Fourier Transforms allow easy manipulation of signals when they are convolved
with linear system impulse responses, Characteristic Functions allow easy manipulation of convolved pdfs
when they represent sums of random processes.

The Characteristic Function of a pdf is de�ned as:

ΦX (u) = E
[
ejux

]
=

∫∞
−∞ ejuxfX (x) dx

= F (−u)

(3.40)

where F (u) is the Fourier Transform of the pdf.
Note that whenever fX is a valid pdf, Φ (0) =

∫
fX (x) dx = 1

Properties of Fourier Transforms apply with −u substituted for ω. In particular:

• Convolution - (sums of independent rv's)(
Y =

N∑
i=1

Xi

)
⇒ (fY = fX1 ∗ fX2 ∗ · · · ∗ fXN )⇒

(
ΦY (u) =

N∏
i=1

ΦXi (u)

)
(3.41)

• Inversion

fX (x) =
1

2π

∫
e−(jux)ΦX (u) du (3.42)

• Moments(
dn

dun
ΦX (u) =

∫
(jx)nejuxfX (x) dx

)
⇒
(
E [Xn] =

∫
xnfX (x) dx =

1
jn

dn

dun
ΦX (u) |u=0

)
(3.43)

5This content is available online at <http://cnx.org/content/m11071/2.3/>.
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• Scaling If Y = aX, fY (y) = fX(x)
a from this equation in our previous discussion of functions of

random variables, then

ΦY (u) =
∫
ejuyfY (y) dy

=
∫
ejuaxfX (x) dx

= ΦX (au)

(3.44)

3.4.1 Characteristic Function of a Gaussian pdf

The Gaussian or normal distribution is very important, largely because of the Central Limit Theorem
which we shall prove below. Because of this (and as part of the proof of this theorem) we shall show here
that a Gaussian pdf has a Gaussian characteristic function too.

A Gaussian distribution with mean µ and variance σ2 has pdf:

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (3.45)

Its characteristic function is obtained as follows, using a trick known as completing the square of the
exponent:

ΦX (u) = E
[
ejux

]
=

∫
ejuxfX (x) dx

= 1√
2πσ2

∫
e−

x2−2µx+µ2−2σ2jux
2σ2 dx

=

(
1√

2πσ2

∫
e−

(x−µ+juσ2)2

2σ2 dx

)
e

2juσ2µ−u2σ4

2σ2

= ejuµe−
u2σ2

2

(3.46)

since the integral in brackets is similar to a Gaussian pdf and integrates to unity.

Thus the characteristic function of a Gaussian pdf is also Gaussian in magnitude, e−
u2σ2

2 , with standard
deviation 1

σ , and with a linear phase rotation term, ejuµ, whose rate of rotation equals the mean µ of the
pdf. This coincides with standard results from Fourier analysis of Gaussian waveforms and their spectra
(e.g. Fourier transform of a Gaussian waveform with time shift).

3.4.2 Summation of two or more Gaussian random variables

If two variables, X1 and X2 , with Gaussian pdfs are summed to produce X, their characteristic functions
will be multiplied together (equivalent to convolving their pdfs) to give

ΦX (u) = ΦX1 (u) ΦX2 (u)

= eju(µ1+µ2)e−
u2(σ12+σ2

2)
2

(3.47)

This is the characteristic function of a Gaussian pdf with mean ( µ1 + µ2) and variance ( σ1
2 + σ2

2).
Further Gaussian variables can be added and the pdf will remain Gaussian with further terms added to

the above expressions for the combined mean and variance.

3.4.3 Central Limit Theorem

The central limit theorem states broadly that if a large number N of independent random variables of
arbitrary pdf, but with equal variance σ2 and zero mean, are summed together and scaled by 1√

N
to keep

the total energy independent of N , then the pdf of the resulting variable will tend to a zero-mean Gaussian
with variance σ2 as N tends to in�nity.
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This result is obvious from the previous result if the input pdfs are also Gaussian, but it is the
fact that it applies for arbitrary input pdfs that is remarkable, and is the reason for the importance of
the Gaussian (or normal) pdf. Noise generated in nature is nearly always the result of summing many tiny
random processes (e.g. noise from electron energy transitions in a resistor or transistor, or from distant
worldwide thunder storms at a radio antenna) and hence tends to a Gaussian pdf.

Although for simplicity, we shall prove the result only for the case when all the summed processes have
the same variance and pdfs, the central limit result is more general than this and applies in many cases
even when the variance and pdfs are not all the same.

3.4.3.1 Proof:

Let Xi (i = 1 to N) be the N independent random processes, each will zero mean and variance σ2, which
are combined to give

X =
1√
N

N∑
i=1

Xi (3.48)

Then, if the characteristic function of each input process before scaling is Φ (u) and we use (3.44) to include
the scaling by 1√

N
, the characteristic function of X is

ΦX (u) =
∏N
i=1 ΦXi

(
u√
N

)
= ΦN

(
u√
N

) (3.49)

Taking logs:

logΦX (u) = N logΦ
(

u√
N

)
(3.50)

Using Taylor's theorem to expand Φ
(

u√
N

)
in terms of its derivatives at u = 0 (and hence its moments)

gives

Φ
(

u√
N

)
= Φ (0) +

u√
N

dΦ (0)
d

+
1
2

(
u√
N

)2
dΦ (0)
d

+
1
6

(
u√
N

)3
dΦ (0)
d

+
1
24

(
u√
N

)4
dΦ (0)
d

+ . . . (3.51)

From the Moments property of characteristic functions with zero mean:

• valid pdf
Φ (0) = E

[
Xi

0
]

= 1

• zero mean
Φ′ (0) = jE [Xi] = 0

• variance
Φ (0)′′ = j2E

[
Xi

2
]

= −σ2

• scaled skewness
Φ (0)′′′ = j3E

[
Xi

3
]

= −
(
jγσ3

)
• scaled kurtosis

Φ (0)4 = j4E
[
Xi

4
]

= (κ+ 3)σ4

These are all constants, independent of N , and dependent only on the shape of the pdfs fXi .
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Substituting these moments into (3.50) and (3.51) and using the series expansion, log (1 + x) = x +
(terms of order x2 or smaller), gives

logΦX (u) = N logΦ
(

u√
N

)
= N log

(
1− u2

2N σ
2 + ∗∗

)
= N

(
−u

2σ2

2N + ∗∗
)

= −u
2σ2

2 + ##

(3.52)

where ** represents the terms of order N−
3
2 or smaller and ## represents the terms of order N−

1
2 or

smaller. As N →∞,

logΦX (u)→ −u
2σ2

2
Therefore, as N →∞

ΦX (u)→ e−
u2σ2

2 (3.53)

Note that, if the input pdfs are symmetric, the skewness will be zero and the error terms will decay as N−1

rather than N−
1
2 ; and so convergence to a Gaussian characteristic function will be more rapid.

Hence we may now infer from (3.45), (3.46) and (3.53) that the pdf of X as N →∞ will be given by

fX (x) =
1√

2πσ2
e−

x2

2σ2 (3.54)

Thus we have proved the required central limit result.
Figure 3.1(a) shows an example of convergence when the input pdfs are uniform, and N is gradually

increased from 1 to 50. By N = 12, convergence is good, and this is how some 'Gaussian' random generator
functions operate - by summing typically 12 uncorrelated random numbers with uniform pdfs.

For some less smooth or more skewed pdfs, convergence can be slower, as shown for a highly skewed
triangular pdf in Figure 3.1(b); and pdfs of discrete processes are particularly problematic in this respect,
as illustrated in Figure 3.1(c).
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(a)

(b)

(c)

Figure 3.1: Convergence toward a Gaussian pdf (Central Limit Theorem) for 3 di�erent input pdfs
for N = 1 to 50. Note that the uniform pdf (a) with smallest higher-order moments converges fastest.
Curves are shown for N = {1, 2, 3, 4, 6, 8, 10, 12, 15, 20, 30, 50}.



Chapter 4

Correlation Functions and Power Spectra

4.1 Random Processes1

We discussed Random Signals (Section 2.2) brie�y and now we return to consider them in detail. We shall
assume that they evolve continuously with time t, although they may equally well evolve with distance (e.g.
a random texture in image processing) or some other parameter.

We can imagine a generalization of our previous ideas about random experiments so that the outcome of
an experiment can be a 'Random Object', an example of which is a signal waveform chosen at random from
a set of possible signal waveforms, which we term an Ensemble. This ensemble of random signals is known
as a Random Process.

1This content is available online at <http://cnx.org/content/m11100/2.6/>.
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Figure 4.1: Ensemble representation of a random process.

An example of a Random Process X (t, α) is shown in Figure 4.1, where t is time and α is an index to
the various members of the ensemble.

• t is assumed to belong to some set T (the time axis).
• α is assumed to belong to some set A (the sample space).
• If T is a continuous set, such as R or [0,∞), then the process is termed a Continuous Time random

process.
• If T is a discrete set of time values, such as the integers Z, the process is termed a Discrete Time

Process or Time Series.
• The members of the ensemble can be the result of di�erent random events, such as di�erent instances

of the sound 'ah' during the course of this lecture. In this case α is discrete.
• Alternatively the ensemble members are often just di�erent portions of a single random signal. If the

signal is a continuous waveform, then α may also be a continuous variable, indicating the starting point
of each ensemble waveform.

We will often drop the explicit dependence on α for notational convenience, referring simply to random
process {X (t)}.
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If we consider the process {X (t)} at one particular time t = t1, then we have a random variable X (t1).
If we consider the process {X (t)} at N time instants {t1, t2, . . . , tN}, then we have a random vector:

X =
(
X (t1) X (t2) . . . X (tN )

)T
We can study the properties of a random process by considering the behavior of random variables and
random vectors extracted from the process, using the probability theory derived earlier in this course.

4.2 Correlation and Covariance2

Correlation and covariance are techniques for measuring the similarity of one signal to another. For a random
process X (t, α) they are de�ned as follows.

• Auto-correlation function:

rXX (t1, t2) = E [X (t1, α)X (t2, α)]

=
∫ ∫

x1x2f (x1, x2) dx1dx2
(4.1)

where the expectation is performed over all α ∈ A (i.e. the whole ensemble), and f (x1, x2) is the
joint pdf when x1 and x2 are samples taken at times t1 and t2 from the same random event α of
the random process X.

• Auto-covariance function:

cXX (t1, t2) = E

[(
X (t1, α)−

−
X (t1)

)(
X (t2, α)−

−
X (t2)

)]
=

∫ ∫ (
x1−

−
X (t1)

)(
x2−

−
X (t2)

)
f (x1, x2) dx1dx2

= rXX (t1, t2)− 2
−

X (t1)
−

X (t2) +
−

X (t1)
−

X (t2)

= rXX (t1, t2)−
−

X (t1)
−

X (t2)

(4.2)

where the same conditions apply as for auto-correlation and the means
−

X (t1) and
−

X (t2) are taken over
all α ∈ A . Covariances are similar to correlations except that the e�ects of the means are removed.

• Cross-correlation function: If we have two di�erent processes, X (t, α) and Y (t, α), both arising as
a result of the same random event α, then cross-correlation is de�ned as

rXY (t1, t2) = E [X (t1, α)Y (t2, α)]

=
∫ ∫

x1y2f (x1, y2) dx1dy2
(4.3)

where f (x1, y2) is the joint pdf when x1 and y2 are samples of X and Y taken at times t1 and t2 as
a result of the same random event α. Again the expectation is performed over all α ∈ A .

• Cross-covariance function:

cXY (t1, t2) = E

[(
X (t1, α)−

−
X (t1)

)(
Y (t2, α)−

−
Y (t2)

)]
=

∫ ∫ (
x1−

−
X (t1)

)(
y2−

−
Y (t2)

)
f (x1, y2) dx1dy2

= rXY (t1, t2)−
−

X (t1)
−

Y (t2)

(4.4)

2This content is available online at <http://cnx.org/content/m11101/2.3/>.
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For Deterministic Random Processes which depend deterministically on the random variable α (or some
function of it), we can simplify the above integrals by expressing the joint pdf in that space. E.g. for
auto-correlation:

rXX (t1, t2) = E [X (t1, α)X (t2, α)]

=
∫
x (t1, α)x (t2, α) f (α) dα

(4.5)

4.3 Stationarity3

Stationarity in a Random Process implies that its statistical characteristics do not change with time.
Put another way, if one were to observe a stationary random process at some time t it would be impossible
to distinguish the statistical characteristics at that time from those at some other time t′.

4.3.1 Strict Sense Stationarity (SSS)

Choose a Random Vector of length N from a Random Process:

X =
(
X (t1) X (t2) . . . X (tN )

)T
(4.6)

Its Nth order cdf is

FX(t1), ... X(tN ) (x1, . . . , xN ) = Pr [{X (t1) ≤ x1, . . . , X (tN ) ≤ xN}] (4.7)

X (t) is de�ned to be Strict Sense Stationary i�:

FX(t1), ... X(tN ) (x1, . . . , xN ) = FX(t1+c), ... X(tN+c) (x1, . . . , xN ) (4.8)

for all time shifts c, all �nite N and all sets of time points {t1, . . . , tN}.

4.3.2 Wide Sense (Weak) Stationarity (WSS)

If we are only interested in the properties of moments up to 2nd order (mean, autocorrelation, covariance,
...), which is the case for many practical applications, a weaker form of stationarity can be useful:

X (t) is de�ned to be Wide Sense Stationary (or Weakly Stationary) i�:

1. The mean value is independent of t, for all t

E [X (t)] = µ (4.9)

2. Autocorrelation depends only upon τ = t2 − t1, for all t1

E [X (t1)X (t2)] = E [X (t1)X (t1 + τ)]

= rXX (τ)
(4.10)

Note that, since 2nd-order moments are de�ned in terms of 2nd-order probability distributions, strict sense
stationary processes are always wide-sense stationary, but not necessarily vice versa.

3This content is available online at <http://cnx.org/content/m11102/2.3/>.



39

4.4 Ergodicity4

Many stationary random processes are also Ergodic. For an Ergodic Random Process we can exchange
Ensemble Averages for Time Averages. This is equivalent to assuming that our ensemble of random
signals is just composed of all possible time shifts of a single signal X (t).

Recall from our previous discussion of Expectation (3.4) that the expectation of a function of a random
variable is given by

E [g (X)] =
∫
g (x) fX (x) dx (4.11)

This result also applies if we have a random function g (.) of a deterministic variable such as t. Hence

E [g (t)] =
∫
g (t) fT (t) dt (4.12)

Because t is linearly increasing, the pdf fT (t) is uniform over our measurement interval, say −T to T , and
will be 1

2T to make the pdf valid (integral = 1). Hence

E [g (t)] =
∫ T
−T g (t) 1

2T dt

= 1
2T

∫ T
−T g (t) dt

(4.13)

If we wish to measure over all time, then we take the limit as T →∞.
This leads to the following results for Ergodic WSS random processes:

• Mean Ergodic:

E [X (t)] =
∫∞
−∞ xfX(t) (x) dx

= limit
T→∞

1
2T

∫ T
−T X (t) dt

(4.14)

• Correlation Ergodic:

rXX (τ) = E [X (t)X (t+ τ)]

=
∫∞
−∞

∫∞
−∞ x1x2fX(t),X(t+τ) (x1, x2) dx1dx2

= limit
T→∞

1
2T

∫ T
−T X (t)X (t+ τ) dt

(4.15)

and similarly for other correlation or covariance functions.

Ergodicity greatly simpli�es the measurement of WSS processes and it is often assumed when
estimating moments (or correlations) for such processes.

In almost all practical situations, processes are stationary only over some limited time interval (say
T1 to T2) rather than over all time. In that case we deliberately keep the limits of the integral �nite and
adjust fX(t) accordingly. For example the autocorrelation function is then measured using

rXX (τ) =
1

T2 − T1

∫ T2

T1

X (t)X (t+ τ) dt (4.16)

This avoids including samples of X which have incorrect statistics, but it can su�er from errors due to
limited sample size.

4This content is available online at <http://cnx.org/content/m11103/2.3/>.
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4.5 Spectral Properties of Random Signals5

4.5.1 Relation of Power spectral Density to ACF

The autocorrelation function (ACF) of an ergodic random signal tells us how correlated the signal is with
itself as a function of time shift τ . In particular, for τ = 0

rXX (0) = limit
T→∞

1
2T

∫ T
−T X

2 (t) dt

= mean power of X (t)
(4.17)

Note that if T →∞, for all τ
rXX (τ) = rXX (−τ) ≤ rXX (0) (4.18)

As τ becomes large, X (t) and X (t+ τ) will usually become decorrelated and, as long as X is zero mean,
rXX will tend to zero.

Hence the ACF will have its maximum at τ = 0 and decay symmetrically to zero (or to µ2, if µ 6= 0)
as |τ | increases.

The width of the ACF (to say its half-power points) tells us how slowly X is �uctuating or how band-
limited it is. Figure 4.2(b) shows how the ACF of a rapidly �uctuating (wide-band) random signal, as in
Figure 4.2(a) upper plot, decays quickly to zero as |τ | increases, whereas, for a slowly �uctuating signal, as
in Figure 4.2(a) lower plot, the ACF decays much more slowly.

5This content is available online at <http://cnx.org/content/m11104/2.4/>.
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(a)

(b)

(c)

Figure 4.2: Illustration of the di�erent properties of wide band (upper) and narrow band (lower)
random signals: (a) the signal waveforms with unit variance; (b) their autocorrelation functions (ACFs);
and (c) their power spectral densities (PSDs). In (b) and (c), the thin �uctuating curves shows the actual
values measured from 4000 samples of the random waveforms while the thick smooth curves show the
limits of the ACF and PSD as the lengths of the waveforms tend to in�nity.
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The ACF measures an entirely di�erent aspect of randomness from amplitude distributions
such as pdf and cdf.

As with deterministic signals, we may formalize our ideas of rates of �uctuation by transforming to the
Frequency (Spectral) Domain using the Fourier Transform:

Fu (ω) = FT (u (t))

=
∫
u (t) e−(jωt)dt

(4.19)

The Power Spectral Density (PSD) of a random process X is de�ned to be the Fourier Transform of its
ACF:

SX (ω) = FT (rXX (τ))

=
∫
rXX (τ) e−(jωτ)dτ

(4.20)

rXX (τ) = FT−1 (SX (ω))

= 1
2π

∫
SX (ω) ejωτdω

(4.21)

N.B. {X (t)} must be at least Wide Sense Stationary (WSS).
From (4.17) and (4.21) we see that the mean signal power is given by:

rXX (0) = 1
2π

∫
SX (ω) dω

=
∫
SX (2πf) df

(4.22)

Hence SX has units of power per Hertz. Note that we must integrate over all frequencies, both positive
and negative, to get the correct total power.

Figure 4.2(c) shows how the PSDs of the signals relate to the ACFs in Figure 4.2(b).
Properties of PSDs for real-valued X (t):

1. SX (ω) = SX (−ω)
2. SX (ω) is Real-valued
3. SX (ω) ≥ 0

Properties 1 and 2 are because ACFs are real and symmetric about τ = 0; and 3 is because SX represents
power density.
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4.5.2 Linear system (�lter) with WSS input

Figure 4.3: Block diagram of a linear system with a random input signal, X (t).

Let the linear system with input X (t) and output Y (t) have an impulse response h (t), so

Y (t) = h (t) ∗X (t)

=
∫
h (α)X (t− α) dα

(4.23)

Then the ACF of Y is

rY Y (t1, t2) = E [Y (t1)Y (t2)]

= E
[∫
h (α1)X (t1 − α1) dα1

∫
h (α2)X (t2 − α2) dα2

]
= E

[∫ ∫
h (α1)h (α2)X (t1 − α1)X (t2 − α2) dα1dα2

]
=

∫ ∫
h (α1)h (α2)E [X (t1 − α1)X (t2 − α2)] dα1dα2

=
∫ ∫

h (α1)h (α2) rXX (t1 − α1, t2 − α2) dα1dα2

(4.24)

If X is WSS then

rY Y (τ) = E [Y (t)Y (t+ τ)]

=
∫ ∫

h (α1)h (α2) rXX (τ + α1 − α2) dα1dα2

= rXX (τ) ∗ h (−τ) ∗ h (τ)

(4.25)

Taking Fourier transforms:

SY (ω) = FT (rY Y (τ))

=
∫ ∫ ∫

h (α1)h (α2) rXX (τ + α1 − α2) dα1dα2e−(jωτ)dτ

=
∫ ∫

h (α1)h (α2)
∫
rXX (τ + α1 − α2) e−(jωτ)dτdα1dα2

=
∫ ∫

h (α1)h (α2)
∫
rXX (λ) e−(jω(λ−α1+α2))dλdα1dα2

=
∫
h (α1) ejωα1dα1

∫
h (α2) e−(jωα2)dα2

∫
rXX (λ) e−(jωλ)dλ

= H (ω)H (ω)SX (ω)

(4.26)
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where H (ω) = FT (h (t)). i.e:
SY (ω) = (|H (ω) |)2

SX (ω) (4.27)

Hence the PSD of Y = the PSD of X × the power gain (|H|)2
of the system at frequency ω.

Thus if a large and important system is subject to random perturbations (e.g. a power plant subject
to random load �uctuations), we may measure rXX (τ) and rY Y (τ), transform these to SX (ω) and SY (ω),
and hence obtain

|H (ω) | =

√
SY (ω)
SX (ω)

(4.28)

Hence we may measure the system frequency response without taking the plant o� line. But this does
not give any information about the phase of H (ω).

However, if instead we measure the Cross-Correlation Function (CCF) between X and Y , we get:

rXY (t1, t2) = E [X (t1)Y (t2)]

= E
[
X (t1)

∫
h (α2)X (t2 − α2) dα2

]
= E

[∫
h (α2)X (t1)X (t2 − α2) dα2

]
=

∫
h (α2)E [X (t1)X (t2 − α2)] dα2

=
∫
h (α2) rXX (t1, t2 − α2) dα2

(4.29)

If X (t), and hence Y (t), are WSS:

rXY (τ) = E [X (t)Y (t+ τ)]

=
∫
h (α) rXX (τ − α) dα

= h (τ) ∗ rXX (τ)

(4.30)

and taking Fourier transforms:

SXY (ω) = FT (rXY (τ))

= H (ω)SX (ω)
(4.31)

where SXY (ω) is known as the Cross Spectral Density between X and Y . Therefore,

H (ω) =
SXY (ω)
SX (ω)

(4.32)

Hence we obtain the amplitude and phase of H (ω). As before, this is achieved without taking the plant
o� line.

Note that for WSS processes, rXY (τ) = rY X (−τ) and that (unlike rXX and rY Y ) these need not be
symmetric about τ = 0. Hence the cross spectral density SXY (ω) need not be purely real (unlike SX (ω)),
and the phase of SXY (ω) gives the phase of H (ω).
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4.5.3 Physical Interpretation of Power Spectral Density

Figure 4.4: Narrowband �lter frequency response and PSD of �lter input and output.

Let us pass X (t) through a narrow-band �lter of bandwidth δ (ω) = 2πδ (f), as shown in Figure 4.4:

H (ω) =

 1 if ω0 < |ω| ≤ ω0 + δ (ω)

0 otherwise
(4.33)

Find average power at the �lter output (shaded area in Figure 4.4, divided by 2π):

P0 = rY Y (0)

= 1
2π

∫∞
−∞ SY (ω) dω

= 1
2π

∫∞
−∞ SX (ω) (|H (ω) |)2

dω

= 1
2π

(∫ −ω0

−(ω0+δ(ω0))
SX (ω) dω +

∫ ω0+δ(ω0)

ω0
SX (ω) dω

)
' 2SX (ω0)× 1

2π δ (ω0)

(4.34)

since SX (−ω) = SX (ω). Expressed in terms of f0 = ω0
2π :

P0 ' 2SX (2πf0) δ (f) (4.35)

with the factor of 2 appearing because our �lter responds to both negative and positive frequency components
of X.

Hence SX is indeed a Power Spectral Density with units V 2

Hz (assuming unit impedance).
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4.6 White and Coloured Processes6

4.6.1 White Noise

If we have a zero-mean Wide Sense Stationary process X, it is a White Noise Process if its ACF is a
delta function at τ = 0, i.e. it is of the form:

rXX (τ) = PXδ (τ) (4.36)

where PX is a constant.
The PSD of X is then given by

SX (ω) =
∫
PXδ (τ) e−(jωτ)dτ

= PXe
−(jω0)

= PX

(4.37)

Hence X is white, since it contains equal power at all frequencies, as in white light.
PX is the PSD of X at all frequencies.
But:

Power of X = 1
2π

∫∞
−∞ SX (ω) dω

= ∞
(4.38)

so the White Noise Process is unrealizable in practice, because of its in�nite bandwidth.
However, it is very useful as a conceptual entity and as an approximation to 'nearly white' processes

which have �nite bandwidth, but which are 'white' over all frequencies of practical interest. For 'nearly
white' processes, rXX (τ) is a narrow pulse of non-zero width, and SX (ω) is �at from zero up to some
relatively high cuto� frequency and then decays to zero above that.

4.6.2 Strict Whiteness and i.i.d. Processes

Usually the above concept of whiteness is su�cient, but a much stronger de�nition is as follows:
Pick a set of times {t1, t2, . . . , tN} to sample X (t).
If, for any choice of {t1, t2, . . . , tN} with N �nite, the random variables X (t1), X (t2), . . . X (tN ) are

jointly independent, i.e. their joint pdf is given by

fX(t1),X(t2), ... X(tN ) (x1, x2, . . . , xN ) =
N∏
i=1

fX(ti) (xi) (4.39)

and the marginal pdfs are identical, i.e.

fX(t1) = fX(t2)

= . . .

= fX(tN )

= fX

(4.40)

then the process is termed Independent and Identically Distributed (i.i.d).
If, in addition, fX is a pdf with zero mean, we have a Strictly White Noise Process.
An i.i.d. process is 'white' because the variables X (ti) and X (tj) are jointly independent, even when

separated by an in�nitesimally small interval between ti and tj .

6This content is available online at <http://cnx.org/content/m11105/2.4/>.
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4.6.3 Additive White Gaussian Noise (AWGN)

In many systems the concept of Additive White Gaussian Noise (AWGN) is used. This simply means
a process which has a Gaussian pdf, a white PSD, and is linearly added to whatever signal we are analysing.

Note that although 'white' and Gaussian' often go together, this is not necessary (especially for 'nearly
white' processes).

E.g. a very high speed random bit stream has an ACF which is approximately a delta function, and
hence is a nearly white process, but its pdf is clearly not Gaussian - it is a pair of delta functions at + (V )
and −V , the two voltage levels of the bit stream.

Conversely a nearly white Gaussian process which has been passed through a lowpass �lter (see next
section) will still have a Gaussian pdf (as it is a summation of Gaussians) but will no longer be white.

4.6.4 Coloured Processes

A random process whose PSD is not white or nearly white, is often known as a coloured noise process.
We may obtain coloured noise Y (t) with PSD SY (ω) simply by passing white (or nearly white) noise

X (t) with PSD PX through a �lter with frequency response H (ω), such that from this equation (4.27) from
our discussion of Spectral Properties of Random Signals.

SY (ω) = SX (ω) (|H (ω) |)2

= PX(|H (ω) |)2
(4.41)

Hence if we design the �lter such that

|H (ω) | =

√
SY (ω)
PX

(4.42)

then Y (t) will have the required coloured PSD.
For this to work, SY (ω) need only be constant (white) over the passband of the �lter, so a nearly white

process which satis�es this criterion is quite satisfactory and realizable.
Using this equation (4.25) from our discussion of Spectral Properties of Random Signals and (4.36), the

ACF of the coloured noise is given by

rY Y (τ) = rXX (τ) ∗ h (−τ) ∗ h (τ)

= PXδ (τ) ∗ h (−τ) ∗ h (τ)

= PXh (−τ) ∗ h (τ)

(4.43)

where h (τ) is the impulse response of the �lter.
This Figure (Figure 4.2) from previous discussion shows two examples of coloured noise, although the

upper waveform is more 'nearly white' than the lower one, as can be seen in part c of this �gure (Figure 4.2(c))
from previous discussion in which the upper PSD is �atter than the lower PSD. In these cases, the coloured
waveforms were produced by passing uncorrelated random noise samples (white up to half the sampling
frequency) through half-sine �lters (as in this equation (2.7) from our discussion of Random Signals) of
length Tb = 10 and 50 samples respectively.
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Discrete Time Process, � 4.1(35), 36

E Ensemble, � 4.1(35), 35
Ensemble Average, � 4.4(39)
Ensemble Averages, 39
Ergodic, � 4.4(39), 39
evidence, 7, 8
Expectation, � 3.1(25), � 3.2(26)
Expectation Operator, 25

F Fourier Transform, � 3.4(30), 30, 42
Frequency (Spectral) Domain, 42

G Gaussian, 6
Gaussian Error Integral, � 2.3(20)
Gaussian pdf, � 2.3(20)

I Independent and Identically Distributed
(i.i.d), 46
Inversion, 30

J joint, 12, 12
joint cdf, � 1.4(12)
joint pdf, � 1.4(12)
jointly independent, 46

L Laplace Transform, 30
likelihood, 7
likelihoods, 8
Linear Operator, 25
Linear System (Filter), � 4.5(40)

M MAP, 7
Marginal Probability, 13, � 3.3(29), 29
Marginalisation Integral, 13
maximum a posteriori, 7
mean, 25
Mean Ergodic, � 4.4(39)
Mean Ergodic:, 39
models, 8
Moment Generating Function, 30
Moments, 26, 30, 32
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motivation, � 1.1(1)

N near White Processes, � 4.6(46)
nearly white, 47
normal, 6

P pdf, � 1.2(3), 6
pmf, � 1.2(3), 4
posterior, 7, 8
posteriori, 8
Power Spectral Density, � 4.5(40), 42, 45
prior, 7, 8
probability, � 1.1(1)
probability density function, � 1.2(3)
Probability Density Function - pdf, 3
probability distributions, � 1.1(1), � 1.2(3)
probability mass function, � 1.2(3)
Probability Mass Function - pmf, 3
Probability Theory, 1

Q Q function, � 2.3(20)

R Random Function, � 4.4(39), 39
random process, � 1.1(1), 35, 36
Random Processes, � 4.1(35)
random signals, � 2.2(17)
random variable, 37

Random Variables, � 3.3(29)
random vector, 37
random vectors, � 2.1(15)
randomness, 3
ratio, 9
Rayleigh distribution, 16
real-world Random Signals and Processes, 1

S Scaling, 31
statistical characteristics, 38
Strict Sense Stationarity (SSS), � 4.3(38)
Strict Sense Stationary, 38
Strictly White Noise Process, 46

T Time Average, � 4.4(39)
Time Averages, 39
Time Series, � 4.1(35), 36
Total probability (cdf), 12
Total Probability (pdf):, 13

W white, 46
White Noise Process, 46
White Processes, � 4.6(46)
Wide Sense Stationarity (WSS), � 4.3(38)
Wide Sense Stationary, 38
WSS input, � 4.5(40)
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