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Chapter 1

Perfect Pitch: Using Software to Alter

Your Voice1

1.1 Introduction on Speech Synthesis

1.1.1 Overview

The ability to tweak or manipulate a person's voice has always been useful. Before the advent of digital
signal processing, however, this task was extremely hard. In those days, the most sophisticated manipulations
could be found in rock and roll synthesizers that used analog devices to distort the noise, producing a pseudo
random feel to the voice. Other naïve approaches could be taken to alter somebody's voice, such as changing
the playback speed of the clip or modulating the signal. However, these techniques just resulted in making the
person speak with a lower pitch that sounded slurred or a higher pitch that resembled Alvin the Chipmunk.

1.1.2 Goals

The goal of this project was to develop a more sophisticated set of voice manipulation tools using digital
signal processing by developing software in Matlab. The �rst and most complicated tool raises or lowers the
pitch of a recorded voice without changing the length of the sound or otherwise changing the characteristics
of the voice. The second changes the length of the clip without altering the pitch of the voice. The resulting
voices from both of these tools should sound as if the original clip had been recorded anew while instructing
the person doing the talking to speak more slowly, more quickly, or with a higher or lower pitch. Finally,
the third tool randomizes the voice in order to mask the identity of the speaker yet preserve her ability to
communicate.

1.1.3 Applications and Examples

As you can imagine, there are several potential applications for our new software. An out of tune singer can
go back after a recording and tweak his or her voice to match precisely the correct tone regardless of whether
the problem persists for the duration of the song or a fraction of a second. If a newscaster's segment goes
over or under the preferred time allotment by a few seconds, his or her speech may be reduced or extended
by exactly the necessary amount.

1This content is available online at <http://cnx.org/content/m12553/1.6/>.
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CHAPTER 1. PERFECT PITCH: USING SOFTWARE TO ALTER YOUR

VOICE

Pitch Shifted and Randomized Speech Examples

Unaltered voice Original2

Pitch Shifted Voice Up3 Down4

Randomized Voice Random5

Table 1.1

Length Changer Speech Examples

Unaltered voice Original6

Length Changed Voice Slower7 Faster8

Table 1.2

2http://cnx.org/content/m12553/latest/fudge.wav
3http://cnx.org/content/m12553/latest/fudge100.wav
4http://cnx.org/content/m12553/latest/fudge-50.wav
5http://cnx.org/content/m12553/latest/randfudge.wav
6http://cnx.org/content/m12553/latest/male.wav
7http://cnx.org/content/m12553/latest/male2.wav
8http://cnx.org/content/m12553/latest/male3.wav



Chapter 2

The Pitch Correction Algorithm: An

Overview1

2.1 Time-Domain vs. Frequency-Domain

Clearly, the goal of this algorithm is to take an input voice signal, change the pitch of the voice, and output
the otherwise unaltered signal. In order to do so, the �rst step is to decide whether to analyze and manipulate
these signals in the time domain or the frequency domain. Because our algorithm is primarily concerned with
quickly identifying and shifting individual frequencies, we worked solely in the realm of the frequency domain.
Of course, there are e�ective ways to deal with this problem without the frequency domain. However, as
will later become obvious, there are some very useful techniques we developed that are not possible in the
time domain. With pitch correction it seems that Parseval has made a mistake; there is simply more power
in the spectrum.

2.2 Basic System Model

Now that we have decided how to look at our signals, we need to develop a general layout and strategy for
how it will work.

2.2.1 General Process Summary

First, the signal is �Matricized,� a term we coined to describe our particular algorithm to break up the signal
and convert it into the Fourier Domain. Basically, the signal comes in as a long string of sampled values that
together represent the whole sound. We, in turn, convert this vector of samples into a matrix for which each
column represents the spectrum of one slice, or chunk, of the signal. Although any chunk size could be used,
we found the best performance with chunk sizes of 512 samples, which represents about .02 seconds of sound
for the 22 kHz sampling rate used on our signals. Next, we take the Discrete Fourier Transform for each of
the chunks, showing us the frequencies present at every given moment during the speech. These DFTs are
then collected into a matrix with 512 rows and as many columns as there are .02 second long chunks in the
voice. With a given chunk, our Harmonic Detection algorithm has the extremely di�cult task of accurately
and consistently identifying the �rst harmonic of the voice. With that information in hand, the program
reconstructs a new DFT representation for the current chunk by �rst sliding the �rst harmonic down the
spectrum by the desired shift in pitch, and then following up with all of the other harmonics, shifting each
one by an incremental multiple of the �rst shift. After all of the chunks have been processed and put into a

1This content is available online at <http://cnx.org/content/m12539/1.5/>.
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4 CHAPTER 2. THE PITCH CORRECTION ALGORITHM: AN OVERVIEW

matrix, this new matrix is �Dematricized� in order to convert the information back into the time domain as
a new string of digital samples that represent the freshly manipulated voice.

2.3 Detailed System Model: Step-by-Step

The pitch synthesizer relies on several algorithms to properly alter the pitch of a person's voice without
mutilating its clarity.

2.3.1 Matricize

First, the signal is �matricized,� a term we coined to represent the task of transforming the string of speech
samples into a matrix whose columns each represent the spectrum of an overlapping rectangular window, or
chunk, of the signal. Each portion of the voice is contained twice in this information since exactly one half
of each chunk is overlapped and contained within an adjacent chunk. Next, each column of the matrix is
processed separately, meaning we attempt to change the characteristics of the voice one piece at a time and
do so redundantly.

2.3.2 Harmonic Detection

Now that we have isolated the spectrum of a chunk of our signal, we use a harmonic detecter to �nd the �rst
harmonic of the voice at that particular point in time. This task is harder than it �rst appears and its level
of accuracy makes the single biggest contribution to the functionality and accuracy of the pitch synthesizer
as a whole. Voiced vowel noises are the only parts of speech that contain pitch, so they need to be processed
di�erently than the rest of the signal. However, since there are many periods of noise as well as voiced (s and
z sounds) and unvoiced (like f and t) fricatives alongside these important voiced vowel noises, the harmonic
detector must wade through each chunk and �rst determine whether or not it is dealing with a voiced vowel
noise. If so, it computes the index of the �rst harmonic of the sample by taking the DFT of the �rst half of
the magnitude of the DFT of the original signal chunk. The resulting spectrum will have a very large DC
component which represents the grab bag of frequencies present in the original signal, as well as repeating
peaks corresponding to the only periodic aspect of the original DFT � the signal's harmonics. Therefore,
the harmonic detector compares the DC amplitude with the next biggest peak, determining simultaneously
whether or not this chunk is likely to be a voiced vowel noise and if so the frequency of its �rst harmonic.

2.3.3 Frequency Shift

With this information in hand, our program determines how far each and every frequency must be shifted.
Since you interpret the pitch of a voice as the frequency of its �rst harmonic, the �rst harmonic is shifted by
exactly the desired result. In turn, the frequency of every harmonic is a multiple of the �rst, so the second
harmonic must be shifted twice as far as the �rst, the third is shifted three times as far, and so on. In
fact, we use the index of the �rst harmonic to determine how much each and every frequency in the original
chunk will shift to build up the �rst half of the DFT for our new, processed chunk. We are trying to alter
the pitch without a�ecting the length of the sound, so this stretched out DFT must be cut o� at half the
length of the original DFT, at which point we have the completed version of the front half of the new DFT.
To complete the second half, we rely on the DFT's symmetry properties, noting that our original and �nal
sound signals are both purely real. Therefore, the real portion of the DFT is mirrored about the middle,
and the imaginary portion is mirrored and �ipped. Finally we have completely processed the given window
of the original signal.

2.3.4 Reconstruction

To reconstruct the original signal, these processed DFT's each become a column of another matrix which is
then �dematricized� by taking the inverse FFT of each spectrum and placing them side by side into a new
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signal that has the same length as the original. The only di�erence of course being that the voice in the
signal has become as high or as low as the desired shift.

Pitch Shifted Speech Examples

Unaltered voice Original2

Pitch Shifted Voice Up3 Down4

Table 2.1

2http://cnx.org/content/m12539/latest/fudge.wav
3http://cnx.org/content/m12539/latest/fudge100.wav
4http://cnx.org/content/m12539/latest/fudge-50.wav
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Chapter 3

Harmonic Detection1

3.1 The Biggest Obstacle

There is no question about it. For this algorithm to work correctly, the obstacle that is simultaneously
most critical and most prone to error is accurately and consistently detecting the �rst harmonic in a chunk
of speech. For instance, if the software incorrectly thinks the person speaks with a very deep voice in a
particular chunk, the resulting frequency shift to the actual �rst harmonic will be enormous. The ratio of
the correct index to the approximated index of the �rst harmonic is equal to the ratio of the actual shift in
pitch and the desired shift in pitch after the voice manipulation is complete.

3.2 A Brief Overview of Harmonics and Speech

Why does middle C sound di�erent from a piano, a trumpet, or an opera singer? After all, they all have
the same pitch. The di�erence rests not in the base frequency that is being played per se, but rather in the
sound's harmonics. Whenever an instrument (or a voice) makes a sound, the pitch you hear is called the
�rst harmonic, it is the lowest and usually the strongest frequency emitted. However, this is not the only
noise that is produced. There are also waves produced at all the higher octaves on the same note. The sound
produced exactly one octave higher than the �rst harmonic is the second harmonic, the next octave up is the
third harmonic, and so on. Looking at the Fourier Domain, it is important to remember that each octave,
and therefore each harmonic, is exactly twice the frequency of the one below it. The relative strength or
weakness of each individual harmonic gives each instrument a unique sound. In the case of speech, our vocal
cords determine the pitch and produce the harmonics while our mouths individually dampen each harmonic
in a set pattern to make a particular vowel. Consonants, unlike vowels, do not have a pitch nor do they
have harmonics. A person's articulation of an `s' or `z' sound, for instance, does not change depending on
whether or not he has just been kicked in the groin.

1This content is available online at <http://cnx.org/content/m12555/1.5/>.
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8 CHAPTER 3. HARMONIC DETECTION

Spectrum For A Chunk

Figure 3.1: DFT of one 512 sample chunck of a speech signal.

3.3 Multitasking

Because consonants (along with periods of silence or noise) do not have pitch, our harmonic detection
algorithm has the double duty of determining if a vowel noise is being produced in the �rst place, and if
so, the location of the �rst harmonic as well. If a `k' sound is mistaken for a vowel, for instance, the pitch
synthesizer would attempt to shift its frequencies up the spectrum, resulting in a nasty high frequency noise
that would not be mistaken for a `k'.

3.4 A Naïve Approach

Before hitting gold, we developed several techniques to do this job that all fell short of satisfaction. One
such technique was to construct a zero padded vector equal to the length of the DFT that had ones only at
multiples of an integer that was a candidate for being the location of the �rst harmonic. After taking a dot
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product of these two vectors, we would try again for a di�erent candidate index. The thought was that the
largest resulting dot product would correspond to the correct placement of harmonics since they lined up
with the largest values in the spectrum. However, if the harmonics do not appear at exact multiples of the
candidate integer, this technique is worthless. Too much noise ruins its e�ectiveness as well.

DFT and an Example Comparison Vector

Figure 3.2: DFT of one 512 sample chunck of a speech signal overlapped with a comparison vector of
about 24Hz, illustrating the general location of the harmonics.

To get rid of the �rst problem, we started using vectors that had a window of three ones around integer
multiples of the candidate to allow some wiggle room for the actual location of the higher harmonics. Finally,
we tried taking the logarithm of the values in the spectrum with the hope that the borders of the harmonics
would stick up much farther than adjacent frequencies. If this held true to a greater extent than any other
random locations in the spectrum, we could isolate the harmonics with the right type of high pass �lter. In
the end, we discovered each of these techniques were pretty good at �nding harmonics in a certain kind of
spectrum and failed miserably in other conditions. We needed something that worked all the time.



10 CHAPTER 3. HARMONIC DETECTION

3.5 Hitting the Jackpot

The algorithm that works far and away better than any others we tested relies on the principle that the DFT
of a chunk, like the time domain version of the chunk itself, has non-periodic and periodic aspects. In the
�rst half of the DFT, the only repetition comes from the evenly spaced peaks of the harmonics. Everything
else, whether noise or spectrum elements resulting from a consonant, is not periodic. Therefore, we take the
�rst half of the magnitude of our DFT as a new signal to look at. Naturally, to analyze it we take the DFT
of this vector, and look at the magnitude of the result. So now we have the tongue twisting magnitude of
the DFT of the magnitude of the �rst half of the DFT of the original signal chunk. The DFT of the DFT!

DFT of Signal Sample

(a) (b)

Figure 3.3: (a) Discrete Fourier Transform showing the spectra for one 512 sample chunk of the speech
signal before manipulation by the Pitch Synthesizer. (b) Discrete Fourier Transform of the original DFT
spectra for one 512 sample chunk of the speech signal after manipulation by the Pitch Synthesizer.

The new spectrum invariably contains a very large DC value and a lot of power on the low end of the
spectrum resulting from the necessarily positive average value of a magnitude plot (remember we used the
magnitude of the original DFT) along with non-periodic elements from noise or consonants. But for n greater
than two or three, this new DFT goes straight to zero and stays there until it hits the only periodic element
of the original DFT �the harmonics. By ignoring the �rst couple of values on our new spectrum, we very
accurately �nd the �rst harmonic by taking the �rst frequency with a magnitude that is on par with the
large DC value. If no such frequencies exist, we can safely assume that the chunk does not contain a vowel
and does not need manipulation. This new sneaky trick (taking the DFT of the DFT) is very precise and
extremely consistent, especially in the presence of noise. In fact, had we discovered this earlier, there is
probably another whole project in developing this particular tool in much greater depth. It could be used to
automatically detect di�erent types of human sounds, such as separate voiced and unvoiced fricative sounds
as well as the tried and true vowels. Another use would be to compute the signal to noise ratio without
having access to the original signal and �guring out whether the signal chunk should even be considered
worthy of processing because of the prevalence of noise.



Chapter 4

Reconstructing A DFT With A Pitch

Shift1

4.1 Reconstructing the First Half of the DFT

With the �rst harmonic in hand (if, of course, it exists) the program is ready to manipulate the signal chunk
by building a new DFT from scratch but based upon the original. The pitch you hear is the position of the
fundamental frequency � the �rst harmonic. So the new DFT must take the frequencies at and around the
original �rst harmonic and copy them, without alteration, to a spot further down the spectrum. Further,
in fact, by exactly the desired pitch shift. The frequency of the second harmonic needs to be twice as large
as the �rst so that the new voice sounds like it came from a real person, so the second harmonic and its
neighboring frequencies are shifted twice as far down the spectrum as the �rst group. This is repeated with
every harmonic in a similar way until half of the new DFT is full.

4.2 Reconstructing the Second Half of the DFT

To reduce computational complexity, there is no need to perform this same task starting at the end of the
original DFT working our way towards the middle. We know that the resulting time-domain signal we
produce must be comprised of real numbers since people are going to actually listen to it, so we can exploit
the symmetry properties of the DFT. That is, the DFT of a real-valued signal follows rule that the real part
of the samples in the �rst half is a mirror image of the real part of the samples in the second half. Similarly,
the imaginary part of the samples in the second half is a �ipped (negative) mirror image of the imaginary
part of the samples in the second half. This line simple for loop constructs the entire second half of the new
DFT without any further analysis or computation. Here is an example of the magnitude of the spectrum
for a chunk of signal before and after pitch manipulation. Notice how the harmonics are not merely shifted
over, but spread out as well.

1This content is available online at <http://cnx.org/content/m12552/1.3/>.
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12 CHAPTER 4. RECONSTRUCTING A DFT WITH A PITCH SHIFT

DFT of Signal Sample

(a) (b)

Figure 4.1: (a) Discrete Fourier Transform showing the spectra for one 512 sample chunk of the speech
signal before manipulation by the Pitch Synthesizer. (b) Discrete Fourier Transform of the original DFT
spectra for one 512 sample chunk of the speech signal after manipulation by the Pitch Synthesizer.



Chapter 5

Voice Randomization1

5.1 Initial Approach

When two people speak with the same pitch, there is still no mistaking one for the other; the uniqueness of a
voice goes beyond its tone. The placement of harmonics, then, clearly does not make a voice distinguishable
since two people with identical pitch have harmonics at exactly the same locations. Rather, the ability to
identify a voice comes from the relative height of each harmonic to the next, just like the heights of each
harmonic on a clarinet and a guitar make these instruments sound di�erent even as they play the same note.

1This content is available online at <http://cnx.org/content/m12556/1.4/>.
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14 CHAPTER 5. VOICE RANDOMIZATION

DFT of Randomized Signal

Figure 5.1: DFT of one 512 sample chunck of a speech signal after it has had it pitches randomly
altered.

With this in mind, our �rst algorithm tackled the problem by �rst using the harmonic detection described
earlier to pinpoint the location of each harmonic. Using this information, the height of each harmonic was
randomly lowered or raised by a slight amount. Usually, though, the resulting voice sounded just like the
original with some noise added in on top of it. After fooling around with this concept for some time to no
avail, we reached the conclusion that the idea is solid, but that to make up a new voice requires much more
�nesse than simply making the magnitude of each harmonic higher or lower. Without perfectly adapting
the phases and making sure that the envelope of the magnitudes is a shape that can be comprehended by
a human ear as real speech, the only result is linearly adding a new signal to our old one. The DFT of the
new signal is equal to the additions we made to the harmonics of the voice.
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5.2 Simpli�cation of Process Using the Speech Synthesizer

The second attempt at a voice randomizer directly utilizes our pitch shifting algorithm and works much
better. First, the signal is matricized just like before. But instead of processing each chunk in the same
way, our algorithm asks the pitch shifter to shift each chunk separately, specifying a di�erent and random
shift every time. The result is a voice with a pitch that changes wildly and extremely quickly, making it
impossible to tell who it is with your raw hearing. The main drawback with this technique is that there
is no true security or identity masking. The NSA could easily break the signal into the same 512 sample
long chunks and analyze them individually along with a normal sample of the voice to determine a potential
match. However, for certain purposes this randomizer performs superbly.

Randomized Speech Examples

Unaltered voice Original2

Randomized Voice Random3

Table 5.1

2http://cnx.org/content/m12556/latest/fudge.wav
3http://cnx.org/content/m12556/latest/randfudge.wav
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Chapter 6

Length Changer1

6.1 Simple Concept, Di�cult Implementation

The third and �nal voice manipulation tool we developed changes the length of the signal without altering
its pitch or clarity, and the basic strategy to do so is extremely simple. After breaking the signal into chunks
by matricizing, some of the chunks are either trashed or repeated in order to compress or extend the length
of the signal. Since nobody can perceive a voice's changing within the span of .02 seconds or less, this
repetition never creates an audibly repeated noise. It can only create an audibly lengthened or shortened
noise. Playing this sound back, though, sounds incredibly choppy, as if you were listening to the sound
version of strobe lights. But if concatenating or removing signal windows in and of itself does not create the
desired result, what could the problem be?

1This content is available online at <http://cnx.org/content/m12554/1.7/>.
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DFT of Length Changer Signals

Figure 6.1



19

6.2 Phase Makes All The Di�erence

Upon closer inspection, it is obvious that the phase of the complex sinusoids at the beginning of a chunk
is often very di�erent than the phase at the end of the same chunk or of a previous chunk. After slapping
two windows together, this sharp phase di�erence becomes very clear, producing our unacceptably choppy
sound. To correct this, the length changing algorithm makes another run past each window after the new
signal has been constructed, this time taking care to compute the phase at the end of the previous chunk
θo,the old θ, and the phase the beginning of the next chunk θn, the new θ. Next, every value of the next
chunk's DFT gets multiplied by ei(θo−θn). As a result, the phase at the beginning of the next chunk equals
the phase at the end of the previous one, and the phase will transition smoothly between all other points in
time. This process is repeated for each and every chunk, resulting in the complete removal of the stutters.

Length Changer Speech Examples

Unaltered voice Original2

Length Changed Voice Slower3 Faster4

Table 6.1

2http://cnx.org/content/m12554/latest/male.wav
3http://cnx.org/content/m12554/latest/male2.wav
4http://cnx.org/content/m12554/latest/male3.wav
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Chapter 7

Speach Synthesis Summation1

7.1 Concluding Thoughts on Speech Synthesis

As you can tell from the sound clips in Chapter 1, all three algorithms work very well. The potential
applications for these tools, especially in the recording industry, are boundless. With more reliance upon
digital signal processing and less reliance upon recording a segment two or three or more times, clips may
be produced much more quickly, for less money, and with better quality.

The shift synthesizer took by far the most time and e�ort to produce, mostly due to the di�culty of
implementing a high quality harmonic detection algorithm. The randomizer ended up directly utilizing the
pitch software, which provided even more incentive for us to improve our harmonic detection. Finally, the
length changing program involved much more phase analysis than we had previously expected.

These triumphs and failures all provided great experience in dealing with some important issues in digital
signal processing in general and analysis of human voice signals in particular. Over the course of developing
the project, we dealt extensively with the characteristics of harmonics, the spectra of voiced and unvoiced
fricatives, phase matching, and techniques for analysis and reconstruction of DFT vectors. All in all, the
project was a huge success.

7.2 Acknowledgements

Special thanks to Richard Baraniuk and MATLAB 6.5 for their generous assistance on the

project.

1This content is available online at <http://cnx.org/content/m12551/1.3/>.
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Chapter 8

The Wyld Stallyn Team1

8.1 Wyld Stallyns

The Wyld Stallyn Team consisted of the following people, each contributing evenly to the work load for this
project. The work for the project included: Developing and researching appropirate methods, writing code,
testing and debugging code, creating the poster and writing the connexions report.

Robert Ahl�nger

Figure 8.1: Junior at Lovett College. email: ahl�ng@rice.edu

1This content is available online at <http://cnx.org/content/m12550/1.3/>.
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Brenton Cheeseman

Figure 8.2: Junior at Hanszen College. email: bcheese@rice.edu

Patrick Doody

Figure 8.3: Junior at Hanszen College. email: pdoody@rice.edu
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