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Preface: Signals and Systems1

In this course, we will learn about signals and systems for processing signals. We will rely heavily on ideas
from linear algebra and Hilbert space to unify our treatment of the four fundamental classes of signals - the
four combinations of discrete-time vs. continuous-time and periodic/�nite vs. aperiodic/in�nite.

In contrast to most textbooks, we begin with the discrete Fourier transform for discrete-time, peri-
odic/�nite signals. Hence, this course could be subtitled: DFT First. For a more standard treatment
starting with continuous-time signals, see the Connexions course Signals and Systems2 which was used until
2002 and in 2004.

This course also marks the introduction of National Instruments Labview VIs3 to the Connexions
system. Look for them in select modules - they are designed to help students visualize important concepts.

Comments, typos, and suggestions are welcome.

1This content is available online at <http://cnx.org/content/m11483/1.6/>.
2http://cnx.rice.edu/content/col10064/latest/
3http://ni.com/labview

1



2



Chapter 1

Introduction to Signals, Systems, and

Transforms

1.1 Signals1

1.2 Operators2

1.2.1 Operators

1.2.2 Systems

systems "process"/change

1.2.3 Transforms

"re-express/translate"

1.3 System Classi�cations and Properties3

1.3.1 Introduction

In this module some of the basic classi�cations of systems will be brie�y introduced and the most important
properties of these systems are explained. As can be seen, the properties of a system provide an easy way
to distinguish one system from another. Understanding these basic di�erences between systems, and their
properties, will be a fundamental concept used in all signal and system courses. Once a set of systems can be
identi�ed as sharing particular properties, one no longer has to reprove a certain characteristic of a system
each time, but it can simply be known due to the the system classi�cation.

1.3.2 Classi�cation of Systems

1.3.2.1 Continuous vs. Discrete

One of the most important distinctions to understand is the di�erence between discrete time and continuous
time systems. A system in which the input signal and output signal both have continuous domains is said to

1This content is available online at <http://cnx.org/content/m11501/1.2/>.
2This content is available online at <http://cnx.org/content/m11499/1.4/>.
3This content is available online at <http://cnx.org/content/m10084/2.21/>.
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be a continuous system. One in which the input signal and output signal both have discrete domains is said
to be a continuous system. Of course, it is possible to conceive of signals that belong to neither category,
such as systems in which sampling of a continuous time signal or reconstruction from a discrete time signal
take place.

1.3.2.2 Linear vs. Nonlinear

A linear system is any system that obeys the properties of scaling (�rst order homogeneity) and superposition
(additivity) further described below. A nonlinear system is any system that does not have at least one of
these properties.

To show that a system H obeys the scaling property is to show that

H (kf (t)) = kH (f (t)) (1.1)

Figure 1.1: A block diagram demonstrating the scaling property of linearity

To demonstrate that a system H obeys the superposition property of linearity is to show that

H (f1 (t) + f2 (t)) = H (f1 (t)) +H (f2 (t)) (1.2)

Figure 1.2: A block diagram demonstrating the superposition property of linearity
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It is possible to check a system for linearity in a single (though larger) step. To do this, simply combine
the �rst two steps to get

H (k1f1 (t) + k2f2 (t)) = k2H (f1 (t)) + k2H (f2 (t)) (1.3)

1.3.2.3 Time Invariant vs. Time Varying

A system is said to be time invariant if it commutes with the parameter shift operator de�ned by ST (f (t)) =
f (t− T ) for all T , which is to say

HST = STH (1.4)

for all real T . Intuitively, that means that for any input function that produces some output function, any
time shift of that input function will produce an output function identical in every way except that it is
shifted by the same amount. Any system that does not have this property is said to be time varying.

Figure 1.3: This block diagram shows what the condition for time invariance. The output is the same
whether the delay is put on the input or the output.

1.3.2.4 Causal vs. Noncausal

A causal system is one in which the output depends only on current or past inputs, but not future inputs.
Similarly, an anticausal system is one in which the output depends only on current or future inputs, but not
past inputs. Finally, a noncausal system is one in which the output depends on both past and future inputs.
All "realtime" systems must be causal, since they can not have future inputs available to them.

One may think the idea of future inputs does not seem to make much physical sense; however, we have
only been dealing with time as our dependent variable so far, which is not always the case. Imagine rather
that we wanted to do image processing. Then the dependent variable might represent pixel positions to the
left and right (the "future") of the current position on the image, and we would not necessarily have a causal
system.
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(a)

(b)

Figure 1.4: (a) For a typical system to be causal... (b) ...the output at time t0, y (t0), can only depend
on the portion of the input signal before t0.

1.3.2.5 Stable vs. Unstable

There are several de�nitions of stability, but the one that will be used most frequently in this course will
be bounded input, bounded output (BIBO) stability. In this context, a stable system is one in which the
output is bounded if the input is also bounded. Similarly, an unstable system is one in which at least one
bounded input produces an unbounded output.

Representing this mathematically, a stable system must have the following property, where x (t) is the
input and y (t) is the output. The output must satisfy the condition

|y (t) | ≤My <∞ (1.5)

whenever we have an input to the system that satis�es

|x (t) | ≤Mx <∞ (1.6)

Mx andMy both represent a set of �nite positive numbers and these relationships hold for all of t. Otherwise,
the system is unstable.

1.3.3 System Classi�cations Summary

This module describes just some of the many ways in which systems can be classi�ed. Systems can be
continuous time, discrete time, or neither. They can be linear or nonlinear, time invariant or time varying,
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and stable or unstable. We can also divide them based on their causality properties. There are other ways
to classify systems, such as use of memory, that are not discussed here but will be described in subsequent
modules.

1.4 Transforms4

Add links examples such as Laplace, fourier and wavelets

4This content is available online at <http://cnx.org/content/m11500/1.2/>.
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Chapter 2

Signals

2.1 Signal Basics

2.1.1 Signals are functions1

A signal is a function that maps an independent variable into a dependent variable. The function f(x), for
each value of x, produces the value f(x)

Figure 2.1

There are four ways to classify signals according to the values that the independent and dependent
variables can take. Refer to the table below.

1This content is available online at <http://cnx.org/content/m11502/1.4/>.
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Figure 2.2

2.1.1.1 Quick Aside on Signal Notation

Continuous Time signals are represented as f (t) where t ∈ R. Discrete Time signals are represented as f [n]
where n ∈ Z
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2.1.2 The Four Fundamental Types of Signals2

2.1.2.1 Continuous-Time, Finite Length Signals

2.1.2.2 Continuous-Time, In�nite Length Signals

2.1.2.3 Discrete-Time, Finite Length Signals

2.1.2.4 Discrete-Time, In�nite Length Signals

2.1.3 Introduction to Sampling and Reconstruction3

Potential Existing modules: Sampling4 Reconstruction5

2.2 Properties of Signals

2.2.1 Analog and Digital Signals6

2.2.2 Continuous Time Periodic Signals7

2.2.2.1 Introduction

This module describes the type of signals acted on by the Continuous Time Fourier Series.

2.2.2.2 Relevant Spaces

The Continuous-Time Fourier Series maps �nite-length (or T -periodic), continuous-time signals in L2 to
in�nite-length, discrete-frequency signals in l2.

2.2.2.3 Periodic Signals

When a function repeats itself exactly after some given period, or cycle, we say it's periodic. A periodic
function can be mathematically de�ned as:

f (t) = f (t+mT )∀m : (m ∈ Z) (2.1)

where T > 0 represents the fundamental period of the signal, which is the smallest positive value of T
for the signal to repeat. Because of this, you may also see a signal referred to as a T-periodic signal. Any
function that satis�es this equation is said to be periodic with period T.

We can think of periodic functions (with period T ) two di�erent ways:

2This content is available online at <http://cnx.org/content/m11503/1.1/>.
3This content is available online at <http://cnx.org/content/m11530/1.1/>.
4"Signal Sampling" <http://cnx.org/content/m10798/latest/>
5"Signal Reconstruction" <http://cnx.org/content/m10788/latest/>
6This content is available online at <http://cnx.org/content/m11504/1.1/>.
7This content is available online at <http://cnx.org/content/m10744/2.13/>.
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1. as functions on all of R

Figure 2.3: Continuous time periodic function over all of R where f (t0) = f (t0 + T )

2. or, we can cut out all of the redundancy, and think of them as functions on an interval [0, T ] (or,
more generally, [a, a+ T ]). If we know the signal is T-periodic then all the information of the signal is
captured by the above interval.

Figure 2.4: Remove the redundancy of the period function so that f (t) is unde�ned outside [0, T ].

An aperiodic CT function f (t), on the other hand, does not repeat for any T ∈ R; i.e. there exists no
T such that this equation (2.1) holds.

2.2.2.4 Demonstration

Here's an example demonstrating a periodic sinusoidal signal with various frequencies, amplitudes and
phase delays:
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Figure 2.5: Interact (when online) with a Mathematica CDF demonstrating a Periodic Sinusoidal Signal
with various frequencies, amplitudes, and phase delays. To download, right click and save �le as .cdf.

To learn the full concept behind periodicity, see the video below.

Khan Lecture on Periodic Signals

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/tJW_a6JeXD8&rel=0&color1=0xb1b1b1&color2=0xd0d0d0&hl=en_US&feature=player_embedded&fs=1>

Figure 2.6: video from Khan Academy

2.2.2.5 Conclusion

A periodic signal is completely de�ned by its values in one period, such as the interval [0,T].
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2.2.3 Causal Signals8

Causal signals are signals that are zero for all negative time, while anitcausal are signals that are zero
for all positive time. Noncausal signals are signals that have nonzero values in both positive and negative
time.

(a)

(b)

(c)

Figure 2.7: (a) A causal signal (b) An anticausal signal (c) A noncausal signal

8This content is available online at <http://cnx.org/content/m11495/1.3/>.
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2.2.4 Real and Complex Signals9

A real signal f (t) takes for each independent variable t a real value f (t).

Figure 2.8

A complex signal f (t) takes for each independent variable t a complex value f (t).

Figure 2.9

9This content is available online at <http://cnx.org/content/m11529/1.2/>.
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2.3 Important Signals

2.3.1 Delta Function - Heuristic De�nition10

2.3.2 Delta Function as a Generalized Function11

Check out module m10170 - The Impulse Function

10This content is available online at <http://cnx.org/content/m11485/1.1/>.
11This content is available online at <http://cnx.org/content/m11484/1.3/>.



17

2.3.3 Sifting Property of the Delta Function12

2.3.4 Step Function in Continuous-Time13

2.3.5 Step Function in Discrete Time14

2.3.6 Sinusoids in Continuous Time15

2.3.6.1 Finite Length

2.3.6.2 In�nite Length

2.3.7 Sinusoids in Discrete Time16

2.3.7.1 Finite Length

2.3.7.2 In�nite Length

2.3.8 Sinc Function in Continuous Time17

2.3.9 Sinc Function in Discrete Time18

2.3.10 Complex Exponential in Continuous Time19

2.3.11 Complex Exponential in Discrete Time20

2.4 Size of a signal

2.4.1 Energy of a Signal21

2.4.1.1 Continuous Time Finite Length"

2.4.1.2 Continuous Time In�nite Length

2.4.1.3 Discrete Time Finite Length"

2.4.1.4 Discrete Time In�nite Length

2.4.2 Norm of a Signal22

2.4.2.1 Continuous Time Finite Length"

2.4.2.2 Continuous Time In�nite Length

2.4.2.3 Discrete Time Finite Length"

2.4.2.4 Discrete Time In�nite Length

2.4.3 Power of a signal23

2.4.3.1 Continuous Time"

2.4.3.2 Discrete Time"

12This content is available online at <http://cnx.org/content/m11508/1.1/>.
13This content is available online at <http://cnx.org/content/m11486/1.2/>.
14This content is available online at <http://cnx.org/content/m11505/1.1/>.
15This content is available online at <http://cnx.org/content/m11488/1.3/>.
16This content is available online at <http://cnx.org/content/m11489/1.3/>.
17This content is available online at <http://cnx.org/content/m11506/1.1/>.
18This content is available online at <http://cnx.org/content/m11507/1.1/>.
19This content is available online at <http://cnx.org/content/m11490/1.1/>.
20This content is available online at <http://cnx.org/content/m11491/1.1/>.
21This content is available online at <http://cnx.org/content/m11509/1.1/>.
22This content is available online at <http://cnx.org/content/m11409/1.4/>.
23This content is available online at <http://cnx.org/content/m11510/1.2/>.
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Chapter 3

Operators

3.1 Linearity

3.1.1 Scaling and Superposition1

3.1.1.1 Continuous Time

Add VI

3.1.1.2 Discrete Time

Add VI

3.1.2 Linear Operators2

3.1.2.1 Continuous Time

add VI

3.1.2.2 Discrete Time

add VI

3.1.3 Characterization of Linear Operators3

3.1.3.1 Continuous Time

link to 41

3.1.3.2 Discrete Time

Link to 41

1This content is available online at <http://cnx.org/content/m11512/1.1/>.
2This content is available online at <http://cnx.org/content/m11513/1.1/>.
3This content is available online at <http://cnx.org/content/m11514/1.1/>.
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3.1.4 Linearity/Nonlinearity Examples4

3.1.4.1 Continuous Time

3.1.4.2 Discrete Time

3.2 Time Invariance

3.2.1 Time Invariant Operators5

3.2.2 Time Invariant/Time Variant Examples6

3.3 LTI Operators7

3.4 Characterizationi of LTI Operators8

3.4.1 Continuous Time

Characterization of Linear Operators (Section 3.1.3) Time Invariant Operators (Section 3.2.1)

3.4.2 Discrete Time

add VI

3.5 Discrete Time System Analysis

3.5.1 Discrete Time Signals are Vectors9

3.5.1.1 Finite Length Signals

The Four Fundamental types of Signals (Section 2.1.2)

3.5.1.2 In�nite Length Signals

The Four Fundamental types of Signals (Section 2.1.2)
Time Variant/Time Invariant Examples (Section 3.2.2) Step Function in Discrete Time (Section 2.3.5)

Sinc Function in Discrete Time (Section 2.3.9) Sinusoids in Discrete Time (Section 2.1.2) The Complex
Exponential in Discrete Time (Section 2.1.2)

3.5.2 Discrete Time Linear Systems are Matrices10

3.5.2.1 Finite Length

Characterization of Linear Operators (Section 3.1.3)

3.5.2.2 In�nite Length

Characterization of Linear Operators (Section 3.1.3)

4This content is available online at <http://cnx.org/content/m11515/1.2/>.
5This content is available online at <http://cnx.org/content/m11516/1.1/>.
6This content is available online at <http://cnx.org/content/m11517/1.1/>.
7This content is available online at <http://cnx.org/content/m11518/1.1/>.
8This content is available online at <http://cnx.org/content/m11519/1.1/>.
9This content is available online at <http://cnx.org/content/m11521/1.1/>.

10This content is available online at <http://cnx.org/content/m11522/1.1/>.
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3.5.3 Discrete Time LTI systems as Matrices11

3.5.3.1 Finite Length

circulant Matrices

3.5.3.2 In�nite Length

Toeplitz Matrices

3.5.4 Impulse Response of a Linear Discrete Time System12

3.5.4.1 Finite Length

3.5.4.2 In�nite Length

Sifting Property of Delta Function (Section 2.3.3)

3.5.5 Impulse Response of an LTI Discrete Time System13

3.5.5.1 Finite Length

3.5.5.2 In�nite Length

3.5.6 Convolution

3.5.6.1 Discrete Time Convolution
14

3.5.6.1.1 Introduction

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output a system produces for a given input signal. It can be shown that a linear time invariant system is
completely characterized by its impulse response. The sifting property of the discrete time impulse function
tells us that the input signal to a system can be represented as a sum of scaled and shifted unit impulses.
Thus, by linearity, it would seem reasonable to compute of the output signal as the sum of scaled and shifted
unit impulse responses. That is exactly what the operation of convolution accomplishes. Hence, convolution
can be used to determine a linear time invariant system's output from knowledge of the input and the impulse
response.

3.5.6.1.2 Convolution and Circular Convolution

3.5.6.1.2.1 Convolution

3.5.6.1.2.1.1 Operation De�nition

Discrete time convolution is an operation on two discrete time signals de�ned by the integral

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) (3.1)

for all signals f, g de�ned on Z. It is important to note that the operation of convolution is commutative,
meaning that

f ∗ g = g ∗ f (3.2)

11This content is available online at <http://cnx.org/content/m11523/1.1/>.
12This content is available online at <http://cnx.org/content/m11524/1.1/>.
13This content is available online at <http://cnx.org/content/m11525/1.1/>.
14This content is available online at <http://cnx.org/content/m10087/2.27/>.
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for all signals f, g de�ned on Z. Thus, the convolution operation could have been just as easily stated using
the equivalent de�nition

(f ∗ g) (n) =
∞∑

k=−∞

f (n− k) g (k) (3.3)

for all signals f, g de�ned on Z. Convolution has several other important properties not listed here but
explained and derived in a later module.

3.5.6.1.2.1.2 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a system input signal x we would like to compute the system output signal H (x). First, we note that the
input can be expressed as the convolution

x (n) =
∞∑

k=−∞

x (k) δ (n− k) (3.4)

by the sifting property of the unit impulse function. By linearity

Hx (n) =
∞∑

k=−∞

x (k)Hδ (n− k) . (3.5)

Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
∞∑

k=−∞

x (k)h (n− k) = (x ∗ h) (n) . (3.6)

Hence, convolution has been de�ned such that the output of a linear time invariant system is given by the
convolution of the system input with the system unit impulse response.

3.5.6.1.2.1.3 Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes.
Consider the convolution of two functions f, g given by

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) =
∞∑

k=−∞

f (n− k) g (k) . (3.7)

The �rst step in graphically understanding the operation of convolution is to plot each of the functions.
Next, one of the functions must be selected, and its plot re�ected across the k = 0 axis. For each real t, that
same function must be shifted left by t. The product of the two resulting plots is then constructed. Finally,
the area under the resulting curve is computed.

Example 3.1
Recall that the impulse response for a discrete time echoing feedback system with gain a is

h (n) = anu (n) , (3.8)

and consider the response to an input signal that is another exponential

x (n) = bnu (n) . (3.9)
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We know that the output for this input is given by the convolution of the impulse response with
the input signal

y (n) = x (n) ∗ h (n) . (3.10)

We would like to compute this operation by beginning in a way that minimizes the algebraic
complexity of the expression. However, in this case, each possible coice is equally simple. Thus, we
would like to compute

y (n) =
∞∑

k=−∞

aku (k) bn−ku (n− k) . (3.11)

The step functions can be used to further simplify this sum. Therefore,

y (n) = 0 (3.12)

for n < 0 and

y (n) =
n∑

k=0

(ab)k
(3.13)

for n ≥ 0. Hence, provided ab 6= 1, we have that

y (n) = {
0 n < 0

1−(ab)n+1

1−(ab) n ≥ 0
. (3.14)

3.5.6.1.2.2 Circular Convolution

Discrete time circular convolution is an operation on two �nite length or periodic discrete time signals de�ned
by the integral

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) (3.15)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. It is important to

note that the operation of circular convolution is commutative, meaning that

f ∗ g = g ∗ f (3.16)

for all signals f, g de�ned on Z [0, N − 1]. Thus, the circular convolution operation could have been just as
easily stated using the equivalent de�nition

(f ∗ g) (n) =
N−1∑
k=0

^
f (n− k)

^
g (k) (3.17)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. Circular convolution

has several other important properties not listed here but explained and derived in a later module.
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Alternatively, discrete time circular convolution can be expressed as the sum of two summations given
by

(f ∗ g) (n) =
n∑

k=0

f (k) g (n− k) +
N−1∑

k=n+1

f (k) g (n− k +N) (3.18)

for all signals f, g de�ned on Z [0, N − 1].
Meaningful examples of computing discrete time circular convolutions in the time domain would involve

complicated algebraic manipulations dealing with the wrap around behavior, which would ultimately be
more confusing than helpful. Thus, none will be provided in this section. Of course, example computations
in the time domain are easy to program and demonstrate. However, disrete time circular convolutions are
more easily computed using frequency domain tools as will be shown in the discrete time Fourier series
section.

3.5.6.1.2.2.1 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a �nite or periodic system input signal x we would like to compute the system output signal H (x). First,
we note that the input can be expressed as the circular convolution

x (n) =
N−1∑
k=0

^
x (k)

^
δ (n− k) (3.19)

by the sifting property of the unit impulse function. By linearity,

Hx (n) =
N−1∑
k=0

^
x (k)H

^
δ (n− k) . (3.20)

Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
N−1∑
k=0

^
x (k)

^
h (n− k) = (x ∗ h) (n) . (3.21)

Hence, circular convolution has been de�ned such that the output of a linear time invariant system is given
by the convolution of the system input with the system unit impulse response.

3.5.6.1.2.2.2 Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical
processes. Consider the circular convolution of two �nite length functions f, g given by

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) =

N−1∑
k=0

^
f (n− k)

^
g (k) . (3.22)

The �rst step in graphically understanding the operation of convolution is to plot each of the periodic
extensions of the functions. Next, one of the functions must be selected, and its plot re�ected across the
k = 0 axis. For each k ∈ Z [0, N − 1], that same function must be shifted left by k. The product of the two
resulting plots is then constructed. Finally, the area under the resulting curve on Z [0, N − 1] is computed.
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3.5.6.1.3 Interactive Element

Figure 3.1: Interact (when online) with the Mathematica CDF demonstrating Discrete Linear Convo-
lution. To download, right click and save �le as .cdf
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3.5.6.1.4 Convolution Summary

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output signal of a linear time invariant system for a given input signal with knowledge of the system's unit
impulse response. The operation of discrete time convolution is de�ned such that it performs this function
for in�nite length discrete time signals and systems. The operation of discrete time circular convolution is
de�ned such that it performs this function for �nite length and periodic discrete time signals. In each case,
the output of the system is the convolution or circular convolution of the input signal with the unit impulse
response.
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4.1 Complex numbers and Arithmetic1

1This content is available online at <http://cnx.org/content/m11497/1.1/>.
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4.2 Riemann Integration2

2This content is available online at <http://cnx.org/content/m11511/1.2/>.
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