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Chapter 1

Introduction to Continuous-Time Signals

1.1 Continuous-Time Signals: Introduction1

The Merrian-Webster dictionary de�nes a signal as:

A detectable physical quantity or impulse (as a voltage, current, or magnetic �eld strength) by
which messages or information can be transmitted.

These are the types of signals which will be of interest in this book. Indeed, signals are not only the means
by which we perceive the world around us, they also enable individuals to communicate with one another on
a massive scale. So while our primary emphasis in this book will be on the theoretical foundations of signal
processing, we will also try to give examples of the tremendous impact that signals and systems have on
society. We will focus on two broad classes of signals, discrete-time and continuous-time. We will consider
discrete-time signals later on in this book. For now, we will focus our attention on continuous-time signals.
Fortunately, continuous-time signals have a very convenient mathematical representation. We represent a
continuous-time signal as a function x (t) of the real variable t. Here, t represents continuous time and we
can assign to t any unit of time we deem appropriate (seconds, hours, years, etc.). We do not have to make
any particular assumptions about x (t) such as boundedness (a signal is bounded if it has a �nite value).
Some of the signals we will work with are in fact, not bounded (i.e. they take on an in�nite value). However
most of the continuous-time signals we will deal with in the real world are bounded.

1This content is available online at <http://cnx.org/content/m32862/1.2/>.
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Figure 1.1: Temperature signal recorded in Dallas, Texas from Aug. 16 to Aug. 22, 2002.

We actually encounter signals every day. Suppose we sketch a graph of the temperature outside the
Jerry Junkins Electrical Engineering Building on the SMU campus as a function of time. The graph might
look something like in Figure 1.1. This is an example of a signal which represents the physical quantity
temperature as it changes with time during the course of a week. Figure 1.2 shows another common signal,
the speech signal. Human speech signals are often measured by converting sound (pressure) waves into an
electrical potential using a microphone. The speech signal therefore corresponds to the air pressure measured
at the point in space where the microphone was located when the speech was recorded. The large deviations
which the speech signal undergoes corresponds to vowel sounds such as �ahhh" or �eeeeh" (voiced sounds)
while the smaller portions correspond to sounds such as �th" or �sh" (unvoiced sounds). In Figure 1.3, we
see yet another signal called an electrocardiogram (EKG). The EKG is a voltage which is generated by the
heart and measured by subtracting the voltage recorded from two points on the human body as seen in
Figure 1.4. Since the heart generates very low-level voltages, the di�erence signal must be ampli�ed by a
high-gain ampli�er.
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Figure 1.3: Human electrocardiogram (EKG) signal.
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Figure 1.4: Measurement of the electrocardiogram (EKG).

1.2 Signal Power, Energy, and Frequency2

Signals can be characterized in several di�erent ways. Audio signals (music, speech, and really, any kind of
sound we can hear) are particularly useful because we can use our existing notion of �loudness" and �pitch"
which we normally associate with an audio signal to develop ways of characterizing any kind of signal. In
terms of audio signals, we use �power" to characterize the loudness of a sound. Audio signals which have
greater power sound �louder" than signals which have lower power (assuming the pitch of the sounds are
within the range of human hearing). Of course, power is related to the amplitude, or size of the signal. We
can develop a more precise de�nition of power. The signal power is de�ned as:

px = lim
T→∞

1
T

∫ T/2

−T/2
x2 (t) dt (1.1)

The energy of this signal is similarly de�ned

ex =
∫ ∞
−∞

x2 (t) dt (1.2)

We can see that power has units of energy per unit time. Strictly speaking, the units for energy depend on
the units assigned to the signal. If x (t) is a voltage, than the units for ex would be volts2-seconds. Notice
also that some signals may not have �nite energy. As we will see shortly, periodic signals do not have �nite

2This content is available online at <http://cnx.org/content/m32864/1.3/>.
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energy. Signals having a �nite energy are sometimes called energy signals. Some signals that have in�nite
energy however can have �nite power. Such signals are sometimes called power signals.

We use the concept of �frequency" to characterize the pitch of audio signals. The frequency of a signal is
closely related to the variation of the signal with time. Signals which change rapidly with time have higher
frequencies than signals which are changing slowly with time as seen Figure 1.5. As we shall see, signals can
also be represented in terms of their frequencies, X (jΩ), where Ω is a frequency variable. Devices which
enable us to view the frequency content of a signal in real-time are called spectrum analyzers.

0 2 4 6 8 10
−0.2

0

0.2

x(
t)

t (sec)

0 2 4 6 8 10
−0.1

0

0.1

t (sec)

y(
t)

Figure 1.5: The signal y (t) contains a greater amount of high frequencies than x (t).

Something to keep in mind is that the signals shown in Figures Figure 1.1, Figure 1.2, and Figure 1.3
each have di�erent units (degrees Fahrenheit, pressure, and voltage, respectively). So while we can compare
relative frequencies between these signals, it doesn't make much sense to compare their power since each
signal has di�erent units. We will take a more formal look at the frequency of signals starting in Chapter 2.

1.3 Basic Signal Operations3

We will be considering the following basic operations on signals:

• Time shifting:
y (t) = x (t− τ) (1.3)

The e�ect that a time shift has on the appearance of a signal is seen in Figure 1.6. If τ is a positive
number, the time shifted signal, x (t− τ) gets shifted to the right, otherwise it gets shifted left.

• Time reversal:
y (t) = x (−t) (1.4)

3This content is available online at <http://cnx.org/content/m32866/1.2/>.
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Time reversal �ips the signal about t = 0 as seen in Figure 1.6.
• Addition: any two signals can be added to form a third signal,

z (t) = x (t) + y (t) (1.5)

• Time scaling:
y (t) = x (Ωt) (1.6)

Time scaling �compresses" the signal if Ω > 1 or �stretches" it if Ω < 1 (see Figure 1.7).
• Multiplication by a constant, α:

y (t) = αx (t) (1.7)

• Multiplication of two signals, their product is also a signal.

z (t) = x (t) y (t) (1.8)

Multiplication of signals has many useful applications in wireless communications.
• Di�erentiation:

y (t) =
dx (t)
dt

(1.9)

• Integration:

y (t) =
∫
x (t) dt (1.10)

There is another very important signal operation called convolution which we will look at in detail in Chapter
3. As we shall see, convolution is a combination of several of the above operations.
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Figure 1.6: (a) original signal, (b) time-shift, (c) time-reversal.
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Figure 1.7: (a) original signal, (b) Ω > 1, (c) Ω < 1.
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1.4 Complex Numbers and Complex Arithmetic4

Before we begin studying signals, we need to review some basic aspects of complex numbers and complex
arithmetic. The rectangular coordinate representation of a complex number z is z has the form:

z = a+ jb (1.11)

where a and b are real numbers and j =
√−1. The real part of z is the number a, while the imaginary part

of z is the number b. We also note that jb (jb) = −b2 (a real number) since j (j) = −1. Any number having
the form

z = jb (1.12)

where b is a real number is an imaginary number. A complex number can also be represented in polar
coordinates

z = rejθ (1.13)

where

r =
√
a2 + b2 (1.14)

is the magnitude and

θ = arctan

(
b

a

)
(1.15)

is the phase of the complex number z. The notation for the magnitude and phase of a complex number is
given by |z| and ∠z, respectively. Using Euler's Identity:

e±jθ = cos (θ)± jsin (θ) (1.16)

it follows that a = rcos (θ) and b = rsin (θ). Figure 1.8 illustrates how polar coordinates and rectangular
coordinates are related.

Re(z)

Im(z)

z = a + jb

a

b

θ

r

Figure 1.8: Relationship between rectangular and polar coordinates.

4This content is available online at <http://cnx.org/content/m32867/1.2/>.
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Rectangular coordinates and polar coordinates are each useful depending on the type of mathematical
operation performed on the complex numbers. Often, complex numbers are easier to add in rectangular
coordinates, but multiplication and division is easier in polar coordinates. If z = a+ jb is a complex number
then its complex conjugate is de�ned by

z∗ = a− jb (1.17)

in polar coordinates we have

z∗ = re−jθ (1.18)

note that zz∗ = |z|2 = r2 and z+ z∗ = 2a. Also, if z1, z2, ..., zN are complex numbers it can be easily shown
that

(z1 + z2 + · · ·+ zN )∗ = z∗1 + z∗2 + · · ·+ z∗N (1.19)

and

(z1z2 · · · zN )∗ = z∗1z
∗
2 · · · z∗N (1.20)

Table 1.1 indicates how two complex numbers combine in terms of addition, multiplication, and division
when expressed in rectangular and in polar coordinates.

operation rectangular polar

z1 + z2 (a1 + a2) + j (b1 + b2)

z1z2 a1a2 − b1b2 + j (a1b2 + a2b1) r1r2e
j(θ1+θ2)

z1/z2
(a1a2+b1b2)+j(b1a2−a1b2)

a2
2+b22

r1
r2
ej(θ1−θ2)

Table 1.1: Operations on two complex numbers, z1 = a1 + jb1 = r1e
jθ1 and z2 = a2 + jb2 = r2e

jθ2 . The
sum of two complex numbers is cumbersome to express in polar coordinates, and is not shown.

1.5 Periodic Signals5

Periodic signals have the following property:

x (t) = x (t+ kT ) (1.21)

where k is an integer and T is called the fundamental period. Periodic have the property that they �repeat"
every T seconds. For periodic signals, the power can be de�ned as

px =
1
T

∫ t0+T

t0

x2 (t) dt (1.22)

Figure 1.9 shows an example of a periodic signal. We will study the frequency content of periodic signals
in some detail in Chapter 2.

5This content is available online at <http://cnx.org/content/m32869/1.2/>.
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t
0

x(t)

T

Figure 1.9: General periodic signal.

1.6 Sinusoidal Signals6

Sinusoidal signals are perhaps the most important type of signal that we will encounter in signal processing.
There are two basic types of signals, the cosine:

x (t) = cos (Ωt) (1.23)

and the sine:

x (t) = sin (Ωt) (1.24)

Plots of the sine and cosine signals are shown in Figure 1.10. Sinusoidal signals are periodic signals. The
period of the cosine and sine signals shown above is given by T = 2π/Ω. The frequency of the signals is
Ω = 2π/T which has units of rad/sec . Equivalently, the frequency can be expressed as 1/T , which has
units of sec−1, cycles/sec, or Hz. The quantity Ωt has units of radians and is often called the phase of the
sinusoid. Recalling the e�ect of a time shift on the appearance of a signal, we can observe from Figure 1.10
that the sine signal is obtained by shifting the cosine signal by T/4 seconds, i.e.

6This content is available online at <http://cnx.org/content/m32870/1.4/>.
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Figure 1.10: Cosine and sine signals. Each signal is periodic with period T = 2π/Ω.

sin (Ωt) = cos (Ω (t− T/4)) (1.25)

and since T = 2π/Ω, we have

sin (Ωt) = cos (Ωt− π/2) (1.26)

Similarly, we have

cos (Ωt) = sin (Ωt+ π/2) (1.27)

Using Euler's Identity, we can also write:

cos (Ωt) =
1
2
(
ejΩt + e−jΩt

)
(1.28)

and

sin (Ωt) =
1
2j
(
ejΩt − e−jΩt) (1.29)

The quantity ejΩt is called a complex sinusoid and can be expressed as

e±jΩt = cos (jΩt)± jsin (jΩt) (1.30)

There are a number of trigonometric identities which are sometimes useful. These are shown in Table 1.2.
Table 1.3 shows some basic calculus operations on sine and cosine signals.
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sin (θ) = cos (θ − π/2)

cos (θ) = sin (θ + π/2)

sin (θ1) sin (θ2) = 1
2 [cos (θ1 − θ2)− cos (θ1 + θ2)]

sin (θ1) cos (θ2) = 1
2 [sin (θ1 − θ2)− sin (θ1 + θ2)]

cos (θ1) cos (θ2) = 1
2 [cos (θ1 − θ2) + cos (θ1 + θ2)]

acos (θ) + bsin (θ) =
√
a2 + b2cos

(
θ − tan−1

(
b
a

))
cos (θ1 ± θ2) = cos (θ1) cos (θ2)∓ sin (θ1) sin (θ2)

sin (θ1 ± θ2) = sin (θ1) cos (θ2)± sin (θ1) cos (θ2)

Table 1.2: Useful trigonometric identities.

d
dtcos (Ωt) = −Ωsin (Ωt)
d
dtsin (Ωt) = Ωcos (Ωt)∫
cos (Ωt) dt = 1

Ωsin (Ωt)∫
sin (Ωt) dt = − 1

Ωcos (Ωt)∫ T
0
sin (kΩot) cos (nΩot) dt = 0∫ T

0
sin (kΩot) sin (nΩot) dt = 0, k 6= n∫ T

0
cos (kΩot) cos (nΩot) dt = 0, k 6= n∫ T

0
sin2 (nΩot) dt = T/2∫ T

0
cos2 (nΩot) dt = T/2

Table 1.3: Derivatives and integrals of sinusoidal signals.

Now suppose that we have a sum of two sinusoids, say

x (t) = cos (Ω1t) + cos (Ω2t) (1.31)

It is of interest to know what the period T of the sum of 2 sinusoids is. We must have

x (t− T ) = cos (Ω1 (t− T )) + cos (Ω2 (t− T ))

= cos (Ω1t− Ω1T ) + cos (Ω2t− Ω2T ) (1.32)

It follows that Ω1T = 2πk and Ω2T = 2πl, where k and l are integers. Solving these two equations for T
gives T = 2πk/Ω1 = 2πl/Ω2. We wish to select the shortest possible period, since any integer multiple of
the period is also a period. To do this we note that since 2πk/Ω1 = 2πl/Ω2, we can write

Ω1

Ω2
=
k

l
(1.33)

so we seek the smallest integers k and l that satisfy (1.33). This can be done by �nding the greatest common
divisor between k and l. For example if Ω1 = 10π and Ω2 = 15π, we have k = 2 and l = 3, after dividing
out 5, the greatest common divisor between 10 and 15. So the period is T = 2πk/Ω1 = 0.4 sec. On the
other hand, if Ω1 = 10π and Ω2 = 10.1π, we �nd that k = 100 and l = 101 and the period increases to
T = 2πk/Ω1 = 20 sec. Notice also that if the ratio of Ω1 and Ω2 is not a rational number, then x (t) is not
periodic!
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If there are more than two sinusoids, it is probably easiest to �nd the period of one pair of sinusoids at
a time, using the two lowest frequencies (which will have a longer period). Once the frequency of the �rst
two sinusoids has been found, replace them with a single sinusoid at the composite frequency corresponding
to the �rst two sinusoids and compare it with the third sinusoid, and so on.

1.7 Introduction to Continuous-Time Signals: Exercises7

1. Consider the signals shown in Figure 1.11. Sketch the following signals8:

a. x1 (t) + 2x2 (t).
b. x1 (−t)− x2 (t− 1).
c. x1 (−t+ 1).
d. x2 (t− 1).
e. x1 (2t).
f. x1 (t/2).
g. x1 (t)x3 (t+ 1).
h. x3 (2t− 4).
i. x3 (−2t− 4).

2. For each of the signals in Figure 1.12:

a. What is the period?
b. Sketch x (t− 0.25), and x (t+ 1).
c. Find the power for each signal.

3. Suppose that z1 = 3 + j2, z2 = 4 + j5. Find:

• |z1|,∠z1, |z2|,∠z2

• z1 + z2 in rectangular coordinates.
• z1z2 in rectangular and polar coordinates.
• z1/z2 in polar coordinates.

4. What is the period, frequency, and power of the sinusoidal signal x (t) = 2cos (5t).
5. Can you �nd a general formula for the power of the sinusoidal signal x (t) = Acos (Ωt)?
6. Express 2cos (10t) + 3sin (10t) as a single sinusoidal signal.
7. Sketch x (t) = sin (t− θ) for θ = π/4, π/2, and 3π/4.
8. Sketch x (t) = sin (2t− θ) for θ = π/4, π/2, and 3π/4.
9. Consider the motion of the second hand of a clock. Assume the length of the second hand is 1 meter.

(a) what is the angular frequency of the second hand. (b) �nd an expression for the horizontal and
vertical displacements of the tip of the second hand, assuming the origin is at the clock center and
t = 0 when the second hand is over the 3.

7This content is available online at <http://cnx.org/content/m32871/1.3/>.
8Assume that for step discontinuities, the signal takes on the greater of the two values.
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Figure 1.11: Signals for problem 1.

t
0

1 2 3-1-2

x(t)

t
0

1 2 3-1-2

x(t)

1

-1

-1

1

Figure 1.12: Signals for problem 2.
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Chapter 2

Fourier Series of Periodic Signals

2.1 Symmetry Properties of Periodic Signals1

A signal has even symmetry of it satis�es:

x (t) = x (−t) (2.1)

and odd symmetry if it satis�es

x (t) = −x (−t) (2.2)

Figure 2.1 shows pictures of periodic even and odd symmetric signals. If x (t) is an odd symmetric periodic
signal, then we must have: ∫ t0+T

t0

x (t) dt = 0 (2.3)

This is easy to see if we choose t0 = −T/2.
1This content is available online at <http://cnx.org/content/m32875/1.2/>.

17
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t
0

x(t)

0

x(t)

t

(a)

(b)

Figure 2.1: (a) Even-symmetric, and (b) odd-symmetric periodic signals. Note that the integral over
any period of an odd-symmetric periodic signal is zero.

We also note that the product of two even signals is also even while the product of an even signal and an
odd signal must be odd. Finally, the product of two odd signals must be even. For example, suppose xo (t) has
odd symmetry and xe (t) has even symmetry. Their product has odd symmetry because if y (t) = xo (t)xe (t),
then y (−t) = xo (−t)xe (−t) = −y (t).

2.2 Trigonometric Form of the Fourier Series2

A major goal of this book is to develop tools which will enable us to study the frequency content of signals.
An important �rst step is the Fourier Series. The Fourier Series enables us to completely characterize the
frequency content of a periodic signal3. A periodic signal x (t) can be expressed in terms of the Fourier

2This content is available online at <http://cnx.org/content/m32879/1.4/>.
3There are periodic signals for which a Fourier series doesn't exist, conditions for existence of the Fourier series are given

below.
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Series, which is given by:

x (t) = a0 +
∞∑
n=1

ancos (nΩ0t) +
∞∑
n=1

bnsin (nΩ0t) (2.4)

where

Ω0 =
2π
T

(2.5)

is the fundamental frequency of the periodic signal. Examination of (2.4) suggests that periodic signals can
be represented as a sum of suitably scaled cosine and sine waveforms at frequencies of Ω0, 2Ω0, 3Ω0, .... The
cosine and sine terms at frequency nΩ0 are called the nth harmonics. Evidently, periodic signals contain
only the fundamental frequency and its harmonics. A periodic signal cannot contain a frequency that is not
an integer multiple of its fundamental frequency.

In order to �nd the Fourier Series, we must compute the Fourier Series coe�cients. These are given by

a0 =
1
T

∫ t0+T

t0

x (t) dt (2.6)

an =
2
T

∫ t0+T

t0

x (t) cos (nΩ0t) dt, n = 1, 2, ... (2.7)

bn =
2
T

∫ t0+T

t0

x (t) sin (nΩ0t) dt, n = 1, 2, ... (2.8)

From our discussion of even and odd symmetric signals, it is clear that if x (t) is even, then x (t) sin (nΩ0t)
must be odd and so bn = 0. Also if, x (t) has odd symmetry, then x (t) cos (nΩ0t) also has odd symmetry
and hence an = 0 (see exercise ). Moreover, if a signal is even, since x (t) cos (nΩ0t) is also even, if we use
the fact that for any even symmetric periodic signal v (t),∫ T/2

−T/2
v (t) dt = 2

∫ T/2

0

v (t) dt (2.9)

then setting t0 = −T/2 in (2.7) gives,

an =
4
T

∫ T/2

0

x (t) cos (nΩ0t) dt, n = 1, 2, ... (2.10)

This can sometimes lead to a savings in the number of integrals that must be computed. Similarly, if x (t)
has odd symmetry, we have

bn =
4
T

∫ T/2

0

x (t) sin (nΩ0t) dt, n = 1, 2, ... (2.11)

Example 2.1 Consider the signal in Figure 2.2. This signal has even symmetry, hence all of the bn = 0.
We compute a0 using,

a0 =
1
T

∫ t0+T

t0

x (t) dt (2.12)

which we recognize as the area of one period, divided by the period. Hence, a0 = τ/T . Next, using (2.7)
we get

an =
2
T

∫ τ/2

−τ/2
cos (nΩ0t) dt (2.13)
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Note how the limits of integration only go from −τ/2 to τ/2 since x (t) is zero everywhere else. Evaluating
this integral leads to

an =
2τ
T

sin (nΩ0τ/2)
nΩ0τ/2

, n = 1, 2, ... (2.14)

Figure 2.3 shows the �rst few Fourier Series coe�cients for τ = 1/2 and T = 1. If we attempt to reconstruct
x (t) based on only a limited number (say, N) of Fourier Series coe�cients, we have

^
x (t) = a0 +

N∑
n=0

ancos (nΩ0t) (2.15)

Figures Figure 2.4 and Figure 2.5 show
^
x (t) forN = 10, andN = 50, respectively. The ringing characteristic

is known as Gibb's phenomenon and disappears only as N approaches ∞.
The following example looks at the Fourier series of an odd-symmetric signal, a sawtooth signal.
Example 2.2 Now let's compute the Fourier series for the signal in Figure 2.6. The signal is odd-

symmetric, so all of the an are zero. The period is T = 3/2, hence Ω0 = 4π/3. Using (2.8), the bn
coe�cients are found by computing the following integral,

bn =
8
3

∫ 1/2

−1/2

tsin (4πnt/3) dt (2.16)

After integrating by parts, we get

bn = 3
sin (2πn/3)

(πn)2 − 2
cos (2πn/3)

πn
, n = 1, 2, ... (2.17)

These are plotted in Figure 2.7 and approximations of x (t) using N = 10 and N = 50 coe�cients are shown
in Figures Figure 2.8 and Figure 2.9, respectively.

t
0

x(t)

1

TT

... ...

τ/2-τ/2

Figure 2.2: Example "Trigonometric Form of the Fourier Series". This signal is sometimes called a
pulse train.
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Figure 2.3: Fourier Series coe�cients for Example "Trigonometric Form of the Fourier Series".
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Figure 2.4: Approximation to x (t) based on the �rst 10 Fourier Series coe�cients for Example "Trigono-
metric Form of the Fourier Series".
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Figure 2.5: Fourier Series coe�cients for Example "Trigonometric Form of the Fourier Series".
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Figure 2.6: Example "Trigonometric Form of the Fourier Series". Sawtooth signal.
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Figure 2.7: Fourier Series coe�cients for Example "Trigonometric Form of the Fourier Series".
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Figure 2.8: Approximation to x (t) based on the �rst 10 Fourier Series coe�cients for Example "Trigono-
metric Form of the Fourier Series".
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Figure 2.9: Fourier Series coe�cients for Example "Trigonometric Form of the Fourier Series".

References (Chapter 5)

2.3 Half-Wave Symmetry4

2.3.1 Half-Wave Symmetry

Periodic signals having half-wave symmetry have the property

x (t) = −x (t− T/2)

x (t) = −x (t+ T/2)
(2.18)

It turns out that signals with this type of symmetry only have odd-numbered harmonics, the even harmonics
are zero. To see this, lets look at the formula for the coe�cients an:

an = 2
T

∫ t0+T

t0
x (t) cos (nΩ0t) dt

= 2
T

[∫ t0+T/2

t0
x (t) cos (nΩ0t) dt+

∫ t0+T

t0+T/2
x (t) cos (nΩ0t) dt

]
= 2

T [I1 + I2]

(2.19)

Making the substitution τ = t− T/2 in I2 gives

I2 =
∫ t0+T/2

t0
x (τ + T/2) cos (nΩ0 (τ + T/2)) dτ

= − ∫ t0+T/2

t0
x (τ) cos (nΩ0 (τ + T/2)) dτ (2.20)

The quantity cos (nΩ0 (τ + T/2)) = cos (nΩτ + nπ) can be simpli�ed using the trigonometric identity

cos (u± v) = cos (u) cos (v)∓ sin (u) sin (v) (2.21)

4This content is available online at <http://cnx.org/content/m32877/1.4/>.
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We have

cos (nΩτ + nπ) = cos (nΩτ) cos (nπ)− sin (nΩτ) sin (nπ)

= (−1)ncos (nΩτ)− 0
(2.22)

Therefore

I2 = −(−1)n
∫ t0+T/2

t0

x (τ) cos (nΩ0τ) dτ (2.23)

and we can write:

an =
2
T

(1− (−1)n)
∫ t0+T/2

t0

x (t) cos (nΩ0t) dt (2.24)

From this expression we �nd that an = 0 whenever n is even. In fact, we have

an = {
4
T

∫ t0+T/2

t0
x (t) cos (nΩ0t) dt, n, odd

0, n, even
(2.25)

A similar derivation leads to

bn = {
4
T

∫ t0+T/2

t0
x (t) sin (nΩ0t) dt, n, odd

0, n, even
(2.26)

A good choice of t0 can lead to a considerable savings in time when calculating the Fourier Series of half-
wave symmetric signals. Note that half-wave symmetric signals need not have odd or even symmetry for
the above formulae to apply. If a signal has half-wave symmetry and in addition has odd or even symmetry,
then some additional simpli�cation is possible. Consider the case when a half-wave symmetric signal also
has even symmetry. Then clearly bn = 0, and (2.25) applies. However since the integrand in (2.25) is the
product of two even signals, x (t) and cos (nΩ0t), it too has even symmetry. Therefore, instead of integrating
from, say, −T/4 to T/4, we need only integrate from 0 to T/4 and multiply the result by 2. Therefore the
formula for an for an even, half-wave symmetric signal becomes:

an = {
8
T

∫ T/4
0

x (t) cos (nΩ0t) dt, n, odd

0, n, even
(2.27)

bn = 0 (2.28)

For an odd half-wave symmetric signals, a similar argument leads to

an = 0 (2.29)

bn = {
8
T

∫ T/4
0

x (t) sin (nΩ0t) dt, n, odd

0, n, even
(2.30)
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2.4 Convergence of the Fourier Series5

Consider the trigonometric form of the Fourier series

x (t) = a0 +
∞∑
n=1

ancos (nΩ0t) +
∞∑
n=1

bnsin (nΩ0t) (2.31)

It is important to state under what conditions this series (the right-hand side of (2.31)) will actually converge
to x (t). The nature of the convergence also needs to be speci�ed. There are several ways of de�ning the
convergence of a series.

1. Uniform convergence: de�ne the �nite sum:

xN (t) = a0 +
N∑
n=1

ancos (nΩ0t) +
N∑
n=1

bnsin (nΩ0t) (2.32)

where N is �nite. Then the series converges uniformly if the absolute value of x (t)− xN (t) satis�es

|x (t)− xN (t)| < ε (2.33)

for all values of t and some small positive constant ε.
2. Point-wise convergence: as with uniform convergence, we require that∣∣x (t)− xN(t) (t)

∣∣ < ε (2.34)

for all t. The main di�erence between uniform and point-wise convergence is that for the latter, the
number of terms in the summation N (t) needed to get the error below ε may vary for di�erent values
of t.

3. Mean-squared convergence: here, the series converges if for all t:

lim
N→∞

∫ t0+T

t0

∣∣x (t)− xN(t) (t)
∣∣2dt = 0 (2.35)

Gibb's phenomenon, mentioned in some of the examples above, is an example of mean-squared con-
vergence of the series. The overshoot in Gibb's phenomenon occurs only at abrupt discontinuities.
Moreover, the height of the overshoot stays the same independently of the number of terms in the
series, N . The overshoot merely becomes less noticeable because it becomes more and more narrow as
N increases.

Dirichlet has given a series of conditions which are necessary for a periodic signal to have a Fourier series.
If these conditions are met, then

• the Fourier series has point-wise convergence for all t at which x (t) is continuous.
• where x (t) has a discontinuity, then the series converges to the midpoint between the two values on

either side of the discontinuity.

The Dirichlet Conditions are:

1. x (t) has to be absolutely integrable on any period:∫ t0+T

t0

|x (t)| dt <∞ (2.36)

2. x (t) can have only a �nite number of discontinuities on any period.
3. x (t) can have only a �nite number of extrema on any period.

Most periodic signals of practical interest satisfy these conditions.
References (Chapter 5)

5This content is available online at <http://cnx.org/content/m32880/1.4/>.
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2.5 Complex Form of the Fourier Series6

The trigonometric form of the Fourier Series, shown in (2.4) can be converted into a more convenient form
by doing the following substitutions:

cos (nΩ0t) =
ejnΩ0t + e−jnΩ0t

2
(2.37)

sin (nΩ0t) =
ejnΩ0t − e−jnΩ0t

j2
(2.38)

After some straight-forward rearranging, we obtain

x (t) = a0 +
∞∑
n=1

[
an − jbn

2

]
ejnΩ0t +

∞∑
n=1

[
an + jbn

2

]
e−jnΩ0t (2.39)

Keeping in mind that an and bn are only de�ned for positive values of n, lets sum over the negative integers
in the second summation:

x (t) = a0 +
∞∑
n=1

[
an − jbn

2

]
ejnΩ0t +

−∞∑
n=−1

[
a−n + jb−n

2

]
ejnΩ0t (2.40)

Next, let's assume that an and bn are de�ned for both positive and negative n. In this case, we �nd that
an = a−n and bn = −b−n, since

a−n = 2
T

∫ t0+T

t0
x (t) cos (−nΩ0t) dt

= 2
T

∫ t0+T

t0
x (t) cos (nΩ0t) dt

= an

(2.41)

and

b−n = 2
T

∫ t0+T

t0
x (t) sin (−nΩ0t) dt

= − 2
T

∫ t0+T

t0
x (t) sin (nΩ0t) dt

= −bn
(2.42)

Using this fact, we can rewrite (2.40) as

x (t) = a0 +
∞∑
n=1

[
an − jbn

2

]
ejnΩ0t +

−∞∑
n=−1

[
an − jbn

2

]
ejnΩ0t (2.43)

If we de�ne7c0 ≡ a0, and

cn ≡ an − jbn
2

(2.44)

then we can rewrite (2.43) as

x (t) =
∞∑

n=−∞
cne

jnΩ0t (2.45)

6This content is available online at <http://cnx.org/content/m32887/1.4/>.
7The notation �≡" is often used instead of the �=" sign when de�ning a new variable.
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which is called the complex form of the Fourier Series. Note that since a−n = an and b−n = −bn, we have

c−n = c∗n (2.46)

This means that

|c−n| = |cn| (2.47)

and

∠c−n = −∠cn (2.48)

Next, we must �nd formulas for �nding the cn given x (t). We �rst look at a property of complex exponentials:

∫ t0+T

t0

ejkΩ0tdt = { T, k = 0

0, otherwise
(2.49)

To see this, we note that∫ t0+T

t0

ejkΩ0ktdt =
∫ t0+T

t0

cos (kΩ0t) + j

∫ t0+T

t0

sin (kΩ0t) dt (2.50)

It's easy to see that kΩ0 also has period T , hence the integral is over k periods of cos (kΩ0t) and sin (kΩ0t).
Therefore, if k 6= 0, then ∫ t0+T

t0

ejkΩ0tdt = 0 (2.51)

otherwise ∫ t0+T

t0

ejkΩ0tdt =
∫ t0+T

t0

dt = T (2.52)

We use (2.49) to derive an equation for cn as follows. Consider the integral∫ t0+T

t0

x (t) e−jnΩ0tdt (2.53)

Substituting the complex form of the Fourier Series of x (t) in (2.53), (using k as the index of summation)
we obtain ∫ t0+T

t0

[ ∞∑
k=−∞

cne
jkΩ0t

]
e−jnΩ0tdt (2.54)

Rearranging the order of integration and summation, combining the exponents, and using (2.49) gives

∞∑
k=−∞

cn

∫ t0+T

t0

ej(k−n)Ω0tdt = Tcn (2.55)

Using this result, we �nd that

cn =
1
T

∫ t0+T

t0

x (t) e−jnΩ0tdt (2.56)
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Example 2.1 Let's now �nd the complex form of the Fourier Series for the signal in Example p. 20. The
integral to be evaluated is

cn =
2
3

∫ 0.5

−0.5

2te−j
4π
3 ntdt (2.57)

Integrating by parts yields

cn =
j

nπ
cos (2πn/3)− j3

(nπ)2 sin (2πn/3) (2.58)

Figure 2.10 shows the magnitude of the coe�cients, |cn|. Note that the complex Fourier Series coe�cients
have even symmetry as was mentioned earlier.
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Figure 2.10: Fourier Series coe�cients for Example "Complex Form of the Fourier Series".

Can the basic formula for computing the cn in (2.56) be simpli�ed when x (t) has either even, odd, or
half-wave symmetry? The answer is yes. We simply use the fact that

cn =
an − jbn

2
(2.59)

and solve for an and bn using the formulae given above for even, odd, or half-wave symmetric signals. This
avoids having to integrate complex quantities. This can also be seen by noting that (setting t0 = T/2 in
(2.56)):

cn = 1
T

∫ T/2
−T/2 x (t) e−jnΩ0tdt

= 1
T

∫ T/2
−T/2 x (t) cos (nΩ0t) dt− j

T

∫ T/2
−T/2 x (t) sin (nΩ0t) dt

= 1
2an − j

2bn

(2.60)

Alternately, if x (t) has half-wave symmetry, we can use (2.60), (2.24), and (2.25) to get

cn = {
2
T

∫ T/4
−T/4 x (t) e−jnΩ0tdt, n odd

0, n even
(2.61)
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Unlike the trigonometric form, we cannot simplify this further if x (t) is even or odd symmetric since e−jnΩ0t

has neither even nor odd symmetry.
Example 2.2 In this example we will look at the e�ect of adjusting the period of a pulse train signal.

Consider the signal depicted in Figure 2.11.

t
0

x(t)

1

TT

... ...

τ/2-τ/2

Figure 2.11: Pulse train having period T used in Example "Complex Form of the Fourier Series".

The Fourier Series coe�cients for this signal are given by

cn = 1
T

∫ τ/2
−τ/2 e

−jnΩ0tdt

= −1
jnΩ0T

(
e−jnΩ0τ/2 − ejnΩ0τ/2

)
= τ

T
sin(nΩ0τ/2)
nΩ0τ/2

≡ τ
T sinc (nΩ0τ/2)

(2.62)

Figure 2.12 shows the magnitude of |cn|, the amplitude spectrum, for T = 1 and τ = 1/2 as well as the
Fourier Series for the signal based on the �rst 30 coe�cients

^
x (t) =

30∑
n=−30

cne
nΩ0t (2.63)

Similar plots are shown in Figures Figure 2.13, and Figure 2.14, for T = 4, and T = 8, respectively.
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Figure 2.12: Example "Complex Form of the Fourier Series", T = 1, τ = 1/2: (top) Fourier Series

coe�cient magnitudes, (b)
^
x (t).
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Figure 2.13: Example "Complex Form of the Fourier Series", T = 4, τ = 1/2: (top) Fourier Series

coe�cient magnitudes, (b)
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x (t).
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Figure 2.14: Example "Complex Form of the Fourier Series", T = 8, τ = 1/2: (top) Fourier Series

coe�cient magnitudes, (b)
^
x (t).

This example illustrates several important points about the Fourier Series: As the period T increases,
Ω0 decreases in magnitude (this is obvious since Ω0 = 2π/T ). Therefore, as the period increases, successive
Fourier Series coe�cients represent more closely spaced frequencies. The frequencies corresponding to each
n are given by the following table:

n Ω

0 0

±1 ±Ω0

±2 ±2Ω0

...
...

±n ±nΩ0

Table 2.1
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This table establishes a relation between n and the frequency variable Ω. In particular, if T = 1, we have
Ω0 = 2π and

n Ω

0 0

±1 ±2π

±2 ±4π
...

...

±n ±2nπ

Table 2.2

If T = T , then Ω0 = π/2 and

n Ω

0 0

±1 ±π/2
±2 ±π
...

...

±n ±nπ/2

Table 2.3

and if T = 8, we have Ω0 = π/4 and

n Ω

0 0

±1 ±π/4
±2 ±π/2
...

...

±n ±nπ/4

Table 2.4

Note that in all three cases, the �rst zero coe�cient corresponds to the value of n for which Ω = 4π.
Also, as T gets bigger, the cn appear to resemble more closely spaced samples of a continuous function of
frequency (since the nΩ are more closely spaced). Can you determine what this function is?

As we shall see, by letting the period T get large (in�nitely large), we will derive the Fourier Transform
in the next chapter.

References (Chapter 5)
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2.6 Parseval's Theorem for the Fourier Series8

Recall that in Chapter 1, we de�ned the power of a periodic signal as

px =
1
T

∫ t0+T

t0

x2 (t) dt (2.64)

where T is the period. Using the complex form of the Fourier series, we can write

x(t)2 =

( ∞∑
n=−∞

cne
jnΩ0t

)( ∞∑
m=−∞

cme
jmΩ0t

)∗
(2.65)

where we have used the fact that x(t)2 = x (t)x(t)∗, i.e. since x (t) is real x (t) = x(t)∗. Applying (1.19)
and (1.20) gives

x(t)2 =
(∑∞

n=−∞ cne
jnΩ0t

) (∑∞
m=−∞ c∗me

−jmΩ0t
)

=
∑∞
n=−∞

∑∞
m=−∞ cnc

∗
me

j(n−m)Ω0t

=
∑∞
n=−∞ |cn|2 +

∑
n 6=m cnc

∗
me

j(n−m)Ω0t

(2.66)

Substituting this quantity into (2.64) gives

px = 1
T

∫ t0+T

t0

[∑∞
n=−∞ |cn|2 +

∑
n 6=m cnc

∗
me

j(n−m)Ω0t
]
dt

=
∑∞
n=−∞ |cn|2 + 1

T

∫ t0+T

t0

∑
n 6=m cnc

∗
me

j(n−m)Ω0tdt
(2.67)

It is straight-forward to show that

1
T

∫ t0+T

t0

∑
n 6=m

cnc
∗
me

j(n−m)Ω0tdt = 0 (2.68)

This leads to Parseval's Theorem for the Fourier series:

px =
∞∑

n=−∞
|cn|2 (2.69)

which states that the power of a periodic signal is the sum of the magnitude of the complex Fourier series
coe�cients.

2.7 The Fourier Series: Exercises9

1. Show that an even-symmetric periodic signal has Fourier Series coe�cients bn = 0 while an odd-
symmetric signal has an = 0.

2. Find the trigonometric form of the Fourier Series of the periodic signal shown in Figure 2.15.
3. Find the trigonometric form of the Fourier Series for the periodic signal shown in Figure 2.16.
4. Find the trigonometric form of the Fourier Series for the periodic signal shown in Figure 2.17 for τ = 1,
T = 10.

5. Suppose that x (t) = 5 + 3cos (5t)− 2sin (3t) + cos (45t).

a. Find the period of this periodic signal.
b. Find the trigonometric form of the Fourier Series.

6. Find the complex form of the Fourier Series of the periodic signal shown in Figure 2.15.

8This content is available online at <http://cnx.org/content/m32881/1.3/>.
9This content is available online at <http://cnx.org/content/m32884/1.3/>.
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7. Find the complex form of the Fourier Series of the periodic signal shown in Figure 2.16.
8. Find the complex form of the Fourier Series for the signal in Figure 2.17 using:

a. τ = 1, T = 10.
b. τ = 1, T = 100.

For each case plot the magnitude of the Fourier Series coe�cients. You may use Matlab or some other
programming language to do this.

9. Show that
1
T

∫ t0+T

t0

∑
n6=m

cnc
∗
me

j(n−m)Ω0tdt = 0 (2.70)

t
0

1 2 3-1-2

x(t)

-1

1

Figure 2.15: Signal for problems list, p. 35 and list, p. 35.

t
0

1 2 3-1-2

x(t)

1

-1

Figure 2.16: Signal for problem list, p. 35 and list, p. 35.



37

t

x(t)

1

T-T τ0

Figure 2.17: Pulse train signal for problems list, p. 35 and list, p. 35.
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Chapter 3

The Fourier Transform

3.1 Derivation of the Fourier Transform1

Let's begin by writing down the formula for the complex form of the Fourier Series:

x (t) =
∞∑

n=−∞
cne

jnΩ0t (3.1)

as well as the corresponding Fourier Series coe�cients:

cn =
1
T

∫ t0+T

t0

x (t) e−jnΩ0tdt (3.2)

As was mentioned in Chapter 2, as the period T gets large, the Fourier Series coe�cients represent more
closely spaced frequencies. Lets take the limit as the period T goes to in�nity. We �rst note that the
fundamental frequency approaches a di�erential

Ω0 =
2π
T
→ dΩ (3.3)

consequently

1
T

=
Ω0

2π
→ dΩ

2π
(3.4)

The nth harmonic, nΩ0, in the limit approaches the frequency variable Ω

nΩ0 → Ω (3.5)

From equation (3.2), we have

cnT →
∫ ∞
−∞

x (t) e−jΩtdt (3.6)

The right hand side of (3.6) is called the Fourier Transform of x (t):

X (jΩ) ≡
∫ ∞
−∞

x (t) e−jΩtdt (3.7)

1This content is available online at <http://cnx.org/content/m32889/1.3/>.
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Now, using (3.6), (3.4), and (3.5) in equation (3.1) gives

x (t) =
1

2π

∫ ∞
−∞

X (jΩ) ejΩtdΩ (3.8)

which corresponds to the inverse Fourier Transform. Equations (3.7) and (3.8) represent what is known as
a transform pair. The following notation is used to denote a Fourier Transform pair

x (t)↔ X (jΩ) (3.9)

We say that x (t) is a time domain signal while X (jΩ) is a frequency domain signal. Some additional
notation which is sometimes used is

X (jΩ) = F{x (t)} (3.10)

and

x (t) = F−1{X (jΩ)} (3.11)

References (Chapter 5)

3.2 Properties of the Fourier Transform2

The Fourier Transform (FT) has several important properties which will be useful:

1. Linearity:
αx1 (t) + βx2 (t)↔ αX1 (jΩ) + βX2 (jΩ) (3.12)

where α and β are constants. This property is easy to verify by plugging the left side of (3.12) into
the de�nition of the FT.

2. Time shift:
x (t− τ)↔ e−jΩτX (jΩ) (3.13)

To derive this property we simply take the FT of x (t− τ)∫ ∞
−∞

x (t− τ) e−jΩtdt (3.14)

using the variable substitution γ = t− τ leads to

t = γ + τ (3.15)

and
dγ = dt (3.16)

We also note that if t = ±∞ then τ = ±∞. Substituting (3.15), (3.16), and the limits of integration
into (3.14) gives ∫∞

−∞ x (γ) e−jΩ(γ+τ)dγ = e−jΩτ
∫∞
−∞ x (γ) e−jΩγdγ

= e−jΩτX (jΩ)
(3.17)

which is the desired result.

2This content is available online at <http://cnx.org/content/m32892/1.3/>.
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3. Frequency shift:
x (t) ejΩ0t ↔ X (j (Ω− Ω0)) (3.18)

Deriving the frequency shift property is a bit easier than the time shift property. Again, using the
de�nition of FT we get: ∫∞

−∞ x (t) ejΩ0te−jΩtdt =
∫∞
−∞ x (t) e−j(Ω−Ω0)tdt

= X (j (Ω− Ω0))
(3.19)

4. Time reversal:
x (−t)↔ X (−jΩ) (3.20)

To derive this property, we again begin with the de�nition of FT:∫ ∞
−∞

x (−t) e−jΩtdt (3.21)

and make the substitution γ = −t. We observe that dt = −dγ and that if the limits of integration for
t are ±∞, then the limits of integration for γ are ∓γ. Making these substitutions into (3.21) gives

− ∫ −∞∞ x (γ) ejΩγdγ =
∫∞
−∞ x (γ) ejΩγdγ

= X (−jΩ)
(3.22)

Note that if x (t) is real, then X (−jΩ) = X(jΩ)∗.
5. Convolution: The convolution integral is given by

y (t) =
∫ ∞
−∞

x (τ)h (t− τ) dτ (3.23)

The convolution property is given by

Y (jΩ)↔ X (jΩ)H (jΩ) (3.24)

To derive this important property, we again use the FT de�nition:

Y (jΩ) =
∫∞
−∞ y (t) e−jΩtdt

=
∫∞
−∞

∫∞
−∞ x (τ)h (t− τ) e−jΩtdτdt

=
∫∞
−∞ x (τ)

[∫∞
−∞ h (t− τ) e−jΩtdt

]
dτ

(3.25)

Using the time shift property, the quantity in the brackets is e−jΩτH (jΩ), giving

Y (jΩ) =
∫∞
−∞ x (τ) e−jΩτH (jΩ) dτ

= H (jΩ)
∫∞
−∞ x (τ) e−jΩτdτ

= H (jΩ)X (jΩ)

(3.26)

Therefore, convolution in the time domain corresponds to multiplication in the frequency domain.
6. Multiplication (Modulation):

w (t) = x (t) y (t)↔ 1
2π

∫ ∞
−∞

X (j (Ω−Θ))Y (jΘ) dΘ (3.27)
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Notice that multiplication in the time domain corresponds to convolution in the frequency domain.
This property can be understood by applying the inverse Fourier Transform (3.8) to the right side of
(3.27)

w (t) = 1
2π

∫∞
−∞

1
2π

∫∞
−∞X (j (Ω−Θ))Y (jΘ) ejΩtdΘdΩ

= 1
2π

∫∞
−∞ Y (jΘ)

[
1

2π

∫∞
−∞X (j (Ω−Θ)) ejΩtdΩ

]
dΘ

(3.28)

The quantity inside the brackets is the inverse Fourier Transform of a frequency shifted Fourier
Transform,

w (t) = 1
2π

∫∞
−∞ Y (jΘ)

[
x (t) ejΘt

]
dΘ

= x (t) 1
2π

∫∞
−∞ Y (jΘ) ejΘtdΘ

= x (t) y (t)

(3.29)

The properties associated with the Fourier Transform are summarized in Table 3.1.

Property y (t) Y (jΩ)

Linearity αx1 (t) + βx2 (t) αX1 (jΩ) + βX2 (jΩ)

Time Shift x (t− τ) X (jΩ) e−jΩτ

Frequency Shift x (t) ejΩ0t X (j (Ω− Ω0))

Time Reversal x (−t) X (−jΩ)

Convolution x (t) ∗ h (t) X (jΩ)H (jΩ)

Modulation x (t)w (t) 1
2π

∫∞
−∞X (j (Ω−Θ))W (jΘ) dΘ

Table 3.1: Fourier Transform properties.

3.3 Symmetry Properties of the Fourier Transform3

When x (t) is real, the Fourier transform has conjugate symmetry, X (−jΩ) = X(jΩ)∗. It is not hard to see
this:

X(jΩ)∗ =
[∫∞
−∞ x (t) e−jΩtdt

]∗
=

∫∞
−∞

[
x (t) e−jΩt

]∗
dt

=
∫∞
−∞ x (t) ejΩtdt

= X (−jΩ)

(3.30)

where the second equality uses the de�nition of a Riemann integral as the limiting case of a summation,
and the fact that the complex conjugate of a sum is equal to the sum of the complex conjugates. The third
equality used the fact that the complex conjugate of a product is equal to the product of complex conjugates.

Letting X (jΩ) = a (jΩ) + jb (jΩ), it follows that

X (−jΩ) = a (−jΩ) + jb (−jΩ) (3.31)

and

X(jΩ)∗ = a (jΩ)− jb (jΩ) (3.32)

3This content is available online at <http://cnx.org/content/m33894/1.1/>.
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Equating (3.31) and (3.32) gives a (jΩ) = a (−jΩ) and b (−jΩ) = −b (jΩ), which implies that the real
and imaginary parts of X (jΩ) have even and odd symmetry, respectively. A consequence of this is that
|X (jΩ)| =

∣∣X(jΩ)∗
∣∣ = |X (−jΩ)|, that is, the magnitude of the Fourier transform has even symmetry. It

can similarly be shown that the phase of the Fourier transform has odd symmetry.

3.4 The Unit Impulse Function4

3.4.1 The Unit Impulse Function

The unit impulse is very useful in the analysis of signals, linear systems, and sampling. Consider the plot of
a rectangular pulse in Figure 3.1. Note the height of the pulse is 1/τ and the width of the pulse is τ . So we
can write ∫ ∞

−∞
xp (t) dt = 1 (3.33)

As we let τ get small, then the width of the pulse gets successively narrower and its height gets progressively
higher. In the limit as τ approaches zero, we have a pulse which has in�nite height, and zero width, yet its
area is still one. We de�ne the unit impulse function as

δ (t) ≡ lim
τ→0

xp (t) (3.34)

t
0

xp(t)

1/τ

τ/2-τ/2 0
t

δ(t)

τ        0


Figure 3.1: Rectangular pulse, xp (t) approaches the unit impulse function, δ (t), as τ approaches zero.

The area under δ (t) is one, and so we can write∫ ∞
−∞

δ (t− τ) dt = 1 (3.35)

If we multiply the unit impulse by a constant, K, its area is now equal to that constant, i.e.∫ ∞
−∞

Kδ (t− τ) dt = K (3.36)

The area of the unit impulse is usually indicated by the number shown next to the arrow as seen in Figure 3.2.

4This content is available online at <http://cnx.org/content/m32896/1.3/>.
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τ

t

Κ

Figure 3.2: Kδ (t− τ).

Suppose we multiply the signal x (t) with a time-shifted unit impulse, δ (t− τ). The product is a unit
impulse, having an area of x (τ). This is illustrated in Figure 3.3.
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τ
t

τ
t

x(τ)

t

x
=

x(t)

δ(t - τ)

Figure 3.3: Sifting property of unit impulse, the product of the two signals, x (t) and δ (t− τ), is
x (τ) δ (t− τ). Consequently, the area under x (τ) δ (t− τ) is x (τ).
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In other words, ∫ ∞
−∞

x (t) δ (t− τ) dt = x (τ) (3.37)

Equation (3.37) is called the sifting property of the unit impulse. As we will see, the sifting property of the
unit impulse will be very useful.

3.5 The Unit Step Function5

The unit step function is de�ned as

u (t) = { 1, t ≥ 0

0, t < 0
(3.38)

This function is useful for de�ning signals which we wish to start at t = 0. In other words, often, we would
like for signals to be zero for negative values of t. We can force this situation by simply multiplying by u (t).

3.6 Fourier Transform of Common Signals6

Next, we'll derive the FT of some basic continuous-time signals. Table 3.2 summarizes these transform pairs.

3.6.1 Rectangular pulse

Let's begin with the rectangular pulse

rect (t, τ) ≡ { 1, t ≤ τ/2
0, t > τ/2

(3.39)

The pulse function, rect (t, τ) is shown in Figure 3.4. Substituting x (t) = rect (t, τ) into (3.7) gives

X (jΩ) =
∫ τ/2
−τ/2 e

−jΩtdt

= −1
jΩ e
−jΩt

∣∣∣τ/2
−τ/2

= 1
jΩ

[
ejΩτ/2 − e−jΩτ/2]

= τ sin(Ωτ/2)
Ωτ/2

= τsinc (Ωτ/2π)

(3.40)

A plot of X (jΩ) is shown in Figure 3.4.

5This content is available online at <http://cnx.org/content/m32898/1.2/>.
6This content is available online at <http://cnx.org/content/m32899/1.4/>.
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Figure 3.4: Fourier transform pair showing the rectangular pulse signal (left) and its Fourier Transform,
the sinc function (right).

Note that when τ = 0, X (jΩ) = 1. We now have the following transform pair:

rect (t, τ)↔ τ
sin (Ωτ/2)

Ωτ/2
(3.41)
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3.6.2 Impulse

The unit impulse function was described in Section 3.4. From the sifting property of the impulse function
we �nd that

X (jΩ) =
∫∞
−∞ δ (t− τ) e−jΩtdt

= e−jΩτ
(3.42)

or

δ (t− τ)↔ e−jΩτ (3.43)

3.6.3 Complex Exponential

The complex exponential function, x (t) = ejΩ0t, has a Fourier Transform which is di�cult to evalu-
ate directly. It is easier to start with the Fourier Transform itself and work backwards using the in-
verse Fourier Transform. Suppose we want to �nd the time-domain signal which has Fourier Transform
X (jΩ) = δ (Ω− Ω0). We can begin by using the inverse Fourier Transform (3.8)

x (t) = 1
2π

∫∞
−∞ δ (Ω− Ω0) ejΩtdΩ

= 1
2π e

Ωt
(3.44)

This result follows from the sifting property of the impulse function. By linearity, we can then write

ejΩt ↔ 2πδ (Ω− Ω0) (3.45)

3.6.4 Cosine

The cosine signal can be expressed in terms of complex exponentials using Euler's Identity

cos (Ω0t) =
1
2
(
ejΩ0t + e−jΩ0t

)
(3.46)

Applying linearity and the Fourier Transform of complex exponentials to the right side of (3.46), we quickly
get:

cos (Ω0t)↔ πδ (Ω− Ω0) + πδ (Ω + Ω0) (3.47)

3.6.5 Real Exponential

The real exponential function is given by x (t) = Ke−αtu (t), where K and α are real constants. To �nd its
FT, we start with the de�nition

X (jΩ) = K
∫∞

0
e−αte−jΩtdt

= K
∫∞

0
e−(α+jΩ)tdt

= −K
α+jΩ e−(α+jΩ)t

∣∣∞
0

= −K
α+jΩ (0− 1)

= K
α+jΩ

(3.48)
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therefore,

Ke−αtu (t)↔ K

α+ jΩ
(3.49)

x (t) X (jΩ)

rect (t, τ) τ sin(Ωτ/2)
Ωτ/2

δ (t− τ) e−jΩτ

ejΩ0t 2πδ (Ω− Ω0)

cos (Ω0t) πδ (Ω− Ω0) + πδ (Ω + Ω0)

Ke−αtu (t) K
α+jΩ

Table 3.2: Some common Fourier Transform pairs.

When working problems involving �nding the Fourier Transform, it is often preferable to use a table of
transform pairs rather than to recalculate the Fourier Transform from scratch. Often, transform pairs in can
be combined with known Fourier Transform properties to �nd new Fourier Transforms.

Example 3.1 Find the Fourier Transform of: y (t) = 2e5tu (−t). Clearly, we can write y (t) = x (−t)
where x (t) = 2e−5tu (t). Therefore, we can combine the known transform of x (t) from Table 3.2, namely,

X (jΩ) =
2

5 + jΩ
(3.50)

with the time reversal property found in Table 3.1:

x (−t)↔ X(jΩ)∗ (3.51)

to get the answer:

Y (jΩ) =
2

5− jΩ (3.52)

3.7 Fourier Transform of Periodic Signals7

If the signal of interest is periodic with period T , then it has a Fourier Series:

x (t) =
∞∑

n=−∞
cne

jΩ0nt (3.53)

Using the linearity of the Fourier Transform, we have

X (jΩ) =
∑∞
n=−∞ cnF{ejΩ0nt}

= 2π
∑∞
n=−∞ cnδ (Ω− nΩ0)

(3.54)

where F{ } corresponds to the Fourier Transform of the signal within the brackets.

7This content is available online at <http://cnx.org/content/m32900/1.2/>.
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3.8 Filters8

Filters are devices which are commonly found in electronic gadgets. When you adjust the bass (low frequency)
or treble (high frequency) settings on your MP3 player, you are adjusting the characteristics of a �lter. A
more technical name for a �lter is a linear system . A �lter is represented by a box having a single input
(usually x (t)) and a single output (say, y (t)) as seen in Figure 3.5.

x(t) y(t)
L[ ]

Figure 3.5: Continuous-time �lter.

We can denote the operation the �lter has on the input using the following notation:

y (t) = L [x (t)] (3.55)

The types of �lters we will consider in this book are linear and time-invariant. A �lter is time-invariant if
given that y (t) = L [x (t)], then y (t− τ) = L [x (t− τ)]. In other words, if the input to the �lter is delayed by
τ , then the output is also delayed by τ . A �lter is linear if given that y1 (t) = L [x1 (t)] and y2 (t) = L [x2 (t)]
then

αy1 (t) + βy2 (t) = L [αx1 (t) + βx2 (t)] (3.56)

Equation (3.56) is often referred to as the superposition principle. We can use linearity and time invariance
to derive the mathematical operation which the �lter performs on the input, x (t). To do this we begin with
the assumption that

h (t) = L [δ (t)] (3.57)

The signal h (t) is called the impulse response of the �lter. From time invariance, we have

h (t− τ) = L [δ (t− τ)] (3.58)

Now we can use linearity to �nd the �lter output when the input is x (τ) δ (t− τ), where x (τ) is a constant

x (τ)h (t− τ) = L [x (τ) δ (t− τ)] (3.59)

We can extend the linearity property further by noting that

∑
n

x (τn) ∆nh (t− τn) = L

[∑
n

x (τn) ∆nδ (t− τn)

]
(3.60)

where we can assume that the constants τn are ordered so that τi < τk, i < k and ∆n ≡ τn−τn−1. In (3.60),
we are simply multiplying each δ (t− τn) by the constant x (τn) ∆n, so once again linearity should prevail.
Now if we take the limit ∆n → 0, we obtain∫∞

∞ x (τ)h (t− τ) dτ = L
[∫∞
∞ x (τ) δ (t− τ) dτ

]
(3.61)

8This content is available online at <http://cnx.org/content/m32913/1.2/>.
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Using the sifting property of the unit impulse in the right side of (3.61) gives∫ ∞
∞

x (τ)h (t− τ) dτ = L [x (t)] (3.62)

So it follows that the �lter performs the following operation on the input, x (t):

y (t) = L [x (t)]

=
∫∞
−∞ x (τ)h (t− τ) dτ

(3.63)

The integral in (3.63) is called the convolution integral. A change of variables can be used to show that∫ ∞
−∞

h (τ)x (t− τ) dτ =
∫ ∞
−∞

x (τ)h (t− τ) dτ (3.64)

which means that the order in which two signals are convolved is unimportant. A short-hand notation for
convolution is ∫ ∞

−∞
x (τ)h (t− τ) dτ ≡ x (t) ∗ h (t) (3.65)

3.9 Properties of Convolution Integrals9

We list several important properties and their proofs.

1. Commutative Property:
x (t) ∗ h (t) = h (t) ∗ x (t) (3.66)

Lets start with

x (t) ∗ h (t) =
∫∞
−∞ x (τ)h (t− τ) dτ (3.67)

and make the substitution γ = t− τ . It follows that

x (t) ∗ h (t) =
∫∞
−∞ x (t− γ)h (γ) dγdτ

= h (t) ∗ x (t)
(3.68)

2. Associative Property:
[x (t) ∗ h1 (t)] ∗ h2 (t) = x (t) ∗ [h1 (t) ∗ h2 (t)] (3.69)

To prove this property we begin with an expression for the left-hand side of (3.69)∫ ∞
−∞

x (τ)h1 (t− τ) dτ ∗ h2 (t) (3.70)

where we have expressed x (t) ∗ h1 (t) as a convolution integral. Expanding the second convolution
gives ∫ ∞

−∞

[∫ ∞
−∞

x (τ)h1 (γ − τ) dτ
]
h2 (t− γ) dγ (3.71)

Reversing the order of integration gives∫ ∞
−∞

x (τ)
[∫ ∞
−∞

h1 (γ − τ)h2 (t− γ) dγ
]
dτ (3.72)

9This content is available online at <http://cnx.org/content/m32904/1.2/>.
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Using the variable substitution φ = γ − τ and integrating over φ in the inner integral gives the �nal
result: ∫ ∞

−∞
x (τ)

[∫ ∞
−∞

h1 (φ)h2 (t− τ − φ) dγ
]
dτ (3.73)

where the inner integral is recognized as h1 (t) ∗ h2 (t) evaluated at t = t− τ , which is required for the
convolution with x (t).

3. Distributive Property:

x (t) ∗ [h1 (t) + h2 (t)] = x (t) ∗ h1 (t) + x (t) ∗ h2 (t) (3.74)

This property is easily proven from the de�nition of the convolution integral.
4. Time-Shift Property: If y (t) = x (t) ∗ h (t) then x (t− t0) ∗ h (t) = y (t− t0) Again, the proof is trivial.

3.10 Evaluation of Convolution Integrals10

The key to evaluating a convolution integral such as

x (t) ∗ h (t) =
∫ ∞
−∞

x (τ)h (t− τ) dτ (3.75)

is to realize that as far as the integral is concerned, the variable t is a constant and the integral is over
the variable τ . Therefore, for each t, we are �nding the area of the product x (τ)h (t− τ). Let's look at an
example that illustrates how this works.

Example 3.1 Find the convolution of x (t) = u (t) and h (t) = e−tu (t). The convolution integral is given
by

h (t) ∗ x (t) =
∫ ∞
−∞

e−τu (τ)u (t− τ) dτ (3.76)

Figure 3.6 shows the graph of e−τu (τ), e−tu (t), and their product. From the graph of the product, it is
easy to see the the convolution integral becomes

∫ t

0

e−τdτ = { 1− e−t, t ≥ 0

0, t < 0
(3.77)

10This content is available online at <http://cnx.org/content/m32909/1.2/>.
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Figure 3.6: Graphs of signals used in Example .

Signals which can be expressed in functional form should be convolved as in the above example. Other
signals may not have an easy functional representation but rather may be piece-wise linear. In order to
convolve such signals, one must evaluate the convolution integral over di�erent intervals on the t-axis so that
each distinct interval corresponds to a di�erent expression for x (t) ∗ h (t). The following example illustrates
this:

Example 3.2 Suppose we attempt to convolve the unit step function x (t) = u (t) with the trapezoidal
function

h (t) = {
t, 0 ≤ t < 1

1, 1 ≤ t < 2

0, elsewhere

(3.78)

From Figure 3.7, it can be seen that on the interval 0 ≤ t < 1, the product x (t− τ)h (τ) is an equilateral
triangle with area t2/2. On the interval 1 ≤ t < 2, the area of x (t− τ)h (τ) is t−1/2. This latter area results
by adding the area of an equilateral triangle having a base of 1, and the area of a rectangle having a base of
t−1 and a height of 1. For all values of t greater than 2, the convolution is 1.5 since x (t− τ)h (τ) = h (τ) and
h (τ) is a trapezoid having an area of 1.5. Finally, for t < 0, the convolution is zero since x (t− τ)h (τ) = 0.
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Figure 3.7: Graphs of signals used in Example .

3.11 Frequency Response11

Recall from Section 3.2 that the convolution integral

y (t) =
∫ ∞
−∞

x (τ)h (t− τ) dτ (3.79)

has the Fourier Transform:

Y (jΩ) = H (jΩ)X (jΩ) (3.80)

where H (jΩ) and X (jΩ) are the Fourier Transforms of h (t) and x (t), respectively. Solving for H (jΩ)
gives the frequency response:

H (jΩ) =
Y (jΩ)
X (jΩ)

(3.81)

The frequency response, the Fourier Transform of the impulse response of a �lter, is useful since it gives a
highly descriptive representation of the properties of the �lter. The frequency response can be considered
to be the gain of the �lter, expressed as a function of frequency. The magnitude of the frequency response
evaluated at Ω = Ω0, |H (jΩ0) | gives the factor the frequency component of x (t) at Ω = Ω0 would be scaled
by. The phase of the frequency response at Ω = Ω0, ∠H (jΩ0) gives the phase shift the component of x (t)
at Ω = Ω0 would undergo. This idea will be discussed in greater detail in . A lowpass �lter is a �lter which
only passes low frequencies, while attenuating or �ltering out higher frequencies. A highpass �lter would do
just the opposite, it would �lter out low frequencies and allow high frequencies to pass. Figure 3.8 shows
examples of these various �lter types.

11This content is available online at <http://cnx.org/content/m32921/1.3/>.
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|H(jΩ)|

Figure 3.8: Di�erent �lter types: (a) lowpass, (b) bandpass, (c) highpass.

3.12 The Sinusoidal Steady State Response12

It is useful to see what the e�ect of the �lter is on a sinusoidal signal, say x (t) = cos (Ω0t). If y (t) is the
output of the �lter, then we can write

y (t) =
∫ ∞
−∞

cos (Ω0 (t− τ))h (τ) dτ (3.82)

12This content is available online at <http://cnx.org/content/m32916/1.2/>.
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Using the Euler formula for cos (Ω0t), right hand side of (3.82) can be written as:

1
2

∫ ∞
−∞

(
ej(Ω0(t−τ)) + e−j(Ω0(t−τ))

)
h (τ) dτ (3.83)

This integral can be split into two separate integrals, and written as:

ejΩ0t

2

∫ ∞
−∞

e−jΩ0τh (τ) dτ +
e−jΩ0t

2

∫ ∞
−∞

ejΩ0τh (τ) dτ (3.84)

The �rst of the two integrals can be recognizes as the Fourier Transform of the impulse response evaluated
at Ω = Ω0. The second integral is just the complex conjugate of the �rst integral. Therefore (3.84) can be
written as:

ejΩ0t

2
H (jΩ0) +

e−jΩ0t

2
H∗ (jΩ0) (3.85)

Since the second term in (3.85) is the complex conjugate of the �rst term, we can express (3.85) as:

Re{ejΩ0tH (jΩ0)} (3.86)

or expressing H (jΩ0) in terms of polar coordinates:

Re{ejΩ0t|H (jΩ0) |ej∠H(jΩ0)} = Re{|H (jΩ0) |ej(Ω0t+∠H(jΩ0))} (3.87)

Therefore, we �nd that the �lter output is given by

y (t) = |H (jΩ0) |cos (Ω0t+ ∠H (jΩ0)) (3.88)

This is called the sinusoidal steady state response. It tells us that when the input to a linear, time-invariant
�lter is a cosine, the �lter output is a cosine whose amplitude has been scaled by |H (jΩ0) | and that has
been phase shifted by ∠H (jΩ0). The same result applies to an input that is an arbitrarily phase shifted
cosine (e.g. a sine wave).

Example 3.1 Find the output of a �lter whose impulse response is h (t) = e−5tu (t) and whose input is
given by x (t) = cos (2t). It can be readily seen that the frequency response of the �lter is

H (jΩ) =
1

5 + jΩ
(3.89)

and therefore |H (j2)| = 0.1857 and ∠H (j2) = −0.3805. Therefore, using (3.88):

y (t) = 0.1857cos (2t− 0.3805) (3.90)

3.13 Parallel and Cascaded Filters13

In some applications, such as graphic equalizers, it is useful to place �lters in parallel as shown in Figure 3.9.
Can the parallel combination of �lters be characterized by a single equivalent �lter heq (t)? The answer is
yes and results by noting that

y (t) =
∑N
i=1 x (t) ∗ hi (t)

=
∑N
i=1

∫∞
−∞ x (t− τ)hi (τ) dτ

=
∫∞
−∞ x (t− τ)

∑N
i=1 hi (τ) dτ

(3.91)

13This content is available online at <http://cnx.org/content/m32919/1.3/>.
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Therefore, the last equation in (3.91) shows that

heq (t) =
N∑
i=1

hi (t) (3.92)

M

h1(t)

h2(t)

hN(t)

+MM
y(t)

x(t)

heq(t)
x(t) y(t)

Figure 3.9: Parallel �lter structure. We wish to �nd an equivalent �lter with impulse response heq (t).

The equivalent transfer function for the parallel �lter structure is given by

Heq (jΩ) =
N∑
i=1

Hi (jΩ) (3.93)

Next we wish to �nd an equivalent �lter for the cascaded structure shown in Figure 3.10.
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h1(t) h2(t)
y(t)x(t)

heq(t)
x(t) y(t)

y1(t)

Figure 3.10: Cascaded �lter structure. We wish to �nd an equivalent �lter with impulse response
heq (t).

This can be done by �nding an expression for the intermediate value y1 (t):

y1 (t) =
∫ ∞
−∞

x (t− τ)h1 (τ) dτ (3.94)

The output of the cascaded structure is given by

y (t) =
∫ ∞
−∞

y1 (t− γ)h2 (γ) dγ (3.95)

substituting (3.94) into (3.95) gives

y (t) =
∫ ∞
−∞

[∫ ∞
−∞

x (t− γ − τ)h1 (τ) dτ
]
h2 (γ) dγ (3.96)

Reversing the order of integration and rearranging slightly gives

y (t) =
∫ ∞
−∞

∫ ∞
−∞

x (t− γ − τ)h1 (τ)h2 (γ) dγdτ (3.97)

Now let ξ = γ+ τ , solving for τ gives τ = ξ− γ and dξ = dτ . Substituting these quantities into (3.97) leads
to

y (t) =
∫ ∞
−∞

x (t− ξ)
[∫ ∞
−∞

h1 (ξ − γ)h2 (γ) dγ
]
dξ (3.98)

Notice that we can factor x (t− ξ) from the inner integral since x (t− ξ) does not depend on γ. The integral
in the brackets is recognized as h1 (t)∗h2 (t) evaluated at ξ. Therefore for the cascaded system, the equivalent
impulse response is given by

heq (t) =
∫ ∞
−∞

h1 (t− γ)h2 (γ) dγ (3.99)
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This can be generalized to any number of cascaded �lters giving

heq (t) = h1 (t) ∗ h1 (t) ∗ · · · ∗ hN (t) (3.100)

3.14 First Order Filters14

A �rst-order lowpass �lter has the frequency response

HLP (jΩ) =
1

1 + j Ω
Ωc

(3.101)

The frequency at which the frequency response magnitude has dropped to 1/
√

2 is called the corner fre-
quency15. The frequency response magnitude and phase are plotted in Figure 3.11. It is common to express
the frequency response magnitude in units of decibels (dB) using the formula

20log10 |H (jΩ)| (3.102)

At the corner frequency for a �rst order lowpass �lter, the frequency response magnitude is 1/
√

2 or roughly
-3 dB. From Table 3.2, it can easily be seen that the impulse response for the �rst-order lowpass �lter is
given by

hLP (t) = Ωce−Ωctu (t) (3.103)

A �rst-order highpass �lter is given by

HHP (jΩ) =
j Ω

Ωc

1 + j Ω
Ωc

(3.104)

Notice that

HHP (jΩ) = 1− 1
1 + j Ω

Ωc

(3.105)

This makes sense since a highpass �lter can be constructed by taking the �lter input x (t) and subtracting
from it a lowpass �ltered version of x (t). The impulse response of the �rst-order highpass �lter therefore
becomes:

hHP (t) = δ (t)− Ωce−Ωctu (t) (3.106)

14This content is available online at <http://cnx.org/content/m32925/1.3/>.
15This term most likely originates from it's role in Bode plots, a shortcut method for sketching the graph of a frequency

response.
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Figure 3.11: Frequency response magnitude and phase for a �rst-order lowpass �lter (Ωc = 1 rad/sec).
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Figure 3.12: Frequency response magnitude and phase for a �rst-order highpass �lter (Ωc = 1 rad/sec).

First order �lters can be easily implemented using linear circuit elements like resistors, capacitors, and
inductors. Figure 3.13 shows a �rst order �lter based on a resistor and a capacitor. Since the impedance for
a resistor and capacitor are R and 1/jΩC, respectively, voltage division leads to a frequency response of

HLP (jΩ) =
1

1 + jΩR1C1
(3.107)

Therefore the corner frequency for this �lter is Ωc = 1
R1C1

. Similarly, a �rst-order highpass �lter can be
implemented using a resistor and capacitor as shown in Figure 3.14. This �lter has a frequency response of

HHP (jΩ) =
jΩR2C2

1 + jΩR2C2
(3.108)

The corner frequency for the highpass �lter is seen to be Ωc = 1
R2C2

.
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+_vi(t) vo(t)
+

_

R1

C1

Figure 3.13: Circuit implementation of a �rst-order lowpass �lter having Ωc = 1/R1C1.

+_vi(t) vo(t)
+

_

C2

R2

Figure 3.14: Circuit implementation of a �rst-order highpass �lter having Ωc = 1/R2C2.

Now one might be tempted to apply the results of Section 3.13 to build a bandpass �lter by cascading the
lowhpass and highpass circuits in Figures Figure 3.13 and Figure 3.14, respectively. Theory would predict
that the equivalent frequency response of this circuit is given by

Heq (jΩ) = HLP (jΩ)HHP (jΩ) (3.109)

Unfortunately, this is not possible since the circuit elements in the lowpass and highpass �lters interact with
one another and therefore a�ect the overall behavior of the circuit. This interaction between the two circuits
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is called loading will be studied in greater detail in the exercises. To get theoretical behavior, it is necessary
to use a voltage follower circuit, between the lowpass �lter from the highpass circuits. The voltage follower
circuit is usually an active circuit (requires external power supply) that has very high input impedance and
very low output impedance. This eliminates any loading e�ects which would normally occur between the
lowpass and highpass �lter circuits.

3.15 Parseval's Theorem for the Fourier Transform16

In Chapter 2, we looked at a version of Parseval's theorem for the Fourier series. Here, we will look at a
similar version of this theorem for the Fourier transform. Recall that the energy of a signal is given by

ex =
∫ ∞
−∞

x(t)2
dt (3.110)

If the energy is �nite then x (t) is an energy signal, as described in Chapter 1. Suppose x (t) is an energy
signal, then the autocorrelation function is de�ned as

rx (t) = x (t) ∗ x (−t) (3.111)

It can be shown that rx (t) is an even function of t and that rx (0) = ex(see Exercises). The Fourier transform

of rx (t) is given by X (jΩ)X(jΩ)∗ = |X (jΩ)|2. If follows that

ex = 1
2π

∫∞
−∞ |X (jΩ)|2ejΩtdΩ

∣∣∣
t=0

= 1
2π

∫∞
−∞ |X (jΩ)|2dΩ

(3.112)

Which is Parseval's theorem for the Fourier transform.

3.16 The Fourier Transform: Excercises17

1. Find the Fourier Transform of the following signals, for each case sketch the magnitude of the Fourier
Transform:

a. x (t) = 4e−0.2tu (t)
b. x (t) = 4e0.2tu (−t)
c. x (t) = 4e−0.2(t−10)u (t− 10)
d. x (t) = δ (t− 5)

e. x (t) = { 1, |t| ≤ 0.5

0, |t| > 0.5
f. x (t) = 4e−j0.2t

g. x (t) = cos (10πt)
h. x (t) = 6

i. x (t) = { cos (100t) , |t| ≤ 0.5

0, |t| > 0.5

2. Find the convolution of the following pairs of signals:

16This content is available online at <http://cnx.org/content/m32922/1.3/>.
17This content is available online at <http://cnx.org/content/m32927/1.2/>.
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Figure 3.15
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Figure 3.16

3. Find the output of the �lter whose transfer function is

H (jΩ) =
2π

2π + jΩ
(3.113)

and whose input is x (t) = u (t). Hint, �nd the impulse response h (t) corresponding to H (jΩ) and
convolve it with the input.

4. Show that if v (t) = L [u (t)], then ∫ ∞
∞

v (t) dt = L

[∫ ∞
∞

u (t) dt
]

(3.114)

Hint: Integrate both sides of v (t) = L [u (t)]. Then express the right hand integral as the limit of a
sum (as in a calculus textbook). Then by linearity, you can exchange the sum and the L [·].

5. Find an expression for the convolution of x (t) = u (t) and h (t) = sin (8t)u (t)
6. Find an expression for the convolution of x (t) = rect (t− 0.5, 1) and h (t) = e−tu (t).
7. Find the Fourier transform of the periodic signal in problem 2, Chapter 2.
8. Consider a �lter having the impulse response

h (t) = e−2tu (t) (3.115)

Sketch the frequency response (both magnitude and phase) of the �lter and �nd the output of the
�lter when the input is x (t) = cos (10t).
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9. Repeat the previous problem for the impulse response given by

h (t) = { 1, 0 ≤ t < 1

0, otherwise
(3.116)

10. Suppose that two �lters having impulse responses h1 (t) and h2 (t) are cascaded (i.e. connected in
series). Find the impulse response of the equivalent �lter assuming h1 (t) = 10e−10tu (t) and h2 (t) =
5e−5tu (t).

11. Design a �rst-order lowpass �lter having a corner frequency of 100 Hz. Use a 100kΩ resistor. Plot
both the magnitude and phase of the �lter's frequency response.

12. Design a �rst-order highpass �lter having a corner frequency of 1000 Hz. Use a 0.01µF capacitor. Plot
both the magnitude and phase of the �lter's frequency response.

13. The following problems are associated with the circuits in Figure 3.17:

+_vi(t) vo(t)
+

_

1kΩ

1µF 5kΩ

0.01µF

+_vi(t) vo(t)
+

_

1kΩ

1µF +_vi(t) vo(t)
+

_
5kΩ

0.01µF
(b)(a)

(c)

Figure 3.17: Problem list, p. 65.

a. Find the frequency response of the circuit in Figure 3.17(a), and sketch its magnitude and phase.

b. Find the frequency response of the circuit in Figure 3.17(b) and sketch its magnitude and phase.
c. Find the frequency response of the �lter in Figure 3.17(c), sketch its magnitude and phase and

show that it is not the product of the frequency responses for problems list, p. 65 and list, p. 65.
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Chapter 4

The Laplace Transform

4.1 The Laplace Transform: Introduction1

4.1.1 The Double-Sided Laplace Transform

You may have noticed that we avoided taking the Fourier transform of a number of signals. For example, we
did not try to compute the Fourier Transform of the unit step function, x (t) = u (t), or the ramp function
x (t) = tu (t). The reason for this is that these signals do not have a Fourier transform that converges to a
�nite value for all Ω. Recall that in order to deal with periodic signals such as cos (Ω0t) we had to settle
for Fourier transforms having impulse functions in them. The Laplace transform gives us a mechanism for
dealing with signals that do not have �nite-valued Fourier Transforms.

The double-sided Laplace Transform of x (t) is de�ned as follows:

X (s) =
∫ ∞
−∞

x (t) e−stdt (4.1)

where we de�ne

s = σ + jΩ (4.2)

We observe that the Laplace transform is a generalization of the Fourier transform since

X (jΩ) = X (s)|s=jΩ (4.3)

Therefore, we can write

X (s) = F{e−σtx (t)} (4.4)

The inverse Laplace transform can be derived using this idea. Applying the inverse Fourier transform to
F{e−σtx (t)} gives

e−σtx (t) =
1

2π

∫ ∞
−∞

F{e−σtx (t)}ejΩtdΩ (4.5)

Using (4.2) leads to

dΩ =
ds

j
(4.6)

1This content is available online at <http://cnx.org/content/m32847/1.3/>.
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Substituting s for Ω and solving for x (t) in (4.5) gives

x (t) =
1

2πj

∫ σ+j∞

σ−j∞
X (s) estds (4.7)

Equation (4.7) is called the inverse Laplace transform. The integration is along a straight line in the complex
s-plane corresponding to a �xed value of σ. This is illustrated in Figure 4.1.

jΩ

σ

Figure 4.1: The inverse Laplace transform integrates along a line having a constant σ in the complex
s−plane.

It is important that this line exist in a region of the s-plane that corresponds to the region of convergence
for the Laplace transform. The region of convergence is de�ned as that region in the s-plane for which∫ ∞

−∞

∣∣x (t) e−st
∣∣ dt <∞ (4.8)

Note that since s = σ + jΩ this is equivalent to∫ ∞
−∞

∣∣x (t) e−σt
∣∣ dt <∞ (4.9)

4.1.2 The Single-Sided Laplace Transform

We de�ne the single-sided Laplace transform as

X (s) =
∫ ∞

0−
x (t) e−stdt (4.10)

where the lower limit of integration tacitly includes the point t = 0. That is, 0− represents a point just
to the negative side of t = 0. This allows for the integral to take into account signal features that occur at
t = 0 such as a step or impulse function. The single-sided Laplace transform is motivated by the fact that
most signals are turned on at some point. If the region of convergence is not speci�ed then di�erent signals
can yield identical bilateral Laplace transforms, as the following example illustrates.
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Example 3.1 Consider the signal

x1 (t) = e−αtu (t) (4.11)

The bilateral Laplace transform is given by

X1 (s) =
∫∞

0
e−αte−stdt

=
∫∞

0
e−(s+α)tdt

= −1
s+αe

−(σ+jΩ+α)t
∣∣∣∞
0

= −1
s+α

(
e−(σ+α)∞ejΩ∞ − 1

) (4.12)

the magnitude of e−(σ+α)∞ is zero only if σ > − α which establishes the region of convergence. Therefore
we have

e−αtu (t)↔ 1
s+ α

, σ > − α (4.13)

Now consider the Laplace transform of the signal

x2 (t) = −e−αtu (−t) (4.14)

We have

X2 (s) = − ∫ 0

−∞ e−αte−stdt

=
∫ 0

−∞ e−(s+α)tdt

= −1
s+αe

−(σ+jΩ+α)t
∣∣∣0
−∞

= 1
s+α

(
1− e(σ+α)∞ejΩ∞

) (4.15)

Here, the quantity e(σ+α)∞ is zero only if σ < − α so we have

−e−αtu (−t)↔ 1
s+ α

, σ < − α (4.16)

which is identical to X1 (s) except for the region of convergence.
To avoid scenarios where two di�erent signals have the same bilateral Laplace transform, we restrict

our signals to those which are assumed to be zero for t < 0, for which the single-sided Laplace transform
applies. Such signals are called causal signals. This sets the stage for the single-sided Laplace transform to
be discussed in the next section.

The region of convergence for the single-sided Laplace transform is a region in the s-plane satisfying
σ > σmin as shown in Figure 4.2.
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jΩ

σ
σmin

Figure 4.2: The region of convergence of the single-sided Laplace transform in the complex s−plane.

To see this, we observe that if ∫ ∞
0−

∣∣x (t) e−σmint
∣∣ dt <∞ (4.17)

then it must be the case that ∫ ∞
0−

∣∣x (t) e−σt
∣∣ dt <∞ (4.18)

for σ > σmin, since e
−σt decreases faster than e−σmint. Finally, the inverse single-sided Laplace transform

is the same as the inverse double-sided Laplace transform (see (4.7)), since a single sided Laplace transform
can be interpreted as the double-sided Laplace transform of a signal satisfying x (t) = 0, t < 0. From here on,
we will work exclusively with the single-sided Laplace transform. Unless we need to speci�cally di�erentiate
between the single or double-sided transforms, we will refer to the single-sided Laplace transform as simply
the �Laplace transform".

4.2 Properties of the Laplace Transform2

4.2.1 Properties of the Laplace Transform

The properties associated with the Laplace transform are similar to those of the Fourier transform. First, let's
set de�ne some notation, we will use the notation L{} to denote the Laplace transform operation. Therefore
we can write X (s) = L{x (t)} and x (t) = L−1{X (s)} for the forward and inverse Laplace transforms,
respectively. We can also use the transform pair notation used earlier:

x (t)↔ X (s) (4.19)

With this notation de�ned, lets now look at some properties.

2This content is available online at <http://cnx.org/content/m32848/1.6/>.
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4.2.1.1 Linearity

Given that x1 (t)↔ X1 (s) and x2 (t)↔ X2 (s) then for any constants α and β, we have

αx1 (t) + βx2 (t)↔ αX1 (s) + βX2 (s) (4.20)

The linearity property follows easily using the de�nition of the Laplace transform.

4.2.1.2 Time Delay

The reason we call this the time delay property rather than the time shift property is that the time shift
must be positive, i.e. if τ > 0, then x (t− τ) corresponds to a delay. If τ < 0 then we would not be able to
use the single-sided Laplace transform because we would have a lower integration limit of τ , which is less
than zero. To derive the property, lets evaluate the Laplace transform of the time-delayed signal

L{x (t− τ)} =
∫ ∞

0

x (t− τ) e−stdt (4.21)

Letting γ = t− τ leads to t = γ + τ and dt = dγ. Substituting these quantities into (4.21) gives

L{x (t− τ)} =
∫∞
−τ x (γ) e−s(γ+τ)dγ

= e−sτ
∫∞
−τ x (γ) e−sγdγ

= e−sτ
∫ 0

−τ x (γ) e−sγdγ + e−sτ
∫∞

0
x (γ) e−sγdγ

(4.22)

where we note that the �rst integral in the last line is zero since x (t) = 0, t < 0. Therefore the time delay
property is given by

L{x (t− τ)} = e−sτX (s) (4.23)

4.2.1.3 s-Shift

This property is the Laplace transform corresponds to the frequency shift property of the Fourier transform.
In fact, the derivation of the s-shift property is virtually identical to that of the frequency shift property.

L{e−atx (t)} =
∫∞

0
e−atx (t) e−stdt

=
∫∞

0
x (t) e−(a+s)tdt

=
∫∞

0
x (t) e−(a+σ+jΩ)tdt

= X (s+ a)

(4.24)

The s-shift property also alters the region of convergence of the Laplace transform. If the region of conver-
gence for X (s) is σ > σmin, then the region of convergence for L{e−atx (t)} is σ > σmin − Re (a).

4.2.1.4 Multiplication by t

Let's begin by taking the derivative of the Laplace transform:

dX(s)
ds = d

ds

∫∞
0
x (t) e−stdt

=
∫∞

0
x (t) d

dse
−stdt

= − ∫∞
0
tx (t) e−stdt

(4.25)
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So we can write

L{tx (t)} = −dX (s)
ds

(4.26)

This idea can be extended to multiplication by tn. Letting y (t) = tx (t), if follows that

ty (t) ↔ −dY (s)
ds

↔ d2X(s)
ds2

(4.27)

Proceeding in this manner, we �nd that

tnx (t)↔ (−1)n
dnX (s)
dsn

(4.28)

4.2.1.5 Time Scaling

The time scaling property for the Laplace transform is similar to that of the Fourier transform:

L{x (αt)} =
∫∞

0
x (αt) e−stdt

= 1
α

∫∞
0
x (γ) e−

s
αγdγ

= 1
αX

(
s
α

) (4.29)

where in the second equality, we made the substitution t = γ
α and dt = dγ

α .

4.2.1.6 Convolution

The derivation of the convolution property for the Laplace transform is virtually identical to that of the
Fourier transform. We begin with

L{∫∞−∞ x (τ)h (t− τ) dτ} =
∫∞
−∞ x (τ) L{h (t− τ)}dτ (4.30)

Applying the time-delay property of the Laplace transform gives∫∞
−∞ x (τ) L{h (t− τ)}dτ = H (s)

∫∞
−∞ x (τ) e−sτdτ

= H (s)X (s)
(4.31)

If h (t) is the the impulse response of a linear time-invariant system, then we call H (s) the system function
of the system. The frequency response results by setting s = jΩ in H (s). The system function provides
us with a very powerful means of determining the output of a linear time-invariant �lter given the input
signal. It will also enable us to determine a means of establishing the stability3 of a linear-time invariant
�lter, something which was not possible with the frequency response.

4.2.1.7 Di�erentiation

The Laplace transform of the derivative of a signal will be used widely. Consider

L{ d
dt
x (t)} =

∫ ∞
0−

x' (t) e−stdt (4.32)

3We will discuss stability shortly
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this can be integrated by parts:

u = e−st v' = x' (t)

u' = −se−st v = x (t)
(4.33)

which gives

L{ ddtx (t)} = uv|∞0− −
∫∞

0−
u'vdt

= e−stx (t)|∞0− +
∫∞

0−
sx (t) e−stdt

= −x (0−) + sX (s)
(4.34)

therefore we have,

d

dt
x (t)↔ sX (s)− x (0−) (4.35)

4.2.1.8 Higher Order Derivatives

The previous derivation can be extended to higher order derivatives. Consider

y (t) =
dx (t)
dt

↔ sX (s)− x (0−) (4.36)

it follows that

dy (t)
dt

↔ sY (s)− y (0−) (4.37)

which leads to

d2

dt2
x (t)↔ s2X (s)− sx (0−)− dx (0−)

dt
(4.38)

This process can be iterated to get the Laplace transform of arbitrary higher order derivatives, giving

dnx(t)
dtn ↔ snX (s)− sn−1x (0−)−∑n

k=2 s
n−k dk−1x(0−)

dtk−1
(4.39)

where it should be understood that

dmx (0−)
dtm

≡ dmx (t)
dtm

∣∣∣∣
t=0−

,m = 1, ..., n− 1 (4.40)

4.2.1.9 Integration

Let

g (t) =
∫ t

0−
x (τ) dτ (4.41)

it follows that

dg (t)
dt

= x (t) (4.42)
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and g (0−) = 0. Moreover, we have

X (s) = L{dg(t)dt }
= sG (s)− g (0−)

= sG (s)

(4.43)

therefore

G (s) =
X (s)
s

(4.44)

but since

G (s) = L{
∫ t

0−
x (τ) dτ} (4.45)

we have ∫ t

0−
x (τ) dτ ↔ X (s)

s
(4.46)

Now suppose x (t) has a non-zero integral over negative values of t. We have∫ t

∞
x (τ) dτ =

∫ 0−

−∞
x (τ) dτ +

∫ t

0−
x (τ) dτ (4.47)

The quantity
∫ 0−

−∞ x (τ) dτ is a constant for positive values of t, and can be expressed as

u (t)
∫ 0−

−∞
x (τ) dτ (4.48)

it follows that

∫ t

∞
x (τ) dτ ↔

∫ 0−

−∞ x (τ) dτ
s

+
X (s)
s

(4.49)

where we have used the fact that u (t)↔ 1
s .

4.2.1.10 The Initial Value Theorem

The initial value theorem makes it possible to determine x (t) at t = 0+ from X (s). From the derivative
property of the Laplace transform, we can write

L{dx (t)
dt
} = sX (s)− x (0−) (4.50)

Taking the limit s→∞

lim
s→∞

∫∞
0−

dx(t)
dt e−stdt = lim

s→∞ [sX (s)− x (0−)]∫∞
0−

lim
s→∞

dx(t)
dt e−stdt = lim

s→∞ [sX (s)− x (0−)]
(4.51)

There are two cases, the �rst is when x (t) is continuous at t = 0. In this case it is clear that dx(t)
dt e−st → 0

as s→∞, so (4.51) can be written as

0 = lim
s→∞

[
sX (s)− x (0−)] (4.52)
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Since x (t) is continuous at t = 0, x (0−) = x (0+), the Initial Value Theorem follows,

x
(
0+
)

= lim
s→∞sX (s) (4.53)

The second case is when x (t) is discontinuous at t = 0. In this case, we use the fact that

dx (t)
dt

∣∣∣∣
t=0

=
[
x
(
0−
)− x (0+

)]
δ (t) (4.54)

For example, if we integrate the right-hand side of (4.54) with x (0−) = 0 and x (0+) = 1, we get the unit
step function, u (t). Proceeding as before, we have

lim
s→∞

∫ ∞
0−

dx (t)
dt

e−stdt = lim
s→∞

[
sX (s)− x (0−)] (4.55)

The left-hand side of (4.55) can be written as

lim
s→∞

∫ 0+

0−

[
x
(
0−
)− x (0+

)]
δ (t) e−stdt+ lim

s→∞

∫ ∞
0+

dx (t)
dt

e−stdt (4.56)

From the sifting property of the unit impulse, the �rst term in (4.56) is[
x
(
0−
)− x (0+

)]
(4.57)

while the second term is zero since in the limit, the real part of s goes to in�nity. Substituting these results
into the left-hand side of (4.55) again leads to the initial value theorem, in (4.53).

4.2.1.11 The Final Value Theorem

The Final Value Theorem allows us to determine

lim
t→∞x (t) (4.58)

from X (s). Taking the limit as s approaches zero in the derivative property gives

lim
s→0

∫ ∞
0−

dx (t)
dt

e−stdt = lim
s→0

[
sX (s)− x (0−)] (4.59)

The left-hand-side of (4.59) can be written as∫ ∞
0−

lim
s→0

dx (t)
dt

e−stdt =
∫ ∞

0−

dx (t)
dt

dt = x (∞)− x (0−) (4.60)

Substituting this result back into (4.59) leads to the Final Value Theorem

x (∞) = lim
s→0

sX (s) (4.61)

which is only valid as long as the limit x (∞) exists.
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Property y (t) Y (s)

Linearity αx1 (t) + βx2 (t) αX1 (s) + βX2 (s)

Time Delay x (t− τ) X (s) e−sτ

s-Shift x (t) e−at X (s+ a)

Multiplication by t tx (t) −dX(s)
ds

Multiplication by tn tnx (t) (−1)n d
nX(s)
dsn

Convolution x (t) ∗ h (t) X (jΩ)H (jΩ)

Di�erentiation dx(t)
dt sX (s)− x (0−)

d2x(t)
dt2 s2X (s)− sx (0−)− dx(0−)

dt

dnx(t)
dtn snX (s)− sn−1x (0−)−∑n

k=2 s
n−k dk−1x(0−)

dtk−1

Integration
∫ t
∞ x (τ) dτ

R 0−
−∞ x(τ)dτ

s + X(s)
s

Initial Value Theorem x (0+) = lim
s→∞sX (s)

Final Value Theorem x (∞) = lim
s→0

sX (s)

Table 4.1: Laplace Transform properties.

4.3 Laplace Transforms of Common Signals4

We'll next build up a collection of Laplace transform pairs which we will include in a table. It's important to
keep in mind that once the transform pair has been derived, the focus should be on utilizing the transform
pair found in the table rather than in recalculating the transform.

4.3.1 Exponential Signal

Consider the Laplace transform of x (t) = eαtu (t):

L{e−αtu (t)} =
∫∞

0
e−αte−stdt

=
∫∞

0
e−(α+s)tdt

= −1
α+s e

−(α+σ+jΩ)t
∣∣∞
0

= 1
α+s , σ > − α

(4.62)

where σ > − α de�nes the region of convergence. Notice also that if α < 0, X (s) still exists provided
σ > − α. Therefore,

e−αtu (t)↔ 1
α+ s

(4.63)

4This content is available online at <http://cnx.org/content/m32849/1.5/>.
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4.3.2 Unit Step Function

Recall we did not attempt to compute the Fourier transform of u (t) since the Fourier transform does not
converge for this signal. Fortunately, the Laplace transform easily converges. In fact, we �nd that since u (t)
is a special case of the exponential function with α = 0, the simply have

u (t)↔ 1
s

(4.64)

The region of convergence is σ > 0.

4.3.3 Ramp Signal

This signal is given by x (t) = tu (t) and also does not have a Fourier transform. The Laplace transform is
given by

L{tu (t)} =
∫ ∞

0

te−stdt (4.65)

Setting u = t, u
'

= 1, v' = e−st, v = − 1
se
−st and integrating by parts gives

L{tu (t)} = − t
se
−st∣∣∞

0
+ 1

s

∫∞
0
e−stdt

= 0− 1
s2 e
−st∣∣∞

0

= − 1
s2

[
e−(σ+jΩ)∞ − 1

]
= 1

s2 , σ > 0

(4.66)

Here, the region of convergence is σ > 0, and is referred to as the right-half plane.

4.3.4 Cosine Signal

Even though we computed the Fourier transform of the cosine signal, x (t) = cos (Ω0t), the Fourier transform
technically does not converge for this signal. That is why X (jΩ) involves impulse functions. The Laplace
transform produces quite a di�erent result. First we use the fact that

cos (Ω0t)u (t) =
ejΩ0tu (t) + e−jΩ0tu (t)

2
(4.67)

Since each of the two terms is an exponential function we have

L{cos (Ω0t)u (t)} =
1
2

s−jΩ0
+

1
2

s+jΩ0

= s
s2+Ω2

0

(4.68)

Here, the region of convergence corresponds to σ > 0 or right-half plane.

4.3.5 More Transform Pairs

We can use the existing transform pairs along with the properties of the Laplace transform to derive many
new transform pairs. Consider the exponentially weighted cosine signal. This signal is given by

x (t) = e−αtcos (Ω0t)u (t) (4.69)

We can use the s−shift property of the Laplace transform along with the Laplace transform of the cosine
signal (4.68) to get

e−αtcos (Ω0t)u (t)↔ s+ α

(s+ α)2 + Ω2
0

(4.70)
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Another common signal is

x (t) = te−αtu (t) (4.71)

Here, we use the Laplace transform of the exponential signal "Exponential Signal" (Section 4.3.1: Expo-
nential Signal) and the multiplication by t property to get

te−αtu (t)↔ 1
(s+ α)2 (4.72)

Extending this idea one step further, we have

x (t) = t2e−αtu (t) (4.73)

So applies, giving

t2e−αtu (t)↔ 2
(s+ α)3 (4.74)

Example 3.1 Consider the signal x (t) = te−2tu (t). Therefore, we get

te−2tu (t)↔ 1
(s+ 2)2 (4.75)

Example 3.2 Consider the signal x (t) = e−2tcos (5t)u (t). As seen in Table 4.2,

e−2tcos (5t)u (t)↔ s+ 2
(s+ 2)2 + 25

(4.76)

x (t) X (s)

e−αtu (t) 1
s+α

u (t) 1
s

δ (t) 1

tu (t) 1
s2

cos (Ω0t)u (t) s
s2+Ω2

0

sin (Ω0t)u (t) Ω0
s2+Ω2

0

e−αtcos (Ω0t)u (t) s+α
(s+α)2+Ω2

0

e−αtsin (Ω0t)u (t) Ω0
(s+α)2+Ω2

0

te−αtu (t) 1
(s+α)2

t2e−αtu (t) 2
(s+α)3

tne−αtu (t) n!
(s+α)n+1

Table 4.2: Some common Laplace Transform pairs.
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4.4 Finding the Inverse Laplace Transform5

4.4.1 Finding the Inverse Laplace Transform

4.4.1.1 Using Transform Tables

The inverse Laplace transform, given by

x (t) =
1

2πj

∫ σ+j∞

σ−j∞
X (s) estds (4.77)

can be found by directly evaluating the above integral. However since this requires a background in the
theory of complex variables, which is beyond the scope of this book, we will not be directly evaluating the
inverse Laplace transform. Instead, we will utilize the Laplace transform pairs (Table 4.2) and properties
(4.56). Consider the following examples:

Example 3.1 Find the inverse Laplace transform of

X (s) =
e−10s

s+ 5
(4.78)

By looking at the table of Laplace transform properties (4.56) we �nd that multiplication by e−10s cor-
responds to a time delay of 10 sec. Then from the table of Laplace transform pairs (Table 4.2), we see
that

1
s+ 5

(4.79)

corresponds to the Laplace transform of the exponential signal e−5tu (t). Therefore we must have

x (t) = e−5(t−10)u (t− 10) (4.80)

Example 3.2 Find the inverse Laplace transform of

X (s) =
1

(s+ 2)2 (4.81)

First we note that from the table of Laplace transform pairs (Table 4.2), the Laplace transform of tu (t) is

1
s2

(4.82)

Then using the s-shift property in the table of Laplace transform properties (4.56) gives

x (t) = te−2tu (t) (4.83)

Also, the same answer may be arrived at by combining the Laplace transform of e−2tu (t) with the multi-
plication by t property.

4.4.1.2 Partial Fraction Expansions

Partial fraction expansions are useful when we can express the Laplace transform in the form of a rational
function,

X (s) = bqs
q+bq−1s

q−1+···+b1s+b0
apsp+ap−1sp−1+···+a1s+a0

= B(s)
A(s)

(4.84)

5This content is available online at <http://cnx.org/content/m32850/1.8/>.
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A rational function is a ratio of two polynomials. The numerator polynomial B (s) has order q, i.e., the
largest power of s in this polynomial is q, while the denominator polynomial has order p. The partial fraction
expansion also requires that the Laplace transform be a proper rational function, which means that q < p.
Since B (s) and A (s) can be factored, we can write

X (s) =
(s− β1) (s− β2) · · · (s− βq)
(s− α1) (s− α2) · · · (s− αp) (4.85)

The βi, i = 1, 2, ..., q are the roots of B (s), and are called the zeros of X (s). The roots of A (s), are αi, i =
1, ..., p and are called the poles of X (s). If we evaluate X (s) at one of the zeros we get X (βi) = 0, i = 1, ..., q.
Similarly, evaluating X (s) at a pole gives6X (αi) = ±∞, i = 1, ..., p. The partial fraction expansion of a
Laplace transform will usually involve relatively simple terms whose inverse Laplace transforms can be easily
determined from a table of Laplace transforms. We must consider several di�erent cases which depend on
whether the poles are distinct.

4.4.1.2.1 Distinct Poles:

When all of the poles are distinct (i.e. αi 6= αj , i 6= j) then we can use the following partial fraction
expansion:

X (s) =
A1

s− α1
+

A2

s− α2
+ · · ·+ Ap

s− αp (4.86)

The coe�cients, Ai, i = 1, ..., p can then be found using the following formula

Ai = X (s) (s− αi)|s=αi , i = 1, ..., p (4.87)

Equation (4.87) is easily derived by clearing fractions in (4.86). The inverse Fourier transform of X (s) can
then be easily found since each of the terms in the right-hand side of (4.86) is the Laplace transform of an
exponential signal. This method is called the cover up method.

Example 3.3 Find the inverse Laplace transform of

X (s) = 2s−10
s2+3s+2

= 2s−10
(s+1)(s+2)

(4.88)

Since the poles are α1 = −1 and α2 = −2 are distinct, we have the expansion

X (s) =
A1

s+ 1
+

A2

s+ 2
(4.89)

Using (4.86) then gives:

A1 = X (s) (s+ 1)|s=−1

= 2s−10
s+2

∣∣∣
s=−1

= −12

(4.90)

and

A2 = X (s) (s+ 2)|s=−2

= 2s−10
s+1

∣∣∣
s=−2

= 14

(4.91)

6The actual sign would need to be evaluated at some value of s that is su�ciently close to the pole.
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Therefore, we get:

X (s) =
−12
s+ 1

+
14
s+ 2

(4.92)

The inverse Laplace transform of X (s) can be found by looking up the inverse transform of each of the
terms in the right-hand side of (4.92) giving

x (t) = −12e−tu (t) + 14e−2tu (t) (4.93)

4.4.1.2.2 Repeated Poles:

Let's consider the case when each pole is repeated,

X (s) =
B (s)

(s− α1)p1(s− α2)p2 · · · (s− αr)pr (4.94)

where p1 + p2 + · · ·+ pr = p. In this case the partial fraction expansion goes like this:

X (s) = A1,1
s−α1

+ A1,2

(s−α1)2 + · · ·+ A1,p1
(s−α1)p1

+ A2,1
s−α2

+ A2,2

(s−α2)2 + · · ·+ A2,p2
(s−α2)p2

+ · · ·
+ Ar,1
s−αr + Ar,2

(s−αr)2 + · · ·+ Ar,pr
(s−αr)pr

(4.95)

We'll look at two methods. In the �rst method, the coe�cients can be found using the following formula

Ai,pi−k =
1
k!

dk

dsk
Xi (s)

∣∣∣∣
s=αi

(4.96)

where i = 1, 2, ..., r, k = 0, 1, ..., pi − 1 and

Xi (s) = X (s) (s− αi)pi (4.97)

Note that the computation of Ai,pi does not require any di�erentiation, since k = 0.
Example 3.4 Find the inverse Laplace transform of

X (s) =
s− 1

(s+ 2)2 (4.98)

Here we have a single repeated pole at s = −2. The expansion is therefore given by

X (s) =
A1,1

s+ 2
+

A1,2

(s+ 2)2 (4.99)

Using (4.96), we begin with k = 0 which corresponds to

A1,2 = X (s) (s+ 2)2
∣∣∣
s=−2

= s− 1|s=−2

= −3

(4.100)
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Next, we set k = 1 in (4.96)

A1,1 = d
ds

[
X (s) (s+ 2)2

]∣∣∣
s=−2

= d
ds [s− 1]

∣∣
s=−2

= 1

(4.101)

The partial fraction expansion is then given by

X (s) =
1

s+ 2
− 3

(s+ 2)2 (4.102)

Therefore,

x (t) = e−2tu (t)− 3te−2tu (t) (4.103)

In the second method, the coe�cients Ai,pi , i = 1, ..., r can be found via the cover up method. The remaining
coe�cients, Ak,pi , i = 1, ..., r, k = 1, ..., pi − 1 can be found by substituting values of s that are not equal
to one of the poles in (4.95). This leads to a system of linear equations which can be used to solve for the
remaining coe�cients. This method is generally preferable if the order of each repeated pole as well as the
number of poles is su�ciently small so that the number of unknown coe�cients is at most two for hand
calculations.

Example 3.5 Find the inverse Laplace transform of:

X (s) = s
(s+1)3

= A1,1
s+1 + A1,2

(s+1)2 + A1,3

(s+1)3

(4.104)

Using the cover-up method we can �nd A1,3 as follows

A1,3 = s|s=−1 = −1 (4.105)

So we are left with

X (s) = s
(s+1)3

= A1,1
s+1 + A1,2

(s+1)2 − 1
(s+1)3

(4.106)

Setting s = 0 in (4.106) leads to

A1,1 +A1,2 = 1 (4.107)

and setting s = −2 in (4.106) gives

−A1,1 +A1,2 = 1 (4.108)

These choices of s were used to simplify the linear equations to the greatest extent possible. The solution
to (4.107) and (4.108) is easily found to be A1,1 = 0 and A1,2 = 1. The partial fraction expansion is given
by

X (s) =
1

(s+ 1)2 −
1

(s+ 1)3 (4.109)

Using the corresponding Laplace transform pairs (Table 4.2) leads to

x (t) = te−tu (t)− 1
2
t2e−tu (t) (4.110)
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4.4.1.2.3 Distinct and Repeated Poles:

If a Laplace transform contains both distinct and repeated poles, then we would combine the expansions in
(4.86) and (4.95). Perhaps the easiest way to indicate this is by way of an example:

Example 3.6 Find the inverse Laplace transform of

X (s) = s+2
(s+1)(s+3)(s+5)2

= A1
s+1 + A2

s+3 + A3,1
s+5 + A3,2

(s+5)2

(4.111)

The coe�cients corresponding to the distinct poles can be found using (4.87):

A1 = X (s) (s+ 1)|s=−1

= s+2
(s+3)(s+5)2

∣∣∣
s=−1

= 1
32

(4.112)

A2 = X (s) (s+ 3)|s=−3

= s+2
(s+1)(s+5)2

∣∣∣
s=−3

= 1
8

(4.113)

The coe�cient A3,2 corresponding to the double pole at s = −5 can be found using (4.96) with k = 0:

A3,2 = X (s) (s+ 5)2
∣∣∣
s=−5

= s+2
(s+1)(s+3)

∣∣∣
s=−5

= −3
8

(4.114)

The remaining coe�cient, A3,1 can be found using (4.96) with k = 1:

A3,1 = d
dsX (s) (s+ 5)2

∣∣∣
s=−5

= d
ds

[
s+2

(s+1)(s+3)

]∣∣∣
s=−5

= (s2+4s+3)−(s+2)(2s+4)

(s2+4s+3)2

∣∣∣∣
s=−5

= −5
32

(4.115)

Alternately, A3,1 can be computed by substituting the values obtained for A1, A2 and A3,2 back into (4.111)
and then substituting an arbitrary value for s that does not equal one of the poles as indicated earlier, like
s = 0. This leads to a simple equation whose only unknown is A3,1. The partial fraction of X (s) is then
given by:

X (s) = s+2
(s+1)(s+3)(s+5)2

=
1
32
s+1 +

1
8
s+3 −

5
32
s+5 −

3
8

(s+5)2

(4.116)

Applying the inverse Laplace transform to each of the individual terms in (4.116) and using linearity gives:

x (t) =
1
32
e−tu (t) +

1
8
e−3tu (t)− 5

32
e−5tu (t)− 3

8
te−5tu (t) (4.117)

The following example looks at a case where X (s) is a rational function, but is not proper.
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Example 3.7 Find the inverse Laplace transform of

X (s) =
s2 + 6s+ 1
s2 + 5s+ 6

(4.118)

Here since q = p = 2, we cannot perform a partial fraction expansion. First we must perform a long division,
this leads to:

X (s) = 1 + s−5
s2+5s+6

= 1 + s−5
(s+2)(s+3)

(4.119)

where s− 5 is the remainder resulting from the long division. The quotient of 1 is called a direct term. In
general, the direct term corresponds to a polynomial in s. The partial fraction expansion is performed on
the quotient term, which is always proper:

s− 5
(s+ 2) (s+ 3)

=
A1

s+ 2
+

A2

s+ 3
(4.120)

Using (4.86) gives

A1 = s−5
s+3

∣∣∣
s=−2

= −7
(4.121)

A2 = s−5
s+2

∣∣∣
s=−3

= 8
(4.122)

So we have

X (s) = 1− 7
s+ 2

+
8

s+ 3
(4.123)

and

x (t) = δ (t)− 7e−2tu (t) + 8e−3tu (t) (4.124)

4.4.1.2.4 Complex Conjugate Poles:

Some poles occur in complex conjugate pairs as in the following example:
Example 3.8 Find the output of a �lter whose impulse response is h (t) = e−5tu (t) and whose input

is given by x (t) = cos (2t)u (t). Since the output is given by y (t) = x (t) ∗ h (t), its Laplace transform is
Y (s) = X (s)H (s). Therefore using the table of Laplace transform pairs (Table 4.2) we have

X (s) =
s

s2 + 4
(4.125)

and

H (s) =
1

s+ 5
(4.126)

which leads to

Y (s) = s
(s2+4)(s+5)

= s
(s+j2)(s−j2)(s+5)

= A1
s+j2 + A2

s−j2 + A3
s+5

(4.127)
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The poles are at s = j2,−j2 and -5, all of which are distinct, so equation (4.86) applies:

A1 = Y (s) (s+ j2)|s=−j2
= s

(s−j2)(s+5)

∣∣∣
s=−j2

= −j2
−j4(5−j2)

= 5+j2
58

(4.128)

The second coe�cient is

A2 = Y (s) (s− j2)|s=j2
= 5−j2

58

(4.129)

The calculations for A2 where omitted but it is easy to see that A2 will be the complex conjugate of A1

since all of the terms in A2 are the complex conjugates of those in A1. Therefore, when there are a pair of
complex conjugate poles, we need only calculate one of the two coe�cients and the other will be its complex
conjugate. The last coe�cient corresponding to the pole at s = −5 is found using

A3 = Y (s) (s+ 5)|s=−5

= s
(s2+4)

∣∣∣
s=−5

= − 5
29

(4.130)

This gives

Y (s) =
5+j2

58

s+ j2
+

5−j2
58

s− j2 −
5
29

s+ 5
(4.131)

We can now easily �nd the inverse Laplace transform of each individual term in the right-hand side of
(4.131):

y (t) =
5 + j2

58
e−j2tu (t) +

5− j2
58

ej2tu (t)− 5
29
e−5tu (t) (4.132)

At this point, we are technically done, however the �rst two terms in y (t) are complex and also happen to
be complex conjugates of each other. So we can simplify further by noting that

5+j2
58 e−j2tu (t) + 5−j2

58 ej2tu (t) = 2Re
(

5−j2
58 ej2tu (t)

)
= 2Re

(
0.0928e−j0.3805ej2tu (t)

)
= 0.1857cos (2t− 0.3805)u (t)

(4.133)

The simpli�ed answer is given by

y (t) = 0.1857cos (2t− 0.3805)u (t)− 0.1724e−5tu (t) (4.134)

We note that the answer contains a transient term, −0.1724e−10tu (t), and a steady-state term
0.1857cos (2t− 0.3805). The steady-state term corresponds to the sinusoidal steady-state response of the
�lter (see Chapter 3). It can be readily seen that the frequency response of the �lter is

H (jΩ) =
1

5 + jΩ
(4.135)

and therefore |H (j2)| = 0.1857 and ∠H (j2) = −0.3805.
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While the above example provides some insight into the sinusoidal steady-state response, the number
of complex arithmetic calculations can be tedious. We repeat the example using an alternative expansion
involving complex conjugate poles:

1
s2 + bs+ c

=
A1s+A2

s2 + bs+ c
(4.136)

where it has been assumed that b2 − 4c < 0 (otherwise, we have distinct or repeated real poles). As
mentioned above, the expansion in (4.136) can be combined with expansions for distinct or repeated poles.

Example 3.9

Y (s) = s
(s2+4)(s+5)

= A1s+A2
(s2+4) + A3

s+5

(4.137)

Using the cover up method gives

A3 =
s

s2 + 4

∣∣∣∣
s=−5

= − 5
29

(4.138)

Clearing fractions in (4.137) gives:

s = (A1s+A2) (s+ 5)− 5
29
(
s2 + 4

)
(4.139)

Setting s = 0 in (4.139) gives A2 = 4
29 . Substituting this value back into (4.139) and setting s = 1 leads to

A1 = 5
29 . The resulting Laplace transform is:

Y (s) =
5
29s+ 4

29

(s2 + 4)
−

5
29

s+ 5
(4.140)

Using the table of Laplace transforms then leads to

y (t) =
5
29
cos (2t)u (t) +

2
29
sin (2t)u (t)− 5

29
e−5tu (t) (4.141)

Comparing this answer with (4.134), we see that the sum of a cosine and a sine having the same frequency
is equal to a cosine at the same frequency having a certain phase shift and amplitude. In fact, it can be
shown that

acos (Ωot) + bsin (Ωot) = rcos (Ωot− φ) (4.142)

with r =
√
a2 + b2 and φ = arctan ba . The following example also involves complex conjugate poles and

illustrates some additional tricks to solving the partial fraction expansion.
Example 3.10 Find the output of a �lter whose input has Laplace transform X (s) = 1

s and whose
system function is given by

H (s) =
1

s2 + 2s+ 3
(4.143)

Multiplying X (s) and H (s) gives

Y (s) = 1
s(s2+2s+3)

= A1
s + A2s+A3

s2+2s+3

(4.144)

Clearing fractions gives:

1 = A1

(
s2 + 2s+ 3

)
+ s (A2s+A3)

= (A1 +A2) s2 + (2A1 +A3) s+ 3A1

(4.145)
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Setting s = 0 leads to a quick solution for A1, however two subsequent substitutions are needed to �nd A2

and A3. A slightly faster way of solving for the coe�cients in (4.145) is to rearrange the right hand side
in terms of di�erent powers of s (see second line). Then equate the coe�cients of like powers of s on both
sides of the equation to solve for the coe�cients. For example equating the constant terms leads to 1 = 3A1

which gives A1 = 1
3 . The coe�cients of s on either side of the equation are related by 0 = 2A1 + A3 which

leads to A3 = − 2
3 . Similarly, equating the coe�cients of s2 gives 0 = A1 + A2 which leads to A2 = − 1

3 . So
we have:

Y (s) =
1
3

s
−

1
3s+ 2

3

s2 + 2s+ 3
(4.146)

The second term in Y (s) does not appear in most Laplace transform tables, however, we can complete the
square of s2 + 2s + 3 by taking one-half the coe�cient of s, squaring it, then adding and subtracting it to
give:

s2 + 2s+ 3 + 1− 1 = (s+ 1)2 + 2 (4.147)

After a bit more massaging we get

Y (s) =
1
3

s
−

1
3 (s+ 1)

(s+ 1)2 + 2
−

1
3

(s+ 1)2 + 2
(4.148)

whose inverse Laplace transform is readily found from the table of Laplace transforms as

y (t) =
1
3
u (t)− 1

3
e−tcos

(√
2t
)
u (t)− 1

3
√

2
e−tsin

(√
2t
)
u (t) (4.149)

4.5 Transfer Functions and Frequency Response7

We saw in Section 4.2.1.6 (Convolution) that the transfer function of a linear time-invariant system is given
by

H (s) =
Y (s)
X (s)

(4.150)

If we assume that H (s) is a rational function of s then we can write

H (s) =
(s− β1) (s− β2) · · · (s− βq)
(s− α1) (s− α2) · · · (s− αp) (4.151)

where β1, β2, ..., βq are the zeros, and α1, α2, ..., αp are the poles of H (s). The poles and zeros are points in
the s-plane where the transfer function is either non-existent (for a pole) or zero (for a zero). These points
can be plotted in the s-plane with �×" representing the location of a pole and a �◦" representing the location
of a zero. Since

|H (jΩ)| = H (s)|s=jΩ (4.152)

we have

|H (jΩ)| = |jΩ− β1| |jΩ− β2| · · · |jΩ− βq|
|jΩ− α1| |jΩ− α2| · · · |jΩ− αp| (4.153)

7This content is available online at <http://cnx.org/content/m32851/1.4/>.
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and

∠H (jΩ) =
q∑

k=1

∠ (jΩk − βk)−
p∑
l=1

∠ (jΩl − αl) (4.154)

Each of the quantities jΩ− βk have the same magnitude and phase as a vector from the zero βk to the jΩ
axis in the complex s-plane. Likewise, the quantities jΩ−αk have the same magnitude and phase as vectors
from the pole αk to the jΩ axis.

Example 3.1 Consider a �rst-order lowpass �lter with transfer function

H (s) =
1

s+ 2
(4.155)

Then

|H (jΩ)| = 1
|jΩ + 2| (4.156)

The quantity jΩ + 2 has the same magnitude and phase as a vector from the pole at s = −2 to the jΩ
axis in the complex plane. The magnitude of the frequency response is the inverse of the magnitude of this
vector. The length of jΩ + 2 increases as Ω increases thereby making |H (jΩ)| decrease as one would expect
of a lowpass �lter.

Example 3.2 Consider a �rst-order highpass �lter with transfer function

H (s) =
s

s+ 2
(4.157)

Then

|H (jΩ)| = |jΩ|
|jΩ + 2| (4.158)

When Ω = 0, |H (jΩ)| = 0, but as Ω approaches in�nity, the two vectors jΩ and jΩ + 2 have equal lengths,
so the magnitude of the frequency response approaches unity.

Example 3.3 Let's now look at the transfer function corresponding to a second-order �lter

H (s) =
s+ 1

(s+ 1 + j5) (s+ 1− j5)
(4.159)

Or

|H (jΩ)| = |jΩ + 1|
|jΩ + 1 + j5| |jΩ + 1− j5| (4.160)

The pole-zero plot for this transfer function is shown in Figure 4.3. The corresponding magnitude and phase
of the frequency response are shown in Figure 4.4.
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Figure 4.3: Pole-zero diagram for Example .
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Figure 4.4: Magnitude and phase of frequency response for Example .

The two poles are at s = −3± j5 and the zero is at s = −1. When the frequency gets close to either one
of the poles, the frequency response magnitude increases since the lengths of one of the vectors jΩ ± j5 is
small.

In the previous example we saw that as the poles get close to the jΩ axis in the s-plane, the frequency
response magnitude increases at frequencies that are close to the poles. In fact, when a pole is located directly
on the jΩ axis, the �lter's frequency response magnitude becomes in�nite, and will begin to oscillate. If a
zero is located on the jΩ axis, the �lters frequency response magnitude will be zero.

Example 3.4 Suppose a �lter has transfer function

H (s) =
s

s2 + 25
(4.161)

The two poles are at s = ±j5 and there is a zero at s = 0. From Table 4.2, the impulse response of the
�lter is h (t) = cos (5t)u (t). This impulse response doesn't die out like most of the impulse responses we've
seen. Instead, it oscillates at a �xed frequency. The �lter is called an oscillator. Oscillators are useful for
generating high-frequency sinusoids used in wireless communications.
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4.6 Stability8

4.6.1 Filter Stability

We de�ne a �lter as being stable if a bounded input produces a bounded output. This is called BIBO
stability. Consider the convolution integral

y (t) =
∫ ∞
−∞

h (τ)x (t− τ) dτ (4.162)

We wish to �nd a condition that is necessary for the �lter output y (t) to be bounded whenever the input
x (t) is bounded. Let's take the absolute value of both sides of (4.162)

|y (t)| =
∣∣∣∫∞−∞ h (τ)x (t− τ) dτ

∣∣∣
≤ ∫∞−∞ |h (τ)x (t− τ)| dτ
≤ xmax

∫∞
−∞ |h (τ)| dτ <∞

(4.163)

where the �rst inequality is due to the triangle inequality and the second inequality results from replacing
|x (t− τ) | by its upper bound xmax. Therefore, the condition for BIBO stability is that the impulse response
the absolutely integrable. ∫ ∞

−∞
|h (t)| dt <∞ (4.164)

Example 3.1 The impulse response of a �lter is h (t) = cos (5t)u (t). If the input to this �lter is x (t) =
cos (5t)u (t), then the output is given by

y (t) =
∫∞

0
cos (5τ) cos (5 (t− τ))u (t− τ) dτ

=
∫ t

0
cos (5τ) cos (5 (t− τ)) dτ

= 1
2

∫ t
0
cos (10τ − 5t) dτ + 1

2cos (5t)
∫ t

0
dτ

= 1
2

∫ t
0
cos (10τ − 5t) dτ + 1

2 tcos (5t)

(4.165)

where in the third line, we have used the trigonometric identity

cos (θ1) cos (θ2) =
1
2

(cos (θ1 − θ2) + cos (θ1 + θ2)) (4.166)

As t approaches in�nity, then it is clear that y (t) also becomes unbounded. Therefore the �lter is unstable.
Moreover, it is clear that h (t) is not absolutely integrable.

If a transfer function is rational, it can be expressed as a sum of any direct term that may be present
plus a proper rational function (q < p).

H (s) = cms
m + cm−1s

m−1 + · · ·+ c1s+ c0 +
bqs

q + bq−1s
q−1 + · · ·+ b1s+ b0

apsp + ap−1sp−1 + · · ·+ a1s+ a0
(4.167)

The direct terms can be shown to produce unbounded outputs when the input is a step function (which of
course, is bounded). The proper rational function produces output terms that depend on whether poles are
distinct or repeated and whether these are real or complex:

• Distinct real poles, s = σk lead to an impulse response with terms:

Keαktu (t) (4.168)

8This content is available online at <http://cnx.org/content/m32852/1.5/>.
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• Distinct complex conjugate poles s = σk ± jΩk produce impulse response terms:

Keσktcos (Ωkt+ θ)u (t) (4.169)

• Repeated real poles s = σk produce impulse response terms having the form:

Ktneαktu (t) (4.170)

The quantities K and θ are constants while n is a positive integer. In all of these cases the �lter impulse
response dies out with time if the poles have negative real parts, i.e. it is absolutely integrable and therefore
leads to a stable �lter. If the poles have zero or positive real parts, then the impulse response terms either
oscillate or grow with time, and are not absolutely integrable. When this happens then one can always �nd
a bounded input that produces an unbounded output. Therefore, in order for a �lter with a rational transfer
function to have BIBO stability, the transfer function should be proper and the poles of the transfer function
should have negative real parts.

4.7 Second-Order Filters9

4.7.1 Second-Order Lowpass Filters

The second-order lowpass �lter has system function

H (s) =
Ω2
n

s2 + 2ζΩns+ Ω2
n

(4.171)

where Ωn is the undamped natural frequency, and ζ is the damping ratio. The undamped natural frequency
and damping ratio are properties of the physical devices used to implement the second-order �lter (capacitors,
inductors, and resistors, in the case of an electrical circuit). It so happens that the damping ratio satis�es
ζ ≥ 0. Using the formula for the roots of a quadratic polynomial, the two poles of H (s) are easily found to
be

s1 = −ζΩn + Ωn
√
ζ2 − 1

s2 = −ζΩn − Ωn
√
ζ2 − 1

(4.172)

There are three possible sets of poles that are categorized as follows:

1. Overdamped: the poles are real and distinct. This occurs if ζ > 1. In this case the impulse response
is given by:

h (t) =
Ωn

2
√
ζ2 − 1

es1tu (t)− Ωn
2
√
ζ2 − 1

es2tu (t) (4.173)

2. Critically damped: corresponds to ζ = 1. The two poles are repeated with,

s1 = s2 = −ζΩn = −Ωn (4.174)

and the impulse response is given by

h (t) = Ω2
nte
−ζΩntu (t) (4.175)

9This content is available online at <http://cnx.org/content/m34269/1.4/>.
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3. Underdamped: corresponds to 0 ≤ ζ < 1, giving a pair of complex conjugate poles. In this case, the
impulse response is given by

h (t) =
Ωn√
1− ζ2

e−ζΩntsin
(√

1− ζ2Ωnt
)
u (t) (4.176)

Note that in the underdamped case, the magnitude of the poles is |s1| = |s2| = Ωn, and when ζ = 0,
the two poles are on the imaginary axis which corresponds to an impulse response that is a pure
sinusoid and the system is unstable.

A root locus diagram shows the paths that the poles of H (s) would take as the damping ratio is decreased
from some number greater than 1 down to 0, and is shown in Figure 4.5.

ζ = 1

ζ = 1.1 ζ = 1.1
σ

−jΩn

jΩn
ζ = 0.4

ζ = 0.4

jΩ

Figure 4.5: Root locus of second-order lowpass �lter having Ωn = 10.

The frequency response of the second-order lowpass �lter can be found using the substitution
H (jΩ) = H (s) |s=jΩ, giving

H (jΩ) =
Ω2
n

Ω2
n − Ω2 + j2ζΩnΩ

(4.177)

The frequency response magnitude is shown in Figure 4.6 for Ωn = 10 and several values of ζ. Note that for
the underdamped case, there is a resonance or peak that would be expected to maximize at the undamped
natural frequency Ωn, when ζ = 0.
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Figure 4.6: Frequency response of second-order lowpass �lter with Ωn = 10 and several values of ζ.

We also observe that for the critically damped case, since

H (s) =
Ω2
n

(s+ Ωn)2 (4.178)

setting s = jΩ gives |H (Ωn)| = 1
2 . Moreover, it is clear that for Ω < Ωn, |H (Ωn)| > 1

2 and for Ω > Ωn,
|H (Ωn)| < 1

2 . These ideas will be used later when we discuss Bode plots.

4.7.2 Second-Order Filter Implementation

+

Vbp

1
sCVi

sL

+Vlp−

+

+Vhp−

R

Figure 4.7: Series RLC circuit.
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Second order �lters can be implemented using either passive or active circuit elements. We will consider the
series RLC circuit shown in Figure 4.7. A lowpass �lter results by taking the �lter output to be the voltage
across the capacitor. Using voltage division, the system function is easily found to be

Hlp (s) = Vlp(s)
Vi(s)

=
1
LC

s2+R
L s+

1
LC

(4.179)

Comparing (4.179) with (4.171) we �nd that the undamped natural frequency is Ωn = 1√
LC

, while 2ζΩn = R
L ,

giving the attenuation coe�cient:

α ≡ ζΩn =
R

2L
(4.180)

A second-order highpass �lter is implemented by taking the output of the �lter to be the inductor voltage
in the series RLC circuit. The resulting system function is

Hhp (s) = Vhp(s)
Vi(s)

= s2

s2+R
L s+

1
LC

(4.181)

So in terms of the undamped natural frequency and damping ratio, the second-order highpass �lter is given
by

Hhp (s) =
s2

s2 + 2ζΩns+ Ω2
n

(4.182)

The graph of the frequency response magnitude of this �lter is shown in Figure 4.8 for several damping
ratios and Ωn = 10.
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Figure 4.8: Frequency response of second-order highpass �lter with Ωn = 10 and several values of ζ.
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Not surprisingly, a second-order bandpass �lter results by taking the output of the �lter be the resistor
voltage in the series RLC circuit. The system function is then

Hbp (s) = Vbp(s)
Vi(s)

=
R
L s

s2+R
L s+

1
LC

(4.183)

This can be expressed in terms of ζ and Ωn as

Hbp (s) =
2ζΩns

s2 + 2ζΩns+ Ω2
n

(4.184)

4.7.3 Frequency Response of Second-Order Bandpass Filter

Setting s = jΩ in (4.184) gives the frequency response of the second-order bandpass �lter

Hbp (jΩ) =
j2ζΩnΩ

Ω2
n − Ω2 + j2ζΩnΩ

(4.185)

The magnitude of this frequency response is shown in Figure 4.9 where Ωn = 10.
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Figure 4.9: Frequency response of second-order bandpass �lter with Ωn = 10 and several values of ζ.

Evidently, the frequency response peaks at Ω = Ωn. To prove this, we can divide the numerator and
denominator of (4.185) by j2ζΩnΩ, giving

Hbp (jΩ) = 1

1−j Ω2
n−Ω2

2ζΩnΩ

= 1

1+j
Ω2−Ω2

n
2ζΩnΩ

= 1
1+jA(Ω)

(4.186)

where

A (Ω) =
Ω2 − Ω2

n

2ζΩnΩ
(4.187)

It is easy to check that |A (Ωn)| = 0 and |A (Ω)| > 0,Ω 6= Ωn. Therefore |Hbp (jΩ)| does in fact peak at
Ω = Ωn.
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The bandwidth of bandpass �lters is typically measured as the di�erence between the two frequencies,
Ω2 and Ω1, at which the gain has dropped by 3 decibels from its peak of 0 dB. A diagram of this is shown
in Figure 4.10.
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Figure 4.10: De�nition of bandpass �lter bandwidth, BW = Ω2 − Ω1.

Formulas for Ω1 and Ω2 can be found by solving

A (Ω) = ±1 (4.188)

since if A (Ω) = ±1, we get |H (jΩ)| = 1√
2
. Solving the quadratic equation A (Ω) = 1 gives two solutions:

Ω̃1 = ζΩn + Ωn
√

1 + ζ2 (4.189)

Ω̃2 = ζΩn − Ωn
√

1 + ζ2 (4.190)

while solving A (Ω) = −1 gives two additional solutions

Ω̃3 = −ζΩn + Ωn
√

1 + ζ2 (4.191)

Ω̃4 = −ζΩn − Ωn
√

1 + ζ2 (4.192)

Since Ωn
√

1 + ζ2 > ζΩn, we pick the two positive solutions as the �corner� frequencies:

Ω1 = −ζΩn + Ωn
√

1 + ζ2 (4.193)

Ω2 = ζΩn + Ωn
√

1 + ζ2 (4.194)
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The two negative frequencies are just the negatives of the two positive frequencies (recall that |H (jΩ)|
has even symmetry). So the bandwidth is BW = Ω2 − Ω1 = 2ζΩn. It can also be readily veri�ed that
Ωn =

√
Ω1Ω2, that is, the center frequency of the bandpass �lter is the geometric mean of the two corner

frequencies. The qualify factor, Qo is de�ned as

Qo =
Ωn
BW

(4.195)

and is a measure of the narrowness of the �lter bandwidth, with respect to its center frequency. It can be
seen that Qo = 1

2ζ .

4.8 Bode Plots10

4.8.1 Bode Plots

Plotting the magnitude and phase of the frequency response is most easily accomplished with a computer,
provided you have the right software (for example, the Matlab function �freqs�). However if there is no
computer handy, a classical method for quickly sketching the magnitude or phase response of a �lter is using
a Bode plot. Consider a general system function given by

H (s) = K1

∏q
k=1 (s− βk)γk∏p
k=1 (s− αk)δk

(4.196)

where we assume the γk and δk are integers. The corresponding frequency response is therefore

H (jΩ) = K1

∏q
k=1 (jΩ− βk)γk∏p
k=1 (jΩ− αk)δk

(4.197)

(4.197) can be written as

H (jΩ) = K

∏q
k=1

(
1− j Ω

βk

)γk
∏p
k=1

(
1− j Ω

αk

)δk (4.198)

where

K = K1

∏q
k=1 β

γk
k (−1)γk∏p

k=1 α
δk
k (−1)δk

(4.199)

Since most frequency response plots are expressed in units of decibels, we have

20log10 |H (jΩ)| = 20log10

∣∣∣∣∣K
Qq
k=1

“
1−j Ω

βk

”γk
Qp
k=1

“
1−j Ω

αk

”δk
∣∣∣∣∣

= 20log10 |K|
+
∑q
k=1 γk20log10

∣∣∣1− j Ω
βk

∣∣∣−∑p
k=1 δk20log10

∣∣∣1− j Ω
αk

∣∣∣
(4.200)

where we have used basic properties of logarithms. The individual terms in the sums can be plotted, to
within a reasonable approximation, with relative ease. So the Bode magnitude plot involves summing the
graphs of each individual term in (4.200). Lets consider �rst a single positive term having the form

M ≡ γ20log10

∣∣∣∣1− jΩ
β

∣∣∣∣ (4.201)

10This content is available online at <http://cnx.org/content/m34302/1.3/>.
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It is clear that when Ω� β then M ≈ 0. On the other hand if Ω� β, M ≈ γ20log10

∣∣∣Ωβ ∣∣∣ = γ20log10 |Ω| −
γ20log10 |β|. If we plot this as a function of log10 |Ω|, this represents a straight line having a slope of γ20
that crosses the log10 |Ω|-axis at log10 |Ω| = log10 |β|. These approximations are illustrated in Figure 4.11.

0
1

20γ

log10 |Ω|

M (dB)

log10 |β|

Figure 4.11: Straight-line approximations to γ20log10

˛̨̨
1− j Ω

β

˛̨̨
.

Instead of plotting M as a function of log10 |Ω|, it is more common to plot it as a function of Ω with the
frequency axis on a logarithmic scale. In this case the non-zero slope is 20γ decibels per decade, where one
decade represents an increase in Ω by a factor of 10. The modi�ed graph is shown in Figure 4.12.

0
1

M (dB)

Ω

20γ dB/decade

β
log scale

3γ dB

Figure 4.12: Straight-line approximations to γ20log10

˛̨̨
1− j Ω

β

˛̨̨
using logarithmic frequency axis.

We also note that when Ω = β, the straight-line approximations are not valid, however the true value is
easily found to be γ20log10 |1− j| = γ20log10

√
2 ≈ 3γ dB. Negative terms in (4.200) are approximated in a

similar manner, but the non-zero slope is now −20γ dB/decade. The resulting approximation is shown in
Figure 4.13.
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M (dB)

0
1

Ω
α

−20δ dB/decade
3δ dB

Figure 4.13: Straight-line approximations to −δ20log10

˛̨
1− j Ω

α

˛̨
.

(4.200) did not take into account cases where the poles or zeros occur at s = 0. For example, ifH (s) = sγ ,
then M = 20log10 |H (jΩ)| = γ20log10 |Ω|, which is a line having a slope of 20γ dB/decade passing through
the Ω-axis at Ω = 1 (see Figure 4.14). When there is a single or repeated pole at the origin, the graph
appears just as in Figure 4.14 but with a negative slope.

0

20γ dB/decade

1
Ω

M (dB)

1

Figure 4.14: Straight-line approximations to γ20log10 |Ω|.

Next we'll look at approximations to the phase response. Here we'll begin with H (jΩ) as shown in
(4.198). Taking the phase of both sides gives

∠H (jΩ) = ∠{K
Qq
k=1

“
1−j Ω

βk

”γk
Qp
k=1

“
1−j Ω

αk

”δk }
= ∠K +

∑q
k=1 γk∠

(
1− j Ω

βk

)
−∑p

k=1 δk∠
(

1− j Ω
αk

) (4.202)

where we have used the fact ∠{Z1Z2} = ∠Z1 + ∠Z2 and ∠{Zγ} = γ∠Z. Lets now consider how we
approximate each of the terms in (4.202). Consider the single term

∠

(
1− jΩ

β

)
= −arctan

(
Ω
β

)
(4.203)

The graph of this function is shown in Figure 4.15.
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0
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−
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1
( Ω β
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β−β
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4

Figure 4.15: Graph of −arctan
“

Ω
β

”
, shown on a linear frequency scale.

Since the magnitude response plots are on a logarithmic frequency axis, it would be desirable to do the

same for the phase response plots. If we restrict Ω to positive values and plot −arctan
(

Ω
β

)
on a logarithmic

frequency scale, we get the graph shown in Figure 4.16.

Ω

−
ta

n−
1
( Ω β

)

0

β

− π
4

− π
2

Figure 4.16: Graph of −arctan
“

Ω
β

”
, shown on a logarithmic frequency scale, for Ω > 0.

This graph can be approximated with straight lines as shown in Figure 4.17. The approximation is a
straight line having a slope of −π/4 rad/decade passing through a phase of −π/4 at Ω = β. The line then
levels o� at Ω = 0.1β and Ω = 10β. The resulting approximation is shown in Figure 4.17.
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Figure 4.17: Approximation (in red) to graph of −arctan
“

Ω
β

”
on a logarithmic frequency scale.

Constant terms in (4.202) have a phase of 0 or ±π, depending on their sign, while poles or zeros of H (s)
at the origin produce phase terms of γπ/2 for zeros or order γ or −δπ/2 for poles of order δ. Next we'll
illustrate these techniques with a few examples.

Example 3.1 Sketch the Bode magnitude and phase response plot for the following �lter:

H (s) =
104

(s+ 10)
(
s+ 103

) (4.204)

We begin by �nding the corresponding frequency response by setting s = jΩ:

H (jΩ) =
1(

1 + j Ω
10

) (
1 + j Ω

103

) (4.205)

Lets �nd the magnitude response �rst:

20log10 |H (jΩ)| = −20log10

∣∣∣∣1 + j
Ω
10

∣∣∣∣− 20log10

∣∣∣∣1 + j
Ω

103

∣∣∣∣ (4.206)

The resulting straight-line approximations to the two terms in (4.206) along with their sum are shown in
Figure 4.18.
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Ω

−20 log10
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10

∣∣∣
0

−20 dB/decade

Ω0

−40

−80

−40 dB/decade

−20 dB/decade

Ω0

−20 log10

∣∣∣1 + j Ω
103

∣∣∣

−20 dB/decade

+

=

10 102 103

10 102 103

10 102 103 104
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Figure 4.18: Bode magnitude response plot derivation for Example 1.

The phase is given by

∠H (jΩ) = −∠

(
1 + j

Ω
10

)
− ∠

(
1 + j

Ω
103

)
(4.207)

The straight-line approximations to the two phase terms, along with their sum are shown in Figure 4.19.
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Figure 4.19: Bode phase response plot derivation for Example 1.

Next we'll look at an example of a second-order highpass �lter.
Example 3.2 Find the Bode magnitude and phase response of the following �lter

H (s) =
s2

(s+ 10)2 (4.208)

Substituting s = jΩ in (4.208) gives

H (jΩ) =
−10−2Ω2(
1 + j Ω

10

)2 (4.209)

The magnitude response, expressed in decibels becomes

20log10 |H (jΩ)| = 20log10

∣∣10−2
∣∣+ 40log10 |Ω| − 40log10

∣∣∣∣1 +
jΩ
10

∣∣∣∣ (4.210)

The graphs of the straight-line approximations for the three terms in the right-hand side of (4.210) along
with their sum are shown in Figure 4.20.
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Figure 4.20: Bode magnitude response plot derivation for Example 3.2.

The phase of the frequency response is found to be

∠H (jΩ) = ∠
(−10−2Ω2

)− ∠
(

1 + jΩ
10

)2

= π − 2∠
(

1 + jΩ
10

) (4.211)

The resulting Bode phase response plot is found in Figure 4.21.
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Figure 4.21: Bode phase response plot derivation for Example 3.2.

4.9 The Laplace Transform: Excercises11

4.9.1 Exercises

1. Find the Laplace Transform of the following signals, for each case indicate the Laplace transform
property that was used:

a. x (t) = 4e−0.2tu (t)
b. x (t) = 4te−0.2tu (t)
c. x (t) = 4e−0.2(t−10)u (t− 10)
d. x (t) = δ (t− 5)
e. x (t) = 10tu (t)
f. x (t) = sin (10πt)u (t)
g. x (t) = e−3tsin (10πt)u (t)
h. x (t) = rect (t− 0.5, 1)

2. Suppose that two �lters having impulse responses h1 (t) and h2 (t) are cascaded (i.e. connected in
series). Find the transfer function of the equivalent �lter assuming h1 (t) = 10e−10tu (t) and h2 (t) =
5e−5tu (t).

3. Find the inverse Laplace transforms of the following:

a. X (s) = e−2s

s+5

b. X (s) = se−s

s2+9

c. X (s) = 1
(s+3)2

d. X (s) = 10
e. X (s) = 10

s2

f. X (s) = e−s

s

4. Use partial fraction expansions to �nd the inverse Laplace transforms of the following:

a. X (s) = s+2
(s+5)(s+2)(s+1)

b. X (s) = s+1
(s+2)3(s+3)

c. X (s) = s
(s2+9)(s+2)

11This content is available online at <http://cnx.org/content/m32853/1.7/>.
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d. X (s) = s2−3s+1
(s+1)(s+2)

5. Consider a �lter having impulse response h (t) = e−2tu (t). Use Laplace transforms to �nd the output
of the �lter when the input is given by:

a. x (t) = u (t)
b. x (t) = tu (t)
c. x (t) = e−4tu (t)
d. x (t) = cos (10t)u (t)

6. Indicate whether the following impulse responses correspond to stable or unstable �lters:

a. h (t) = u (t)
b. h (t) = e−3tu (t)
c. h (t) = e−3tcos(4tu (t)
d. h (t) = cos (10t)u (t)

7. Use Laplace transform tables to �nd the impulse response of the second-order lowpass �lter in terms
of ζ and Ωn for the overdamped, critically damped, and underdamped case.

8. Use a series RLC circuit to design a critically damped second-order lowpass �lter with a corner fre-
quency of 100 rad/sec. Use a R = 6.8 kΩ resistor in your design.

9. Using a 10 kΩ resistor, design a critically damped bandpass �lter, having a center frequency of 100
rad/sec and indicate the resulting bandwidth of the �lter. What is the quality factor of the �lter?

10. Use bode plots to �nd the magnitude and phase response of the following �lters

a.

H (s) =
1

(s+ 1)3 (4.212)

b.

H (s) =
103s

(s+ 10)
(
s+ 103

) (4.213)
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P polar coordinates, � 1.4(9)
poles and zeros, � 4.5(87)
power signal, � 1.2(4)

R rectangular coordinates, � 1.4(9)

S Second-order �lter, Second-order lowpass
�lter, Second-order highpass �lter,
second-order bandpass �lter, quality factor,
bandwidth, � 4.7(92)
sine, � 1.6(11)

T time reversal, � 1.3(5)
time scaling, � 1.3(5)
time shift, � 1.3(5)
Transfer function, � 4.5(87)
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