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Chapter 1

Prolegomena

1.1 Using Interval Notation1

Interval notation is another method for writing domain and range.
In set builder notation braces (curly parentheses {} ) and variables are used to express the domain and

range. Interval notation is often considered more e�cient.
In interval notation, there are only 5 symbols to know:

• Open parentheses ( )
• Closed parentheses [ ]
• In�nity ∞
• Negative In�nity −∞
• Union Sign ∪

To use interval notation:
Use the open parentheses ( ) if the value is not included in the graph. (i.e. the graph is unde�ned at

that point... there's a hole or asymptote, or a jump)
If the graph goes on forever to the left, the domain will start with ( −∞. If the graph travels downward

forever, the range will start with ( −∞. Similarly, if the graph goes on forever at the right or up, end with
∞)

Use the brackets [ ] if the value is part of the graph.
Whenever there is a break in the graph, write the interval up to the point. Then write another interval

for the section of the graph after that part. Put a union sign between each interval to "join" them together.
Now for some practice so you can see if any of this makes sense.
Write the following using interval notation:
Exercise 1.1 (Solution on p. 18.)

Figure 1.1

1This content is available online at <http://cnx.org/content/m13596/1.2/>.
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Exercise 1.2 (Solution on p. 18.)

Figure 1.2

Exercise 1.3 (Solution on p. 18.)

Figure 1.3

Exercise 1.4 (Solution on p. 18.)

Figure 1.4

Exercise 1.5 (Solution on p. 18.)

Figure 1.5

Exercise 1.6 (Solution on p. 18.)
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Figure 1.6

Write the domain and range of the following in interval notation:
Exercise 1.7 (Solution on p. 18.)

Figure 1.7

Exercise 1.8 (Solution on p. 18.)
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Figure 1.8

Exercise 1.9 (Solution on p. 18.)
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Figure 1.9

Exercise 1.10 (Solution on p. 18.)
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Figure 1.10

Exercise 1.11 (Solution on p. 18.)
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Figure 1.11

Exercise 1.12 (Solution on p. 18.)
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Figure 1.12

Exercise 1.13 (Solution on p. 18.)
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Figure 1.13

Exercise 1.14 (Solution on p. 18.)
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Figure 1.14

Exercise 1.15 (Solution on p. 18.)



11

Figure 1.15

Exercise 1.16 (Solution on p. 18.)
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Figure 1.16

Exercise 1.17 (Solution on p. 18.)
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Figure 1.17

Exercise 1.18 (Solution on p. 18.)
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Figure 1.18

Exercise 1.19 (Solution on p. 18.)
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Figure 1.19

Exercise 1.20 (Solution on p. 19.)
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Figure 1.20

1.2 x and y-intercepts2

A rational function is a function of the form R (x) = p(x)
q(x) , where p and q are polynomial functions and

q 6= 0.
The domain is all real numbers except for numbers that make the denominator = 0.
x-intercepts are the points at which the graph crosses the x-axis. They are also known as roots, zeros,

or solutions.
To �nd x-intercepts, let y (or f(x)) = 0 and solve for x. In rational functions, this means that you are

multiplying by 0 so to �nd the x-intercept, just set the numerator (the top of the fraction) equal to 0 and
solve for x.

Remember: x-intercepts are points that look like (x,0)

Example 1.1
For y = x−1

x−2 �nd the x-intercept
The x-intercept is (1,0) since x− 1 = 0, x = 1

The y-intercept is the point where the graph crosses the y-axis. If the graph is a function, there is only
one y-intercept (and it only has ONE name)

To �nd the y-intercept (this is easier than the x-intercept), let x = 0. Plug in 0 for x in the equation and
simplify.

Remember: y-intercepts are points that look like (0,y)

2This content is available online at <http://cnx.org/content/m13602/1.2/>.
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Example 1.2
For y = x+1

x−2 �nd the y-intercept

The y-intercept is (0, −1
2 ) since 0+1

0−2 = −1
2

Find the x- and y-intercepts of the following:

Exercise 1.21 (Solution on p. 19.)

y = 1
x+2

Exercise 1.22 (Solution on p. 19.)

y = 1−3x
1−x

Exercise 1.23 (Solution on p. 19.)

y = x2

x2+9

Exercise 1.24 (Solution on p. 19.)

y =
√

x+1
(x−2)2

Exercise 1.25 (Solution on p. 19.)

y = 3x
x2−x−2

Exercise 1.26 (Solution on p. 19.)

y = 1
x−3 + 1

Exercise 1.27 (Solution on p. 19.)

y = x2−4√
x+1

Exercise 1.28 (Solution on p. 19.)

y = 4 + 5
x2+2

Exercise 1.29 (Solution on p. 19.)

y =
√

5x−2
x−3

Exercise 1.30 (Solution on p. 19.)

y = x3−8
x2+1
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Solutions to Exercises in Chapter 1

Solution to Exercise 1.1 (p. 1)
[0,∞)
Solution to Exercise 1.2 (p. 2)
(−∞,−2] ∪ (1,∞)
Solution to Exercise 1.3 (p. 2)
(−5, 2]
Solution to Exercise 1.4 (p. 2)
(−∞,−2] ∪ (0, 2) ∪ (4,∞)
Solution to Exercise 1.5 (p. 2)
[−1] ∪ [3,∞)
Solution to Exercise 1.6 (p. 2)
(−∞, 3]
Solution to Exercise 1.7 (p. 3)
Domain: [−2] ∪ [0] ∪ [2] ∪ [3]

Range: [−1] ∪ [1] ∪ [2] ∪ [3]
Solution to Exercise 1.8 (p. 3)
Domain: (−∞,∞)

Range: (∞, 1] ∪ [4]
Solution to Exercise 1.9 (p. 4)
Domain: (−∞,∞)

Range: (−∞,∞)
Solution to Exercise 1.10 (p. 5)
Domain: (−∞,∞)

Range: [1] ∪ [3]
Solution to Exercise 1.11 (p. 6)
Domain: (−∞,∞)

Range: [−2, 3]
Solution to Exercise 1.12 (p. 7)
Domain: (−∞,∞)

Range: [1] ∪ [3]
Solution to Exercise 1.13 (p. 8)
Domain: [−4, 0]

Range: [0, 4]
Solution to Exercise 1.14 (p. 9)
Domain: (−∞,∞)

Range: (−∞, 4]
Solution to Exercise 1.15 (p. 10)
Domain: (−∞,∞)

Range: [0,∞)
Solution to Exercise 1.16 (p. 11)
Domain: [0,∞)

Range: (−∞,∞)
Solution to Exercise 1.17 (p. 12)
Domain: [−3] ∪ [−2] ∪ [−1,∞)

Range: [0] ∪ [1] ∪ [2]
Solution to Exercise 1.18 (p. 13)
Domain: (−∞,∞)

Range: [4]
Solution to Exercise 1.19 (p. 14)
Domain: [−4, 4)
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Range: [−4] ∪ [−2] ∪ [0] ∪ [2]
Solution to Exercise 1.20 (p. 15)
Domain: (−4, 4]

Range: [0, 4]
Solution to Exercise 1.21 (p. 17)
x-intercept: None since 1 6= 0

y-intercept: (0, 1
2 ) since

1
0+2 = 1

2
Solution to Exercise 1.22 (p. 17)
x-intercept: ( 1

3 ,0) since 1− 3x = 0, −3x = −1, x = 1
3

y-intercept: (0,1) since 1−3×0
1−0 = 1

Solution to Exercise 1.23 (p. 17)
x-intercept: (0,0) since x2 = 0, x = 0

y-intercept: (0,0) since 02

02+9 = 0
9 = 0 or because the x-intercept is (0,0)

Solution to Exercise 1.24 (p. 17)
x-intercept: (-1,0) since

√
x + 1 = 0, x + 1 = 0, x = −1

y-intercept: (0, 1
4 ) since

√
0+1

(0−2)2
=

√
1

(−2)2
= 1

4

Solution to Exercise 1.25 (p. 17)
x-intercept: (0,0) since 3x = 0, x = 0

y-intercept: (0,0) since the x-intercept is (0,0)
Solution to Exercise 1.26 (p. 17)
x-intercept: (2,0) since 1

x−3 + 1 = 0, 1
x−3 = −1, −x + 3 = 1, −x = −2, x = 2

y-intercept: (0, 2
3 ) since

1
0−3 + 1 = −1

3 + 1 = 2
3

Solution to Exercise 1.27 (p. 17)
x-intercepts: (-2,0), (2,0) since x2 − 4 = 0, x2 = 4, x = −2, x = 2

y-intercept: (0, -4) since 02−4√
0+1

= −4√
1

= −4
Solution to Exercise 1.28 (p. 17)
x-intercept: None since 4 + 5

x2+2 = 0, 5
x2+2 = −4, −4x2 − 8 = 5, −4x2 = 13, x2 = 13

4 , a number squared
will never be a negative number, so there is no x-intercept

y-intercept: (0, 13
2 ) since 4 + 5

02+2 = 4 + 5
2 = 13

2
Solution to Exercise 1.29 (p. 17)
x-intercept: ( 2

5 , 0) since
√

5x− 2 = 0, 5x− 2 = 0, 5x = 2, x = 2
5

y-intercept: None since y =
√

5×0−2
0−3 takes the square root of a negative number.

Solution to Exercise 1.30 (p. 17)
x-intercept: (2,0) since x3 − 8 = 0, (x− 2)

(
x2 + 2x + 4

)
= 0, x = 2

y-intercept: (0,-8) since 03−8
02+1 = −8

1 = −8
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Chapter 2

Domain Knowledge

2.1 Simple Rational Functions1

For fractions, the denominator (the bottom) of the fraction cannot equal 0. Determine domain restrictions
by setting the denominator equal to 0 and solving.

Example 2.1
Find the domain of y = 1

x
{x | x 6= 0}

Exercise 2.1 (Solution on p. 24.)

Find the domain of y = 1
x−5

Exercise 2.2 (Solution on p. 24.)

Find the domain of y = 4x+3
x−7

Exercise 2.3 (Solution on p. 24.)

Find the domain of y = 7x
5−2x

Exercise 2.4 (Solution on p. 24.)

Find the domain of y = 2
(x−3)(x+7)

Exercise 2.5 (Solution on p. 24.)

Find the domain of y = 7x
2x2−7x+3

Exercise 2.6 (Solution on p. 24.)

y = 2x+1
(x+5)2

Exercise 2.7 (Solution on p. 24.)

Find the domain of y = x+3
x2+25

Exercise 2.8 (Solution on p. 24.)

Find the domain of y = x−7
x2+2

Exercise 2.9 (Solution on p. 24.)

Find the domain of y = 5
|x−3|

Exercise 2.10 (Solution on p. 24.)

Find the domain of y = 4
|x|−4

1This content is available online at <http://cnx.org/content/m13352/1.7/>.
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2.2 Radical Functions2

When �nding the domain of even-degree roots, the expression under the radical must be greater than or
equal to 0.

Example 2.2
Find the domain of y =

√
x

{x | x ≥ 0}
PRACTICE - Find the Domain of the following:

Exercise 2.11 (Solution on p. 24.)

y =
√

2x− 5
Exercise 2.12 (Solution on p. 24.)

y = 4
√

7− x

The rest of the answers will be expressed in interval notation since that is a simpler way to express answers.

Exercise 2.13 (Solution on p. 24.)

y = 4
√

4x2 − 16
Exercise 2.14 (Solution on p. 24.)

y =
√

16− 25x2

Exercise 2.15 (Solution on p. 24.)

y =
√

(x− 7) (x + 1)
Exercise 2.16 (Solution on p. 24.)

y =
√

2x2 − 7x + 3
Exercise 2.17 (Solution on p. 24.)

y = x
(√

x2 + 4
)

Exercise 2.18 (Solution on p. 24.)

y = x +
√
−x + 8

Exercise 2.19 (Solution on p. 24.)

y =
√

6x2 + 8
Exercise 2.20 (Solution on p. 24.)

y =
√

(−8)− 6x2

2.3 Algebraic Functions3

When �nding domain consider the following:

• In rational functions, the denominator cannot equal 0
• When even-degreed roots are in the numerator, the expression under the radical must be greater than

or equal to 0
• When even-degreed roots are in the denominator, the expression under the radical must be greater

than 0

2This content is available online at <http://cnx.org/content/m13583/1.3/>.
3This content is available online at <http://cnx.org/content/m13607/1.3/>.
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Exercise 2.21 (Solution on p. 24.)

y =
√

12− x

Exercise 2.22 (Solution on p. 24.)

y = x2 + 9x− 20
Exercise 2.23 (Solution on p. 24.)

y =
√

x2 + 6x + 5
Exercise 2.24 (Solution on p. 24.)

y = x−2√
x+4

Exercise 2.25 (Solution on p. 25.)

y =
√

7−x
x

Exercise 2.26 (Solution on p. 25.)

y = x−1√
x2−4x

Exercise 2.27 (Solution on p. 25.)

y =
√

x2−1
x2−4

Exercise 2.28 (Solution on p. 25.)

y = 3x−1√
x+5

Exercise 2.29 (Solution on p. 25.)
1

|
√

x+1|
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Solutions to Exercises in Chapter 2

Solution to Exercise 2.1 (p. 21)
{x | x 6= 5} since x− 5 6= 0, x 6= 5
Solution to Exercise 2.2 (p. 21)
{x | x 6= 7} since x− 7 6= 0, x 6= 7
Solution to Exercise 2.3 (p. 21){

x | x 6= 5
2

}
since 5− 2x 6= 0, x 6= 5

2
Solution to Exercise 2.4 (p. 21)
{x | x 6= 3 or − 7} since x 6= 3 and x 6= −7
Solution to Exercise 2.5 (p. 21){

x | x 6= 1
2 or 3

}
since 2x2 − 7x + 3 6= 0, (2x− 1) (x− 3) 6= 0, 2x− 1 6= 0 and x− 3 6= 0, x 6= 1

2 and x 6= 3
Solution to Exercise 2.6 (p. 21)

{x | x 6= −5} since (x + 5)2 6= 0, x + 5 6= 0, x 6= −5
Solution to Exercise 2.7 (p. 21)
{x | x ∈ R} since x2 + 25 6= 0, x2 6= −25, x ∈ R
Solution to Exercise 2.8 (p. 21)
{x | x ∈ R} since x2 + 2 6= 0, x2 6= −2, x ∈ R
Solution to Exercise 2.9 (p. 21)
{x | x 6= 3} since |x− 3| 6= 0, x− 3 6= 0, x 6= 3
Solution to Exercise 2.10 (p. 21)
{x | x 6= −4 or 4} since |x| − 4 6= 0, |x| 6= 4, x 6= −4 and x 6= 4
Solution to Exercise 2.11 (p. 22){

x | x ≥ 5
2

}
since 2x− 5 ≥ 0, 2x ≥ 5, x ≥ 5

2
Solution to Exercise 2.12 (p. 22)
{x | x ≤ 7} since 7− x ≥ 0, −x ≥ −7, x ≤ 7
Solution to Exercise 2.13 (p. 22)
(−∞,−2] ∪ [2,∞) since 4x2 − 16 ≥ 0, 4x2 ≥ 16, x2 ≥ 4, (x ≤ −2) or (x ≥ 2)
Solution to Exercise 2.14 (p. 22)[−4

5 , 4
5

]
since 16− 25x2 ≥ 0, −25x2 ≥ −16, x2 ≤ 16

25 ,
(
x ≥ −4

5

)
and

(
x ≤ 4

5

)
Solution to Exercise 2.15 (p. 22)
(−∞,−1] ∪ [7,∞),

√
(x− 7) (x + 1) ≥ 0

Solution to Exercise 2.16 (p. 22)
(−∞, 1/2] ∪ [3,∞), 2x2 − 7x + 3 ≥ 0, (2x− 1) (x− 3) ≥ 0,

(
x ≤ 1

2

)
or (x ≥ 3)

Solution to Exercise 2.17 (p. 22)
(−∞,∞), since x2 + 4 ≥ 0, x2 ≥ −4 This will always be true, for all real numbers, any number squared is
always positive
Solution to Exercise 2.18 (p. 22)
(−∞, 8] since −x + 8 ≥ 0, −x ≥ −8, x ≤ 8
Solution to Exercise 2.19 (p. 22)
(−∞,∞), since 6x2 + 8 ≥ 0, 6x2 ≥ −8, x2 ≥ −8

6 This will always be true, for all real numbers, any number
squared is always positive
Solution to Exercise 2.20 (p. 22)
No solution since (−8)− 6x2 ≥ 0, −6x2 ≥ 8, x2 ≥ −8

6 This will never be true, so there is no solution, since
any number squared is always positive, so it will never be less than 0.
Solution to Exercise 2.21 (p. 23)
(−∞, 12] since 12− x ≥ 0
Solution to Exercise 2.22 (p. 23)
(−∞,∞) since there are no even-degreed roots and it is not a rational function
Solution to Exercise 2.23 (p. 23)
(−∞,−5] ∪ [−1,∞) since x2 + 6x + 5 ≥ 0
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Solution to Exercise 2.24 (p. 23)
(−4,∞) since x + 4 > 0
Solution to Exercise 2.25 (p. 23)
(−∞, 0) ∪ (0, 7] since 7− x ≥ 0 and x 6= 0
Solution to Exercise 2.26 (p. 23)
(−∞, 0) ∪ (4,∞) since x2 − 4x > 0
Solution to Exercise 2.27 (p. 23)
(−∞,−2) ∪ (−2,−1] ∪ [1, 2) ∪ (2,∞) since x2 − 1 ≥ 0 and x2 − 4 6= 0
Solution to Exercise 2.28 (p. 23)
[0, 25) ∪ (25,∞) since

√
x + 5 6= 0 and x ≥ 0

Solution to Exercise 2.29 (p. 23)
(−1,∞) since x + 1 > 0
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Chapter 3

Astounding Analysis

3.1 Discontinuities1

Vertical Asymptotes occur when factors in the denominator = 0 and do not cancel with factors in the
numerator

• Vertical asymptotes are vertical lines the graph approaches
• The equation of the vertical asymptote is x = (that number which makes the denominator = 0)

Holes (Removable Discontinuities) occur when the factor in the denominator = 0 and it cancels with
like factors in the numerator.

• Holes are open "points" so they have an x and y coordinate
• The x-value is the number that makes the cancelled factor = 0.
• The y-value is found by substituting x into the "reduced" equation (after cancelling) like factors.

Find the vertical asymptotes and holes (if any) for the following. Don't forget that vertical asymptotes
are equations and holes are points!

Example 3.1
y = 1

x
Vertical Asymptote: x = 0
Hole: None

Example 3.2

y = x(x−1)
x−1

Vertical Asymptote: None
Hole: (1,1) since (x-1) was cancelled, the hole is at x=1. To �nd the y-coordinate, plug 1 into

the reduced equation: x(x−1)
x−1 = x = 1

Exercise 3.1 (Solution on p. 31.)

y = 4x+3
x−7

Exercise 3.2 (Solution on p. 31.)

y = 9x
3−2x

Exercise 3.3 (Solution on p. 31.)

y = 7
(x−9)(x+1)

Exercise 3.4 (Solution on p. 31.)

y = 7x
2x2−7x+3

1This content is available online at <http://cnx.org/content/m13605/1.3/>.
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Exercise 3.5 (Solution on p. 31.)

y = 2x+1
(x+5)2

Exercise 3.6 (Solution on p. 31.)

y = x+3
x2+25

Exercise 3.7 (Solution on p. 31.)

y = x−7
x2+2

Exercise 3.8 (Solution on p. 31.)

y = 5
|x−3|

Exercise 3.9 (Solution on p. 31.)

y = 4
|x|−4

Exercise 3.10 (Solution on p. 31.)

y =
3(x2−x−6)

4(x2−9)

Exercise 3.11 (Solution on p. 31.)

y =
−2(x2−4)

3(x2+4x+4)

Exercise 3.12 (Solution on p. 31.)

y = x2−4
x+2

Exercise 3.13 (Solution on p. 31.)

y = x2(x−3)
x2−3x

Exercise 3.14 (Solution on p. 31.)

y = x3−1
x−1

Exercise 3.15 (Solution on p. 32.)

y = 2x2−3x−5
x2−1

3.2 Horizontal Asymptotes2

Horizontal asymptotes are horizontal lines the graph approaches.
Horizontal Asymptotes CAN be crossed.
To �nd horizontal asymptotes:

• If the degree (the largest exponent) of the denominator is bigger than the degree of the numerator,
the horizontal asymptote is the x-axis (y = 0).

• If the degree of the numerator is bigger than the denominator, there is no horizontal asymptote.
• If the degrees of the numerator and denominator are the same, the horizontal asymptote equals the

leading coe�cient (the coe�cient of the largest exponent) of the numerator divided by the leading
coe�cient of the denominator

One way to remember this is the following pnemonic device: BOBO BOTN EATS DC

• BOBO - Bigger on bottom, y=0
• BOTN - Bigger on top, none
• EATS DC - Exponents are the same, divide coe�cients

2This content is available online at <http://cnx.org/content/m13606/1.8/>.
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Find the Horizontal Asymptotes of the following:

Exercise 3.16 (Solution on p. 32.)

f (x) = 4x
x−3

Exercise 3.17 (Solution on p. 32.)

g (x) = 5x2

3+x

Exercise 3.18 (Solution on p. 32.)

h (x) = −4x2

(x−2)(x+4)

Exercise 3.19 (Solution on p. 32.)

g (x) = 6
(x+3)(4−x)

Exercise 3.20 (Solution on p. 32.)

f (x) = (3x)(x−1)
2x2−5x−3

Exercise 3.21 (Solution on p. 32.)

q (x) = (−x)(1−x)
3x2+5x−2

Exercise 3.22 (Solution on p. 32.)

r (x) = x
(x−8)2

Exercise 3.23 (Solution on p. 32.)

r (x) = x
x4−1

Exercise 3.24 (Solution on p. 32.)

g (x) = x−3
x2+1

Exercise 3.25 (Solution on p. 32.)

r (x) = 3x2+x
x2+4

3.3 Slant Asymptotes3

Just like vertical and horizontal asymptotes, slant asymptotes are lines the graph approaches. They are
also called oblique asymptotes.

A graph has a slant asymptote if the degree of the numerator is bigger than the degree of the denominator
(there is no horizontal asymptote).

To �nd slant asymptotes, divide the numerator by the denominator and keep only the quotient (the
answer, throw away the remainder). Don't forget that these are still lines, so they are written as y =

To divide, you either have to use long division or synthetic division (if possible).
PRACTICE - Find the Slant Asymptotes:

Exercise 3.26 (Solution on p. 32.)

y = 3x3

x2−1

Exercise 3.27 (Solution on p. 32.)

y = 2x2

x+1

Exercise 3.28 (Solution on p. 32.)

y = x2−9x+2
x+4

Exercise 3.29 (Solution on p. 32.)

y = x3−27
x2+3

Exercise 3.30 (Solution on p. 32.)

y = 2x3+7x2−4
(x+3)(x−1)

3This content is available online at <http://cnx.org/content/m13608/1.1/>.
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Exercise 3.31 (Solution on p. 32.)

y = x2+5x+8
x+3

Exercise 3.32 (Solution on p. 32.)

y = 2x2+x
x+1

Exercise 3.33 (Solution on p. 32.)

y = (2x)(x+11)
x−4

Exercise 3.34 (Solution on p. 32.)

y = x4

(x−1)3

Exercise 3.35 (Solution on p. 32.)

y = x3−x+3
x2+x−2
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Solutions to Exercises in Chapter 3

Solution to Exercise 3.1 (p. 27)
Vertical Asymptote: x = 7 since x− 7 = 0

Hole: None
Solution to Exercise 3.2 (p. 27)
Vertical Asymptote: x = 3

2 since 3− 2x = 0, x = 3
2

Hole: None
Solution to Exercise 3.3 (p. 27)
Vertical Asymptote: x = 9, x = −1 since x = 9 and x = −1

Hole: None
Solution to Exercise 3.4 (p. 27)
Vertical Asymptote: x = 1

2 , x = 3 since 2x2 − 7x + 3 = 0, (2x− 1) (x− 3) = 0, 2x− 1 = 0 and x− 3 = 0,
x = 1

2 and x = 3
Hole: None

Solution to Exercise 3.5 (p. 27)

Vertical Asymptote: x = −5 since (x + 5)2 = 0, x + 5 = 0, x = −5
Hole: None

Solution to Exercise 3.6 (p. 28)
Vertical Asymptote: None since x2 + 25 = 0, x2 = −25, a number squared will never be negative

Hole: None
Solution to Exercise 3.7 (p. 28)
Vertical Asymptote: None since x2 + 2 = 0, x2 = −2 and any number squared will never be a negative
number

Hole: None
Solution to Exercise 3.8 (p. 28)
Vertical Asymptote: x = 3 since |x− 3| = 0, x− 3 = 0, x = 3

Hole: None
Solution to Exercise 3.9 (p. 28)
Vertical asymptotes: x = −4 and x = 4 since |x| − 4 = 0, |x| = 4, x = −4 and x = 4

Hole: None
Solution to Exercise 3.10 (p. 28)
Vertical Asymptote: x = −3

Hole: (3, 5
8 ) since

3(x2−x−6)
4(x2−9) = 3((x−3)(x+2))

4((x+3)(x−3)) = 3((x+2))
4((x+3)) , (x-3) was cancelled, so the hole is at x=3. To

�nd the y-coordinate, plug 3 into the reduced equation: 3((3+2))
4((3+3)) = 3×5

4×6 = 15
24 = 5

8

Solution to Exercise 3.11 (p. 28)
−2(x2−4)

3(x2+4x+4) = −2(x+2)(x−2)

3(x+2)2
= −2(x−2)

3(x+2)

Vertical Asymptote: x = −2
Hole: None since the vertical asymptote takes care of the hole.

Solution to Exercise 3.12 (p. 28)
Vertical Asymptote: None

Hole: (-2,-4) since x2−4
x+2 = (x+2)(x−2)

x+2 = x− 2, (x+2) was cancelled, so the hole is at x = -2. To �nd the
y-coordinate, plug -2 into the reduced equation: −2− 2 = −4
Solution to Exercise 3.13 (p. 28)
Vertical Asymptotes: None

Holes: (3,3), (0,0) since x2(x−3)
x2−3x = x2(x−3)

x(x−3) = x, x and (x-3) were cancelled, so the holes are at x=0 and

x=3. To �nd the y-coordinate, plug 0 and 3 into the reduced equation: 0, 3
Solution to Exercise 3.14 (p. 28)
Vertical Asymptote: None
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Hole: (1,3) since x3−1
x−1 =

(x−1)(x2+x+1)
x−1 = x2 + x + 1, (x-1) was cancelled, so the hole is at x=1. To �nd

the y-coordinate, plug 1 into the reduced equation: 12 + 1 + 1 = 3
Solution to Exercise 3.15 (p. 28)
2x2−3x−5

x2−1 = (2(x−5))(x+1)
(x+1)(x−1) = 2(x−5)

x−1

Vertical asymptote: x = 1 since x− 1 = 0
Hole: (-1, 7

2 ) Since (x+1) was cancelled, the hole is at x= -1. To �nd the y-coordinate, plug -1 into the

reduced equation: 2×(−1−5)
−1−1 = 7

2
Solution to Exercise 3.16 (p. 29)
y = 4 since the degrees are the same, divide the leading coe�cients of the numerator and denominator =
4
1 = 4
Solution to Exercise 3.17 (p. 29)
None since the degree of the numerator is greater than the degree of the denominator.
Solution to Exercise 3.18 (p. 29)
y = −4
Solution to Exercise 3.19 (p. 29)
y = 0
Solution to Exercise 3.20 (p. 29)
y = 3

2
Solution to Exercise 3.21 (p. 29)
y = 1

3
Solution to Exercise 3.22 (p. 29)
y = 0
Solution to Exercise 3.23 (p. 29)
y = 0
Solution to Exercise 3.24 (p. 29)
y = 0
Solution to Exercise 3.25 (p. 29)
y = 3
Solution to Exercise 3.26 (p. 29)
y = 3x
Solution to Exercise 3.27 (p. 29)
y = 2x− 2
Solution to Exercise 3.28 (p. 29)
y = x− 13
Solution to Exercise 3.29 (p. 29)
y = x
Solution to Exercise 3.30 (p. 29)
y = 2x + 3
Solution to Exercise 3.31 (p. 29)
y = x + 2
Solution to Exercise 3.32 (p. 30)
y = 2x− 1
Solution to Exercise 3.33 (p. 30)
y = 2x + 30
Solution to Exercise 3.34 (p. 30)
y = x + 3
Solution to Exercise 3.35 (p. 30)
y = x− 1



Chapter 4

Synthesize This

4.1 Putting It All Together - Graphing Rational Functions1

When graphing rational functions, �nd the domain, vertical asymptotes, slant asymptotes, holes (if any),
horizontal asymptotes, vertical asymptotes, zeros, and y-intercept.

To practice, graph each rational function. State the domain, hole(s), VA (vertical asyptote(s)),
HA(horizontal asymptote), SA(slant asymptote), zeros, and y-intercept(y-int).

Use graph paper2 .

Exercise 4.1 (Solution on p. 35.)

r (x) = x+1
x(x+4)

Exercise 4.2 (Solution on p. 35.)

h (x) = (2x2)(x−3)

(x−1)(x+2)

Exercise 4.3 (Solution on p. 36.)

f (x) = 3x+3
2x+4

Exercise 4.4 (Solution on p. 37.)

g (x) = 6
x2−x−6

Exercise 4.5 (Solution on p. 38.)

h (x) = 2x+4
x−1

Exercise 4.6 (Solution on p. 39.)

t (x) = 3x
x2+4

Exercise 4.7 (Solution on p. 40.)

f (x) = x2+4
x2−4

Exercise 4.8 (Solution on p. 41.)

f (x) = x
(x+2)2

Exercise 4.9 (Solution on p. 42.)

f (x) = 5x2

x+3

Exercise 4.10 (Solution on p. 43.)

f (x) = x−3
x2+1

1This content is available online at <http://cnx.org/content/m13604/1.2/>.
2http://www.incompetech.com/beta/plainGraphPaper/graph.pdf
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4.2 Interesting Graphs!!!3

Although it is always useful to calculate all the good stu� - domain, vertical asymptotes, horizontal asymp-
totes, slant asymptotes, holes, x- and y-intercepts, there are some graphs that are just di�erent. This lesson
is to show you some unique, yet useful graphs. Try graphing them �rst on the paper provided and then
check your answers. The best way to �nd the pattern that these graphs follow is to plug in points.

Use graph paper4 .

Exercise 4.11 (Solution on p. 44.)

y = |x|
x

Exercise 4.12 (Solution on p. 45.)

y = |x−2|
x−2

Exercise 4.13 (Solution on p. 46.)

y = |x+3|
x+3

Exercise 4.14 (Solution on p. 47.)

y = |x+2|
x

Exercise 4.15 (Solution on p. 48.)

y = x√
x2

Exercise 4.16 (Solution on p. 49.)

y = x√
x2+2

Exercise 4.17 (Solution on p. 50.)

y = −6x√
4x2+5

Exercise 4.18 (Solution on p. 51.)

y = 2x√
x2+5

3This content is available online at <http://cnx.org/content/m13595/1.1/>.
4http://www.incompetech.com/beta/plainGraphPaper/graph.pdf
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 33)

Figure 4.1

Domain: (−∞,−4) ∪ (−4, 0) ∪ (0,∞)
Hole: None
VA: x = 0, x = −4
HA: y = 0
SA:None
Zero: (-1,0)
Y-int: None

Solution to Exercise 4.2 (p. 33)
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Figure 4.2

Domain: (−∞,−2) ∪ (−2, 1) ∪ (1,∞)
Hole: None
VA: x = −2, x = 1
HA:None
SA: y = 2x− 8
Zeros: (0,0), (3,0)
Y-int: (0,0)

Solution to Exercise 4.3 (p. 33)
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Figure 4.3

Domain: (−∞,−2) ∪ (−2,∞)
Hole: None
VA: x = −2
HA: y = 3

2
SA: None
Zero: (-1,0)
Y-int: (0, 34 )

Solution to Exercise 4.4 (p. 33)
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Figure 4.4

Domain: (−∞,−2) ∪ (−2, 3) ∪ (3,∞)
Hole: None
VA: x = −2, x = 3
HA: y = 0
SA: None
Zeros: None
Y-int: (0,-1)

Solution to Exercise 4.5 (p. 33)
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Figure 4.5

Domain: (−∞, 1) ∪ (1,∞)
Hole: None
VA: x = 1
HA: y = 2
SA: None
Zero: (-2,0)
Y-int: (-2,0)

Solution to Exercise 4.6 (p. 33)
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Figure 4.6

Domain: (−∞,∞)
Hole: None
VA: None
HA: y = 0
SA: None
Zero: (0,0)
Y-int: (0,0)

Solution to Exercise 4.7 (p. 33)
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Figure 4.7

Domain: (−∞,−2) ∪ (−2, 2) ∪ (2,∞)
Hole: None
VA: x = −2, x = 2
HA: y = 1
SA: None
Zeros: None
Y-int: (0,-1)

Solution to Exercise 4.8 (p. 33)
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Figure 4.8

Domain: (−∞,−2) ∪ (−2,∞)
Hole: None
VA: x = −2
HA: y = 0
SA: None
Zeros: (0,0)
Y-int: (0,0)

Solution to Exercise 4.9 (p. 33)
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Figure 4.9

Domain: (−∞,−3) ∪ (−3,∞)
Hole: None
VA: x = −3
HA: None
SA: y = 5x− 15
Zeros: (0,0)
Y-int: (0,0)

Solution to Exercise 4.10 (p. 33)
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Figure 4.10

Domain: (−∞,∞)
Hole: None
VA: None
HA: y = 0
SA:None
Zeros:(3,0)
Y-int: (0,-3)

Solution to Exercise 4.11 (p. 34)
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Figure 4.11

Solution to Exercise 4.12 (p. 34)
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Figure 4.12

Solution to Exercise 4.13 (p. 34)
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Figure 4.13

Solution to Exercise 4.14 (p. 34)
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Figure 4.14

Solution to Exercise 4.15 (p. 34)
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Figure 4.15

Solution to Exercise 4.16 (p. 34)
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Figure 4.16

Solution to Exercise 4.17 (p. 34)
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Figure 4.17

Solution to Exercise 4.18 (p. 34)
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Figure 4.18
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