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Chapter 1

Radical Concepts � Introduction1

The concept of a radical (or root) is a familiar one, and was reviewed in the conceptual explanation of
logarithms in the previous chapter. In this chapter, we are going to explore some possibly unfamiliar
properties of radicals, and solve equations involving radicals.

1This content is available online at <http://cnx.org/content/m18244/1.3/>.
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Chapter 2

Radical Concepts � Properties of

Radicals1

What is
√
x2 + 9? Many students will answer quickly that the answer is (x+ 3) and have a very di�cult

time believing this answer is wrong. But it is wrong.√
x2 is x∗ 2 and

√
9 is 3, but

√
x2 + 9 is not (x+ 3).

Why not? Remember that
√
x2 + 9 is asking a question: �what squared gives the answer x2 + 9 ?� So

(x+ 3) is not an answer, because (x+ 3)2 = x2 + 6x+9, not x2 + 9 .
As an example, suppose x = 4. So

√
x2 + 9 =

√
42 + 9 =

√
25 = 5. But (x+ 3) = 7.

note: If two numbers are added or subtracted under a square root, you cannot split them up.
In symbols:

√
a+ b 6=

√
a+
√
b or, to put it another way,

√
x2 + y2 6= a+ b

√
x2 + 9 cannot, in fact, be simpli�ed at all. It is a perfectly valid function, but cannot be rewritten in a

simpler form.
How about

√
9x2 ? By analogy to the previous discussion, you might expect that this cannot be simpli�ed

either. But in fact, it can be simpli�ed:√
9x2 = 3x

Why? Again,
√

9x2 is asking �what squared gives the answer 9x2 ?� The answer is 3x because (3x)2 =
9x2.

Similarly,
√

9
x2 = 3

x , because
(

3
x

)2 = 9
x2 .

note: If two numbers are multiplied or divided under a square root, you can split them up. In

symbols:
√

ab =
√
a
√
b,
√

a
b =

√
a√
b

1This content is available online at <http://cnx.org/content/m18271/1.1/>.
2I'm fudging a bit here:

√
x2 is x only if you ignore negative numbers. For instance, if x = −− 3, then x2 = 9, and

√
x2 is

3; so in that case,
√

x2 is not x. In general,
√

x2 = |x|. However, this subtlety is not relevant to the overall point, which is that
you cannot break up two terms that are added under a radical.
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Chapter 3

Radical Concepts � Simplifying Radicals1

3.1 Simplifying Radicals

The property
√
ab=

√
a
√
b can be used to simplify radicals. The key is to break the number inside the root

into two factors, one of which is a perfect square.

Example 3.1: Simplifying a Radical

√
75

=
√

25 • 3 because 25•3 is 75, and 25 is a perfect square

=
√

25
√

3 because
√
ab =

√
a
√
b

= 5
√

3 because
√

25 =5

Table 3.1

So we conclude that
√
75=5

√
3. You can con�rm this on your calculator (both are approximately 8.66).

We rewrote 75 as 25 • 3 because 25 is a perfect square. We could, of course, also rewrite 75 as 5 • 15,
but�although correct�that would not help us simplify, because neither number is a perfect square.

Example 3.2: Simplifying a Radical in Two Steps

√
180

=
√

9 • 20 because 9 • 20 is 180, and 9 is a perfect square

=
√

9
√

20 because
√
ab =

√
a
√
b

= 3
√

20 So far, so good. But wait! We're not done!

= 3
√

4 • 5 There's another perfect square to pull out!

= 3
√

4
√

5

= 3 (2)
√

5

= 6
√

5 Now we're done.

1This content is available online at <http://cnx.org/content/m18274/1.3/>.
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6 CHAPTER 3. RADICAL CONCEPTS � SIMPLIFYING RADICALS

Table 3.2

The moral of this second example is that after you simplify, you should always look to see if you can simplify
again .

A secondary moral is, try to pull out the biggest perfect square you can. We could have jumped straight
to the answer if we had begun by rewriting 180 as 36 • 5.

This sort of simpli�cation can sometimes allow you to combine radical terms, as in this example:

Example 3.3: Combining Radicals

√
75 −−

√
12

= 5
√

3 −− 2
√

3 We found earlier that
√
75 = 5

√
3 . Use

the same method to con�rm that
√
12 = 2√

3 .

= 3
√

3 5 of anything minus 2 of that same thing is

3 of it, right?

Table 3.3

That last step may take a bit of thought. It can only be used when the radical is the same.

Hence,
√

2 +
√

3 cannot be simpli�ed at all. We were able to simplify
√
75 �

√
12 only

by making the radical in both cases the same .

So why does 5
√

3−− 2
√

3= 3
√

3? It may be simplest to think about verbally: 5 of these things, minus
2 of the same things, is 3 of them. But you can look at it more formally as a factoring problem, if you see a
common factor of

√
3.

5
√

3−− 2
√

3 =
√

3(5−−2) =
√

3(3).
Of course, the process is exactly the same if variable are involved instead of just numbers!

Example 3.4: Combining Radicals with Variables

x
3
2 + x

5
2

= x3 + x5 Remember the de�nition of fractional exponents!

=
√
x2 ∗ x+

√
x4 ∗ x As always, we simplify radicals by factoring them inside the root...

√
x2 ∗
√
x+
√
x4 ∗
√
x and then breaking them up...

= x
√
x+ x2

√
x and then taking square roots outside!

=
(
x2 + x

)√
x Now that the radical is the same, we can combine.

Table 3.4

3.1.1 Rationalizing the Denominator

It is always possible to express a fraction with no square roots in the denominator.
Is it always desirable? Some texts are religious about this point: �You should never have a square root in

the denominator.� I have absolutely no idea why. To me, 1√
2
looks simpler than

√
2

2 ; I see no overwhelming

reason for forbidding the �rst or preferring the second.
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However, there are times when it is useful to remove the radicals from the denominator: for instance,
when adding fractions. The trick for doing this is based on the basic rule of fractions: if you multiply the

top and bottom of a fraction by the same number, the fraction is unchanged. This rule enables
us to say, for instance, that 2

3 is exactly the same number as 2·3
3·3=

6
9 .

In a case like 1√
2
, therefore, you can multiply the top and bottom by

√
2.

1√
2
= 1∗2√

2∗
√

2
=
√

2
2

What about a more complicated case, such as
√
12

1+
√

3
? You might think we could simplify this by mul-

tiplying the top and bottom by (1+
√

3), but that doesn't work: the bottom turns into (1 + 3)2 = 1 + 2√
3+3, which is at least as ugly as what we had before.
The correct trick for getting rid of (1+

√
3) is to multiply it by (1−−

√
3). These two expressions,

identical except for the replacement of a+ by a−, are known as conjugates. What happens when we
multiply them? We don't need to use FOIL if we remember that

(x+ y) (x− y) = x2 − y2

Using this formula, we see that(
1 +
√

3
) (

1−
√

3
)

= 12 −
(√

3
)2

= 1− 3 = −2
So the square root does indeed go away. We can use this to simplify the original expression as follows.

Example 3.5: Rationalizing Using the Conjugate of the Denominator
√
12

1+
√

3
=

√
12(1−

√
3)

(1+
√

3)(1−
√

3) =
√

12−
√

36
1−3 = 2

√
3−6
−2 = −

√
3 + 3

As always, you may want to check this on your calculator. Both the original and the simpli�ed expression
are approximately 1.268.

Of course, the process is the same when variables are involved.

Example 3.6: Rationalizing with Variables

1
x−
√

x
=

1(x+
√

x)
(x−
√

x)(x+
√

x) = x+
√

x
x2−x

Once again, we multiplied the top and the bottom by the conjugate of the denominator: that is, we
replaced a− with a+. The formula (x+ a) (x− a) = x2 − a2 enabled us to quickly multiply the terms on
the bottom, and eliminated the square roots in the denominator.
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Chapter 4

Radical Concepts � Radical Equations1

When solving equations that involve radicals, begin by asking yourself: is there an x under the

square root? The answer to this question will determine the way you approach the problem.
If there is not an x under the square root�if only numbers are under the radicals�you can solve much

the same way you would solve with no radicals at all.

Example 4.1: Radical Equation with No Variables Under Square Roots

√
2x+ 5 = 7−−

√
3x Sample problem: no variables under radicals

√
2 +
√

3x = 7− 5 Get everything with an x on one side, everything else on the other

x
(√

2 +
√

3
)

= 2 Factor out the x

x = 2√
2+
√

3
Divide, to solve for x

Table 4.1

The key thing to note about such problems is that you do not have to square both sides of the

equation.
√

2 may look ugly, but it is just a number�you could �nd it on your calculator if you wanted
to�it functions in the equation just the way that the number 10, or 1

3 , or π would.
If there is an x under the square root, the problem is completely di�erent. You will have to square both

sides to get rid of the radical. However, there are two important notes about this kind of problem.

1. Always get the radical alone, on one side of the equation, before squaring.
2. Squaring both sides can introduce false answers�so it is important to check your answers after

solving!

Both of these principles are demonstrated in the following example.

Example 4.2: Radical Equation with Variables under Square Roots

1This content is available online at <http://cnx.org/content/m18273/1.3/>.
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10 CHAPTER 4. RADICAL CONCEPTS � RADICAL EQUATIONS

√
x+ 2 + 3x = 5x + 1 Sample problem with variables under radicals
√
x+ 2 = 2x + 1 Isolate the radical before squaring!

x+ 2 = (2x + 1)2 Now, square both sides

x+ 2 = 4x2 + 4x + 1 Multiply out. Hey, it looks like a quadratic equation now!

x+ 2 = 4x2 + 4x + 1 As always with quadratics, get everything on one side.

(4x− 1) (x+ 1) = 0 Factoring: the easiest way to solve quadratic equations.

x = 1
4 or x = −1 Two solutions. Do they work? Check in the original equation!

Table 4.2

Check x = 1
4 Check x = −− 1√

1
4 + 2 + 3

(
1
4

) ?= 5
(

1
4

)
+ 1

√
−1 + 2 + 3 (−1) ?= 5 (−1) + 1√

1
4 + 8

4 + 3
4

?= 5
4 + 1

√
1− 3 ?= −5 + 1√

9
4 + 3

4

?= 5
4 + 4

4 1− 3 ?= −5 + 1
3
2 + 3

4

?= 5
4 + 4

4 −2 = −4 Not equal!

9
4 = 9

4

Table 4.3

So the algebra yielded two solutions: 1
4 and �1. Checking, however, we discover that only the �rst solution

is valid. This problem demonstrates how important it is to check solutions whenever squaring both sides of
an equation.

If variables under the radical occur more than once, you will have to go through this procedure multiple
times. Each time, you isolate a radical and then square both sides.

Example 4.3: Radical Equation with Variables under Square Roots Multiple Times

√
x+ 7− x = 1 Sample problem with variables under radicals multiple times
√
x+ 7 =

√
x+ 1 Isolate one radical. (I usually prefer to start with the bigger one.)

x+ 7 = x+ 2
√
x+ 1 Square both sides. The two-radical equation is now a one-radical equation.

6 = 2
√
x

3 = x Isolate the remaining radical, then square both sides again..

9 = x In this case, we end up with only one solution. But we still need to check it.

Table 4.4

Check x=9

√
9 + 7−

√
9 ?= 1

√
16−

√
9 ?= 1

4− 3 = 1
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Table 4.5

Remember, the key to this problem was recognizing that variables under the radical occurred in the
original problem two times. That cued us that we would have to go through the process�isolate a radical,
then square both sides�twice, before we could solve for x. And whenever you square both sides of the
equation, it's vital to check your answer(s)!

4.1 When good math leads to bad answers

Why is it that�when squaring both sides of an equation�perfectly good algebra can lead to invalid solutions?
The answer is in the redundancy of squaring. Consider the following equation:
−− 5 = 5 False. But square both sides, and we get...
25 = 25 True. So squaring both sides of a false equation can produce a true equation.
To see how this a�ects our equations, try plugging x = −1 into the various steps of the �rst example.

Example 4.4: Why did we get a false answer of x=�1 in Example 1?

√
x+ 2 + 3x = 5x + 1 Does x = −1 work here? No, it does not.
√
x+ 2 = 2x + 1 How about here? No, x = −1 produces the false equation 1=�1.

x+ 2 = (2x + 1)2 Suddenly, x = −1 works. (Try it!)

Table 4.6

When we squared both sides, we �lost� the di�erence between 1 and �1, and they �became equal.�
From here on, when we solved, we ended up with x = −1 as a valid solution.

Test your memory: When you square both sides of an equation, you can introduce false answers. We
have encountered one other situation where good algebra can lead to a bad answer. When was it?

Answer: It was during the study of absolute value equations, such as |2x + 3| = −11x + 42. In those
equations, we also found the hard-and-fast rule that you must check your answers as the last step.

What do these two types of problem have in common? The function |x| actually has a lot in common
with x2. Both of them have the peculiar property that they always turn −a and a into the same response.
(For instance, if you plug �3 and 3 into the function, you get the same thing back.) This property is known
as being an even function. Dealing with such �redundant� functions leads, in both cases, to the possibility
of false answers.

The similarity between these two functions can also be seen in the graphs: although certainly not identical,
they bear a striking resemblance to each other. In particular, both graphs are symmetric about the y-axis,
which is the �ngerprint of an �even function�.
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(a) (b)

Figure 4.1



Chapter 5

Radicals Homework � Radical Equations1

Before I get into the radical equations, there is something very important I have to get out of the way.
Square these two out:

Exercise 5.1(
2 +
√

2
)2

=
Exercise 5.2(√

3 +
√

2
)2

=
How'd it go? If you got six for the �rst answer and �ve for the second, stop! Go back and look again,
because those answers are not right. (If you don't believe me, try it on your calculator.) When you've got
those correctly simpli�ed (feel free to ask�or, again, check on your calculator) then go on.

Now, radical equations. Let's start o� with an easy radical equation.

Exercise 5.3√
2x+ 3 = 7
I call this an �easy� radical equation because there is no x under the square root. Sure, there's a ,

but that's just a number. So you can solve it pretty much the same way you would solve 4x+3 = 7;
just subtract 3, then divide by

√
2.

a. Solve for x
b. Check your answer by plugging it into the original equation. Does it work?

This next one is de�nitely trickier, but it is still in the category that I call �easy� because there is still no x
under the square root.

Exercise 5.4√
2x+ 3x = 7

a. Solve for x
b. Check your answer by plugging it into the original equation. Does it work? (Feel free to

use your calculator, but show me what you did and how it came out.)

Now, what if there is an x under the square root? Let's try a basic one like that.

Exercise 5.5

Solve for x:
√
x = 9

What did you get? If you said the answer is three: shame, shame. The square root of 3 isn't 9, is it? Try
again.

1This content is available online at <http://cnx.org/content/m19272/1.1/>.
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14 CHAPTER 5. RADICALS HOMEWORK � RADICAL EQUATIONS

OK, that's better. You probably guessed your way to the answer. But if you had to be systematic about
it, you could say �I got to the answer by squaring both sides.� The rule is: whenever there is an x under
a radical, you will have to square both sides. If there is no x under the radical, don't square

both sides.

It worked out this time, but squaring both sides is fraught with peril. Here are a few examples.

Exercise 5.6√
x = −9

a. Solve for x, by squaring both sides.
b. Check your answer by plugging it into the original equation.

Hey, what happened? When you square both sides, you get x = 81, just like before. But this time, it's the
wrong answer:

√
81 is not −9. The moral of the story is that when you square both sides, you

can introduce false answers. So whenever you square both sides, you have to check your answers to see
if they work. (We will see that rule come up again in some much less obvious places, so it's a good idea to
get it under your belt now: whenever you square both sides, you can introduce false answers!)

But that isn't the only danger of squaring both sides. Check this out. . .

Exercise 5.7

Solve for x by squaring both sides: 2 +
√
x = 5

Hey, what happened there? When you square the left side, you got (I hope) x + 4
√
x + 4. Life isn't any

simpler, is it? So the lesson there is, you have to get the square root by itself before you can square

both sides. Let's come back to that problem.

Exercise 5.8

2 +
√
x = 5

a. Solve for x by �rst getting the square root by itself, and then squaring both sides
b. Check your answer in the original equation.

Whew! Much better! Some of you may have never fallen into the trap�you may have just subtracted the
two to begin with. But you will �nd you need the same technique for harder problems, such as this one:

Exercise 5.9

x−
√
x = 6

a. Solve for x by �rst getting the square root by itself, and then squaring both sides, and
then solving the resulting equation.

note: You should end up with two answers.

b. Check your answers in the original equation.

note: If you did everything right, you should �nd that one answer works and the other
doesn't. Once again, we see that squaring both sides can introduce false answers!

Exercise 5.10√
x− 2 =

√
3−
√
x

What do you do now? You're going to have to square both sides. . .that will simplify the left, but
the right will still be ugly. But if you look closely, you will see that you have changed an equation
with x under the square root twice, into an equation with x under the square root once. So then,
you can solve it the way you did above: get the square root by itself and square both sides. Before
you are done, you will have squared both sides twice!

Solve #10 and check your answers. . .
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