
My first collection

Collection Editor:
Ping Yu

My first collection

Collection Editor:
Ping Yu

Authors:

Britt Antley
Richard Baraniuk

Kyle Barnhart
Blake Brogdon

Kenneth Leroy Busbee
Thomas Deitch

Dung Nguyen
Alex Tribble

Nguyen Viet Ha, Truong Ninh
Thuan, Vu Quang Dung

Stephen Wong

Online:
< http://cnx.org/content/col10870/1.1/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Ping Yu. It is licensed under the Creative

Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: August 3, 2009

PDF generated: February 5, 2011

For copyright and attribution information for the modules contained in this collection, see p. 60.

Table of Contents

1 SECTION1
1.1 Sorting . 1
1.2 Design Patterns for Sorting . 32
1.3 Sorting an Array . 41
Solutions . 44

2 Graphical Convolution Algorithm . 45
3 Algorithm Overview . 55
Glossary . 58
Index . 59
Attributions . 60

iv

Chapter 1

SECTION1

1.1 Sorting1

1.1.1 6. Sorting

1.1.1.1 6.1. Basic sort algorithms

(From Wikipedia, the free encyclopedia)
In computer science and mathematics, a sorting algorithm is an algorithm2 that puts elements of a list

in a certain order. The most-used orders are numerical order and lexicographical order. E�cient sorting
is important to optimizing the use of other algorithms (such as search and merge algorithms) that require
sorted lists to work correctly; it is also often useful for canonicalizing data and for producing human-readable
output. More formally, the output must satisfy two conditions:

1. The output is in non-decreasing order (each element is no smaller than the previous element according
to the desired total order);

2. The output is a permutation, or reordering, of the input.

Since the dawn of computing, the sorting problem has attracted a great deal of research, perhaps due to
the complexity of solving it e�ciently despite its simple, familiar statement. For example, bubble sort was
analyzed as early as 1956. Although many consider it a solved problem, useful new sorting algorithms are
still being invented to this day (for example, library sort was �rst published in 2004). Sorting algorithms
are prevalent in introductory computer science classes, where the abundance of algorithms for the problem
provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide-
and-conquer algorithms, data structures, randomized algorithms, best, worst and average case analysis,
time-space tradeo�s, and lower bounds.

Classi�cation
Sorting algorithms used in computer science are often classi�ed by:

• Computational complexity (worst, average and best behaviour) of element comparisons in terms of
the size of the list (n). For typical sorting algorithms good behavior is O(n log n) and bad behavior
is Ω(n2). (See Big O notation) Ideal behavior for a sort is O(n). Sort algorithms which only use an
abstract key comparison operation always need at least Ω(n log n) comparisons on average.

• Computational complexity of swaps (for "in place" algorithms).
• Memory usage (and use of other computer resources). In particular, some sorting algorithms are "in

place", such that only O(1) or O(log n) memory is needed beyond the items being sorted, while others
need to create auxiliary locations for data to be temporarily stored.

1This content is available online at <http://cnx.org/content/m29530/1.1/>.
2http://en.wikipedia.org/wiki/Algorithm

1

2 CHAPTER 1. SECTION1

• Recursion. Some algorithms are either recursive or non recursive, while others may be both (e.g.,
merge sort).

• Stability: stable sorting algorithms maintain the relative order of records with equal keys (i.e. values).
See below for more information.

• Whether or not they are a comparison sort. A comparison sort examines the data only by comparing
two elements with a comparison operator.

• General method: insertion, exchange, selection, merging, etc. Exchange sorts include bubble sort and
quicksort. Selection sorts include shaker sort and heapsort.

Stability
Stable sorting algorithms maintain the relative order of records with equal

keyshttp://en.wikipedia.org/wiki/Strict_weak_ordering3 (i.e. sort key values). That is, a sorting al-
gorithm is stable if whenever there are two records R and S with the same key and with R appearing before
S in the original list, R will appear before S in the sorted list.

When equal elements are indistinguishable, such as with integers, or more generally, any data where the
entire element is the key, stability is not an issue. However, assume that the following pairs of numbers are
to be sorted by their �rst coordinate:

(4, 1) (3, 7) (3, 1) (5, 6)
In this case, two di�erent results are possible, one which maintains the relative order of records with

equal keys, and one which does not:
(3, 7) (3, 1) (4, 1) (5, 6) (order maintained)
(3, 1) (3, 7) (4, 1) (5, 6) (order changed)
Unstable sorting algorithms may change the relative order of records with equal keys, but stable sorting

algorithms never do so. Unstable sorting algorithms can be specially implemented to be stable. One way
of doing this is to arti�cially extend the key comparison, so that comparisons between two objects with
otherwise equal keys are decided using the order of the entries in the original data order as a tie-breaker.
Remembering this order, however, often involves an additional space cost.

Sorting based on a primary, secondary, tertiary, etc. sort key can be done by any sorting method, taking
all sort keys into account in comparisons (in other words, using a single composite sort key). If a sorting
method is stable, it is also possible to sort multiple times, each time with one sort key. In that case the sort
keys can be applied in any order, where some key orders may lead to a smaller running time.

1.1.1.1.1 6.1.1. Insertion sort

(From Wikipedia, the free encyclopedia)
Insertion sort is a simple sorting algorithm4 , a comparison sort5 in which the sorted array (or list) is

built one entry at a time. It is much less e�cient on large lists than more advanced algorithms such as
quicksort6 , heapsort7 , or merge sort8 , but it has various advantages:

• Simple to implement
• E�cient on (quite) small data sets
• E�cient on data sets which are already substantially sorted: it runs in O(n + d) time, where d is the

number of inversions9

3http://en.wikipedia.org/wiki/Strict_weak_ordering
4http://en.wikipedia.org/wiki/Sorting_algorithm
5http://en.wikipedia.org/wiki/Comparison_sort
6http://en.wikipedia.org/wiki/Quicksort
7http://en.wikipedia.org/wiki/Heapsort
8http://en.wikipedia.org/wiki/Merge_sort
9http://en.wikipedia.org/wiki/Permutation_groups#Simple_transpositions.2C_inversions_and_sorting

3

• More e�cient in practice than most other simple O10 (n2) algorithms such as selection sort11 or bubble
sort12 : the average time is n2/4 and it is linear in the best case

• Stable13 (does not change the relative order of elements with equal keys)
• In-place14 (only requires a constant amount O(1) of extra memory space)
• It is an online algorithm15 , in that it can sort a list as it receives it.

1.1.1.2 Algorithm

In abstract terms, every iteration of an insertion sort removes an element from the input data, inserting it
at the correct position in the already sorted list, until no elements are left in the input. The choice of which
element to remove from the input is arbitrary and can be made using almost any choice algorithm.

Sorting is typically done in-place. The resulting array after k iterations contains the �rst k entries of the
input array and is sorted. In each step, the �rst remaining entry of the input is removed, inserted into the
result at the right position, thus extending the result:

Figure 1.1

becomes:

Figure 1.2

with each element > x copied to the right as it is compared against x.
The most common variant, which operates on arrays, can be described as:

1. Suppose we have a method called insert designed to insert a value into a sorted sequence at the
beginning of an array. It operates by starting at the end of the sequence and shifting each element
one place to the right until a suitable position is found for the new element. It has the side e�ect of
overwriting the value stored immediately after the sorted sequence in the array.

2. To perform insertion sort, start at the left end of the array and invoke insert to insert each element
encountered into its correct position. The ordered sequence into which we insert it is stored at the

10http://en.wikipedia.org/wiki/Big_O_notation
11http://en.wikipedia.org/wiki/Selection_sort
12http://en.wikipedia.org/wiki/Bubble_sort
13http://en.wikipedia.org/wiki/Stable_sort
14http://en.wikipedia.org/wiki/In-place_algorithm
15http://en.wikipedia.org/wiki/Online_algorithm

4 CHAPTER 1. SECTION1

beginning of the array in the set of indexes already examined. Each insertion overwrites a single value,
but this is okay because it's the value we're inserting.

A simple pseudocode version of the complete algorithm follows, where the arrays are zero-based:
insertionSort(array A)
for i <- 1 to length[A]-1 do
value <- A[i]
j <- i-1
while j >= 0 and A[j] > value do
A[j + 1] = A[j];
j <- j-1
A[j+1] <- value

1.1.1.3 Good and bad input cases

In the best case of an already sorted array, this implementation of insertion sort takes O16 (n) time: in
each iteration, the �rst remaining element of the input is only compared with the last element of the
sorted subsection of the array. This same case provides worst-case behavior for non-randomized and poorly
implemented quicksort17 , which will take O18 (n2) time to sort an already-sorted list. Thus, if an array is
sorted or nearly sorted, insertion sort will signi�cantly outperform quicksort.

The worst case is an array sorted in reverse order, as every execution of the inner loop will have to scan
and shift the entire sorted section of the array before inserting the next element. Insertion sort takes O(n2)
time in this worst case as well as in the average case, which makes it impractical for sorting large numbers of
elements. However, insertion sort's inner loop is very fast, which often makes it one of the fastest algorithms
for sorting small numbers of elements, typically less than 10 or so.

1.1.1.4 Comparisons to other sorts

Insertion sort is very similar to selection sort19 . Just like in selection sort, after k passes through the array,
the �rst k elements are in sorted order. For selection sort, these are the k smallest elements, while in insertion
sort they are whatever the �rst k elements were in the unsorted array. Insertion sort's advantage is that it
only scans as many elements as it needs to in order to place the k + 1st element, while selection sort must
scan all remaining elements to �nd the absolute smallest element.

Simple calculation shows that insertion sort will therefore usually perform about half as many comparisons
as selection sort. Assuming the k + 1st element's rank is random, it will on the average require shifting half
of the previous k elements over, while selection sort always requires scanning all unplaced elements. If the
array is not in a random order, however, insertion sort can perform just as many comparisons as selection
sort (for a reverse-sorted list). It will also perform far fewer comparisons, as few as n - 1, if the data is
pre-sorted, thus insertion sort is much more e�cient if the array is already sorted or "close to sorted." It
can be seen as an advantage for some real-time20 applications that selection sort will perform identically
regardless of the order of the array, while insertion sort's running time can vary considerably.

While insertion sort typically makes fewer comparisons than selection sort21 , it requires more writes
because the inner loop can require shifting large sections of the sorted portion of the array. In general,
insertion sort will write to the array O(n2) times while selection sort will write only O(n) times. For this
reason, selection sort may be better in cases where writes to memory are signi�cantly more expensive than
reads, such as EEPROM22 or Flash memory23 .

16http://en.wikipedia.org/wiki/Big_O_notation
17http://en.wikipedia.org/wiki/Quicksort
18http://en.wikipedia.org/wiki/Big_O_notation
19http://en.wikipedia.org/wiki/Selection_sort
20http://en.wikipedia.org/wiki/Real-time_computing
21http://en.wikipedia.org/wiki/Selection_sort
22http://en.wikipedia.org/wiki/EEPROM
23http://en.wikipedia.org/wiki/Flash_memory

5

Some divide-and-conquer algorithms24 such as quicksort25 and mergesort26 sort by recursively dividing
the list into smaller sublists which are then sorted. A useful optimization in practice for these algorithms
is to switch to insertion sort for "sorted enough" sublists on which insertion sort outperforms the more
complex algorithms. The size of list for which insertion sort has the advantage varies by environment and
implementation, but is typically around 8 to 20 elements.

1.1.1.5 Variants

D.L. Shell27 made substantial improvements to the algorithm, and the modi�ed version is called Shell sort28 .
It compares elements separated by a distance that decreases on each pass. Shell sort has distinctly improved
running times in practical work, with two simple variants requiring O(n3/2) and O(n4/3) time.

If comparisons are very costly compared to swaps, as is the case for example with string keys stored by
reference or with human interaction (such as choosing one of a pair displayed side-by-side), then using binary
insertion sort can be a good strategy. Binary insertion sort employs binary search29 to �nd the right place

to insert new elements, and therefore performs comparisons in the worst case, which
is Θ(n log n). The algorithm as a whole still takes Θ(n2) time on average due to the series of swaps required
for each insertion, and since it always uses binary search, the best case is no longer Ω(n) but Ω(n log n).

To avoid having to make a series of swaps for each insertion, we could instead store the input in a
linked list30 , which allows us to insert and delete elements in constant time. Unfortunately, binary search
on a linked list is impossible, so we still spend O(n2) time searching. If we instead replace it by a more
sophisticated data structure31 such as a heap32 or binary tree33 , we can signi�cantly decrease both search
and insert time. This is the essence of heap sort34 and binary tree sort35 .

In 2004, Bender, Farach-Colton, and Mosteiro published a new variant of insertion sort called library
sort36 or gapped insertion sort that leaves a small number of unused spaces ("gaps") spread throughout the
array. The bene�t is that insertions need only shift elements over until a gap is reached. Surprising in its
simplicity, they show that this sorting algorithm runs with high probability in O(n log n) time.

1.1.1.6 Examples

c++ Example:
#include <iostream>
#include <cstdio>
//Originally Compiled tested with g++ on Linux
using namespace std;
bool swap(int&, int&); //Swaps Two Ints
void desc(int* ar, int); //Nothing Just Shows The Array Visually
int ins_sort(int*, int); //The Insertion Sort Function
int main()
{
int array[9] = {4, 3, 5, 1, 2, 0, 7, 9, 6}; //The Original Array

24http://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
25http://en.wikipedia.org/wiki/Quicksort
26http://en.wikipedia.org/wiki/Mergesort
27http://en.wikipedia.org/wiki/Donald_Shell
28http://en.wikipedia.org/wiki/Shell_sort
29http://en.wikipedia.org/wiki/Binary_search
30http://en.wikipedia.org/wiki/Linked_list
31http://en.wikipedia.org/wiki/Data_structure
32http://en.wikipedia.org/wiki/Heap_%28data_structure%29
33http://en.wikipedia.org/wiki/Binary_tree
34http://en.wikipedia.org/wiki/Heap_sort
35http://en.wikipedia.org/wiki/Binary_tree_sort
36http://en.wikipedia.org/wiki/Library_sort

6 CHAPTER 1. SECTION1

desc(array, 9);
*array = ins_sort(array, 9);
cout � "Array Sorted Press Enter To Continue and See the Resultant Array" � endl
� "������8<�����������>8�����";
getchar();
desc(array, 9);
getchar();
return 0;
}
int ins_sort(int* array, int len)
{
for (int i = 0; i < len; i++)
{
int val = array[i];
int key = i;
cout � "key(Key) = " � key � "\tval(Value) = " � val � endl;
for (; key >= 1 && array[key-1] >= val; �key)
{
cout � "Swapping Backward\tfrom (key) " � key � " of (Value) " � array[key] � "\tto (key) " �

key-1
� " of (Value) " � array[key-1];
cout � "\n\t" � key � " <�-> " � key-1 � "\t(" � array[key] � "<�-> " � array[key-1] � "

)";
swap(array[key], array[key-1]);
desc(array, 9);
}
}
return *array;
}
bool swap(int& pos1, int& pos2)
{
int tmp = pos1;
pos1 = pos2;
pos2 = tmp;
return true;
}
void desc(int* ar, int len)
{
cout � endl � "Describing The Given Array" � endl;
for (int i = 0; i < len; i++)
cout � "_______" � "\t";
cout � endl;
for (int i = 0; i < len; i++)
cout � " | " � i � " | " � "\t";
cout � endl;
for (int i = 0; i < len; i++)
cout � " (" � ar[i] � ") " � "\t";
cout�endl;
for (int i = 0; i < len; i++)
cout � "��-" � "\t";
getchar();

7

}
Python Example:
def insertion_sort(A):
for i in range(1, len(A)):
key = A[i]
j = i-1
while(j >= 0 and A[j] > key):
A[j+1] = A[j]
j = j-1
A[j+1] = key

1.1.1.6.1 6.1.2. Selection sort

(From Wikipedia, the free encyclopedia)
Selection sort is a sorting algorithm37 , speci�cally an in-place38 comparison sort39 . It has Θ40 (n2)

complexity, making it ine�cient on large lists, and generally performs worse than the similar insertion sort41

. Selection sort is noted for its simplicity, and also has performance advantages over more complicated
algorithms in certain situations. It works as follows:

1. Find the minimum value in the list
2. Swap it with the value in the �rst position
3. Repeat the steps above for remainder of the list (starting at the second position)

E�ectively, we divide the list into two parts: the sublist of items already sorted, which we build up from
left to right and is found at the beginning, and the sublist of items remaining to be sorted, occupying the
remainder of the array.

Here is an example of this sort algorithm sorting �ve elements:
31 25 12 22 11
11 25 12 22 31
11 12 25 22 31
11 12 22 25 31
Selection sort can also be used on list structures that make add and remove e�cient, such as a linked

list42 . In this case it's more common to remove the minimum element from the remainder of the list, and
then insert it at the end of the values sorted so far. For example:

31 25 12 22 11
11 31 25 12 22
11 12 31 25 22
11 12 22 31 25
11 12 22 25 31

1.1.1.7 Implementation

The following is a C/C++ implementation, which makes use of a swap43 function:
void selectionSort(int a[], int size)
{
int i, j, min;

37http://en.wikipedia.org/wiki/Sorting_algorithm
38http://en.wikipedia.org/wiki/In-place_algorithm
39http://en.wikipedia.org/wiki/Comparison_sort
40http://en.wikipedia.org/wiki/Big_O_notation
41http://en.wikipedia.org/wiki/Insertion_sort
42http://en.wikipedia.org/wiki/Linked_list
43http://en.wikipedia.org/wiki/Swap_%28computer_science%29

8 CHAPTER 1. SECTION1

for (i = 0; i < size - 1; i++)
{
min = i;
for (j = i+1; j < size; j++)
{
if (a[j] < a[min])
{
min = j;
}
}
swap(a[i], a[min]);
}
}
Python example:
def selection_sort(A):
for i in range(0, len(A)-1):
min = A[i]
pos = i
for j in range(i+1, len(A)):
if(A[j] < min):
min = A[j]
pos = j
A[pos] = A[i]
A[i] = min

1.1.1.8 Analysis

Selection sort is not di�cult to analyze compared to other sorting algorithms since none of the loops depend
on the data in the array. Selecting the lowest element requires scanning all n elements (this takes n - 1
comparisons) and then swapping it into the �rst position. Finding the next lowest element requires scanning
the remaining n - 1 elements and so on, for (n - 1) + (n - 2) + ... + 2 + 1 = n(n - 1) / 2 = Θ(n2) comparisons
(see arithmetic progression44). Each of these scans requires one swap for n - 1 elements (the �nal element
is already in place). Thus, the comparisons dominate the running time, which is Θ(n2).

1.1.1.9 Comparison to other Sorting Algorithms

Among simple average-case Θ(n2) algorithms, selection sort always outperforms bubble sort45 and gnome
sort46 , but is generally outperformed by insertion sort47 . Insertion sort is very similar in that after the
kth iteration, the �rst k elements in the array are in sorted order. Insertion sort's advantage is that it only
scans as many elements as it needs to in order to place the k + 1st element, while selection sort must scan
all remaining elements to �nd the k + 1st element.

Simple calculation shows that insertion sort will therefore usually perform about half as many comparisons
as selection sort, although it can perform just as many or far fewer depending on the order the array was
in prior to sorting. It can be seen as an advantage for some real-time48 applications that selection sort
will perform identically regardless of the order of the array, while insertion sort's running time can vary
considerably. However, this is more often an advantage for insertion sort in that it runs much more e�ciently
if the array is already sorted or "close to sorted."

44http://en.wikipedia.org/wiki/Arithmetic_progression
45http://en.wikipedia.org/wiki/Bubble_sort
46http://en.wikipedia.org/wiki/Gnome_sort
47http://en.wikipedia.org/wiki/Insertion_sort
48http://en.wikipedia.org/wiki/Real-time_computing

9

Another key di�erence is that selection sort always performs Θ(n) swaps, while insertion sort performs
Θ(n2) swaps in the average and worst cases. Because swaps require writing to the array, selection sort is
preferable if writing to memory is signi�cantly more expensive than reading, such as when dealing with an
array stored in EEPROM49 or Flash50 .

Finally, selection sort is greatly outperformed on larger arrays by Θ(nlog n) divide-and-conquer51 algo-
rithms such as quicksort52 and mergesort53 . However, insertion sort or selection sort are both typically
faster for small arrays (ie less than 10-20 elements). A useful optimization in practice for the recursive
algorithms is to switch to insertion sort or selection sort for "small enough" sublists.

1.1.1.10 Variants

Heapsort54 greatly improves the basic algorithm by using an implicit55 heap56 data structure57 to speed
up �nding and removing the lowest datum. If implemented correctly, the heap will allow �nding the next
lowest element in Θ(log n) time instead of Θ(n) for the inner loop in normal selection sort, reducing the
total running time to Θ(n log n).

A bidirectional variant of selection sort, called cocktail sort58 , is an algorithm which �nds both the
minimum and maximum values in the list in every pass. This reduces the number of scans of the list by a
factor of 2, eliminating some loop overhead but not actually decreasing the number of comparisons or swaps.
Note, however, that cocktail sort more often refers to a bidirectional variant of bubble sort.

Selection sort can be implemented as a stable sort59 . If, rather than swapping in step 2, the minimum
value is inserted into the �rst position (that is, all intervening items moved down), the algorithm is stable.
However, this modi�cation leads to Θ(n2) writes, eliminating the main advantage of selection sort over
insertion sort, which is always stable.

1.1.1.10.1 6.1.3. Bubble sort

(From Wikipedia, the free encyclopedia)
Bubble sort is a simple sorting algorithm60 . It works by repeatedly stepping through the list to be sorted,

comparing two items at a time and swapping61 them if they are in the wrong order. The pass through the
list is repeated until no swaps are needed, which means the list is sorted. The algorithm gets its name from
the way smaller elements "bubble" to the top (i.e. the beginning) of the list via the swaps. (Another opinion:
it gets its name from the way greater elements "bubble" to the end.) Because it only uses comparisons to
operate on elements, it is a comparison sort62 . This is the easiest comparison sort to implement.

A simple way to express bubble sort in pseudocode63 is as follows:
procedure bubbleSort(A : list of sortable items) de�ned as:
do
swapped := false
for each i in 0 to length(A) - 2 do:
if A[i] > A[i + 1] then

49http://en.wikipedia.org/wiki/EEPROM
50http://en.wikipedia.org/wiki/Flash_memory
51http://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
52http://en.wikipedia.org/wiki/Quicksort
53http://en.wikipedia.org/wiki/Mergesort
54http://en.wikipedia.org/wiki/Heapsort
55http://en.wikipedia.org/wiki/Implicit_Data_Structure
56http://en.wikipedia.org/wiki/Heap_%28data_structure%29
57http://en.wikipedia.org/wiki/Data_structure
58http://en.wikipedia.org/wiki/Cocktail_sort
59http://en.wikipedia.org/wiki/Stable_sort#Classi�cation
60http://en.wikipedia.org/wiki/Sorting_algorithm
61http://en.wikipedia.org/wiki/Swap
62http://en.wikipedia.org/wiki/Comparison_sort
63http://en.wikipedia.org/wiki/Pseudocode

10 CHAPTER 1. SECTION1

swap(A[i], A[i + 1])
swapped := true
end if
end for
while swapped
end procedure
The algorithm can also be expressed as:
procedure bubbleSort(A : list of sortable items) de�ned as:
for each i in 1 to length(A) do:
for each j in length(A) downto i + 1 do:
if A[j] < A[j - 1] then
swap(A[j], A[j - 1])
end if
end for
end for
end procedure
This di�erence between this and the �rst pseudocode implementation is discussed later in the article64 .

1.1.1.11 Analysis

1.1.1.11.1 Best-case performance

Bubble sort has best-case complexity Ω65 (n). When a list is already sorted, bubblesort will pass through
the list once, and �nd that it does not need to swap any elements. Thus bubble sort will make only n
comparisons and determine that list is completely sorted. It will also use considerably less time than (n2) if
the elements in the unsorted list are not too far from their sorted places. MKH...

1.1.1.11.2 Rabbits and turtles

The positions of the elements in bubble sort will play a large part in determining its performance. Large
elements at the top of the list do not pose a problem, as they are quickly swapped downwards. Small elements
at the bottom, however, as mentioned earlier, move to the top extremely slowly. This has led to these types
of elements being named rabbits and turtles, respectively.

Various e�orts have been made to eliminate turtles to improve upon the speed of bubble sort. Cocktail
sort66 does pretty well, but it still retains O(n2) worst-case complexity. Comb sort67 compares elements
large gaps apart and can move turtles extremely quickly, before proceeding to smaller and smaller gaps to
smooth out the list. Its average speed is comparable to faster algorithms like Quicksort68 .

1.1.1.11.3 Alternative implementations

One way to optimize bubble sort is to note that, after each pass, the largest element will always move down
to the bottom. During each comparison, it is clear that the largest element will move downwards. Given
a list of size n, the nth element will be guaranteed to be in its proper place. Thus it su�ces to sort the
remaining n - 1 elements. Again, after this pass, the n - 1th element will be in its �nal place.

In pseudocode69 , this will cause the following change:
procedure bubbleSort(A : list of sortable items) de�ned as:
n := length(A)

64http://en.wikipedia.org/wiki/Bubble_sort#Alternative_implementations
65http://en.wikipedia.org/wiki/Big-O_notation
66http://en.wikipedia.org/wiki/Cocktail_sort
67http://en.wikipedia.org/wiki/Comb_sort
68http://en.wikipedia.org/wiki/Quicksort
69http://en.wikipedia.org/wiki/Pseudocode

11

do
swapped := false
n := n - 1
for each i in 0 to n do:
if A[i] > A[i + 1] then
swap(A[i], A[i + 1])
swapped := true
end if
end for
while swapped
end procedure
We can then do bubbling passes over increasingly smaller parts of the list. More precisely, instead of

doing n2 comparisons (and swaps), we can use only n + (n-1) + (n-2) + ... + 1 comparisons. This sums70

up to n(n + 1) / 2, which is still O(n2), but which can be considerably faster in practice.

1.1.1.12 In practice

Although bubble sort is one of the simplest sorting algorithms to understand and implement, its O(n2)
complexity means it is far too ine�cient for use on lists having more than a few elements. Even among
simple O(n2) sorting algorithms, algorithms like insertion sort71 are usually considerably more e�cient.

Due to its simplicity, bubble sort is often used to introduce the concept of an algorithm, or a sorting
algorithm, to introductory computer science72 students. However, some researchers such as Owen Astra-
chan have gone to great lengths to disparage bubble sort and its continued popularity in computer science
education, recommending that it no longer even be taught.

The Jargon �le73 , which famously calls bogosort74 "the archetypical perversely awful algorithm", also
calls bubble sort "the generic bad algorithm". Donald Knuth75 , in his famous The Art of Computer
Programming76 , concluded that "the bubble sort seems to have nothing to recommend it, except a catchy
name and the fact that it leads to some interesting theoretical problems", some of which he discusses therein.

Bubble sort is asymptotically77 equivalent in running time to insertion sort78 in the worst case, but
the two algorithms di�er greatly in the number of swaps necessary. Experimental results such as those of
Astrachan have also shown that insertion sort performs considerably better even on random lists. For these
reasons many modern algorithm textbooks avoid using the bubble sort algorithm in favor of insertion sort.

Bubble sort also interacts poorly with modern CPU hardware. It requires at least twice as many writes as
insertion sort, twice as many cache misses, and asymptotically more branch mispredictions79 . Experiments
by Astrachan sorting strings in Java show bubble sort to be roughly 5 times slower than insertion sort80 and
40% slower than selection sort81 .

1.1.1.13 6.2. E�ectively sorting algorithms

1.1.1.13.1 6.2.1. Shell sort

(From Wikipedia, the free encyclopedia)

70http://en.wikipedia.org/wiki/Arithmetic_progression
71http://en.wikipedia.org/wiki/Insertion_sort
72http://en.wikipedia.org/wiki/Computer_science
73http://en.wikipedia.org/wiki/Jargon_�le
74http://en.wikipedia.org/wiki/Bogosort
75http://en.wikipedia.org/wiki/Donald_Knuth
76http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
77http://en.wikipedia.org/wiki/Asymptotic_notation
78http://en.wikipedia.org/wiki/Insertion_sort
79http://en.wikipedia.org/wiki/Branch_prediction
80http://en.wikipedia.org/wiki/Insertion_sort
81http://en.wikipedia.org/wiki/Selection_sort

12 CHAPTER 1. SECTION1

Shell sort is a sorting algorithm82 that is a generalization of insertion sort83 , with two observations:

• insertion sort is e�cient if the input is "almost sorted", and
• insertion sort is typically ine�cient because it moves values just one position at a time.

1.1.1.14 Implementation

The original implementation performs Θ84 (n2) comparisons and exchanges in the worst case. A minor change
given in V. Pratt's book improved the bound to O(n log2 n). This is worse than the optimal comparison
sorts85 , which are O(n log n).

Shell sort improves insertion sort by comparing elements separated by a gap of several positions. This
lets an element take "bigger steps" toward its expected position. Multiple passes over the data are taken
with smaller and smaller gap sizes. The last step of Shell sort is a plain insertion sort, but by then, the array
of data is guaranteed to be almost sorted.

Consider a small value that is initially stored in the wrong end of the array86 . Using an O(n2) sort such
as bubble sort87 or insertion sort88 , it will take roughly n comparisons and exchanges to move this value all
the way to the other end of the array. Shell sort �rst moves values using giant step sizes, so a small value
will move a long way towards its �nal position, with just a few comparisons and exchanges.

One can visualize Shellsort in the following way: arrange the list into a table and sort the columns (using
an insertion sort89). Repeat this process, each time with smaller number of longer columns. At the end, the
table has only one column. While transforming the list into a table makes it easier to visualize, the algorithm
itself does its sorting in-place (by incrementing the index by the step size, i.e. using i += step_size instead
of i++).

For example, consider a list of numbers like [13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10]. If
we started with a step-size of 5, we could visualize this as breaking the list of numbers into a table with 5
columns. This would look like this:

13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10
We then sort each column, which gives us
10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45
When read back as a single list of numbers, we get [10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45

]. Here, the 10 which was all the way at the end, has moved all the way to the beginning. This list is then
again sorted using a 3-gap sort, and then 1-gap sort (simple insertion sort).

82http://en.wikipedia.org/wiki/Sorting_algorithm
83http://en.wikipedia.org/wiki/Insertion_sort
84http://en.wikipedia.org/wiki/Big_O_notation
85http://en.wikipedia.org/wiki/Comparison_sort
86http://en.wikipedia.org/wiki/Array
87http://en.wikipedia.org/wiki/Bubble_sort
88http://en.wikipedia.org/wiki/Insertion_sort
89http://en.wikipedia.org/wiki/Insertion_sort

13

1.1.1.15 Gap sequence

Figure 1.3: The shellsort algorithm in action

The gap sequence is an integral part of the shellsort algorithm. Any increment sequence will work, so long as
the last element is 1. The algorithm begins by performing a gap insertion sort, with the gap being the �rst
number in the gap sequence. It continues to perform a gap insertion sort for each number in the sequence,
until it �nishes with a gap of 1. When the gap is 1, the gap insertion sort is simply an ordinary insertion
sort90 , guaranteeing that the �nal list is sorted.

The gap sequence that was originally suggested by Donald Shell91 was to begin with N / 2 and to halve
the number until it reaches 1. While this sequence provides signi�cant performance enhancements over the
quadratic92 algorithms such as insertion sort93 , it can be changed slightly to further decrease the average
and worst-case running times. Weiss' textbook[4]94 demonstrates that this sequence allows a worst case
O(n2) sort, if the data is initially in the array as (small_1, large_1, small_2, large_2, ...) - that is, the
upper half of the numbers are placed, in sorted order, in the even index locations and the lower end of the
numbers are placed similarly in the odd indexed locations.

Perhaps the most crucial property of Shellsort is that the elements remain k-sorted even as the gap
diminishes. For instance, if a list was 5-sorted and then 3-sorted, the list is now not only 3-sorted, but both
5- and 3-sorted. If this were not true, the algorithm would undo work that it had done in previous iterations,
and would not achieve such a low running time.

Depending on the choice of gap sequence, Shellsort has a proven worst-case running time of O(n2) (using
Shell's increments that start with 1/2 the array size and divide by 2 each time), O(n3 / 2) (using Hibbard's
increments of 2k − 1), O(n4 / 3) (using Sedgewick's increments of 9(4i) − 9(2i) + 1, or 4i + 1 + 3(2i)
+ 1), or O(nlog2n), and possibly unproven better running times. The existence of an O(nlogn) worst-case
implementation of Shellsort remains an open research question.

The best known sequence is 1, 4, 10, 23, 57, 132, 301, 701. Such a Shell sort is faster than an insertion
sort95 and a heap sort96 , but if it is faster than a quicksort97 for small arrays (less than 50 elements), it is
slower for bigger arrays. Next gaps can be computed for instance with :

nextgap = round(gap * 2.3)

90http://en.wikipedia.org/wiki/Insertion_sort
91http://en.wikipedia.org/wiki/Donald_Shell
92http://en.wikipedia.org/wiki/Quadratic_growth
93http://en.wikipedia.org/wiki/Insertion_sort
94http://en.wikipedia.org/wiki/Shell_sort#_note-3
95http://en.wikipedia.org/wiki/Insertion_sort
96http://en.wikipedia.org/wiki/Heap_sort
97http://en.wikipedia.org/wiki/Quicksort

14 CHAPTER 1. SECTION1

1.1.1.16 Shell sort algorithm in C/C++

Shell sort is commonly used in programming languages98 ; this is an implementation of the algorithm in C99

/C++100 for sorting an array101 of integers. The increment sequence used in this example code gives an
O102 (n2) worst-case running time.

void shell_sort(int A[], int size)
{
int i, j, increment, temp;
increment = size / 2;
while (increment > 0)
{
for (i=increment; i < size; i++)
{
j = i;
temp = A[i];
while ((j >= increment) && (A[j-increment] > temp))
{
A[j] = A[j - increment];
j = j - increment;
}
A[j] = temp;
}
if (increment == 2)
increment = 1;
else
increment = (int) (increment / 2.2);
}
}

1.1.1.17 Shell sort algorithm in Java

The Java103 implementation of Shell sort is as follows:
public static void shellSort(int[] a) {
for (int increment = a.length / 2;
increment > 0;
increment = (increment == 2 ? 1 : (int) Math.round(increment / 2.2))) {
for (int i = increment; i < a.length; i++) {
for (int j = i; j >= increment && a[j - increment] > a[j]; j -= increment) {
int temp = a[j];
a[j] = a[j - increment];
a[j - increment] = temp;
}
}
}
}

98http://en.wikipedia.org/wiki/Programming_language
99http://en.wikipedia.org/wiki/C_%28programming_language%29

100http://en.wikipedia.org/wiki/C%2B%2B
101http://en.wikipedia.org/wiki/Array
102http://en.wikipedia.org/wiki/Big-O_notation
103http://en.wikipedia.org/wiki/Java_%28programming_language%29

15

1.1.1.18 Shell sort algorithm in Python

Here it is:
def shellsort(a):
def new_increment(a):
i = int(len(a) / 2)
yield i
while i != 1:
if i == 2:
i = 1
else:
i = int(numpy.round(i/2.2))
yield i
for increment in new_increment(a):
for i in xrange(increment, len(a)):
for j in xrange(i, increment-1, -increment):
if a[j - increment] < a[j]:
break
temp = a[j];
a[j] = a[j - increment]
a[j - increment] = temp
return a

1.1.1.18.1 6.2.2. Heap sort

(From Wikipedia, the free encyclopedia)
Heapsort is a comparison-based104 sorting algorithm105 , and is part of the selection sort106 family.

Although somewhat slower in practice on most machines than a good implementation of quicksort107 , it
has the advantage of a worst-case O108 (n log n) runtime. Heapsort is an in-place algorithm109 , but is not
a stable sort110 .

1.1.1.19 Overview

Heapsort inserts the input list elements into a heap111 data structure. The largest value (in a max-heap)
or the smallest value (in a min-heap) are extracted until none remain, the values having been extracted in
sorted order. The heap's invariant is preserved after each extraction, so the only cost is that of extraction.

During extraction, the only space required is that needed to store the heap. In order to achieve constant
space overhead, the heap is stored in the part of the input array that has not yet been sorted. (The structure
of this heap is described at Binary heap: Heap implementation112 .)

Heapsort uses two heap operations: insertion and root deletion. Each extraction places an element in
the last empty location of the array. The remaining pre�x of the array stores the unsorted elements.

104http://en.wikipedia.org/wiki/Comparison_sort
105http://en.wikipedia.org/wiki/Sorting_algorithm
106http://en.wikipedia.org/wiki/Selection_sort
107http://en.wikipedia.org/wiki/Quicksort
108http://en.wikipedia.org/wiki/Big_O_notation
109http://en.wikipedia.org/wiki/In-place_algorithm
110http://en.wikipedia.org/wiki/Stable_sort
111http://en.wikipedia.org/wiki/Binary_heap
112http://en.wikipedia.org/wiki/Binary_heap#Heap_implementation

16 CHAPTER 1. SECTION1

1.1.1.20 Variations

• The most important variation to the simple variant is an improvement by R.W.Floyd which gives in
practice about 25% speed improvement by using only one comparison in each siftup113 run which then
needs to be followed by a siftdown114 for the original child; moreover it is more elegant to formulate.
Heapsort's natural way of indexing works on indices from 1 up to the number of items. Therefore the
start address of the data should be shifted such that this logic can be implemented avoiding unnecessary
+/- 1 o�sets in the coded algorithm.

• Ternary heapsort uses a ternary heap instead of a binary heap; that is, each element in the heap has
three children. It is more complicated to program, but does a constant number of times fewer swap and
comparison operations. This is because each step in the shift operation of a ternary heap requires three
comparisons and one swap, whereas in a binary heap two comparisons and one swap are required. The
ternary heap does two steps in less time than the binary heap requires for three steps, which multiplies
the index by a factor of 9 instead of the factor 8 of three binary steps. Ternary heapsort is about 12%
faster than the simple variant of binary heapsort.[citation needed115]

• The smoothsort sorting algorithm116 is a variation of heapsort developed by Edsger Dijkstra117 in
1981118 . Like heapsort, smoothsort's upper bound is O119 (n log n). The advantage of smoothsort
is that it comes closer to O(n) time if the input is already sorted to some degree, whereas heapsort
averages O(n log n) regardless of the initial sorted state. Due to its complexity, smoothsort is rarely
used.

1.1.1.21 Comparison with other sorts

Heapsort primarily competes with quicksort120 , another very e�cient general purpose nearly-in-place
comparison-based sort algorithm.

Quicksort is typically somewhat faster, due to better cache behavior and other factors, but the worst-case
running time for quicksort is O121 (n2), which is unacceptable for large data sets and can be deliberately
triggered given enough knowledge of the implementation, creating a security risk. See quicksort122 for a
detailed discussion of this problem, and possible solutions.

Thus, because of the O(n log n) upper bound on heapsort's running time and constant upper bound on
its auxiliary storage, embedded systems with real-time constraints or systems concerned with security often
use heapsort.

Heapsort also competes with merge sort123 , which has the same time bounds, but requires Ω(n) auxiliary
space, whereas heapsort requires only a constant amount. Heapsort also typically runs more quickly in
practice on machines with small or slow data caches124 . On the other hand, merge sort has several advantages
over heapsort:

• Like quicksort, merge sort on arrays has considerably better data cache performance, often outper-
forming heapsort on a modern desktop PC, because it accesses the elements in order.

113http://en.wikipedia.org/wiki/Binary_heap#Adding_to_the_heap
114http://en.wikipedia.org/wiki/Binary_heap#Deleting_the_root_from_the_heap
115http://en.wikipedia.org/wiki/Wikipedia:Citing_sources
116http://en.wikipedia.org/wiki/Sorting_algorithm
117http://en.wikipedia.org/wiki/Edsger_Dijkstra
118http://en.wikipedia.org/wiki/1981
119http://en.wikipedia.org/wiki/Big_O_notation
120http://en.wikipedia.org/wiki/Quicksort
121http://en.wikipedia.org/wiki/Big_O_notation
122http://en.wikipedia.org/wiki/Quicksort
123http://en.wikipedia.org/wiki/Merge_sort
124http://en.wikipedia.org/wiki/Data_cache

17

• Merge sort is a stable sort125 .
• Merge sort parallelizes better126 ; the most trivial way of parallelizing merge sort achieves close to

linear speedup127 , while there is no obvious way to parallelize heapsort at all.
• Merge sort can be easily adapted to operate on linked lists128 and very large lists stored on slow-

to-access media such as disk storage129 or network attached storage130 . Heapsort relies strongly on
random access131 , and its poor locality of reference132 makes it very slow on media with long access
times.

An interesting alternative to Heapsort is Introsort133 which combines quicksort and heapsort to retain ad-
vantages of both: worst case speed of heapsort and average speed of quicksort.

1.1.1.22 Pseudocode

The following is the "simple" way to implement the algorithm, in pseudocode, where swap is used to swap
two elements of the array. Notice that the arrays are zero based134 in this example.

function heapSort(a, count) is
input: an unordered array a of length count
(�rst place a in max-heap order)
heapify(a, count)
end := count - 1
while end > 0 do
(swap the root(maximum value) of the heap with the last element of the heap)
swap(a[end], a[0])
(decrease the size of the heap by one so that the previous max value will
stay in its proper placement)
end := end - 1
(put the heap back in max-heap order)
siftDown(a, 0, end)
function heapify(a,count) is
(start is assigned the index in a of the last parent node)
start := count ÷ 2 - 1
while start ≥ 0 do
(sift down the node at index start to the proper place such that all nodes below
the start index are in heap order)
siftDown(a, start, count-1)
start := start - 1
(after sifting down the root all nodes/elements are in heap order)
function siftDown(a, start, end) is
input: end represents the limit of how far down the heap
to sift.
root := start
while root * 2 + 1 ≤ end do (While the root has at least one child)
child := root * 2 + 1 (root*2+1 points to the left child)

125http://en.wikipedia.org/wiki/Stable_sort
126http://en.wikipedia.org/wiki/Parallel_algorithm
127http://en.wikipedia.org/wiki/Linear_speedup
128http://en.wikipedia.org/wiki/Linked_list
129http://en.wikipedia.org/wiki/Disk_storage
130http://en.wikipedia.org/wiki/Network_attached_storage
131http://en.wikipedia.org/wiki/Random_access
132http://en.wikipedia.org/wiki/Locality_of_reference
133http://en.wikipedia.org/wiki/Introsort
134http://en.wikipedia.org/wiki/Zero-based_array

18 CHAPTER 1. SECTION1

(If the child has a sibling and the child's value is less than its sibling's...)
if child < end and a[child] < a[child + 1] then
child := child + 1 (... then point to the right child instead)
if a[root] < a[child] then (out of max-heap order)
swap(a[root], a[child])
root := child (repeat to continue sifting down the child now)
else
return
The heapify function can be thought of as successively inserting into the heap and sifting up. The two

versions only di�er in the order of data processing. The above heapify function starts at the bottom and
moves up while sifting down (bottom-up). The following heapify function starts at the top and moves down
while sifting up (top-down).

function heapify(a,count) is
(end is assigned the index of the �rst (left) child of the root)
end := 1
while end < count
(sift up the node at index end to the proper place such that all nodes above
the end index are in heap order)
siftUp(a, 0, end)
end := end + 1
(after sifting up the last node all nodes are in heap order)
function siftUp(a, start, end) is
input: start represents the limit of how far up the heap to sift.
end is the node to sift up.
child := end
while child > start
parent := b(child - 1) ÷ 2c
if a[parent] < a[child] then (out of max-heap order)
swap(a[parent], a[child])
child := parent (repeat to continue sifting up the parent now)
else
return
It can be shown that both variants of heapify run in O(n) time.[citation needed135]

1.1.1.23 C-code

Below is an implementation of the "standard" heapsort (also called bottom-up-heapsort). It is faster on
average (see Knuth. Sec. 5.2.3, Ex. 18) and even better in worst-case behavior (1.5n log n) than the simple
heapsort (2n log n). The sift_in routine is �rst a sift_up of the free position followed by a sift_down of the
new item. The needed data-comparison is only in the macro data_i_LESS_THAN_ for easy adaption.

This code is �awed - see talk page136

/* Heapsort based on ideas of J.W.Williams/R.W.Floyd/S.Carlsson */
#de�ne data_i_LESS_THAN_(other) (data[i] < other)
#de�ne MOVE_i_TO_free { data[free]=data[i]; free=i; }
void sift_in(unsigned count, SORTTYPE *data, unsigned free_in, SORTTYPE next)
{
unsigned i;
unsigned free = free_in;
// sift up the free node

135http://en.wikipedia.org/wiki/Wikipedia:Citing_sources
136http://en.wikipedia.org/wiki/Talk:Heapsort

19

for (i=2*free;i<count;i+=i)
{ if (data_i_LESS_THAN_(data[i+1])) i++;
MOVE_i_TO_free
}
// special case in sift up if the last inner node has only 1 child
if (i==count)
MOVE_i_TO_free
// sift down the new item next
while(((i=free/2)>=free_in) && data_i_LESS_THAN_(next))
MOVE_i_TO_free
data[free] = next;
}
void heapsort(unsigned count, SORTTYPE *data)
{
unsigned j;
if (count <= 1) return;
data-=1; // map addresses to indices 1 til count
// build the heap structure
for(j=count / 2; j>=1; j�) {
SORTTYPE next = data[j];
sift_in(count, data, j, next);
}
// search next by next remaining extremal element
for(j= count - 1; j>=1; j�) {
SORTTYPE next = data[j + 1];
data[j + 1] = data[1]; // extract extremal element from the heap
sift_in(j, data, 1, next);
}
}

1.1.1.23.1 6.2.3. Quicksort

(From Wikipedia, the free encyclopedia)
Quicksort is a well-known sorting algorithm137 developed by C. A. R. Hoare138 that, on average139 ,

makes (big O notation140) comparisons to sort n items. However, in the worst case141 , it

makes Θ(n2) comparisons. Typically, quicksort is signi�cantly faster in practice than other
algorithms, because its inner loop can be e�ciently implemented on most architectures, and in most real-
world data it is possible to make design choices which minimize the possibility of requiring quadratic time.

Quicksort is a comparison sort142 and is not a stable sort143 .

1.1.1.24 The algorithm

Quicksort sorts by employing a divide and conquer144 strategy to divide a list145 into two sub-lists.

137http://en.wikipedia.org/wiki/Sorting_algorithm
138http://en.wikipedia.org/wiki/C._A._R._Hoare
139http://en.wikipedia.org/wiki/Average_performance
140http://en.wikipedia.org/wiki/Big_O_notation
141http://en.wikipedia.org/wiki/Worst-case_performance
142http://en.wikipedia.org/wiki/Comparison_sort
143http://en.wikipedia.org/wiki/Sorting_algorithm#Classi�cation
144http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
145http://en.wikipedia.org/wiki/List_%28computing%29

20 CHAPTER 1. SECTION1

The steps are:

1. Pick an element, called a pivot146 , from the list.
2. Reorder the list so that all elements which are less than the pivot come before the pivot and so that all

elements greater than the pivot come after it (equal values can go either way). After this partitioning,
the pivot is in its �nal position. This is called the partition operation.

3. Recursively147 sort the sub-list of lesser elements and the sub-list of greater elements.

The base case148 of the recursion are lists of size zero or one, which are always sorted. The algorithm always
terminates because it puts at least one element in its �nal place on each iteration (the loop invariant).

In simple pseudocode149 , the algorithm might be expressed as:
function quicksort(array)
var list less, pivotList, greater
if length(array) ≤ 1
return array
select a pivot value pivot from array
for each x in array
if x < pivot then add x to less
if x = pivot then add x to pivotList
if x > pivot then add x to greater
return concatenate(quicksort(less), pivotList, quicksort(greater))
Notice that we only examine elements by comparing them to other elements. This makes quicksort a

comparison sort150 .

146http://en.wikipedia.org/wiki/Pivot_element
147http://en.wikipedia.org/wiki/Recursion
148http://en.wikipedia.org/wiki/Base_case#Recursive_programming
149http://en.wikipedia.org/wiki/Pseudocode
150http://en.wikipedia.org/wiki/Comparison_sort

21

1.1.1.24.1 Version with in-place partition

Figure 1.4: Partition

In-place partition in action on a small list. The boxed element is the pivot element, blue elements are less
or equal, and red elements are larger.

The disadvantage of the simple version above is that it requires Ω(n) extra storage space, which is as bad
as mergesort151 (see big-O notation152 for the meaning of Ω). The additional memory allocations required
can also drastically impact speed and cache performance in practical implementations. There is a more
complicated version which uses an in-place153 partition algorithm and can achieve O(log n) space use on
average for good pivot choices:

function partition(array, left, right, pivotIndex)
pivotValue := array[pivotIndex]
swap(array, pivotIndex, right) // Move pivot to end
storeIndex := left - 1
for i from left to right-1
if array[i] <= pivotValue
storeIndex := storeIndex + 1
swap(array, storeIndex, i)
swap(array, right, storeIndex+1) // Move pivot to its �nal place
return storeIndex+1
This form of the partition algorithm is not the original form; multiple variations can be found in var-

ious textbooks, such as versions not having the storeIndex. However, this form is probably the easiest to

151http://en.wikipedia.org/wiki/Mergesort
152http://en.wikipedia.org/wiki/Big-O_notation
153http://en.wikipedia.org/wiki/In-place

22 CHAPTER 1. SECTION1

understand.
This is the in-place partition algorithm. It partitions the portion of the array between indexes left and

right, inclusively, by moving all elements less than or equal to a[pivotIndex] to the beginning of the subarray,
leaving all the greater elements following them. In the process it also �nds the �nal position for the pivot
element, which it returns. It temporarily moves the pivot element to the end of the subarray, so that it
doesn't get in the way. Because it only uses exchanges, the �nal list has the same elements as the original
list. Notice that an element may be exchanged multiple times before reaching its �nal place.

Once we have this, writing quicksort itself is easy:
function quicksort(array, left, right)
if right > left
select a pivot index (e.g. pivotIndex := left)
pivotNewIndex := partition(array, left, right, pivotIndex)
quicksort(array, left, pivotNewIndex-1)
quicksort(array, pivotNewIndex+1, right)

1.1.1.24.2 Parallelization

Like mergesort154 , quicksort can also be easily parallelized155 due to its divide-and-conquer nature. Indi-
vidual in-place partition operations are di�cult to parallelize, but once divided, di�erent sections of the list
can be sorted in parallel. If we have p processors, we can divide a list of n elements into p sublists in Θ(n)

average time, then sort each of these in average time. Ignoring the O(n) preprocessing,
this is linear speedup156 . Given Θ(n) processors, only O(n) time is required overall.

One advantage of parallel quicksort over other parallel sort algorithms is that no synchronization is
required. A new thread is started as soon as a sublist is available for it to work on and it does not communicate
with other threads. When all threads complete, the sort is done.

Other more sophisticated parallel sorting algorithms can achieve even better time bounds. For example,
in 1991 David Powers described a parallelized quicksort that can operate in O(log n) time given enough
processors by performing partitioning implicitly[1]157 .

1.1.1.25 Formal analysis

From the initial description it's not obvious that quicksort takes O(n log n)time on average. It's not hard
to see that the partition operation, which simply loops over the elements of the array once, uses Θ(n) time.
In versions that perform concatenation, this operation is also Θ(n).

In the best case, each time we perform a partition we divide the list into two nearly equal pieces. This
means each recursive call processes a list of half the size. Consequently, we can make only (log n) nested
calls before we reach a list of size 1. This means that the depth of the call tree158 is O(log n). But no two
calls at the same level of the call tree process the same part of the original list; thus, each level of calls needs
only O(n) time all together (each call has some constant overhead, but since there are only O(n) calls at
each level, this is subsumed in the O(n) factor). The result is that the algorithm uses only O(n log n) time.

An alternate approach is to set up a recurrence relation159 for T(n) factor), the time needed to sort a
list of size n. Because a single quicksort call involves O(n) factor) work plus two recursive calls on lists of
size n/2 in the best case, the relation would be:

154http://en.wikipedia.org/wiki/Mergesort
155http://en.wikipedia.org/wiki/Parallel_algorithm
156http://en.wikipedia.org/wiki/Linear_speedup
157http://en.wikipedia.org/wiki/Quick_sort#_note-0
158http://en.wikipedia.org/wiki/Call_stack
159http://en.wikipedia.org/wiki/Recurrence_relation

23

Figure 1.5

The master theorem160 tells us that .
In fact, it's not necessary to divide the list this precisely; even if each pivot splits the elements with 99%

on one side and 1% on the other (or any other �xed fraction), the call depth is still limited to (100log n), so
the total running time is still O(n log n).

In the worst case, however, the two sublists have size 1 and n − 1, and the call tree becomes a linear

chain of n nested calls. The ith call does work, and . The recurrence
relation is:

Figure 1.6

This is the same relation as for insertion sort161 and selection sort162 , and it solves to T(n) = Θ(n2).

1.1.1.25.1 Randomized quicksort expected complexity

Randomized quicksort has the desirable property that it requires only O(n log n)expected163 time, regardless
of the input. But what makes random pivots a good choice?

Suppose we sort the list and then divide it into four parts. The two parts in the middle will contain the
best pivots; each of them is larger than at least 25% of the elements and smaller than at least 25% of the
elements. If we could consistently choose an element from these two middle parts, we would only have to
split the list at most 2log2n times before reaching lists of size 1, yielding an O(n log n) algorithm.

Unfortunately, a random choice will only choose from these middle parts half the time. The surprising
fact is that this is good enough. Imagine that you are �ipping a coin over and over until you get k heads.
Although this could take a long time, on average only 2k �ips are required, and the chance that you won't get
k heads after 100k �ips is in�nitesimally small. By the same argument, quicksort's recursion will terminate
on average at a call depth of only 2log2n. But if its average call depth is O(log n), and each level of the call
tree processes at most n elements, the total amount of work done on average is the product, O(n log n).

160http://en.wikipedia.org/wiki/Master_theorem
161http://en.wikipedia.org/wiki/Insertion_sort
162http://en.wikipedia.org/wiki/Selection_sort
163http://en.wikipedia.org/wiki/Expected_value

24 CHAPTER 1. SECTION1

1.1.1.25.2 Average complexity

Even if we aren't able to choose pivots randomly, quicksort still requires only O(n log n) time over all possible
permutations of its input. Because this average is simply the sum of the times over all permutations of the
input divided by n factorial, it's equivalent to choosing a random permutation of the input. When we do this,
the pivot choices are essentially random, leading to an algorithm with the same running time as randomized
quicksort.

More precisely, the average number of comparisons over all permutations of the input sequence can be
estimated accurately by solving the recurrence relation:

Figure 1.7

Here, n − 1 is the number of comparisons the partition uses. Since the pivot is equally likely to fall
anywhere in the sorted list order, the sum is averaging over all possible splits.

This means that, on average, quicksort performs only about 39% worse than the ideal number of compar-
isons, which is its best case. In this sense it is closer to the best case than the worst case. This fast average
runtime is another reason for quicksort's practical dominance over other sorting algorithms.

C(n) = (n-1) + C(n/2) + C(n/2)
= (n-1) + 2C(n/2)
= (n-1) + 2((n/2) - 1 + 2C(n/4))
= n + n + 4C(n/4) - 1 - 2
= n + n + n + 8C(n/8) - 1 - 2 - 4
= ...
= kn + 2^kC(n/(2^k)) - (1 + 2 + 4 + + 2^(k-1))
where log2n > k > 0
= kn + 2^kC(n/(2^k)) - 2^k + 1
-> nlog2n + nC(1) - n + 1.

1.1.1.25.3 Space complexity

The space used by quicksort depends on the version used.
Quicksort has a space complexity of O(log n), even in the worst case, when it is carefully implemented

such that

• in-place partitioning is used. This requires O(1).
• After partitioning, the partition with the fewest elements is (recursively) sorted �rst, requiring at most

O(log n) space. Then the other partition is sorted using tail-recursion or iteration.

The version of quicksort with in-place partitioning uses only constant additional space before making any
recursive call. However, if it has made O(log n) nested recursive calls, it needs to store a constant amount
of information from each of them. Since the best case makes at most O(log n) nested recursive calls, it uses
O(log n) space. The worst case makes O(n) nested recursive calls, and so needs O(n) space.

We are eliding a small detail here, however. If we consider sorting arbitrarily large lists, we have to keep
in mind that our variables like left and right can no longer be considered to occupy constant space; it takes

25

O(log n) bits to index into a list of n items. Because we have variables like this in every stack frame, in
reality quicksort requires O(log2n) bits of space in the best and average case and O(n log n) space in the
worst case. This isn't too terrible, though, since if the list contains mostly distinct elements, the list itself
will also occupy O(log n) bits of space.

The not-in-place version of quicksort uses O(n) space before it even makes any recursive calls. In the
best case its space is still limited to O(n), because each level of the recursion uses half as much space as the
last, and

Figure 1.8

Its worst case is dismal, requiring

Figure 1.9

space, far more than the list itself. If the list elements are not themselves constant size, the problem
grows even larger; for example, if most of the list elements are distinct, each would require about O(log n)
bits, leading to a best-case O(n log n) and worst-case O(n2 log n) space requirement.

1.1.1.26 Selection-based pivoting

A selection algorithm164 chooses the kth smallest of a list of numbers; this is an easier problem in general
than sorting. One simple but e�ective selection algorithm works nearly in the same manner as quicksort,
except that instead of making recursive calls on both sublists, it only makes a single tail-recursive call on
the sublist which contains the desired element. This small change lowers the average complexity to linear or
Θ(n) time, and makes it an in-place algorithm165 . A variation on this algorithm brings the worst-case time
down to O(n) (see selection algorithm166 for more information).

Conversely, once we know a worst-case O(n) selection algorithm is available, we can use it to �nd the
ideal pivot (the median) at every step of quicksort, producing a variant with worst-case O(n log n) running
time. In practical implementations, however, this variant is considerably slower on average.

164http://en.wikipedia.org/wiki/Selection_algorithm
165http://en.wikipedia.org/wiki/In-place_algorithm
166http://en.wikipedia.org/wiki/Selection_algorithm

26 CHAPTER 1. SECTION1

1.1.1.27 Competitive sorting algorithms

Quicksort is a space-optimized version of the binary tree sort167 . Instead of inserting items sequentially into
an explicit tree, quicksort organizes them concurrently into a tree that is implied by the recursive calls. The
algorithms make exactly the same comparisons, but in a di�erent order.

The most direct competitor of quicksort is heapsort168 . Heapsort is typically somewhat slower than
quicksort, but the worst-case running time is always O(169 n170 log 171 n172)173 . Quicksort is usually faster,
though there remains the chance of worst case performance except in the introsort174 variant. If it's known
in advance that heapsort is going to be necessary, using it directly will be faster than waiting for introsort to
switch to it. Heapsort also has the important advantage of using only constant additional space (heapsort is
in-place), whereas even the best variant of quicksort uses Θ(log n) space. However, heapsort requires e�cient
random access to be practical.

Quicksort also competes with mergesort175 , another recursive sort algorithm but with the bene�t of
worst-case O(n log n) running time. Mergesort is a stable sort176 , unlike quicksort and heapsort, and can be
easily adapted to operate on linked lists177 and very large lists stored on slow-to-access media such as disk
storage178 or network attached storage179 . Although quicksort can be written to operate on linked lists, it
will often su�er from poor pivot choices without random access. The main disadvantage of mergesort is that,
when operating on arrays, it requires Ω(n) auxiliary space in the best case, whereas the variant of quicksort
with in-place partitioning and tail recursion uses only O(log n) space. (Note that when operating on linked
lists, mergesort only requires a small, constant amount of auxiliary storage.)

1.1.1.27.1 6.2.4. Merge sort

(From Wikipedia, the free encyclopedia)
In computer science180 , merge sort or mergesort is an O181 (n log n) comparison-based182 sorting

algorithm183 . It is stable184 , meaning that it preserves the input order of equal elements in the sorted
output. It is an example of the divide and conquer185 algorithmic paradigm. It was invented by John von
Neumann186 in 1945187 .

167http://en.wikipedia.org/wiki/Binary_tree_sort
168http://en.wikipedia.org/wiki/Heapsort
169http://en.wikipedia.org/wiki/Big_O_notation
170http://en.wikipedia.org/wiki/Big_O_notation
171http://en.wikipedia.org/wiki/Big_O_notation
172http://en.wikipedia.org/wiki/Big_O_notation
173http://en.wikipedia.org/wiki/Big_O_notation
174http://en.wikipedia.org/wiki/Introsort
175http://en.wikipedia.org/wiki/Mergesort
176http://en.wikipedia.org/wiki/Stable_sort
177http://en.wikipedia.org/wiki/Linked_list
178http://en.wikipedia.org/wiki/Disk_storage
179http://en.wikipedia.org/wiki/Network_attached_storage
180http://en.wikipedia.org/wiki/Computer_science
181http://en.wikipedia.org/wiki/Big_O_notation
182http://en.wikipedia.org/wiki/Comparison_sort
183http://en.wikipedia.org/wiki/Sorting_algorithm
184http://en.wikipedia.org/wiki/Sorting_algorithm#Classi�cation
185http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
186http://en.wikipedia.org/wiki/John_von_Neumann
187http://en.wikipedia.org/wiki/1945

27

Figure 1.10: Merge sort

A merge sort algorithm used to sort an array of 7 integer values. These are the steps a human would
take to emulate merge sort.

1.1.1.28 Algorithm

Conceptually, merge sort works as follows:

1. Divide the unsorted list into two sublists of about half the size
2. Divide each of the two sublists recursively188 until we have list sizes of length 1, in which case the list

itself is returned
3. Merge189 the two sublists back into one sorted list.

Mergesort incorporates two main ideas to improve its runtime:

1. A small list will take fewer steps to sort than a large list.

188http://en.wikipedia.org/wiki/Recursion
189http://en.wikipedia.org/wiki/Merge_algorithm

28 CHAPTER 1. SECTION1

2. Fewer steps are required to construct a sorted list from two sorted lists than two unsorted lists. For
example, you only have to traverse each list once if they're already sorted (see the merge190 function
below for an example implementation).

Example: Using mergesort to sort a list of integers contained in an array191 :
Suppose we have an array A with indices ranging from A'�rst to A'Last. We apply mergesort to

A(A'�rst..A'centre) and A(centre+1..A'Last) - where centre is the integer part of (A'�rst + A'Last)/2.
When the two halves are returned they will have been sorted. They can now be merged together to form a
sorted array.

In a simple pseudocode192 form, the algorithm could look something like this:
function mergesort(m)
var list left, right, result
if length(m) ≤ 1
return m
else
var middle = length(m) / 2
for each x in m up to middle
add x to left
for each x in m after middle
add x to right
left = mergesort(left)
right = mergesort(right)
result = merge(left, right)
return result
There are several variants for the merge() function, the simplest variant could look like this:
function merge(left,right)
var list result
while length(left) > 0 and length(right) > 0
if �rst(left) ≤ �rst(right)
append �rst(left) to result
left = rest(left)
else
append �rst(right) to result
right = rest(right)
if length(left) > 0
append rest(left) to result
if length(right) > 0
append rest(right) to result
return result

1.1.1.28.1 C++ implementation

Here is an implementation using the STL193 algorithm std::inplace_merge to create an iterative bottom-up
in-place merge sort:

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>

190http://en.wikipedia.org/wiki/Merge_algorithm
191http://en.wikipedia.org/wiki/Array
192http://en.wikipedia.org/wiki/Pseudocode
193http://en.wikipedia.org/wiki/Standard_Template_Library

29

int main()
{
std::vector<unsigned> data;
for(unsigned i = 0; i < 10; i++)
data.push_back(i);
std::random_shu�e(data.begin(), data.end());
std::cout � "Initial: ";
std::copy(data.begin(),data.end(),std::ostream_iterator<unsigned>(std::cout," "));
std::cout � std::endl;
for(unsigned m = 1; m <= data.size(); m *= 2)
{
for(unsigned i = 0; i < data.size() - m; i += m * 2)
{
std::inplace_merge(
data.begin() + i,
data.begin() + i + m,
data.begin() + std::min<unsigned>(i + m * 2, (unsigned)data.size()));
}
}
std::cout � "Sorted: ";
std::copy(data.begin(),data.end(),std::ostream_iterator<unsigned>(std::cout," "));
std::cout � std::endl;
return 0;
}

1.1.1.29 Analysis

In sorting n items, merge sort has an average194 and worst-case performance195 of O196 (n log n). If the
running time of merge sort for a list of length n is T(n), then the recurrence T(n) = 2T(n/2) + n follows
from the de�nition of the algorithm (apply the algorithm to two lists of half the size of the original list, and
add the n steps taken to merge the resulting two lists). The closed form follows from the master theorem197

.
In the worst case, merge sort does approximately (n dlg198 ne - 2dlg ne + 1) comparisons, which is

between (n lg n - n + 1) and (n lg n + n + O(lg n)). [2]199

For large n and a randomly ordered input list, merge sort's expected (average) number of comparisons

approaches α·n fewer than the worst case where .
In the worst case, merge sort does about 39% fewer comparisons than quicksort200 does in the average

case; merge sort always makes fewer comparisons than quicksort, except in extremely rare cases, when they
tie, where merge sort's worst case is found simultaneously with quicksort's best case. In terms of moves,
merge sort's worst case complexity is O201 (n log n)�the same complexity as quicksort's best case, and
merge sort's best case takes about half as many iterations as the worst case.

194http://en.wikipedia.org/wiki/Average_performance
195http://en.wikipedia.org/wiki/Worst-case_performance
196http://en.wikipedia.org/wiki/Big_O_notation
197http://en.wikipedia.org/wiki/Master_theorem
198http://en.wikipedia.org/wiki/Binary_logarithm
199http://en.wikipedia.org/wiki/Merge_sort#_note-1
200http://en.wikipedia.org/wiki/Quicksort
201http://en.wikipedia.org/wiki/Big_O_notation

30 CHAPTER 1. SECTION1

Recursive implementations of merge sort make 2n - 1 method calls in the worst case, compared to
quicksort's n, thus has roughly twice as much recursive overhead as quicksort. However, iterative, non-
recursive, implementations of merge sort, avoiding method call overhead, are not di�cult to code. Merge
sort's most common implementation does not sort in place; therefore, the memory size of the input must
be allocated for the sorted output to be stored in. Sorting in-place is possible but is very complicated, and
will o�er little performance gains in practice, even if the algorithm runs in O(n log n) time. In these cases,
algorithms like heapsort202 usually o�er comparable speed, and are far less complex.

Merge sort is more e�cient than quicksort for some types of lists if the data to be sorted can only be
e�ciently accessed sequentially, and is thus popular in languages such as Lisp203 , where sequentially accessed
data structures are very common. Unlike some (e�cient) implementations of quicksort, merge sort is a stable
sort204 as long as the merge operation is implemented properly.

As can be seen from the procedure MergeSort, there are some complaints. One complaint we might raise
is its use of 2n locations; the additional n locations were needed because one couldn't reasonably merge two
sorted sets in place. But despite the use of this space the algorithm must still work hard, copying the result
placed into Result list back into m list on each call of merge . An alternative to this copying is to associate
a new �eld of information with each key. (the elements in m are called keys). This �eld will be used to link
the keys and any associated information together in a sorted list (keys and related informations are called
records). Then the merging of the sorted lists proceeds by changing the link values and no records need to
moved at all. A �eld which contains only a link will generally be smaller than an entire record so less space
will also be used.

1.1.1.30 Merge sorting tape drives

Merge sort is so inherently sequential that it's practical to run it using slow tape drives as input and output
devices. It requires very little memory, and the memory required does not change with the number of data
elements. If you have four tape drives, it works as follows:

1. Divide the data to be sorted in half and put half on each of two tapes
2. Merge individual pairs of records from the two tapes; write two-record chunks alternately to each of

the two output tapes
3. Merge the two-record chunks from the two output tapes into four-record chunks; write these alternately

to the original two input tapes
4. Merge the four-record chunks into eight-record chunks; write these alternately to the original two

output tapes
5. Repeat until you have one chunk containing all the data, sorted � that is, for log n passes, where n is

the number of records.

For the same reason it is also very useful for sorting data on disk205 that is too large to �t entirely into
primary memory206 . On tape drives that can run both backwards and forwards, you can run merge passes
in both directions, avoiding rewind time.

1.1.1.31 Optimizing merge sort

This might seem to be of historical interest only, but on modern computers, locality of reference207 is of
paramount importance in software optimization208 , because multi-level memory hierarchies209 are used. In
some sense, main RAM can be seen as a fast tape drive, level 3 cache memory as a slightly faster one, level 2

202http://en.wikipedia.org/wiki/Heapsort
203http://en.wikipedia.org/wiki/Lisp_programming_language
204http://en.wikipedia.org/wiki/Stable_sort
205http://en.wikipedia.org/wiki/Disk_storage
206http://en.wikipedia.org/wiki/Primary_storage
207http://en.wikipedia.org/wiki/Locality_of_reference
208http://en.wikipedia.org/wiki/Software_optimization
209http://en.wikipedia.org/wiki/Memory_hierarchy

31

cache memory as faster still, and so on. In some circumstances, cache reloading might impose unacceptable
overhead and a carefully crafted merge sort might result in a signi�cant improvement in running time. This
opportunity might change if fast memory becomes very cheap again, or if exotic architectures like the Tera
MTA210 become commonplace.

Designing a merge sort to perform optimally often requires adjustment to available hardware, eg. number
of tape drives, or size and speed of the relevant cache memory levels.

1.1.1.32 Typical implementation bugs

A typical mistake made in many merge sort implementations is the division of index-based lists in two
sublists. Many implementations determine the middle index as outlined in the following implementation
example:

function merge(int left, int right)
{
if (left < right) {
int middle = (left + right) / 2;
[...]
While this algorithm appears to work very well in most scenarios, it fails for very large lists. The addition

of "left" and "right" would lead to an integer over�ow, resulting in a completely wrong division of the list.
This problem can be solved by increasing the data type size used for the addition, or by altering the algorithm:

int middle = left + ((right - left) / 2);
Note that the following two examples do not address the issue of integer over�ow but dodge it under

irrelevant e�ciency claims
Probably faster, and arguably as clear is:
int middle = (left + right) �> 1;
In C and C++ (where you don't have the �> operator), you can do this:
middle = ((unsigned) (left + right)) � 1;
See more information here: http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-

nearly.html211

1.1.1.33 Comparison with other sort algorithms

Although heapsort212 has the same time bounds as merge sort, it requires only Θ(1) auxiliary space instead
of merge sort's Θ(n), and is often faster in practical implementations. Quicksort213 , however, is considered
by many to be the fastest general-purpose sort algorithm. On the plus side, merge sort is a stable sort,
parallelizes better, and is more e�cient at handling slow-to-access sequential media. Merge sort is often the
best choice for sorting a linked list214 : in this situation it is relatively easy to implement a merge sort in
such a way that it requires only Θ(1) extra space, and the slow random-access performance of a linked list
makes some other algorithms (such as quicksort) perform poorly, and others (such as heapsort) completely
impossible.

As of Perl215 5.8, merge sort is its default sorting algorithm (it was quicksort in previous versions of Perl).
In Java216 , the Arrays.sort()217 methods use mergesort or a tuned quicksort depending on the datatypes
and for implementation e�ciency switch to insertion sort218 when fewer than seven array elements are being
sorted.

210http://en.wikipedia.org/w/index.php?title=Tera_MTA&action=edit
211http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
212http://en.wikipedia.org/wiki/Heapsort
213http://en.wikipedia.org/wiki/Quicksort
214http://en.wikipedia.org/wiki/Linked_list
215http://en.wikipedia.org/wiki/Perl
216http://en.wikipedia.org/wiki/Java_platform
217http://java.sun.com/j2se/latest/docs/api/java/util/Arrays.html
218http://en.wikipedia.org/wiki/Insertion_sort

32 CHAPTER 1. SECTION1

Utility in online sorting
Mergesort's merge operation is useful in online sorting, where the list to be sorted is received a piece

at a time, instead of all at the beginning (see online algorithm219). In this application, we sort each new
piece that is received using any sorting algorithm, and then merge it into our sorted list so far using the
merge operation. However, this approach can be expensive in time and space if the received pieces are small
compared to the sorted list � a better approach in this case is to store the list in a self-balancing binary
search tree220 and add elements to it as they are received.

1.2 Design Patterns for Sorting221

The following discussion is based on the the SIGCSE 2001 paper by Nguyen and Wong, "Design Patterns
for Sorting"222.
Merritt's Thesis
In 1985, Susan Merritt proposed that all comparison-based sorting could be viewed as �Divide and Conquer�
algorithms.223 That is, sorting could be thought of as a process wherein one �rst "divides" the unsorted
pile of whatever needs to sorted into smaller piles and then "conquers" them by sorting those smaller piles.
Finally, one has to take the the smaller, now sorted piles and recombines them into a single, now-sorted pile.

We thus end up with a recursive de�nition of sorting:

• To sort a pile:

· Split the pile into smaller piles
· Sort the smaller piles
· Join the sorted smaller piles into a single pile

We can see Merritt's recursive notion of sorting as a split-sort-join process in a pictoral manner by considering
the general sorting process as a "black box" process that takes an unsorted set and returns a sorted set.
Merritt's thesis thus contends that this sorting process can be described as a splitting followed by a sorting
of the smaller pieces followed by a joining of the sorted pieces. The smaller sorting process can thus be
similarly described. The base case of this recursive process is when the set has been reduced to a single
element, upon which the sorting process cannot be broken down any more as it is a trivial no-op.

Animation of the Merritt Sorting Thesis (Click the "Reveal More" button)

This media object is a Flash object. Please view or download it at
<split-join.swf>

Figure 1.11: Sorting can be seen as a recursive process that splits the unsorted items into multiple
unsorted sets, sorts them and then rejoins the now sorted sets. When a set is reduced to a single element
(blank boxes above), sorting is a trivial no-op.

Merritt's thesis is potentially a very powerful method for studying and understanding sorting. In addition,
Merritt's abstract characterization of sorting exhibits much object-oriented (OO) �avor and can be described
in terms of OO concepts.

219http://en.wikipedia.org/wiki/Online_algorithm
220http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
221This content is available online at <http://cnx.org/content/m17309/1.4/>.
222D. Nguyen and S. Wong, �Design Patterns for Sorting,� SIGCSE Bulletin 33:1, March 2001, 263-267
223S. Merritt, "An Inverted Taxonomy of Sorting Algorithms," Comm. of the ACM, Jan. 1985, Volume 28, Number 1, pp.
96-99

33

Capturing the Abstraction
So, how do we capture the abstraction of sorting as described by Merritt? Fundamentally, we have to
recognize that the above description of sorting contains two distinct parts: the invariant process of splitting
into sub-piles, sorting the sub-piles and joining the sub-piles, and the variant processes of the actual splitting
and joining algorithms used.

Here, we will restrict ourselves to the process of sorting an array of objects, in-place � that is, the
original array is mutated from unsorted to sorted (as opposed to returning a new array of sorted values and
leaving the original untouched). The Comparator object used to compare objects will be given to the sorter's
constructor.

Abstract Sorter Class

Figure 1.12: The invariant sorting process is represented as an abstract class

Here, the invariant process is represented by the concrete sort method, which performs the split-sort-
sort-join process as described by Merritt. The variant processes are represented by the abstract split and
join methods, whose exact behaviors are indeterminate at this time.

Above the methods are de�ned as following:

final void sort(Object [] A, int lo, int hi) � sorts the given unsorted array of objects, A,
de�ned from index lo to index hi, inclusive. This method is implemented here and marked final to enforce
its invariance with respect to the subclasses. It is this method that implements Merritt's split-sort-join

34 CHAPTER 1. SECTION1

process.

abstract int split(Object [] A, int lo, int hi) � splits the given unsorted array of objects,
A, de�ned from index lo to index hi, inclusive, into two adjacent sub-arrays. The returned index is the
index of the �rst element of the upper sub-array. The implementation of this abstract method is in the
sub-classes.

abstract void join(Object [] A, int lo, int s, int hi) � joins two sorted adjacent sub-arrays of
objects in the array A, where the lower sub-array is from index lo to index s, inclusive, and the upper
sub-array is from index s to index hi, inclusive. The implementation of this abstract method is in the
subclasses.

Here's the full code for the abstract ASorter class: ASorter class

package sorter;

public abstract class ASorter

{

protected AOrder aOrder;

/**

* The constructor for this class.

* @param aOrder The abstract ordering strategy to be used by any subclass.

*/

protected ASorter(AOrder aOrder)

{

this.aOrder = aOrder;

}

/**

* Sorts by doing a split-sort-sort-join. Splits the original array into two subarrays,

* recursively sorts the split subarrays, then re-joins the sorted subarrays together.

* This is the template method. It calls the abstract methods split and join to do

* the work. All comparison-based sorting algorithms are concrete subclasses with

* specific split and join methods.

* @param A the array A[lo:hi] to be sorted.

* @param lo the low index of A.

* @param hi the high index of A.

*/

public final void sort(Object[] A, int lo, int hi)

{

if (lo < hi)

{

int s = split (A, lo, hi);

sort (A, lo, s-1);

sort (A, s, hi);

join (A, lo, s, hi);

}

}

/**

* Splits A[lo:hi] into A[lo:s-1] and A[s:hi] where s is the returned value of this function.

35

* @param A the array A[lo:hi] to be sorted.

* @param lo the low index of A.

* @param hi the high index of A.

*/

protected abstract int split(Object[] A, int lo, int hi);

/**

* Joins sorted A[lo:s-1] and sorted A[s:hi] into A[lo:hi].

* @param A A[lo:s-1] and A[s:hi] are sorted.

* @param lo the low index of A.

* @param hi the high index of A.

*/

protected abstract void join(Object[] A, int lo, int s, int hi);

/**

* An accessor method for the abstract ordering strategy.

* @param aOrder

*/

public void setOrder(AOrder aOrder)

{

this.aOrder = aOrder;

}

}

Java code for ASorter, the abstract superclass for all concrete sorters and the implementation of Merritt's template for sorting.

Note: AOrder is an abstract ordering operator whose concrete implementations de�ne the binary ordering
for the object being sorted. The examples below, only use the AOrder.lt(Object x, Object y) method,
which returns true if x < y. The sorting framework could easily be modi�ed to use java.util.Comparator
instead with no loss of generality.
Template Design Pattern
The invariant sorting process as described by Merritt is an example of the Template Method Design Pattern.

36 CHAPTER 1. SECTION1

Template Method Design Pattern

Figure 1.13: The Template Method Design Pattern describes an invariant concrete process in terms of
variant, abstract methods.

Here, the invariant process is represented by a concrete method of an abstract superclass. This concrete
method's implementation is in terms of abstract methods of the same class. These abstract methods represent
the variant processes and are implemented in the sub-classes. This type of class organization where the
variant processes are relegated to sub-classes is also known as a white box framework.

1.2.1 Concrete Sorters

In order to create a sorter that can actually perform a sorting operation, we need to subclass the above
ASorter class and implement the abstract split and join methods. It should be noted that in general, the
split and join methods form a matched pair. One can argue that it is possible to write a universal join
methods (a merge operation) but it would be highly ine�cent in most cases.

Example 1.1: Selection Sort
Tradionally, an in-place selection sort is performed by selecting the smallest (or largest) value in the
array and placing it in the right-most location by either swapping it with the right-most element
or by shifting all the in-between elements to the left. The selection and swapping/shifting process
then repeated with the sub-array to the left of the newly placed element. This continues until only

37

one element remains in the array. A selection sort is commonly used to do something like a sort
group of people into ascending height.

Below is an animation of a traditional selection sort algorithm:

Traditional Selection Sort Algorithm

This media object is a Flash object. Please view or download it at
<selection_sort_trad.swf>

Figure 1.14: The extrema values are removed from an ever-shrinking unordered set and placed into the
resulting sorted array. Here, the smallest values are removed from the left and placed to the right in the
array.

In terms of the Merritt sorting paradigm, a selection sort can be broken down into a splitting
process that is the same as the above selection process and a trivial join process. Looking at the
above selection and swap/shift process, we see that it is describing a the splitting o� of a single
element, the smallest, from an array. The process repeats recursively until there is nothing more to
split o�. The sorting of a single element is a no-op, so after that the recursion rolls back out though
the joining process. But the joining process is trivial, a no-op, because the elements are already in
their corret positions. The beauty of Merritt's insight is the realize that by considering a no-op as
an operational part of a process, all the di�erent types of binary comparison-based sorting could
be uni�ed under a common framework.

Below is an animation of a Merritt selection sort algorithm:

Merritt Selection Sort Process

This media object is a Flash object. Please view or download it at
<selection_sort_Merritt.swf>

Figure 1.15: The splitting process splits o� one element at a time, the smallest element, from the left
and placed to the right in the array. The join process is a no-op because the elements are already in their
correct places.

The code to implement a selection sorter is straightforward. One need only implement the split
and join methods where the split method always returns the lo+1 index because the smallest value
in the (sub-)array has been moved to the index lo position. Because the bulk of the work is being
done in the splitting method, selection sort is classi�ed as an "hard split, easy join" sorting process.
SelectionSorter class

package sorter;

/**

* A concrete sorter that uses the Selection Sort technique.

*/

public class SelectionSorter extends ASorter

{

38 CHAPTER 1. SECTION1

/**

* The constructor for this class.

* @param iCompareOp The comparison strategy to use in the sorting.

*/

public SelectionSorter(AOrder iCompareOp)

{

super(iCompareOp);

}

/**

* Splits A[lo:hi] into A[lo:s-1] and A[s:hi] where s is the returned value of this function.

* This method places the "smallest" value in the lo position and splits it off.

* @param A the array A[lo:hi] to be sorted.

* @param lo the low index of A.

* @param hi the high index of A.

* @return lo+1 always

*/

protected int split(Object[] A, int lo, int hi)

{

int s = lo;

int i = lo + 1;

// Invariant: A[s] <= A[lo:i-1].

// Scan A to find minimum:

while (i <= hi)

{

if (aOrder.lt(A[i], A[s]))

s = i;

i++; // Invariant is maintained.

} // On loop exit: i = hi + 1; also invariant still holds; this makes A[s] the minimum of A[lo:hi].

// Swapping A[lo] with A[s]:

Object temp = A[lo];

A[lo] = A[s];

A[s] = temp;

return lo + 1;

}

/**

* Joins sorted A[lo:s-1] and sorted A[s:hi] into A[lo:hi].

* This method does nothing. The sub-arrays are already in proper order.

* @param A A[lo:s-1] and A[s:hi] are sorted.

* @param lo the low index of A.

* @param s

* @param hi the high index of A.

*/

protected void join(Object[] A, int lo, int s, int hi)

{

}

}

Java implementation of the SelectionSorter class. The split method splits off the extrema (minimum, here) value from the sub-array, while the join method is a no-op.

What's interesting to note here is what is missing from the above code. A tradional selection
sort aalgorithm is implemented using a nested double loop, one to �nd the smallest value and one
to repeatedly process the ever-shrinking unsorted sub-array. Notice that the above code only has a

39

single loop, which coresponds to the inner loop of a traditional implementation. The outer loop is
embodied in the recursive nature of the sort template method in the ASorter superclass.

Notice also that the selection sorter implementation does not include any explicit connection
between the split and join operations nor does it contain the actual sort method. These are all
contained in the concrete sort method of the superclass. We describe the SelectionSorter class
as a component in a framework (technically a "white box" framework, as described above).
Frameworks display inverted control where the components provide services to the framework.
The framework itself runs the algorithms, here the high level, templated sorting process, and call
upon the services provided by the components to �ll in the necessary processing pieces, e.g. the
split and join procedures.

Example 1.2: Insertion Sort
Tradionally, an in-place insertion sort is performed by starting from one end of the arry, say the
left end, and performing an in-order insertion of an element into the sub-array to its left. The next
element to the right is then chosen and the insertion process repeated. At each insertion, the sorted
sub-array on the left grows until encompasses the entire array. An insertion sort is a very typical
way in which people will order a set of playing cards in their hand.

Below is an animation of a traditional insertion sort algorithm:

Traditional Insertion Sort Algorithm

This media object is a Flash object. Please view or download it at
<insertion_sort_trad.swf>

Figure 1.16: Starting from the left, elements from the immediate right are inserted into a growing
sub-array to the left.

In the Merrit paradigm, the insertion sort �rst splits the array or sub-array into two pieces
simply by separating the right-most element. Recursively, the splitting process proceeds to from
the right to the left until a single element is left in the sub-array. Sorting a one element array is a
no-op, so then the recursion unwinds with the join process. The join process combines each single
split-o� element with its sorted sub-array partner to its left by performing an in-order insertion.
This proceeds as the recusion unwinds until the entire array is fully sorted. In contrast to the
selection sort, the bulk of the work is being done in the join method, hence classifying insertion
sort as an "easy split, hard join" sorting process.

Below is an animation of a Merritt insertion sort algorithm:

Merritt Insertion Sort Process

This media object is a Flash object. Please view or download it at
<insertion_sort_Merritt.swf>

Figure 1.17: The right-most elements are �rst split-o� one by one, starting at the right and moving
left. The split-o� elements are then joined by performing an in-order insertion to the left, starting at the
left.

Here is the full code for the insertion sorter: InsertionSorter class

40 CHAPTER 1. SECTION1

package sorter;

/**

* A concrete sorter that uses the Insertion Sort technique.

*/

public class InsertionSorter extends ASorter

{

/**

* The constructor for this class.

* @param iCompareOp The comparison strategy to use in the sorting.

*/

public InsertionSorter(AOrder iCompareOp)

{

super(iCompareOp);

}

/**

* Splits A[lo:hi] into A[lo:s-1] and A[s:hi] where s is the returned value of this function.

* This simply splits off the element at index hi.

* @param A the array A[lo:hi] to be sorted.

* @param lo the low index of A.

* @param hi the high index of A.

* @return hi always.

*/

protected int split(Object[] A, int lo, int hi)

{

return (hi);

}

/**

* Joins sorted A[lo:s-1] and sorted A[s:hi] into A[lo:hi]. (s = hi)

* The method performs an in-order insertion of A[hi] into the A[lo, hi-1]

* @param A A[lo:s-1] and A[s:hi] are sorted.

* @param lo the low index of A.

* @param s

* @param hi the high index of A.

*/

protected void join(Object[] A, int lo, int s, int hi)

{

int j = hi; // remember s == hi.

Object key = A[hi];

// Invariant: A[lo:j-1] and A[j+1:hi] are sorted and key < all elements of A[j+1:hi].

// Shifts elements of A[lo:j-1] that are greater than key to the "right" to make room for key.

while (lo < j && aOrder.lt(key, A[j-1]))

{

A[j] = A[j-1];

A[j-1] = key;

j = j - 1; // invariant is maintained.

} // On loop exit: j = lo or A[j-1] <= key. Also invariant is still true.

// A[j] = key;

}

41

}

Java implementation of the selection sorter. The split method simply splits off the right-most element of the sub-array. The join method performs an in-order insertion of the single split-off element into the larger sub-array to its left.

Exercise 1.1 (Solution on p. 44.)

The authors were once challenged that the Merritt template-based sorting paradigm could not be
used to describe the Shaker Sort process (a bidirectional Bubble or Selection sort). See for instance,
http://en.wikipedia.org/wiki/Cocktail_sort224 . However, it can be done is a very straightforward
manner. There are a number of viable solutions. Hint: think about the State Design Pattern225.

For more examples, please see download the demo code226. Please note that the ShakerSort code is disabled
due to its use as a student exercise.

1.3 Sorting an Array227

1.3.1 Overview

Sorting is the process through which data are arranged according to their values. There are several sorting
algorithms or methods that can be used to sort data. Some include:

1. Bubble
2. Selection
3. Insertion

We will not be covering the selection or insertion sort methods in this module.
"The bubble sort is an easy way to arrange data in ascending or descending order. If an array is sorted

in ascending order, it means the values in the array are stored from lowest to highest. If values are sorted
in descending order, they are stored from highest to lowest. Bubble sort works by comparing each element
with its neighbor and swapping them it they are not in the desired order."228

There are several di�erent methods of bubble sorting and some methods are more e�cient than others.
Most use a pair of nested loops or iteration control structures. One method sets a �ag that indicates that
the array is sorted, then does a pass and if any elements are exchanged (switched); it sets the �ag to indicate
that the array is not sorted. It is executed until it makes a pass and nothing is exchanged.

224http://en.wikipedia.org/wiki/Cocktail_sort
225"State Design Pattern" <http://cnx.org/content/m17047/latest/>
226See the �le at <http://cnx.org/content/m17309/latest/Sorter.zip>
227This content is available online at <http://cnx.org/content/m21628/1.2/>.
228Tony Gaddis, Judy Walters and Godfrey Muganda, Starting Out with C++ Early Objects Sixth Edition (United States of
America: Pearson � Addison Wesley, 2008) 569.

42 CHAPTER 1. SECTION1

Figure 1.18

The bubble sort gets its name from the lighter bubbles that move or "bubble up" to the top of a glass of
soda pop. We move the smaller elements of the array to the top as the larger elements move to the bottom
of the array. This can be viewed from a di�erent perspective. Using an Italian salad dressing with oil, water
and herbs; once shaken you can either:

1. envision the lighter oil rising to the top; OR
2. envision the heaver water and herbs sinking to the bottom

Either way is correct and this version of the code simply demonstrates the sinking to the bottom the heaver
or larger elements of the array.

Bubble sorting is demonstrated in the demo �le provided, thus you need to study this material in con-
junction with the demo program.

1.3.2 Demonstration Program in C++

1.3.2.1 Creating a Folder or Sub-Folder for Source Code Files

Depending on your compiler/IDE, you should decide where to download and store source code �les for
processing. Prudence dictates that you create these folders as needed prior to downloading source code �les.
A suggested sub-folder for the Bloodshed Dev-C++ 5 compiler/IDE might be named:

43

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as appropriate.

1.3.2.2 Download the Demo Program

Download and store the following �le(s) to your storage device in the appropriate folder(s). Following the
methods of your compiler/IDE, compile and run the program(s). Study the source code �le(s) in conjunction
with other learning materials. You may need to right click on the link and select "Save Target As" in order
to download the �le.

Download from Connexions: Demo_Sort_Array_Function.cpp229

Download from Connexions: Demo_Farm_Acres_Input.txt230

1.3.3 De�nitions

De�nition 1.1: sorting
Arranging data according to their values.

De�nition 1.2: bubble sort
A method of swapping array members until they are in the desired sequence.

229See the �le at <http://cnx.org/content/m21628/latest/Demo_Sort_Array_Function.cpp>
230See the �le at <http://cnx.org/content/m21628/latest/Demo_Farm_Acres_Input.txt>

44 CHAPTER 1. SECTION1

Solutions to Exercises in Chapter 1

Solution to Exercise 1.1 (p. 41)
The solution is left to the student but is available from the authors if proof of non-student status is provided.

Chapter 2

Graphical Convolution Algorithm1

c (t) =
∫ ∞
−∞

f (τ) g (t− τ) dτ

2.1 Step One

Plot f (τ) and g (τ) as functions of τ

Figure 2.1

2.2 Step Two

Plot g (t− τ) by re�ecting g (τ) over the 'y-axis' (run time backwards) and then shifting right by t.

1This content is available online at <http://cnx.org/content/m12340/1.1/>.

45

46 CHAPTER 2. GRAPHICAL CONVOLUTION ALGORITHM

Figure 2.2

2.3 Step Three

For one value of 't' mutiply f (τ) g (t− τ) and compute area underneath the curve to get c (t). Area under-
neath

=
∫ ∞
−∞

f (τ) g (t− τ) dτ = c (t) (2.1)

Figure 2.3

47

2.4 Step Four

Repeat for all 't' to get c (t) for all t. Usually we will just have to consider several ranges of t.

Figure 2.4

2.5 Step Five

Reality check: Does your answer actually make sense?

2.6 Remark

Since,

c (t) =
∫∞
−∞ f (τ) g (t− τ) dτ

=
∫∞
−∞ g (τ) f (t− τ) dτ

(2.2)

you can �ip and shift either f or g. It is easier to �ip and shift the 'simpler' of the two.

Figure 2.5

note: Everyone is overwhelmed by convolution at �rst! Just practise and it will become second
nature. Do examples 2.6 to 2.8 in Lathi!

Example 2.1
Recall

48 CHAPTER 2. GRAPHICAL CONVOLUTION ALGORITHM

Figure 2.6

Figure 2.7

Now compute output y (t) for a step input f (t)u (t)

2.1 Solution

System is LTI with impulse response h (t), so use convolution integral

y (t) =
∫ ∞
−∞

f (τ)h (t− τ) dτ

Since, f (τ) is simpler, we rewrite it as∫ ∞
−∞

h (τ) f (t− τ) dτ

2.1.1 Step 1

Plot things

49

Figure 2.8

2.1.2 Step 2

Do the �ip and shift.

Figure 2.9

50 CHAPTER 2. GRAPHICAL CONVOLUTION ALGORITHM

2.1.3 Step 3 & 4

Multiply and integrate.

2.1.3.1 Case 1

For, t < 0

Figure 2.10

From the fact stated in the caption,∫ ∞
−∞

h (τ) f (t− τ) dτ = y (t) = 0∀t : (t < 0)

2.1.3.2 Case 2

For t ≥ 0

51

Figure 2.11

y (t) =
∫∞
−∞ h (τ) f (t− τ) dτ

=
∫ t
0

1
RC e

− τ
RC dτ

= RC
RC e

− τ
RC |tτ=0

= 1− e− t
RC

(2.3)

2.1.3.3 Answer

y (t) =

 0 if t < 0

1− e −tRC if t ≥ 0

Figure 2.12

52 CHAPTER 2. GRAPHICAL CONVOLUTION ALGORITHM

2.1.4 Step 5

Do a reality check: As t tends to ∞ what happens? As t tends to −∞ what happens?

Example 2.2
The input is f (t) = e−t and the impulse response is h (t) = e−(2t). Compute the y (t).

2.1 Solution

We are given input and impulse response. So ride the convolution convoy!

y (t) =
∫ ∞
−∞

f (τ)h (t− τ) dτ

Both the functions are equally simple, so we �ip and shift h (t)

Figure 2.13

2.1.1 Case 1

Again y (t) = 0 for all t < 0

53

Figure 2.14

2.1.2 Case 2

For t ≥ 0

Figure 2.15

54 CHAPTER 2. GRAPHICAL CONVOLUTION ALGORITHM

y (t) =
∫∞
−∞ f (τ)h (t− τ) dτ

=
∫ t
0
f (τ)h (t− τ) dτ

=
∫ t
0
e−τe(−2)(t−τ)dτ

=
∫ t
0
e−(2t)eτdτ

= e−(2t)
∫ t
0
eτdτ

= e−(2t)eτ |tτ=0

= e−(2t) (et − 1)

(2.4)

y (t) = e−t − e−(2t)∀t : (t ≥ 0)

2.1.3 Combine Case 1 and 2

y (t) =

 0 if t < 0

e−t − e−(2t) if t ≥ 0

=
(
e−t − e−(2t)

)
u (t)

(2.5)

Chapter 3

Algorithm Overview1

3.1 Algorithm Overview

The �rst step in detecting a signal is to input it into the system. Since we are using an audio signal, a
microphone is the obvious choice. However, the desired control signal is not the only sound in the room.
There is also the music that is being played through the speakers as well as outside noise. Unfortunately,
there is not much that can be done about the random noise that is present in the room. However, there are
tools available that allow us to minimize the interference caused by the music. Speci�cally, we can use an
adaptive �lter to mimic the room's e�ect on the output of the sound card, providing us with an estimate of
the music's contribution to the signal received by the microphone. We can subtract the microphone's signal
from this estimate in order to obtain�hopefully�only the whistle.

Figure 1 (Figure 3.1: Our System's Block Diagram) shows the block diagram of our system. All of these
components fall into four main categories:

1. Signal acquisition
2. Whistle isolation
3. Whistle frequency analysis
4. iTunes interface

The acquisition phase is the top portion of the diagram, the whistle isolation system is represented by the
�h box and the band pass �lter, the rest of the diagram (except for the Java controller) comprise the whistle
analysis phase, and the Java controller is the iTunes interface.

1This content is available online at <http://cnx.org/content/m15673/1.2/>.

55

56 CHAPTER 3. ALGORITHM OVERVIEW

Our System's Block Diagram

Figure 3.1: In our system, the sound is output through the speaker, and the microphone receives the
music and whistles while the sound card receives the audio without the room a�ecting it. We then remove
the music and process the whistle.

57

After isolating the whistle, we apply a band pass �lter whose pass band corresponds to common whistle
frequencies in order to remove extraneous noise outside of these whistle frequencies.

We then take the Short Time Fourier Transform in order see how the frequency components of the whistle
change over time. If the frequency of the whistle is increasing iTunes should advance to the next track, and
a decreasing frequency will skip to the previous track. To accomplish this, we examine the frequency with
maximum power (the argmax in the �gure below) and accumulate several readings of this frequency. In
order to see if this function is increasing or decreasing we take the derivative and examine its average value.
If the average value is positive, the function must have been increasing and the whistle must have been from
high to low frequencies.

58 GLOSSARY

Glossary

B bubble sort

A method of swapping array members
until they are in the desired sequence.

S sorting

Arranging data according to their values.

INDEX 59

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

B Bloodshed Dev-C++ 5 compiler/IDE, 42
bubble sort, 43

C component, 39
convolution, � 2(45)

D Design, � 1.2(32)

F framework, 39

G graphical, � 2(45)

I inverted control, 39

M Merritt, � 1.2(32)

O object oriented, � 1.2(32)

P patterns, � 1.2(32)
programming, � 1.2(32)

S services, 39
sorting, � 1.2(32), 43

W white box framework, 36

60 ATTRIBUTIONS

Attributions

Collection: My �rst collection

Edited by: Ping Yu
URL: http://cnx.org/content/col10870/1.1/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Sorting"
By: Nguyen Viet Ha, Truong Ninh Thuan, Vu Quang Dung
URL: http://cnx.org/content/m29530/1.1/
Pages: 1-32
Copyright: Nguyen Viet Ha, Truong Ninh Thuan, Vu Quang Dung
License: http://creativecommons.org/licenses/by/3.0/

Module: "Design Patterns for Sorting"
By: Stephen Wong, Dung Nguyen, Alex Tribble
URL: http://cnx.org/content/m17309/1.4/
Pages: 32-41
Copyright: Stephen Wong, Dung Nguyen, Alex Tribble
License: http://creativecommons.org/licenses/by/2.0/

Module: "Sorting an Array"
By: Kenneth Leroy Busbee
URL: http://cnx.org/content/m21628/1.2/
Pages: 41-43
Copyright: Kenneth Leroy Busbee
License: http://creativecommons.org/licenses/by/3.0/

Module: "Graphical Convolution Algorithm"
By: Richard Baraniuk
URL: http://cnx.org/content/m12340/1.1/
Pages: 45-54
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Algorithm Overview"
By: Blake Brogdon, Thomas Deitch, Kyle Barnhart, Britt Antley
URL: http://cnx.org/content/m15673/1.2/
Pages: 55-57
Copyright: Blake Brogdon, Thomas Deitch, Kyle Barnhart, Britt Antley
License: http://creativecommons.org/licenses/by/2.0/

My �rst collection
Some algorithm about sorting.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

