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Music Classi�cation by Genre1
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• System Diagram (Chapter 3)
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• Frequency Smoothness (Chapter 7)
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• High Pass Filter (Chapter 10)
• Power Spectral Density2
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1This content is available online at <http://cnx.org/content/m11691/1.1/>.
2"Archiving Your Design in OrCAD" <http://cnx.org/content/m11679/latest/>
3"Music Classi�cation by Genre: Overall Results" <http://cnx.org/content/m11689/latest/>
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Chapter 2

Project Summary: Music Classi�cation

by Genre1

Widespread access to the Internet popularized digital music. People download large collections of music �les
sorted into directory structures by artist or genre. For example, a student at Rice University may want
to search a library of �les stored on the computer of a student in Bremen, Germany for classical music.
Language di�erences and foreign preferences for �le naming would make it di�cult for the Rice student to
determine music genres. A collection of �lters to classify music based on DSP analysis tools would allow
users to search a collection of �les and extract only those that have certain chosen characteristics.

We designed a classi�cation system that analyzes the contents of a .wav music �le in order to sort it into
speci�c categories: classical, jazz, country, rap, punk, and techno. In order to classify music samples, we
examine characteristics in both the time and frequency domains:

• bandwidth
• beat(tempo) variability
• high pass �ltering
• number of FFT coe�cients above threshold
• power spectral density
• smoothness in frequency domain
• total power

Then a neural network classi�es each song based on its similarity to other songs in various genres.
Previous classi�cation projects have directly analyzed song clips in neural networks. However, we take a
slightly di�erent approach by providing the neural network with the previously listed DSP characteristics
that represent the song. This method proves 84% accurate, having most di�culty classifying techno music.

1This content is available online at <http://cnx.org/content/m11661/1.3/>.
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6 CHAPTER 3. MUSIC CLASSIFICATION BY GENRE: SYSTEM DIAGRAM

Chapter 3

Music Classi�cation by Genre: System

Diagram1

Music Classi�cation by Genre System Diagram

Figure 3.1: Music Matcher, a collection of scripts and functions, takes a .wav �le input, digitally
processes it, and creates an output vector characteristic of the sample. A neural network is trained
with 20 songs in each genre. Then it analyzes the new song vectors for patterns and predicts an output
classi�cation genre.

1This content is available online at <http://cnx.org/content/m11675/1.4/>.
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Music Matcher takes a .wav �le, analyzes it, and outputs a music genre. Our system breaks up a .wav �le
into twenty .5 second windows. From here, the DSP functions are called for each of the twenty windows.
Each one of these twenty windows is analyzed by seven DSP functions:

• Bandwidth
• Power Spectral Density
• Total Power (L-2 norm / L-in�nity norm)
• Spectrogram Smoothness
• High Pass Filter
• Beat Detection
• Frequency Cuto�

The values returned from each of these functions is averaged over all twenty windows to give an average
value for each song as well as a standard deviation, which tells us how these qualities change over time. That
way, our DSP vector has some measure of how each of the functions changed with time.

First, the neural network is trained with 120 songs, 20 of each genre. After we train the neural network,
we give it songs it has never seen, and the output of the system is the classi�cation of genre that the neural
network determines.
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Chapter 4

Introduction to Digital Signal Processing1

Not only do we have analog signals � signals that are real- or complex-valued functions of a continuous
variable such as time or space � we can de�ne digital ones as well. Digital signals are sequences, functions
de�ned only for the integers. We thus use the notation s (n) to denote a discrete-time one-dimensional signal
such as a digital music recording and s (m, n) for a discrete-"time" two-dimensional signal like a photo taken
with a digital camera. Sequences are fundamentally di�erent than continuous-time signals. For example,
continuity has no meaning for sequences.

Despite such fundamental di�erences, the theory underlying digital signal processing mirrors that for ana-
log signals: Fourier transforms, linear �ltering, and linear systems parallel what previous chapters described.
These similarities make it easy to understand the de�nitions and why we need them, but the similarities
should not be construed as "analog wannabes." We will discover that digital signal processing is not an
approximation to analog processing. We must explicitly worry about the �delity of converting analog signals
into digital ones. The music stored on CDs, the speech sent over digital cellular telephones, and the video
carried by digital television all evidence that analog signals can be accurately converted to digital ones and
back again.

The key reason why digital signal processing systems have a technological advantage today is the com-

puter: computations, like the Fourier transform, can be performed quickly enough to be calculated as the
signal is produced, 2 and programmability means that the signal processing system can be easily changed.
This �exibility has obvious appeal, and has been widely accepted in the marketplace. Programmability
means that we can perform signal processing operations impossible with analog systems (circuits). We will
also discover that digital systems enjoy an algorithmic advantage that contributes to rapid processing
speeds: Computations can be restructured in non-obvious ways to speed the processing. This �exibility
comes at a price, a consequence of how computers work. How do computers perform signal processing?

1This content is available online at <http://cnx.org/content/m10781/2.3/>.
2Taking a systems viewpoint for the moment, a system that produces its output as rapidly as the input arises is said to

be a real-time system. All analog systems operate in real time; digital ones that depend on a computer to perform system
computations may or may not work in real time. Clearly, we need real-time signal processing systems. Only recently have
computers become fast enough to meet real-time requirements while performing non-trivial signal processing.
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Chapter 5

Music Classi�cation by Genre:

Bandwidth1

Bandwidth refers to how spread-spectrum the signal is and what frequencies are present. If a signal is
composed of many high frequencies, the bandwidth will be large. However, if the signal is composed of
mostly low frequencies, the bandwidth will be small. After taking the shifted FFT of windows of the music
vector, we �nd the last frequency component above a certain cuto� threshold, which is the bandwidth of
the signal. Because classical music is composed of harmonic instruments, its bandwidth will be smaller and
it will have fewer frequency components. However, hard music like punk or rap has lots of non-sinusoidal
drumbeats, which will create more frequency components and their bandwidth will be larger.

1This content is available online at <http://cnx.org/content/m11672/1.3/>.
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Figure 5.1: Bandwidth for classical music.
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Figure 5.2: Bandwidth for jazz music.

5.1 Results

The bandwidth of songs in the frequency domain is very good at distinguishing jazz. However, the bandwidth
of punk, techno, and country, all hover around the same value. Rap has most of its power in low frequencies,
and those coe�cients will be large. Therefore, the bandwidth will be small because the spread of the
frequency components is localized in the low frequencies. Jazz, however, has high and low frequencies, so
there could be a frequency component in the high frequencies that is large, increasing the bandwidth.

We also give the neural network a measure of how bandwidth changes over the time period of a song.
The standard deviations are good at telling jazz and country apart from the other genres, but no one genre
stands out.
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Figure 5.3: Overall, bandwidth is a good detector for jazz and rap, but poorer in distinguishing between
classical, punk, techno, and country, which all have about the same bandwidth.
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Figure 5.4: Variation of bandwidth across time.
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Chapter 6

Music Classi�cation by Genre:

Frequency Cuto�1

Like most of our other �lters, the frequency cuto� had mixed results that varied on the genre in question.
Some samples it is readily able to identify, while others if �nds quite di�cult to pin point directly. For
instance, if you fed the �lter a sample of classical and a sample of techno, it would have no problem telling
you the di�erence between them. This is because techno has a majority of its energy concentrated at only
a few frequencies while classical has its power spread more evenly over a wider band. On the other hand if
you were to input samples of punk and country, the �lter might tell you that The Ramones sound like Hank
Williams. Looking at these results though is not the whole story. A more telling relationship is isolated
when the Standard Deviations of these outputs are analyzed. It becomes di�cult to isolate any one genre
but it does separate them into two main categories:

1. Classical, Punk and Country
2. Techno, Jazz, and Rap

Group one consists of the genres who retained only 40-50 coe�cients above the thresh hold, while the genres
of group two consistently preserved at least 90 coe�cients per sample. This wide gap between them should
paint a fairly clear picture of the di�erences between genres with respect to their cuto� frequencies. This
alone isn't very helpful, but when used in conjunction with other �lters, this could prove to the �rst step in
a very powerful tool to help classify music.

1This content is available online at <http://cnx.org/content/m11684/1.1/>.
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CUTOFF

Figure 6.1



Chapter 7

Music Classi�cation by Genre:

Frequency Smoothness1

A spectrogram is a tool that belongs to a set of tools called time-frequency representations. Music, on a
CD, is a time-vector. Performing an FFT of this time-vector would give us its frequency content. However,
a single FFT would lose all time information since it gives us the frequency content of the time-vector as
a whole. We need something like an instantaneous frequency response so we have both frequency and time
information. A spectrogram essentially breaks a signal up into many di�erent time-vectors and performs
FFTs of each. These FFTs are then placed as columns in the spectrogram. In the end, we have a time-
frequency representation of our music.

1This content is available online at <http://cnx.org/content/m11671/1.2/>.
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SMOOTHNESS

Figure 7.1
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Figure 7.2

This is a spectrogram of a techno song and a classical song. freqsmooth.m quanti�es the di�erences seen
in these spectrograms. To do this, freqsmooth calculates the variance in the indices of the max values of each
column. In other words, a song with a clear, loud melody will show small variance in these indices while a
song with a harder-to-identify melody will show a large variance.

7.1 Results

While freqsmooth does give a di�erent value for each genre, it also gives a radically di�erent value for songs
within a given genre. In other words, it does not give a good representation of a genre as a whole. Given
the plus and minus standard deviation bars, each genre overlaps heavily.
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SMOOTHNESS

Figure 7.3



Chapter 8

Music Classi�cation by Genre: Beat

Detection1

Beat detection emphasizes the sudden impulses of sound in the song and then �nds the fundamental period at
which these impulses appear. It convolves a signal with itself and �nds frequency peaks. Then it measures
the distance between these frequency peaks. This is done by breaking the signal into frequency bands,
extracting the envelope of these frequency-banded signals, di�erentiating them to emphasize sudden changes
in sound, and running the signals through a �lter to choose the highest energy result as the tempo. Variation
in tempo, found by detecting beat in di�erent windows of the song, helps determine musical genres.

The �lter can only separate rap from all other genres e�ectively, because it has the steadiest backbeat,
consistent across the genre! Classical and jazz have too much variability, which makes sense, considering
that each piece is often long and divided into sections.

1This content is available online at <http://cnx.org/content/m11685/1.2/>.
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Figure 8.1
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Figure 8.2
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Chapter 9

Ideal Filters1

There are four fundamental �lters. They are

• Lowpass � blocks high frequencies, allowing low frequencies through
• Highpass � blocks low frequencies, allowing high frequencies through
• Bandpass � blocks all frequencies except those within a certain range
• Bandstop � blocks only the frequencies within a certain range, allowing all others to pass through

(a) (b)

(c) (d)

Figure 9.1: Ideal frequency domain representations of the four fundamental �lters. (a) Lowpass (b)
Highpass (c) Bandpass (d) Bandstop

Another term one may come across in the study of �lters is an "allpass" �lter. This is one that allows
all frequencies through. The only meaningful e�ect an allpass �lter can have is on the phase of the signal.

1This content is available online at <http://cnx.org/content/m10103/2.7/>.

27



28 CHAPTER 9. IDEAL FILTERS



Chapter 10

Music Classi�cation by Genre: High

Pass Filter1

Like most of the �lters run on our music samples, the High Pass �lter does a good job of identifying some
genres, while it has di�culty with others. Like one would expect, classical had the smallest error of any
genre tested. This should be intuitive since it uses the lower frequency part of the spectrum. One can
think of classical music as being very �uid with few sudden changes in frequency. Conversely, punk and jazz
had the highest amount of error, which is a good indication of higher frequencies being utilized. Compared
to classical music, these genres are much less �uid and often exhibit rapid changes in tempo. Somewhere
between these two extremes are techno, rap and country. The �lter has an especially tough time telling
the di�erence between the latter two. Who would have ever thought Garth Brooks and Tupac might get
confused with one another. Overall, while the �lter cannot explicitly identify the di�erent genres, it does
give the user a starting point to isolate between two main groups. This means that another tool must be
used along side the high pass �lter in order to obtain an e�ective music matcher.

1This content is available online at <http://cnx.org/content/m11683/1.2/>.
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Figure 10.1
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Figure 10.2
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Chapter 11

Music Classi�cation by Genre: Power

Spectral Density1

Our program essentially breaks the time-domain signal into windows and computes the norm squared of
the FFT of each window. It then averages the magnitude squared of the FFT coe�cients of each window,
then represents it in decibels. We then have a vector approximately length 100 that represents the power in
the frequency domain. This is a measure of exactly what frequencies are present and at what magnitude.
Rather than using a single number to characterize the whole signal, our power spectral density program
returns a vector representing more subtle changes in the spectrum. The decibel scale helps distinguish and
di�erentiate between genres even further, fanning out the di�erences between genres.

1This content is available online at <http://cnx.org/content/m11674/1.2/>.
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DENSITY

Figure 11.1

11.1 Results

The power spectral density was great at showing patterns between genres. Rap has the most distinct pattern,
with a sudden downward slope (red). Classical also had a distinctive pattern, with the smallest power at
all frequencies. Jazz, punk, and country are all near each other, but at higher frequencies, begin to fan out.
Looking closely at the envelopes, techno spans the largest area, encapsulating almost all of jazz, punk, and
country. This is one reason why techno could not be distinguished very well from those genres.
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Figure 11.2
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Chapter 12

Music Classi�cation by Genre: Total

Power1

The power in a signal is the norm squared of the frequency components of the signal. The vectors are �rst
normalized to the maximum value in the vector such that we are not analyzing loudness, but more accurately,
the L-2 norm divided by the L-in�nity norm. It measures how many harmonics are present in the signal
and how much of each harmonic. In our case, the music samples have a wide range of total power: classical
piano has low power with few harmonics, whereas punk has high power. You can see from these two plots
of the spectrum, on the same scale, that jazz has much smaller power. Jazz has fewer frequency components
of smaller power.

1This content is available online at <http://cnx.org/content/m11673/1.3/>.
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Figure 12.1
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Figure 12.2

12.1 Results

The total power of a signal changes radically between genres. Jazz has the lowest total power, while punk tops
the list. Punk also has the lowest standard deviation; there should be very little confusion with the rest of
the genres. Techno is the least discernable: its standard deviation encapsulates all the other genres. Looking
closely at the graph, the spread of the standard deviations of classical and country does not encapsulate any
other genres, so they should be easily identi�ed.

The standard deviations of rap and techno are very distinct, whereas the others are all about the same
value. Although the average total power of techno may not be a good indicator, the standard deviation
should be able to pick out techno.
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Figure 12.3



Chapter 13

Neural Networks1

At their core, neural networks are pattern recognition systems. They predict an output given a sequence of
inputs and their corresponding classi�cation. They are based on biological nervous systems, in which there
are many inputs and numerous outputs to a single neuron. On the highest level, the neural network is a
primitive learning machine that can be used to process data such as stock market quotes, DNA sequences,
and in our case, music classi�cation.

Neural networks are systems that take a lengthy input, process the data, and predict an output.

1This content is available online at <http://cnx.org/content/m11667/1.2/>.
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Figure 13.1

The processing is done by multiple, weighted layers of nodes. Each node is connected to every node in the
next layer, and at each interface between nodes are connecting �bers weighted by a sum. Neural networks
are given a vector of inputs, usually longer than the output. The �rst layer of nodes is the same length as
the input. The nodes at each successive layer sum their inputs, weight the sum, and produce an output. The
output of the �nal layer is the output of the system. In this manner, an output is predicted given an input.

The remaining question is how the weights are determined. The use of neural networks is twofold: you
must �rst "train" the network by giving it inputs and their corresponding outputs, and then you may test
the network by giving it inputs with no outputs. The training determines the weighting on the nodes. For
example, we train the neural network by giving it the vectors of signal processing data (bandwidth, power
spectral density, etc.) as well as the corresponding classi�cation of music. Classical music is denoted as [1 0
0 0 0 0], jazz is denoted as [0 1 0 0 0 0], etc., as shifted delta functions.

There are many methods to train neural networks, but the one we use is called backpropogation. The
neural network takes the input and feeds it through the system, evaluating the output. It then changes the
weights in order to get a more accurate output. It continues to run the inputs through the network multiple
times until the error between its output and the output you gave it is below a de�ned tolerance level.

After training is completed, we test the neural network with songs that it has never seen before. It
predicts a classi�cation of genre based on the weights it created during training.

To train the neural network, we used the method of back propagation. There were 15 nodes in the hidden
layer, and we used an adaptive learning rate training function. This means that the network analyzed its
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learning rate after each iteration, changing it to remain relatively constant. For instance, if the learning
curve is too steep, and the network is learning too quickly, it decreases its learning rate, and vice-versa. This
is a graph of the error (learning rate) versus time:

Figure 13.2: Error in the neural network decreases with each successive iteration.
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PERFORMANCE

Chapter 14

Music Classi�cation by Genre: System

Performance1

Figure 14.1: Performance of the neural network improved with successive inputs of training vectors.
It begins to recognize characteristics of each music genre!

1This content is available online at <http://cnx.org/content/m11690/1.3/>.
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Figure 14.2: When tested with the training vectors, the system is 87.5% accurate. Higher accuracy
implies that the system has memorized the training set and is unable to generalize when given new inputs.
Lighter background stripes indicate greater certainty in identi�cation, while increasingly darker hues note
greater uncertainty. Horizontal black bars indicate actual genre, and the stems indicate predicted genre.

These plots show how well the �rst three genres separate in the output of the network. Even the testing
vectors are separated by a high degree of con�dence.
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PERFORMANCE

Figure 14.3: Spatial separation, weighted by sureness level, of classical (red), jazz (blue), and rap
(green) in the training vectors.
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Figure 14.4: Spatial separation, weighted by sureness level, of punk (red), techno (blue), and country
(green) in the training vectors.
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PERFORMANCE

Figure 14.5: Though worthy of the Museum of Modern Art, this depicts the output of the neural
network for each of the six genres.
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Figure 14.6: Provided songs that the network has never seen, it performs perfectly and with high
con�dence for rap, while classi�cation of techno is comparably poor. However, the system is aware of
this: error coincides with lack of con�dence. Lighter background stripes indicate greater certainty in
identi�cation, while increasingly darker hues note greater uncertainty. Horizontal black bars indicate
actual genre, and the stems indicate predicted genre.
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PERFORMANCE

Figure 14.7: Spatial separation, weighted by sureness level, of classical (red), jazz (blue), and rap
(green) in the training vectors.
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Figure 14.8: Spatial separation, weighted by sureness level, of punk (red), techno (blue), and country
(green) in the training vectors.

Our system successfully determined the genre of the vast majority of the test songs. Not only did the
system choose a genre, it quanti�ed its output with a level of sureness. When the system was in error, there
was a corresponding uncertainty. The genre that gave our system the most di�culty was techno. The output
of the DSP functions for techno had a very high standard deviation, making it hard for the neural network
to distinguish its pattern from those of the other genres. Given an unknown song, there is an 84% chance
that the system can determine the genre successfully.
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Chapter 15

Back propagation mathematics1

15.1 Error de�nition

The back propagation method is the example of the wide class of training methods based on the information
covered in the gradient of error function. The independent variables in this minimization are weights of
neural network and the considered error to be minimized is the root mean square one.

Let us consider the training set composed of L ordered pairs, of the following form:
{
(
x(1), d(1)

)
,
(
x(2), d(2)

)
, ...,

(
x(L), d(L)

)
} Furthermore, let us de�ne the total error E generated on outputs

of neural network after presenting the entire training set, as:

E =
L∑

l=1

E(l)

where:

E(l) =
M∑

m=1

E(l)
m =

1
2

M∑
m=1

(
d(l)

m − y(l)
m

)2

As was already told, the independent variables in the minimization of error E are weights wij Since even for
the relatively small networks the number of weigths is big, in real applications, the training of the neural
network is the minimization of the scalar �eld over the vector space with hundreds or (more often) thousands
dimensions. One of the minizmiazation techniques for such problem is the steapest descent method∫ 1

0

x2dx

∞∑
n=1

2× 21/2 (26390n + 1103) (4n)!
(
9801× 3964n(n!)4

)−1

∞∑
n=1

2
√

2 (26390n + 1103) (4n)!
98013964nn!4

∞∑
n=1

2
√

2 (26390n + 1103) (4n)!
98013964nn!4

∞∑
n=1

2× 21/2 (26390n + 1103) (4n)!
(
9801× 3964n(n!)4

)−1

1This content is available online at <http://cnx.org/content/m11120/2.1/>.
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Chapter 16

Chris Hunter1

Figure 16.1: Chris in a drysuit.

1This content is available online at <http://cnx.org/content/m11663/1.4/>.
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Hi everyone, I am an Electrical Engineering major and a member of the Class of 2006 at Rice University.
This bio is an informal section about my interests and my life. If you would like a resume, please feel free to
email me at chunter@rice.edu

I was born in Tampa Bay, FL, but I moved to Austin, TX quick enough such that I don't even remember
Florida. Austin, in my humble opinion, is one of the most gorgeous places in the country. The weather is
great and the people are friendly. If you ever feel like visiting the city, email me and I can show you around.

I am a person of many interests. Let's see, I have had classical piano training for about 11 or 12 years.
While I do not continue formal training, I have branched out to music composition. If you would like to
hear a few of my works, stop by http://www.mp3.com/chrishunter. On the more active side of my hobbies,
I enjoy power-kiting (large pull-you-o�-the-ground kites) and wakeskating/wakeboarding. The latter is my
most recent passion, but I'm o� to a quick start. In case you are curious, wakeskating is like skateboarding
on the water (i.e. you are not bound to the board like you are on a wakeboard). Thankfully, Austin is one
of the top places for water sports thanks to our ample natural lakes and mild climate. I am by no means a
great wakeskater or wakeboarder, but here are a few pictures of my adventures:

Figure 16.2: Wakeboarding on Lake Travis.
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Figure 16.3: Cold water requires a wetsuit.
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Figure 16.4: Colder water requires a drysuit.
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Figure 16.5: Let's not talk about it.



Chapter 17

Melodie Chu1

Figure 17.1

1This content is available online at <http://cnx.org/content/m11664/1.2/>.
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Aloha! My name is Melodie Chu and I'm a sophomore at Sid. I'm from Honolulu, Hawaii, and live about
10 min from the beach. I don't know how to surf, but I enjoy body boarding. Other than water sports,
I like running and photography. Incredibly, I saw snow for the �rst time last spring and tried my luck at
snowboarding. The experience was quite unlike body boarding, but I can't wait to make another snowman.
After graduating from Rice, I plan on getting a master's degree and working in industry.

Hawaii is a beautiful island. To see amazing views from around the island, visit
www.owlnet.rice.edu/∼mchu.
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Chapter 18

Mitali Banerjee1

Figure 18.1: Dressed in green lengha, traditional Indian dress.

1This content is available online at <http://cnx.org/content/m11665/1.1/>.
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Senior at Rice University double majoring in electrical engineering and anthropology, I have interests that
extend beyond physics and robotics to include such hobbies as reading, writing, sketching, playing piano, and
conversing with interesting people. My passions include chocolate, Steinbeck novels, skeeball, photography,
literary trivia, classic movies, black currant jam, and toe socks.

My forty minutes of fame: appearing on College Jeopardy! as a freshman. With the help of Shakespeare
and denim miniskirts, I met Alex Trebek while ful�lling one of the items on my things-to-do-before-twenty-
one list, a high school Quiz Bowl fanatic's dream!

JIBA!!! Baker might have its elegant commons, Hanszen might have its weenie loft, Lovett might have
a view of the medical center, Martel might have the accommodations of a �ve-star hotel, Sid Rich might
have half-level �oors and a friendly atmosphere, Wiess might have its team spirit and war pig, and Will Rice
might have... wait, what does Will Rice have?... However, Jones Sweet Jones, be it ever so humble, there's
no place like Jones. Even though I'm o�-campus I still consider it home base for this �nal year.

Brief academic history: as a chubby star, I went to John F. Ward Elementary, starting third grade the
�rst year it opened, transferring from Clear Lake City Elementary, where I started school in Houston after
moving from Long Island. Then I became a cardinal at Space Center Intermediate, which has since been
rebuilt in a new location on Saturn Lane. Graduated as a Class of 2000 falcon from Clear Lake High School,
I enjoy my time (entirely more than I should) at college.
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Chapter 19

Jordan Mayo1

If I don't have my head buried in a book or in front of a computer screen, I'm probably doing something for
ROTC. Originally from Houston, Texas, I am a junior Elec Major from Wiess College. I plan to graduate in
May '05 and will then �donate� a signi�cant portion of my life to the United States Navy. I enjoy camping,
and reading, but most of all I'm a pretty boring person.

Figure 19.1

1This content is available online at <http://cnx.org/content/m11666/1.2/>.
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