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Chapter 1

Overview of Multirate Signal Processing1

Digital transformation of the sampling rate of signals, or signal processing with di�erent sampling rates in
the system.

1.1 Applications

1. CD to DAT format change, for example.
2. oversampling converters; which reduce performance requirements on anti-aliasing or reconstruction

�lters
3. bandwidth of individual channels is much less than the overall bandwidth
4. Eyes and ears are not as sensitive to errors in higher frequency bands, so many coding schemes split

signals into di�erent frequency bands and quantize higher-frequency bands with much less precision.

1.2 Outline of Multirate DSP material

1. General Rate-changing System (Section 1.3: General Rate-Changing Procedure)
2. Integer-factor Interpolation and Decimation and Rational-factor Rate Changing (Chapter 2)
3. E�cient Multirate Filter Structures (Chapter 3)
4. Optimal Filter Design for Multirate Systems (Chapter 4)
5. Multi-stage Multirate Systems (Chapter 5)
6. Oversampling D/As (Chapter 6)
7. Perfect-Reconstruction Filter Banks and Quadrature Mirror Filters (Chapter 7)

1.3 General Rate-Changing Procedure

This procedure is motivated by an analog-based method: one conceptually simple method to change the
sampling rate is to simply convert a digital signal to an analog signal and resample it! (Figure 1.1)

1This content is available online at <http://cnx.org/content/m12777/1.3/>.
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2 CHAPTER 1. OVERVIEW OF MULTIRATE SIGNAL PROCESSING

Figure 1.1

Haa (Ω) =

 1 if |Ω| < π
T1

0 otherwise

haa (t) =
sin
(
π
T1
t
)

π
T1
t

Recall the ideal D/A:

x′a (t) =
∞∑

n=−∞
x0 (n)

sin
(
π(t−nT0)

T0

)
π(t−nT0)

T0

(1.1)

The problems with this scheme are:

1. A/D, D/A, �lters cost money
2. imperfections in these devices introduce errors

Digital implementation of rate-changing according to this formula has three problems:

1. In�nite sum: The solution is to truncate. Consider sinc (t) ' 0 for t < t1, t > t2: Then mT1−nT0 < t1
and mT1 − nT0 > t2 which implies

N1 = dmT1 − t2
T0

e

N2 = bmT1 − t1
T0

c

x1 (m) =
N2∑

n=N1

x0 (n) sincT ′ (mT1 − nT0)

note: This is essentially lowpass �lter design using a boxcar window: other �nite-length
�lter design methods could be used for this.

2. Lack of causality: The solution is to delay by max {|N |} samples. The mathematics of the analog
portions of this system can be implemented digitally.

x1 (m) = haa (t) ∗ x′a (t) |t=mT1

=
∫∞
−∞

∑∞
n=−∞ x0 (n)

sin
“
π(mT1−τ−nT0)

T0

”
π(mT1−τ−nT0)

T0

sin
“
πτ
T1

”
πτ
T1

dτ
(1.2)

x1 (m) =
∑∞
n=−∞ x0 (n)

sin( π
T ′ (mT1−nT0))
π
T ′ (mT1−nT0)

|T ′=max{T0,T1}

=
∑∞
n=−∞ x0 (n) sincT ′ (mT1 − nT0)

(1.3)

So we have an all-digital formula for exact digital-to-digital rate changing!
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3. Cost of computing sincT ′ (mT1 − nT0): The solution is to precompute the table of sinc (t) values.
However, if T1

T0
is not a rational fraction, an in�nite number of samples will be needed, so some

approximation will have to be tolerated.

note: Rate transformation of any rate to any other rate can be accomplished digitally with
arbitrary precision (if some delay is acceptable). This method is used in practice in many
cases. We will examine a number of special cases and computational improvements, but in
some sense everything that follows are details; the above idea is the central idea in multirate
signal processing.

Useful references for the traditional material (everything except PRFBs) are Crochiere and Rabiner,
1981 [1] and Crochiere and Rabiner, 1983 [2]. A more recent tutorial is Vaidyanathan [4]; see also Rioul and
Vetterli [3]. References to most of the original papers can be found in these tutorials.
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Chapter 2

Interpolation, Decimation, and Rate
Changing by Integer Fractions1

2.1 Interpolation: by an integer factor L

Interpolation means increasing the sampling rate, or �lling in in-between samples. Equivalent to sampling
a bandlimited analog signal L times faster. For the ideal interpolator,

X1 (ω) =

 X0 (Lω) if |ω| < π
L

0 if π
L ≤ |ω| ≤ π

(2.1)

We wish to accomplish this digitally. Consider (2.2) and Figure 2.1.

y (m) =

 X0

(
m
L

)
if m = {0,± (L) ,± (2L) , . . . }

0 otherwise
(2.2)

Figure 2.1

1This content is available online at <http://cnx.org/content/m12801/1.3/>.
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CHAPTER 2. INTERPOLATION, DECIMATION, AND RATE CHANGING

BY INTEGER FRACTIONS

The DTFT of y (m) is

Y (ω) =
∑∞
m=−ω y (m) e−(iωm)

=
∑∞
n=−∞ x0 (n) e−(iωLn)

=
∑∞
n=−∞ x (n) e−(iωLn)

= X0 (ωL)

(2.3)

SinceX0 (ω′) is periodic with a period of 2π,X0 (Lω) = Y (ω) is periodic with a period of 2π
L (see Figure 2.2).

Figure 2.2

By inserting zero samples between the samples of x0 (n), we obtain a signal with a scaled frequency
response that simply replicates X0 (ω′) L times over a 2π interval!

Obviously, the desired x1 (m) can be obtained simply by lowpass �ltering y (m) to remove the replicas.

x1 (m) = y (m) ∗ hL (m) (2.4)

Given

HL (m) =

 1 if |ω| < π
L

0 if π
L ≤ |ω| ≤ π

In practice, a �nite-length lowpass �lter is designed using any of the methods studied so far (Figure 2.3
(Interpolator Block Diagram)).

Interpolator Block Diagram

Figure 2.3

2.2 Decimation: sampling rate reduction (by an integer factor M)

Let y (m) = x0 (Lm) (Figure 2.4)



7

Figure 2.4

That is, keep only every Lth sample (Figure 2.5)

Figure 2.5

In frequency (DTFT):

Y (ω) =
∑∞
m=−∞ y (m) e−(iωm)

=
∑∞
m=−∞ x0 (Mm) e−(iωm)

=
∑∞
n=−∞ x0 (n)

∑∞
k=−∞ δ (n−Mk) e−(iω n

M )|n=Mm

=
∑∞
n=−∞ x0 (n)

∑∞
k=−∞ δ (n−Mk) e−(iω′n)|ω ′= ω

M

= DTFT [x0 (n)] ∗DTFT [
∑
δ (n−Mk)]

(2.5)

Now DTFT [
∑
δ (n−Mk)] = 2π

∑M−1
k=0 X (k) δ

(
ω′ − 2πk

M

)
for |ω| < π as shown in homework #1 , where

X (k) is the DFT of one period of the periodic sequence. In this case, X (k) = 1 for k ∈ {0, 1, . . . ,M − 1}
and DTFT [

∑
δ (n−Mk)] = 2π

∑M−1
k=0 δ

(
ω′ − 2πk

M

)
.

DTFT [x0 (n)] ∗DTFT [
∑
δ (n−Mk)] = X0 (ω′) ∗ 2π

∑M−1
k=0 δ

(
ω′ − 2πk

M

)
= 1

2π

∫ π
−πX0 (µ′)

(
2π
∑M−1
k=0 δ

(
ω′ − µ′ − 2πk

M

))
dµ ′

=
∑M−1
k=0 X0

(
ω′ − 2πk

M

) (2.6)
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BY INTEGER FRACTIONS

so Y (ω) =
∑M−1
k=0 X0

(
ω
M −

2πk
M

)
i.e., we get digital aliasing.(Figure 2.6)

Figure 2.6

Usually, we prefer not to have aliasing, so the downsampler is preceded by a lowpass �lter to remove all
frequency components above |ω| < π

M (Figure 2.7).

Figure 2.7

2.3 Rate-Changing by a Rational Fraction L/M

This is easily accomplished by interpolating by a factor of L, then decimating by a factor ofM (Figure 2.8).

Figure 2.8
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The two lowpass �lters can be combined into one LP �lter with the lower cuto�,

H (ω) =

 1 if |ω| < π
max{L,M}

0 if π
max{L,M} ≤ |ω| ≤ π

Obviously, the computational complexity and simplicity of implementation will depend on L
M : 2/3 will be

easier to implement than 1061/1060!
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BY INTEGER FRACTIONS



Chapter 3

E�cient Multirate Filter Structures1

Rate-changing appears expensive computationally, since for both decimation and interpolation the lowpass
�lter is implemented at the higher rate. However, this is not necessary.

3.1 Interpolation

For the interpolator, most of the samples in the upsampled signal are zero, and thus require no computation.
(Figure 3.1)

Figure 3.1

1This content is available online at <http://cnx.org/content/m12800/1.3/>.
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12 CHAPTER 3. EFFICIENT MULTIRATE FILTER STRUCTURES

For m = LbmL c+mmodL and p = mmodL,

x1 (m) =
∑N2
m=N1

hLp (m) y (m)

=
∑N2

L

k=
N1
L

gp (k)x0

(
bmL c − k

) (3.1)

gp (n) = h (Ln+ p)

Pictorially, this can be represented as in Figure 3.2.

Figure 3.2

These are called polyphase structures, and the gp (n) are called polyphase �lters.
Computational cost
If h (m) is a length-N �lter:

• No simpli�cation: N
T1

= LN
T0

computations
sec

• Polyphase structure:
(
L L
N

1
T o0

)
computations

sec = N
T0

where L is the number of �lters, NL is the taps/�lter,

and 1
T0

is the rate.

Thus we save a factor of L by not being dumb.

note: For a given precision, N is proportional to L, (why?), so the computational cost does
increase with the interpolation rate.

Question: Can similar computational savings be obtained with IIR structures?

3.2 E�cient Decimation Structures

We only want every Mth output, so we compute only the outputs of interest. (Figure 3.3 (Polyphase
Decimation Structure))

x1 (m) =
N2∑
k=N1

x0 (Lm− k)h (k)
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Polyphase Decimation Structure

Figure 3.3

The decimation structures are �ow-graph reversals of the interpolation structure. Although direct imple-
mentation of the full �lter for every Mth sample is obvious and straightforward, these polyphase structures
give some idea as to how one might evenly partition the computation over M cycles.

3.3 E�cient L/M rate changers

Interpolate by L and decimate by M (Figure 3.4).

Figure 3.4

Combine the lowpass �lters (Figure 3.5).

Figure 3.5

We can couple the lowpass �lter either to the interpolator or the decimator to implement it e�ciently
(Figure 3.6).
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Figure 3.6

Of course we only compute the polyphase �lter output selected by the decimator.
Computational Cost
Every T1 = M

L T0seconds, compute one polyphase �lter of length N
L , or

N
L

T1
=

N
L

M
L T0

=
N

MT0

multiplies
second

However, note that N is proportional to max {L,M}.



Chapter 4

Filter Design for Multirate Systems1

The �lter design techniques2 learned earlier can be applied to the design of �lters in multirate systems, with
a few twists.

Example 4.1
Design a factor-of-L interpolator for use in a CD player, we might wish that the out-of-band error
be below the least signi�cant bit, or 96dB down, and < 0.05% error in the passband, so these
speci�cations could be used for optimal L∞ �lter design.

In a CD player, the sampling rate is 44.1kHz, corresponding to a Nyquist frequency of 22.05kHz, but
the sampled signal is bandlimited to 20kHz. This leaves a small transition band, from 20kHz to 24.1kHz.
However, note that in any case where the signal spectrum is zero over some band, this introduces other zero
bands in the scaled, replicated spectrum (Figure 4.1).

Figure 4.1

So we need only control the �lter response in the stopbands over the frequency regions with nonzero
energy. (Figure 4.2)

1This content is available online at <http://cnx.org/content/m12773/1.3/>.
2Digital Filter Design <http://cnx.org/content/col10285/latest/>
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16 CHAPTER 4. FILTER DESIGN FOR MULTIRATE SYSTEMS

Figure 4.2

The extra "don't care" bands allow a given set of speci�cations to be satis�ed with a shorter-length �lter.

4.1 Direct polyphase �lter design

Note that in an integer-factor interpolator, each set of output samples x1 (Ln+ p), p = {0, 1, . . . , L− 1},
is created by a di�erent polyphase �lter gp (n), which has no interaction with the other polyphase �lters
except in that they each interpolate the same signal. We can thus treat the design of each polyphase �lter
independently, as an N

L -length �lter design problem. (Figure 4.3)

Figure 4.3

Each gp (n) produces samples x1 (Ln+ p) = x0

(
n+ p

L

)
, where n+ p

L is not an integer. That is, gp (n) is
to produce an output signal (at a T0 rate) that is x0 (n) time-advanced by a non-integer advance p

L .
The desired response of this polyphase �lter is thus

HDp (ω) = e
iωp
L

for |ω| ≤ π, an all-pass �lter with a linear, non-integer, phase. Each polyphase �lter can be designed
independently to approximate this response according to any of the design criteria developed so far.

Exercise 4.1 (Solution on p. 18.)

What should the polyphase �lter for p = 0 be?

Example 4.2: Least-squares Polyphase Filter Design

Deterministic x(n): Minimize
∞∑

n=−∞
(|x (n)− xd (n) |)2

Given x (n) = x (n)∗h (n) and xd (n) = x (n)∗hd (n). Using Parseval's theorem, this becomes

min
{∑∞

n=−∞ (|x (n)− xd (n) |)2
}

= min
{

1
2π

∫ π
−π (|X (ω)H (ω)−X (ω)Hd (ω) |)2dω

}
= min

{
1
2π

∫ π
−π |H (ω)−Hd (ω) |(|X (ω) |)2dω

} (4.1)
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This is simply weighted least squares design, with (|X (ω) |)2 as the weighting function.
stochastic X(ω):

min
{
E
[
(|x (n)− xd (n) |)2

]}
= E

[
(|x (n) ∗ (h (n)− hd (n)) |)2

]
= min

{
1
2π

∫ π
−π (|Hd (ω)−H (ω) |)2Sxx (ω) dω

} (4.2)

Sxx (ω) is the power spectral density of x.

Sxx (ω) = DTFT [rxx (k)]

rxx (k) = E
[
x (k + l)x (l)

]
Again, a weighted least squares �lter design problem.

Problem
Is it feasible to use IIR polyphase �lters?

Solution
The recursive feedback of previous outputs means that portions of each IIR polyphase �lter must
be computed for every input sample; this usually makes IIR �lters more expensive than FIR im-
plementations.
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 16)
A delta function: h0 (n) = δ (n′)



Chapter 5

Multistage Multirate Systems1

Multistage multirate systems are often more e�cient. Suppose one wishes to decimate a signal by an integer
factor M , where M is a composite integer M = M1M2 . . .Mp =

∏p
i=1Mi. A decimator can be implemented

in a multistage fashion by �rst decimating by a factor M1 , then decimating this signal by a factor M2 , etc.
(Figure 5.1 (Multistage decimator))

Multistage decimator

Figure 5.1

Multistage implementations are of signi�cant practical interest only if they o�er signi�cant computational
savings. In fact, they often do!

The computational cost of a single-stage interpolator is:

N

MT0

taps
sec

The computational cost of a multistage interpolator is:

N1

M1T0
+

N2

M1M2T0
+ · · ·+ Np

MT0

1This content is available online at <http://cnx.org/content/m12803/1.3/>.
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20 CHAPTER 5. MULTISTAGE MULTIRATE SYSTEMS

The �rst term is the most signi�cant, since the rate is highest. Since Ni ∝ Mi for a lowpass �lter, it is not
immediately clear that a multistage system should require less computation. However, the multistage struc-
ture relaxes the requirements on the �lters, which reduces their length and makes the overall computation
less.

5.1 Filter design for Multi-stage Structures

Ostensibly, the �rst-stage �lter must be a lowpass �lter with a cuto� at π
M1

, to prevent aliasing after the
downsampler. However, note that aliasing outside the �nal overall passband |ω| < π

M is of no concern, since
it will be removed by later stages. We only need prevent aliasing into the band |ω| < π

M ; thus we need only

specify the passband over the interval |ω| < π
M , and the stopband over the intervals ω ∈

[
2πk
M1
− π

M , 2πk
M1

+ π
M

]
,

for k ∈ {1, . . . ,M − 1}. (Figure 5.2)

Figure 5.2

Of course, we don't want gain in the transition bands, since this would need to be suppressed later,
but otherwise we don't care about the response in those regions. Since the transition bands are so large,
the required �lter turns out to be quite short. The �nal stage has no "don't care" regions; however, it is
operating at a low rate, so it is relatively unimportant if the �nal �lter turns out to be rather long!

5.2 L-in�nity Tolerances on the Pass and Stopbands

The overall response is a cascade of multiple �lters, so the worst-case overall passband deviation, assuming
all the peaks just happen to line up, is

1 + δpov =
p∏
i=1

1 + δpi

1− δpov =
p∏
i=1

1− δpi

So one could choose all �lters to have equal speci�cations and require for each-stage �lter. For δpov � 1,

1 + δ+pi ≤
p
√

1 + δpov ' 1 + p−1δpov

1− δ−pi ≤
p
√

1− δpov ' 1− p−1δpov

Alternatively, one can design later stages (at lower computation rates) to compensate for the passband ripple
in earlier stages to achieve exceptionally accurate passband response.

δs remains essentially unchanged, since the worst-case scenario is for the error to alias into the passband
and undergo no further suppression in subsequent stages.
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5.3 Interpolation

Interpolation is the �ow-graph reversal of the multi-stage decimator. The �rst stage has a cuto� at π
L

(Figure 5.3):

Figure 5.3

However, all subsequent stages have large bands without signal energy, due to the earlier stages (Fig-
ure 5.4):

Figure 5.4

The order of the �lters is reversed, but otherwise the �lters are identical to the decimator �lters.

5.4 E�cient Narrowband Lowpass Filtering

A very narrow lowpass �lter requires a very long FIR �lter to achieve reasonable resolution in the frequency
response. However, were the input sampled at a lower rate, the cuto� frequency would be correspondingly
higher, and the �lter could be shorter!

The transition band is also broader, which helps as well. Thus, Figure 5.5 can be implemented as
Figure 5.6.
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Figure 5.5

Figure 5.6

and in practice the inner lowpass �lter can be coupled to the decimator or interpolator �lters. If the dec-
imator and interpolator are implemented as multistage structures, the overall algorithm can be dramatically
more e�cient than direct implementation!



Chapter 6

DFT-Based Filterbanks1

One common application of multirate processing arises in multirate, multi-channel �lter banks (Figure 6.1).

Figure 6.1

One application is separating frequency-division-multiplexed channels. If the �lters are narrowband, the
output channels can be decimated without signi�cant aliasing.

Such structures are especially attractive when they can be implemented e�ciently. For example, if

the �lters are simply frequency modulated (by e−(i 2πkL n)) versions of each other, they can be e�ciently
implemented using FFTs!

Furthermore, there are classes of �lters called perfect reconstruction �lters which are of �nite length
but from which the signal can be reconstructed exactly (using all M channels), even though the output of
each channel experiences aliasing in the decimation step. These types of �lterbanks have received a lot of
research attention, culminating in wavelet theory and techniques.

6.1 Uniform DFT Filter Banks

Suppose we wish to split a digital input signal into N frequency bands, uniformly spaced at center frequencies

ωk = 2πk
N , for 0 ≤ k ≤ N − 1. Consider also a lowpass �lter h (n), H (ω) '

 1 if |ω| < π
N

0 otherwise
. Bandpass

1This content is available online at <http://cnx.org/content/m12771/1.3/>.
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24 CHAPTER 6. DFT-BASED FILTERBANKS

�lters can be constructed which have the frequency response

Hk (ω) = H

(
ω +

2πk
N

)
from

hk (n) = h (n) e−(i 2πknN )

The output of the kth bandpass �lter is simply (assume h (n) are FIR)

x (n) ∗ hk (n) =
∑M−1
m=0 x (n−m)h (m) e−(i 2πkmN )

= yk (n)
(6.1)

This looks suspiciously like a DFT, except that M 6= N , in general. However, if we �x M =
N , then we can compute all yk (n) outputs simultaneously using an FFT of x (n−m)h (m): The
kth FFT frequency output = yk (n)! So the cost of computing all of these �lter banks outputs is O [N logN ],
rather than N2, per a given n. This is very useful for e�cient implementation of transmultiplexors (FDM
to TDM).

Exercise 6.1 (Solution on p. 25.)

How would we implement this e�ciently if we wanted to decimate the individual channels yk (n)
by a factor of N , to their approximate Nyquist bandwidth?

Exercise 6.2 (Solution on p. 25.)

Do you expect signi�cant aliasing? If so, how do you propose to combat it? E�ciently?

Exercise 6.3 (Solution on p. 25.)

How might one convert from N input channels into an FDM signal e�ciently? (Figure 6.2)

Figure 6.2

note: Such systems are used throughout the telephone system, satellite communication links,
etc.
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Solutions to Exercises in Chapter 6

Solution to Exercise 6.1 (p. 24)
Simply step by N time samples between FFTs.
Solution to Exercise 6.2 (p. 24)
Aliasing should be expected. There are two ways to reduce it:

1. Decimate by less ("oversample" the individual channels) such as decimating by a factor of N2 . This is
e�ciently done by time-stepping by the appropriate factor.

2. Design better (and thus longer) �lters, say of length LN . These can be e�ciently computed by
producing only N (every Lth) FFT outputs using simpli�ed FFTs.

Solution to Exercise 6.3 (p. 24)
Use an FFT and an inverse FFT for the modulation (TDM to FDM) and demodulation (FDM to TDM),
respectively.
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Chapter 7

Quadrature Mirror Filterbanks (QMF)1

Although the DFT �lterbanks are widely used, there is a problem with aliasing in the decimated channels. At
�rst glance, one might think that this is an insurmountable problem and must simply be accepted. Clearly,
with FIR �lters and maximal decimation, aliasing will occur. However, a simple example will show that it
is possible to exactly cancel out aliasing under certain conditions!!!

Consider the following trivial �lterbank system, with two channels. (Figure 7.1)

Figure 7.1

Note
^
x (n) = x (n) with no error whatsoever, although clearly aliasing occurs in both channels! Note

that the overall data rate is still the Nyquist rate, so there are clearly enough degrees of freedom available
to reconstruct the data, if the �lterbank is designed carefully. However, this isn't splitting the data into
separate frequency bands, so one questions whether something other than this trivial example could work.

Let's consider a general two-channel �lterbank, and try to determine conditions under which aliasing can
be cancelled, and the signal can be reconstructed perfectly (Figure 7.2).

Figure 7.2

1This content is available online at <http://cnx.org/content/m12770/1.3/>.
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Let's derive
^
x (n), using z-transforms, in terms of the components of this system. Recall (Figure 7.3) is

equivalent to
Y (z) = H (z)X (z)

Y (ω) = H (ω)X (ω)

Figure 7.3

and note that (Figure 7.4) is equivalent to

Y (z) =
∞∑

m=−∞
x (m) z−(Lm) = x

(
zL
)

Y (ω) = X (Lω)

Figure 7.4

and (Figure 7.5) is equivalent to

Y (z) =
1
M

M−1∑
k=0

X
(
z

1
MW k

M

)

Y (ω) =
1
M

M−1∑
k=0

X

(
ω

M
+

2πk
M

)

Figure 7.5
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Y (z) is derived in the downsampler as follows:

Y (z) =
∞∑

m=−∞
x (Mm) z−m

Let n = Mm and m = n
M , then

Y (z) =
∞∑

n=−∞
x (n)

∞∑
p=−∞

δ (n−Mp) z−
n
M

Now

x (n)
∑∞
p=−∞ δ (n−Mp) = IDFT

[
x (ω) ∗ 2π

M

∑M−1
k=0 δ

(
ω − 2πk

M

)]
= IDFT

[
2π
M

∑M−1
k=0 X

(
ω − 2πk

M

)]
= 1

M

∑M−1
k=0 X (n)W−nkM |

W M=e−
i2π
M

(7.1)

so

Y (z) =
∑∞
n=−∞

(
1
M

∑M−1
k=0 x (n)W−nkM

)
z−

n
M

= 1
M

∑M−1
k=0 x (n)

(
W+k
M z

1
M

)−n
= 1

M

∑M−1
k=0 X

(
z

1
MW k

M

) (7.2)

Armed with these results, let's determine
^
X (z)⇔^

x (n). (Figure 7.6)

Figure 7.6

Note
U1 (z) = X (z)H0 (z)

U2 (z) =
1
2

1∑
k=0

X
(
z

1
2 e−

i2πk
2

)
H0

(
z

1
2 e−(iπk)

)
=

1
2
X
(
z

1
2

)
H0

(
z

1
2

)
+

1
2
X
(
−z 1

2

)
H0

(
−z 1

2

)
U3 (z) =

1
2
X (z)H0 (z) +

1
2
X (−z)H0 (−z)

U4 (z) =
1
2
F0 (z)H0 (z)X (z) +

1
2
F0 (z)H0 (−z)X (−z)

and

L4 (z) =
1
2
F1 (z)H1 (z)X (z) +

1
2
F1 (z)H1 (−z)X (−z) =

1
2
F1 (z)H1 (z)X (z) +

1
2
F1 (z)H1 (−z)X (−z)
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Finally then,

^

X (z) = U4 (z)+L4 (z) = 1
2
(H0 (z) F0 (z) X (z) + H0 (−z) F0 (z) X (−z) + H1 (z) F1 (z) X (z) + H1 (−z) F1 (z) X (−z)) =

1
2
(H0 (z) F0 (z) + H1 (z) F1 (z)) X (z) + 1

2
(H0 (−z) F0 (z) + H1 (−z) F1 (z)) X (−z)

(7.3)

Note that the X (−z)→ X (ω + π) corresponds to the aliasing terms!
There are four things we would like to have:

1. No aliasing distortion
2. No phase distortion (overall linear phase → simple time delay)
3. No amplitude distortion
4. FIR �lters

No aliasing distortion

By insisting that H0 (−z)F0 (z) +H1 (−z)F1 (z) = 0, the X (−z) component of
^
X (z) can be removed, and

all aliasing will be eliminated! There may be many choices for H0, H1, F0, F1 that eliminate aliasing, but
most research has focused on the choice

F0 (z) = H1 (−z) : F1 (z) = −H0 (−z)

We will consider only this choice in the following discussion.
Phase distortion

The transfer function of the �lter bank, with aliasing cancelled, becomes T (z) =
1
2 (H0 (z)F0 (z) +H1 (z)F1 (z)), which with the above choice becomes T (z) =
1
2 (H0 (z)H1 (−z)−H1 (z)H0 (−z)). We would like T (z) to correspond to a linear-phase �lter to
eliminate phase distortion: Call

P (z) = H0 (z)H1 (−z)
Note that

T (z) =
1
2

(P (z)− P (−z))

Note that P (−z) ⇔ (−1)np (n), and that if p (n) is a linear-phase �lter, (−1)np (n) is also (perhaps of the
opposite symmetry). Also note that the sum of two linear-phase �lters of the same symmetry (i.e., length of
p (n) must be odd) is also linear phase, so if p (n) is an odd-length linear-phase �lter, there will be no phase
distortion. Also note that

Z−1 (p (z)− p (−z)) = p (n)− (−1)np (n) =

 2p (n) if n is odd

0 if n is even

means p (n) = 0, when n is even. If we choose h0 (n) and h1 (n) to be linear phase, p (n) will also be linear
phase. Thus by choosing h0 (n) and h1 (n) to be FIR linear phase, we eliminate phase distortion and get
FIR �lters as well (condition 4).
Amplitude distortion
Assuming aliasing cancellation and elimination of phase distortion, we might also desire no amplitude
distortion ( |T (ω) | = 1). All of these conditions require

T (z) =
1
2

(H0 (z)H1 (−z)−H1 (z)H0 (−z)) = cz−D

where c is some constant and D is a linear phase delay. c = 1 for |T (ω) | = 1. It can be shown by considering
that the following can be satis�ed!

T (z) = P (z)− P (−z) = 2cz−D ⇔

 2p (z) = 2cδ (n−D) if n is odd

p (n) = anything if n is even
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Thus we require

P (z) =
N ′∑
n=0

p (2n) z−(2n) + z−D

Any factorization of a P (z) of this form, P (z) = A (z)B (z) can lead to a Perfect Reconstruction �lter bank
of the form

H0 (z) = A (z)

H1 (−z) = B (z)

[This result is attributed to Vetterli.] A well-known special case (Smith and Barnwell)

H1 (z) = −
(
z−(2D)+1H0

(
−z−1

))
Design techniques exist for optimally choosing the coe�cients of these �lters, under all of these constraints.

Quadrature Mirror Filters

H1 (z) = H0 (−z)⇔ H1 (ω) = H0 (π + ω) = H∗0 (π − ω) (7.4)

for real-valued �lters. The frequency response is "mirrored" around ω = π
2 . This choice leads to T (z) =

H0
2 (z)−H0

2 (−z): it can be shown that this can be a perfect reconstruction system only if

H0 (z) = c0z
−(2n0) + c1z

−(2n1)

which isn't a very �exible choice of �lters, and not a very good lowpass! The Smith and Barnwell approach
is more commonly used today.
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Chapter 8

M-Channel Filter Banks1

The theory of M-band QMFBs and PRFBs has been investigated recently. Some results are available.

8.1 Tree-structured �lter banks

Once we have a two-band PRFB, we can continue to split the subbands with similar systems! (Figure 8.1)

Figure 8.1

Thus we can recursively decompose a signal into 2p bands, each sampled at 2pth the rate of the original
signal, and reconstruct exactly! Due to the tree structure, this can be quite e�cient, and in fact close to the
e�ciency of an FFT �lter bank, which does not have perfect reconstruction.

8.2 Wavelet decomposition

We need not split both the upper-frequency and lower-frequency bands identically. (Figure 8.2)

1This content is available online at <http://cnx.org/content/m12775/1.3/>.
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Figure 8.2

This is good for image coding, because the energy tends to be distributed such that after a wavelet
decomposition, each band has roughly equal energy.
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