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Chapter 1

Introduction to Methods for Voice

Conversion1

Speech processing is currently a key focus for many researchers in the area of DSP. In this project, we
focus on the topic of voice conversion, which involves producing the words from one person (the �source
speaker�) in the voice of another person (the �target speaker�).

We can do this using DSP because every person's distinct vocal qualities are essentially caused by their
vocal tract, which forms a transfer function between the input excitation and the output signal that we hear.
We can isolate this transfer function through methods such as cepstral analysis and linear prediction
coding, which we describe in detail. The second major identi�er between di�erent speakers is the pitch
range of their words. We can change the pitch through methods such as the PSOLA, which we also describe.

The vocal tract transfer function and pitch range are di�erent for di�erent sounds. Thus, in synthesizing
a phrase, we must �rst break the signal into smaller segments and analyze each individually. Our windowing
algorithm divides the signal based on breaks between di�erent syllables and words. We then use functions
from the Praat program developed by Paul Boersma and David Weenink of the University of Amsterdam
(www.praat.org2 ) to perform the analysis and synthesis.

Voice conversion has numerous applications, such as the areas of foreign language training and movie
dubbing. It is closely related to the process of speech synthesis, which usually refers to converting text
into spoken language, and has many applications, especially relating to assistance for the blind and deaf.
Other areas in speech processing, such as speaker veri�cation, have applications in security. All of these
di�erent types of speech signal processing involve related methods that we investigated through this project,
especially cepstral analysis, linear prediction coding, and the PSOLA method.

Project Contents

• Introduction
• The Source Filter Model of Speech (Chapter 2)
• Deconvolution Basics (Chapter 3)
• The Cepstrum (Chapter 4)
• Linear Predictive Coding (Chapter 5)
• Changing Pitch with PSOLA (Chapter 6)
• Signal Windowing (Chapter 7)
• Using Praat (Chapter 8)
• MATALB and Praat Code (Chapter 9)
• Conclusion (Chapter 10)

1This content is available online at <http://cnx.org/content/m12479/1.4/>.
2http://cnx.org/content/m12479/latest/www.praat.org
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2 CHAPTER 1. INTRODUCTION TO METHODS FOR VOICE CONVERSION

Interactive Demonstration

This is an unsupported media type. To view, please see
http://cnx.org/content/m12479/latest/project_demo.swf

Figure 1.1: This comic is compliments of Brian VanOsdol. Go here for more BoyDog Comics.3

3http://www.owlnet.rice.edu/∼vanosdol/gallery/boy_dog_03.html



Chapter 2

The Source Filter Model of Speech1

2.1 The Make-Up of Speech

The components of speech are the words and the voice.
Every phrase is a union of these two components - they are the foundations of the spoken language. One

or the other does not mean much without its conterpart. Words without voice lack intonation, so they have
no meaning. Voice without words is devoid of structure and cannot possibly transfer information. Only the
fusion of the two can claim to be such a thing as speech.

In biology, the components of speech are produced in di�erent organs. To speak, air is �rst released over
the vocal cords, which expand and contract to give the air column structure. This is the biological concept
of words. The words are then passed through the vocal tract where they are shaped, giving them intonation.
This shaping of the words is the biological concept of voice. Such a biological process can be easily modeled.

So far, we have determined that speech is a collection of words shaped by voice. Here, we present a model
of this. In this model, the words are called the source. Since the words are modi�ed by voice, we say the
source passes through a �lter. This brings us to the source �lter model of speech.

De�nition 2.1: Source Filter Model

The source �lter model is a model of speech where the spoken word is comprised of a source
component originating from the vocal cords which is then shaped by a �lter immitating the e�ect
of the vocal tract.
Example

The Source Filter Model

Figure 2.1: A simple model of speech.

1This content is available online at <http://cnx.org/content/m12470/1.5/>.
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4 CHAPTER 2. THE SOURCE FILTER MODEL OF SPEECH

This model has possibility for application in many di�erent �elds. We will focus on the topic of signal
processing here.

2.2 Signal Processing Considerations

The source �lter model can easily be extended to signal processing. The source is simply a signal x (t). This
signal is the input to the �lter and is called the excitation signal since it excites the vocal tract. The
vocal tract is a �lter similar to all �lters we have studied so far: it is a linear time-invariant system with
impulse response h (t). This is sometimes called the transfer function of speech since it is what transfers
the excitation signal to speech - it adds voice to words. Speech is the output y (t) of the source signal x (t)
passed through the �lter with impulse response h (t). Thus, the output is given by y (t) = x (t) ∗ h (t). This
is depicted below:

Signal Processing Representation of the Source Filter Model

Figure 2.2: An input x(t) to a �lter with impulse response h(t) yields the convolution of the two.

Since speech is simply a convolution of a source signal x (t) with a �lter's input response h (t), we
can analyze these signals to determine the characeristics of a speech signal y (t). However, we must �rst
deconvolve these signals so that they can be processed individually. This topic is explored in the next section
covering deconvolution (Chapter 3).

2.3 References

Huckvale, Mark. "Lecture 8: Source-Filter Model of Speech Production." B214: Phonetic Science: Acoustics
of Speech and Hearing. University College London. http://www.phon.ucl.ac.uk/courses/spsci/b214/lect1-
8.pdf2 .

Johnson, Don. Connexions module m0049: Modeling the Speech Signal3.

2http://www.phon.ucl.ac.uk/courses/spsci/b214/lect1-8.pdf
3"Modeling the Speech Signal" <http://cnx.org/content/m0049/latest/>



Chapter 3

Deconvolution Basics1

3.1 De�nition

Deconvolution is exactly what it sounds like: the undoing of convolution. This means that instead of mixing
two signals like in convolution, we are isolating them. This is useful for analyzing the characteristics of the
input signal and the impulse response when only given the output of the system. For example, when given
a convolved signal y (t) = x (t) ∗ h (t), the system should isolate the components x (t) and h (t) so that we
may study each individually. An ideal deconvolution system is shown below:

Ideal Deconvolution System

Figure 3.1: A system that performs deconvolution separates two convolved signals.

3.2 Approach

Instead of producing one system that outputs both the convolved signals, it will be much easier for our
purposes to consider separate systems that output one of the signals at a time. Thus, we desire the following
systems:

1This content is available online at <http://cnx.org/content/m12472/1.5/>.
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6 CHAPTER 3. DECONVOLUTION BASICS

Separate Systems

Figure 3.2: The process of deconvolution is facilitated by splitting the process into separate systems.

What it looks like each of these systems is doing is annihilating the undesired signal. This is, in fact,
exactly correct. This system is a homomorphic �lter.

De�nition 3.1: Homomorphic Filter

A homomorphic �lter is a system which accepts a signal composed of two components and
returns the signal with one of the components removed.

A frequently applied method is to convert the convolution of two signals into a sum, and then implement
a homomorphic �lter to remove one of the signal components. This is the basis for cepstral analysis, so we
will cover this later. A diagram of this method follows:

A Possible Deconvolution Method

Figure 3.3: This is the basic deconvolution method implemented in cepstral analysis.

The isolation of two convolved signals depends greatly on the characteristics of both signals. Thus, a
wide variety of deconvolution methods exist. Since this is a study on speech analysis, we will cover only
the deconvolution methods which focus the signals of the source �lter model: the excitation signal and the
impulse response of the vocal tract �lter.

3.3 Deconvolution Methods for Speech Analysis

A few deconvolution methods that we will use in speech analysis are:
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• Cepstral Analysis (Chapter 4)
• Linear Predictive Coding (Chapter 5)

We study the �rst of these in the next area covering the cepstrum (Chapter 4).

3.4 References

Rabiner, Lawrence R, and Schafer, Ronald W. Digital Processing of Speech Signals. Bell Laboratories, 1978.
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Chapter 4

Cepstrum1

4.1 The Cepstrum Domain

The cepstrum is a common transform used to gain information from a person's speech signal. It can be
used to separate the excitation signal (which contains the words and the pitch) and the transfer function
(which contains the voice quality). It is similar to a channel vocoder or LPC (Chapter 5) in its applications,
but using the cepstrum as a spectral analyzer is a completely di�erent process. (It is also worth pointing
out that cepstrum is �spectrum� with the �rst syllable �ipped. . . we will encounter several words with this
naming convention.) Before describing the details of the cepstrum, a little background in speech models is
needed.

4.2 Background Information

Within human speech, there are two methods employed to form our words. These sounds are categorized
into the voiced and unvoiced. For the voiced part, our throat acts like a transfer function. The vowel
sounds are included in this category. The unvoiced part describes the �noisy� sounds of speech. These are
the sounds made with our mouth and tongue (as opposed to our throat), such as the �f� sound, the �s� sound,
and the "th" sound. This way of looking at speech as two seperable parts is known as the Source Filter
Model of Speech (Chapter 2) or the Linear Separable Equivalent Circuit Model. Mathematically, they are
described in the time domain as:

x (t) =

t∫
0

g (τ)h (t− τ) dτ

Since convolution in the time domain is multiplication in the frequency domain, this become:

X (ω) = G (ω)H (ω)

There is a mathematical process with which we are familiar that can separate two multiplied variables.
If we take the log of the magnitude of both sides of this transform, we reach:

log|X (ω) | = log|G (ω) |+ log|H (ω) |

Computing the inverse Fourier Transform of this equation brings us into the realm of "quefrency."

F−1log|X (ω) | = F−1log|G (ω) |+ F−1log|H (ω) |
1This content is available online at <http://cnx.org/content/m12469/1.4/>.
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10 CHAPTER 4. CEPSTRUM

Quefrency is the x-axis of the cepstrum. Its units are in time. Typically the areas of intest are from 0ms
to around 10ms. See �gure 1 below for the full process.
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Cepstrum Block Diagram

Figure 4.1: This is the process used to compute the cepstrum
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4.3 The Use of the Cepstrum

We have now seen the process by which we calculate the cepstrum of a signal. It is now time to dicuss
some the uses of the cepstrum. Often after having calculated the cepstrum, we will want to "lifter" the
signal. (Once again the naming scheme has been used. This time on the word �lter) When we lifter, we are
seperating the transfer function (the spectral envelope) and the excitation signal. The transfer function
usually appears as a steep slant at the beginning of the plot. The excitation appears as periodic peaks
occurring after around 5ms. Below we can see examples of several cepstrum plots. Note how the female
voice has peaks occurring more often then in the male's cepstrum. This is due to the higher pitch of a female
voice.

Cepstrum Samples

Figure 4.2: These are vowel samples of a male and female. The x-axis is in milliseconds and the y-axis
is the magnitude. The sounds "aah" and "eee" for both speakers are shown.

4.4 Reference

Furui, Sadaoki. Digital Speech Processing, Synthesis, and Recognition. Marcel Deccer, Inc.: New York.
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Gold, Ben and Nelson Morgan. Speech and Audio Signal Processing: Processing and Perception of
Speech and Music. John Wiley and Sons, Inc: New York. 2000.
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Chapter 5

Linear Predictive Coding in Voice

Conversion1

5.1 Background on Linear Predictive Coding

Linear Predictive Coding (or �LPC�) is a method of predicting a sample of a speech signal based on
several previous samples. Similar to the method employed by the cepstrum (Chapter 4), we can use the
LPC coe�cients to separate a speech signal into two parts: the transfer function (which contains the vocal
quality) and the excitation (which contains the pitch and the sound). The method of looking at speech as
two parts which can be separated is known as the Source Filter Model of Speech (Chapter 2).

We can predict that the nth sample in a sequence of speech samples is represented by the weighted sum
of the p previous samples:

^
s=

p∑
k=1

aks [n− k]

The number of samples (p) is referred to as the �order� of the LPC. As p approaches in�nity, we should
be able to predict the nth sample exactly. However, p is usually on the order of ten to twenty, where it can
provide an accurate enough representation with a limited cost of computation. The weights on the previous
samples (ak) are chosen in order to minimize the squared error between the real sample and its predicted
value. Thus, we want the error signal e(n), which is sometimes referred to as the LPC residual, to be as
small as possible:

e [n] = s [n]− ^
s [n] = s [n]−

p∑
k=1

aks [n− k]

We can take the z-transform of the above equation:

E (z) = S (z)−
p∑

k=1

akS (z) z−k = S (z)

[
1−

p∑
k=1

akz
−k

]
= S (z)A (z)

Thus, we can represent the error signal E(z) as the product of our original speech signal S(z) and the
transfer function A(z). A(z) represents an all-zero digital �lter, where the ak coe�cients correspond to the
zeros in the �lter's z-plane. Similarly, we can represent our original speech signal S(z) as the product of the
error signal E(z) and the transfer function 1 / A(z):

1This content is available online at <http://cnx.org/content/m12473/1.4/>.
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16 CHAPTER 5. LINEAR PREDICTIVE CODING IN VOICE CONVERSION

S (z) =
E (z)
A (z)

The transfer function 1/A(z) represents an all-pole digital �lter, where the ak coe�cients correspond to
the poles in the �lter's z-plane. Note that the roots of the A(z) polynomial must all lie within the unit circle
to ensure stability of this �lter.

The spectrum of the error signal E(z) will have a di�erent structure depending on whether the sound
it comes from is voiced or unvoiced. Voiced sounds are produced by vibrations of the vocal cords. Their
spectrum is periodic with some fundamental frequency (which corresponds to the pitch). Examples of voiced
sounds include all of the vowels. Unvoiced signals, however, do not have a fundamental frequency or a
harmonic structure. Instead, they are just white noise.

5.2 LPC in Voice Conversion

In speech processing, computing the LPC coe�cients of a signal gives us its ak values. From here, we can
get the �lter A(z) as described above. A(z) is the transfer function between the original signal s[n] and the
excitation component e[n]. The transfer function of a speech signal is the part dealing with the voice quality:
what distinguishes one person's voice from another. The excitation component of a speech signal is the part
dealing with the particular sounds and words that are produced. In the time domain, the excitation and
transfer function are convolved to create the output voice signal. As shown in the �gure below, we can put
the original signal through the �lter to get the excitation component. Putting the excitation component
through the inverse �lter (1 / A(z)) gives us the original signal back.

A Voice Conversion Algorithm

Figure 5.1: Using Linear Predictive Coding to separate the two parts of a speech signal: transfer
function and excitation.

We can perform voice conversion by replacing the excitation component from the given speaker with a
new one. Since we are still using the same transfer function A(z), the resulting speech sample will have
the same voice quality as the original. However, since we are using a di�erent excitation component, the
resulting speech sample will have the same sounds as the new speaker.
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5.3 Pre-Emphasis

In speech processing, a process called pre-emphasis is applied to the input signal before the LPC analysis.
During the reconstruction following the LPC analysis, a de-emphasis process is applied to the signal to
reverse the e�ects of pre-emphasis.

Pre- and de- emphasis are necessary because, in the spectrum of a human speech signal, the energy in
the signal decreases as the frequency increases. Pre-emphasis increases the energy in parts of the signal by
an amount inversely proportional to its frequency. Thus, as the frequency increases, pre-emphasis raises the
energy of the speech signal by an increasing amount. This process therefore serves to �atten the signal so that
the resulting spectrum consists of formants of similar heights. (Formants are the highly visible resonances
or peaks in the spectrum of the speech signal, where most of the energy is concentrated.) The �atter
spectrum allows the LPC analysis to more accurately model the speech segment. Without pre-emphasis,
the linear prediction would incorrectly focus on the lower-frequency components of speech, losing important
information about certain sounds.

5.4 References

Deng, Li and Douglas O�Shaughnessy. Speech Processing: A Dynamic and Optimization-Oriented Ap-
proach. Marcel Dekker, Inc: New York. 2003.

Gold, Ben and Nelson Morgan. Speech and Audio Signal Processing: Processing and Perception of
Speech and Music. John Wiley and Sons, Inc: New York. 2000.

Lemmetty, Sami. Review of Speech Synthesis Technology. (Master's Thesis: Helsinki University of
Technology) March 1999. http://www.acoustics.hut.�/∼slemmett/dippa/thesis.pdf2 .

Markel, J.D. and A.H. Gray, Jr. Linear Predition of Speech. Springer-Verlag: Berlin. 1976.

2http://www.acoustics.hut.�/∼slemmett/dippa/thesis.pdf
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Chapter 6

Changing Pitch with PSOLA for Voice

Conversion1

PSOLA (�Pitch-Synchronous Overlap and Add�) is a method used to manipulate the pitch of a speech signal
to match it to that of the target speaker.

PSOLA deals with diphones, which are the units of speech that extend from the middle of one region of
steady-state sound to the middle of the next; thus, they represent transitions between speech sounds. Some
researchers have suggested that this classi�cation of transitions between sounds is the key element in humans
understanding and recognizing segments of speech.

The basic algorithm for the PSOLA technique consists of three steps. First, the speech signal is divided
into separate but overlapping smaller signals. This is accomplished by windowing segments around each
�pitch mark� or peak amplitude in the original signal. The windowed segments usually contain two to
four pitch periods. Secondly, the smaller signals are modi�ed by either repeating or leaving out speech
segments, depending on whether the pitch of the target speaker is higher or lower than the pitch of the
source speaker. This modi�es the duration of the signal, therefore changing the fundamental frequency.
Lastly, the remaining smaller segments are recombined through overlapping and adding. The result is a
signal with the same spectrum as the original but with a di�erent fundamental frequency. Thus, the pitch
changes, but the other vocal qualities remain the same.

The original PSOLA is now often referred to as the TD-PSOLA, for �time domain.� An alternative
is referred to as the LP-PSOLA. Rather than storing the diphone waveforms, the LP-PSOLA stores LP
(�linear predictor�) coe�cients in order to represent the segment of a signal.

6.1 References

Gold, Ben and Nelson Morgan. Speech and Audio Signal Processing: Processing and Perception of Speech
and Music. John Wiley and Sons, Inc: New York. 2000.

Lemmetty, Sami. Review of Speech Synthesis Technology. (Master's Thesis: Helsinki University of
Technology) March 1999. http://www.acoustics.hut.�/∼slemmett/dippa/thesis.pdf2 .

1This content is available online at <http://cnx.org/content/m12474/1.3/>.
2http://www.acoustics.hut.�/∼slemmett/dippa/thesis.pdf
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Chapter 7

Windowing in Voice Conversion1

The characteristics of a speech signal vary with time. For this reason, it is di�cult to process an entire
phrase as tone, pitch, and other characteristics may have a very large range over the whole of the signal.
Thus, it is necessary to split the phrase into many parts, or window the speech signal.

There are many di�erent ways to window a signal. The �rst, and most common, method is to split the
signal into equal parts. While this may prove useful for many applications, it is not the best technique for
speech processing.

Speech is composed of many strung together segments known as syllables. Since each syllable contains
unique characteristics, we �nd it very useful to split phrases into syllables before processing the signal.
Syllable extraction amounts to looking for the breaks in the speech signal. This can be accomplished by
performing envelope extraction on the absolute value of the speech signal and comparing to a threshold.

De�nition 7.1: Envelope Extraction

Envelope Extraction is the process of obtaining the evelope, or general shape of, a signal.

In speech processing, the envelope can be extracted by taking the absolute value of the speech signal and
subjecting it to an averager. An averager simply convolves the signal with a boxcar. The signal envelope is
then compared to a threshold.

This is the process we employed in our windowing algorithm. A diagram is shown below:

1This content is available online at <http://cnx.org/content/m12476/1.4/>.
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22 CHAPTER 7. WINDOWING IN VOICE CONVERSION

Speech Signal Envelope

Figure 7.1: A speech signal and the envelope of its magnitude compared to a threshold.

When the signal envelope falls below the predetermined threshold, the speech signal is assumed to have
a "break" in it - the end of one syllable and the beginning of another. Thus, the signal is split and each
syllable is sent to the system for processing. After processing, the windows are reassembled to obtain the
results for the entire phrase.



Chapter 8

Voice Conversion in Praat1

The Praat Program, developed by Paul Boersma and David Weenink of the University of Amsterdam,
provides several modules. The ones we were interested in were namely the LPC and pitch conversion
modules. These modules can be combined to convert from a source speaker to a target.

8.1 Opening a Sound File in Praat

Praat is a program that o�ers several di�erent ways to process and manipulate sound �les. When a sound
�le is opened in Praat, it is automatically converted into an �object,� which is the only type of data that the
program can work with. To open a sound �le, select �Read from �le. . .� from the �Read� menu.

8.2 LPC Filters

Using Praat, it is possible to calculate the LPC �lter coe�cients of a sound object. To do this, select the
sound object and use the function "To LPC (burg)" under "Formants and LPC." This function requires the
following arguments:

Prediction order - The number of linear prediction coe�cients.
Analysis window duration - The duration of each analysis frame, in seconds.
Time step - The time step between two consecutive analysis frames, in seconds.
Pre-emphasis frequency - A +6dB / octave �ltering will be applied above this frequency (Hz). If you

do not want pre-emphasis, choose a frequency greater than the Nyquist frequency.
This function will return an LPC object. To �lter or inversely �lter a sound object with an LPC object,

simply select both of them simultaneously and choose the appropriate option. Inversely �ltering a sound
object with its associated LPC object will yield the excitation (or source) part of the sound. This excitation
can be �ltered with a di�erent LPC object than the one it was created with to obtain the characteristics of
another sound.

8.3 Changing Pitch

Praat can also be used to extract pitch information from a sound. To do this, a sound object must �rst
be converted to a manipulation object through the �To Manipulation. . .� function. When a sound object
is converted to a manipulation object, Praat automatically calculates the sound's pitch information using
the PSOLA method. After selecting a manipulation object, the �Extract pitch tier� function can be used to
obtain this pitch information.

1This content is available online at <http://cnx.org/content/m12475/1.4/>.
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24 CHAPTER 8. VOICE CONVERSION IN PRAAT

A manipulation object's pitch tier can be replaced with a separate pitch tier object. Selecting both
objects and using the �Replace pitch tier� function will accomplish this. In order to get a sound object from
a manipulation object, select �Resynthesize (LPC).�

8.4 Voice Conversion Algorithm

The preceding processes can be automated through a Praat script. The following block diagram illustrates
one method of performing voice conversion in Praat:

A Voice Conversion Algorithm

Figure 8.1: The windowing for this process is done in Matlab. The rest of the system can be coded
entirely in Praat.

8.5 References

Praat: Doing Phonetics by Computer. Paul Boersma and David Weenink of the University of Amsterdam.
www.praat.org2 .

2http://cnx.org/content/m12475/latest/www.praat.org



Chapter 9

Code for Voice Conversion1

Praat and MATLAB Code Files for Voice Converstion

• ursula.praat2 - The Praat code to convert windowed source �les into the corresponding windowed �lter
�les. (Named after the antagonist of "The Little Mermaid", who imitates voices.)

• add_wav.m3 - Adds the sound data to the wav array.
• convert_voice.m4 - Coverts the voice of the source to that of the �lter.
• example_plot.m5 - Plots example cepstrums.
• get_mins.m6 - Obtains a rough list of minimums in a signal.
• get_word_breaks.m7 - Gets the position of the spaces in the speech signal.
• load_wav.m8 - Loads the speci�ed wav �le.
• load_wavs.m9 - Loads all wavs in the current directory.
• plot_cepstrum.m10 - Plots the cepstrum of the signal.
• plot_contour.m11 - Plots the signal, its absolute value, and its contour.
• save_chunks.m12 - Saves segments of the source and �lter �les.
• save_words.m13 - Saves the words of the source and �lter �les.
• sig_chunks.m14 - Breaks a signal into chunks.
• split_sig.m15 - Splits the signal in half.

For more details, consult the comments in each code �le.

1This content is available online at <http://cnx.org/content/m12477/1.6/>.
2http://cnx.org/content/m12477/latest/ursula.pratt
3http://cnx.org/content/m12477/latest/add_wav.m
4http://cnx.org/content/m12477/latest/convert_voice.m
5http://cnx.org/content/m12477/latest/example_plot.m
6http://cnx.org/content/m12477/latest/get_mins.m
7http://cnx.org/content/m12477/latest/get_word_breaks.m
8http://cnx.org/content/m12477/latest/load_wav.m
9http://cnx.org/content/m12477/latest/load_wavs.m

10http://cnx.org/content/m12477/latest/plot_cepstrum.m
11http://cnx.org/content/m12477/latest/plot_contour.m
12http://cnx.org/content/m12477/latest/save_chunks.m
13http://cnx.org/content/m12477/latest/save_words.m
14http://cnx.org/content/m12477/latest/sig_chunks.m
15http://cnx.org/content/m12477/latest/split_sig.m
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Chapter 10

Voice Conversion Experiment and

Conclusion1

10.1 Description of Experiment

To test our voice conversion algorithm, we administered a speaker identi�cation test to twelve randomly
selected people. Prior to the experiment, we recorded speech samples from four di�erent speakers (two
male and two female) and used our algorithm to convert between various combinations of their voices. For
example, we took the sound of speaker #1 (the "source speaker") saying a certain phrase and converted it
to the voice of speaker #2 (the "target speaker"). The participants listened to a series of these synthesized
sounds, and we asked them to identify the speaker (the target) as well as the speaker's gender.

10.2 Results of Experiment

The target speaker was correctly identi�ed 74% of the time.
The target speaker's gender was correctly identi�ed 93% of the time.

1This content is available online at <http://cnx.org/content/m12478/1.4/>.
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Graph of Gender-speci�c Conversion Accuracy

Figure 10.1: The �rst bar, "Female to Female," indicates a conversion from a female source speaker to
a female target speaker was correctly identi�ed 83% of the time.

10.3 Conclusions

Our voice conversion system was fairly e�ective at imitating a certain target speaker. From the "Gender-
Speci�c Conversion Accuracy" graph, it can be implied that our system was better at converting female
source speakers than male source speakers. One reason for this may be that the voices of the two male
speakers used in the experiment had only a minor di�erence in pitch. The female speakers' voices, however,
had a more noticeable di�erence.

10.4 Possible Improvements

At its current state, our system can only convert between two voices when it has samples of the speakers saying
the same word or phrase. In order to make our system text-independent, we would need to implement neural
mapping. This could be accomplished by using the cepstrum to identify certain characteristic sounds
(such as vowel sounds) in the target speaker's speech sample and mapping their �lters to the corresponding
characteristic sounds in the source speaker's sample. In addition to adding text-independence to our system,
we could add a band-pass �lter at the end of our system to help eradicate speech artifacts in our synthesized
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sounds. The �lter would block out frequencies that are not in the range of human speech.
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Glossary

E Envelope Extraction

Envelope Extraction is the process of
obtaining the evelope, or general shape
of, a signal.

H Homomorphic Filter

A homomorphic �lter is a system
which accepts a signal composed of two
components and returns the signal with
one of the components removed.

S Source Filter Model

The source �lter model is a model of
speech where the spoken word is
comprised of a source component
originating from the vocal cords which is

then shaped by a �lter immitating the
e�ect of the vocal tract.

Example:

The Source Filter Model

Figure 2.1: A simple model of speech.
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