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Chapter 1

Programming in Processing1

1.1 Introduction

note: This introduction is based on Daniel Shi�man's tutorial 2 .

Processing is a language and development environment oriented toward interaction design . In
the course Media Processing in Processing (MPP), processing is one of the main instruments used
to introduce some fundamentals in sound and image processing. Processing is an extension of Java that
supports many Java structures with a simpli�ed syntax.

Processing can be used in three

Programming Modes

Basic - Sequence of commands for simple drawing by graphic primitives. �

applet
with-
out
nose3

size(256,256);

background(0);

stroke(255);

ellipseMode(CORNER);

ellipse(72,100,110,130);

triangle(88,100,168,100,128,50);

stroke(140);

strokeWeight(4);

line(96,150,112,150);

line(150,150,166,150);

line(120,200,136,200);

Table 1.1

Intermediate - Procedural programming �

1This content is available online at <http://cnx.org/content/m12968/1.8/>.
2http://www.shi�man.net/itp/classes/ppaint/
3http://cnx.org/content/m12968/latest/pinocchiononose.html
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2 CHAPTER 1. PROGRAMMING IN PROCESSING

applet
with
nose4 void setup() {

size(256,256);

background(0);

}

void draw() {

stroke(255);

strokeWeight(1);

ellipseMode(CORNER);

ellipse(72,100,110,130);

triangle(88,100,168,100,128,50);

stroke(140);

beginShape(TRIANGLES);

vertex(114, 180);

vertex(mouseX, mouseY);

vertex(140, 180);

endShape();

strokeWeight(4);

line(96,150,112,150);

line(150,150,166,150);

line(120,200,136,200);

}

Table 1.2

Complex - Object-Oriented Programming (Java) �

4http://cnx.org/content/m12968/latest/pinocchionose.html
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applet
with
col-
ored
nose5

Puppet pinocchio;

void setup() {

size(256,256);

background(0);

color tempcolor = color(255,0,0);

pinocchio = new Puppet(tempcolor);

}

void draw() {

background(0);

pinocchio.draw();

}

class Puppet {

color colore;

Puppet(color c_) {

colore = c_;

}

void draw () {

stroke(255);

strokeWeight(1);

ellipseMode(CORNER);

ellipse(72,100,110,130);

stroke(colore);

beginShape(TRIANGLES);

vertex(114, 180);

vertex(mouseX, mouseY);

vertex(140, 180);

endShape();

strokeWeight(4);

line(96,150,112,150);

line(150,150,166,150);

}

}

Table 1.3

The Processing programs can be converted into Java applets. In order to do that, one just goes to the
File menu and chooses Export. As a result, �ve �les will be created and put in an applet folder:

• index.html - html code to visualize the applet
• �lename.jar - the compiled applet, including all data (images, sounds, etc.)
• �lename.pde - the Processing source code
• �lename.java - the Java code embedding the Processing source code
• loading.gif - an image to be displayed while the applet is being loaded.

Moreover, by means of Export Application it is possible to generate an executable application for Linux,
MacOS, or Windows platforms.

5http://cnx.org/content/m12968/latest/pinocchioclassy.html



4 CHAPTER 1. PROGRAMMING IN PROCESSING

1.2 Data Types

1.2.1 Variables

A variable is a pointer to a memory location, and it can refer either to primitive values (int, float, ecc.)
or to objects and arrays (tables of primitive-type elements).

The operation of assignment b = a produces

• The copy of the content of a into b, if the variables refer to primitive types.
• The creation of a new reference (pointer) to the same object or array, if the variables refer to objects

or arrays.

note: To have a clear understanding of computer science terms such as those that follow, we
recommend looking at Wikipedia6

De�nition 1.1: scope
within a program, it is a region where a variable can be accessed and its value modi�ed

De�nition 1.2: global scope
de�ned outside the methods setup() and draw(), the variable is visible and usable anywhere in the
program

De�nition 1.3: local scope
de�ned within a code block or a function, the variable takes values that are local to the block or
function, and any values taken by a global variable having the same name are ignored.

Example 1.1: Array declaration and allocation

int[] arrayDiInteri = new int[10];

1.3 Programming Structures

1.3.1 Conditional Instructions

• if:

if (i == NMAX) {

println("finished");

}

else {

i++;

}

1.3.2 Iterations

• while:

int i = 0; //integer counter

while (i < 10) { //write numbers between 0 and 9

6http://wikipedia.org/
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println("i = "+ i);

i++;

}

• for:

for (int i = 0; i < 10; i++) { //write numbers between 0 and 9

println("i = "+ i);

}

Example 1.2: Initializing a table of random numbers

int MAX = 10;

float[] tabella = new float[MAX];

for (int i = 0; i < MAX; i++)

tabella[i] = random(1); //random numbers between 0 and 1

println(tabella.length + " elements:");

println(tabella);

1.4 Functions

Functions allow a modular approach to programming. In Processing, in the intermediate programming
mode, we can de�ne functions other than setup() and draw(), usable from within setup() and draw().

Example 1.3: Example of function

int raddoppia(int i) {

return 2*i;

}

A function is characterized by the entities (with reference to the example (Example 1.3: Example of
function)) :

• return type (int)
• name (raddoppia)
• parameters (i)
• body (return 2*i)
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1.5 Objects and Classes

A class is de�ned by a set of data and functions. An object is an instance of a class. Vice versa, a class is
the abstract description of a set of objects.

note: For an introduction to the concepts of object and class see Objects and Classes7.

Example 1.4: Example of class

Dot myDot;

void setup() {

size(300,20);

colorMode(RGB,255,255,255,100);

color tempcolor = color(255,0,0);

myDot = new Dot(tempcolor,0);

}

void draw() {

background(0);

myDot.draw(10);

}

class Dot

{

color colore;

int posizione;

//****CONSTRUCTOR*****//

Dot(color c_, int xp) {

colore = c_;

posizione = xp;

}

void draw (int ypos) {

rectMode(CENTER);

fill(colore);

rect(posizione,ypos,20,10);

}

}

A class is characterized by the following entities (with reference to the example (Example 1.4: Example of
class)) :

• name (Dot)
• data (colore, posizione)
• constructor (Dot())
• functions (or methods, draw())

7"Objects and Classes" <http://cnx.org/content/m11708/latest/>
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An object (instance of a class) is declared in the same way as we declare a variable, but we have to
allocate a space for it (as we did for the arrays) by means of its constructor (with reference to the example
(Example 1.4: Example of class)).

• Declaration: (Dot myDot;)
• Allocation: (myDot = new Dot(tempcolor,0))
• Use: (myDot.draw(10);)

note: For a quick introduction to the Java syntax see Java Syntax Primer8

Exercise 1.1 (Solution on p. 11.)

With the following draw() method we want to paint the window background with a gray whose
intensity depends on the horizontal position of the mouse pointer.

void draw() {

background((mouseX/100)*255);

}

However, the code does not do what it is expected to do. Why?

Exercise 1.2 (Solution on p. 11.)

What does the following code fragment print out?

int[] a = new int[10];

a[7] = 7;

int[] b = a;

println(b[7]);

b[7] = 8;

println(a[7]);

int c = 7;

int d = c;

println(d);

d = 8;

println(c);

Exercise 1.3 (Solution on p. 11.)

The following sketch generates a set of 100 moving circles and draws all chords linking the inter-
section points of all couples of intersecting circles.

/*

Structure 3

A surface filled with one hundred medium to small sized circles.

Each circle has a different size and direction, but moves at the same slow rate.

Display:

A. The instantaneous intersections of the circles

B. The aggregate intersections of the circles

8"Java Syntax Primer" <http://cnx.org/content/m11791/latest/>
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Implemented by Casey Reas <http://groupc.net>
8 March 2004

Processing v.68 <http://processing.org>

modified by Pietro Polotti

28 March, 2006

Processing v.107 <http://processing.org>

*/

int numCircle = 100;

Circle[] circles = new Circle[numCircle];

void setup()

{

size(800, 600);

frameRate(50);

for(int i=0; i<numCircle; i++) {

circles[i] = new Circle(random(width),

(float)height/(float)numCircle * i,

int(random(2, 6))*10, random(-0.25, 0.25),

random(-0.25, 0.25), i);

}

ellipseMode(CENTER_RADIUS);

background(255);

}

void draw()

{

background(255);

stroke(0);

for(int i=0; i<numCircle; i++) {

circles[i].update();

}

for(int i=0; i<numCircle; i++) {

circles[i].move();

}

for(int i=0; i<numCircle; i++) {

circles[i].makepoint();

}

noFill();

}

class Circle

{
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float x, y, r, r2, sp, ysp;

int id;

Circle( float px, float py, float pr, float psp, float pysp, int pid ) {

x = px;

y = py;

r = pr;

r2 = r*r;

id = pid;

sp = psp;

ysp = pysp;

}

void update() {

for(int i=0; i<numCircle; i++) {

if(i != id) {

intersect( this, circles[i] );

}

}

}

void makepoint() {

stroke(0);

point(x, y);

}

void move() {

x += sp;

y += ysp;

if(sp > 0) {

if(x > width+r) {

x = -r;

}

} else {

if(x < -r) {

x = width+r;

}

}

if(ysp > 0) {

if(y > height+r) {

y = -r;

}

} else {

if(y < -r) {

y = height+r;

}

}

}

}

void intersect( Circle cA, Circle cB )



10 CHAPTER 1. PROGRAMMING IN PROCESSING

{

float dx = cA.x - cB.x;

float dy = cA.y - cB.y;

float d2 = dx*dx + dy*dy;

float d = sqrt( d2 );

if ( d>cA.r+cB.r || d<abs(cA.r-cB.r) ) {

return; // no solution

}

// calculate the two intersections between the two circles cA and cB, //

// whose coordinates are (paX, paY) and (pbX, pbY), respectively. //

stroke(255-dist(paX, paY, pbX, pbY)*4);

line(paX, paY, pbX, pbY);

}

1. Complete the missing part that is expected to compute the intersections of the circles, in such
a way to draw the chords linking the intersection points. It is possible to use the computation
of intersection coordinates in a ad-hoc reference system ( �Circle-Circle Intersection�),
then converting the result into the Processing window coordinate system.

2. Make the chords time-variable by giving di�erent speeds to di�erent circles.

Exercise 1.4 (Solution on p. 13.)

Make the sketch of Exercise 1.3 interactive. For example, make the circle displacement dependent
on the horizontal position of the mouse.
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Solutions to Exercises in Chapter 1

Solution to Exercise 1.1 (p. 7)
The variable mouseX is of int type, and the division it is subject to is of the integer type. It is necessary
to perform a type casting from int to float by means of the instruction (float)mouseX.
Solution to Exercise 1.2 (p. 7)

7

8

7

7

Solution to Exercise 1.3 (p. 7)

/*

Structure 3

A surface filled with one hundred medium to small sized circles.

Each circle has a different size and direction, but moves at the same slow rate.

Display:

A. The instantaneous intersections of the circles

B. The aggregate intersections of the circles

Implemented by Casey Reas <http://groupc.net>
8 March 2004

Processing v.68 <http://processing.org>

modified by Pietro Polotti

28 March, 2006

Processing v.107 <http://processing.org>

*/

int numCircle = 100;

Circle[] circles = new Circle[numCircle];

void setup()

{

size(800, 600);

frameRate(50);

for(int i=0; i<numCircle; i++) {

circles[i] = new Circle(random(width),

(float)height/(float)numCircle * i,

int(random(2, 6))*10, random(-0.25, 0.25),

random(-0.25, 0.25), i);

}

ellipseMode(CENTER_RADIUS);
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background(255);

}

void draw()

{

background(255);

stroke(0);

for(int i=0; i<numCircle; i++) {

circles[i].update();

}

for(int i=0; i<numCircle; i++) {

circles[i].move();

}

for(int i=0; i<numCircle; i++) {

circles[i].makepoint();

}

noFill();

}

class Circle

{

float x, y, r, r2, sp, ysp;

int id;

Circle( float px, float py, float pr, float psp, float pysp, int pid ) {

x = px;

y = py;

r = pr;

r2 = r*r;

id = pid;

sp = psp;

ysp = pysp;

}

void update() {

for(int i=0; i<numCircle; i++) {

if(i != id) {

intersect( this, circles[i] );

}

}

}

void makepoint() {

stroke(0);

point(x, y);

}
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void move() {

x += sp;

y += ysp;

if(sp > 0) {

if(x > width+r) {

x = -r;

}

} else {

if(x < -r) {

x = width+r;

}

}

if(ysp > 0) {

if(y > height+r) {

y = -r;

}

} else {

if(y < -r) {

y = height+r;

}

}

}

}

void intersect( Circle cA, Circle cB )

{

float dx = cA.x - cB.x;

float dy = cA.y - cB.y;

float d2 = dx*dx + dy*dy;

float d = sqrt( d2 );

if ( d>cA.r+cB.r || d<abs(cA.r-cB.r) ) {

return; // no solution

}

float a = (cA.r2 - cB.r2 + d2) / (2*d);

float h = sqrt( cA.r2 - a*a );

float x2 = cA.x + a*(cB.x - cA.x)/d;

float y2 = cA.y + a*(cB.y - cA.y)/d;

float paX = x2 + h*(cB.y - cA.y)/d;

float paY = y2 - h*(cB.x - cA.x)/d;

float pbX = x2 - h*(cB.y - cA.y)/d;

float pbY = y2 + h*(cB.x - cA.x)/d;

stroke(255-dist(paX, paY, pbX, pbY)*4);

line(paX, paY, pbX, pbY);

}
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Solution to Exercise 1.4 (p. 10)

/*

Structure 3

A surface filled with one hundred medium to small sized circles.

Each circle has a different size and direction, but moves at the same slow rate.

Display:

A. The instantaneous intersections of the circles

B. The aggregate intersections of the circles

Implemented by Casey Reas <http://groupc.net>
8 March 2004

Processing v.68 <http://processing.org>

modified by Pietro Polotti

28 March, 2006

Processing v.107 <http://processing.org>

*/

int numCircle = 100;

Circle[] circles = new Circle[numCircle];

void setup()

{

size(800, 600);

frameRate(50);

for(int i=0; i<numCircle; i++) {

circles[i] = new Circle(random(width),

(float)height/(float)numCircle * i,

int(random(2, 6))*10, random(-0.25, 0.25),

random(-0.25, 0.25), i);

}

ellipseMode(CENTER_RADIUS);

background(255);

}

void draw()

{

background(255);

stroke(0);

if(mousePressed){

for(int i=0; i<numCircle; i++) {

circles[i].sp = mouseX*random(-5, 5)/width;
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}

}

for(int i=0; i<numCircle; i++) {

circles[i].update();

}

for(int i=0; i<numCircle; i++) {

circles[i].move();

}

for(int i=0; i<numCircle; i++) {

circles[i].makepoint();

}

noFill();

}

class Circle

{

float x, y, r, r2, sp, ysp;

int id;

Circle( float px, float py, float pr, float psp, float pysp, int pid ) {

x = px;

y = py;

r = pr;

r2 = r*r;

id = pid;

sp = psp;

ysp = pysp;

}

void update() {

for(int i=0; i<numCircle; i++) {

if(i != id) {

intersect( this, circles[i] );

}

}

}

void makepoint() {

stroke(0);

point(x, y);

}

void move() {

x += sp;

y += ysp;

if(sp > 0) {

if(x > width+r) {

x = -r;

}
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} else {

if(x < -r) {

x = width+r;

}

}

if(ysp > 0) {

if(y > height+r) {

y = -r;

}

} else {

if(y < -r) {

y = height+r;

}

}

}

}

void intersect( Circle cA, Circle cB )

{

float dx = cA.x - cB.x;

float dy = cA.y - cB.y;

float d2 = dx*dx + dy*dy;

float d = sqrt( d2 );

if ( d>cA.r+cB.r || d<abs(cA.r-cB.r) ) {

return; // no solution

}

float a = (cA.r2 - cB.r2 + d2) / (2*d);

float h = sqrt( cA.r2 - a*a );

float x2 = cA.x + a*(cB.x - cA.x)/d;

float y2 = cA.y + a*(cB.y - cA.y)/d;

float paX = x2 + h*(cB.y - cA.y)/d;

float paY = y2 - h*(cB.x - cA.x)/d;

float pbX = x2 - h*(cB.y - cA.y)/d;

float pbY = y2 + h*(cB.x - cA.x)/d;

stroke(255-dist(paX, paY, pbX, pbY)*4);

line(paX, paY, pbX, pbY);

}



Chapter 2

Media Representation in Processing1

2.1 Visual Elements

2.1.1 Coordinates

In Processing, the representation of graphic objects is based on a cartesian 3D coordinate system, as displayed
in Figure 2.1 (Coordinate system).

Coordinate system

Figure 2.1: 3D coordinate system used in Processing

2D images are processed by acting on the X-Y plane, thus assuming that the Z coordinate is zero. The
function size() de�nes the display window size and the rendering engine that will be used to paint onto
the window. The default engine is JAVA2D, the 2D graphic Java libray. A bidimensional rendering engine,

1This content is available online at <http://cnx.org/content/m12983/1.13/>.
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especially suitable for faster pixel-based image processing, is P2D (Processing 2D). If one wants to program
in 3D, he must choose either the P3D (Processing 3D) rendering engine, especially suited for web-oriented
graphics, or OPENGL, which delegates many typical 3D operations to the graphic board thus freeing the
CPU from many computations. Moreover, if the objective is high-quality printing with vector graphics, a
PDF rendering option is available.

2.1.2 Images

In Processing, an image can be assigned to an object of the class PImage. The function
loadImage("myImage") takes a �le (gif or jpg) myImage, containing the pixel coding of an image, and
gives back the content of such image, which can be assigned to a variable of type PImage. The �le myImage
must be loaded in the data folder of the directory having the same name as the Processing sketch we are
working at.

note: When the New command is executed, processing opens up a folder named sketch_???????

within the Processing directory, corresponding to the name assigned bye the system to the newly
created �le. Such folder is accessible from the Processing menu item Sketch/Add File.

The class PImage gives access, by the �elds width and height, to the width and height of the loaded image.
The image content is accessed via the pixels[] �eld.

Example 2.1: Loading and visualizing an image

size(400,300);

PImage b;

b = loadImage("gondoliers.jpg");

println("width=" + b.width + " height=" + b.height);

image(b, 0, 0, 400, 300); // position (0,0); width=400; height=300;

image(b, 20, 10, 100, 80); // position (20,10); width=100; height=80;

2.1.3 Colors

Since our color receptors (cones), each tuned to a wavelength region, are of three kinds, color models are
always referred to a three-dimensional space. In additive color models, each of three axes correspond to a
base color, and by mixing three colored light beams one can obtain all colors within a gamut volume in the
space de�ned by the three axes. The three base colors can be chosen arbitrarily or, more often, based on the
application domain (e.g., color of three phosphors or laser beams). In printing processes, subtractive color
models are used, where the starting point is the white surface and primary ink colors are used to subtract
color from white.

note: Guide to color models: http://en.wikipedia.org/wiki/color_space2

In processing color is a primitive type used to specify colors. It is realized by a 32-bit number, where
the �rst byte speci�es the alpha value, and the other bytes specify a triple either in the RGB or in the HSB
model. The choice of one model or the other is made by the colorMode() function. With three bytes, a
number of 256× 256× 256 = 16777216 are representable.

2http://en.wikipedia.org/wiki/color_space
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2.1.3.1 The RGB model

Colors are represented by a triple of numbers, each giving the intensity of the primary colors Red, Green,
and Blue. Each number can be an unsigned integer, thus taking values between 0 and 255, or be expressed
as a �oating point number between 0.0 and 1.0. With even larger �exibility, the model, type, and range of
colors can be set with the function colorMode(). The RGB model is additive.

2.1.3.2 HSB Model

Colors are represented by a triple of numbers, the �rst number giving the Hue, the second giving Saturation,
and the third giving the Brightness.

note: Often the model is called HSV, where V stands for Value.

The hue takes values in degrees between 0 (red) and 360, being the various hues arranged along a circumfer-
ence and being red positioned at 0� . Saturation and brightness vary between 0 and 100. The saturation is
the degree of purity of color. If a pure color is added with a white light its degree of purity decreases until the
color eventually sits on a gray scale when saturation is zero. In physical terms, the brightness is proportional
to the signal power spectrum. Intuitively, the brightness is increased when the light intensity increases. The
three-dimensional HSB space is well represented by a cylinder, with the hue (nominal scale) arranged along
the circumference, the saturation (ratio scale) arranged along the radius, and the brightness (interval scale)
arranged along the longitudinal axis. Alternatively, such three-dimensional space can be collapsed into two
dimensions, as in the color chooser of the image-processing program Gimp3 , displayed in Figure 2.2 (Gimp
color chooser). Along the circumference, the three primary colors (red, green, and blue) are visible, 120�
apart from each other, separated from the secondary colors (magenta, cyan, yellow). Each secondary color
is complementary to the primary color in front of it in the circumference. For instance, if we take the green
component out of a white light, we obtain a magenta light. The triangle inscribed in the circumference
has a vertex pointing to a selected hue. The opposite side contains the gray scale, thus representing colors
with null saturation and variable brightness. Going from the reference vertex to the opposite side we have
a gradual decrease in saturation.

3http://www.gimp.org
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Gimp color chooser

Figure 2.2: Color chooser of the software Gimp

2.1.3.3 Alpha channel

It is a byte used to blend and interpolate between images, for example to render transparency. It can be
obtained, from a variable of type color, with the method alpha(). The alpha channel can be manipulated
with the method blend() of the class PImage.

Example 2.2: Loading and visualizing an image with transparency
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size(400,300);

PImage b = loadImage("gondoliers.jpg");

PImage a = loadImage("gondoliers.jpg");

float ramp = 0;

for (int j = 0; j < b.height; j++)

for (int i = 0; i < b.width; i++) {

b.set(i, j, b.get(i,j) +

color(0,0,0, 255 - (int)((1-ramp)*255)) );

ramp = ramp + 1/(float)(b.width * b.height);

}

a.blend(b, 0, 0, b.width, b.height,

80, 10, 450, 250, BLEND);

image(a, 0, 0, 400, 300);

Table 2.1

In Processing, it is possible to assign a color to a variable of type color by means of the function color(),
and the model can be previously set with colorMode(). The functions red(), green(), blue(), hue(),
saturation(), and brightness() allow to move from one model to the other.

colorMode(RGB);

color c1 = color(102, 30,29);

colorMode(HSB);

color c2 = color(hue(c1), saturation(c1), brightness(c1));

colorMode(RGB);

color c3 = color(red(c2), green(c2), blue(c2));

// the variables c1, c2, and c3 contain the coding of the same color

2.1.3.4 Tinging an image

An image can be tinged with a color and its transparency can be set by assigning a given value to the alpha
channel. For this purpose, the function tint() can be used. For example, a blue tone can be assigned to
the inlaid image of Example 2.1 (Loading and visualizing an image) by just preceding the second image()

command with tint(0, 153, 204, 126) .

2.1.4 Translations, Rotations, and Scale Transformations

Representing Points and Vectors
In computer graphics, points and vectors are represented with the

De�nition 2.1: homogeneous coordinates
quadruples of numbers, where the �rst triple is to be read in the X-Y-Z space, while the fourth
number indicates a vector if it takes value 0, or a point if it takes value 1.

A translation is obtained by adding, in homogeneous coordinates, a vector to a point, and the result is a
point. Alternatively we ca see a translation as a matrix-vector product (see Matrix Arithmetic4), where the

4"Matrix Arithmetic" <http://cnx.org/content/m10090/latest/>
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matrix is


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

, and the vector is the one representing the point


x

y

z

1

. An anti-clockwise rota-

tion by the angle θ around the axis z (roll), is obtained by the rotation matrix


cos (θ) −sin (θ) 0 0

sin (θ) cos (θ) 0 0

0 0 1 0

0 0 0 1

.
Rotations around the axes x (pitch) and y (yaw) are realized by means of rotation matrices of the same
kind, and a rotation around an arbitrary axis can be obtained by composition (left multiply) of elementary
rotations around each of the main axes.
Translations
The function translate() moves an object in the image window. It takes two or three parameters, being
the displacements along the directions x, y (and z), respectively.
Rotations
In two dimensions, the function rotate() is used to rotate objects in the image window. This is obtained
by (left) multiplying the coordinates of each pixel of the object by a rotation matrix. Rotations are always
speci�ed around the top left corner of the window ( [0, 0] coordinate). Translations can be used to move
the rotation axis to other points. Rotation angles are speci�ed in radians. Recall that 2πrad = 360� . For
example, insert the rotation rotate(PI/3) before the second image() command in Example 2.1 (Loading
and visualizing an image). In three dimensions, we can use elementary rotations around the coordinate axes
rotateX(), rotateY(), e rotateZ().
Scale Transformations
The function scale() allows to expand or contract an object by multiplication of its point coordinates by
a constant. When it is invoked with two or three parameters, di�erent scalings can be applied to the three
axes.

2.1.5 Typographic Elements

Every tool or language for media manipulation gives the opportunity to work with written words and with
their fundamental visual elements: typographic characters.

The aspect of a type has two main components: font and size.
Processing has the class PFont and the methods loadFont() (to load a font and assign it to an object

of the PFont class) and textFont() (to activate a font with a speci�c size). In order to load a font, this
has to be pre-loaded into the directory data of the current sketch. The tool Create Font, accessible from
the Tools menu in Processing, creates the bitmaps of the characters that the programmer intends to use.
The �le with the bitmaps is put in the data directory. After these preliminary operations, the font can be
used to write some text, using the function text(). With this function, a string of characters can be put
in the 2D or 3D space, possibly inserting it within a rectangular box. The alignment of characters in the
box is governed by the function textAlign(). In the default con�guration, the written text can be spatially
transformed like any other object. The color of characters can be set with the usual fill(), like for any
other graphic object.

Example 2.3: Overlapped text
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PFont fonte;

/*The font have been previously created

in the data folder*/

fonte = loadFont("HoeflerText-Black-48.vlw");

textFont(fonte, 12);

fill(10, 20, 250, 80);

textAlign(RIGHT);

text("pippo pippo non lo sa", 10, 14, 35, 70);

textFont(fonte, 24);

fill(200, 0, 0, 100);

text("ppnls", 25, 5, 50, 90);

Table 2.2

Processing allows a tight control of the spatial occupation of characters and of the distance between con-
tiguous characters (see Figure 2.3 (Typeface metrics)). The function textWidth() computes the horizontal
extension of a character or a string. It can be used, together with the exact coordinates passed to text(),
to control the kerning and the tracking between characters. The textSize() allows to rede�ne the size of
characters. The textLeading() re-de�nes the distance in pixels between adjacent text lines. This distance
is measured between the baselines of the strings of characters. Letters such as "p" or "q" extend below the
baseline for a number of pixels that can be obtained with the textDescent(). Instead, the textAscent()

gives back the maximum extension above the baseline (typically, the height of the letter "d").

Typeface metrics

Figure 2.3: Typeface metrics
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2.2 Auditory Elements

2.2.1 Sounds

Untill version beta 112, Processing gave the possibility to program several audio functionalities by means of
some core primitives. In those older versions only two basic primitives are available to playback and load
.wav �les. In more recent versions, Processing delegate sound management and processing functionalities to
external libraries5 . The most used libraries are Ess6 , Sonia7 , and Minim8 . Only the latter is included
in the base installation of Processing. Ess and Sonia need an explicit installation process. Recently, a well-
structured and documented Java library called Beads9 has also been introduced. It is well suited to the
construction of audio-processing algorithms based on chains of base objects. As in the case of images, in
order to process and playback sounds the source �les have to be stored in the data folder of the current
sketch. The library Sonia 10 is the most complex one. With its functions, one can do sample playback,
realtime Fourier-based spectral analysis, .wav �le saving. In order to use the Sonia library, the programmer
has to download the .zip �le from Sonia11 . Once decompressed, the directory Sonia_?_? has to be copied
into the directory Processing/libraries. Finally, the command import has to be inserted into the code
by selecting it from the menu item Sketch / Import Library / Sonia_?_?.

note: In order to run the applets produced with Sonia from a web browser, the Phil Burk's JSyn
plugin has to be downloaded and installed from the site http://www.softsynth.com/jsyn/plugins/12

.

The library Minim13 , based on Java Sound14 , is more user-friendly, well-documented and recommended,
if one wants to work with sounds employing high-level primitives, without dealing with low-level numerical
details and bu�er management.

2.2.2 Timbre

In this section, we �rst use then analyze an application for the exploration of timbres, similar in conception
to the Color Chooser of Figure 2.2 (Gimp color chooser), and here called Sound Chooser. For the moment,
let us think about a sound timbre in analogy with color in images. For example, the various instruments
of the orchestra have di�erent and characterizing timbres (colors). Later on, we will de�ne the physical
and perceptual aspects of timbre more accurately. In the Sound Chooser applet, four sounds with di�erent
timbres can be played by clicking onto one of the marked radii. Each radius corresponds to a musical
instrument (timbre/color). By changing position along the radius it is possible to hear how the brightness
is changed. More precisely, as long as we proceed toward the centre, the sounds gets poorer.

Let us analyze the Processing code that implements the Sound Chooser in its salient aspects. The
Sonia.start(this) command is necessary to activate the Sonia audio engine. The line Sample mySample1

declares a variable aimed at containing audio samples. Several methods can be applied to such variable.
Among these, the play methods plays the sound sample back. In the draw() code section the graphic
aspect of the applet is de�ned. Finally, by the function mouseReleased(), we detect when the mouse is
released after being pressed, and where it has been released. At this point a sequenceo of if conditions
�nds what instrument/timbre has been selected according to the clicking point. Moreover, within the
function mouseReleased() the function filtra(float[] DATAF, float[] DATA, float RO, float WC)

5http://processing.org/reference/libraries/index.html
6http://www.tree-axis.com/Ess/
7http://sonia.pitaru.com/
8http://code.compartmental.net/tools/minim/
9http://www.beadsproject.net/

10http://sonia.pitaru.com/
11http://sonia.pitaru.com/
12http://www.softsynth.com/jsyn/plugins/
13http://code.compartmental.net/tools/minim/
14http://java.sun.com/j2se/1.5.0/docs/guide/sound/programmer_guide/contents.html
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is invoked. This function, which is implemented in the last segment of the code listing, performs a sound
�ltering. More precisely, it is a low-pass �lter, thus a �lter that leaves the low frequencies unaltered and
reduces the intensity of the high frequencies. According to the radial position of the mouse click, the �ltering
e�ect changes, being more dramatic (that is the sound becomes darker) as the mouse is released closer and
closer to the centre. A lighter realization of the Sound Chooser by means of the library Minim is proposed
in problem Exercise 2.4. The problem Exercise 2.5 explores the recent library Beads.
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Trumpet15

Oboe16

Violin17

Flute18

Applet: choosing a timbre and
controlling its brightness 19

import pitaru.sonia_v2_9.*;

Sample mySample1, mySample2, mySample3, mySample4;

Sample mySample1F, mySample2F, mySample3F, mySample4F;

float[] data1, data2, data3, data4;

float[] data1F, data2F, data3F, data4F;

int sr = 11025; // sampling rate

void setup()

{

size(200, 200);

colorMode(HSB, 360, height, height);

Sonia.start(this);

mySample1 = new Sample("flauto.aif");

mySample2 = new Sample("oboe.wav");

mySample3 = new Sample("tromba.wav");

mySample4 = new Sample("violino.wav");

mySample1F = new Sample("flauto.aif");

// ... OMISSIS ...

data1 = new float[mySample1.getNumFrames()];

// creates new arrays the length of the sample

// for the original sound

// ... OMISSIS ...

data1F = new float[mySample1.getNumFrames()];

// creates new arrays the length of the sample

// for the filtered sound

// ... OMISSIS ...

mySample1.read(data1);

// ... OMISSIS ...

}

void draw()

{

// ... OMISSIS ...

}

void mouseReleased()

{

float ro;

float roLin;

float wc;

// FLAUTO

if ((mouseX > 95) && (mouseX < 105)&& (mouseY > 50)&& (mouseY < 90)) {

roLin = (mouseY-49.99)/41;

ro = pow(roLin,.33);

wc = 298*(TWO_PI/sr);

filtra(data1F, data1, wc, ro);

mySample1F.write(data1F);

mySample1F.play();

}

// ... OMISSIS ...

}

//filtra = new function

void filtra(float[] DATAF, float[] DATA, float WC, float RO) {

float G;

float RO2;

RO2 = pow(RO, 2);

G = (1-RO)*sqrt(1-2*RO*cos(2*WC)+RO2)*4; // (*4) is for having it louder

for(int i = 3; i < DATA.length; i++){

DATAF[i] = G*DATA[i]+2*RO*cos(WC)*DATAF[i-1]-RO2*DATAF[i-2];

//recursive filtering

}

}

// safely stop the Sonia engine upon shutdown.

public void stop(){

Sonia.stop();

super.stop();

}
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Table 2.3

Exercise 2.1 (Solution on p. 28.)

The content of a PImage object is accessible through its pixels[] �eld. The pixels, corresponding
to a row-by-row reading of the image, are contained in this array of size width*height. Modify
the code in Example 2.2 (Loading and visualizing an image with transparency) to use the �eld
pixels[] instead of the method get(). The �nal outcome should remain the same.

Exercise 2.2 (Solution on p. 28.)

Complete the code reported in Table 2.3 to obtain the complete Sound Chooser applet.

Exercise 2.3 (Solution on p. 28.)

Add some color to the radii of the Sound Chooser, by replacing the line instructions with rect

instructions and coloring the bars with a brightness that increases goint from the centre to the
periphery.

Exercise 2.4 (Solution on p. 28.)

Produce a new version of the Sound Chooser of problem Exercise 2.2 employing the library Minim.
Note the gained compact form and simplicity of the code.

Exercise 2.5 (Solution on p. 30.)

Produce a new version of the Sound Chooser of problem Exercise 2.2 using the Beads library. The
signal-processing �ow is particularly readable from the resulting code.

Exercise 2.6: Vectorial fonts (Solution on p. 33.)

Processing programmers are encouraged to use bitmap fonts, encoded in a �le with extension
.vlw. This makes Processing independent from the fonts that are actually installed on a speci�c
machine. However, it is possible to use vectorial fonts (e.g., TrueType) by inserting their �les
(e.g., with extension .ttf) in the Data folder. Try experimenting with vectorial fonts by using the
createFont() function. If we give up the invariance of behavior on di�erent machines, we can pass
this function the name of a font that is installed on a speci�c computer and not found in the Data
folder. Finally, under JAVA2D rendering mode, it is possible to use logical fonts, by passing Serif,
SansSerif, Monospaced, Dialog, or DialogInput as a string that speci�es the font as an argument
of createFont(). Without the need of loading any font �les in the Data folder, the correspondence
between logical and physical fonts will be system dependent. Try experimenting with logical fonts
on your computer.

15See the �le at <http://cnx.org/content/m12983/latest/./tromba.wav>
16See the �le at <http://cnx.org/content/m12983/latest/./oboe.wav>
17See the �le at <http://cnx.org/content/m12983/latest/./violino.wav>
18See the �le at <http://cnx.org/content/m12983/latest/./�auto.aif>
19See the �le at <http://cnx.org/content/m12983/latest/./sound_chooser.html>
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Solutions to Exercises in Chapter 2

Solution to Exercise 2.1 (p. 27)
The invocation b.set() should be replaced by

b.set(i,j,b.pixels[j*b.width+i]+ color(0,0,0, 255 - (int)((1-ramp)*255)) );

Solution to Exercise 2.2 (p. 27)
Processing source code. 20

Solution to Exercise 2.3 (p. 27)
Applet with Processing source code. 21

Solution to Exercise 2.4 (p. 27)

import ddf.minim.*;

import ddf.minim.effects.*;

Minim minim;

AudioPlayer mySample1, mySample2, mySample3, mySample4;

LowPassSP lpf1, lpf2, lpf3, lpf4;

float cutoff1, cutoff2, cutoff3, cutoff4;

void setup()

{

size(200, 200);

colorMode(HSB, 360, height, height);

minim = new Minim(this);

mySample1 = minim.loadFile("flauto.aif");

mySample2 = minim.loadFile("oboe.wav");

mySample3 = minim.loadFile("tromba.wav");

mySample4 = minim.loadFile("violino.wav");

lpf1 = new LowPassSP(4000, mySample1.sampleRate());

lpf2 = new LowPassSP(4000, mySample2.sampleRate());

lpf3 = new LowPassSP(4000, mySample3.sampleRate());

lpf4 = new LowPassSP(4000, mySample4.sampleRate());

mySample1.addEffect(lpf1);

mySample2.addEffect(lpf2);

mySample3.addEffect(lpf3);

mySample4.addEffect(lpf4);

}

void draw()

{

stroke(255);

strokeWeight(1);

fill(0, 88, 88);

20See the �le at <http://cnx.org/content/m12983/latest/./sound_chooser.pde>
21See the �le at <http://cnx.org/content/m12983/latest/./sound_chooser_color.pde>
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ellipseMode(CORNER);

ellipse(50,50,100,100);

beginShape(LINES);

vertex(50, 100);

vertex(90, 100);

vertex(110, 100);

vertex(150, 100);

vertex(100, 50);

vertex(100, 90);

vertex(100, 110);

vertex(100, 150);

endShape();

}

void mouseReleased()

{

// FLUTE

if ((mouseX > 95) && (mouseX < 105)&& (mouseY > 50)&& (mouseY < 90)) {

cutoff1 = map(mouseY, 50, 90, 1000, 30);

lpf1.setFreq(cutoff1);

println(mouseY + " + " +cutoff1);

mySample1.rewind();

mySample1.play();

}

// OBOE

if ((mouseX > 110) && (mouseX < 149)&& (mouseY > 95)&& (mouseY < 105)) {

cutoff2 = map(mouseX, 110, 149, 30, 1000);

lpf2.setFreq(cutoff2);

println(mouseX + " + " +cutoff2);

mySample2.rewind();

mySample2.play();

}

// TRUMPET

if ((mouseX > 95) && (mouseX < 105)&& (mouseY > 110)&& (mouseY < 149)) {

cutoff3 = map(mouseY, 110, 149, 30, 1000);

lpf3.setFreq(cutoff3);

println(mouseY + " + " +cutoff3);

mySample3.rewind();

mySample3.play();

}

// VIOLIN

if ((mouseX > 50) && (mouseX < 90)&& (mouseY > 95)&& (mouseY < 105)) {

cutoff4 = map(mouseX, 50, 90, 1000, 30);
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lpf4.setFreq(cutoff4);

println(mouseX + " + " +cutoff4);

mySample4.rewind();

mySample4.play();

}

}

// safely stop the Minim engine upon shutdown.

public void stop(){

mySample1.close();

mySample2.close();

mySample3.close();

mySample4.close();

minim.stop();

super.stop();

}

Solution to Exercise 2.5 (p. 27)

import beads.*;

AudioContext ac;

String sourceFile; //path to audio file

SamplePlayer mySample1, mySample2, mySample3, mySample4;

Gain g;

Glide cutoff1, cutoff2, cutoff3, cutoff4;

OnePoleFilter lpf1, lpf2, lpf3, lpf4;

void setup() {

size(200, 200);

colorMode(HSB, 360, height, height);

ac = new AudioContext();

sourceFile = sketchPath("") + "data/flauto.aif";

try {

mySample1 = new SamplePlayer(ac, new Sample(sourceFile));

}

catch (Exception e) {

println("Exception while attempting to load sample.");

e.printStackTrace(); // description of error

exit();

}

mySample1.setKillOnEnd(false);

sourceFile = sketchPath("") + "data/oboe.wav";
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try {

mySample2 = new SamplePlayer(ac, new Sample(sourceFile));

}

catch (Exception e) {

println("Exception while attempting to load sample.");

e.printStackTrace(); // description of error

exit();

}

mySample2.setKillOnEnd(false); sourceFile = sketchPath("") + "data/flauto.aif";

sourceFile = sketchPath("") + "data/tromba.wav";

try {

mySample3 = new SamplePlayer(ac, new Sample(sourceFile));

}

catch (Exception e) {

println("Exception while attempting to load sample.");

e.printStackTrace(); // description of error

exit();

}

mySample3.setKillOnEnd(false); sourceFile = sketchPath("") + "data/flauto.aif";

sourceFile = sketchPath("") + "data/violino.wav";

try {

mySample4 = new SamplePlayer(ac, new Sample(sourceFile));

}

catch (Exception e) {

println("Exception while attempting to load sample.");

e.printStackTrace(); // description of error

exit();

}

mySample4.setKillOnEnd(false);

cutoff1 = new Glide(ac, 1000, 20);

lpf1 = new OnePoleFilter(ac, cutoff1);

lpf1.addInput(mySample1);

cutoff2 = new Glide(ac, 1000, 20);

lpf2 = new OnePoleFilter(ac, cutoff2);

lpf2.addInput(mySample2);

cutoff3 = new Glide(ac, 1000, 20);

lpf3 = new OnePoleFilter(ac, cutoff3);

lpf3.addInput(mySample3);

cutoff4 = new Glide(ac, 1000, 20);

lpf4 = new OnePoleFilter(ac, cutoff4);

lpf4.addInput(mySample4);

g = new Gain(ac, 1, 1);

g.addInput(lpf1);

g.addInput(lpf2);

g.addInput(lpf3);

g.addInput(lpf4);

ac.out.addInput(g);
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ac.start();

background(0);

}

void draw()

{

stroke(255);

strokeWeight(1);

fill(0, 88, 88);

ellipseMode(CORNER);

ellipse(50,50,100,100);

beginShape(LINES);

vertex(50, 100);

vertex(90, 100);

vertex(110, 100);

vertex(150, 100);

vertex(100, 50);

vertex(100, 90);

vertex(100, 110);

vertex(100, 150);

endShape();

}

void mouseReleased(){

// FLAUTO

if ((mouseX > 95) && (mouseX < 105)&& (mouseY > 50)&& (mouseY < 90)) {

cutoff1.setValue(map(mouseY, 50, 90, 1000, 30));

mySample1.setToLoopStart();

mySample1.start();

}

// OBOE

if ((mouseX > 110) && (mouseX < 149)&& (mouseY > 95)&& (mouseY < 105)) {

cutoff2.setValue(map(mouseX, 110, 149, 30, 1000));

mySample2.setToLoopStart();

mySample2.start();

}

// TROMBA

if ((mouseX > 95) && (mouseX < 105)&& (mouseY > 110)&& (mouseY < 149)) {

cutoff3.setValue(map(mouseY, 110, 149, 30, 1000));

mySample3.setToLoopStart();

mySample3.start();

}

// VIOLINO



33

if ((mouseX > 50) && (mouseX < 90)&& (mouseY > 95)&& (mouseY < 105)) {

cutoff4.setValue(map(mouseX, 50, 90, 1000, 30));

mySample4.setToLoopStart();

mySample4.start();

}

}

Solution to Exercise 2.6 (p. 27)
This is an example of solution. Please make sure that the fonts used are present in your computer or in the
Data folder.

size(200,200, JAVA2D);

PFont fonte;

fonte = loadFont("HoeflerText-Black-48.vlw"); // previously created and inserted in Data

textFont(fonte, 12);

fill(10, 20, 250, 80);

textAlign(RIGHT);

text("pippo pippo non lo sa", 10, 14, 35, 70);

textFont(fonte, 94);

textAlign(LEFT);

fill(200, 0, 0, 100);

text("ppnls", 25, 5, 150, 190);

fonte = createFont("Serif", 10, false); // Java logical font

textFont(fonte, 80);

fill(0, 200, 0, 170);

rotate(PI/6);

text("LO SO", 20, 20, 280, 280);

fonte = createFont("cmsy10", 10, true); // font installed in the system

textFont(fonte, 80);

fill(0, 20, 150, 170);

rotate(PI/12);

text("ECCO", 20, 20, 280, 280);

fonte = createFont("grunge.ttf", 10, true); // vectorial font in the Data folder

textFont(fonte, 80);

fill(100, 100, 0, 170);

rotate(-PI/6);

text("qui", 20, 20, 280, 280);
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Chapter 3

Graphic Composition in Processing1

3.1 Graphic primitives

In Processing, we can arrange points, lines, surfaces, and volumes (objects in 0, 1, 2, and 3 dimensions,
respectively) in a 3D space or, where this makes sense in the 2D space of the image window. The number
of parameters of the object primitives will determine if these objects have to be positioned in the X-Y or in
the X-Y-Z space.

3.1.1 0D

Points
The point() is the simplest of the graphic primitives. When invoked with two coordinate parameters, it
positions a point in the X-Y space. When invoked with three coordinate parameters, it positions a point in
the X-Y-Z space. A point, in geometric sense, does not have dimension, but it can be assigned an occupation
in pixels and a color, by the functions strokeWeight() and stroke(), respectively. For example, the simple
Processing sketch

stroke(180,0,0);

strokeWeight(10);

point(60,60);

draws a dot in the image window.
Collections of points
A set of points can be grouped into a single object (cloud of points) by the delimiters beginShape(POINTS)
and endShape(). Between them each point has to be speci�ed with the vertex() function. Transforma-
tions of rotation, translation, and scaling do not apply to the inside of composite objects described with
beginShape() and endShape(), but they can precede the de�nition of a composite object and apply to the
whole.

3.1.2 1D

Straight Lines
The line() draws a line segment between two points in the plane or the 3D space, with width and color
that can be set with strokeWeight() and stroke(), respectively.

1This content is available online at <http://cnx.org/content/m12986/1.10/>.
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Collections of segments
A set of segments can be de�ned, as we saw for points, by the delimiters beginShape() and

endShape(). Between them, vertices are listed by calls to the function vertex(). Using the invocation
beginShape(LINES) the vertices are taken in couples, each identifying a segment. With the argument-free
invocation beginShape() the vertices, taken one after the other, de�ne a polygonal line. With the closure
endShape(CLOSE) the line is closed on itself by linking the �rst and last vertices. The color of such polygon
can be set by using the fill() function or, conversely, left equal to the background color with the noFill().
Curves
The function curve(), when called with eight parameters, draws a curve on the image plane, with initial and
�nal points determined, respectively, by the second and third couple of coordinates passed as arguments. The
�rst and last couple of coordinates de�ne two control points for the curve, which is an interpolating spline,
thus passing for all four points. In Processing, however, only the curve segment between the intermediate
points is visualized.

De�nition 3.1: Spline
Piecewise-polynomial curve, with polynomials connected with continuity at the knots

note: See Introduction to Splines2 and, for an introduction to the speci�c kind of splines (Catmull-
Rom) used in Processing, the term spline in Wikipedia.

In order to have an arbitrary number of control points we must use the function curveVertex() to specify
each point in the block delimited by beginShape() and endShape().

As opposed to the curve(), in the bezier() function call the two control points speci�ed by the four
middle parameters are not points touched by the curve. They only serve to de�ne the shape of the approx-
imating Bézier curve, which has the following interesting properties:

• it is entirely contained in the convex hull de�ned by the extremal points and the control points;
• transformations of translation, rotation, or scaling, appied to the extremal and control points determine

a similar transformation of the curve.

As we can see by running the code

stroke(255, 0, 0);

line(93, 40, 10, 10);

line(90, 90, 15, 80);

stroke(0, 0, 0);

noFill();

bezier(93, 40, 10, 10, 90, 90, 15, 80);

the control points lay on the tangent passing by the extremal points. In order to have an arbitrary number
of control points one must use the bezierVertex() to specify each point within a block delimited by
beginShape() and endShape(). In this way, an arbitrarily involute curve can be traced in the 3D space. In
2D, the function bezierVertex() has six parameters that correspond to the coordinates of two control points
and one anchor point. The �rst invocation of bezierVertex() has to be preceded by a call to vertex()

which �xes the �rst anchor point of the curve.
There are other methods that allow to read the coordinates or the slope of the tangent to an arbitrary

point of a Bézier or spline curve. Such point can be speci�ed by a parameter t that can go from 0 (�rst
extreme) to 1 (second extreme). It is also possible to set the precision of approximating or interpolating
curves in 3D. For details see the Processing reference manual 3 .

The Processing sketch in table (Table 3.1) shows the di�erence between the spline interpolating curve
and the Bézier curve.

note: See the term Bézier curve in Wikipedia.

2"Introduction to Splines" <http://cnx.org/content/m11153/latest/>
3http://www.processing.org/reference/index_ext.html
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applet that
compares
the Bézier
curve (red)
and the
interpolat-
ing spline
(black) 4

void setup() {

c1x = 120;

c1y = 110;

c2x = 50;

c2y = 70;

background(200);

stroke(0,0,0);

size(200, 200);

}

int D1, D2;

int X, Y;

int c1x, c1y, c2x, c2y;

void draw() {

if (mousePressed == true) {

X = mouseX; Y = mouseY;

// selection of the point that is modified

D1 = (X - c1x)*(X - c1x) + (Y - c1y)*(Y - c1y);

D2 = (X - c2x)*(X - c2x) + (Y - c2y)*(Y - c2y);

if (D1 < D2) {

c1x = X; c1y = Y;

}

else {

c2x = X; c2y = Y;

}

}

background(200);

stroke(0,0,0);

strokeWeight(1);

noFill();

beginShape();

curveVertex(10, 10);

curveVertex(10, 10);

curveVertex(c2x, c2y);

curveVertex(c1x, c1y);

curveVertex(190, 190);

curveVertex(190, 190);

endShape();

stroke(255,30,0);

bezier(10,10,c2x,c2y,c1x,c1y,190,190);

strokeWeight(4);

point(c1x,c1y);

point(c2x,c2y);

}
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Table 3.1

3.1.3 2D

note: Objects in two or three dimensions take a color that can be determined by the illumination,
as explained in Section 3.3 (Lighting), or established by the method fill(), which also gives the
possibility to set the degree of transparency.

Triangles
The triangle is the fundamental construction element for 3D graphics. In fact, by juxtaposition of triangles
one can approximate any continuous surface. In Processing, however, the triangles are speci�ed in 2D by
the primitive triangle(), whose six parameters correspond to the coordinates of the vertices in the image
window. Even though each triangle is de�ned in 2D, it can be rotated and translated in the 3D space, as it
happens in the Processing sketch

void setup(){ size(200, 200, P3D); fill(210, 20,

20); }

float angle = 0;

void draw(){

background(200); // clear image

stroke(0,0,0);

angle += 0.005;

rotateX(angle);

triangle(10,10,30,70,80,80);

}

Collections of triangles
A set of triangles can be de�ned, similarly to what we did for points and segments, by the delimiters
beginShape() and endShape(). Between them, the vertices of the triangles are listed by calls to the function
vertex(). By the invocation beginShape(TRIANGLES) the vertices are taken in triples, each de�ning a
triangle, while the invocation beginShape(TRIANGLE_STRIP) takes the vertices one after the other to de�ne
a strip mad of triangular facets. If the vertex() has three arguments, the vertices are located in the 3D
space and the corresponding triangles identify planar surfaces in space.
Quadrilaterals
Rectangles are de�ned, in Processing, by the function rect() of four parameters, where the �rst couple
speci�es, by default, the position in the the 2D plane of the top-left corner, and the third and fourth
parameters specify the width and height, respectively. The meaning of the �rst couple of parameters can be
changed with the function rectMode(): rectMode(CORNER) gives the default positioning; rectMode(CENTER)
gives the positioning of the center of the rectangle at the speci�ed point; with the rectMode(CORNERS) the
four parameters are interpreted as the coordinates of the top-left and bottom-right vertices, respectively. A
generic quadrilateral is de�ned by the coordinates of its four vertices, passed as parameters to the function
quad(). It is important to notice that in 3D, while a triangle stays planar in any case, a quadruple of points
does not necessarily lay on a plane. Viceversa, the quadrilaterals that are de�ned by 3D roto-translations of
quadruples of 2D vertices, remain planar. Processing allows only eight parameters to be passed to quad(),
thus forcing the de�nition of a quadrilateral as a quadruple of vertices in 2D.
Collections of quadrilaterals
A set of quadrilaterals can be de�ned, similarly to what we saw for triangles, by the delimiters beginShape()
and endShape(). Between them, vertices are listed by calls to the function vertex(). By using the invo-
cation beginShape(QUADS) the vertices are taken in quadruples, each identifying a quadrilateral, while the

4See the �le at <http://cnx.org/content/m12986/latest/bezier_curve.html>
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invocation beginShape(QUAD_STRIP) takes the vertices one after the other to de�ne a strip mad of quadri-
lateral facets. If the vertex() have three parameters, the planarity of the resulting faces is not ensured,
and the resulting rendering can be misleading. For instance, by running the code

size(200,200,P3D);

lights();

beginShape(QUADS);

vertex(20,31, 33);

vertex(80, 40, 38);

vertex(75, 88, 50);

vertex(49, 85, 74);

endShape();

we realize that the quadrilateral is rendered as the juxtaposition of two triangles belonging to di�erent planes.
Polygons
A generic polygon is de�ned as a set of vertices, and it has a surface that can be colored. In Processing the
vertices are listed within a couple beginShape(POLYGON); - endShape(); Actually, the polygon has to be
intended in a generalized sense, as it is possible to use the bezierVertex() and curveVertex() to specify
curved pro�les. For instance, the reader may try to draw the moon:

fill(246, 168, 20);

beginShape(POLYGON);

vertex(30, 20);

bezierVertex(80, 10, 80, 75, 30, 75);

bezierVertex(50, 70, 60, 25, 30, 20);

endShape();

Ellipses
The function ellipse() draws an ellipse in the 2D plane. Its four parameters are interpreted, as in the case
of rect(), as position followed by width and height. The position can be set in di�erent ways according
to the ellipseMode(), whose parameter can take values CORNER, CORNERS, CENTER, CENTER_RADIUS. The
�rst couple of these possible values have to be referred to the rectangle that is circumscribed to the ellipse.

3.1.4 3D

Processing o�ers a very limited repertoire of 3D-object primitives, essentially only balls and boxes.
Boxes
The function box() produces a cube when invoked with a single parameter (edge), a parallelepiped when
invoked with three parameters (width, height, depth).
Balls
The function sphere() produces, by an approximating polyhedron, a sphere whose radius is speci�ed as a
parameter.The function sphereDetail() can be used to specify the number of vertices of the polyhedron
that approximates the ideal sphere.

3.2 The stack of transformations

A rotation or a translation can be imagined as operations that rotate or translate the Cartesian reference
system. In other terms, after a rotate() or a translate() the following positioning operations of the
objects will have a new coordinate system. When various objects are positioned in di�erent ways in space,
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it is useful to keep trace of the coordinate systems that are set, one after the other. The data structure that
is suited for containing such systems is the stack of transformations (matrix stack). With the function
pushMatrix() the current coordinate system is put on top of the stack. On the other hand, to revert to
the coordinate system before the last transformation, we have to call a popMatrix(). Actually, the stack
contains the a�ne transformation matrices, according to what is dictated by OpenGL and described in
Section 3.5 (Pills of OpenGL).

Example 3.1
In this example two objects are positioned in the 3D space: a planar square and a cube. The �rst
pushMatrix() saves the coordinate system onto the stack, then some transformations are applied,
and �nally the square is drawn. To go back to the previous coordinate system and apply new
transformations to position the cube, we apply a popMatrix(). Essentially, the pushMatrix() and
popMatrix() determine the scope for the geometric positioning of an object.

float angle;

void setup(){

size(100, 100, P3D);

int angle = 0;

}

void draw(){

background(200);

angle += 0.003;

pushMatrix();

translate(25,50);

rotateZ(angle);

rotateY(angle);

rectMode(CENTER);

rect(0,0,20,20);

popMatrix();

translate(75,50,-25);

rotateX(angle);

box(20);

}

3.3 Lighting

The Processing lighting model echoes the model used in OpenGL, that is the Phong re�ection model.
Such model is not physically justi�ed, but it is particularly e�cient. OpenGL considers as illuminated each
polygon whose normal forms an acute angle with the direction of incoming light. This happens regardless
of any masking objects. Therefore, shadows are not cast. OpenGL is said to use a local illumination model,
since multiple re�ections among surfaces and cast shadows are not automatically rendered.

An environmental light is available, which is not coming from any particular direction, and whose color
is speci�ed by the parameters of the activation call ambientLight(). A directional light source is set with
the directionalLight(), whose parameters specify color and incoming direction. The method lights()

activates a default combination of gray ambient light and directional light, the latter also gray, coming
from the frontal direction. It is possible to set a point light source in a given point of space by the call
pointLight(). Finally, the method spotLight() activates a light beam which can be controlled in its color,
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position, direction, aperture, and concentration around the axis. The exponent e tunes the fallo� around
the axis:

cose (φ) (3.1)

When hitting a planar surface, a directional light produces re�ected light along several directions, depend-
ing on the surface properties. In the case of perfectly-di�usive (or Lambertian) surface, the light radiates
evenly from the surface along all directions, with an intensity that is larger for incident directions closer to
the surface normal. Vice versa, if the surface is perfectly re�ecting, light is only re�ected along the direction
that is specularly symmetric (about the surface normal) to the incident direction. In OpenGL, to have some
�exibility in de�ning the illumination, each source has the three illumination components: ambient, di�use,
and specular. These three components are separately de�ned and interact with the respective components
that de�ne the surface properties of objects. The colors de�ned in the methods directionalLight(),
pointLight(), and spotLight() de�ne the Lambertian component of illumination. The lightSpecular()
speci�es the color of the component of incoming light that is subject to specular re�ection.

In Processing, the properties of surfaces are controlled by the methods ambient() (acting on the am-
bient component of incoming lights) and specular() (acting on the specular component). The function
shininess() controls the concentration of the specularly-re�ected beam, by a coe�cient that acts similarly
to the exponent of (3.1). The represented objects can also be considered as sources of light, and they can
be assigned an emission light by the emmissive() call. However, the sources de�ned in this way do not
illuminate the other objects on the scene.

In OpenGL the point, spot, and ambient lights are attenuated with increasing distance, according to the
model

attenuation =
1

a+ bd+ cd2
(3.2)

The method ligthFalloff() allows to specify the parameters a, b, and c.

Example 3.2
Here, a cube and a QUAD_STRIP are positioned in space and illuminated by a rotating source.
Moreover, a soft �xed light is set. Notice the absence of shadows and the apparent planarity of
surfaces in the QUAD_STRIP.

float r;

float lightX, lightY, lightZ;

void setup() {

size(400, 400, P3D);

r = 0;

ambient(180, 90, 0);

specular(0, 0, 240);

lightSpecular(200, 200, 200);

shininess(5);

}

void draw() {

lightX = 100*sin(r/3) + width/2;

lightY = 100*cos(r/3) + height/2;

lightZ = 100*cos(r);

background(0,0,0);

noStroke();

ambientLight(153, 102, 0);

lightSpecular(0, 100, 200);
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pointLight(100, 180, 180,

lightX, lightY, lightZ);

pushMatrix();

translate(lightX, lightY, lightZ);

emissive(100, 180, 180);

sphere(4); //Put a little sphere where the light is

emissive(0,0,0);

popMatrix();

pushMatrix();

translate(width/2, height/2, 0);

rotateX(PI/4);

rotateY(PI/4);

box(100);

popMatrix();

pushMatrix();

translate(width/4, height/2, 0);

beginShape(QUAD_STRIP);

vertex(10,13,8);

vertex(13,90,13);

vertex(65,76,44);

vertex(95,106,44);

vertex(97,20,70);

vertex(109,70,80);

endShape();

popMatrix();

r+=0.05;

}

3.4 Projections

3.4.1 Perspective projections

A perspective projection is de�ned by a center of projection and a plane of projection. The projector
rays connect the points in the scene with the center of projection, thus highlighting the corresponding points
in the plane of projection. The Figure 3.1 shows a section where the plane of projection produces a straight
line whose abscissa is −d, and the center of projection is in the origin.
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Figure 3.1

By similarity of two triangles it is easy to realize that the point having ordinate y gets projected onto
the plane in the point having ordinate yp = −ydz .

In general, the projection of a point having homogeneous coordinates


x

y

z

1

 onto a plane orthogonal to

the z axis and intersecting such axis in position−d is obtained, in homogeneous coordinates, by multiplication

with the matrix


1 0 0 0

0 1 0 0

0 0 1 0

0 0 − 1
d 0

. The projected point becomes


x

y

z

− zd

, which can be normalized by

multiplication of all its element by −dz . As a result, we obtain


−xdz
−ydz
−d
1


3.4.2 Parallel views

Parallel views are obtained by taking the center of projection back to in�nity (∞). In this way, the projector
rays are all parallel.
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3.4.2.1 Orthographic projection

The orthographic projection produces a class of parallel views by casting projection rays orthogonal to the
plane of projection. If such plane is positioned orthogonally to the z axis and passing by the origin, the

projection matrix turns out to be particolarly simple:


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

. Among orthographic projections,

the axonometric projections are based on the possibility to measure the object along three orthogonal
axes, and on the orientation of the plane of projection with respect to these axes. In particular, in the
isometric projection5 the projections of the axes form angles of 120 ◦. The isometric projection has the
property that equal segments on the three axes remain equal when they are projected onto the plane. In
order to obtain the isometric projection of an object whose main axes are parallel to the coordinate axes, we

can �rst rotate the object by 45 ◦ about the y axis, and then rotate by arctan
(

1√
2

)
= 35.264 ◦ about the x

axis.

3.4.2.2 Oblique projection

We can talk about oblique projection every time the projector rays are oblique (non-orthogonal) to the
projection plane. In order to deviate the projector rays from the normal direction by the angles θ and φ we

must use a projection matrix


1 0 −tan (θ) 0

0 1 −tan (φ) 0

0 0 0 0

0 0 0 1


3.4.3 Casting shadows

As we have seen, Processing has a local illumination model, thus being impossible to cast shadows directly.
However, by manipulating the a�ne transformation matrices we can cast shadows onto planes. The method
is called �ashing in the eye, thus meaning that the optical center of the scene is moved to the point where
the light source is positioned, and then a perspective transformation is made, with a plane of projection that
coincides with the plane where we want to cast the shadow on.

Example 3.3
The following program projects on the �oor the shadow produced by a light source positioned on
the y axis. The result is shown in Figure 3.2 (Casting a shadow)

5http://en.wikipedia.org/wiki/Isometric_projection
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Casting a shadow

Figure 3.2

size(200, 200, P3D);

float centro = 100;

float yp = 70; //floor (plane of projection) distance from center

float yl = 40; //height of light (center of projection) from center

translate(centro, centro, 0); //center the world on the cube

noFill();

box(yp*2); //draw of the room

pushMatrix();

fill(250); noStroke();

translate(0, -yl, 0); // move the virtual light bulb higher

sphere(4); //draw of the light bulb

stroke(10);

popMatrix();

pushMatrix(); //draw of the wireframe cube

noFill();

rotateY(PI/4); rotateX(PI/3);

box(20);

popMatrix();

// SHADOW PROJECTION BY COMPOSITION

// OF THREE TRANSFORMATIONS (the first one in

// the code is the last one to be applied)
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translate(0, -yl, 0); // shift of the light source and the floor back

// to their place (see the translation below)

applyMatrix(1, 0, 0, 0,

0, 1, 0, 0,

0, 0, 1, 0,

0, 1/(yp+yl), 0, 0); // projection on the floor

// moved down by yl

translate(0, yl, 0); // shift of the light source to center

// and of the floor down by yl

pushMatrix(); // draw of the cube that generate the shadow

fill(120, 50); // by means of the above transformations

noStroke();

rotateY(PI/4); rotateX(PI/3);

box(20);

popMatrix();

3.5 Pills of OpenGL

OpenGL is a set of functions that allow the programmer to access the graphic system. Technically speaking,
it is an Application Programming Interface (API). Its main scope is the graphic rendering of a scene
populated by 3D objects and lights, from a given viewpoint. As far as the programmer is concerned, OpenGL
allows to describe geometric objects and some of their properties, and to decide how such objects have to be
illuminated and seen. As far as the implementation is concerned, OpenGL is based on the graphic pipeline ,
made of modules as reported in Figure 3.3 (The OpenGL pipeline). An excellent book on interactive graphics
in OpenGL was written by Angel [1].

The OpenGL pipeline

Figure 3.3

In Processing (and in OpenGL), the programmer speci�es the objects by means of world coordinates
(standard coordinates). The model-view matrix is the transformation matrix used to go from stan-
dard coordinates to a space associated with the camera. This allows to change the camera viewpoint and
orientation dynamically. In OpenGL this is done with the function gluLookAt(), which is reproduced in
Processing by the camera(). The �rst triple of parameters identi�es the position, in world coordinates, of
the optical center of the camera (eye point). The second triple of parameters identi�es a point where the
camera is looking at (center of the scene). The third triple of coordinates identi�es a vector aimed at
specifying the viewing vertical. For example, the program



47

void setup() {

size(100, 100, P3D);

noFill();

frameRate(20);

}

void draw() {

background(204);

camera(70.0, 35.0, 120.0, 50.0, 50.0, 0.0,

(float)mouseX /width, (float)mouseY /height, 0.0);

translate(50, 50, 0);

rotateX(-PI/6);

rotateY(PI/3);

box(45);

}

draws the wireframe of a cube and enables the dynamic rotation of the camera.
The projection matrix is responsible for the projection on the viewing window, and this projection

can be either parallel (orthographic) or perspective. The orthographic projection can be activated with the
call ortho(). The perspective projection is the default one, but it can be explicitly activated with the call
perspective(). Particular projections, such as the oblique ones, can be obtained by distortion of objects by
application of the applyMatrix(). There is also the texture matrix, but textures are treated in another
module.

For each type of matrix, OpenGL keeps a stack, the current matrix being on top. The stack data
structure allows to save the state (by the pushMatrix()) before performing new transformations, or to remove
the current state and activate previous states (by the popMatrix()). This is re�ected in the Processing
operations described in Section 3.2 (The stack of transformations). In OpenGL, the transformations are
applied according to the sequence

1. Push on the stack;
2. Apply all desired transformations by multiplying by the stack-top matrix;
3. Draw the object (a�ected by transformations);
4. Pop from the stack.

A viewport is a rectangular area of the display window. To go from the perspective projection plane to
the viewport two steps are taken: (i) transformation into a 2 x 2 window centered in the origin ( normalized
device coordinates ) (ii) mapping the normalized window onto the viewport. Using the normalized device
coordinates, the clipping operation, that is the elimination of objects or parts of objects that are not visible
through the window, becomes trivial. screenX(), screenY(), and screenZ() gives the X-Y coordinates
produced by the viewport transformation and by the previous operators in the chain of Figure 3.3 (The
OpenGL pipeline).

The viewing frustum is the solid angle that encompasses the perspective projection, as shown in Fig-
ure 3.4 (The viewing frustum). The objects (or their parts) belonging to the viewing volume are visualized,
the remaining parts are subject to clipping. In Processing (and in OpenGL) the frustum can be de�ned by
positioning the six planes that de�ne it (frustum()), or by speci�cation of the vertical angle, the, aspect
ratio, and the positions of the front and back planes (perspective()). One may ask how the system re-
moves the hidden faces, i.e., those faces that are masked by other faces in the viewing volume. OpenGL
uses the z-bu�er algorithm, which is supported by the graphic accelerators. The board memory stores a
2D memory area (the z-bu�er) corresponding to the pixels of the viewing window, and containing depth
values. Before a polygon gets projected on the viewing window the board checks if the pixels a�ected by
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such polygon have a depth value smaller than the polygon being drawn. If this is the case, it means that
there is an object that masks the polygon.

The viewing frustum

Figure 3.4

Sophisticated geometric transformations are possible by direct manipulation of the projection and model-
view matrices. This is possible, in Processing, starting from the unit matrix, loaded with resetMatrix(),
and proceeding by matrix multiplies done with the applyMatrix().

Exercise 3.1 (Solution on p. 50.)

Run and analyze the Processing code

size(200, 200, P3D);

println("Default matrix:"); printMatrix();

noFill();

ortho(-width/2, width/2, -height/2, height/2, -100, 100);

translate(100, 100, 0);

println("After translation:"); printMatrix();

rotateX(atan(1/sqrt(2)));
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println("After about-X rotation:"); printMatrix();

rotateY(PI/4);

println("After about-Y rotation:"); printMatrix();

box(100);

What is visualized and what it the kind of projection used? How do you interpret the matrices
printed out on the console? Can one invert the order of rotations?

Exercise 3.2 (Solution on p. 50.)

Write a Processing program that performs the oblique projection of a cube.

Exercise 3.3 (Solution on p. 50.)

Visualize a cube that projects its shadow on the �oor, assuming that the light source is at in�nite
distance (as it is the case, in practice, for the sun).
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Solutions to Exercises in Chapter 3

Solution to Exercise 3.1 (p. 48)
The wireframe of a cube is visualized in isometric projection. The latter three matrices represent, one
after the other, the three operations of translation (to center the cube to the window), rotation about the x
axis, and rotation about the y axis. A sequence of two rotations correspond to the product of two rotation
matrices, and the outcome is not order independent (product is not commutative). The product of two
rotation matrices RxRy correspond to performing the rotation about y �rst, and then the rotation about x.
Solution to Exercise 3.2 (p. 49)
For example:

size(200, 200, P3D);

float theta = PI/6;

float phi = PI/12;

noFill();

ortho(-width/2, width/2, -height/2, height/2, -100, 100);

translate(100, 100, 0);

applyMatrix(1, 0, - tan(theta), 0,

0, 1, - tan(phi), 0,

0, 0, 0, 0,

0, 0, 0, 1);

box(100);

Solution to Exercise 3.3 (p. 49)
We do it similarly to Example 3.3, but the transformation is orthographic:

size(200, 200, P3D);

noFill();

translate(100, 100, 0);

pushMatrix();

rotateY(PI/4); rotateX(PI/3);

box(30);

popMatrix();

translate(0, 60, 0); //cast a shadow from infinity (sun)

applyMatrix(1, 0, 0, 0,

0, 0, 0, 0,

0, 0, 1, 0,

0, 0, 0, 1);

fill(150);

pushMatrix();

noStroke();

rotateY(PI/4); rotateX(PI/3);

box(30);

popMatrix();



Chapter 4

Signal Processing in Processing:

Sampling and Quantization1

4.1 Sampling

Both sounds and images can be considered as signals, in one or two dimensions, respectively. Sound can be
described as a �uctuation of the acoustic pressure in time, while images are spatial distributions of values of
luminance or color, the latter being described in its RGB or HSB components. Any signal, in order to be
processed by numerical computing devices, have to be reduced to a sequence of discrete samples, and each
sample must be represented using a �nite number of bits. The �rst operation is called sampling, and the
second operation is called quantization of the domain of real numbers.

4.1.1 1-D: Sounds

Sampling is, for one-dimensional signals, the operation that transforms a continuous-time signal (such as,
for instance, the air pressure �uctuation at the entrance of the ear canal) into a discrete-time signal, that
is a sequence of numbers. The discrete-time signal gives the values of the continuous-time signal read at
intervals of T seconds. The reciprocal of the sampling interval is called sampling rate Fs = 1

T . In this
module we do not explain the theory of sampling, but we rather describe its manifestations. For a a more
extensive yet accessible treatment, we point to the Introduction to Sound Processing [2]. For our purposes,
the process of sampling a 1-D signal can be reduced to three facts and a theorem.

• The Fourier Transform2 of a discrete-time signal is a function (called spectrum) of the continuous
variable ω, and it is periodic with period 2π. Given a value of ω, the Fourier transform gives back a
complex number that can be interpreted as magnitude and phase (translation in time) of the sinusoidal
component at that frequency.

• Sampling the continuous-time signal x (t) with interval T we get the discrete-time signal x (n) = x (nT ),
which is a function of the discrete variable n.

• Sampling a continuous-time signal with sampling rate Fs produces a discrete-time signal whose fre-
quency spectrum is the periodic replication of the original signal, and the replication period is Fs. The
Fourier variable ω for functions of discrete variable is converted into the frequency variable f (in Hertz)
by means of f = ω

2πT .

The Figure 4.1 (Frequency spectrum of a sampled signal) shows an example of frequency spectrum of a signal
sampled with sampling rate Fs. In the example, the continuous-time signal had all and only the frequency
components between −Fb and Fb. The replicas of the original spectrum are sometimes called images.

1This content is available online at <http://cnx.org/content/m13045/1.6/>.
2"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>
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Frequency spectrum of a sampled signal

Figure 4.1

Given the facts (p. 51), we can have an intuitive understanding of the Sampling Theorem, historically
attributed to the scientists Nyquist and Shannon.

Theorem 4.1: Sampling Theorem
A continuous-time signal x (t), whose spectral content is limited to frequencies smaller than Fb

(i.e., it is band-limited to Fb) can be recovered from its sampled version x (n) if the sampling rate
is larger than twice the bandwidth (i.e., if Fs > 2Fb)
The reconstruction can only occur by means of a �lter that cancels out all spectral images except for the

one directly coming from the original continuous-time signal. In other words, the canceled images are those
having frequency components higher than the Nyquist frequency de�ned as Fs

2 . The condition required
by the sampling theorem (Theorem 4.1, Sampling Theorem, p. 52) is equivalent to saying that no overlaps
between spectral images are allowed. If such superimpositions were present, it wouldn't be possible to design
a �lter that eliminates the copies of the original spectrum. In case of overlapping, a �lter that eliminates all
frequency components higher than the Nyquist frequency would produce a signal that is a�ected by aliasing.
The concept of aliasing is well illustrated in the Aliasing Applet3, where a continuous-time sinusoid is subject
to sampling. If the frequency of the sinusoid is too high as compared to the sampling rate, we see that the the
waveform that is reconstructed from samples is not the original sinusoid, as it has a much lower frequency.
We all have familiarity with aliasing as it shows up in moving images, for instance when the wagon wheels
in western movies start spinning backward. In that case, the sampling rate is given by the frame rate, or
number of pictures per second, and has to be related with the spinning velocity of the wheels. This is one
of several stroboscopic 4 phenomena.

In the case of sound, in order to become aware of the consequences of the 2π periodicity of discrete-time
signal spectra (see Figure 4.1 (Frequency spectrum of a sampled signal)) and of violations of the condition
of the sampling theorem, we examine a simple case. Let us consider a sound that is generated by a sum

3"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
4http://www.michaelbach.de/ot/mot_strob/
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of sinusoids that are harmonics (i.e., integer multiples) of a fundamental. The spectrum of such sound
would display peaks corresponding to the fundamental frequency and to its integer multiples. Just to give a
concrete example, imagine working at the sampling rate of 44100 Hz and summing 10 sinusoids. From the
sampling theorem we know that, in our case, we can represent without aliasing all frequency components up
to 22050 Hz. So, in order to avoid aliasing, the fundamental frequency should be lower than 2205 Hz. The
Processing (with Beads library) code reported in table Table 4.1 implements a generator of sounds formed
by 10 harmonic sinusoids. To produce such sounds it is necessary to click on a point of the display window.
The x coordinate would vary with the fundamental frequency, and the window will show the spectral peaks
corresponding to the generated harmonics. When we click on a point whose x coordinate is larger than 1

10 of
the window width, we still see ten spectral peaks. Otherwise, we violate the sampling theorem and aliasing
will enter our representation.
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Aliasing test:
Applet to
experience
the e�ect
of aliasing
on sounds
obtained by
summation of
10 sinusoids
in harmonic
ratio 5

import beads.*; // import the beads library

import beads.Buffer;

import beads.BufferFactory;

AudioContext ac;

PowerSpectrum ps;

WavePlayer wavetableSynthesizer;

Glide frequencyGlide;

Envelope gainEnvelope;

Gain synthGain;

int L = 16384; // buffer size

int H = 10; //number of harmonics

float freq = 10.00; // fundamental frequency [Hz]

Buffer dSB;

void setup() {

size(1024,200);

frameRate(20);

ac = new AudioContext(); // initialize AudioContext and create buffer

frequencyGlide = new Glide(ac, 200, 10); // initial freq, and transition time

dSB = new DiscreteSummationBuffer().generateBuffer(L, H, 0.5);

wavetableSynthesizer = new WavePlayer(ac, frequencyGlide, dSB);

gainEnvelope = new Envelope(ac, 0.0); // standard gain control of AudioContext

synthGain = new Gain(ac, 1, gainEnvelope);

synthGain.addInput(wavetableSynthesizer);

ac.out.addInput(synthGain);

// Short-Time Fourier Analysis

ShortFrameSegmenter sfs = new ShortFrameSegmenter(ac);

sfs.addInput(ac.out);

FFT fft = new FFT();

sfs.addListener(fft);

ps = new PowerSpectrum();

fft.addListener(ps);

ac.out.addDependent(sfs);

ac.start(); // start audio processing

gainEnvelope.addSegment(0.8, 50); // attack envelope

}

void mouseReleased(){

println("mouseX = " + mouseX);

}

void draw()

{

background(0);

text("click and move the pointer", 800, 20);

frequencyGlide.setValue(float(mouseX)/width*22050/10); // set the fundamental frequency

// the 10 factor is empirically found

float[] features = ps.getFeatures(); // from Beads analysis library

// It will contain the PowerSpectrum:

// array with the power of 256 spectral bands.

if (features != null) { // if any features are returned

for (int x = 0; x < width; x++){

int featureIndex = (x * features.length) / width;

int barHeight = Math.min((int)(features[featureIndex] * 0.05 *

height), height - 1);

stroke(255);

line(x, height, x, height - barHeight);

}

}

}

public class DiscreteSummationBuffer extends BufferFactory {

public Buffer generateBuffer(int bufferSize) { //Beads generic buffer

return generateBuffer(bufferSize, 10, 0.9f); //default values

}

public Buffer generateBuffer(int bufferSize, int numberOfHarmonics, float amplitude)

{

Buffer b = new Buffer(bufferSize);

double amplitudeCoefficient = amplitude / (2.0 * (double)numberOfHarmonics);

double theta = 0.0;

for (int k = 0; k <= numberOfHarmonics; k++) { //additive synthesis

for (int i = 0; i < b.buf.length; i++) {

b.buf[i] = b.buf[i] + (float)Math.sin(i*2*Math.PI*freq*k/b.buf.length)/20;

}

}

return b;

}

public String getName() { //mandatory method implementation

return "DiscreteSummation";

}

}
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Table 4.1

4.1.2 2-D: Images

Let us assume we have a continuous distribution, on a plane, of values of luminance or, more simply stated,
an image. In order to process it using a computer we have to reduce it to a sequence of numbers by means of
sampling. There are several ways to sample an image, or read its values of luminance at discrete points. The
simplest way is to use a regular grid, with spatial steps X e Y . Similarly to what we did for sounds, we de�ne
the spatial sampling rates FX = 1

X and FY = 1
Y . As in the one-dimensional case, also for two-dimensional

signals, or images, sampling can be described by three facts and a theorem.

• The Fourier Transform of a discrete-space signal is a function (called spectrum) of two continuous
variables ωX and ωY , and it is periodic in two dimensions with periods 2π. Given a couple of values
ωX and ωY , the Fourier transform gives back a complex number that can be interpreted as magnitude
and phase (translation in space) of the sinusoidal component at such spatial frequencies.

• Sampling the continuous-space signal s (x, y) with the regular grid of steps X, Y , gives a discrete-space
signal s (m,n) = s (mX,nY ), which is a function of the discrete variables m and n.

• Sampling a continuous-space signal with spatial frequencies FX and FY gives a discrete-space signal
whose spectrum is the periodic replication along the grid of steps FX and FY of the original signal
spectrum. The Fourier variables ωX and ωY correspond to the frequencies (in cycles per meter)
represented by the variables fX = ωX

2πX and fY = ωY

2πY .

The Figure 4.2 (Spectrum of a sampled image) shows an example of spectrum of a two-dimensional sampled
signal. There, the continuous-space signal had all and only the frequency components included in the
central hexagon. The hexagonal shape of the spectral support (region of non-null spectral energy) is merely
illustrative. The replicas of the original spectrum are often called spectral images.

5See the �le at <http://cnx.org/content/m13045/latest/./index.html>
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Spectrum of a sampled image

Figure 4.2

Given the above facts (p. 55), we can have an intuitive understanding of the Sampling Theorem.

Theorem 4.2: Sampling Theorem (in 2D)
A continuous-space signal s (x, y), whose spectral content is limited to spatial frequencies belonging
to the rectangle having semi-edges FbX and FbY (i.e., bandlimited) can be recovered from its sampled
version s (m,n) if the spatial sampling rates are larger than twice the respective bandwidths (i.e.,
if FX > 2FbX and FY > 2FbY )
In practice, the spatial sampling step can not be larger than the semi-period of the �nest spatial frequency

(or the �nest detail) that is represented in the image. The reconstruction can only be done through a �lter
that eliminates all the spectral images but the one coming directly from the original continuous-space signal.
In other words, the �lter will cut all images whose frequency components are higher than the Nyquist
frequency de�ned as FX

2 and FY

2 along the two axes. The condition required by the sampling theorem
(Theorem 4.2, Sampling Theorem (in 2D), p. 56) is equivalent to requiring that there are no overlaps
between spectral images. If there were such overlaps, it wouldn't be possible to eliminate the copies of
the original signal spectrum by means of �ltering. In case of overlapping, a �lter cutting all frequency
components higher than the Nyquist frequency would give back a signal that is a�ected by aliasing.

We note how aliasing can be produced by down-sampling (or decimating) a sampled image. Starting
from a discrete-space image, we can select only a subset of samples arranged in a regular grid. This will
determine the periodic repetition of the spectral images, that will end up overlapping.

In order to explore the concepts of sampling, down-sampling, and aliasing, run the applet drawing ellipses
6. With the keyboard arrow you can double or halve the horizontal and vertical sampling steps.

A simple introduction to the �rst elements of image processing is found in Digital Image Processing
Basics7.

6See the �le at <http://cnx.org/content/m13045/latest/resampling_ellipse.html>
7"Digital Image Processing Basics" <http://cnx.org/content/m10973/latest/>
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4.2 Quantization

With the adjective "digital" we indicate those systems that work on signals that are represented by numbers,
with the (�nite) precision that computing systems allow. Up to now we have considered discrete-time and
discrete-space signals as if they were collections of in�nite-precision numbers, or real numbers. Unfortunately,
computers only allow to represent �nite subsets of rational numbers. This means that our signals are subject
to quantization.

For our purposes, the most interesting quantization is the linear one, which is usually occurring in the
process of conversion of an analog signal into the digital domain. If the memory word dedicated to storing a
number is made of b bits, then the range of such number is discretized into 2b quantization levels. Any value
that is found between two quantization levels can be approximated by truncation or rounding to the closest
value. The Figure 4.3 (Sampling and quantization of an analog signal) shows an example of quantization
with representation on 3 bits in two's complement8.

Sampling and quantization of an analog signal

Figure 4.3

The approximation introduced by quantization manifests itself as a noise, called quantization noise.
Often, for the analysis of sound-processing circuits, such noise is assumed to be white and de-correlated with
the signal, but in reality it is perceptually tied to the signal itself, in such an extent that quantization can
be perceived as an e�ect.

To have a visual and intuitive exploration of the phenomenon of quantization, consider the applet 9 that
allows to vary between 1 and 8 the number of bits dedicated to the representation of each of the RGB
channels representing color. The same number of bits is dedicated to the representation of an audio signal
coupled to the image. The visual e�ect that is obtained by reducing the number of bits is similar to a
solarization.

Exercise 4.1 (Solution on p. 59.)

Extend the code of the applet Table 4.1 to add some interaction features:

8"Two's Complement and Fractional Arithmetic for 16-bit Processors" <http://cnx.org/content/m10808/latest/>
9See the �le at <http://cnx.org/content/m13045/latest/quantagondoleBeads.html>
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• Make the fundamental frequency of the automatically-generated sound changing randomly at
each frame (see random()10 ).

• Make the framerate (and the metronome for generating notes) dependent on the horizontal
position of the mouse (mouseX).

• Make the number of harmonics of the sound (i.e., its brightness) dependent on the vertical
position of the mouse (mouseY).

• Paint the window background in such a way that moving from left to right the tint changes
from blue to red. In this way, a blue color will correspond to a slow tempo, and a red color
to a fast tempo.

• Make the color saturation of the background dependent on the vertical position of the mouse.
In this way a sound with a few harmonics (low brightness) will correspond to a grayish color,
while a sound rich of harmonics (high brightness) will correspond to a saturated color.

• Add a control to stop the computation and display of the spectrum and create an e�ect of
image freezing, while sound continues to be generated (for instance by keeping the mouse
button pressed).

• Add a control to cancel the dependence of tempo, brightness, and color saturation on mouse
position (for instance by pressing a key).

• Add a control that, in case of image freezing (mouse button pressed), will stop the generation
of new notes while "freezing" the current note.

• Finally, add a control that, in case of image freezing, will stop the sound generation and make
the application silent.

10http://www.processing.org/reference/random_.html
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 57)
The proposed extensions are implemented in the Processing code11.

11See the �le at <http://cnx.org/content/m13045/latest/./aliasingfermoDBeads.pde>
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Chapter 5

Signal Processing in Processing:

Convolution and Filtering1

5.1 Systems

For our purposes, a system is any processing element that, given as input a sequence of samples x (n),
produces as output a sequence of samples y (n). If the samples are coming from a temporal series we talk
about discrete-time systems. In this module we will not be concerned with continuous-time processing,
even though the principles here described can be generalized to functions of continuous variable. Instead,
the sequence of number can come from the sampling of an image, and in this case it will be appropriate to
talk of discrete-space systems and use two indeces m and n if sampling is done by a rectangular grid of
rows and columns.

In this module we are only dealing with linear systems, thus meaning that the following principle holds:

De�nition 5.1: Superposition principle
If y1 and y2 are the responses to the input sequences x1 and x2 then the input a1x1 +a2x2 produces
the response a1y1 + a2y2

Another important concept is time (and space) invariance.

De�nition 5.2: Time invariance
A system is time-invariant if a time shift of D samples in the input results in the same time shift
in the output, i.e., x (n−D) produces y (n−D).
Cases of non-invariance are found whenever the system changes its characteristics in time (or space), for

example as an e�ect of human control. Those systems where the sampling rate at the input is di�erent than
the one at the output are also non-invariant. For instance, decimators are time-variant systems.

A series connection of linear time-invariant (LTI) blocks is itself a linear and time-invariant system,
and the order of blocks can be changed without a�ecting the input-output behavior.

LTI systems can be thoroughly described by the response they give to a unit-magnitude impulse.

De�nition 5.3: The impulse in discrete time (space)
is the signal δ with value1 at the instant zero (in the point with coordinates [0, 0]), and 0 in any
other instant (point).

1This content is available online at <http://cnx.org/content/m13046/1.3/>.
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5.2 Impulse response and convolution

We call h the output signal of a LTI system whose input is just an impulse. Such output signal is called
impulse response. Since any discrete-time (-space) signal can be thought of as a weighted sum of trans-
lated impulses, each sample that shows up to the input activates an impulse response whose amplitude
is determined by the value of the sample itself. Moreover, since the impulse responses are activated at a
distance of one sampling step from each other and are extended over several samples, the e�ect of each input
sample is distributed over time, on a number of contiguous samples of the output signal. Being the system
linear and time-invariant, the successive impulse responses sum their e�ects. In other words, the system has
memory of the past samples, previously given as input to the system, and it uses such memory to in�uence
the present.

To have a physical analogy, we can think of regular strokes of a snare drum. The response to each stroke
is distributed in time and overlaps with the responses to the following strokes.

Example 5.1
Consider the signal x that is zero everywhere but at the instants −1, 0, and 1 where it has values
1, 0.5, and 0.25, respectively. At every instant n, x (n) can be expressed as 1δ (n+ 1) + 0.5δ (n) +
0.25δ (n− 1). By linearity, the output can be obtained by composition of carefully translated and
weighted impulse responses: y (n) = 1h (n+ 1) + 0.5h (n) + 0.25h (n− 1).

To generalize the example Example 5.1 we can de�ne the operation of convolution.

De�nition 5.4: Convolution of two signals h and x
y (n) = h ∗ x (n) =

∑∞
m=−∞ x (m)h (n−m)

The operation of convolution can be fully understood by the explicit construction of some examples of
convolution product. The module Discrete-Time Convolution2 gives the graphic construction of an examples
and it o�ers pointers to other examples.

5.2.1 Properties

The properties of the convolution operation are well illustrated in the module Properties of Convolution3.
The most interesting of such properties is the extension:

Property 5.1:
If x (n) is extended overM1 samples, and h (n) is extended overM2 samples, then the convolution

product y (n) is extended over M1 +M2 − 1 samples.

Therefore, the signal convolution product is longer than both the input signal and the impulse response.
Another interesting property is the commutativity of the convolution product, such that the input signal

and the impulse response can change their roles without a�ecting the output signal.

5.3 Frequency response and �ltering

The Fourier Transform4 of the impulse response is called Frequency Response and it is represented with
H (ω). The Fourier transform of the system output is obtained by multiplication of the Fourier transform
of the input with the frequency response, i.e., Y (ω) = H (ω)X (ω).

The frequency response shapes, in a multiplicative fashion, the input-signal spectrum or, in other words,
it performs some �ltering by emphasizing some frequency components and attenuating some others. A
�ltering can also operate on the phases of the spectral components, by delaying them of di�erent amounts.

Filtering can be performed in the time domain (or space domain), by the operation of convolution, or
in the frequency domain by multiplication of the frequency response.

2"Discrete Time Convolution" <http://cnx.org/content/m10087/latest/>
3"Properties of Continuous Time Convolution" <http://cnx.org/content/m10088/latest/>
4"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>
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Exercise 5.1 (Solution on p. 64.)

Take the impulse response that is zero everywhere but at the instants −1, 0, and 1 where it
has values 1, 0.5, and 0.25, respectively. Rede�ne the �ltering operation filtra() of the Sound
Chooser5 presented in the module Media Representation in Processing (Chapter 2). In this case
�ltering is operated in the time domain by convolution.

5.3.1 Causality

The notion of causality is quite intuitive and it corresponds to the experience of stimulating a system and
getting back a response only at future time instants. For discrete-time LTI systems, this happens when
the impulse response is zero for negative (discrete) time instants. Causal LTI systems can produce with
no appreciable delay an output signal sample-by-sample, because the convolution operator acts only on
present and past values of the input signal. In Exercise 5.1 the impulse response is not causal, but this is
not a problem because the whole input signal is already available, and the �lter can process the whole block
of samples.

5.4 2D Filtering

The notions of impulse response, convolution, frequency response, and �ltering naturally extend from 1D to
2D, thus giving the fundamental concepts of image processing.

De�nition 5.5: Convolution of two 2D signals (images)
y (m,n) = h ∗ x (m,n) =

∑∞
k=−∞

∑∞
l=−∞ x (k, l)h (m− k, n− l)

If x is the image that we are considering, it is easy to realize that convolution is performed by multi-
plication and translation in space of a convolution mask or kernel h (it is the impulse response of the
processing system). As in the 1D case �ltering could be interpreted as a combination of contiguous samples
(where the extension of such cluster depends on the extension of the �lter impulse response) that is repeated
in time, sample by sample. So, in 2D space �ltering can be interpreted as a combination of contiguous
samples (pixels) in a cluster, whose extension is given by the convolution mask. The so-called memory of
1-D systems becomes in 2-D a sort of distance e�ect.

As in the 1D case, the Fourier transform of the impulse response is called Frequency response and it
is indicated by H (ωX , ωY ). The Fourier transform of the system output is obtained by Fourier-transforming
the input and multiplying the result by the frequency response. Y (ωX , ωY ) = H (ωX , ωY )X (ωX , ωY ).

Exercise 5.2 (Solution on p. 64.)

Consider the Processing code of the blurring example6 and �nd the lines that implement the
convolution operation.

5"Rappresentazione di Media in Processing" <http://cnx.org/content/m12664/latest/#sound_chooser>
6http://processing.org/learning/topics/blur.html



64
CHAPTER 5. SIGNAL PROCESSING IN PROCESSING: CONVOLUTION

AND FILTERING

Solutions to Exercises in Chapter 5

Solution to Exercise 5.1 (p. 62)

void filtra(float[] DATAF, float[] DATA, float WC, float RO) {

//WC and R0 are useless, here kept only to avoid rewriting other

//parts of code

for(int i = 2; i < DATA.length-1; i++){

DATAF[i] = DATA[i+1] + 0.5*DATA[i] + 0.25*DATA[i-1];

}

}

Solution to Exercise 5.2 (p. 63)

for(int y=0; y<height; y++) {

for(int x=0; x<width/2; x++) {

float sum = 0;

for(int k=-n2; k<=n2; k++) {

for(int j=-m2; j<=m2; j++) {

// Reflect x-j to not exceed array boundary

int xp = x-j;

int yp = y-k;

//... omissis ...

//auxiliary code to deal with image boundaries

sum = sum + kernel[j+m2][k+n2] * red(get(xp, yp));

}

}

output[x][y] = int(sum);

}

}
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Convolution - Discrete time1

6.1 Introduction

The idea of discrete-time convolution is exactly the same as that of continuous-time convolution2. For
this reason, it may be useful to look at both versions to help your understanding of this extremely important
concept. Convolution is a very powerful tool in determining a system's output from knowledge of an arbitrary
input and the system's impulse response.

It also helpful to see convolution graphically, i.e. by using transparencies or Java Applets. Johns Hopkins
University3 has an excellent Discrete time convolution4 applet. Using this resource will help understanding
this crucial concept.

6.2 Derivation of the convolution sum

We know that any discrete-time signal can be represented by a summation of scaled and shifted discrete-time
impulses, see here5. Since we are assuming the system to be linear and time-invariant, it would seem to
reason that an input signal comprised of the sum of scaled and shifted impulses would give rise to an output
comprised of a sum of scaled and shifted impulse responses. This is exactly what occurs in convolution.
Below we present a more rigorous and mathematical look at the derivation:

Letting H be a discrete time LTI system, we start with the folowing equation and work our way down
the the convoluation sum.

y (n) = H (x (n))

= H
(∑∞

k=−∞ x (k) δ (n− k)
)

=
∑∞
k=−∞H (x (k) δ (n− k))

=
∑∞
k=−∞ x (k)H (δ (n− k))

=
∑∞
k=−∞ x (k)h (n− k)

(6.1)

Let us take a quick look at the steps taken in the above derivation. After our initial equation we rewrite the
function x (n) as a sum of the function times the unit impulse. Next, we can move around the H operator
and the summation because H (·) is a linear, DT system. Because of this linearity and the fact that x (k) is
a constant, we pull the constant out and simply multiply it by H (·). Finally, we use the fact that H (·) is
time invariant in order to reach our �nal state - the convolution sum!

1This content is available online at <http://cnx.org/content/m11539/1.4/>.
2"Continuous Time Convolution" <http://cnx.org/content/m10085/latest/>
3http://www.jhu.edu
4http://www.jhu.edu/signals
5"Discrete time signals": Section The unit sample <http://cnx.org/content/m11476/latest/#s3s1>
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Above the summation is taken over all integers. Howerer, in many practical cases either x (n) or h (n) or
both are �nite, for which case the summations will be limited. The convolution equations are simple tools
which, in principle, can be used for all input signals. Following is an example to demonstrate convolution;
how it is calculated and how it is interpreted.

6.2.1 Graphical illustration of convolution properties

A quick graphical example may help in demonstrating why convolution works.

Figure 6.1: A single impulse input yields the system's impulse response.

Figure 6.2: A scaled impulse input yields a scaled response, due to the scaling property of the system's
linearity.
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Figure 6.3: We now use the time-invariance property of the system to show that a delayed input
results in an output of the same shape, only delayed by the same amount as the input.
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Figure 6.4: We now use the additivity portion of the linearity property of the system to complete the
picture. Since any discrete-time signal is just a sum of scaled and shifted discrete-time impulses, we can
�nd the output from knowing the input and the impulse response.

6.3 Convolution Sum

As mentioned above, the convolution sum provides a concise, mathematical way to express the output of an
LTI system based on an arbitrary discrete-time input signal and the system's response. The convolution
sum is expressed as

y (n) =
∞∑

k=−∞

x (k)h (n− k) (6.2)
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As with continuous-time, convolution is represented by the symbol *, and can be written as

y (n) = x (n) ∗ h (n) (6.3)

By making a simple change of variables into the convolution sum, k = n − k, we can easily show that
convolution is commutative:

y (n) = x (n) ∗ h (n)

= h (n) ∗ x (n)
(6.4)

From (6.4) we get a convolution sum that is equivivalent to the sum in (6.2):

y (n) =
∞∑

k=−∞

h (k)x (n− k) (6.5)

For more information on the characteristics of convolution, read about the Properties of Convolution6.

6.4 Convolution Through Time (A Graphical Approach)

In this section we will develop a second graphical interpretation of discrete-time convolution. We will begin
this by writing the convolution sum allowing x to be a causal, length-m signal and h to be a causal, length-k,
LTI system. This gives us the �nite summation,

y (n) =
m−1∑
l=0

x (l)h (n− l) (6.6)

Notice that for any given n we have a sum of the m products of x (l) and a time-delayed h (n− l). This is
to say that we multiply the terms of x by the terms of a time-reversed h and add them up.

Going back to the previous example:

Figure 6.5: This is the end result that we are looking to �nd.

6"Properties of Continuous Time Convolution" <http://cnx.org/content/m10088/latest/>
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Figure 6.6: Here we reverse the impulse response, h , and begin its traverse at time 0.
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Figure 6.7: We continue the traverse. See that at time 1, we are multiplying two elements of the input
signal by two elements of the impulse respone.
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Figure 6.8
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Figure 6.9: If we follow this through to one more step, n = 4, then we can see that we produce the
same output as we saw in the intial example.

What we are doing in the above demonstration is reversing the impulse response in time and "walking
it across" the input signal. Clearly, this yields the same result as scaling, shifting and summing impulse
responses.

This approach of time-reversing, and sliding across is a common approach to presenting convolution,
since it demonstrates how convolution builds up an output through time.
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Chapter 7

Signal Processing in Processing:

Elementary Filters1

7.1 FIR �lters

The Finite Impulse Response (FIR) �lters are all those �lters characterised by an impulse response with
a �nite number of samples. They are realized by the operation of convolution2. For each sample of the
convolution product a weighted sum of a �nite number of input samples is computed.

7.1.1 Averaging �lter

The simplest non trivial FIR �lter is the �lter that computes the running average of two contiguous samples,
and the corresponding convolution can be expressed as

y (n) = 0.5x (n) + 0.5x (n− 1) (7.1)

. The impulse response has values 0.5 at instants 0 and 1, and zero anywhere else.
If we put a sinusoidal signal into the �lter, the output will still be a sinusoidal signal scaled in amplitude

and delayed in phase according to the frequency response 3, which is

H (ω) = cos
(ω

2

)
e−(iω

2 ) (7.2)

and its magnitude and phase are represented in Figure 7.1 (Magnitude and phase response for the averaging
�lter).

1This content is available online at <http://cnx.org/content/m13047/1.4/>.
2"Signal Processing in Processing: Convoluzione e Filtraggio": Section Risposta all'impulso e convoluzione

<http://cnx.org/content/m12809/latest/#convolution>
3"Signal Processing in Processing: Convoluzione e Filtraggio" <http://cnx.org/content/m12809/latest/#freqrespp>
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Magnitude and phase response for the averaging �lter

Figure 7.1

The one just presented is a �rst-order (or lenght 2) �lter, because it uses only one sample of the past
sequence of input. From Figure 7.1 (Magnitude and phase response for the averaging �lter) we see that the
frequency response is of the low-pass kind, because the high frequencies are attenuated as compared to the
low frequencies. Attenuating high frequencies means smoothing the rapid signal variations. If one wants a
steeper frequency response from an FIR �lter, the order must be increased or, in other words, more samples
of the input signal have to be processed by the convolution operator to give one sample of output.

7.1.2 Symmetric second-order FIR �lter

A symmetric second-order FIR �lter has an impulse response whose form is [a0, a1, a0], and the frequency
response turns out to be H (ω) = (a1 + 2a0cos (ω)) e−(iω). Convolution can be expressed as

y (n) = a0x (n) + a1x (n− 1) + a0x (n− 2) (7.3)

In the special case where a0 = 0.17654 and a1 = 0.64693 the frequency response (magnitude and phase) is
represented in Figure 7.2 (Magnitude and phase response of a second-order FIR �lter ).
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Magnitude and phase response of a second-order FIR �lter

Figure 7.2

7.1.3 High-pass �lters

Given the simple low-pass �lters that we have just seen, it is su�cient to change sign to a coe�cient to
obtain a high-pass kind of response, i.e. to emphasize high frequencies as compared to low frequencies. For
example, the Figure 7.3 (Frequency response (magnitude) of �rst- (left) and second- (right) order high-pass
FIR �lter.) displays the magnitude of the frequency responses of high-pass FIR �lters of the �rst and second
order, whose impulse responses are, respectively [0.5,−0.5] and [0.17654,−0.64693, 0.17654].

Frequency response (magnitude) of �rst- (left) and second- (right) order high-pass FIR �lter.

(a) (b)

Figure 7.3
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To emphasize high frequencies means to make rapid variations of signal more evident, being those varia-
tions time transients in the case of sounds, or contours in the case of images.

7.1.4 FIR �lters in 2D

In 2D, the impulse response of an FIR �lter is a convolution mask with a �nite number of elements, i.e. a
matrix. In particular, the averaging �lter can be represented, for example, by the convolution matrix

1
9


1 1 1

1 1 1

1 1 1

.
Example 7.1: Noise cleaning
The low-pass �lters (and, in particular, the smoothing �lters) perform some sort of smoothing
of the input signal, in the sense that the resulting signal has a smoother design, where abrupt
discontinuities are less evident. This can serve the purpose of reducing the perceptual e�ect of
noises added to audio signals or images. For example, the code reported below (p. 78) loads an
image, it corrupts with white noise, and then it �lters half of it with an averaging �lter, thus
obtaining Figure 7.4 (Smoothing).

Smoothing

Figure 7.4

// smoothed_glass

// smoothing filter, adapted from REAS:

// http://processing.org/learning/topics/blur.html

size(210, 170);

PImage a; // Declare variable "a" of type PImage

a = loadImage("vetro.jpg"); // Load the images into the program

image(a, 0, 0); // Displays the image from point (0,0)

// corrupt the central strip of the image with random noise
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float noiseAmp = 0.2;

loadPixels();

for(int i=0; i<height; i++) {

for(int j=width/4; j<width*3/4; j++) {

int rdm = constrain((int)(noiseAmp*random(-255, 255) +

red(pixels[i*width + j])), 0, 255);

pixels[i*width + j] = color(rdm, rdm, rdm);

}

}

updatePixels();

int n2 = 3/2;

int m2 = 3/2;

float val = 1.0/9.0;

int[][] output = new int[width][height];

float[][] kernel = { {val, val, val},

{val, val, val},

{val, val, val} };

// Convolve the image

for(int y=0; y<height; y++) {

for(int x=0; x<width/2; x++) {

float sum = 0;

for(int k=-n2; k<=n2; k++) {

for(int j=-m2; j<=m2; j++) {

// Reflect x-j to not exceed array boundary

int xp = x-j;

int yp = y-k;

if (xp < 0) {

xp = xp + width;

} else if (x-j >= width) {

xp = xp - width;

}

// Reflect y-k to not exceed array boundary

if (yp < 0) {

yp = yp + height;

} else if (yp >= height) {

yp = yp - height;

}

sum = sum + kernel[j+m2][k+n2] * red(get(xp, yp));

}

}

output[x][y] = int(sum);

}

}

// Display the result of the convolution

// by copying new data into the pixel buffer

loadPixels();

for(int i=0; i<height; i++) {

for(int j=0; j<width/2; j++) {
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pixels[i*width + j] =

color(output[j][i], output[j][i], output[j][i]);

}

}

updatePixels();

For the purpose of smoothing, it is common to create a convolution mask by reading the values of a Gaussian
bell in two variables. A property of gaussian functions is that their Fourier transform is itself gaussian.
Therefore, impulse response and frequency response have the same shape. However, the transform of a
thin bell is a large bell, and vice versa. The larger the bell, the more evident the smoothing e�ect will be,
with consequential loss of details. In visual terms, a gaussian �lter produces an e�ect similar to that of an

opalescent glass superimposed over the image. An example of Gaussian bell is 1
273



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


.

Conversely, if the purpose is to make the contours and salient tracts of an image more evident (edge
crispening or sharpening), we have to perform a high-pass �ltering. Similarly to what we saw in Section 7.1.3
(High-pass �lters) this can be done with a convolution matrix whose central value has opposite sign as

compared to surrounding values. For instance, the convolution matrix


−1 −1 −1

−1 9 −1

−1 −1 −1

 produces the

e�ect of Figure 7.5 (Edge crispening).

Edge crispening

Figure 7.5
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7.1.4.1 Non-linear �ltering: median �lter

A �lter whose convolution mask is signal-dependent looses its characteristics of linearity. Median �lters
use the mask to select a set of pixels of the input images, and replace the central pixel of the mask with
the median value of the selected set. Given a set of N (odd) numbers, the median element of the set is
the one that separates N−1

2 smaller elements from N−1
2 larger elements. A typical median �lter mask is

cross-shaped. For example, a 3× 3 mask can cover, when applied to a certain image point, the pixels with

values


x 4 x

7 99 12

x 9 x

, thus replacing the value 99 with the mean value 9.

Exercise 7.1 (Solution on p. 84.)

Rewrite the �ltering operation filtra() of the Sound Chooser (Table 2.3) presented in the module
Media Representation in Processing (Chapter 2) in such a way that it implements the FIR �lter
whose frequency response is represented in Figure 7.2 (Magnitude and phase response of a second-
order FIR �lter ). What happens if the �lter is applied more than once?

Exercise 7.2 (Solution on p. 84.)

Considered the Processing code of the blurring example4 contained in the Processing examples5 ,
modify it so that it performs a Gaussian �ltering.

Exercise 7.3 (Solution on p. 85.)

Modify the code of Example 7.1 (Noise cleaning) so that the e�ects of the averaging �lter (p. 78)

mask and the 1
10


1 1 1

1 2 1

1 1 1

 are compared. What happens if the central value of the convolution

mask is increased further? Then, try to implement the median �lter with a 3×3 cross-shaped mask.

7.2 IIR Filters

The �ltering operation represented by (7.1) is a particular case of di�erence equation, where a sample of
output is only function of the input samples. More generally, it is possible to construct recursive di�erence
equations, where any sample of output is a function of one or more other output samples.

y (n) = 0.5y (n− 1) + 0.5x (n) (7.4)

allows to compute (causally) each sample of the output by only knowing the output at the previous instant
and the input at the same instant. It is easy to realize that by feeding the system represented by (7.4) with
an impulse, we obtain the in�nite-length sequence y = [0.5, 0.25, 0.125, 0.0625, ...]. For this purpose, �lters
of this kind are called In�nite Impulse Response (IIR) �lters. The order of an IIR �lter is equal to the
number of past output samples that it has to store for processing, as dictated by the di�erence equation.
Therefore, the �lter of (7.4) is a �rst-order �lter. For a given �lter order, IIR �lters allow frequency responses
that are steeper than those of FIR �lters, but phase distortions are always introduced by IIR �lters. In other
words, the di�erent spectral components are delayed by di�erent time amounts. For example, Figure 7.6
(Magnitude and phase response of the IIR �rst-order �lter) shows the magnitude and phase responses for
the �rst-order IIR �lter represented by the di�erence equation (7.4). Called a the coe�cient that weights
the dependence on the output previous value (0.5 in the speci�c (7.4)), the impulse response takes the form
h (n) = an. The more a is closer to 1, the more sustained is the impulse response in time, and the frequency
response increases its steepness, thus becoming emphasizing its low-pass character. Obviously, values of a
larger than 1 gives a divergent impulse response and, therefore, an unstable behavior of the �lter.

4http://processing.org/learning/topics/blur.html
5http://processing.org/learning/topics/
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Magnitude and phase response of the IIR �rst-order �lter

Figure 7.6

IIR �lters are widely used for one-dimensional signals, like audio signals, especially for real-time sample-
by-sample processing. Vice versa, it doesn't make much sense to extend recursive processing onto two
dimensions. Therefore, in image processing FIR �lters are mostly used.

7.2.1 Resonant �lter

In the audio �eld, second-order IIR �lters are particularly important, because they realize an elementary
resonator. Given the di�erence equation

y (n) = a1y (n− 1) + a2y (n− 2) + b0x (n) (7.5)

one can verify that it produces the frequency response of Figure 7.7 (Magnitude and phase response of
the second-order IIR �lter ). The coe�cients that gives dependence on the past can be expressed as a1 =
2rcos (ω0) and a2 = −r2, where ω0 is the frequency of the resonance peak and r gives peaks that gets
narrower when approaching 1.



83

Magnitude and phase response of the second-order IIR �lter

Figure 7.7

Exercise 7.4
Verify that the �ltering operation filtra() of the Sound Chooser (Table 2.3) presented in module
Media Representation in Processing (Chapter 2) implements an IIR resonant �lter. What is the
relation between r and the mouse position along the small bars?
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Solutions to Exercises in Chapter 7

Solution to Exercise 7.1 (p. 81)

//filtra = new function

void filtra(float[] DATAF, float[] DATA, float a0, float a1) {

for(int i = 3; i < DATA.length; i++){

DATAF[i] = a0*DATA[i]+a1*DATA[i-1]+a0*DATA[i-2];//Symmetric FIR filter of the second order

}

}

By writing a for loop that repeats the �ltering operation a certain number of times, one can verify
that the e�ect of �ltering is emphasized. This intuitive result is due to the fact that, as far as the signal is
concerned, going through m �lters of order N (in our case N = 2 ) is equivalent to going through a single
�lter of order mN
Solution to Exercise 7.2 (p. 81)

// smoothing Gaussian filter, adapted from REAS:

// http://processing.org/learning/topics/blur.html

size(200, 200);

PImage a; // Declare variable "a" of type PImage

a = loadImage("vetro.jpg"); // Load the images into the program

image(a, 0, 0); // Displays the image from point (0,0)

int n2 = 5/2;

int m2 = 5/2;

int[][] output = new int[width][height];

float[][] kernel = { {1, 4, 7, 4, 1},

{4, 16, 26, 16, 4},

{7, 26, 41, 26, 7},

{4, 16, 26, 16, 4},

{1, 4, 7, 4, 1} };

for (int i=0; i<5; i++)

for (int j=0; j< 5; j++)

kernel[i][j] = kernel[i][j]/273;

// Convolve the image

for(int y=0; y<height; y++) {

for(int x=0; x<width/2; x++) {

float sum = 0;

for(int k=-n2; k<=n2; k++) {

for(int j=-m2; j<=m2; j++) {

// Reflect x-j to not exceed array boundary

int xp = x-j;
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int yp = y-k;

if (xp < 0) {

xp = xp + width;

} else if (x-j >= width) {

xp = xp - width;

}

// Reflect y-k to not exceed array boundary

if (yp < 0) {

yp = yp + height;

} else if (yp >= height) {

yp = yp - height;

}

sum = sum + kernel[j+m2][k+n2] * red(get(xp, yp));

}

}

output[x][y] = int(sum);

}

}

// Display the result of the convolution

// by copying new data into the pixel buffer

loadPixels();

for(int i=0; i<height; i++) {

for(int j=0; j<width/2; j++) {

pixels[i*width + j] = color(output[j][i], output[j][i], output[j][i]);

}

}

updatePixels();

Solution to Exercise 7.3 (p. 81)
Median �lter:

// smoothed_glass

// smoothing filter, adapted from REAS:

// http://www.processing.org/learning/examples/blur.html

size(210, 170);

PImage a; // Declare variable "a" of type PImage

a = loadImage("vetro.jpg"); // Load the images into the program

image(a, 0, 0); // Displays the image from point (0,0)

// corrupt the central strip of the image with random noise

float noiseAmp = 0.1;

loadPixels();

for(int i=0; i<height; i++) {

for(int j=width/4; j<width*3/4; j++) {

int rdm = constrain((int)(noiseAmp*random(-255, 255) +

red(pixels[i*width + j])), 0, 255);

pixels[i*width + j] = color(rdm, rdm, rdm);
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}

}

updatePixels();

int[][] output = new int[width][height];

int[] sortedValues = {0, 0, 0, 0, 0};

int grayVal;

// Convolve the image

for(int y=0; y<height; y++) {

for(int x=0; x<width/2; x++) {

int indSort = 0;

for(int k=-1; k<=1; k++) {

for(int j=-1; j<=1; j++) {

// Reflect x-j to not exceed array boundary

int xp = x-j;

int yp = y-k;

if (xp < 0) {

xp = xp + width;

} else if (x-j >= width) {

xp = xp - width;

}

// Reflect y-k to not exceed array boundary

if (yp < 0) {

yp = yp + height;

} else if (yp >= height) {

yp = yp - height;

}

if ((((k != j) && (k != (-j))) ) || (k == 0)) { //cross selection

grayVal = (int)red(get(xp, yp));

indSort = 0;

while (grayVal < sortedValues[indSort]) {indSort++; }

for (int i=4; i>indSort; i--) sortedValues[i] = sortedValues[i-1];

sortedValues[indSort] = grayVal;

}

}

}

output[x][y] = int(sortedValues[2]);

for (int i=0; i< 5; i++) sortedValues[i] = 0;

}

}

// Display the result of the convolution

// by copying new data into the pixel buffer

loadPixels();

for(int i=0; i<height; i++) {

for(int j=0; j<width/2; j++) {

pixels[i*width + j] =

color(output[j][i], output[j][i], output[j][i]);

}

}
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updatePixels();



88
CHAPTER 7. SIGNAL PROCESSING IN PROCESSING: ELEMENTARY

FILTERS



Chapter 8

Textures in Processing1

8.1 Color Interpolation

As seen in Graphic Composition in Processing2, one can obtain surfaces as collections of polygons by means
of the de�nition of a vertex within the couple beginShape() - endShape(). It is possible to assign a color
to one or more vertices, in order to make the color variations continuous (gradient). For example, you can
try to run the code

size(200,200,P3D);

beginShape(TRIANGLE_STRIP);

fill(240, 0, 0); vertex(20,31, 33);

fill(240, 150, 0); vertex(80, 40, 38);

fill(250, 250, 0); vertex(75, 88, 50);

vertex(49, 85, 74);

endShape();

in order to obtain a continuous nuance from red to yellow in the strip of two triangles.

8.1.1 Bilinear Interpolation

The graphical system performs an interpolation of color values assigned to the vertices. This type of bilinear
interpolation is de�ned in the following way:

• For each polygon of the collection
• · For each side of the polygon one assigns to each point on the segment the color obtained by

means of linear interpolation of the colors of the vertices i e j that de�ne the polygon: Cij (α) =
(1− αCi + αCj

• · A scan line scans the polygon (or, better, its projection on the image window) intersecting at
each step two sides in two points l ed r whose colors have already been identi�ed as Cl e Cr. In
each point of the scan line the color is determined by linear interpolation Clr (β) = (1−βCl+βCr

A signi�cative example of interpolation of colors associated to the vertices of a cube can be found in
examples of Processing3 , in the code RGB Cube4 .

1This content is available online at <http://cnx.org/content/m13048/1.4/>.
2"Composizione Gra�ca in Processing" <http://cnx.org/content/m12665/latest/>
3http://processing.org/learning/3d/
4http://processing.org/learning/3d/rgbcube.html
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8.2 Texture

When modeling a complex scene by means of a composition of simple graphical elements one cannot go
beyond a certain threshold of complexity. Let us think about the example of a modelization of a natural
scene, where one has to represent each single vegetal element, including the grass of a meadow. It is
unconceivable to do this manually. It would be possible to set and control the grass elements by means of
some algorithms. This is an approach taken, for example, in rendering the hair and skin of characters of the
most sophisticated animation movies (see for example, the Incredibles5 ). Otherwise, especially in case of
interactive graphics, one has to resort to using textures. In other words, one employs images that represent
the visual texture of the surfaces and map them on the polygons that model the objects of the scene. In
order to have a qualitative rendering of the surfaces it is necessary to limit the detail level to fragments not
smaller than one pixel and, thus, the texture mapping is inserted in the rendering chain at the rastering
level of the graphic primitives, i.e. where one passes from a 3D geometric description to the illumination of
the pixels on the display. It is at this level that the removal of the hidden surfaces takes place, since we are
interested only in the visible fragments.

In Processing, a texture is de�ned within a block beginShape() - endShape() by means of the function
texture() that has as unique parameter a variable of type PImage. The following calls to vertex() can
contain, as last couple of parameters, the point of the texture corresponding to the vertex. In fact, each
texture image is parameterized by means of two variables u and v, that can be referred directly to the line
and column of a texel (pixel of a texture) or, alternatively, normalized between 0 and 1, in such a way
that one can ignore the dimension as well as the width and height of the texture itself. The meaning of the
parameters u and v is established by the command textureMode() with parameter IMAGE or NORMALIZED.

Example 8.1
In the code that follows the image representing a broken glass 6 is employed as texture and followed
by a color interpolation and the default illumination. The shading of the surfaces, produced by
means of the illumination and the colors, is modulated in a multiplicative way by the colors of the
texture.

size(400,400,P3D);

PImage a = loadImage("vetro.jpg");

lights();

textureMode(NORMALIZED);

beginShape(TRIANGLE_STRIP);

texture(a);

fill(240, 0, 0); vertex(40,61, 63, 0, 0);

fill(240, 150, 0); vertex(340, 80, 76, 0, 1);

fill(250, 250, 0); vertex(150, 176, 100, 1, 1);

vertex(110, 170, 180, 1, 0);

endShape();

8.3 Texture mapping

It is evident that the mapping operations from a texture image to an object surface, of arbitrary shape,
implies some form of interpolation. Similarly to what happens for colors, only the vertices that delimit
the surface are mapped onto exact points of the texture image. What happens for the internal points has
to be established in some way. Actually, Processing and OpenGL behave according to what illustrated in

5http://www.computerarts.co.uk/in_depth/features/inside_the_incredibles
6See the �le at <http://cnx.org/content/m13048/latest/.>
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Section 8.1.1 (Bilinear Interpolation ), i.e. by bilinear interpolation: a �rst linear interpolation over each
boundary segment is cascaded by a linear interpolation on a scan line. If u and v exceed the limits of the
texture image, the system (Processing) can assume that this is repeated periodically and �x it to the values
at the border.

A problem that occurs is that a pixel on a display does not necessarly correspond exactly to a texel.
One can map more than one texel on a pixel or, viceversa, a texel can be mapped on several pixels. The
�rst case corresponds to a downsampling that, as seen in Sampling and Quantization7, can produce aliasing.
The e�ect of aliasing can be attenuated by means of low pass �ltering of the texture image. The second
case corresponds to upsampling, that in the frequency domain can be interpreted as increasing the distance
between spectral images.

8.4 Texture Generation

Textures are not necessarely imported from images, but they can also be generated in an algorithmic fashion.
This is particularly recommended when one wants to generate regular or pseudo-random patterns. For
example, the pattern of a chess-board can be generated by means of the code

PImage textureImg =

loadImage("vetro.jpg"); // dummy image colorMode(RGB,1);

int biro = 0;

int bbiro = 0;

int scacco = 5;

for (int i=0; i<textureImg.width; i+=scacco) {

bbiro = (bbiro + 1)%2; biro = bbiro;

for (int j=0; j<textureImg.height; j+=scacco) {

for (int r=0; r<scacco; r++)

for (int s=0; s<scacco; s++)

textureImg.set(i+r,j+s, color(biro));

biro = (biro + 1)%2;

}

}

image(textureImg, 0, 0);

The use of the function random, combined with �lters of various type, allows a wide �exibility in the
production of textures. For example, the pattern represented in Figure 8.1 (Algorithmically-generated pat-
tern) was obtained from a modi�cation of the code generating the chess-board. In particular, we added the
line scacco=floor(2+random(5)); within the outer for, and applied an averaging �lter.

7"Signal Processing in Processing: Campionamento e Quantizzazione" <http://cnx.org/content/m12751/latest/>
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Algorithmically-generated pattern

Figure 8.1

Exercise 8.1 (Solution on p. 95.)

How could one modify the code Example 8.1 in order to make the breaks in the glass more evident?

Exercise 8.2
The excercise consists in modifying the code of the generator of the chess-board in Section 8.4

(Texture Generation) in order to generate the texture Figure 8.1 (Algorithmically-generated pat-
tern).

Exercise 8.3
This exercise consists in running and analyzing the following code. Try then to vary the dimensions
of the small squares and the �ltering type.

size(200, 100, P3D);

PImage textureImg = loadImage("vetro.jpg"); // dummy image

colorMode(RGB,1);

int biro = 0;

int bbiro = 0;

int scacco = 5;

for (int i=0; i<textureImg.width; i+=scacco) {

// scacco=floor(2+random(5));

bbiro = (bbiro + 1)%2; biro = bbiro;

for (int j=0; j<textureImg.height; j+=scacco) {

for (int r=0; r<scacco; r++)

for (int s=0; s<scacco; s++)

textureImg.set(i+r,j+s, color(biro));

biro = (biro + 1)%2;

}

}

image(textureImg, 0, 0);

textureMode(NORMALIZED);

beginShape(QUADS);

texture(textureImg);

vertex(20, 20, 0, 0);
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vertex(80, 25, 0, 0.5);

vertex(90, 90, 0.5, 0.5);

vertex(20, 80, 0.5, 0);

endShape();

// ------ filtering -------

PImage tImg = loadImage("vetro.jpg"); // dummy image

float val = 1.0/9.0;

float[][] kernel = { {val, val, val},

{val, val, val},

{val, val, val} };

int n2 = 1;

int m2 = 1;

colorMode(RGB,255);

// Convolve the image

for(int y=0; y<textureImg.height; y++) {

for(int x=0; x<textureImg.width/2; x++) {

float sum = 0;

for(int k=-n2; k<=n2; k++) {

for(int j=-m2; j<=m2; j++) {

// Reflect x-j to not exceed array boundary

int xp = x-j;

int yp = y-k;

if (xp < 0) {

xp = xp + textureImg.width;

} else if (x-j >= textureImg.width) {

xp = xp - textureImg.width;

}

// Reflect y-k to not exceed array boundary

if (yp < 0) {

yp = yp + textureImg.height;

} else if (yp >= textureImg.height) {

yp = yp - textureImg.height;

}

sum = sum + kernel[j+m2][k+n2] * red(textureImg.get(xp, yp));

}

}

tImg.set(x,y, color(int(sum)));

}

}

translate(100, 0);

beginShape(QUADS);

texture(tImg);

vertex(20, 20, 0, 0);

vertex(80, 25, 0, 0.5);

vertex(90, 90, 0.5, 0.5);

vertex(20, 80, 0.5, 0);

endShape();
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Solutions to Exercises in Chapter 8

Solution to Exercise 8.1 (p. 92)
It is su�cient to consider only a piece of the texture, with calls of the type vertex(150, 176, 0.3, 0.3);
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Chapter 9

Signal Processing in Processing:

Miscellanea1

9.1 Economic Color Representations

In Media Representation in Processing2 we saw how one devotes 8 bits to each channel corresponding to a
primary color. If we add to these the alpha channel, the total number of bits per pixel becomes 32. We do
not always have the possibility to use such a big amount of memory for colors. Therefore, one has to adopt
various strategies in order to reduce the number of bits per pixel.

9.1.1 Palette

A �rst solution comes from the observation that usually in an image, not all of the 224 representable colors
are present at the same time. Supposing that the number of colors necessary for an ordinary image is
not greater than 256, one can think about memorizing the codes of the colors in a table (palette), whose
elements are accessible by means of an index of only 8 bits. Thus, the image will require a memory space
of 8 bits per pixel plus the space necessary for the palette. For examples and further explanations see color
depth3 in Wikipedia.

9.1.2 Dithering

Alternatively, in order to have a low number of bits per pixel, one can apply a digital processing technique
called dithering. The idea is that of obtaining a mixture of colors in a perceptual way, exploiting the
proximity of small points of di�erent color. An exhaustive presentation of the phenomenon can be found at
the voice dithering4 of Wikipedia.

9.1.3 Floyd-Steinberg's Dithering

The Floyd-Steinberg's algorithm is one of the most popular techniques for the distribution of colored pixels
in order to obtain a dithering e�ect. The idea is to minimize the visual artifacts by processing the error-
di�usion. The algorithm can be resumed as follows:

• While proceeding top down and from left to right for each considered pixel,
• · calculate the di�erence between the goal color and the closest representable color (error)

1This content is available online at <http://cnx.org/content/m13085/1.5/>.
2"Rappresentazione di Media in Processing" <http://cnx.org/content/m12664/latest/>
3http://en.wikipedia.org/wiki/Color_depth
4http://en.wikipedia.org/wiki/Dithering
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· spread the error on the contiguous pixels according to the mask 1
16


0 0 0

0 X 7

3 5 1

. That is, add
7
16 of the error to the pixel on the right of the considered one, add 3

16 of the error to the pixel
bottom left with respect to the considered one, and so on.

By means of this algorithm it is possible to reproduce an image with di�erent gray levels by means of a
device able to de�ne only white and black points. The mask of the Floyd-Steinberg's algorithm was chosen
in a way that a uniform distribution of gray intensities 1

2 produces a chessboard layout pattern.
Exercise 9.1 (Solution on p. 113.)

By means of Processing, implement a program to process the �le lena5, a "dithered" black and
white version of the famous Lena6 image. The image, treated only in the left half, should result
similar to that of Figure 9.1

5See the �le at <http://cnx.org/content/m13085/latest/lena.jpg>
6http://en.wikipedia.org/wiki/Lenna



99

Figure 9.1

9.2 Economic Sound Representations

In case of audio signals, the use of dithering aims at reducing the perceptual e�ect of the error produced
by the changes in the quantization resolution, that one typically performs when recording and processing
audio signals. For example, when recoding music, more than 16-bits of quantization are usually employed.
Furthermore, mathematical operations applied to the signal (as, for instance, simple dynamical variations)
require an increasing of the bit depth that is of the number of bits. As soon as one reaches the �nal product,
the audio CD, the number of quantization bits has to be reduced to 16. In each of these consecutives
processes of re-quantization one introduces an error, that adds up. In case of a reduction of the number
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of bits, it is possible to truncate the values (that is the digits after the decimal point are neglected and
set to zero) or round them (that is the decimal number is approximated to the closest integer). In both
cases one introduces an error. In particular, when one considers signals with a well de�ned pitch (as in
the case of musical signals), the error becomes periodic-like. From the example of the voice dithering7

of Wikipedia, the reason of this additional pseudo-periodic noise (i.e. harmonic-like) becomes clear. This
distortion corresponds to a buzz-like sound that "follows" the pitch of the quantized sound. The whole result
is quite annoying from a perceptual point of view.

In case of audio signals, thus, dithering has the function of transforming this buzz-like sound in a back-
ground noise similar to a rustling, less annoying from a listening point of view. In Figure 9.2 an example of
some periods of the waveform of a clarinet quantized with 16 bits is reported. The result of a reduction of the
number of bits to 8 is represented in Figure 9.3. It is clearly visible how the reduction of the quantization
levels produces series of lines with constant amplitude. The application of dithering generates a further
transformation that, how one can see in Figure 9.4 "breaks" the constant lines by means of the introduction
of white noise. The Figure 9.5, Figure 9.6 and Figure 9.7 represent the Fourier transforms of the sounds of
Figure 9.2, Figure 9.3 and Figure 9.4, respectively. In the frequecy representation, it is also visible how the
change to a quantization at 8 bits introduces improper harmonics (Figure 9.6) not present in the sound at
16 bit (Figure 9.5). These harmonics are canceled by the e�ect of dithering (Figure 9.7).

Figure 9.2

7http://en.wikipedia.org/wiki/Dithering
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Figure 9.3
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Figure 9.4
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Figure 9.5
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Figure 9.6
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Figure 9.7

There exist also methods that exploit perceptual factors as the fact that our ear is more sensitive in the
central region of the audio band and less sensitive in the higher region. This allows one to make the e�ect
of a re-quantization less audible. This is the case of the noise shaping techniques. This method consists in
"modeling" the quantization noise. Figure 9.8 represents the sound of a clarinet re-quantized with 8 bits. A
dithering and a noise-shaping were applied to the sound. The result, apparently destructive from the point
of view of the waveform, corresponds to a sound, whose spectrum is closer to that of the original sound at
16 bits, excepted for a considerable increasing of energy in the very high frequency region (Figure 9.9). This
high frequency noise produces this "ru�ed" waveform, i.e. high energy fast amplitude variations. This noise
is anyway not audible. Thus, at a listening test, the �nal result is better than the previous one.
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Figure 9.8
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Figure 9.9

It is possible to think about the noise shaping as the audio counterpart of the Floyd-Steinberg's algorithm
for graphics. In the audio case the error propagation occurs in the time-domain instead of the space-domain.
The most simple version of noise shaping can be obtained by means of the de�nition of the quantization
error

e (n) = y (n)−Q (y (n)) (9.1)

where
y (n) = x (n) + e (n− 1) (9.2)

and x is the non-quantized signal. Further details about noise shaping can be found at Wikipedia, noise
shaping8 . What presented above can be tested in the sound examples clarinet9 , clarinet at 8 bits10,
clarinet at 8 bits with dithering11 and clarinet at 8 bit with noise shaping12 that contain the clarinet sounds
represented in Figure 9.2, Figure 9.3, Figure 9.4, e Figure 9.8, respectively.

8http://en.wikipedia.org/wiki/Noise_shaping
9See the �le at <http://cnx.org/content/m13085/latest/./clarinetto.wav>

10See the �le at <http://cnx.org/content/m13085/latest/./clarinetto8.wav>
11See the �le at <http://cnx.org/content/m13085/latest/./clarinetto8dith.wav>
12See the �le at <http://cnx.org/content/m13085/latest/./clarinetto8dithNs.wav>
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9.3 Histogram-Based Processing.

De�nition 9.1: Image Histograms
Graphic representation by means of vertical bars, where each bar represents the number of pixels
present in the image for a given intensity of the gray scale (or color channel). Wikipedia de�nition.13

Among the examples in Processing14 , one �nds the code Histogram15 that overlap an image to its own
histogram.

The histogram o�ers a synthetic representation of images, in which one looses the information concerning
the pixel positions and considers only the chromatic aspects. This provides information about the Tonal
Gamma of an image (gray intensity that are present) and about the Dynamics (extension of the Tonal
Gamma). The image of a chess board, for example, has a Tonal Gamma that includes only two gray levels
(black and white) but it has a maximal dynamics (since white and black are the two extremity of the
representable gray levels).

The histogram is the starting point for various processing e�ects aiming at balancing or altering the
chromatic contents of an image. In general, the question is building a map go = f (gi) for the gray levels (or
color-channel levels) that can be applied to each pixel. The histogram can drive the de�nition of this map.

9.3.1 Translation and Expansion of an Histogram

If the map is of the kind go = gi + k the histogram is translated in the sense of a higher or lower brightness,
according to the sign of k. On the other side, if the map is of the kind go = kgi the histogram will be
expanded or compressed, for values of k smaller or greater than 1, respectively.

The contrast stretching is one of the operations of this kind of linear scaling that tries to extend the
dynamic range of an image. The interval by means of which one performs the scaling is set on the basis of
the histogram, neglecting, for example, the tails of the distribution corresponding to 10% of the darkest and
brightest pixels.

9.3.2 Non Linear Scaling

More in general, the map go = f (gi) can be non linear, and this allows a greater �exibility in the manipulation
of the histogram. A useful instrument is the one that allows to manipulate interactively the scaling map and
to see the results on the image and/or on the histogram in real time. The instrument Color Tools/Curves

of the image processing software Gimp16 does this, using an interpolating spline. In Processing it is possible
to build a similar instrument, as reported in Example 9.1.

Example 9.1
Applet that allows to apply a non linear scaling to the gray levels and to analyze the e�ect by
means of an histogram. 17

9.3.3 Equalization of an Histogram

The non linear scaling is the tool to equalize the histogram, that is to shape it in a desirable way. An image
has a balanced tonal gamma, if all of the gray levels are represented and if the distribution is approximately
uniform. In other words, one aims at a �at histogram. Without entering too much into the mathematical
details, one can say that the non linear map to be used for the equalization is obtained from the cumulated

13http://en.wikipedia.org/wiki/Color_histogram
14http://www.processing.org/learning/topics/
15http://www.processing.org/learning/topics/histogram.html
16http://www.gimp.org
17See the �le at <http://cnx.org/content/m13085/latest/histogram_t.html>
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distribution of the histogram of the image f (gi) =
∑gi

k=0 h (k), where h (k) is the frequency, properly scaled
by means of a normalization constant, with which the k-th gray level appears .

Exercise 9.2 (Solution on p. 114.)

Modify the Processing code of Example 9.1 in order to add the operation of equalization of the
histogram.

9.4 Segmentation and Contour Extraction

9.4.1 Contours

The objects that populate a scene represented in an image are usually detectable by means of their contours:
Thread-like pro�les that correspond to a fast variation of color or of gray intensity. The contour extraction is
one of the typical operation of the image processing. From the point of view of the Mathematical Analysis,
a fast variation of a function corresponds to a high value of the derivative function. In the frame of Digital
Signal Processing (DSP), the derivative can be approximated by means of a di�erence operation, i.e. by
means of a �lter. The �lters that let fast variations through and eliminate slow variations are of a high-pass
type. It is not surprising, thus, that for contour extraction, one uses convolution masks similar to that seen
in Elementary Filters18 employed for edge crispening. More in detail, one can say that in 2D one looks for
points with maximum amplitude of the gradient, i.e. points, where the Laplacian of the image that is its
second spatial derivative is necessarily zero. The Laplacian can be approximated (in the discrete space) by

means of a convolution mask


0 1 0

1 −4 1

0 1 0

. The direct application of the Laplacian is often not satisfying,

since the result is too sensitive to noise and to small details. It is, thus, useful to combine the Laplacian
mask with that of a low-pass �lter. The combination of a Laplacian and a Gaussian (LoG) �lter produces,

in the case 5 by5, the mask



0 0 −1 0 0

0 −1 −2 −1 0

−1 −2 16 −2 −1

0 −1 −2 −1 0

0 0 −1 0 0


In the software Gimp, a contour enhancer is

available, based on the di�erence between two Gaussian �lters, corresponding to two Gaussian curves with
di�erent amplitude. This produces an inhibition e�ect outside the principal contours, in a way similar to
what happens in our perceptual system.

9.4.2 Regions

In many applications it is necessary to isolate the various objects that populate a scene, starting from their
representation, as pixel collections of an image. For example, it could be interesting to isolate an object in
foreground from the background. In this case, one talks about segmentation or extraction of regions. The
most simple way for isolating di�erent regions is that of doing it on a color basis, or on a gray-intensity basis.
Also in this case, the operation can be driven by the histogram that can be helpful in order to establish a
gray threshold. All the darker pixels will be mapped to black, while all the lighter ones will be mapped
to white. For example, if the histogram presents two evident maxima, it is possible to assign the region of
one maximum to the foreground (since it is, for example, lighter) and the region corresponding to the other
maximum to the background (since it is, for example, darker). The threshold will be chosen in between the
two maxima. Sometimes it is necessary to establish a multiplicity of thresholds, in order to isolate di�erent

18"Signal Processing in Processing: Filtri Elementari" <http://cnx.org/content/m12827/latest/#crispp>
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regions by means of di�erent gray levels. For color images, the thresholds can be di�erent for di�erent RGB
channels.

Exercise 9.3
Apply the Laplacian �lter and the LoG �lter to the image of Lena.

Exercise 9.4 (Solution on p. 115.)

Show that the extraction of a background �gure by means of a threshold can be implemented by
means of non linear map go = f (gi). What should be the form of this map?

Exercise 9.5
Employ a program for image processing (ex. Gimp19 ) in order to isolate (by means of thresholding)
the breaks in the image of the broken glass20.

9.5 Audio Dynamic Compression

For audio signals, similarly to what seen for images, one considers the problem of reducing the data necessary
to represent a sound, while preserving an acceptable quality of the signal from a perceptual point of view. It
is not easy to de�ne, what is meant by "acceptable quality", when one perform a data reduction or, better,
a data compression. In general the qualitative evaluation parameters of the audio compression standards are
statistical, based on the results of listening tests made on groups of listeners, representing a wide gamma
of users. The audio compression standards are usually founded on the optimization of the dynamics of
the signal, that is on the optimization of the number of bits employed for the quantization. A well known
example of compression standard is that of mp3, in which one exploits psychoacoustic phenomena, as the
fact that louder sounds mask (make inaudible) softer sounds. In the reproduction of digitalized sounds, the
thing that one wants to mask is the quantization noise. In other words, if the sound has a wide dynamics
(it is loud) one can adopt a greater quantization step, since the louder quantization noise produced by the
rougher subdivision of the quantization levels is anyway masked by the reproduced sound. Still simplifying
things in a drastic way, one could say that mp3 varies the step of quantization according to the dynamics of
the sound and in a di�erent way in di�erent bands of frequency. In other words, the signal is divided into
many frequency bands (in a similar way as the Equalizer of a Hi-� system does) and each band is quantized
separately. This allows a reduction of even 20 times of the number of bits with respect to a �xed 16 bit
dynamics. Another compression technique is provided by the mu-law (µ-law). This standard is used mainly
in audio systems for digital communication in North America and Japan. In this case, the main idea is to
modify the dynamic range of the analogical audio signal before the quantization. Behind these compression
techniques, there is once more a psychoacoustic phenomenon that is the fact that our perception of the
intensity is not linear but logarithmic-like. In other words, our perception behaves approximately according
to what shown in Figure 9.10.

19http://www.gimp.org
20See the �le at <http://cnx.org/content/m12837/latest/vetro.jpg>
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Figure 9.10

What the mu-law actually performs is a reduction of the dynamic range of the signal by means of an
amplitude re-scaling according to the map described in Figure 9.11. It is visible how the e�ect is that
of amplifying the small amplitudes, reducing the range of amplitude values of the signal (in the sense of
big amplitudes) and, as a consequence, increasing the relationship (the amplitude di�erence) between the
sound and the quantization noise. Afterwards, a linear quantization of the non linearly distorted signal is
performed. As one wants to play back the digital signal, this is �rst converted into an analogical signal and
then transformed by means of a curve performing an inverse amplitude distortion with respect to that of
Figure 9.11. The global result is equivalent to a non linear quantization of sound, where the quantization
step is bigger (rougher) for bigger amplitudes and smaller (more detailed) for smaller amplitudes. This
corresponds, at least from a qualitative point of view, to the way of functioning of our perceptual system.
We are more sensitive to the intensity di�erences in case of soft sounds and less sensitive in case of loud and
very loud sounds. The A-law, adopted in the digital systems in Europe, is very similar to the mu-law.
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Figure 9.11
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Solutions to Exercises in Chapter 9

Solution to Exercise 9.1 (p. 98)

size(300, 420);

PImage a; // Declare variable "a" of type PImage

a = loadImage("lena.jpg"); // Load the images into the program

image(a, 0, 0); // Displays the image from point (0,0)

int[][] output = new int[width][height];

for (int i=0; i<width; i++)

for (int j=0; j<height; j++) {

output[i][j] = (int)red(get(i, j));

}

int grayVal;

float errore;

float val = 1.0/16.0;

float[][] kernel = { {0, 0, 0},

{0, -1, 7*val},

{3*val, 5*val, val }};

for(int y=0; y<height; y++) {

for(int x=0; x<width; x++) {

grayVal = output[x][y];// (int)red(get(x, y));

if (grayVal<128) errore=grayVal;

else errore=grayVal-256;

for(int k=-1; k<=1; k++) {

for(int j=-1; j<=0 /*1*/; j++) {

// Reflect x-j to not exceed array boundary

int xp = x-j;

int yp = y-k;

if (xp < 0) {

xp = xp + width;

} else if (x-j >= width) {

xp = xp - width;

}

// Reflect y-k to not exceed array boundary

if (yp < 0) {

yp = yp + height;

} else if (yp >= height) {

yp = yp - height;

}

output[xp][yp] = (int)(output[xp][yp] + errore * kernel[-j+1][-k+1]);

}

}

}

}

for(int i=0; i<height; i++)
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for(int j=0; j<width; j++)

if (output[j][i] < 128) output[j][i] = 0;

else output[j][i] = 255;

// Display the result of dithering on half image

loadPixels();

for(int i=0; i<height; i++) {

for(int j=0; j<width/2; j++) {

pixels[i*width + j] =

color(output[j][i], output[j][i], output[j][i]);

}

}

updatePixels();

Solution to Exercise 9.2 (p. 109)

int grayValues = 256;

int[] hist = new int[grayValues];

int[] histc = new int[grayValues];

PImage a;

void setup() {

background(255);

stroke(0,0,0);

size(300, 420);

colorMode(RGB, width);

framerate(5);

a = loadImage("lena.jpg");

image(a, 0, 0);

}

void draw() {

// calculate the histogram

for (int i=0; i<width; i++) {

for (int j=0; j<height; j++) {

int c = constrain(int(red(get(i,j))), 0, grayValues-1);

hist[c]++;

}

}

// Find the largest value in the histogram

float maxval = 0;

for (int i=0; i<grayValues; i++) {

if(hist[i] > maxval) {

maxval = hist[i];

}

}

// Accumulate the histogram
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histc[0] = hist[0];

for (int i=1; i<grayValues; i++) {

histc[i] = histc[i-1] + hist[i];

}

// Normalize the histogram to values between 0 and "height"

for (int i=0; i<grayValues; i++) {

hist[i] = int(hist[i]/maxval * height);

}

if (mousePressed == true) { //equalization

for (int i=1; i<grayValues; i++) {

println(float(histc[i])/histc[grayValues-1]*256);

}

loadPixels();

println("click");

for (int i=0; i<width; i++)

for (int j=0; j<height; j++) {

//normalized cumulated histogram mapping

pixels[i+j*width] = color(

int(

float(histc[constrain(int(red(a.get(i,j))), 0, grayValues-1)])/

histc[grayValues-1]*256));

}

updatePixels();

}

// Draw half of the histogram

stroke(50, 250, 0);

strokeWeight(2);

for (int i=0; i<grayValues; i++) {

line(i, height, i, height-hist[i]);

}

}

Solution to Exercise 9.4 (p. 110)
It is a step map, with transition from 0 to 255 set in correspondence of the chosen threshold.
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C Convolution of two 2D signals (images)

y (m,n) = h ∗ x (m,n) =
∑∞
k=−∞

∑∞
l=−∞ x (k, l)h (m− k, n− l)

Convolution of two signals h and x

y (n) = h ∗ x (n) =
∑∞
m=−∞ x (m)h (n−m)

G global scope

de�ned outside the methods setup() and draw(), the variable is visible and usable anywhere in
the program

H homogeneous coordinates

quadruples of numbers, where the �rst triple is to be read in the X-Y-Z space, while the fourth
number indicates a vector if it takes value 0, or a point if it takes value 1.

I Image Histograms

Graphic representation by means of vertical bars, where each bar represents the number of pixels
present in the image for a given intensity of the gray scale (or color channel). Wikipedia
de�nition.21

L local scope

de�ned within a code block or a function, the variable takes values that are local to the block or
function, and any values taken by a global variable having the same name are ignored.

S scope

within a program, it is a region where a variable can be accessed and its value modi�ed

Spline

Piecewise-polynomial curve, with polynomials connected with continuity at the knots

note: See Introduction to Splines22 and, for an introduction to the speci�c kind of
splines (Catmull-Rom) used in Processing, the term spline in Wikipedia.

Superposition principle

If y1 and y2 are the responses to the input sequences x1 and x2 then the input a1x1 + a2x2

produces the response a1y1 + a2y2

T The impulse in discrete time (space)

is the signal δ with value1 at the instant zero (in the point with coordinates [0, 0]), and 0 in any
other instant (point).

Time invariance

A system is time-invariant if a time shift of D samples in the input results in the same time shift
in the output, i.e., x (n−D) produces y (n−D).

21http://en.wikipedia.org/wiki/Color_histogram
22http://cnx.org/content/m12986/latest/
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Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

2 2D graphics, � 3(35)

3 3D graphics, � 3(35)

A aliasing, 52
Analog, � 6(65)
Application Programming Interface (API), 46
approximating Bézier curve, 36
aspect ratio, 47
audio dithering, � 9(97)
averaging �lter, 78
axonometric projections, 44

B background, 109
Bilinear interpolation, � 8(89), 89
Bézier curve, 36

C center of projection, 42
center of the scene, 46
clipping, 47
color dithering, � 9(97)
color models, � 2(17)
color palette, � 9(97)
commutative, 69
contrast stretching, 108
convex hull, 36
Convolution, � 5(61), 62, � 6(65), 65
convolution mask, 63
Convolution of two 2D signals (images), 63
Convolution of two signals h and x, 62
convolution sum, 68
coordinate system, � 2(17)
cumulated distribution, 108
curves, � 3(35)

D derivative, 109
di�erence equation, 81
Discrete, � 6(65)
discrete-space systems, 61
discrete-time convolution, 65
discrete-time systems, 61
dithering, 97
Dynamics, 108

E edge crispening, 80
edge detection, � 9(97)
equalize, 108
eye point, 46

F Filtering, � 5(61), 62
Finite Impulse Response, 75
FIR �lters, � 7(75)
�rst- and second-order �lters for sounds and
images, � 7(75)
�ashing in the eye, 44
font, 22
foreground, 109
frame rate, 52
Frequency Response, 62, 63
frustum, 47

G global scope, 4
gradient, 89, 109

H high-pass, 77
histogram, � 9(97)
homogeneous coordinates, 21

I IIR �lters, � 7(75)
Image Histograms, 108
image processing, � 1(1)
image representation, � 2(17)
impulse response, 62
In�nite Impulse Response, 81
interaction design, 1

K kernel, 63
kerning, 23

L Lambertian, 41
Laplacian, 109
linear systems, 61
linear time-invariant, 61
local scope, 4
LoG, 109
low-pass, 76
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M Media Processing in Processing (MPP), 1

N noise shaping, 105
Nyquist frequency, 52, 56

O object-oriented programming, � 1(1)
OpenGL, 40, 40, 46
order, 81

P palette, 97
Phong re�ection model, 40
pitch, 100
plane of projection, 42
procedural programming, � 1(1)
Processing, 1
processing language and environment, � 1(1)
projector rays, 42

Q quantization, 51
quantization noise, 57
Quantization of sounds and images, � 4(51)

R rastering, 90
recursive, 81
rendering engine, 17

S sample-by-sample, 63
sampling, 51
Sampling of 1D and 2D signals, � 4(51)
sampling rate, 51
scan line, 89
scope, 4

shading, 90
sharpening �lters, � 7(75)
smoothing, 78
smoothing �lters, � 7(75)
solarization, 57
sound processing, � 1(1)
sound representation, � 2(17)
spectrum, 51, 55
Spline, 36, 116
Superposition principle, 61
Systems, � 5(61)

T texel, 90
texture mapping, � 8(89), 90
textures, 90
The impulse in discrete time (space), 61
threshold, 109
Time invariance, 61
Tonal Gamma, 108
tracking, 23
translation and rotation, � 2(17)
type, 22
type casting, 11

U unstable, 81

W wireframe, 47

Z z-bu�er, 47

� �Circle-Circle Intersection�, 10
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