Lectures on Analog Electronics

By:
Bijay_Kumar Sharma

Lectures on Analog Electronics

By:
Bijay_Kumar Sharma

Online:
< http://cnx.org/content/col11167/1.9/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Bijay_Kumar Sharma. It is licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).
Collection structure revised: March 30, 2011
PDF generated: April 5, 2011
For copyright and attribution information for the modules contained in this collection, see p. 564.

Table of Contents

1 The New Syllabus of EC1X05_Lectures on AnalogElectronics 1
2 Solid State Physics \& Devices The harbinger of third wave of civiliza- tion PREFACE Unfolding of Third Information Revolution. 3
3 The Journey of I.C.Technology from micro (1959) to nano (2009) era ABSTRACT. 19
4 Analog Electronics_Lecture 1_Independent and Controlled Sources 21
5 Analog Electronics_Lecture 1_Supplement_Incremental Model of Con- trolled Sources 33
6 Analog Electronics Lecture 2_PartA_I-V characteristics of Vacuum Tubes 41
7 Analog Electronics Lecture 2_PartB_BJT configurations \& modes 47
8 Analog Electronics Lecture 2_PartC_I-V output characteristics of BJT 53
9 AnalogElectronics Lecture2 Supplementary. 63
10 AnalogElectronics_Lecture3_Incremental Model of Diode. 71
11 AnalogElectronics_Lecture3supp._High Frequency Model of PN Junc- tion Diode. 79
12 AnalogElectronics Lecture 4 PartA dc,low\&high frequency model of CB BJT 87
13 AnalogElectronics_Lecture4_PartB_low and high frequency model of CE BJT. 103
14 AE_Lecture4_PartD1_Time_Domain_Response 119
15 AE $^{-}$Lecture4_PartD2 ${ }^{-}$Line Spectrum of a Pulse Train. 125
16 AE $^{-}$Lecture 4^{-}PartD3 ${ }^{-}$Time Domain Response of Low Pass Filter. 131
17 AE_Lecture4_PartD4_Time Domain Response of High Pass Filter. 139
18 AnalogElectronics_Lecture4_Supplement_BODE_PLOT 145
19 AE_Lecture5_PartA_Low FrequencyAnalysisofCE_Amplifier 153
20 AE_Lecture5__PartA_$^{-}$The Low frequency Voltage $\overline{\text { Gain Expression by }}$ detailed circuit analysis. 161
21 AE_Lecture5_PartB_High Frequency Analysis of CE Amplifier 163
22 AE_Lecture5_-PartC_Figure4 of High Frequency Analysis of CB \& CC Amplifier 173
23 AE_Lecture5_PartC_High Frequency Analysis of CB \& CC Amplifier 175
$24 \mathrm{AE}^{-}$Lecture 5_{-}^{-}Part $\overline{\mathrm{C}}$ _continued_High frequency analysis of CB. 191
$25 \mathrm{AE}^{-}$Lecture 5^{-}Part C^{-}continued_high frequency analysis of CE \& CC 201
26 AE ${ }^{-}$Lecture 5^{-}Part C^{-}continued_-Simulated Frequency Domain Study of CB,CE,Emitter Degenerate Amplifier and CC Amplifier. 219
27 AE_Lecture 5_Part C_continued_High frequency analysis of CB. 229
$28 \mathrm{AE}^{-}$Lecture5_PartD_$\overline{\text { Bootstrapping and Darlington Pair. }}$ 239
29 AE_Lecture6_Analysis of CASCODE AMPLIFIER. 249
30 AE_Lecture7_Multistage Amplifier 261
31 AE Lecture8 MOSFET \& JFET PartA 269
32 AE Lecture 8_Part A_MOSFET $\overline{\&}$ JFET continued 285
33 AE_Lecture8_PartB_Incremental Model of FET 289
34 AE_Lecture $\mathbf{9}^{-}$-revised_Noise(Untitled) 303
35 AE_Lectur10_PowerAmplifiers_Part1_Power Analysis of Emitter Fol- $^{-}$ lower. 325
36 AE_Lectur10_PowerAmplifiers_Part2_Power Analysis of ClassB Am- plifiers. 335
37 AE_Lecture10_Supplementary 353
38 AE_Lecture11_Part1_Audio Oscillators 357
39 AE_Lecture11_Part2_Radio-Frequency Oscillators 371
$40 \mathrm{AE}^{-}$Lecture11_Part3_Radio-Frequency Oscillators Continued 387
41 AE ${ }^{-}$Lecture 12_- Tuned Amplifiers 399
42 TUT̄ORIAL NO. 1 of Lecture 1 of Analog Electronics. 411
43 Tutorial 2 on Active Devices. 417
44 Tutorial 3 of AnalogElectronicsLecture3. 421
45 Tutorial 3_supplementary_AE Lecture No.3. 431
46 AE Tutorial 4 BJT incremental model. 433
47 AE_Tutorial 5_Mid\&High frequency Analysis of CE \& CB BJT Ampli- fier 439
48 AE_Tutorial6_Mid \& High Frequency Analysis of CC \& Cascode. 449
49 AE_Tutorial8_MOSFET\&JFET 461
50 AE_Tutorial 9_Multistage Amplifiers 469
51 AE-Tutorial $1 \overline{0}$ - Noise 481
52 AE_Tutorial 11_-Power Amplifiers 487
53 AE-Tutorial 12-Oscillators 491
54 AE-Tutorial 13_Tuned Amplifiers 517
55 Analog Electronics_Univ Question Paper with Solution of Even09 527
56 AE_EC1405_EVENSEM_2011_MidSemesterQuestions 549
57 AE_EC1405__EVENSEM_2011_-MidSemesterSolutions $^{-}$ 553
Index 562
Attributions 564

Chapter 1

The New Syllabus of EC1X05_Lectures on AnalogElectronics'

1.1 EC 1x05Analog Electronics

L-T-P: 3-0-3 Credit: 5

Semiconductor diodes, Bipolar Junction Transistors and MOSFETs.
Biasing circuits of BJT, FET and MOSFET, RC and DC coupled amplifiers, wide-band and tuned amplifiers. Active impedance transformers(Gyrators), power amplifiers, impedance matching.

Feedback Amplifiers. RC and LC Oscillators, Blocking Oscillators.
Characteristics, limitations and applications of OP-AMPS. Internal structure of OP-AMPs.
Special purpose amplifiers (Instrumentation Amplifiers, Logarithmic Amplifiers, Current ConveyorsCurrent Sources[Current Mirror, Symmetrical Widlar, Widlar, Wilson, Improved Wilson]).

Special purpose ICs: Analog multipliers. Voltage regulators, Timers, VCO, PLL and function generators. Analog switches and multiplexers.

Practical:
As per above syllabus
Text Book:
Microelectronic Circuit Design by Richar C. Jaeger, 1997;
Reference Books:
Microelectronic Circuits, by Millman \& Grabel, McGraw Hills, 1988;
Microelectronic Circuit Design by Sedra Smith, McGraw Hills, 2009;
Microelectronic Circuit Design by Rashid, CENGAGE Learning, 2009;

[^0]
Chapter 2

Solid State Physics \& Devices The harbinger of third wave of civilization_PREFACE_Unfolding of Third Information Revolution. ${ }^{\text {' }}$

ROAD MAP OF COMPUTER DEVELOPMENT

[Computer age- Communication fuelled Universal Empowerment]
Key words: Telegraphy, Vacuum Tube, Transistors, integrated Circuit Technology, Computer;
Summary: In the first part the lecture gives the background of Third Information Revolution. Then it describes the unfolding of Third Information Revolution. It traces the development in Electronics in general and in Computer Engineering in particular from 1833AD to date. It gives the development of SuperComputers till date. It gives the source of digital data and total data generated per annum. It gives a Table on World Wide Internet Users. Table 1 gives the evolution of $\mu \mathrm{P}$ chips, Table 2 gives the evolution of different generations of computers, Table 3 gives the evolution of Local Area Network, Table 4 gives the data on Submarine and land cables laid till now. It also gives a special note on Hard 350 Disc Drive introduced in IBM 305 Ramac Computers supplanting the magnetic tapes.
[Science \&technology year by year -Marshall Publication,London,2001]
Gutenburg Revolution, the Second Information Revolution, gave rise to the rotating type Printing Press. "Printing Liberated people's mind by enabling the widespread dissemination of knowledge and opinion. But it remained subject to censorship and worse. Television shrank the planets into Marshall Mclean's "global village" but the representation it diffused were tightly controlled by editors, corporations, advertisers and governments."

The net in contrast provides the first totally unrestricted, totally uncensored communication systemever. It is a living embodiment of an open market in ideas. Its patron saint (if that is not a blasphemous though for such a secular hero) is Thomas Paine, the great 18 th century libertarian who advanced the remarkable idea (remarkable for the time, anyway)that everyone had a right to speak his mind and the even more notion that they had a right to be heard."

Precisely because of this "Net is potentially more powerful than both printing and TV because Net harnesses the intellectual leverage which printing gave to the man-kind without being hobbled by the one to many broadcast television."

BC700- The First Information Revolution - Invention of the Phoenicians Alphabets, the mother of all European languages.

BC 400 -Invention of Brahmilipi, the mother of all Indian language except Urdu.

[^1]100 AD -Invention of Kharosti language and alphabets, the mother of all Arabic
languages including Urdu
1450AD - The Second Information revolution - Invention of rotating press by a German Mechanic named Gutenburg.

1833AD - Michael Faraday made the earliest study of semiconductors.
1834AD -Charles Babbage plans a machine to calculate and print results.
1842AD -Ada Lovelace writes a step by step Programme for Babbage's Machine.
1850AD -George Boole invented Boolean Algebra. Boolean Algebra is the basis of the present set of Computer Systems which use ALGORITHMIC
PROGRAMMING as opposed to HEURISTIC PROGAMMING of
Artificial Intillegence Computers. Heuristics programming uses Predicate
Logic. Heuristics means working by rule of thumbs and it is self learning
programme. In contrast Algorithm means a set of sequential steps which are repeated or iterated. Here there is no self learning involved.
1851AD-First successful commercial telegraph cable laid from England to France. The cable had a central core of copper wire, gutta-percha, tarred yarn, tarred hemp, and iron wires.

1858AD-First transatlantic telegraph cable.
1876AD - Alexander Graham Bell invented Telephone.
1895AD -J.J Thomson discovers electron as the basic building block of Atom through the study of Cathode Ray;
1902-1906AD- Telegraph cable crosses the Pacific ocean.
1904AD-John Ambrose Fleming invents Vacuum Tube Diode(two electrodes device).
1906AD-Lee De Forest invented Vacuum Triode (three electrodes device) and used it to achieve RC coupled Amplifier. Subsequently four electrodes device tetrode and five electrodes device pentode.
1911AD-Using Heaviside "Distortion-less Transmission Condition" i.e. loading the
Telephone cables with large inductors, first long distance telephone call was made from New York to Denver, Colorado, over a distance of 2000 miles.
1913AD-Vacuum Tube Repeater introduced in Public Service Telephone Network (PSTN).
1915AD-Using inductor loading \& R.C Coupled Amplifier, first transcontinental telephone call is made from New York to San Francisco across a distance of 4000 miles. Telephone becomes a Public Utility Service.
1918AD-Two Frenchmen, Block \& Abraham, build the first simple Calculator-a calculator with programme storage and data storage facility is a computer.
1937AD-Alan Turing invents "The Turing Machine "- it can perform all logical tasks.
1943AD- To decipher encrypted messages, British Scientist build "Colossus"-
forerunners of Electronic Computers.
1945AD-IBM builds first full scale calculator, MARK-I.
1945AD-ENIAC (Electronic Numerical Integrator \& Calculator) build by Moore School
of Electrical Engineering at the University of Pennsylvania. ENIAC is 27 Metric Tonnes, consumes 200 kW and occupies a large room. The valves failed at a rate of one every 10 minutes and ENIAC had 18,000 valves. So development of user friendly home Computers was a pipe dream at that time. Development could not take place using Thermoionic Valves.

1945AD- Microwave Telephone link established.
1945AD-First Transoceanic Telephone Links established using voice quality coaxial cables. Telegraphic Cables are not suitable for Telephone Conservation. Voice quality cables were developed during World War II and introduced right after the War .Before the World War II, no TransAtlantic or TransPacific Telephonic Links were there. Across the oceans only Radio-Telephone call could be made. 1947AD-At Bell Laboratories, John Bardeen, Walter Brattain \& William Shockley
invented BJT (Bipolar Junction Transistor). They were awarded Nobel Prize in 1956 in Physics for this invention.
1948AD-Magnetic Drum Memory invented at Georgia Institute of Technology for Computers.
1952 AD-UNIVAC I (Universal Automatic Computer)- First computer designed for business use. The inventors were John Mauchy \& John Eckart.
7.26 Metric Tonnes, 5000 Vacuum tubes \& 1000 calculations per second. These are termed FIRST GENERATION COMPUTERS.

1955AD-Semi Automatic Ground Environment (SAGE) installed. This takes in data received by the RADAR network and computes interception trajectories and steers the defenders within 1000yards of the attacker.
1956AD-UNIVAC II using transistors come in the market. Manufactures are Sperry
Rand, USA. These are termed as SECOND GENRATION COMPUTERS.
1956AD-TAT-1, the first transatlantic voice grade telephony coaxial cable laid across the Atlantic Ocean.Until then transatlantic telephone calls were made by Radio-Telephony. (Coaxial Cable, polythene insulation, vacuum tube repeaters).

1956AD- September 13, 1956, IBM 305 Ramac Computer with DISK DRIVE was introduced. Till then the OS and data were stored on Magnetic Drums or Magnetic Tapes as a result the booting process of the computer or access of data was very slow. This newly introduced computer had 350 Disk File. This consisted of a rack of 24 " magnetically coated platters 50 in number mounted on a single vertical spindle and could store 4.4 MB of data as compared to today's hard disc which store 70 GB of data.[Please see the foot note].

1959AD-Integrated Circuit (IC) chip invented by Jack Kilby (Texas Instrument) and
Robert Noyce (FairChild). Discrete active and passive devices are integrated
together on one wafer thin silicon chip in the area of 1 cm by 1 cm square,
mounted on a header and then properly encapsulated and sealed. At the time it
started, it had only 30 components in the 1 square cm area. This heralded
the Information Age and THIRD Information Revolution. It also produced an
Explosion in electronic consumer and communication applications such as Personal Computers to cell Phones. Jack Kilby was awarded the Nobel Prize in physics in the year 2000. Jack Kilby passed away on $1^{\text {st }}$ August 2005. Robert Noyce went on to establish " INTEL" (Integrated Electronics) along with Gordon Moore and Andy Grove. He passed away earlier than Jack Kilby so he could not be awarded. Noble Prizes are not awarded posthumously.

5th October,1959-IBM1401 mainframe computer makes its debut. This becomes the best selling computer in the world in mid-1960s.This was in the category of stored program computers. These stored program computers were vastly superior to IBM 604 Electronic Calculating Punch Machine which was vacuum tube, plugboard-controlled, serial-decimal machine with 50 digits of storage.Stored Program Computers were more flexible and adaptable than plugboard-based accounting machines. But these large-scale stored program computers were too expensive for common use. By the use of alloyed junction discrete transistor logic and Automatic Logic Design software, the volume and power consumption was reduced by 50% and 95% respectively.Standard Modular System(SMS) called Cube/Rolygon for electronic packaging was used. Saturating Complementary Transistor Diode Logic(CTDL)Family was used. This could clock at a maximum rate of 250 kHz .CTDL was robust and handled large fan-ins and fan-outs.Memory to Memory architecture was used.This reduced the number of instructions needed for accounting and business programming. These changes achieved a entry-level rental price target of US $\$ 2500$ per month.Previously it was as high as US $\$ 40,000$ per month. It had outstanding print quality, powerful magnetic tape subsystem and a stored program computer for the mass market place.By 1965, half of the approximately 26000 computers in the World were 1400 -family machines.Tape-oriented 1401 system became the computer of choice. Timelife transferred 40 million punched card subscriber records to just several hundred magnetic tapes.Full size system had 500,000 discrete components, weighed up to 4 tonnes, and consumed up to 13000 W .It used 10,600 Ge alloy-junction transistors and 13,200 Ge point-contact diodes on 2300 SMS cards interconnected with 5.5 mi of wire. Memory varied from 1400 bytes to 16000 bytes memory space.It had a clock rate of

1960AD-PDP I (Programmed Data Processor). This was introduced by Digital Equipment
(DEC).DEC was founded by Kenneth Olsen \& Harlen Anderson .These were
also made of transistor. These were used as Office Computers. They were of
cabinet size. Control Panel and the Key Board sat on the desk. It cost \$
$120,000.00$. This was way too expensive for most customers and for most
application. This started the era of Mini-Computer.
1960AD-Man-Computer Symbiosis was published by J.C. Licklider, an experimental psychologist. This article stated that rote algorithm for computers \& creative
heuristics for Humans put together could be far more powerful than either could
be separately.
1960AD-Sir Arthur's Clark's dream of Global Satellite Communication is realized.
1961AD-FIRST RLT (Resistance Transistor logic) IC Chip is commercially marketed by
T I (Texas Instrument) and FairChild.
1964AD-Semi-Automatic Business- Related Environment (SIBRE) is created by the
introduction of Nation-Wide Ticketing System like our Nation-Wide
Computerized Reservation System today in 2005 in Indian Railways.
1964AD-FIRST Analog IC Amp. Chip MC 1530 marketed by Motorola. Op. Amp.
Stands for Operational Amplifier which were in yesteryears used in Analog
Computers for different Mathematical Operations and hence the name Op.
Amp.
1964AD-PDP 8, table top computer introduced in the market .It was a 8 -bit computer meaning by the address size is 8 bit. Larger is the address word, larger is the address capability. 4-bit means 16 locations can be addressed and 8 -bit means 256 locations can be addressed. This used IC Chips hence it was compact and less power consuming. This was THE THIRD GENERATION
COMPUTER.
Price $\$ 18,000.00,125 \mathrm{~kg}$, and 4 kBy tes memory.
1965AD- Project MAC, started by Licklider at MIT, evolved into first On-Line Community, complete with bulletin boards, e-mails, virtual friendship and a "free ware" exchange.
1968AD- MODEMS are used for Wide Area Network (WAN).
1968AD- December 1968, demonstration at Fall Joint Computer Conference in San
Francisco established Graphical User Interface(GUI) with mouse, on screen
windows, full screen word processing and a host of other innovations.
1968AD- $18^{\text {th }}$ July, INTEL (Integrated Electronics) was established by Robert Noyce and Gordon Moore. Later this team was joined by Andy Grove.
1970AD-Advance Research Program Agency (ARPA) established ARPANET, the first
WAN, connecting Stanford Research Institute, University of Utah, University of
California Los Angels and University of California Santa Barbara mainly for
Defence research purposes. In three years it grew to cover whole USA.

1970AD- PDP-11 introduced with 16 address word
1970AD-Magnetic Disks replace Magnetic Drum as back up memory. These are called
Floppies (8 " or 20 cm) or Diskettes (3.5 "or 9 cm).Memory capacity is 1.44 MB .
1971AD- FIRST INTEL MICROPRPCESSOR CHIP ($\mu \mathbf{P} \mathbf{4 0 0 4}$) introduced in the
market. It can handle 4 -bit data word and 8 -bit address word meaning by it can
address 256 locations. This 1 chip combined the function of 12 subsystems of a
CPU(Central Processor Unit). This one silicon chip ($1 \mathrm{~cm} \times 1 \mathrm{~cm}$)had 2300
transistor, system clock rate 108 kHz , Cost $\$ 299.00$. In India it was available
for Rs.7500.00.
[A development contract from a Japanese Company, for a set of chips needed to power an electronic calculator, triggered off what became the world's first computer-on-a-chip: the Microprocessor. 35 years ago, INTEL, a small Santa Clara (US) based manufacturer of memory and switching devices, unveiled a thumbnail-sized slab of silicon encased in a ceramic casing with 16 pins: this ushered in the era of Personal Computers, the era of Desk Top Computing and the era of FOURTH GENERATION COMPUTERS.

The contract with Busicom required INTEL to deliver the electronics for calculating machine, as a set of 12 custom built chips. The electrical engineer assigned to handle the task-Dr. Marcian "TED" Hoff, a PhD from the Stanford university-had an inspired thought. Why make a set of chips just for one application? Why not generalize the design so that other computing tools could be built with the same generalized design?

In the process ,Dr. Hoff also suggested that the composite elements of a computer, as it was then understood- a unit to do the arithmetic (ALU-Arithmetic-Logic-Unit), a small memory and input and output interface -could be combined in a single slap of silicon..

When Busicom had cash flow problems, INTEL bought back the design it had created and slipped the product into its own catalogue.

Intel $\mu \mathrm{P} 4004$ was sold to Defence Establishment in India at a cost of Rs $7,000.00$. Intel's Indian Agent was Hyderabad based Electronics International which was later named as Microelectronics International]

1971AD-Texas Instruments marketed first pocket calculator 1 kg in weight and price $\$ 150.00$. It was too bulky.

1971-Electronic Mail or e-mail is invented by Ray Tomilinson.

- @ is introduced by Tomilinson to separate the User Name from domain name.
- Tomilison combined the existing mail program 'SENDMSG' that worked only within an organization with a file transfer program called 'CPYNET' to create an e-mail public utility between 15 computers within the organization and use the same on the existing ARPANET.
- The first e-mail; was "QWERTYUIOP", the second row of the typewriter keyboard, sent by Tomilison.
- The first telegraphic message was sent by Samuel Morse in 1844. It was "What hath God wrought".
- The first conversation carried out between Alexander Graham Bell and his assistant Watson in 1876 was, "Mr. Watson comes here. I want you.".
- Founder of Hotmail got the idea of accessing email via the web from a computer anywhere in the world. When Sabeer Bahtia came up with the business plan for the mail service, he tried all kinds of names ending in 'mail' and finally settled for Hotmail as it included the letters "html'(hyper text mark up language), the programming language used to write web pages .It was finally referred to as HoTMaiL with selective upper casings.

1972AD-first 8 bit $\mu \mathrm{P} 8008$ introduced by intel.
1973AD-May 22, ETHERNET IEEE 802.3standards for LOCAL AREA NETWORK were born.
The inventor of Ethernet was a young Xerox Palo Alto Research Scientist named
Robert M. Metcalfe.
1974AD- $8080 \mu \mathrm{P}$ chip introduced.
1974AD- First paper on TCP (Transmission Control Protocol)and the architecture of the Internet by Vinton Cerf and Kahn.
1975AD-Altair 8800(mini-computer architecture) based on Intel μ P Chip 8080 (8 bit
data \& 16 bit address word) introduced in the market. $\$ 397.00$ worth kit
available.
1976AD-APPLE CO. founded by Steve Wozniak \& Steve Tabs members of Home-Brew
Computer Club (California) in a Garage. Apple I was introduced.
1976AD-Cray 1 designed by Seymour Grey. This was a class apart called Super
Computer. It cost $\$ 8.8$ million. It could achieve 240MFLOPS (Floating Point
Operations per second)
1977AD-Taito (Japanese Software Company) introduced a video game "SPACE
INVADERS" which takes the world by storm. The first video game was introduced in 1970's by ATARI. It was a ping-pong game.

1977AD-First Personal Computer was introduced, named APPLE II, at a price of
$\$ 1300.00$.It had 4kB RAM. It had a software VisiCalc the best spread sheet
package of its day. This was formally the FOURTH GENERATION
COMPUTER.
1977AD-Bill Gates, Harvard Under-Graduate dropout, and Paul Allen developed the
programming language BASIC for Altair 8800 and in the process founded
MICROSOFT Company at Albuquerque near MIT. The name was coined by
Bill Gates to represent the company that was devoted to MICROcomputer
SOFTware. MS provided DOS (disc operating system) to IBM and other PC
makers.
1978AD-Intel introduces 8086μ P Chip which had 16bit data word and 16bit address

word.

1978AD-HCL delivered 8CR μ P based Desk Top computer.
Indigenous OS;
Indigenous BASIC Interpreter Languages.
1979AD___On July 1, 1979, Sony launched Walkman which played a magnetic tape popularly known as cassette but there was no provision for recording. While walking or moving, you could play a cassette and listen to it. It became so popular that within next two months, thirty thousand pieces were sold. To this date on 27.10.2010 altogether 385 million pieces have been sold. The production by Sony has been stopped as Apple-iPod has out sold Walkman. Apple-iPod has solid state memories and digital signal processing. Only the final stage where the music has to be played is an analog voltage amplifier. All these combined makes Apple-iPod much more handy, economical and much more diverse interms of variety of music which can be played. Hence Apple-iPod has caught the fancy of young people.

1980AD-Voice to text system was developed by IBM.
1981 AD-IBM introduced its own brand of Personal Computer PC5150 based on $8088 \mu \mathrm{P}$
Intel Chip. Clock Rate was the same as that of APPLE II but memory was much
bigger at 40 kB . GREEN SCREEN, 2x5" Floppy Drives for loading OS. IBM
PC design accounts for 90% PCs. APPLE PC design accounts for 10% PCs.
1982AD-France Telecom launches MINITEL system, a wide area network in which you
can login to a central data base from any where in the country and
pertinent information can be availed. This is first Public Utility On-Line
Service.
1982AD-Intel introduces 80826μ p Chip (16 bit data bus and 24 bit address bus and 68 pin package).
1983AD-MOUSE introduced in LISA, an Apple machine. It had a user friendly
graphical user interface (GUI). Its patent was bought from Xerox research center where it was used in Xerox Star. Screen icons were introduced which could be selected by the use of cursor using a mouse.

1983AD-CD_ROM (COMPACT DISC_READ ONLY MEMORY) introduced. It has
700 MB as opposed as 1.44 MB in floppies. This can accommodate one hour of
music .

1983AD: TCP/IP, standardized in 1978, rolls out formally 1 January 1983 and all ARPA-sponsored packet networks (ARPANET, Packet Radio Net, Packet Satellite Net) and, subsequently ethernets that are becoming commercially available, incorporate the standardized version of TCP/IP.

1984AD-APPLE MACINTOSH is introduced. It is a complete stand alone system with
the latest GUI, namely mouse and screen icons. Its cost was $\$ 2500.00$.
1984AD-Musical instruments digital interface (MIDI) introduced.
1985AD-Desktop publishing introduced by ALDUS PAGE MAKER along with LASER
JET PRINTER in Apple Macintosh.
1986AD-80386(Intel) and 68030(Motorola) introduces 24 bit address bus.
1988AD-VIRTUAL REALITY (VR) is introduced. When VR headset is put on , you see
a world of your choice with the help of computer. You can place yourself in the cockpit of a jet plane and experience the sensation of actual flight.
1988AD-Pattern Recognition Software introduced to read hand written documents by computer .
1988AD-MPEG (Moving Picture Expert Group) is devised for compressing digital videos Band Width.
1988AD-First Trans Atlantic Optical Fiber Cable, TAT8, used in place of coaxial cable.
Coaxial Cable can carry 3,000 simultaneous phone calls. In contrast Optical Fiber cable can carry 37,500 simultaneous telephone calls with the present state of art of electronics. As the switching speed increases, the number of simultaneous calls increases exponentially. Total BW: 5.12terabits/sec.

1988AD-Touch Screen Computers are developed.
1989AD-Disk Operating System (DOS) are replaced by MS WINDOW OS., MS EXCEL
and MS WORD introduced. WINDOW 3.0 VERSION released.
1989AD- March 1989, computer software child prodigy, now an adult, Mr. Tim Berners-Lee of CERN, Geneva, handed a proposal 'Information Management: a proposal'. They came up with global hypertext language, the basis of "http" in website address. By October 1990, they developed the first web browser. The World Wide Web Technology was made available for wider use on INTERNET from 1991 onward without any royalties. "Internet is a vast network of networks, interconnected in many different ways yet they all speak the same language. Web is one-albeit the most influential and well known-of many different applications which run over the Internet". Today in 2009 March, as we celebrate $20^{\text {th }}$ Anniversary of Web Technology, Tim Berners-Lee is a researcher at MIT,US, and a Professor at Computer Science Department at South Hampton University, Britain, and still heads the World Wide Web Consortium that coordinates development of the Web.

1991AD-ARPANET was confined to exclusive clientele (DOD sponsored research). To
make the NET available to University Community at large, NSF(National
Science Foundation) connected his own NSFNET to ARPANET. This led to
exponential growth in the use of NET. In mid-90's the collection of networks was looked at as INTERNET.
1991AD-Until 1991, internet was largely populated by academic, government and industrial researchers. Tim Bernes Lee developed Hyper Text Mark Up
Language (HTML) for easy file transfer and from here he was able to build up
World Wide Web (WWW). HTML is the lingua franca of WEB pages. This
made Internet useful for the whole populations - academic and non academic
both.
1992AD-Mobile Phones enter Digital Age. These are second generation (2G) mobiles.
1993 AD-PENTIUM I introduced . it had 3.1×10^{6} CMOS(Complementary Metal Oxide
Semiconductor Field Effect Transistor) placed on one chip .

- it could perform 90MFLOPS, 5 IMES THE SPEED OF 80486.
- data bus 32 bits and address bus 32 bits
- clock rate 1500 times that of 4004 .

1995AD-WINDOW 95 was introduced .1996AD-Multi-media Extension Pentium Chips (MMX) Chips launched. It had 5.5×10^{6}
transistors (CMOS). It can perform 300MFLOPS and speed up multi media
processes.
1998AD-APPLE launches iMAC fully internet compatible.
1998AD-Global Positioning System (GPS) introduced by US Defence.
1999AD-IBM's DEEP BLUE defeats Garry Kasporov (chess grand master). 200 million
different chess positions are examined per second.
1999AD-DVD (Digital Versatile Device)introduced with a memory space of 8 GB as compared to 700 MB in CD. DVD became a reality only after the invention of Blue Laser Diode .
1999AD-HDTV(High Definition TV) introduced.
1999AD-WEB CAM (WEB camera). Digital Camera connected to your computer. It
has a special drive which allows a picture to be taken every 10 seconds, turns
this into a standard file format and uploads to the server where your website is
stored. People can keep visiting the site and have a look at the photographs of the location as desired.

- Handheld Internet Access introduced;
- Hand held Personal Organizer introduced;
- MP3 standard is introduced for Digital Audio Compression.

2000AD- Blue Tooth Technology introduced. This Wireless Technology allows computers, phone hand sets and CD players to communicate and share data over a distance of 10 m and less. Operating frequency 2.45 GHz . Switches the operating frequency 1600 times per second. This is called Frequency Hopping Spread Spectrum method. When Blue Tooth capable devices come within range of one another they have electronic conversations.

2001AD-Pentium IV chip introduced;

- Nano-electronics chip;
- It has 42 million transistors packed in an area of 1 cm by 1 cm ;
- System Clock Rate is 2 GHz ;
- 20,000 more powerful than $4004 \mu \mathrm{P}$ Chip;
- Cost Rs 15,000.00

2001AD- $23^{\text {rd }}$ October 2001, Apple iPod, the iconic device that defines our era as distinctively as the Sony Walkman defined 1980s. An entire ecosystem of goods and services have evolved around Apple iPod. Minispeakers can be plugged into it; microphones attachment can convert it into digital audio recorder; it can be turned into small radio transmitters that beam songs to the nearest FM radio; attachments can turn it into breadth analyzer. iPod plus iTunes turned out to be a grand success where other musical gadgets and soft-wares failed.

2003AD-APPLE introduces Power Mac G5 PC.

- 64 bit data word and 64 bit address word;
- 18 PETA Memory locations can be addressed;
- System Bus operates at 800 MHz ;
- System Clock operates at 2 GHz , dual processors;
- 80 to 160 GB hard disc;
- 256 MB to 512 MB high speed RAM;

2004AD-Internet Protocol Version 6 (IPv6) introduced. Till now we have been using IPv4;

- Address field is only 32 bit long in IPv4 but 128bits long in IPv6. This will
allow much larger number of users than what it can support till now;
- New version allows a larger through-put;
- New version offers a better support for options;
- New version provides better methods of authentication and privacy. This will
provide a much better protections against Hackers;
2004AD- " Project Columbia" a $\$ 50$ million super-computer built by SILICON GRAPHICS is introduced;
- it is powered by 10,240 processors in 20 units;
- it is Intel Itanium chips;
- it performs 43 Tera FLOPS as compared to the world record of 36TFLOPS
performed by IBM's BlueGene/L super computer;
- This is a ten fold increase in NASA's supercomputing capacity;
- Applications in hurricane tracking, weather modeling and earth's interior
imaging;
2004AD-Norton Internet Security 2005 is introduced for Rs 3,618.00. It offers Norton
Anti-Virus, Norton Anti-Spam and Norton Personal Firewall. Firewall protects the system from Trojan Horses and other attackers. It also includes parental and privacy controls;
2004AD- Radio frequency Identification (RFID). It is a stamp size chip which gives
a Radio Signal as the tag mark of the product it is attached to;
2005AD- GeForce 7800 GTX (latest Graphics Processing Unit or GPU) introduced by US-based nVIDIA Corporation for Video Games;
- 302 million CMOS on one 1 cmx 1 cm chip;
- Performs 202 GFLOPS;
- 10% less power consumption ;
- 50% quieter
- twice as powerful as its processors 6800 but it costs the same as before that is

Rs. 32,000.00 ;

- Market for video games is one of the fastest growing sectors in Computer

Industry;
2005AD-Dual cores Microprocessor chip are introduced;
Intel introduces Pentium "Extreme Edition" 840 with Clock Rate $=3.2 \mathrm{GHz}$ and with billon transistors. This is dual core as well as it has a software called 'hyperthreading'(HT). This is a software which enables one to work with double virtual processors. Thus a dual core with HT will allow application developers to write software that can carve up the task between four processors;

- Intel introduces Xeon for servers and Pentium M for laptops;
- AMD introduces Opteron 800 series for servers and workstations;
- AMD introduces Athlon 64 X2 for consumers and business PC's;

2008 October. GeForce 9400 M is a single chip solution for graphical processing platform for portable applications. It has computing rate of 55GFlops (Floating Point Operations), the most powerful integrated graphics processor in the market in 2008. It has 6 cores operating in parallel. But much less power hungry. New MacBook family will be fuelled by these chips.

2008 November. Intel and AMD have launched a native quad processor unlike the earlier version where 2 dual core chips had been combined in the same package. Intel has launched 'Nehalem',the i7 processor using 45 nm technology. AMD has launched 45 nmOpteron . Both achieve the 4 cores on the same silicon slab. This has Memory Bandwidth. These conserve energy by cutting down power when the device is idle.

2009 May- Interplanetary Internet Protocols are tested by using computers on the International Space Station. Eventually there will be an internet connectivity among Earth, multiple probes, rovers, orbiters and space crafts exploring the solar system. This will be the basis of Interplanetary Internet. The network's key technologies are called Delay Tolerant Networking(DTN) protocols. The problem in deep space internet is the huge delay and occultation of the nodes. To overcome this problem "store and forward" technique will be used. The node will save the data and then passes on when the link is again established. A third test is yet to be carried. In this a security protocol and a new file-transfer protocol will be used.

2010AD-Pacific Unity will lay multiple fibers. Total capacity; 7.68 terabits per second.
ROAD MAP OF SUPERCOMPUTER.['The Data', IEEE SPECTRUM, APRIL 2009]
1976 Illiac IV, 64 processors, teraflops capability, cost was 4.8×10^{-7} TeraFlops per million dollars or 4.8×10^{5} Floating Point Operations per Second which is 480×10^{3} FLOPS or 480 kFLOPS per million dollars.

1976 CRAY-1, 1 processor with teraflops capability, cost was 1.778×10^{-5} TeraFlops per million dollars or 17.78MFLOPS per million dollars.

1988 CRAY Y-MP, 8-vector processors with teraflops capability, cost was 1.115×10^{-4} TeraFlops per million dollars that is 111.5 MFLOPS per million dollars.

1997 ASCI RED, 4510 processors with teraflops capaability, cost was 1.818182×10^{-2} TeraFlops per million dollars which comes to 18.18182 GFLOPS per million dollars.

2002 EARTHSIMULATOR , 5120 processors, cost was 17.5 GFLOPS per million dollars.
2004 BLUEGENE/L, 65536 processors with 10TFLOPS capability, cost was 2.8 TFLOPS per million dollars.

2007 PLAYSTATION3 CLUSTER, 8playstation 3s, 375TFLOPS per million dollars \dagger.
2008 NVIDIA TESLA, 960 cores, 439.1 TFLOPS per million dollars*.
2008 ROADRUNNER, 19440 processors with several tens of TFLOPS capability, cost was 8.3TFLOPS per million dollars \ddagger.
*Based on the cost of building your own Tesla supercomputer out of four Tesla C1060 units. Complete instructions are available at nvidia.com
\dagger Seven processors per node at 150GFLPS per Unit for a single processor(11 processors per node for a dual processor). $\$ 400$-plus per node.
$\ddagger 6480$ Opteron CPUs and 12960 Cell processors.
Supercomputers are massively parallel chips can be used to calculate protein folding, predict climate change and crack the encryption of hitherto-secure Web sites.

Nvidia advertises its new workstation, the Tesla, as a "personal supercomputer". It clusters 4 Nvidia C1060 processing boards, each of which unites 240 graphic cores to process instructions at nearly teraflop speed.

Tesla does single-precision floating-point calculations using 8-bit bytes.
Roadrunner uses 64-bit floating integers.
Digital Data Generation.
Sources of digital data:
a. social networking sites,
b. internet-enabled mobile phones and
c. government surveillance.
d. 70% of the digital content is created by by individuals through phne cals, emails, photos, online banking transactions or postings on social networking sites.

Digital Universe Report in 2007 gave total digital content as 161 bn gigabytes.
Digital Universe Report in 2009 gave total digital content as 487 bn gigabytes.
IDC/EMC estimate:
The cost of the computers, networks and storage facilities that drive the digital universe is $\$ 6 \mathrm{tn}$.
Medical equipment, entertainment and content creation equipments cost another $\$ 6 \mathrm{tn}$.
Total World GDP is $\$ 50 \mathrm{tn}$.
80% of PC's are powered by Intel Chips and remaining 20% powered by Motorola, Digital Co., AMD and Transmeta.

2006AD-We have reached 1 billion mark in personal Computers. 39% is accounted by USA, 25% is accounted by Europe and 12% by Asia.

PC user per hundred of the population- (USA 70\%), (France 35\%), (Brazil 7\%), (China 3\%), (India 15 per 1000);

2006AD-2 billion Cellular Phones- worldwide;
China- 450 m cell phones; India- 95 m . cell phones
World Wide Internet Usage [www.internetworld-stats.com] Total User 1.3 billion

Countries	Total Number till March 2006	\% penetration in the total population
India	30 m	5.4
China	123 m	9.3
Japan	86 m	67.2
USA	207 m	69.3

Table 2.1
To bridge the Digital Divide, Government of India is planning to set up Common Service Centers (CSC)broad band enabled computer kiosks that will offer a range of government-to-citizen and business-to-customer services, besides providing sheer access to the Internet. About 100,000 plus CSC's will be introduced in 600,000 villages by March 2008.

Companies in PC manufacturing - WIPRO, PSI, ZENITH, DCM, HCL
-27% growth rate $-5 m$. unit/yr
Table 1.Evolution of Microprocessor Chip

Name	Date \& Ad- dress Size	Packing Density	Number of Pins	Clock Rate	Instructions Per Second	Year Price.	$\&$
Intel 4004	4 -bit	2300 PMOS	16	108 kHz	$?$	1971 $7,500.00$	
Intel 8080	8-bit	6000 NMOS	40	2 MHz	0.64 MIPS	1977	
Intel 8086	16-bit	29,000 HMOS	40	5 MHz	0.33 MIPS	1978	
continued on next page							

CHAPTER 2. SOLID STATE PHYSICS \& DEVICES _THE HARBINGER OF

Intel 80286	Data 16b Address 24b	134,000 HMOS	68	$6-12.5 \mathrm{MHz}$	1 MIPS	1982
Intel 80386	32 -bit	275,000 CMOS	132	16 MHZ	5 MIPS	1985
Intel 80486	32 -bit	1.2 million CMOS	168	25 MHZ	20 MIPS	1989
Pentium	Data 64 b Ad- dress32bMemory Size $2^{32=} 4 \mathrm{~GB}$	3.1 million CMOS	$?$	60 MHZ	100 MIPS	1993
Pentium II	Same	7.5 million CMOS	370	233 MHZ	400 MIPS	1997
Pentium III	same	9.5 CMOS	370	450 MHZ	1000 MIPS	1999
Pentium IV	Data 64b Address 64b	42 million CMOS(Nano electronics)	478	2.2 GHz	$?$	2001

Table 2.2
MOORE's LAW: The packing density of CMOS on $\mu \mathbf{P}$ Chip would double every two years leading to an exponential growth in the complexity and speed of $\mu \mathrm{P}$ Chip.

Table 2. Evolution of Computers.

Generation	Components	Architecture	Logic	Programming	Language
$1^{\text {st }}$ (1947- ENIAC 1952- Univac I, Main-Frame)	Vacuum Tubes	Von-neumann, sequential	Boolean	Algorithm	Fortran,Basic,Algol
$2^{\text {nd }}(1956-$ UNIVAC II, Main Frame	Discrete BJT				
$3^{\mathrm{rd}}(1964-$ PDP8, Minicomp.,Table Top)	IC's chips				
$4^{\text {th }}(1977-$ APPLE II, Micro-comp., Desk Top, Personal Comp.	$\mu \mathrm{P}$ chips				
continued on next page					

$5^{\text {th }}$ Robotics,					
Data Based					
Medical Diag- nostic Tools	Artificial telligence Machines	Data-flow, Sys- tolic, Pipeline	Predicate	Heuristic	Prolog, Lisp

Table 2.3
Table 3. Evolution of Local Area Network

Year	Standard	Name	Data transfer rate
1973	802.1	OSI (Open System Interconnection)	10 Mbps
	802.2	Logical Link Control	10 Mbps
1983	802.3	CSMA/CD (Carrier Sense Multiple Access/Collision Detect)	10 Mbps
	802.4	Token Bus	100 Mbps
	802.5	Token Ring	100 Mbps
1999	802.11	WLL (Wire Local Loop)	1 Gbps
2001	802.13	Wi-Fi (Wireless internet Access	

Table 2.4
Table 4. Development in submarine cable. (Sources: Telegraphy Research: "History of the Atlantic Cable and Undersea Communications" by Bill Glover,Wikipedia.

Region	Submarine Cable \%BW utilization	LIT Submarine Cable Capacity
Asia	69%	
Middle East	73%	
Oceania	56%	
Europe	52%	
US \& Europe	51%	
Latin America \& Caribbean	77%	
Africa	69%	15%
Transatlantic Cable		37%
US-Latin America		21%
Transpacific		91%
Europe-Asia		31%
Intra-Asia		

Table 2.5
Submarine Cable Boom: In 2001 US $\$ 13.5$ billion was spent. Due to Dot.com bust, only $\$ 2$ billion was spent during four lean years from 2004 to 2007 . Even the during the lean periods, global demand never slaked growing at an average compound annual rate of 54% from 2002 to 2008 . In Latin America and the Caribbean, traffic grew the most at more than 75%.

METALFE LAW: The value of a NETWORK grows as the square of the number of users.

INFORMATION REVOLUTION.
Foot Note: 350 Disk Drive, introduced in IBM 305 Ramac Computer, consisted of 50 Number of 24 -inch magnetically coated platters mounted on a single vertical spindle and rotating at high speed. In between the platters and looking rather like a giant animated hair-comb, was an assembly of read-write heads that clacked in and out, reading and writing data from and to the disks and passing the information to and from the machine's processor.

The drive was the size of two large refrigerators and was leased to customers at an annual rental of $\$ 35,000 /$-, which according to my calculations would be $\$ 250,000$ in today's currency.

But corporate customers thought it a bargain because it meant that their Main Frame Computers could become much more versatile and faster. A digital computer works by taking data from a permanent storage medium, carrying out operations on that data, and then writing back into storage.

Slowest part of this process was getting data transferred to and fro from the processor to the storage. Hard Disks offered a way of easing the bottleneck. The result was faster computation and faster data processing.

IBM's colossal spinning plate rack held a total of 4.4 MB of Data.
Today the hard disk in the iPod is just 1.8 " in diameter and yet it can store 60 GB of Data, which is almost 14,000 times the capacity of the 350 Disk File. The drive in laptop is $2.5 "$ in diameter and has a capacity of 120 GB .

This cheap and boundless mass storage has enabled the existence of companies such as Google, Amazon and eBay and services such as Apples iTunes, Wikipedia and Internet Archive.

The story of computing has been told almost entirely in terms of advances in processors and networks. Whereas in fact the success and proliferation of computer usage is as much due to the vast, fast, cheap mass storage provided by Hard Disks.

Development in Memory Technology: The convergence of consumer,computer and communication electronic system is leading to exponential growth in need of memories. Memories are required for code storage, computing input-output storage and data storage. In the past, we could associate a memory technology to a specific market segment : RAM to computer; NOR Flash memory to mobile communication; NAND Flash memory to consumer DSC; Today such distinctions are being blurred.A common format is emerging. The new electronic systems stack different non-volatile memory and xRAM and use microprocessor for facilitating interfacing and managing the overall memory.

Evolution of Telephone Exchanges.

| Manual | operator directs the call |
| :--- | :--- | :--- |
| Automatic Dialling: \quad *Strowger-rotary | 2 letter exchange-2 to 5 digit number; 3-3-4 sys- |
| switches(UAXs,SAXs,TXS) *Electromechani- | tem adopted(area code-exchange prefix-line num- |
| cal crossbar(TXKs) *Electronic-control reed-relay | ber); The number system 3-3-4 first used in Wi- |
| switches(TXE2) *SPC non-digital(TXE4) *Dig- | |
| ital(Systems X and Y- AXE10: may be further | |
| categorised as to whether they are ISDN -capable, | |
| I suppose;5ESS; DMS100;UXD5) | |
| chita, Falls, Texas. | |

Global Telephone System	Service switching points, mobile switching points
SS7(Signaling System 7) links telephone networks all over the globe. Every Telecom carrier and man- ufacturer has to work and develop around SS7	Smart coordinator that helps callers find one an- other
VoIP(voice on internet protocol)	It is a telephone service on Data Network(no taxes hence cheap)
Futuristic Systems (21CN-21st Century Network)	System will know how and where to locate the des- tination; Convergence-lots of systems but few de- vices; preferred formats - Voice or Video, Real Time or dekayed, reading the voice mails and hearing the emails

Table 2.6

CHAPTER 2. SOLID STATE PHYSICS \& DEVICES _THE HARBINGER OF

Chapter 3

The Journey of I.C.Technology from micro (1959) to nano (2009) era_ABSTRACT. ${ }^{\prime}$

The Journey of I.C.Technology from micro (1959) to nano (2009) era_ABSTRACT.
Keyword: Monolithic Planar Technology, Wafer, epitaxial layer, fabrication, photolithography;

Summary: This is the abstract of the main article named as above. ABSTRACT:
The discovery of ELECTRON by J.J. Thomson started a series of inventions which was to culminate into Solid State Bipolar Junction Transistor (invented by Shockley, Bardeen and Brattain) in the year 1948. This marked the advent of the era of Solid State Technology. Solid State Technology laid the foundation of Silicon Monolithic Planar Integrated Circuit Technology in 1959. In 1960 first high temperature epitaxial based BJT IC came into market. This kick started a process of Information Revolution leading to the third wave of civilization or post industrial civilization. By 1970 four- bit Microprocessor Chip uP4004 was introduced. The advancement of IC Technology led to exponential increase in packing density as well as in electrical performance. From 1971 to 2001, Small Scale Integrated Chips evolved to Medium Scale Integrated Chips to Large Scale Integrated Chips to Very Large Scale Integrated Chips to the present Pentium IV which is Ultra Large Scale Integrated Chips packing 42 million CMOS Chips. This increase in packing density was enabled by the advancement the lithography technique. In 1966 emulsion mask patterns were contact printed on 200 mm wafer with the smallest feature size of $25 \mu \mathrm{~m}$. In 2007 using Deep Ultra Violet(DUV) 193 nm immersion Lithography, $30 \mathrm{~nm} \pm 6 \mathrm{~nm}$ feature size are imprinted on 300 mm wafer. We moved from Wet Processing to Dry Processing (reactive ion etching) or Ion beam Processing, Diffusion was replaced by Ion Implantation, Mask Making Techniques were improved and automated, preparation of master art work was automated using computer, step and repeat cameras were replaced by contact cameras, photolithography used ultra violet light for exposing the Kodak Photo Resist, UV light lithography was replaced by Deep UV lithography and now it is in process of being replaced by Extreme UV laser beam lithography as the feature size became smaller, Liquid Phase Epitaxy and Chemical Vapour Phase Epitaxy developed into Metal Organic Vapour Phase Epitaxy, new materials were introduced for interconnections (such as silicides and copper) and Poly- Silicon for gate contacts, the dielectric material used in gate silicon dioxide is being replaced by hafnium oxide which has a higher dielectric strength and higher k , planar technology is being replaced by trigate technology where gate contact is on the top as well as on the side walls of the oxide layer thereby increasing the contact area, parasitic were reduced by shallower junctions, smaller feature size and oxide side walls and by using insulator as the substrate for instance silicon on

[^2]sapphire. One more innovation was Lightly Doped Drain for improving the reliability of the MOS devices. FET depends on leading edge lithographic dimensions $(45 \mathrm{~nm})$ but BJT depends on vertical base widths which has reached 10 nm . BJT has structural flexibilities in minimizing the parasitic. It has higher transconductance, high self gain, low $1 / \mathrm{f}$ flicker noise and better V_{BE} matching. All these factors make BJT the device of choice for demanding applications. While microlevel BJT scaled down to nano level structure, new problems arose due to shallow EB junction, band gap narrowing in emitter due to doping concentration exceeding above 10^{18} /cc and high sheet resistance of the base layer. These problems were tackled by using heavily implanted PolySi layer used as emitter contact. SiGe Hetro Bipolar Transistors(HBT) hold the key to realizing high speed wire-line and wireless communication circuits and systems. Marriage of Si Technology and Bandgap Engineering Methods of III-V Compund Semiconductor which is broadly called SiGe based bandgap engineering is Si Heterostructure Bipolar Technology (SiGe HBT). This was made possible by Low Temperature Epitaxy(LTE). Scaling strategy was used here also for exponential growth in the packing density and electrical performance of devices. To reduce the time delays, base width and collector widths have to be reduced and I_{C} must be increased which requires Kirk Effect should be pushed to higher Current Densities. This is achieved by increasing Collector Dopent Concentration. Hence Selectively Implanted Collector (SIC) is introduced. Decreasing the distance between SIC and extrinsic base implant will increase the overlap i.e. C_{CB} OL. This has to be minimized. This is achieved by Raised Extrinsic Base structure. An optimization in Ge profile in SiGe base layer has to be done inorder to get the full advantage of increased base doping in HBT. Today SiGe HBT are surpassing GaAs HBT. The integration of SiGe HBT with CMOS is BiCMOS. BiCMOS reduces the cost of mobile consumer products, advance high BW wireless communication and collision-avoidance automobile radar. BiCMOS lead to VLSI, ASIC \& Si based RF SOC(System on Chip) solution. Hence $\mathrm{SiGe} / \mathrm{SiGeC}$ and BiCMOS is becoming the technology of future. The strategy of Sidewall oxidation and Silicon-on-Insulator(SOI) is adopted for reducing the parasitic capacitances and improving the frequency response. P^{+}isolation diffusion is replaced by trench isolation. Shallow Trench Isolation(STI) is achieved by Reactive Ion Etching(RIE). This considerably helps reduce the parasitic and helps improve the speed. Since $90-\mathrm{nm}$ Technology generation was introduced, off-state leakage current and power density in CMOS have made scaling a difficult and challenging job. New scaling vectors were adopted to meet this challenge. The new scaling vector was Mobility enhancement through strained Si and novel structure like FINFET . At 45-nm Technology and beyond, new flow process adopted was High $k+$ Metal Gate using Gate-Last strategy. In the future we hope to go from 45 nm technology to 32 nm technology to 22 nm technology to 16 nm technology. Today in Bipolar Technology we have achieved 200 GHz transit frequency and in CMOS Technology quad core microprocessor has come in the market. Intel and AMD have launched a native quad processor using 45 nm technology. Both achieve the 4 cores on the same silicon slab. This has Memory Bandwidth. These conserve energy by cutting down power when the device is idle. These four cores are built up of 40billion transistors.

Chapter 4

Analog Electronics_Lecture 1_Independent and Controlled Sources ${ }^{\text { }}$

AnalogElectronics_LECTURE NO.1_Independent and Controlled sources.
Q.1)Define Independent and Controlled/Dependent sources.

Ans:-Those sources which do not depend upon the values of the current or the voltages in any other part of that circuit are called independent sources. Independent sources are two-terminal devices.

The source between two terminals which depends upon the value of either voltage or current at a third terminal of the given circuit or device are called dependent (or) controlled sources. These are 3-terminal devices such as Vacuum Tube Triode and Pentode, Bipolar Junction Transistor (BJT) and Field Effect Transistor (FET).

In triode, the voltage at GRID controls the dependent voltage source between Anode and Cathode.
In pentode, the voltage at GRID controls the dependent current source between Anode and Cathode.
In Common Emitter BJT, the base current in the BASE controls the dependent current source between Collector and Emitter in forward active region.

In Common Source FET, the voltage at the GATE controls the current source between Drain and Source in Pentode Region of the output characteristics or the output family of curves.
Q.2)Define independent voltage source and independent current source.

Any Power Source supplies voltage as well as current. Source resistance compared to the load resistance decides if the power source will be represented as voltage source or as current source.

Ans:-When source resistance is much less than the load resistance (that is less than $1 / 10$ of the minimum load resistance likely to be connected) then we take the Thevenin Equivalent of the power source. This Thevenin equivalent is an Independent Voltage Source representation of the power source. The open circuit voltage V_{OC} at the output terminals is the Thevenin Equivalent Voltage, V_{Th}, and the equivalent resistance measured at the output terminals with power supply inactivated is Thevenin resistance $\mathrm{R}_{\text {Th }}$. Here power supply inactivated means that if we have a voltage source we consider it to be short circuited and if we have a current source we consider it to be open.

[^3]

Figure 4.1

When source resistance is much greater than the load resistance (that is greater than 10 times of the maximum load resistance likely to be connected) then we take the Norton Equivalent of the power source. This Norton equivalent is an Independent Current Source representation of the power source. The short circuit current I_{SC} at the output terminals is the Norton equivalent current, I_{N}, and the equivalent resistance measured at the output terminals with power supply inactivated is Norton resistance R_{N}. Here power supply inactivated means that if we have a voltage source we consider it to be short circuited and if we have a current source we consider it to be open circuited. In actual practice it is dangerous to short the output terminals of a power source. It will lead to fuse blow up. Hence short circuit current can be determined only if we are sure that the internal impedance or the source impedance is very high.

Figure 4.2
Q.3)Define Ideal Voltage and Ideal current sources.

Ans:- An ideal voltage source is constant voltage source which :
a) Has Zero internal impedance.
b) 0% Regulation i.e. it gives a constant terminal voltage irrespective of the load current.

An ideal current source is constant current source which:
a) Has Infinite internal impedance.
b) Gives constant terminal current irrespective of the load voltage.
Q.4) Give the I-V characteristics of Open Circuit and Short Circuit.

As shown in Figure 1, Open Circuit has Horizontal Line along X-axis as its I-V characteristics and Short Circuit has a Vertical Line along Y-axis as its I-V characteristics.

Figure 1. Open and Short Circuit Characteristics.

Figure 4.3
Q.5) Give the I-V characteristics of an Ideal Voltage Source and Ideal Current Source.

Figure 2 Ideal Voltage Source and Ideal Curent Source I-V characteristics.

Figure 4.4

An ideal voltage source gives a constant terminal voltage $\mathrm{V}_{\text {ideal }}$ irrespective of the load current drawn out of it. I-V characteristics is vertical but shifted with respect to Y-axis. It is vertical because the source resistance is zero and hence slope is infinite.

An ideal current source supplies a constant source current $\mathrm{I}_{\text {ideal }}$ irrespective of the terminal voltage. I-V characteristics is horizontal but shifted with respect to X -axis. It is horizontal because the source resistance is infinite hence slope is zero.
Q.6) Give I-V characteristics of a Real Voltage Source and a Real Current Source.

Figure 3 Real Voltage Source and Real Curent Source I-V characteristics.

Figure 4.5

In real life we can never have a vertical line for a voltage source. It will always have a slope $=1 / R_{\text {Th }}$. Since sources with low R_{Th} are going to be represented as Voltage Source hence Voltage Sources will always be slightly positively inclined vertical line.

In real life we can never have a hoizontal line for a current source. It will always have a slope $=1 / R_{N}$. Since sources with high R_{N} are going to be represented as Current Source hence Current Sources will always be slightly positively inclined horizontal line.
Q.7) Give the I-V characteristics of the active devices used in Electronics namely Diode, Triode, Pentode, BJT and FET.

Fig.4a. Real I-V curve of a diode.

Fig. 4b.

Fig $4 c$.

Fig 4b. First level idealization of a diode.
Fig.4c. Second level idealization of a diode.

Figure 4.6

Figure 4 gives the I-V curve of a diode. Examining Figure 4c we clearly conclude that an ideal diode is a voltage controlled switch which is a short circuit under forward bias and an open circuit under reverse bias.

Figure 5a. I-V family of curves of TRIODE. Figure 5b. Idealized family of curves of Triode

Figure 4.7

Figure 5 gives the I-V family of curves for a real Triode and ideal Triode. Examining Figure 5b it is clear that Triode's family of curves is a family of constant voltage sources. Triode at a given time will behave as one of the constant voltage sources. The grid voltage V_{G} will decide which constant voltage source it corresponds. In order that real Triode behaves like a linear circuit element, the family of curves must be equally spaced and equally inclined. A linear Triode when used in an amplifier will give a sinusoidal output for a sinusoidal input. But a real Triode is far from linear. Hence a sine wave input will generate fundamental and harmonics. As the amplitude of input sine wave increases so will the percentage content of the harmonic waves in the output will also increase. Hence this Harmonic Distortion is called Amplitude Distortion. If the input is kept very small then there will be little or no harmonic distortion. How small is very small? In BJT this is less than 5 mV and in FET it is less than 400 mV . This permissible input voltage range for low level harmonic distortion is referred to as Dynamic Range.

Figure 6a. I-V family of curves of a Pentode

Fig.6b.Idealized family of curves.

Figure 4.8

Figure 6 gives the family of curves of a Pentode. By examining the idealized family of curves it is evident that Pentode output is a family of Constant Current Sources controlled by Grid Voltage. In order that Pentode behaves like a linear circuit element the family of curves must be equally spaced and equally inclined but this is not the case. Only under very small signal condition or under incremental condition it will behave like a linear element.

Figure 7a. I-V family of curves of a CE BJT

Fig. 7b.Idealized family of curves of CE BJT

Figure 4.9

Figure 7 gives the family of curves of a Common Emitter Bipolar Junction Transistor (CE BJT). By examining the idealized family of curves it is evident that CE BJT output is a family of Constant Current Sources controlled by Base Current. In order that CE BJT behaves like a linear circuit element the family of curves must be equally spaced and equally inclined but this is not the case. Only under very small signal condition or under incremental condition it will behave like a linear element.

Figure 8a. I-V family of curves of a CS JFET

Fig 8 b .Idealized family of curves of CS JFET

Figure 4.10

Figure 8 gives the family of curves of a Common Source Junction Field Effect Transistor (CS_JFET). By examining the idealized family of curves it is evident that CS_JFET output is a family of Constant Current Sources controlled by Gate Voltage. In order that CS_JFET behaves like a linear circuit element the family of curves must be equally spaced and equally inclined but this is not the case. Only under very small signal condition or under incremental condition it will behave like a linear element.
Q.8) what are the different types of controlled sources?

Ans:-The types of CONTROLLED sources are:-
a) Voltage Controlled Voltage Source
b) Voltage Controlled Current Source
c) Current Controlled Voltage Source
d) Current Controlled Current Source

The controlled sources shown in the figure 9 are ideal. In practice we do not have ideal controlled sources hence $\mathrm{R}_{\text {out }}$ of the controlled sources must be shown. Also at the input $\mathrm{R}_{\text {in }}$ will have to be shown.

In each of the controlled sources $\mathrm{R}_{\text {in }}$ and $\mathrm{R}_{\text {out }}$ should be shown as indicated in the Table below.
Table 1. Set of $R_{\text {in }}$ and $R_{\text {out }}$ and their placements in the four controlled sources.

Type of controlled source	Input impedance $\left(\mathrm{R}_{\text {in }}\right)$	Output Impedance $\left(\mathrm{R}_{\text {out }}\right)$
VCVS	High impedance at I/P node pair	Low impedance in series with controlled voltage source
VCCS	High impedance at I/P node pair	High impedance in parallel with controlled current source
CCVS	Low impedance at I/P node pair	Low impedance in series with controlled voltage source
CCCS	Low impedance at I/P node pair	High impedance in parallel with controlled current source

Table 4.1

Type Of Controlled Source	Rin	Rout	Controlled Source	Controlling Parameter	Type Of Ideal Amplifier	Parameter	Example Of Such A Device
Voltage Controlled Voltage Source	∞	0	Voltage	Input Voltage	Voltage Amplifier	Av	Triode,Op- Amp
continued on next page							

Voltage Controlled Current Source	∞	∞	Current	Input Voltage	Transconductame Amplifier	Pentode,Field Effect Transis- tor(FET)	
Current Controlled Voltage Source	0	0	Voltage	Input Current	TransresistanRem Amplifier	--	
Current Controlled Current Source	0	∞	Current	Input Current	Current Amplifier	A $_{\text {I }}$	Bipolar Junction Transis- tor(BJT)

Table 4.2

Voltage Controlled Voltage Source

Figure 4.11

Voltage Controlled Current Source

Figure 4.12

Current Controlled Current Source

Figure 4.13

Current Controlled Voltage Source

Figure 4.14

Figure 9. The incremental model of four controlled sources: VCVS,VCCS,CCCS and CCVS
The above controlled sources can be implemented using the four feedback topologies.
Voltage Sampling Voltage Comparison (Voltage-Series) feedback topology implements VCVS.
Voltage Sampling Current Comparison (Voltage-Shunt) feedback topology implements CCVS.
Current Sampling Voltage Comparison (Current-Series) feedback topology implements VCCS.
Current Sampling Current Comparison (Current-Shunt) feedback topology implements CCCS. Q 9) What is the difference between passive device/component and active device/component?

Passive Device	Active Device
	continued on next page

R, L and C are passive devices	Diode, Vacuum Tubes, BJT, FET are active devices
A passive network comprising of passive compo- nents can neveramplify.	An active network comprised of active and passive- components, if suitably biased with a dc power sup- ply,can amplify.
A passive network is unconditionally stable. It al- ways has its poles lying in left half plane(LHP) or on $j \omega$ axis of the complex plane.	An active network is potentially unstable. Its poles can lie in right half plane(RHP).

Table 4.3
Q.10) Are the controlled sources active network or passive network?

Since controlled sources have an amplifying property hence they are always Active Network. In a Controlled Source the controlling parameter may get amplified. This controlling parameter may be voltage or may be current. A VCVS is a Voltage Amplifier. CCCS is a current Amplifier.
Q.11) What is meant by Poles of a given network?

This comes from network analysis of a given network in S-plane where S-plane is complex frequency plane. Laplace Transformation uses the complex frequency concept. The solution of S-plane analysisleads to complete response of the circuit. The complete response is the sum of transient plus steady state response. This is also known as natural response plus forced response. By Fourier Transform or by treating inductor as $\mathrm{j} \omega \mathrm{L}$ and by treating capacitance as $1 /(\mathrm{j} \omega \mathrm{C})$ we arrive at steady state sinusoidal response of the network. The total response can be determined by Theory of Operator method also. In this approach the differential equation is set up and its solution determined. When the forcing function is made zero then the differential equation obtained is known as the characteristic equations or homogeneous equation. The roots of this characteristic equation are the poles of the system also known as natural frequencies of the system. These poles can be real or complex hence we say that the poles lie in complex plane. The nature of these poles determine the nature of transient response which is the solution of the characteristic equation or the homogeneous equation known as Complementary Function. This Complementary Function corresponds to the natural response or the transient response in Laplace Transform jargon.In Figure 10 we give the location of poles and its corresponding time-domain transient response. As seen from the Figure, poles in LHP correspond to exponentially decaying type transients which is an indication of stability. On the other hand the poles in RHP correspond to exponentially growing type transients which is an indication of instability which ultimately will lead to catastrophic collapse of the system.

Figure 10 . Location of poles and the corresponding Time-Domain Transient Response of the Network.

Figure 4.15

Chapter 5

Analog Electronics_Lecture 1_Supplement_Incremental Model of Controlled Sources ${ }^{1}$

AE_Lecture1_Supplementary_Incremental Model of Controlled Sources.
In last Chapter in Figure 9, we have given the incremental model of the controlled sources. Here we will describe the methodology of deriving the incremental model say of CE BJT.

A DC model of CE BJT will relate the output dc current, I_{C}, and output dc voltage, V_{CE}, to input dc current, I_{B}, and input dc voltage, V_{BE}, as shown in Figure 11.

[^4]

Figure 11. D.C. Model of CE BJT.

Figure 5.1

In Figure 11, the dc model of CE BJT is given. Since BJT is CCCS hence input current I_{B} controls the output current through current amplification factor β_{F} which is the short circuit current gain of CE BJT. The output current is:
$\mathrm{I}_{\mathrm{C}}=\beta_{\mathrm{F}} \cdot \mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CEO}} 1$
The second part of the output current, $\mathrm{I}_{\mathrm{CEO}}$, is reverse leakage current of CB junction and is not controlled by input current I_{B} hence is non-useful current and is responsible for thermal -runaway as it is temperature sensitive. It doubles for every $10^{\circ} \mathrm{C}$ rise in temperature.

The forward bias $V_{B E}$ of $B E$ junction decides the input current I_{B} and I_{B} in turn decides the output current I_{C}.

$$
I_{B}=\frac{I_{E O} e^{\frac{V_{B E}}{V_{T}}}}{\left(1+\beta_{F}\right)}
$$

Figure 5.2

2

Thus DC Model inter-relates output DC voltage and current to input DC voltage and current.
In a similar manner Incremental Model linearly inter-relates the incremental output voltage and current to the incremental input voltage and current. It is because of this linear inter-relationship between output
and input that we are forced to maintain the small signal condition or incremental signal condition. The moment the small signal condition is violated, the faithful amplification stops . The high fidelity of the system is lost.

To derive the incremental model we must introduce incremental voltage at the input as we have done in Figure 12.

Figure 12. Instantaneous Model of CE BJT.

Figure 5.3

In Figure 12, we have instantaneous voltages and currents namely:
$\mathrm{i}_{\mathrm{B}}=\mathrm{I}_{\mathrm{B}}+\mathrm{i}_{\mathrm{b}}$,
$\mathrm{i}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}}+\mathrm{i}_{\mathrm{c}}$,
$\mathrm{v}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CE}}+\mathrm{v}_{\mathrm{ce}}$,
$\mathrm{v}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE}}+\mathrm{v}_{\mathrm{be}}$.
Here we have DC voltage + incremental voltage and DC current + incremental current.
We are interested in finding an incremental model which only inter-relates the incremental part of the output -input voltage and output-input current.

There are two ways of doing it:
First way is that from the physics of the device we derive the incremental model. This is what we are going to do in subsequent chapters with respect to diodes, BJT and FET. This is called the physical incremental model and in respect to CE BJT it is called Hybrid- π Model and in respect to CB BJT it is called T-Model.

Second way is to develop a mathematical model. Here we short circuit the DC voltage sources and open circuit DC current sources, and retain only the incremental portions of the voltages and current and the incremental equivalent of diode and controlled sources. Once we apply this rule we get the incremental model as shown in Figure 13.

Figure 13. Incremental Model of CE BJT.

Figure 5.4

We have enclosed the active device in a black box and by measurements taken at the two ports, input and output ports, we determine the incremental parameters of the incremental model of the active device which is being treated as a black box.

If we relate $\left(\mathrm{v}_{\mathrm{in}}, \mathrm{i}_{\text {out }}\right)$ to ($\left.\mathrm{i}_{\mathrm{in}}, \mathrm{v}_{\text {out }}\right)$ we have hybrid model.
If we relate $\left(\mathrm{i}_{\text {in }}, \mathrm{i}_{\text {out }}\right)$ to $\left(\mathrm{v}_{\mathrm{in}}, \mathrm{v}_{\text {out }}\right)$ we have admittance model.
If we relate $\left(\mathrm{v}_{\mathrm{in}}, \mathrm{v}_{\text {out }}\right)$ to $\left(\mathrm{i}_{\mathrm{in}}, \mathrm{i}_{\text {out }}\right)$ we have impedance model.
In our syllabus we have hybrid model so we will deal with hybrid model.
In hybrid model of CE BJT:
$\left(\mathrm{v}_{\mathrm{in}}\right)=\mathrm{F} 1\left(\mathrm{i}_{\text {in }}, \mathrm{v}_{\text {out }}\right)=\mathrm{h}_{\mathrm{ie}} . \mathrm{i}_{\text {in }}+\mathrm{h}_{\mathrm{re}} . \mathrm{v}_{\text {out }} ;$
$\left(\mathrm{i}_{\text {out }}\right)=\mathrm{F} 2\left(\mathrm{i}_{\text {in }}, \mathrm{v}_{\text {out }}\right)=\mathrm{h}_{\mathrm{fe}} \cdot \mathrm{i}_{\text {in }}+\mathrm{h}_{\mathrm{oe}} \cdot \mathrm{v}_{\mathrm{out}} ;$
From partial derivative theorem we know that :
$\left(\mathrm{v}_{\mathrm{in}}\right)=$ total increment in instantaneous value of input voltage $=$

$$
\Delta v_{I N}=v_{i n}=\left.\frac{\partial F 1}{\partial i_{I N}}\right|_{V_{O U T}} \times \Delta i_{I N}+\left.\frac{\partial F 1}{\partial v_{O U T}}\right|_{I_{I N}} \times \Delta v_{O U T}
$$

Figure 5.5

3
Physically this is interpretive as follows:
Input Voltage is a function of Input Current and Output Voltage hence
Total Increment in Instantaneous Input Voltage $=$ incremental Input Voltage $=$
Partial derivative of F1 w.r.t.(with respect to) instantaneous Input Current with Output Voltage held constant \times increment in Instantaneous Input Current

PLUS

Partial derivative of F1 w.r.t.(with respect to) instantaneous Output Voltage with Input Current held constant \times increment in Instantaneous Output Voltage.

$$
\left.\frac{\partial F 1}{\partial_{I N}}\right|_{V_{O U T}}
$$

Figure 5.6
$=\mathrm{h}_{\mathrm{ie}}=$ input impedance with output shorted hence this is a short circuit parameter

$$
=
$$

$$
\left.\frac{v_{\text {in }}}{i_{\text {in }}}\right|_{v_{\text {out }}}=0
$$

Figure 5.7
;

$$
\left.\frac{\partial F 1}{\partial v_{O U T}}\right|_{I_{I N}}=
$$

Figure 5.8
$\mathrm{h}_{\mathrm{re}}=$ reverse transmission factor with input open hence this open circuit parameter $=$

$$
\left.\frac{v_{\text {in }}}{v_{\text {out }}}\right|_{i_{\text {in }}}=0
$$

Figure 5.9

[^5]$$
\Delta i_{\text {OUT }}=i_{\text {out }}=\left.\frac{\partial F 2}{\partial i_{\text {IN }}}\right|_{V_{\text {OUT }}} \times \Delta i_{\text {IN }}+\left.\frac{\partial F 2}{\partial v_{\text {OUT }}}\right|_{I_{I N}} \times \Delta v_{\text {OUT }}
$$

Figure 5.10

$$
\left.\frac{\partial F 2}{\partial i_{I N}}\right|_{V_{O U T}}=
$$

Figure 5.11
$\mathrm{h}_{\mathrm{fe}}=$ short circuit current gain $=$

$$
\left.\frac{i_{\text {out }}}{i_{\text {in }}}\right|_{v_{\text {out }}}=0
$$

Figure 5.12
;

$$
\left.\frac{\partial F 2}{\partial v_{O U T}}\right|_{I_{I N}}
$$

Figure 5.13
$=\mathrm{h}_{\mathrm{oe}}=$ open circuit output conductance if resistive and open circuit output admittance if complex $=$

$$
\left.\frac{i_{\text {out }}}{v_{\text {out }}}\right|_{i_{\text {in }}}=0
$$

Figure 5.14

At low and mid-frequencies $h_{o e}$ is open circuit output conductance and high frequencies it is open circuit output admittance.

In Figure 14 , the Hybrid Model of CE BJT. It should be noted that there are two control sources:
First is $\mathrm{h}_{\mathrm{fe}} . \mathrm{i}_{\mathrm{b}} \rightarrow$ this causes a signal current gain in forward direction and
second is $h_{r e} \cdot v_{c e} \rightarrow$ this causes a reverse transmission of signal voltage from output to input.
The second control source is not a desirable feature and it makes CE BJT a non-Unilateral Device which makes active networks made of CE BJT vulnerable to instability and parasitic oscillation at RadioFrequencies (RF) and above.

In subsequent chapters we will not take this mathematical route to arrive at the incremental model of the Active Devices. Rather from the first principle of Device Physics we will arrive at the incremental model of Active Devices.

Figure 14. Hybrid Model of CE BJT

Figure 5.15

Chapter 6

Analog Electronics Lecture 2_PartA_I-V characteristics of Vacuum Tubes'

LECTURE NO. 2 _PartA
Analog Electronics Lecture 2_PartA_I-V characteristics of Vacuum Tubes
Key words; Triode, Pentode;
Summary: The family of Output Curves and the incremental model of Triode, Pentode ;
All the amplifying devices are Active Devices. Vacuum Tubes, Bipolar Junction Transistor(BJT) and Field Effect Transistors(FET) belong to this group. Whereas Resistors, Inductors and Capacitors are passive devices.

OUTPUT FAMILY OF CURVES OF ACTIVE DEVICES
TRIODE OUTPUT CHARACTERISTICS
The general output characteristics of a triode is as follows:

[^6]

Figure 6.1

But the idealized output characteristics would look like:

Figure 6.2

Thus triode is a voltage controlled voltage source.
The incremental model of a triode is:

Figure 6.3

Where $r_{p}=$ plate resistance
$\mu=$ Amplification factor
PENTODE OUTPUT CHARACTERISTICS
A pentode has 5 plates. They are cathode, grid, screen, suppressor and anode.
The general output characteristics of a pentode is as follows:

Figure 6.4

But the idealized output characteristics would look like:

Figure 6.5

Thus pentode is a voltage controlled current source.
The incremental model of a pentode is:

Figure 6.6
$R p$ is plate resistance and gm is transconductance and product of the two are amplication factor mu. Amplification factor is the maximum voltage gain that can be obtained from a Common Cathode Pentode Amplifier.

Chapter 7

Analog Electronics Lecture 2_PartB_BJT configurations \& modes'

Analog Electronics Lecture 2_PartB_BJT configurations \& modes
Key words;CE,CC \& CB BJT;
Abstract: This describes three circuit configurations, four modes of operation and five schemes of biasing; BIPOLAR JUNCTION TRANSISTOR FOUR MODES OF OPERATION

Type Of Biasing	Emitter-Base Junction	Base-Collector Junction
Forward Active Mode	Forward Biased	Reverse Biased
Inverse Active Mode	Reverse Biased	Forward Biased
Saturation Mode	Forward Biased	Forward Biased
Cut-Off Mode	Reverse Biased	Reverse Biased

Table 7.1
THREE CIRCUIT CONFIGURATIONS
(1) COMMON BASE CONFIGURATION

[^7]

Figure 7.1
(1) COMMON EMITTER CONFIGURATION

Figure 7.2
(1)Two battery biasing:

The 3 circuit configurations shown in the previous page are the examples of this biasing.
(2)Fixed Bias:

This type of biasing system offers poor stability because it has negative feedback..

Figure 7.3
(3)Potential Divider Bias:

This type of biasing also offers poor stability because this also has no negative feedback.

Figure 7.4
(4)Self Biasing:

This type of biasing system offers high stability because of current series feed-back.

Figure 7.5
(5)Widlar Biasing:

The above types of biasing systems are used normally for discrete circuits. But this type of biasing is used for IC technologies. It offers high stability because of voltage shunt feed-back.This is also known as
collector to base feed-back.

Figure 7.6

Chapter 8

Analog Electronics Lecture 2_PartC_I-V output characteristics of BJT

Analog Electronics Lecture 2 PartC I-V output characteristics of BJT
Key words;BJT;
Abstract: This describes the D.C. parameters of BJT.
BJT Common Base Configuration:
For CB Configuration :

Figure 8.1

$$
\mathrm{I}_{\mathrm{C}}=\alpha_{\mathrm{F}} \mathrm{MI}_{\mathrm{E}}+\mathrm{I}_{\mathrm{CBO}}
$$

Where $\alpha_{\mathrm{F}}=$ D.C. Forward current transfer Ratio of CB BJT $=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{E}}$;
$\mathrm{M}=$ Avalanche Multiplication Factor at Base-Collector Junction given by $=1 /\left[1-(\mathrm{Vcb} / \mathrm{BVcbo})^{\wedge} \mathrm{n}\right]$
${ }^{1}$ This content is available online at http://cnx.org/content/m29636/1.2/.

Figure 8.2

Where $\mathrm{n}=$ Miller Indices $=2 \sim 6$
$\mathrm{I}_{\mathrm{CBO}}=$ Reverse leakage current at CB Jn with emitter open.

$$
\mathrm{BV}_{\mathrm{CBO}}
$$

Figure 8.3
$=$ Avalanche breakdown voltage at CB Jn with emitter open
OUTPUT CHARACTERISTICS OF Common Base Bipolar Junction transistor

Figure 8.4
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{CBO}}$ when $\mathrm{I}_{\mathrm{E}}=0 \mathrm{~mA}$. This is the reverse leakage current at CB Junction with Emitter open and is of nA range.

BJT Common Emitter(CE) Configuration:

Figure 8.5

For CE Configuration:
$\mathrm{I}_{\mathrm{C}}=\alpha_{\mathrm{F}} \mathrm{MI}_{\mathrm{E}}+\mathrm{I}_{\mathrm{CBO}}$
$=>\mathrm{I}_{\mathrm{C}}=\alpha_{\mathrm{F}} \mathrm{M}\left(\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}\right)+\mathrm{I}_{\mathrm{CBO}}$
$=>\mathrm{I}_{\mathrm{C}}\left(1-\alpha_{\mathrm{F}} \mathrm{M}\right)=\alpha_{\mathrm{F}} \mathrm{MI}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CBO}}$

$$
\Rightarrow \mathrm{I}_{\mathrm{C}}=\frac{\alpha_{\mathrm{F}} \mathrm{M} \mathrm{I}_{\mathrm{B}}}{\left(1-\alpha_{\mathrm{F}} \mathrm{M}\right)}+\frac{\mathrm{I}_{\mathrm{CBO}}}{\left(1-\alpha_{\mathrm{F}} \mathrm{M}\right)}
$$

Eq. 2

Figure 8.6

$$
\Rightarrow \mathrm{I}_{\mathrm{C}}=\frac{\alpha_{\mathrm{F}} \mathrm{M} \mathrm{I}_{\mathrm{B}}}{\left(1-\alpha_{\mathrm{F}} \mathrm{M}\right)}+\mathrm{I}_{\mathrm{CEO}}
$$

Eq. 3

Figure 8.7

$$
\text { Where } I_{\mathrm{CEO}}=\frac{\mathrm{I}_{\mathrm{CBO}}}{\left(1-\alpha_{\mathrm{F}} \mathrm{M}\right)}
$$

Figure 8.8

If $\mathrm{M}=1$,

$$
\frac{\alpha_{F} M}{\left(1-\alpha_{F} M\right)}=\frac{\alpha_{F}}{1-\alpha_{F}}=100
$$

Figure 8.9

Where $\alpha_{\mathrm{F}}=0.99$.
At low voltages we have $\mathrm{M}=1$.

$$
=>I_{C}=\frac{\alpha_{F}}{\left(1-\alpha_{F}\right)} I_{B}+\frac{I_{C B O}}{\left(1-\alpha_{F}\right)}
$$

Eq. 4.

Figure 8.10

If we define $\frac{\alpha_{F}}{\left(1-\alpha_{F}\right)}=\beta_{F}=$ D.C. Short Circuit Current gain of CE BJT $=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}$

Figure 8.11

Then we get:

$$
\begin{equation*}
\Rightarrow \mathrm{I}_{\mathrm{C}}=\beta_{\mathrm{F}} \mathrm{I}_{\mathrm{B}}+\left(1+\beta_{\mathrm{F}}\right) \mathrm{I}_{\mathrm{CBO}} \tag{Eq. 5}
\end{equation*}
$$

Figure 8.12

That is:

$$
\Rightarrow \mathrm{I}_{\mathrm{C}}=\beta_{\mathrm{F}} \mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CEO}}
$$

Eq. 6

Figure 8.13

$$
\text { Where } I_{\text {CEO }}=\left(1+\beta_{F}\right) I_{\text {CBO }}
$$

Figure 8.14

Figure 8.15

NOTE:-The slope in the figure is due to base width modulation which is also known as Early Effect. $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{CEO}}$ when $\mathrm{I}_{\mathrm{B}}=0 \mathrm{~mA}$. This is the collector junction leakage current at CB Junction with Base open and is of $\mu \mathrm{A}$ range.

Let us consider :

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C}}=\frac{\alpha_{\mathrm{F}} \mathrm{M} \mathrm{I} \mathrm{I}_{\mathrm{B}}}{\left(1-\alpha_{\mathrm{F}} \mathrm{M}\right)}+\frac{\mathrm{I}_{\mathrm{CBO}}}{\left(1-\alpha_{\mathrm{F}} \mathrm{M}\right)} \tag{Eq. 7}
\end{equation*}
$$

Figure 8.16

If $\alpha_{\mathrm{F}} \mathrm{M}=1$, then

$\frac{\mathrm{I}_{\mathrm{CBO}}}{\left(1-\alpha_{\mathrm{F}} \mathrm{M}\right)}=\infty$

Figure 8.17

At this point, break over occurs. And we have $\mathrm{BV}_{\mathrm{CEO}}=$ Break-over Voltage with Base Circuit open. When $\alpha_{\mathrm{F}} \mathrm{M}=1$
That is

$$
\alpha_{\mathrm{F}}\left[\frac{1}{1-\left(\frac{\mathrm{V}_{\mathrm{CB}}^{*}}{\mathrm{BV}_{\mathrm{CBO}}}\right)^{\mathrm{n}}}\right]=1
$$

Eq. 8

Figure 8.18

$$
\alpha_{\mathrm{F}}=1 \cdot\left(\frac{\mathrm{~V}_{\mathrm{CB}}^{*}}{\mathrm{BV}_{\mathrm{CBO}}}\right)^{\mathrm{n}}
$$

Figure 8.19

$$
\left(\frac{\mathrm{V}_{\mathrm{CB}}^{*}}{\mathrm{BV}_{\mathrm{CBO}}}\right)^{\mathrm{n}}=1-\alpha_{\mathrm{F}}
$$

Figure 8.20

But :

$$
1-\alpha_{F}=\frac{1}{1+\beta_{F}}
$$

Eq.9.

Figure 8.21

Thus:

Eq. 10

Figure 8.22

Thus:

Eq. 11

Figure 8.23

Putting the required Values i.e. $\mathrm{BV} \mathrm{CBO}_{\mathrm{CBO}}=30 \mathrm{~V}, \beta_{\mathrm{F}}=100$, we get $\mathrm{V}_{\mathrm{CB}}{ }^{*}=18 \mathrm{~V}=\mathrm{BV}$ ceo ;
Now we have to know more about $\mathrm{BV}_{\mathrm{CES}}$ (Breakover Voltage when the base circuit is shorted)
$\mathrm{BV}_{\mathrm{CBO}}>\mathrm{BV}_{\mathrm{CEX}}>\mathrm{BV}_{\mathrm{CES}}>\mathrm{BV}_{\mathrm{CEO}}$
Where $\mathrm{BV}_{\mathrm{CBO}}=$ Breakover Voltage of the collector base junction when the emitter circuit is open.
$B V_{\text {CEX }}=$ Breakover Voltage of CE BJT for a given termination R_{X} at the base
$\mathrm{BV}_{\mathrm{CEO}}=$ Breakover Voltage of CE BJT when the base circuit is open.
$\mathrm{BV}_{\mathrm{CES}}=$ Breakover Voltage of CE BJT when the base circuit is shorted to ground.
$\mathrm{BV}_{\mathrm{CEX}}=$ Breakover Voltage when the base circuit is connected to ground through a source Resistance $\left(\mathrm{R}_{\mathrm{S}}\right)$.

By proper base termination, the permissible region of operation can be extended upto $\mathrm{BV}_{\mathrm{CBO}}$.

Thus we have seen that breakover occurs at $\alpha_{\mathrm{F}} \mathrm{M}=1$. At low current α_{F} is very small, almost about 0.1.Therefore voltage has to be taken to a large value to satisfy $\alpha_{F} M=1$. But as soon as breakover occurs large current starts flowing. With large current α_{F} improves from 0.1 to 0.99 . Hence $\alpha_{\mathrm{F}} \mathrm{M}=1$ is satisfied at lower voltage Vs. Therefore breakover curves settles down at Vs. This voltage V_{S} is known as sustaining voltage. Because of the fact that :
$\mathrm{V}_{\mathrm{S}}<\mathrm{BV}_{\mathrm{CEO}}$
We get a S Type Negative Impedance Region(NIR). In SCR and UJT also we get S Type NIR but in Tunnel Diode as shown in the Figure below we get N Type NIR.

Figure 8.24

COMPARISON BETWEEN COMMON BASE AND COMMON EMITTER CONFIGURATIONS

S.No.	COMMON BASE	COMMON EMITTER
1	h_{rb} (reverse factor $\sim 10^{-5}$ Thus it bansmission behaves as a near unilateral device.	$\mathrm{h}_{\mathrm{re}} \sim 10^{-4}$ Thus it behaves as a non-unilateral device.
continued on next page		

2	In RF applications the circuit has a high probability of parasitic os- cillations but in CB because of near unilaterality, probability of parasitic oscillation goes down. Hence for RF applications CB is the preferred circuit configura- tion.	At low frequencies there is no danger of parasitic oscillations hence CE can be used even with poor reverse transmission factor.
3	$\mathrm{h}_{\text {ob }}=1 /(2 \mathrm{M})$ Thus it behaves as a near ideal current source. Thus it is very suitable for charging a capacitance with a constant current to generate a saw-tooth waveform.	$\mathrm{h}_{\text {oe }}=1 /(40 \mathrm{~K})$ Thus it behaves as a nondeal current source.

Table 8.1
Both CB and CE are Current Controlled Current Source. CB is a near ideal CCCS whereas CE is a non-ideal CCCS.

Chapter 9

AnalogElectronics_Lecture2_Supplementary.'

AnalogElectronics_Lecture2_Supplementary.
Keywords: JFET, NMOS(enhancement) Normally-Off NMOS, NMOS(depletion)-Normally On NMOS,CMOS;

Abstract: This second part of Lecture 2 gives the Symbol, Output Characteristics and Transfer characteristics of nJFET, NMOS(enhancement) Normally-Off NMOS, NMOS(depletion)Normally-On NMOS.It gives the symbol of CMOS. It also gives a comparative study of BJT and FET.

FIELD EFFECT TRANSISTOR
A Field Effect Transistor is like a pentode. It is an analogue of pentode. Both are Voltage controlled Current Sources.

FET
JFET MOSFET
PJFET NJFET NMOS PMOS CMOS
Following are the symbols of JFET and MOSFET.
Just as we have NPN and PNP BJT, in exactly the same way we have P type FET and N type FET .
BJT are Bipolar devices. Here both majority and minority carriers partake in Transistor Action.
FET are Unipolar devices. Here only majority carriers take part in Transistor Action.
In NPN_BJT, electrons are emitted from Emitter and injected into Base and collected by Collector. Electrons play the dominant role.

In PNP_BJT, holes are injected into Base and eventually collected by the Collector.
In N type FET, electrons are sourced at SOURCE end into the channel and electrons are drained out of the DRAIN.

Vica Versa in P type FET, holes are sourced at SOURCE end into the channel and holes are drained out of the DRAIN.

JFET are DEPLETION Type also known as Normally-ON device. Here channel is present under zero gat voltage. By application of appropriate voltage the channel is gradually pinched off until complete pinch off occurs.

MOSFET can be both types: Normally On and Normally Off.
$\operatorname{MOSFET}(\mathrm{D})$ are depletion or Normally ON devices. Here under GATE Zero Voltage , channel is present.Therefore channel is represented by a continuous line. It can be depleted or enhanced.

MOSFET(E) are enhancement or Normally OFF devices. Here there is no channel therefore channel is represented by a broken line. When Gate Voltage crosses a threshold voltage then only channel is induced. Once the channel is induced the transistor is ON otherwise it is OFF.

[^8]

Figure 9.1

Figure 9.2

The following is the circuit diagram of a Common Source Amplifier using N-channel JFET:

Figure 9.3

Output Family of curves of nJFET

Figure 9.4
\qquad
\qquad
NMOS Enhancement Type

Figure 9.5

Figure 9.6

Figure 9.7

TRANSFER CHARACTERISTICS OF NMOS

Figure 9.8

TRANSFER CHARACTERISTICS OF NMOS DEPLETION TYPE

Figure 9.9

JFET has not proved amenable to integration. MOSFET are much more suitable for integration. It has a much better packing density. Historically MOSFET has a been two orders of magnitude slower. Today Pentium IV is toggling at 3 GHz whereas best BJT is clocking at 300 GHz . The following Table gives the comparative study of BJT and MOSFET:

	Bipolar Junction Transistor	Metal Oxide Semiconductor Field Effect Transistor
Carriers in action	Here both minority and major- ity take part in transistor action therefore BIPOLAR.	Here only majority carriers take part in transistor action therefore UNIPOLAR.
continued on next page		

Speed	2 orders of magnitude faster	
Packing Density	Because of ISOLATION DIFFU- SION packing density is one or- der of magnitude less	This a much higher packing den- sity.MOS circuits are reaching 1 billion mark
Dynamic range	This exponential device hence harmonic distortion occurs be- yond 5mV at the I/P	This is a quadratic device hence same order od harmonic distor- tion is beyond 400mV.
Noise Figure	This has THERMAL noise,	
	This has only THERMAL and SHOT noise, PARTITION noise but little FLICKER noiseHence	FLICKER hence much quieter device. In fact for deep space communication cryogeni- cally cooled MESFET is pre- ferred for Low Noise Amplifier (LNA) at the front end.

Table 9.1

CMOS has the advantage of low stand by power dissipation over NMOS circuits hence CMOS is the technology of choice for PC revolution. CMOS is known as nano-watt logic.

JFET is not in common use but its variant Metal Semiconductor Field Effect Transistor(MESFET) is the technology of choice for LNA(Low Noise Amplifier).

Chapter 10

AnalogElectronics_Lecture3_Incremental Model of Diode.'

LECTURE NO. 3

INCREMENTAL MODEL OF A PN JUNCTION DIODE
Fig.1. A dc diode circuit.

Figure 10.1
$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{D}}+\mathrm{I}_{\mathrm{D}} \cdot \mathrm{R}_{\mathrm{D}} \quad-{ }_{---}$(1) This describes DC load line.
$\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{D} 0} \exp \left(\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}\right)_{\ldots-_^{\prime}}$ (2) This is the device characteristics.
Q-point or the quiescent point is the DC operating point and is obtained as the intersection of DC load line and the device characteristics.

[^9]

Figure 10.2

Figure 2. The dc load line, the device characteristics and the Q point.
$\operatorname{Tan}(\alpha)=$ slope of the load line $=\left(-1 / \mathrm{R}_{\mathrm{D}}\right)$
Under signal conditions:

Figure 10.3

Figure 3. Signal is being coupled with the diode circuit.
$\mathrm{i}_{\mathrm{D}}=\mathrm{I}_{\mathrm{D}}+\mathrm{i}_{\mathrm{d}}$ where i_{D} is the instantaneous diode current.
I_{D} is the DC diode current.
i_{d} is the incremental diode current.
And v_{D} (instantaneous diode voltage) $=\mathrm{V}_{\mathrm{D}}$ (DC Diode Voltage) $+\mathrm{v}_{\mathrm{d}}$ _(incremental diode voltage)
Now the loop or the mesh equation is:-
$\left(\mathrm{V}_{\mathrm{DD}}+\mathrm{v}_{\mathrm{s}}\right)=\mathrm{v}_{\mathrm{D}}+\mathrm{i}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}}$ \qquad
Rewriting the above equation we get:-
$\left(V_{D D}+v_{s}\right)=\left(V_{D}+v_{d}\right)+\left(I_{D}+i_{d}\right) R_{D}$ \qquad

Now we have (Instantaneous - DC) $=$ Incremental part, that is Eq.(4)-Eq.(1) :
$\mathrm{v}_{\mathrm{s}}=\mathrm{v}_{\mathrm{d}}+\mathrm{i}_{\mathrm{d}} \mathrm{R}_{\mathrm{D}}=\mathrm{v}_{\mathrm{d}}+\mathrm{v}_{\mathrm{o}} ;$
Incremental circuit will be:-

Figure 10.4

Figure 4. The incremental circuit of the Diode Circuit with signal.
A diode under instantaneous conditions has two parts :-

Figure 10.5

$$
\left(\mathrm{I}_{\mathrm{D}}+\mathrm{i}_{\mathrm{d}}\right)=\mathrm{I}_{\mathrm{DO}} \exp \left(\frac{\mathrm{~V}_{\mathrm{D}}+\mathrm{V}_{\mathrm{d}}}{\mathrm{~V}_{\mathrm{T}}}\right)
$$

Figure 10.6

The above is a relation between the diode current and the diode voltage.
We know that
$\mathrm{e}^{[\mathrm{U}+019 F]}=1+[\mathrm{U}+019 F]+\left([\mathrm{U}+019 F]^{2} / 2!\right)+\left([\mathrm{U}+019 F]^{3} / 3!\right)+\ldots$.
If $[\mathrm{U}+019 \mathrm{~F}] \ll 1 ; \mathrm{e}^{[\mathrm{U}+019 \mathrm{~F}]}=1+[\mathrm{U}+019 \mathrm{~F}]$ This now becomes a linear equation.

If incremental voltage across the diode is less than 5 mV then $[\mathrm{U}+019 \mathrm{~F}] \ll 1$.
To maintain linearity, we maintain all the signals small.
So under small signal approximations,
$\mathrm{e}^{[\mathrm{U}+019 \mathrm{~F}]}=1+[\mathrm{U}+019 \mathrm{~F}]$ will hold good.

$$
\left(\mathrm{I}_{\mathrm{D}}+\mathrm{i}_{\mathrm{d}}\right)=\mathrm{I}_{\mathrm{DO}}\left[\exp \left(\frac{\mathrm{~V}_{\mathrm{D}}}{\mathrm{~V}_{\mathrm{T}}}\right)\right]\left[\exp \left(\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{~V}_{\mathrm{T}}}\right)\right]
$$

Figure 10.7

Now we note that $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$ and the room temperature $=300 \mathrm{~K}$ and if $\mathrm{V}_{\mathrm{d}}<5 \mathrm{mV}$ then we satisfy the small signal condition and we obtain:

$$
\left(\mathrm{I}_{\mathrm{D}}+\mathrm{i}_{\mathrm{d}}\right)=\mathrm{I}_{\mathrm{D}}\left[1+\frac{\mathrm{v}_{\mathrm{d}}}{\mathrm{~V}_{\mathrm{T}}}\right]
$$

Figure 10.8

Then we have;

$$
\not y_{\mathrm{D}}+\mathrm{i}_{\mathrm{d}}=\not y_{\mathrm{D}}+\mathrm{I}_{\mathrm{D}} \frac{\mathrm{v}_{\mathrm{d}}}{\mathrm{v}_{\mathrm{T}}}
$$

Figure 10.9

Thus;

$$
\mathrm{i}_{\mathrm{d}} \frac{\mathrm{~V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{D}}}=\mathrm{v}_{\mathrm{d}}
$$

Figure 10.10

Let:

$$
\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{D}}}=\mathrm{r}_{\mathrm{d}}
$$

Figure 10.11

Putting $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$ and $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ we get $\mathrm{r}_{\mathrm{d}}=26 \Omega$.
Thus the incremental part of the diode circuit was determined as follows:

- We short circuit the DC voltage source(DC current source would have been open circuited).
- Any forward biased junction would be replaced by incremental resistance.

Incremental resistance $\mathrm{r}_{\mathrm{d}}=$ (Thermal Resistance $\mathrm{V}_{\mathrm{T}} /$ Quiescent Current through the diode)

$$
\mathrm{r}_{\mathrm{d}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{D}}}
$$

Figure 10.12
\qquad
\qquad
$\mathrm{r}_{\mathrm{d}}=\frac{1}{\text { Slope of the tangent drawn at the Q-point }}$

Figure 10.13

- All backward bias junction will act as open circuit.
- Ohmic resistance will offer resistance in both DC and incremental part.

This is small signal approximation. Thus Diode equivalent circuit is composed of linear elements only under small signal condition. Hence the circuit in Figure 4 is incremental circuit or small signal equivalent circuit. The incremental resistance r_{d} offered by the diode under small signal condition is a linear resistance and is included in the circuit only under incremental condition.

Table 1. Values of incremental resistance at 300 K offered by a diode under various DC diode currents.

$\mathrm{I}_{\mathrm{D}}(\mathrm{mA})$	$\mathrm{r}_{\mathrm{d}}($ ohms $)=\mathrm{V}_{\mathrm{T}} / \mathrm{I}_{\mathrm{D}}$ at Room Temerature $(300 \mathrm{~K}$
$1 \mu \mathrm{~A}$	26 kohms
$10 \mu \mathrm{~A}$	2.6 kohms
$100 \mu \mathrm{~A}$	260 ohms
1 mA	26 ohms
10 mA	2.6 ohms
100 mA	0.26 ohms.

Table 10.1
Amplitude or Harmonic Distortion.
As can be seen from Figure 3, input sinusoidal voltage vs appears as addition and subtraction to V_{DD}. Hence under signal condition, the load line is being shifted as shown in Figure 5. In doing so Q pint also shifts generating sinusoidal current swing. As can be seen in the figure, a small segment of I-V curve of the diode(which is the case under small signal condition) is essentially a straight line. Hence Q moves along a straight segment and in the process generates a sinusoidal swing in the current.

Figure 10.14

Figure 5. Diode Current Sinusoidal Swing under Sinusoidal Input Voltage under small signal condition.
But as seen in Figure 6, if input voltage is a large signal then Q traces a non-linear segment of I-V curve. This results in non-sinusoidal current swing in the diode. This means a sinusoidal voltage is not giving rise to a sinusoidal current in the output load resistance R_{L}. Hence the output voltage will be non-sinusoidal and its Fourier Series Expansion will contain Fundamental and Harmonics. This is known as Amplitude or Harmonic Distortion.

Figure 10.15

Figure 6. Non-sinusoidal diode current swing when input voltage is a large voltage.

Chapter 11

AnalogElectronics_Lecture3supp._High Frequency Model of PN Junction Diode.'

AnalogElectronics_Lecture3supp._High Frequency Model of PN Junction Diode.
At high frequency, the Depletion Layer Junction Capacitance ($\mathrm{C}_{\text {JD }}$) under reverse biased and \{ $\mathrm{C}_{\text {JD }}$ plus C_{D} (Diffusion Capacitance) $\}$ comes in parallel with the incremental resistance r_{d}. At very high frequencies even the leads will offer an inductive reactance but we are going to neglect it for the present syllabus. The incremental Model of PN Junction Diode at high frequencies is given in Figure 1.

Figure 11.1

Figure 1. Incremental Model of Diode at high frequencies.
Junction Capacitance $\left(\mathrm{C}_{\mathrm{jD}}\right)$ is present in both reverse and forward biased diodes because it is due to depletion layer/space charge layer/dipole layer present at the metallurgical junction of the diode.

Diffusion Capacitance $\left(\mathrm{C}_{\mathrm{d}}\right)$ is present only in forward bias because it is due to excess minority carrier stored under forward biased condition. In reverse bias condition there is no excess minority carrier stored in the bulk region.

[^10]In Figure 2 we see the deleterious effect of $\mathrm{C}_{\mathrm{d}}+\mathrm{C}_{\mathrm{jD}}$ on the switching performance of the diode. Ideally a diode should stop conducting and it should switch off but this switch off is not instantaneous. If a forward biased diode is reverse biased it continues to conduct in the reverse direction for time ($\mathrm{t}_{\text {storage }}+\mathrm{t}_{\text {discharge }}$) before it switches off. The switching transient of a diode is shown in Figure 2.

The delay in switching is due to the time delay in removing the excess minority carriers and time taken in discharging the junction capacitance.

Time delay in removing the minority carriers is storage delay $=\mathrm{t}_{\text {storage }}$;
Time taken in discharging the junction capacitance shows up as a fall time $=\mathrm{t}_{\text {discharge }}$;
The Physics of removal of minority carriers and discharging of $\mathrm{C}_{\text {JD }}$ are shown in Figure 3.

A diode circuit which is initially forward biased. At time tl, by a Single Pole Double Throw Switch(SPDT), it is abruptly reverse biased. Note that diode does not abruptly switch off.

Figure 11.2

Figure 2.Switching Transient of a Diode.

As can be seen, excess minority carriers are gradually removed. In this time interval reverse diode current flows with as much ease as forward diode current flows

Figure 11.3

Figure 3. The process of minority carrier removal during (\mathbf{t} storage $+\mathbf{t}$ discharge)
Diode Junction Capacitance $(\mathrm{CjD})=\left(\varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{A} / \mathrm{d}\right)$ where $\mathrm{A}=$ cross sectional area of the diode and d=depletion width;

Physics of Diode Junction Capacitance:
The doping profile of $\mathrm{N}+$ and P - decide the voltage dependence of Junction Capacitance.

Figure 11.4

Figure 4. Doping profile of abrupt junction, linearly graded junction and hyper-abrupt junction.

$$
N_{A}(z)=B\left(\frac{z}{z_{0}}\right)^{m}
$$

Figure 11.5

$\mathrm{z}_{0}=$ position of metallurgical junction along the longitudinal axis.
Depletion Width in a hyper-abrupt junction:
$\mathrm{d} \sim \mathrm{d}_{\mathrm{p}}=\mathrm{K}\left(\mathrm{V}_{\mathrm{R}}\right)^{1 /(\mathrm{m}+2)}$

$$
\mathrm{C}_{\mathrm{iD}}=\frac{\varepsilon A}{d}=\frac{\varepsilon A}{K\left(V_{R}\right)^{\frac{1}{m+2}}}
$$

Figure 11.6

In an abrupt junction or one sided step junction, $\mathrm{m}=0$:

$$
\mathrm{C}_{\mathrm{iD}}=\frac{\varepsilon A}{K\left(V_{R}\right)^{\frac{1}{2}}}=
$$

Figure 11.7

varies as $1 /\left(\text { Reverse Bias Voltage }=\mathrm{V}_{\mathrm{R}}\right)^{1 / 2}$;
In linearly graded junction, $\mathrm{m}=1$:

$$
\mathrm{C}_{\mathrm{D}}=\frac{\varepsilon A}{K\left(V_{R}\right)^{\frac{1}{1+2}}}=\frac{\varepsilon A}{K\left(V_{R}\right)^{\frac{1}{3}}}=
$$

Figure 11.8
varies as $1 /\left(\text { Reverse Bias Voltage }=V_{R R}\right)^{1 / 3}$;
In hyper - abrupt junction, $\mathrm{m}=$ -

$$
\frac{3}{2}
$$

Figure 11.9

$$
\mathrm{C}_{\mathrm{D}}=\frac{\varepsilon A}{\frac{1}{K\left(V_{R}\right)^{-\left(\frac{3}{2}\right)+2}}}=\frac{\varepsilon A}{K\left(V_{R}\right)^{2}}=
$$

Figure 11.10
varies as (Reverse Bias Voltage $\left.=\mathrm{V}_{\mathrm{RR}}\right)^{2}$;
Hyper - abrupt Junction Diode is known as VARACTOR DIODE. It is used for Frequency Modulated Waves generation.

Arrangement for modulating a varactor diode capacitance Cj in accordance with a audio signal generated by a microphone.

This Cj can be used in RF oscillator to generate a FM carrier. The carrier frequency will be directly proportional to the reverse voltage Vj applied across Cj .

Figure 5. Arrangement for modulating Varactor diode junction capacitance by audio signal.

Figure 11.12

Figure 6. A Colpitts Oscillator with a varactor diode in its tank circuit.
The frequency of oscillation of Colpitts Oscillator is the Frequency of Resonance of the Tank Circuit. Radial Frequency of Oscillation $=\omega_{0}=$

$$
\frac{1}{\sqrt{\left(L_{1}+L_{2}\right)\left(C_{0}+C_{j}\right)}} ;
$$

Figure 11.13

Let $\mathrm{C}_{\mathrm{j}} / \mathrm{C}_{0} \gg 1$ then $\omega_{0}=$

Figure 11.14

Therefore $\omega_{0}=$

Figure 11.15

Thus we obtain frequency proportional to frequency. This generates FM carrier. Physics of Diffusion Capacitance:
It can be shown that diffusion capacitance C_{d} can be obtained by the following relation: For one sided step junction $\mathrm{N}+\mathrm{P}$,
$\mathrm{r}_{\mathrm{d}} \mathrm{C}_{\mathrm{d}}=\tau_{\mathrm{n}}$ where τ_{n} life-time of minority carriers in lightly doped side.
In equally doped diode,
$1 / \mathrm{r}_{\mathrm{d}} \mathrm{C}_{\mathrm{d}}=1 / \tau_{\mathrm{n}}+1 / \tau_{\mathrm{p}}$ where τ_{n} life-time of minority carriers on P-type doped side.
τ_{p} life-time of minority carriers in N-type doped side.
In BJT in forward active mode:
$\mathrm{r}_{\mathrm{e}} \mathrm{C}_{\mathrm{d}}=\tau_{\mathrm{t}}$
where $\mathrm{r}_{\mathrm{e}}=$ incremental resistance of EB diode;
$\tau_{\mathrm{t}}=$ transit time across the base.

Chapter 12

AnalogElectronics_Lecture4_PartA_dc,low\&h frequency model of CB BJT.'

AnalogElectronics_Lecture4_PartA_dc,low\&high frequency model of CB BJT.
The DC model of BJT.
PNP is a face to face diode.

Figure 1. PNP is a face to face diode configuration.

Figure 12.1

NPN is a back to back diode.

[^11]

Figure 2. NPN is a back to back diode

Figure 12.2

DC Biasing of CB BJT (Common Base BJT) In the figure base is grounded.

Figure 3. Two Battery biasing of CB BJT.

Figure 12.3

The DC model of CB BJT is called Eber Moll Model. It is a large signal model.

Figure 12.4

Figure 4. Eber Moll Model of PNP Transistor under no bias.
As can be seen from the Eber Moll Model:
$\alpha_{\mathrm{F}} \mathrm{I}_{\mathrm{E}}$ is the controlled current source controlled by the current injected from E to B where α_{F} is short circuit forward current transfer ratio.
$\alpha_{\mathrm{I}} \mathrm{I}_{\mathrm{C}}$ is the controlled current source controlled by the current injected from C to B where α_{I} is short circuit inverse current transfer ratio.

Because of asymmetrical doping density, [Heavy Emitter doping($\left.10^{19} / \mathrm{cc}\right)$, Intermediate Base doping ($10^{17} / \mathrm{cc}$) and light Collector doping ($10^{16} / \mathrm{cc}$)]
emitter to base injection efficiency is 99%
whereas collector to base injection efficiency is less than 10% therefore $\left(\alpha_{\mathrm{I}}=0.1\right) \ll\left(\alpha_{\mathrm{F}}=0.99\right)$.
Under Forward Active Mode:
EB diode is forward biased and CB diode is reversed biased. Hence current is being injected from emitter to base but no current is being injected from collector to base. Therefore EB diode is shown and CB diode has been omitted but there is reverse saturation current/reverse leakage current $\mathrm{I}_{\mathrm{CBO}}$ flowing through reverse biased CB junction. In fact there are two currents flowing across the CB junction. One is the leakage current $\mathrm{I}_{\mathrm{CBO}}$ and the other is the useful transistor current $\alpha_{\mathrm{F}} \mathrm{I}_{\mathrm{E}}$ due to transistor action at EB junction.

Figure 5. Eber-Moll Model under forward B active mode.

Figure 12.5

Figure 5. Eber Moll Model under Forward Active Mode.
LOW FREQUENCY MODEL OF CB BJT.
A capacitively coupled CB Amplifier is shown in Figure 6. It amplifies sinusoidal signal but blocks dc signal.

Figure 6. RC-coupled CB BJT Anplifier with two battery biasing.

Figure 12.6

In Figure 6 we have capacitively coupled source and capacitively coupled load in CB BJT.
In Figure 6 we show a CB BJT Amplifier. Because of near unilaterality of CB BJT (h_{rb} negligible), it is very suitable for RF tuned amplifiers. RF tuned amplifiers have a serious problem of parasitic oscillation because of output - input interaction and this interaction is due to h_{r} (reverse transmission factor).

CE BJT has $\mathrm{h}_{\mathrm{re}}=10^{-4}$ hence CE BJT Amplifier is very prone to parasitic oscillations. But CB BJT has $\mathrm{h}_{\mathrm{rb}}=10^{-5}$ hence CB BJT is the configuration of choice for implementing RF tuned amplifiers.

Also capacitive coupling is used because once a Quiescent Point or DC operating point is set up we do not want it to be disturbed by load or source. That is load and source must be a.c. coupled but d.c. decoupled. Capacitive coupling serves this end.

Capacitively coupled Amplifiers (CE, CB \& CC) are always ac amplifiers. But inverting amplifiers made of Op Amp with dual power supply is a direct coupled amplifier. There are no coupling capacitors. Hence they are dc amplifiers. DC amplifiers can amplify from dc to high frequencies.

Figure 7.DC Model of CB BJT.

Figure 12.7

In Figure 7 we have the instantaneous model of CB Amplifier with signal coupled to it.
Therefore i_{E} (instantaneous emitter current) $=\mathrm{I}_{\mathrm{E}}$ (emitter quiescent current) $+\mathrm{i}_{\mathrm{e}}$ (emitter incremental current);

Similarly we have $\mathrm{i}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}}+\mathrm{i}_{\mathrm{c}}$ and $\mathrm{i}_{\mathrm{B}}=\mathrm{I}_{\mathrm{B}}+\mathrm{i}_{\mathrm{b}}$;
Also $\mathrm{I}_{\mathrm{C}}=\beta_{\mathrm{F}} \times \mathrm{I}_{\mathrm{B}}$ and $\mathrm{i}_{\mathrm{c}}=\beta_{\mathrm{f}} \times \mathrm{i}_{\mathrm{b}}$;
Here $\beta_{\mathrm{F}}=$ dc short circuit current gain and $\beta_{\mathrm{f}}=$ incremental short circuit current gain.
In BJT : $\beta_{\mathrm{F}}=\beta_{\mathrm{f}}$;
The instantaneous model also contains $\mathrm{r}_{\mathrm{x}}=\mathrm{r}_{\mathrm{bb}}$, $=$ base spreading resistance.
This is an ohmic resistance offered by the thin layer of P type silicon sand-witched between Emitter layer and Collector layer as shown in the cross sectional view of IC vertical npn BJT (Figure 8)

Figure 8 Cross-sectional view of Vertical NPN IC BJT.

Figure 12.8

Figure 8. Cross sectional View of Integrated Circuit Vertical NPN BJT.

T MODEL OF BJT

Figure 12.9

Figure 9. Incremental Model of CB BJT Amplifier. (the controlled current source is $\alpha_{\mathrm{f}} \mathrm{i}_{\mathrm{e}}$).
This incremental model is known as the T-model of CB BJT.
As in incremental diode circuit, here also we short the DC Voltage Sources $\left(\mathrm{V}_{\mathrm{CC}}\right.$ and $\left.\mathrm{V}_{\mathrm{EE}}\right)$, we open circuit DC Current sources such as $\left(\mathrm{I}_{\mathrm{CBO}}+\alpha_{\mathrm{F}} \mathrm{I}_{\mathrm{E}}\right)$ but we retain the incremental current source $\alpha_{\mathrm{f}} \mathrm{i}_{\mathrm{e}}$.

The coupling capacitances are shorted.
EB Diode is replaced by incremental resistance $\mathrm{r}_{\mathrm{e}}=\left(\mathrm{V}_{\mathrm{T}} / \mathrm{I}_{\mathrm{EQ}}\right)$.
The ohmic resistances are retained as they offer resistance to DC as well as incremental component of the current.

HIGH FREQUENCY MODEL OF COMMON BASE BJT
Under high frequency condition the Junction Capacitances associated with the depletion layers EB and BC and Diffusion Capacitance associated with minority carriers stored in base region start effecting the performance of the BJT. These parasitic capacitances effect the Frequency Response as well as the short circuit current gain.

Figure 10. High Frequency T-model of CB BJT.

Figure 12.10

Figure 10. Incremental T-Model of the CB Amplifier Circuit at high frequency. (the controlled current source is $\alpha_{f} \mathrm{i}_{\mathrm{e}}$)

At high frequency diffusion and junction capacitances come into play.

$$
C_{e}=C_{j E B}+C_{D}
$$

Figure 12.11

$$
C_{c}=C_{j B C}=\mathrm{C}_{\mathrm{BO}}
$$

Figure 12.12
$=\mathrm{C}_{\mathrm{BO}}$ This is generally 5 pF .

$$
\left(C_{D}\right)\left(r_{e}\right)=\tau_{t}
$$

Figure 12.13
$\mathrm{C}_{\mathrm{D}}=$ more than 70 pF .
Where
τ_{t}

Figure 12.14
is the transit time across the base.

$$
C_{j E B}=\frac{\in_{o} \epsilon_{r} A_{1}}{d_{E B}}
$$

Figure 12.15

$$
C_{j B C}=\frac{\epsilon_{o} \in_{r} A_{2}}{d_{B C}}
$$

Figure 12.16

$$
d_{E B}
$$

Figure 12.17
$=$ Depletion layer width at EB Junction

$$
d_{B C}
$$

Figure 12.18
$=$ Depletion layer width at BC Junction

$$
A_{1}
$$

Figure 12.19
$=$ Cross sectional area of EB junction

$$
A_{2}
$$

Figure 12.20
$=$ Cross sectional area of BC junction

$$
i_{e}=i_{e}^{\prime}+i_{e}^{\prime \prime}
$$

Figure 12.21

Here

Figure 12.22
is the useful transistor current which controls the output current sources ($\alpha_{\mathrm{fo}} \mathrm{i}_{\mathrm{e}}{ }^{\prime}$) and

$$
i_{e}^{\prime \prime}
$$

Figure 12.23
is the parasitic current.

$$
i_{e}^{\prime \prime}
$$

Figure 12.24
has no role to play in the transistor action

$$
i_{s}^{\prime \prime} \text { does not contribute to transistor action. }
$$

Figure 12.25
$\alpha_{\mathrm{fo}}=$ short circuit incremental forward current transfer ratioat low frequency.

$$
v_{o}=\left(\alpha_{f o} i_{e}^{\prime} R_{L}\right)
$$

Figure 12.26

This is true only when we consider $r_{c}=$ infinity and C_{C} to be open.
This means this model is valid only till

ω_{T}

Figure 12.27
/3. Because only till

ω_{T}

Figure 12.28
$/ 3$ the above assumption is valid. Above

$$
\omega_{T}
$$

Figure 12.29
$/ 3$ this model gives incorrect result.

$$
i_{e}^{\prime}=\frac{i_{e}}{\left(r_{e}+\frac{1}{j \omega C_{e}}\right)} \times \frac{1}{j \omega C_{e}}
$$

Figure 12.30

$$
i_{e}^{\prime}=\frac{i_{e}}{\left(1+j \omega r_{e} C_{e}\right)}
$$

Figure 12.31

$$
v_{o}=\frac{\alpha_{f o} i_{e}}{\left(1+j \omega r_{e} C_{e}\right)} R_{L}
$$

Figure 12.32

$$
i_{c}=\frac{\alpha_{f o} i_{e}}{1+j\left(\frac{\omega}{\omega_{\alpha}}\right)}
$$

Figure 12.33

$$
\alpha_{f}=\frac{\alpha_{f o}}{1+j\left(\frac{\omega}{\omega_{\alpha}}\right)}
$$

Figure 12.34

Here $\omega_{\alpha}=$

Figure 12.35
alpha cut-off frequency

$$
\omega_{\alpha}=\frac{1}{C_{e} r_{e}}
$$

Figure 12.36
\qquad
$\overline{\omega_{\alpha} \sim \frac{1}{\tau_{t}}=\omega_{T}}$

Figure 12.37

Here

$$
\omega_{T}
$$

Figure 12.38

Figure 12.39
is the transit frequency and

τ_{t}

Figure 12.40

Figure 12.41
is the transit time.
The Bode Plot of the above expression of

$$
\alpha_{f}
$$

Figure 12.42
is given in Figure 12.

Chapter 13

AnalogElectronics_Lecture4_PartB low and high frequency model of CE BJT.'

AnalogElectronics_Lecture4_PartB_low and high frequency model of CE BJT. INCREMENTAL MODEL OF CE BJT FROM T MODEL OF CB BJT

Figure 11a. The T-model of CB BJT.

Figure 13.1

Figure 11a. Low Frequency Incremental T Model of CB BJT.
Let us re-orient this as CE configuration.
${ }^{1}$ This content is available online at http://cnx.org/content/m31035/1.1/.

Figure 11b. Reoriented T-model of CB BJT.

Figure 13.2

Figure 11b. The reoriented T Model to represent CE BJT.
It should be noticed that in T-Model under normal orientation has controlled current ($\alpha_{\mathrm{f}} \mathrm{i}_{\mathrm{e}}$) coming out of collector node since base current is coming out of base node. But in reoriented T Model controlled current $\left(\alpha_{\mathrm{f}} \mathrm{i}_{\mathrm{e}}\right)$ coming into collector node since base current is coming into base node.

Input Mesh Equation:

$$
v_{i n}=i_{b} \times r_{x}+\left(i_{b}\left(1+\beta_{f o}\right) r_{e}\right)
$$

Figure 13.3

$$
v_{i n}=i_{b}\left[r_{x}+\left(1+\beta_{f o}\right) r_{e}\right]
$$

Figure 13.4

$$
\left(1+\beta_{f o}\right) r_{e}=r_{\pi}=\frac{\beta_{o}}{g_{m}}
$$

Figure 13.5

Where $\mathrm{g}_{\mathrm{m}}=$ trans conductance $=\mathrm{I}_{\mathrm{C}} / \mathrm{V}_{\mathrm{T}}$ whereas $\mathrm{r}_{\mathrm{e}}=\mathrm{V}_{\mathrm{T}} / \mathrm{I}_{\mathrm{E}}$ and $\mathrm{I}_{\mathrm{C}}=\alpha_{\mathrm{F}} \mathrm{I}_{\mathrm{E}}$

$$
v_{i n}=i_{b}\left[r_{x}+r_{\pi}\right]
$$

Figure 13.6

The output current is $=$

$$
i_{C}=\alpha_{f o} i_{e}=\beta_{f o} i_{b}
$$

Figure 13.7

Here

$$
\beta_{f o}=\frac{\alpha_{f o}}{1-\alpha_{f o}} \text { or } \alpha_{f o}=\frac{\beta_{f o}}{1+\beta_{f o}}
$$

Figure 13.8

Figure 12. Bode Plot of alpha and beta.

Figure 13.9

Figure 12. Bode Plot of beta and alpha and location of ω_{β} and ω_{α}.
Beta cutoff frequency $=\omega_{\beta}$ and alpha cutoff frequency $=\omega_{\alpha}$.
Cut-off frequency $=-3 \mathrm{~dB}$ frequency
$=$ this is the frequency where parameter falls to 0.707 of its flat band value or midband value
= corner frequency
$=$ half power frequency

Figure 13. Low Frequency Hybrid-pi Model of CE BJT.

Figure 13.10

Figure 13. Low Frequency Hybrid- π Model of CE BJT.

$$
r_{o}=\left(\frac{r_{c}}{1+\beta_{o}}\right)
$$

Figure 13.11

This is due to EARLY EFFECT or due to Base Width Modulation. A parameter Early Voltage V_{A} is used for determining the output impedance of the hybrid $-\pi$ Model. This output impedance is $1 / h_{\text {oe }}$. The definition of Early Voltage V_{A} is given in Figure 14.

$$
r_{0}=\frac{1}{\text { slope }}=\frac{1}{\frac{I_{C Q}}{V_{A}+V_{C E Q}}}
$$

$$
r_{o}=\frac{V_{A}+V_{C E Q}}{I_{C Q}}
$$

Figure 13.12

Figure 14 Illustration of Early Voltage.

Figure 13.13

Figure 14. The definition of Early Voltage for a CE BJT.

Fig15a. T-Model of CB BJT.

Figure 13.14

Figure 15b. Hybrid-pi Model of CE BJT.

Figure 13.15

T-model of CB BJT	Hybrid-pi Model of CE BJT
Unilateral model	Non Unilateral model
$\frac{r_{x}}{r_{c}}$ $\mathrm{~h}_{\mathrm{rb}}=\frac{100}{10 M}$$=10^{-5}$	$h_{r \varepsilon}=\frac{r_{\pi}}{r_{\mu}}=\frac{10^{3}}{10^{7}}=10^{-4}$

Table 13.1
In CB BJT,if we consider base spreading resistance to be zero then
$h_{i b}=r_{e} \quad h_{r b}=0 \quad h_{f b}=-\alpha_{f o} \quad h_{o b}=\frac{1}{r_{c}}$

$$
\frac{v_{o}}{v_{i n}}=\frac{\alpha_{f o} i_{e} R_{L}}{i_{e} r_{e}}=\alpha_{f o} \frac{R_{L}}{r_{e}}=A_{V o}
$$

$$
R_{i n}=r_{e}
$$

Figure 13.16

$$
R_{o u t}=r_{c}=\frac{1}{h_{o b}}=10 M
$$

Figure 13.17

For CE BJT if we consider r_{μ} to be infinity then:

$$
h_{i e}=r_{x}+r_{\pi}, h_{r e}=0, h_{f e}=+\beta_{f o},
$$

Figure 13.18

$$
\begin{gathered}
h_{o e}=\frac{1}{r_{o}} \\
r_{o}=\frac{V_{A}+V_{C E Q}}{I_{C Q}} \\
v_{o}=-\left(\beta_{f o} i_{b}\right)\left(R_{c}| | r_{o}\right)
\end{gathered}
$$

Figure 13.19
$\frac{v_{o}}{v_{i n}}=\frac{\left(-\beta_{f o}\right)\left(R_{c}| | r_{o}\right)}{r_{x}+r_{\pi}}$

$$
A_{v o}=-g_{m}\left(R_{c}| | r_{o}\right)
$$

$$
R_{\text {in }}=r_{x}+r_{\pi}
$$

$$
R_{\text {out }}=r_{o}
$$

Figure 13.20

Incremental model at high frequency

Figure 16. High Frequency T - Model of CB BJT.

Figure 13.21

Figure 16. High frequency T-Model of CB BJT.

$$
\alpha_{f}=\frac{\alpha_{f o}}{1+i\left(\frac{\omega}{\omega_{\alpha}}\right)}
$$

$$
\omega_{\alpha} \text { is the } \alpha \text { cutoff frequency }
$$

$$
\omega_{\alpha} \sim \omega_{T}=\frac{1}{\tau_{t}}
$$

Figure 13.22

$$
\begin{gathered}
C_{e}=C_{j E}+C_{D} \\
\omega_{\alpha}=\frac{1}{r_{e}\left(C_{J E}+C_{D}\right)} \\
C_{j E} \ll C_{D} \\
\therefore \omega_{\alpha}=\frac{1}{r_{e} C_{D}}
\end{gathered}
$$

Figure 13.23
$\omega_{\alpha}=\frac{1}{\tau_{t}}=\omega_{\mathrm{T}}($ Transit Frequency $)$
Where τ_{t} is the transit time.

Figure 13.24

Here τ_{t} is the transit time taken by the minority carriers to cross the base width. The mechanism of transit is both diffusion and drift.

Now let us consider CE BJT at high frequency:
Here β_{f} (short circuit current gain in CE BJT) is arrived at in exactly the same manner as α_{f} was arrived at in CB BJT.

Figure 17. High Frequency Hybrid-pi Model

Figure 13.25

Figure 17. High Frequency Hybrid- π Model of CE BJT.

$$
\beta_{f}=\text { Short circuit current gain }
$$

$$
\beta_{f}=\frac{\beta_{f o}}{1+i \frac{\omega}{\omega_{\beta}}}
$$

Where $\omega_{\beta}=\beta$ cutoff frequency $=\frac{1}{r_{\pi}\left(C_{\pi}+C_{\mu}\right)}$

Figure 13.26

$$
=\frac{1}{\frac{\beta}{g_{o}} c_{\pi}}=\omega_{\alpha} /\left(1+\beta_{0}\right)
$$

Here we neglect C_{μ} assuming $C_{\pi} \gg C_{\mu}$.

Figure 13.27

Chapter 14

AE_Lecture4_PartD1_Time_Domain_Respo

Analog Electronics_Lecture4_PartD
Experimental Methods of measuring the Frequency Band-Width of an Amplifier.
There are two methods of determining the frequency Band Width (BW) of any amplifier:
a. Frequency Domain Response method and
b. Time Domain Response Method.

Frequency Domain Response

Figure 1. Set up for measuring the steady state sinusoidal frequency response of an amplifier.

Figure 14.1

Figure 1. Block Diagram of an Electronic System(Amplifier) connected to the source at the Input and to the Load at the Output.

[^12]$$
A_{V}(j \omega)=\frac{V_{\text {out }}(j \omega)}{V_{\text {in }}(j \omega)}
$$

Figure 14.2

Plot of

$$
\left|A_{V}(j \omega)\right|
$$

Figure 14.3
vs Frequency - magnitude frequency response ;
Plot of

Figure 14.4
vs frequency - phase angle frequency response.
Both together constitute the Frequency domain response.

Time Domain Response

When we apply square wave and measure the rise time $\left(\mathrm{t}_{\mathrm{r}}\right)$ at high frequency and measure the sag (10% sag frequency) at low frequency then we say that we are looking at time domain response.

1. Rise Time Method of determining the upper -3 dB frequency.

Figure 2. Set up for studying the Time Domain Respose of an Amplifier.

Figure 14.5

Figure 2. Square Wave Input into an amplifier gives a response from which Time Domain studies can be done.

Figure 3. A square wave passing through a Low Pass Filter experiences the rounding off of the leading and lagging edges because LPF suppresses high frequency components and high frequency components constitute the edges and low frequency components constiotute the top and bottom of the square wave.

Figure 14.6

Figure 3. Square Wave Response of an Amplifier at high frequencies. Because of upper -3dB frequency the leading and lagging edges get rounded off. At the leading edge rise time and at lagging edge fall time is introduced.

$$
\begin{gathered}
t_{r_{o}}=\frac{t_{r}+t_{f}}{2} \\
f_{h} t_{r_{o}}=0.34 \\
f_{h}=\frac{0.34}{t_{r_{o}}}=\text { The upper }(-3 d B) \text { frequency }
\end{gathered}
$$

Figure 14.7

NOTE: At the leading edge we measure the rise time and at the lagging edge we measure the fall time.

1. DETERMINATION OF LOWER -3dB FREQUENCY(f L) BY TIME DOMAIN METHOD

Figure 4. Set up for measuring the Time Domain Response at low pulse repetition frequency. If the amplifier has a High Pass Filter characteristics then sag will appear at the top and bottom of the square wave response.

Figure 14.8

Figure 4. Square Wave Response of the Amplifier at low frequencies gives a sag at the top and bottom as shown below.

Figure 5. A square wave passing through HPF will lose its DC component and will experience a sag at the top and bottom of the square wave. But this sag will be evident only at low square wave frequencies.

Figure 14.9

Figure 5. Square Wave Response of the Amplifier at low frequencies. \% Sag $=(\Delta \mathrm{V} / \mathrm{V} 0$ $) \times 100$ where $V 0$ is peak to peak amplitude and ΔV is the tilt at the top or at the bottom. $(\Delta V / V 0) \times 100=\%$ sag.
The p.r.f is adjusted to f^{*} to obtain 10% ag then $\mathbf{f} \mathbf{L}=\left(0.1 f^{*} / \pi\right)$.
Where $\mathbf{f} \mathbf{L}=$ lower -3dB frequency.
High frequency suppression leads to the rounding off the leading and the lagging edges of the square wave.

Low frequency suppression leads to the sag of the top and bottom of the square wave.

Chapter 15

AE_Lecture4_PartD2_Line Spectrum of a Pulse Train. ${ }^{\text {' }}$

Analog Electronics_Lecture4_PartD
Experimental Methods of measuring
the Frequency Band-Width of an Amplifier.

1. FREQUENCY SPECTRUM OF A PULSE TRAIN.

Let us look at the spectrum of a pulse train

Figure 6. A pulse train with an offset of (Vo. $\boldsymbol{\tau}$)/T, pulse duration τ, pulse repetition period T, pulse repetition frequency ($1 / T$) and duty ratio or duty cycle equal to τ / T. In a square wave duty ratio is 50%.

Figure 15.1

[^13]Figure 6. A pulse train, offseted with respect to the time axis.
In the above Figure we represent a pulse train of Pulse Repetition Frequency $=1 / \mathrm{T}$
and duty cycle of $(\tau / \mathrm{T}) \times 100$ percent and pulse duration of τ secs and pulse height of Vo.
Let us find out the FOURIER SERIES EXPANSION of the pulse train shown in the above figures.
FOURIER SERIES METHOD states that :
Any time periodic function contains a D.C. component, contains a fundamental frequency $f_{o}=(1 / T)$ and its harmonics.

$$
\begin{aligned}
& \tilde{V}\left(e^{j \omega}\right)=\text { Series Summation } \\
& \qquad=a_{o}+\sum_{n=1}^{N} a_{n} \cos n \omega_{o} t+\sum_{m=1}^{M} b_{m} \sin m \omega_{o} t \\
& \qquad a_{o}=\text { d.c.component } \\
& a_{n}=\text { Amplitude of the } n \text {th cosine harmonic } \\
& b_{m}=\text { Amplitude of the } m \text { th sine harmonic }
\end{aligned}
$$

This is the single sided frequency spectrum of the periodic function $=\tilde{V}(t)$

Engineers and Scientists all over the world use the double-sided spectrum.

$$
\cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2}
$$

Figure 15.2

In terms of phasors(a rotating vector)

Figure 7. Here we show two rotating vectors also known as phasors. Anti-clockwise phasor is making positive phase angle with respect to the x axis and Clockwise phasor is making negative angle. All phasors start from X-axis. By phasor diagram it becomes simple to analyze R, L, C circuit with steady state sinusoidal input.

Figure 15.3

Figure 7. Two oppositely rotating vectors are shown. These rotating vectors are known as Phasors.
$e^{j \omega t}$ is a positively rotating phasor and $e^{-j \omega t}$ is a negatively rotating phasor Periodic function has a very simple series expansion in terms of phasors.

$$
\tilde{v}(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{j n \omega_{o} t}
$$

Here $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{-\mathrm{n}}$ are magnitudes of the nth Harmonic oppositely rotating phasors.
This gives the double sided spectrum.

Amplitude Of the Spectral component

Figure 8. Double-sided frequency spectrum of a pulse train of duration τ and $T / \tau=5 ; \quad 1 / T=f 0 ; \quad 1 / \tau=5 / T=5 f 0$. Note that cross over occurs at the reciprocal of duration and multiples of reciprocal of duration i.e. at $1 / \tau$, $2 / \tau .3 / \tau$. Also note that if pulse train becomes an implse train then $\tau=0$ and cross over will occur at infinity and Sinc Function envelope will become a flat envelope. Hence the frequency spectrum of impulse train is an uniform spectrum with equal height spectral components.

Figure 15.5

Figure 8. Frequency Spectrum of a pulse train.
Here we assume that $\frac{T}{\tau}=5 ; \quad \frac{1}{T}=f_{o} ; \quad \frac{1}{\tau}=\frac{5}{T}=5 f_{o}$
Envelope of the tip of the spectral component $=\frac{\sin \theta}{\theta}=\operatorname{sinc} \theta$

$$
\theta=\left(2 \pi\left(\frac{\tau}{T}\right) n\right)
$$

Figure 15.6

A signal has a frequency spectrum. For a periodic signal we use FOURIER SERIES techniques. For a non-periodic signal we use FOURIER-TRANSFORM techniques.

If a signal passes through an infinite Band Width system we are able to maintain 100% FIDELITY in reproducing the signal on the output of the system. This is why a wide-band musical system is called a Hi-Fi System. Here Hi-Fi is HIGH FIDELITY. But if we pass a complex signal through a finite B.W. System inevitably there will be suppression of frequency on the high frequency end of the spectrum as well as on the low frequency end of the spectrum .This leads to FREQUENCY DISTORTION as well as PHASE DISTORTION.

Chapter 16

AE_Lecture4_PartD3_Time Domain Response of Low Pass Filter.'

Analog Electronics_Lecture4_PartD2
Experimental Methods of measuring the Frequency Band-Width of an Amplifier.
1. Study of R-C Low Pass Filter.

${ }^{1}$ This content is available online at http://cnx.org/content/m31504/1.1/.

$\tau=\mathbf{R C}$

$$
1 / \tau=\omega_{h}=2 \pi f_{h}
$$

Figure 9. Square wave response and step response of RC-Low Pass Filter.

Figure 16.1

Figure 9. The circuit diagram of a R-C Low Pass Filter.
In Figure 9, the square wave response as well as the step response of R-C Low Pass Filter is shown.
The Step Response of LPF $=\mathrm{v}_{\mathrm{c}}(\mathrm{t})=$ charging of the capacitor $=[1-\operatorname{Exp}(-\mathrm{t} / \tau)]$;
The final voltage across the capacitor is 1 V since unit step voltage $\mathrm{u}(\mathrm{t})$ is the input.
10% of $1 \mathrm{~V}=0.1=\left[1-\operatorname{Exp}\left(-\mathrm{t}_{1} / \tau\right)\right] ; \mathrm{A}$
90% of $1 \mathrm{~V}=0.9=\left[1-\operatorname{Exp}\left(-\mathrm{t}_{2} / \tau\right)\right] ; \mathrm{B}$
From $\operatorname{Eq}(\mathrm{A})$ and (B) we get:
$\mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{t}_{\mathrm{r}}=2.2 \tau=2.2 / \omega_{\mathrm{h}}$
Therefore $\mathbf{t r} \times \mathbf{f h}=\mathbf{0 . 3 5}$

Figure 10. Square wave response of LPF at different prf. Note that at very high prf, LPF behaves like an integrator. Square wave is lost. Only the DC component is retained.

Figure 16.2

Figure 10. Square Wave Response(also known as Time Domain Response) of R-C LPF.
By inspection we find that
when $\operatorname{prf} \ll f_{H}$ then we have faithful reproduction of the square wave;
when $\operatorname{prf} \sim f_{H}$ then we have rise time and fall time effect at the leading and lagging edges respectively; when prf $\gg f_{H}$ then we get the average value of the square wave. In this case we get about $1 V$.
Hence at frequencies much higher than the cutoff frequency of LPF, the filter behaves like an integrator.
The positive flat top becomes a positive sloped ramp and negative flat top becomes a negative sloped ramp. Above 30 Hz our RETINA acts as an integrator.
4.1 The Frequency Response of a Low Pass R-C Filter

Figure 11. Bode plot of the steady state sinusoidal frequency response magnitude. Note that skirt is $\mathbf{- 2 0 d B} /$ decade. Since it has one cut-off or one corner frequency it is called First-order system. First order system will have a skirt of -20 dB per decade. Nth order system will have \mathbf{N} corner frequencies and $-20 \mathrm{NdB} /$ decade skirt.

Figure 16.3

Figure 11. Magnitude of the transfer function-Frequency Response of a LPF.

$$
V_{i n}(j \omega)=I(j \omega)\left(R+\frac{1}{j \omega C}\right)
$$

$$
V_{\text {out }}(j \omega)=I(j \omega)\left(\frac{1}{j \omega C}\right)
$$

Figure 16.5

$$
\frac{V_{\text {out }}(j \omega)}{V_{\text {in }}(j \omega)}=H(j \omega)=\frac{1}{\left(1+j \frac{\omega}{\omega_{h}}\right)}
$$

Figure 16.6
(1)

$$
\omega_{h}=\frac{1}{R C}
$$

Figure 16.7

Equation (1) has a zero at infinity and a pole at

$$
\omega_{h}
$$

Figure 16.8
. Hence it has -20dB asymptote at

$$
\omega_{h}
$$

Figure 16.9
. This gives 100% transmission below

ω_{h}

Figure 16.10
and suppression of frequencies higher than

$$
\omega_{h}
$$

Figure 16.11
at the rate of 20 dB per decade as we move up the frequency scale.
The Time-Domain Response at high frequencies and Frequency Response of a LPF are related to each other through the relation:

$$
t_{r} f_{h}=0.35
$$

Figure 16.12

Figure 12. In a typical measurement set up the final rise time measured is the sum total effect of the rise times inherently present in different subsystems such as signal source and Oscilloscope. While trying to measure the rise time of an Amplifier, the rise times effect of the signal source and oscilloscope will have to be isolated to obtain the true rise time of the amplifier.

Figure 16.13

Figure 12. The estimation of the overall rise time as observed in the Oscilloscope. The overall rise time will be influenced by the rise time of the oscilloscope as well as that of the source.

$$
\begin{gathered}
\left(t_{r}\right)_{\text {overall }}= \\
\sqrt{\left(t_{r_{1}}\right)^{2}+\left(t_{r_{2}}\right)^{2}+\left(t_{r_{3}}\right)^{2}} \\
f_{h_{2}} t_{r_{2}}=0.35
\end{gathered}
$$

Figure 16.14

Figure 13. We define rise time as time taken by the leading edge to rise from 10% of Vo to 90% of Vo. Similarly fall time is defined.

Figure 16.15

Figure 13. Definition of the rise time.

Chapter 17

AE_Lecture4_PartD4_Time Domain Response of High Pass Filter. ${ }^{1}$

1. The study of a C-R High Pass Filter.

Figure 14. Square wave response and step response of a high pass filter. Note at the output d.c. component is completely blocked.

Figure 17.1

Figure 14. The circuit diagram of C-R high Pass Filter and square wave response.

[^14]

Figure 17.2

Figure 15. The Square Wave Response or Time Domain Response of HPF.
In Figure 14, the square wave response as well as the step response of C-R High Pass Filter is shown.
The slope of the tangent drawn to the exponentially decaying curve at $t=0$ is:
$\mathrm{d}\left(\mathrm{v}_{\mathrm{R}}\right) /\left.\mathrm{dt}\right|_{\mathrm{t}=0}=(1 \mathrm{~V} / \tau \mathrm{sec}) ;$
Two triangles shown are similar hence:
$\Delta \mathrm{V} /(\mathrm{T} / 2)=(1 \mathrm{~V} / \tau \sec)$;
Or $\Delta \mathrm{V} / 1 \mathrm{~V}=$ fractional sag $=\mathrm{T} /(2 \tau)$;
We have to adjust the frequency of the periodic square wave to achieve $10 \% \mathrm{sag}$;
Say the frequency of $10 \% \mathrm{sag}$ is $\mathrm{f}^{*}=1 / \mathrm{T}$ where T is the period of repetition.
Therefore $\mathrm{T}=(2 \tau)=0.1=\left(2 \pi \mathrm{f}_{\mathrm{L}}\right) /\left(2 \mathrm{f}^{*}\right)$; since $1 / \tau=\omega_{\mathrm{L}}=2 \pi \mathrm{f}_{\mathrm{L}}$.
Therefore $\mathbf{f L}=\left(\mathbf{0 . 1} \mathbf{f}^{*}\right) / \pi$
In figure 15 , the square wave response is shown.
By inspection we find that
when $\operatorname{prf} \gg f_{L}$ then we have faithful reproduction of the square wave except that the dc component is
blocked by the series capacitance;
when $\operatorname{prf} \sim f_{L}$ then we have sag effect at the top and bottom of the square wave;
when $\operatorname{prf} \ll \mathrm{f}_{\mathrm{L}}$ then we get the differentiation of the leading and lagging edge. Since the leading edge and lagging edge are positive step and negative step, we get positive impulse and negative impulse at the instants where step voltages had occurred.

Hence at frequencies much lower than the cutoff frequency of HPF, the filter behaves like a differentiator.
5.1 Frequency Response of High Pass Filter.

$$
\begin{gathered}
V_{\text {in }}(j \omega)=I(j \omega)\left(R+\frac{1}{j \omega C}\right) \\
V_{\text {out }}(j \omega)=I(j \omega) R \\
\frac{V_{\text {out }}(j \omega)}{V_{\text {in }}(j \omega)}=H(j \omega)=\frac{R}{\left(R+\frac{1}{j \omega C}\right)}
\end{gathered}
$$

$$
\text { Let } \omega_{L}=\frac{1}{R C}
$$

$$
H(j \omega)=\frac{j \frac{\omega}{\omega_{L}}}{\left(1+j \frac{\omega}{\omega_{L}}\right)}
$$

Figure 17.3
(2)

Equation (2) has zero at zero frequency and a pole at

$$
\omega_{L}
$$

Figure 17.4
. The zero introduces an +20 dB asymptote at zero frequency and an -20 dB asymptote at

$$
\omega_{L}
$$

Figure 17.5
. The net result is a High Pass Filter where frequencies higher than

$$
\omega_{L}
$$

Figure 17.6
have 100% transmission and frequencies lower than

$$
\omega_{L}
$$

Figure 17.7
are progressively suppressed at 20 dB per decade as we move down the frequency scale as shown in the frequency response curve..

Figure 16. Bode Plot of the magnitude of the steady state sinusoidal frequency response of a high pass filter.

Figure 17.8

Figure 16. Magnitude of Transfer Function vs Frequency response of HPF.

Chapter 18

AnalogElectronics_Lecture4_Supplement_BO]

AnalogElectronics_Lecture4_Supplement_BODE_PLOT

Bode Plot of short circuit forward current transfer ratio of CB BJT $\left(\alpha_{\mathrm{f}}\right)$.
As we have already seen in the T Model of CB BJT, the short circuit forward current transfer ratio is given by the expression:

$$
\alpha_{f}=\frac{\alpha_{f o}}{1+j\left(\frac{\omega}{\omega_{\alpha}}\right)}
$$

Figure 18.1

Magnitude-Frequency response of this parameter is :-

[^15]

Figure 1. Magnitude-frequency Plot alphaf.

Figure 18.2

Absolute value of

$$
\alpha_{f} \text { is } \frac{\left|\alpha_{f o}\right|}{\left|1+j\left(\frac{\omega}{\omega_{\alpha}}\right)\right|}
$$

Figure 18.3

$$
\left|\alpha_{f}\right|=\frac{\left|\alpha_{f o}\right|}{\sqrt{1+\left(\frac{\omega}{\omega_{\alpha}}\right)^{2}}}
$$

Figure 18.4

Other way is to plot the \log value(decibel value) dB value of

$$
\alpha_{f}=20 \log \left(\frac{\alpha_{f}}{\alpha_{f o}}\right)
$$

Figure 18.5

If

$$
\alpha_{f}=\alpha_{f o}
$$

Figure 18.6
then $\mathrm{dB}=0 \mathrm{~dB}$,
In direct calculation:

$$
\omega \ll \omega_{\alpha} ; \alpha_{f}=\alpha_{f o}
$$

Figure 18.7

$$
\omega \sim \omega_{\alpha} ;\left|\alpha_{f}\right|=\frac{\left|\alpha_{f o}\right|}{\sqrt{1+\left(\frac{\omega}{\omega_{\alpha}}\right)^{2}}}
$$

Figure 18.8

$$
\text { At } \omega=\omega_{\alpha ;}\left|\alpha_{f}\right|=\frac{\alpha_{f o}}{2} ; \quad \angle \alpha_{f}=\angle-45^{\circ}
$$

Figure 18.9

$$
\omega_{\alpha}=\text { Alpha cutoff frequency }
$$

Figure 18.10
$=-3 \mathrm{~dB}$ frequency $=$

$$
0.707 \text { frequency }
$$

Figure 18.11
$=$ corner frequency

Bode Plot OF α_{f}

At $\omega \ll \omega_{\alpha}, \alpha_{f}($ in $d B)=0 d B$
At $\omega=\omega_{\alpha}, \alpha_{f}($ in $d B)=-3 d B$

Figure 18.12

Let $\mathrm{f}_{\alpha}=1 \mathrm{GHz}$ then the circular frequency is:

$$
\begin{aligned}
\omega_{\alpha} & =2 \pi\left(1 \times 10^{9}\right) \mathrm{Hz} \\
\omega_{\alpha} & =2 \pi \times 10^{9} \frac{\mathrm{rad}}{\mathrm{sec}}
\end{aligned}
$$

$$
\alpha_{f}=\frac{\alpha_{f o}}{1+j\left(\frac{\omega}{\omega_{\alpha}}\right)}
$$

Figure 18.13

$$
\angle \alpha_{f}=\frac{0^{\circ}}{\tan ^{-1}\left(\frac{\omega}{\omega_{\alpha}}\right)}
$$

Figure 18.14

At $\omega \ll \omega_{\alpha}$, phase angle is 0°
At $\omega=\omega_{\alpha}$, phase angle is -45°
At $\omega \gg \omega_{\alpha}$, phase angle is -90°
PHASE RESPONSE

Figure 2. Phase Response of forward
current transfer ratio.

Figure 18.15

In Bode Plot, total frequency can be plotted without breaking the scale. So this plot is preferred.

$$
\frac{\alpha_{f}}{\alpha_{f o}}=\frac{1}{1+j\left(\frac{\omega}{\omega_{\alpha}}\right)}
$$

Figure 18.16

Consider the plot at frequencies $\omega \gg \omega_{\alpha}$:

$$
\begin{aligned}
A_{1} & =20 \log _{10}\left(\frac{\alpha_{f}}{\alpha_{f o}}\right) \\
& =20 \log _{10}\left(\frac{\omega_{\alpha}}{\omega}\right) \\
A_{2} & =20 \log _{10}\left(\frac{\omega_{\alpha}}{10 \omega_{1}}\right) \\
A_{1} & =20 \log _{10}\left(\frac{\omega_{\alpha}}{\omega_{1}}\right) \\
A_{2}= & 20 \log \omega_{\alpha}-20 \log 10 \omega_{1} \\
A_{1} & =20 \log \omega_{\alpha}-20 \log \omega_{1}
\end{aligned}
$$

Figure 18.17
$\mathrm{A}_{1}-\mathrm{A}_{2}=20 \mathrm{~dB}$
SO if frequency is increased by 10 times, difference is 20 dB . This gives a skirt of -20 dB per decade. That is for every 10 times increase in frequency, magnitude of response falls by 20 dB as shown in Figure 3.

Figure 3. Bode Plot of Magnitude Frequency Responst

Figure 18.18

In the above plot, light continuous line is ASYMPTOTIC PLOT and dark continuous line is Actual Response Plot.

Chapter 19

AE_Lecture5_PartA_Low FrequencyAnalysisofCE_Amplifier'

Figure 19.1

[^16]Figure 1. RC-coupled CE Amplifier.
Lower -3 dB frequency of CE Amplifier is determined by Short Circuit Time Constant Method.
Coupling Capacitors and Emitter By-pass capacitor are responsible for lower -3 dB frequency $\left(\mathrm{f}_{\mathrm{L}}\right)$.
We consider the time constant associated with each capacitor with the remaining capacitors shorted. Suppose the time constants associated with $\mathrm{C}_{\mathrm{C} 1}, \mathrm{C}_{\mathrm{C} 2}$ and C_{E} are $\tau_{1 \mathrm{~S}}, \tau_{2 \mathrm{~S}}$ and $\tau_{3 \mathrm{~S}}$. Then the overall time constant associated with the amplifier due to combined effect of $\mathrm{C}_{\mathrm{C} 1}, \mathrm{C}_{\mathrm{C} 2}$ and C_{E} is τ_{L} where:

$$
\frac{1}{\tau L} \stackrel{1}{\tau 1 s}+\frac{1}{\tau 2 s}+\frac{1}{\tau 3 s}=2 \pi f_{L}=\omega_{L}
$$

Figure 19.2

Here Time Constant associated with each capacitor is $\tau=\mathrm{RC}$ where R is the equivalent resistance seen by each Capacitor.

$$
\begin{gathered}
R_{S}=5 k \Omega, R_{B}=R_{1}| | R_{2}=10 \mathrm{k} \Omega, R_{C}=2 \mathrm{k} \Omega \\
r_{x}=100 \Omega, r_{\pi}=0.4 \mathrm{k} \Omega, g_{m}=\frac{I_{C}}{V_{T}}=100 \mathrm{mmho}
\end{gathered}
$$

Figure 19.3

$$
I_{C}=2.5 \mathrm{~mA}, R_{E}=0.4 \mathrm{k} \Omega, \beta_{f o}=40
$$

Figure 19.4

Figure 2. The incremental model of RC-coupled CE Amplifier. Battery Vcc has been shorted and BJT has been replaced by Hybrid-pi Model.

Figure 19.5

Figure 2. Low Frequency Incremental model

Figure 3. Calculation of Short Circuit Resistance as seen by Cc1.

Figure 19.6

Figure 3. Low frequency Incremental Model with C_{E} and Cc 2 shorted. Equivalent resistance seen by Cc 1 is $\mathrm{R}_{\mathrm{S}}+\left(\mathrm{R}_{\mathrm{B}} \|\left(\mathrm{r}_{\mathrm{x}}+\mathrm{r}_{\pi}\right)\right)$

Figure 4. Equivalent circuit for measuring the
short circuit resistance as seen by Ce

Figure 19.7

Figure 4. Incremental Model with Cc 1 and Cc 2 shorted. Ce sees the equivalent Resistance $R_{2 s}=\mathrm{v}_{\mathrm{o}} / \mathrm{i}_{\mathrm{o}}$ In Figure 4 , a voltage source v_{o} is connected in place of C_{E}.
Current drawn from the source is: $\mathrm{i}_{\mathrm{o}}=\mathrm{i}_{\mathrm{b}}+\beta_{\mathrm{fo}}$. i_{b}
where $i_{b}=v_{o} /\left(r_{\pi}+r_{x}+R_{B} \| R_{S}\right)$ therefore $i_{o}=i_{b}\left(1+\beta_{\mathrm{fo}}\right)=\left(1+\beta_{\mathrm{fo}}\right) \cdot \mathrm{v}_{\mathrm{o}} /\left(\mathrm{r}_{\pi}+\mathrm{r}_{\mathrm{x}}+\mathrm{R}_{\mathrm{B}} \| \mathrm{R}_{\mathrm{S}}\right)$; Therefore $\mathrm{v}_{\mathrm{o}} / \mathrm{i}_{\mathrm{o}}=\left(\mathrm{r}_{\pi}+\mathrm{r}_{\mathrm{x}}+\mathrm{R}_{\mathrm{B}} \| \mathrm{R}_{\mathrm{S}}\right) /\left(1+\beta_{\mathrm{fo}}\right)=\mathrm{R}_{2 \mathrm{~s}}$;

$$
\begin{gathered}
R_{1 s}=R_{s}+R_{B} \|\left(r_{x}+r_{\pi}\right)=5.48 \mathrm{k} \Omega \\
R_{2 s}=R_{E} \|\left[\frac{r_{x}+r_{\pi}+R_{S} \| R_{B}}{\beta_{f o}+1}\right]=0.0758 \mathrm{k} \Omega \\
C_{C 1} \text { and } C_{E} \text { are both present. } C_{C 2}=\infty
\end{gathered}
$$

Overall -3dB frequency will be:

$$
\omega_{l}=\frac{1}{\tau_{L}}=\frac{1}{\tau_{1 s}}+\frac{1}{\tau_{2 s}}
$$

For equal poles:-

$$
1.15 \omega_{l}=\frac{1}{\tau_{1 s}}+\frac{1}{\tau_{2 s}}
$$

Figure 19.8

If $f_{l}=30 \mathrm{~Hz} ; \omega_{l}=188.5 \frac{\mathrm{rad}}{\mathrm{sec}}=0.1885(\mathrm{msec})^{-1}$

$$
\begin{gathered}
\therefore 0.217(\mathrm{msec})^{-1}=\frac{1}{5.48 C_{C}}+\frac{1}{0.0758 C_{E}} \\
C_{C}=1.68 \mu F, C_{E}=122 \mu F
\end{gathered}
$$

From first principles:
(i.e. detailed circuit analysis)

$$
A_{V}(j \omega)=\frac{-A_{v o}(j \omega)\left(j \omega+\omega_{z}\right)}{\left(j \omega+\omega_{p 1}\right)\left(j \omega+\omega_{p_{2}}\right)}
$$

At $\omega \gg \omega_{p 1}, \omega_{p 2}, \omega_{z}$,

Figure 19.9

$$
A_{V}(j \omega)=\frac{-A_{v o}(j \omega)(j \omega)}{(j \omega)(j \omega)}=-A_{v o}
$$

Figure 19.10

By detailed analysis,

$$
\frac{1}{\tau L} \triangleq \frac{1}{\tau 1 s}+\frac{1}{\tau 2 s}+\frac{1}{\tau 3 s}=2 \pi f_{L}=\omega_{L}
$$

Figure 19.11

Here there are two poles corresponding to two capacitors $\mathrm{C}_{\mathrm{C} 1}$ and C_{E}. The second coupling capacitor is considered to be infinity. The highest pole decides lower -3 dB frequency. So $0.188 \mathrm{Krads} / \mathrm{sec}$ decides the lower -3 dB frequency which comes out to be 30 Hz .

Chapter 20

AE_Lecture5_PartA_The Low frequency Voltage Gain Expression by detailed circuit analysis.'

By detailed analysis,

$$
A_{V}(j \omega)=\frac{-(13.9)(j \omega)(j \omega+0.025)}{(j \omega+0.188)(j \omega+0.029)}
$$

Figure 20.1

Here there are two poles corresponding to two capacitors $\mathrm{C}_{\mathrm{C} 1}$ and C_{E}. The second coupling capacitor is considered to be infinity. The highest pole decides lower -3 dB frequency. So $0.188 \mathrm{Krads} / \mathrm{sec}$ decides the lower -3 dB frequency which comes out to be 30 Hz .

[^17]
Chapter 21

AE_Lecture5_PartB_High Frequency Analysis of CE Amplifier ${ }^{1}$

MID FREQUENCY ANALYSIS OF CE AMPLIFIER

Figure 2. High Frequency Incremental Model of CE BJJ Amplifier

Figure 21.1

$$
v_{o}=-\left(\beta_{f o} i_{b}\right) R_{c}
$$

Figure 21.2
(1)

[^18]
CHAPTER 21. AE_LECTURE5_PARTB_HIGH FREQUENCY ANALYSIS OF CE AMPLIFIER
 $$
v_{i n}=i_{b}\left(r_{x}+r_{\pi}\right)
$$

Figure 21.3
(2)

$$
\therefore \frac{v_{o}}{v_{i n}}=A_{v o}=\text { Internal Voltage Gain }=\frac{-\left(\beta_{f o}\right)\left(R_{c}\right)}{\left(r_{x}+r_{\pi}\right)}
$$

Figure 21.4

$$
v_{s}=i_{s}\left[R_{s}+R_{B}| |\left(r_{x}+r_{\pi}\right)\right]
$$

Figure 21.5
3)

$$
i_{b}=\frac{i_{s} R_{B}}{\left(R_{B}+\left(r_{x}+r_{\pi}\right)\right)}
$$

Figure 21.6
\qquad
\qquad
$\therefore \frac{i_{b}}{i_{s}}=\frac{R_{B}}{\left(R_{B}+\left(r_{x}+r_{\pi}\right)\right)}$

Figure 21.7

Dividing $\mathrm{Eq}(1)$ by $\mathrm{Eq}(3)$ we get:

$$
\frac{v_{o}}{v_{s}}=A_{v s o}=\text { Voltage Gain w.r.t.source }
$$

Figure 21.8
\qquad

$$
A_{v s o}=\frac{-\left(\beta_{o}\right)\left(R_{C}\right)}{\left[R_{S}+R_{B}| |\left(r_{x}+r_{\pi}\right)\right]} \times \frac{i_{b}}{i_{s}}
$$

Figure 21.9

But

$$
\frac{i_{b}}{i_{s}}=\frac{R_{B}}{\left(R_{B}+\left(r_{x}+r_{\pi}\right)\right)}
$$

Figure 21.10

$$
A_{v s o}=\frac{-\left(\beta_{o}\right)\left(R_{C}\right)}{\left[R_{S}+R_{B}| |\left(r_{x}+r_{\pi}\right)\right]} \times \frac{R_{B}}{\left(R_{B}+\left(r_{x}+r_{\pi}\right)\right)}
$$

Figure 21.11

Normally $\mathrm{R}_{\mathrm{B}} \gg\left(\mathrm{r}_{\mathrm{x}}+\mathrm{r}_{\pi}\right)$ therefore

$$
A_{v s o}=\frac{-\left(\beta_{o}\right)\left(R_{C}\right)}{\left[R_{S}+\left(r_{x}+r_{\pi}\right)\right]} \times \frac{R_{B}}{\left(R_{B}\right)}
$$

Figure 21.12

$$
A_{v s o}=\frac{-\left(\beta_{o}\right)\left(R_{C}\right)}{\left[R_{S}+\left(r_{x}+r_{\pi}\right)\right]}
$$

Figure 21.13

In the actual gain with respect to the source, source resistance plays a very important role. Smaller is R_{S} larger is the voltage gain.

HIGH FREQUENCY RESPONSE OF CE AMPLIFIER.
Upper - 3 dB frequency $\left(\mathrm{f}_{\mathrm{H}}\right)$ is determined by Open Circuit Time Constant Method.
The parasitic capacitances C_{π} and C_{μ} are responsible for the fall in the Voltage Gain Response at high frequencies. The time constant associated with C_{π} is the Open Circuit Time Constant τ_{10} and the time constant associated with C_{μ} is the Open Circuit Time Constant τ_{20}.

The overall time constant associated with the amplifier is $\tau_{\mathrm{H}}=\tau_{10}+\tau_{20}=$

$$
\frac{1}{\omega H}
$$

Figure 21.14

Therefore $\omega_{\mathrm{H}}=$

$$
\frac{1}{(\tau 10+\tau 20)}
$$

Figure 21.15
;

Figure 2. High Frequency Incremental Model of CEE BJT Amplifier

Figure 21.16
$\mathrm{GBP}=$

$$
\left|A_{V} \omega_{H}\right| \leq\left(\frac{\beta_{0} R_{L}}{R_{S}+\left(r_{x}+r_{\pi}\right)}\right)\left(\frac{1}{r_{\pi 0} c_{T}}\right)
$$

Figure 21.17

$$
r_{\pi 0}=r_{\pi}| |\left(R_{S}+r_{x}\right)
$$

Figure 21.18

$$
\omega_{h}=
$$

Figure 21.19

$$
\frac{1}{r_{\pi_{0}} c_{T}}
$$

Figure 21.20

$$
C_{T}=C_{\pi}+C_{\mu}\left(1+g_{m} R_{L}\right)
$$

Figure 21.21

If

$$
R_{s}=0, r_{\pi_{n}} \sim r_{x} ; \& \quad C_{T}=\left(C_{\mu} g_{m} R_{L}\right)
$$

Figure 21.22

$$
\therefore G B P \leq \frac{\beta_{o} R_{L}}{r_{\pi}} \times \frac{1}{\left(r_{x}\right)\left(C_{\mu} g_{m} R_{L}\right)}
$$

Figure 21.23

$$
\leq \frac{\beta_{o}}{\left(\frac{\beta_{o}}{g_{m}}\right)} \frac{R_{L}}{\left(r_{x}\right)\left(C_{\mu}\right)\left(g_{m}\right)\left(R_{L}\right)}
$$

Figure 21.24

$$
G B P \leq\left(\frac{1}{r_{x} C_{\mu}}\right)
$$

Figure 21.25

$$
\omega_{T}=\frac{1}{\tau}=\frac{1}{\frac{W^{2}}{2 D_{n}}}=\frac{2 D_{n}}{W^{2}}
$$

Figure 21.26

So we see that base spreading resistance is very important from GBP point of view which is the figure of merit of the given transistor. Also the transit frequency solely depends on the base width. Narrower the base width, faster is the response. But narrow base is detrimental to r_{x} which in turn is detrimental for GBP. The only way out is higher doping of Base which is going to reduce the Injection Efficiency. So the new concept of Si-SiGe-Si heterojunction Bipolar Junction Transistor solves all these contradictory requirements. Here we have very narrow base width of the order of 10 nm leading to picoseconds transit time through the narrow base, high base doping thereby reducing base spreading resistance and since base is made of $\mathrm{Si}-\mathrm{Ge}$ alloy which has a narrower band-gap as compared to that of Si , hence inspite of high base doping high injection efficiency is maintained from Emitter to Base thereby obtaining best short circuit forward active current gain. Thus we have achieved the best of all performance parameters. In this process we have been able to achieve Si-Ge HBT with transit frequency of 200 GHz .

High Frequency Response Of CB Amplifier.

Figure 3. High Frequency Model after Miller Transformation.

Figure 21.27
\qquad
\qquad

$$
\tau_{o 1}=\left(C_{s}\right)\left(r_{s}| | R_{E}| | R_{s}\right)
$$

Figure 21.28

$$
\tau_{o 2}=\left(C_{C}\right)\left(R_{C}| | R_{L}\right)
$$

Figure 21.29

$$
\tau_{o}=\tau_{o 1}+\tau_{o 2}
$$

Figure 21.30

$$
\sim \tau_{o 2}
$$

Figure 21.31

$$
\omega_{h}=\frac{1}{\tau_{o 2}}=\frac{1}{\left(C_{C}\right)\left(R_{C}| | R_{L}\right)}
$$

Figure 21.32

Chapter 22

AE_Lecture5_PartC_Figure4 of High Frequency Analysis of CB \& CC Amplifier'

Figure 4. High Frequency Model of CC Amplifier. BJT has been replaced by Hybrid-pi Model.

Figure 22.1

[^19]
Chapter 23

AE_Lecture5_PartC_High Frequency Analysis of CB \& CC Amplifier'

High Frequency Response Of CB Amplifier.
CB Amplifier is almost an uni-lateral circuit. It has negligible reverse transmission. Hence it is ideal for RF applications where there is always a danger of parasitic oscillations.

Figure 1. CB B.JT Amplifier using two battery biasing.

Figure 23.1

In Figure 1, we have a CB BJT Amplifier with two battery biasing. This circuit has to be analyzed for its upper cut off frequency.

[^20]

Figure 2. Highh Frequency Incremental Model of C.B BJJ Amplifier

Figure 23.2

In Figure 2, we have given the high frequency model of CB BJT using the T-Model of BJT.
Following is the open circuit time constant method for arriving at the upper cut-off frequency of the amplifier.

$$
\tau_{o 1}=\left(C_{s}\right)\left(r_{s}| | R_{E}| | R_{s}\right)
$$

Figure 23.3

$$
\tau_{o 2}=\left(C_{C}\right)\left(R_{C}| | R_{L}\right)
$$

Figure 23.4
\qquad
\qquad

$$
\tau_{o}=\tau_{o 1}+\tau_{o 2}
$$

Figure 23.5

$$
\sim \tau_{o 2}
$$

Figure 23.6

$$
\omega_{h}=\frac{1}{\tau_{o 2}}=\frac{1}{\left(C_{C}\right)\left(R_{C}| | R_{L}\right)}
$$

Figure 23.7

HIGH FREQUENCY MODEL OF CC AMPLIFIER
CC Amplifier is also known as Emitter Follower. It is also known as Buffer. Buffer isolates the output system from input system.

It is used for driving transmission lines. It is a voltage controlled voltage source. Its output is a constant current source hence it is suitable for driving variable load.

Figure 3. CC Amplifier with self bias.

Figure 23.8

In Figure 3, we have CC Amplifier with self bias. We will analyze the upper cut-off frequency of the amplifier.

The Trnsistor is operating at Q point $(1.5 \mathrm{~mA}, 5 \mathrm{~V})$. Following Hybrid- π are given:

$$
\beta_{f o}=100, r_{x}=150 \Omega
$$

Figure 23.9

$$
C_{\mu}=0.5 p F, f_{T}=500 \mathrm{MHz}
$$

Figure 23.10

$$
g_{m}=\frac{I_{C}}{V_{T}}=\left(\frac{1.5}{25}\right) ; r_{\pi}=\frac{\beta_{o}}{g_{m}}
$$

Figure 23.11

$$
R_{1}| | R_{2}=R_{B}=100 \mathrm{k} \Omega ; R_{E}| | R_{L}=2.82 \mathrm{k} \Omega=R_{E}^{\prime}
$$

Figure 23.12

$$
r_{\pi}=\frac{100 \times 25}{1.5}=\frac{2500}{1.5}=1666.6 \Omega=1.67 \mathrm{k} \Omega
$$

Figure 23.13

High Frequency INCREMENTAL CIRCUIT of the CC Amplifier is:
Figure 4 is given as supplementary of AE_lecture5_PartC
$\mathrm{i}_{\mathrm{b}}{ }^{\prime}$ is the useful transistor current which takes part in transistor action and is the component of i_{b}, the base current, which flows through r_{π}.

The

Figure 23.14

Thevenin Equivalent Voltage at the input of the amplifier is:
$\mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{S}} \| \mathrm{R}_{\mathrm{B}}$

$$
v_{T h}=\frac{v_{s}}{R_{s}+R_{B}} \times R_{B}
$$

Figure 23.15

$$
\therefore \frac{v_{T h}}{v_{s}}=\left(\frac{100}{101}\right)=0.99
$$

Figure 23.16

Figure 5. The simplification of the circuit in Figure 4.

Figure 23.17
v

Figure 6. Numerical values of Vth and Rth inserted in the circuit.

Figure 23.18

$$
R_{S}| | R_{B}=R_{T h}=\frac{(1)(17)}{18}=0.94 \mathrm{k} \Omega
$$

Figure 23.19

What is $\tau_{\mu \mathrm{o}}$ (open-circuit time constant associated with C_{μ}) and $\tau_{\pi \mathrm{o}}$ (open-circuit time constant associated with $\left.\mathrm{C}_{\pi}\right)$?
$\tau_{\mu \mathrm{o}}=\left(\mathrm{C}_{\mu}\right)\left(\mathrm{R}_{10}\right)$
$\tau_{\pi \mathrm{o}}=\left(\mathrm{C}_{\pi}\right)\left(\mathrm{R}_{20}\right)$
Circuit for finding R_{1} o

Figure 7. Circuit for determining the equivalent resistance associated with Cu . Note that Cu is connected between base and collector and collector is grounded. Therefore Cu is connected between base and ground. By applying a voltage source between base and grond we can determine the equivalent resistance seen by Cu.

Figure 23.20

To find the equivalent resistance seen by $\mathrm{C} \mu$, we apply a voltage source at base and ground.
Total current drawn from vo is $\mathrm{i} 1+\mathrm{i} 2$.
Therefore vo $/(\mathrm{i} 1+\mathrm{i} 2)=\mathrm{R} 10$

$$
R_{1 o}=\left(R_{T h}+r_{x}\right)| |\left(r_{\pi}+\left(1+\beta_{f o}\right) R_{E}^{\prime}\right)
$$

Figure 23.21

$$
R_{10}=(1.09 k)| |(1.67 k+(101)(2.82 k \Omega))
$$

Figure 23.22
\qquad
\qquad

$$
=(1.09 k)| |(285.6 k \Omega)=1.1 k
$$

Figure 23.23
$\tau_{\mu \mathrm{o}}=(0.5 \mathrm{pF} \times 1.1 \mathrm{k} \Omega)=0.54 \mathrm{nsec}$
Circuit for finding $\mathrm{R}_{2 \text { o }}$

Figure 8. The circuit for determining the equivalent resistance seen by Cpi. Exactly the same procedure is adopted as in case of Cu .

Figure 23.24

A voltage source is applied at the node pair where $\mathrm{C} \pi$ was connected.
Total current drawn is $\mathrm{i}_{0}=\mathrm{i}_{1}+\mathrm{i}_{2}$;

$$
i_{1}=\frac{v_{o}}{r_{\pi}}
$$

Figure 23.25

$$
i_{2}=\left(\frac{v_{o}}{R_{T h}+r_{x}+R_{E}^{\prime}}\right)
$$

Figure 23.26

$$
\therefore i_{o}=i_{1}+i_{2}+\beta_{f o} i_{1}
$$

Figure 23.27

Figure 9 . The current source β f0il is replaced by gmvr. This simplifies the calculation of Req.

Figure 23.28

$$
R_{\pi_{0}}=R_{2_{o}}=r_{\pi}| | R_{s q}=r_{\pi}| |\left(\frac{R_{T h}+r_{x}+R_{E}^{\prime}}{1+g_{m} R_{E}^{\prime}}\right)
$$

Figure 23.29

Figure 10. By this circuit we determine the analytic relation of Req.

Figure 23.30
$\mathrm{R}_{\text {eq }}=$

$$
\left(\frac{R_{T h}+r_{x}+R_{E}^{\prime}}{1+g_{m} R_{E}^{\prime}}\right)
$$

Figure 23.31

This expression is derived as follows(Refer to Figure 10):

$$
\therefore v_{x}=i_{x}\left(R_{T h}+r_{x}\right)+\left(i_{x}-g_{m} v_{x}\right) R_{E}^{\prime}
$$

Figure 23.32

$$
\left(v_{x}+g_{m} R_{E}^{\prime} v_{x}\right)=i_{x}\left(R_{T h}+r_{x}+R_{E}^{\prime}\right)
$$

Figure 23.33

$$
\therefore R_{e q}=\frac{v_{x}}{i_{x}}=\left(\frac{R_{T h}+r_{x}+R_{E}^{\prime}}{1+g_{m} R_{E}^{\prime}}\right)
$$

Figure 23.34

$$
R_{\pi_{o}}=1.67 k \Omega| |\left(\frac{1.09 k+2.82 k}{1+\frac{1.5}{25} \times 2820}\right)
$$

Figure 23.35

$$
R_{\pi_{o}}=1.67 k \Omega| |\left(\frac{3.9 k}{170}\right)
$$

Figure 23.36

$$
R_{\pi_{0}}=1670| |\left(\frac{3900}{170}\right)
$$

Figure 23.37
\qquad
\qquad

$$
=1670| | 23=22.7 \Omega
$$

Figure 23.38
\qquad
\qquad

$$
\therefore \tau_{\pi o}=\left(R_{20}\right)\left(C_{\pi}\right)
$$

Figure 23.39

$$
=(22.7)(19.9 p F)
$$

Figure 23.40

$$
\therefore \tau_{\pi o}=0.45 \mathrm{nsec}
$$

Figure 23.41

$$
\therefore \tau_{o}=0.54+0.45=1 \mathrm{nsec}
$$

Figure 23.42

$$
\therefore \omega_{h}=\frac{1}{\tau_{0}}=1 G \frac{\mathrm{rad}}{\mathrm{sec}}
$$

Figure 23.43

$$
f_{h}=\frac{1000}{2 \pi} \mathrm{MHz}=159 \mathrm{MHz}
$$

Figure 23.44

CC has unity gain hence largest 159 MHz largest B.W.

Configuration	B.W.
CE	1.56 MHz
CE Degenerate	10.7 MHz
CB	15.9 MHz
CC	159 MHz

Table 23.1

Chapter 24

AE_Lecture 5_Part C_continued_High frequency analysis of CB.'

AE_Lecture 5_Part c_continued_High frequency analysis of CB.
$\overline{\text { In }}$ this continuation of $\overline{\text { high }}$ frequency application, we use the same self-biasing configuration to achieve CB, CE and CC amplifier. These three Circuit Configuration have the same Q point $\left(\mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CEQ}}\right.$ $=5 \mathrm{~V})$. Hence they have the same Hybrid- π parameters namely:
β fo $=$ incremental short circuit gain at low frequencies $=100$;
Transit frequency given $=\mathbf{f} \mathbf{T}=200 \mathrm{MHz}$;
At the \mathbf{Q} point, $\mathbf{C o b}=\mathbf{C} \mu=\mathbf{C} \mathbf{j B C}=$

$$
C_{c}
$$

Figure 24.1
$=5 \mathrm{pF}$;
Circular Transit Frequency $=\omega \mathbf{T}=$

$$
\frac{1}{\tau_{t}}=
$$

Figure 24.2

1.2566×109 radians/second;

Here it may be noted that reciprocal of frequency gives Time Period of repetition T but reciprocal of circular frequency always gives the Time -Constant. In filters the reciprocal of circular cut-off frequencies gives the RC time constant of the associated RC configuration. Here the reciprocal of the circular transit frequency gives the transit time across the narrow base of the BJT .

[^21]Transit Time $=$

$$
\tau_{t}=\frac{1}{1.2566 \times 10^{9}}=
$$

Figure 24.3
$0.8 n s e c$;
Trans-conductance $=\mathbf{g} \mathbf{m}=$

$$
\frac{I_{C}}{V_{T}}=
$$

Figure 24.4

40mSiemens (or mS) $=$

$$
\frac{1}{r_{m}}
$$

Figure 24.5
$=1 / 25 \Omega$;
Whereas

$$
r_{e}=\frac{V_{T}}{I_{E}}=\frac{25 m V}{\frac{1 m A}{\alpha_{F}}} \approx 25 \Omega
$$

Figure 24.6

$$
\frac{C_{\mu}+C_{\pi}}{g_{m}}=0.8 \text { nsec }
$$

Figure 24.7

Therefore

$$
C_{\pi} \times 25=0.8 \times 10^{-9}-5 \times 10^{-12} \times 25=0.725 \text { nsec }
$$

Figure 24.8

Therefore

$$
C_{\pi}=C_{e}=29 p F
$$

Figure 24.9

Base spreading resistance is given as $\mathbf{r} \mathbf{x}=100 \Omega$;

$$
r_{\pi}=\frac{\beta_{f o}}{g_{m}}=2.5 k \Omega
$$

Figure 24.10

Figure 1 . RC-coupled CE BJT Amplifier

Figure 24.11

Self -biasing configuration is connected as CE BJT Amplifier by the use of Emitter bypass capacitance C_{E}.

The circuit elements are given as:
$\mathrm{R}_{\mathrm{C}}=5 \mathrm{k}, \mathrm{R}_{\mathrm{E}}=2 \mathrm{k}, \mathrm{R}_{1}=200 \mathrm{k}, \mathrm{R}_{2}=60 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{R}_{\mathrm{S}}=50 \Omega$, $\mathrm{R}_{\mathrm{B}}=\mathrm{R}_{1}\left\|\mathrm{R}_{2}=46 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}\right\| 100 \mathrm{k}-4.76 \mathrm{k}$;
The same configuration can be connected as CB Amplifier by the use of Base bypass capacitance C_{B} as shown in the Figure 3. The same configuration can be connected as CC Amplifier by the use of Collector bypass capacitance C_{C} as shown in the Figure 4.

Figure 2. RC-coupled CE BJT Amplifier

Figure 3 . RC-coupled CB BJT Amplifier

Figure 4 . RC-coupled CC BJT Amplifier

Figure 24.12

High Frequency Analysis of CB Amplifier:

Under incremental condition (refer to Figure 3),
C_{B} shorts out R_{1} and R_{2}. Coupling capacitors appear as short circuit. Battery $V_{C C}$ appears as short circuit. Hence the incremental circuit of CB amplifier is the following as shown in Figure 5 :

Figure 5. Incremental circuit representation of CB Amplifier.

Figure 24.13

For circuit analysis we replace CB configuration of BJT with its corresponding T-Model as shown in Figure 6.

Figure 6 , Incremental circuit representation of CB Amplifier with T-Model of CB BJT.

Figure 24.14

In Figure $6, \mathrm{~b}^{[\mathrm{U}+05 F 3]}$ is the active base region and b is the external base terminal. The T-Model is further re-oriented as two input and output loop as shown in Figure 7.

Figure 7. Incremental circuit representation of CB Amplifier with input-output loop.

Figure 24.15

The T-Model of CB BJT is further simplified into two non-interacting loops as shown in Figure 8.

Figure 8, Incremental circuit representation of CB Amplifier with non-interacting loop

Figure 24.16

Base spreading resistance r_{x} is reflected as $\left(1-\alpha_{f o}\right) r_{x}$ in input loop and in output loop it is not reflected since it is controlled loop. Since $\left(1-\alpha_{\mathrm{fo}}\right) \mathrm{r}_{\mathrm{x}}$ is a negligible resistance hence in input loop it has been completely neglected as a result the input and output loops are completely non-interacting. This is the reason reverse transmission factor is almost non-existent in CB BJT and it is a near-Unilateral device. Hence it is very suitable for RF applications. RF Amplifier are very prone to parasitic oscillations. But if we use a Unilateral Active Device the possibility of parasitic oscillation is minimal.

Referring to Figure 8, we see there are two capacitors Ce and Cc. Both have two time-constants associated with them.
R_{10} as seen by Ce is $\mathrm{r}_{\mathrm{e}}\left\|\mathrm{R}_{\mathrm{E}}\right\| \mathrm{R}_{\mathrm{S}}=25 \Omega$
Therefore time constant associated with $\mathrm{Ce}=\tau_{10}=29 \mathrm{pF} .25 \Omega=725 \mathrm{psec}$.
R_{20} as seen by Cc is $\mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{L}}=4.76 \mathrm{k} \Omega$
Therefore time constant associated with $\mathrm{Cc}=\tau_{20}$
$=5 \mathrm{pF} .4 .76 \mathrm{k} \Omega=2380 \mathrm{psec}$.

$$
\omega_{h}=\frac{1}{\tau_{10}+\tau_{20}}=2 \pi \times 6.489 \mathrm{MHz}
$$

Figure 24.17

Therefore higher cut-off frequency $=f_{h}=6.489 \mathrm{kHz}$.
Midband Voltage Gain w.r.t. source (shown previously)
$=$

$$
\frac{\alpha_{f o} R_{C} \| R_{L}}{\left(R_{S}+r_{e}\right)}
$$

Figure 24.18
$=$
4760×0.99
$50+25$

Figure 24.19
$=63.4$
Internal Voltage Gain $=$

$$
\frac{\alpha_{f o} R_{C} \| R_{L}}{\left(R_{S}+r_{e}\right)}=190.4
$$

Figure 24.20

Note these are non-inverting gains.
In the lab, we will get vastly different gains by including source resistance and neglecting source resistance. So while making voltage gain measurement we have to be careful as to which gain we are measuring.

Chapter 25

AE_Lecture 5_Part C_continued_high frequency analysis of $\mathrm{CE} \& \mathrm{CC}^{1}$

AE_Lecture 5_Part C_continued_high frequency analysis of CE \& C \bar{C}

Figure 1 . RC-coupled CE BJT Amplifier

Figure 25.1

In Figure 1 we have RC-coupled CE BJT Amplifier. This has a Q point $\left(\mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CEQ}}=5 \mathrm{~V}\right)$. The Hybrid- π parameters are same as in last chapter namely:
β fo $=$ incremental short circuit gain at low frequencies $=100 ;$

[^22]Transit frequency given $=\mathbf{f} \mathbf{T}=200 \mathrm{MHz}$;
At the \mathbf{Q} point, $\mathbf{C} \mathbf{o b}=\mathbf{C} \mu=\mathbf{C} \mathbf{j B C}=$

$$
C_{c}
$$

Figure 25.2

$=\mathbf{5 p F}$;

Circular Transit Frequency $=\omega \mathbf{T}=$

$$
\frac{1}{\tau_{t}}=
$$

Figure 25.3
1.2566×109 radians/second;
Trans-conductance $=\mathbf{g ~ m}=$

$$
\frac{I_{C}}{V_{T}}=
$$

Figure 25.4

40mSiemens(or mS) $=$

$$
\frac{1}{r_{m}}
$$

Figure 25.5
$=1 / 25 \Omega$;
Whereas

$$
r_{e}=\frac{V_{T}}{I_{E}}=\frac{25 m V}{\frac{1 m A}{\alpha_{F}}} \approx 25 \Omega
$$

Figure 25.6
;

$$
C_{\pi}=29 p F
$$

Figure 25.7

Base spreading resistance is given as $\mathbf{r} \mathbf{x}=100 \Omega$;

$$
r_{\pi}=\frac{\beta_{f o}}{g_{m}}=2.5 \mathrm{k} \Omega
$$

Figure 25.8

The circuit elements are given as :
$\mathrm{R}_{\mathrm{C}}=5 \mathrm{k}, \mathrm{R}_{\mathrm{E}}=2 \mathrm{k}, \mathrm{R}_{1}=200 \mathrm{k}, \mathrm{R}_{2}=60 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{R}_{\mathrm{S}}=50 \Omega$,
$\mathrm{R}_{\mathrm{B}}=\mathrm{R}_{1}\left\|\mathrm{R}_{2}=46 \mathrm{k}, \mathrm{R}_{\mathrm{L}}{ }^{\prime}=5 \mathrm{k}\right\| 100 \mathrm{k}=4.76 \mathrm{k}$;
Under incremental condition, the circuit is represented as Figure 2. Bias Supply V_{CC} is shorted, coupling capacitances $\mathrm{C}_{\mathrm{C} 1}$ and $\mathrm{C}_{\mathrm{C} 2}$ are shorted and Emitter Bypass Capacitance C_{E} is is shorted.

Figure 2 . Incremental Circuit representation of RC-coupled CE BJT Amplifier

Figure 25.9

For incremental analysis at high frequencies, BJT is replaced by its corresponding high frequency Hybridπ Model as shown in Figure 3.

Figure 3. Incremental representation of RC-coupled CE Amplifier with BJT replaced by Hybrid-pi Model.

Figure 25.10

In the beginning of the Lecture 5 we have already discussed that the number of energy storage elements decide the order of the system and accordingly the number of poles. We have also discussed that in Low Pass Filter situation if the lowest pole is well below the higher poles then it is the dominant pole and it decides the higher - 3 dB frequency $\left(\mathrm{f}_{\mathrm{h}}\right)$ and in High Pass Filter situation the highest pole decides the lower -3 dB frequency (f_{l}).

In the present case by inspecting the incremental circuit diagram, we find two Capacitances, C_{π} and C_{μ} . Each has its open circuit time constant, τ_{10} and τ_{20} respectively.

Effective time constant $\tau_{\text {eff }}=\tau_{10}+\tau_{20}$;
Therefore $\omega_{\mathrm{h}}=$

$$
\frac{1}{\tau_{10}+\tau_{20}}
$$

Figure 25.11
$=$ higher -3dB frequency $\left(2 \pi f_{\mathrm{h}}\right)$;
Fortunately by applying Miller Transformation we can make single pole approximation of the incremental circuit.

By Miller Transformation, $\mathrm{C} \mu$ is transformed as:

$$
C_{\mu}\left(1-A_{V 0}\right)
$$

Figure 25.12
at the input pair of nodes $\mathrm{b}^{[\mathrm{U}+05 \mathrm{~F} 3]} \mathrm{e}$ and

$$
\frac{C_{\mu}\left(1-A_{V 0}\right)}{A_{V 0}}
$$

Figure 25.13
at the output pair of nodes ce.
Here $A_{V 0}=-g_{m} R_{C}| | R_{L}=$ midband gain of the basic CE amplifier.

$$
\left(1-A_{V 0}\right)
$$

is known as Miller Multiplicaion Factor and

$$
C_{\mu}\left(1-A_{V 0}\right)
$$

Figure 25.15
is known as the Miller Capacitance.
Therefore total Capacitance appearing at the input node pair is: $\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\pi}+$

$$
C_{\mu}\left(1-A_{V 0}\right)
$$

Figure 25.16

$$
=29 \mathrm{pF}+5 \mathrm{pF}(1+180)=934 \mathrm{pF}
$$

Hence the incremental circuit is modified to the circuit shown in
Figure 4 with single pole approximation :

Figure 4. Incremental representation of RC-coupled CE Amplifier with single pole approximation using Miller Transformation.

Figure 25.17

The equivalent resistance seen by C_{T} by inspection is:

$$
R_{10}=r_{\pi} \|\left(r_{x}+R_{S} \| R_{B}\right)=141.4 \Omega
$$

Figure 25.18
;
Therefore $\omega_{\mathrm{h}}=$

$$
\frac{1}{R_{10} C_{T}}
$$

Figure 25.19

Thererfore $\mathrm{f}_{\mathrm{h}}=1 / 0.8304 \mu \mathrm{sec}=1.2 \mathrm{MHz}$;
The mid-frequency analysis gives the Midband Voltage Gain as :

$$
A_{V S 0}=-\frac{\beta_{f 0}\left(R_{C} \| R_{L}\right)}{\left(R_{S}+r_{x}+r_{\pi}\right)}=-\frac{100 \times 4.76 k}{2650}
$$

Figure 25.20
$=-177.36$;
$\mathrm{A}_{\mathrm{VO}}=-183.076$
High Frequency Analysis of CC Amplifier.
In Figure 5, the circuit configuration of CC Amplifier or more commonly known as Emitter Follower is given. This has a Voltage Gain of Unity hence it is always used as a Buffer with a very large input impedance and a very low output impedance. Hence emitter follower is ideal for driving variable loads and transmission lines. This also helps isolate the load from the Amplifier Circuit thereby ensuring maximum voltage gain of the Amplifier Circuit. If the load is not isolated then loading will occur and Voltage Gain will fall.

Figure 5 . RC-coupled CCBJT Amplifier

Figure 25.21

The incremental representation of CC BJT Amplifier is given
in Figure 6. In the incremental representation, biasing Battery is treated as short. $\mathrm{C}_{\mathrm{C} 1}, \mathrm{C}_{\mathrm{C} 2}$ and C_{C} are also treated as a short circuit.

Figure 6 . RC-coupled CCBJT Amplifier

Figure 25.22

Replacing BJT by Hybrid- π model we get the incremental representation as shown in Figure 7.

Figure 25.23

By inspection we see that we have capacitances ; C_{π} and C_{μ}. They have their associated open circuit time constants τ_{10} and τ_{20}. For determining these time constants we must know the open circuit resistances seen by C_{π} and C_{μ}.

The equivalent resistance R_{10} is seen by C_{π} can be determined from Figure 8.

Figure 8 . The circuit topology for determining the equivalent resistance seen by Cpi.

Figure 25.24

Total current drawn from the voltage source v_{o} is $\mathrm{i}_{\mathrm{o}}=\mathrm{i}_{\mathrm{x}}+\mathrm{i}_{\pi}$; Where $\mathrm{i}_{\pi}=$

$$
\frac{v_{o}}{r_{\pi}}
$$

Figure 25.25

[^23]$\underline{v_{0}}$
r_{π}

Figure 25.26
$=\mathrm{i}_{\mathrm{x}}\left(\mathrm{r}_{\mathrm{x}}+\mathrm{R}_{\mathrm{S}}\left\|\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{E}}\right\| \mathrm{R}_{\mathrm{L}}\right)-\mathrm{g}_{\mathrm{m}} \times \mathrm{R}_{\mathrm{E}} \times$

$$
\frac{v_{O}}{1}
$$

Figure $\mathbf{2 5 . 2 7}$

Rearranging the terms we get: $\mathrm{v}_{\mathrm{o}} / \mathrm{i}_{\mathrm{x}}=$

$$
\frac{r_{x}+R_{S}\left\|R_{B}+R_{E}\right\| R_{L}}{1+g_{m} R_{E}}
$$

Figure 25.28

Therefore R_{10}

$$
=r_{\pi}| |\left(\frac{r_{x}+R_{S}| | R_{B}+R_{E}| | R_{L}}{1+g_{m} R_{E}}\right)
$$

Figure 25.29

Substituting the parameter and element values we get : R_{10}

$$
=2.5 k\left\|\left(\frac{100+50+2 k}{1+\frac{2000}{25}}\right)=2.5 k\right\|\left(\frac{2150}{81}\right)=26.54 \Omega
$$

Figure 25.30

The equivalent resistance seen by C_{μ} is R_{20}. This equivalent resistance can be determined by the Figure 9.

Figure 9. The equivalent circuit from which R20, the resistance seen by Cmu, is determined.

Figure 25.31

By inspection we see that there are two currents flowing out of the source v_{0}. The two currents are i_{x} and i_{π}.

The current i_{x} sees the resistance ($r_{x}+R_{S} \| R_{B}$).
The current i_{π} sees the resistance $\left[r_{\pi}+\left(1+\beta_{f o}\right) R_{E} \| R_{L}\right]$.
Therefore $\mathrm{R}_{20}=\left(\mathrm{r}_{\mathrm{x}}+\mathrm{R}_{\mathrm{S}} \| \mathrm{R}_{\mathrm{B}}\right) \|\left[\mathrm{r}_{\pi}+\left(1+\beta_{\mathrm{fo}}\right) \mathrm{R}_{\mathrm{E}} \| \mathrm{R}_{\mathrm{L}}\right]$
Substituting the parameter values and element values in the above equation we get:
$\mathrm{R}_{20}=(100+50)| |[2500+(1+100) 2000]=150 \Omega$
Therefore $\tau_{10}=\mathrm{R}_{10} \times \mathrm{C}_{\pi}=26.54 \Omega \times 29 \mathrm{pF}=769.66 \mathrm{psec}$.
And $\tau_{20}=\mathrm{R}_{20} \times \mathrm{C}_{\mu}=150 \Omega \times 5 \mathrm{pF}=750 \mathrm{psec}$.
Therefore $\mathrm{f}_{\mathrm{h}}=$

$$
\frac{1}{2 \pi\left(\tau_{10}+\tau_{20}\right)}=\frac{1}{2 \pi(1.51966 \mathrm{nsec})}=104.73 \mathrm{MHZ}
$$

Figure 25.32

Referring to Figure 6, we can determine the midband overall gain:

$$
A_{v s o}=\frac{\left(1+\beta_{f o}\right)\left(R_{E} \| R_{L}\right)}{R_{S}+r_{x}+r_{\pi}+\left(1+\beta_{f o}\right)\left(R_{E} \| R_{L}\right)}
$$

Figure 25.33
≈ 1
Here we have assumed that loading by R_{B} has been removed by boot-strapping technique. As can be seen from the formula above, the internal gain and overall gain including R_{S} is the same.

Determination of the output impedance of CC Amplifier:
Determination of the output impedance of CE and CB is quite straight forward.
$\mathrm{R}_{\text {out }}=$

$$
\frac{1}{h_{o e}}
$$

Figure 25.34
in CE Amplifier. The default value of

$$
\frac{1}{h_{o e}}
$$

Figure 25.35
$=40 \mathrm{k}$.
$\mathrm{R}_{\text {out }}=$

$$
\frac{1}{h_{o b}}
$$

Figure 25.36
in CB Amplifier. The default value of

$$
\frac{1}{h_{o b}}
$$

Figure 25.37
$=2 \mathrm{M}$.
For CC amplifier we will have to go to the incremental model with source inactivated and a source v_{o} applied at the output pair of nodes as shown in Figure 10:

Figure 10 . The incremental circuit for determining the output impedance of CC Amplifier.

Figure 25.38

By inspection we see that output current from the applied source is flowing through three paths:

Through R_{E} we have i_{e} flowing.
Through ($r_{\pi}+r_{x}+R_{S} \| R_{B}$) we have i_{b} (controlling current) flowing.
Through controlled source we have $\beta_{\mathrm{fo}} \mathrm{i}_{\mathrm{b}}$ flowing.
Hence total current $\mathrm{i}_{\mathrm{o}}=\mathrm{i}_{\mathrm{e}}+\mathrm{i}_{\mathrm{b}}+\beta_{\mathrm{fo}} \mathrm{i}_{\mathrm{b}}$
$=\mathrm{v}_{\mathrm{o}}($

$$
\left.\frac{1}{R_{E}}+\frac{1}{r_{\pi}+r_{x}+R_{S}}+\frac{\beta_{f o}}{r_{\pi}+r_{x}+R_{S}}\right)=
$$

Figure 25.39
v_{o} (

$$
\left.\frac{1}{R_{E}}+\frac{1+\beta_{f o}}{r_{\pi}+r_{x}+R_{S}}\right)
$$

Figure 25.40

Therefore $R_{\text {out }}$ as seen by v_{o} is

$$
R_{E} \| \frac{\left(r_{\pi}+r_{x}+R_{S}\right)}{\left(1+\beta_{f o}\right)}
$$

Figure 25.41
\approx

$$
\frac{1}{g_{m}}
$$

Figure 25.42
$=25 \Omega$.
Hence output impedance of CC Amplifier is 25Ω but input impedance is $200 \mathrm{k} \Omega$. Therefore CC Amplifier acts as voltage controlled voltage source with unity voltage gain hence it is ideal for BUFFER applications as well as for driving transmission lines and for driving variable loads.

In Table 1, we make a comparative study of the performance parameters of the three configurations of BJT Amplifier.

Table 1. Comparative study of the performance parameters of CE,CB and CC amplifier.

	A VSO $_{\text {(Overall gain) }}$	A Vo (Internal gain) $^{\text {Band width }}$	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{\text {out }}$	
CE	-177.36	-183.07	1.2 MHz	2.6 k	$40 \mathrm{k}=1 / \mathrm{h}_{\mathrm{oe}}$
CB	63.4	190.4	6.5 MHz	25Ω	$2 \mathrm{M}=1 / \mathrm{h}_{\mathrm{ob}}$
CC	0.987	0.987	104.73 MHz	204.6 k	25Ω

Table 25.1
As can be seen from the Table 1, the internal gain and overall gain are different only in CB. In the remaining two configurations the gains are approximately the same.

Also Open Circuit Time Constant method gives a conservative value of upper - 3 dB frequency and Short Circuit Time Constant method also gives a conservative value of lower -3 dB frequency. The actual BW is 1.1 times larger than the calculated values.

Chapter 26

AE Lecture 5 Part C_continued_Simulated Frequency Domain Study of CB,CE,Emitter Degenerate Amplifier and CC Amplifier.'

AE_Lecture 5_Part C_continued_Simulated Frequency Domain Study of CB,CE,Emitter Degenerate Amplifier and CC Amplifier.

In this Lecture, we carry out the frequency domain studies of Common Base, Common Emitter, Emitter Degenerate Amplifier and Common Collector Amplifier. These studies had been carried in Laboratory also. We find that the frequency response Band Width of the two studies have a remarkable correspondence. The simulation has been carried out using Multisim Simulation Software marketed by National Instruments.

Figure 1. Gain Magnitude Frequency Response Curve of CE Amplifier. y-axis: Gain Magnitude in dB;
x-axis: Frequency Plot in logithmic Scale;

Figure 26.1

[^24]

Figure 1.b. Phase of Gain vs Frequency of CE Amplifier.
y-axis: Phase of Gain in dB;
x-axis: Frequency plot on logrithmic scale.

Figure 26.2

Common Emitter Circuit Schematics is given in Figure 1c. The Gain Magnitude Plot and Gain Phase plot are given in Figure 1 and 1b.

By inspecting Figure 1 we find a Band-width of 5 Mhz . The midband gain is 43 dB and -3 dB frequencies are i.e. 40 dB frequencies are 10 Hz and 5 Mhz .

Figure 1.c. Circuit Schematics of CE Amplifier.

Figure 26.3

Figure 2. Gain Magnitude Frequency Response Curve of Emitter Degenerate Amplifier.
y-axis: Gain Magnitude in dB;
x-axis: logrithmic frequency plot in Hz ;

Figure 26.4

AMPLIFIER AND CC AMPLIFIER.
Emitter Degenerate Circuit Schematics is given in Figure 2c. The Gain Magnitude Plot and Gain Phase plot are given in Figure 2 and 2b.

By inspecting Figure 2 we find a Band-width of 10 Mhz . The midband gain is 7 dB and -3 dB frequencies are i.e. 4 dB frequencies are (less than 1 Hz) and 10 Mhz .

Emitter Degenerate Amplifier is a negative feedback amplifier with current-series feedback. The improvement is little less than $2 \times$.

[^25]
Figure 26.5

Figure 2.c.Circuit Schematics of Emitter Degenerate Ampl.

Figure 26.6

Figure 3. Gain Magnitude Frequency Response Curve of CB Amplifier y-axise: Gain Magnitude in dB; x-axis: Frequency Plot on logrithmic scale;

Figure 26.7

Figure 3.b. Phase of Gain vs frequency plot of CB Amplifier.
y-axis: Phase of Gain in degrees; x-axis: frequency plot on logrithmic scale.

Figure 26.8

Common Base Circuit Schematics is given in Figure 3c. The Gain Magnitude Plot and Gain Phase plot are given in Figure 3 and 3b.

By inspecting Figure 3 we find a Band-width of 5 Mhz . The midband gain is 43 dB and -3 dB frequencies are i.e. 40 dB frequencies are 500 Hz and 5 Mhz .

Figure 26.9

AC Analysis

Figure 4. Gain Magnitude Plot in dB of CC Amplifier. y-axis: Gain Magnitude in dB; x-axis: Frequency plot on logrithmic scale.

Figure 26.10

Common Collector Circuit Schematics is given in Figure 4c. The Gain Magnitude Plot and Gain Phase plot are given in Figure 4 and 4 b.

By inspecting Figure 1 we find a Band-width of 4 GHz . The midband gain is 0 dB and -3 dB frequencies are (less than 1 Hz) and 4 GHz .

Figure 4.b. Phase of Gain of CC Amplifier vs Frequency.
 y-axis: Phase of Gain in degrees; x-axis: Frequency Plot on logrithmic scale.

Figure 26.11

Figure 26.12

CHAPTER 26. AE_LECTURE 5_PART C_CONTINUED_SIMULATED

Chapter 27

AE_Lecture 5_Part C_continued_High frequency analysis of CB.'

AE_Lecture 5_Part C_continued_High frequency analysis of CB.
In this continuation of high frequency application, we use the same self-biasing configuration to achieve CB, CE and CC amplifier. These three Circuit Configuration have the same Q point $\left(\mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CEQ}}\right.$ $=5 \mathrm{~V}$). Hence they have the same Hybrid- π parameters in all three configurations namely:
β fo $=$ incremental short circuit gain at low frequencies $=100$;
Transit frequency given $=\mathbf{f} \mathbf{T}=200 \mathrm{MHz}$;
At the \mathbf{Q} point, $\mathbf{C o b}=\mathbf{C} \mu=\mathbf{C} \mathbf{j B C}=$

$$
C_{c}
$$

Figure 27.1
$=5 \mathrm{pF}$;
Circular Transit Frequency $=\omega \mathbf{T}=$

$$
\frac{1}{\tau_{t}}=
$$

Figure 27.2

1.2566×109 radians/second;

Here it may be noted that reciprocal of frequency gives Time Period of repetition T but reciprocal of circular frequency always gives the Time -Constant. In filters the reciprocal of circular cut-off frequencies gives the RC time constant of the associated RC configuration. Here the reciprocal of the circular transit frequency gives the transit time across the narrow base of the BJT .

[^26]Transit Time $=$

$$
\tau_{t}=\frac{1}{1.2566 \times 10^{9}}=
$$

Figure 27.3

$0.8 n s e c$;

Trans-conductance $=\mathbf{g} \mathbf{m}=$

$$
\frac{I_{C}}{V_{T}}=
$$

Figure 27.4

40mSiemens(or $\mathbf{m S}$) $=$

$$
\frac{1}{r_{m}}
$$

Figure 27.5
$=1 / 25 \Omega$;
Whereas

$$
r_{e}=\frac{V_{T}}{I_{E}}=\frac{25 m V}{\frac{1 m A}{\alpha_{F}}} \approx 25 \Omega
$$

Figure 27.6

$$
\frac{C_{\mu}+C_{\pi}}{g_{m}}=0.8 \text { nsec }
$$

Figure 27.7

Therefore

$$
C_{\pi} \times 25=0.8 \times 10^{-9}-5 \times 10^{-12} \times 25=0.725 \text { nsec }
$$

Figure 27.8

Therefore

$$
C_{\pi}=C_{e}=29 p F
$$

Figure 27.9

Base spreading resistance is given as $\mathbf{r x}=100 \Omega$;

$$
r_{\pi}=\frac{\beta_{f o}}{g_{m}}=2.5 \mathrm{k} \Omega
$$

Figure 27.10

Figure 1 . RC-coupled CE BJT Amplifier

Figure 27.11

Self -biasing configuration is connected as CE BJT Amplifier by the use of Emitter bypass capacitance C_{E}.

The circuit elements are given as :
$\mathrm{R}_{\mathrm{C}}=5 \mathrm{k}, \mathrm{R}_{\mathrm{E}}=2 \mathrm{k}, \mathrm{R}_{1}=200 \mathrm{k}, \mathrm{R}_{2}=60 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{R}_{\mathrm{S}}=50 \Omega$,
$\mathrm{R}_{\mathrm{B}}=\mathrm{R}_{1}\left\|\mathrm{R}_{2}=46 \mathrm{k}, \mathrm{R}_{\mathrm{L}}{ }^{\prime}=5 \mathrm{k}\right\| 100 \mathrm{k}=4.76 \mathrm{k}$;
The same configuration can be connected as CB Amplifier by the use of Base bypass capacitance C_{B} as shown in the Figure 3. The same configuration can be connected as CC Amplifier by the use of Collector bypass capacitance C_{C} as shown in the Figure 4.

Figure 2. RC-coupled CE BJT Amplifier

Figure 3 . RC-coupled CB BJT Amplifier

Figure 4 . RC-coupled CC BJT Amplifier

Figure 27.12

High Frequency Analysis of CB Amplifier:
Under incremental condition (refer to Figure 3),
C_{B} shorts out R_{1} and R_{2}. Coupling capacitors appear as short circuit. Battery V_{CC} appears as short circuit. Hence the incremental circuit of CB amplifier is the following as shown in Figure 5 :

Figure 5. Incremental circuit representation of CB Amplifier.

Figure 27.13

For circuit analysis we replace CB configuration of BJT with its corresponding T-Model as shown in Figure 6.

Figure 6 . Incremental circuit representation of CB Amplifier with T-Model of CB BJT.

Figure 27.14

In Figure 6, $\mathrm{b}^{[\mathrm{U}+05 \mathrm{~F} 3]}$ is the active base region and b is the external base terminal. The T-Model is further re-oriented as two input and output loop as shown in Figure 7. $\mathbf{\alpha f o}$

Figure 7. Incremental circuit representation of CB Amplifier with input-output loop.

Figure 27.15

The T-Model of CB BJT is further simplified into two non-interacting loops as shown in Figure 8.

Figure 8 . Incremental circuit representation of CB Amplifier
with non-interacting loop

Figure 27.16

Base spreading resistance r_{x} is reflected as $\left(1-\alpha_{\mathrm{fo}}\right) \mathrm{r}_{\mathrm{x}}$ in input loop and in output loop it is not reflected since it is controlled loop. Since $\left(1-\alpha_{\mathrm{fo}}\right) \mathrm{r}_{\mathrm{x}}$ is a negligible resistance hence in input loop it has been completely neglected as a result the input and output loops are completely non-interacting. This is the reason reverse transmission factor is almost non-existent in CB BJT and it is a near-Unilateral device. Hence it is very suitable for RF applications. RF Amplifier are very prone to parasitic oscillations. But if we use a Unilateral Active Device the possibility of parasitic oscillation is minimal.

Referring to Figure 8, we see there are two capacitors Ce and Cc. Both have two time-constants associated with them.
R_{10} as seen by Ce is $\mathrm{r}_{\mathrm{e}}\left\|\mathrm{R}_{\mathrm{E}}\right\| \mathrm{R}_{\mathrm{S}}=25 \Omega$
Therefore time constant associated with $\mathrm{Ce}=\tau_{10}=29 \mathrm{pF} .25 \Omega=725 \mathrm{psec}$.
R_{20} as seen by Cc is $\mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{L}}=4.76 \mathrm{k} \Omega$
Therefore time constant associated with $\mathrm{Cc}=\tau_{20}$
$=5 \mathrm{pF} .4 .76 \mathrm{k} \Omega=2380 \mathrm{psec}$.

$$
\omega_{h}=\frac{1}{\tau_{10}+\tau_{20}}=2 \pi \times 6.489 \mathrm{MHz}
$$

Figure 27.17

Therefore higher cut-off frequency $=\mathrm{f}_{\mathrm{h}}=6.489 \mathrm{kHz}$.

Midband Voltage Gain w.r.t. source (shown previously)
$=$

$$
\frac{\alpha_{f o} R_{C} \| R_{L}}{\left(R_{S}+r_{e}\right)}
$$

Figure 27.18
$=$

$$
\frac{4760 \times 0.99}{50+25}
$$

Figure 27.19
$=63.4$
Internal Voltage Gain $=$

$$
\frac{\alpha_{f o} R_{C} \| R_{L}}{\left(R_{S}+r_{e}\right)}=190.4
$$

Figure 27.20

Note these are non-inverting gains.
In the lab, we will get vastly different gains by including source resistance and neglecting source resistance. So while making voltage gain measurement we have to be careful as to which gain we are measuring.

Chapter 28

AE_Lecture5_PartD_Bootstrapping and Darlington Pair.'

AE_LECTURE9_Bootstrapping \& Darlington Pair Configuration of BJT.
For instrumentation application and particularly for constructing Vacuum Tube VoltMeter(VTVM) typ meters the input stage must offer a very large input impedance of the order of tens of megohms. To achieve this goal we go for emitter follower but emitter follower uses self biasing and the potential divider network made of R1 and R2 considerable load the input impedance of emitter follower thereby making the goal of high input impedance of the order of tens of megaohms unattainable. To overcome this problem we resort to Bootstrapping.

BOOT STRAPPING TECHNIQUE for improving the input impedance of EMITTER FOLLOWER.

[^27]

Figure 1. The conventional emitter follower circuit.

Figure 28.1

$$
R_{i n}=r_{x}+r_{\pi}+\left(1+\beta_{f o}\right) R_{E}
$$

Figure 28.2

But

$$
R_{1} \| R_{2} \text { loads } R_{\text {in }} \text { and the advantage }
$$

Figure 28.3
is lost .We use bootstrapping to maintain high

$$
R_{i n}
$$

Figure 28.4

Figure 2. An emitter follower circuit with boot-strapping.

Figure 28.5

A resistance R_{3} is connected between I / P and O / P of the amplifier. Here O / P connection is through a coupling capacitance hence it is only AC connection and not DC therefore Q point remains undisturbed. R_{1} and R_{2} provide the base biasing as before.

By Miller Transformation:-

Figure 3. Miller Transformation of R3 to I/P node pair and O / P node pair.

Figure 28.6

Now

$$
\left(\frac{R_{\mathrm{s}}}{1-A_{V}}\right) \gg R_{i n}
$$

Figure 28.7

So high input impedence of

$$
R_{i n}=r_{x}+r_{\pi}+\left(1+\beta_{f o}\right) R_{E}
$$

Figure 28.8
is fully realized without being loaded by the biasing network consisting of

R_{1}

Figure 28.9

$$
R_{2} \text { and } R_{3}
$$

Figure 28.10

Here the Miller Transformation of R_{3} to the output node pair is

$$
\frac{R_{3} \times A_{V}}{\left(A_{V}-1\right)}
$$

Figure 28.11

This is a negative resistance but it does not have a deleterious effect on the performance of emitter follower. It is a vey large negative resistance hence it is very small negative conductance. This in parallel with R_{E} gives a net positive resistance only. Hence it does not make the circuit oscillatory.

By the use of Darlington Pair we can achieve super beta transistor

Figure 4. Two transistors connected as a Darlington Pair so as to give a overall short circuit current as te product of the individual short circuit current gains.

Figure 28.12

$$
I_{c}{ }^{*}=\beta_{F 1} I_{B 1}+\beta_{F 2}\left(1+\beta_{F 1}\right) I_{B 1}
$$

Figure 28.13

$$
\frac{I_{c}^{*}}{I_{B 1}}=\left(\beta_{F 1}+\beta_{F 2}+\beta_{F 1} \beta_{F 2}\right)=\beta \text { composite }
$$

Figure 28.14

Now if

$$
\beta_{F 2}=100, \quad \beta_{F 1} \text { will be almost } 10 .
$$

Figure 28.15
$\therefore \beta_{\text {composite }}=$

Figure 28.16
$\mathrm{Q}_{1}->\beta_{1}=10 \times \mathrm{Q}_{2}->\beta_{2}=100$
$\equiv 1,000$.

Figure 28.17

Figure 28.18

Figure 5. Beta dependence on operating current

$$
I_{C Q}
$$

Figure 28.19

As seen in the curve, Emitter Injection Efficiency (γ) deteriorates at low operating currents below 0.5 mA due to recombination current within EB depletion layer.

Emitter Injection Efficiency (γ) deteriorates at high operating currents above 5 mA due to base conductivity modulation.

Hence by this technique, a Darlington Pair Composite Transistor short circuit current gain can never be better than 1000 .

If

$$
\beta_{F}
$$

Figure 28.20

β_{f}

Figure 28.21
better than 10,000 is to be realized then we will have to go for the fabrication of super beta transistor by realizing ultra thin base layer in vertical NPN transistor. By the use of Ion-Implantation as thin as 10nm base width is being realized to date.

Chapter 29

AE_Lecture6_Analysis of CASCODE AMPLIFIER.'

AE_LECTURE 6_Analysis of CASCODE AMPLIFIER

$\overline{\mathrm{C}}$ ASCODE AMPLIFIER- This is a form of composite transistor where CE and CB have been cascaded. By using the composite form we achieve best of both the circuit configurations namely we get a moderate input impedance and high voltage gain of CE configuration and almost near unilaterality, very large output impedance, large output voltage swing limited by $\mathrm{BV}_{\mathrm{CBO}}$ and much larger Band Width of CB configuration. Because of near uni-laterality on account of near zero reverse transmission factor, this CASCODE is very suitable RF Amplifier applications. This configuration is also suitable for constant current drive as required in generating SAW TOOTH WAVEFORM.

[^28]

Figure 1.The Circuit Schematic of Cascode Amplifier with self-biasing.

Figure 29.1

This CASCODE configuration has a self biasing for Q point stabilization. Both Transistors are in forward active mode. Q_{1} is connected in CE configuration under signal condition and Q_{2} is in CB configuration under signal condition.
C_{1} provides the ground to Q_{2} under signal condition.
C_{2} is the coupling capacitor and C_{3} provides the by-pass capacitor of emitter resistance.
INCREMENTAL MODEL

Figure 2. Midfrequency Incremental model of the
Cascode Amplifier with BJT not replaced by its
incremental model.

Figure 29.2

Effectively we obtain CE configuration followed by CB configuration hence we call it CE-CB cascade. Overall Reverse transmission factor $=\mathrm{h}_{\mathrm{re}} . \mathrm{h}_{\mathrm{rb}}$ $=$

$$
\left(\frac{r_{\pi}}{r_{\mu}}\right) \times\left(\frac{r_{x}}{r_{c}}\right)
$$

Figure 29.3
$=10^{-4} \times 10^{-5}=10^{-9}=$ this provides the near-unilaterality property to CASCODE configuration making it suitable for RF applications.

Overall $R_{\text {out }}=1 / h_{\text {ob }}=2 M$
Overall $\mathrm{R}_{\text {in }}=\mathrm{h}_{\mathrm{ie}}=\mathrm{r}_{\mathrm{x}}+\mathrm{r}_{\pi}=(100+2.6 \mathrm{k} \Omega)$
Frequency response of $\mathrm{CB} \gg$ Frequency response of CE
CE configuration faces a load which is $R_{\text {in }}$ of CB which is r_{e}. Hence Miller Muliplication factor is only $1+1$ hence Miller Capacitance is much lower thereby boosting the frequency response of CASCODE configuration.

INCREMENTAL MODEL

Figure 3. The incremental model of Cascode Amplifier with CE BJT being replaced by Hybrid-pi Model and CB BJT being replaced by T-Model. This is high frequency Model.

Figure 29.4
$\mathrm{R}_{\mathrm{s}}=1 \mathrm{k} \Omega, \beta_{\mathrm{fo}}=100, \mathrm{r}_{\mathrm{x}}=0.1 \mathrm{k}, \mathrm{C}_{\mu}=2 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{g}_{\mathrm{m}}=40 \mathrm{mS}, \mathrm{r}_{\pi}=2.5 \mathrm{k}, \mathrm{C}_{\pi}=100 \mathrm{pF}$

$$
g_{m}=\frac{I_{C}}{V_{T}}=\frac{1}{25}=40 \mathrm{mS} ; I_{C}=g_{m} V_{T}=25 \mathrm{mV} \times 40 \mathrm{mS}=1 \mathrm{~mA}
$$

Figure 29.5
\qquad
\qquad

$$
\mathrm{r}_{\pi}=\frac{\beta_{o}}{g_{m}}=\frac{\beta_{o} \times V_{T}}{I_{C}}=\frac{100 \times 25 \mathrm{mV}}{1 \mathrm{~mA}}=2.5 \mathrm{k}
$$

Figure 29.6

$$
r_{s}=\frac{V_{T}}{I_{E}}=25 \Omega ; \alpha_{f o}=0.99 ; \beta_{f o}=\frac{\alpha_{f o}}{1-\alpha_{f o}}=\frac{0.99}{1-0.99}=99 \sim 100
$$

Figure 29.7
\qquad
\qquad

$$
C_{\pi}=100 p F=C_{s} ; C_{\mu}=C_{b o}=2 p F
$$

Figure 29.8

$$
\omega_{T}=\left(\frac{g_{m}}{C_{\pi}+C_{\mu}}\right)=\frac{0.04}{102 \times 10^{-12}} \frac{\mathrm{rad}}{\mathrm{sec}}=\frac{0.04}{102} \times 10^{12} \frac{\mathrm{rad}}{\mathrm{sec}}
$$

Figure 29.9

$$
\omega_{T}=\frac{040000}{102} \times 10^{6} \frac{\mathrm{rad}}{\mathrm{sec}}=400 \mathrm{M} \frac{\mathrm{rad}}{\mathrm{sec}}
$$

Figure 29.10

$$
f_{T}=\frac{400}{2 \pi} M H z=63.66 \mathrm{MHz}
$$

Figure 29.11

AT MID FREQUENCIES

Figure 4. Midfrequency incremental model of CASCODE AMPLIFIER.

Figure 29.12

$$
v_{2}=-R_{L}\left(\alpha_{f} i_{s}\right) ; i_{s}=\frac{v_{1}}{r_{s}} ;
$$

Figure 29.13
\qquad
\qquad

$$
v_{1}=-r_{s}\left(100 i_{1}\right)
$$

Figure 29.14

$$
i_{1}=\frac{v_{s}}{R_{s}+r_{x}+r_{\pi}}=\frac{v_{s}}{1 k+0.1 k+2.5 k}=\left(\frac{v_{s}}{3.6 k}\right)
$$

Figure 29.15
$\therefore v_{1}=-(100)\left(\frac{v_{s}}{3.6 k}\right)(25 \Omega)$

Figure 29.16

$$
\left(\frac{v_{1}}{v_{s}}\right)=A_{v o 1}=\frac{-(100)(25)}{3600}=\frac{-2500}{3600}=-0.715
$$

Figure 29.17

$$
v_{2}=-\left(\alpha_{f}\right)\left(R_{L}\right)\left(-\frac{v_{1}}{r_{s}}\right)
$$

Figure 29.18
$\therefore \frac{v_{2}}{v_{1}}=\frac{\left(\alpha_{f}\right)\left(R_{L}\right)}{r_{s}}=\frac{(0.99)(2000)}{25}=79.2$

Figure 29.19
\qquad
\qquad

$$
\therefore A_{v o 2}=79.2
$$

Figure 29.20

$$
\therefore A_{v o}=-(0.715)(79.2)=-56.6
$$

Figure 29.21

$$
A_{v o}=\frac{-\beta_{o} R_{L}}{R_{S}+r_{x}+r_{\pi}}=\frac{-(100) R_{L}}{(3600)}
$$

Figure 29.22

Midband gain of cascade \sim a single stage CE amplifier with a load resistance of 2 k .
BW calculations
The midband gain of CE stage $=-\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{e}}=-1$
Therefore Miller Capacitance $=\mathrm{C}_{\mu}[1-(-1)]=2 \mathrm{C}_{\mu}$
Therefore total input Capacitance $=\mathrm{C}_{\pi}+\mathrm{C}_{\mu}\left(1-\mathrm{A}_{\mathrm{V}}\right)=100+8=108 \mathrm{pF}$
There is very little Miller Multiplication of C_{μ}.
R_{eq} of C_{M} (Miller Capacitance) is $=$

$$
r_{\pi}| |\left(R_{S}+r_{x}\right)=(2.5 k)| |(1.1 k)=\frac{(2.5)(1.1)}{(2.5+1.1)}=0.763 k
$$

Figure 29.23

$$
\tau_{10}=C_{M} R_{s}=(108 p F \times 0.763 k)=82.5 n s
$$

Figure 29.24

$$
\therefore \omega_{h}=\frac{1}{82.5 \mathrm{~ns}}=0.0121 \frac{\mathrm{Grad}}{\mathrm{sec}}
$$

Figure 29.25

$$
f_{h}(\text { for } C E)=\frac{12.1}{2 \pi} M H z=1.93 M H z
$$

Figure 29.26

The BW of common base is much larger.

$$
\omega_{h}(\text { for } C B)=\frac{1}{\tau_{1}+\tau_{2}}=\frac{1}{C_{e} r_{s}+C_{b o} R_{L}}
$$

Figure 29.27
\qquad
\qquad

$$
=\frac{1}{100 \times 10^{-12} \times 25+4 \times 10^{-12} \times 2000}
$$

Figure 29.28

$$
=\frac{1}{2.5 \times 10^{-9}+8 \times 10^{-9}}
$$

Figure 29.29
\qquad
\qquad

$$
=\frac{1}{10.5 \times 10^{-9}}
$$

Figure 29.30
\qquad
\qquad

$$
=\frac{1}{1.05 \times 10^{-8}}
$$

Figure 29.31
\qquad
\qquad

$$
=95.2 \mathrm{M} \frac{\mathrm{rad}}{\mathrm{sec}}
$$

Figure 29.32

$$
f_{h}(C B)=15 M H z
$$

Figure 29.33

Overall BW of Cascode $=1.93 \mathrm{Mhz}$
Exact analysis gives the same result.

$$
A_{V}(s)=\frac{-k\left[s-(0.2+j 0.98) \frac{\mathrm{Grad}}{\mathrm{sec}}\right]\left[s-(0.2-j 0.98) \frac{\mathrm{Grad}}{\mathrm{sec}}\right]}{\left[s+0.0124 \frac{\mathrm{Grad}}{\mathrm{sec}}\right]\left[s+0.1 \frac{\mathrm{Grad}}{\mathrm{sec}}\right]\left[s+0.4 \frac{\mathrm{Grad}}{\mathrm{sec}}\right]\left[s+3.26 \frac{\mathrm{Grad}}{\mathrm{sec}}\right]}
$$

Figure 29.34

Four poles because there are $\mathrm{C}_{\mu}, \mathrm{C}_{\mathrm{e}}, \mathrm{C}_{\pi}, \mathrm{C}_{\mathrm{bo}}$.
There are two zeroes which are complex conjugate.
If CB stage was replaced by 2 k to obtain the same gain the Miller Multiplication would have increased and BW fallen to 491 kHz .

$$
\tau=\left(r_{\pi_{1}} \| R_{s}+r_{x}\right)\left[C_{\pi}+C_{\mu}\left(1+g_{m} R_{L}\right)\right]=324 \mathrm{nsec}
$$

Figure 29.35

$$
\omega_{h}=\frac{1}{324} \frac{G r a d}{\sec }
$$

Figure 29.36
$\mathrm{f}_{\mathrm{h}}=491 \mathrm{kHz}$
(1)Large gain x BW or large GBP
(2)Output Voltage swing is limited by $\mathrm{BV}_{\mathrm{CBO}}$ and not BV CEO.

Applications:-
(1) Wide band video amplifier(TV \& FM Radio)
(2)Wide Band Amplifier used in RF communication,
(3)Near ideal current sources and in high gain amplifiers.
(4)Current Amplification factor is increased $\left(\beta_{\mathrm{fo}}+1\right)$.
(5)Used in high performance differential amplifers which is the building block of op amps. This enables very high gain \& high CMRR.
(6) We can realize near ideal current sources.
(7)Much higher B.W.

Chapter 30

AE_Lecture7_Multistage Amplifier

AE LECTURE7 MULTISTAGE AMPLIFIERS

In real world, a variety of combination of performance specifications have to be achieved.
One such combination as required for an op-amp is:

$$
R_{\text {in }}=\infty ; A_{V_{n}}=\infty ; R_{\text {out }}=0 ; B W=\infty
$$

Figure 30.1

This cannot be met by a single stage amplifier. By cascading several stages we achieve it .

Figure 1. Block Diagram of Oprational Amplifier which is multi-stage amplifier.

Figure 30.2

Figure 1. Block Diagram of an Op Amp which is a cascaded amplifier.
While designing multi-stage amplifier, if we have capacitance coupling then it becomes easier to design since there is no DC interaction.

But in a directly coupled multistage amplifier since we have DC interaction hence it is difficult to design.

[^29]A direct coupled amplifier implies DC Amplifier whereas a capacitive coupled amplifier implies AC Amplifier as RC-coupled Amplifier is.

COMMONLY USED CASCADED AMPLIFIER

Figure 2. A multistage amplifier used in Instrumentation Application.

Figure 30.3

Figure 3. The Block Diagram of commonly used Cascaded Amplifier.

Figure 3. Circuit Diagram of Instrumentation Amplifier.

Figure 30.4
v
Figure 3. Actual implementation of Instrumentation Amplifier using a cascade of CS-CECC.

Figure 4. Mid-frequency incremental model of the cascaded amplifier shown in Figure 3.

Figure 30.5

Figure 4. EQUIVALENT CIRCUIT of the above cascade at MID FREQUENCY.
In Multi-stage amplifiers we have the problem of BAND WIDTH SHRINKAGE.
In Figure 5, the Bode Plot of single stage amplifier is shown. As can be seen the frequency response is that of Band-Pass filter with lower -3 dB frequency being f_{L} and upper -3 dB being f_{H}. The skirt of the response is $-20 \mathrm{~dB} /$ decade at the higher end and $+20 \mathrm{~dB} /$ decade at lower end. The mid-band gain or flat band-gain is 20 dB .

If two such identical Amplifiers are cascaded in a non-interacting fashion then overall gain will be +40 dB but the BW will shrink as shown in Figure 6. The skirts are steeper: $40 \mathrm{~dB} /$ decade at lower end and $-4-\mathrm{dB} /$ decade at higher end. The upper cut-off frequency now is
$f_{H}=f_{H}{ }^{\prime} \times$ Sn where $S n=$ shrinkage factor and $f_{L}=f_{L}{ }^{\prime} / S n$ as shown in Figure 6.

10
Fig. 5 . Frequency Response of a single stage amplifier with a skirt of $+20 \mathrm{~dB} /$ decade below lower -3 dB freq. and $-20 \mathrm{~dB} /$ decade above upper -3 dB frequency.

Figure 30.6

Fig. 6. Gain Magnitude-Frequency Response of a single stage and double stage amplifier

Figure 30.7

From Figure 6 it is clear that single stage amplifier has a mid-band gain of 20 dB and -3 dB BW of $\left[\mathrm{f}^{\prime}{ }_{\mathrm{H}}-\mathrm{f}^{\prime}{ }_{\mathrm{L}}\right.$] whereas a double stage amplifier has a mid-band gain of 40 dB and -3 dB BW is $\left[\mathrm{f}_{\mathrm{H}}-\mathrm{f}_{\mathrm{L}}\right]$ where $\left[\mathrm{f}_{\mathrm{H}}-\mathrm{f}_{\mathrm{L}}\right]=\mathrm{f}{ }^{\prime}{ }_{\mathrm{H}} \times \mathrm{S}_{2}-\mathrm{f}{ }_{\mathrm{L}} / \mathrm{S}_{2}$ and $\mathrm{S}_{2}=\sqrt{ }\left(2^{1 / 2}-1\right)=0.64=$ shrinkage factor of a double stage amplifier.

$$
\text { Band Width Shrinkage Factor }=S_{n}=\sqrt{2^{1 / n}-1}
$$

Figure 30.8

For n stage cascade of identical amplifiers

$$
\left(f_{L}\right)_{\text {overall }}=\frac{f_{L}}{\sqrt{2^{1 / n-1}}}
$$

Figure 30.9

$$
\left(f_{H}\right)_{\text {overall }}=f_{H} \sqrt{2^{1 / n-1}}
$$

Figure 30.10

Where $f_{L}=$ lower -3 dB frequency of single stage and $f_{H}=$ Upper -3 dB frequency of single stage amplifier.

n	1	2	3	4	5
$\sqrt{2^{1 / n}-1}$	1	0.64	0.51	0.44	0.34

Table 30.1
This formula is applicable only if there are identical stages which we cascade in a non interacting manner.

FIGURE 7 Identical Stages Cascade in an non-interacting manner. The non-interacting cascade is achieved by using buffers. In this particular case the shrinkage factor is applicable.

Figure 30.11

If these identical stages are cascaded without buffer then they will interact among themselves and even if they are identical their individual upper - 3 dB frequencies and lower -3 dB frequencies will get dispersed and there are non-identical upper -3dB frequencies

$$
\omega_{h_{1}}, \omega_{h_{2}}, \omega_{h_{3}},-----, \omega_{h_{n}}
$$

Figure 30.12

Then the overall upper -3 dB frequency

$$
\omega_{h}{ }^{\circ}
$$

Figure 30.13

$$
\frac{1}{\omega_{h}{ }^{\circ}}=\sqrt{\frac{1}{\left(\omega_{h_{1}}\right)^{2}}+\frac{1}{\left(\omega_{h_{2}}\right)^{2}}+\frac{1}{\left(\omega_{h_{3}}\right)^{2}}+----+\frac{1}{\left(\omega_{h_{n}}\right)^{2}}}
$$

Figure 30.14

This equation implies that in time domain the overall rise time

$$
t_{r}^{o}=\sqrt{\left(t_{r 1}\right)^{2}+\left(t_{r 2}\right)^{2}+\left(t_{r 3}\right)^{2}+------+\left(t_{r n}\right)^{2}}
$$

Figure 30.15

In case of lower -3 dB frequencies, the individual lower -3 dB frequencies are

$$
\omega_{l_{1}}, \omega_{l_{2}}, \omega_{l_{3}},------, \omega_{l_{n}}
$$

Figure 30.16
and in that case the overall -3 dB frequency is given by the following formula:

$$
\omega_{l}^{o}=\sqrt{\left(\omega_{l_{1}}\right)^{2}+\left(\omega_{l_{2}}\right)^{2}+\left(\omega_{l_{3}}\right)^{2}+---\cdots-\cdots+\left(\omega_{l_{n}}\right)^{2}}
$$

Figure 30.17

This formula implies that overall sag=

Sindividual sags.

Figure 30.18

Therefore for obtaining 10% sag we will have to increase the frequency

$$
f^{*}
$$

Figure 30.19

Hence

$$
f_{L}=\frac{0.1 f^{*}}{\pi}
$$

Figure 30.20
will also increase.
In identical stages with non-interacting cascade shrinkage factor will decide the band-width whereas in interacting cascade the above equations will decide the band-width.

Chapter 31

AE Lecture8 MOSFET \& JFET PartA ${ }^{\perp}$

AE_Lecture8_PartA Static characteristics of FIELD EFFECT TRANSISTORS
A Field Effect Transistor is like a pentode. It is an analogue of pentode. Both are Voltage Controlled Current Sources.

FET is of two types JFET and MOSFET.
JFET is n channel FET known as nJFET and p channel FET known as pJFET.
Similarly MOS is n channel NMOS and p channel PMOS.
MOS can be enhancement mode which is normally-off or depletion mode normally-on device.
So NMOS can be (E)NMOS and (D)NMOS.
PMOS can be (E)PMOS and (D)PMOS.
The following is the circuit diagram of an Amplifier using N-channel JFET:

[^30]

Figure 1. Circuit Set-up for measuring the Static Charactristics of nFET.

Figure 31.1

Measurement of characteristics of N-channel JFET

Figure 2. Static Output Characteristics of nJFET.

Figure 31.2

Figure 2 gives the dc output characteristics nJFET. Note that Gate Voltage is always kept negative so that the gate current is always zero. We indicate the Gate-Drain breakdown also. As gate voltage becomes more negative , Avalanche Breakdown of Gate to Drain Junction takes place earlier.When ($\mathrm{V}_{\mathrm{DS}}-\mathrm{V}_{\mathrm{GS}}$) exceeds V_{P} (Vpinchoff), the channel gets pinched off towards the Drain End and current becomes constant. This is saturation region. The dotted parabola seperates the Ohmic region or Triode Region from Saturation Region or Pentode Region. Here the pinch off voltage is -5 V .

NMOS Enhancement Type

Figure 3. Static Output Characteristics of (E)NMOS.

Figure 31.3

Figure 3 gives the output characteristics of (E)NMOS with a Threshold Voltage of 1V. Therefore when V_{DS} increases and becomes equal to $\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{Th}}\right)$ the channel pinches off near the drain end and current saturates.. As V_{DS} assumes larger values the pinched off region becomes wider, ($\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{Th}}$) drops across the channel and excess part of V_{DS} drops across the pinched off region. Since there is a constant voltage dropping across the channel and since the channel is of constant length hence I_{DS} is constant. But in real life there is a shortening of channel length leading to a slope of the saturated current. This channel length modulation is responsible for a finite output impedance $r_{\text {ds }}$ of the voltage controlled current source modeling (E)NMOS under incremental condition.
\qquad
NMOS Depletion Type

Figure 4.Static Output Characteristics of (D)NMOS.

Figure 31.4

In Figure 4 we give the output characteristics of (D)NMOS. Depletion type device is normally-on device hence it gives a characteristic for positive gate voltage, zero gate voltage and negative voltage. In (D)NMOS when gate voltage becomes equal to Pinch-off voltage then (D)NMOS turns off. Here pinch off voltage is -4 V .

TRANSFER CHARACTERISTICS OF n-channel JFET

Figure 5. Transfer characteristics of nJFET.

Figure 31.5

TRANSFER CHARACTERISTICS OF NMOS

Figure 6. Transfer characteristics of (E)NMOS which is normally off device.

Figure 31.6

TRANSFER CHARACTERISTICS OF NMOS DEPLETION TYPE

Figure 7. Transfer Characteristics of (D)NMOS which is normally on device.

Figure 31.7

Comparing the transfer characteristics of nJFET, (E)NMOS and (D)NMOS as given in Figure 5, 6 and 7 we can say that (D)NMOS is most flexible device from design point of view as it accepts both positive and negative voltages as the gate voltage.

NMOS Transistor (Pentode and Triode Region)

Figure 8. Circuit Set-up to study the Triode and Pentode Region of (E)NMOS.

Figure 31.8

Figure 9. Output Characteristics of (E)NMOS demarcating the TRIODE and PENTODE region.

Figure 31.9

TRIODE REGION:

$$
i_{D}=K_{n}\left(v_{G S}-V_{T N}-\frac{\left(v_{D S}\right)}{2}\right)\left(v_{D S}\right)
$$

Figure 31.10
$\overline{\mathrm{K}}_{\mathrm{n}}=-\overline{\mathrm{K}}_{\mathrm{n}}{ }^{\prime}$ multiplied_by

$$
\left(\frac{W}{L}\right)
$$

Figure 31.11
$\mathrm{K}_{\mathrm{n}}{ }^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}{ }^{\prime \prime}$ \qquad .Kn' ia a transconductance parameter which is fixed for a given technology and cannot be changed by the circuit designer. Whereas $K n=K^{\prime} \times(W / L)=$ this is also a transconductance
parameter but it includes the aspect ration (W/L) of the given MOSFET. The aspect ratio gives the geometry of the device and this is under control of a circuit designer. This second transconductance parameter can be controlled when he is generating the masks for a given circuit or system during ASIC(Application Specefic IC) or SOC(System -on- Chip) design. W is the width of the gate and L is the length of the gate or the length of the channel.

$$
\operatorname{Cox}^{\prime \prime}=\frac{\epsilon_{o x}}{T_{o x}}\left(\frac{F}{c m^{2}}\right)
$$

Figure 31.12

$$
\epsilon_{o x}=\text { oxide permittivity }\left(\frac{\mathrm{F}}{\mathrm{~cm}}\right)=3.9 \times 8.854 \times 10^{-14} \frac{\mathrm{~F}}{\mathrm{~cm}}
$$

Figure 31.13
\qquad
\qquad
$T_{o x}=$ oxide thickness

Figure 31.14

Triode Region exists as long as

$$
\left(V_{G S}-V_{D S}\right) \geq V_{T N}
$$

Figure 31.15

Channel should not pinch off on the drain side.
PENTODE REGION
At

$$
V_{D S}^{*}=V_{G S}-V_{T N}
$$

Figure 31.16
(2)
channel pinches off at drain end. From here onwards current becomes constant or current saturates. Substituting (2) in (1),

$$
I_{D}=K_{n}\left(V_{G S}-V_{T N}-\frac{\left(V_{G S}-V_{T N}\right)}{2}\right)\left(V_{G S}-V_{T N}\right)
$$

Figure 31.17
\qquad
\qquad

$$
I_{D}=K_{n} \frac{\left(V_{G S}-V_{T N}\right)^{2}}{2}
$$

Figure 31.18
\qquad
\qquad

$$
I_{D}=K_{n}^{\square} \frac{W}{L} \frac{\left(V_{G S}-V_{T N}\right)^{2}}{2}
$$

Figure 31.19

$$
\therefore I_{D}=K_{n}^{\square} \frac{W}{L}\left(V_{G S}-V_{T N}\right)^{2}
$$

Figure 31.20

$$
I_{D}=\mu_{n} C_{o x}^{\prime \prime} \frac{w}{L}\left(V_{G S}-V_{T N}\right)^{2}
$$

Figure 31.21

Quadratic Law

$$
I_{D}=\left[C_{o x}^{\prime \prime} W \frac{\left(V_{G S}-V_{T N}\right)}{2}\right]\left[\mu_{n} \frac{\left(V_{G S}-V_{T N}\right)}{L}\right]
$$

Figure 31.22

Where:
$C_{o x}^{\prime \prime} W \frac{\left(V_{G S}-V_{T N}\right)}{2}$ is the average electron charge per unit length in the inversion layer

Figure 31.23

And $\mu_{n} \frac{\left(V_{G S}-V_{T N}\right)}{L}$ is the drift velocity in the channel

Figure 31.24

Pinch Off locus is parabolic

$$
\because I_{D}=\frac{K_{n}\left(V_{D S}^{*}\right)^{2}}{2}
$$

Figure 31.25

For any V_{GS}, at $\mathrm{V}^{*}{ }_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TN}}$ the saturation sets in as the channel gets pinched off at that point. Beyond that point: $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}^{*} \mathrm{DS}+\Delta \mathrm{V}$ and $\mathrm{V}^{*}{ }_{\mathrm{DS}}$ drops across the channel and $\Delta \mathrm{V}$ drops across the depleted region towards the drain end as shown in Figure 11. Since the voltage across the channel is constant at V^{*} DS and since the channel is approximately constant (it shortens slightly as Drain to Source Voltage increases) for practical purposes we assume that the drain current is constant and hence it has saturated. But in practice due to channel length shortening, there is slight increase in drain current with drain to source voltage. Hence output characteristics does have a slope. At higher currents the slope is higher.

Figure 31.26

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TN}}=1 \mathrm{~V} \\
& \mathrm{~K}_{\mathrm{n}}=25 \mu \mathrm{~A} / \mathrm{V}^{2}
\end{aligned}
$$

$$
i_{D}=K_{n} \frac{\left(V_{G S}-V_{T N}\right)^{2}}{2}
$$

Figure 31.27

Figure 11. Physical mechanism of curent saturation after the channel gets pinched off at drain end. Drain Curent continues to flow evn though the channel is interrupted. At the drain end the electron manages to hop across the depletion region by Ballistic Mechanism.

Figure 31.28

Chapter 32

AE Lecture 8 Part A MOSFET \& JFET continued ${ }^{1}$

AE_Lecture 8_MOSFET \& JFET_Part A continued.
In Part A of Lecture 8 we have seen the quantitative formulation of Enhancement and Depletion type MOSFET in Triode as well as in Pentode region. In this lecture, the continuation of Lecture 8_Part A, we will study the quantitative formulation of nJFET in ohmic and saturation region also known as triode and pentode region respectively.

Enhancement Type MOSFET was termed as Normally-Off device since with Gate-Voltage zero we have no current.

Similarly Depletion Type MOSFET is termed as Normally-On device since here even under Gate Voltage zero we do have a drain current because in $\operatorname{NMOS}(\mathrm{D})$, n-channel has been ion-implanted at fabrication stage hence it conducts at zero Gate Voltage.

In exactly the same fashion, JFET has a conducting channel at Gate Voltage zero. Hence it conducts under zero Gate Voltage therefore it is called Normally - On device. It is a depletion-mode device.

The physical structure of nJFET in a simplified manner is given in Figure 1.

[^31]

Figure 32.1

Figure 1. Physical structure of nJFET is given for negligible Drain-to-Source biasing and significant Drain-to-Source biasing respectively.

For negligible Drain-to-Source biasing, we have uniform n-channel as shown in the upper diagram. In this biasing condition, nJFET is operating in ohmic region or in Triode region.

For $\mathrm{V}_{\mathrm{DS}}>0.1 \mathrm{~V}$, we have trapezoidal n-channelas shown in the lower diagram. The device is still in Triode region but its ohmic behavior is non-linear.

When $\mathrm{V}_{\mathrm{DS}}=\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right)$ then the n -channel gets pinched off near the Drain and current saturates at that point. Now the device has entered saturation region. For $\mathrm{V}_{\mathrm{DS}}>\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right)$, the current remains
constant and device is said to be in Pentode region.
In Ohmic Region:
$\mathrm{i}_{\mathrm{D}}=\mathrm{K}_{\mathrm{n}}\left[2\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right) \mathrm{v}_{\mathrm{DS}}-\mathrm{v}_{\mathrm{DS}}{ }^{2}\right]$ for $0<\mathrm{v}_{\mathrm{DS}} \leq\left(\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\right.$.
For small values of $v_{D S}$,
$\mathrm{i}_{\mathrm{D}}=\mathrm{K}_{\mathrm{n}}\left[2\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right) \mathrm{v}_{\mathrm{DS}}\right.$
[].. . . . 2
At $\mathrm{v}_{\mathrm{DS}}{ }^{*}=\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right)$, device enters the saturation region since channel is pinched off near the drain.
In saturation region, irrespective of v_{DS} current becomes constant at the value decided by $\mathrm{v}_{\mathrm{DS}}{ }^{*}=\left(\mathrm{V}_{\mathrm{GS}}\right.$ $\left.-\mathrm{V}_{\mathrm{P}}\right)$. Substituting $\mathrm{v}_{\mathrm{DS}}{ }^{*}=\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right)$ in Equation 1, we get:

At $\mathrm{V}_{\mathrm{GS}}=0$, we have $\mathrm{I}_{\mathrm{D}}=\mathrm{K}_{\mathrm{n}}\left(-\mathrm{V}_{\mathrm{P}}\right)^{2}=$ this denoted by $\mathrm{I}_{\mathrm{DSS}}$;
Hence

$$
K_{n}=\frac{I_{D S S}}{V_{P}^{2}}
$$

Figure 32.2

Typical values of Pinch-off voltage $V_{P}=0$ to -25 V and typical values of $\mathrm{I}_{\text {DSS }}$ is from $10 \mu \mathrm{~A}$ to 10 A .
For a given value of I_{D}, Equation 3 gives two values of V_{GS}. Only one value is physically tenable. It must lie in the range:
.. $\mathrm{V}_{\mathrm{P}}<\mathrm{V}_{\mathrm{GS}}<0$
The line of demarcation or the pinch-off locus is a parabola. By substituting $\mathrm{v}_{\mathrm{DS}}{ }^{*}=\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right)$ in Equation 3 we get:
$\mathrm{I}_{\mathrm{D}}=\mathrm{K}_{\mathrm{n}}\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right)^{2}=\mathrm{I}_{\mathrm{D}}=\mathrm{K}_{\mathrm{n}}\left(\mathrm{V}_{\mathrm{DS}}^{*}\right)^{2}$ which is a parabola and is defined as pinch off parabola.

Planar IC n-channel JFET structure.

Figure 32.3

Figure 2. IC version of JFET.

Chapter 33

AE_Lecture8_PartB_Incremental Model of FET ${ }^{\text { }}$

AE_Lecture8_Incremental Model of FET.
$\overline{\mathrm{F} E T}$ behaves as Voltage Controlled Current Source. Hence its model is as given in Figure 1.

Figure 1. The incremental model of MOSFET.

Figure 33.1

At low frequencies Capacitances can be considered to be open circuit. And the Incremental Model at low Frequencies will have infinite impedance as shown in Figure 2.

[^32]

Figure 2. Low Frequency Incremental Model of MOSFET.

Figure 33.2

At low frequencies, input current is zero and short circuit current gain is INFINITY. But at high frequencies gate to source Capacitance due to overlap Capacitance (overlap between source and gate) and Gate Oxide Capacitance and gate to drain Capacitance again due to overlap Capacitance (overlap between drain and gate) and Gate Oxide Capacitance draw considerable currents. Hence Short Circuit Current Gain is finite and falls at the rate of $20 \mathrm{~dB} /$ decade.

In the low frequency model, we have transconductance $\left(g_{m}\right)$ and output impedance of the current source (r_{ds}).

Derivation of Transconductance.

$$
\frac{d i_{D}}{d V_{G S}}
$$

Figure 33.3
$=$

$$
\frac{\left(K_{n}\right)(2)}{2}\left(V_{G S}-V_{T N}\right)
$$

Figure 33.4

[^33]$$
g_{m}=\left(K_{n}\right)\left(V_{G S}-V_{T N}\right)
$$

Figure 33.5
\qquad
\qquad

$$
\text { But } V_{G S}-V_{T N}=\left(\frac{2 I_{D}}{K_{n}}\right) \times \frac{1}{\left(V_{G S}-V_{T N}\right)}
$$

Figure 33.6

$$
\therefore g_{m}=\frac{\left(K_{n}\right)\left(2 I_{D}\right)}{K_{n}\left(V_{G S}-V_{T N}\right)}
$$

Figure 33.7
\qquad

$$
g_{m}=\frac{\left(2 I_{D}\right)}{\left(V_{G S}-V_{T N}\right)}
$$

Figure 33.8
1.

Due to channel length modulation the family of curves are not horizontal but have a finite slope.as shown in Figure 3. To account for this , channel-length modulation parameter λ is introduced.
\qquad

Long Channel NMOS

Short Channel NMOS

Figure 3. Effect of Channel Length Modulation on the SLOPE.

Figure 33.9

In long channel NMOS(with channel length of $10 \mu \mathrm{~m}$) of bygone MSI(Medium Scale Integration) and LSI(Large Scale Integration) era, the slope was minimal. But as packing density increased to 40 million transistors, lateral scaling reduced the channel length to 100 nm . In short channel NMOS channel length modulation is very pronounced as seen in Figure 3.

$$
\therefore I_{D}=\frac{K_{n}}{2}\left(V_{G S}-V_{T N}\right)^{2}\left(1+\lambda V_{D S}\right)
$$

Figure 33.10

$$
0.001 V^{-1} \leq \lambda \leq 0.1 V^{-1}
$$

Figure 33.11

$$
\left[\frac{\partial i_{D}}{\partial v_{d S}}\right] \text { at constant } V_{G S}=\frac{K_{n}}{2}\left(V_{G S}-V_{T N}\right)^{2}(0+\lambda)
$$

Figure 33.12

$$
\lambda \frac{K_{n}}{2}\left(V_{G S}-V_{T N}\right)^{2}
$$

Figure 33.13

We know that

$$
\frac{K_{n}}{2}\left(V_{G S}-V_{T N}\right)^{2}=\frac{I_{D}}{1+\lambda V_{D S}}
$$

Figure 33.14

$$
\therefore \frac{1}{r_{d s}}=\frac{\lambda I_{D}}{1+\lambda V_{D S}}
$$

Figure 33.15

$$
\frac{I_{D}}{\left(\frac{1}{\lambda}+V_{D S}\right)}
$$

Figure 33.16
2.

Amlification Factor $=\mu=g_{\mathrm{m}} \times \mathrm{r}_{0}=$ the maximum gain which can be achieved from a Common Source or Common Emitter Amplifier.

Combining Eq 1 and Eq 2 we get the following:
Amplification Factor of CS MOS Amplifier=[

$$
\frac{\frac{1}{\lambda}+V_{D S}}{I_{D S}}
$$

Figure 33.17
]
Amplification Factor of CE BJT Amplifier=[

Figure 33.18
V_{A} is the Early Voltage which was discussed in Lecture 3 in connection with the Static Output characteristics of CE BJT.

As seen above the amplification factor of CE BJT is independent of Quiescent Collector Current. From the Table we see that it is only 3400 . But my research on CE BJT is showing that a much larger gain can be realized.

In the following Table we make a comparative study of BJT and FET.

FET	BJT
Geometry dependent parameters $\left(\frac{W}{L}\right)$	Geometry independent parameters
$\mu\left(\right.$ amplification factor varies inversely with $\left.\mathrm{I}_{\mathrm{D}}\right)$	μ (amplification factor is independent of $\left.\mathrm{I}_{\mathrm{D}}\right)$
$\mathrm{V}_{\mathrm{DS}=10 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}=1}^{\frac{\mathrm{mA}}{\mathrm{V}^{2}}, \lambda=0.0133 \mathrm{~V}^{-1}}$	$\beta_{\mathrm{o}}=100, \mathrm{~V}_{\mathrm{A}}=75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$
$\mathrm{gm}=\sqrt{2 K_{n} I_{D}}$	$\mathrm{gm}=\left(\frac{I_{C}}{V_{T}}\right)$
continued on next page	

Small signal approximation holds good forvalues: $v_{g s} \ll 2\left(\left\|V_{G S}\right\|-\left\|V_{T N}\right\|\right)^{2}$Small signal approximation holds good for val- ues: $v_{b s} \ll V_{T}(26 \mathrm{mV}) v_{b s} \sim 0.2 V_{T} v_{b s}<5 \mathrm{mV}$	
Much higher packing density because no isolation diffusion required.	Here isolation diffusion is required hence histori- cally it is one generation behind as far as packing density is concerned
This is slower. The best clocking speed is 3GHz	BJT is historically much faster . The state of art in BJT is achieving 300GHz transit frequency.
Noise Figure is much better. This has no SHOT noise , no PARTITION noise. It has flicker noise. For Low Noise Amplifier cryogenically cooled MES- FET.	Noise Figure is poorer because of SHOT noise, PARTITION noise and THERMAL noise.

Table 33.1

$\mathrm{I}_{\mathrm{D}}(\mu \mathrm{A})$	$\mathrm{g}_{\mathrm{m}}\left(\times 10^{-3} \mathrm{~S}\right)$	$\mathrm{r}_{\mathrm{ds}}(\mathrm{M} \Omega)$	μ	$\mathrm{I}_{\mathrm{C}}(\mu \mathrm{A})$	$\mathrm{g}_{\mathrm{m}}\left(\times 10^{-3} \mathrm{~S}\right)$	$\mathrm{r}_{\pi}(\mathrm{k} \Omega)$	$\mathrm{r}_{0}(\mathrm{M} \Omega)$	μ
1	0.0476	85.2	4060	1	0.04	2500	85	3400
10	0.151	8.52	1280	10	0.4	250	8.5	3400
100	0.476	0.852	406	100	4	25	0.85	3400
1000	1.51	0.085	128	1000	40	2.5	0.085	3400
10,000	4.76	0.0085	40	10,000	400	0.25	0.0085	3400

Table 33.2

HIGH FREQUENCY MODEL OF FET

In Figure 4, high frequency model of MOSFET is set up for calculating the short circuit current. We follow the same procedure as we followed in CE BJT.

Figure4. The incremental model of MOSFET at high frequency

Figure 33.19

There are various values for C_{gs} and C_{gd} in Triode Region, in Pentode Region and in Cut-off Region. In Analog Electronics for linear applications we are concerned only with Pentode Region. So we will consider the two capacitances in Pentode or in Saturation Region.
$\mathrm{C}_{\mathrm{GS}}=(2 / 3) \mathrm{C}_{\mathrm{GC}}+\mathrm{C}_{\mathrm{GSO}} . \mathrm{W}$
$\mathrm{C}_{\mathrm{GD}}=\mathrm{C}_{\mathrm{GDO}} . \mathrm{W}$
Where $\mathrm{C}_{\mathrm{GC}}=\mathrm{C}_{\mathrm{OX}}$. WL and $\mathrm{C}_{\mathrm{OX}}=\left(\varepsilon_{0} . \varepsilon_{\text {oxide }}\right) / \mathrm{D}_{\text {oxide }} \mathrm{F} / \mathrm{cm}^{2}$;
$\mathrm{C}_{\mathrm{GSO}}=$ overlap capacitance between Gate and Source;
$\mathrm{C}_{\mathrm{GDO}}=$ overlap capacitance between Gate and Drain;
Since $r_{d s}$ is shorted therefore :
$\mathrm{I}_{2}(\mathrm{j} \omega)+\mathrm{I}_{\mathrm{d}}(\mathrm{j} \omega)=\mathrm{g}_{\mathrm{m}} . \mathrm{V}_{\mathrm{gs}}(\mathrm{j} \omega) 3$
$\mathrm{V}_{\mathrm{gs}}(\mathrm{j} \omega)=\mathrm{I}_{\mathrm{g}}(\mathrm{j} \omega) /\left(\mathrm{j} \omega\left(\mathrm{C}_{\mathrm{GS}}+\mathrm{C}_{\mathrm{GD}}\right) 4\right.$
From Eq3 and Eq4:

$$
\beta(j \omega)=\frac{I_{d}(j \omega)}{I_{g}(j \omega)}=\frac{g_{m}\left(1-\frac{j \omega C_{G D}}{g_{m}}\right)}{j \omega\left(C_{G S}+C_{G D}\right)}
$$

Figure 33.20

5
Eq 5 can be rewritten as :

$$
\beta(j \omega)=\frac{\omega_{T}}{j \omega}\left(1-\frac{j \omega}{\omega^{*}}\right)
$$

Figure 33.21

6

Where $\omega_{\mathrm{T}}=\mathrm{g}_{\mathrm{m}} /\left(\mathrm{C}_{\mathrm{GS}}+\mathrm{C}_{\mathrm{GD}}\right)=$ Unity Gain BW or Gain \times BW or Gain BW Product(GBP); And $\omega^{*}=\mathrm{g}_{\mathrm{m}} / \mathrm{C}_{\mathrm{GD}}$ and $\beta(\mathrm{j} \omega)$ falls at 20dB per decade.
Through proper substitutions in GBP expression we get :

$$
\omega_{T}=\frac{g_{m}}{\left(C_{G S}+C_{C D}\right)}
$$

Figure 33.22

$$
f_{T}=\frac{3}{2} \mu_{n} \frac{\left(V_{G S}-V_{T N}\right)}{L^{2}}
$$

Figure 33.23

A reduction in channel length by a factor of 10 increases f_{T} by 100 . In BJT GBP $<1 /\left(\mathrm{r}_{\mathrm{x}} \mathrm{C}_{\mu}\right)$
BODY EFFECT or SUBSTRATE SENSITIVITY

Figure 5. The symbol of (E)NMOS.
note there are 4 terminals: three for Source, Gate and Drain and fourth for the substrate or the body.

Figure 33.24

Figure 6. NMOS with source tied with body.

Figure 33.25

When $V_{S B}=0 V, V_{T N}=1 V$

Figure 33.26

Figure 7. Here there is Source to Substrate bias of 5V.

Figure 33.27

When $V_{S B}=5 \mathrm{~V}, V_{T N}=2 \mathrm{~V}$

Figure 33.28

$$
V_{T N}=V_{T O}+\gamma\left(\sqrt{V_{S B}+2 \Phi_{F}}-\sqrt{2 \Phi_{F}}\right)
$$

Figure 33.29

Where

$$
V_{T O}=\text { Zero substrate bias value for } V_{T N}(V)
$$

Figure 33.30

```
\gamma
```

Figure 33.31
$=$ Body Effect parameter

$$
(\sqrt{V})
$$

Figure 33.32

$$
2 \Phi_{F}=\text { Surface Potential Parameter }
$$

Figure 33.33
(V)

Typical Values are :-

$$
-5 V \leq V_{T O} \leq 5 \mathrm{~V}
$$

Figure 33.34

$$
0 \leq \gamma \leq
$$

Figure 33.35

$$
\sqrt{V}
$$

Figure 33.36

$$
0.3 V \leq 2 \Phi_{F} \leq 1 V
$$

Figure 33.37

Figure 8. Threshold Voltage vs Source to Bulk voltage.

Figure 33.38

Chapter 34

AE_Lecture 9_revised_Noise(Untitled) ${ }^{1}$

Lecture no-9 Noise sources and theoretical formulation of noise parameters.
 Internal Noise Sources

- Resistors
- Vacuum Tubes
- BJT \& Other Solid State Devices

External Noise Sources

- Atmospheric
- Man Made Electric DC Machines
- Extraterrestrial sources
- Multiple Transmission Paths
- Random Changes in attenuation within the transmission medium.

1.ATMOSPHERIC NOISES

Due to electric discharge in thunder clouds spurious radio waves are produced.
In time domain, electric discharge is a SPIKE (or a Dirac Delta Function). In frequency domain we have uniformly distributed RF waves in MW region 540 kHz to 1.6 MHz . Below 100 MHz field strength of the radiations from the electric discharges are significant in Medium Wave Range of RF and not in Short Wave Range. This is why during thunder storms maximum static is produced in MW Range of radio reception.

2.MAN MADE SOURCES

- High voltage powerline corona discharge.
- Commutator-generated noise in DC electric motors..
- Switching gear noise.
- EM Interference by high intensity radio transmitters in neighbourhood.

3.EXTRATERRESTRIAL NOISE SOURCES

i. Periodic increase in Solar Activities(The period is 11 years) in the form of increased sun-spots and furious sun-flares lead to major disruptions in power transmissions and communication systems. The surface of the Sun is a roiling mass of plasma- charged high-energy particles- some of which escape from the surface and travel through the space as the solar wind. During a sun storm solar wind carries billion-tonne glob of plasma, a fireball known as coronal mass ejection(CME). If the CME hits the Earth, it changes the configuration of Earth's Magnetic field leading to severe Electro-Magnetic Induction in the long lines of Power Grids. This will cause increased dc currents leading to saturation

[^34]of the magnetic core of the transformers. The saturation of magnetic cores will limit the opposing e.m.f. leading to runaway currents in the secondary coil. This leads to rapid heating, melting of the transformer. One such event in March 1989 in Quebec, Canada, left 6 million people without electricity for 9 hours.
ii. Global Radio Broadcast at short wave RF gets seriously affected due to disruptions of ionosphere surrounding the Earth.
iii. QUASERS-Quasi-Stellar Radio Sources are important Radio Noise Sources in frequency range from MHz to GHz .
iv. Pulsars RF interference- Pulsars are Neutron Stars which are rapidly spinning and which have the magnetic field axis inclined to geo-graphical polar axis of spin. Due to this inclination, there is synchrotron radiation covering the entire span of spectrum. It emits radio waves, optical waves, X-Rays and Gamma Rays. This is emitted from the polar ends of the magnetic axis. Hence a beam of EM radiation are sweeping the entire space around the spinning Neutron Star at the same rate as that at which it is spinning. If our Earth falls in its line of sight, it receives periodic burst of EM radiations hence they are called pulsars. This is generally very weak hence does not cause much disturbance on Earth.
4.MULTIPLE TRANSMISSION PATHS-This occurs due to reflection off buildings, earth, airplanes \& ships or from refraction from stratification in the transmission medium.

1. Diffused Noise Source-received signals are numerous reflected components.
2. Specular Noise Source-Received signals are one or two reflected strong rays.
5.RANDOM CHANGES IN ATTENNUATION IN THE ATMOSPHERE -this leads to fading. INTERNAL NOISE SOURCES
Thermal Noise :- Random Motion of electrons in the conductor leading to fluctuations in the conducting semi free electron density (n) in the metallic lattice. This leads to fluctuating dipole leading to thermal voltages. This directly depends on the absolute temperature of the conductor.

Shot Noise:- Statistical fluctuations in the thermionic emissions from the cathode or the fluctuations in the forward current in the forward biased pn junction diode.

Partition Noise:- Statistical fluctuations in the current division or current merger in Vacuum tubes or in solid state devices.

Flicker Noise:-The number of free electrons or holes present in the channel decide the conductivity of the channel in FET devices. But due to interface states at the Gate Oxide in MOS the channel conductivity fluctuates due to random capture of majority carriers from the channel. This noise is inversely proportional to frequency. Hence it is also known as [

$$
\left.\frac{1}{f}\right]
$$

Figure 34.1

noise.
Thermal Noise in Resistors(R)

Figure 1. Thermal Noise can be detected across the terminals of resistance by a sensitive ac voltmeter or by a sensitive oscilloscope.

Figure 34.2

Random motion of electrons due to thermal energy(
$\frac{1}{2} k T$ is the thermal energy asosciated with electron for every degree of freedom

Figure 34.3
)leads to fluctuating dipole in the metallic lattice. This leads to random voltage fluctuation at the terminals.

This random voltage

$$
\propto T(\text { in kelvin })
$$

Figure 34.4

Mean Square Noise Power Spectral density=

$$
k T(\text { Joules })=k T\left(\frac{W}{H z}\right)=S_{N}
$$

Figure 34.5

In double sided representation

Figure 34.6

Figure 2. Noise Power Spectral Density Distribution w.r.t. frequency in a double sided spectrum.
We have almost uniform Noise Power Spectral Density over the entire frequency spectrum. Therefore Thermal noise(Johnson Noise) is also known as White Noise. Just as WHITE LIGHT has all the seven colours in equal magnitude, in the same way WHITE NOISE has equal spectral components over the entire frequency spectrum.

The actual Noise Power measured will depend on the Bandwidth B Hz.
Therefore Mean Square Noise Power in a resistance over B Hz.

$$
P_{a n}=S_{N} B
$$

Figure 34.7
watts $=$ available noise power;

$$
P_{a n}=k T B W a t t s
$$

Figure 34.8

At 300K,

$$
S_{N}=k T=4.412 \times 10^{-21} J
$$

Figure 34.9
$=$

$$
4.412 \times 10^{-21} \mathrm{~W} / \mathrm{Hz}
$$

Figure 34.10

Let $B W=1 \mathrm{MHz}$

$$
\begin{aligned}
\therefore P_{a n}=k T B & =4.412 \times 10^{-15} \mathrm{~W} \\
& =\text { Avaiable Power assosciated with Thermal Noise }
\end{aligned}
$$

Figure 34.11

This is the noise available from the resistance under consideration.

Figure 34.12

Figure 3. Equivalent circuit of a noisy resistance connected to load. The noisy Resistor has been represented as a noise voltage source of $v n$ delivering noise voltage to the load and with an internal resistance R having no noise.

$$
\left(i_{n}\right)_{R M S}=\frac{v_{n}}{R+R_{L}}
$$

Figure 34.13

If $R=R_{L}$, then

$$
\left(i_{n}\right)_{R M S}=\frac{v_{n}}{2 R}
$$

Figure 34.14

[^35] $=$
$$
i_{n}^{2} R_{L}=i_{n}^{2} R=P_{A N}
$$

Figure 34.15
$=\mathrm{kTB}$

$$
\therefore P_{A N}=\frac{v_{n}^{2}}{4 R^{2}} \times R=\frac{v_{n}^{2}}{4 R}
$$

Figure 34.16

$$
\therefore v_{n}^{2}=4 R P_{A N}=4 R k T B
$$

Figure 34.17

Mean Square Noise Voltage $=\left\langle\mathrm{v}_{\mathrm{n}}{ }^{2}\right\rangle=$

4RkTB

Figure 34.18

RMS Value of Noise Voltage $=\sqrt{ }\left\langle\mathrm{v}_{\mathrm{n}}{ }^{2}\right\rangle=$

$$
\sqrt{4 R k T B}
$$

Figure 34.19

If $\mathrm{R}=1 \mathrm{k}, \mathrm{B}=1 \mathrm{MHz}, \mathrm{T}=300 \mathrm{~K}$

$$
\sqrt{\left(\overline{v_{n}^{2}}\right)}=r m s V_{n}=4 \mu V
$$

Figure 34.20

$$
\text { RMS value of } \text { Noise Voltage }=4 \mu V
$$

Figure 34.21

The signals received at the antenna of a receiver is of comparable amount and hence the intelligent signal can easily be swamped by the thermal noise at the front end of a communication receiver. In deep space communication the problem is further compounded due to the fact that received signal from PIONEER or VOYAGER from the very edge of heliosphere is one or two orders of magnitude fainter than $4 \mu \mathrm{~V}$.

CALCULATION OF EFFECTIVE NOISE TEMPERATURE and DEFINITION of NOISE FIGURE.

Figure 34.22

Figure 4. A two port network with SNR at the input and output.
SNR=Signal to Noise Ratio=

$\frac{\text { Mean Square Signal Voltage }}{\text { Mean Square Noise Voltage }}=\frac{\left\langle V_{S}^{2}\right\rangle}{\left\langle V_{n}^{2}\right\rangle}$

Figure 34.23

$$
\left(S_{a}\right)_{\text {out }}=g_{a}\left(S_{a}\right)_{\text {in }}
$$

Figure 34.24

$$
\left(N_{a}\right)_{\text {out }}=g_{a}\left(N_{a}\right)_{\text {in }}
$$

Figure 34.25

So, ratio

$$
\left(\frac{s_{a}}{N_{a}}\right)_{\text {out }}=(S N R)_{\text {out }}=\left(\frac{s_{a}}{N_{a}}\right)_{\text {in }}=(S N R)_{\text {in }}
$$

Figure 34.26

But actually it is not so because there is some internally generated noise in the amplifier. Thus

$$
\left(N_{a}\right)_{\text {out }} \neq g_{a}\left(N_{a}\right)_{\text {in }}
$$

Figure 34.27

It is actually:

$$
\left(N_{a}\right)_{\text {out }}=g_{a}\left(N_{a}\right)_{\text {in }}+N_{\text {int }}
$$

Figure 34.28

Thus:

$$
(S N R)_{\text {out }}=\frac{g_{a}\left(S_{a}\right)_{\text {in }}}{g_{a}\left(N_{a}\right)_{\text {in }}+N_{\text {int }}}
$$

Figure 34.29

$$
(S N R)_{\text {out }}=\frac{\frac{g_{a}\left(S_{a}\right)_{\text {in }}}{g_{a}\left(N_{a}\right)_{\text {in }}}}{1+\frac{N_{\text {int }}}{g_{a}\left(N_{a}\right)_{\text {in }}}}=\frac{(S N R)_{\text {in }}}{1+\frac{N_{\text {int }}}{g_{a}\left(N_{a}\right)_{\text {in }}}}
$$

Figure 34.30

Therefore:
Noise Figure=

$$
\frac{(S N R)_{\text {in }}}{(S N R)_{\text {out }}}=1+\frac{N_{\text {int }}}{g_{a}\left(N_{a}\right)_{\text {in }}}
$$

Figure 34.31

An Ideal Noise Figure for an amplifier should be 0 dB but it is never 0 dB in actual practice. In actual practice the noise figure can be $0.1 \mathrm{~dB} / 0.2 \mathrm{~dB} / 0.5 \mathrm{~dB} / 1 \mathrm{~dB}$ or more.

EFFECTIVE NOISE TEMPERATURE
At the input:

$$
\left(N_{a}\right)_{i n}=k T_{i} B
$$

Figure 34.32

There is a thermal noise generator of equivalent temperature $=$

$$
T_{i}
$$

Figure 34.33

This is the noise picked up by the antenna.
The noise power at the o/p:

$$
\left(N_{a}\right)_{\text {out }}=g_{a} k T_{i} B+\Delta N
$$

Figure 34.34

Here

$$
\Delta N=\text { Internal Noise Power }
$$

Figure 34.35

Therefore:

$$
\left(N_{a}\right)_{o u t}=g_{a} k B\left(T_{i}+\frac{\Delta N}{g_{a} k B}\right)
$$

Figure 34.36

Thus:

$$
\left(N_{a}\right)_{\text {out }}=g_{a} k B\left(T_{i}+T_{e}\right)
$$

Figure 34.37

Where:

$$
T_{e}=\text { Effective Noise Temperature of } \Delta N
$$

Figure 34.38

$$
\frac{\Delta N}{g_{a} k B}
$$

Figure 34.39

$$
(S N R)_{i n}=\left(\frac{S_{a}}{N_{a}}\right)_{i n}=\frac{\left(S_{a}\right)_{i n}}{k T_{i} B}
$$

Figure 34.40

$$
(S N R)_{o u t}=\frac{g_{a}\left(S_{a}\right)_{\text {in }}}{g_{a} k B\left(T_{i}+T_{e}\right)}
$$

Figure 34.41

$$
\text { Noise Figure }=\frac{(S N R)_{\text {in }}}{(S N R)_{\text {out }}}=\left(1+\frac{T_{e}}{T_{i}}\right)
$$

Figure 34.42

While the signal is passing through an amplifier the signal to noise ratio deterioration is defined by

$$
\frac{T_{e}}{T_{i}}
$$

Figure 34.43
. If by cryogenic cooling effective noise temperature of the front end amplifier is minimized to zero then we achieve the ideal N.F. of 1 or 0 dB .

IN COMMUNAICATION RECEIVER SYSTEMS

Figure 34.44

Figure 5. A Communication Receiver in RF range. Different stages of the receiver are shown. In the first stage we have series resonance circuit tuned to a given station or tuned to a given communication frequency. At resonance frequency maximum electromagnetic induction takes place and maximum current is introduced in the primary coil of RF Transformer. The
first stage is a RF tuned amplifier. After amplification, picked up radio frequency is downward frequency translated to intermediate frequency (IF). IF is 455 kHz in AM Radio Receivers or 10.7 MHz in TV or FM Radio.IF signal is amplified and then second detection or demodulation takes place. In the second detection it is again downward frequency translated to base band signals. This base band signal is voltage amplified by pre-amplifier and power amplified by Complementary Symmetry Amplifier. The power amplified is fed to the Speaker or Video Monitor.

The first downward frequencytranslation is known as $1^{\text {st }}$ detection or $1^{\text {st }}$ demodulation. This is also known as superhetrodyne mixing of tuned frequency f_{0} and $f_{L o}$ and $f_{\text {Lo }}-f_{0}=$ Intermediate Frequency (I.F.).

FRISS FORMULA will have to be utilized to calculate the overall noise figure.

FRISS FORMULA

What is the overall noise figure of 2 cascaded stages ?

Figure 34.45

Figure 6: Two Stage Cascaded Amplifier
We have a matched network for maximum power transfer.
Overall Noise Figure

$$
F=F_{1}+\frac{\left(F_{2}-1\right)}{g_{1}}
$$

Figure 34.46

For n Stage cascade system:

$$
F=F_{1}+\frac{\left(F_{2}-1\right)}{g_{1}}+\frac{\left(F_{3}-1\right)}{g_{1} g_{2}}+\cdots-\cdots+\frac{\left(F_{n}-1\right)}{g_{1} g_{2}---g_{n-1}}
$$

Figure 34.47

This formula implies that the overall Noise Figure is dominated by the noise figure of the first stage.

Figure 7(a) A Typical Antenna Stage With A Preamplifier

Figure 34.48

(Voltage Pickup from the antenna)
Figure 7(b) Equivalent Circuit Of the antenna Stage Of the receiver $(\mathrm{Zo}=\mathrm{Rin}$ for maximum power transfer) Figure 7 INPUT STAGE OF A RECEIVER OR THE FRONT END OF THE RECEIVER

Figure 34.49

Front end amplifier is referred to as Low Noise Amplifier.
With a good front-end having cryogenic cooling, we achieve a good amplification with no deterioration in SNR as we proceed along the cascade chain.

Table 1. Typical Noise Figure

Amplifier	$\mathrm{NF}(\mathrm{abs})$	$\mathrm{NF}(\mathrm{dB})$	$\mathrm{T}_{\mathrm{e}}(\mathrm{K})$	Gain(dB)	$\mathrm{f}_{\mathrm{op}}(\mathrm{GHz})$
Parametric Amplifier(uncooled)	1.45	1.61	130	$10-20$	9
Parametric Amplifier(77K)	1.17	0.69	50	$10-20$	$3 \& 6$
Parametric Amplifier(4K)	1.03	0.13	9	$10-20$	4
Travelling Wave Tube(TWT)	1.59	2.00	170	$20-30$	2.66
	1.86	2.7	250		3
	2.69	4.3	490		9
Tunel Diode Amplifier-Ge	2.38	3.77	400	$20-40$	$?$
Tunnel Diode Amplifier-GaAs	1.69	2.28	200	$20-40$	$?$
Low Noise Heterodyne Receiver	2.38	3.77	400	$20-40$	$500 \mathrm{kHz}-30 \mathrm{MHz}$
IC BJT IF Amplifier for TV	5.01	7	1163	50	10.7 MHz
GaAs MESFET Amplifier	$?$	$?$	$?$	$?$	$?$

Table 34.1
(1)Mumford \& Scheibe,Noise Performance Factors in Communication Systems, Horizon HouseMicrowace,Inc,Dedham,Massachusets(1968),pp 36,39
(2)Linear Integrated Circuits Data Book,Motorola Inc.,(1974).

References:
1.Ziemer \& Tranter,Principles of Communications-System,Modulation and Noise, Wiley India, $5^{\text {th }}$ Edition, 2002.
2. Shanmugam,Digital and Analog Communication Systems, Wiley-India,Reprint 2007.

APPENDIX-1. Derivation Of The FRISS FORMULA (Refer to figure 6)
Noise at the output of the second stage is:

$$
N_{a 2}=g_{2} N_{a 1}+\Delta N_{2}
$$

Figure 34.50

Similarly the output of the first stage is:

$$
N_{a 1}=g_{1} N_{a 0}+\Delta N_{1}
$$

Figure 34.51

Available Noise power Input at the First stage is:

$$
N_{a 0}=k T_{o} B
$$

Figure 34.52

Substituting (3) into (2), we get,

$$
N_{a 1}=g_{1} k T_{o} B+\Delta N_{1}
$$

Figure 34.53

Substituting (4)in (1), we get,

$$
N_{a 2}=g_{2}\left(g_{1} k T_{o} B+\Delta N_{1}\right)+\Delta N_{2}
$$

Figure 34.54

Further Simplifying it,

$$
N_{a 2}=g_{2} g_{1} k B\left(T_{o}+\Delta N_{1} / g_{1} k B\right)+\Delta N_{2}
$$

Figure 34.55

But - --_(${ }^{5}$
$\Delta N_{1} / g_{1} k B=T_{e 1}=$ Effective Temperature of the stage 1

Figure 34.56
(6)

Ā̄d
$\Delta N_{2} / g_{2} k B=T_{e 2}=$ Effective Temperature of the stage 2

Figure 34.57
___(7)
Also,

$$
F_{1}=1+T_{e 1} / T_{o}
$$

Figure 34.58
and

$$
F_{2}=1+T_{e 2} / T_{o}
$$

Figure 34.59
(8)

From $\operatorname{Eq}(8)$, we have

$$
T_{e 2}=\left(F_{2}-1\right) T_{o}
$$

Figure 34.60
(9)

From $\overline{\operatorname{Eq}}(9) \operatorname{and}(7)$,

$$
\Delta N_{2}=T_{e 2} g_{2} k B=\left(F_{2}-1\right) T_{o} g_{2} k B
$$

Figure 34.61
$\bar{U} \overline{s i n g}$ relations(6) ,(8) and(10),
$\mathrm{Eq}(5)$ can be re-written as:

$$
N_{a 2}=g_{2} g_{1} k B\left(T_{o}+\Delta N_{1} / g_{1} k B\right)+\Delta N_{2}
$$

Figure 34.62

$$
N_{a 2}=g_{2} g_{1} k B\left(T_{o}+T_{e 1}\right)+\left(F_{2}-1\right) T_{o} g_{2} k B
$$

Figure 34.63

Simplifying:

$$
N_{a 2}=g_{2} g_{1} k B T_{o} F_{1}+\left(F_{2}-1\right) g_{2} k B T_{o}
$$

Figure 34.64
$\overline{\text { But, }}$

$$
N_{a 2}=k B T_{o} g_{2} g_{1} F
$$

Figure 34.65
[this is arrived at by induction logic recognizing the $\mathrm{N}_{\mathrm{a} 1}=\mathrm{g}_{1} \mathrm{kBF}_{1} \mathrm{~T}_{0}$]
Where F is the overall noise figure.
Hence dividing(11)by (12), we get,

$$
F=F_{1}+\frac{F_{2}-1}{g_{1}}
$$

Figure 34.66
$\overline{\text { For }} \mathbf{3}$ stages:
(13)

$$
F=F_{1}+\frac{F_{2}-1}{g_{1}}+\frac{\left(F_{3}-1\right)}{g_{1} g_{2}}
$$

Figure 34.67

For $\overline{\mathrm{n}}$ - $\mathrm{sta}-\mathrm{ges}$:

$$
F=F_{1}+\frac{\left(F_{2}-1\right)}{g_{1}}--+\frac{\left(F_{n}-1\right)}{g_{1} g_{2}--g_{n-1}}
$$

Figure 34.68
(15) FRISS FORMULA.

Chapter 35

AE_Lectur10_PowerAmplifiers_Part1_Power Analysis of Emitter Follower. ${ }^{1}$

The Output Stage Of an Electronic system

Figure 35.1

Figure 1. The Block Diagram of an Electronic System.
The output of an electronic system is invariably a Speaker/VideoMonitor/VideoDisplay/Target of a Process Control System. Driving any of these loads requires power. Power means(voltage \times current). Since most of the systems are using low voltages (Logic Systems have 5V,Analog systems also operate at 5 V) hence output stage has to deliver a large current in order to drive a load like speaker/video monitor/display/transmission lines.

This output stage must be a voltage controlled voltage source (VCVS).

[^36]
WHY Output STAGE IS VCVS??

Because O / P is preceded by the pre-amplifier which amplifies voltage only.
O / P must be a voltage source with a low output impedence. This ensures a constant voltage drive for variable load. The voltage gain has been provided by the preamplifier. Power Amplifier or the ouput amplifier is required to provide current amplification. O / P stage is a large signal amplifier hence considerable amplitude distortion occurs. This has to be minimized..

All the above requirements are fulfilled by the CC-BJT configuration.

Figure 35.2

Figure 2. CC or Emitter Follower stage.
If $\mathrm{R} 1|\mid \mathrm{R} 2$ is neglected by BOOTSTRAPPING then:

$$
R_{i n}=\left(1+\beta_{f o}\right) R_{E}
$$

Figure 35.3

$$
R_{o u t}=R_{E} \|\left(\frac{r_{\pi}+R_{S}}{\beta_{f o}+1}\right)
$$

Figure 35.4

$$
A_{i}=\beta_{f o}
$$

Figure 35.5

This is an ideal VCVS.
CC BJT is also known as EMITTER FOLLLOWER.
So Emitter Follower is always the O/P stage of the Electronic system. Emitter Follower also isolates the load from the system. Hence it is called a BUFFER .

If suitable power transistors with heat sink is utilized then emitter follower can deliver a large current and hence a large power to the load. But it has a problem:

Figure 3. Circuit Diagram of CE Amplifier.

Figure 35.6

Generally $V_{C E Q}=\frac{1}{2} V_{C C}$ to obtain maximum symmetrical swing

Figure 35.7

$$
\& I_{C Q}=\frac{V_{C C}-V_{C E Q}}{R_{F}}=\frac{1}{2} \frac{V_{C C}}{R_{F}}
$$

Figure 35.8

$$
\therefore \text { Device Dissipation }=I_{C Q} \times V_{C E Q}
$$

Figure 35.9

$$
=\left(\frac{1}{2} \frac{V_{C C}}{R_{E}}\right)\left(\frac{1}{2} V_{C C}\right)=\frac{1}{4} \frac{V_{C C}^{2}}{R_{E}}
$$

Figure 35.10

Figure 35.11

Amplitude of the O / P Voltage across R_{L}

$$
=\left(\frac{V_{C C}}{2}\right)
$$

Figure 35.12

$$
\therefore \text { Power delivered to the load }=\frac{\left(v_{r m s}\right)^{2}}{R_{L}}=\left(\frac{V_{C C}}{2 \sqrt{2}}\right)^{2} \times \frac{1}{R_{L}}=\left(\frac{V_{C C}^{2}}{4 \times 2 \times R_{L}}\right)
$$

Figure 35.13
\qquad
\qquad
Power delivered to the load $=P_{L}=\left(\frac{V_{C C}^{2}}{8 R_{L}}\right)$

Figure 35.14
\qquad
\qquad
Total D.C.Power Deivered by the Battery $=\left(V_{C C}\right)\left(I_{D C}\right)$

Figure 35.15

Where

$$
I_{D C}=I_{C Q}=\frac{1}{2} \frac{V_{C C}}{R_{E}}
$$

Figure 35.16

$$
\therefore P_{i n}=V_{C C} \times \frac{1}{2} \frac{V_{C C}}{R_{E}}=\frac{V_{C C}^{2}}{2 R_{E}}
$$

Figure 35.17
\therefore Efficiency of Power Conversion $=\frac{P_{L}}{P_{i n}}=\frac{\left(\frac{V_{C C}^{2}}{8 R_{L}}\right)}{\left(\frac{V_{C C}^{2}}{2 R_{E}}\right)}$

Figure 35.18

$$
\eta=\frac{P_{L}}{P_{i n}}=\frac{1}{4}\left(\frac{R_{E}}{R_{L}}\right)
$$

Figure 35.19

If

$$
R_{E}=R_{L} \text {, then } \eta=25 \%
$$

Figure 35.20

Under no signal conditions:

$$
P_{\text {in }}=P_{\text {device }}+P_{R_{E}}
$$

Figure 35.21
$P_{\text {device }}=$ Power dissipated across the device

Figure 35.22

$$
P_{R_{E}}=\text { Power dissipated across } R_{E}
$$

Figure 35.23
\qquad
\qquad

$$
P_{\text {in }}=\text { Standby Power }
$$

Figure 35.24

Even when there is no signal, power is consumed and dissipated in the form of heat. This is wasteful and not eco-friendly. CC Amplifier or Emitter Follower will always have this problem because it is operating in Class A mode.

By definition, Class A has current conducting in the active device for 360° phase angle of input signal.. Class B has current conducting in the active device for 180° phase angle of input signal.
Class AB has current conducting in the active device for slightly more than 180° phase angle of input signal.

Class C has current conducting in the active device for less than 180° phase angle of input signal.
Hence Class B and Class C mode of operation does not have the problem of standby dissipation. Under no signal condition the active device is not conducting hence standby power dissipation is zero.

Therefore we go for Class B mode of operation. Class B mode of operation will improve the power conversion efficiency from 25% in capacitance coupled load in Class A CC-BJT Amplifier to 78.8% in Class B PushPull Amplifier and in Class B complementary symmetry Amplifier. Class B Push Pull Amplifier
was Transformer Coupled Discrete Amplifier whereas Complementary Symmetry gets rid of Transformer Coupling and is amenable to Integration and its integrated version is being fabricated. This suppresses the even harmonics also which are bound to be generated because of large signal operation.

So today in Integrated Circuit Era, power amplifier is invariably Complementary Symmetry Amplifier which we will study in Part 2.

Chapter 36

AE_Lectur10_PowerAmplifiers_Part2_Power Analysis of ClassB Amplifiers.'

AE_LECTURE NO- 10_ Part2

$\overline{\text { CLASS B }}$ (COMPLEMENTARY CONFIGURATION)
By making $\mathrm{I}_{\mathrm{CQ}}=0$, a fantastic improvement is achieved in power conversion efficiency[Previously Push pull configuration was used but that needed transformer coupling. Now we use Complementary Symmetry Configuration which is amenable to IC Technology]

Figure 1. Complementary Symmetry Amplifier.

Figure 36.1

Figure 1. Class B Complimentary Symmetry Configuration.

[^37]When $v_{s}=0$, both Q_{1} and Q_{2} are off.
When $\mathrm{v}_{\mathrm{s}}=$ Positive half then
Q_{1} is ON and Q_{2} is OFF.
When $\mathrm{v}_{\mathrm{s}}=$ Negative half then
Q_{1} is OFF and Q_{2} is ON .
In the first case Q_{1} is sourcing current to the load and in the second half of the sinusoidal cycle, Q_{2} is sinking the current from the load.

Figure 36.2

Figure 2. Complimentary Symmetry action of Q 1 and Q 2 in a Complimentary-Symmetry Amplifier.

Figure 3. During transfer of conduction from Q1 to Q2 or from Q2 to Q1, momentarily both transistors are off. This is the dead zone and cause of cross-over distortion.

Figure 36.3

Figure 3. Illustration of Cross-Over Distortion in Class B mode of operation. During cross-over distortion, both $\mathrm{Q}_{1} \& \mathrm{Q}_{2}$ are off and it causes the Dead Zone.

Figure 36.4

Figure 4. The load line and the dynamic swing of the Q-point under signal condition.
This is Class B operation.
Q_{1} conducts for 180° of the I / P Voltage in positive half.
Q_{2} conducts for 180° of the I / P Voltage in negative half.
In class $\mathrm{A} \rightarrow$ there is one BJT Q_{0}. Q_{o} conducts for 360° of the I / P Voltage.
CLASS B Power Conversion Efficiency.
Let $\left|\mathrm{V}_{\mathrm{CC}}\right|=\left|\mathrm{V}_{\mathrm{EE}}\right|$

Figure 5. Conduction phase of the two complementary transistors

Figure 36.5

Figure 5. Half Wave Rectified Voltage Wave-Form passing through individual BJT but at the load there is full sinusoidal signal..

Half wave rectified current is passing through each BJT.
Average of this half wave rectified current

$$
=\frac{1}{T} \int_{0}^{T / 2} I_{0} \sin \omega t d t
$$

Figure 36.6

$$
=\frac{1}{T} I_{o}\left[\frac{-\cos \omega t}{\omega}\right]_{0}^{T / 2}
$$

Figure 36.7

$$
\left(I_{a v}\right)_{Q_{1}}=\frac{1}{T} \frac{I_{o}}{\frac{2 \pi}{T}}\left[-\cos \frac{\omega T}{2}+\cos 0\right]
$$

Figure 36.8

But

$$
\frac{\omega T}{2}=\frac{2 \pi}{T} \times \frac{T}{2}=\pi
$$

Figure 36.9

$$
\therefore\left(I_{a v}\right)_{Q_{1}}=\frac{I_{0}}{2 \pi}[1+1]=\left(\frac{I_{0}}{\pi}\right)
$$

Figure 36.10

Where

$$
I_{o}=\left(\frac{V_{C C}}{R_{L}}\right)
$$

Figure 36.11

Average power supplied by each battery

$$
=\left(V_{C C}\right)\left(I_{a v}\right)_{Q_{1}}=\left(V_{E E}\right)\left(I_{a v}\right)_{Q_{2}}=\left(\frac{V_{C C} \times I_{o}}{\pi}\right)
$$

Figure 36.12
\therefore Average power supplied by 1 battery $=V_{C C} \times \frac{1}{\pi} \times \frac{V_{C C}}{R_{L}}=\frac{V_{C C}{ }^{2}}{\pi R_{L}}$

Figure 36.13

Total Power Supplied $=$ Power from $V_{C C}+$ Power from $V_{E E}$

Figure 36.14
\qquad
\qquad

$$
\begin{equation*}
P_{\text {Total }}=\left(\frac{2 V_{C C}^{2}}{\pi R_{L}}\right)- \tag{2}
\end{equation*}
$$

Figure 36.15

Power delivered to the load $=\left(\frac{I_{o}^{2}}{2} R_{L}\right)=\frac{1}{2}\left(\frac{V_{C C}}{R_{L}}\right)^{2} R_{L}$

Figure 36.16

$$
P_{l o a d}=\left(\frac{V_{C C}^{2}}{2 R_{L}}\right)
$$

Figure 36.17

$$
\therefore \eta=\text { Efficiency of power conversion }=\frac{P_{\text {load }}}{P_{\text {Total }}}=\frac{\frac{V_{C C}^{2}}{2 R_{L}}}{\frac{2 V_{C C}^{2}}{\pi R_{L}}}=\left(\frac{\pi}{4}\right) \sim 0.785
$$

Figure 36.18

Therefore 78.5% Efficiency can be achieved in full load condition. CROSS-OVER DISTORTION is removed by Class AB operation.
Under quiescent condition, both BJT are conducting slightly so that there is no dead zone in switch over condition.

Figure 6. Biasing Network of Complementary Symmetry Amplifier for Clas AB mode of operation.

Figure 36.19

Figure 6. The Biasing Network to ensure Class AB mode of operation.

$$
R_{1}=R_{2}=9 . K ; R_{o}=1 \mathrm{~K}
$$

Figure 36.20

1 V bias will keep Q_{1} and Q_{2} barely conducting because 0.5 V is the cut-in voltage and 1 V across R_{0} ensures that both transistors are barely conducting because they in cut-in stage.

If 1 V is not sufficient then we may take 1.1 V to bias Q_{1} and Q_{2} so that dead zone is removed.
THE OUTPUT STAGE OF OPERATIONAL AMPLIFIER

Figure 7. Output CS stage of uA741

Figure 36.21

Figure 7. The output stage of $\mu \mathrm{A} 741$ Operational Amplifier.
$\mathrm{Q}_{2}, \mathrm{Q}_{3}$ are short circuit protection BJT's.
Normally $\mathrm{Q}_{2} \& \mathrm{Q}_{3}$ are off. But as excessive current passes through $\mathrm{Q}_{1} \& \mathrm{Q}_{4}, \mathrm{Q}_{2}$ or Q_{3} turn ON .
In positive half, Q_{2} turns $\mathrm{ON} \&$ limits the current in Q_{1} by shunting $\mathrm{I}_{\mathrm{B} 1}$.
In positive half, Q_{3} turn $\mathrm{ON} \&$ limits the current in Q_{4} by shunting $\mathrm{I}_{\mathrm{B} 4}$.
Typically if $\mathrm{R}=25 \Omega$ then maximum output current is 28 mA because $28 \mathrm{~mA} \mathrm{X} 25 \Omega=0.7 \mathrm{~V}$ which turns on Q_{2} or Q_{3} as the case may be.

TOTAL HARMONIC DISTORTION OF CLASS B AMPLIFIER
Non linear operation causes harmonic distortion or amplitude distortion.
Large signal condition leads to nonlinear operation.
SINCE power amplifier is large signal system hence harmonic distortion is inevitable.

$$
v_{o}=V_{o} \cos \omega_{o} t+V_{1} \cos 2 \omega_{1} t+V_{2} \cos 3 \omega_{1} t+----
$$

Figure 36.22

$$
\therefore \text { Total distortion content }=\sqrt{\frac{V_{1}^{2}}{2}+\frac{V_{2}^{2}}{2}+-----}
$$

Figure 36.23

$$
\therefore \text { Total Harmonic Distortion }=\left[\frac{\sqrt{\frac{V_{1}^{2}}{2}+\frac{V_{2}^{2}}{2}+----}}{V_{o} / \sqrt{2}}\right]
$$

Figure 36.24

In high fidelity audio amplifiers Total Harmonic Distortion $<0.1 \%$.
Class B mode of operation ensures that even harmonic cancel.
Refer to Figure 2.
If $\mathrm{i}_{\text {source }}(\omega \mathrm{t})=\mathrm{I}_{\mathrm{C}}+\mathrm{B}_{0}+\mathrm{B}_{1} \operatorname{Cos} \omega \mathrm{t}+\mathrm{B}_{2} \operatorname{Cos} 2 \omega \mathrm{t}+\mathrm{B}_{3} \operatorname{Cos} 3 \omega \mathrm{t}+\mathrm{B}_{4} \operatorname{Cos} 4 \omega \mathrm{t} \ldots .$.
Then $\mathrm{i}_{\text {sink }}(\omega \mathrm{t})=\mathrm{i}_{\text {source }}(\omega \mathrm{t}+\pi)=\mathrm{I}_{\mathrm{C}}+\mathrm{B}_{0}-\mathrm{B}_{1} \operatorname{Cos} \omega \mathrm{t}+\mathrm{B}_{2} \operatorname{Cos} 2 \omega \mathrm{t}-\mathrm{B}_{3} \operatorname{Cos} 3 \omega \mathrm{t}+\mathrm{B}_{4} \operatorname{Cos} 4 \omega \mathrm{t}-\ldots . .$.
Now net output current through the load $=i_{\text {out }}(\omega \mathrm{t})=\mathrm{i}_{\text {source }}(\omega \mathrm{t})-\mathrm{i}_{\text {sink }}(\omega \mathrm{t})$
Therefore $\mathrm{i}_{\text {out }}(\omega \mathrm{t})=2\left(\mathrm{~B}_{1} \operatorname{Cos} \omega \mathrm{t}+\mathrm{B}_{3} \operatorname{Cos} 3 \omega \mathrm{t}+\mathrm{B}_{5} \operatorname{Cos} 5 \omega \mathrm{t}-\ldots \ldots.\right)$
Hence overall harmonic distortion is suppressed automatically in Class B complimentary symmetry amplifier. Therefore signal fidelity is maintained inspite of large signal power amplification.

TRANSFORMER COUPLED CLASS AB PUSH PULL AMPLIFIER

Figure 8. Physical operation of Class B push-pull amplifier.

Figure 36.25

Figure 8. Circuit Diagram of Transformer Coupled Class B Push-Pull Amplifier.
Below in Figure 9, the graphical interpretation of Class B Push-Pull Amplifier is given. The battery V_{CC} in the output loop of the Class B amplifier supplies a full wave rectified current - one half is being supplied to Q_{1} and the other half is supplied to Q_{2}. The two half together result in a full sine wave in the secondary coil of the output transformer as shown in Figure 9B.

Figure 9A gives the load line of one half of the circuit.
Figure 9B gives the transfer characteristics.(input to output).
Figure 9C gives the resultant sine wave generated in the secondary loop of the output transformer

Where $R_{L}{ }^{\prime}=n^{2} R_{\text {L }}$
Figure 9B.
Transfer
Characteristics

Figure 9C. The resultant full sine wave in the secondary coil of the output transformer.

Figure 36.26

Figure 9. Load Line and Q-point swing under signal condition.
TRANSFOMER COUPLED CLASS A CE AMPLIFIER

Figure 10. Transformer coupled Class A CE
Amplifier.

Figure 36.27

Figure 10. Circuit Diagram of Class A transformer coupled CE Amplifier.

$R_{\mathbf{L}}^{\prime}$ is the effective load as seen on the primary side of transformer.

Figure 11. Incremental circuit of Transformer coupled CE Amplifier. DC load is zero but $A C$ load is K_{L}^{\prime}

Figure 36.28

Figure 11. Incremental Circuit of transformer coupled CE amplifier. The load is reflected as $n^{2} R_{L}$. Under no load condition there is no collector dissipation.

Figure 12. Graphical working of Transformer coupled CE Amplifier CE Amplifier sees zero dc load but R_{L}^{\prime} ac load.

Figure 36.29

$$
I_{a v} \text { from the battery }=I_{C Q}=\frac{1}{2}\left(\frac{2 V_{C C}}{R_{L}^{\prime}}\right)=\left(\frac{V_{C C}}{R_{L}^{\prime}}\right)
$$

Figure 36.30
\qquad
\qquad
\therefore Power from the battery $=I_{C Q} \times V_{C C}=\left(\frac{V_{C C}^{2}}{R_{L}^{\prime}}\right)=P_{\text {Total }}$

Figure 36.31

$$
\text { power delivere to the load }=\left(\frac{I_{p \& a k}}{\sqrt{2}}\right)^{2} R_{L}^{\prime}
$$

Figure 36.32

Where

$$
I_{p e a k}=\left(\frac{V_{C C}}{R_{L}^{\prime}}\right)
$$

Figure 36.33

$$
\therefore P_{l o a d}=\left(\frac{V_{C C}}{R_{L}^{\prime}}\right)^{2} \times \frac{1}{2} R_{L}^{\prime}=\frac{V_{C C}^{2}}{2 R_{L}^{\prime}}
$$

Figure 36.34

$$
\therefore \eta=\frac{P_{\text {load }}}{P_{\text {Total }}}=\frac{\frac{V_{C C}^{2}}{2 R_{L}^{\prime}}}{\frac{V_{C C}^{2}}{R_{L}^{\prime}}}=\frac{1}{2}=0.5
$$

Figure 36.35

$$
\text { Standby Power }=\text { Power dissipated across } B J T=I_{a v} V_{C E Q}=\frac{V_{C C}^{2}}{R_{L}^{\prime}}
$$

Figure 36.36

During signal condition half of this power is delivered to the load and half power is dissipated in BJT.
The considerable improvement in Power Conversion Efficiency is due the fact that under no signal condition dc load is zero hence there is no standby power dissipation in the load circuit though there is power dissipation in the active device. Due to this the efficiency rises from 25% to 50%.

In direct coupled CE Amplifier, the power conversion efficiency is 25%. This has not been dealt with. We analyzed the capacitive coupled Load in CC Amplifier . In this case also power conversion efficiency is 25%.

Class C tuned amplifier give more than 99% power conversion efficiency. This we will deal in RF tuned amplifier.

Chapter 37

AE_Lecture10_Supplementary ${ }^{\text {' }}$

AE_Lecture10_SupplementaryNotes.
Class A Direct Coupled Resistive Load Power Analysis.
Here we are analyzing Class A_ CE Amplifier with resistive load connected as R_{C}.

Figure 1. Class A CE Anplifier with resistive load connected as R_{C}

Figure 37.1

[^38]

Figure 37.2

Under no signal condition:
The dc power drawn from the battery is $=\mathrm{P}_{\text {battery }}=\mathrm{I}_{\mathrm{CEQ}} \mathrm{V}_{\mathrm{CC}}$
For maximum symmetrical swing, Q point is chosen to give :
$\mathrm{I}_{\mathrm{CEQ}}=\mathrm{V}_{\mathrm{CC}} /\left(2 \mathrm{R}_{\mathrm{C}}\right)$ and $\mathrm{V}_{\mathrm{CEQ}}=\mathrm{V}_{\mathrm{CC}} / 2$;
Therefore $\mathrm{P}_{\text {battery }}=\mathrm{V}_{\mathrm{CC}}{ }^{2} /\left(2 \mathrm{R}_{\mathrm{C}}\right)$;
Power dissipated in the device $=\mathrm{P}_{\text {dissip }}=\mathrm{I}_{\mathrm{CEQ}} \mathrm{V}_{\mathrm{CEQ}}=\mathrm{V}_{\mathrm{CC}}{ }^{2} /\left(4 \mathrm{R}_{\mathrm{C}}\right)$;
Power dissipated in the collector resistance $=\mathrm{P}_{\mathrm{RC}}=\left(\mathrm{I}_{\mathrm{CEQ}}\right)^{2} . \mathrm{R}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}{ }^{2} /\left(4 \mathrm{R}_{\mathrm{C}}\right)$;
$\mathrm{P}_{\text {battery }}=\mathrm{P}_{\text {dissip }}+\mathrm{P}_{\mathrm{RC}}$;
This means power drawn from the battery is equally dissipated across the collector resistance and the device.

When maximum signal is applied at the input, we get maximum output signal.
It will be noticed in Figure 2 that when maximum current flows in BJT there is minimum voltage across BJT and when there is maximum voltage across BJT then there is minimum current through BJT. Both these situations minimize the device dissipation. The saved portion of device dissipation is converted into signal power.

The signal voltage across the load i.e. R_{C} is $=\left(\mathrm{V}_{\mathrm{CC}} / 2\right) \operatorname{Sin}(\omega \mathrm{t})$
Therefore signal power developed across the load $=\operatorname{Vrms}^{2} / \mathrm{R}_{\mathrm{C}}$;
Vrms $=($ amplitude of the sinusoidal voltage swing $)=\left(\mathrm{V}_{\mathrm{CC}} / 2\right) / \sqrt{ } 2$;
Signal Power $=\mathrm{P}_{\text {signal }}=\mathrm{Vrms}^{2} / \mathrm{R}_{\mathrm{C}}=\left(\left(\mathrm{V}_{\mathrm{CC}} / 2\right) / \sqrt{ } 2\right)^{2} / \mathrm{R}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{CC}}\right)^{2} /\left(8 \mathrm{R}_{\mathrm{C}}\right)$;
Power Conversion of efficiency $=\eta=\mathrm{P}_{\text {signal }} / \mathrm{P}_{\text {battery }}=2 / 8=1 / 4=25 \%$;
Class A Transformer Coupled Load.

Figure 3. Class A CE Amplifier with transformer coupled resistive load R_{C}

Figure 37.3

Figure 37.4

Figure 4 gives the static and dynamic load line in case of ClassA CE transformer coupled resisitive load. Since transformer primary coil offers 0Ω under dc condition hence the static load line has a slope of $=-1 / 0$ $=\infty$. Therefore Static load line is a vertical line parallel to Y axis and cutting X axis at V_{CC}.

Q point is so chosen that we obtain maximum symmetrical swing. For this the vertical from Q must bisect the X axis intercept of the Dynamic Load Line.

Hence slope of $\mathrm{OQ}=$ negative slope of the dynamic load Line $=1 / \mathrm{R}_{\mathrm{L}}$,
where $\mathrm{R}_{\mathrm{L}}{ }^{\prime}=\mathrm{n}^{2} \mathrm{R}_{\mathrm{L}}$ and $\mathrm{n}=$ turns ratio of primary to secondary..
Therefore Q point is: $\mathrm{V}_{\mathrm{CEQ}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{I}_{\mathrm{CQ}}=\mathrm{V}_{\mathrm{CC}} / \mathrm{R}_{\mathrm{L}}$.
Under no signal condition the power drawn from the battery $=$
$\mathrm{P}_{\text {battery }}=\mathrm{V}_{\mathrm{CC}} \times \mathrm{I}_{\mathrm{CQ}}=\left(\mathrm{V}_{\mathrm{CC}}\right)^{2} / \mathrm{R}_{\mathrm{L}}{ }^{\prime}=$ this power is totally dissipated in the device. There is no resistive dissipation as the dc ohmic resistance is zero in collector circuit.

Signal Power delivered to the load as seen on the primary side is $=\mathrm{Vrms}^{2} / \mathrm{R}_{\mathrm{L}}{ }^{\prime}$;
But Vrms $=$ amplitude of maximum sinusoidal swing/ $\sqrt{ } 2$;
As seen from the graph in Figure 4 the amplitude of maximum sinusoidal swing $=\mathrm{V}_{\mathrm{CC}}$;
Hence $\mathrm{P}_{\text {signal }}=\left(\mathrm{Vrms}=\mathrm{V}_{\mathrm{CC}} / \sqrt{ } 2\right)^{2} / \mathrm{R}_{\mathrm{L}}{ }^{\prime}=\left(\mathrm{V}_{\mathrm{CC}}\right)^{2} /\left(2 \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right)$;
Therefore $\eta=1 / 2=50 \%$. Almost hundred percent improvement over the direct coupled load but still not permissible for Power Amplifiers.Here half of the device power dissipation under no signal condition is being transformed into signal power under signal condition. Thus we achieve 50% power conversion efficiency.

So we go for Class B mode of operation where we will achieve 80% power conversion efficiency.
In RF applications we will go for Class C mode of operation which will provide 99% power conversion efficiency.

Here the question arises why do we not go for Class C mode of operation in Audio Frequency Range.
This is because Class C suffers from very severe harmonic distortion which can be removed only by tuned circuits and tuned circuits are not practical at audio range.

Chapter 38

AE_Lecture11_Part1_Audio Oscillators ${ }^{1}$

AE_LECTURE 11_Part1.

$\overline{\text { Section 1. FEEDBĀCK SYSTEMS STABILITY AND OSCILLATORS }}$

Figure 1. Block Diagram of a feed back system

Figure 38.1

Figure 1. Block Diagram of feedback system.
Here ' s ' implies s -domain and $\mathrm{s}=\sigma+\mathrm{j} \omega$. Just as we have time domain, we have frequency domain, s -domain and z -domain.

In Time-domain we study the response of a system with respect to time.
In Frequency-domain we study the steady state sinusoidal response of a system.

[^39]In s-domain we get to see the total response of the system. Whenever a certain input is applied we have a transient response and steady state response. Total response is the sum total of transient plus steady state response.
z -domain is for discrete time systems and s-domain is for continuous time systems.
In the Block Diagram of a feedback system, we have the Basic Amplifier Block A(s), the feedback network block $\mathrm{f}(\mathrm{s})$ and comparison node. $\mathrm{f}(\mathrm{s})$ can be frequency independent or frequency selective.

$$
v_{i}=\left(v_{s}-v_{f}\right)
$$

Figure 38.2
\qquad
\qquad

$$
v_{o}(s)=A(s) v_{i}(s)
$$

Figure 38.3
\qquad
\qquad

$$
v_{f}(s)=f(s) v_{o}(s)
$$

Figure 38.4
\qquad
\qquad

$$
\therefore \frac{v_{o}(s)}{v_{s}(s)}=\frac{A(s)}{1+A(s) f(s)}=\frac{A(s)}{1-[-A(s) f(s)]}
$$

Figure 38.5

$$
A_{c l o s e d}(s)=\frac{A_{o p e n}(s)}{1-L(s)}
$$

Figure 38.6
\qquad
\qquad
$L(s)=$ Loop Gain $=-A_{\text {open }}(s) f(s)$

Figure 38.7

In negative feed back

$$
L(s)=\text { negative }
$$

Figure 38.8

In positive feed back

$$
L(s)=\text { positive }
$$

Figure 38.9

Negative feed back system is a degenerative system:

$$
A_{\text {closed }}=\frac{A_{\text {open }}}{1+|L(s)|}
$$

Figure 38.10

And $\mathrm{A}_{\text {closed }}<\mathrm{A}_{\text {open }}$ Hence a degenerate system.

Positive feedback system is a regenerative system:
$\mathrm{A}_{\text {closed }}=\mathrm{A}_{\text {open }} /[1-|\mathrm{L}(\mathrm{s})|]$
If

$$
|L(s)|<1
$$

Figure 38.11

then

$$
A_{\text {closed }}>A_{\text {open }}
$$

Figure 38.12

Hence regenerative system

$$
\text { If }|L(s)| \geq 1
$$

Figure 38.13
then

$$
A_{\text {closed }} \rightarrow \infty
$$

Figure 38.14
and system becomes unstable and oscillatory.
We can take advantage of instability and realize a pure sine wave oscillator. When

$$
L(s)=-A(s) f(s)=1 \angle 0^{\circ}
$$

Figure 38.15

. This is BARKHAUSEN CRITERIA.

Then we realize a pure sine wave oscillator.

For self starting condition we allow

$$
L(s)=-A(s) f(s)
$$

Figure 38.16
to be slightly greater than

$$
1 \angle 0^{\circ}
$$

Figure 38.17
.This will ensure self starting condition but it will cause a slight distortion.
Section 2. Class of audio oscillators $(1 \mathrm{~Hz} \rightarrow 100 \mathrm{kHz})$
Wien Bridge Oscillator, Phase-Shift Oscillator and Quadrature Oscillator.

2.1. Wien Bridge Oscillator.

Here Op.Amp is connected as an Non-inverting amplifier with a gain of $3 / 0^{0}$. The feedback network is a notch filter providing a dip of exactly $1 / 3$ and phase angle 0° at an angular frequency of

$$
\omega_{0}=
$$

Figure 38.18

$$
\frac{1}{R_{0} c_{0}}
$$

Figure 38.19
. Thus an exact loop gain of unity with 0^{0} phase shift is achieved. But for selfstarting condition the non-inverting gain is kept slightly larger than 3 .

Figure 2. Wien Bridge Oscillator.

Figure 38.20

Figure 2. Circuit Diagram of Wien Bridge Oscillator.

$$
\frac{v_{f}}{v_{o}}=\frac{Z_{2}(s)}{Z_{1}(s)+Z_{2}(s)}=\frac{\frac{\left[R_{o}\left(\frac{1}{s C_{o}}\right)\right]}{\left(R_{o}+\frac{1}{s C_{o}}\right)}}{\left(R_{o}+\frac{1}{s C_{o}}\right)+\frac{\left\{R_{o}\left(\frac{1}{s C_{o}}\right)\right\}}{\left(R_{o}+\frac{1}{s C_{o}}\right)}}
$$

Figure 38.21

$$
=\frac{\frac{R_{o}}{1+s R_{o} C_{o}}}{\frac{\left(1+s R_{o} C_{o}\right)}{s C_{o}}+\frac{R_{o}}{\left(1+s R_{o} C_{o}\right)}}
$$

Figure 38.22

$$
=\frac{s R_{o} C_{o}}{s R_{o} C_{o}+\left(1+s R_{o} C_{o}\right)^{2}}
$$

Figure 38.23

$$
=\frac{s R_{o} C_{o}}{s R_{o} C_{o}+1+s^{2} R_{o}^{2} C_{o}^{2}+2 s R_{o} C_{o}}
$$

Figure 38.24

$$
\frac{v_{f}(s)}{v_{o}}=\frac{s R_{o} C_{o}}{s^{2} R_{o}^{2} C_{o}^{2}+3 s R_{o} C_{o}+1}
$$

Figure 38.25

Replacing s by $\mathrm{j} \omega$,

$$
\frac{v_{f}(s)}{v_{o}(s)}=\frac{j \omega_{o} R_{o} C_{o}}{\left(1-\omega_{o}{ }^{2} R_{o}{ }^{2} C_{o}{ }^{2}\right)+3 j \omega_{o} R_{o} C_{o}}
$$

Figure 38.26

At

$$
\omega_{o}=\frac{1}{\omega_{0} R_{o}} ;\left(1-\omega_{o}^{2} R_{o}^{2} C_{o}^{2}\right)=0
$$

Figure 38.27

$$
\frac{v_{f}(j \omega)}{v_{o}}=\frac{1}{3} \angle 0^{\circ}
$$

Figure 38.28

$$
\therefore \text { if } \frac{v_{o}}{v_{f}}=3=\left(1+\frac{R_{2}}{R_{1}}\right)
$$

Figure 38.29

Then Loop Gain=

$$
1 \angle 0^{\circ}
$$

Figure 38.30

Oscillation Frequency=

$$
\omega_{o}=\frac{1}{R_{0} c_{o}}
$$

Figure 38.31

$$
\frac{R_{z}}{R_{1}}=2
$$

Figure 38.32
; This gives a non-inverting gain of 3 .
2.2. RC PHASE SHIFT OSCILLATOR

Figure 38.33

Figure 3. Circuit Diagram of RC phase shift oscillator.
Here Op Amp is connected as an inverting amplifier providing a gain of 29 and phase shift of 180°.
The RC phase shift network gives an attenuation of $1 / 29$ and a phase shift of another 180°.
Thus an exact Loop Gain of $1 / 0^{0}$ is achieved. But for self starting condition the inverting gain is kept slightly larger than 29 .

Figure 4. Phase Shift Network.

Figure 38.34

Figure 4. The feed back network.
The Loop Gain expression is:
$\mathrm{L}(\mathrm{j} \omega)=$

$$
\frac{R_{2}}{R_{1}} \times \frac{j \omega^{s}}{R e \Delta+j \operatorname{Im} \Delta}
$$

Figure 38.35
where $\Delta=$

$$
\frac{\left(s_{0}+2 j \omega\right)^{2}\left(s_{0}+j \omega\right)}{(j \omega)^{2}(j \omega)}-\frac{\left(2 s_{0}+3 j \omega\right)}{j \omega}
$$

Figure 38.36
and

$$
s_{0}
$$

Figure 38.37
$=$

$$
\frac{1}{R_{0} C_{0}}
$$

Figure 38.38
$\operatorname{Re}(\Delta)=$

$$
s_{0}^{3}-8 \omega^{2} s_{0}+2 s_{0} \omega^{2}
$$

Figure 38.39
$\operatorname{Im}(\Delta)=$

$$
\omega\left(5 s_{0}^{2}-\omega^{2}\right)
$$

Figure 38.40

To satisfy the Barkhausen Criteria, $\operatorname{Re}(\Delta)=0$;
But $\operatorname{Re} \Delta=$

$$
s_{0}^{3}-8 \omega^{2} s_{0}+2 s_{0} \omega^{2}=0
$$

Figure 38.41

Therefore by cancelling

s_{0}

Figure 38.42
through out, we get

$$
s_{0}^{2}=6 \omega^{2}
$$

Figure 38.43

Therefore

$$
\omega_{o s c}=\frac{s_{0}}{\sqrt{6}}
$$

Figure 38.44

$$
\frac{1}{\sqrt{6} R_{0} C_{0}}
$$

Figure 38.45

Second part of the Barkhausen Criteria says that at oscillatory frequency the phase angle should be zero. $\mathrm{L}(\omega=$

$$
\frac{s_{0}}{\sqrt{6}}
$$

Figure 38.46
) $=$

$$
\frac{R_{2}}{R_{1}} \times \frac{j\left({ }^{s_{0}} / \sqrt{6}\right)^{5}}{\omega_{o s c}\left(5 s_{0}^{2}-\omega_{o s c}{ }^{2}\right)}
$$

Figure 38.47
$=$

$$
\frac{R_{2}}{R_{1}} \times \frac{j\left(s_{0} / \sqrt{6}\right)^{2}}{\left(5 s_{0}^{2}-s_{0}^{2} / 6\right)}
$$

Figure 38.48
$=$

$$
\frac{R_{2}}{R_{1}}\left(\frac{s_{0}^{2} / 6}{29 s_{0}^{2} / 6}\right.
$$

Figure 38.49
)
$\mathrm{L}(\omega=$

$$
\frac{s_{0}}{\sqrt{6}}
$$

Figure 38.50
) $=$

$$
\frac{R_{2}}{R_{1}}\left(\frac{1}{29}\right.
$$

Figure 38.51
) $=1$;
Therefore

$$
\frac{R_{2}}{R_{1}}=29 ;
$$

Figure 38.52

Chapter 39

AE_Lecture11_Part2_Radio-Frequency Oscillators'

AE LECTURE 11 Part2.
Part 2 deals with $\overline{\mathrm{RF}}$ Oscillators.
Section 1. Class of RF OSCILLATORS
($100 \mathrm{kHz}-1000 \mathrm{kHz}$:Medium Wave RF \& 1MHz-30MHz:Short Wave RF;
$30 \mathrm{MHz}-70 \mathrm{MHz}$: Amateur Band for HAM Radio practitioners;
$70 \mathrm{MHz}-300 \mathrm{MHz}$: Very High Frequency (VHF) Band for FM and TV transmissions;
$300 \mathrm{MHz}-800 \mathrm{MHz}$: Ultra High Frequency(UHF) Band for Police Communication;
$1 \mathrm{GHz}-100 \mathrm{GHz}$: Microwaves for satellite communication;
Terra $\mathrm{Hz}(0.4 \mu \mathrm{~m}-100 \mu \mathrm{~m})$: Optical Fiber Communication)
LC oscillators are RF oscillators.

${ }^{1}$ This content is available online at http://cnx.org/content/m32429/1.1/.

Figure 39.1

Figure 1. Parallel Resonance Circuit or Tank Circuit.

Figure 2. Tank Circuit driven by current source

Figure 39.2

Figure 2. Circuit Diagram of a Tank Circuit driven by a constant current source. Parallel resonance circuit is known as tank Circuit.
Resonance frequency $=\omega_{\mathrm{o}}=$

$$
\frac{1}{\sqrt{L C}}
$$

Figure 39.3

$$
V_{o}(j \omega)=I_{s}(j \omega) Z_{\text {tank }}(j \omega)
$$

Figure 39.4

$$
z_{\operatorname{tank}}(j \omega)=\frac{1}{\left[\frac{1}{j \omega}+j \omega\right]}=\frac{j \omega}{\left(1-\omega^{2} L C\right)}=\frac{j \omega L}{L C\left(\frac{1}{L C}-\omega^{2}\right)}
$$

Figure 39.5

Figure 3. PoleZero Pattern of Tank Circuit

Figure 39.6

Figure 3. Magnitude of the reactance of a tank circuit vs frequency.

$$
z_{t a n k}=\frac{j \omega}{C\left(\omega_{o}^{2}-\omega^{2}\right)}
$$

Figure 39.7

At $\omega=$

$$
\frac{1}{\sqrt{L C}}
$$

Figure 39.8

$$
z_{\operatorname{tank}}\left(j \omega_{0}\right)=\infty
$$

Figure 39.9

$$
\text { At } \omega<1 / \sqrt{L C}
$$

Figure 39.10
\qquad
\qquad

$$
Z_{\text {tank }}=+ \text { reactance. Hence Inductive }
$$

Figure 39.11
\qquad
\qquad
At $\omega>1 / \sqrt{L C}$

Figure 39.12

$$
z_{\text {tank }}=- \text { reactance } . \text { Hence Capacitive }
$$

Figure 39.13

When quality factor Q of the tank circuit $=\infty$, the circuit is purely reactive and there is no dissipation.
When quality factor Q is finite say 1000 then an equivalent R_{P} comes in parallel with the tank circuit. R_{P} accounts for the losses

$$
Q=R_{p} / \omega_{0} L
$$

Figure 39.14

For a finite quality factor tank circuit, the effective impedance is a pure resistance R_{P} at resonance frequency.

Hence

$$
Z_{t a n k}\left(j \omega_{o}\right)=R_{p}
$$

Figure 39.15

Frequency response of the tank circuit is :

$$
V_{o u t}\left(j \omega_{o}\right)=I_{s}\left(j \omega_{o}\right) R_{p}
$$

Figure 39.16

Figure 4. Peak type frequency response of a tank circuit driven by a current source.

Figure 39.17

Figure4. The peak response of a tank circuit for various quality factors.

$$
\Delta \omega=\text { Band Width }
$$

Figure 39.18
\qquad
\qquad

$$
Q=\frac{\omega_{0}}{\Delta \omega}
$$

Figure 39.19

At $Q=\infty$, spike response.
At $\mathrm{Q}=$ finite, peak response.
As Q falls, sharpness of the peak response is lost.
Section 1.1. GENERALIZED LC OSCILLATOR.

Figure 5. Generalized Configuration of RF Oscillator using an Op Amp.

Figure 39.20

Figure 5. Block Diagram of generalized LC Oscillator

Figure 6. Reorientation of the generalized configuration to visualize the feedback

Figure 39.21

Figure 7. The incremental circuit of the generalized oscillator.

Figure 39.22

$$
v_{o}=\frac{-A_{V} v_{i n}\left(z_{L}\right)}{\left(R_{o}+z_{L}\right)}
$$

Figure 39.23

Where

$$
z_{L}=z_{2} \|\left(z_{1}+z_{3}\right)
$$

Figure 39.24

Therefore:

$$
v_{i n}=\frac{-v_{o}\left(R_{o}+z_{L}\right)}{\left(A_{V} z_{L}\right)}---------(1)
$$

Figure 39.25

Examining the feedback network in Figure 8:
Feed back voltage

$$
\begin{equation*}
v_{f}=\frac{v_{0} \times Z_{1}}{z_{1}+Z_{\mathrm{s}}} \tag{2}
\end{equation*}
$$

Figure 39.26

If loop gain $=1[\mathrm{U}+221 \mathrm{~F}] 0^{\circ}$

$$
v_{i n}=v_{f}
$$

Figure 39.27
\qquad
\qquad

$$
\therefore \frac{-v_{o}\left(R_{o}+z_{L}\right)}{\left(A_{V} z_{L}\right)}=\left(\frac{v_{o} \times Z_{1}}{Z_{1}+Z_{3}}\right)
$$

Figure 39.28

$$
\frac{-\left[R_{o}+\frac{\left(Z_{2}\right)\left(Z_{1}+Z_{3}\right)}{\left(Z_{1}+Z_{3}+Z_{2}\right)}\right]}{A_{V} \frac{\left(Z_{2}\right)\left(Z_{1}+Z_{3}\right)}{\left(Z_{1}+Z_{3}+Z_{2}\right)}}=\frac{Z_{1}}{Z_{1}+Z_{3}}
$$

Figure 39.29

$$
\text { or } \frac{-\left[R_{o}\left(Z_{1}+Z_{3}+Z_{2}\right)+\left(Z_{2}\right)\left(Z_{1}+Z_{3}\right)\right]}{\left(A_{V}\right)\left(Z_{2}\right)\left(Z_{1}+Z_{3}\right)}=\frac{Z_{1}}{Z_{1}+Z_{3}}
$$

Figure 39.30

$$
\text { or } 1=\frac{-Z_{1} Z_{2} A_{V}}{\left[R_{o}\left(Z_{1}+Z_{3}+Z_{2}\right)+\left(Z_{2}\right)\left(Z_{1}+Z_{3}\right)\right]}---------(3)
$$

Figure 39.31

This identity can be true only if

$$
\begin{equation*}
\left(Z_{1}+Z_{2}+Z_{3}\right)=0 \tag{4}
\end{equation*}
$$

Figure 39.32
\qquad

$$
\begin{equation*}
\&\left(Z_{1}+Z_{3}\right)=-Z_{2} \tag{5}
\end{equation*}
$$

Figure 39.33

Subs(4) \& (5) in (3)

$$
1=\frac{-Z_{1} Z_{\text {天 }} A_{V}}{\left(Z_{z}\right)\left(Z_{1}+Z_{3}\right)}=\frac{\left(-Z_{1}\right) A_{V}}{-Z_{2}}
$$

Figure 39.34
\qquad
\qquad
$\therefore 1=\frac{Z_{1}}{Z_{2}} A_{V}$

Figure 39.35

Starting condition is

$$
\left(\frac{z_{1}}{z_{2}} A_{V}\right)>1
$$

Figure 39.36

This means

$$
Z_{1} \text { and } Z_{2}
$$

Figure 39.37
are same kind of reactance and

Z_{3}

Figure 39.38
is of opposite kind of reactance.
Table 1. Different possible configurations of a generalized LC Oscillator.

	Z 1	Z 2	Z 3	Type of Oscillator
1	L	L	C	Hartley Oscillator
2	C	C	L	Colpitts Oscillator

Table 39.1

Chapter 40

AE_Lecture11_Part3_Radio-Frequency Oscillators Continued

Section 1.2. Colpitts Oscillator Using Op-Amp

Theoretical Analytical results have been taken from'Microelectronic Circuits_Analysis \& Design" by Rashid, Publisher Thomson(Indian Edition),1999.Chapter 14_Power Amplifiers.

[^40]

Figure 8. Colpitts Oscillator based on Op.Amp.

Figure 40.1

Figure 8. Circuit Diagram of Colpitts Oscillator.
The frequency of oscillation:

$$
\omega_{o}=\frac{1}{\sqrt{L\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)}}
$$

Figure 40.2

The Barkhausen Criteria is satisfied by the following ratio: gmR1 $=\mathrm{C} 2 / \mathrm{C} 1+(\mathrm{C} 1 / \mathrm{C} 2)(\mathrm{R} 1 / \mathrm{RL})+\left(\mathrm{L} /\left(\mathrm{C} 2 \mathrm{RL}^{\wedge} 2\right)\right)+\mathrm{L} /(\mathrm{C} 1 \mathrm{R} 1 \mathrm{RL})$
For large values of RL : gmR1 $=\mathrm{C} 2 / \mathrm{C} 1$ and $\mathrm{gm}=$ Aopen $/ \mathrm{RL}$

But magnitude of Aopen = magnitude of the voltage gain of the Basic Amplifier in Figure 8. The basic amplifier is an inverting amplifier hence /Aopen/=RF/R1

Therefore gmR1 $=($ Aopen $/ \mathrm{RL}) \mathrm{R} 1=(\mathrm{RF} / \mathrm{R} 1)^{*}(\mathrm{R} 1 / \mathrm{RL})=\mathrm{RF} / \mathrm{RL}=\mathrm{C} 2 / \mathrm{C} 1$;
Therefore when RL is large then we must satisfy the condition: $\mathrm{RF} / \mathrm{RL}=\mathrm{C} 2 / \mathrm{C} 1$
A typical Colpitts oscillator with fosc at 150 kHz will have the component values as follows:
$\mathrm{R} 1=100 \mathrm{kohm}, \mathrm{RF}=1000 \mathrm{kohm}, \mathrm{RL}=100 \mathrm{kohm}, \mathrm{C} 1=0.01 \mathrm{uF}, \mathrm{C} 2=0.1 \mathrm{uF}, \mathrm{L}=124 \mathrm{uH}$
Section 1.2.1.Colpitt's oscillator Using BJT

Figure 9. Colpitt's configuration using BJT.

Figure 40.3

Figure 9.Circuit Diagram of Colpitts Oscillator using BJT.
Section 1.3.1. Hartley Oscillator Using Op-Amp

Figure 10. Hartley Oscillator based on Op Amp.

Figure 40.4

Figure 10. Circuit Diagram of Hartley Oscillator using Op.Amp.
For oscillation:
gmR1 $=(\mathrm{L} 1 / \mathrm{L} 2)+(\mathrm{R} 1 . \mathrm{L} 2) /($ RL.L1 $)$
For large values of R_{L},
gm.R1 = L1/L2
But gm $=$ Aopen $/$ RL and $/$ Aopen $/=$ RF $/$ R1
Therefore gmR1 $=\mathrm{RF} / \mathrm{RL}=(\mathrm{L} 1 / \mathrm{L} 2)+(\mathrm{R} 1 . \mathrm{L} 2) /($ RL.L1 $)$
Typical device parameters of a Hartley Oscillator with fosc $=33 \mathrm{kHz}$ are:
$\mathrm{R} 1=100 \mathrm{kohms}, \mathrm{RF}=1 \mathrm{Mohms}, \mathrm{RL}=900 \mathrm{kohms}, \mathrm{L} 1=\mathrm{L} 2=125 \mathrm{uH}, \mathrm{C}=0.1 \mathrm{uF}$.

$$
\omega_{0}=\frac{1}{\sqrt{(C)\left(L_{1}+L_{2}\right)}}
$$

Figure 40.5

Section 1.3.2. HARTLEY OSCILLATOR USING JFET

Figure 11. Hartley Oscillator using JFET.

Figure 40.6

Figure 11. Circuit Diagram of Hartley Oscillator using JFET.

$$
\omega_{o}=\frac{1}{\sqrt{C\left(L_{1}+L_{2}\right)}}
$$

Figure 40.7

Here

$$
g_{m}=\frac{L_{2}}{L_{1} R_{L_{t}}} \because R_{1}=\infty
$$

Figure 40.8

$$
R_{L}=n^{2} R
$$

Figure 40.9

$$
L_{2}=n^{2} L_{3}
$$

Figure 40.10

Section 1.4. TUNED OSCILLATOR

Figure 12. Tuned Oscillator

Figure 40.11

Figure 12. Circuit diagram of a tuned oscillator.

$$
\omega_{0}=\frac{1}{\sqrt{L C}}
$$

Figure 40.12

$$
R_{1}=r_{d} \| \frac{R_{G}}{n^{2}}
$$

Figure 40.13

$$
g_{m} R_{1}=1
$$

Figure 40.14

Section 2. CRYSTAL OSCILLATOR

In Colpitts oscillator, inductor is replaced by a crystal.
Quartz crystal is preferred due to the stability and accuracy.

Figure 40.15

Figure 13. The symbol of a quartz crystal, the equivalent circuit, pole-zero pattern of a crystal resonance circuit.
$Q($ of series resistance $)=$

$$
\left(\frac{\omega_{0} L}{R_{s}}\right)
$$

Figure 40.16

Q (Of Tank Circuit $)=$

$$
\left(\frac{R_{p}}{\omega_{o} L}\right)
$$

Figure 40.17

Mass of the crystal gives rise to L_{s}
Elasticity of the crystals gives rise to C_{s}.
Damping force gives rise to R_{s}.
$\mathrm{L}_{\mathrm{S}}, \mathrm{C}_{\mathrm{S}}$ and R_{S} comprises the intrinsic series resonance path through the crystal. Table 2. COMMON CUTS OF QUARTZ CRYSTAL(RCA Corp.)

Frequency	32 kHz	280 kHz	525 kHz	2 MHz	10 MHz
Cut	XY Bar	DT	DT	AT	AT
R_{s}	$40 \mathrm{~K} \Omega$	1820Ω	1400Ω	82Ω	5Ω
L	4800 H	25.9 H	12.7 H	0.52 H	12 mH
$\mathrm{C}_{\mathrm{s}}(\mathrm{pF})$	0.0491	0.0126	0.00724	0.0122	0.0145
$\mathrm{C}_{\mathrm{p}}(\mathrm{pF})$	2.85	5.62	3.44	4.27	4.35
Q	25,000	25,000	30,000	80,000	150,000

Table 40.1

Section 2.1.CRYSTAL OSCILLATOR CIRCUIT

Figure 14. Crystal Oscillator using an Op.Amp.

Figure 40.18

Figure 14. Crystal Oscillator circuit using an Op.Amp.
The tank circuit of CRYSTAL OSCILLATOR

Figure 15. Parallel Resonance Circuit or the Tank Circuit in the Crystal Oscillator.

Figure 40.19

EXACT RELATION

$$
\omega_{o}=\left[\frac{C_{1} R_{1}+C_{2} R_{1}+C_{2} R_{s}}{C_{1} C_{2} L_{s} R_{1}}\right]^{1 / 2}
$$

Figure 40.20

When Q is very high which is true for crystal then $R_{e} \sim 0$.
And

$$
g_{m} R_{1}=\frac{c_{2}}{c_{1}}
$$

Figure 40.21

In near future, we will have a Paradigm Shift. The scaling of CMOS will hit the wall. For that day we are developing ‘ MICROELECTROMECHANICAL SYSTEM(M E M S)',Molecular Electronics \& Nanotechnology.

We have to replace low Q integrated capacitor \& inductors. These will be replaced by MEMS structure. MEMS \& CMOS will enable highly efficient single chip radio.

In 2002 Hewlett-Packard \& HCLA announced a molecular array with 100 nm center to center memory element spacing (9/10/02)

If we achieve 35 nm center to center we will achieve 100 Gb memory space in $1(\mathrm{~cm})^{2}$.

Chapter 41

AE_Lecture 12_Tuned Amplifiers'

AE_LECTURE 12 _Tuned Amplifier.
Section 1.TUNED AMPLIFIER
Tuned amplifiers are amplifiers as well as Band-Pass Filters.
RC-Active Filters are made of RC circuit and Op-Amp.

Figure 1. Low Pass Active Filter.

Figure 41.1

Figure 1. Circuit diagram of Low Pass Active Filter
This is a LOW PASS ACTIVE FILTER. But it operates at 100 kHz and below because the frequency response of op-amp is very limited.

[^41]To operate in RF,VHF, UHF range we have to go for circuits using parallel resonance circuits as tank circuit made of L-C-R circuits.

In communication applications we require narrow band frequency selective amplifiers so that from among closely spaced broadcasting stations, a station of choice is tuned to.

In AM radio broadcast we may need to tune to 1 MHz with a B.W. of 20 kHz .

$$
Q=\frac{\omega_{o}}{\Delta \omega}=\frac{1 \mathrm{MHz}}{20 \mathrm{kHz}}=\frac{1000}{20}=50
$$

Figure 41.2

This means a $\mathrm{Q}=50$ is required.
In FM Radio Broadcast which is in VHF range, we need to tune to 100 MHz with a B.W. $=200 \mathrm{kHz}$, here $\mathrm{Q}=500$.

These narrow band pass RF-VHF amplifiers are called Tuned Amplifiers.
The tuned amplifiers are Class A amplifiers but in tuned power amplifiers the conservation of power is at premium therefore we go for class C amplifiers. Class C amplifier gives an energy conversion efficiency of 99%.Therefore dissipation and hence heating of the components is reduced.

All communication and broadcast receivers require RF amplifiers and IF Amplifiers. These are all tuned amplifiers with a peak response and a narrow band-width.

Section 1.1.SINGLE TUNED AMPLIFIER

Figure 2. Single Tumed Amplifier.

Figure 41.3

Figure 2. Circuit Diagram of a Single Tuned Amplifier.
This is a CE BJT except that R_{c} is replaced by LC Tank Circuit. The equivalent circuit is:

Figure 3. Incremental representation of the circuit in Figure 2.

Figure 41.4

Figure 3. The incremental circuit representation of the tank circuit.
All the losses of the tank circuit namely copper losses and dielectric losses are lumped in R_{p}. Since inductor is air cored hence no hysteresis and eddy current losses.

This gives a peak gain of:
$A_{V}\left(j \omega_{o}\right)=-g_{m} R_{p}$
Off resonance the gain rapidly falls. The rapid fall of the gain at off-resonance defines the selectivity or skirt selectivity of the tuned amplifier.

Figure 4. Gain Magnitude-Frequency Response of Tuned Am.

Figure 41.5

Figure 4. Definition of Skirt Selectivity from the frequency response curve of the tank circuit.

Skirt selectivity=

$$
\left(\frac{30 d B \text { Spread }}{3 d B B . W .}\right)
$$

Figure 41.6

Ideal tuned amplifier will have 0 dB or unity skirt selectivity but practically skirt selectivity is always greater than 1.

$$
\omega_{0}=\frac{1}{\sqrt{L C}}
$$

Figure 41.7
\qquad
\qquad

$$
B W=\frac{1}{R_{p} C}
$$

Figure 41.8
\qquad
\qquad

$$
Q=\frac{R_{p}}{\omega_{o} L}=\frac{\omega_{o}}{\Delta \omega}=\omega_{o} R_{p} C
$$

Figure 41.9

Q of Resonance circuit $=\mathrm{Q}$ of inductor.

$$
Q=\frac{\text { Power Stored }}{\text { Power Dissipated }}
$$

Figure 41.10

Figure 5. Two representations of a Tank Circuit.

Figure 41.11

Figure 5. The equivalent circuit representation of a tank circuit with losses represented by a series resistance in left hand diagram and by a shunt resistance in right hand diagram.

$$
Q=\frac{\omega_{0} L}{r_{s}}=\frac{R_{p}}{\omega_{0} L}
$$

Figure 41.12

For $\mathrm{Q} \gg 1$, this equivalence is correct.
Section 2. USE OF AUTO TRANSFORMER TO IMPLEMENT A TUNED CIRCUIT
The problem(1) of the tutorials requires a Tank Circuit.

Figure 6. A tank circuit.

Figure 41.13

Figure 6. A tank circuit with $3.18 \mu \mathrm{H}$ in parallel with 8 nF .
The inductance value is too small and it cannot be physically realized. So we use an Autotransformer to achieve the same.

Fig. 7 By use of Auto-transformer, small L can be realized where $L=L^{\prime} / \mathbf{n}^{2}$ and $C=C^{\prime} n^{2}$.

Figure 7. Autotransformer Coupling for realizing small inductance of a given tuned circuit from a realistic real life inductor.

We require $\mathrm{L}=3.18 \mu \mathrm{H}$ and $\mathrm{C}=8 \mathrm{nF}$.
By use of Autotransformer if $\mathrm{n}=3$
$\mathrm{L}^{\prime}=(\mathrm{n})^{2} \mathrm{~L}=9 \mathrm{X} 3.18 \mu \mathrm{H}=28.6 \mu \mathrm{H}$
$\mathrm{C}^{\prime}=\mathrm{C} / \mathrm{n}^{2}=8 \mathrm{nF} / 9=0.9 \mathrm{nF}$
L' and C' ae easily implementable.
Section 2.1.Use of autotransformer to reduce the loading of a subsequent IF Stage.

Figure 41.15

Figure 8. The deterioration of selectivity due to the loading caused by the reduced input impedance of the subsequent stage.
$R_{\text {in }}$ will increase the B.W. and reduce the selectivity. Therefore tapped transformer is used.

Figure 9. Use of step-down transformer to avoid loading.

Figure 41.16

Figure 9. The equivalent circuit for a tapped transformer coupled circuit. If

$$
R_{i n} \times n^{2}
$$

Figure 41.17
$\gg \mathrm{R}_{1} ; \mathrm{C}_{\text {in }} / \mathrm{n}^{2} \ll \mathrm{C}_{1}=>$ Loading Avoided. Section 3. DOUBLE TUNED CIRCUIT

Figure 41.18

Figure 10. The circuit diagram of a double tuned r.f. amplifier.
In Figure 10 we see a tank circuit at the input as well as at the output. Because of the two tank circuits , these amplifiers are known as double-tuned amplifier. Double-tuned amplifiers are synchronous tuned and stagger tuned.

In synchronous tuned circuit, the two resonance frequencies are identical:
$\mathrm{f}_{10}=\mathrm{f}_{20}$

Figure 41.19

Figure 11. Frequency response of a synchronously tuned circuit.

$$
B=\frac{\omega_{o}}{Q} \sqrt{2^{1 / n-1}}
$$

Figure 41.20

In practice it is difficult to achieve synchronous tuned amplifier. Since BJT is a non-unilateral device especially in CE configuration there is considerable interaction between input and output. If we tune input tank to f_{10} and we try to tune the output tank to same frequency f_{10} immediately input will get off-tuned. If we try to tune input then output will be off tuned. Therefore it is better to keep the two tanks off tuned by $\Delta \mathrm{f}$. This is called stagger tuned Amplifier.
$\mathrm{f}_{20}=\mathrm{f}_{10}+\Delta \mathrm{f}$

Figure 41.21

Figure 12. Frequency response of a staggered tuned circuit.
Staggered tuned amplifier provides a better pass-band filter.. It has a wider BW maintaining a steep skirt. All IF Amplifiers in super-hetrodyne Receivers are double tuned amplifiers and are stagger tuned. There are several stages of IF Amplifiers for increased sensitivity. But to obtain the best results these multistage double tuned amplifiers need to be aligned. This is a strenuous process. By means of trimmer and padder this process is carried out.

Chapter 42

TUTORIAL NO. 1 of Lecture 1 of Analog Electronics.'

TUTORIAL NO. 1
(1) What are the Solid State Equivalents of the electronic components and systems in Vacuum Tube Era?

Vacuum Tube Era(1895-1954)	Solid State Era(1954 onward)
Incandescent Lamp	White Light Emitting Diodes(still in experimental stage)
Cathode Ray Oscilloscope(Raster Scan System)- here we address pixel by pixel	Liquid Crystal Display (Line at a time display)- here we address row of pixels at a time.
Vacuum Diode	PN junction silicon diode(Rectifier-full wave and half wave)
Vacuum Pentode	Bipolar Junction Transistor (BJT)or Field Effect Transistor(FET)
Thyratron for industrial applications(thyratron was made of gas filled tubes)	Thyristors for industrial applications(Silicon Con- trolled Rectifiers_SCR made of four layer PNPN diode- these are also rectifiers but here the angle of firing or phase angle for which the SCR is on can be controlled hence it is called controlled rectifier)

[^42]| Gas filled discharge tubes produce different colours
 such as | Different Coloured Light Emitting Diodes(LED) or
 LASER Diodes |
| :--- | :--- |
| a. Sodium Vapour Discharge Lamps-Yellow
 Light;
 b. Neon Lamps_Orange-Red Light;
 c. Mercury Vapour Lamps-UV light;
 d. Argon Discharge Lamps-Bluish purple light;
 e. Krypton Discharge Lamp-White light; | |
| Photo Multipliers | Photo-diodes(sensors as well as Photo Voltaic Cell
 or Solar Cell) |
| Photography Cameras | Charge Coupled Devices Camera |

Table 42.1
We have studied different applications of Op.Amp. in Basic Electronics Class as well as we have studied Negative feedback Amplifiers. All the op amp amplifiers are negative feed back amplifiers. Each amplifier application approximates one of the ideal controlled sources. In the following example you have got to identify the controlled sources which the particular example of op.amp. application approximates.
(2). Explain how a Non-inverting amplifier is a Transconductance amplifier.

Ans:

Figure 42.1
$\mathrm{v}_{\mathrm{O}} / \mathrm{v}_{\mathrm{S}}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)$
From this equation we get:
$\left(\mathrm{v}_{\mathrm{O}}-\mathrm{v}_{\mathrm{S}}\right) / \mathrm{R}_{2}=\mathrm{i}$;
Thus it is an input voltage is being converted to a current i. Hence it is voltage-to-current converter therefore it is an ideal trans-conductance amplifier or voltage controlled current source.

If we are working in terms of output voltage and input voltage then we have VCVS. It is an ideal Voltage Amplifier.
(3) Explain how an inverting amplifier is an ideal trans-resistance amplifier.

Ans:-

Figure 42.2

By Norton Theorem At the input terminal:-

Figure 42.3

Here all input current i_{1} flows into R_{2} because we know that input impedance of the Op.Amp. is very large in tens of Megohms and input voltage at the double ended input of OP.Amp. is practically zero.

Therefore $\mathrm{v}_{\mathrm{o}}=-\mathrm{i}_{2} \mathrm{R}_{2}$;
Here input current is being converted into output voltage;
This is known as current to voltage converter. This is used to convert photo-ionic currents generated in photocells or in photo=diodes into voltage sources with very low source impedance. Here a current source with high internal impedance is converted to a voltage source v_{o} with low internal impedance.
4) Give the characteristics of the four ideal amplifiers and give an example of each.

Ans)

Ideal Amplifier	Gain	Rin	Rout	Example
Voltage Con- trolled Voltage Source (Voltage Amplifier)	$A_{V_{o}}=\frac{\text { open circu}}{\operatorname{Inp}}$	$\frac{\infty}{\text { it voltage at o/p }}$	0	Triode,OpAmp,Emitter follower, voltage follower,source follower, Non-Inv Amplifier
Voltage Controlled Current Source (Transconductance Amplifier)	$G_{M S}=\frac{\text { Short cird }}{\operatorname{In}}$	∞ uit current at o/p poltage	∞	Pentode,Field Effect Transistor (FET)
Current Controlled Voltage Source (Transresistance Amplifier)	$R_{M S}$	0	0	Inverting Amplifier
Current Con- trolled Current Source (Current Amplifier)	$A_{I_{s}}=\frac{\text { Short circu}}{\operatorname{Inp}}$	$\begin{array}{\|l\|} 0 \\ \text { eit current at os } o / p \\ \text { et Current } \end{array}$	∞	Bipolar tion\quadJunc- Transis-tor $(\mathrm{BJT})(\mathrm{CE}$$\& \quad \mathrm{CB}) \mathrm{CE}->\mathrm{i}_{\mathrm{b}}$controls$\beta_{\mathrm{fo}} \mathrm{i}_{\mathrm{b}} \mathrm{CB}-$$>\mathrm{i}_{\mathrm{e}}$ controls $\alpha_{\mathrm{fo}} \mathrm{i}_{\mathrm{e}}$

Table 42.2
Electronics In Action
MP3 Player Amplifier Characteristics (Used In APPLE IPods)

Figure 42.4

Constant voltage Source
Band Width $=20 \mathrm{~Hz}-20 \mathrm{kHz}$

Pout $=30 \mathrm{~mW}$ in each channel of a stereo head phone Total Harmonic Distortion $=0.1 \%$ at full power;
This is called a high fidelity system.

Chapter 43

Tutorial 2 on Active Devices.'

Tutorial 2 on Active Devices.
Summary: Here we give a short introduction to discrete and integrated circuits.
Key words: Passive Devices, Active Devices, Discrete Circuits, Integrated Circuits;

1. Active devices are the electronic components which enable amplification and oscillation. Give a Table of passive and active components.

Passive components	Active components
Resistance: Carbon track Resistance of $\frac{1}{4}$ and $\frac{1}{2}$ W, thin film NiCr resistance, CERMET resistances, wire wound resistance of 1W and above power rat- ing. Surface Mounted Chip Resistance,	Vacuum Tube Era:Diode,Triode,Tetrode,Pentode.
Capacitance: electrolytic capacitors(10 $\mu \mathrm{F}$ and above), ceramic capacitors, polystyrene capac- itors, mica capacitors, gang capacitors with air-gap(variable capacitors for tuning), trim- mer(variable capacitor used in series) and padder (variable capacitors in parallel).Surface Mounted Chip Capacitances.	Solid State Era:PN Jn. Diode,Bipolar Junc- tion Transistor(BJT),Field Effect Transis- tor(FET),JFET , MOSFET and CMOS,Photo- diode, Light Emitting Diode \& LASE DIODE.
Inductors(these can be fabricated by winding enamel wire of proper guage on a thread bobbin).	Industrial Devices: Silicon Control Rectifier, DIAC, TRIAC, Uni-Junction Transistor(UJT)
Rheostat(wire wound) heavy duty variable resis- tance.	
Carbon Track Potentiometer(linear \& logrithimic).	

Table 43.1

1. Why is the Solid State Era called the harbinger of Third Wave of Civilization?

First Wave of Civilization is Agriculture-labour intensive production.
Second Wave of Civilization is Industry- capital intensive production.
Third Wave of Civilization is Computerization, Automation and Robotization-knowledge intensive production.

[^43]I.C. technology is the enabling technology of the present times and I.C.Technology is based on Solid State Physics \& Devices. Hence SSPD is the harbinger of Third Wave of Civilization.
3. Who is the Father of Electronics ?
J.J. Thomson is the Father of Electronics. He discovered electron through the study of cathode ray which is a beam of electrons emitted from cathode through thermal ionic emission and collected by positively charged anode.
4. Why was the introduction of Public Service Telephone Network(PSTN) delayed by 40 years though Alexandre Grahm Bell invented telephone in 1876 ?

Triode and Pentode were invented in 1903 and 1905 respectively. Lee de Forest the inventor of Triode also invented RC-coupled Amplifier. This became the enabling technology of PSTN. Heaviside discovery of distortion-less transmission condition removed the phase distortion or propagation distortion . For this the transmission line was heavily loaded with large inductors. This enabled the first long distance call from New York to Denver, Colorado, over a distance of 2000 miles without Amplifier in 1911. Use of RC-coupled Amplifier overcame the problem of attenuation and the signal getting lost over long distances of transmission. Combining the loading for distortionless transmission and amplification, enabled first long distance call from New York to San -Francisco over a distance of 4000 miles in 1913. From then onward PSTN very rapidly grew.
[Heaviside Distortionless transmission condition is :

$$
\frac{L}{R}=\frac{C}{G} \quad \mathbf{E q} \cdot \mathbf{1}
$$

Figure 43.1

Here $\mathrm{L}=$ the inductance of line pair over 1 km ,
$\mathrm{R}=$ ohmic resistance of the line over 1 km ,
$\mathrm{C}=$ inter wiring capacitance per km length of the transmission line,
$\mathrm{G}=$ conductance between the lines per km length .
The line can be represented as a distributed model shown in the figure:

Figure 43.2

In a practical cable this balance was not achieved hence transmission line had to be loaded with a large inductors at certain intervals.]
5. When did formally Solid State Era ushered in?

In 1948, Shockley, Bardeen \& Braittain invented solid state Ge Bipolar Transistor. Subsequently Si BJT was manufactured. This ushered in Solid State era.
6. When was Integrated Circuit Technology born?

In 1959 , Jack Kilby of Texas Instrument and Robert Noyce of FairChild simultaneously announced the invention of Integrated Circuit Technolgy.
7. How was INTEL born?

Robert Noyce and Gordon Moore together launched INTEL (Integrated Electronics) in 1968. They were later joined by Andy Grove.
8. What is Moore's Law?

Gordon Moore predicted that number of transistors on integrated circuits(a rough measure of computer processing power) will double every 18 months at a minimum cost. It became a self fulfilling prophecy. Moore's Law has become a yardstick of our progress as we harness the cunning of NATURE's design strategies.
9. In this long journey of 50 years from micro to nano era where have we arrived?

In a single day the state-of-art fabs are producing 100 trillion transistors roughly 250 times the number of stars in our galaxy Milky Way. There are 43 commercial $300-\mathrm{mm}$ wafer Fabs. Many more are coming on-line. Today IC Technology is the enabling Technology of the post-industrial Society.
10. What is the future direction of IC Technology?

In the future we hope to go from 45 nm technology to 32 nm technology to 22 nm technology to 16 nm technology.

Chapter 44

Tutorial 3 of AnalogElectronicsLecture3.

Tutorial 3 of AnalogElectronicsLecture3.
DATA SHEET OF DIFFUSED SILICON PLANAR [BAY 73]
A) $\mathrm{BV}_{\mathrm{A}}=125 \mathrm{~V}(\mathrm{MIN}) @ 100 \mu \mathrm{~A}$ Absolute Maximum Ratings
B) Storage temperature ratings $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

Maximum Junction Operating temperature $175^{\circ} \mathrm{C}$
Lead temperature $+260^{\circ} \mathrm{C}$
A) Power dissipation

Maximum Total Power Dissipation at $25^{\circ} \mathrm{C}$ Ambient $=500 \mathrm{~mW}$
Linear power derating factor (from $25^{\circ} \mathrm{C}$) $=3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
A) Maximum Voltage and current

WIV working inverse voltage BAY73 $=100 \mathrm{~V}$
I_{o} Average Rectified Current $=200 \mathrm{~mA}$
I_{F} Continuous Forward Current $=500 \mathrm{~mA}$
i_{f} Peak Repititive forward current $=600 \mathrm{~mA}$
i_{f} (surge) Peak Forward surge Current
Pulse width $=1 \mathrm{sec} 1 \mathrm{~A}$
Pulse Width $=1 \mu \mathrm{sec} 4 \mathrm{~A}$
Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ Ambient)

| Symbol | Characteristic | Bay 73 | Units | Test Condition |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | MIN | MAX | | |
| continued on next page | | | | |

[^44]CHAPTER 44. TUTORIAL 3 OF ANALOGELECTRONICSLECTURE3.

V_{F}	Forward Voltage	0.850.60	1.000 .65	VV	$\begin{aligned} & I_{F}=200 \mathrm{~mA} \\ & I_{F}=1 \mathrm{~mA} \end{aligned}$
I_{R}	Reverse Current		0.50	nA	$\begin{aligned} & V_{R}=100 \mathrm{~V} \\ & T_{A}=25 \circ \mathrm{C} \end{aligned}$
B_{V}	Breakdown Voltage	125		V	$I_{R}=100 \mu \mathrm{~A}$
C	Capacitance		8	pF	$\begin{aligned} & V_{R} \\ & =0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
$t_{r_{r}}$	Reverse Recovery Time		3	$\mu \mathrm{sec}$	$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & V_{R}=35 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \\ & C_{L}=10 \mathrm{pF} \end{aligned}$

Table 44.1
Data Sheet Of Zener Diode

Figure 44.1

Figure 1. I-V characteristics of Zener Diode.
We have Zener break down below 4 V and Avalanche Breakdown above 6 V and between 4 V and 6 V we have mixed breakdown that is partly Zener and remaining Avalanche.

Zener Breakdown has negative temperature coefficient and Avalanche Breakdown has positive temperature coefficient. Hence at around 5V Breakdown we have almost zero temp coefficient. Hence 5V Breakdown Zener Diode can be used as an Ideal Reference Voltage Source or as a Standard Voltage Source.

Electrical Characteristics Of Zener Diode(T ambient $=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

$\mathrm{V}_{\mathrm{Z}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{ZT}}(\mathrm{mA})$	$\begin{aligned} & \mathrm{Z}_{\mathrm{ZT}}(\Omega) \mathrm{at} \\ & \mathrm{I}_{\mathrm{ZT}}(\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{ZK}} \quad(\Omega) \\ & \operatorname{atI}_{\mathrm{ZK}}(\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}(\mu \mathrm{~A}) \mathrm{at} \\ & \mathrm{~V}_{\mathrm{R}}(\mathrm{~V}) \end{aligned}$	$\mathrm{V}_{\mathrm{R}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{ZM}}(\mathrm{mA})$	Temperature Coefficient $\%$ \% C
continued on next page							

-10	12.5	8.5	700 at 0.25	10	7.2	32	0.072

Table 44.2

Figure 44.2

Figure 2. Temperature Coefficient of Breakdown Voltages. Current Controlled attenuator

Figure 44.3

Figure 3. Current controlled attenuator.
Incremental circuit is :

$$
\frac{1}{i \omega c} \rightarrow 0
$$

Figure 44.4

C acts as a short circuit.
Diode is replaced by

$$
r_{d}=\frac{V_{T}}{I_{D}}
$$

Figure 44.5

Figure 44.6

Figure 4. Incremental Model of Current Controlled Attenuator.

$$
v_{o}=\frac{v_{s}}{R_{1}+r_{d}} \times r_{d}
$$

Figure 44.7

$$
v_{o}=\frac{v_{s}}{1+\frac{R_{1}}{r_{d}}}
$$

Figure 44.8
\qquad
\qquad

$$
v_{o}=\frac{v_{s}}{1+\left(\frac{R_{1}}{V_{T}}\right)(I)}
$$

Figure 44.9
we have:-
$\mathrm{R}_{1}=1 \mathrm{k} \Omega$
$\mathrm{I}_{\mathrm{s}}=10^{-15} \mathrm{~A}$

Diode Attenuator Characteristics		
I	r_{d}	v_{o}
$1 \mu \mathrm{~A}$	$25 \mathrm{k} \Omega$	$0.96 \mathrm{v}_{\mathrm{s}}$
$10 \mu \mathrm{~A}$	$2.5 \mathrm{k} \Omega$	$0.71 \mathrm{v}_{\mathrm{s}}$
$100 \mu \mathrm{~A}$	250Ω	$0.20 \mathrm{v}_{\mathrm{s}}$
1 mA	25Ω	$0.024 \mathrm{v}_{\mathrm{s}}$

Table 44.3
TUTORIAL (3) DIODE-Q POINT AND INCREMENTAL PARAMETERS AND SWITCHING PARAMETERS
(1)

Figure 44.10

Figure 5.A diode circuit of problem 1.
Given ideality factor $\eta=1$ and $\mathrm{I}_{\mathrm{s}}=10^{-12} \mathrm{~A}$
Determine $\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{DQ}}$ by graphical method or iteration method.
[Ans: $\mathrm{V}_{\mathrm{DQ}}=0.535 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=0864 \mathrm{~mA}$]
(2)

Figure 44.11

Figure 6. A diode circuit of problem 2.
Given $\eta=1$ and $\mathrm{I}_{\mathrm{s}}=10^{-13} \mathrm{~A}$
Determine $\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{DQ}}$ by graphical method or iteration method.
[Ans: $\mathrm{V}_{\mathrm{DQ}}=0.619 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=2.19 \mathrm{~mA}$]
(3)A diode circuit is given below:

Figure 44.12

Figure 7. A diode circuit with a signal source in Problem 3.

Figure 44.13
\qquad

Figure 44.14

Figure 8. Incremental model of the diode circuit under signal condition.
$\mathrm{v}_{\mathrm{s}}=[0.1 \operatorname{Sin}(\omega \mathrm{t})] \mathrm{V}$
Let $\mathrm{V}_{\mathrm{DQ}}=0.6 \mathrm{~V}$
Determine $\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{DQ}}, \mathrm{r}_{\mathrm{d}}$ and $\mathrm{v}_{\mathrm{o}}=\mathrm{i}_{\mathrm{d}} \mathrm{R}_{\mathrm{D}} .\left[\mathrm{v}_{\mathrm{o}}=\mathrm{i}_{\mathrm{d}} \mathrm{R}_{\mathrm{D}}=0.0995 \sin (\omega \mathrm{t})(\mathrm{V})\right]$
$\left\{\right.$ Ans $\left.\mathrm{I}_{\mathrm{DQ}}=0.88 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DQ}}=0.6 \mathrm{~V}, \mathrm{r}_{\mathrm{d}}=29.5 \Omega\right\}$
(4)) Calculate the values of the incremental resistance rd for a diode with Is (reverse saturation current) $=1 \mathrm{fA}$ operating at $\mathrm{ID}=50 \mu \mathrm{~A}, 2 \mathrm{~mA}, 3 \mathrm{~A}$.

Ans: We know that

$$
r_{d}=\frac{V_{T}}{I_{D}}
$$

Figure 44.15
where

$$
I_{D}=I_{S} \exp \left(\frac{V_{D}}{V_{T}}\right)
$$

Figure 44.16

Thus we get $\mathrm{r}_{\mathrm{d}}=500 \Omega, 12.5 \Omega, 8.33 \mathrm{~m} \Omega$
(5) What is the small signal diode resistance $\mathrm{r} d$ at room temperature and at $100^{\circ} \mathrm{C}$ for operating current I $D=1.5 \mathrm{~mA}$?

Ans: We know that:

$$
r_{d}=\left(\frac{k T}{q}\right) / /_{I_{D}}
$$

Figure 44.17

Thus we get

$$
r_{d}=16.7 \Omega \text { at } 300 \mathrm{~K} \text { and } r_{d}=21.4 \Omega \text { at } T=100{ }^{\circ} \mathrm{C}
$$

Figure 44.18

Chapter 45

Tutorial 3_supplementary_AE Lecture No.3. ${ }^{1}$

Tutorial 3_supplementary_AE Lecture No.3.
Problems on parasitic capacitances associated with Diode at high frequencies.
Problem 1.Given a diode under reverse bias with a depletion width $4 \mu \mathrm{~m}$.
a. If cross sectional area is 1 mm square, determine C_{jD} given

Absolute permittivity $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ and relative permittivity or dielectric constant $(\mathrm{k})=\varepsilon_{\mathrm{r}}=11.6$ [Answer: 26pF]
a. If $\mathrm{C}_{\mathrm{jD}}=15 \mathrm{pF}$ then determine the cross sectional area. [Ans. $0.6 \mathrm{~mm}^{2}$]

Problem 2. A diode is under forward bias condition at $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$. Reverse Saturation current $\mathrm{I}_{\mathrm{S}}=16 \mathrm{nA}$ at 300 K . Minority carrier life time are $\tau_{\mathrm{n}}=\tau_{\mathrm{p}}=25 \mu \mathrm{sec}$.
a. Find $\mathrm{C}_{\mathrm{d}}=$ diffusion capacitance $;\left[1 /\left(\mathrm{r}_{\mathrm{d}} \mathrm{C}_{\mathrm{d}}\right)=1 / \tau_{\mathrm{n}}+1 / \tau_{\mathrm{p}} ;\right.$ [Answer $\left.5.74 \mu \mathrm{~F}\right]$
b. Find V_{D} which gives $\mathrm{C}_{\mathrm{d}}=10 \mu \mathrm{~F}$; [Answer $\mathrm{V}_{\mathrm{D}}=0.729 \mathrm{~V}$]

Problem 3. A silicon PN junction has doping concentrations $\mathrm{N}_{\mathrm{A}}=10^{19} / \mathrm{cc} \& \mathrm{~N}_{\mathrm{D}}=10^{15} / \mathrm{cc}$. Cross sectional area $\mathrm{A}=0.001 \mathrm{~cm}^{2}$. Since it is one sided step junction major role is played by holes injected in N-type region. Hence the life-time of holes is given $\tau_{\mathrm{p}}(\mathrm{P}$ region $)=0.3 \mu \mathrm{sec}$.

Under forward bias condition of $\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V}$, determine:
a. Diffusion Capacitance C_{d};
b. Transition or Junction Capacitance C_{jD};

Solution: Here I_{D} is not given nor the saturation current I_{S} is given. We can use the doping to find either of the two.
$\mathrm{I}_{\mathrm{D}}=\mathrm{Q}_{\mathrm{p}} / \tau_{\mathrm{p}}$ and
$\mathrm{Q}_{\mathrm{p}}=$ charge stored in N region under forward biased condition $=$
$q\left\{p_{n}(0)-p_{n}(\right.$ thermal equilibrium $\left.)\right\} L_{p} A$;
and $\mathrm{L}_{\mathrm{p}}=\sqrt{ }\left(\mathrm{D}_{\mathrm{p}} \tau_{\mathrm{p}}\right)$ and $\mathrm{D}_{\mathrm{p}}=\mu \times \mathrm{V}_{\mathrm{T}}=450 \mathrm{~cm}^{2} /(\mathrm{V}-\mathrm{sec}) \times 26 \mathrm{mV}=11.7 \mathrm{~cm}^{2} / \mathrm{sec}$;
Therefore $\mathrm{L}_{\mathrm{p}}=1.94 \times 10^{-3} \mathrm{~cm}$.
Therefore $\mathrm{I}_{\mathrm{D}}=\mathrm{q}\left\{\mathrm{p}_{\mathrm{n}}(0)-\mathrm{p}_{\mathrm{n}}(\right.$ thermal equilibrium $\left.)\right\} \mathrm{L}_{\mathrm{p}} \mathrm{A} / \tau_{\mathrm{p}}=2.453 \mathrm{~mA}$;
Therefore $\mathrm{r}_{\mathrm{d}}=26 \mathrm{mV} / 2.453 \mathrm{~mA}=10.59 \Omega$.
$\mathrm{r}_{\mathrm{d}} \times \mathrm{C}_{\mathrm{d}}=\tau_{\mathrm{p}}$ therefore $\mathrm{C}_{\mathrm{d}}=28,000 \mathrm{pF}$.

[^45]Calculation of C_{jD} :
$\mathrm{C}_{\mathrm{jD}}=\varepsilon \mathrm{A} / \mathrm{d}_{\mathrm{n}}$ where $\mathrm{d}_{\mathrm{n}}=$ the depletion width on N -side $=\sqrt{ }\left(\mathrm{q} \varepsilon \mathrm{N}_{\mathrm{D}} / 2\right) \sqrt{ }\left(\varnothing_{\mathrm{B} 0}-\mathrm{V}_{\mathrm{F}}\right)$;
In a one sided step junction $\mathrm{d} \sim \mathrm{d}_{\mathrm{n}}$ (depletion width on the lightly doped side);
Therefore $\mathrm{C}_{\mathrm{jD}}=\varepsilon \mathrm{A} /\left[\sqrt{ }\left(\mathrm{q} \varepsilon \mathrm{N}_{\mathrm{D}} / 2\right) \sqrt{ }\left(\varnothing_{\mathrm{B} 0}-\mathrm{V}_{\mathrm{F}}\right)\right]=\sqrt{ }\left(2 \varepsilon /\left(\mathrm{qN}_{\mathrm{D}}\right)\right) \times\left(1 / \sqrt{ }\left(\varnothing_{\mathrm{B} 0^{-}}-\mathrm{V}_{\mathrm{F}}\right)\right)$;
$\emptyset_{\mathrm{B} 0}=$ Built in barrier potential under zero bias condition $=\mathrm{V}_{\mathrm{T}} \ln \left(\mathrm{N}_{\mathrm{A}} \mathrm{N}_{\mathrm{D}} / \mathrm{n}_{\mathrm{i}}{ }^{2}\right)=817.056 \mathrm{mV}$;
Therefore $\mathrm{C}_{\mathrm{j} D}=19.8 \mathrm{pF}$.

Chapter 46

AE Tutorial 4 BJT incremental model.'

AE_Tutorial 4_BJT incremental model.
Small signal model of a BJT
(1) BJT Small signal parameters versus current

Given $\beta_{\mathrm{o}}=100$,
$\mathrm{V}_{\mathrm{A}}[$ Early Voltage $]=75 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$

$$
g_{m}=\frac{I_{c}}{V_{T}}
$$

Figure 46.1
\qquad
\qquad

$$
r_{o}=\frac{V_{A}+V_{C E}}{I_{C}}
$$

Figure 46.2

[^46]$$
\mu_{f}=g_{m} r_{o}=\left(\frac{V_{A}+V_{C E}}{V_{T}}\right)
$$

Figure 46.3

\qquad
\qquad

$$
r_{\pi}=\frac{\beta_{o}}{g_{m}}
$$

Figure 46.4
\qquad
\qquad

$$
g_{m}=40 I_{C}
$$

Figure 46.5

I_{c}	g_{m}	r_{π}	r_{o}	μ_{f}
$1 \mu \mathrm{~A}$	$4 \times 10^{-5} \mathrm{~S}$	$2.5 \mathrm{M} \Omega$	$85 \mathrm{M} \Omega$	3400
$10 \mu \mathrm{~A}$	$4 \times 10^{-4} \mathrm{~S}$	$250 \mathrm{k} \Omega$	$8.5 \mathrm{M} \Omega$	3400
$100 \mu \mathrm{~A}$	0.004 S	$25 \mathrm{k} \Omega$	$850 \mathrm{k} \Omega$	3400
1 mA	0.04 S	$2.5 \mathrm{k} \Omega$	$85 \mathrm{k} \Omega$	3400
10 mA	0.40 S	250Ω	$8.5 \mathrm{k} \Omega$	3400

Table 46.1
(2)Calculate the values of $\mathrm{g}_{\mathrm{m}}, \mathrm{r}_{\pi}, \mathrm{r}_{\mathrm{o}}, \mu_{\mathrm{f}}$ for a BJT with $\beta_{\mathrm{o}}=75, \mathrm{~V}_{\mathrm{A}}=60 \mathrm{~V}$ and Q-point $(50 \mu \mathrm{~A}, 5 \mathrm{~V})$. (Answer: $2 \mathrm{mS}, 37.5 \mathrm{k} \Omega, 1.3 \mathrm{M} \Omega, 2600$)
(3)Calculate the values of $\mathrm{g}_{\mathrm{m}}, \mathrm{r}_{\pi}, \mathrm{r}_{\mathrm{o}}, \mu_{\mathrm{f}}$ for a BJT with $\beta_{\mathrm{o}}=50, \mathrm{~V}_{\mathrm{A}}=75 \mathrm{~V}$ and Q-point $(250 \mu \mathrm{~A}, 15 \mathrm{~V})$. (Answer: $10 \mathrm{mS}, 5 \mathrm{k} \Omega, 360 \mathrm{M} \Omega, 3600$)
(4) What is the small signal limit of BJT?
[Answer: |

$$
v_{b e}
$$

Figure 46.6
|

$$
\leq
$$

Figure 46.7

5 mV and

$$
i_{c}
$$

Figure 46.8
|

$$
\leq
$$

Figure 46.9
20% of I_{C}]
We will see that small signal limit of FET is 400 mV . This is because BJT is an EXPONENTIAL DEVICE whereas FET is a QUADRATIC DEVICE.
5)Find the transit time for a NPN BJT with base width $1 \mu \mathrm{~m}$ and $\mu_{\mathrm{n}}=500$

$$
\frac{\mathrm{cm}^{2}}{V-s e c}
$$

Figure 46.10
$\& T=300 \mathrm{~K}$
According to Einstein Eq:

$$
\frac{D_{n}}{\mu_{n}}=V_{T}=26 m V
$$

Figure 46.11
[Answer:

$$
\frac{w^{2}}{2 D_{n}}=\tau_{n}=0.4 n \sec
$$

Figure 46.12
(6)In problem (5) for $\mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$ determine C_{D} (diffusion capacitance)for the BJT.
[Ans: $\mathrm{C}_{\mathrm{D}} \mathrm{r}_{\mathrm{e}}=\tau_{\mathrm{t}}$; Therefore $\mathrm{C}_{\mathrm{D}}=16 \mathrm{pF}$]
(3)Give the hybrid- π parameters of a BJT operating at $\mathrm{I}_{\mathrm{CQ}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CEQ}}=5 \mathrm{~V}, \beta_{\mathrm{F}}=40$ and $\mathrm{h}_{\mathrm{re}}=3.83 \times 10^{-4}=\eta=$ Base Width Modulation Factor.
[Answer:

$$
g_{m}=\frac{I_{C}}{V_{T}}=\frac{1}{13 \Omega} ; g_{\pi}=\frac{1}{r_{\pi}}=\frac{g_{m}}{\beta_{f o}}=\frac{1}{520 \Omega}
$$

Figure 46.13

$$
\left.g_{o}=\frac{1}{r_{o}}=\frac{\eta}{g_{m}}=\frac{1}{33.942 K} ; g_{\mu}=\frac{1}{r_{\mu}}=\frac{1}{\beta_{f o} r_{o}}=\frac{1}{1.34 M \Omega}\right]
$$

Figure 46.14

$$
\beta_{f o}(\text { Incremental current gain })=\beta_{F}(\text { DC Current gain })
$$

Figure 46.15
(4) Measurement of low frequency h parameters $h_{i e}, h_{r e}, h_{f e}$ and h_{oe} at $\mathrm{I}_{\mathrm{CQ}}=0.5 \mathrm{~mA}$ yield
$\mathrm{h}_{\mathrm{ie}}=2050$ ohm, $\mathrm{h}_{\mathrm{re}}=5 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=40, \mathrm{~h}_{\mathrm{oe}}=2 \times 10^{-5}, \mathrm{CB}$ output capacitance $\mathrm{C}_{\mathrm{ob}}=3 \mathrm{pF}$ and $\left|\mathrm{h}_{\mathrm{fe}}\right|$ at 1 MHz is $40 / \sqrt{ } 2 ;$ At $290 \mathrm{~K}\left(\mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV}\right)$ calculate $\mathrm{g}_{\mathrm{m}}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\pi}, \mathrm{r}_{\mathrm{o}}, \mathrm{r}_{\mu}, \mathrm{C}_{\pi}, \mathrm{C}_{\mu}$.

Answer:

$$
g_{m}=\frac{I_{C Q}}{V_{T}}=\frac{1}{50 \Omega}, h_{f e}=40=\beta_{f o}, r_{\pi}=\frac{\beta_{f o}}{g_{m}}=2 \mathrm{~K}
$$

Figure 46.16

$$
g_{o}=h_{r s} g_{m}=\frac{1}{100 K} ; r_{\mu}=\beta_{f o} r_{o}=4 M
$$

Figure 46.17
\qquad
\qquad

$$
\omega_{\beta}=\frac{1}{r_{\pi}\left(C_{\pi}+C_{\mu}\right)} ; C_{\pi}+C_{\mu}=79.6 p F
$$

Figure 46.18

$$
C_{\mu}=\mathrm{Cob}=3 \mathrm{pF} ; C_{\mu}=76.6 p F
$$

Figure 46.19

$$
h_{i s}=r_{x}+r_{\pi}=2050 ; r_{x}=50 \Omega
$$

Figure 46.20
(5)If
$\beta_{f o}=100$ and $|\beta|=50$ at 4 MHz . Calculate $f_{\beta} \& f_{T}$, also find C_{π} given $g_{m}=50 \mathrm{mS}, C_{\mu}=$ $4 p F$

Figure 46.21

Answer:-

$$
f_{\beta}=2.31 \mathrm{MHz}, f_{T}=\beta_{f o} f_{\beta}=231 \mathrm{MHz}, C_{\pi}=30.5 p F
$$

Figure 46.22

Chapter 47

AE_Tutorial 5_Mid\&High frequency Analysis of CE \& CB BJT Amplifier'

TUTORIAL 5_MID \& HIGH frequency analysis of CE \& CB amplifiers.
(1)

Figure 1. Circuit diagram of RC-coupled CE BJT Amplifier

Figure 47.1

[^47]$$
\beta_{o}=100, f_{T}=500 \mathrm{MHz}, C_{\mu}=0.5 p F, r_{x}=250 \Omega
$$

Figure 47.2
\qquad

Q point $(1.6 \mathrm{~mA}, 3 \mathrm{~V})$
Find $A_{v o}$ And f_{h}.
Solution:-

$$
A_{V_{o}}=-\frac{\beta_{o} R_{C}| | R_{L}}{R_{T h}+r_{x}+r_{\pi}}
$$

Figure 47.3
\qquad
\qquad
$=-\frac{100(4.12 k)}{0.882 k+0.25 k+1.56 k} \sim-153$

Figure 47.4
\qquad
\qquad

$$
C_{T}=C_{\pi}+C_{\mu}\left(1+g_{m} R_{L}\right)
$$

Figure 47.5

$$
C_{\pi}+C_{\mu}=\frac{g_{m}}{2 \pi f_{T}}
$$

Figure 47.6

$$
\therefore C_{\pi}=19.9 p F
$$

Figure 47.7

$$
R_{C}| | R_{L}=4.12 \mathrm{k} \Omega, R_{T h}=R_{s}| | R_{B}=1 \mathrm{k} \Omega| |\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)=1 \mathrm{k} \Omega| | 7.5 \mathrm{k} \Omega
$$

Figure 47.8

$$
\therefore R_{T h}=0.882 k \Omega ; r_{\pi 0}=r_{\pi}| |\left(R_{T h}+r_{x}\right)=1.56 k| | 7.5 k
$$

Figure 47.9

$$
\therefore r_{\pi o}=0.656 k \Omega
$$

Figure 47.10

$$
C_{T}=19.9 p F+0.5 p F(1+264)=152.4 p F
$$

Figure 47.11

$$
f_{h}=\frac{1}{2 \pi r_{\pi o} C_{T}}=\frac{1}{2 \pi(0.656 k)(152.4 p F)} \sim 1.56 \mathrm{MHz}
$$

Figure 47.12

$$
A_{v o}=-153, f_{h}=1.56 \mathrm{MHz}, A_{V s}=-135
$$

Figure 47.13
(2)In problem (1), if $\mathrm{C}_{\mu}=1 \mathrm{pF}$, what is the new value of $\mathrm{A}_{\mathrm{Vo}} \& \mathrm{f}_{\mathrm{h}}$? [Answer:- AVo $_{\text {Vo }}$ remains -153 but f_{h} deteriorates to 835 kHz .]
(3) Given CB BJT Amplifier in Figure 2.

Figure 2. RC-coupled CB BJT Anplifier with two battery biasing.

Figure 47.14

All the parameters are the same \& Q point is the same.
$\mathrm{R}_{\mathrm{C}}=22 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=75 \mathrm{k}, \mathrm{R}_{\mathrm{E}}=43 \mathrm{k}, \mathrm{R}_{\mathrm{S}}=0.1 \mathrm{k}$;
[Ans: $\mathrm{A}_{\mathrm{Vs}}=48, \mathrm{f}_{\mathrm{h}}=10.7 \mathrm{MHz}$]
Solution: We will have to use the T-model for analyzing CB BJT Amplifier and we will use open circuit time constant method for detrmining the upper -3 dB frequency.
$\mathrm{C}_{\mu}=0.5 \mathrm{pF}, \mathrm{C}_{\pi}=19.9 \mathrm{pF}$

$$
C_{\mu} \sim C_{C} ; \quad C_{\pi}=C_{s}
$$

Figure 47.15

MIDBAND GAIN Analysis:

Figure 3. Mid-frequency incremental model of CB BJT Amplifier

Figure 47.16

$$
r_{s}=\frac{V_{T}}{I_{E}}=\frac{25 m A}{0.1 m A}=250 \Omega
$$

Figure 47.17
\qquad
\qquad

$$
v_{o}=\left(\alpha_{f o} i_{s}\right)(17 k \Omega)
$$

Figure 47.18
\qquad
\qquad
$v_{s}=i_{s}(0.1 k \Omega+0.25 k \Omega)$

Figure 47.19

$$
\frac{v_{o}}{v_{s}}=A_{v s o}=\frac{17 k \Omega}{0.35 \Omega}=48.57
$$

Figure 47.20

At high frequency

Figure 4. High frequency incremental model of CB BJT Amplifier

Figure 47.21

$$
\tau_{o 1}=\left(C_{s}\right)\left(r_{s}| | R_{E}| | R_{s}\right)
$$

Figure 47.22

$$
\left(r_{s}| | R_{E}| | R_{s}\right)=(0.25 k)| |(43 k)| |(0.1 k)=\frac{(0.25)(0.1)}{0.35}=71 \Omega
$$

Figure 47.23

$$
\tau_{o 2}=\left(C_{C}\right)\left(R_{C}| | R_{L}\right)
$$

Figure 47.24

$$
\tau_{o}=\tau_{o 1}+\tau_{o 2}
$$

Figure 47.25

$$
\sim \tau_{o 2}
$$

Figure 47.26
\qquad
\qquad

$$
\omega_{h}=\frac{1}{\tau_{o 2}}
$$

Figure 47.27

$$
\tau_{o 1}=(19.9 \mathrm{pF})(71 \mathrm{ohm})=1.4 \mathrm{nsec}
$$

Figure 47.28

$$
\tau_{o 2}=(0.5 p F)(17 \mathrm{kohm})=8.5 \mathrm{nsec}
$$

Figure 47.29

$$
\therefore \tau_{o}=9.9 \mathrm{nsec}=10 \mathrm{nsec}
$$

Figure 47.30

$$
\therefore \omega_{h}=\frac{1}{10} \times 10^{9} \mathrm{rad} / \mathrm{sec}=10^{8} \mathrm{rad} / \mathrm{sec}
$$

Figure 47.31
\qquad
\qquad

$$
\omega_{h}=100 \frac{\mathrm{Mrad}}{\mathrm{sec}}
$$

Figure 47.32
\qquad
\qquad

$$
f_{h}=\frac{100}{2 \pi} \mathrm{MHz}
$$

Figure 47.33

Chapter 48

AE_Tutorial6_Mid \& High Frequency Analysis of CC \& Cascode.'

AE_TUTORIAL NO.6_Analysis of CC \& Cascode Amplifiers

Table of CC Amplifier performance Parameters
Internal voltage gain=

$$
\frac{v_{0}}{v_{i n}}=\frac{\beta_{0} R_{C} \| R_{L}}{r_{\pi}+\left(1+\beta_{o}\right) R_{C} \| R_{L}}=\frac{g_{m} R_{C} \| R_{L}}{1+g_{m} R_{C} \| R_{L}}
$$

Figure 48.1

$$
R_{i n}=r_{\pi}+\left(1+\beta_{o}\right) R_{C} \| R_{L}
$$

Figure 48.2
\qquad
\qquad

$$
R_{o u t}=\frac{1}{g_{m}}
$$

Figure 48.3

[^48]I/P signal range $0.005(1+$

$$
g_{m} R_{L}
$$

Figure 48.4
)
Terminal Current Gain (

$$
1+\beta_{o}
$$

Figure 48.5
)
Problem 1.

Figure 1. A BJT with self bias.

Figure 48.6

Given:

$$
\beta_{F}=100, V_{A}=50 \mathrm{~V}
$$

Figure 48.7

Find the Q point and hybrid pi parameters.
[Ans:

$$
\left.I_{C Q}=245 \mu \mathrm{~A}, V_{C E Q}=3.64 \mathrm{~V}, g_{m}=9.8 \mathrm{mS}, r_{\pi}=10.2 \mathrm{k} \Omega, r_{o}=219 \mathrm{k} \Omega, \mu_{f}=2130\right]
$$

Figure 48.8

Problem 2. Draw the small signal equivalent circuit or the incremental circuit of CC amplifier.

Figure 2. Circuit diagram of CC Amplifier.

Figure 48.9

Given:

$$
\beta_{F}=100, V_{A}=50 \mathrm{~V}
$$

Figure 48.10

Figure 48.11

Find the Q point and the hybrid- π parameters
Ans:

$$
I_{C Q}=245 \mu A, V_{C E Q}=8.8 \mathrm{~V}, g_{m}=9.8 \mathrm{mS}, r_{\pi}=10.2 \mathrm{k} \Omega, r_{o}=240 \mathrm{k} \Omega
$$

Figure 48.12
[Ans

$$
R_{\text {in }}(\text { seen from source })=R_{B} \|\left(r_{\pi}+\left(1+\beta_{o}\right) R_{E}\right)
$$

Figure 48.13

$$
\therefore R_{\text {in }}=(104 k \Omega) \|(10.2 k \Omega+(101) 11.5 k \Omega)
$$

Figure 48.14

$$
R_{i n}=(104 k \Omega) \|(1.17 M \Omega)
$$

Figure 48.15

$$
A_{V o}(\text { Internal })=\frac{\left(\beta_{o}+1\right) R_{L}}{r_{\pi}+\left(1+\beta_{o}\right) R_{L}}=\frac{(101)(11.5 k)}{10.2 k+(101) 11.5 k}=0.991
$$

Figure 48.16

$$
A_{V o s}\left(\text { Overall w.r.t. } v_{s}\right)=A_{V o}\left(\frac{R_{\text {in }}}{R_{s}+R_{i n}}\right)=\frac{(0.991)(104 k \| 117 k)}{2 k+(104 k \| 117 k)}=0.956
$$

Figure 48.17
]
(4)Determine the input dynamic range for CC amplifier ?

The voltage developed across r_{π} must be less than 5 mV if BJT is to remain a linear device.
Therefore

$$
v_{b B}=i_{b} r_{\pi}=\frac{v_{i n}}{\left(r_{\pi}+\left(1+\beta_{o}\right) R_{E}\right)} \times r_{\pi}=\frac{v_{i n}}{1+g_{m} R_{E}^{\prime}+\frac{R_{E}}{r_{\pi}}} \sim \frac{v_{i n}}{1+g_{m} R_{E}^{\prime}}
$$

Figure 48.18

$$
\therefore v_{i n} \leq(5 m V)\left(1+g_{m} R_{E}^{\prime}\right) \leq 5 m V(1+112) \leq 0.565 \mathrm{~V}
$$

Figure 48.19

Therefore signal handling capacity has increased by

$$
\left(1+g_{m} R_{E}^{\prime}\right)
$$

Figure 48.20
times because of negative feedback property of CC amplifier. Similarly in an Emitter Degenerate amplifier also the signal handling capacity increases due to negative feedback.
(5)How do the I/P signal handling capacity of CC and CD compare?

Ans:- CC I/P signal handling 0.565 V
CD I/P signal handling 1.23 V
BJT is an exponential device whereas FET is a quadratic device therefore FET can handle larger signal with little or no harmonic distortion.
(6)What is the output resistance of CC amplifier ?

Figure 4. The incremental circuit for determining the mid-frequency output impedance of CC Amplifier.

Figure 48.21

$$
i_{o}=i_{b}\left(1+\beta_{f o}\right) \& i_{b}=\frac{v_{o}}{\left(r_{\pi}+R_{S} \| R_{B}\right)}
$$

Figure 48.22

$$
\therefore i_{o}=\frac{v_{o}\left(1+\beta_{f o}\right)}{\left(r_{\pi}+R_{S} \| R_{B}\right)}
$$

Figure 48.23

$$
\therefore \frac{v_{o}}{i_{o}}=R_{o}=\frac{\left(r_{\pi}+R_{S} \| R_{B}\right)}{\left(1+\beta_{f o}\right)}=\frac{(10.2 k+1.96 k)}{101}=120 \Omega
$$

Figure 48.24

This Ro comes in parallel with Re'. Because of very high

$$
R_{i n}
$$

Figure 48.25
and very low

$$
R_{\text {out }}
$$

Figure 48.26
and $\mathrm{Av} \sim 1$, CC amplifier acts as an ideal voltage source for driving variable loads and transmission lines. (6)Make a table of the performance parameters of CC amplifier.

Avo	0.956
$R_{\text {in }}$ (without loading of biasing network)	1.17 Mohm
$R_{\text {out }}$	121 ohm
I / P Dynamic Range	0.565 V
Current Gain	101

Table 48.1
By Bootstrap technique the loading of Biasing network can be removed.
(7)Referring to the figure in Lecture 10, Calculate the two port hybrid parameters of the CASCODE amplifier.

Make the following assumptions.
$\mathrm{Q}_{1}\left(\mathrm{I}_{\mathrm{C} 1}=101 \mu \mathrm{~A}, 5 \mathrm{~V}\right)$ and $\mathrm{Q}_{2}\left(\mathrm{I}_{\mathrm{C} 2}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE} 2} 10 \mathrm{~V}\right) \mathrm{Q}_{1}$ and Q_{2} are identical, $\beta_{\mathrm{F}}=\beta_{\mathrm{fo}}=100, \mathrm{~V}_{\mathrm{A}}=75 \mathrm{~V}$;
What are the hybrid $-\pi$ parameters of Q_{2} at $\mathrm{I}_{\mathrm{C} 2}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE} 2}=10 \mathrm{~V}$. What are the current gain and amplification factor of the cascade amplifier?
[Ans: Hybrid parameters of the Cascode

$$
h_{i}=\beta_{f o} \frac{V_{T}}{I_{C}}=100 \times \frac{25 \mathrm{~mA}}{0.1 \mathrm{~mA}}=\frac{2500}{0.1}=25 k
$$

Figure 48.27

$$
h_{r}=h_{r s} h_{r b}=\frac{r_{\pi}}{r_{\mu}} \times \frac{r_{x}}{r_{\mu}}=0 \because r_{x}=0
$$

Figure 48.28
$g_{m}($ overall transconductance $)=\frac{i_{o}}{v_{i n}}=g_{m 1}=\frac{I_{C}}{V_{T}}=\frac{0.1 \mathrm{~mA}}{25 \mathrm{mV}}=\frac{1}{250 \Omega}=0.004$

Figure 48.29
\qquad
\qquad

$$
h_{o}=\frac{1}{r_{o b}}=h_{o b}=\frac{1}{r_{o}(o f C E)\left(1+\beta_{f o}\right)}
$$

Figure 48.30

But $r_{o}\left(\right.$ of $\left.Q_{2}\right)=\frac{V_{A}+V_{C E Q}}{I_{C_{2}}}=\frac{75 \mathrm{~V}+10 \mathrm{~V}}{0.1 \mathrm{~mA}}=\frac{85 \mathrm{~V}}{0.1 \mathrm{~mA}}=850 \mathrm{k}$
Figure 48.31

$$
\therefore h_{o}=\frac{1}{r_{o b}}=\frac{1}{850 k(101)}=\frac{1}{85 M}
$$

Figure 48.32
\qquad
\qquad

$$
h_{f}=h_{f s} \cdot h_{f b}=100 \times 0.99=99=\text { Current Gain; }
$$

Figure 48.33
\qquad
\qquad

$$
\mu_{f}=g_{m} r_{o}=\frac{85000,000}{250}=340,000
$$

Figure 48.34

Hybrid π parameters of Q_{2}

Figure 48.35

$$
r_{\pi}=\frac{\beta_{o}}{g_{m}}=25 k, g_{m}=\frac{1}{250} ; r_{o}=850 k ; \mu_{f}=\frac{850000}{250}=3400
$$

Figure 48.36
]
(8)Find the midband gain and

ω_{h}

Figure 48.37
of a CASCODE amplifier.
Given $\beta_{\mathrm{fo}}=100, \mathrm{f}_{\mathrm{T}}=500 \mathrm{MHz}, \mathrm{C} \mu=0.5 \mathrm{pF}, \mathrm{r}_{\mathrm{x}}=250 \Omega, \mathrm{R}_{\mathrm{S}}=882 \Omega, \mathrm{R}_{\mathrm{L}}=4.12 \mathrm{k} \Omega$.
Q point ($1.6 \mathrm{~mA}, 3 \mathrm{~V}$)for Q 2 .
[Answer:-151, 10MHz].

$$
\omega_{h}=\frac{1}{r_{\pi 01}\left[C_{\pi}+2 C_{\mu}\right]+\left(r_{x}+R_{L}\right) C_{\mu}}
$$

Figure 48.38

In CE configuration same transistor will give 1.56 MHz upper cut off frequency.
(9)Find the midband gain and f_{H} for a CB amplifier . Given $\beta_{\mathrm{fo}}=100, \mathrm{f}_{\mathrm{T}}=500 \mathrm{MHz}, \mathrm{C} \mu=0.5 \mathrm{pF}, \mathrm{r}_{\mathrm{x}}=250 \Omega$.

Q point ($0.1 \mathrm{~mA}, 3.5 \mathrm{~V}$).
[ANSWER: $48,10.7 \mathrm{MHz}$]

Chapter 49

AE Tutorial8 MOSFET\&JFET ${ }^{\star}$

AE_TUTORIAL 8_MOSFET\&JFET
Tutorial on NMOS (TRIODE REGION)
(1)Calculate $\mathrm{K}_{\mathrm{n}}{ }^{\prime \prime}$ for a NMOSFET with $\mu_{\mathrm{n}}=500$

$$
\frac{\mathrm{cm}^{2}}{V-s e c}
$$

Figure 49.1
and $\mathrm{T}_{\mathrm{ox}}=25 \mathrm{~nm}$
Solution: $\mathrm{K}_{\mathrm{n}}{ }^{\prime \prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}{ }^{\prime \prime}=\mu_{\mathrm{n}}$

$$
\frac{\epsilon_{r} \epsilon_{o}}{T_{o x}}
$$

Figure 49.2
$\therefore \mathrm{Kn}^{\prime \prime}$

Figure 49.3

[^49]$$
\left(500 \frac{\mathrm{~cm}^{2}}{V-s e c}\right) \times
$$

Figure 49.4

$$
\left(3.9 \times 8.854 \times 10^{-14} \frac{F}{\mathrm{~cm}}\right) \times \frac{1}{25 \times 10^{-9} \times 100 \mathrm{~cm}}
$$

Figure 49.5

$$
\frac{500 \times 3.9 \times 8.854 \times 10^{-14}}{25 \times 10^{-8}} \frac{F}{V-s e c}=\left(69.1 \times 10^{-6}\right) \frac{Q}{V^{2} \sec }
$$

Figure 49.6

$$
\mathrm{Kn}^{\prime \prime}=69.1 \frac{\mu \mathrm{~A}}{\mathrm{~V}^{2}}
$$

Figure 49.7
; μ_{n} in bulk is 1500

$$
\frac{\mathrm{cm}^{2}}{V-s B c}
$$

Figure 49.8
but in 2 D sheet it is only 500

$$
\frac{c m^{2}}{V-s \theta c}
$$

Figure 49.9
(2)A NMOSFET has $\mathrm{K}_{\mathrm{n}}{ }^{\prime}=50$

$$
\frac{\mu \mathrm{A}}{\mathrm{~V}^{2}}
$$

Figure 49.10
. What is the value of K_{n} if

W	$20 \mu \mathrm{~m}$	$60 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$
L	$1 \mu \mathrm{~m}$	$3 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$

Table 49.1
Answer: $\mathrm{K}_{\mathrm{n}}=\mathrm{K}_{\mathrm{n}}{ }^{\prime}$

$$
\left(\frac{W}{L}\right)
$$

Figure 49.11
$=1000$

$$
\frac{\mu \mathrm{A}}{\mathrm{~V}^{2}}
$$

Figure 49.12
, 1000

$$
\frac{\mu \mathrm{A}}{\mathrm{~V}^{2}}
$$

Figure 49.13
, 2000

$$
\frac{\mu A}{V^{2}}
$$

Figure 49.14
(3)Calculate the Drain current in NMOS FET if $\mathrm{V}_{\mathrm{GS}}=0,1,2,3 \mathrm{~V}$; When $\mathrm{V}_{\mathrm{DS}}=0.1 \mathrm{~V}$ and $\mathrm{W}=10 \mu \mathrm{~m}$, $\mathrm{L}=1 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{Th}}=1.5 \mathrm{~V}$ and $\mathrm{K}_{\mathrm{n}}{ }^{\prime}=250$

$$
\frac{\mu \mathrm{A}}{\mathrm{v}^{2}} \text {. What is the value of } \mathrm{Kn} \text { ? }
$$

Figure 49.15

Answer:

$$
I_{D}=K_{n}\left(V_{G S}-V_{T N}-\frac{V_{D S}}{2}\right) \text { where } \mathrm{Kn}=250 \frac{\mu \mathrm{~A}}{\mathrm{~V}^{2}}
$$

Figure 49.16

Expanding K_{n} and rearranging the terms,

$$
I_{D}=\left[\left(C_{o x}^{\prime \prime} W\right)\left(V_{G S}-V_{T N}-\frac{V_{D S}}{2}\right)\right]\left(\mu_{n} \frac{V_{D S}}{L}\right)
$$

Figure 49.17

Where

- $C^{\prime \prime}{ }_{o x} W$ is the capacitance per unit length

Figure 49.18

- $\mu_{n} \frac{V_{D S}}{L}$ is the Drift velocity in the channel $\left(\mu_{n} E\right)$

Figure 49.19

- $\left(C^{\prime \prime}{ }_{o x} W\right)\left(V_{G S}-V_{T N} \frac{V_{D S}}{2}\right)$ is the average charge per unit length

Figure 49.20
because average channel voltage $=$

$$
\frac{V_{D S}}{2}
$$

Figure 49.21

$\mathrm{V}_{\mathrm{DS}}=0.1 \mathrm{~V}$				
$\mathrm{~V}_{\mathrm{GS}}$	0	1 V	2 V	3 V
I_{DS}	0	0	$11.3 \mu \mathrm{~A}$	$36.3 \mu \mathrm{~A}$

Table 49.2
(4) What is the region of operation and drain current of an NMOSFET having $\mathrm{V}_{\mathrm{TN}}=1 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}=1$

$$
\frac{\mathrm{mA}}{\mathrm{~V}^{2}}
$$

Figure 49.22
, $\lambda=0.02 \mathrm{~V}^{-1}$
For (a)Vgs $=0 \mathrm{~V}, \mathrm{Vds}=1 \mathrm{~V},(\mathrm{~b}) \mathrm{Vgs}=2 \mathrm{~V}, \mathrm{Vds}=0.5 \mathrm{~V},(\mathrm{c}) \mathrm{Vgs}=2 \mathrm{~V}, \mathrm{Vds}=2 \mathrm{~V}$; Ans: (a) device is cutoff, drain current $=0$; (b) device is in triode region, drain current is 325 uA ; (c) device is in pentode region, drain current is 520 uA ;
(5)

Normally OFF (Enhancement NMOS)

Normally ON (Depletion NMOS)

Figure 1. Symbol of (E)NMOS and (D)NMOS. Broken line means normally-off and continuous line means normally-on device.

Figure 49.23

Figure 2. Symbol of nJFET

Figure 49.24

In Triode region:

$$
I_{D S}=\frac{2 I_{D S S}}{V_{P}^{2}}\left(V_{G S}-V_{P}-\frac{V_{D S}}{2}\right) V_{D S}
$$

Figure 49.25
for $V_{G S} \geq V_{P}$ and $V_{G S}-V_{P} \geq V_{D S} \geq 0$;
In Pentode region:

$$
I_{D S}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}
$$

Figure 49.26
for $\mathrm{V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}} \geq 0$;
Here $\mathrm{I}_{\mathrm{DSS}}=$

$$
I_{D S S}=\frac{K_{n}}{2} V_{P}^{2}
$$

Figure 49.27

Or

$$
K_{n}=\frac{2 I_{D S S}}{V_{P}^{2}}
$$

Figure 49.28

The pinch off voltage ranges from 0 to -25 V and $\mathrm{I}_{\mathrm{DSS}}$ can range from $10 \mu \mathrm{~A}$ to 10 A .
If channel length modulation is included:

$$
I_{D}=I_{D S S}\left(1-\frac{\left|V_{G S}\right|}{\left|V_{p}\right|}\right)^{2}\left(1+\lambda\left|V_{D S}\right|\right)
$$

Figure 49.29
(6) Calculate the drain current for NMOS FET operating at $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{TN}}=1 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}=1$

$$
\frac{\mathrm{mA}}{\mathrm{v}^{2}}
$$

Figure 49.30
, $\lambda=0.02 \mathrm{~V}^{-1}$ and $\lambda=0$.
[Answer $\mathrm{I}_{\mathrm{D}}=9.6 \mathrm{~mA}$ with $\lambda=0.02 \mathrm{~V}^{-1}$ and $\mathrm{I}_{\mathrm{D}}=8.0 \mathrm{~mA}$ with $\lambda=0$]
(7)Calculate the drain current for NMOS FET operating at $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{TN}}=1 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}=25$

$$
\frac{\mu \mathrm{A}}{\mathrm{~V}^{2}}
$$

Figure 49.31
, and $\left.\lambda=0.01 \mathrm{~V}^{-1}\right]$

$V_{G S}$	$V_{D S}$	I_{D}
4 V	5 V	$?$
5 V	10 V	$?$

Table 49.3
[Answer: $118 \mu \mathrm{~A}, 220 \mu \mathrm{~A}$]

Chapter 50

AE_Tutorial 9_Multistage Amplifiers'

AE TUTORIAL 9 MULTISTAGE AMPLIFIERS.
Band Width Shrinkage Factor

n	$\sqrt{\mid l} \sqrt{2}^{\frac{1}{n}}-1$
1	1
2	0.644
3	0.510
4	0.435
5	0.368
6	0.350
7	0.323

Table 50.1
(1)
${ }^{1}$ This content is available online at http://cnx.org/content/m31762/1.1/.

Figure 1. Two-stage Amplifier. Two inverting amplifiers have been cascaded.

Figure 50.1

Determine Avo and overall B.W. ; Assume $f_{u}=1 \mathrm{MHz}$.
$\left\{\right.$ Answer: $\left.\mathrm{A}_{\mathrm{vo}}=50,(\mathrm{BW})_{\text {overall }} \sim(0.644) \times 10^{5} \mathrm{~Hz}\right\}$
Solution:

$$
\frac{v_{0}}{v_{1}}=-\left[\frac{50}{10}\right], \frac{v_{1}}{v_{s}}=-\left[\frac{240}{24}\right]
$$

Figure 50.2

$$
\therefore \frac{v_{o}}{v_{s}}=\frac{v_{o}}{v_{1}} \frac{v_{1}}{v_{s}}=-(5)(-10)=50
$$

Figure 50.3

$$
\therefore A_{V o}=50
$$

Figure 50.4

$$
(B . W .)_{\text {overall }}=(B . W .)_{\text {single }}(B . W . \text { Shrinkage Factor })
$$

Figure 50.5

For stage1, BW=

$$
\frac{10^{6}}{10}=10^{5}
$$

Figure 50.6

For stage2, BW=

$$
\frac{10^{6}}{5}=2 \times 10^{5}
$$

Figure 50.7

$$
\therefore(B . W .)_{\text {overall }} \sim\left(10^{5}\right) \sqrt{2^{\frac{1}{2}}-1} \sim\left(0.644 \times 10^{5}\right)
$$

Figure 50.8

Figure 2. Three stage cascading of Inverting Amplifiers.

Figure 50.9

3 stage cascaded amplifier: Assume $\mathrm{f}_{\mathrm{u}}=1 \mathrm{MHz}$. Determine: overall B.W and overall gain. $\left\{\mathrm{A}_{\mathrm{vo}}=(-20)^{3} ; \mathrm{BW}=\left(10^{6} / 20\right)(0.510) \mathrm{Hz}\right\}$
For one stage, voltage gain $=-40 / 2=-20 \mathrm{~V}=\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{1}$
\therefore Overall Voltage $=\left(\frac{V_{0}}{V_{1}}\right) \times\left(\frac{V_{1}}{V_{2}}\right) \times\left(\frac{V_{2}}{V_{5}}\right)=\left(\frac{V_{0}}{V_{5}}\right)=(-20)(-20)(-20)$

Figure 50.10
\qquad
\qquad

$$
A_{V_{O}}=-8000
$$

Figure 50.11
$(B . W .)_{\text {overall }}=(B . W .)_{\text {single }}(B . W$. Shrinkage Factor $)$

Figure 50.12

For stage1 BW=

$$
\frac{10^{6}}{20}=5 \times 10^{4}
$$

Figure 50.13

For stage2 BW=

$$
\frac{10^{6}}{20}=5 \times 10^{4}
$$

Figure 50.14

For stage3 BW=

$$
\frac{10^{6}}{20}=5 \times 10^{4}
$$

Figure 50.15

$$
(B . W .)_{\text {overall }}=5 \times 10^{4} \sqrt{2^{1 / 3}-1} \sim\left(5 \times 10^{4}\right)(0.510)
$$

Figure 50.16
(3)Design a multistage amplifier that meet the following specification

$$
\left(A_{V_{O}}\right)_{\text {overall }}=86 d B \pm 1 d B ;
$$

Figure 50.17

$$
R_{\text {in }}>10 \mathrm{k} \Omega
$$

Figure 50.18
\qquad
\qquad

$$
R_{\text {out }} \sim 0.01 \Omega
$$

Figure 50.19
\qquad
$f_{h} \geq 75 \mathrm{kHz}$

Figure 50.20

Given

$$
A_{V_{\text {opsn }}}=10^{5} ; R_{\text {id }}=10^{9} \Omega ; R_{\text {out }}=50 \Omega ; G B P=1 \mathrm{MHz}
$$

Figure 50.21

Solution:
$86 \mathrm{~dB}=20 \log ($

$$
A_{V_{\text {nuerall }}}
$$

Figure 50.22
)

$$
A_{V_{\text {nverall }}}=10^{4.3}=10^{4} 10^{0.3}=40,000
$$

Figure 50.23

Let us choose 3 stages:
Each stage with gain 40, closed loop B.W. of single stage $=10^{6} / 40=25 \mathrm{kHz}$

Therefore $(B . W .)_{\text {overall }}=(B . W .)_{\text {single }}(B . W$. Shrinkage Factor $)$

Figure 50.24
\qquad
\qquad
B. W. Shrinkage Factor $=\sqrt{2^{1 / 3}-1}$

Figure 50.25
\qquad
\qquad
$(B . W .)_{\text {ovarall }}=(25 \mathrm{kHz}) \times(0.5)=12.5 \mathrm{kHz}$

Figure 50.26

This design does not meet our specification:

Therefore we choose 3 stages each with gain as 30 .

$$
\text { Therefore }(B . W .)_{\text {single }}=\frac{10^{6}}{30}=33.3 \mathrm{kHz}
$$

Figure 50.27
\qquad
\qquad
Therefore $(B . W .)_{\text {overall }}=(B . W .)_{\text {single }}(B . W$. Shrinkage Factor $)=(300 \mathrm{kHz}) \sqrt{2^{1 / 3}-1}$ $=15.0 \mathrm{kHz}$

Figure 50.28
\qquad
\qquad
Since $R_{\text {in }}=R_{1}=10 \mathrm{k} \Omega$ therefore $R_{2}=300 \mathrm{k} \Omega$

Figure 50.29

Figure 3. Three-stage cascaded Inverting Amplifier.

Figure 50.30

This multistage amplifier does not meet the given specifications.
We will have to use a higher performance Op Amp of $f_{u}=10 \mathrm{MHz}$ to meet the above specifications.
4)

Figure 4. 3-stage cascaded amplifier. NonInv-Inv-NonInv cascading.

Figure 50.31
(a)Determine the flat band gain and BW of each stage.
(b)Write the expression for each stage including the effect of ω_{h}.
(c)Plot the asymptotic plot.
(d)Determine the overall gain and the overall BW.

Solution:-
(a) $\&(b) 1$ st stage is a non-inverting amplifier.

$$
A_{V_{1}}(j \omega)=\frac{\left(1+\frac{98}{2}\right)}{\left(1+j \frac{\omega}{\omega_{h 1}}\right)}
$$

Figure 50.32
$2^{\text {nd }}$ stage is Inverting amplifer.

$$
A_{V_{2}}(j \omega)=\frac{-(50 k / 10 k)}{\left(1+j \frac{\omega}{\omega_{h_{2}}}\right)}
$$

Figure 50.33
$3^{\text {rd }}$ stage is a non-inverting amplifier.

$$
A_{V_{3}}(j \omega)=\frac{(1+20 k / 10 k)}{\left(1+j \frac{\omega}{\omega_{h_{3}}}\right)}
$$

Figure 50.34

$$
f_{h_{1}} \times\left(1+\frac{98}{2}\right)=10^{6}
$$

Figure 50.35

$$
f_{h_{1}}=\frac{10^{6}}{50}=20 \mathrm{kHz}(\text { Dominant Pole })
$$

Figure 50.36

$$
f_{h_{2}} \times\left(\frac{50}{10}\right)=10^{6} \quad f_{h_{2}}=\frac{10^{6}}{5}=167 \mathrm{kHz}
$$

Figure 50.37

$$
f_{h_{3}} \times\left(1+\frac{20}{10}\right)=10^{6} \quad f_{h_{3}}=\frac{10^{6}}{3}=333 \mathrm{kHz}
$$

Figure 50.38

Lowest pole is the dominant pole in LPF.
(c)Flat band Gain $=50 \mathrm{X} 5 \mathrm{X} 3=750$

In db the gain is $20 \log _{10}(750)=57.5 \mathrm{~dB}$

$$
\left.A_{V}(j \omega)\right|_{\text {overall }}=\frac{50}{\left(1+j \frac{\omega}{\omega_{h_{1}}}\right)} \times \frac{-5}{\left(1+j \frac{\omega}{\omega_{h_{2}}}\right)} \times \frac{3}{\left(1+j \frac{\omega}{\omega_{h_{3}}}\right)}
$$

Figure 50.39

$$
\frac{1}{\omega_{h}^{2}}=\frac{1}{\omega_{h_{1}}^{2}}+\frac{1}{\omega_{h_{2}}^{2}}+\frac{1}{\omega_{h_{\mathrm{s}}}^{2}} \approx \frac{1}{\omega_{h_{1}}^{2}}
$$

Figure 50.40

Figure 5. Bode Plot of the magnitude of the Voltage Gain in Problem 4

Figure 50.41

Chapter 51

AE_Tutorial 10_Noise'

AE_TUTORIAL NO 10_Problems on NOISE PARAMETRS.
Problem (1) Calculate the available power per $H z$ of $B W$ for a resistance at room temperature ($T=290$ $K)$.Express in decibels with reference to $1 \mathrm{~mW}(\mathrm{dBm})$ And with reference to $1 W(d B W)$.

Solution: Available power per $\mathrm{Hz}=\mathrm{kT}(\mathrm{W} / \mathrm{Hz})$
Power in W $\mathrm{Hz}=\mathrm{kT}=4 \times 10^{-21} \mathrm{~W} / \mathrm{Hz}$
Power in $\mathrm{dBm}=10 \log \left(4 \times 10^{-21} / 1 \times 10-3\right)=-174 \mathrm{dBm}$
Power in $\mathrm{dBW}=10 \log \left(4 \times 10^{-21} / 1\right)=-204 \mathrm{dBW}$
PROBLEM(2) Given one port network:

Figure 1. related to problem 2.

Figure 51.1

Determine $<\mathrm{v}$ n $2>$ at $A A^{\prime}$ in $B W=100 \mathrm{kHz}$. Also determine the rms voltage at $A A^{\prime}$.
SOLUTION: R_{eq} at $\mathrm{AA}^{\prime}=\mathrm{R} 3 \|(\mathrm{R} 1+\mathrm{R} 2)$
$=1 \mathrm{~K} \|(1 \mathrm{~K}+1 \mathrm{~K})$
$=1 \mathrm{~K} \|(2 \mathrm{~K})$
$=1 \times 2 / 1+2=2 / 3 \mathrm{~K}$

[^50]Therefore $<\mathrm{v}_{\mathrm{n}}{ }^{2}>\left.\right|_{\mathrm{AA}^{\prime}}=\left.(4 \mathrm{kTB}) \mathrm{R}_{\mathrm{eq}}\right|_{\mathrm{AA}^{\prime}}=\left(4 \times \mathrm{k} \times 290 \times 100 \times 10^{3}\right) \times(2 / 3) \times 10^{3}$
$=1 \times 10^{-12}(\mathrm{~V})^{2}$
rms noise voltage $=$

$$
\sqrt{<v_{m}^{2}>}=10^{-6} V=1 \mu V
$$

Figure 51.2

PROBLEM(3) In TV receiver the antenna is often mounted on a tall mast and long lossy cable is used to connect the antenna to the receiver. To overcome the effect of lossy cable, a pre amplifier is mounted on the antenna as shown in the figure.
(a)Find the overall noise figure.
(b)Find the overall noise figure if pre-amplifier is omitted and gain of front end is increased by 20 dB .Normally the NOISE FIGURE of the front end of the receiver is 16 dB .

Figure 2. This figure relates to Problem 3.

Figure 51.3

Note: The first stage is the pre-amplifier kept at the top of the mast which carries the antenna. This pre-amplifier is supposed to compensate for the loss occurring while carrying the signal from the antenna to the front end of the receiver.

The second block represents the lossy cable.
The third block is the front end of the receiver which has a noise figure of 16 dB .
Solution of Problem(3):

Figure 3. This is the block representation of Figure 2.

Figure 51.4

The noise figure of 2 stages is given by the formula:

$$
F=F_{1}+\frac{F_{2}-1}{g_{1}}
$$

Figure 51.5

Generalizing this result we get

$$
F=F_{1}+\frac{F_{2}-1}{g_{1}}+\frac{F_{3}-1}{g_{1} g_{2}}+\frac{F_{4}-1}{g_{1} g_{2} g_{3}}+---
$$

Figure 51.6

Therefore the overall Noise figure is largely determined by the Noise Figure of the FIRST stage and the gain of the 1st stage. F1 should be very low and the gain

g_{1}

Figure 51.7
should be very high. Part(a)

$$
F_{1}=6 d B \rightarrow F_{1}=10^{0.6}=4
$$

Figure 51.8

$$
g_{1}=20 \mathrm{~d} B \rightarrow g_{1}=10^{2}=100
$$

Figure 51.9

$$
F_{2}=3 d B \rightarrow F_{2}=10^{0.3}=2=L
$$

Figure 51.10

$$
g_{2}=\frac{1}{L}=\frac{1}{2}
$$

Figure 51.11

$$
F_{3}=16 \mathrm{~dB} \rightarrow F_{3}=10^{1.6}=40
$$

Figure 51.12

$$
g_{3}=60 \mathrm{~d} B \rightarrow g_{3}=10^{6}
$$

Figure 51.13

When all three stages are considered:

$$
F_{\text {overall }}=F_{1}+\frac{F_{2}-1}{g_{1}}+\frac{F_{3}-1}{g_{1} g_{2}}
$$

Figure 51.14

$$
=4+\frac{2-1}{100}+\frac{40-1}{100\left(\frac{1}{2}\right)}=4.79
$$

Figure 51.15
\qquad
\qquad

$$
F_{\text {overall }}=4+0.01+3.9 \times 10^{-7}=4.79
$$

Figure 51.16

$$
F_{\text {overall }} \text { in } d B=10 \log _{10} 4.79=6.8 d B
$$

Figure 51.17

Part(b) Without the pre-amplifier

$$
F=F_{2}+\frac{F_{3}-1}{g_{2}}=2+\frac{40-1}{(1 / 2)}=80=19 d B
$$

Figure 51.18

In part(b), we have a very bad overall noise figure resulting into a very poor reception of the TV station tuned to.

To overcome this problem we always mount a pre-amplifier on the tall mast which carries the antenna.

Chapter 52

AE_Tutorial 11_Power Amplifiers ${ }^{1}$

AE_Tutorial 11_Power Amplifiers(Audio)
 son(Indian Edition),1999.Chapter 14_Power Amplifiers.

Problem 1. Design of a transformer coupled Class A Amplifier.

Figure 1. Transformer coupled Class A CE Amplifier.

Figure 52.1

Refer to Figure 1.Design a Transformer-coupled Class A CE Amplifier to give an output power of $\mathrm{P}_{\mathrm{L}}=$ 10 W at a load resistance of 4Ω speaker. Assume DC bias of $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$. The BJT has short circuit dc as

[^51]well as incremental current gain of 100 .
Solution.
Step 1. Maximum Voltage Swing $=\mathrm{V}_{\mathrm{CE}}(\max)=2 \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}$;
Step 2. Whatever power is dissipated by BJT under no signal, half of it at most will be transferred to the load under full signal condition.

Therefore Collector Power Dissipation under no signal condition is $\mathrm{P}_{\mathrm{C}}=2 \mathrm{P}_{\mathrm{L}}=20 \mathrm{~W}=\mathrm{I}_{\mathrm{CQ}} \times \mathrm{V}_{\mathrm{CC}}=$ $\mathrm{I}_{\mathrm{CQ}} \times 12$

Therefore $\mathrm{I}_{\mathrm{CQ}}=20 / 12=1.67 \mathrm{~A}$;
In Figure 12 in AE_Lecture 10_Part2, the load line graphical interpretation of Class A amplifier is given.
The slope of the dynamic load line is $=-\left(1 / \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right)=-\left(\mathrm{I}_{\mathrm{CQ}} / \mathrm{V}_{\mathrm{CC}}\right)$;
Therefore $\mathrm{R}_{\mathrm{L}}{ }^{\prime}=12 / 1.67=7.19 \Omega$;
Step 3. $\mathrm{R}_{\mathrm{L}}{ }^{\prime}=\mathrm{n}^{2} \times \mathrm{R}_{\mathrm{L}}=\mathrm{n}^{2} \times 4 \Omega$ where $\mathrm{n}=$ turns ratio $=$ primary coil no. of turns/ secondary coli number of turns;

Therefore $\mathrm{n}=\sqrt{ }(7.19 / 4)=1.34$;
Step 4. Peak Collector Current $=2 \mathrm{I}_{\mathrm{CQ}}=3.34 \mathrm{~A}$;
Step 5. The quiescent base current $=\mathrm{I}_{\mathrm{CQ}} / \beta_{\mathrm{F}}=1.67 / 100 \mathrm{~A}=16.7 \mathrm{~mA}$;
The biasing network has to be designed to achieve the above quiescent point (1.67A, 12V).
Problem2. Finding the efficiency and power dissipation of a complementary push-pull amplifier.

Figure 52.2

Refer to Figure 2.
(a) Calculate the efficiency and power dissipation of each transistor in the complementary push-pull output stage if $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-12 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=50 \Omega$. The parameters of the transistors are: $\beta_{\mathrm{f} 0}=$ $\beta_{\mathrm{F}}=100, \mathrm{~V}_{\mathrm{CE}}($ sat $)=0.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}}(\mathrm{on})=0.72 \mathrm{~V}$.
(b) Use Orcad simulation to plot the transfer characteristic.

Solution.
Peak load voltage in positive half is $=\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=(12-0.2)=11.8 \mathrm{~V}$;
Similarly negative peak voltage $=-11.8 \mathrm{~V}$.
Positive peak current $=$ magnitude of negative peak current $=\mathrm{V}_{\mathrm{P}} / \mathrm{R}_{\mathrm{L}}=11.8 / 50=0.236 \mathrm{~A}$
Under signal condition average current drawn from one battery $=I_{P} / \pi$ since each battery supplies half wave rectified current. Hence power supplied by one battery is $=\left(\mathrm{I}_{\mathrm{P}} / \pi\right) \times \mathrm{V}_{\mathrm{CC}}$;

Power supplied by two batteries $=\mathrm{P}_{\mathrm{S}}=2\left(\mathrm{I}_{\mathrm{P}} / \pi\right) \times \mathrm{V}_{\mathrm{CC}}=(2 \times 0.236 \times 12) / \pi=1.803 \mathrm{~W}$;
Output power across the load $=\mathrm{P}_{\mathrm{L}}=\left(\mathrm{I}_{\mathrm{P}} / \sqrt{ } 2\right) \times\left(\mathrm{V}_{\mathrm{P}} / \sqrt{ } 2\right)=1.392 \mathrm{~W}$;
Power conversion efficiency $=1.392 / 1.803=77.2 \%$;
Power dissipation in each transistor is $=\left(\mathrm{P}_{\mathrm{S}}-\mathrm{P}_{\mathrm{L}}\right) / 2=206 \mathrm{~mW}$.
Problem 3.Design a transformer- coupled Class B Amplifier.
Refer to Figure 3.

Figure 3. Physical operation of Class B push-pull amplifier.

Figure 52.3

Design a transformer-coupled Class B push-pull amplifier to supply a maximum output power of $\mathrm{P}_{\mathrm{L}}(\mathrm{max})$ $=10 \mathrm{~W}$ at a load resistance of $\mathrm{R}_{\mathrm{L}}=4 \Omega$. Assume a DC supply of 15 V and current gain 100 and $\mathrm{V}_{\mathrm{BE}(\mathrm{ON})}=0.7 \mathrm{~V}$.

Solution:

Figure 52.4

Step1

Maximum voltage swing across either of BJTs $=\mathrm{V}_{\mathrm{CE}}(\max)=2 \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}$;
Step 2 Effective load resistance as seen by the primary side is $\mathrm{R}_{\mathrm{L}}{ }^{\prime}=\mathrm{n}^{2} \mathrm{R}_{\mathrm{L}}$.
$\mathrm{P}_{\mathrm{L}}(\max)=\mathrm{V}_{\mathrm{CC}}{ }^{2} /\left(2 \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right) \leftrightarrow$ this is because there is a sinusoidal voltage swing across the reflected load R_{L} ' of amplitude V_{CC}.

Therefore $\mathrm{R}_{\mathrm{L}}{ }^{\prime}=\mathrm{V}_{\mathrm{CC}}{ }^{2} /\left(2 \mathrm{P}_{\mathrm{L}}(\max)\right)=15^{2} /(2 \times 10)=11.25 \Omega$;
Ste 3. Calculation of Peak collector current:
$\mathrm{I}_{\mathrm{C}}($ peak $)=\mathrm{V}_{\mathrm{CC}} / \mathrm{R}_{\mathrm{L}}{ }^{\prime}=15 / 11.25=1.33 \mathrm{~A}$;
Step 3. Average Current supplied by each transistor.
Each transistor supplies half wave rectified current.
Hence I_{C} (average) $=\mathrm{I}_{\mathrm{C}}($ peak $) / \pi=1.33 / 3.14=0.424 \mathrm{~A}$;
Total average current supplied by the battery $=2 \mathrm{I}_{\mathrm{C}}$ (average) $=0.848 \mathrm{~A}$;
Step 4. DC Power from the battery $=\mathrm{V}_{\mathrm{CC}} \times 2 \mathrm{I}_{\mathrm{C}}$ (average) $=15 \times 0.848=12.72 \mathrm{~W}$;
Step 5. Average Collector Power Dissipation for both transistors is given by :
$2 \mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{DC}}-\mathrm{P}_{\mathrm{L}}=\left[\left(2 \mathrm{~V}_{\mathrm{C}}(\right.\right.$ peak $\left.\left.) / \pi\right) \div \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right] \times \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{C}}(\text { peak })^{2} /\left(2 \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right)$;
Under Maximum Collector Power dissipation condition, V_{C} (peak) is not V_{CC} but $2 \mathrm{~V}_{\mathrm{CC}} / \pi$
And $\mathrm{I}_{\mathrm{C}}($ peak $)=2 \mathrm{~V}_{\mathrm{CC}} /\left(\pi \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right)$; Detailed analysis is given in Rashid's book.
Therefore $2 \mathrm{P}_{\mathrm{C}}(\max)=\mathrm{P}_{\mathrm{DC}}(\max)-\mathrm{P}_{\mathrm{L}}(\max)=\left[\left(2 \times\left(2 \mathrm{~V}_{\mathrm{CC}} / \pi\right)\right)(1 / \pi) \div \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right] \times \mathrm{V}_{\mathrm{CC}}-\left(2 \mathrm{~V}_{\mathrm{CC}} / \pi\right)^{2} /(2$
$\mathrm{R}_{\mathrm{L}}{ }^{\prime}$)
$=4 \mathrm{~V}_{\mathrm{CC}}{ }^{2} /\left(\pi^{2} \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right)-2 \mathrm{~V}_{\mathrm{CC}}{ }^{2} /\left(\pi^{2} \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right)=2 \mathrm{~V}_{\mathrm{CC}}{ }^{2} /\left(\pi^{2} \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right)=\left(2 / \pi^{2}\right) \times 2\left(\mathrm{~V}_{\mathrm{CC}}{ }^{2} /\left(2 \mathrm{R}_{\mathrm{L}}{ }^{\prime}\right)=\left(4 / \pi^{2}\right) \mathrm{P}_{\mathrm{L}}(\max) ;\right.$
Therefore $\mathrm{P}_{\mathrm{C}}(\max)=\left(2 / \pi^{2}\right) \mathrm{P}_{\mathrm{L}}(\max)=\left(2 / \pi^{2}\right) \times 10=2 \mathrm{~W}$;
Step 6. Required turns ratio: $\mathrm{R}_{\mathrm{L}}{ }^{\prime}=\mathrm{n}^{2} \times \mathrm{R}_{\mathrm{L}}$;
Therefore $\mathrm{n}=\sqrt{ }\left(\mathrm{R}_{\mathrm{L}} ' / \mathrm{R}_{\mathrm{L}}\right)=\sqrt{ }(11.25 / 4)=1.68$.

Chapter 53

AE_Tutorial 12_Oscillators'

AE Tutorial 12. Problems on OSCILLATORS
$\overline{\text { Problems have been taken from: }}$
"Microelectronic Circuit Design" by R.C.Jaeger and T.N. Blalock, $2^{\text {nd }}$ Edition, McGraw Hill,2006.
"Microelectronic Circuits- Analysis \& Design", Muhammad H. Rashid, Thomson, Indian Edition, 1999. Problem (1)Wien Bridge Oscillator

[^52]\qquad

Figure 53.1

$$
\left(v_{o}\right)_{\max }=\frac{3 V_{D}}{\left(2-\frac{R_{2}}{R_{1}}\right)\left(1+\frac{R_{4}}{R_{3}}\right)-\left(\frac{R_{4}}{R_{1}}\right)} \text { where } \frac{R_{2}}{R_{1}}<2
$$

Figure 53.2

$$
\omega_{o}=\frac{1}{R C}
$$

Figure 53.3

This is called Diode amplitude stabilization of a Wien Bridge Oscillator. Determine frequency of oscillation \& the amplitude of the oscillation.
[Ans:- $9.95 \mathrm{kHz}, 3.0 \mathrm{~V}$]
When the diodes are off, the gain of the amplifier is

$$
\left(1+\frac{R_{2}+R_{3}}{R_{1}}\right) \text { where } \frac{R_{2}+R_{3}}{R_{1}}>2
$$

Figure 53.4

So that loop gain >1 and the oscillations grow.
When diode turn ON, the gain is

$$
\left[1+\left(\frac{R_{2}+R_{8} \| R_{4}}{R_{1}}\right)\right] \text { where } \frac{R_{2}+R_{8} \| R_{4}}{R_{1}}<2
$$

Figure 53.5
and the oscillations decay.
PROBLEM(2)

Figure 2. Circuit Diagram of Colpitts Oscillator.

Figure 53.6

$$
g_{m} R_{1}=\frac{C_{2}}{C_{1}} \quad ; \quad \frac{R_{F}}{R_{\text {t. }}}=\frac{C_{2}}{C_{1}}=\frac{A R_{1}}{R_{\text {L. }}} \text { where } A=10
$$

Figure 53.7

Design the Colpitt's for oscillation frequency

$$
f_{o}=150 \mathrm{kHz}
$$

Figure 53.8

$$
C_{1}=0.01 \mu F \& C_{2}=0.1 \mu F
$$

Figure 53.9

$$
\therefore \frac{C_{2}}{C_{1}}=\frac{0.1}{0.01}=10
$$

Figure 53.10

Step(2) Calculate L from

$$
\omega_{o}=\frac{1}{\sqrt{L\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)}}
$$

Figure 53.11

$$
\therefore L=\frac{C_{1}+C_{2}}{\omega_{o}^{2} C_{1} C_{2}}=124 \mu H
$$

Figure 53.12

Step(3) Calculate R_{F} \& R_{L}.
Let $R_{L}=100 \mathrm{k} \Omega$ Therefore $\mathrm{R}_{\mathrm{F}}=$

$$
\left(\frac{C_{2}}{C_{1}}\right) R_{L}=1 M \Omega
$$

Figure 53.13

Step(4) Determine R_{1} _-_-__Let $\mathrm{A}=10$

$$
\frac{10 R_{1}}{R_{L}}=\frac{C_{2}}{C_{1}}=10
$$

Figure 53.14
$\therefore R_{1}=100 \mathrm{k} \Omega$

Figure 53.15

Step(5) Determmine g_{m}

$$
g_{m} R_{1}=\frac{C_{2}}{C_{1}}
$$

Figure 53.16

$$
g_{m}(100 k)=10
$$

Figure 53.17

$$
g_{m}=\left(\frac{1}{10}\right) m S=0.1 \frac{m A}{V}
$$

Figure 53.18

PROBLEM(3) Colpitts Oscillator Using BJT

Figure 53.19

$$
r_{\pi}=1.1 \mathrm{k} \Omega ; h_{f e}=100 ; L=1.5 \mathrm{mH} ; C_{1}=1 \mathrm{nF} ; C_{2}=99 \mathrm{nF} ; R_{L}=10 \mathrm{k} \Omega
$$

Figure 53.20
(ii)Check the Barkhausen criteria.
(iii)Determine R_{2}.

Solution:-
RFC acts as a open circuit $A n d C_{B}$ and C_{E} acts as a short circuit.
Therefore the Equivalent Circuit is :-

Figure 4. Colpitts Oscillator.

Figure 53.21

Figure 5. The incremental representation of Colpitts in Figure 4.

Figure 53.22

From the nodal equations we get equating the imaginary parts

$$
\begin{equation*}
\omega_{o}=\sqrt{\frac{C_{1}+C_{2}}{C_{1} C_{2} L}} \tag{1}
\end{equation*}
$$

Figure 53.23

$$
g_{m} R_{1}=\frac{C_{2}}{C_{1}}+\frac{C_{1}}{C_{2}} \frac{R_{1}}{R_{L}}+\frac{L}{C_{2} R_{L}^{2}}+\frac{L}{C_{1} R_{1} R_{L}}
$$

Figure 53.24

For large values of

$$
R_{L}
$$

Figure 53.25

$$
\begin{equation*}
g_{m} R_{1}=\frac{C_{2}}{C_{1}} \tag{2}
\end{equation*}
$$

Figure 53.26

Gain

$$
\left|A_{V}\right|=\left|g_{m} R_{L}\right|
$$

Figure 53.27

Subs

$$
\left|A_{V}\right|=\left|g_{m} R_{L}\right|
$$

Figure 53.28
in $\mathrm{Eq}(2)$

$$
g_{m} R_{1}=\frac{A_{V} R_{1}}{R_{L_{t}}}=\frac{C_{2}}{C_{1}}------(3)
$$

Figure 53.29

For

$$
R_{2} \gg r_{\pi}
$$

Figure 53.30

$$
R_{1}=r_{\pi} \| R_{2}=r_{\pi}=\frac{h_{f e}}{g_{m}}--------(4)
$$

Figure 53.31

Sub (4) in (3)

$$
g_{m} \frac{h_{f e}}{g_{m}}=\frac{A_{V} R_{1}}{R_{L}}=\frac{C_{2}}{C_{1}}
$$

Figure 53.32

$$
h_{f s}=\frac{C_{2}}{C_{1}}=\frac{99 n F}{1 n F}=99
$$

Figure 53.33
(i)This

$$
h_{f B}
$$

Figure 53.34
can be provided by BJT hence Barkhausen Criteria is satisfied
(ii)Frequency of oscillation=

$$
f_{o}=\frac{1}{2 \pi} \sqrt{\frac{C_{1}+C_{2}}{C_{1} C_{2} L}}=130.6 \mathrm{kHz}
$$

Figure 53.35
(iii)

$$
R_{1}=\frac{c_{2}}{C_{1}} \times \frac{1}{g_{m}}=\frac{99}{g_{m}}=99 \frac{r_{\pi}}{h_{f \varepsilon}}=\frac{99 \times 1.1 \mathrm{k} \Omega}{100}
$$

Figure 53.36

$$
R_{1}=1089 \Omega=r_{\pi} \| R_{2}
$$

Figure 53.37

$$
\therefore \frac{r_{\pi} R_{2}}{r_{\pi}+R_{2}}=1089 \therefore R_{2}=108.9 \mathrm{k} \Omega
$$

Figure 53.38

PROBLEM(4)LC-Tuned MOS Oscillator
Design an oscillator at

$$
f_{o}=110 \mathrm{kHz}, g_{d s}=5 \frac{\mathrm{~mA}}{\mathrm{~V}} ; r_{d}=25 \mathrm{k} \Omega ; R_{G}=10 \mathrm{k} \Omega
$$

Figure 53.39

Figure 6. Tuned Oscillator

Figure 53.40

LET $R_{1}=r_{d}| | R_{G} / n^{2}$

Figure 7. Reduction of Cct.

Figure 53.41

$$
z(s)=\frac{1}{\frac{1}{R_{1}}+S C+\frac{1}{S L}}
$$

Figure 53.42

$$
\therefore \frac{V_{o}(s)}{g_{m} V_{G S}(s)}=z(s)
$$

Figure 53.43
\qquad
\qquad
$\therefore A_{V}(s)=\frac{V_{o}(s)}{V_{G S}(s)}=g_{m} z(s)$

Figure 53.44

$$
A_{V}(j \omega)=\frac{g_{m}}{\left(\frac{1}{R_{1}}\right)+j\left(\omega C-\frac{1}{\omega L}\right)}
$$

Figure 53.45

For oscillation Loop Gain $=1 \angle 0^{\circ}$

$$
\therefore V_{o}(j \omega)=V_{g s}(j \omega)
$$

Figure 53.46
\qquad
\qquad
\therefore Imaginary Part $=0$

Figure 53.47

$$
\therefore \omega C=\frac{1}{L \omega} \& \omega_{o}=\frac{1}{\sqrt{L C}}
$$

Figure 53.48

$$
\text { At this frequency } A_{V}(j \omega)=g_{m} R_{1}=1
$$

Figure 53.49

Step(1) Choose a suitable value of C:
Let $\mathrm{C}=0.01 \mu \mathrm{~F}$
Step(2) Calculate the value of L from

$$
\omega_{o}=\frac{1}{\sqrt{L C}}
$$

Figure 53.50

$$
L=\frac{1}{4 \pi^{2} C_{o}^{2} f^{2}}=112.6 \mu H
$$

Figure 53.51

Step(3) Find the value of R_{1} from Eq

$$
g_{m} R_{1}=1
$$

Figure 53.52

$$
R_{1}=200 \Omega
$$

Figure 53.53

Step(4)

$$
R_{1}=r_{d} \| \frac{R_{G}}{n^{2}}
$$

Figure 53.54

$$
\therefore n^{2}=49.6, n=7.04
$$

Figure 53.55

PROBLEM(5)

Design a Hartley Oscillator at $\mathrm{f}_{\mathrm{o}}=5 \mathrm{MHz}$.USE $2 \mathrm{~N} 3822 \mathrm{n}-\mathrm{JFET}$ whose parameters are

$$
g_{m}=3 \frac{m A}{V}
$$

Figure 53.56

Load Resistance is $\mathrm{R}_{\mathrm{L}}=100 \Omega$ The circuit is:-

Figure 8. Circuit Diagram of Hartley Oscillator.

Figure 53.57

Practically it is implemented in the following manner:-

Figure 9. Practical implementation of Hartley Oscilator.

Figure 53.58

The incremental circuit is given in Figure 10.

Figure10 Incremental representation of Circuit in Figure 9.

Figure 53.59

Solution:-

$$
L_{1}=L_{2}=10 \mu H
$$

Figure 53.60

$$
\because \omega_{o}^{2}=\frac{1}{\left(L_{1}+L_{2}\right)(C)} \rightarrow C=50.66 p F
$$

Figure 53.61

BY analysis:-

$$
g_{m}=\frac{L_{2}}{\left(L_{1} R_{L}\right)} \therefore R_{L}^{*}=333.3 \Omega
$$

Figure 53.62

We take

$$
R_{L}^{*}=400 \Omega
$$

Figure 53.63

$$
\frac{R_{L}^{*}}{\mathrm{R}_{\mathrm{L}}}=n^{2}=\frac{400}{100}=4
$$

Figure 53.64

$$
\therefore n=2
$$

Figure 53.65

$$
\frac{L_{2}}{L_{3}}=n^{2} \rightarrow L_{3}=\frac{10 \mu H}{4}=2.5 \mu H
$$

Figure 53.66

PROBLEM(6)CRYSTAL OSCILLATOR

Figure 11. Crystal Oscillator.

Figure 53.67

This is a Colpitts-derived op-amp crystal oscillator which uses crystal as an inductor.
This uses a 2 MHz crystal oscillator

$$
C_{1}=0.01 \mu F ; C_{2}=0.1 \mu F ; R_{L}=100 \mathrm{k} \Omega ; R_{1}=100 \mathrm{k} \Omega ; R_{F}=1 \mathrm{M} \Omega
$$

Figure 53.68

Find the frequency of oscillator. Given

$$
C_{S}=0.0122 p F ; C_{p}=4.27 p F ; R_{S}=82 \Omega ; L_{S}=0.52 \mathrm{H}
$$

Figure 53.69

Figure 12. Electrical equivalent of a quartz crystal.

Figure 53.70

$$
\omega_{s}=\frac{1}{\sqrt{L_{S} C_{S}}} ; \quad \omega_{p}=\frac{1}{\sqrt{L_{S}\left(\frac{C_{S} C_{p}}{C_{S}+C_{p}}\right)}}
$$

Figure 53.71

Equivalent Circuit of Crystal Oscillator:

Figure 13. Incremental representation of Crystal Oscillator in Fig. 11.

Figure 53.72

This can also be expressed as:

Figure 14. A second incremental representation of Crystal Oscillator.

Figure 53.73

$$
C_{s q p}=\left(C_{p}+\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)=9095 p F
$$

Figure 53.74

Effective Capacitance $\mathrm{C}_{\text {eq }}$ is parallel with

$$
L_{S}
$$

Figure 53.75
is given by

$$
C_{e q}=\frac{\left(C_{S}\right) C_{s q p}}{C_{S}+C_{s q p}}=0.0122 p F
$$

Figure 53.76

$$
\therefore f_{o}(\text { Frequency of oscillation of the crystal })=\frac{1}{2 \pi \sqrt{L_{S} \mathrm{Ceq}}}=1.998 \mathrm{MHz}
$$

Figure 53.77

It is given that 2 MHz crystal is used. Hence the result is self consistent. This is the frequency of the Crystal Oscillator.

Figure 53.78

Figure 53.79

Chapter 54

AE_Tutorial 13_Tuned Amplifiers'

AE_Tutorial 13 Problems on TUNED AMPLIFIER

Problems have been taken from "Microelectronic Circuit Design" by R.C.Jaeger \& T.N.Blalock, McGraw Hill Publibcation,2006.

Problem(1)
Design a tuned amplifier having $f_{o}=1 \mathrm{MHz}, 3 \mathrm{~dB} B W=10 \mathrm{kHz}$ and resonance gain $=-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{C}}=-10$, Use a FET which at the given bias point $g_{\mathrm{m}}=5 \mathrm{~mA} / \mathrm{V}$ and $\mathrm{r}_{\mathrm{o}}=10 \mathrm{k} \Omega$.

Solution:

$$
A_{V}\left(j \omega_{o}\right)=-g_{m} R_{C}=-10
$$

Figure 54.1
\qquad
\qquad

$$
\text { or }-5 \times 10^{-3} \times R_{C}=-10
$$

Figure 54.2
\qquad
\qquad

$$
\therefore R_{C}=\frac{10}{5}=2 K \Omega
$$

Figure 54.3

[^53]$$
\because r_{o}=10 \mathrm{k} \Omega \& R_{C}=2 K \Omega=r_{o} \| R_{L}
$$

Figure 54.4
\qquad
$\therefore R_{L}=2.5 \mathrm{k} \Omega$

Figure 54.5
\qquad
\qquad
$B W=2 \pi \times 10 \times 10^{3}=\frac{1}{C R_{C}}$

Figure 54.6
\qquad
\qquad
$\therefore C=7.958 n F$

Figure 54.7
\qquad
\qquad
$\omega_{o}=2 \pi \times 10^{6}=\frac{1}{\sqrt{L C}}$

Figure 54.8

$$
\therefore L=3.18 \mu H
$$

Figure 54.9

These L and C values are not realizable hence Autotransformer will have to be used along with L ' and C^{\prime} where turns ratio is chosen to get $\mathrm{L}=\mathrm{L}, \mathrm{n}^{2}$ and $\mathrm{C}=\mathrm{C}^{\prime} \mathrm{n}^{2}$.

If $\mathrm{n}=3$ and $\mathrm{L}^{\prime}=28.6 \mu \mathrm{H}$ and $\mathrm{C}^{\prime}=0.9 \mathrm{nF}$ then it is possible to realize the tank circuit as required in this problem. The actual Autotransformer Configuration is described in the Text (Lecture 12).

Problem(2):

Repeat Problem 1 but with new Q of the tank circuit as 150 , find R_{p}. Then find the new value of R_{L} so that Q of the circuit remains unchanged at resonance frequency 1 MHz .

$$
Q=\frac{R_{p}}{L \omega_{o}}
$$

Figure 54.10
$\therefore R_{p}=3 k \Omega$

Figure 54.11

Let the new value of R_{L} be R_{L} '.
If Q should remain unchanged then

$$
r_{o} \| R_{L}^{\prime}=3 \mathrm{k} \Omega
$$

Figure 54.12

$$
\therefore R_{L}^{\prime}=5 k \Omega
$$

Figure 54.13

Problem(3)
Part(a)

Figure 1. Single Tuned Amplifier

Figure 54.14
$\mathrm{L}=5 \mu \mathrm{H}$. Determine $\mathrm{C}=$?
Design an Intermediate Frequency Amplifier which resonates at $\mathrm{f}_{\mathrm{o}}=455 \mathrm{kHz} \&-3 \mathrm{~dB}$ BW $=10 \mathrm{kHz}$. Determine C* to give a resonance frequency at fo $=455 \mathrm{kHz}$. [Ans: $\mathrm{C}_{1}{ }^{*}=24.45 \mathrm{nF}$]

$$
Q_{o}=\frac{455}{10}=45.5=\left(\frac{R_{p}}{L \omega_{o}}\right)
$$

Figure 54.15

$$
R_{p}=650.38 \Omega
$$

Figure 54.16

Part(b):- The IF tuned amplifier is coupled to a second IF stage.

Figure 54.17

Equivalent Circuit:-

Figure 54.18

Figure 4. The resulting load as seen by the first stage of two stage $I F$ Amplifier.

Figure 54.19
$\mathrm{R}_{\mathrm{in}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}}=24.27 \mathrm{nF}$
Determine C_{1} required and the resulting B.W.
To give $\mathrm{f}_{\mathrm{o}}=455 \mathrm{kHz}$

$$
C^{*}=\left(C_{1}+200 p F\right)=24.45 n F
$$

Figure 54.20
\qquad

$$
C_{1}=24.45 n F-0.2 n F=24.25 n F
$$

Figure 54.21

The resulting resistance $=1 \mathrm{k} \Omega| | \mathrm{R}_{\mathrm{in}}=1 \mathrm{k} \Omega| | 1 \mathrm{k} \Omega=500 \Omega=$

$$
R_{p}
$$

Figure 54.22

$$
\therefore Q_{o}=\left(\frac{\omega_{o}}{B W}\right)=\left(\frac{R_{p}}{L \omega_{o}}\right)
$$

Figure 54.23
\qquad
\qquad
$\therefore B W=\frac{\omega_{o}^{2} L}{R_{p}}=\frac{\left(2 \pi \times 455 \times 10^{3}\right)^{2} \times 5 \times 10^{-6}}{2 \pi \times 500}$

Figure 54.24

$$
\therefore B W=(2 \pi)(13 k H z)
$$

Figure 54.25

This is larger than desired. This is due to loading caused by $\mathrm{Z}_{\text {in }}$ of the subsequent stage. Part(C) By using tapped transformer the loading can be removed. Let $g_{m}=40 \mathrm{~mA} / \mathrm{V}$

Figure 54.26

Figure 6. Incremental representation of two stage IF with tapped transformer.

Figure 54.27

To achieve a BW of 10 kHz , find the value of $\mathrm{n}=$?, $\mathrm{C}_{1}=$? And current gain at resonance. Ans:- $\mathrm{n}=1.36, \mathrm{C}_{1}=24.36 \mathrm{nF}, \mathrm{I}_{\mathrm{C}} / \mathrm{I}_{1}=19.1 \mathrm{~A} / \mathrm{A}$

Chapter 55

Analog Electronics_Univ Question Paper with Solution of Even09'

Question Paper of University Examination_EC1305_Spring09_Analog Electronics
A. What are the ideal characteristics of a voltage amplifier ? Explain it with respect to the value of source and load resistances.
B. The two npn transistors are connected as in Figure 1.b. having collector currents 1 mA and 10 mA with corresponding base-to-emitter voltages of 0.63 V and 0.7 V . What would be the total current if the base-to-emitter voltage becomes 0.65 V ?

Solution of Question 1.A.

Figure of Question 1.a.

Figure 55.1

Voltage Gain $=$ Vout $/$ Vin $=A v$
irrespective of Rs (source resistance) and R_{L} (load resistance).

[^54]The output terminal voltage is equal to open circuit voltage at the output irrespective of Load Resistance. Hence it acts as a voltage controlled voltage source where output is a constant voltage source and is suitable for driving variable loads.

All this is true only when input resistance (Rin) is large and output resistance is small (Rout).
Solution of Question 1.b.
Individually Q1 gives $\mathrm{Ic} 1=1 \mathrm{~mA}$ at $\mathrm{Vbe} 1=0.63 \mathrm{~V}$;
Q2 gives Ic $2=10 \mathrm{~mA}$ at Veb2 $=0.7 \mathrm{~V}$
$\mathrm{Ie} 1=\mathrm{Ie} 01 \operatorname{Exp}(\mathrm{Vbe} 1 / 25 \mathrm{mV})$. Therefore $\mathrm{Ie} 1=1 \mathrm{~mA}=\mathrm{Ie} 01 \operatorname{Exp}(630 \mathrm{mV} / 25 \mathrm{mV}) .1$
$\mathrm{Ie} 2=\mathrm{Ie} 02 \operatorname{Exp}(\mathrm{Vbe} 2 / 25 \mathrm{mV})$. Therefore $\mathrm{Ie} 1=10 \mathrm{~mA}=\mathrm{Ie} 01 \operatorname{Exp}(700 \mathrm{mV} / 25 \mathrm{mV}) .2$

Figure 1.(b).

Figure 55.2

We have to determine the total Ie when $\mathrm{Vbe}^{*}=0.65 \mathrm{~V}$;
Solving equations 1 and 2 we get: $\mathrm{Ie} 01=11.4 \mathrm{pA}$ and Ie02 $=6.9 \mathrm{pA}$.
When they are connected in parallel as shown both have the same $\mathrm{Vbe}^{*}=650 \mathrm{mV}$;
Therefore the total current $\mathrm{I} e=\mathrm{Ie} 1+\mathrm{Ie} 2$
Where Ie1 $=11.4 \mathrm{pAExp}\left(\right.$ Vbe $\left.^{*} / 25\right)$ and Ie2 $=6.9 \mathrm{pAExp}\left(\right.$ Vbe $\left.^{*} / 25\right)$
Therefore $\mathrm{Ie}=11.4 \mathrm{pAExp}(650 / 25)+6.9 \mathrm{pAExp}(650 / 25)=2.2+1.35=3.55 \mathrm{~mA}$
Hence $\mathbf{I e}=\mathbf{3 . 5 5 m A}$.
a. BJT amplifier in Figure 2(a) is biased with a constant current source $I=1 \mathrm{~mA}$ and BJT has a very high β f0 = very high. Obtain Voltage Gain of the amplifier. The current source may be taken as open circuit in the equivalent circuit.
b. For the circuit shown in Figure $2(\mathrm{~b})$, obtain the collector current of Transistor T 4 when Vo $=0.2 \mathrm{~V}$.

Assume $\beta F=100$ and $\beta I=0.01$ and $V B E=0.7 \mathrm{~V}$.

Solution of Question 2.a.

Figure 2 (a).

Figure 55.3

This is a CB amplifier. We re-orient the circuit as follows.

Figure 2. a reoriented.

Figure 55.4

Now we draw the incremental model of the above circuit. While drawing the incremental model, DC Voltage Source will appear as short circuit and DC Current Source will appear as open circuit.

Figure 2a-3. The incremental circuit of the CB Amplifier.

Figure 2a-4. The incremental circuit drawn as two non-interacting loops: input loop and output loop. Since we have neglected base spreading resistance rx therefore there is no reverse interaction.

Figure 55.5

Since bias current is 1 mA therefore $\mathrm{r}_{\mathrm{e}}($ emitter Incremental resistance) $=25 \Omega$
Since β is very high therefore $\alpha=1$.
Hence

$$
\frac{v_{\text {out }}}{v_{s}}=\frac{R_{c}}{r_{e}}=\frac{2000}{25}
$$

Figure 55.6
$=80$. [Non-inverting Amplifier]
Solution of question 2.b.
The circuit is a TTL NAND gate. The question states that Vo is 0.2 V . This assumes that INPUT is HIGH and OUTPUT is LOW as should be the case in a TTL NAND gate.

Vo $=0.2 \mathrm{~V}$ implies that T 3 is in saturation.
If Vin $=5 \mathrm{~V}$ then T 1 is in inverse active mode meaning by Veb1 is reverse biased and Vbc1 is forward biased. This drives T2 to be ON.

Flow of Ic2 causes T4 to be OFF and T3 to be saturated. Therefore Vo $=0.2 \mathrm{~V}$ and Ic4 $=0$.
Therefore collector current of T4 is zero.

Figue 2(b). A TTL NAND gate with input HGGH.

Figure 55.7
(a) Obtain the relation between Io and Iref of Figure 3(a)

Solution of question $3(\mathrm{a})$.

Figure 3 (a). Current Mirror

Figure 55.8

This is a current mirror circuit where $\mathrm{Ib} 1=\mathrm{Ib} 2=\mathrm{Ib}$
Therefore $\mathrm{Ic} 1=\beta_{\mathrm{F} 1} \mathrm{Ib} 1$ and $\mathrm{Ic} 2=\beta_{\mathrm{F} 2} \mathrm{Ib} 2$
Since they are matched transistors therefore $\beta_{\mathrm{F} 1}=\beta_{\mathrm{F} 2}$
Hence Ic1 = Ic2 = Io;
But Iref $=\mathrm{Ic} 1+2 \mathrm{Ib} \approx \mathrm{I}$ since $\beta_{\mathrm{F} 1}=\beta_{\mathrm{F} 2}$ is very high hence 2 Ib is negligible compared to Ic 1.
Therefore the answer is Iref $\approx \mathbf{I o}$
(b) Calculate the value of output current Io for Vin $=5 \mathrm{~V}$ in the circuit diagram of Figure3(b).Obtain the maximum value of $R L$ that can be used in the circuit for Vce2(sat) $=0.3 \mathrm{~V}$.

Figure 3(b).

Figure 55.9

Solution of question $3(\mathrm{~b})$.
Op Amps always follow two summing point restraints:
Summing point Restraint 1 : Inverting I/P Voltage $=$ Non-inverting I/P;
Summing point Restraint 2 : $\mathrm{Ib} 1=\mathrm{Ib} 2=0$.
In Op Amp 1 since Vin $=5 \mathrm{~V}$ therefore inverting $\mathrm{I} / \mathrm{P}=5 \mathrm{~V}$.
Hence current through Re $1=1 \mathrm{k}$ is 5 mA .
Therefore $\mathrm{Ic} 1=5 \mathrm{~mA}$. This gives $\mathrm{Vc} 1=15-\mathrm{Ic} 1.1 .8 \mathrm{k}=6 \mathrm{~V}$;
Therefore Voltage at INV I/P of Op Amp 2 is $=6 \mathrm{~V}$.
Therefore $\mathrm{Ve} 2=6 \mathrm{~V}$ hence $\mathrm{Ie} 1=(15-6) \mathrm{V} / 1 \mathrm{k}=9 \mathrm{~mA}$
Therefore $\mathrm{Ic} 2=9 \mathrm{~mA}=$ Io
Therefore $\mathbf{I o}=\mathbf{9 m A}$
If T 2 is to go into saturation Then Vce2(sat) $=0.3 \mathrm{~V}$
Therefore voltage across R_{L} is $=\mathrm{IoR}_{\mathrm{L}}=5.7 \mathrm{~V}$ since $15 \mathrm{~V}=9 \mathrm{~V}+0.3+5.7 \mathrm{~V}$;
$\mathrm{R}_{\mathrm{L}}=5.7 / \mathrm{Io}=5.7 / 9 \mathrm{~mA}=630 \Omega$.
R L should be less than 630Ω to prevent $T 2$ from being driven into saturation.
(a) Draw a Hybrid- π mpdel.

The answer is given in Lecture No. 4
(b) The circuit shown in Figure 4(b) is a power amplifier which drives 8Ω speaker. Obtain the value of Ic2 and Vce2.

Solution of question $4(\mathrm{~b})$:

Figure 55.10

As seen from the figure, $\mathrm{Ve} 1=0.7 \mathrm{~V}$ since Vb 1 is ground.
But $\mathrm{Ve} 1=\mathrm{Vb} 2=0.7 \mathrm{~V}$ therefore $\mathrm{Ve} 2=0 \mathrm{~V}$.
Therefore the drop across Re1 is 15 V
Therefore $\mathrm{Ie} 2=15 / 8=1.9 \mathrm{~A}=\mathrm{Ic} 2$ and as seen from the figure Vce $2=15 \mathrm{~V}$
Therefore $\mathbf{I c} 2=1.9 \mathrm{~A} \& \mathbf{V c e} 2=15 \mathrm{~V}$
(a) Derive expression for the voltage gain and 3dB frequency of the amplifier shown in Figure 5(a).

Neglect the base spreading resistance $r \times$. Obtain total input capacitance.
Solution of question 5 (a).

Figure 5(a).

Figure 55.11

The midband gain Avo $=-g_{m} R_{L}$
Therefore total input capacitance is
Miller Capacitance $\mathbf{C} \mathbf{M}=\mathbf{C} \pi+\mathbf{C} \mu(1+\mathbf{g ~ m} \mathbf{R L})$.
Now we draw the incremental circuit of Figure 5(a)

Figure 5a-1. Incremental circuit of Figure5(a).

Figure 55.12

We apply open circuit time constant method to determine upper -3dB frequency:

$$
\frac{1}{\omega_{h}}=\tau 10+\tau 20
$$

Figure 55.13

Where $\tau 10=\mathrm{C}_{\mathrm{M}} \times \mathrm{r}_{\pi}$ and $\tau 20=\mathrm{C}_{\mathrm{L}} \times\left(\mathrm{R}_{\mathrm{L}}| | \mathrm{ro}\right)$
Therefore

$$
\omega_{h}=\frac{1}{\tau 10+\tau 20}
$$

Figure 55.14

5 (b) The lower and upper cut-off frequencies of 1st stage of a two stage amplifier are 100 Hz and 140 kHz and those of the second stage are 200 Hz and 100 kHz . If the two stages are cascaded what is the overall bandwidth?

Solution of question 5 (b) :
We have to use the following formulae

$$
\frac{1}{\omega_{\text {hoverall }}}=\sqrt{\frac{1}{\omega_{h 1}^{2}}+\frac{1}{\omega_{h 2}^{2}}}
$$

Figure 55.15

$$
\omega_{\text {loverall }}=\sqrt{\omega_{l 1}^{2}+\omega_{l 2}^{2}}
$$

Figure 55.16

Using these two formulae we get:
$\left(f_{1}\right)$ overall $=223.6 \mathrm{~Hz}$
$\left(f_{h}\right)$ overall $=81.372 \mathrm{kHz}$.
6 (a) Compare and contrast the dynamic behavior of the two circuits shown in Figure 6 (a)

Figure 6(a).

Figure 55.17

Both are NAND gates taught in VLSI.
The second gate is much faster as T 4 acts as a current source which helps rapidly charge C_{L} when I / P is Low and O / P is High.

6 (b) Each stage of a three stage amplifier without feedback has identical poles and its open loop transfer function is expressed as:

$$
\frac{A_{0}}{\left(1+\frac{j \omega}{\omega h}\right)}
$$

Figure 55.18

Determine its maximum value of feedback factor f max for which the amplitude remains stable. Also determine the corresponding frequency.

The overall gain of three stage amplifier is :

$$
\frac{A_{0}^{3}}{\left(1+\frac{j \omega}{\omega h}\right)^{3}}
$$

Figure 55.19
=A open
A closeed =

$$
\frac{A_{\text {open }}}{1+f A_{\text {open }}}
$$

Figure 55.20

Where $\mathrm{f}=$ feedback factor.
For stability, loop gain $=-$ f A open $<\mathbf{1} / \mathbf{0}^{\circ}$ At high frequencies : Loop Gain $=$

$$
\frac{-f \times A_{0}^{3}}{\left(\frac{j \omega}{\omega h}\right)^{3}}
$$

Figure 55.21

$$
\frac{-f \times A_{0}^{3}}{-j\left(\frac{\omega}{\omega h}\right)^{3}}
$$

Figure 55.22
$=$

$$
\frac{f \times A_{0}^{3}}{j\left(\frac{\omega}{\omega h}\right)^{3}}
$$

Figure 55.23
$<1 / 0^{\circ}$

Therefore $\mathrm{f}<\left(1 / 0^{\circ}\right) \times \mathbf{j}$

$$
\left(\frac{\omega}{\omega h}\right)^{3}
$$

Figure 55.24
\times

$$
\frac{1}{A_{0}^{3}}
$$

Figure 55.25

Therefore $\mathbf{f}<$

$$
\left(\frac{\omega}{\omega h}\right)^{3}
$$

Figure 55.26

$$
\frac{1}{A_{0}^{3}}
$$

Figure 55.27

Feedback factor will depend upon the frequency ω we are using.
Suppose we are using ω^{*} frequency then
fmax $=$

$$
\left(\frac{\omega *}{\omega h}\right)^{3}
$$

Figure 55.28
\times

$$
\frac{1}{A_{0}^{3}}
$$

Figure 55.29

Hence

$$
\sqrt[3]{f_{\max }}
$$

Figure 55.30

$$
\omega_{\boldsymbol{h}} \times \boldsymbol{A}_{\mathbf{0}}=\omega *
$$

Figure 55.31

7 (a) In the following variant of Wien-Bridge Oscillator Fig 7(a) determine the gain and frequency for sustained oscillation?
(b) A tank circuit is connected to non-inverting terminal of the Op Amp shown in Fig 7(b) having a non-inverting gain of 12. Determine the resonant frequency and Band width of the amplifier. If the input is a current source IS , obtain the transfer function between the output voltage and input current source.

Solution of question 7 (a). This is a variant of Wien Bridge Oscillator hence we will adopt the same procedure for determining the gain of the basic amplifier for sustained oscillation and the frequency of sustained oscillation.

Figure 7 (a). A variant of Wien Bridge Oscillator.

Figure 55.32

The Loop Gain has to be determined and set to $1 / 0^{\circ}$,. This is the Barkhausen Criteria. The frequency at which this criteria is satisfied is the frequency of sinusoidal oscillation. If the loop gain is less than $1 / 0^{\circ}$ we will not get any oscillation. If loop gain is greater than $1 / 0^{\circ}$ then we will get clipped sinusoidal. But to achieve self starting condition we have to keep loop gain slightly greater than $1 / 0^{\circ}$ and use amplitude limiting diodes to prevent clipping.

In the Figure above:

$$
i_{1}=\frac{v_{0}(j \omega C)(2+j \omega C R)}{[j \omega C R(2+j \omega C R)+(1+j \omega C R)]}
$$

Figure 55.33

$$
i_{2}=\frac{i_{1}}{(2+j \omega C R)}
$$

Figure 55.34

$$
v_{f}=i_{2} \times R
$$

Figure 55.35

Therefore

$$
\frac{v_{f}}{v_{0}}=\frac{j \omega C R}{[(1+j \omega C R)+j \omega C R(2+j \omega C R)]}
$$

Figure 55.36
$=$ feedback factor Let

$$
\omega_{0}=\frac{1}{C R}
$$

Figure 55.37

Therefore:

$$
\frac{v_{f}}{v_{0}}=\frac{j \frac{\omega}{\omega_{0}}}{\left[\left(1+\boldsymbol{j} \frac{\omega}{\omega_{0}}\right)+\left(\boldsymbol{j} \frac{\omega}{\omega_{0}}\right)\left(2+\boldsymbol{j} \frac{\omega}{\omega_{0}}\right)\right]}
$$

Figure 55.38

In order to get a real feedback factor, the real part in the denominator should be zero. Equating Real part of Denominator $=0$ we get:

$$
\mathbf{1}-\left(\frac{\omega}{\omega_{0}}\right)^{2}=\mathbf{0}
$$

Figure 55.39

Therefore Oscillator Frequency $=$

$$
\omega^{*}=\frac{\omega_{0}}{1}
$$

Figure 55.40

Imaginary Part of the Denominator $=$

$$
\frac{j 3}{1}
$$

Figure 55.41

$$
\boldsymbol{\omega}^{*}=\boldsymbol{\omega}_{\mathbf{0}}:
$$

Figure 55.42

$$
\frac{v_{f}}{v_{0}}=\frac{j \times 1}{j \times 3}=\frac{1}{3}
$$

Figure 55.43
$=\mathbf{f}$
Therefore Gain of the Basic Amplifier =

$$
\frac{3}{1}=\left(\frac{R_{F}}{R_{1}}+1\right)
$$

Figure 55.44

$$
f_{o s c}=\frac{1}{2 \pi C R}
$$

Figure 55.45

Solution of question $7(\mathrm{~b})$:

Figure 7.b. Single tuned amplifier.

Figure 55.46

Gain of the Amplifier $=12=(1+\mathrm{R} 1 / \mathrm{R} 2)$;
$\mathbf{Q}=$

$$
\frac{\omega_{0} \times L}{80 o h m}=\frac{R_{p}}{\omega_{0} \times L}
$$

Figure 55.47
$\mathbf{R} \mathbf{p}=50 \mathrm{k} \Omega$.
A parallel resonance circuit called a tank circuit can be expressed in two ways:

Figure 7(b)-1 Equivalence of a tank circuit with resistance r_{S} in series with the inductor and resistance R_{P} in parallel with inductor.

Figure 55.48

Both are equivalent hence:
$\mathbf{Q}=$

$$
\frac{\omega_{0} \times L}{80 o h m}=\frac{R_{p}}{\omega_{0} \times L}
$$

Figure 55.49

Resonance Frequency $=$

$$
\boldsymbol{\omega}_{0}=
$$

Figure 55.50

$$
\frac{1}{\sqrt{L C}}
$$

Figure 55.51

> ;

Therefore f $0=63.66 \mathrm{kHz}$.
$B W=$ Resonance Frequency $/ \mathrm{Q}=63.66 \mathrm{kHz} / 12.5=5 \mathrm{kHz}$
Q of the tank circuit per se is 25 but it is in parallel with the source resistance of 50 k hence Q deteriorates to 12.5 .

The Transfer Function $=$

$$
\frac{v_{0}}{i_{s}}
$$

Figure 55.52
;
The gain of the non-inverting amplifier $=12=$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}
$$

Figure 55.53

But v in $=$ is Z where Z is the impedance of the tank circuit and at resonance its value is 50k $\| 50 \mathrm{k}=25 \mathrm{k}$.

Therefore

$$
\frac{v_{0}}{i_{s}}=12 \times Z
$$

Figure 55.54

8 (a) The circuit of a power amplifier as shown in Fig 8 (a) amplifies the power of the signal vm(t) to feed to a 5Ω loud speaker. What is the maximum power delivered to the 5Ω loud speaker for the maximum output swing from the Op-Amp subject to battery supply of $\pm 8 \mathrm{~V}$ and ICmax $=2 \mathrm{~A}$ and $\mathrm{PCmax}=1 \mathrm{~W}$. After mounting the transistor on a heat sink it sustains $P C \max =3 W$. The circuit has a current booster as the Op.Amp can supply only $25 m A$ at the most.

Solution of question 8(a).
Op Amp acts as Non Inverting Amplifier with gain $=1+8 / 2=5$
Output Swing of Op Amp peak to peak is $=15 \mathrm{~V}$ from 7.5 V to -7.5 V .
Complementary Symmetry Amplifier has been put as a current booster and it has a voltage gain of UNITY only.

Therefore $\mathrm{v}_{\text {out }}=5 \mathrm{v}_{\text {in }}$
Max Power delivered to the load $=\mathrm{V}_{\text {outrms }}{ }^{2} / 5=(7.5 / \sqrt{ } 2)^{2} / 5=5.625 \mathrm{~W}$;
P max delivered to the speaker $=5.625 \mathrm{~W}$
$\mathrm{I}_{\mathrm{cmax}}=2 \mathrm{~A}$ therefore $\mathrm{V}_{0 \max }=10 \mathrm{~V}$ but our swing is limited to $\pm 7.5 \mathrm{~V}$
Therefore it cannot deliver more than 5.625 W .
At maximum power delivery the dissipation in the amplifier is $=\mathrm{P}_{\text {dissipation }}=5.625 \mathrm{~W}(1-\eta)=1.19 \mathrm{~W}$ since power conversion efficiency $=0.788$.

This is well within the 3 W of heat dissipation which is permitted with the heat sink hence the design is OK.

Chapter 56

AE_EC1405_EVENSEM_2011_MidSemester(

MIDSEMESTER TEST

EC1405_Analog Electronics_IT \& CSE Fourth Semester.
Time: 2 hours Total Marks: 18 points
Question 1 is compulsory and any two of the remaining three questions.
Question 1.

- Give the spectrum slot allotted for AM_Medium Wave-AIR local transmission, for AM_Short Wave_Global Transmission, for Doordarshan Transmission for Channel 2 to 6 and for FM Radio transmission by AIR.
- Describe Amplitude Distortion also known as Harmonic Distortion. Give an example of Amplitude Distortion.
- Describe Frequency Distortion and an application where Frequency Distortion occurs.
- Describe the different schemes of Biasing and which schemes are preferred in actual circuits.
- Draw the Frequency Domain Response and Time Domain response of Emitter Degenerate Amplifier at 100 Hz and at 10 kHz .
- How does a HPF(High Pass Filter) behave at very low frequencies where time period of repetition of input square wave is much larger than the Time Constant of HPF.
- How does a LPF(Low Pass Filter) behave at very high frequencies where time period of repetition of input square wave is much smallerthan the Time Constant of LPF.
- What is the CRO display under Component Testing mode for resistance R which is high, low, open circuit and short circuit.

Question 2.

[^55]

Figure 56.1

- Identify the amplifier.
- If $\mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CEQ}}=5 \mathrm{~V}$ then write down the incremental parameters of the BJT either for its h-model or for its Hybrid-pi Model.
- Draw the DC and AC load line on the I-V family of curves of Q BC548 and mark the Q point.
- Using the load line draw the output curve if the input voltage is
$\mathrm{v}_{\mathrm{S}}=1 \mathrm{VSin}(\omega \mathrm{t})$.
Question 3.
If a Low Pass Filter has $\mathrm{R}=10 \mathrm{k}$ and $\mathrm{C}=1 \mu \mathrm{~F}$ then calculate its cutoff frequency.
a. What is the frequency response BODE PLOT of the magnitude of the transfer function $\mathrm{H}(\mathrm{j} \omega)$ of LPF ?
b. What is the Time Domain Response of LPF for:

1. T of the square wave $\gg \tau$ (time constant) of LPF;
2. T of the square wave $\approx \tau$ (time constant) of LPF;
3. T of the square wave $\ll \tau$ (time constant) of LPF;
(Assume that input square wave is of 10 V amplitude and it is offsetted by 5 V).
Question 4.

Figure 56.2

- Identify the amplifier.
- If $\mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CEQ}}=5 \mathrm{~V}$ then write down the incremental parameters of the BJT either for its h-model or for its Hybrid-pi Model.
- Draw the DC and AC load line on the I-V family of curves of Q BC548 and mark the Q point.
- Using the load line draw the output curve if the input voltage is
$\mathrm{v}_{\mathrm{S}}=5 \mathrm{mVSin}(\omega \mathrm{t})$.

Chapter 57

AE_EC1405_EVENSEM_2011_MidSemester

Solutions of Midesemester Examination_AE_EC1405_EVEN_2011

1. i.Give the spectrum slot allocated for the following applications:

Application	Spectrum Slot
Medium Wave AIR local broadcast_AM	540 kHz to 1.7 Mhz
Short Wave Global Broadcast of different countries_AM	5.95 MHz to 26.1 MHz
Doordarshan TV Broadcast_ Channel 2 to 6	54 MHz to 88 MHz
AIR_FM broadcast	88 MHz to 108 MHz

Table 57.1
ii. Nonlinear characteristics of the active device causes Amplitude Distortion or Harmonic Distortion. In RC-coupled Amplifier when input voltage exceeds 10 mV peak to peak the small signal approximation is vilated and Amplitude distortion occurs.
iii. When the full spectrum of the given intelligent signal say speech signal is not transmitted then Frequency Distortion occurs as Sqaure Wave passing through RC Low Pass Filter. If the Time Period(T) of the square wave is comparable to the time constant of RC Filter (τ) then rounding off of the edges occur. When $\mathrm{T} \ll \tau$, then the square wave is completely obliterated. Only the mean value or the DC part remains with slight ripple.
iv. Different Schemes of Biasing:

Biasing Schemes	Applications
Two Battery Biaing	Expensive, cumbersome and preferred only for de- vice characterrization
continued on next page	

[^56]| Fixed Biasing | No feedback hence drift prone. Q-point drifts with
 temperature, aging and replacement. |
| :--- | :--- |
| Potential Divider Biasing | No feedback hence drift prone. Q-point drifts with
 temperature, aging and replacement. |
| Self Biasing | Through R R_{E}, negative current-series feedback is
 provided hence no drift of Q-point with temperatue,
 aging and replacement. Finds wide application in
 Discrete Amplifiers. |
| Collector-Base feedback bising | Through R ${ }_{\mathrm{B}}$, negative voltage shunt feedback is
 provided hence no drift of Q-point with tempera-
 ture, aging and replacement. Finds wide applica-
 tion in Discrete Amplifiers. |
| Widlar Biasing | This also has negative voltage shunt feedback hence
 no drift of Q-point with temperature, aging and
 replacement. Finds wide application in Integrated
 Circuit Amplifiers. |

Table 57.2
v. Frequency Domain Response of the magnitude of the Voltage Gain of Emitter Degenerate Amplifier:

Frequency Domain Response of the magnitude of Voltage Gain wh = upper cut off frequency, wl= lower cut off frequency.

Figure 57.1

The square wave response of the Emiter Degenerate Amplifier is the Time Domain Response. At 10kHz, rounding off of the edges of the square wave is taking place. At 100 Hz , the top and bottom of the square wave are sagging or tilting.
vi. High Pass Filter behaves as differentiator at very low frequencies. It just produces positive spikes at positive edges and negative spikes at negative edges.
vii. Low Pass Filter behaves as integrator at very high frequencies. It gives the mean value of the input square wave .
viii. CRO display under Component Testing Mode for resistances:

Resistance value	Display
Very high resistance	Inclined line with very low angle of inclination
Low resistance	Inclined line with high angle of inclination
Open Circuit	Horizontal line
Short Circuit	Vertical line.

Table 57.3

1. Identify the Amplifier ? Emitter degenerate Amplifier.

Q point $\mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}$
Parameters of h-model:

h- parameter	value
hie	$2.6 \mathrm{k}+100 \mathrm{ohm}$
hre	10^{-4}
hfe	100
hoe	$1 / 40 \mathrm{k}$

Table 57.4
Hybrid- π Parameters:

Hybrid- π Parameters	value
rx	100Ω
$\mathrm{r} \pi$	$2.6 \mathrm{k} \Omega$
$\mathrm{r} \mu$	4 M
ro	40 k
$\beta \mathrm{fo}$	100
$\mathrm{C} \pi$	100 pF
$\mathrm{C} \mu$	5 pF

Table 57.5

Figure 57.2

1. (a) Low Pass Filter $\mathrm{R}=10 \mathrm{k}$ and $\mathrm{C}=1 \mu \mathrm{~F}$

Therefore Time Constant $=\tau=\mathrm{RC}=10 \mathrm{msec}$;
Upper Cut off Circular Frequency $=\omega_{\mathrm{h}}=(1 / 10) \mathrm{kradians} / \mathrm{sec}$;
Upper Cut off Frequency $=\mathrm{f}_{\mathrm{h}}=15.9 \mathrm{~Hz}$.
Bode Plot:

Bode Plot of the magnitude of the Transfer Function H(jw) of LPF

Figure 57.3
b. Time Domain Response of LPF:

Time Domain Response of LPF.

Figure 57.4

1. (a) This is a RC-coupled Amplifier.
(b) Q point $\mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}$

Parameters of h-model:

h- parameter	value
hie	$2.6 \mathrm{k}+100 \mathrm{ohm}$
hre	10^{-4}
hfe	100
hoe	$1 / 40 \mathrm{k}$

Table 57.6
Hybrid- π Parameters:

Hybrid- π Parameters	value
rx	100Ω
$\mathrm{r} \pi$	$2.6 \mathrm{k} \Omega$
$\mathrm{r} \mu$	4 M
ro	40 k
$\beta \mathrm{fo}$	100
$\mathrm{C} \pi$	100 pF
$\mathrm{C} \mu$	5 pF

Table 57.7

Amplifying Action of RC-coupled Amplifier.

Figure 57.5

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords do not necessarily appear in the text of the page. They are merely associated with that section. Ex. apples, § 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A Audio \& Radio Frequency Oscillators,Wien Bridge Oscillator, RC-Phase Shift Oscillator,Colpitts, Hartley, LC Tuned, Crystal Oscillators., § 53(491)

B Band-width shrinkage factor, interacting stages, buffer, cascading., §50(469) Barkhausen Criteria, Positive Feedback, loop-gain, § 38(357)
Bode Plot, actual response and asymptotic response., § 18(145)
Bode Plot, Tilt, rounded edges, § 57(553)
Bootstrapping,Miller
Transformation,Darlington Pair, § 28(239)
C Cascode,Unilaterality,Miller Multiplcation, Parasitic Oscillation., § 29(249)
CC BJT, Cascode Amplifier,Composite transistor., § 48(449)
CE,CB,Open Circuit Time Constant Method., § 47(439)
Class A CE with direct coupled resistive load, transformer coupled load, static load line, dynamic load line., § 37(353)
Class A transformer coupled, Class B complementary symmetry amplifier, Class B push-pull amplifier., §52(487)
Colpitts, Hartley, Tuned, Crystal, § 40(387)
Comparative study, conservative value, single pole approximation., § 25(201)

D DC model Eber Moll Model, low frequency model, high frequency model, T-Model, § 12(87)
DC model, small signal, large signal, incremental model, amplitude distortion, harmonic distortion., § 10(71)
Diffusion Capacitance, Junction Capacitance, transit time, hyper-abrupt junction., § 11(79) Dynamic characteristic, dynamic range, channel length modulation, § 33(289)

E Early Voltage, uni-laterality, output impedance, input impedance, cutoff frequency, corner frequency, half power frequency, -3 dB
frequency, § 13(103)
Emitter Follower, Power Conversion
Efficiency, Class A mode of operation., § 35(325)
Enhancement, Depletion,Threshold,Pinch-off,Normally-off,Normally-on, § 49(461)

F Figure 4, § 22(173)
filter, -3 dB frequency, risetime, sag, § 17(139)
Frequency Distortion, Amplitude
Distortion, Frequency Domain Response, Time Domain Response, § 56(549)
Frequency Domain, Time Domain., § 14(119) Frontend Amplifier, pre-amplifier,lossy cable, attenuator, noise power spectral density, avalable noise power, rms noise voltage., § 51(481)

G Generalized self-biased network, T-model, alpha cut-off frequency., § 24(191)

H Hybrid-pi parameters, exponential device,quadratic device, § 46(433)

I Incremental model, current controlled attenuator, data sheets, $\S 44(421)$
Incremental Model,TTL NAND gate, Current Mirror, Op Amp., § 55(527)

K Key words: Passive Devices, Active Devices, Discrete Circuits, Integrated Circuits; § 43(417)
Key words: Telegraphy, Vacuum Tube, Transistors, Integrated Circuit Technology, Computer;, § 2(3)
Key words; Triode, Pentode;, § 6(41)
Key words;BJT; § § 8(53)
Key words;CE,CC \& CB BJT;, § 7(47)
Keyword: Monolithic Planar Technology,

Wafer, epitaxial layer, fabrication, photolithography;, § 3(19)
Keywords: JFET, NMOS(enhancement)
Normally-Off NMOS,
NMOS(depletion)-Normally On
NMOS;CMOS-complementary MOS; , § 9(63)
Keywords: Vacuum Tube Era, Solid State
Era;, § 42(411)
L Low Frequency Voltage Gain Expression,, § 20(161)
Low Pass Filter,Upper -3dB frequency, 10% sag., § 16(131)
lower -3dB frequency,pole and zero,steady state sinusoidal frequency response, § 19(153)

M Multisim software, -3 dB bandwidth, logrithmic plot., § 26(219)
Multistage Amplifiers, Cascaded Amplifiers, Band-width shrinkage., §30(261)

O Open Circuit Time Constant, CB, CC, § 23(175)

P Parasitic Capacitances, § 45(431)
Pinch off, Threshold, transconductance parameters., § 31(269)
Pinchoff Voltage, parabola,IC version, § 32(285)

Pulse Train, Offset Voltage,Duty Cycle,Main Lobe, Side Lobe,Crossover Frequencies,Sinc Envelope., § 15(125)

R RadioFrequency, tank circuit, pole-zero pattern, § 39(371)

S Shot noise, partition noise, flicker noise,Johnson Noise, § 34(303)
Skirt Selectivity,Quality Factor,Single tuned, double tuned, synchronous tuned and stagger tuned., § 41(399)
Small Signal Model, Incremental Model, Partial derivative, hybrid model, harmonic or amplitude distortion, § 5(33)
Static \& Dynamic Load, reflected load on primary side, cross-over distortion., § 36(335) Syllabus, § 1(1)

T T-Model, active base region, near Uni-lateral device, § 27(229)
Tapped Transformer, auto-transformer, Q factor, loading., §54(517)
Thevenin Theorem, Norton Theorem, Ideal
Voltage Source,Ideal Current Source, § 4(21)
Transit time, diffusion capacitance,, § 46(433)
U Upper cut off Frequency, parasistic
capacitances,Miller Capacitance, § 21(163)

Attributions

Collection: Lectures on Analog Electronics
Edited by: Bijay_Kumar Sharma
URL: http://cnx.org/content/col11167/1.9/
License: http://creativecommons.org/licenses/by/3.0/
Module: "The New Syllabus of EC1X05_Lectures on AnalogElectronics"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m34862/1.1/
Page: 1
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "Solid State Physics \& Devices _The harbinger of third wave of civilization_PREFACE_Unfolding of Third Information Revolution."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m29929/1.4/
Pages: 3-17
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "The Journey of I.C.Technology from micro (1959) to nano (2009) era_ABSTRACT."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m29930/1.1/
Pages: 19-20
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "Analog Electronics_Lecture 1_Independent and Controlled Sources"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m33375/1.1/
Pages: 21-31
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "Analog Electronics_Lecture 1_Supplement_Incremental Model of Controlled Sources"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m33376/1.1/
Pages: 33-39
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "Analog Electronics Lecture 2_PartA_I-V characteristics of Vacuum Tubes"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m29634/1.1/
Pages: 41-45
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/

Module: "Analog Electronics Lecture 2_PartB _BJT configurations \& modes"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m29635/1.1/
Pages: 47-51
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "Analog Electronics Lecture 2_PartC_I-V output characteristics of BJT"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m29636/1.2/
Pages: 53-62
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AnalogElectronics_Lecture2_Supplementary."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m29589/1.1/
Pages: 63-70
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AnalogElectronics_Lecture3_Incremental Model of Diode."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m30500/1.1/
Pages: 71-77
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AnalogElectronics_Lecture3supp._High Frequency Model of PN Junction Diode."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m30790/1.1/
Pages: 79-85
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AnalogElectronics_Lecture4_PartA_dc,low\&high frequency model of CB BJT."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m30983/1.1/
Pages: 87-102
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AnalogElectronics_Lecture4_PartB_low and high frequency model of CE BJT."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31035/1.1/
Pages: 103-117
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture4_PartD1_Time_Domain_Response"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31472/1.1/
Pages: 119-123
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/

Module: "AE_Lecture4_PartD2_Line Spectrum of a Pulse Train."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31495/1.1/
Pages: 125-129
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture4_PartD3_Time Domain Response of Low Pass Filter."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31504/1.1/
Pages: 131-138
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture4_PartD4_Time Domain Response of High Pass Filter."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31505/1.1/
Pages: 139-143
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AnalogElectronics_Lecture4_Supplement_BODE_PLOT"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31062/1.1/
Pages: 145-152
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture5_PartA_Low FrequencyAnalysisofCE_Amplifier"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31527/1.1/
Pages: 153-159
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture5_PartA_The Low frequency Voltage Gain Expression by detailed circuit analysis."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31582/1.1/
Page: 161
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture5_PartB_High Frequency Analysis of CE Amplifier"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31564/1.1/
Pages: 163-171
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture5_PartC_Figure4 of High Frequency Analysis of CB \& CC Amplifier"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31580/1.2/
Page: 173
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/

Module: "AE_Lecture5_PartC_High Frequency Analysis of CB \& CC Amplifier"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31574/1.1/
Pages: 175-189
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture 5_Part C_continued_High frequency analysis of CB."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m34116/1.1/
Pages: 191-199
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture 5_Part C_continued_high frequency analysis of CE \& CC"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m34081/1.1/
Pages: 201-217
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture 5_Part C_continued_Simulated Frequency Domain Study of CB,CE,Emitter Degenerate Amplifier and C \bar{C} Amplifier."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m34083/1.1/
Pages: 219-227
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture 5_Part C_continued_High frequency analysis of CB."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m33873/1.2/
Pages: 229-237
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture5_PartD_Bootstrapping and Darlington Pair."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31651/1.1/
Pages: 239-247
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture6_Analysis of CASCODE AMPLIFIER."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31596/1.1/
Pages: 249-259
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/

Module: "AE_Lecture7_Multistage Amplifier"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31668/1.1/
Pages: 261-268
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture8_MOSFET \& JFET_PartA"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31717/1.3/
Pages: 269-283
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE Lecture 8_Part A_MOSFET \& JFET continued"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m35758/1.1/
Pages: 285-288
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture8_PartB_Incremental Model of FET"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31726/1.1/
Pages: 289-302
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture 9_revised_Noise(Untitled)"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m35842/1.1/
Pages: 303-323
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lectur10_PowerAmplifiers_Part1_Power Analysis of Emitter Follower."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32256/1.1/
Pages: 325-333
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lectur10_PowerAmplifiers_Part2_Power Analysis of ClassB Amplifiers."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32262/1.1/
Pages: 335-352
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/

Module: "AE_Lecture10_Supplementary"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32376/1.1/
Pages: 353-356
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture11_Part1_Audio Oscillators"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32428/1.2/
Pages: 357-370
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture11_Part2_Radio-Frequency Oscillators"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32429/1.1/
Pages: 371-385
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture11_Part3_Radio-Frequency Oscillators Continued"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32430/1.2/
Pages: 387-398
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Lecture 12_Tuned Amplifiers"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32492/1.1/
Pages: 399-409
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "TUTORIAL NO. 1 of Lecture 1 of Analog Electronics."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m29639/1.1/
Pages: 411-415
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "Tutorial 2 on Active Devices."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m29772/1.1/
Pages: 417-419
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "Tutorial 3 of AnalogElectronicsLecture3."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m30821/1.1/
Pages: 421-429
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/

Module: "Tutorial 3_supplementary_AE Lecture No.3."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m30892/1.1/
Pages: 431-432
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Tutorial 4_BJT incremental model."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31739/1.1/
Pages: 433-438
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Tutorial 5_Mid\&High frequency Analysis of CE \& CB BJT Amplifier"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31743/1.1/
Pages: 439-447
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Tutorial6_Mid \& High Frequency Analysis of CC \& Cascode."
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31744/1.1/
Pages: 449-459
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Tutorial8_MOSFET\&JFET"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31760/1.2/
Pages: 461-468
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Tutorial 9_Multistage Amplifiers"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m31762/1.1/
Pages: 469-480
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Tutorial 10_Noise"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32192/1.1/
Pages: 481-486
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Tutorial 11_Power Amplifiers"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32317/1.1/
Pages: 487-490
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/

Module: "AE_Tutorial 12_Oscillators"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32489/1.1/
Pages: 491-515
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_Tutorial 13_Tuned Amplifiers"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32495/1.2/
Pages: 517-525
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "Analog Electronics_Univ Question Paper with Solution of Even09"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m32963/1.2/
Pages: 527-548
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_EC1405_EVENSEM_2011_MidSemesterQuestions"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m37338/1.1/
Pages: 549-551
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/
Module: "AE_EC1405_EVENSEM_2011_MidSemesterSolutions"
By: Bijay_Kumar Sharma
URL: http://cnx.org/content/m37339/1.1/
Pages: 553-561
Copyright: Bijay_Kumar Sharma
License: http://creativecommons.org/licenses/by/3.0/

Lectures on Analog Electronics

This contains the lectures delivered to the students in the course EC1X05_Analog Electronics.

Abstract

About Connexions Since 1999, Connexions has been pioneering a global system where anyone can create course materials and make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and learning environment open to anyone interested in education, including students, teachers, professors and lifelong learners. We connect ideas and facilitate educational communities. Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many languages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part of an exciting new information distribution system that allows for Print on Demand Books. Connexions has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

[^0]: ${ }^{1}$ This content is available online at http://cnx.org/content/m34862/1.1/.

[^1]: ${ }^{1}$ This content is available online at http://cnx.org/content/m29929/1.4/.

[^2]: ${ }^{1}$ This content is available online at http://cnx.org/content/m29930/1.1/.

[^3]: ${ }^{1}$ This content is available online at http://cnx.org/content/m33375/1.1/.

[^4]: ${ }^{1}$ This content is available online at http://cnx.org/content/m33376/1.1/.

[^5]: ;
 Similarly

[^6]: ${ }^{1}$ This content is available online at http://cnx.org/content/m29634/1.1/.

[^7]: ${ }^{1}$ This content is available online at http://cnx.org/content/m29635/1.1/.

[^8]: ${ }^{1}$ This content is available online at http://cnx.org/content/m29589/1.1/.

[^9]: ${ }^{1}$ This content is available online at http://cnx.org/content/m30500/1.1/.

[^10]: ${ }^{1}$ This content is available online at http://cnx.org/content/m30790/1.1/.

[^11]: ${ }^{1}$ This content is available online at http://cnx.org/content/m30983/1.1/.

[^12]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31472/1.1/.

[^13]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31495/1.1/.

[^14]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31505/1.1/.

[^15]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31062/1.1/.

[^16]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31527/1.1/.

[^17]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31582/1.1/.

[^18]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31564/1.1/.

[^19]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31580/1.2/.

[^20]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31574/1.1/.

[^21]: ${ }^{1}$ This content is available online at http://cnx.org/content/m34116/1.1/.

[^22]: ${ }^{1}$ This content is available online at http://cnx.org/content/m34081/1.1/.

[^23]: ;
 And in the second path of base spreading resistance $\left(\mathrm{r}_{\mathrm{x}}\right)$:
 We have $\mathrm{v}_{\mathrm{o}}=\mathrm{i}_{\mathrm{x}}\left(\mathrm{r}_{\mathrm{x}}+\mathrm{R}_{\mathrm{S}}\left\|\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{E}}\right\| \mathrm{R}_{\mathrm{L}}\right)-\beta_{\mathrm{fo}} \mathrm{i}_{\pi} \mathrm{R}_{\mathrm{E}}$
 $=\mathrm{i}_{\mathrm{x}}\left(\mathrm{r}_{\mathrm{x}}+\mathrm{R}_{\mathrm{S}}\left\|\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{E}}\right\| \mathrm{R}_{\mathrm{L}}\right)-\beta_{\mathrm{fo}} \times \mathrm{R}_{\mathrm{E}} \times$

[^24]: ${ }^{1}$ This content is available online at http://cnx.org/content/m34083/1.1/.

[^25]: Figure 2b. Phase of the Gain of Emitter Degenerate Amplifier vs Frequency Response Cuve. y-axis:Phase of Gain in degrees; x-axis: logrithmic plot of frequency in Hz ;

[^26]: ${ }^{1}$ This content is available online at http://cnx.org/content/m33873/1.2/.

[^27]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31651/1.1/.

[^28]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31596/1.1/.

[^29]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31668/1.1/.

[^30]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31717/1.3/.

[^31]: ${ }^{1}$ This content is available online at http://cnx.org/content/m35758/1.1/.

[^32]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31726/1.1/.

[^33]: ------ ${ }^{(1)}$

[^34]: ${ }^{1}$ This content is available online at http://cnx.org/content/m35842/1.1/.

[^35]: Maximum power transferred to $\mathrm{R}_{\mathrm{L}}=$ Available noise power from the resistance to the load

[^36]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32256/1.1/.

[^37]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32262/1.1/.

[^38]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32376/1.1/.

[^39]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32428/1.2/.

[^40]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32430/1.2/.

[^41]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32492/1.1/.

[^42]: ${ }^{1}$ This content is available online at http://cnx.org/content/m29639/1.1/.

[^43]: ${ }^{1}$ This content is available online at http://cnx.org/content/m29772/1.1/.

[^44]: ${ }^{1}$ This content is available online at http://cnx.org/content/m30821/1.1/.

[^45]: ${ }^{1}$ This content is available online at http://cnx.org/content/m30892/1.1/.

[^46]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31739/1.1/.

[^47]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31743/1.1/.

[^48]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31744/1.1/.

[^49]: ${ }^{1}$ This content is available online at http://cnx.org/content/m31760/1.2/.

[^50]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32192/1.1/.

[^51]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32317/1.1/.

[^52]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32489/1.1/.

[^53]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32495/1.2/.

[^54]: ${ }^{1}$ This content is available online at http://cnx.org/content/m32963/1.2/.

[^55]: ${ }^{1}$ This content is available online at http://cnx.org/content/m37338/1.1/.

[^56]: ${ }^{1}$ This content is available online at http://cnx.org/content/m37339/1.1/.

