
Learning Objects for Java (with Jeliot)

By:
Mordechai (Moti) Ben-Ari

Learning Objects for Java (with Jeliot)

By:
Mordechai (Moti) Ben-Ari

Online:
< http://cnx.org/content/col10915/1.2/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Mordechai (Moti) Ben-Ari. It is licensed

under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: December 28, 2009

PDF generated: February 5, 2011

For copyright and attribution information for the modules contained in this collection, see p. 69.

Table of Contents

1 Learning Objects for Java (Overview) . 1
2 Learning Objects for Control Structures in Java . 3
3 Learning Objects for Methods in Java . 13
4 Learning Objects for Arrays in Java . 25
5 Learning Objects for Constructors in Java . 35
6 Learning Objects for Inheritance in Java . 49
Index . 68
Attributions . 69

iv

Chapter 1

Learning Objects for Java (Overview)1

Overview:
Learning objects (LOs) are small, self-contained, reusable resources for learning. The advantages of LOs

include: �exibility of use (students can choose to work with LOs at their convenience) and adaptability
(students can choose to work only with those LOs that address topics they �nd di�cult).

This collection contains �ve modules, each with about ten LOs for the topic of the module: control
structures, arrays, methods, constructors, inheritance.

The LOs in this collection are designed for use with the Jeliot system for animating introductory programs
in Java.

A learning object consists of text and Java programs. Each LO is independent, so if you know the needed
background material you can go directly to any LO. For each topic, a table is given that lists the LOs, the
associated source �les, and the �prerequisites� for each LO. The prerequisites are the number of the LO
that introduces concepts that are assumed; however, there is no need to actually work through the LOs in
sequence.

The text for each LO starts with a description of the concept being presented and an overview of the
example program. It is followed by a bulleted list for each program that describes what to observe as you
step through the program with Jeliot. The text for the LO ends with a programming exercise.

Installation:
Before you begin, download and install Jeliot from the link given in the sidebar. Download the zip �les

with the source code for each of the LOs. There is a zip �le associated with each module that contains the
source �les for the LOs for its topic; in addition, there is a zip �le learning-objects.zip2 with the source �les
for all the LOs in the collection.

Tips for using Jeliot:

• The LOs have been tested with Jeliot Version 3.7.1; please ensure that you are not using earlier versions.

• Copy the source �le directories to a clean directory so that if you make changes you will not modify
the original �les. Run Jeliot and open the source �le for the LO you want to work with.

• Learn how to use Jeliot before studying the LOs. In particular, learn how to use Step, Pause, Play,
and Rewind to control the animation.

• Select Animation / Run Until... (ctrl-T) and enter a line number to begin the animation at that
line. This is very useful in two situations:

· when you are animating a program several times and wish to skip over the initialization or other
parts of the code;

1This content is available online at <http://cnx.org/content/m31242/1.3/>.
2See the �le at <http://cnx.org/content/m31242/latest/learning-objects.zip>

1

2 CHAPTER 1. LEARNING OBJECTS FOR JAVA (OVERVIEW)

· when you wish to examine the �nal state after the last line of the main method: enter the line
number of the closing brace of the main method.

• Select Options / Show History View to enable storing of each step of the animation; these can be
viewed by selecting the History tab on the right-hand side of the display. Enabling the history may
slow Jeliot down, especially for large programs.

• The programs in the LOs use standard Java with two exceptions that simplify the animations:

· None of the programs use the parameter of the main method. Since Jeliot accepts Java programs
without the formal parameter de�nition String[] args, the parameter has been commented-out
in the programs. You can remove the comments to compile the programs with a Java compiler.
If you wish to run Jeliot with the parameter, you can select Options / Use Null Parameter to

Call Main to skip over the animation of the parameter.
· Two of the LOs on control structures use the input statement: input = Input.nextInt(). To

compile these programs with standard Java, add the following declaration to the main method:

java.util.Scanner~Input~=~new~java.util.Scanner(System.in);

Acknowledgements:
I would like to thank Niko Myller and Andrés Moreno for modifying Jeliot to accomodate the LOs, and

Ronit Ben-Bassat Levy for suggestions for improving the LOs.

Chapter 2

Learning Objects for Control Structures
in Java1

2.1 Learning Objects for Control Statements

Concept Normally, statements in Java are executed sequentially in the order written in the source code.
Control statements are used to modify the order of execution of statements. Most control statements are
conditional; that is, the next statement to be executed depends on the result of evaluating an expression,
usually, an expression that returns a boolean value of true or false.

These source code of these learning objects can be found in control.zip2.

LO Topic Java Files (.java) Prerequisites

"If-statements"
(Section 2.1.1: If-
statements)

If-statements Control01

"Conditional expres-
sions" (Section 2.1.2:
Conditional expres-
sions)

Conditional expressions Control02 1

"While loops" (Sec-
tion 2.1.3: While loops)

While loops Control03

"Do-while loops" (Sec-
tion 2.1.4: Do-while
loops)

Do-while loops Control04

continued on next page

1This content is available online at <http://cnx.org/content/m31246/1.1/>.
2See the �le at <http://cnx.org/content/m31246/latest/control.zip>

3

4
CHAPTER 2. LEARNING OBJECTS FOR CONTROL STRUCTURES IN

JAVA

"Break statements"
(Section 2.1.5: Break
statements)

Break statements Control05 3

"Counting with for
statements" (Sec-
tion 2.1.6: Counting
with for statements)

Counting with for state-
ments

Control06

"General for state-
ments" (Section 2.1.7:
General for statements)

General for statements Control07 6

"Continue statements"
(Section 2.1.8: Continue
statements)

Continue statements Control08 6

"Switch statements"
(Section 2.1.9: Switch
statements)

Switch statements Control09

Table 2.1

2.1.1 If-statements

Concept The execution of an if-statement starts with the evaluation of its boolean-valued expression. If the
result is true, the statement written after the closing parenthesis of the expression is executed; if the result is
false, the statement written after the else is executed. These statements can be single statements or blocks
of statements. In particular, the statements can themselves be if-statements (nested if-statements), in which
case the inner statement is executed the same way.

Program: Control01.java

//~Learning~Object~Control01

//~~~~if~statements

public~class~Control01~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~year~=~2000;

~~~~~~~~int~month~=~6;

~~~~~~~~int~days;

~~~~~~~~if~(month~==~2)

~~~~~~~~~~~~if~(year~%~4~==~0)

~~~~~~~~~~~~~~~~days~=~28;

~~~~~~~~~~~~else

~~~~~~~~~~~~~~~~days~=~29;

~~~~~~~~else~if~(month~==~4~||~month~==~6~||

~~~~~~~~~~~~~~~~month~==~9~||~month~==~11)

~~~~~~~~~~~~days~=~30;

~~~~~~~~else

~~~~~~~~~~~~days~=~31;

~~~~~~~~System.out.println(days);

~~~~}

}

The program computes the number of days in a month taking leap years into account.

5

• The variables are allocated and the �rst two, year and month, are given initial values.
• The expression month == 2 evaluates to false, so the statement following the else is executed. Jeliot

will display Choosing else-branch to emphasize this.
• The inner statement is itself an if-statement. The expression is evaluated and its result is true. Note

that once one of the terms of || (or) becomes true, there is no need to evaluate the others.
• The assignment statement following the statement is executed. Jeliot will display Choosing

then-branch. (The terminology then-branch orginates from programming languages that require the
use of the keyword then between the expression and the statement.)

• The value of days is printed.

Exercise Complete the program with the correct computation for leap years: a year divisible by 100 is not
a leap year unless it is also divisible by 400.

2.1.2 Conditional expressions

Concept A conditional expression is a shorthand for an if-statement that assigns di�erent values to one
variable:

if (expression) var = value1; else var = value2;

This can be rewritten more concisely as:

var = (expression) ? value1 : value2;

The boolean-valued expression is evaluated: If the result is true, value1 is assigned to var; if not, value2
is assign to var.

Program: Control02.java

//~Learning~Object~Control02

//~~~~conditional~expressions

public~class~Control02~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~year~=~2001;

~~~~~~~~int~month~=~2;

~~~~~~~~int~days;

~~~~~~~~if~(month~==~2)

~~~~~~~~~~~~days~=~(year~%~4~==~0)~?~28~:~29;

~~~~~~~~else~if~(month~==~4~||~month~==~6~||

~~~~~~~~~~~~~~~~month~==~9~||~month~==~11)

~~~~~~~~~~~~days~=~30;

~~~~~~~~else

~~~~~~~~~~~~days~=~31;

~~~~~~~~System.out.println(days);

~~~~}

}

The program computes the number of days in a month taking leap years into account.

• The variables are allocated and the �rst two, year and month, are given initial values.
• The expression month == 2 evaluates to true, so the statement following the expression is executed.

Jeliot will display Choosing then-branch to emphasize this.
• The inner statement is an assignment statement with a conditional expression. The expression is

evaluated and its result is false, so the value after the colon is assigned to the variable. Jeliot will
display Choosing else-branch.



6
CHAPTER 2. LEARNING OBJECTS FOR CONTROL STRUCTURES IN

JAVA

• The value of days is printed.

Exercise Complete the program with the correct computation for leap years: a year divisible by 100 is not
a leap year unless it is divisible by 400.

Exercise Rewrite the entire if-statement as nested conditional expressions.

2.1.3 While loops

Concept A loop enables the execution of a statement (including a block of statements within braces) an
arbitrary number of times. This statement is called the loop body. In a while loop, an expression is evaluated
before each execution of the loop body, and loop body is executed if and only if the expression evaluates to
true.

Program: Control03.java

//~Learning~Object~Control03

//~~~~while~loops

public~class~Control03~{

~~~~static~int~LIMIT~=~100;

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~factorial~=~1;

~~~~~~~~int~n~=~1;

~~~~~~~~while~(factorial~<~LIMIT)~{
~~~~~~~~~~~~System.out.println(factorial);

~~~~~~~~~~~~n++;

~~~~~~~~~~~~factorial~=~factorial~*~n;

~~~~~~~~}

~~~~}

}

This program prints all factorials less than LIMIT = 100, namely, 1! = 1, 2! = 2, 3! = 6, 4! = 24.

• The static constant and the two variables are allocated and initialized.
• Then, and each time the keyword while is reached, the expression is evaluated. If it is true, execu-

tion proceeds with the loop body, and Jeliot displays Entering the while loop the �rst time and
Continuing the while loop on subsequent occasions.

• The statements of the loop body are executed. They print the value of the current factorial, increment
the counter and compute the new factorial; then, control returns to the while-expression.

• If and when the expression evaluates to false, execution proceeds with the statement following the loop
body. Jeliot displays Exiting the while loop.

Exercise According to a formula by Euler,

1
12

+
1
22

+
1
32

+
1
42

+ · · · = π2

6
(2.1)

Write a program to compute the series until the di�erence between the two terms is less than 0.1.

2.1.4 Do-while loops

Concept A loop enables the execution of a statement (including a block of statements within braces) an
arbitrary number of times. This statement is called the loop body. In a do-while loop, an expression is
evaluated after each execution of the loop body, and the loop body continues to execute if and only if the
expression evaluates to true.



7

The loop body of a do-while loop will execute at least one time. This type of statement is particularly
appropriate for processing input, because you need to input data at least once before you can test it in an
expression.

Program: Control04.java

//~Learning~Object~Control04

//~~~~do-while~loops

public~class~Control04~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~input;

~~~~~~~~do~{

~~~~~~~~~~~~~input~=~Input.nextInt();

~~~~~~~~}~while~(input~<=~0);
~~~~~~~~System.out.println(input);

~~~~}

}

The program reads interactive input until a positive number is entered.

• The variable input is allocated but not initialized.
• The loop body of the do-while loop is executed. Jeliot displays Entering the do-while loop.
• A value is read interactively into the variable input. First, enter a negative integer.
• The expression following the while is evaluated. Since it evaluates to true, the loop body is executed

again. Jeliot displays Continuing the do-while loop.
• Now enter a positive value into the variable input.
• The expression following the while is evaluated. Since it evaluates to false, the execution of the

do-while loop is completed. Jeliot displays Exiting the do-while loop.

Exercise Rewrite this program with a while loop. Compare it to the do-while loop.

2.1.5 Break statements

Concept The exit from a while loop occurs before the loop body and the exit from a do-while loop occurs
after the loop body. The break statement can be used to exit from an arbitrary location or locations from
within the loop body.

The break statement is useful when the expression that leads to exiting the loop cannot be evaluated until
some statements from the loop body have been executed, and yet there remain statements to be executed
after the expression is evaluated.

Program: Control05.java

//~Learning~Object~Control05

//~~~~break~statements

public~class~Control05~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~input;

~~~~~~~~int~sum~=~0;

~~~~~~~~while~(true)~{

~~~~~~~~~~~~input~=~Input.nextInt();

~~~~~~~~~~~~if~(input~<~0)~break;
~~~~~~~~~~~~sum~=~sum~+~input;

~~~~~~~~}

~~~~~~~~System.out.println(sum);

~~~~}

}

8
CHAPTER 2. LEARNING OBJECTS FOR CONTROL STRUCTURES IN

JAVA

The program sums a sequence of nonnegative integers read from the input and terminates when a negative
value is read.

• The two variables are allocated and sum is initialized with the value zero.
• The while statement is executed with true as the loop expression. Of course, true will never evaluate

to false, so the loop will never be exited at the while.
• An integer value is read from the input. If it is negative the break statement is executed and Jeliot

displays Exiting the while loop because of the break.
• Otherwise, the following assignment statement is executed and Jeliot displays Continuing without

branching.
• After the assignment statement is executed, the loop starts again.

Exercise Write equivalent programs using a while loop and a do-while loop.

2.1.6 Counting with for statements

Concept Although all loop structures can be programmed as while loops, one special case is directly
supported: writing a loop that executes a predetermined number of times. The for statement has three
parts:

for (int i = 0; i < N; i++)

The �rst part declares a loop control variable and gives it an initial value. The second part contains the
exit condition: the loop body will be executed as long as the expression evaluates to true. The third part
describes how the value of the control variable is modi�ed after executing the loop body. The syntax show
is the conventional one for executing a loop N times.

Program: Control06.java

//~Learning~Object~Control06

//~~~~counting~with~for~statements

public~class~Control06~{

~~~~static~final~int~N~=~6;

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~factorial~=~1;

~~~~~~~~for~(int~i~=~0;~i~<~N;~i++)
~~~~~~~~~~~~factorial~=~factorial~*~(i+1);

~~~~~~~~System.out.println(factorial);

~~~~}

}

This program computes the �rst six factorials in a for loop and the last value is printed.

• The constant N and the variable factorial are allocated and initialized.
• The control variable i is allocated and initialized.
• The expression i < N is evaluated and evaluates to true. Jeliot displays Entering the for loop.
• The loop body is executed.
• The control variable is incremented as speci�ed in the third part of the for statement.
• The previous three steps are repeated until the expression evaluates to false; this causes the loop to

be exited. Jeliot displays Continuing the for loop as long as the expression evaluates to true, and
Exiting the for loop when it evaluates to false.

• The �nal value of factorial is printed.
• Important: when the loop is exited, the control variable is deallocated and no longer exists.

Exercise Rewrite the program using a while loop.



9

2.1.7 General for statements

Concept Arbitrary expressions can be given for the initial value of the for statement, the exit condition,
and the modi�cation of the control variable.

Program: Control07.java

//~Learning~Object~Control07

//~~~~General~for~statements

public~class~Control07~{

~~~~static~final~int~N~=~100;

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~sum~=~0;

~~~~~~~~for~(int~i~=~0;~i~<~Math.sqrt(N);~i~=~i~+~3)
~~~~~~~~~~~~sum~=~sum~+~i;

~~~~~~~~System.out.println(sum);

~~~~}

}

This program computes the sum of multiples of three that are less than the square root of N.

• The constant N and the variable sum are allocated and initialized.
• The control variable i is allocated and initialized.
• The expression i < Math.sqrt(N) is evaluated and evaluates to true. Jeliot displays Entering the

for loop.
• The loop body is executed.
• The control variable is incremented by three as speci�ed in the third part of the for statement.
• The previous three steps are repeated until the expression evaluates to false; this causes the loop to

be exited. Jeliot displays Continuing the for loop as long as the expression evaluates to true, and
Exiting the for loop when it evaluates to false.

• The �nal value of sum is printed.
• Important: when the loop is exited, the control variable is deallocated and no longer exists.

Exercise Is for (;;;) legal? If so, what does it mean?
Exercise Modify the program so that the square root is computed only once.

2.1.8 Continue statements

Concept The break statement is used to exit a loop from an arbitrary location in its body; the continue
statement is used to skip the rest of a loop body and return to evaluate the condition for continuing the
loop.

Program: Control08.java

//~Learning~Object~Control08

//~~~~continue~statements

public~class~Control08~{

~~~~static~final~int~N~=~10;

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~sum~=~0;

~~~~~~~~for~(int~i~=~0;~i~<~N;~i++)~{
~~~~~~~~~~~~if~(i~%~2~==~0)~{

~~~~~~~~~~~~~~~~if~(i~%~3~==~0)

~~~~~~~~~~~~~~~~~~~~continue;

~~~~~~~~~~~~~~~~else

~~~~~~~~~~~~~~~~~~~~sum~=~sum~+~i;



10
CHAPTER 2. LEARNING OBJECTS FOR CONTROL STRUCTURES IN

JAVA

~~~~~~~~~~~~}

~~~~~~~~~~~~else~if~(i~%~3~==~0)

~~~~~~~~~~~~~~~~sum~=~sum~+~i;

~~~~~~~~~~~~else

~~~~~~~~~~~~~~~~continue;

~~~~~~~~}

~~~~~~~~System.out.println(sum);

~~~~}

}

This program sums all the positive integers less than N that are divisible by 2 or 3 but not by both. For
N=10, the result is 2 + 3 + 4 + 8 + 9 = 26.

• The constant N and the variable sum are allocated and initialized.
• The for loop is standard and is executed for the values 0 through N − 1.
• If i is divisible by 2 and also by 3 (for example, 6), the continue statement is executed and the

variable sum is not modi�ed.
• If i is divisible neither by 2 nor by 3 (for example, 5), the continue statement is executed and the

variable sum is not modi�ed.
• In all other cases, the value of i is added to sum.
• The �nal value of sum is printed.

Exercise Modify the program so that it explicitly checks for divisibility by 6, instead of checking for divisi-
bility by 2 and 3 in separate statements.

Exercise Modify the program so that continue is not used.

2.1.9 Switch statements

Concept A switch statement is a generalization of an if statement. Instead of selecting between two
alternatives depending on the value of a boolean-valued expression, an integer-valued expression is used and
there can be multiple alternatives introduced by the keyword case. Since there are a very large number of
integer values, an alternative labeled default is executed when the value in the expression is not explicitly
listed in one of the alternatives.

Important: In an if-statement, the end of the statement (or block of statements) of the �rst alterna-
tive causes a transfer of control to the end of the if statement, skipping over the statement (or block of
statements) in the second (else) alternative. This does not happen in a switch: control �drops through�
from the end of one alternative to the beginning of the next alternative. A break statement must be used
to transfer control from the end of an alternative to the end of the switch statement.

Program: Control09.java

//~Learning~Object~Control09

//~~~~switch~statements

public~class~Control09~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~year~=~2001;

~~~~~~~~int~month~=~4;

~~~~~~~~int~days;

~~~~~~~~switch~(month)~{

~~~~~~~~~~~~case~2:

~~~~~~~~~~~~~~~~days~=~(year~%~4~==~0)~?~28~:~29;

~~~~~~~~~~~~~~~~break;

~~~~~~~~~~~~case~4:

~~~~~~~~~~~~case~6:



11

~~~~~~~~~~~~case~9:

~~~~~~~~~~~~case~11:

~~~~~~~~~~~~~~~~days~=~30;

~~~~~~~~~~~~default:

~~~~~~~~~~~~~~~~days~=~31;

~~~~~~~~}

~~~~~~~~System.out.println(days);

~~~~}

}

This program computes the number of days in a month.

• The variables are allocated and the �rst two, year and month, are given initial values.
• The switch statement chooses a case depending on the value of the variable month. Jeliot displays

Entering a switch statement.
• The case associated with 4 is selected. Jeliot displays This case is selected. The assignment

statement assigns 30 to days.
• The assignment statement assigns 31 to days.
• The switch statement terminates and Jeliot displays Exiting a switch statement.
• The value of days is printed.

Exercise Explain why the second assignment statement is executed; �x the program.
Exercise Explain why the sequence of case's for 4, 6, 9, 11 works.
Exercise Modify the program so that the case's for the 31-day months are given explicitly and so that

the days are computed correctly in leap years.



12
CHAPTER 2. LEARNING OBJECTS FOR CONTROL STRUCTURES IN

JAVA



Chapter 3

Learning Objects for Methods in Java1

3.1 Learning Objects for Methods

Concept Methods are the simplest construct for abstraction in Java. A method starts with a declaration
that de�nes its signature: the name of the method, the number and types of the formal parameters and the
return type. The body of the method consists of local variable declarations and of statements. A method is
called or invoked by writing the name of the method followed by a list of values, called actual parameters,
one for each formal parameter. A method can return a value or it can be declared as void if no value is
returned.

These source code of these learning objects can be found in method.zip2.

LO Topic Java Files (.java) Prerequisites

"A void method" (Sec-
tion 3.1.1: A void
method)

A void method Method01

"A method returning a
value" (Section 3.1.2:
A method returning a
value)

A method returning a
value

Method02

"Calling one method
from another" (Sec-
tion 3.1.3: Calling one
method from another)

Calling one method
from another

Method03 1, 2

"Recursion" (Sec-
tion 3.1.4: Recursion)

Recursion Method04 2

continued on next page

1This content is available online at <http://cnx.org/content/m31247/1.1/>.
2See the �le at <http://cnx.org/content/m31247/latest/method.zip>

13



14 CHAPTER 3. LEARNING OBJECTS FOR METHODS IN JAVA

"Calling methods on an
object" (Section 3.1.5:
Calling methods on an
object)

Calling methods on an
object

Method05 2, *

"Calling a method on
the same object" (Sec-
tion 3.1.6: Calling a
method on the same ob-
ject)

Calling a method on the
same object

Method06 5, *

"Objects as parame-
ters" (Section 3.1.7:
Objects as parameters)

Objects as parameters Method07 5, *

"Returning objects"
(Section 3.1.8: Return-
ing objects)

Returning objects Method08 7, *

"Returning locally
instantiated objects"
(Section 3.1.9: Return-
ing locally instantiated
objects)

Returning locally in-
stantiated objects

Method09 8, *

Table 3.1

* This LO assumes knowledge of the declaration of classes and the instantiation of objects.

3.1.1 A void method

Concept When a method that is declared void is called, it allocates memory for its parameters and local
variables, executes its statements and then returns. The call is a statement constructed from the name of
the method followed by a list of actual parameters.

Program: Method01.java

//~Learning~Object~Method01

//~~~~void~methods

public~class~Method01~{

~~~~static~void~printMax(int~a,~int~b)~{

~~~~~~~~int~max;

~~~~~~~~if~(a~>~b)
~~~~~~~~~~~~max~=~a;

~~~~~~~~else

~~~~~~~~~~~~max~=~b;

~~~~~~~~System.out.println(max);

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~x~=~10,~y~=~20;

~~~~~~~~printMax(x,~y);

~~~~~~~~Method01.printMax(10,~y);

~~~~}

}

The program computes the maximum of two integer values.

15

• The variables x and y are allocated and initialized.
• The method is called with the values of the actual parameters x and y.
• Memory is allocated for the formal parameters of the method and the local variables. This is called an

activation record and is displayed by Jeliot in the upper left hand part of the screen labeled Method

Area. The new activation record hides the previous ones which are no longer accessible.
• The actual parameters are used to initialize the formal parameters in the activation record.
• The local variable max is allocated within the activation record.
• The statements of the method are executed.
• After the last statement has been executed, the method returns and the activation record is deallocated.

• Execution continues with the statement after the method call. Here, the method is called again, this
time with an integer literal as an actual parameter instead of a variable.

Note: In a call to a static method, the name of the class in which it is de�ned can be given as in the second
call. Since the method is de�ned in the same class as the call, the class name need not be given, as shown
in the �rst call.

Exercise Trace the execution of a call of the following method and explain why it doesn't swap the
values of the actual parameters.

void~swap(int~a,~int~b)~{

~int~temp~=~a;

~a~=~b;

~b~=~temp;

}

Can you write a method to swap two integer values?

3.1.2 A method returning a value

ConceptWhen a method that is declared with a return type is called, it allocates memory for its parameters
and local variables, executes its statements and then returns a value of the type. The call is a statement
constructed from the name of the method followed by a list of actual parameters; the call is an expression
and can appear wherever an expression is allowed.

Program: Method02.java

//~Learning~Object~Method02

//~~~~methods~returning~a~value

public~class~Method02~{

~~~~static~int~maximum(int~a,~int~b)~{

~~~~~~~~if~(a~>~b)
~~~~~~~~~~~~return~a;

~~~~~~~~else

~~~~~~~~~~~~return~b;

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int~x~=~10,~y~=~20;

~~~~~~~~int~max;

~~~~~~~~max~=~maximum(x,~y);

~~~~~~~~System.out.println(max);

~~~~}

}

16 CHAPTER 3. LEARNING OBJECTS FOR METHODS IN JAVA

• The variables x and y are allocated and initialized; the variable max is allocated but not initialized.
• An assignment statement is executed: the expression on the right hand side is a method call including

the values of the actual parameters x and y.
• Memory is allocated for the formal parameters of the method and the local variables. This is called an

activation record and is displayed by Jeliot in the upper left hand part of the screen labeled Method

Area. The new activation record hides the previous ones which are no longer accessible.
• The actual parameters are used to initialize the formal parameters in the activation record.
• The statements of the method are executed.
• When the statement return b is executed, the value of b is used for the value to be returned.
• The method returns and the activation record is deallocated.
• The value returned becomes the value of the expression assigned to the variable max.
• The value of max is printed.

Exercise Write the body of the main method as one statement.

3.1.3 Calling one method from another

Concept One method can call another, that is, when executing one method, any statement or expression
call be a method call. A sequence of method calls results in a stack of activation records, where each method
(except the last one that was called) is waiting for the method it called to return. There is no limit on the
depth of method calls, except of course the amount of memory allocated to the program.

Note: The main method is a method like any other. The operating system can be considered as a
program which calls the main method. This call has a single parameter: an array of strings containing the
contents of the command line.

Program: Method03.java

//~Learning~Object~Method03

//~~~~calling~a~method~from~a~method

public~class~Method03~{

~~~~static~int~maximum(int~a,~int~b)~{

~~~~~~~~if~(a~>~b)
~~~~~~~~~~~~return~a;

~~~~~~~~else

~~~~~~~~~~~~return~b;

~~~~}

~

~~~~static~void~printMax(int~a,~int~b)~{

~~~~~~~~int~max;

~~~~~~~~max~=~Method03.maximum(a,~b);

~~~~~~~~System.out.println(max);

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~printMax(10,~20);

~~~~}

}

• The main method calls the method printMax; the actual parameters are two integer literals.
• The activation record for printMax is allocated, and the actual parameters are used to initialize the

formal parameters a and b.
• The variable max is allocated but not initialized.

17

• The method maximum is called; the actual parameters are the values of a and b, which are the formal
variables of method printMax.

• An activation record is allocated for maximum. (There are now three activation in the stack.) The
new activation record includes memory for the formal parameters a and b; note that these are new
parameters not at all related to the formal parameters of the same names in the previous method
printMax because those parameters are hidden.

• The method maximum executes its body and returns a value. Just before it returns, select the tab Call

Tree above the graphic display; the sequence of calls from main to printMax and then maximum is
displayed. Select Theater to return to the animated display.

• When the method returns, its activation record is deallocated, uncovering the activation record of
printMax.

• The value returned is assigned to the variable max and printed.
• When printMax completes its execution, its activation record is deallocated.

Note: In a call to a static method, the name of the class in which it is de�ned can be given as in the call
to maximum. Since the method is de�ned in the same class as the call, the class name need not be given, as
shown in the call to printMax.

Exercise Write a program to compute the maximum of six values using as few statements as possible.

3.1.4 Recursion

ConceptRecursion occurs when method calls itself. There is nothing at all mysterious about recursion!
Each call simply creates a new activation record on the stack. However, to ensure that the recursive calls
terminate, eventually, some call of the method should return without invoking itself once again.

Program: Method04.java

//~Learning~Object~Method04

//~~~~recursion

public~class~Method04~{

~~~~static~int~factorial~(int~n)~{

~~~~~~~~if~(n~<=~1)
~~~~~~~~~~~~return~1;

~~~~~~~~else

~~~~~~~~~~~~return~n~*~factorial(n-1);

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~System.out.println(factorial(5));

~~~~}

}

The standard example of a recursive method is one that computes the factorial function:

n! = n · (n− 1) · · · · · 2 · 1 = n · (n− 1)! (3.1)

The recursion is terminated by de�ning n! = 1 for n ≤ 1.

• The main method calls the method factorial with the actual parameter 5. This creates an activation
record with the formal parameter n initialized to 5.

• To compute the expression in the second return statement, the method factorial is called again, this
time with the actual parameter equal to 5− 1 = 4.

• The sequence of recursive calls continues �ve times, each one allocating a new activation record with
a new variable n.



18 CHAPTER 3. LEARNING OBJECTS FOR METHODS IN JAVA

• Finally, factorial is called with actual parameter 1. This call creates a new activation record as
usual, but does not cause factorial to be invoked again. Instead, the value 1 is returned and the
activation record is deallocated. Just before the method returns, select the tab Call Tree above the
graphic display; the sequence of calls from main to the sequence of recursive calls is displayed. Select
Theater to return to the animated display.

• The recursive sequence unfolds: each returned value is used to compute a new value to be returned by
that call of factorial.

• Finally, the value 120 is returned to the main method and printed.

Exercise Write a recursive method to compute the n'th Fibonacci number:

fib (0) = 0, fib (1) = 1, fib (n) = fib (n− 1) + fib (n− 2) for n > 1. (3.2)

Exercise Write a more e�cient nonrecursive method for the same function.

3.1.5 Calling methods on an object

Concept Nonstatic methods de�ned in a class must be invoked on an object of the class. A reference to
the object becomes an implicit actual parameter that initializes a formal variable called this in the method.
The variable this need not be explicitly mentioned when accessing �elds of the object unless there is an
ambiguity.

Program: Method05.java

//~Learning~Object~Method05

//~~~~calling~methods~on~an~object

class~Song~{

~~~~int~seconds;

~

~~~~Song(int~s)~{

~~~~~~~~seconds~=~s;

~~~~}

~

~~~~double~computePrice(double~pricePerSecond)~{

~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

public~class~Method05~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song(164);

~~~~~~~~Song~song2~=~new~Song(103);

~~~~~~~~double~price1~=~song1.computePrice(0.01);

~~~~~~~~double~price2~=~song2.computePrice(0.02);

~~~~~~~~System.out.println(price1);

~~~~~~~~System.out.println(price2);

~~~~}

}

This program computes the cost of a song as the product of its length in seconds and the price per second.
A class Song is de�ned to encapsulate the �eld seconds and the method computePrice.

• Two objects of class Song are instantiated and references to them are assigned to the variables song1
and song2.

19

• The method computePrice is called on the object referenced by song1. In Jeliot this is visualized
by an arrow to the object placed in the Expression Evaluation Area followed by a period and the
method name and parameters.

• An activation record is allocated containing two formal parameters: this is initialized by the implicit
reference and pricePerSecond is initialized from the actual parameter.

• The reference in the parameter this is used to obtain the value of the �eld seconds. An expression is
evaluated and its value returned.

• The activation record is deallocated and the value returned is stored in the variable price1.
• A second call to the method is executed in exactly the same way, except that it is called on the object

referenced by song2.
• The values of price1 and price2 are printed.

Exercise Modify the method so that the formal parameter is also named seconds. Yes, it can be done!
(Hint: read the Concept paragraph above.)

3.1.6 Calling a method on the same object

Concept A nonstatic method de�ned in a class that is invoked on an object of the class can invoke another
such method on the same object. The object for the second call is the same as the one on the �rst call,
namely, the only referenced by this. There is no need to explicitly write this and the object may be
accessed implicitly.

Program: Method06A.java

//~Learning~Object~Method06A

//~~~~calling~a~method~on~the~same~object

class~Song~{

~~~~int~seconds;

~

~~~~Song(int~s)~{

~~~~~~~~seconds~=~s;

~~~~}

~

~~~~boolean~discount(int~s)~{

~~~~~~~~return~s~>~300;
~~~~}

~

~~~~double~computePrice(double~pricePerSecond)~{

~~~~~~~~double~price~=~seconds~*~pricePerSecond;

~~~~~~~~if~(discount(seconds))

~~~~~~~~~~~~price~=~price~*~0.9;

~~~~~~~~return~price;

~~~~}

}

~

public~class~Method06A~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song(164);

~~~~~~~~Song~song2~=~new~Song(403);

~~~~~~~~double~price1~=~song1.computePrice(0.01);

~~~~~~~~double~price2~=~song2.computePrice(0.01);

~~~~~~~~System.out.println(price1);

~~~~~~~~System.out.println(price2);


20 CHAPTER 3. LEARNING OBJECTS FOR METHODS IN JAVA

~~~~}

}

This program computes the cost of a song as the product of its length in seconds and the price per second. A
discount is applied to �long� songs. A class Song is de�ned to encapsulate the �eld seconds and the methods
computePrice and discount.

• Two objects of class Song are instantiated and references to them are assigned to the variables song1
and song2.

• The method computePrice is called on the object referenced by song1. In Jeliot this is visualized
by an arrow to the object placed in the Expression Evaluation Area followed by a period and the
method name and parameters.

• An activation record is allocated containing two formal parameters: this is initialized by the implicit
reference and pricePerSecond is initialized from the actual parameter.

• The local variable price is declared and initialized by the expression calculated from the formal
parameter pricePerSecond and the �eld of the object seconds that is implicitly accessed through
this.

• The method discount, declared in the same class, is invoked and returns a boolean value. A new acti-
vation is allocated for this method and deallocated when it terminates. The implicit actual parameter
is this and it is used to initialize the implicit formal parameter this of the method discount.

• The activation record for computePrice is deallocated and the value returned is stored in the variable
price1.

• A second call to the method is executed exactly the same way, except that it is called on the object
referenced by song2.

• The values of price1 and price2 are printed.

Exercise Modify the program so that discount does not use the explicit parameter s.
Program: Method06B.java

//~Learning~Object~Method06B

//~~~~calling~a~method~on~the~same~object

class~Song~{

~~~~int~seconds;

~

~~~~Song(int~s)~{

~~~~~~~~seconds~=~s;

~~~~}

~

~~~~static~int~level(int~n)~{

~~~~~~~~return~n~*~100;

~~~~}

~

~~~~boolean~discount(int~s)~{

~~~~~~~~return~s~>~level(3);
~~~~}

~

~~~~double~computePrice(double~pricePerSecond)~{

~~~~~~~~double~price~=~seconds~*~pricePerSecond;

~~~~~~~~if~(discount(seconds))

~~~~~~~~~~~~price~=~price~*~0.9;

~~~~~~~~return~price;

~~~~}

}



21

~

public~class~Method06B~{

~~~~public~static~void~main(/*~String[]~args~*/)~{

~~~~~~~~Song~song1~=~new~Song(164);

~~~~~~~~Song~song2~=~new~Song(403);

~~~~~~~~double~price1~=~song1.computePrice(0.01);

~~~~~~~~double~price2~=~song2.computePrice(0.01);

~~~~~~~~System.out.println(price1);

~~~~~~~~System.out.println(price2);

~~~~}

}

Given a call to a method m2 within a method m1:

void~m1()~{

~~m2();

}

it is impossible to tell from the call if m2 is being implicitly called on the same object or if it is a static
method de�ned in the class.

• This program is a modi�cation of the previous one: instead of comparing s with 300 in the method
discount, it is compared with the value returned by the method level. It is impossible to tell from
the calls alone to discount and level that the �rst is a call on an object while the second is a call to
a static method.

Exercise Modify the calls to discount and level so that it is immediately apparent which is de�nitely a
call on an object and which is de�nitely a call to a static method.

3.1.7 Objects as parameters

Concept A reference to an object can be an actual parameter whose corresponding formal parameter is
declared to be of the same class. As with all parameters, the value of actual parameter is used to initialize
the formal parameter, but since it is a reference that is passed, the method that is called can access �elds
and methods of the object. This is called reference semantics.

Program: Method07.java

//~Learning~Object~Method07

//~~~~objects~as~parameters

class~Song~{

~~~~int~seconds;

~

~~~~Song(int~s)~{

~~~~~~~~seconds~=~s;

~~~~}

~

~~~~double~computePrice(double~pricePerSecond)~{

~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

public~class~Method07~{

~

~~~~static~double~getPrice(Song~s,~double~ppS)~{



22 CHAPTER 3. LEARNING OBJECTS FOR METHODS IN JAVA

~~~~~~~~return~s.computePrice(ppS);

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song(164);

~~~~~~~~Song~song2~=~new~Song(103);

~~~~~~~~double~price1~=~getPrice(song1,~0.01);

~~~~~~~~double~price2~=~getPrice(song2,~0.02);

~~~~~~~~System.out.println(price1);

~~~~~~~~System.out.println(price2);

~~~~}

}

This program computes the cost of a song as the product of its length in seconds and the price per second. A
class Song is de�ned to encapsulate the �eld seconds and the method computePrice. The method getPrice

in the main method receives an object of class Song as a parameter and calls computePrice.

• Two objects of class Song are instantiated and references to them are assigned to the variables song1
and song2.

• The method getPrice is called with two parameters: the �rst is a reference song1 to an object of
class Song, while the second is a value of type double. The actual parameters are used to initialize the
formal parameters; check that song1 and s reference the same object.

• Since the formal parameter s receives a reference to an object of class Song (in this case song1), it can
be used to call the method computePrice declared in the class.

• The method returns a value that is assigned to price1.
• A second call to the method is executed exactly the same way, except that the actual parameter is the

reference contained in song2.
• The values of price1 and price2 are printed.

Exercise Modify the program so that discount does not use the explicit parameter s.

3.1.8 Returning objects

Concept A return value can be a reference to an object.
Program: Method08.java

//~Learning~Object~Method08

//~~~~returning~objects

class~Song~{

~~~~int~seconds;

~

~~~~Song(int~s)~{

~~~~~~~~seconds~=~s;

~~~~}

~

~~~~double~computePrice(double~pricePerSecond)~{

~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

public~class~Method08~{

~

~~~~static~Song~longer(Song~s1,~Song~s2)~{



23

~~~~~~~~if~(s1.seconds~>~s2.seconds)
~~~~~~~~~~~~return~s1;

~~~~~~~~else

~~~~~~~~~~~~return~s2;

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song(164);

~~~~~~~~Song~song2~=~new~Song(103);

~~~~~~~~Song~longerSong~~=~longer(song1,~song2);

~~~~~~~~double~price2~=~longerSong.computePrice(0.01);

~~~~~~~~System.out.println(price2);

~~~~}

}

This program computes the cost of a song as the product of its length in seconds and the price per second. A
class Song is de�ned to encapsulate the �eld seconds and the method computePrice. The method longer

in the main method receives references to two objects of class Song as parameters and returns a reference to
the one with the larger value of the �eld seconds.

• Two objects of class Song are instantiated and references to them are assigned to the variables song1
and song2.

• The method longer is called with two parameters that are references to objects of class Song. The
actual parameters are used to initialize the formal parameters; check that song1 and s1 reference the
same object, as do song2 and s2.

• Since the formal parameters s1 and s2 receive references to objects of class Song, they can be used to
access the �elds seconds of each object.

• The method returns the reference to the object whose �eld seconds has the larger value. The reference
is assigned to the variable longerSong; check that this reference is to the same object as the reference
in song1.

• The reference in longerSong is used to call the method computePrice and the value returned is
assigned to the variable price2.

• The value price2 is printed.

Exercise Modify the program so that discount does not use the explicit parameter s.
Exercise Replace the last declaration and statements of the program by one declaration.
Exercise Write a method to swap two integer values.

3.1.9 Returning locally instantiated objects

Concept When a method terminates, its activation record is deallocated. However, if an object has been
instantiated within the method, a reference to the object can be returned to the calling method.

Program: Method09.java

//~Learning~Object~Method09

//~~~~returning~locally~instantiated~objects

class~Song~{

~~~~int~seconds;

~

~~~~Song(int~s)~{

~~~~~~~~seconds~=~s;

~~~~}

~



24 CHAPTER 3. LEARNING OBJECTS FOR METHODS IN JAVA

~~~~double~computePrice(double~pricePerSecond)~{

~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

public~class~Method09~{

~

~~~~static~Song~doubleSong(Song~s1)~{

~~~~~~~~Song~d~=~new~Song(s1.seconds*2);

~~~~~~~~return~d;

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song(164);

~~~~~~~~Song~longSong~~=~doubleSong(song1);

~~~~}

}

This program computes the cost of a song as the product of its length in seconds and the price per second. A
class Song is de�ned to encapsulate the �eld seconds and the method computePrice. The method double

in the main method receives a reference to an object of class Song as a parameter and returns a reference to
an new object of class Song whose �eld seconds is twice as large.

• Two objects of class Song are instantiated and references to them are assigned to the variables song1
and song2.

• The method doubleSong is called with an actual parameter that is a reference song1 to an object of
class Song. The actual parameter is used to initialize the formal parameter; check that song1 and s1

reference the same object.
• Within the method, the seconds �eld of the object referenced by s1 is used to instantiate a new object

whose reference is assigned to the variable d of class Song.
• The method returns the reference to the object contained in d; although d disappears when the acti-

vation record is deallocated, the object still exists as does the reference that is returned.
• The returned reference is assigned to the variable longSong; check that song1 and longSong reference

di�erent objects!

Exercise Replace the last line of the program by: song1 = doubleSong(song1); and explain precisely
what happens.

Chapter 4

Learning Objects for Arrays in Java1

4.1 Learning Objects for Arrays

Concept An array is a sequence of elements of the same type; the type of the elements can be a primitive
types such as int, or a prede�ned or user-de�ned class type. To access an element of an array, an index is
given; this may be any expression of type int, including an integer literal or a variable.

The source code of these learning objects can be found in array.zip2.

LO Topic Java Files (.java) Prerequisites

"Array objects" (Sec-
tion 4.1.1: Array ob-
jects)

Array objects Array01A, B

"Array initializers"
(Section 4.1.2: Array
initializers)

Array initializers Array02 1

"Passing arrays as
parameters" (Sec-
tion 4.1.3: Passing
arrays as parameters)

Passing arrays as pa-
rameters

Array03 2

"Returning an array
from a method" (Sec-
tion 4.1.4: Returning an
array from a method)

Returning an array from
a method

Array04 2

continued on next page

1This content is available online at <http://cnx.org/content/m31245/1.1/>.
2See the �le at <http://cnx.org/content/m31245/latest/array.zip>

25

26 CHAPTER 4. LEARNING OBJECTS FOR ARRAYS IN JAVA

"Array assignment
can create garbage"
(Section 4.1.5: Array
assignment can create
garbage)

Array assignment can
create garbage

Array05 4

"Two-dimensional ar-
rays" (Section 4.1.6:
Two-dimensional ar-
rays)

Two-dimensional arrays Array06 3

"Arrays of arrays" (Sec-
tion 4.1.7: Arrays of ar-
rays)

Arrays of arrays Array07 6

"Ragged Arrays" (Sec-
tion 4.1.8: Ragged Ar-
rays)

Ragged arrays Array08 6

"Arrays of objects"
(Section 4.1.9: Arrays
of objects)

Arrays of objects Array09 3

Table 4.1

The example used in LO 1 through LO 4 is to �ll an array with a sequence of �bonacci numbers
(0,1,1,2,3,5,8). The programs for LO 5 through LO 8 concern matrices. The program for LO 9 is explained
there.

4.1.1 Array objects

Concept An array is created in three steps: �rst a variable of an array type is declared; then the array is
allocated; �nally, the elements of the array are given values. The syntax for accessing an array a is a[i],
and the �eld a.length gives the length of the array, so that if we modify the program by changing the size
of the array the rest of the program need not change.

Program: Array01A.java

//~Learning~Object~Array01A

//~~~~array~objects

public~class~Array01A~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int[]~fib;

~~~~~~~~fib~=~new~int[7];

~~~~~~~~fib[0]~=~0;

~~~~~~~~fib[1]~=~1;

~~~~~~~~for~(int~i~=~2;~i~<~fib.length;~i++)
~~~~~~~~~~~~fib[i]~=~fib[i-1]~+~fib[i-2];

~~~~}

}

The program creates an array in the three steps described above.

• Initially, the variable fib of type integer array (denoted int[]) is allocated and contains the null value.

• new fib[7] creates an array object with its seven �elds having the default integer value zero; then the
reference to the object is returned and stored in the variable fib.

27

• The length �eld of the array is displayed above the cells for the elements.
• A for loop is used to assign values to each element of the array.
• The thin white lines show the constants and expressions that are used as indices into the array.
• Automatic dereferencing : Although expressions like fib[i-2] seem to indicate that fib is being

indexed, fib contains a reference to an array; an implicit operation of dereferencing is carried out to
obtain the array itself from the reference and the index [i-2] is then applied to that array.

Concept It is possible to combine the �rst two steps in creating an array: declaring the array �eld and
allocating the array object.

Program: Array01B.java

//~Learning~Object~Array01B

//~~~~array~objects

public~class~Array01B~{

~~~~private~final~static~int~SIZE~=~7;

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int[]~fib~=~new~int[SIZE];

~~~~~~~~fib[0]~=~0;

~~~~~~~~fib[1]~=~1;

~~~~~~~~for~(int~i~=~2;~i~<~fib.length;~i++)
~~~~~~~~~~~~fib[i]~=~fib[i-1]~+~fib[i-2];

~~~~}

}

This program combines the declaration of the array �eld with its allocator. We have used the constant SIZE
to specify the size of the array; this makes it easier to modify the program; nevertheless, fib.length is still
used in the executable statements.

• Initially, the static variable SIZE is created in the constant area and given its value.
• The execution of the program is as before.

Exercise Modify the program so that the �bonacci sequence appears in reverse order.

4.1.2 Array initializers

Concept An array object can be created implicitly by giving a list of values within braces.
Program: Array02.java

//~Learning~Object~Array02

//~~~array~initializers

public~class~Array02~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int[]~fib~=~{0,~1,~1,~2,~3,~5,~8};

~~~~}

}

The program initializes an array with values of the �bonacci sequence.

• Initially, the variable fib of type integer array (denoted int[]) is allocated.
• As part of the same statement, the array object is created and its seven �elds contain the values from

the initializer.
• Only then is the reference to the object returned and stored in the variable fib.

Exercise Can an element of an array initializer be the value of an expression containing variables previously
declared? Modify this program accordingly and try to compile and run it. Explain what happens.



28 CHAPTER 4. LEARNING OBJECTS FOR ARRAYS IN JAVA

4.1.3 Passing arrays as parameters

Concept An array is an object. Since the array variable itself contains a reference, it can be passed as an
actual paramter to a method and the reference is used to initialize the formal parameter.

Program: Array03.java

//~Learning~Object~Array03

//~~~~passing~arrays~as~parameters

public~class~Array03~{

~~~~static~void~reverse(int[]~a)~{

~~~~~~~~int~temp,j;

~~~~~~~~for~(int~i~=~0;~i~<~a.length~/~2;~i++)~{
~~~~~~~~~~~~j~=~a.length-i-1;

~~~~~~~~~~~~temp~=~a[i];

~~~~~~~~~~~~a[i]~=~a[j];

~~~~~~~~~~~~a[j]~=~temp;

~~~~~~~~}

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int[]~fib~=~{0,~1,~1,~2,~3,~5,~8};

~~~~~~~~reverse(fib);

~~~~}

}

This program passes an array as a parameter to a method that reverses the elements of the array.

• Initially, the variable fib of type integer array is allocated. As part of the same statement, the array
object is created with its seven �elds having the values in the initializer; the reference to the object is
returned and stored in the variable fib.

• The array (that is, a reference to the array) is passed as a parameter to the method reverse. There
are now two arrows pointing to the array: the reference from the main method and the reference from
the parameter a of the method reverse.

• The method scans the �rst half of the array, exchanging each element with the corresponding one in
the second half. Variables i and j contain the indices of the two elements that are exchanged.

• Upon return from the method, the variable fib still contains a reference to the array, which has had
its sequence of values reversed.

Exercise Instead of declaring the variable j outside the for-loop, declare it just inside the for-loop as follows:

int j = a.length-i-1;

Trace the execution and explain what happens.

4.1.4 Returning an array from a method

Concept An array can be allocated within a method. Although the variable containing the reference to the
array is local to the method, the array itself is global and the reference can be returned from the method.

Program: Array04.java

//~Learning~Object~Array04

//~~~~returning~an~array~from~a~method

public~class~Array04~{

~~~~static~int[]~reverse(int[]~a)~{



29

~~~~~~~~int[]~b~=~new~int[a.length];

~~~~~~~~int~j;

~~~~~~~~for~(int~i~=~0;~i~<~a.length~/~2;~i++)~{
~~~~~~~~~~~~j~=~a.length-i-1;

~~~~~~~~~~~~b[j]~=~a[i];

~~~~~~~~~~~~b[i]~=~a[j];

~~~~~~~~}

~~~~~~~~return~b;

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int[]~fib~=~{0,~1,~1,~2,~3,~5,~8};

~~~~~~~~int[]~reversedFib~=~reverse(fib);

~~~~}

}

This program passes an array as a parameter to a method that reverses the elements of the array. The array
is reversed into a new array b that is allocated in the method reverse. It is then returned to the main
method and assigned to reversedFib, a di�erent variable of the same array type int[].

• Initially, the variable fib of type integer array is allocated. As part of the same statement, the array
object is created with its seven �elds having the values in the initializer; the reference to the object is
returned and stored in the variable fib.

• A reference to the array is passed as a parameter to the method reverse. The formal parameter a
contains a reference to the same array pointeed to by the actual parameter fib.

• A new array b of the same type and length as the parameter a is declared and allocated.
• Each iteration of the for-loop moves one element from the �rst half of a to the second half of b and

one element from the second half of a to the �rst half of b. Variables i and j contain the indices of
the two elements that are moved.

• The reference to array b is returned. Although array referenced by b was allocated within the method
call, it still exists after returning.

• The reference that is returned is assigned to reversedFib.

Exercise The program has a bug. Fix it!

4.1.5 Array assignment can create garbage

Concept Since an array variable contains a reference to the array itself, if null or another value (another
array of the same type) is assigned to the variable, the �rst array may no longer be accessible. Inaccessible
memory is called garbage. The Java runtime system includes a garbage collector whose task is to return
garbage to the pool of memory that can be allocated.

Program: Array05.java

//~Learning~Object~Array05

//~~~~array~assignment~can~create~garbage

public~class~Array05~{

~~~~static~int[]~first(int[]~a)~{

~~~~~~~~int[]~b~=~new~int[a.length/2];

~~~~~~~~for~(int~i~=~0;~i~<~a.length~/~2;~i++)
~~~~~~~~~~~~b[i]~=~a[i];

~~~~~~~~return~b;

~~~~}

~

30 CHAPTER 4. LEARNING OBJECTS FOR ARRAYS IN JAVA

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int[]~fib~=~{0,~1,~1,~2,~3,~5,~8};

~~~~~~~~fib~=~first(fib);

~~~~}

}

An array referenced by the variable fib is passed as a parameter to a method that moves the values of the
elements in the �rst half of the array fib into a new array b which is allocated in the method. The new array
is returned to the main method and assigned to the variable fib, destroying the reference to the original
array.

• Initially, the variable fib of type integer array is allocated. As part of the same statement, the array
object is created with its seven �elds having the values in the initializer; the reference to the object is
returned and stored in the variable fib.

• A reference to the array is passed as a parameter to the method first. The formal parameter a

contains a reference to the same array pointed to by the actual parameter fib.
• A new array b of the same type as the parameter a but half the length is declared and allocated.
• Each iteration of the for-loop moves one element from the �rst half of a to the corresponding element

in the array b.
• The reference to array b is returned. Although array referenced by b was allocated within the method

call, it still exists after returning.
• There are no references to the original array so it is inaccessible. Jeliot does not visualize garbage

collection so the array remains visualized in the Instance and Array Area until the end of the program.

Exercise Modify the program so that the original array remains accessible in a di�erent �eld.

4.1.6 Two-dimensional arrays

Concept A matrix can be stored in a two-dimensional array. The syntax is int[][] with two indices, the
�rst for rows and the second for columns. To access an element of the array, expressions for the two indices
must be givien.

Program: Array06.java

//~Learning~Object~Array06

//~~~~~two-dimensional~arrays

public~class~Array06~{

~~~~static~int~addElements(int[][]~a)~{

~~~~~~~~int~sum~=~0;

~~~~~~~~for~(int~i~=~0;~i~<~a.length;~i++)
~~~~~~~~~~~~for~(int~j~=~0;~j~<~a[i].length;~j++)
~~~~~~~~~~~~~~~~sum~=~sum~+~a[i][j];

~~~~~~~~return~sum;

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int[][]~matrix~=~new~int[2][2];

~~~~~~~~for~(int~i~=~0;~i~<~matrix.length;~i++)
~~~~~~~~~~~~for~(int~j~=~0;~j~<~matrix[i].length;~j++)
~~~~~~~~~~~~~~~~matrix[i][j]~=~i*matrix.length~+~j;

~~~~~~~~int~sum~=~addElements(matrix);

~~~~}

}

This program creates a 2× 2 matrix and computes the sum of its elements.

31

• A two-dimensional array is allocated, the reference to it is assigned to the variable matrix. The variable
matrix contains one reference for each row, and the rows are allocated as separate objects. Note that
Jeliot displays each row from top to bottom as it does for all objects!

• The elements of the array are initialized to (0,1,2,3) in a nested for-loop. The outside loop iterates
over the rows and the inner loop iterates over the columns within an array.

• matrix.length is used to get the number of rows and matrix[i].length to get the number of columns
in row i, which is the same for all rows in this program.

• The reference to the array is passed as a parameter to the method addElements, which adds the values
of all the elements.

• The sum is returned from the method and assigned to the variable sum.

Exercise Modify the program perform the same computation on a 2× 3 matrix and on a 3× 2 matrix.

4.1.7 Arrays of arrays

Concept A two-dimensional array is really an array of arrays; that is, each element of the array contains a
reference to another array. Therefore, by using only one index a one-dimensional array is obtained.

Program: Array07.java

//~Learning~Object~Array07

//~~~~arrays~of~arrays

public~class~Array07~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int[][]~matrix~=~new~int[2][2];

~~~~~~~~for~(int~i~=~0;~i~<~matrix.length;~i++)
~~~~~~~~~~~~for~(int~j~=~0;~j~<~matrix[i].length;~j++)
~~~~~~~~~~~~~~~~matrix[i][j]~=~i*matrix.length~+~j;

~~~~~~~~int[]~vector~=~matrix[1];

~~~~}

}

This program creates a 2× 2 matrix and then assigns the second row to a variable of type one-dimensional
array.

• A two-dimensional array is allocated, the reference to it is assigned to the variable matrix. The variable
matrix contains one reference for each row and the rows are allocated as separate objects. Note that
Jeliot displays rows from top to bottom as it does for all objects!

• The elements of the array are initialized to (0,1,2,3) in a nested for-loop. The outside loop iterates
over the rows and the inner loop iterates over the columns within an array.

• matrix.length is used to get the number of rows and matrix[i].length to get the number of columns
in row i, which is the same for all rows in this program.

• A variable vector of type one-dimensional array is declared and initialized with the second row of the
matrix, matrix[1].

Exercise Write a program to rotate the rows of the array matrix. That is, row 0 becomes row 1 and row 1
becomes row 0. Now do this for an array of size 3× 3: row 0 becomes row 1, row 1 becomes row 2 and row
2 becomes row 0.

4.1.8 Ragged Arrays

Concept A two-dimensional array is really an array of arrays; that is, each element of the array contains a
reference to another array. However, the two-dimensional array need not be a square matrix, and each row
can have a di�erent number of elements. By using only one index a one-dimensional array is obtained and
these arrays need not all be of the same size.



32 CHAPTER 4. LEARNING OBJECTS FOR ARRAYS IN JAVA

Program: Array08.java

//~Learning~Object~Array08

//~~~~ragged~arrays

public~class~Array08~{

~~~~static~int~addElements(int[][]~a)~{

~~~~~~~~int~sum~=~0;

~~~~~~~~for~(int~i~=~0;~i~<~a.length;~i++)
~~~~~~~~~~~~for~(int~j~=~0;~j~<~a[i].length;~j++)
~~~~~~~~~~~~~~~~sum~=~sum~+~a[i][j];

~~~~~~~~return~sum;

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~int[][]~matrix~=~new~int[3][];

~~~~~~~~int[]~row0~=~{0,~1,~2};

~~~~~~~~int[]~row1~=~{3,~4};

~~~~~~~~int[]~row2~=~{5};

~~~~~~~~matrix[0]~=~row0;

~~~~~~~~matrix[1]~=~row1;

~~~~~~~~matrix[2]~=~row2;

~~~~~~~~int~sum~=~addElements(matrix);

~~~~}

}

Here we create the upper-left triangle of a 3 × 3 matrix: row 0 of length 3, row 1 of length 2 and row 2 of
length 1. Then we add the elements of the �ragged� array.

• The variable matrix is allocated, but since the size of the rows is not given, it is allocated as a one-
dimensional array whose elements are references to one-dimensional arrays of integers. The default
value for the elements is null.

• Three rows of di�erent size are allocated with initializers and assigned to the elements of the array
matrix.

• A reference to matrix is passed to the method addElements which adds the elements of the array and
returns the value.

• matrix.length is used to get the number of rows and matrix[i].length to get the number of columns
in row i; these are di�erent for each row.

Exercise Simplify the allocation of the array matrix. First, show how the variables row can be eliminated.
Then �nd out how to write an initializer for a two-dimensional array so that the array can be initialized in
one declaration. (Note: initializers for two-dimensional arrays are not supported in Jeliot.)

4.1.9 Arrays of objects

Concept Arrays can contain references to arbitrary objects. There is no di�erence between these arrays
and arrays whose values are of primitive type, except that an individual element can be of any type.

Program: Array09.java

//~Learning~Object~Array09

//~~~~arrays~of~objects

class~Access~{

~~~~String~name;

~~~~int~level;


33

~~~~Access(String~u,~int~l)~{

~~~~~~~~name~=~u;~level~=~l;

~~~~}

}

~

public~class~Array09~{

~~~~static~void~swap(Access[]~a,~int~i,~int~j)~{

~~~~~~~~Access~temp~=~a[i];

~~~~~~~~a[i]~=~a[j];

~~~~~~~~a[j]~=~temp;

~~~~}

~

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Access[]~accesses~=~new~Access[2];

~~~~~~~~accesses[0]~=~new~Access("Bob",~3);

~~~~~~~~accesses[1]~=~new~Access("Alice",~4);

~~~~~~~~swap(accesses,~0,~1);

~~~~}

}

Objects of class Access contain name of a bank customer and the access level permitted for that customer.
This program creates two objects, assigns the their references to elements of the Access and then swaps the
elements of the array.

• The array accessess of type Access[] is allocated and contains null references.
• An object of type Access are allocated and initialized by its constructor; a reference to the object is

stored in the �rst element of the array accessess.
• Similarly, another object is created and stored in the second element.
• The array accessess is passed to the method swap along with the indices 0 and 1.
• The two elements of the array are swapped. Note that after executing a[i] = a[j], both elements of

the array point to the second object (Alice,4), while a reference to the �rst object (Bob,3) is saved
in the variable temp.

Exercise Modify the program so that the initialization of the array accessess is done in one statement
instead of three.

Exercise Explain what happens if the method swap is replaced by:

static~void~swap(Access~a,~Access~b)~{

~~Access~temp~=~a;

~~a~=~b;

~~b~=~temp;

}

and the call by swap(accesses[0], accesses[1]);

34 CHAPTER 4. LEARNING OBJECTS FOR ARRAYS IN JAVA

Chapter 5

Learning Objects for Constructors in
Java1

5.1 Learning Objects for Constructors

Concept The process of creating an object involves allocating memory for the object and assigning the
reference to this block of memory to a variable. Constructors enable arbitrary initialization of the object
during its creation.

These source code of these learning objects can be found in constructor.zip2.

LO Topic Java Files (.java) Prerequisites

"What are constructors
for?" (Section 5.1.1:
What are constructors
for?)

What are constructors
for?

Constructor01A, B, C

"Computation within
constructors" (Sec-
tion 5.1.2: Computation
within constructors)

Computation within
constructors

Constructor02 1

"Overloading construc-
tors" (Section 5.1.3:
Overloading construc-
tors)

Overloading construc-
tors

Constructor03 2

continued on next page

1This content is available online at <http://cnx.org/content/m31248/1.1/>.
2See the �le at <http://cnx.org/content/m31248/latest/constructor.zip>

35

36 CHAPTER 5. LEARNING OBJECTS FOR CONSTRUCTORS IN JAVA

"Invoking an overloaded
constructor from within
a constructor" (Sec-
tion 5.1.4: Invoking
an overloaded con-
structor from within a
constructor)

Invoking another con-
structor

Constructor04 3

"Explicit default
constructors" (Sec-
tion 5.1.5: Explicit
default constructors)

Explicit default con-
structors

Constructor05 3

"Constructors for sub-
classes" (Section 5.1.6:
Constructors for sub-
classes)

Constructors for sub-
classes

Constructor06A, B, C 3

"Constructors with ob-
ject parameters" (Sec-
tion 5.1.7: Constructors
with object parameters)

Constructors with ob-
ject parameters

Constructor07 3

"Constructors with sub-
class object parameters"
(Section 5.1.8: Con-
structors with subclass
object parameters)

Constructors with sub-
class

object parameters Constructor08 6, 7

Table 5.1

Program The example used in these LOs is class Song with three �elds: the name of the song, the length
of the song in seconds and the pricePerSecond. The class is to be used to implement a website which
charges for downloading the song; the price is the product of the length of the song in second and the price
per second. To focus the discussion on constructors, the �elds are not declared private.

5.1.1 What are constructors for?

Concept An object is created by allocating memory for its �elds. The �elds are given the default values for
their types. A reference to the object is returned and assigned to a variable; the reference can be used to
access the �elds and methods of the object.

Program: Constructor01B.java

//~Learning~Object~Constructor01A

//~~~~what~are~constructors~for?

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~

~~~~public~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}


37

}

~

public~class~Constructor01A~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song();

~~~~~~~~song1.name~=~"Waterloo";

~~~~~~~~song1.seconds~=~164;

~~~~~~~~song1.pricePerSecond~=~0.01;

~~~~~~~~double~price~=~song1.computePrice();

~~~~}

}

If a constructor is not explicitly declared a default constructor is called.

• The variable song1 is allocated and contains the null value.
• Memory is allocated for the �elds of the object; this is displayed in the Instance and Array Area.

Default values are assigned to the three �elds.
• The default constructor is called but does nothing except return a reference to the object.
• The reference is stored in the variable song1.
• The reference in song1 is used to assign values to the �elds of the object.
• The reference in song1 is used to call the method computePrice on the object; the method computes

and returns the price, which is assigned to the variable price.

Concept An explicit constructor method can be declared and used to initialize each object. The constructor
method is identi�ed by a special syntax: the name of the method is the same as the name of the class and
there is no return type (because the value returned is of the type of the class itself).

Program: Constructor01B.java

//~Learning~Object~Constructor01B

//~~~~what~are~constructors~for?

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~

~~~~Song()~{

~~~~~~~~name~=~"Waterloo";

~~~~~~~~seconds~=~164;

~~~~~~~~pricePerSecond~=~0.01;

~~~~}

~

~~~~public~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

public~class~Constructor01B~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song();

~~~~~~~~double~price~=~song1.computePrice();

~~~~}

}

38 CHAPTER 5. LEARNING OBJECTS FOR CONSTRUCTORS IN JAVA

This program is the same as the previous one except that the assignment of nondefault values to the �elds
of the object is moved to an explicit constructor.

• The variable song1 is allocated and contains the null value.
• Memory is allocated for the �elds of the object; this is displayed in the Instance and Array Area.

Default values are assigned to the three �elds.
• The constructor is called and assigns values to the three �elds; then it returns a reference to the object.

• The reference is stored in the variable song1.
• The reference in song1 is used to call the method computePrice on the object; the method computes

and returns the price, which is assigned to the variable price.

Exercise Add the creation of a second object song2 to the program and verify that it is initialized to the
same values.

Concept Of course, it is highly unlikely that all objects created from a class will be initialized with the
same values. A constructor can have formal parameters like any other method and is called with actual
parameters.

Program: Constructor01C.java

//~Learning~Object~Constructor01C

//~~~~what~are~constructors~for?

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~}

~

~~~~public~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

public~class~Constructor01C~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song("Waterloo",~164,~0.01);

~~~~~~~~double~price~=~song1.computePrice();

~~~~}

}

This program is the same as the previous one except that the constructor has formal parameters and the
actual parameters passed to the constructor are assigned to the �elds of the object.

• The variable song1 is allocated and contains the null value.
• Memory is allocated for the �elds of the object; this is displayed in the Instance and Array Area.

Default values are assigned to the three �elds.
• The constructor is called with three actual parameters; these values are assigned to the formal param-

eters of the constructor method.
• The values of the formal parameters are assigned to the three �elds; then the constructor returns a

reference to the object.



39

• The reference is stored in the variable song1.
• The reference in song1 is used to call the method computePrice on the object; the method computes

and returns the price, which is assigned to the variable price.

Exercise Modify the class so that the second parameter passes the number of minutes; the value of the �eld
seconds will have to be computed in the constructor.

5.1.2 Computation within constructors

Concept Constructors are often used simply for assigning initial values to �elds of an object; however, an
arbitrary initializing computation can be carried out within the constructor.

Program: Constructor02.java

//~Learning~Object~Constructor02

//~~~~computation~within~constructors

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~~~~double~price;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~~~~~price~=~computePrice();

~~~~}

~

~~~~private~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

public~class~Constructor02~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song("Waterloo",~164,~0.01);

~~~~}

}

The price of a song will not change as long as the �elds second and pricePerSecond do not change; to
avoid recomputing the price each time it is needed, the class contains a �eld price whose value is computed
within the constructor. The method computePrice is declared to be private because it is needed only by
the constructor.

• The variable song1 is allocated and contains the null value.
• Memory is allocated for the �elds of the object and default values are assigned to the three �elds.
• The constructor is called with three actual parameters; these values are assigned to the formal parame-

ters of the constructor method and the values of the formal parameters are assigned to the three �elds.

• The method computePrice is called; it returns a value which stored in the �eld price.
• The constructor returns a reference to the object, which is stored in the variable song1. The �eld

price can be accessed to obtain the price of a song.

Exercise Modify the class so that no song has a price greater than two currency units.



40 CHAPTER 5. LEARNING OBJECTS FOR CONSTRUCTORS IN JAVA

5.1.3 Overloading constructors

Concept Constructors can be overloaded like other methods. A method is overloaded when there is more
than one method with the same name; the parameter signature is used to decide which method to call. For
constructors, overloading is usually done when some of the �elds of an object can be initialized with default
values, although we want to retain the possibility of explicitly supplying all the initial values.

Program: Constructor03.java

//~Learning~Object~Constructor03

//~~~~overloading~constructors

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~~~~double~price;

~~~~final~static~double~DEFAULT_PRICE~=~0.005;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~~~~~price~=~computePrice();

~~~~}

~

~~~~Song(String~n,~int~s)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~DEFAULT_PRICE;

~~~~~~~~price~=~computePrice();

~~~~}

~

~~~~private~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

public~class~Constructor03~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song("Waterloo",~164,~0.01);

~~~~~~~~Song~song2~=~new~Song("Fernando",~253);

~~~~}

}

The website charges a uniform price per second for all songs, except for special o�ers. We de�ne two
constructors, one that speci�es a price for special o�ers and another that uses a default price for ordinary
songs.

• The value of the static constant DEFAULT_PRICE is set as soon as the class is loaded and is displayed
in the Constant area.

• The variable song1 is allocated and contains the null value.
• Memory is allocated for the four �elds of the object and default values are assigned to the �elds.
• The constructor is called with three actual parameters; the call is resolved so that the �rst constructor

is executed. These values are assigned to the formal parameters of the constructor method and the
values of the formal parameters are assigned to the three �elds.



41

• The method computePrice is called; it returns a value which stored in the �eld price.
• The constructor returns a reference to the object, which is stored in the variable song1.
• The computation is then repeated for song2. Since the constructor is called with just two parameters

(for name and seconds), the second constructor is executed. The value of the �eld pricePerSecond is
assigned from the constant, not from a parameter.

Exercise Modify the class to include a constructor with one parameter for the name and with a default song
length of three minutes.

Exercise Modify the class to include a constructor with no parameters, so that all �elds receive default
values. Is there any meaning to the following constructor?

Song()~{

}

5.1.4 Invoking an overloaded constructor from within a constructor

Concept Constructors can be overloaded like other methods. A method is overloaded when there is more
than one method with the same name; the parameter signature is used to decide which method to call. For
constructors, overloading is usually done when some of the �elds of an object can be initialized with default
values, although we want to retain the possibility of explicitly supplying all the initial values. In such cases,
it is convenient to invoke one constructor from within another in order to avoid duplicating code. Invoking
the method this within one constructor calls another constructor with the appropriate parameter signature.

Program: Constructor04.java

//~Learning~Object~Constructor04

//~~~~invoking~one~constructor~from~another

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~~~~double~price;

~~~~final~static~double~DEFAULT_PRICE~=~0.005;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~~~~~price~=~computePrice();

~~~~}

~

~~~~Song(String~n,~int~s)~{

~~~~~~~~this(n,~s,~DEFAULT_PRICE);

~~~~}

~

~~~~private~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

public~class~Constructor04~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song("Waterloo",~164);


42 CHAPTER 5. LEARNING OBJECTS FOR CONSTRUCTORS IN JAVA

~~~~}

}

The website charges a uniform price per second for all songs, except for special o�ers. We de�ne two
constructors, one that speci�es a price for special o�ers and another that uses a default price for ordinary
songs.

• The value of the static constant DEFAULT_PRICE is set as soon as the class is loaded and is displayed
in the Constant area.

• The variable song1 is allocated and contains the null value.
• Memory is allocated for the four �elds of the object and default values are assigned to the �elds.
• The constructor is called with two actual parameters; the call is resolved so that it is the second

constructor that is executed.
• The two parameters, together with the default price, are immediately used to call the �rst constructor

that has three parameters. The method name this means: call a constructor from this class. This
constructor initializes the �rst three �elds from the parameters, and the value of the fourth �eld is
computed by calling the method computePrice.

• The constructor returns a reference to the object, which is stored in the variable song1.

Exercise Modify the class to include a constructor with one parameter, the name, and with a default song
length of three minutes. Can this constructor call the two-parameter constructor which in turn calls the
three-parameter constructor? Can a constructor call two other constructors, one after another?

5.1.5 Explicit default constructors

Concept When no constructor is explicitly written in a class, a default implicit constructor with no param-
eters exists; this constructor does nothing. If, however, one or more explicit constructors are given, there is
no longer a constructor with no parameters. Should you want one, you have to write it explicitly.

Program: Constructor05.java

//~Learning~Object~Constructor05

//~~~~explicit~default~constructors

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~~~~double~price;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~~~~~price~=~computePrice();

~~~~}

~

~~~~Song()~{

~~~~~~~~this("No~song",~0,~0.0);

~~~~}

~

~~~~private~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}



43

~

public~class~Constructor05~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song();

~~~~}

}

This program includes an explicit constructor with no parameters that calls the constructor with three
parameters to perform initialization.

• The variable song1 is allocated and contains the null value.
• Memory is allocated for the four �elds of the object and default values are assigned to the �elds.
• The constructor is called with no actual parameters; the call is resolved so that it is the second

constructor that is executed.
• Three constant values are used to call the �rst constructor. The method name this means: call a

constructor from this class. This constructor initializes the �rst three �elds from the parameters, and
the value of the fourth �eld is computed by calling the method computePrice.

• The constructor returns a reference to the object, which is stored in the variable song1.

Exercise Modify the class so that the constructor without parameters obtains initial values from the input.

5.1.6 Constructors for subclasses

Concept Constructors are not inherited. You must explicitly de�ne a constructor for a subclass (with or
without parameters). As its �rst statement, the constructor for the subclass must call a constructor for the
superclass using the method super.

Program: Constructor06A.java

//~Learning~Object~Constructor06A

//~~~~constructors~for~subclasses

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~~~~double~price;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~~~~~price~=~computePrice();

~~~~}

~

~~~~private~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

class~DiscountSong~extends~Song~{

~~~~double~discount;

~

~~~~DiscountSong(String~n,~int~s,~double~p,~double~d)~{

~~~~~~~~super(n,~s,~p);


44 CHAPTER 5. LEARNING OBJECTS FOR CONSTRUCTORS IN JAVA

~~~~~~~~discount~=~d;

~~~~}

~

~~~~private~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond~*~discount;

~~~~}

}

~

public~class~Constructor06A~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~DiscountSong~song1~=~new~DiscountSong("Waterloo",~164,~0.01,~0.8);

~~~~~~~~double~price~=~song1.price;

~~~~}

}

The website wants to sell certain songs at a discount. The subclass DiscountSong inherits from class Song,
adds a �eld discount and overrides computePrice to include discount in the computation. The constructor
for the subclass calls the three-parameter constructor for the superclass, passing it the three parameters that
it expects. The fourth parameter is used directly in the constructor DiscountSong to initialize the �eld
discount.

• The variable song1 is allocated and contains the null value.
• Memory is allocated for the �ve �elds of the object of the subclass DiscountSong and default values

are assigned to the �elds. Four �elds inherited from the superclass and one �eld discount added by
the subclass.

• The constructor for the subclass DiscountSong is called with four parameters. It calls the constructor
for the superclass Song which assigns values to three �elds from the parameters and the fourth by
calling computePrice.

• The superclass constructor returns and then the fourth parameter of the subclass constructor is assigned
to the �eld discount.

• The reference to the subclass object is returned and assigned to a variable song1 of that type.

Unfortunately, this does not do what we intended, because the superclass method for computePrice is used
to compute price instead of the method from the subclass.

Exercise Could song1 be declared to be of type Song? Explain your answer.
Program: Constructor06B.java

//~Learning~Object~Constructor06B

//~~~~constructors~for~subclasses

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~~~~double~price;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~~~~~price~=~computePrice();

~~~~}

~

~~~~private~double~computePrice()~{


45

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

class~DiscountSong~extends~Song~{

~~~~double~discount;

~

~~~~DiscountSong(String~n,~int~s,~double~p,~double~d)~{

~~~~~~~~super(n,~s,~p);

~~~~~~~~discount~=~d;

~~~~~~~~price~=~computePrice();

~~~~}

~

~~~~private~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond~*~discount;

~~~~}

}

~

public~class~Constructor06B~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~DiscountSong~song1~=~new~DiscountSong("Waterloo",~164,~0.01,~0.8);

~~~~~~~~double~price~=~song1.price;

~~~~}

}

The problem can be solved by adding a call to computePrice in the constructor for the subclass.
Check this by executing the code and ensuring that the discounted price is computed.
The disadvantage of this solution is that we are calling computePrice twice.
Program: Constructor06C.java

//~Learning~Object~Constructor06C

//~~~~constructors~for~subclasses

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~}

~

~~~~public~double~getPrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

class~DiscountSong~extends~Song~{

~~~~double~discount;

~

~~~~DiscountSong(String~n,~int~s,~double~p,~double~d)~{


46 CHAPTER 5. LEARNING OBJECTS FOR CONSTRUCTORS IN JAVA

~~~~~~~~super(n,~s,~p);

~~~~~~~~discount~=~d;

~~~~}

~

~~~~public~double~getPrice()~{

~~~~~~~~return~seconds~*~pricePerSecond~*~discount;

~~~~}

}

~

public~class~Constructor06C~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~DiscountSong("Waterloo",~164,~0.01,~0.8);

~~~~~~~~double~price~=~song1.getPrice();

~~~~}

}

Normally in an object-oriented program, all the �elds of an object are private and an accessor method like
getPrice() is used to access the values of the �elds. If this is done, the computation of the price can be
placed in the accessor for the superclass and overridden in accessor for the subclass.

Check this by executing the code and ensuring that the discounted price is computed.
The disadvantage of this solution is that the computation is performed for each access of the �eld price.
Exercise Develop other solutions for this problem: (a) Call computePrice explicitly after the call to the

constructor; (b) Modify getPrice to compute the value of price on the �rst call and save it for future calls.
Summarize the advantages and disadvantages of all the solutions for this problem.

5.1.7 Constructors with object parameters

Concept An object can contain �elds of other user-de�ned objects, not just of primitive and prede�ned
types. There is no di�erence in the constructors, except that references to objects are passed as actual
parameters and assigned to �elds of the object.

Program: Constructor07.java

//~Learning~Object~Constructor07

//~~~~constructors~with~object~parameters

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~}

~

~~~~public~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

class~SongSet~{

~~~~public~Song~track1,~track2;


47

~

~~~~public~SongSet(Song~t1,~Song~t2)~{

~~~~~~~~track1~=~t1;~track2~=~t2;

~~~~}

}

~

public~class~Constructor07~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song("Waterloo",~164,~0.01);

~~~~~~~~Song~song2~=~new~Song("Fernando",~253,~0.01);

~~~~~~~~SongSet~set~=~new~SongSet(song1,~song2);

~~~~~~~~double~price1~=~set.track1.computePrice();

~~~~~~~~double~price2~=~set.track2.computePrice();

~~~~}

}

Two objects of type Song are allocated and assigned to �elds of another object of type SongSet which has
two �elds of type Song.

• Execute the program until the two objects of type Song are allocated and their references assigned to
the variables song1 and song2. (You may want to select Animation / Run Until (ctrl-T) to skip
the animation of these declarations.)

• A variable set is allocated. An object of type SongSet is allocated with default null �elds.
• The constructor for SongSet is called and the references in the two variables song1 and song2 are

passed as actual parameters. These references are stored in the two �elds track1 and track2.
• The reference to the object of class SongSet is returned and stored in set.
• The prices of the two objects are obtained and stored in the variables price1 and price2. set is an

object of type Songset, while set.track1 is an object of type Song and thus can be used to call the
method computePrice.

Exercise Modify the program so that the variables song1 and song2 are not used; instead, the constructors
for the songs are embedded within the constructor call for SongSet.

Exercise Modify the program so the constructors for the songs are call within the constructor for
SongSet. Under what circumstances would this be done?

5.1.8 Constructors with subclass object parameters

Concept An object of a subclass is also an object of the type of the superclass. Therefore, it can be used
when an actual parameter is expected.

Program: Constructor08.java

//~Learning~Object~Constructor08

//~~~~constructors~with~subclass~object~parameters

class~Song~{

~~~~String~name;

~~~~int~seconds;

~~~~double~pricePerSecond;

~

~~~~Song(String~n,~int~s,~double~p)~{

~~~~~~~~name~=~n;

~~~~~~~~seconds~=~s;

~~~~~~~~pricePerSecond~=~p;

~~~~}


48 CHAPTER 5. LEARNING OBJECTS FOR CONSTRUCTORS IN JAVA

~

~~~~public~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond;

~~~~}

}

~

class~DiscountSong~extends~Song~{

~~~~double~discount;

~

~~~~DiscountSong(String~n,~int~s,~double~p,~double~d)~{

~~~~~~~~super(n,~s,~p);

~~~~~~~~discount~=~d;

~~~~}

~

~~~~public~double~computePrice()~{

~~~~~~~~return~seconds~*~pricePerSecond~*~discount;

~~~~}

}

~

class~SongSet~{

~~~~public~Song~track1,~track2;

~

~~~~public~SongSet(Song~t1,~Song~t2)~{

~~~~~~~~track1~=~t1;~track2~=~t2;

~~~~}

}

~

public~class~Constructor08~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Song~song1~=~new~Song("Waterloo",~164,~0.01);

~~~~~~~~DiscountSong~song2~=~new~DiscountSong("Fernando",~253,~0.01,~0.8);

~~~~~~~~SongSet~set~=~new~SongSet(song1,~song2);

~~~~~~~~double~price1~=~set.track1.computePrice();

~~~~~~~~double~price2~=~set.track2.computePrice();

~~~~}

}

We allocate two objects, one of type Song and one of type DiscountSong, and use them as actual parameters
in the constructor for an object of type SongSet that expects two parameters of type Song.

• Execute the program until the two objects one of type Song the other of type DiscountSong are
allocated and their references assigned to the variables song1 and song2, respectively. (You may want
to select Animation / Run Until (ctrl-T) to skip the animation of these declarations.)

• The variable set is allocated, and an object of type SongSet is allocated with default null �elds.
• The constructor for SongSet is called and the references in the two variables song1 and song2 are

passed as actual parameters. These references are stored in the two �elds track1 and track2.
• The reference to the object of class SongSet is returned and stored in set.
• The prices of the two objects are obtained and stored in the variables price1 and price2. set is an

object of type Songset, while set.track1 is an object of type Song and thus can be used to call the
method computePrice of that class. Similarly for price2, except that set.track2 is an object of type
DiscountSong; check that the method computePrice of this class is called.

Exercise Can s2 in the main method be declared to be of type Song? Explain.

Chapter 6

Learning Objects for Inheritance in Java1

6.1 Learning Objects for Inheritance

Concept Inheritance is an important technique for structuring object-oriented programs. Given a class
(called a superclass) it can be extended to a subclass. The subclass inherits all the �elds of the superclass
and it can add additional �elds. The subclass inherits methods of the superclass and it can add new methods
or override the inherited methods with its own versions.

These source code of these learning objects can be found in inheritance.zip2.

LO Topic Java Files (.java) Prerequisites

"Inheriting �elds" (Sec-
tion 6.1.1: Inheriting
�elds)

Inheriting �elds Inheritance01

"Inheriting methods"
(Section 6.1.2: Inherit-
ing methods)

Inheriting and overrid-
ing methods

Inheritance02 1

"Dynamic dispatching"
(Section 6.1.3: Dynamic
dispatching)

Dynamic dispatching Inheritance03 2

"Downcasting" (Sec-
tion 6.1.4: Downcast-
ing)

Downcasting Inheritance04 3

"Heterogeneous data
structures" (Sec-
tion 6.1.5: Heteroge-
neous data structures)

Heterogeneous data
structures

Inheritance05 4

continued on next page

1This content is available online at <http://cnx.org/content/m31249/1.1/>.
2See the �le at <http://cnx.org/content/m31249/latest/inheritance.zip>

49

50 CHAPTER 6. LEARNING OBJECTS FOR INHERITANCE IN JAVA

"Abstract classes" (Sec-
tion 6.1.6: Abstract
classes)

Abstract classes Inheritance06 5

"Equals" (Section 6.1.7:
Equals)

Equals Inheritance07A, B, C 2

"Clone" (Section 6.1.8:
Clone)

Clone Inheritance08 2

"Overloading vs. over-
riding" (Section 6.1.9:
Overloading vs. overrid-
ing)

Overloading vs. overrid-
ing

Inheritance09 3

Table 6.1

Program The running example is a framework for the simulation of moving particles. There is a class
Particle with a �eld position that is updated by the method newPosition. There are three subclasses:

• AParticle is derived directly from Particle and adds the �eld spin. The method newPosition is
overridden.

• BParticle is derived directly from Particle and adds the �eld charge. The method newPosition is
not overridden.

• CParticle is derived directly from BParticle and thus indirectly from AParticle. It adds the �eld
strange; the method newPosition is overridden.

For each program the following initialization is performed and will not be explicitly mentioned for each
learning object; instead, the step �the objects are created� will be listed:

• Variable are declared and assigned the null value.
• Memory is allocated for each object's �elds and are given default values. For a subclass, these �elds

include all �elds of its superclasses.
• In the constructors, a subclass calls super to initialize the �elds declared by the superclasses and then

initializes its own �elds.

Tip: Use Animation / Run Until ... to skip over the animation of the initialization.
Tip: Several of the LOs will ask you to check that a certain version of a method is called. This can be

done by looking at the source code in the left panel: the method called is highlighted in blue.

6.1.1 Inheriting �elds

Concept Subclasses inherit all the �elds of its superclasses; they can also add �elds of their own.
Program: Inheritance01.java

//~Learning~Object~Inheritance01

//~~~~inheriting~fields

class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{



51

~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~AParticle~extends~Particle~{

~~~~double~spin;

~

~~~~AParticle(int~p,~double~s)~{

~~~~~~~~super(p);

~~~~~~~~spin~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~if~(spin~<~delta)
~~~~~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~BParticle~extends~Particle~{

~~~~int~charge;

~

~~~~BParticle(int~p,~int~c)~{

~~~~~~~~super(p);

~~~~~~~~charge~=~c;

~~~~}

}

~

class~CParticle~extends~BParticle~{

~~~~boolean~strange;

~

~~~~CParticle(int~p,~int~c,~boolean~s)~{

~~~~~~~~super(p,~c);

~~~~~~~~strange~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~if~(strange)

~~~~~~~~~~~~position~=~position~*~charge;

~~~~}

}

~

class~Inheritance01~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Particle~~p~=~new~Particle(10);

~~~~~~~~AParticle~a~=~new~AParticle(20,~2.0);

~~~~~~~~BParticle~b~=~new~BParticle(30,~3);

~~~~~~~~CParticle~c~=~new~CParticle(40,~4,~true);

~

~~~~~~~~int~pPosition~=~p.position;

~~~~~~~~int~aPosition~=~a.position;

~~~~~~~~double~aSpin~~=~a.spin;


52 CHAPTER 6. LEARNING OBJECTS FOR INHERITANCE IN JAVA

~~~~~~~~int~bPosition~=~b.position;

~~~~~~~~int~bCharge~=~b.charge;

~~~~~~~~int~cPosition~=~c.position;

~~~~~~~~int~cCharge~=~c.charge;

~~~~~~~~boolean~cStrange~=~c.strange;

~~~~}

}

In this simple program objects of all four classes are created and their �elds are read.

• The objects are created.
• For each �eld of each object, a variable is declared in the main method and the value of the �eld is

assigned to it. Check that each value originates from the correct �eld.

Exercise In CParticle, add the declaration int charge = -1;. Compile and run the program. Is the
output di�erent? Explain what happens.

6.1.2 Inheriting methods

Concept Subclasses inherit the methods of its superclasses and can add new methods of its own. You can
override an inherited method by writing a new method with the same signature as the inherited method.

Program: Inheritance02.java

//~Learning~Object~Inheritance02

//~~~~inheriting~and~overriding~methods

class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~AParticle~extends~Particle~{

~~~~double~spin;

~

~~~~AParticle(int~p,~double~s)~{

~~~~~~~~super(p);

~~~~~~~~spin~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~if~(spin~<~delta)
~~~~~~~~~~~~position~=~position~+~delta;

~~~~}

}

class~BParticle~extends~Particle~{

~~~~int~charge;

~



53

~~~~BParticle(int~p,~int~c)~{

~~~~~~~~super(p);

~~~~~~~~charge~=~c;

~~~~}

}

class~CParticle~extends~BParticle~{

~~~~boolean~strange;

~

~~~~CParticle(int~p,~int~c,~boolean~s)~{

~~~~~~~~super(p,~c);

~~~~~~~~strange~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~if~(strange)

~~~~~~~~~~~~position~=~position~*~charge;

~~~~}

}

~

class~Inheritance02~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Particle~~p~=~new~Particle(10);

~~~~~~~~AParticle~a~=~new~AParticle(10,~2.0);

~~~~~~~~BParticle~b~=~new~BParticle(10,~3);

~~~~~~~~CParticle~c~=~new~CParticle(10,~4,~true);

~

~~~~~~~~p.newPosition(10);

~~~~~~~~int~pPosition~=~p.position;

~~~~~~~~a.newPosition(10);

~~~~~~~~int~aPosition~=~a.position;

~~~~~~~~b.newPosition(10);

~~~~~~~~int~bPosition~=~b.position;

~~~~~~~~c.newPosition(10);

~~~~~~~~int~cPosition~=~c.position;

~~~~}

}

This program calls the method newPosition, which is overridden in AParticle and CParticle but not in
BParticle.

• The objects are created.
• Method newPosition is invoked for each object and the modi�ed value of position is assigned to a

variable.
• Check that the call on p calls the method de�ned in class Particle.
• Check that the call on a calls the method de�ned in the class AParticle; this method overrides the

method declared in class Particle.
• Check that the call on b calls the method de�ned in the superclass Particle; since the method was

not overridden in BParticle, the method called is the one inherited from the superclass.
• Check that the call on c calls the method de�ned in the class BParticle; this method overrides the

method declared in class Particle.

Exercise Remove the method newPosition from CParticle. Which method is invoked for c.newPosition?

54 CHAPTER 6. LEARNING OBJECTS FOR INHERITANCE IN JAVA

Exercise Remove the method newPosition from CParticle and add a method with the same signature
to BParticle. Which method is invoked for c.newPosition?

6.1.3 Dynamic dispatching

Concept A variable v of type T can contain a reference to an object of type T or of the type of any subclass
of T. When invoking v.m for some method m that is overridden in a subclass, it is the type of the object
currently referenced by v (not the type of the variablev) that determines which method is called. This is
called dynamic dispatching because the call is dispatched at runtime.

Program: Inheritance03.java

//~Learning~Object~Inheritance03

//~~~~dynamic~dispatching

class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~AParticle~extends~Particle~{

~~~~double~spin;

~

~~~~AParticle(int~p,~double~s)~{

~~~~~~~~super(p);

~~~~~~~~spin~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~if~(spin~<~delta)
~~~~~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~BParticle~extends~Particle~{

~~~~int~charge;

~

~~~~BParticle(int~p,~int~c)~{

~~~~~~~~super(p);

~~~~~~~~charge~=~c;

~~~~}

}

~

class~CParticle~extends~BParticle~{

~~~~boolean~strange;

~

~~~~CParticle(int~p,~int~c,~boolean~s)~{



55

~~~~~~~~super(p,~c);

~~~~~~~~strange~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~if~(strange)

~~~~~~~~~~~~position~=~position~*~charge;

~~~~}

}

~

class~Inheritance03~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Particle~~p~=~new~Particle(10);

~~~~~~~~AParticle~a~=~new~AParticle(20,~2.0);

~~~~~~~~BParticle~b~=~new~BParticle(30,~3);

~~~~~~~~CParticle~c~=~new~CParticle(40,~4,~true);

~

~~~~~~~~p.newPosition(10);

~~~~~~~~int~pPosition~=~p.position;

~~~~~~~~p~=~a;

~~~~~~~~p.newPosition(10);

~~~~~~~~int~aPosition~=~p.position;

~~~~~~~~p~=~b;

~~~~~~~~p.newPosition(10);

~~~~~~~~int~bPosition~=~p.position;

~~~~~~~~p~=~c;

~~~~~~~~p.newPosition(10);

~~~~~~~~int~cPosition~=~p.position;

~~~~}

}

• The objects are created.
• The references to the objects are assigned one-by-one to the variable p, and then the method

newPosition is invoked using p. The modi�ed value of position is assigned to a variable.
• Check that the call on p invokes the method de�ned in class Particle.
• After assigning a to p, check that the call invokes the method de�ned in the class AParticle; this

method overrides the method declared in class Particle. Although the type of p is class Particle, it
holds a reference to an object whose type is class AParticle so the method of that class is called.

• Note that as a result of the assignment, the object of type Particle has become garbage.
• After assigning b to p, check that the call invokes the method de�ned in the superclass Particle;

since the method was not overridden in BParticle, the method called is the one inherited from the
superclass.

• After assigning c to p, check that the call invokes the method de�ned in the class CParticle; this
method overrides the method declared in class Particle. Although the type of p is class Particle, it
holds a reference to an object whose type is class CParticle so the method of that class is called.

Exercise Add an assignment of c to b and call b.newPosition(10). What is the value now of b.position?

6.1.4 Downcasting

Concept A variable of the type of a class can reference an object of the type of a subclass, but this variable
cannot be used to access �elds declared in the subclass. Nevertheless, the object �remembers� its type, even



56 CHAPTER 6. LEARNING OBJECTS FOR INHERITANCE IN JAVA

if it is assigned to a variable of the type of its superclass, and the type can be �recovered� by casting to a
variable of the type of the subclass. This is called downcasting because the cast is �down� the derivation
hierarchy.

Program: Inheritance04.java

//~Learning~Object~Inheritance04

//~~~~downcasting

class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~AParticle~extends~Particle~{

~~~~double~spin;

~

~~~~AParticle(int~p,~double~s)~{

~~~~~~~~super(p);

~~~~~~~~spin~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~if~(spin~<~delta)
~~~~~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~BParticle~extends~Particle~{

~~~~int~charge;

~

~~~~BParticle(int~p,~int~c)~{

~~~~~~~~super(p);

~~~~~~~~charge~=~c;

~~~~}

}

~

class~CParticle~extends~BParticle~{

~~~~boolean~strange;

~

~~~~CParticle(int~p,~int~c,~boolean~s)~{

~~~~~~~~super(p,~c);

~~~~~~~~strange~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~if~(strange)



57

~~~~~~~~~~~~position~=~position~*~charge;

~~~~}

}

~

class~Inheritance04~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Particle~~p~=~new~Particle(10);

~~~~~~~~AParticle~a~=~new~AParticle(20,~2.0);

~

~~~~~~~~int~pPosition~=~p.position;

~~~~~~~~p~=~a;

~~~~~~~~int~paPosition~=~p.position;

~~~~~~~~a~=~(AParticle)~p;

~~~~~~~~int~aPosition~=~a.position;

~~~~~~~~double~sSpin~=~a.spin;

~~~~}

}

In this program, we take an object of the type of the subclass AParticle and assign its reference to the
variable p of the type of the superclass Particle. The object's actual type is recovered by downcasting from
p to a.

• The objects are created.
• The value of p.position is stored in a variable.
• The reference in the variable a is assigned to p. Note that the arrows from the representation of both

variables point to the same object of type AParticle, and that the other object is garbage.
• When the value of p.position is accessed, it refers to the value that is in a.position.
• The reference in p can be cast to the type AParticle and assigned to a. Although p is declared to

hold references to objects of type Particle, the object was really of the subclass AParticle.
• Both the �elds position and spin can be accessed through a.

Exercise What happens if you try to access p.spin after a has been assigned to p?
Exercise Add the statement BParticle b = (BParticle) p after the assignment of a to p. Does the

program compile successfully? Does it run successfully? Explain the results.

6.1.5 Heterogeneous data structures

Concept A heterogeneous data structure is one that can hold elements of di�erent types. A data structure
whose elements are of the type of a class can hold references to objects of any subclass of that class.

Program: Inheritance05.java

//~Learning~Object~Inheritance05

//~~~~heterogeneous~data~structures

class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~position~=~position~+~delta;

~~~~}


58 CHAPTER 6. LEARNING OBJECTS FOR INHERITANCE IN JAVA

}

~

class~AParticle~extends~Particle~{

~~~~double~spin;

~

~~~~AParticle(int~p,~double~s)~{

~~~~~~~~super(p);

~~~~~~~~spin~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~if~(spin~<~delta)
~~~~~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~BParticle~extends~Particle~{

~~~~int~charge;

~

~~~~BParticle(int~p,~int~c)~{

~~~~~~~~super(p);

~~~~~~~~charge~=~c;

~~~~}

}

~

class~CParticle~extends~BParticle~{

~~~~boolean~strange;

~

~~~~CParticle(int~p,~int~c,~boolean~s)~{

~~~~~~~~super(p,~c);

~~~~~~~~strange~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~if~(strange)

~~~~~~~~~~~~position~=~position~*~charge;

~~~~}

}

~

class~Inheritance05~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Particle[]~p~=~new~Particle[4];

~~~~~~~~p[0]~=~new~Particle(10);

~~~~~~~~p[1]~=~new~AParticle(20,~2.0);

~~~~~~~~p[2]~=~new~BParticle(30,~3);

~~~~~~~~p[3]~=~new~CParticle(40,~4,~true);

~~~~~~~~int~i~=~0;

~~~~~~~~p[i++].newPosition(10);

~~~~~~~~p[i++].newPosition(10);

~~~~~~~~p[i++].newPosition(10);

~~~~~~~~p[i].newPosition(10);


59

~~~~}

}

An array whose elements are of class Particle can store references to objects of any of its subclasses.

• The objects are created and references to them assigned to elements of the elements of the array p.
• Method newPosition is invoked for the object referenced by each element of the array p. Check

that the �elds accessed are those of the object referenced by the array element and that the calls are
dynamically dispatched to the method appropriate for the type of the object.

Exercise Every object in Java is a subclass of the class Object. Modify the program so that the variable p
is of type array of Object.

6.1.6 Abstract classes

Concept Very often the �root� of a set of derived types has no meaning itself, in the sense that objects of
that type would never be declared. For example, in a realistic simulation program, the would be no real
particles that are just �particles,� only particles with names like α-particles and β-particles. An abstract
class can be declared which serves only as a root from which to derive a hierarchy of subclasses. It is not
legal to declare objects of an abstract class, although variables of its type may be declared and used to
reference objects of any type within the hierarchy. A method may also be declared abstract; this indicates
that it must be overridden in subclasses.

Program: Inheritance06.java

//~Learning~Object~Inheritance06

//~~~~abstract~classes

abstract~class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~~~~abstract~void~newPosition(int~delta);

}

~

class~AParticle~extends~Particle~{

~~~~double~spin;

~

~~~~AParticle(int~p,~double~s)~{

~~~~~~~~super(p);

~~~~~~~~spin~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~if~(spin~<~delta)
~~~~~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~BParticle~extends~Particle~{

~~~~int~charge;

~

~~~~BParticle(int~p,~int~c)~{



60 CHAPTER 6. LEARNING OBJECTS FOR INHERITANCE IN JAVA

~~~~~~~~super(p);

~~~~~~~~charge~=~c;

~~~~}

}

~

class~CParticle~extends~BParticle~{

~~~~boolean~strange;

~

~~~~CParticle(int~p,~int~c,~boolean~s)~{

~~~~~~~~super(p,~c);

~~~~~~~~strange~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~if~(strange)

~~~~~~~~~~~~position~=~position~*~charge;

~~~~}

}

~

class~Inheritance06~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Particle[]~p~=~new~Particle[3];

~~~~~~~~p[0]~=~new~AParticle(20,~2.0);

~~~~~~~~p[1]~=~new~BParticle(30,~3);

~~~~~~~~p[2]~=~new~CParticle(40,~4,~true);

~~~~~~~~int~i~=~0;

~~~~~~~~p[i++].newPosition(10);

~~~~~~~~p[i++].newPosition(10);

~~~~~~~~p[i].newPosition(10);

~~~~}

}

The follow program declares Particle to be abstract and no objects of that class can be declared. The
method newPosition is also declared abstrct because it doesn't make sense to have a particle that you can't
move.

Exercise The program does not compile successfully. Why? (Note that in Jeliot, the problem is only
found at when animating the program.) Modify the program so that it compiles and executes.

• The objects are created and references to them assigned to elements of the array.
• Method newPosition is invoked for the object referenced by each element of the array p. Check

that the �elds accessed are those of the object referenced by the array element and that the calls are
dynamically dispatched to the method appropriate for the type of the object.

Exercise It is possible to declare a nonabsract method in an abstract class. Give an example for this
program, and explain why it is a reasonable thing to do.

6.1.7 Equals

Concept There are two concepts of equality in Java: the operator== compares primitives types and refer-
ences, while the methodequals compares objects. The default implementation of equals is like ==, but it
can be overridden in any class.

Program: Inheritance07A.java



61

//~Learning~Object~Inheritance07A

//~~~~equality~(==~vs.~equals)

class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~AParticle~extends~Particle~{

~~~~double~spin;

~

~~~~AParticle(int~p,~double~s)~{

~~~~~~~~super(p);

~~~~~~~~spin~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~if~(spin~<~delta)
~~~~~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~Inheritance07A~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~AParticle~a1~=~new~AParticle(20,~2.0);

~~~~~~~~AParticle~a2~=~a1;

~~~~~~~~AParticle~a3~=~new~AParticle(20,~2.0);

~~~~~~~~boolean~eqop12~=~a1~==~a2;

~~~~~~~~boolean~eqop13~=~a1~==~a3;

~~~~~~~~boolean~eqmethod~=~a1.equals(a3);

~~~~}

}

• Object a1 of type AParticle is created.
• a1 is assigned to a2 using ==.
• Object a3 of type AParticle is created with the same values for its �elds as the object referenced by

a1.
• Evaluating a1==a2 returns true because they both reference the same object.
• Evaluating a1==a3 returns false because they reference di�erent objects.
• Strangely enough, evaluating a1.equals(a3) returns false. Although their �elds are equal, the default

implementation of equals is the same as ==!

Exercise Add the follow method to AParticle and run the program again. What happens now?

public~boolean~equals(AParticle~a)~{

~~return~this.position~==~a.position~&&~this.spin~==~a.spin;

}



62 CHAPTER 6. LEARNING OBJECTS FOR INHERITANCE IN JAVA

Program: Inheritance07B.java

//~Learning~Object~Inheritance07B

//~~~~equality~(overloading~equals)

class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~BParticle~extends~Particle~{

~~~~int~charge;

~

~~~~BParticle(int~p,~int~c)~{

~~~~~~~~super(p);

~~~~~~~~charge~=~c;

~~~~}

~

~~~~public~boolean~equals(BParticle~b)~{

~~~~~~~~return~~this.position~==~b.position~&&

~~~~~~~~~~~~~~~~this.charge~==~b.charge;

~~~~}

}

~

class~CParticle~extends~BParticle~{

~~~~boolean~strange;

~

~~~~CParticle(int~p,~int~c,~boolean~s)~{

~~~~~~~~super(p,~c);

~~~~~~~~strange~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~if~(strange)

~~~~~~~~~~~~position~=~position~*~charge;

~~~~}

~

~~~~public~boolean~equals(CParticle~c)~{

~~~~~~~~return~~~~this.position~==~c.position~&&

~~~~~~~~~~~~~~~~this.charge~==~c.charge~&&

~~~~~~~~~~~~~~~~~~this.strange~==~c.strange;

~~~~}

}

~

class~Inheritance07B~{

~~~~public~static~void~main(/*String[]~args*/)~{


63

~~~~~~~~BParticle~b1~=~new~BParticle(20,~2);

~~~~~~~~BParticle~b2~=~new~BParticle(20,~2);

~~~~~~~~CParticle~c1~=~new~CParticle(20,~2,~false);

~~~~~~~~CParticle~c2~=~new~CParticle(20,~2,~true);

~~~~~~~~boolean~eqb1b2~=~b1.equals(b2);

~~~~~~~~boolean~eqc1c2~=~c1.equals(c2);

~~~~~~~~boolean~eqb1c1~=~b1.equals(c1);

~~~~~~~~boolean~eqc1b1~=~c1.equals(b1);

~~~~}

}

Let us try to override the method equals in classes BParticle and CParticle; the method returns true if
the all �elds of the two objects are equal.

• Four objects are created: two equal objects b1 and b2 of type BParticle and two unequal objects c1
and c2 of type CParticle.

• As expected, b1.equals(b2) returns true and c1.equals(c2) returns false.
• b1.equals(c1) returns true: since CParticle is a subclass of BParticle, the variable c1 is acceptable

as a parameter to the method equals declared in BParticle. c1is equal to b1, because we are only
comparing the �rst two �elds inherited from BParticle and these are equal.

Exercise Explain what happens if you try to evaluate c1.equals(b1).
Program: Inheritance07C.java

//~Learning~Object~Inheritance07C

//~~~~equality~(robust~overriding)

class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~BParticle~extends~Particle~{

~~~~int~charge;

~

~~~~BParticle(int~p,~int~c)~{

~~~~~~~~super(p);

~~~~~~~~charge~=~c;

~~~~}

}

~

class~CParticle~extends~BParticle~{

~~~~boolean~strange;

~

~~~~CParticle(int~p,~int~c,~boolean~s)~{

~~~~~~~~super(p,~c);

~~~~~~~~strange~=~s;



64 CHAPTER 6. LEARNING OBJECTS FOR INHERITANCE IN JAVA

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~if~(strange)

~~~~~~~~~~~~position~=~position~*~charge;

~~~~}

~

~~~~public~boolean~equals(Object~obj)~{

~~~~~~~~if~(obj~==~null)~return~false;

~~~~~~~~if~(!(obj~instanceof~CParticle))~return~false;

~~~~~~~~CParticle~c~=~(CParticle)~obj;

~~~~~~~~return~this.position~==~c.position~&&~this.charge~==~c.charge~&&

~~~~~~~~~~~~~~~this.strange~==~c.strange;

~~~~}

}

~

class~Inheritance07C~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~BParticle~b1~=~new~BParticle(20,~2);

~~~~~~~~CParticle~c1~=~new~CParticle(20,~2,~false);

~~~~~~~~CParticle~c2~=~new~CParticle(20,~2,~true);

~~~~~~~~CParticle~c3~=~new~CParticle(20,~2,~false);

~~~~~~~~boolean~eqc1null~=~c1.equals(null);

~~~~~~~~boolean~eqc1b1~=~c1.equals(b1);

~~~~~~~~boolean~eqc1c2~=~c1.equals(c2);

~~~~~~~~boolean~eqc1c3~=~c1.equals(c3);

~~~~}

}

It would be unusual for two objects to be considered equal if they are of di�erent types, even if one type is a
subclass of another. In fact, public boolean equals(CParticle c) does not override the method equals

in BParticle, because an overriding method must have the same signature as the overridden method.
The method equals is declared in the root class Object as: public boolean equals(Object obj) and

this is the method that must be overridden. This program shows the correct technique:

• Since the parameter can now be any object, a check is �rst made that the parameter is not null.
• Similarly, a check is made that the parameter is of the same type as this object.
• Now that we know that the parameter is actually of this type, it can be cast from Object to the type.

• Only then is class-speci�c code performed�usually a �eld-by-�eld comparison.

Trace the execution of the program:

• Four objects are created: one object b1 of type BParticle and three objects c1, c2 and c3 of type
CParticle.

• Clearly, comparing c1 to null or b1 returns false.
• Field-by-�eld comparisons are used if the parameter is of type CParticle: c1.equals(c2) returns

false and c1.equals(c3) returns true.

Exercise Move the declaration of equals to class BParticle, changing the code as needed. What now is
the value of c1.equals(b1)? Explain.



65

6.1.8 Clone

Concept Assigning a variable containing a reference to another of the same type merely copies the reference
so that two �elds refer to the same object. The method clone is used to copy the content of an object into
a new one. clone is de�ned in class Object and can be overridden in any class de�nition.

Program: Inheritance08.java

//~Learning~Object~Inheritance08

//~~~~clone

class~Particle~implements~Cloneable~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~position~=~position~+~delta;

~~~~}

~

~~~~protected~Object~clone()~{

~~~~~~~~try~{

~~~~~~~~~~~~Particle~p~=~(Particle)~super.clone();

~~~~~~~~~~~~p.newPosition(10);

~~~~~~~~~~~~return~p;

~~~~~~~~}

~~~~~~~~catch~(CloneNotSupportedException~e)~{

~~~~~~~~~~~~e.printStackTrace();

~~~~~~~~~~~~throw~new~Error();

~~~~~~~~}

~~~~}

}

~

class~Inheritance08~{

~~~~public~static~void~main(String[]~args)~{

~~~~~~~~Particle~p1~=~new~Particle(20);

~~~~~~~~Particle~p2~=~p1;

~~~~~~~~p1.newPosition(10);

~~~~~~~~System.out.println(p1.position);

~~~~~~~~System.out.println(p2.position);

~

~~~~~~~~Particle~p3~=~(Particle)~p1.clone();

~~~~~~~~System.out.println(p1.position);

~~~~~~~~System.out.println(p3.position);

~

~~~~~~~~p3.newPosition(10);

~~~~~~~~System.out.println(p1.position);

~~~~~~~~System.out.println(p3.position);

~~~~}

}

clone is overridden in class Particle. The class must implement the interface Cloneable, the method of
the superclass should be called, and we have to take into account that the method might raise an exception.

66 CHAPTER 6. LEARNING OBJECTS FOR INHERITANCE IN JAVA

The method returns the object returned by superclass method after calling newPosition.

• An object of class Particle is allocated and its reference assigned to the �eld p1.
• An assignment statement copies this reference to the �eld p2. Check that they have the same value.
• The method newPosition is called on p1, but the value of p2.position is also changed, showing that

the two �elds point to the same object.
• An object of class Particle is obtained by calling p1.clone() and its reference assigned to the �eld p3.

Since clone returns a value of type Object, it must be cast to type Particle before the assignment.
Check that the objects referenced by p1 and p3 have di�erent values.

• Calling p3.newPosition changes only the �eld in the object referenced by p3 and not the separate
object referenced by p1.

Exercise The method clone can perform arbitrary computation. Modify the program so that new objects
are initialized with the absolute value of the �eld of the object that is being cloned.

6.1.9 Overloading vs. overriding

ConceptOverloading is the use of the same method name with a di�erent parameter signature. Overriding
is the use in a subclass of the same method name with the same parameter signature as a method of the
superclass.

Program: Inheritance09.java

//~Learning~Object~Inheritance09

//~~~~overloading~vs.~overriding

class~Particle~{

~~~~int~position;

~

~~~~Particle(int~p)~{

~~~~~~~~position~=~p;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~~~~~position~=~position~+~delta;

~~~~}

}

~

class~AParticle~extends~Particle~{

~~~~double~spin;

~

~~~~AParticle(int~p,~double~s)~{

~~~~~~~~super(p);

~~~~~~~~spin~=~s;

~~~~}

~

~~~~void~newPosition(int~delta)~{

~~~~if~(spin~<~delta)
~~~~~~~~~~~~position~=~position~+~delta;

~~~~}

~

~~~~void~newPosition(double~delta)~{

~~~~if~(position~<~delta)
~~~~~~~~~~~~spin~=~spin~+~delta;

~~~~}


67

}

~

class~Inheritance09~{

~~~~public~static~void~main(/*String[]~args*/)~{

~~~~~~~~Particle~~p~=~new~Particle(10);

~~~~~~~~AParticle~a1~=~new~AParticle(20,~-1.0);

~~~~~~~~AParticle~a2~=~new~AParticle(20,~-1.0);

~

~~~~~~~~p.newPosition(10);

~~~~~~~~int~pPosition~=~p.position;

~~~~~~~~a1.newPosition(10);

~~~~~~~~int~a1Position~=~a1.position;

~~~~~~~~a2.newPosition(10.0);

~~~~~~~~int~a2Position~=~a2.position;

~~~~}

}

The method newPosition(int delta) is declared in Particle and overridden in AParticle. It is also
overloaded by a method with the same name takes a parameter of type double.

• After allocating three objects p, a1 and a2, newPosition is called on each one.
• p.newPosition calls the method declared in class Particle.
• a1.newPosition calls the method declared in class AParticle that overrides the method in Particle.

• a2.newPosition calls the overloaded method because the actual parameter is of type double.

Exercise At the end of the program add an assignment p = a1. Add the method invocations
p.newPosition(10) and p.newPosition(10.0) in the main method. Explain what happens.



68 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A arrays, � 4(25)

C constructors, � 5(35)
control structures, � 2(3)

D dynamic dispatching, � 6(49)

I inheritance, � 6(49)

J Java, � 1(1), � 2(3), � 3(13), � 4(25), � 5(35),
� 6(49)

L learning objects, � 1(1)

M methods, � 3(13)

P parameters, � 3(13)



ATTRIBUTIONS 69

Attributions

Collection: Learning Objects for Java (with Jeliot)
Edited by: Mordechai (Moti) Ben-Ari
URL: http://cnx.org/content/col10915/1.2/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Learning Objects for Java (Overview)"
By: Mordechai (Moti) Ben-Ari
URL: http://cnx.org/content/m31242/1.3/
Pages: 1-2
Copyright: Mordechai (Moti) Ben-Ari
License: http://creativecommons.org/licenses/by/3.0/

Module: "Learning Objects for Control Structures in Java"
By: Mordechai (Moti) Ben-Ari
URL: http://cnx.org/content/m31246/1.1/
Pages: 3-11
Copyright: Mordechai (Moti) Ben-Ari
License: http://creativecommons.org/licenses/by/3.0/

Module: "Learning Objects for Methods in Java"
By: Mordechai (Moti) Ben-Ari
URL: http://cnx.org/content/m31247/1.1/
Pages: 13-24
Copyright: Mordechai (Moti) Ben-Ari
License: http://creativecommons.org/licenses/by/3.0/

Module: "Learning Objects for Arrays in Java"
By: Mordechai (Moti) Ben-Ari
URL: http://cnx.org/content/m31245/1.1/
Pages: 25-33
Copyright: Mordechai (Moti) Ben-Ari
License: http://creativecommons.org/licenses/by/3.0/

Module: "Learning Objects for Constructors in Java"
By: Mordechai (Moti) Ben-Ari
URL: http://cnx.org/content/m31248/1.1/
Pages: 35-48
Copyright: Mordechai (Moti) Ben-Ari
License: http://creativecommons.org/licenses/by/3.0/

Module: "Learning Objects for Inheritance in Java"
By: Mordechai (Moti) Ben-Ari
URL: http://cnx.org/content/m31249/1.1/
Pages: 49-67
Copyright: Mordechai (Moti) Ben-Ari
License: http://creativecommons.org/licenses/by/3.0/



Learning Objects for Java (with Jeliot)
This is a set of learning objects (LO) for studying introductory programming with Java. Each LO can be
studied independently. They are divided into �ve modules on the topics: control structures, methods, arrays,
constructors and inheritance. The LOs are designed for use with the Jeliot program animation system.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.


