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Chapter 1

Introduction to Iterative Design of l_p
Digital Filters1

1.1 Introduction

The design of digital �lters has fundamental importance in digital signal processing. One can �nd applications
of digital �lters in many diverse areas of science and engineering including medical imaging, audio and
video processing, oil exploration, and highly sophisticated military applications. Furthermore, each of these
applications bene�ts from digital �lters in particular ways, thus requiring di�erent properties from the �lters
they employ. Therefore it is of critical importance to have e�cient design methods that can shape �lters
according to the user's needs.

In this dissertation I use the discrete lp norm as the criterion for designing e�cient digital �lters. I also
introduce a set of algorithms, all based on the Iterative Reweighted Least Squares (IRLS) method, to solve a
variety of relevant digital �lter design problems. The proposed family of algorithms has proven to be e�cient
in practice; these algorithms share theoretical justi�cation for their use and implementation. Finally, the
document makes a point about the relevance of the lp norm as a useful tool in �lter design applications.

The rest of this chapter is devoted to motivating the problem. introduces the general �lter design problem
and some of the signal processing concepts relevant to this work. presents the basic Iterative Reweighted
Least Squares method, one of the key concepts in this document. introduces Finite Impulse Response (FIR)
�lters and covers theoretical motivations for lp design, including previous knowledge in lp optimization (both
from experiences in �lter design as well as other �elds of science and engineering). Similarly, introduces
In�nite Impulse Response (IIR) �lters. These last two sections lay down the structure of the proposed
algorithms, and provide an outline for the main contributions of this work.

Chapters and formally introduce the di�erent lp �lter design problems considered in this work and discuss
their IRLS-based algorithms and corresponding results. Each of these chapters provides a literary review of
related previous work as well as a discussion on the proposed methods and their corresponding results. An
important contribution of this work is the extension of known and well understood concepts in lp FIR �lter
design to the IIR case.

The problem of digital �lter design is indeed an optimization one in essence. Therefore Appendix intro-
duces basic yet relevant concepts from optimization theory. A section is devoted to Newton's method, one
of the most powerful and commonly used algorithms in nonlinear numerical optimization. As it turns out,
most problems in FIR �lter design are in fact some form of the more general linear systems approximation
problem; therefore Appendix presents the general problem of linear approximation in lp spaces (particularly
from the perspective of Newton's method); in fact, later chapters discuss the connections between Newton's
method and the proposed algorithms.

1This content is available online at <http://cnx.org/content/m34395/1.3/>.
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Chapter 2

Digital �lter design1

When designing digital �lters for signal processing applications one is often interested in creating objects
h ∈ RN in order to alter some of the properties of a given vector x ∈ RM (where 0<M,N <∞). Often the
properties of x that we are interested in changing lie in the frequency domain, with X = F (x) being the
frequency domain representation of x given by

x
F↔ X = AXe

jωφX (2.1)

where AX and φX are the amplitude and phase components of x, and F (·) : RN 7→ R∞ is the Fourier
transform operator de�ned by

F{h} = H (ω) ,
N−1∑
n=0

hne
−jωn ∀ ω ∈ [−π, π] (2.2)

So the idea in �lter design is to create �lters h such that the Fourier transform H of h posesses desirable
amplitude and phase characteristics.

The �ltering operator is the convolution operator (∗) de�ned by

(x ∗ h) (n) =
∑
m

x (m)h (n−m) (2.3)

An important property of the convolution operator is the Convolution Theorem[112] which states that

x ∗ h F↔ X ·H = (AX ·AH) ejω(φX+φH) (2.4)

where {AX , φX} and {AH , φH} represent the amplitude and phase components of X and H respectively. It
can be seen that by �lteringx with h one can apply a scaling operator to the amplitude of x and a biasing
operator to its phase.

1This content is available online at <http://cnx.org/content/m34397/1.3/>.
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4 CHAPTER 2. DIGITAL FILTER DESIGN

Figure 2.1: Example of a lowpass �lter.

A common use of digital �lters is to remove a certain band of frequencies from the frequency spectra of
x. Consider the lowpass �lter from Figure 2.1; note that only the desired amplitude response is shown (not
the phase response). Other types of �lters include band-pass, high-pass or band-reject �lters, depending on
the range of frequencies that they alter.

2.1 The notion of approximation in lp �lter design

Once a �lter design concept has been selected (such as that from Figure 2.1), the design problem becomes
�nding the optimal vector h ∈ Rn that most closely approximates our desired frequency response concept
(we will denote such optimal vector by h[U+2606]). This approximation problem will heavily depend on the
measure by which we evaluate all vectors h ∈ RN to choose h[U+2606].

In this document we consider the discrete lp norms de�ned by

‖ a ‖p = p

√∑
k

|ak|p ∀ a ∈ RN (2.5)

as measures of optimality, and consider a number of �lter design problems based upon this criterion. The
work explores the Iterative Reweighted Least Squares (IRLS) approach as a design tool, and provides a
number of algorithms based on this method. Finally, this work considers critical theoretical aspects and
evaluates the numerical properties of the proposed algorithms in comparison to existing general purpose
methods commonly used. It is the belief of the author (as well as the author's advisor) that the IRLS
approach o�ers a more tailored route to the lp �lter design problems considered, and that it contributes an
example of a made-for-purpose algorithm best suited to the characteristics of lp �lter design.



Chapter 3

The IRLS algorithm1

Iterative Reweighted Least Squares (IRLS) algorithms de�ne a family of iterative methods that solve an
otherwise complicated numerical optimization problem by breaking it into a series of weighted least squares
(WLS) problems, each one easier in principle than the original problem. At iteration i one must solve a
weighted least squares problem of the form

min
hi
‖ w (hi−1) f (hi) ‖2 (3.1)

where w (·) is a speci�c weighting function and f (·) is a function of the �lter. Obviously a large class of
problems could be written in this form (large in the sense that both w (·) and f (·) can be de�ned arbitrarily).
One case worth considering is the linear approximation problem de�ned by

min
h
‖ D −Ch ‖ (3.2)

where D ∈ RM and C ∈ RM×N are given, and ‖ · ‖ is an arbitrary measure. One could write f (·) in (3.1)
as

f (h) = D −Ch (3.3)

and attempt to �nd a suitable function w (·) to minimize the arbitrary norm ‖ · ‖ in (3.2). In vector
notation, at iteration i one can write (3.1) as follows,

min
hi
‖ w (hi−1) (D −Chi) ‖2 (3.4)

One can show (see Appendix for proof) that the solution of (3.4) for any iteration is given by

h =
(
CTWC

)−1
CTWD (3.5)

with W = diag
(
w2
)
(where w is the weighting vector). To solve problem (3.4) above, one could use the

following algorithm:

1. Set initial weights w0

2. At the i-th iteration �nd hi =
(
CTWi−1C

)−1
CTWi−1D

3. Update Wi as a function of hi (i.e. Wi = W (hi) )
4. Iterate steps 2 and 3 until a certain stopping criterion is reached

1This content is available online at <http://cnx.org/content/m41667/1.2/>.
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6 CHAPTER 3. THE IRLS ALGORITHM

This method will be referred in this work as the basic IRLS algorithm.
An IRLS algorithm is said to converge if the algorithm produces a sequence of points hi such that

lim
i→∞

hi = h∗ (3.6)

where h∗ is a �xed point de�ned by

h∗ =
(
CTW∗C

)−1
CTW∗D (3.7)

with W∗ = W (h∗). In principle one would want h∗ = h? (as de�ned in ).
IRLS algorithms have been used in di�erent areas of science and engineering. Their atractiveness stem

from the idea of simplifying a di�cult problem as a sequence of weighted least squares problems that can be
solved e�ciently with programs such as Matlab or LAPACK. However (as it was mentioned above) success
is determined by the existence of a weighting function that leads to a �xed point that happens to be at least
a local solution of the problem in question. This might not be the case for any given problem. In the case
of lp optimization one can justify the use of IRLS methods by means of the following theorem:

Theorem 3.1: Weight Function Existence theorem
Let gk (ω) be a Chebyshev set and de�ne

H (h;ω) =
M∑
k=0

hkgk (ω) (3.8)

where h = (h0, h1, ..., hM )T . Then, given D (ω) continuous on [0, π] and 1<q<p≤∞ the following
are identical sets:

• {h | H (h;ω) is a best weighted Lp approximation toD (ω) on [0, π]}.
• {h | H (h;ω) is a best weighted Lq approximation to D (ω) on [0, π]}.

Furthermore, the theorem above is valid if the interval [0, π] is replaced by a �nite point set Ω ⊂ [0, π]
(this theorem is accredited to Motzkin and Walsh [108], [62]).

Theorem 3.1, Weight Function Existence theorem, p. 6 is fundamental since it establishes that weights
exist so that the solution of an Lp problem is indeed the solution of a weighted Lq problem (for arbitrary
p, q > 1). Furthermore the results of Theorem 3.1, Weight Function Existence theorem, p. 6 remain valid
for lp and lq. For our purposes, this theorem establishes the existence of a weighting function so that the
solution of a weighted l2 problem is indeed the solution of an lp problem; the challenge then is to �nd
the corresponding weighting function. The remainder of this document explores this task for a number of
relevant �lter design problems and provides a consistent computational framework.



Chapter 4

Finite Impulse Response (FIR) l_p
design1

A Finite Impulse Response (FIR) �lter is an ordered vector h ∈ RN (where 0 <N <∞), with a complex
polynomial form in the frequency domain given by

H (ω) =
N−1∑
n=0

hne
−jωn (4.1)

The �lter H (ω) contains amplitude and phase components {AH (ω) , φH (ω)} that can be designed to suit
the user's purpose.

Given a desired frequency response D (ω), the general lp approximation problem is given by

min
h
‖ D (ω)−H (h;ω) ‖p (4.2)

In the most basic scenario D (ω) would be a complex valued function, and the optimization algorithm would
minimize the lp norm of the complex error function ε (ω) = D (ω) − H (ω); we refer to this case as the
complex lp design problem (refer to ).

One of the caveats of solving complex approximation problems is that the user must provide desired
magnitude and phase speci�cations. In many applications one is interested in removing or altering a range
of frequencies from a signal; in such instances it might be more convenient to only provide the algorithm with
a desired magnitude function while allowing the algorithm to �nd a phase that corresponds to the optimal
magnitude design. The magnitude lp design problem is given by

min
h
‖ D (ω)− |H (h;ω) | ‖p (4.3)

where D (ω) is a real, positive function. This problem is discussed in .
Another problem that uses no phase information is the linear phaselp problem. It will be shown in that

this problem can be formulated so that only real functions are involved in the optimization problem (since
the phase component of H (ω) has a speci�c linear form).

An interesting case results from the idea of combining di�erent norms in di�erent frequency bands of a
desired function D (ω). One could assign di�erent p-values for di�erent bands (for example, minimizing the
error energy (ε2) in the passband while using a minimax error (ε∞) approach in the stopband to keep control
of noise). The frequency-varying lp problem is formulated as follows,

min
h
‖ (D −H) (ωpb) ‖p + ‖ (D −H) (ωsb) ‖q (4.4)

1This content is available online at <http://cnx.org/content/m41668/1.2/>.
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8 CHAPTER 4. FINITE IMPULSE RESPONSE (FIR) L_P DESIGN

where {ωpb, ωpb} are the passband and stopband frequency ranges respectively (and 2<p, q<∞).
Perhaps the most relevant problem addressed in this work is the Constrained Least Squares (CLS)

problem. In a continuous sense, a CLS problem is de�ned by

min
h

‖ d (ω)−H (ω) ‖2
subject to |d (ω)−H (ω) |≤τ

(4.5)

The idea is to minimize the error energy across all frequencies, but ensuring �rst that the error at each
frequency does not exceed a given tolerance τ . explains the details for this problem and shows that this type
of formulation makes good sense in �lter design and can e�ciently be solved via IRLS methods.

4.1 The IRLS algorithm and FIR literature review

A common approach to dealing with highly structured approximation problems consists in breaking a complex
problem into a series of simpler, smaller problems. Often, one can even prove important mathematical
properties in this way. Consider the lp approximation problem introduced in ,

min
h
‖ f (h) ‖p (4.6)

For simplicity at this point we can assume that f (·) : RN 7→ RM is linear. It is relevant to mention that
(4.6) is equivalent to

min
h
‖ f (h) ‖pp (4.7)

In its most basic form the lp IRLS algorithm works by rewriting (4.7) into a weighted least squares problem
of the form

min
h
‖ w (h) f (h) ‖22 (4.8)

Since a linear weighted least squares problem like (4.8) has a closed form solution (see Appendix ), it can
be solved in one step. Then the solution is used to update the weighting function, which is kept constant
for the next closed form solution and so on (as discussed in ).

One of the earlier works on the use of IRLS methods for lp approximation was written by Charles Lawson
[53], [80], [79], in part motivated by problems that might not have a suitable l∞ algorithm. He looked at a
basic form of the IRLS method to solve l∞ problems and extended it by proposing a multiplicative update
of the weighting coe�cients at each iteration (that is, wk+1 (ω) = f (ω) ·wk (ω)). Lawson's method triggered
a number of papers and ideas; however his method is sensitive to the weights becoming numerically zero; in
this case the algorithm must restart. A number of ideas [80], [79] have been proposed (some from Lawson
himself) to prevent or deal with these occurrences, and in general his method is considered somewhat slow.

John Rice and Karl Usow [80], [17] extended Lawson's method to the general lp problem (2<p<∞) by
developing an algorithm based on Lawson's that also updates the weights in a multiplicative form. They
used the results from Theorem by Motzkin and Walsh [109], [63] to guarantee that a solution indeed exists
for the lp problem. They de�ned

wk+1 (ω) = wαk (ω) |εk (ω) |β (4.9)

where

α =
γ (p− 2)

γ (p− 2) + 1
(4.10)
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and

β =
α

2γ
=

p− 2
2 (γ (p− 2) + 1)

(4.11)

with γ being a convergence parameter and ε (ω) = d (ω)−H (ω). The rest of the algorithm works the same
way as the basic IRLS method; however the proper selection of γ could allow for strong convergence (note
that for γ = 0 we obtain the basic IRLS algorithm).

Another approach to solve (4.6) consists in a partial updating strategy of the �lter coe�cients rather
than the weights, by using a temporary coe�cient vector de�ned by

^
ak+1 =

[
CTWT

kWkC
]−1

CTWT
kWkAd (4.12)

The �lter coe�cients after each iteration are then calculated by

ak+1 = λ
^
ak+1 + (1− λ) ak (4.13)

where λ is a convergence parameter (with 0 < λ < 1). This approach is known as the Karlovitz method
[46], and it has been claimed that it converges to the global optimal solution for even values of p such that
4≤p<∞. However, in practice several convergence problems have been found even under such assumptions.
One drawback is that the convergence parameter λ has to be optimized at each iteration via an expensive
line search process. Therefore the overall execution time becomes rather large.

S. W. Kahng [44] developed an algorithm based on Newton-Raphson's method that uses

λ =
1

p− 1
(4.14)

to get

ak+1 =
^
ak+1 + (p− 2) ak

p− 1
(4.15)

This selection for λ is based upon Newton's method to minimize ε (the same result was derived independently
by Fletcher, Grant and Hebden [31]). The rest of the algorithm follows Karlovitz's approach; however since
λ is �xed there is no need to perform the linear search for its best value. Since Kahng's method is based
on Newton's method, it converges quadratically to the optimal solution. Kahng proved that his method
converges for all cases of λ and for any problem (at least in theory). It can be seen that Kahng's method
is a particular case of Karlovitz's algorithm, with λ as de�ned in (4.14). Newton-Raphson based algorithms
are not warranted to converge to the optimal solution unless they are somewhat close to the solution since
they require to know and invert the Hessian matrix of the objective function (which must be positive de�nite
[8]). However, their associated quadratic convergence makes them an appealing option.

Burrus, Barreto and Selesnick developed a method [17], [10], [16] that combines the powerful quadratic
convergence of Newton's methods with the robust initial convergence of the basic IRLS method, thus over-
coming the initial sensitivity of Newton-based algorithms and the slow linear convergence of Lawson-based
methods. To accelerate initial convergence, their approach to solve (4.6) uses p = σ ∗ 2, where σ is a conver-
gence parameter (with 1<σ≤2). At any given iteration, p increases its value by a factor of σ. This is done
at each iteration, so to satisfy

pk = min (pdes, σ · pk−1) (4.16)

where pdes corresponds to the desired lp norm. The implementation of each iteration follows Karlovitz's
method using the particular selection of p given by (4.16).
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Figure 4.1: Homotopy approach for IRLS lp �lter design.

It is worth noting that the method outlined above combines several ideas into a powerful approach. By
not solving the desired lp problem from the �rst iteration, one avoids the potential issues of Newton-based
methods where convergence is guaranteed within a radius of convergence. It is well known that for 2≤p≤∞
there exists a continuum of lp solutions (as shown in Figure 4.1). By slowly increasing p from iteration
to iteration one hopes to follow the continuum of solutions from l2 towards the desired p. By choosing a
reasonable σ the method can only spend one iteration at any given p and still remain close enough to the
optimal path. Once the algorithm reaches a neighborhood of the desired p, it can be allowed to iterate at
such p, in order to converge to the optimal solution. This process is analogous to homotopy, a commonly
used family of optimization methods [64].

While l2 and l∞ designs o�er meaningful approaches to �lter design, the Constrained Least Squares
(CLS) problem o�ers an interesting tradeo� to both approaches [5]. In the context of �lter design, the CLS
problem seems to be �rst presented by John Adams [2] in 1991. The problem Adams posed is a Quadratic
Programming (QP) problem, well suited for o�-the-shelf QP tools like those based on Lagrange multiplier
theory [2]. However, Adams posed the problem in such a way that a transition band is required (as shown
in Figure 4.2). Burrus et al. presented a formulation [85], [52], [87] where only a transition frequency is
required; the transition band is induced; it does indeed exist but is not speci�ed (it adjusts itself optimally
according to the constraint speci�cations). The method by Burrus et al. is based on Lagrange multipliers
and the Karush-Kuhn-Tucker (KKT) conditions.

Figure 4.2: Lowpass �lter showing transition band.

An alternative to the KKT-based method mentioned above is the use of IRLS methods where a suitable



11

weighting function serves as the constraining function over frequencies that exceed the constraint tolerance.
Otherwise no weights are used, e�ectively forcing a least-squares solution. While this idea has been suggested
by Burrus et al., one of the main contributions of this work is a thorough investigation of this approach, as
well as proper documentation of numerical results, theoretical �ndings and proper code.
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Chapter 5

In�nite Impulse Response (IIR) l_p
design1

In contrast to FIR �lters, an In�nite Impulse Response (IIR) �lter is de�ned by two ordered vectors a ∈ RN
and b ∈ RM+1 (where 0<M,N<∞), with frequency response given by

H (ω) =
B (ω)
A (ω)

=

M∑
n=0

bne
−jωn

1 +
N∑
n=1

ane−jωn
(5.1)

Hence the general lp approximation problem is

min
an,bn

‖

M∑
n=0

bne
−jωn

1 +
N∑
n=1

ane−jωn
−D (ω) ‖

p

(5.2)

which can be posed as a weighted least squares problem of the form

min
an,bn

‖w (ω) ·


M∑
n=0

bne
−jωn

1 +
N∑
n=1

ane−jωn
−D (ω)

 ‖22 (5.3)

It is possible to design similar problems to the ones outlined in for FIR �lters. However, it is worth keeping
in mind the additonal complications that IIR design involves, including the nonlinear least squares problem
presented in Section 5.1 (Least squares IIR literature review) below.

5.1 Least squares IIR literature review

The weighted nonlinear formulation presented in (5.3) suggests the possibility of taking advantage of the
�exibilities in design from the FIR problems. However this point comes at the expense of having to solve at
each iteration a weighted nonlinear l2 problem. Solving least squares approximations with rational functions
is a nontrivial problem that has been studied extensively in diverse areas including statistics, applied math-
ematics and electrical engineering. One of the contributions of this document is a presentation in on the

1This content is available online at <http://cnx.org/content/m41669/1.2/>.
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subject of l2 IIR �lter design that captures and organizes previous relevant work. It also sets the framework
for the proposed methods used in this document.

In the context of IIR digital �lters there are three main groups of approaches to (5.3). presents relevant
work in the form of traditional optimization techniques. These are methods derived mainly from the applied
mathematics community and are in general e�cient and well understood. However the generality of such
methods occasionally comes at the expense of being ine�cient for some particular problems. Among the
methods found in literature, the Davidon-Flecther-Powell (DFP) algorithm [33], the damped Gauss-Newton
method [27], [103], the Levenberg-Marquardt algorithm [95], [93], and the method of Kumaresan [48], [38]
form the basis of a number of methods to solve (5.2).

A di�erent approach to (5.2) from traditional optimization methods consists in linearizing (5.3) by
transforming the problem into a simpler, linear form. While in principle this proposition seems inadequate
(as the original problem is being transformed), presents some logical attemps at linearizing (5.3) and how
they connect with the original problem. The concept of equation error (a weighted form of the solution
error that one is actually interested in solving) has been introduced and employed by a number of authors.
In the context of �lter design, E. Levy [55] presented an equation error linearization formulation in 1959
applied to analog �lters. An alternative equation error approach presented by C. S. Burrus [71] in 1987 is
based on the methods by Prony [24] and Pade [69]. The method by Burrus can be applied to frequency
domain digital �lter design, and is used in selected stages in some of the algorithms presented in this work.

An extension of the equation error methods is the group of iterative pre�ltering algorithms presented
in . These methods build on equation error methods by weighting (or pre�ltering) their equation error
formulation iteratively, with the intention to converge to the minimum of the solution error. Sanathanan
and Koerner [83] presented in 1963 an algorithm (SK) that builds on an extension of Levy's method by
iterating on Levy's formulation. Sid-Ahmed, Chottera and Jullien [57] presented in 1978 a similar algorithm
to the SK method but applied to the digital �lter problem.

A popular and well understood method is the one by Steiglitz and McBride [50], [97] introduced in 1966.
The SMB method is time-domain based, and has been extended to a number of applications, including
the frequency domain �lter design problem [89]. Steiglitz and McBride used a two-phase method based on
linearization. Initially (in Mode-1) their algorithm is essentially that of Sanathanan and Koerner but in
time. This approach often diverges when close to the solution; therefore their method can optionally switch
to Mode-2, where a more traditional derivative-based approach is used.

A more recent linearization algorithm was presented by L. Jackson [40] in 2008. His approach is an
iterative pre�ltering method based directly in frequency domain, and uses diagonalization of certain matrices
for e�ciency.

While intuitive and relatively e�cient, most linearization methods share a common problem: they often
diverge close to the solution (this e�ect has been noted by a number of authors; a thorough review is presented
in [89]). presents the quasilinearization method derived by A. Soewito [89] in 1990. This algorithm is robust,
e�cient and well-tailored for the least squares IIR problem, and is the method of choice for this work.



Chapter 6

Introduction to Finite Impulse Response
Filters1

This chapter discusses the problem of designing Finite Impulse Response (FIR) digital �lters according to
the lp error criterion using Iterative Reweighted Least Squares methods. Section 6.1 (Traditional design
of FIR �lters) gives an introduction to FIR �lter design, including an overview of traditional FIR design
methods. For the purposes of this work we are particularly interested in l2 and l∞ design methods, and their
relation to relevant lp design problems. formally introduces the linear phase problem and presents results
that are common to most of the problems considered in this work. Finally, Sections through present the
application of the Iterative Reweighted Least Squares algorithm to other important problems in FIR digital
�lter design, including the relevant contributions of this work.

6.1 Traditional design of FIR �lters

introduced the notion of digital �lters and �lter design. In a general sense, an FIR �lter design problem has
the form

min
h
‖ f (h) ‖ (6.1)

where f (·) de�nes an error function that depends on h, and ‖ · ‖ is an abitrary norm. While one could come
up with a number of error formulations for digital �lters, this chapter elaborates on the most commonly used,
namely the linear phase and complex problems (both satisfy the linear form f (h) = D−Ch as will be shown
later in this chapter). As far as norms, typically the l2 and l∞ norms are used. One of the contributions of
this work is to demonstrate the usefulness of the more general lp norms and their feasibility by using e�cient
IRLS-based algorithms.

6.1.1 Traditional design of least squares (l2) FIR �lters

Typically, FIR �lters are designed by discretizing a desired frequency response Hd (ω) by taking L frequency
samples at {ω0, ω1, ..., ωL−1}. One could simply take the inverse Fourier transform of these samples and
obtain L �lter coe�cients; this approach is known as the Frequency Sampling design method [72], which
basically interpolates the frequency spectrum over the samples. However, it is often more desirable to take
a large number of samples to design a small �lter (large in the sense that L � N , where L is the number

1This content is available online at <http://cnx.org/content/m41670/1.2/>.
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16 CHAPTER 6. INTRODUCTION TO FINITE IMPULSE RESPONSE FILTERS

of frequency samples and N is the �lter order). The weighted least-squares (l2) norm (which considers the
error energy) is de�ned by

ε2 , ‖ ε (ω) ‖2 =
(

1
π

∫ π

0

W (ω) |D (ω)−H (ω) |2dω
) 1

2

(6.2)

where D (ω) and H (ω) = F (h) are the desired and designed amplitude responses respectively. By ac-
knowledging the convexity of (6.2), one can drop the root term; therefore a discretized form of (6.2) is given
by

ε2 =
L−1∑
k=0

W (ωk) |D (ωk)−H (ωk) |2 (6.3)

As discussed in Appendix , equation (6.3) takes the form of , and its solution is given by

h =
(
CTWTWC

)−1
CTWTWD (6.4)

where W = diag (
√
w) contains the weighting vector w. By solving (6.4) one obtains an optimal l2 approx-

imation to the desired frequency response D (ω). Further discussion and other variations on least squares
FIR design can be found in [72].

6.1.2 Traditional design of minimax (l∞) FIR �lters

In contrast to l2 design, an l∞ �lter minimizes the maximum error across the designed �lter's frequency
response. A formal formulation of the problem [7], [23] is given by

min
h

max
ω
|D (ω)−H (ω;h) | (6.5)

A discrete version of (6.5) is given by

min
h

max
k
|D (ωk)− Ckh| (6.6)

Within the scope of �lter design, the most commonly approach to solving (6.6) is the use of the Alternation
Theorem [21], in the context of linear phase �lters (to be discussed in ). In a nutshell the alternation theorem
states that for a length-N FIR linear phase �lter there are at least N + 1 extrema points (or frequencies).
The Remez exchange algorithm [72], [7], [23] aims at �nding these extrema frequencies iteratively, and is the
most commonly used method for the minimax linear phase FIR design problem. Other approaches use more
standard linear programming methods including the Simplex algorithm [22], [101] or interior point methods
such as Karmarkar's algorithm [82].

The l∞ problem is fundamental in �lter design. While this document is not aimed covering the l∞
problem in depth, portions of this work are devoted to the use of IRLS methods for standard problems as
well as some innovative uses of minimax optimization.



Chapter 7

Linear phase l_p �lter design1

Linear phase FIR �lters are important tools in signal processing. As will be shown below, they do not require
the user to specify a phase response in their design (since the assumption is that the desired phase response
is indeed linear). Besides, they satisfy a number of symmetry properties that allow for the reduction of
dimensions in the optimization process, making them easier to design computationally. Finally, there are
applications where a linear phase is desired as such behavior is more physically meaningful.

7.1 Four types of linear phase �lters

The frequency response of an FIR �lter h (n) is given by

H (ω) =
N−1∑
n=0

h (n) e−jωn (7.1)

In general, H (ω) = R (ω) + jI (ω) is a periodic complex function of ω (with period 2π). Therefore it can
be written as follows,

H (ω) = R (ω) + jI (ω)

= A (ω) ejφ(ω)
(7.2)

where the magnitude response is given by

A (ω) = |H (ω) | =
√
R(ω)2 + I(ω)2 (7.3)

and the phase response is

φ (ω) = sin

(
I (ω)
R (ω)

)
(7.4)

However A (ω) is not analytic and φ (ω) is not continuous. From a computational point of view (7.2) would
have better properties if both A (ω) and φ (ω) were continuous analytic functions of ω; an important class
of �lters for which this is true is the class of linear phase �lters [73].

Linear phase �lters have a frequency response of the form

H (ω) = A (ω) ejφ(ω) (7.5)

1This content is available online at <http://cnx.org/content/m41671/1.2/>.

17



18 CHAPTER 7. LINEAR PHASE L_P FILTER DESIGN

where A (ω) is the real, continuous amplitude response of H (ω) and

φ (ω) = K1 +K2ω (7.6)

is a linear phase function in ω (hence the name); K1 and K2 are constants. Figure 7.1 shows the frequency
response for a linear phase FIR �lter. The jumps in the phase response correspond to sign reversals in the
magnitude resulting as de�ned in (7.3).

Figure 7.1: Frequency response of a linear phase FIR �lter. Left: magnitude and phase responses.
Right: amplitude and linear phase responses.

Consider a length-N FIR �lter (assume for the time being that N is odd). Its frequency response is given
by

H (ω) =
∑N−1
n=0 h (n) e−jωn

= e−jωM
∑2M
n=0 h (n) ejω(M−n)

(7.7)

where M = N−1
2 . Equation (7.7) can be written as follows,

H (ω) = e−jωM
[
h (0) ejωM + ...+ h (M − 1) ejω + h (M) + h (M + 1) e−jω

+ ...+ h (2M) e−jωM
(7.8)

It is clear that for an odd-length FIR �lter to have the linear phase form described in (7.5), the term inside
braces in (7.8) must be a real function (thus becoming A (ω)). By imposing even symmetry on the �lter
coe�cients about the midpoint (n = M), that is

h (k) = h (2M − k) (7.9)
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(7.8) becomes

H (ω) = e−jωM

[
h (M) + 2

M−1∑
n=0

h (n) cosω (M − n)

]
(7.10)

Similarly, with odd symmetry (i.e. h (k) = h (2M − k)) equation (7.8) becomes

H (ω) = ej(
π
2−ωM)2

M−1∑
n=0

h (n) tan−1ω (M − n) (7.11)

Note that the term h (M) disappears as the symmetry condition requires that

h (M) = h (N −M − 1) = −h (M) = 0 (7.12)

Similar expressions can be obtained for an even-length FIR �lter,

H (ω) =
∑N−1
n=0 h (n) e−jωn

= e−jωM
∑N

2 −1
n=0 h (n) ejω(M−n)

(7.13)

It is clear that depending on the combinations of N and the symmetry of h (n), it is possible to obtain four
types of �lters [73], [66], [19]. Table 7.1 shows the four possible linear phase FIR �lters described by (7.5).

N Odd
Even Symmetry

A (ω) = h (M) + 2
∑M−1
n=0 h (n) ·

cosω (M − n)

φ (ω) = −ωM

Odd Symmetry

A (ω) = 2
∑M−1
n=0 h (n) ·

sinω (M − n)

φ (ω) = π
2 − ωM

N Even
Even Symmetry

A (ω) = h (M) + 2
∑N

2 −1
n=0 h (n) ·

cosω (M − n)

φ (ω) = −ωM

continued on next page
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Odd Symmetry

dA (ω) = 2
∑N

2 −1
n=0 h (n) ·

sinω (M − n)

φ (ω) = π
2 − ωM

Table 7.1: The four types of linear phase FIR �lters.

7.2 IRLS-based methods

Section 7.1 (Four types of linear phase �lters) introduced linear phase �lters in detail. In this section we
cover the use of IRLS methods to design linear phase FIR �lters according to the lp optimality criterion.
Recall from Section 7.1 (Four types of linear phase �lters) that for any of the four types of linear phase �lters
their frequency response can be expressed as

H (ω) = A (ω) ej(K1+K2ω) (7.14)

Since A (ω) is a real continuous function as de�ned by Table 7.1, one can write the linear phase lp design
problem as follows

min
a
‖ D (ω)−A (ω; a) ‖pp (7.15)

where a relates to h by considering the symmetry properties outlined in Table 7.1. Note that the two objects
from the objective function inside the lp norm are real. By sampling (7.15) one can write the design problem
as follows

min
a

∑
k

|D (ωk)−A (ωk; a) |p (7.16)

or

min
a

∑
k

|Dk − Cka|p (7.17)

where Dk is the k-th element of the vector D representing the sampled desired frequency response D (ωk),
and Ck is the k-th row of the trigonometric kernel matrix as de�ned by Table 7.1.

One can apply the basic IRLS approach described in to solve (7.17) by posing this problem as a weighted
least squares one:

min
a

∑
k

wk|Dk − Cka|2 (7.18)

The main issue becomes iteratively �nding suitable weights w for (7.18) so that the algorithm converges to
the optimal solution a? of the lp problem (7.15). Existence of adequate weights is guaranteed by Theorem
as presented in ; �nding these optimal weights is indeed the di�cult part. Clearly a reasonable choice for w
is that which turns (7.18) into (7.17), namely

w = |D −Ca|p−2
(7.19)

Therefore the basic IRLS algorithm for problem (7.17) would be:

1. Initialize the weights w0 (a reasonable choice is to make them all equal to one).
2. At the i-th iteration the solution is given by

ai+1 =
[
CTWT

i WiC
]−1

CTWT
i WiD (7.20)
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3. Update the weights with
wi+1 = |D −Cai+1|p−2

(7.21)

4. Repeat the last steps until convergence is reached.

It is important to note from Appendix that Wi = diag
(√
wi
)
. In practice it has been found that this

approach has practical de�ciencies, since the inversion required by (7.20) often leads to an ill-posed problem
and, in most cases, convergence is not achieved.

As mentioned before, the basic IRLS method has drawbacks that make it unsuitable for practical imple-
mentations. Charles Lawson considered a version of this algorithm applied to the solution of l∞ problems
(for details refer to [54]). His method has linear convergence and is prone to problems with proportionately
small residuals that could lead to zero weights and the need for restarting the algorithm. In the context of lp
optimization, Rice and Usow [81] built upon Lawson's method by adapting it to lp problems. Like Lawson's
methods, the algorithm by Rice and Usow updates the weights in a multiplicative manner; their method
shares similar drawbacks with Lawson's. Rice and Usow de�ned

wi+1 (ω) = wαi (ω) |εi (ω) |β (7.22)

where

α =
γ (p− 2)

γ (p− 2) + 1
(7.23)

and

β =
α

2γ
=

p− 2
2γ (p− 2) + 2

(7.24)

and follow the basic algorithm.
L. A. Karlovitz realized the computational problems associated with the basic IRLS method and improved

on it by partially updating the �lter coe�cient vector. He de�nes

^
ai+1 =

[
CTWT

i WiC
]−1

CTWT
i WiD (7.25)

and uses
^
a in

ai+1 = λ
^
ai+1 + (1− λ) ai (7.26)

where λ ∈ [0, 1] is a partial step parameter that must be adjusted at each iteration. Karlovitz's method
[45] has been shown to converge globally for even values of p (where 2≤ p<∞). In practice, convergence
problems have been found even under such assumptions. Karlovitz proposed the use of line searches to �nd
the optimal value of λ at each iteration, which basically creates an independent optimization problem nested
inside each iteration of the IRLS algorithm. While computationally this search process for the optimal λ
makes Karlovitz's method impractical, his work indicates the feasibility of IRLS methods and proves that
partial updating indeed overcomes some of the problems in the basic IRLS method. Furthermore, Karlovitz's
method is the �rst one to depart from a multiplicative updating of the weights in favor of an additive updating
on the �lter coe�cients. In this way some of the problems in the Lawson-Rice-Usow approach are overcome,
especially the need for restarting the algorithm.

S. W. Kahng built upon the �ndings by Karlovitz by considering the process of �nding an adequate λ
for partial updating. He applied Newton-Raphson's method to this problem and proposed a closed form
solution for λ, given by

λ =
1

p− 1
(7.27)
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resulting in

ai+1 = λ
^
ai+1 + (1− λ) ai (7.28)

The rest of Kahng's algorithm follows Karlovitz's approach. However, since λ is �xed, there is no need to
perform the linear search at each iteration. Kahng's method has an added bene�t: since it uses Newton's
method to �nd λ, the algorithm tends to converge much faster than previous approaches. It has indeed
been shown to converge quadratically. However, Newton-Raphson-based algorithms are not guaranteed to
converge globally unless at some point the existing solution lies close enough to the solution, within their
radius of convergence [9]. Fletcher, Grant and Hebden[32] derived the same results independently.

Burrus, Barreto and Selesnick [18], [11], [15] modi�ed Kahng's methods in several important ways in
order to improve on their initial and �nal convergence rates and the method's stability (we refer to this
method as BBS). The �rst improvement is analogous to a homotopy [65]. Up to this point all e�orts in lp
�lter design attempted to solve the actual lp problem from the �rst iteration. In general there is no reason
to believe that an initial guess derived from an unweighted l2 formulation (that is, the l2 design that one

would get by setting w0 =
^
1) will look in any way similar to the actual lp solution that one is interested in.

However it is known that there exists a continuity of lp solutions for 1<p<∞. In other words, if a?2 is the
optimal l2 solution, there exists a p for which the optimal lp solution a?p is arbitrarily close to a?2 ; that is,
for a given δ>0

‖ a?2 − a?p ‖ ≤δ for some p ∈ (2,∞) (7.29)

This fact allows anyone to gradually move from an lp solution to an lq solution.
To accelerate initial convergence, the BBS method of Burrus et al. initially solves for l2 by setting p0 = 2

and then sets pi = σ · pi−1, where σ is a convergence parameter de�ned by 1≤σ≤2. Therefore at the i-th
iteration

pi = min (pdes, σpi−1) (7.30)

where pdes corresponds to the desired lp solution. The implementation of each iteration follows Karlovitz's
method with Kahng's choice of λ, using the particular selection of p given by (7.30).

To summarize, de�ne the class of IRLS algorithms as follows: after i iterations, given a vector ai the
IRLS iteration requires two steps,

1. Find wi = f (ai)
2. Find ai+1 = g (wi, ai)

The following is a summary of the IRLS-based algorithms discussed so far and their corresponding updating
functions:

1. Basic IRLS algorithm.

• wi = |D −Cai|p−2

• Wi = diag
(√
wi
)

• ai+1 =
[
CTWT

i WiC
]−1

CTWT
i WiD

2. Rice-Usow-Lawson (RUL) method

• wi = wαi−1|D −Cai|
α
2γ

• Wi = diag (wi)
• ai+1 =

[
CTWT

i WiC
]−1

CTWT
i WiD

• α = γ(p−2)
γ(p−2)+1

• γ constant

3. Karlovitz' method
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• wi = |D −Cai|p−2

• Wi = diag
(√
wi
)

• ai+1 = λ
[
CTWT

i WiC
]−1

CTWT
i WiD + (1− λ) ai

• λ constant

4. Kahng's method

• wi = |D −Cai|p−2

• Wi = diag
(√
wi
)

• ai+1 =
(

1
p−1

) [
CTWT

i WiC
]−1

CTWT
i WiD +

(
p−2
p−1

)
ai

5. BBS method

• pi = min (pdes, σ · pi−1)
• wi = |D −Cai|pi−2

• Wi = diag
(√
wi
)

• ai+1 =
(

1
pi−1

) [
CTWT

i WiC
]−1

CTWT
i WiD +

(
pi−2
pi−1

)
ai

• σ constant

7.3 Modi�ed adaptive IRLS algorithm

Much of the performance of a method is based upon whether it can actually converge given a certain error
measure. In the case of the methods described above, both convergence rate and stability play an important
role in their performance. Both Karlovitz and RUL methods are supposed to converge linearly, while Kahng's
and the BBS methods converge quadratically, since they both use a Newton-based additive update of the
weights.

Barreto showed in [11] that the modi�ed version of Kahng's method (or BBS) typically converges faster
than the RUL algorithm. However, this approach presents some peculiar problems that depend on the
transition bandwidth β. For some particular values of β, the BBS method will result in an ill-posed weight
matrix that causes the lp error to increase dramatically after a few iterations as illustrated in Figure 7.2
(where f = ω/2π).
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Figure 7.2: Error jumps on IRLS methods.

Two facts can be derived from the examples in Figure 7.2: for this particular bandwidth the error
increased slightly after the �fth and eleventh iterations, and increased dramatically after the sixteenth. Also,
it is worth to notice that after such increase, the error started to decrease quadratically and that, at a certain
point, the error became �at (thus reaching the numerical accuracy limits of the digital system).

The e�ects of di�erent values of σ were studied to �nd out if a relationship between σ and the error
increase could be determined. Figure 7.3 shows the lp error for di�erent values of β and for σ = 1.7. It can
be seen that some particular bandwidths cause the algorithm to produce a very large error.
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Figure 7.3: Relationship between bandwidth and error jumps.

Our studies (as well as previous work from J. A. Barreto [11]) demonstrate that this error explosion occurs
only for a small range of bandwidth speci�cations. Under most circumstances the BBS method exhibits fast
convergence properties to the desired solution. However at this point it is not understood what causes the
error increase and therefore this event cannot be anticipated. In order to avoid such problem, I propose the
use of an adaptive scheme that modi�es the BBS step. As p increases the step from a current lp guess to the
next also increases, as described in (7.30). In other words, at the i-th iteration one approximates the l2σi
solution (as long as the algorithm has not yet reached the desired p); the next iteration one approximates
l2σi+1 . There is always a possibility that these two solutions lie far apart enough that the algorithm takes a
descent step so that the l2σi+1guess is too far away from the actual l2σi+1 solution. This is better illustrated
in Figure 7.4.

Figure 7.4: A step too long for IRLS methods.

The conclusions derived above suggest the possibility to use an adaptive algorithm [106] that changes
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the value of σ so that the error always decreases. This idea was implemented by calculating temporary new
weight and �lter coe�cient vectors that will not become the updated versions unless their resulting error is
smaller than the previous one. If this is not the case, the algorithm "tries" two values of σ, namely

σL = σ ∗ (1− δ) and σH = σ ∗ (1 + δ) (7.31)

(where δ is an updating variable). The resulting errors for each attempt are calculated, and σ is updated
according to the value that produced the smallest error. The error of this new σ is compared to the error
of the nonupdated weights and coe�cients, and if the new σ produces a smaller error, then such vectors
are updated; otherwise another update of σ is performed. The modi�ed adaptive IRLS algorithm can be
summarized as follows,

1. Find the unweighted approximation a0 =
[
CTC

]−1
CTD and use p0 = 2σ (with 1≤σ≤2)

2. Iteratively solve (7.25) and (7.26) using λi = 1
pi−1 and �nd the resulting error εi for the i-th iteration

3. If εi � εi−1,

• Calculate (7.31)
• Select the smallest of εσL and εσH to compare it with εi until a value is found that results in a

decreasing error

Otherwise iterate as in the BBS algorithm.

Figure 7.5: FIR design example using adaptive method. a) lp error obtained with the adaptive method;
b) Change of σ.

The algorithm described above changes the value of σ that causes the algorithm to produce a large error.
The value of σ is updated as many times as necessary without changing the values of the weights, the �lter



27

coe�cients, or p. If an optimal value of σ exists, the algorithm will �nd it and continue with this new value
until another update in σ becomes necessary.

The algorithm described above was implemented for several combinations of σ and β; for all cases the
new algorithm converged faster than the BBS algorithm (unless the values of σ and β are such that the error
never increases). The results are shown in Figure 7.5.a for the speci�cations from Figure 7.2. Whereas using
the BBS method for this particular case results in a large error after the sixteenth iteration, the adaptive
method converged before ten iterations.

Figure 7.5.b illustrates the change of σ per iteration in the adaptive method, using an update factor of
δ = 0.1. The lp error stops decreasing after the �fth iteration (where the BBS method introduces the large
error); however, the adaptive algorithm adjusts the value of σ so that the lp error continues decreasing. The
algorithm decreased the initial value of σ from 1.75 to its �nal value of 1.4175 (at the expense of only one
additional iteration with σ = 1.575).

Figure 7.6: Relationship between l2 and l∞ errors for lp FIR �lter design.

One result worth noting is the relationship between l2 and l∞ solutions and how they compare to lp
designs. Figure 7.6 shows a comparison of designs for a length-21 Type-I linear phase low pass FIR �lter with
transition band de�ned by f = {0.2, 0.24}. The curve shows the l2 versus l∞ errors (namely ε2 and ε∞); the
values of p used to make this curve were p = {2, 2.2, 2.5, 3, 4, 5, 7, 10, 15, 20, 30, 50, 60, 100, 150, 200, 400,∞}
(Matlab's firls and firpm functions were used to design the l2 and l∞ �lters respectively). Note the very
small decrease in ε∞ after p reaches 100. The curve suggests that a better compromise between ε2 and ε∞ can
be reached by choosing 2<p<∞. Furthermore, to get better results one can concentrate on values between
p = 5 and p = 20; fortunately, for values of p so low no numerical complications arise and convergence is
reached in a few iterations.



28 CHAPTER 7. LINEAR PHASE L_P FILTER DESIGN



Chapter 8

Complex l_p problem1

The design of linear phase �lters has been intensively discussed in literature. For the two most common
error criteria (l2 and l∞), optimal solution algorithms exist. The least squares norm �lter can be found by
solving an overdetermined system of equations, whereas the Chebishev norm �lter is easily found by using
either the Remez algorithm or linear programming. For many typical applications, linear phase �lters are
good enough; however, when arbitrary magnitude and phase constraints are required, a more complicated
approach must be taken since such design results in a complex approximation problem. By replacing C in
the linear phase algorithm with a complex Fourier kernel matrix, and the real desired frequency vector D
with a complex one, one can use the same algorithm from to design complex lp �lters.

1This content is available online at <http://cnx.org/content/m41675/1.2/>.
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Chapter 9

Magnitude l_p problem1

In some applications, the e�ects of phase are not a necessary factor to consider when designing a �lter.
For these applications, control of the �lter's magnitude response is a priority for the designer. In order to
improve the magnitude response of a �lter, one must not explicitly include a phase, so that the optimization
algorithm can look for the best �lter that approximates a speci�ed magnitude, without being constrained
about optimizing for a phase response too.

9.1 Power approximation formulation

The magnitude approximation problem can be formulated as follows:

min
h
‖ D (ω)− |H (ω;h) | ‖pp (9.1)

Unfortunately, the second term inside the norm (namely the absolute value function) is not di�erentiable
when its argument is zero. Although one could propose ways to work around this problem, I propose the
use of a di�erent design criterion, namely the approximation of a desired magnitude squared. The resulting
problem is

min
h
‖ D(ω)2 − |H (ω;h) |2 ‖pp (9.2)

The autocorrelation r (n) of a causal length-N FIR �lter h (n) is given by

r (n) = h (n) ∗ h (−n) =
N−1∑

k=−(N−1)

h (k)h (n+ k) (9.3)

The Fourier transform of the autocorrelation r (n) is known as the Power Spectral Density function [88]
R (ω) (or simply the SPD), and is de�ned as follows,

R (ω) =
N−1∑

n=−(N−1)

r (n) e−jωn =
N−1∑

n=−(N−1)

N−1∑
k=−(N−1)

h (n)h (n+ k) e−jωn (9.4)

From the properties of the Fourier Transform [77] one can show that there exists a frequency domain
relationship between h (n) and r (n) given by

R (ω) = H (ω) ·H∗ (−ω) = |H (ω) |2 (9.5)

1This content is available online at <http://cnx.org/content/m41676/1.2/>.
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This relationship suggests a way to design magnitude-squared �lters, namely by using the �lter's autocor-
relation coe�cients instead of the �lter coe�cients themselves. In this way, one can avoid the use of the
non-di�erentiable magnitude response.

An important property to note at this point is the fact that since the �lter coe�cients are real, one can
see from (9.3) that the autocorrelation function r (n) is symmetric; thus it is su�cient to consider its last N
values. As a result, the PSD can be written as

R (ω) =
∑
n

r (n) e−jωn = r (0) +
N−1∑
n=1

2r (n) cosωn (9.6)

in a similar way to the linear phase problem.
The symmetry property introduced above allows for the use of the lp linear phase algorithm of to obtain

the autocorrelation coe�cients of h (n). However, there is an important step missing in this discussion: how
to obtain the �lter coe�cients from its autocorrelation. To achieve this goal, one can follow a procedure
known as Spectral Factorization. The objective is to use the autocorrelation coe�cients r ∈ RN instead
of the �lter coe�cients h ∈ RN as the optimization variables. The variable transformation is done using
(9.7), which is not a one-to-one transformation. Because of the last result, there is a necessary condition
for a vector r ∈ RN to be a valid autocorrelation vector of a �lter. This is summarized [111] in the spectral
factorization theorem, which states that r ∈ RN is the autocorrelation function of a �lter h (n) if and only if
R (ω) ≥0 for all ω ∈ [0, π]. This turns out to be a necessary and su�cient condition [111] for the existence
of r (n). Once the autocorrelation vector r is found using existing robust interior-point algorithms, the �lter
coe�cients can be calculated via spectral factorization techniques.

Assuming a valid vector r ∈ RN can be found for a particular �lter h, the problem presented in (9.1) can
be rewritten as

L(ω)2≤R (ω) ≤U(ω)2 ∀ ω ∈ [0, π] (9.7)

In (9.7) the existence condition R (ω) ≥ 0 is redundant since 0≤ L(ω)2 and, thus, is not included in the
problem de�nition. For each ω, the constraints of (9.7) constitute a pair of linear inequalities in the vector
r; therefore the constraint is convex in r. Thus the change of variable transforms a nonconvex optimization
problem in h into a convex problem in r.



Chapter 10

l_p error as a function of frequency1

Previous sections have discussed the importance of complex least-square and Chebishev error criteria in the
context of �lter design. In many applications any of these two approaches would provide adequate results.
However, a case could be made where one might want to minimize the error energy in a range of frequencies
while keeping control of the maximum error in a di�erent band. This idea results particularly interesting
when one considers the use of di�erent lp norms in di�erent frequency bands. In principle one would be
interested in solving

min
h
‖ D (ωpb)−H (ωpb;h) ‖p + ‖ D (ωsb)−H (ωsb;h) ‖q (10.1)

where {ωpb ∈ Ωpb, ωsb ∈ Ωsb} represent the pass and stopband frequencies respectively. In principle one
would want Ωpb ∩ Ωsb = {∅}. Therefore problem (10.1) can be written as

min
h

p

√∑
ωpb

|D (ωpb)−H (ωpb;h) |p + q

√∑
ωsb

|D (ωsb)−H (ωsb;h) |q (10.2)

One major obstacle in (10.2) is the presence of the roots around the summation terms. These roots prevent
us from writing (10.2) in a simple vector form. Instead, one can consider the use of a similar metric function
as follows

min
h

∑
ωpb

|D (ωpb)−H (ωpb;h) |p +
∑
ωsb

|D (ωsb)−H (ωsb;h) |q (10.3)

This expression is similar to (10.2) but does not include the root terms. An advantage of using the IRLS
approach on (10.3) is that one can formulate this problem in the frequency domain and properly separate
residual terms from di�erent bands into di�erent vectors. In this manner, the lp modi�ed measure given by
(10.3) can be made into a frequency-dependent function of p (ω) as follows,

min
h
‖ D (ω)−H (ω;h) ‖p(ω)

p(ω)=
∑
ω

|D (ω)−H (ω;h) |p(ω)
(10.4)

Therefore this frequency-varying lp problem can be solved following the modi�ed IRLS algorithm outlined
in with the following modi�cation: at the i-th iteration the weights are updated according to

wi = |D −Cai|p(ω)−2
(10.5)

It is fundamental to note that the proposed method does not indeed solve a linear combination of lp norms.
In fact, it can be shown that the expression (10.3) is not a norm but a metric. While from a theoretical

1This content is available online at <http://cnx.org/content/m41677/1.2/>.
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perspective this fact might make (10.3) a less interesting distance, as it turns out one can use (10.3) to solve
the far more interesting CLS problem, as discussed below in .



Chapter 11

Constrained Least Squares (CLS)
problem1

One of the common obstacles to innovation occurs when knowledge settles on a particular way of dealing
with problems. While new ideas keep appearing suggesting innovative approaches to design digital �lters, it
is all too common in practice that l2 and l∞ dominate error criteria speci�cations. This section is devoted
to exploring a di�erent way of thinking about digital �lters. It is important to note that up to this point
we are not discussing an algorithm yet. The main concern being brought into play here is the speci�cation
(or description) of the design problem. Once the Constrained Least Squares (CLS) problem formulation is
introduced, we will present an IRLS implementation to solve it, and will justify our approach over other
existing approaches. It is the author's belief that under general conditions one should always use our IRLS
implementation over other methods, especially when considering the associated management of transition
regions.

The CLS problem was introduced in and is repeated here for clarity,

min
h

‖ D (ω)−H (ω;h) ‖2
subject to |D (ω)−H (ω;h) |≤τ

(11.1)

To the best of our knowledge this problem was �rst introduced in the context of �lter design by John
Adams [3] in 1991. The main idea consists in approximating iteratively a desired frequency response in a
least squares sense except in the event that any frequency exhibits an error larger than a speci�ed tolerance
τ . At each iteration the problem is adjusted in order to reduce the error on o�ending frequencies (i.e. those
which do not meet the constraint speci�cations). Ideally, convergence is reached when the altered least
squares problem has a frequency response whose error does not exceed constraint speci�cations. As will be
shown below, this goal might not be attained depending on how the problem is posed.

Adams and some collaborators have worked in this problem and several variations [6]. However his main
(and original) problem was illustrated in [3] with the following important assumption: the de�nition of a
desired frequency response must include a �xed non-zero width transition band. His method uses Lagrange
multiplier theory and alternation methods to �nd frequencies that exceed constraints and minimize the error
at such locations, with an overall least squares error criterion.

Burrus, Selesnick and Lang [86] looked at this problem from a similar perspective, but relaxed the design
speci�cations so that only a transition frequency needs to be speci�ed. The actual transition band does
indeed exist, and it centers itself around the speci�ed transition frequency; its width adjusts as the algorithm
iterates (constraint tolerances are still speci�ed). Their solution method is similar to Adams' approach, and
explicitly uses the Karush-Kuhn-Tucker (KKT) conditions together with an alternation method to minimize
the least squares error while constraining the maximum error to meet speci�cations.

1This content is available online at <http://cnx.org/content/m41678/1.2/>.
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C. S. Burrus and the author of this work have been working on the CLS problem using IRLS methods
with positive results. This document is the �rst thorough presentation of the method, contributions, results
and code for this approach, and constitutes one of the main contributions of this work. It is crucial to note
that there are two separate issues in this problem: on one hand there is the matter of the actual problem
formulation, mainly depending on whether a transition band is speci�ed or not; on the other hand there is
the question of how the selected problem description is actually met (what algorithm is used). Our approach
follows the problem description by Burrus et al. shown in [86] with an IRLS implementation.

11.1 Two problem formulations

As mentioned in , one can address problem (11.1) in two ways depending on how one views the role of the
transition band in a CLS problem. The original problem posed by Adams in [3] can be written as follows,

min
h

‖ D (ω)−H (ω;h) ‖2
subject to |D (ω)−H (ω;h) |≤τ ∀ ω ∈ [0, ωpb] ∪ [ωsb, π]

(11.2)

where 0 < ωpb < ωsb < π. From a traditional standpoint this formulation feels familiar. It assigns �xed
frequencies to the transition band edges as a number of �lter design techniques do. As it turns out, however,
one might not want to do this in CLS design.

An alternate formulation to (11.2) could implicitly introduce a transition frequency ωtb (where ωpb <
ωtb<ωsb); the user only speci�es ωtb. Consider

min
h

‖ D (ω)−H (ω;h) ‖2 ∀ ω ∈ [0, π]

subject to |D (ω)−H (ω;h) |≤τ ∀ ω ∈ [0, ωpb] ∪ [ωsb, π]
(11.3)

The algorithm at each iteration generates an induced transition band in order to satisfy the constraints in
(11.3). Therefore {ωpb, ωsb} vary at each iteration.

Figure 11.1: Two formulations for Constrained Least Squares problems.

It is critical to point out the di�erences between (11.2) and (11.3). Figure 11.1.a explains Adams' CLS
formulation, where the desired �lter response is only speci�ed at the �xed pass and stop bands. At any
iteration, Adams' method attempts to minimize the least squares error (ε2) at both bands while trying to
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satisfy the constraint τ . Note that one could think of the constraint requirements in terms of the Chebishev
error ε∞ by writing (11.2) as follows,

min
h

‖ D (ω)−H (ω;h) ‖2
subject to ‖ D (ω)−H (ω;h) ‖∞≤τ ∀ ω ∈ [0, ωpb] ∪ [ωsb, π]

(11.4)

In contrast, Figure 11.1.b illustrates our proposed problem (11.3). The idea is to minimize the least squared
error ε2 across all frequencies while ensuring that constraints are met in an intelligent manner. At this point
one can think of the interval (ωpb, ωsb) as an induced transition band, useful for the purposes of constraining
the �lter. Section 11.2 (Two problem solutions) presents the actual algorithms that solve (11.3), including
the process of �nding {ωpb, ωsb}.

It is important to note an interesting behavior of transition bands and extrema points in l2 and l∞
�lters. Figure 11.2 shows l2 and l∞ length-15 linear phase �lters (designed using Matlab's firls and firpm

functions); the transition band was speci�ed at {ωpb = 0.4/π, ωsb = 0.5/π}. The dotted l2 �lter illustrates
an important behavior of least squares �lters: typically the maximum error of an l2 �lter is located at the
transition band. The solid l∞ �lter shows why minimax �lters are important: despite their larger error across
most of the bands, the �lter shows the same maximum error at all extrema points, including the transition
band edge frequencies. In a CLS problem then, typically an algorithm will attempt to reduce iteratively the
maximum error (usually located around the transition band) of a series of least squares �lters.

Figure 11.2: Comparison of l2 and l∞ �lters.

Another important fact results from the relationship between the transition band width and the resulting
error amplitude in l∞ �lters. Figure 11.3 shows two l∞ designs; the transition bands were set at {0.4/π, 0.5/π}
for the solid line design, and at {0.4/π, 0.6/π} for the dotted line one. One can see that by widening the
transition band a decrease in error ripple amplitude is induced.
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Figure 11.3: E�ects of transition bands in l∞ �lters.

These two results together illustrate the importance of the transition bandwidth for a CLS design.
Clearly one can decrease maximum error tolerances by widening the transition band. Yet �nding the perfect
balance between a transition bandwidth and a given tolerance can prove a di�cult task, as will be shown in
Section 11.2 (Two problem solutions). Hence the relevance of a CLS method that is not restricted by two
types of speci�cations competing against each other. In principle, one should just determine how much error
one can live with, and allow an algorithm to �nd the optimal transition band that meets such tolerance.

11.2 Two problem solutions

Section 11.1 (Two problem formulations) introduced some important remarks regarding the behavior of
extrema points and transition bands in l2 and l∞ �lters. As one increases the constraints on an l2 �lter, the
result is a �lter whose frequency response looks more and more like an l∞ �lter.

introduced the frequency-varying problem and an IRLS-based method to solve it. It was also mentioned
that, while the method does not solve the intended problem (but a similar one), it could prove to be useful
for the CLS problem. As it turns out, in CLS design one is merely interested in solving an unweighted,
constrained least squares problem. In this work, we achieve this by solving a sequence of weighted, uncon-
strained least squares problems, where the sole role of the weights is to "constraint" the maximum error of
the frequency response at each iteration. In other words, one would like to �nd weights w such that

min
h

‖ D (ω)−H (ω;h) ‖2
subject to ‖ D (ω)−H (ω;h) ‖∞≤τ ∀ ω ∈ [0, ωpb] ∪ [ωsb, π]

(11.5)

is equivalent to

min
h
‖ w (ω) · (D (ω)−H (ω;h)) ‖2 (11.6)

Hence one can revisit the frequency-varying design method and use it to solve the CLS problem. Assuming
that one can reasonably approximate l∞ by using high values of p, at each iteration the main idea is to use
an lp weighting function only at frequencies where the constraints are exceeded. A formal formulation of
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this statement is

w (ε (ω)) = {
|ε (ω) |

p−2
2 if |ε (ω) |>τ

1 otherwise
(11.7)

Assuming a suitable weighting function existed such that the speci�ed tolerances are related to the frequency
response constraints, the IRLS method would iterate and assign rather large weights to frequencies exceeding
the constraints, while inactive frequencies get a weight of one. As the method iterates, frequencies with large
errors move the response closer to the desired tolerance. Ideally, all the active constraint frequencies would
eventually meet the constraints. Therefore the task becomes to �nd a suitable weighting function that
penalizes large errors in order to have all the frequencies satisfying the constraints; once this condition is
met, we have reached the desired solution.

Figure 11.4: CLS polynomial weighting function.

One proposed way to �nd adequate weights to meet constraints is given by a polynomial weighting
function of the form

w (ω) = 1 +
∣∣∣∣ε (ω)
τ

∣∣∣∣
p−2
2

(11.8)

where τ e�ectively serves as a threshold to determine whether a weight is dominated by either unity or the
familiar lp weighting term. Figure 11.4 illustrates the behavior of such a curve.
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Figure 11.5: Original l2 guess for CLS algorithm.

Figure 11.6: CLS design example using mild constraints.

Figure 11.7: CLS design example using tight constraints.
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Figure 11.8: CLS design example without transition bands.

In practice the method outlined above has proven robust particularly in connection with the speci�ed
transition band design. Consider the least squares design in Figure 11.5 (using a length-21 Type-I linear
phase low-pass FIR �lter with linear transition frequencies {0.2, 0.25}). This example illustrates the typical
e�ect of CLS methods over l2 designs; the largest error (in an l∞ sense) can be located at the edges of the
transition band. Figures Figure 11.6 and Figure 11.7 illustrate design examples using the proposed approach.
Figure 11.6 shows an example of a mild constraint (τ = 0.6), whereas Figure 11.7 illustrates an advantage
of this method, associated to a hard constraint (τ = 0.3). The method is trying iteratively to reduce the
maximum error towards the constraint; however the speci�ed constraint in Figure 11.7 is such that even at
the point where an equiripple response is reached for the speci�ed transition bands the constraint is not met.
At this point the method converges to an optimal lp solution that approximates equiripple as p increases
(the examples provided use p = 50).

A di�erent behavior occurs when no transition bands are de�ned. Departing from an initial l2 guess (as
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shown in Figure 11.8.a) the proposed IRLS-based CLS algorithm begins weighting frequencies selectively in
order to reduce the l∞ error towards the constraints τ at each iteration. Eventually an equiripple behavior
can be observed if the constraints are too harsh (as in Figure 11.8.b). The algorithm will keep weighting until
all frequencies meet the constraints (as in Figure 11.8.c). The absence of a speci�ed transition band presents
some ambiguity in de�ning valid frequencies for weighting. One cannot (or rather should not) apply weights
too close to the transition frequency speci�ed as this would result in an e�ort by the algorithm to create a
steep transition region (which as mentioned previously is counterintuitive to �nding an equiripple solution).
In a sense, this would mean having two opposite e�ects working at the same time and the algorithm cannot
accommodate both, usually leading to numerical problems.

Figure 11.9: De�nition of induced transition band.

In order to avoid these issues, an algorithm can be devised that selects a subset of the sampled frequencies
for weighting purposes at each iteration. The idea is to identify the largest ripple per band at each iteration
(the ripple associated with the largest error for a given band) and select the frequencies within that band
with errors equal or smaller than such ripple error. In this way one avoids weighting frequencies around the
transition frequency. This idea is illustrated in Figure 11.9.
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Figure 11.10: CLS weights.

The previous example is fundamental since it illustrates the relevance of this method: since for a particular
transition band the tightest constraint that one can get is given by the equiripple (or minimax) design (as
shown in Section 11.1 (Two problem formulations)), a problem might arise when speci�cations are tighter
than what the minimax design can meet. Adams found this problem (as reported in [3]); his method breaks
under these conditions. The method proposed here overcomes an inadequate constraint and relaxes the
transition band to meet the constraint.

It is worth noting that the polynomial weighting form works even when no transition bands are speci�ed
(this must become evident from Figure 11.8.c above). However, the user must be aware of some practical
issues related to this approach. Figure 11.10 shows a typical CLS polynomial weighting function. Its
"spiky" character becomes more dramatic as p increases (the method still follows the homotopy and partial
updating ideas from previous sections) as shown in Figure 11.10.b. It must be evident that the algorithm
will assign heavy weights to frequencies with large errors, but at p increases the di�erence in weighting
exaggerates. At some point the user must make sure that proper sampling is done to ensure that frequencies
with large weights (from a theoretical perspective) are being included in the problem, without compromising
conputational e�ciency (by means of massive oversampling, which can lead to ill-conditioning in numerical
least squares methods). Also as p increases, the range of frequencies with signi�cantly large weights becomes
narrower, thus reducing the overall weighting e�ect and a�ecting convergence speed.
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Figure 11.11: CLS envelope weighting function.

A second weighting form can be de�ned where envelopes are used. The envelope weighting function
approach works by assigning a weight to all frequencies not meeting a constraint. The value of such weights
are assigned as �at intervals as illustrated in Figure 11.11. Intervals are determined by the edge frequencies
within neighborhoods around peak error frequencies for which constraints are not met. Clearly these neigh-
borhoods could change at each iteration. The weight of the k-th interval is still determined by our typical
expression,

wk (ω) = |ε
(
ω+
k

)
|
p−2
2 (11.9)

where ω+
k is the frequency with largest error within the k-th interval.

Envelope weighting has been applied in practice with good results. It is particularly e�ective at reaching
high values of p without ill-conditioning, allowing for a true alternative to minimax design. Figure 11.12
shows an example using τ = 0.4; the algorithm managed to �nd a solution for p = 500. By specifying
transition bands and unachievable constraints one can produce an almost equiripple solution in an e�cient
manner, with the added �exibility that milder constraints will result in CLS designs.
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Figure 11.12: CLS design example using envelope weights.

11.3 Comparison with lp problem

This chapter presented two problems with similar e�ects. On one hand, illustrated the fact (see ) that
as p increases towards in�nity, an lp �lter will approximate an l∞ one. On the other hand, presented
the constrained least squared problem, and introduced IRLS-based algorithms that produce �lters that
approximate equiripple behavior as the constraint speci�cations tighten.

A natural question arises: how do these methods compare with each other? In principle it should be
possible to compare their performances, as long as the necessary assumptions about the problem to be solved
are compatible in both methods. Figure 11.13 shows a comparison of these algorithms with the following
speci�cations:

• Both methods designed length-21 Type-I lowpass linear phase digital �lters with �xed transition bands
de�ned by f = {0.2, 0.24} (in normalized linear frequency).

• The lp experiment used the following values of p:

p = {2, 2.2, 2.5, 3, 4, 5, 7, 10, 15, 20, 30, 50, 70, 100, 170, 400} (11.10)

• The CLS experiment used the polynomial weighting method with �xed transition bands and a value
of p = 60. The error tolerances were

τ = {.06, .077, .078, .8, .084, .088, .093, .1, .11, .12, .13, .14, .15, .16, .17, .18} (11.11)
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Some conclusions can be derived from Figure 11.13. Even though at the extremes of the curves they both
seem to meet, the CLS curve lies just below the lp curve for most values of p and τ . These two facts should
be expected: on one hand, in principle the CLS algorithm gives an l2 �lter if the constraints are so mild that
they are not active for any frequency after the �rst iteration (hence the two curves should match around
p = 2). On the other hand, once the constraints become too harsh, the �xed transition band CLS method
basically should design an equiripple �lter, as only the active constraint frequencies are lp-weighted (this
e�ects is more noticeable with higher values of p). Therefore for tight constraints the CLS �lter should
approximate an l∞ �lter.

The reason why the CLS curve lies under the lp curve is because for a given error tolerance (which could
be interpreted as for a given minimax error ε∞) the CLS method �nds the optimal l2 �lter. An lp �lter is
optimal in an lp sense; it is not meant to be optimal in either the l2 or l∞ senses. Hence for a given τ it
cannot beat the CLS �lter in an l2 sense (it can only match it, which happens around p = 2 or p =∞).

It is important to note that both curves are not drastically di�erent. While the CLS curve represents
optimality in an l2−l∞ sense, not all the problems mentioned in this work can be solved using CLS �lters (for
example, the magnitude IIR problem presented in ). Also, one of the objectives of this work is to motivate
the use of lp norms for �lter design problems, and the proposed CLS implementations (which absolutely
depends on IRLS-based lp formulations) are good examples of the �exibility and value of lp IRLS methods
discussed in this work.
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Figure 11.13: Comparison between CLS and lp problems.
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Chapter 12

Introduction to In�nite Impulse
Response Filters1

Chapter introduced the problem of designing lp FIR �lters, along with several design scenarios and their
corresponding design algorithms. This chapter considers the design of lp IIR �lters and examines the sim-
ilarities and di�erences compared to lp FIR �lter design. It was mentioned in that lp FIR design involves
a polynomial approximation. The problem becomes more complicated in the case of IIR �lters as the ap-
proximation problem is a ratio of two polynomials. In fact, the case of FIR polynomial approximation is a
special form of IIR rational approximation where the denominator is equal to 1.

In�nite Impulse Response (or recursive) digital �lters constitute an important analysis tool in many
areas of science (such as signal processing, statistics and biology). The problem of designing IIR �lters
has been the object of extensive study. Several approaches are typically used in designing IIR �lters, but
a general procedure follows: given a desired �lter speci�cation (which may consist of an impulse response
or a frequency speci�cation), a predetermined approximation error criterion is optimized. Although one of
the most widely used error criteria in Finite Impulse Response (FIR) �lters is the least-squares criterion
(which in most scenarios merely requires the solution of a linear system), least-squares (l2) approximation
for IIR �lters requires an optimization over an in�nite number of �lter coe�cients (in the time domain
approximation case). Furthermore, optimizing for an IIR frequency response leads to a rational (nonlinear)
approximation problem rather than the polynomial problem of FIR design.

As discussed in the previous chapter, a successful IRLS-based lp algorithm depends to a large extent in
the solution of a weighted l2 problem. One could argue that one of the most important aspects contrasting
FIR and IIR lp �lter design lies in the l2 optimization step. This chapter presents the theoretical and
computational issues involved in the design of both l2 and lp IIR �lters and explores several approaches
taken to handle the resulting nonlinear l2 optimization problem. introduces the IIR �lter formulation and
the nonlinear least-squares design problem. presents the l2 problem more formally, covering relevant methods
as a manner of background and to lay down a framework for the approach proposed in this work. Some of the
methods covered here date back to the 1960's, yet others are the result of current active work by a number
of research groups; the approach employed in this work is described in . Finally, considers di�erent design
problems concerning IIR �lters in an lp sense, including IIR versions of the complex, frequency-varying and
magnitude �lter design problems as well as the proposed algorithms and their corresponding results.

1This content is available online at <http://cnx.org/content/m41679/1.2/>.
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Chapter 13

IIR �lters1

An IIR �lter describes a system with input x (n) and output y (n), related by the following expression

y (n) =
M∑
k=0

b (k)x (n− k)−
N∑
k=1

a (k) y (n− k) (13.1)

Since the current output y (n) depends on the input as well as on N previous output values, the output
of an IIR �lter might not be zero well after x (n) becomes zero (hence the name �In�nite�). Typically IIR
�lters are described by a rational transfer function of the form

H (z) =
B (z)
A (z)

=
b0 + b1z

−1 + · · ·+ bMz
−M

1 + a1z−1 + · · ·+ aNz−N
(13.2)

where

H (z) =
∞∑
n=0

h (n) z−n (13.3)

and h (n) is the in�nite impulse response of the �lter. Its frequency response is given by

H (ω) = H (z) |z=ejω (13.4)

Substituting (13.2) into (13.4) we obtain

H (ω) =
B (ω)
A (ω)

=

M∑
n=0

bne
−jωn

1 +
N∑
n=1

ane−jωn
(13.5)

Given a desired frequency responseD (ω), the l2 IIR design problem consists of solving the following problem

min
an,bn

∣∣∣∣B (ω)
A (ω)

−D (ω)
∣∣∣∣2
2

(13.6)

1This content is available online at <http://cnx.org/content/m41680/1.2/>.
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for the M +N + 1 real �lter coe�cients an, bn with ω ∈ Ω (where Ω is the set of frequencies for which the
approximation is done). A discrete version of (13.6) is given by

min
an,bn

∑
ωk

∣∣∣∣∣∣∣∣
M∑
n=0

bne
−jωkn

1 +
N∑
n=1

ane−jωkn
−D (ωk)

∣∣∣∣∣∣∣∣
2

(13.7)

where ωk are the L frequency samples over which the approximation is made. Clearly, (13.7) is a nonlinear
least squares optimization problem with respect to the �lter coe�cients.



Chapter 14

Least squares design of IIR �lters1

introduced the IIR least squares design problem, as illustrated in . Such problem cannot be solved in the same
manner as in the FIR case; therefore more sophisticated methods must be employed. As will be discussed
later in , some tradeo�s are desirable for lp optimization. As in the case of FIR design, when designing lp
IIR �lters one must use l2 methods as internal steps over which one iterates while moving between diferent
values of p. Clearly this internal iteration must not be too demanding computationally since an outer lp loop
will invoke it repeatedly (this process will be further illustrated in ). With this issue in mind, one needs to
select an l2 algorithm that remains accurate within reasonable error bounds while remaining computationally
e�cient.

This section begins by summarizing some of the traditional approaches that have been employed for l2
rational approximation, both within and outside �lter design applications. Amongst the several existing
traditional nonlinear optimization approaches, the Davidon-Fletcher-Powell (DFP) and the Gauss-Newton
methods have been often used and remain relatively well understood in the �lter design community. A brief
introduction to both methods is presented in Section 14.1 (Traditional optimization methods), and their
caveats brie�y explored.

An alternative to attacking a complex nonlinear problem like with general nonlinear optimization tools
consists in linearization, an attempt to "linearize" a nonlinear problem and to solve it by using linear
optimization tools. Multiple e�orts have been applied to similar problems in di�erent areas of statistics and
systems analysis and design. Section 14.2 (Equation error linearization methods) introduces the notion of an
Equation Error, a linear expression related to the actual Solution Error that one is interested in minimizing
in l2 design. The equation error formulation is nonetheles important for a number of �lter design methods
(including the ones presented in this work) such as Levy's method, one of the earliest and most relevant
frequency domain linearization approaches. Section 14.3 (Prony-based equation error linearization) presents
a frequency domain equation error algorithm based on the methods by Prony and Padé. This algorithm
illustrates the usefulness of the equation error formulation as it is fundamental to the implementation of the
methods proposed later in this work (in ).

An important class of linearization methods fall under the name of iterative pre�ltering algorithms,
presented in Section 14.4 (Iterative pre�ltering linearization methods). The Sanathanan-Koerner (SK)
algorithm and the Steiglitz-McBride (SMB) methods are well known and commonly used examples in this
category, and their strengths and weaknesses are explored. Another recent development in this area is the
method by Jackson, also presented in this section. Finally, Soewito's quasilinearization (the method of choice
for least squares IIR approximation in this work) is presented in Section 14.5 (Soewito's quasilinearization
method).

1This content is available online at <http://cnx.org/content/m41681/1.2/>.
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14.1 Traditional optimization methods

One way to adress is to attempt to solve it with general nonlinear optimization tools. One of the most typical
approach in nonlinear optimization is to apply either Newton's method or a Newton-based algorithm. One
assumption of Newton's method is that the optimization function resembles a quadratic function near the
solution (refer to Appendix for more information). In order to update a current estimate, Newton's method
requires �rst and second order information through the use of gradient and Hessian matrices. A quasi-
Newton method is one that estimates in a certain way the second order information based on gradients (by
generalizing the secant method to multiple dimensions).

One of the most commonly used quasi-Newton methods in IIR �lter design is the Davidon-Fletcher-
Powell (DFP) method [34]. In 1970 K. Steiglitz [99] used the DFP method to solve an IIR magnitude
approximation to a desired real frequency response. For stability concerns he used a cascade form of the IIR
�lter given in through

H (z) = α

M∏
r=1

1 + arz
−1 + brz

−2

1 + crz−1 + drz−2
(14.1)

Therefore he considered the following problem,

min
an,bn,cn,dn

∑
ωk

(∣∣∣∣∣α
M∏
r=1

1 + are
−jωk + bre

−2jωk

1 + cre−jωk + dre−2jωk

∣∣∣∣∣−D (ωk)

)2

(14.2)

His method is a direct implementation of the DFP algorithm in problem (14.2).
In 1972 Andrew Deczky [26] employed the DFP algorithm to solve a complex IIR least-p approximation

to a desired frequency response. Like Steiglitz, Deczky chose to employ the cascaded IIR structure of (14.1),
mainly for stability reasons but also because he claims that for this structure it is simpler to derive the �rst
order information required for the DFP method.

The MATLAB Signal Processing Toolbox includes a function called INVFREQZ, originally written by J.
Smith and J. Little [104]. Invfreqz uses the algorithm by Levy (see 14.2.1 (Levy's method)) as an initial step
and then begins an iterative algorithm based on the damped Gauss-Newton [28] to minimize the solution
error εs according to the least-squared error criteria. This method performs a line search after every iteration
to �nd the optimal direction for the next step. Invfreqz evaluates the roots of A (z) after each iteration to
verify that the poles of H (z) lie inside the unit circle; otherwise it will convert the pole into its reciprocal.
This approach guarantees a stable �lter.

Among other Newton-based approaches, Spanos and Mingori [96] use a Newton algorithm combined with
the Levenberg-Marquardt technique to improve the algorithm's convergence properties. Their idea is to
express the denominator function A (ω) as a sum of second-order rational polynomials. Thus H (ω) can be
written as

H (ω) =
L−1∑
r=1

br + jωβr
ar + jωβr − ω2

+ d (14.3)

Their global descent approach is similar to the one presented in [94]. As any Newton-based method, this
approach su�ers under a poor initial guess, and does not guarantee to converge (if convergence occurs) to a
local minimum. However, in such case, convergence is quadratic.

Kumaresan's method [49] considers a three-step approach. It is not clear whether his method attempts
to minimize the equation error or the solution error. He uses divided di�erences [39] to reformulate the
solution error in terms of the coe�cients ak. Using Lagrange multiplier theory, he de�nes

E = yTCT
[
CCT

]−1
Cy (14.4)

where y = [H0H1 · · ·HL−1]T contains the frequency samples and C is a composition matrix containing
the frequency divided di�erences and the coe�cients ak (a more detailed derivation can be found in [47]).
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Equation (14.4) is iterated until convergence of the coe�cient vector
^
a is reached. This vector is used as

initial guess in the second step, involving a Newton-Raphson search of the optimal
^
a that minimizes ‖ E ‖2.

Finally the vector
^
b is found by solving a linear system of equations.

14.2 Equation error linearization methods

Typically general use optimization tools prove e�ective in �nding a solution. However in the context of
IIR �lter design, they often tend to take a rather large number of iterations, generate large matrices or
require complicated steps like solving or estimating (and often inverting) vectors and matrices of �rst and
second order information [90]. Using gradient-based tools for nonlinear problems like certainly seems like a
suboptimal approach. Also, typical Newton-based methods tend to converge quick (quadratically), yet they
make assumptions about radii of convergence and initial proximity to the solution (otherwise performance
is suboptimal). In the context of �lter design one should wonder if better performance could be achieved by
exploiting characteristics from the problem. This section introduces the concept of linearization, an alter-
native to general optimization methods that has proven successful in the context of rational approximation.
The main idea behind linearization approaches consists in transforming a complex nonlinear problem into
a sequence of linear ones, an idea that is parallel to the approach followed in our development of IRLS lp
optimization.

A common notion used in this work (as well as some of the literature related to linearization and �lter
design) is that there are two di�erent error measures that authors often refer to. It is important to recog-
nize the di�erences between them as one browses through literature. Typically one would be interested in
minimizing the l2 error given by:

ε =‖ E (ω) ‖22= ‖D (ω)− B (ω)
A (ω)

‖22 (14.5)

This quantity is often referred to as the solution error (denoted by εs); we refer to the function E (ω) in (14.5)
as the solution error function, denoted by Es (ω). Also, in linearization algorithms the following measure
often arises,

ε =‖ E (ω) ‖22= ‖A (ω)D (ω)−B (ω) ‖22 (14.6)

This measure is often referred to as the equation error εe; we denote the function E (ω) in (14.6) as the
equation error functionEe (ω). Keeping the notation previously introduced, it can be seen that the two errors
relate by one being a weighted version of the other,

Ee (ω) = A (ω) Es (ω) (14.7)

14.2.1 Levy's method

E. C. Levy [56] considered in 1959 the following problem in the context of analog systems (electrical networks
to be more precise): de�ne2

H (jω) =
B0 +B1 (jω) +B2(jω)2 + · · ·
A0 +A1 (jω) +A2(jω)2 + · · ·

=
B (ω)
A (ω)

(14.8)

2For consistency with the rest of this document, notation has been modi�ed from the author's original paper whenever
deemed necessary.
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Given L samples of a desired complex-valued function D (jωk) = R (ωk) + jI (ωk) (where R, I are both real
funtions of ω), Levy de�nes

E (ω) = D (jω)−H (jω) = D (jω)− B (ω)
A (ω)

(14.9)

or

ε =
L∑
k=0

|E (ωk) |2 =
L∑
k=0

|A (ωk)D (jωk)−B (ωk) |2 (14.10)

Observing the linear structure (in the coe�cients Ak, Bk) of equation (14.10), Levy proposed minimizing the
quantity ε. He actually realized that this measure (what we would denote as the equation error) was indeed
a weighted version of the actual solution error that one might be interested in; in fact, the denominator
function A (ω) became the weighting function.

Levy's proposed method for minimizing (14.10) begins by writing ε as follows,

ε =
L∑
k=0

[
(Rkσk − ωkτkIk − αk)2 + (ωkτkRk + σkIk − ωkβk)2

]
(14.11)

by recognizing that (14.8) can be reformulated in terms of its real and imaginary parts,

H (jω) = (B0−B2ω
2+B4ω

4··· )+jω(B1−B3ω
2+B5ω

4··· )
(A0−A2ω2+A4ω4··· )+jω(A1−A3ω2+A5ω4··· )

= α+jωβ
σ+jωτ

(14.12)

and performing appropriate manipulations3. Note that the optimal set of coe�cients Ak, Bk must satisfy

∂ε

∂A0
=
∂ε

A1
= ... =

∂ε

∂B0
= ... = 0 (14.13)

The conditions introduced above generate a linear system in the �lter coe�cients. Levy derives the system

Cx = y (14.14)

where

C = {

λ0 0 −λ2 0 λ4 · · · T1 S2 −T3 −S4 T5 · · ·
0 λ2 0 −λ4 0 · · · −S2 T3 S4 −T5 −S6

λ2 0 −λ4 0 λ6 · · · T3 S4 −T5 −S6 T7

...
...

...
...

...
...

...
...

...
...

T1 −S2 −T3 S4 T5 · · · U2 0 −U4 0 U6 · · ·
S2 T3 −S4 −T5 S6 · · · 0 U4 0 −U6 0

T3 −S4 −T5 S6 T7 · · · U4 0 −U6 0 U8 · · ·
...

...
...

...
...

...
...

...
...

...

} (14.15)

3For further details on the algebraic manipulations involved, the reader should refer to [56].
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and

x = {

B0

B1

B2

...

A1

A2

...

} y = {

S0

T1

S2

T3

...

0

U2

0

U4

...

} (14.16)

with

λh =
∑L−1
l=0 ωhl

Sh =
∑L−1
l=0 ωhl Rl

Th =
∑L−1
l=0 ωhl Il

Uh =
∑L−1
l=0 ωhl

(
R2
l + I2

l

) (14.17)

Solving for the vector x from (14.14) gives the desired coe�cients (note the trivial assumption that A0 = 1).
It is important to remember that although Levy's algorithm leads to a linear system of equations in the
coe�cients, his approach is indeed an equation error method. Matlab's invfreqz function uses an adaptation
of Levy's algorithm for its least-squares equation error solution.

14.3 Prony-based equation error linearization

A number of algorithms that consider the approximation of functions in a least-squared sense using rational
functions relate to Prony's method. This section summarizes these methods especially in the context of �lter
design.

14.3.1 Prony's method

The �rst method considered in this section is due to Gaspard Riche Baron de Prony, a Lyonnais mathemati-
cian and physicist which, in 1795, proposed to model the expansion properties of di�erent gases by sums of
damped exponentials. His method [25] approximates a sampled function f (n) (where f (n) = 0 for n< 0)
with a sum of N exponentials,

f (n) =
N∑
k=1

cke
skn =

N∑
k=1

ckλ
n
k (14.18)

where λk = esk . The objective is to determine the N parameters ck and the N parameters sk in (14.18)
given 2N samples of f (n).
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It is possible to express (14.18) in matrix form as follows,
1 1 · · · 1

λ1 λ2 · · · λN
...

...
. . .

...

λN−1
1 λN−1

2 · · · λN−1
N




c1

c2
...

cN

 =


f (0)

f (1)
...

f (N − 1)

 (14.19)

System (14.19) has a Vandermonde structure with N equations, but 2N unknowns (both ck and λk are
unknown) and thus it cannot be solved directly. Yet the major contribution of Prony's work is to recognize
that f (n) as given in (14.18) is indeed the solution of a homogeneous order-N Linear Constant Coe�cient
Di�erence Equation (LCCDE) [61] given by

N∑
p=0

apf (m− p) = 0 (14.20)

with a0 = 1. Since f (n) is known for 0≤n≤2N − 1, we can extend (14.20) into an (N ×N) system of the
form 

f (N − 1) f (N − 2) · · · f (0)

f (N) f (N − 1) · · · f (1)
...

...
. . .

...

f (2N − 2) f (2N − 3) · · · f (N − 1)




a1

a2

...

aN

 =


−f (N)

−f (N + 1)
...

−f (2N − 1)

 (14.21)

which we can solve for the coe�cients ap. Such coe�cients are then used in the characteristic equation[29]
of (14.20),

λN + a1λ
N−1 + · · ·+ aN−1λ+ aN = 0 (14.22)

The N roots λk of (14.21) are called the characteristic roots of (14.20). From the λk we can �nd the
parameters sk using sk = lnλk. Finally, it is now possible to solve (14.19) for the parameters ck.

The method described above is an adequate representation of Prony's original method [25]. More de-
tailed analysis is presented in [43], [14], [110], [12] and [59]. Prony's method is an adequate algorithm for
interpolating 2N data samples with N exponentials. Yet it is not a �lter design algorithm as it stands. Its
connection with IIR �lter design, however, exists and will be discussed in the following sections.

14.3.2 Padé's method

The work by Prony served as inspiration to Henry Padé, a French mathematician which in 1892 published
a work [70] discussing the problem of rational approximation. His objective was to approximate a function
that could be represented by a power series expansion using a rational function of two polynomials.

Assume that a function f (x) can be represented with a power series expansion of the form

f (x) =
∞∑
k=0

ckx
k (14.23)

Padé's idea was to approximate f (x) using the function

^
f (x) =

B (x)
A (x)

(14.24)
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where

B (x) =
M∑
k=0

bkx
k (14.25)

and

A (x) = 1 +
N∑
k=1

akx
k (14.26)

The objective is to determine the coe�cients ak and bk so that the �rst M +N + 1 terms of the residual

r (x) = A (x) f (x)−B (x) (14.27)

dissappear (i.e. the �rst N +M derivatives of f (x) and
^
f (x) are equal [35]). That is, [1],

r (x) = A (x)
∞∑
k=0

ckx
k −B (x) = xM+N+1

∞∑
k=0

dkx
k (14.28)

To do this, consider A (x) f (x) = B (x) [110](
1 + a1x+ · · ·+ aNx

N
)
·
(
c0 + c1x+ · · ·+ cix

i + · · ·
)

= b0 + b1x+ · · ·+ bMx
M (14.29)

By equating the terms with same exponent up to order M +N + 1, we obtain two sets of equations,

{

c0 = b0

a1c0 + c1 = b1

a2c0 + a1c1 + c2 = b2

a3c0 + a2c1 + a1c2 + c3 = b3
...

aNcM−N + aN−1cM−N+1 + · · ·+ cM = bM

(14.30)

{

aNcM−N+1 + aN−1cM−N+2 + · · ·+ cM+1 = 0

aNcM−N+2 + aN−1cM−N+3 + · · ·+ cM+2 = 0
...

aNcM + aN−1cM+1 + · · ·+ cM+N = 0

(14.31)

Equation (14.31) represents an N × N system that can be solved for the coe�cients ak given c (n) for
0≤ n≤N + M . These values can then be used in (14.30) to solve for the coe�cients bk. The result is a
system whose impulse response matches the �rst N +M + 1 values of f (n).

14.3.3 Prony-based �lter design methods

Both the original methods by Prony and Pade were meant to interpolate data from applications that have
little in common with �lter design. What is relevant to this work is their use of rational functions of
polynomials as models for data, and the linearization process they both employ.

When designing FIR �lters, a common approach is to take L samples of the desired frequency response
D (ω) and calculate the inverse DFT of the samples. This design approach is known as frequency sampling.
It has been shown [74] that by designing a length-L �lter h (n) via the frequency sampling method and
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symmetrically truncating h (n) to N values (N � L) it is possible to obtain a least-squares optimal length-
N �lter hN (n). It is not possible however to extend completely this method to the IIR problem. This
section presents an extension based on the methods by Prony and Pade, and illustrates the shortcomings of
its application.

Consider the frequency response de�ned in . One can choose L equally spaced samples of H (ω) to
obtain

H (ωk) = Hk =
Bk
Ak

for k = 0, 1, ..., L− 1 (14.32)

where Ak and Bk represent the length-L DFTs of the �lter coe�cients an and bn respectively. The division
in (14.32) is done point-by-point over the L values of Ak and Bk. The objective is to use the relationship in
described in (14.32) to calculate an and bn.

One can express (14.32) as Bk = HkAk. This operation represents the length-L circular convolution
b (n) = h (n) [U+25EF]L a (n) de�ned as follows [67]

b (n) = h (n) [U+25EF]L a (n) =
L−1∑
m=0

h [((n−m))L] a (m) , 0≤n≤L− 1 (14.33)

where h (n) is the length-L inverse DFT of Hk and the operator ((·))L represents modulo L. Let

^
a=



1

a1

...

aN

0
...

0


and

^
b=



b0

b1
...

bM

0
...

0


(14.34)

Therefore (14.33) can be posed as a matrix operation [74] of the form

^
H
^
a=

^
b (14.35)

where

(14.36)

is an L×L matrix. From (14.34) it is clear that the L− (N + 1) rightmost columns of
^
H can be discarded

(since the last L− (N + 1) values of
^
a in (14.34) are equal to 0). Therefore equation (14.35) can be rewritten
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as 

h0 hL−1 · · · hL−N

h1 h0 · · · hL−N+1

...
...

...

hM hM−1 · · · h((L−N+M))L

hM+1 hM · · · h((L−N+M+1))L
...

...
...

hL−2 hL−3 · · · hL−N−2

hL−1 hL−2 · · · hL−N−1




1

a1

...

aN

 =



b0

b1
...

bM

0
...

0

0



(14.37)

or in matrix notation

H

 1

a

 =

 b

0

 or Hã =
^
b (14.38)

where a and b correspond to the length-N and (M + 1) �lter coe�cient vectors respectively and H contains

the �rst N + 1 columns of
^
H. It is possible to uncouple the calculation of a and b from (14.38) by breaking

H furthermore as follows,

(14.39)
Therefore  H1

H2

 ã =

 b

0

 (14.40)

with

ã =

 1

a

 (14.41)
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as de�ned in (14.38). This formulation allows to uncouple the calculations for a and b using two systems,

H1ã = b

H2ã = 0
(14.42)

Note that the last equation can be expressed as

^
H2a = −

^
h2 (14.43)

where H2 =

[
^
h2

^
H2

]
(that is,

^
h2 and

^
H2 contain the �rst and second through N -th columns of

^
H2

respectively).

From (14.43) one can conclude that if L = N +M + 1 and if
^
H2 and H1 are nonsingular, then they can

be inverted4 to solve for the �lter coe�cient vectors a in (14.43) and solve for b using H1ã = b.
The algorithm described above is an interpolation method rather than an approximation one. If

L>N + M + 1 and
^
H2 is full column rank then (14.43) is an overdetermined linear system for which no

exact solution exists; therefore an approximation must be found. From (14.32) we can de�ne the solution
error function Es (ωk) as

Es (ωk) =
B (ωk)
A (ωk)

−H (ωk) (14.44)

Using this notation, the design objective is to solve the nonlinear problem

min
a,b
‖ Es (ωk) ‖22 (14.45)

Consider the system in equation (14.38). If H2 is overdetermined, one can de�ne an approximation problem
by introducing an error vector e,

^
b= Hã− e (14.46)

where

e =

 e1

e2

 (14.47)

Again, it is possible to uncouple (14.46) as follows,

b = H1ã− e1

e2 =
^
h2 +

^
H2a

(14.48)

One can minimize the least-squared error norm ‖ e2‖2 of the overdetermined system by solving the normal
equations [28]

^
H
T

2

^
h2 = −

^
H
T

2

^
H2a (14.49)

4In practice one should not invert the matrices H1 and
^
H2 but use a more robust and e�cient algorithm. See [36] for details.
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so that

a = −

[
^
H
T

2

^
H2

]−1
^
H
T

2

^
h2 (14.50)

and use this result in (14.48)

b = H1ã (14.51)

(14.48) represents the following time-domain operation,

ε (n) = b (n)− h (n) [U+25EF]L a (n) ^ 0≤n≤M (14.52)

(where [U+25EF]L denotes circular convolution) and can be interpreted in the frequency domain as follows,

Ee (ωk) = B (ωk)−H (ωk)A (ωk) (14.53)

Equation (14.53) is a weighted version of (14.44), as follows

Ee (ωk) = A (ωk) Es (ωk) (14.54)

Therefore the algorithm presented above will �nd the �lter coe�cient vectors a and b that minimize the
equation errorEe in (14.53) in the least-squares sense. Unfortunately, this error is not what one may want
to optimize, since it is a weighted version of the solution error Es.

14.4 Iterative pre�ltering linearization methods

Section 14.2 (Equation error linearization methods) introduced the equation error formulation and several
algorithms that minimize it. In a general sense however one is more interested in minimizing the solution
error problem from . This section presents several algorithms that attempt to minimize the solution error
formulation from by pre�ltering the desired responseD (ω) in (14.6) with A (ω). Then a new set of coe�cients
{an, bn} are found with an equation error formulation and the pre�ltering step is repeated, hence de�ning
an iterative procedure.

14.4.1 Sanathanan-Koerner (SK) method

The method by Levy presented in Section 14.2.1 (Levy's method) suggests a relatively easy-to-implement
approach to the problem of rational approximation. While interesting in itself, the equation error εe does
not really represent what in principle one would like to minimize. A natural extension to Levy's method is
the one proposed [84] by C. K. Sanathanan and J. Koerner in 1963. The algorithm iteratively pre�lters the
equation error formulation of Levy with an estimate of A (ω). The SK method considers the solution error
function Es de�ned by

Es (ω) = D (ω)− B (ω)
A (ω)

=
1

A (ω)
[A (ω)D (ω)−B (ω)] =

1
A (ω)

Ee (ω) (14.55)

Then the solution error problem can be written as

min
ak,bk

εs (14.56)

where

εs =
∑L
k=0 |Es (ωk) |2

=
∑L
k=0

1
|A(ω)|2 |Ee (ωk) |2

= W (ω) |Ee (ωk) |2
(14.57)
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Note that given A (ω), one can obtain an estimate for B (ω) by minimizing Ee as Levy did. This approach
provides an estimate, though, because one would need to know the optimal value of A (ω) to truly optimize
for B (ω). The idea behind this method is that by solving iteratively for A (ω) and B (ω) the algorithm
would eventually converge to the solution of the desired solution error problem de�ned by (14.56). Since
A (ω) is not known from the beginning, it must be initialized with a reasonable value (such as A (ωk) = 1).

To solve (14.56) Sanathanan and Koerner de�ned the same linear system from (14.14) with the same
matrix and vector de�nitions. However the scalar terms used in the matrix and vectors re�ect the presence
of the weighting function W (ω) in εs as follows,

λh =
∑L−1
l=0 ωhl W (ωl)

Sh =
∑L−1
l=0 ωhl RlW (ωl)

Th =
∑L−1
l=0 ωhl IlW (ωl)

Uh =
∑L−1
l=0 ωhl

(
R2
l + I2

l

)
W (ωl)

(14.58)

Then, given an initial de�nition of A (ω), at the p-th iteration one sets

W (ω) =
1

|Ap−1 (ωk)|2
(14.59)

and solves (14.14) using {λ, S, T, U} as de�ned above until a convergence criterion is reached. Clearly,
solving (14.56) using (14.57) is equivalent to solving a series of weighted least squares problems where the
weighting function consists of the estimated values of A (ω) from the previous iteration. This method is
similar to a time-domain method proposed by Steiglitz and McBride [98], presented later in this chapter.

14.4.2 Method of Sid-Ahmed, Chottera and Jullien

The methods by Levy and Sanathanan and Koerner did arise from an analog analysis problem formulation,
and cannot therefore be used directly to design digital �lters. However these two methods present important
ideas that can be translated to the context of �lter design. In 1978 M. Sid-Ahmed, A. Chottera and G.
Jullien followed on these two important works and adapted [58] the matrix and vectors used by Levy to
account for the design of IIR digital �lters, given samples of a desired frequency response. Consider the
frequency response H (ω) de�ned in . In parallel with Levy's development, the corresponding equation error
can be written as

εe =
L∑
k=0

∣∣∣∣∣{(Rk + jIk)

(
1 +

N∑
c=1

aie
−jωkc

)
−

(
M∑
c=0

bie
−jωkc

)
}

∣∣∣∣∣
2

(14.60)

One can follow a similar di�erentiation step as Levy by setting

∂εe
∂a1

=
∂εe
a2

= ... =
∂εe
∂b0

= ... = 0 (14.61)

with as de�ned in (14.60). Doing so results in a linear system of the form

Cx = y (14.62)



65

where the vectors x and y are given by

x = {

b0
...

bM

a1

...

aN

} y = {

φ0 − r0
...

φM − rM
−β1

...

−βN

} (14.63)

The matrix C has a special structure given by

C =

 Ψ Φ

ΦT Υ

 (14.64)

where Ψ and Υ are symmetric Toeplitz matrices of order M + 1 and N respectively, and their �rst row is
given by

Ψ1m = ηm−1 for m = 1, ...,M + 1

Υ1m = βm−1 for m = 1, ..., N
(14.65)

Matrix Φ has order M + 1 × N and has the property that elements on a given diagonal are identical (i.e.
Φi,j = Φi+1,j+1). Its entries are given by

Φ1m = φm + rm for m = 1, ..., N

Φm1 = φm−2 − rm−2 for m = 2, ...,M + 1
(14.66)

The parameters {η, φ, r, β} are given by

ηi =
∑L
k=0 cosiωk for 0≤ i≤M

βi =
∑L
k=0 |D (ωk) |2cosiωk for 0≤ i≤N − 1

φi =
∑L
k=0Rkcosiωk for 0≤ i≤max (N,M − 1)

ri =
∑L
k=0 Iksiniωk for 0≤ i≤max (N,M − 1)

(14.67)

The rest of the algorithm works the same way as Levy's. For a solution error approach, one must weight
each of the parameters mentioned above with the factor from (14.59) as in the SK method.

There are two important details worth mentioning at this point: on one hand the methods discussed up
to this point (Levy, SK and Sid-Ahmed et al.) do not put any limitation on the spacing of the frequency
samples; one can sample as �ne or as coarse as desired in the frequency domain. On the other hand there is
no way to decouple the solution of both numerator and denominator vectors. In other words, from (14.16)
and (14.63) one can see that the linear systems that solve for vector x solve for all the variables in it. This
is more of an issue for the iterative methods (SK & Sid-Ahmed), since at each iteration one solves for all the
variables, but for the purposes of updating one needs only to keep the denominator variables (they get used
in the weighting function); the numerator variables are never used within an iteration (in contrast to Burrus'
Prony-based method presented in Section 14.3 (Prony-based equation error linearization)). This approach
decouples the numerator and denominator computation into two separate linear systems. One only needs
to compute the denominator variables until convergence is reached, and only then it becomes necessary to
compute the numerator variables. Therefore most of the iterations solve a smaller linear system than the
methods involved up to this point.
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14.4.3 Steiglitz-McBride iterative algorithm

In 1965 K. Steiglitz and L. McBride presented an algorithm [98], [51] that has become quite popular in
statistics and engineering applications. The Steiglitz-McBride method (SMB) considers the problem of
deriving a transfer function for either an analog or digital system from their input and output data; in
essence it is a time-domain method. Therefore it is mentioned in this work for completeness as it closely
relates to the methods by Levy, SK and Sid-Ahmed, yet it is far better known and understood.

The derivation of the SMB method follows closely that of SK. In the Z-domain, the transfer function of
a digital system is de�ned by

H (z) =
B (z)
A (z)

=
b0 + b1z

−1 + ...+ bNz
−N

1 + a1z−1 + ...+ aNz−N
(14.68)

Furthermore

Y (z) = H (z)X (z) =
B (z)
A (z)

X (z) (14.69)

Steiglitz and McBride de�ne the following problem,

min εs =
∑
i

Ei(z)2 =
1

2πj

∮ ∣∣∣∣X (z)
B (z)
A (z)

−D (z)
∣∣∣∣2 dzz (14.70)

where X (z) =
∑
jxjz

−j and D (z) =
∑
jdjz

−j represent the z-transforms of the input and desired signals
respectively. Equation (14.70) is the familiar nonlinear solution error function expressed in the Z-domain.
Steiglitz and McBride realized the complexity of such function and proposed the iterative solution (14.70)
using a simpler problem de�ned by

min εe =
∑
i

Ei(z)2 =
1

2πj

∮
|X (z)B (z)−D (z)A (z)|2 dz

z
(14.71)

This linearized error function is the familiar equation error in the Z-domain. Steiglitz and McBride proposed
a two-mode iterative approach. The SMB Mode 1 iteration is similar to the SK method, in that at the
k-th iteration a linearized error criterion based on (14.71) is used,

Ek (z) =
Bk (z)
Ak−1 (z)

X (z)− Ak (z)
Ak−1 (z)

D (z) = Wk (z) [Bk (z)X (z)−Ak (z)D (z)] (14.72)

where

Wk (z) =
1

Ak−1 (z)
(14.73)

Their derivation5 leads to the familiar linear system

Cx = y (14.74)

5For more details the reader should refer to [98], [51].
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with the following vector de�nitions

x = {

b0
...

bN

a1

...

aN

} qj = {

xj
...

xj−N+1

dj−1

...

dj−N

} (14.75)

The vector qj is referred to as the input-output vector. Then

C =
∑
j qjq

T
j

y =
∑
j djqj

(14.76)

SMB Mode 2 is an attempt at reducing further the error once Mode 1 produces an estimate close enough
to the actual solution. The idea behind Mode 2 is to consider the solution error de�ned by (14.70) and
equate its partial derivatives with respect to the coe�cients to zero. Steiglitz and McBride showed [98], [51]
that this could be attained by de�ning a new vector

rj = {

xj
...

xj−N+1

yj−1

...

yj−N

} (14.77)

Then

C =
∑
j rjq

T
j

y =
∑
j djrj

(14.78)

The main diference between Mode 1 and Mode 2 is the fact that Mode 1 uses the desired values to compute
its vectors and matrices, whereas Mode 2 uses the actual output values from the �lter. The rationale behind
this is that at the beggining, the output function y (t) is not accurate, so the desired function provides better
data for computations. On the other hand, Mode 1 does not really solve the desired problem. Once Mode
1 is deemed to have reached the vicinity of the solution, one can use true partial derivatives to compute the
gradient and �nd the actual solution; this is what Mode 2 does.

It has been claimed that under certain conditions the Steiglitz-McBride algorithm converges. However
no guarantee of global convergence exists. A more thorough discussion of the Steiglitz-McBride algorithm
and its relationships to other parameter estimation algorithms (such as the Iterative Quadratic Maximum
Likelihood algorithm, or IQML) are found in [30], [100], [60].
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14.4.4 Jackson's method

The following is a recent approach (from 2008) by Leland Jackson [41] based in the frequency domain.
Consider vectors a ∈ RN and b ∈ RM such that

H (ω) =
B (ω)
A (ω)

(14.79)

where H (ω) , B (ω) , A (ω) are the Fourier transforms of h, b and a respectively. For a discrete frequency
set one can describe Fourier transform vectors B = Wbb and A = Waa (where Wb,Wa correspond to the
discrete Fourier kernels for b, a respectively). De�ne

Ha (ωk) =
1

A (ωk)
(14.80)

In vector notation, let Da = diag (Ha) = diag (1/A). Then

H (ω) =
B (ω)
A (ω)

= Ha (ω)B (ω)⇒ H = DaB (14.81)

Let Hd (ω) be the desired complex frequency response. De�ne Dd = diag (Hd). Then one wants to solve

min E∗E =‖ E ‖22 (14.82)

where E = H −Hd. From (14.81) one can write H = Hd + E as

H = DaB = DaWbb (14.83)

Therefore

Hd = H − E = DaWbb− E (14.84)

Solving (14.84) for b one gets

b = (DaWb) \Hd (14.85)

Also,

Hd = Dd

^
I= DdDaA = DaDdA = DaDdWaa (14.86)

where
^
I is a unit column vector. Therefore

H − E = Hd = DaDdWaa (14.87)

From (14.84) we get

DaWbb− E = DaDdWaa (14.88)

or

DaDdWaa+ E = DaWbb (14.89)

which in a least squares sense results in

a = (DaDdWa) \ (DaWbb) (14.90)

From (14.85) one gets

a = (DaDdWa) \ (DaWb [(DaWb) \Hd]) (14.91)
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As a summary, at the i-th iteration one can write (14.84) and (14.90) as follows,

bi = (diag (1/Ai−1) Wb) \Hd

ai = (diag (1/Ai−1) diag (Hd) Wa) \ (diag (1/Ai−1) Wbbi)
(14.92)

14.5 Soewito's quasilinearization method

Consider the equation error residual function

e (ωk) = B (ωk)−D (ωk) ·A (ωk)

=
∑M
n=0 bne

−jωkn −D (ωk) ·
(

1 +
∑N
n=1 ane

−jωkn
)

= b0 + b1e
−jωk + · · ·+ bMe

−jωkM · · ·
−Dk −Dka1e

−jωk − · · · −DkaNe
−jωkN

=
(
b0 + · · · bMe−jωkM

)
−Dk

(
a1e
−jωk + · · · aNe−jωkN

)
−Dk

(14.93)

with Dk = D (ωk). The last equation indicates that one can represent the equation error in matrix form as
follows,

e = Fh−D (14.94)

where

F =


1 e−jω0 · · · e−jω0M −D0e

−jω0 · · · −D0e
−jω0N

...
...

...
...

...

1 e−jωL−1 · · · e−jωL−1M −DL−1e
−jωL−1 · · · −DL−1e

−jωL−1N

 (14.95)

and

h =



b0

b1
...

bM

a1

...

aN


and D =


D0

...

DL−1

 (14.96)

Consider now the solution error residual function

s (ωk) = H (ωk)−D (ωk) = B(ωk)
A(ωk)

−D (ωk)

= 1
A(ωk)

[B (ωk)−D (ωk) ·A (ωk)]

= W (ωk) e (ωk)

(14.97)

Therefore one can write the solution error in matrix form as follows

s = W (Fh−D) (14.98)
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where W is a diagonal matrix with 1
A(ω) in its diagonal. From (14.98) the least-squared solution error

εs = s∗s can be minimized by

h =
(
F∗W2F

)−1
F∗W2D (14.99)

From (14.99) an iteration6 could be de�ned as follows

hi+1 =
(
F∗W2

iF
)−1

F∗W2
iD (14.100)

by setting the weights W in (14.98) equal to Ak (ω), the Fourier transform of the current solution for a.
A more formal approach to minimizing εs consists in using a gradient method (these approaches are often

referred to as Newton-like methods). First one needs to compute the Jacobian matrix J of s, where the

pq-th term of J is given by Jpq = ∂sp
∂hq

with s as de�ned in (14.98). Note that the p-th element of s is given

by

sp = Hp −Dp =
Bp
Ap
−Dp (14.101)

For simplicity one can consider these reduced form expressions for the independent components of h,

∂sp
∂bq

= 1
Ap

∂
∂bq

∑M
n=0 bne

−jωpn = Wpe
−jωpq

∂sp
∂aq

= Bp
∂
∂aq

1
Ap

= −Bp
A2
p

∂
∂aq

(
1 +

∑N
n=1 ane

−jωpn
)

= −1
Ap
· BpAp · e

−jωpq

= −WpHpe
−jωpq

(14.102)

Therefore on can express the Jacobian J as follows,

J = WG (14.103)

where

G =


1 e−jω0 · · · e−jω0M −H0e

−jω0 · · · −H0e
−jω0N

...
...

...
...

...

1 e−jωL−1 · · · e−jωL−1M −HL−1e
−jωL−1 · · · −HL−1e

−jωL−1N

 (14.104)

Consider the solution error least-squares problem given by

min
h
f (h) = sT s (14.105)

where s is the solution error residual vector as de�ned in (14.98) and depends on h. It can be shown [28]
that the gradient of the squared error f (h) (namely ∇f) is given by

∇f = J∗s (14.106)

A necessary condition for a vector h to be a local minimizer of f (h) is that the gradient ∇f be zero at such
vector. With this in mind and combining (14.98) and (14.103) in (14.106) one gets

∇f = G∗W2 (Fh−D) = 0 (14.107)

Solving the system (14.107) gives

h =
(
G∗W2F

)−1
G∗W2D (14.108)

6Soewito refers to this expression as the Steiglitz-McBride Mode-1 in frequency domain.



71

An iteration can be de�ned as follows7

hi+1 =
(
G∗iW

2
iF
)−1

G∗iW
2
iD (14.109)

where matrices W and G re�ect their dependency on current values of a and b.
Atmadji Soewito [90] expanded the method of quasilinearization of Bellman and Kalaba [13] to the design

of IIR �lters. To understand his method consider the �rst order of Taylor's expansion near Hi (z), given by

Hi+1 (z) = Hi (z) + [Bi+1(z)−Bi(z)]Ai(z)−[Ai+1(z)−Ai(z)]Bi(z)
A2
i (z)

= Hi (z) + Bi+1(z)−Bi(z)
Ai(z)

− Bi(z)[Ai+1(z)−Ai(z)]
A2
i (z)

(14.110)

Using the last result in the solution error residual function s (ω) and applying simpli�cation leads to

s (ω) = Bi+1(ω)
Ai(ω) −

Hi(ω)Ai+1(ω)
Ai(ω) + Bi(ω)

Ai(ω) −D (ω)

= 1
Ai(ω) [Bi+1 (ω)−Hi (ω)Ai+1 (ω) +Bi (ω)−Ai (ω)D (ω)]

(14.111)

Equation (14.111) can be expressed (dropping the use of ω for simplicity) as

s = W (([Bi+1 −Hi (Ai+1 − 1)]−Hi) + ([Bi −D (Ai − 1)]−D)) (14.112)

One can recognize the two terms in brackets as Ghi+1 and Fhi respectively. Therefore (14.112) can be
represented in matrix notation as follows,

s = W [Ghi+1 − (D +Hi − Fhi)] (14.113)

with H = [H0, H1, · · · , HL−1]T . Therefore one can minimize sT s from (14.113) with

hi+1 =
(
G∗iW

2
iGi

)−1
G∗iW

2
i (D +Hi − Fhi) (14.114)

since all the terms inside the parenthesis in (14.114) are constant at the (i+ 1)-th iteration. In a sense,
(14.114) is similar to (14.109), where the desired function is updated from iteration to iteration as in (14.114).

It is important to note that any of the three algorithms can be modi�ed to solve a weighted l2 IIR
approximation using a weighting function W (ω) by de�ning

V (ω) =
W (ω)
A (ω)

(14.115)

Taking (14.115) into account, the following is a summary of the three di�erent updates discussed so far:

SMB Frequency Mode-1: hi+1 =
(
F∗V2

iF
)−1

F∗V2
iD

SMB Frequency Mode-2: hi+1 =
(
G∗iV

2
iF
)−1

G∗iV
2
iD

Soewito's quasilinearization: hi+1 =
(
G∗iV

2
iGi

)−1
G∗iV

2
i (D +Hi − Fhi)

(14.116)

7Soewito refers to this expression as the Steiglitz-McBride Mode-2 in frequency domain. Compare to the Mode-1 expression
and the use of Gi instead of F .
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Chapter 15

l_p approximation1

In�nite Impulse Response (IIR) �lters are important tools in signal processing. The �exibility they o�er
with the use of poles and zeros allows for relatively small �lters meeting speci�cations that would require
somewhat larger FIR �lters. Therefore designing IIR �lters in an e�cient and robust manner is an inportant
problem.

This section covers the design of a number of important lp IIR problems. The methods proposed are
consistent with the methods presented for FIR �lters, allowing one to build up on the lessons learned from
FIR design problems. The complex lp IIR problem is �rst presented in Section 15.1 (Complex and frequency-
dependent lp approximation), being an essential tool for other relevant problems. The lp frequency-dependent
IIR problem is also introduced in Section 15.1 (Complex and frequency-dependent lp approximation). While
the frequency-dependent formulation might not be practical in itself as a �lter design formulation, it is fun-
damental for the more relevant magnitude lp IIR �lter design problem, presented in Section 15.2 (Magnitude
lp IIR design).

Some complications appear when designing IIR �lters, among which the intrinsic least squares solving
step clearly arises from the rest. Being a nonlinear problem, special handling of this step is required. It was
detemined after thorough experimentation that the quasilinearization method of Soewito presented in can
be employed successfully to handle this issue.

1This content is available online at <http://cnx.org/content/m41683/1.2/>.

73



74 CHAPTER 15. L_P APPROXIMATION

Figure 15.1: Block diagram for complex lp IIR algorithm.

15.1 Complex and frequency-dependent lp approximation

Chapter introduced the problem of designing lp complex FIR �lters. The complex lp IIR algorithm builds
up on its FIR counterpart by introducing a nested structure that internally solves for an l2 complex IIR
problem. Figure 15.1 illustrates this procedure in more detail. This method was �rst presented in [107].
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Figure 15.2: Results for complex l100 IIR design.

Figure 15.3: Maximum error for l2 and l100 complex IIR designs.
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Figure 15.4: Error curve for l100 complex IIR design.

Compared to its FIR counterpart, the IIR method only replaces the weighted linear least squares prob-
lem for Soewito's quasilinearization algorithm. While this nesting approach might suggest an increase in
computational expense, it was found in practice that after the initial l2 iteration, in general the lp iterations
only require from one to only a few internal weighted l2 quasilinearization iterations, thus maintaining the
algorithm e�ciency. Figures Figure 15.2 through Figure 15.4 present results for a design example using a
length-5 IIR �lter with p = 100 and transition edge frequencies of 0.2 and 0.24 (in normalized frequency).

Figure 15.2 compares the l2 and lp results and includes the desired frequency samples. Note that no
transition band was speci�ed. Figure 15.3 illustrates the e�ect of increasing p. The largest error for the
l2 solution is located at the transition band edges. As p increases the algorithm weights the larger errors
heavier; as a result the largest errors tend to decrease. In this case the magnitude of the frequency response
went from 0.155 at the stopband edge (in the l2 case) to 0.07 (for the lp design). Figure 15.4 shows the error
function for the lp design, illustrating the quasiequiripple behavior for large values of p.

Another fact worth noting from Figure 15.2 is the increase in the peak in the right hand side of the
passband edge (around f = 0.22). The lp solution increased the amplitude of this peak with respect to the
corresponding l2 solution. This is to be expected, since this peak occurs at frequencies not included in the
speci�cations, and since the lp algorithm will move poles and zeros around in order to meet �nd the optimal
lp solution (based on the frequencies included for the �lter derivation). The addition of a speci�ed transition
band function (such as a spline) would allow for control of this e�ect, depending on the user's preferences.

The frequency-dependent FIR problem was �rst introduced in . Following the FIR approach, one can
design IIR frequency-dependent �lters by merely replacing the linear weighted least squares step by a non-
linear approach, such as the quasilinearization method presented in (as in the complex lp IIR case). This
problem illustrates the �exibility in design for lp IRLS-based methods.

15.2 Magnitude lp IIR design

The previous sections present algorithms that are based on complex speci�cations; that is, the user must
specify both desired magnitude and phase responses. In some cases it might be better to specify a desired
magnitude response only, while allowing an algorihm to select the phase that optimally minimizes the
magnitude error. Note that if an algorithm is given a phase in addition to a magnitude function, it must
then make a compromise between approximating both functions. The magnitude lp IIR approximation
problem overcomes this dilemma by posing the problem only in terms of a desired magnitude function.
The algorithm would then �nd the optimal phase that provides the optimal magnitude approximation. A
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mathematical formulation follows,

min
a,b
‖ |D (ω)| −

∣∣∣∣B (ω; b)
A (ω; a)

∣∣∣∣ ‖pp (15.1)

Figure 15.5: Block diagram for magnitude lp IIR method.

A critical idea behind the magnitude approach is to allow the algorithm to �nd the optimum phase for
a magnitude approximation. It is important to recognize that the optimal magnitude �lter indeed has a
complex frequency response. Atmadji Soewito [91] published in 1990 a theorem in the context of l2 IIR
design that demonstrated that the phase corresponding to an optimal magnitude approximation could be
found iteratively by updating the desired phase in a complex approximation scenario. In other words, given
a desired complex response D0 one can solve a complex l2 problem and take the resulting phase to form a
new desired response D+ from the original desired magnitude response with the new phase. That is,

Di+1 = |D0|ejφi (15.2)

whereD0 represents the original desired magnitude response and ejφi is the resulting phase from the previous
iteration. This approach was independently suggested [42] by Leland Jackson and Stephen Kay in 2008.

This work introduces an algorithm to solve the magnitude lp IIR problem by combining the IRLS-based
complex lp IIR algorithm from Section 15.1 (Complex and frequency-dependent lp approximation) with
the phase updating ideas from Soewito, Jackson and Kay. The resulting algorithm is robust, e�cient and
�exible, allowing for di�erent orders in the numerator and denominator as well as even or uneven sampling
in frequency space, plus the optional use of speci�ed transition bands. A block diagram for this method is
presented in Figure 15.5.

The overall lp IIR magnitude procedure can be summarized as follows,

1. Experimental analysis demonstrated that a reasonable initial solution for each of the three main stages
would allow for faster convergence. It was found that the frequency domain Prony method by Burrus
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[75] (presented in ) o�ered a good initial guess. In Figure 15.5 this method is iterated to update the
speci�ed phase. The outcome of this step would be an equation error l2 magnitude design.

2. The equation error l2 magnitude solution from the previous step initializes a second stage where one
uses quasilinearization to update the desired phase. Quasilinearization solves the true solution error
complex approximation. Therefore by iterating on the phase one �nds at convergence a solution error
l2 magnitude design.

3. The rest of the algorithm follows the same idea as in the previous step, except that the least squared
step becomes a weighted one (to account for the necessary lp homotopy weighting). It is also crucial
to include the partial updating introduced in . By iterating on the weights one would �nd a solution
error lp magnitude design.

Figures Figure 15.6 through Figure 15.10 illustrate the e�ectiveness of this algorithm at each of the three
di�erent stages for length-5 �lters a and b, with transition edge frequencies of 0.2 and 0.24 (in normalized
frequency) and p = 30. A linear transition band was speci�ed. Figures Figure 15.6, Figure 15.6 and
Figure 15.6 show the equation error l2, solution error l2 and solution error lp. Figure 15.9 shows a comparison
of the magnitude error functions for the solution error l2 and lp designs. Figure 15.10 shows the phase
responses for the three designs.

Figure 15.6: Equation error l2 magnitude design.
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Figure 15.7: Solution error l2 magnitude design.
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Figure 15.8: Solution error lp magnitude design.
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Figure 15.9: Comparison of l2 and lp IIR magnitude designs

Figure 15.10: Phase responses for l2 and lp IIR magnitude designs.

From Figures Figure 15.9 and Figure 15.10 one can see that the algorithm has changed the phase response
in a way that makes the maximum magnitude error (located in the stopband edge frequency) to be reduced
by approximately half its value. Furthermore, Figure 15.9 demonstrates that one can reach quasiequiripple
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behavior with relatively low values of p (for the examples shown, p was set to 30).



Chapter 16

Conclusion1

Digital �lters are essential building blocks for signal processing applications. One of the main goals of this
work is to illustrate the versatility and relevance of lp norms in the design of digital �lters. While popular
and well understood, l2 and l∞ �lters do tend to accentuate speci�c bene�ts from their respective designs;
�lters designed using lp norms as optimality criteria can o�er a tradeo� between the bene�ts of these two
commonly used criteria. This work presented a number of applications of Lp norms in both FIR and IIR
�lter design, and their corresponding design algorithms and software implementation.

The basic workhorse for the methods presented in this document is the Iterative Reweighted Least Squares
algorithm, a simple yet powerful method that sets itself naturally adept for the design of lp �lters. The notion
of converting a mathematically complex problem into a series of signi�cantly easier optimization problems
is common in optimization. Nevertheless, the existence results from Theorem strongly motivate the use of
IRLS methods to design lp �lters. Knowing that optimal weights exist that would turn the solution of a
weighted least squared problem into the solution of a least-p problem must at the very least captivate the
curiosity of the reader. The challenge lies in �nding a robust and e�cient method to �nd such weights. All
the methods presented in this work work under this basic framework, updating iteratively the weighting
function of a least squares problem in order to �nd the optimal lp �lter for a given application. Therefore it
is possible to develop a suite of computer programs in a modular way, where with few adjustments one can
solve a variety of problems.

Throughout this document one can �nd examples of the versatility of the IRLS approach. One can change
the internal linear objective function from a complex exponential kernel to a sinusoidal one to solve complex
and linear phase FIR �lters respectively using the same algorithm. Further adaptations can be incorporated
with ease, such as the proposed adaptive solution to improve robustness.

Another important design example permits to make p into a function of frequency to allow for di�erent
p-norms in di�erent frequency bands. Such design merely requires a few changes in the implementation of
the algorithm, yet allows for fancier, more elegant problems to be solved, such as the Constrained Least
Squares (CLS) problem. In the context of FIR �lters, this document presents the CLS problem from an
lp prespective. While the work by John Adams [4] set a milestone in digital �lter design, this dissertation
introduces a strong algorithm and a di�erent perspective to the problem from that by Adams and other
authors. The IRLS lp-based approach from this work proves to be robust and �exible, allowing for even
and uneven sampling. Furthermore, while a user can use �xed transition bands, one would bene�t much
from using a �exible transition band formulation, where the proposed IRLS-based algorithm literally �nds
the optimal transition band de�nition based on the constraint speci�cations. Such �exibility allows for tight
constrains that would otherwise cause other algorithms to fail meeting the constraint speci�cations, or simply
not converging at all. introduced two problem formulations as well as results that illustrate the method's
e�ectiveness at solving the CLS problem.

While previous work exists in the area of FIR design (or in linear lp approximation for that matter), the

1This content is available online at <http://cnx.org/content/m41684/1.2/>.
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problem of designing lp IIR �lters has been far less explored. A natural reason for this is the fact that l2
IIR design is in itself an open research area (and a rather complicated problem as well). Traditional linear
optimization approaches cannot be directly used for either of these problems, and nonlinear optimization
tools often prove either slow or do not converge.

This work presents the lp IIR design problem as a natural extension of the FIR counterpart, where in
a modular fashion the linear weigthed l2 section of the algorithms is replaced by a nonlinear weighted l2
version. This problem formulation allows for the IIR implementation of virtually all the IRLS FIR methods
presented in Chapter . Dealing with the weighted nonlinear l2 problem is a di�erent story.

The problem of rational l2 approximation has been studied for some time. However the sources of ideas
and results related to this problem are scattered across several areas of study. One of the contributions of
this work is an organized summary of e�orts in rational l2 optimization, particularly related to the design
of IIR digital �lters. The work in also lays down a framework for the IIR methods proposed in this work.

As mentioned in , some complications arise when designing IIR lp �lters. Aside from the intrinsic l2
problem, it is necessary to properly combine a number of ideas that allowed for robust and e�cient lp
FIR methods. A design algorithm for complex lp IIF �lters were presented in ; this algorithm combined
Soewito's quasilinearization with ideas such as lp homotopy, partial updating and the adaptive modi�cation.
In practice, the combination of these ideas showed to be practical and the resulting algorithm remained
robust. It was also found that after a few p-steps, the internal l2 algorithm required from one to merely a
few iterations on average, thus maintaining the algorithm e�cient.

One of the main contributions of this work is the introduction of an IRLS-based method to solve lp IIR
design problems. By properly combining the principle of magnitude approximation via phase updating (from
Soewito, Jackson and Kay) with the complex IIR algorithm one can �nd optimal magntiude lp designs. This
work also introduced a sequence of steps that improve the e�ciency and robustness of this algorithm, by
dividing the design process into three stages and by using suitable initial guesses for each stage.

Appendix incudes the Matlab code developed in this work. Some of the examples in this document were
designed using these programs. It is worth to notice the common elements between di�erent programs,
alluding to the modularity of the implementations. An added bene�t to this setup is that further advances
in any of the topics covered in this work can easily be ported to most if not all of the algorithms.

Digital �lter design is and will remain an important topic in digital signal processing. It is the hope
of the author to have motivated in the reader some curiosity for the use of lp norms as design criteria for
applications in FIR and IIR �lter design. This work is by no means comprehensive, and is meant to inspire
the consideration of the �exibility of IRLS algorithms for new lp related problems.



Appendix: Optimization Theory1

Optimization theory is the branch of applied mathematics whose purpose is to consider a mathematical
expression in order to �nd a set of parameters that either maximize or minimize it. Being an applied
discipline, problems usually arise from real-life situations including areas like science, engineering and �nance
(among many other). This section presents some basic concepts for completeness and is not meant to replace
a treaty on the subject. The reader is encouraged to consult further references for more information.

17.1 Solution of linear weighted least squares problems

Consider the quadratic problem

min
h
‖ d−Ch ‖2 (17.1)

which can be written as

min
h

(d−Ch)T (d−Ch) (17.2)

omitting the square root since this problem is a strictly convex one. Therefore its unique (and thus global)
solution is found at the point where the partial derivatives with respect to the optimization variable are
equal to zero. That is,

∂
∂h{(d−Ch)T (d−Ch)} = ∂

∂h{d
T d− 2dTCh+ (Ch)TCh}

= −2CT d+ 2CTCh = 0

⇒ CTCh = CT d

(17.3)

The solution of (17.3) is given by

h =
(
CTC

)−1
CT d (17.4)

where the inverted term is referred [105], [102] as the Moore-Pentrose pseudoinverse of CTC.
In the case of a weighted version of (17.1),

min
h
‖
√
w (d−Ch) ‖22=

∑
k

wk|dk − Ckh|2 (17.5)

where Ck is the k-th row of C, one can write (17.5) as

min
h

(W (d−Ch) )T (W (d−Ch)) (17.6)

1This content is available online at <http://cnx.org/content/m41687/1.2/>.
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where W = diag (
√
w) contains the weighting vector w. The solution is therefore given by

h =
(
CTWTWC

)−1
CTWTWd (17.7)

17.2 Newton's method and the approximation of linear systems in

an lp sense

17.2.1 Newton's method and lp linear phase systems

Consider the problem

min
a

g (a) = ‖ A (ω; a)−D (ω) ‖p (17.8)

for a ∈ RM+1. Problem (17.8) is equivalent to the better posed problem

min
a

f (a) = g(a)p = ‖ A (ω; a)−D (ω) ‖pp
=

∑L
i=0 | Cia−Di|p

(17.9)

where Di = D (ωi), ωi ∈ [0, π], Ci = [Ci,0, ..., Ci,M ], and

C =


C0

...

CL

 (17.10)

The ij-th element of C is given by Ci,j = cos ωi (M − j), where 0 ≤ i ≤ L and 0 ≤ j ≤M . From (17.9) we
have that

∇f (a) =


∂
∂a0

f (a)
...

∂
∂aM

f (a)

 (17.11)

where aj is the j-th element of a ∈ RM+1 and

∂
∂aj

f (a) = ∂
∂aj

∑L
i=0 | Cia−Di|p

=
∑L
i=0

∂
∂aj
| Cia−Di|p

= p
∑L
i=0 | Cia−Di|p−1 · ∂

∂aj
| Cia−Di |

(17.12)

Now,

∂

∂aj
| Cia−Di |= sign (Cia−Di) ·

∂

∂aj
(Cia−Di) = Ci,j sign (Cia−Di) (17.13)
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where 2

sign (x) = {
1 x > 0

0 x = 0

−1 x < 0

(17.15)

Therefore the Jacobian of f (a) is given by

∇f (a) =


p
∑L
i=0 Ci,0 | Cia−Di|p−1

sign (Cia−Di)
...

p
∑L
i=0 Ci,M−1 | Cia−Di|p−1

sign (Cia−Di)

 (17.16)

The Hessian of f (a) is the matrix ∇2f (a) whose jm-th element (0 ≤ j,m ≤M) is given by

∇2
j,mf (a) = ∂a2

∂aj∂am
f (a) = ∂

∂am
∂
∂aj

f (a)

=
∑L
i=0 p Ci,j

∂
∂am
| Di − Cia|p−1

sign (Di − Cia)

=
∑L
i=0 α

∂
∂am

b (a) d (a)

(17.17)

where adequate substitutions have been made for the sake of simplicity. We have

∂
∂am

b (a) = ∂
∂am
| Cia−Di|p−1

= (p− 1)Ci,m | Cia−Di|p−2
sign (Cia−Di)

∂
∂am

d (a) = ∂
∂am

sign (Di − Cia) = 0

(17.18)

Note that the partial derivative of d (a) at Di − Cia = 0 is not de�ned. Therefore

∂
∂am

b (a) d (a) = b (a) ∂
∂am

d (a) + d (a) ∂
∂am

b (a)

= (p− 1)Ci,m | Cia−Di|p−2
sign2 (Cia−Di)

(17.19)

Note that sign2 (Cia−Di) = 1 for all Di − Cia 6= 0 where it is not de�ned. Then

∇2
j,mf (a) = p (p− 1)

L∑
i=0

Ci,jCi,m | Cia−Di|p−2
(17.20)

except at Di − Cia = 0 where it is not de�ned.
Based on (17.16) and (17.20), one can apply Newton's method to problem (17.8) as follows,

• Given a0 ∈ RM+1, D ∈ RL+1, C ∈ RL+1×M+1

• For i = 0, 1, ...

a. Find ∇f (ai).
b. Find ∇2f (ai).
c. Solve ∇2f (ai) s = −∇f (ai) for s.
d. Let a+ = ai + s.
e. Check for convergence and iterate if necessary.

2Note that

lim
u(a)→0+

∂

∂aj
| u (a) |p = lim

u(a)→0−

∂

∂aj
| u (a) |p = 0 (17.14)
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Note that for problem (17.8) the Jacobian of f (a) can be written as

∇f (a) = pCT y (17.21)

where

y =| Cai −D|p−1
sign (Cai −D) =| Cai −D|p−2 (Cai −D) (17.22)

Also,

∇2
j,mf (a) = p (p− 1) CTj ZCm (17.23)

where

Z = diag
(
| Cai −D|p−2

)
(17.24)

and

Cj =


C0,j

...

CL,j

 (17.25)

Therefore

∇2f (a) =
(
p2 − p

)
CTZC (17.26)

From (17.26), the Hessian ∇2f (a) can be expressed as

∇2f (a) =
(
p2 − p

)
CTWTWC (17.27)

where

W = diag
(
| Cai −D|

p−2
2

)
(17.28)

The matrix C ∈ R(L+1)×(M+1) is given by

C =



cosMω0 cos (M − 1)ω0 · · · cos (M − j)ω0 · · · cosω0 1

cosMω1 cos (M − 1)ω1 · · · cos (M − j)ω1 · · · cosω1 1
...

...
. . .

...
...

...

cosMωi cos (M − 1)ωi · · · cos (M − j)ωi · · · cosωi 1
...

...
...

. . .
...

...

cosMωL−1 cos (M − 1)ωL−1 · · · cos (M − j)ωL−1 · · · cosωL−1 1

cosMωL cos (M − 1)ωL · · · cos (M − j)ωL · · · cosωL 1


(17.29)

The matrix H = ∇2f (a) is positive de�nite (for p > 1). To see this, consider H = KTK where K = WC.
Let z ∈ RM+1, z 6= 0. Then

zTHz = zTKTKz =‖ Kz ‖22> 0 (17.30)

unless z ∈ N (K). But since W is diagonal and C is full column rank, N (K) = 0 . Thus zTHz ≥ 0
(identity only if z = 0) and so H is positive de�nite.
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17.2.2 Newton's method and lp complex linear systems

Consider the problem

min
x

e (x) =‖ Ax− b ‖pp (17.31)

where A ∈ Cm×n, x ∈ Rn and b ∈ Cm. One can write (17.31) in terms of the real and imaginary parts of
A and b,

e (x) =
∑m
i=1 |Aix− bi|

p

=
∑m
i=1 |Re{Aix− bi}+ jIm{Aix− bi}|p

=
∑m
i=1 | (Rix− αi) + (Zix− γi) |p

=
∑m
i=1

(√
(Rix− αi)2 + (Zix− γi)2

)p
=

∑m
i=1 gi(x)p/2

(17.32)

where A = R + jZ and b = α+ jγ. The gradient ∇e (x) is the vector whose k-th element is given by

∂

∂xk
e (x) =

p

2

m∑
i=1

[
∂

∂xk
gi (x)

]
gi(x)

p−2
2 =

p

2
qk (x)

^
g (x) (17.33)

where qk is the row vector whose i-th element is

qk,i (x) = ∂
∂xk

gi (x) = 2 (Rix− ααi)Rik + 2 (Zix− γγi)Zik
= 2RikRix+ 2ZikZix− [2αiRik + 2γiZik]

(17.34)

Therefore one can express the gradient of e (x) by ∇e (x) = p
2Q

^
g , where Q = [qk,i] as above. Note that

one can also write the gradient in vector form as follows

∇e (x) = p
[
RTdiag (Rx− α) + ZTdiag (Zx− γ)

]
·
[(

(Rx− α)2 + (Zx− γ)2
) p−2

2
]

(17.35)

The Hessian H (x) is the matrix of second derivatives whose kl-th entry is given by

Hk,l (x) = ∂2

∂xk∂xl
e (x)

= ∂
∂xl

p
2

∑m
i=1 qk,i (x) gi(x)

p−2
2

= p
2

∑m
i=1

[
qk,i (x) ∂

∂xl
gi(x)

p−2
2 + gi(x)

p−2
2 ∂

∂xl
qk,i (x)

] (17.36)

Now,

∂
∂xl

gi(x)
p−2
p = p−2

2

[
∂
∂xl

gi (x)
]
gi(x)

p−4
2

= p−2
2 ql,i (x) gi(x)

p−4
2

∂
∂xl

qk,i (x) = 2RikRil + 2ZikZil

(17.37)

Substituting (17.37) and into (17.36) we obtain

Hk,l (x) =
p (p− 2)

4

m∑
i=1

qk,i (x) ql,i (x) gi(x)
p−4
4 + p

m∑
i=1

(RikRil + ZikZil) gi(x)
p−2
2 (17.38)
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Note that H (x) can be written in matrix form as

H (x) = p(p−2)
4

(
Q diag

(
g(x)

p−4
2

)
QT
)

+

p
(
RTdiag

(
g(x)

p−2
2

)
R + ZTdiag

(
g(x)

p−2
2

)
Z
) (17.39)

Therefore to solve (17.31) one can use Newton's method as follows: given an initial point x0, each iteration
gives a new estimate x+ according to the formulas

H (xc) s = −∇e (xc)

x+ = xc + s
(17.40)

where H (xc) and ∇e (xc) correspond to the Hessian and gradient of e (x) as de�ned previously, evaluated
at the current point xc. Since the p-norm is convex for 1 < p < ∞, problem (17.31) is convex. Therefore
Newton's method will converge to the global minimizer x[U+2606] as long as H (xc) is not ill-conditioned.



Appendix: More on Prony and Pade1

18.1 IIR �lter design using the methods by Prony and Pade

Consider the �lter in with transfer function

H (z) =
B (z)
A (z)

(18.1)

We can rewrite it as

B (z) = H (z)A (z) (18.2)

which represents the convolution b (n) = h (n) ∗ a (n). This operation can be represented in matrix form
[76] as follows,

(18.3)

1This content is available online at <http://cnx.org/content/m41689/1.2/>.
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System can be viewed as [20],

(18.4)

(18.5)

If L = M +N , equations and describe the same square systems as equations and , letting ck in the former
systems to become hk in the latter ones. Therefore when the number of impulse response samples to be
matched is equal to M + N , solving for the coe�cients ak and bk is equivalent to applying Pade's method
to matching the �rst N +M values of the impulse response h (n). In consequence, this method is known as
Pade's method for IIR �lter design [76] or simply Pade approximation method [78], [37]. Pade's method is
an interpolation algorithm; since the number of samples to be interpolated must be equal to the number of
�lter parameters, Pade's method is limited to very large �lters, which makes it impractical.

The relationship of the above method with Prony's method can be seen by posing Prony's method in the
Z-domain. Consider the function f (n) from ,

f (n) =
N∑
k=1

cke
skn =

N∑
k=1

ckλ
n
k (18.6)

The Z-transform of f (n) is given by

F (z) = Z{f (n)} =
∞∑

n=−∞
f (n) z−n (18.7)

where Z{·} denotes the Z-transform operator. By linearity of the Z-transform [78],

F (z) = Z{f (n)} =
N∑
k=1

ck Z{λnk} (18.8)

Using

Z{λnk} = Z{λnku (n)} =
1

1− λkz−1
(18.9)
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(the left equality is true since f (n) = 0 for n < 0 by assumption) in (18.8) we get

F (z) =
∑N
k=1

ck
1−λkz−1

= c1
1−λ1z−1 + c2

1−λ2z−1 + · · · cN
1−λNz−1

=
c1(1−λ2z

−1)···(1−λNz−1)+···cN(1−λ1z
−1)···(1−λN−1z

−1)
(1−λ1z−1)(1−λ2z−1)···(1−λNz−1)

=

PN
i=1 ci

QN

j = 1

j 6= i

(1−λjz−1)

QN
k=1(1−λkz−1)

(18.10)

The numerator and denominator in are two polynomials in z−1 of degrees N − 1 and N respectively.
Expanding both polynomials, equation becomes

F (z) =
b0 + b1z

−1 + · · ·+ bN−1z
−(N−1)

1 + a1z−1 + · · ·+ aNz−N
(18.11)

Assuming a0 = 1 does not a�ect the formulation of F (z). This is equivalent to dividing both the numerator
and denominator of by a0. From (18.11) it is clear that Prony's method is in fact a particular case of the
Pade approximation method described earlier in this section (with M = N). From (18.10) and (18.11) we
have

c1
1− λ1z−1

+
c2

1− λ2z−1
+ · · · cN

1− λNz−1
=
b0 + b1z

−1 + · · ·+ bN−1z
−(N−1)

1 + a1z−1 + · · ·+ aNz−N
(18.12)

Therefore, given 2N samples of h (n) = f (n) one can solve for the parameters ck and λk in (18.6) merely
by applying partial fraction expansion [68] on (18.12).

Consider the systems in and . If L > M + N then is an overdetermined system and cannot be solved
exactly in general. However, it is possible to �nd a least squares approximation following an approach similar
to the one used in the frequency domain design method from . Given L > M + N samples of an impulse

response h (n), we rewrite
^
H1 as

^
H1 =

[
^
h H2

]
(18.13)

where

^
h=


hM+1

...

hL

 and H2 =


hM hM−1 · · ·
hM+1 hM

...
. . .

...

hL−1 · · · hL−N

 (18.14)

Following the same formulation of , the �lter coe�cients ak and bk are found by solving for
^
a and b in

^
a= −

[
HT

2 H2

]−1
HT

2

^
h (18.15)

b = H1a (18.16)
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where H1 is an M ×N matrix given by

H1 =



h0 0 0 · · · 0

h1 h0 0 · · · 0

h2 h1 h0

...
...

. . .
...

hM hM−1 · · ·


(18.17)

The error analysis for these algorithms is equivalent to the one performed in . In fact, both approaches
(frequency sampling versus Pade's method) are quite similar. Among the common properties, both methods
use an equation error criterion rather than the more useful solution error. However, it is worth to point out
that in the time domain (Pade) approach, samples of the impulse response are used to make the approx-
imation, and the method uses a linear convolution rather than the cyclic one from the frequency domain
approach. Also, since the latter method uses a uniform sampling grid within the complete frequency spec-
trum between ω = 0 and ω = 2π instead of using the �rst few samples of an in�nitely long sequence (h (n)),
the approximation properties of the frequency domain method are superior.



Appendix: Matlab Code1

This section includes Matlab implementations of some of the algorithms described in this work.

19.1 The linear phase lp FIR algorithm

The following program designs a Type-I length-L linear phase lp �lter with �xed transition bands. The code
creates even sampling in the bands but it can easily be modi�ed to accomodate for uneven sampling. For
other linear phase types the user can modify the de�nition of C according to .

%~Lp~Linear~Phase~design~program.~Uses p-homotopy~and~partial~updating.

~

%~Author:~R.~A.~Vargas,~4-20-08

~

%%%~User~parameters

P~=~400;~~~~~~~~~~~~~~~~~~~~~~~~~%~Desired~p

K~=~1.7;~~~~~~~~~~~~~~~~~~~~~~~~~%~Homotopy~rate

fp~=~0.2;~fs~=~0.24;~~~~~~~~~~~~~%~Normalized~passband~&~stopband

L~~=~21;~~~~~~~~~~~~~~~~~~~~~~~~~%~Filter~length

~

%%%~Initialization

NF~=~2^ceil(log2(10*L));~~~~~~~~~%~Number~of~frequency~samples

Np~=~round(NF*fp/(.5~-~(fs~-~fp)));~%~No.~of~passband~samples

dp~=~fp/(Np~-~1);

Ns~=~NF~-~Np;~~~~~~~~~~~~~~~~~~~~%~No.~of~stopband~samples

ds~=~(0.5~-~fs)/(Ns~-~1);

fd~=~[(0:Np~-~2)*dp,fp,(0:Ns~-~2)*ds~+~fs,0.5]';~%~Frequencies

Ad~=~[ones(Np,1);~zeros(Ns,1)];~~%~Desired~response

M~=~floor((L+1)/2)-1;

C~=~cos(2*pi*fd*(0:M));~~~~~~~~~~%~Fourier~matrix

a~=~C\Ad;~~~~~~~~~~~~~~~~~~~~~~~~%~L2~initial~guess
e~=~C*a~-~Ad;~~~~~~~~~~~~~~~~~~~~%~Initial~error

~

%%%~Algorithm~iteration

c~=~1;~i~=~40;~p~=~2;

while~(c<i),
~~~~c~=~c+1;

~~~~p~=~min(P,K*p);~~~~~~~~~~~~~~%~p-homotopy~update

~~~~w~=~abs(e).^((p-2)/2);~~~~~~~%~Lp~weight~update

~~~~W~=~diag(w/sum(w));~~~~~~~~~~%~Normalized~weights

~~~~x~=~(W*C)\(W*Ad);~~~~~~~~~~~~%~WLS~solution
1This content is available online at <http://cnx.org/content/m41690/1.2/>.
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~~~~a~=~(x~+~(p-2)*a)~./(p-1);~~~%~Partial~update

~~~~e~=~C*a~-~Ad;~~~~~~~~~~~~~~~~%~Error

end

~

%%%~Recovery~of~h~from~a

a(1)~=~2*a(1);

h~=~[flipud(a(2:length(a)));a]./2;

19.2 The adaptive linear phase lp FIR algorithm

The following code expands on the program from "The linear phase lp FIR algorithm" (Section 19.1: The
linear phase lp FIR algorithm). If at a given iteration the error increases, the idea is to take a step back in p
and then take a smaller step. This is achieved by reducing the homotopy step parameter K in the program.

%~Lp~Linear~Phase~design~program.~Uses p-homotopy~and~partial~updating.

%~This~code~uses~the~adaptive~algorithm.

~

%~Author:~R.~A.~Vargas,~4-20-08

~

%%%~User~parameters

P~=~200;~~~~~~~~~~~~~~~~~~~~~~~~~%~Desired~p

K~=~1.7;~~~~~~~~~~~~~~~~~~~~~~~~~%~Homotopy~rate

fp~=~0.2;~fs~=~0.248;~~~~~~~~~~~~%~Normalized~passband~&~stopband

L~~=~21;~~~~~~~~~~~~~~~~~~~~~~~~~%~Filter~length

dk~=~0.9;~~~~~~~~~~~~~~~~~~~~~~~~%~K~update~factor

~

%%%~Initialization

NF~=~2^ceil(log2(10*L));~~~~~~~~~%~Number~of~frequency~samples

Np~=~round(NF*fp/(.5~-~(fs~-~fp)));~%~No.~of~passband~samples

dp~=~fp/(Np~-~1);

Ns~=~NF~-~Np;~~~~~~~~~~~~~~~~~~~~%~No.~of~stopband~samples

ds~=~(0.5~-~fs)/(Ns~-~1);

fd~=~[(0:Np~-~2)*dp,fp,(0:Ns~-~2)*ds~+~fs,0.5]';~%~Frequencies

Ad~=~[ones(Np,1);~zeros(Ns,1)];~~%~Desired~response

M~=~floor((L+1)/2)-1;

C~=~cos(2*pi*fd*(0:M));~~~~~~~~~~%~Fourier~matrix

a~=~C\Ad;~a0~=~a;~~~~~~~~~~~~~~~~%~L2~initial~guess
e~=~C*a~-~Ad;~en~=~e;~~~~~~~~~~~~%~Initial~error

~

%%%~Algorithm~iteration

c~=~1;~maxiter~=~40;~p~=~2;

while~(c<maxiter),
~~~p~=~min(P,K*p);~~~~~~~~~~~~~~~%~p-homotopy~update

~~~w~=~abs(e).^((p-2)/2);~~~~~~~~%~Lp~weight~update

~~~W~=~diag(w/sum(w));~~~~~~~~~~~%~Normalized~weights

~~~x~=~(W*C)\(W*Ad);~~~~~~~~~~~~~%~WLS~solution
~~~a~=~(x~+~(p-2)*a)~./(p-1);~~~~%~Partial~update

~~~en~=~C*a~-~Ad;~~~~~~~~~~~~~~~~%~Error

~~~if~(norm(en,P)~<=~norm(e,P))~|~p>=P
~~~~~~c~=~c+1;

~~~~~~e~=~en;
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~~~~~~a0~=~a;

~~~else

~~~~~~a~=~a0;

~~~~~~p~=~p/K;

~~~~~~K~=~dk*K;~~~~~~~~~~~~~~~~~~%~Update~homotopy~step

~~~end

end

~

%%%~Recovery~of~h~from~a

a(1)~=~2*a(1);

h~=~[flipud(a(2:length(a)));a]./2;

19.3 The constrained l2 FIR algorithm

This program designs a constrained l2 linear phase �lter without requiring a �xed transition band. Based on a
transition frequency the program determines at each iteration an induced transition band and creates weights
to "constrain" the error. One of the key steps is determining the frequencies that exceed the constrains and,
from these frequencies, determine the induced transition band.

%~Code~for~CLS~design.~This~example~designs~a~linear~phase~filter.

%~No~transition~bands~are~described.

~

%~Author:~R.~A.~Vargas,~4-20-08

~

%%%~User~parameters

P~=~80;~~~~~~~~~~~~~~~~~~~~%~Desired~p

K~=~1.7;~~~~~~~~~~~~~~~~~~~%~p-homotopy~rate

ft~=~0.25;~~~~~~~~~~~~~~~~~%~Transition~frequency

L~=~21;~~~~~~~~~~~~~~~~~~~~%~Filter~length

tol~=~0.02;~~~~~~~~~~~~~~~~%~Constraint~tolerance

~

%%%~Initialization

NF~=~2^ceil(log2(10*L));~~~%~No.~of~frequency~samples

fd~=~linspace(0,.5,NF)';~~~%~Linearly~spaced~sampled~frequencies

Ad~=~ones(NF,1);~~~~~~~~~~~%~Desired~frequency~response

x~=~find(fd>ft);~Ad(x)~=~zeros(size(x));~%~Add~zeros~on~stopband
C~=~cos(2*pi*fd*[0:floor((L+1)/2)-1]);~~~~%~Fourier~matrix

a~=~C\Ad;~~~~~~~~~~~~~~~~~~%~L2~initial~guess
e~=~C*a~-~Ad;~~~~~~~~~~~~~~%~Initial~error

~

%%%~Algorithm~iteration

i~=~60;~~~~~~~~~~~~~~~~~~~~%~Maximum~number~of~iterations

c~=~1;~p~=~2;

for~m~=~1:i,~m,p

~~~~p~=~min(K*p,P);~~~~~~~~~~~~~~~~~~~~~%~P-homotopy

~~~~w~=~1~+~abs((e./(0.95*tol)).^((p-2)/2));~~%~Polynomial~weighting

~~~~X~=~local_max(-abs(e));~~~~~~~~~~~~~%~Find~all~local~extrema

~~~~%~Here~we~find~the~index~of~the~two~extrema~near~the~trans~band

~~~~Ep~=~max(X(find(fd(X)<ft)));~~~~~~~~%~Passband~extrema
~~~~Es~=~min(X(find(fd(X)>ft)));~~~~~~~~%~Stopband~extrema
~~~~w(Ep:Es)~=~1;~~~~~~~~~~~~~~~~~~~~~~~%~Unweighting~of~trans~band
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~~~~%~WLS~solution~w/partial~update

~~~~a~=~((p-2)*a~+~((diag(w)*C)\(diag(w)*Ad)))~./~(p-1);
~~~~e~=~C*a~-~Ad;

end

~

%%%~Recovery~of~h~from~a

a(1)~=~2*a(1);

h~=~[flipud(a(2:length(a)));a]./2;

19.4 The complex lp IIR algorithm

The following program designs an lp IIR �lter given a complex-valued desired frequency response. Note the
similarities of the program compared to the FIR ones. This program calls the function l2soe from "An imple-
mentation of Soewito's quasilinearization" (Section 19.5: An implementation of Soewito's quasilinearization)
to solve the weighted nonlinear l2 problem.

function~[b,a]~=~cplx_lp_iir(b0,a0,D,w,P);

%~function~[b,a]~=~CPLX_LP_IIR(b0,a0,D,w,p);

%~This~function~designs~an~Lp~IIR~filter~given~a~complex~desired

%~frequency~response~arbitrarily~sampled~between~0~and~PI.~The

%~algorithm~used~is~an~Iterative~Reweighted~Least~Squares~(IRLS)

%~method.~For~the~WLS~part,~a~quasilinearization~L2~IIR~algorithm

%~is~used.

%

%~[b0,a0]~:~Initial~guess

%~D~:~Desired~complex~response~(defined~between~0~and~PI)

%~w~:~Frequency~samples~between~0~and~PI

%~p~:~Desired~maximum~p

~

%~Author:~R.~A.~Vargas,~4-20-08

~

%%%~Initialization

[b,a]~=~l2soe(b0,a0,D,w);~~~%~Initial~guess

M~=~length(b);~N~=~length(a);~%~Numerator~and~denominator~lengths

w~=~w(:);~d~=~D(:);

if~(∼(isreal(d(1))~&&~isreal(d(length(d)))~)),
~~~error('Real~filters~have~real~spectra~values~at~0~and~Pi');

end

%~Form~conjugate~symmetric~desired~response~and~frequencies

D~=~[d;~flipud(conj(d(2:length(d)-1)))];

f~=~[w;~2*pi-flipud(w(2:length(w)-1))];

K~=~1.7;~p~=~2;

mxit~=~100;~etol~=~0.01;~c~=~0;

b0~=~zeros(size(b));~a0~=~zeros(size(a));

~

%~Algorithm~iteration

while~((norm([b0;a0]-[b;a],2)~>=~etol~&~c<mxit)~|~p<P),
~~~c~=~c+1;~b0~=~b;~a0~=~a;

~~~p~=~min(P,K*p);~~~~~~~~~~~~~~~~~~~~~%~p~homotopy

~~~W~=~abs(freqz(b,a,w)~-~d).^((p-2)/2);

~~~[bb,aa]~=~l2soe(b,a,d,w,W,60);~~~~~~%~L2~quasilinearization
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~~~b~=~(bb~+~(p-2)*b)~./(p-1);~~~~~~~~~%~Partial~update~for~b

~~~a~=~(aa~+~(p-2)*a)~./(p-1);~~~~~~~~~%~Partial~update~for~a

end

19.5 An implementation of Soewito's quasilinearization

The following is the author's implementation of Soewito's linearization. This program is based on the
theoretical development presented in [92], and is designed to be used by other programs in this work. For
the original implementation (which includes a number of additions to handle numerical issues) the reader
should consult the original work by A. Soewito [92].

function~[bb,aa]~=~l2soe(b,a,D,varargin)

%~This~program~is~an~implementation~of~Soewito's~quasilinearization

%~to~design~least~squares~filters~using~a~solution~error~criterion.

%~This~implementation~accepts~arbitrary~samples~between~0~and~pi,

%~and~requires~an~initial~filter~guess.

%

%~[B,A]~=~L2SOE(Bo,Ao,D)~designs~an~optimal~L2~approximation~to~a

%~complex~response~D~that~is~specified~over~a~uniform~frequency

%~grid~between~0~and~PI,~using~as~initial~point~the~vector~{Bo,Ao}.

%

%~[B,A]~=~L2SOE(Bo,Ao,D,F)~designs~an~optimal~L2~approximation~to~a

%~complex~response~D~that~is~specified~over~a~nonuniform~frequency

%~grid~F~defined~between~0~and~PI.

%

%~[B,A]~=~L2SOE(Bo,Ao,D,F,W)~designs~a~weighted~L2~approximation,

%~with~weighting~function~W.

%

%~[B,A]~=~L2SOE(Bo,Ao,D,F,W,ITER)~finds~a~solution~in~at~most~ITER

%~iterations~(the~default~for~this~value~is~30~iterations).

%

%~[B,A]~=~L2SOE(Bo,Ao,D,F,W,ITER,TOL)~defines~convergence~when~the

%~norm~of~the~updating~vector~is~less~than~TOL~(default~is~0.01).

%

%~[B,A]~=~L2SOE(Bo,Ao,D,...,'diags')~plots~the~desired~and~current

%~spectra~at~each~iteration~and~displays~error~measurements.

~

%~Author:~R.~A.~Vargas,~4-20-08

~

error(nargchk(3,8,nargin))

if~isempty(varargin),~fdiags~=~false;

else

~~~fdiags~=~varargin(length(varargin));

~~~if~(ischar(fdiags{1})~&&~strcmp(fdiags,'diags')),

~~~~~~fdiags~=~true;~varargin(length(varargin))~=~[];

~~~else~fdiags~=~false;~end

end

if~length(varargin)<4~~~~%~pad~varargin~with~[]'s
~~~varargin{4}~=~[];

end

[f,W,mxit,etol]~=~deal(varargin{:});
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if~isempty(W),~W~=~ones(size(D));~end;~W~=~W(:);

if~isempty(mxit),~mxit~=~30;~end

if~isempty(etol),~etol~=~0.01;~end

~

M~=~length(b);~N~=~length(a);~%~Numerator~and~denominator~lengths

d~=~D(:);~~~%~Form~conjugate~symmetric~desired~response~and~weights

if~(∼(isreal(d(1))~&&~isreal(d(length(d)))~)),
~~~error('Real~filters~have~real~spectra~values~at~0~and~Pi');

end

D~=~[d;~flipud(conj(d(2:length(d)-1)))];

W~=~[W;~flipud(conj(W(2:length(W)-1)))];

%~Define~frequencies~over~whole~unit~circle

if~isempty(f),~f~=~[0:2*pi/length(D):2*pi*(length(D)-1)/length(D)]';

else~f~=~[f;~2*pi-flipud(f(2:length(f)-1))];~end

%~Initialize~relevant~variables

h~=~[b;~a(2:N)];

F~=~[exp(-i.*(f*[0:M-1]))~-diag(D)*exp(-i.*(f*[1:N-1]))];

b0~=~zeros(size(b));~a0~=~zeros(size(a));~c~=~0;

~

%~Iterative~loop

while~(norm([b0;a0]-[b;a],2)~>=~etol~&&~c<mxit),
~~~c~=~c+1;~b0~=~b;~a0~=~a;

~~~%~Vector~update

~~~V~=~diag(W.*freqz(1,a,f));

~~~H~=~freqz(b,a,f);

~~~G~=~[exp(-i.*(f*[0:M-1]))~-diag(H)*exp(-i.*(f*[1:N-1]))];

~~~h~=~(V*G)\(V*(D+H-F*h));
~~~b~=~h(1:M);

~~~a~=~[1;~h(M+1:length(h))];

~~~%~Diagnostics

~~~if~fdiags,

~~~~~~sprintf(strcat('Iteration~=~%g,','~Error~norm~=~%g~'),...

~~~~~~~~~c,norm(D-freqz(b,a,f),2))

~~~~~~[hh,ff]~=~freqz(b,a,1024,'whole');

~~~~~~plot(f./(2*pi),abs(D),'.',ff./(2*pi),abs(hh))

~~~~~~title(strcat('Iteration:',int2str(c)));~pause

~~~end

end

~

%if~fdiags,

if~c==mxit,~disp('Maximum~number~of~L2~iterations~reached')

else~sprintf('L2~convergence~reached~after~%g~iterations',c)

end

bb~=~real(b);~aa~=~real(a);

19.6 The magnitude lp IIR algorithm

This program implements the algorithm presented in to design an lp magnitude IIR �lter. The program
combines ideas used in the programs mentioned above, including p-homotopy and partial �lter updating,
together with the concept of phase updating (to achieve magnitude approximation) and the quasilinearization
implementation from "An implementation of Soewito's quasilinearization" (Section 19.5: An implementation
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of Soewito's quasilinearization). To improve on the convergence properties, the program initially implements
equation error and solution error l2 algorithms to generate a suitable initial guess for the magnitude lp
iteration. it is important torealize that each of the three computatino al stages of this code can be �ne-tuned
in terms of convergence parameters. This program uses even sampling but it can easily be modi�ed for
uneven sampling (by merely changing the initial de�nition of f). the program also de�nes a ramp transition
band but the user can de�ne any desired real response by de�ning h below.

%~This~program~designs~a~magnitude~lp~IIR~digital~filter.

%~Data~is~uniformly~sampled~between~0~and~PI.

~

%~Author:~R.~A.~Vargas,~4-20-08

~

%%%~User~parameters

M~=~5;~N~=~5;~~~~~~~~~~~~~~~~%~Numerator~&~denominator~lengths

fp~=~0.2;~fs~=~0.24;~~~~~~~~~%~Normalized~passband~&~stopband

t~=~129;~~~~~~~~~~~~~~~~~~~~~%~Number~of~samples~between~0~&~pi

P~=~30;~~~~~~~~~~~~~~~~~~~~~~%~Desired~p

K~=~1.4;~~~~~~~~~~~~~~~~~~~~~%~Homotopy~rate

~

%%%~Initialization

w~=~[0:pi/(t-1):pi]';~~~~~~~~%~Radial~frequency

ip~=~max(find(w<=fp*2*pi));~~%~Passband~indexes
is~=~min(find(w>=fs*2*pi));~~%~Stopband~indexes
it~=~ip+1:is-1;~~~~~~~~~~~~~~%~Transition~band~indexes

ih~=~[1:ip~is:t-1];~~~~~~~~~~%~Indexes~at~which~error~is~measured

%~Form~conjugate~symmetric~desired~response~D~and~frequency~f

h(1:ip)~=~ones(ip,1);~h(is:t)~=~zeros(t-is+1,1);

h(ip+1:is-1)~=~((w(ip+1:is-1)/2/pi)-fs)./(fp-fs);~d~=~h(:);

D~=~[d;~flipud(conj(d(2:length(d)-1)))];

f~=~[w;~2*pi-flipud(w(2:length(w)-1))];

L~=~length(D);~~~~~~~~~~~~~~~%~Number~of~samples~on~unit~circle

~

%%%~Equation~Error~Magnitude~L2~estimation~via~Prony

mxit~=~100;~~~~~~~~~~~~~~~~~~%~Max.~iterations~for~Prony~stage

etol~=~0.01;~~~~~~~~~~~~~~~~~%~Error~tolerance~for~Prony~stage

k~=~2*etol;~c~=~0;~a0~=~zeros(N,1);~b0~=~zeros(M,1);

while~(k>=etol~&&~c<mxit),
~~~c~=~c+1;

~~~h~=~ifft(D);

~~~H~=~h(toeplitz([1:L]',[1~L:-1:L-N+2]));

~~~H1~=~H(1:M,:);~h2~=~H(M+1:L,1);

~~~H2~=~H(M+1:L,2:size(H,2));

~~~a~=~[1;~-H2\h2];
~~~b~=~H1*a;

~~~k~=~norm([b0;a0]-[b;a],2);

~~~a0~=~a;~b0~=~b;

~~~G~=~fft(b,L)./fft(a,L);

~~~D~=~abs(D).*G./abs(G);

end

~

%%%~Solution~Error~Magnitude~L2~estimation~via~Quasilinearization

%~Max.~iterations~for~Solution~Error~L2~stage
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mxitM~=~50;~mxit2~=~50;

%~Error~tolerances~for~Solution~Error~L2~stage

etolM~=~0.005;~etol2~=~0.01;

cM~=~0;~bM~=~zeros(size(b));~aM~=~zeros(size(a));

while~(norm([bM;aM]-[b;a],2)>=etolM~&&~cM<mxitM),
~~~%~Initialize~relevant~variables~at~each~phase~update

~~~cM~=~cM+1;~bM~=~b;~aM~=~a;

~~~G~=~fft(b,L)./fft(a,L);

~~~D~=~abs(D).*G./abs(G);~~%~Phase~Update

~~~h~=~[b;~a(2:N)];

~~~F~=~[exp(-i.*(f*[0:M-1]))~-diag(D)*exp(-i.*(f*[1:N-1]))];

~~~b2~=~zeros(size(b));~a2~=~zeros(size(a));~c2~=~0;

~~~%%%~Complex~L2~loop~using~Quasilinearization

~~~while~(norm([b2;a2]-[b;a],2)>=etol2~&&~c2<mxit2),
~~~~~~c2~=~c2+1;~b2~=~b;~a2~=~a;

~~~~~~V~=~diag(freqz(1,a,f));~~~~%~Vector~update

~~~~~~H~=~freqz(b,a,f);

~~~~~~G~=~[exp(-i.*(f*[0:M-1]))~-diag(H)*exp(-i.*(f*[1:N-1]))];

~~~~~~h~=~(V*G)\(V*(D+H-F*h));
~~~~~~b~=~h(1:M);

~~~~~~a~=~[1;~h(M+1:length(h))];

~~~end

end

~

%%%~Magnitude~Lp~Iterative~Method

%~Max.~iterations~for~Solution~Error~Lp~stage

mxitP~=~200;~mxitM~=~60;~mxit2~=~50;

%~Error~tolerances~for~Solution~Error~Lp~stage

etolP~=~0.005;~etolM~=~0.005;~etol2~=~0.005;

W~=~ones(size(d));~W~=~[W;~flipud(conj(W(2:length(W)-1)))];

bP~=~zeros(size(b));~aP~=~zeros(size(a));~cP~=~0;~p~=~2*K;

%%%~Outer~loop~to~update~p

while~(norm([bP;aP]-[b;a],2)~>=~etolP~&&~cP<mxitP~&&~p<=P),
~~~if~p>=P,~etolP~=~0.0001;~end
~~~%~Initialize~relevant~variables~at~each~update~of~p

~~~cP~=~cP~+~1;~bP~=~b;~aP~=~a;

~~~bM~=~zeros(size(b));~aM~=~zeros(size(a));~cM~=~0;

~~~%%%~Magnitude~Lp~loop~via~phase~update

~~~while~(norm([bM;aM]-[b;a],2)~>=~etolM~&&~cM<mxitM),
~~~~~~%~Initialize~relevant~variables~at~each~phase~update

~~~~~~cM~=~cM+1;~bM~=~b;~aM~=~a;

~~~~~~h~=~[b;~a(2:N)];

~~~~~~b2~=~zeros(size(b));~a2~=~zeros(size(a));~c2~=~0;

~~~~~~G~=~freqz(b,a,f);

~~~~~~D~=~abs(D).*G./abs(G);~~%~Phase~Update

~~~~~~F~=~[exp(-i.*(f*[0:M-1]))~-diag(D)*exp(-i.*(f*[1:N-1]))];

~~~~~~E~=~abs(D~-~freqz(b,a,f));

~~~~~~W~=~E.^((p-2)/2);

~~~~~~W(it)~=~W(it)./4;

~~~~~~%%%~Complex~Lp~loop~via~WCL2~using~Quasilinearization

~~~~~~while~(norm([b2;a2]-[b;a],2)~>=~etol2~&&~c2<mxit2),
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~~~~~~~~~c2~=~c2+1;~b2~=~b;~a2~=~a;

~~~~~~~~~V~=~diag(W.*freqz(1,a,f));~~~~%~Vector~update

~~~~~~~~~H~=~freqz(b,a,f);

~~~~~~~~~G~=~[exp(-i.*(f*[0:M-1]))~-diag(H)*exp(-i.*(f*[1:N-1]))];

~~~~~~~~~h~=~(V*G)\(V*(D+H-F*h));
~~~~~~~~~b~=~h(1:M);

~~~~~~~~~a~=~[1;~h(M+1:length(h))];

~~~~~~end

~~~~~~%~Partial~Update

~~~~~~b~=~(b~+~(p-2)*bM)~./(p-1);

~~~~~~a~=~(a~+~(p-2)*aM)~./(p-1);

~~~end

~~~G~=~fft(b,L)./fft(a,L);

~~~D~=~abs(D).*G./abs(G);

~~~p~=~min(P,K*p);

end
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Chapter 17

Notation Conventions1

Following is a list of the notation conventions used in this work. This convention is the result of a compromise
between notation styles from the theoretical and applied mathematics and electrical engineering communities
in order to keep consistency across the document.

a,A Scalars

H,C Matrices

h, x Vectors

H,X Vectors (typically the frequency domain representation of another vector)

hn, h (n) n-th element of vector h (a scalar)

hk Solution for h after k iterations on any given optimization algorithm (a vector)

h? Optimal solution vector for a given problem

ai Solution for a at i-th iteration

ak k-th entry of vector a

ω Radial frequency (with period 2π for discrete signals)

f Linear frequency (related to ω via ω = 2πf)

F (·) Fourier Transform operator

D (·) Discrete-time Fourier Transform operator

Z (·) Z-Transform operator

∗ Convolution operator

R Field of real numbers

C Field of complex numbers

Table 20.1

1This content is available online at <http://cnx.org/content/m41692/1.2/>.
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