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Chapter 1

Introduction and Background

1.1 Instrument and Note Identification'

1.1.1 Introduction

The final product utilizes several core signal processing concepts. Some are interesting and non-intuitive;
others are straight-forward and common-sensical. Before we get into the nitty gritty details of the project’s
inner workings, we would be served well to familiarize ourselves with these core concepts.

With that in mind, please navigate (using the links on the left) to whichever page has a title unfamiliar
to you. As a nod to our superiors and as an attempt to make use of this site in its full glory, we include
many modules written by those more knowledgeable than us. The direct applications will be discussed when
the project itself is specifically addressed.

1.2 Simple Music Theory as it relates to Signal Processing’

1.2.1 Simple Music Theory

For those of you unfamiliar with music, we offer a (very) brief introduction into the technical aspects of
music.

The sounds you hear over the airwaves and in all manner of places may be grouped into 12 superficially
disparate categories. Each category is labeled a "note" and given an alphasymbolic representation. That is,
the letters A through G represent seven of the notes and the other five are represented by appending either
a pound sign (#, or sharp) or something that looks remarkably similar to a lower-case b (also called a flat).

Although these notes were conjured in an age where the modern theory of waves and optics was not
dreamt of even by the greatest of thinkers, they share some remarkable characteristics. Namely, every note
that shares its name with another (notes occupying separate "octaves," with one sounding higher or lower
than the other) has a frequency that is some rational multiple of the frequency of the notes with which it
shares a name. More simply, an A in one octave has a frequency twice that of an A one octave below.

As it turns out, every note is related to every other note by a common multiplicative factor. To run the
full gamut, one need only multiply a given note by the 12th root of two n times to find the nth note "above"
it (i.e. going up in frequency). Mathematically:

(nth note above base frequency) = (base frequency)212

I This content is available online at <http://cnx.org/content/m12462,/1.1/>.
2This content is available online at <http://cnx.org/content/m12461/1.5/>.
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1.2.2 Harmonics

The "note" mentioned above is the pitch you most strongly hear. Interestingly, however, there are other
notes extant in the signal your ear receives. Any non-electronic instrument actually produces many, many
notes, all of which are overshadowed by the dominant tone. These extra notes are called harmonics. They
are responsible for the various idiosyncracies of an instrument; they give each instrument its peculiar flavor.
It is, effectively, with these that we identify the specific instrument playing.

1.2.3 Duration and Volume

We will also make a quick note (no pun intended) for the other two defining characteristics of a musical sound.
Duration is fairly self-explanatory; notes last for a certain length of time. It is important to mention that
in standard music practices most notes last for a length of time relative to the tempo of the music. The
tempo is merely the rate as which the music is played. Thus, by arbitrarily defining a time span to be equal
to one form of note duration we may derive other note durations from that.

More concretely: taking a unit of time, say one minute, and dividing it into intervals, we have beats
per minute, or bpm. One beat corresponds, in common time, to a quarter note. This is one quarter of
the longest commonly-used note, the whole note. The length of time is either halved or doubled to find the
nearest note duration to the base duration (and so on from there). The "U.S. name" for the duration of the
notes is based on their fraction of the longest note. Other, archaic, naming conventions include the English
system replete with hemi demi semi quavers and crotchets (for more information, follow the supplemental
link on the left of the page).

Volume, on the other hand, is based on the signal power and is not so easily quantifiable. The terms
in music literature are always subjective (louder, softer) and volume-related styles from previous eras are
heavily debated ("but certainly Mozart wanted it to be louder than that!"). For our project, we save
the information representing the volume early on, then normalize it out of the computations to ease the
comparisons.
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Chapter 2

Methodology

2.1 Note Recognition'

2.1.1 Macroscopic View

General-View Block Diagram

Matched
filter




This project attempts (and, for the most part, succeeds) to identify a single instrument lost among a barrage
of other instruments. More than that, it attempts to identify which sequence of notes the instrument is
playing, the volume at which it plays them and the duration of time for which the instrument plays.

The theory is relatively simple (indeed, we learned it in an introductory course). For the instrument
recognition to work, we must first have a sample of that instrument playing. Ideally, we would need only one
sample from which we could derive all the others using the one-dimensional application of a Mellin-Fourier
transform. Considerations of time, however, caused us to forgo this option. We instead approached the
collection of samples as a good communist would; with great emphasis on labor. For the purposes of this
project, 33 samples (i.e. notes) of a clarinet playing were recorded.

Each of these samples was then matched against the inputted waveform to measure correlation. The
algorithm for accomplishing this task is as follows:

Correlation Algorithm

1. If it is too large, "chop" the inputted waveform (henceforth referred to as "signal," an all-encompassing
term) into smaller, easier-to-handle chunks.

2. Input each of those chunks into a program which takes the Fourier transform of both the signal and
the samples, multiplies them, and then inverts them back into the time-domain (i.e. convolves the two
signals).

3. Based on various thresholds and numerous considerations, choose the sample which most closely
matches the signal (i.e. read off the highest peak and assign it a value; if that value is high enough,
select it as the representative sample).

4. Output the data in a user-friendly fashion.

The implementation of the second step is called a "matched filter."
The remainder of this course will focus on the four steps of the correlation algorithm.
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2.2 Deconstructing a Signal’

2.2.1 Deconstructing the Signal

The relevant portion of the block diagram

Figure 2.2: The signals must be tailored for the Matched Filter.

2This content is available online at <http://cnx.org/content/m12463/1.3/>.



The main program for our project requires six separate inputs. Two are the signal and the samples mentioned
above. The other four are, in no particular order, the size of the pieces into which you want the signal broken,
the size of the window looking at each piece, the rate at which the music is sampled from its continuous
origins and the maximum number of notes the user expects to find playing at one time.

The first step of the correlation algorithm, deconstructing the signal, is concerned with the signal, the
size of the pieces and the size of the window. The data from the signal is broken into several smaller chunks
by boxcar filtering the original signal and storing the information in a new matrix. Each row of the new
matrix corresponds to the data from each window. It is worth noting that each chunk does not overlap its
neighbor and is left otherwise unaltered, save for the case of the final chunk to which zeros are appended if
it is not of the correct size.

This data is then treated as a new signal; this helps speed the processing time. Each row of the new
matrix representing the chunks is then divided into yet smaller windows for analysis. These windows may
be either Hanning windows or boxcar windows, depending on the analysis to follow (two separate analyses
occur to maximize note recognition and computational time). These windows do overlap.

At this point, the boxcar windows are ready to be sent to the next step. The Hanning windows, however,
must first undergo a treatment and recognize their purpose. From the matrix extant after processing the
original signal into Hanning windows, the power of each row is computed and weighed against all possible
note values (that is, an entire octave; not the full range of the instrument). The most powerful result is
placed in a new matrix and fed back to the parent function. This selection of a specific note means that the
next stage of the correlation algorithm will need only check separate octaves of one note instead of running
through the full range of an instrument (a very tedious and cycle-consuming proposition).

As a further clarification and justification, we shall rehash the difference between the Hanning and boxcar
windows. All windows are initially filtered through a boxcar window in order to best preserve the data (we
are not interested in reconstructing the signal). That information then goes two places: the matched filter
and the note-recognizing algorithm. The latter set is put through a Hanning window for ease of analysis;
low frequency signals are better preserved in a Hanning window. It is from that analysis that the one note
(in a given octave) to test is chosen.
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2.3 Matched Filter’
2.3.1 Matched Filter

The relevant portion of the block diagram

Matched
filter

Figure 2.3: The Matched Filter.

The matched filter segment of our project is perhaps the easiest to code but the most difficult conceptually.
An understanding of Fourier analysis, convolution and manipulations in frequency domain is required. Al-
though we made available several supplementary links at the beginning of the course, a brief recapitulation
of the basic theory is warranted.

3This content is available online at <http://cnx.org/content/m12464/1.3/>.



2.3.1.1 Fourier Analysis

Jean Baptiste Joseph Fourier* discovered, approximately 200 years ago, that any function could be repre-
sented by weighted averages of any periodic base function. The most common application of Fourier analysis
is through the use of sinusoidal waves, but using a sinusoid as a basis is not necessary - any periodic function
will do. This weighing was perceived as a series of coefficients, each coefficient corresponding to a specific
frequency of the periodic base function. From consideration of these coefficients, it was realized there existed
a frequency domain. Thus, there was a medium in which discussion of a non-periodic function’s frequency
made sense. This discovery has had many impressive results, not the least of which is the concept of a
matched filter.

Carl Friedrich Gauss® later expounded on Fourier’s realization and found what is the now-known fastest
algorithm for computing Fourier coefficients. Unfortunately for 20th century scientists, no one remembered
Gauss developed the algorithm until after it had been rederived.

2.3.1.2 Convolution

Convolution is at the heart of matched filters. One can easily visualize placing a transparancy of an image
over another image to gauge the similarity of the two images. Convolution does essentially just that with
two functions; it places one function over another function and outputs a single value suggesting a level of
similarity, then it moves the first function an infinitesimally small distance and finds another value. The end
result is a graph which peaks at the point where the two images are most similar.

Another method of attack may be seen through the Cauchy-Schwarz Inequality. This® page does an
enviable job of approaching matched filtering from that angle.

The concept that binds these two seemingly disparate topics is almost startling in its beauty (for those
of us who have ever had to perform convolution integrals). Convolution in the time domain (the domain in
which we would want to compare two signals) just happens to be multiplication in the frequency domain.
And, as it turns out, performing two Fast Fourier Transforms (FFTs), multiplying the results, and then
performing two Inverse FFTs (IFFTs) is computationally faster than performing one convolution between
the two signals and provides the same result.

2.3.2 Summary

A matched filter compares two signals and outputs a function describing the places at which the two signals
are most like one another. This is accomplished through FFTing two signals, multiplying their coefficients
and IFFTing the result.

4http://en.wikipedia.org/wiki/Jean Baptiste Joseph Fourier
Shttp://en.wikipedia.org/wiki/Carl Friedrich Gauss
6"Cauchy-Schwarz Inequality" <http://cnx.org/content/m10757/latest/>
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2.4 Matched Filter Output Analysis’

The relevant portion of the block diagram

Figure 2.4: The final analysis.

2.4.1 Processing

After having performed the actual matched filtering, we need to make sense of the data. Unfortunately,
matched filters provide only an insight as to what might be the best answer; it cannot definitively say "yes,
this is what you want." Without telling our program to ignore signals of little power, even the noise inherent
in all recordings will match some specific value better than all other values. With that in mind we created
two threshold constraints and validated our results from the matched filtering.

2.4.1.1 Validation Techniques

Perhaps the easiest to detect, the volume level affects results most significantly. If the sample’s amplitude is
substantially different than that of the signal, matching may not even occur. Therefore, our first technique
is merely to normalize the volume between the sample and the signal. Important information is lost; we
therefore record the volume for later reference.

The second technique involves determining a threshold value for noise. The question to be answered:
"What is the level of power below which one may consider the signal silent?" Unfortunately, we found no
sound method (pun intended) through which we could automatically find this power level. We therefore just
listen to the signal and input the threshold accordingly. Fortunately, this threshold value affects only the
outputting of the data (which will be discussed in the next section) and does not affect the integrity of our
algorithm.

Also of concern is the degree to which a particular harmonic’s strength weighs into the consideration of
a note value. This becomes especially troublesome when one searches for multiple notes playing at a single
moment in time. That is to say: based on what we know about a single note producing multiple harmonics,
we must single out which harmonic is the true note being played. For one note playing at one time, this
is simple: choose the largest peak and be done with it. For multiple notes, however, one must define yet
another threshold; the threshold above which a possible secondary (or tertiary, or... well, you get the idea)
harmonic transcends its lowly status and becomes the fundamental harmonic of a separate note. The value
for this threshold is even more ambiguous in nature than the silence threshold. Lacking an automated routine

"This content is available online at <http://cnx.org/content/m12466,/1.4/>.
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to calculate this threshold is perhaps the most significant weakness in our program in terms of scaling the
number of recognized notes to map the music from an entire orchestra.

Once one has completed the various methods of validation, one must put the information together in
a coherent manner. Using the ever-versatile language of Matlab, we create a three-dimensional matrix to
hold the relevant information before further condensing it into two dimensions. One dimension of the three-
dimensional matrix is the number of samples against which the signal is checked; another is the number of
the window against which the samples are checked; the third dimension is the number of data points being
checked. So, for any given spot in the matrix, one can read off the data point tested, the window in which
it was tested, and the score it received as a result of the testing. Because one checks only against a certain
octave-set for matching (due to the Hanning window algorithm), most entries in this three-dimensional
matrix are zero. The two-dimensional matrix simply integrates all of the windows into one coherent whole
(remember, the windows overlap; thus this final form is not perfectly analogous to the original signal).

This information is the output of our primary program, ProjectD.m. All of the relevant data is stored
in the outputted two-dimensional matrix. However, the formatting is such that it is difficult to understand
from viewing only the entries. With this in mind, we created a secondary program, postProcessing.m, which
is responsible for presenting the information in a user-friendly fashion.

2.5 Outputting The Results®

This module comprises three different graphical interpretations of the output data mentioned in the previous
module. I will offer this brief introduction on the general layout of the subsections to follow so that you, the
reader, may be better prepared to interpret the information:

At the beginning of each sub-section you will find the representative graph of the most simple "song" we
could imagine: a chromatic scale. For those not well-versed in music, a chromatic scale is one in which the
instrument ’outputs’ a series of notes, each note directly above or below its predecessor in frequency. Note:
"scale," in this sense, implies either a constant increase or decrease of tone; therefore if one note is directly
above its predecessor, the following note must be directly above this one note. Likewise for the alternate
direction.

Following this graph will be a description. At the end of the description will be placed another graph
or three. The distinction between the original chromatic scale and these secondary graphs is an important
one: the individual (Michael Lawrence) who played the original samples also played the chromatic scale; the
secondary graphs are interpretations of recordings done by professionals. Thus, not only do we find we have
an unbiased test-set, we see how the samples sampled at 22050 Hz compare with a recording sampled at
44100 Hz. Our upsampling algorithm created to deal with just such a discrepancy is covered in the following
module.

NOTE: The samples which generated these results are available in the following module.

8This content is available online at <http://cnx.org/content/m12467/1.4/>.
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2.5.1 Most Likely Note Graph

Chromatic Signal Most Likely Note

best note rating over time
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Figure 2.5: This graphically represents the most likely note played in each window for a signal in
which a chromatic scale is played.

The above graphical output method is the result of the most straight-forward analysis of our data. Each
window is assigned a single number which represents the note most likely to have been played within that
window. This graph-type is the only one in which noise plays a considerable role; setting the threshold to
zero results in "most likely notes" being chosen for each window in which there is only noise. Thus we have
to tell the algorithm that only noise exists for those windows (i.e. it is silent). Our value for silence is -1.
"1" corresponds to the lowest note on a Bb clarinet (an E in the chalameau register; in concert pitch, a D
below middle C). Each incremental advance above that is one half-step (a half-step is the term used to
describe two notes considered 'next’ to one another in frequency).

The following graph is the output of our program when fed a professionally-recorded solo clarinet (playing
the first 22.676 seconds (1,000,000 samples) of Stravinsky’s Three Pieces for Clarinet). The chromatic
waveform was created by the same individual who recorded the samples; thus the Stravinsky waveform
represents an unbiased application of our algorithm against one instrument. This graph is meaningless for
a song in which multiple notes occur; thus there is no output corresponding to a song in which multiple



instruments play.

Stravinsky Most Likely Note

best note rating over time
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Figure 2.6: This graphically represents the most likely note played in each window for a professionally
recorded signal (Stravinsky’s Three Pieces for Clarinet). Note: This piece was chosen because it is a
solo clarinet playing; no other instruments play. Also, note the one bad sample; the algorithm could not
"pin down" its value. (Interestingly, the final peak is actually the performer’s breath-intake; a testament
to the value of thresholds). Lastly, the first note in the song is actually a grace note; our algorithm
notices even this brief note as is made apparent in this graph.

13
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2.5.2 Harmonic Likelihood Graph

Rating Acheived by Various Harmonics in the Chromatic Signal
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Figure 2.7: Each window has assigned to it several values indicating the strength of each harmonic
within that window. For a window in which one note is played, this helps determine which is the note
and which are merely the harmonics of that note. This grahpically depicts that rating for a chromatic
scale performed on a Bb clarinet.

The above graphical output method is the result of a secondary, less straight-forward analysis of our data. To
show the merit of tailoring the inputs for the matched filter, we graphically represented the rating assigned
to each harmonic in a given window. Note how there is one over-arching, dominant waveform for nearly
every window (except those in which there exists only noise) but see also the lesser, but still non-trivial,
strengths of its harmonics. Without filtering for octaves of a signal note, our algorithm would more likely
be tricked into thinking the harmonics of a note were the note itself (or perhaps other notes being played).

The noise is less of an issue when the data is perceived in this manner; thus no threshold value is required
to determine that which is silence and that which is not. This method is still not useful in analyzing a song
in which multiple notes are played during a single moment in time. For that, we turn to the third and last
graphical method of representation.



Rating Acheived by Various Harmonics in the Stravinsky Signal
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Figure 2.8: The monotony of color says nothing about the signal; unfortunately, Matlab assigns colors
for waveforms on a rotation of 8. When graphing a series of functions in which it makes more sense
to rotate by 12’s, the coding becomes more difficult. Therefore, two signals having similar color says
nothing about their relative values.
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2.5.3 Musical Score Interpretation Graph

An Intuitive View of the Chromatic Scale
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Figure 2.9: This graphical method is intended to represent the data in the most intuitive way (for
a musician); the same way as seen on a musical score. Note that no harmonics are shown on this
graph, only octaves of the given note. This is a result of the tailoring algorithm (using the Hanning
window) preceding the matched filter which filters out excessive notes to decrease the time required for
computation.

The above graphical output method is the result of our attempts to present an intuitive representation of
our data. The goal is to produce an output which is most useful for someone completely unfamiliar with
graphical methods yet intimately familiar with music. Thus, we graph each window as an image with colors
assigned to the various values of the data inside the window. The result is something that looks surprisingly
like a musical score. The more "intense" or colorful a particular region seems, the more likely it is to be a
note played within that window. The chromatic scale serves to display the merits of this startling technique
with distinction.

The first graph below this paragraph is the graphical interpretation of Stravinsky’s Three Pieces for
Clarinet using this method for processing our data described in this section. It serves the same purpose as
the preceding Stravinsky graphs.
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The most useful application of this graphical method, however, is that one may readily view several notes
playing at once. This form is best embodied in the final two graphs. To first gather some sense of how to
interpret the graph when multiple instruments are playing, the second graph below this paragraph shows
a stripped-down version of the output from our program when it is fed the first 90.703 seconds (4,000,000
samples) of Barber’s Adagio for Strings as played by a clarinet choir. A choir in its most general sense
is merely the gathering of multiple like-familied instruments. That is, all sorts of vocal instrumentation
(soprano, alto, tenor, bass) form the most standard interpretation of choir. Thus, a clarinet choir is one
in which several members of the clarinet family (Eb, Bb, A, Alto/Eb, Bass, Contrabass, etc.) play in one
ensemble. The final graph on this page displays the output for Barber’s Adagio For Strings in all its glory.

The 'Musical Score’ For The First 22 seconds of Stravinsky’s "Three Pieces for Clarinet"

note score over fime

Mata
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Figure 2.10: The musical score interpretation of the data output from an input of the first 22 seconds
of Stravinsky's Three Pieces for Clarinet.
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The "Musical Score’ for the First 90 Seconds of Barber’s "Adagio for Strings" as Played by a
Clarinet Choir

note score over fime
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Figure 2.11:  The musical score interpretation of the data output from an input of the first 90
seconds of Barber’s Adagio for Strings as played by a clarinet choir. Note this is simplified for ease of
interpretation.

The two graphs sandwiching this paragraph show the three voices of clarinet that play. The top line is
the lead clarinet (there is only one). If one listens to the song, one may quickly note the v’ in the middle
appearing in the sound byte ("byte" used here in a general sense). The second line is the supporting clarinets
and the lowest line is the bass line (or harmonics thereof). Our algorithm was told to search for three notes
to produce these two graphs.
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The "Musical Score’ for the First 90 Seconds of Barber’s "Adagio for Strings" as Played by a
Clarinet Choir

note score over fime
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Figure 2.12: The musical score interpretation of the data output from an input of the first 90 seconds
of Barber’s Adagio for Strings as played by a clarinet choir.
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Chapter 3

Completing The Task

3.1 Odds and Ends'

This module exists solely to tie up loose ends left over from the previous modules. More precisely, in this
module may be found the Matlab code and workspace used for the purposes of this project and the sample
waveforms against which we tested our program. First, though, a discussion on up-sampling:

3.1.1 Up-Sampling

Up-sampling (that is, representing something with few samples as something with many samples) is rel-
atively straight forward when one deals with rational multiples. First, one converts the signal into the
frequency domain using the Fast Fourier Transform discussed in a previous module. The samples are then
"spread out" (zeros are added) based on the rational multiple by which one is up-sampling. Then a low-pass
filter and IFFT later, you're back to an up-sampled version of the original signal.

3.1.2 Limitations

No project is complete without first recognizing the limitations inherent in whatever was accomplished. The
most significant drawback in our program in terms of realizing our final goal is the lack of automating the
threshold detection. Without an "intelligent" program, perhaps based on a neural network, we have little
hope of filtering out a particular instrument in the data representing a full orchestra. We are quite capable,
however, of detecting multiple instruments so long as the multiple is not too large and we are allowed to set
the threshold ourselves.

The computational complexity increases with the number of instruments (samples) tested. We create no
explicit infrastructure to break a song into component tracks (at least conceptually) so that we may analyze
each one against a particular set of samples representing a single instrument. Also, we would be well-advised
to input the frequency domain representation of the samples to decrease computational complexity.

A further limitation is the need to input several samples from the same instrument. Ideally, we would
input merely the sound of that instrument playing and modulate that one sound to create as wide a range of
tones as was required. The idea here being that a given instrument has a unique frequency fingerprint that
remains intact over all frequencies. This is not perfectly true (each instrument has its own idiosyncracies
relating to its real-world implementation), but might prove accurate enough for our proposed analysis.

3.1.3 Future Instrument and Note Recognition Endeavors

And no limitations section is complete without some mention of how to surpass those limitations. The goal
of any project is to refine the product to the point beyond which refinement is no longer possible. Because

LThis content is available online at <http://cnx.org/content/m12485/1.2/>.
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this is in practice impossible to accomplish, we will list a set of future "next steps" we or others who follow
may be encouraged to take.

To intelligently detect the relative volume of noise in a given sample, one might best be served to create a
statistical filter which recognizes random noise. This statistical filter would, in theory, identify the windows
which most resemble random noise. From knowledge of which windows cause noise, one might derive the
volume-level (read: power-level) associated with said noise and set the threshold at some point beyond that.
The upper-bound of the threshold could be found as the lowest power value for any other non-noise (as
indicated by the statistical filter) window.

The threshold detection for specific instruments is more complicated: our suggestion is to develop some
method of correlation or detection as-of-yet unknown to these authors (but likely known to those who research
these concepts). This method would likely match frequency domain signals rather than time domain (that
is, match filtering two frequency domain representations; sort of a meta-Matched Filter in terms of FFTs)
using some statistical algorithm.

The computation complexity issue is trivial to solve. One must simply code the infrastructure to analyze
a given signal in several channels, each acting as our entire program now acts. To convert the samples into
the frequency domain, one need only FFT each sample.

The final observed limitation, too, is within our grasp. We briefly attempted a method which is promis-
ing: Mellin transformation. Essentially, when one takes a signal and transforms it into the Mellin domain (by
multiplying by an exponential), one is in the position to merely phase-shift the frequency domain representa-
tion to acheive a modulation. Thus, converting back from the Mellin domain after phase-shifting the original
transformed signal changes one note into another (musical modulation). This also has (many) more appli-
cations than simply for our particular program. Image recognition over dilation comes most immediately to
mind.

3.1.4 Relevant Files

NOTE: If you choose to use our files, we would like to be informed of their use. Not because we
want to inhibit any potential use of our work but rather because we want to know our audience is
more than a few trillion electrons searching the internet for googly content. Imitation is, after all,
the sincerest form of flattery. We hope you find our work both enlightening and useful.

3.1.4.1 Matlab Code

Our primary program.>

Our output-processing program.

Our Up-Sampling program. 4 (Expects a vector as input; outputs a vector).

Our Up-Sampling program.® (Expects a struct as created from Matlab’s "Import Data" feature when
importing a .wav file as input; outputs a similar struct).

3

3.1.4.2 Clarinet Samples

The samples used for analysis of the professional recordings (i.e. recordings sampled at 44100 Hz)®
The samples used for analysis of the unprofessional recordings (i.e. recordings sampled at 22050 Hz)"
One may convert these samples to any other sampling frequency by means of the up-sampling program.
The samples cover from the lowest note on a Bb Clarinet (E in the chalameau register) to the highest C in
the clarion register (right before reaching the altissimo register). The lowest three notes have questionable
integrity (I choose to blame the microphone ;-) ).

2http://cnx.org/content /m12485/latest /ProjectD.m
3http://cnx.org/content,/m12485/latest /post Processor.m
4http://cnx.org/content/m12485/latest /upSampleSample.m
Shttp://cnx.org/content/m12485/latest /upSampleSamples2.m
Shttp://cnx.org/content/m12485 /latest /samples2.mat
"http://cnx.org/content /m12485/latest /samples.mat
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3.1.4.3 Music Files (Signals)

A Chromatic Scale? , as performed on clarinet by the up-and-coming clarinetist, Michael Lawrence.

Stravinsky’s Three Pieces for Clarinet’ , unknown artist.

Barber’s Adagio for Strings.! , Kalman Opperman Clarinet Choir.

For our program to work, .mp3 files must first be decompressed into .wav files. We used a free program
found on http://www.cnet.download.com . We would post the decompressed files but, as one might imagine,
they are too large to post on Connexions.

3.1.4.4 Poster

Our Poster.!!
In the name of thoroughness, we include a copy of the poster created for an end-of-semester poster session
show-casing our project. You should find a great deal of it familiar.

8http://cnx.org/content /m12485 /latest /chromatic slurred.wav

9http://cnx.org/content/m12485/latest/Stravinsky Three Pieces_for Clarinet.mp3
10http://cnx.org/content/m12485 /latest /Barber Adagio Clarinet Choir.mp3
http://cnx.org/content /m12485/latest /301 _project.ppt
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3.2 Auto-biographies”
3.2.1 Charles Tripp

Charles Tripp

Figure 3.1

12This content is available online at <http://cnx.org/content/m12486,/1.4/>.
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Charles Tripp is from Colorado, and is currently studying Electrical Engineering at Rice university.

I'm very interested in circuit design, computer engineering, and almost anything related to electronics
or computers. I am an expert programmer and have written several widely distributed programs; I am
comfortable with many programming languages, and am familiar with most computer systems. One of my
major intrests right now is neural networks, and their application in various capacities.

My primary contribution to this project was the program. I am responsible for the majority of the
projects code and the details of its implementation.

3.2.2 Michael Lawrence

Michael Lawrence

Figure 3.2

Hello world. My name is Michael Lawrence (as you might notice from the title of this section). I am currently
an undergraduate Electrical Engineering major at Rice University.

My interests range from music to computers to sports to ... just about anything I find interesting,
actually. I play clarinet and am competent with a trumpet, saxophone or piano under my fingers. I look
forward to voice lessons next semester. I listen to Red Hot Chili Peppers, Guster, Radiohead, Linkin Park,
and the Beatles substantially, but my favorite artist is probably Eminem. I also enjoy, on occasion, MC
Hawking, Benedictine Monks, Pepe Romero (a classical guitarist) and Apocalyptica. A plethora of other
artists might also make the list, but one must be concise.
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Digital signal processing and physical electronics were my two favorite courses this semester in terms of
content; therein may be found my electrical engineering interests. I am also in the process of building a
robot capable of competing in the IEEE Region V competition; but it’ll be the first thing to go when my
workload gets too heavy next semester.

Michael Lawrence Playing Billiards

Figure 3.3

I play billiards. I won the Rice University intramural Billiards Singles competition last year and was on
the winning team for College Intramural Billiards this year (singles and doubles competition have yet to take
place). I enjoy a good game of ping pong. Basketball and tennis are two other athletic interests of mine.

My contribution to this project was primarily the coding/writing of the Connexions course you see
before you. I provided a wall off of which Charles could bounce ideas for coding in Matlab but he generally
dominated that section of our project.
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3.2.3 Nate Shaw

Nate Shaw

Figure 3.4

Originally from Houston, I'm currently a Junior E.E. going into my second semester at Rice. When I'm
not in the lab or doing a problem set you’ll probably find me on the basketball court or listening to music
in the ’privacy’ of my spacious double. After Rice, I plan on getting an MBA...or becoming a professional
gambler...whichever comes first :-)
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Instrument and Note Identification
This contains the modules in which the Fall 2004 Elec 301 project of Charles Tripp, Michael Lawrence and
Nate Shaw is explained.

About Connexions

Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.
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