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TTT4110: Information & Signal theory
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Chapter 1

Basic properties of signals

1.1 Introduction1

To describe signals and to understand that signals can carry information we need tools for mathematical
description and manipulation of signals.

In this chapter we introduce several important signals and show simple methods of describing them.
Depending on which type of signals we are looking at, it will be di�erent methods availiable for manipulating
them. The elementary operations for manipulating signals and sequences will be described.

Contents of this chapter

• Introduction (current module)
• Discrete time signals (Section 1.2)
• Analog signals (Section 1.3)
• Discrete vs Analog signals (Section 1.4)
• Frequency de�nitions and periodicity (Section 1.5)
• Energy & Power (Section 1.6)
• Exercises (Section 1.7)

The simplest signals are one-dimensional and what follows is a classi�cation of them.

1.1.1 Classi�cation of signals

1.1.1.1 Analog signals

An analog signal is a continuous function of a continuous variable. Referring to Figure 1.1, this corresponds
to that both the 1st AND the 2nd axis is continuous. The 1st axis will in general correspond to the variable
t, meaning time. In this context we de�ne

• signal range - the possible amplitude values the signal can take
• signal axis - the time interval for which the signal exists

1This content is available online at <http://cnx.org/content/m11479/1.9/>.

3



4 CHAPTER 1. BASIC PROPERTIES OF SIGNALS

Figure 1.1: Reference axes

1.1.1.2 Time discrete signals

A time discrete signal is a continuous signal of a discrete variable. Referring to Figure 1.1, we have the
1st axis discrete while the 2nd axis is continuous. Often we assign the values of the 1st axis to a variable
n. Time discrete signals often originate from analog signals being sampled. More on that in the Sampling
theorem (Section 4.1) chapter.
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Figure 1.2: Time discrete signal

Note that the signal is only de�ned for integer values along the 1st axis. We do not have any information
other than the values at index points.

1.1.1.3 Digital signals

Let the signal be a discrete function of a discrete variable, e.g. 1st and 2nd axis discrete, then the signal
will be digital. Examples of digital signals are a binary sequence. Digital signals often arise from sampling
analog signals and the samples being assigned to a discrete value.

1.1.1.4 Periodic vs non periodic signals

All the signals mentioned above can be periodic. For time discrete and digital signals one has to be extra
cautious when "declaring" periodicity as we will see in Frequency de�nitions & periodicity (Section 1.5).
Figure 1.3 shows a periodic signal with period T0 and an aperiodic signal.
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(a)

(b)

Figure 1.3: (Figures by Melissa Selik) (a) Periodic signal (b) Aperiodic signal

1.1.2 Matlab �le

time_discrete.m2

1.1.3

Take a look at Discrete time signals (Section 1.2); Analog signals (Section 1.3); Discrete vs Analog signals
(Section 1.4); Frequency de�nitions and periodicity (Section 1.5); Energy & Power (Section 1.6); Exercises
(Section 1.7) ?

1.2 Discrete time signals3

The signals and relations presented in this module are quite similar to those in the Analog signals (Section 1.3)
module. So do compare and �nd similarities and di�erences!

1.2.1 Sequences

Generally a time discrete signal is a sequence of real or complex numbers. Each component in the sequence
is identi�ed by an index: ...x(n-1),x(n), x(n+1),...

Example 1.1
[x(n)] = [0.5 2.4 3.2 4.5] is a sequence. Using the index to identify a component we have x (0) = 0.5,
x (1) = 2.4 and so on.

1.2.2 Manipulating sequences

Addition - Add individually each component with similar index
Multiplication by a constant - Multiply every component by the constant
Multiplication of sequences - Multiply each component individually
Delay - A delay by k implies that we shift the sequence by k. For this to make sense the sequence

has to be of in�nite length.

2http://cnx.rice.edu/content/m11479/latest/time_discrete.m
3This content is available online at <http://cnx.org/content/m11476/1.16/>.



7

Example 1.2
Given the sequences [x(n)] = [0.5 2.4 3.2 4.5] and [y(n)] = [0.0 2.2 7.2 5.5].

a)Addition. [z(n)]=[x(n)]+[y(n)]=[0.5 4.6 10.4 10.0]
b)Multiplication by a constant c=2. [w(n)]= 2 *[x(n)] = [1.0 4.8 6.4 9.0]

1.2.3 Elementary signals & relations

1.2.3.1 The unit sample

The unit sample is a signal which is zero everywhere except when its argument is zero, then it is equal to
1. Mathematically

note: δ (n) =

 1 if n = 0

0 otherwise

The unit sample function is very useful in that it can be seen as the elementary constituent in any discrete
signal. Let x (n) be a sequence. Then we can express x (n) as follows (using the unit sample de�nition and
the delay operation)

x (n) =
∞∑

k=−∞

x (k) δ (n− k) (1.1)

1.2.3.2 The unit step

The unit step function is equal to zero when its index is negative and equal to one for non-negative indexes,
see Figure 1.4 for plots.

note: u (n) =

 1 if n ≥ 0

0 otherwise

(a)

(b)

Figure 1.4: Two unit step functions. (a) Unit step function, no delay. (b) Unit step function, delayed
by 5.
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1.2.3.3 Trigonometric functions

The discrete trigonometric functions are de�ned as follows. n is the sequence index and ω is the angular
frequency. ω = 2πf , where f is the digital frequency.

note: x (n) = sin (ωn)

note: x (n) = cos (ωn)

Figure 1.5: A discrete sine with digital frequency 1/20.

1.2.3.4 The complex exponential function

The complex exponential function is central to signal processing and some call it the most important
signal. Remember that it is a sequence and that j =

√
−1 is the imaginary unit.

note: x (n) = ejωn

1.2.4 Euler's relations

The complex exponential function can be written as a sum of its real and imaginary part.

x (n) = ejωn = cos (ωn) + jsin (ωn) (1.2)

By complex conjugating (1.2) and add / subtract the result with (1.2) we obtain Euler's relations.

note: cos (ωn) = ejωn+e−(jωn)

2

note: sin (ωn) = ejωn−e−(jωn)

2j

The importance of Euler's relations can hardly be stressed enough.
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1.2.5 Matlab �les

unit_step_discrete.m4

1.2.6

Take a look at Introduction (Section 1.1); Analog signals (Section 1.3); Discrete vs Analog signals (Sec-
tion 1.4); Frequency de�nitions and periodicity (Section 1.5); Energy & Power (Section 1.6); Exercises
(Section 1.7) ?

1.3 Analog signals5

The signals signals and relations presented in this module are quite similar to those in the Discrete time
signals (Section 1.2) module. So do compare and �nd similarities and di�erences!

1.3.1 Manipulating signals

Mathematical operations on analog signals are unambiguous. We require that the signals are de�ned over
the same time interval when using operations such as addition, multiplication, division and so on.

1.3.2 Elementary signals & relations

1.3.2.1 The (Dirac) delta function

The delta function is a peculiar function that has zero duration, in�nite height, but still unit area! Math-
ematically we have the following two properties

note: δ (t) = 0 for t 6= 0

note:

∫∞
−∞ δ (t) dt = 1

The delta function has a useful property, namely the sampling property.

x (t) =
∫ ∞
−∞

x (τ) δ (t− τ) dτ (1.3)

At this stage this may seem not particulary useful, so for now just convince yourself that the above relation
holds.

(We assume that x (t) is "well behaved" at t = τ , that is continuous and �nite.)

1.3.2.2 The unit step function

The unit step function is equal to zero when its argument is negative and equal to one for non-negative
arguments, see Figure 1.6 for plots.

note: u (t) =

 1 if t ≥ 0

0 otherwise

4http://cnx.rice.edu/content/m11476/latest/unit_step_discrete.m
5This content is available online at <http://cnx.org/content/m11478/1.8/>.
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(a)

(b)

Figure 1.6: Two unit step functions. (a) Unit step function, no delay. (b) Unit step function, delayed
by 5.

1.3.2.3 Trigonometric functions

The trigonometric functions are central to signal processing and telecommunications. They are de�ned as
follows, where Ω is the angular frequency. Ω = 2πF0, where F0 is the frequency of the signal.

note: x (t) = sin (Ωt)

note: x (t) = cos (Ωt)

See also Frequency de�nitions & periodicity (Section 1.5).

1.3.2.4 The complex exponential function

The complex exponential function is central to signal processing and some call it the most important
signal. j =

√
−1 is the imaginary unit.

note: x (t) = ejΩt

1.3.3 Euler's relations

The complex exponential function can be written as a sum of its real and imaginary part.

x (t) = ejΩt = cos (Ωt) + jsin (Ωt) (1.4)

By complex conjugating (1.4) and add / subtract the result with (1.4) we obtain Euler's relations.

note: cos (Ωt) = ejΩt+e−(jΩt)

2

note: sin (Ωt) = ejΩt−e−(jΩt)

2j

The importance of Euler's relations can hardly be stressed enough.
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1.3.4 Matlab �le

unit_step_analog.m6

1.3.5

Take a look at Introduction (Section 1.1); Discrete time signals (Section 1.2); Discrete vs Analog signals
(Section 1.4); Frequency de�nitions and periodicity (Section 1.5); Energy & Power (Section 1.6); Exercises7

?

1.4 Discrete vs Analog8

When comparing analog vs discrete time, we �nd that there are many similarities. Often we only need to
substitute the varible t with n and integration with summation. Still there are some important di�erences
that we need to know. As the complex exponential signal is truly central to signal processing we will study
that in more detail.

1.4.1 Analog

The complex exponential function is de�ned: x (t) = ejΩt. If Ω(rad/second) is increased the rate of oscillation
will increase continuously. The complex exponential function is also periodic for any value of Ω. In �gure
Figure 1.7 we have plotted ejπt and ej3πt (the real parts only). In Figure 1.7 we see that the red plot,
corresponding to a higher value of Ω, has a higher rate of oscillation.

6http://cnx.rice.edu/content/m11478/latest/unit_step_analog.m
7"Existence of the Minimum Variance Unbiased Estimator (MVUB)" <http://cnx.org/content/m11428/latest/>
8This content is available online at <http://cnx.org/content/m11527/1.10/>.
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Figure 1.7: Real parts of complex exponentials.

1.4.2 Discrete time

The discrete time complex exponential function is de�ned: x (n) = ejωn.
If we increase ω (rad/sample) the rate of oscillation will increase and decrease periodically. The reason

is: ej(ω+2πk)n = ejωnej2πkn = ejωn, where n, k ∈ Z.
This implies that the complex exponential with digital angular frequency ω is identical to a complex

exponential with ω1 = ω + 2π, see Figure 1.8
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Figure 1.8: Two discrete exponentials that are identical

The rate of oscillation will increase until ω = π, then it decreases and repeats after 2π. In Figure 1.9 we
see that as we increase the angular frequency towards π the rate of oscillation increases. If you download
the Matlab �les included at the end of this module you can adjust the parameters and see that the rate of
oscillation will decrease when exceeding π (but less than 2π).
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Figure 1.9: Two discrete exponentials with di�erent frequency.

note: We need to consider discrete time exponentials at an (digital angular) frequency interval
of 2π only.

Low (digital angular) frequencies will correspond to ω near even multiplies of π. High (digital angular)
frequencies will correspond to ω near odd multiplies of π.

1.4.3 Matlab �les

complex_exponential.m9

1.4.4

Take a look at Introduction (Section 1.1); Discrete time signals (Section 1.2); Analog signals (Section 1.3);
Frequency de�nitions and periodicity (Section 1.5); Energy & Power (Section 1.6); Exercises10 ?

9http://cnx.rice.edu/content/m11527/latest/complex_exponential.m
10"Existence of the Minimum Variance Unbiased Estimator (MVUB)" <http://cnx.org/content/m11428/latest/>
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1.5 Frequency de�nitions and periodicity11

1.5.1 Frequency de�nitions

In signal processing we use several types of frequencies. This may seem confusing at �rst, but it is really not
that di�cult.

1.5.1.1 Analog frequency

The frequency of an analog signal is the easiest to understand. A trigonometric function with argument
Ωt = 2πFt generates a periodic function with

• a single frequency F.
• period T
• the relation T = 1

F

Frequency is then interpreted as how many periods there are per time unit. If we choose seconds as our time
unit, frequency will be measured in Hertz, which is most common.

1.5.1.2 Digital frequency

The digital frequency is de�ned as f = F
Fs
, where Fs is the sampling frequency. The sampling interval is

the inverse of the sampling frequency, Ts = 1
Fs
. A discrete time signal with digital frequency f therefore

has a frequency given by F = fFs if the samples are spaced at Ts = 1
Fs
.

1.5.1.3 Consequences

In design of digital sinusoids we do not have to settle for a physical frequency. We can associate any physical
frequency F with the digital frequency f, by choosing the appropriate sampling frequency Fs. (Using the
relation f = F

Fs
)

According to the relation Ts = 1
Fs

choosing an appropriate sampling frequency is equivivalent to choosing
a sampling interval, which implies that digital sinusoids can be designed by specifying the sampling interval.

1.5.1.4 Angular frequencies

The angular frequencies are obtained by multiplying the frequencies by the factor 2π:

Angular frequency - Ω = 2πF
Digital angular frequency - ω = 2πf

1.5.2 Signal periodicity

Any analog sine or cosine function is periodic. So it may seem surprising that discrete trigonometric signals
not necessarily are periodic. Let us de�ne periodicity mathematically.

If for all k ∈ Z we have

Analog signals - x (t) = x (n+ kT0), then x (t) is periodic with period T0.
Discrete time signals - x (n) = x (n+ kN), then x (n) is periodic with period N.

Example 1.3
Consider the signal x (t) = sin (2πFt) which obviously is periodic. You can check by using the
periodicity de�nition and some trigonometric identitites12 .

11This content is available online at <http://cnx.org/content/m11477/1.13/>.
12http://www.sosmath.com/trig/Trig5/trig5/trig5.html
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Example 1.4
Consider the signal x (n) = sin (2πfn). Q:Is this signal periodic?

A: To check we will use the periodicity de�nition and some trigonometric identities13 .
Periodicity is obtained if we can �nd an N which leads to x (n) = x (n+ kN) for all k ∈ Z. Let

us expand sin (2πf (n+ kN)).

sin (2πf (n+ kN)) = sin (2πfn) cos (2πfkN) + cos (2πfn) sin (2πfkN) (1.5)

To make the right hand side of (1.5) equal to sin (2πfn), we need to impose a restriction on the
digital frequency f. According to (1.5) only fN = m will yield periodicity, m ∈ Z.

Example 1.5
Consider the following signals x (t) = cos

(
2π × 1

8 t
)
and x (n) = cos

(
2π × 1

8n
)
, as shown in Fig-

ure 1.10.

(a) (b)

Figure 1.10: (a) a) cos
`
2π × 1

8
t
´
(b) b) cos

`
2π × 1

8
n

´

Are the signals periodic, and if so, what are the periods?
Both the physical and digital frequency is 1/8 so both signals are periodic with period 8.

Example 1.6
Consider the following signals x (t) = cos

(
2π × 2

3 t
)
and x (n) = cos

(
2π × 2

3n
)
, as shown in Fig-

ure 1.11.

(a) (b)

Figure 1.11: (a) a) cos
`
2π × 2

3
t
´
(b) b) cos

`
2π × 2

3
n

´

Are the signals periodic, and if so, what are the periods?

13http://www.sosmath.com/trig/Trig5/trig5/trig5.html
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The frequencies are 2/3 in both cases. The analog signal then has period 3/2. The discrete
signal has to have a period that is an integer, so the smallest possible period is then 3.

Example 1.7
Consider the following signals x (t) = cos (2t) and x (n) = cos (2n), as shown in Figure 1.12.

(a) (b)

Figure 1.12: (a) a) cos (2t) (b) b) cos (2n)

Are the signals periodic, and if so, what are the periods?
The frequencies are 1/π in both cases. The analog signal then has period π. The discrete signal

is not periodic because the digital frequency is not a rational number.

1.5.2.1 Conclusion

For a time discrete trigonometric signal to be periodic its digital frequency has to be a rational number,
i.e. given by the ratio of two integers. Contrast this to analog trigonometric signals.

1.5.3 Matlab �le

periodicity.m14

1.5.4

Take a look at Introduction (Section 1.1); Discrete time signals (Section 1.2); Analog signals (Section 1.3);
Discrete vs Analog signals (Section 1.4); Energy & Power (Section 1.6); Exercises15 ?

1.6 Energy and Power16

From physics we've learned that energy is work and power is work per time unit. Energy was measured in
Joule (J) and work in Watts(W). In signal processing energy and power are de�ned more loosely without
any necessary physical units, because the signals may represent very di�erent physical entities. We can say
that energy and power are a measure of the signal's "size".

14http://cnx.rice.edu/content/m11477/latest/periodicity.m
15"Existence of the Minimum Variance Unbiased Estimator (MVUB)" <http://cnx.org/content/m11428/latest/>
16This content is available online at <http://cnx.org/content/m11526/1.20/>.
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1.6.1 Signal Energy

1.6.1.1 Analog signals

Since we often think of a signal as a function of varying amplitude through time, it seems to reason that a
good measurement of the strength of a signal would be the area under the curve. However, this area may
have a negative part. This negative part does not have less strength than a positive signal of the same size.
This suggests either squaring the signal or taking its absolute value, then �nding the area under that curve.
It turns out that what we call the energy of a signal is the area under the squared signal, see Figure 1.13

note: Ea =
∫∞
−∞ (|x (t) |)2

dt

Note that we have used squared magnitude(absolute value) if the signal should be complex valued. If the
signal is real, we can leave out the magnitude operation.

(a)

(b)

Figure 1.13: Sketch of energy calculation (a) Signal x(t) (b) The energy of x(t) is the shaded region

1.6.1.2 Discrete signals

For time discrete signals the "area under the squared signal" makes no sense, so we will have to use another
energy de�niton. We de�ne energy as the sum of the squared magnitude of the samples. Mathematically

note: Ed =
∑∞
n=−∞ (|x (n) |)2

Example 1.8
Given the sequence y (l) = blu (l), where u(l) is the unit step function. Find the energy of the
sequence.

We recognize y(l) as a geometric series. Thus we can use the formula for the sum of a geometric

series and we obtain the energy, Ed =
∑∞
l=0 (y (l))2 = 1

1−b2 . This expression is only valid for |b| < 1.
If we have a larger |b|, the series will diverge. The signal y(l) then has in�nite energy. So let's have
a look at power...
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1.6.2 Signal Power

Our de�nition of energy seems reasonable, and it is. However, what if the signal does not decay fast enough?
In this case we have in�nite energy for any such signal. Does this mean that a �fty hertz sine wave feeding
into your headphones is as strong as the �fty hertz sine wave coming out of your outlet? Obviously not.
This is what leads us to the idea of signal power, which in such cases is a more adequate description.

Figure 1.14: Signal with ini�nite energy

1.6.2.1 Analog signals

For analog signals we de�ne power as energy per time interval.

note: Pa = 1
T0

∫ T0
2

−T0
2

(|x (t) |)2
dt

1.6.2.2 Discrete signals

For time discrete signals we de�ne power as energy per sample.

note: Pd = 1
N

∑N1+N−1
n=N1

(|x (n) |)2

Example 1.9
Given the signals x1 (t) = sin (2πt) and x2 (n) = sin

(
π 1

10n
)
, shown in Figure 1.15, calculate the

power for one period.

For the analog sine we have Pa = 1
1

∫ 1

0
sin2 (2πt) dt = 1

2 .

For the discrete sine we get Pd = 1
20

∑20
n=1 sin2

(
1
10πn

)
= 0.500. Download power_sine.m17 for

plots and calculation.

17http://cnx.rice.edu/content/m11526/latest/power_sine.m
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(a)

(b)

Figure 1.15: Analog and discrete time sine. (a) Analog sine (b) Discrete time sine

1.6.3 Matlab �les

energy_area.m18 power_sine.m19

1.6.4

Introduction (Section 1.1); Discrete time signals (Section 1.2); Analog signals (Section 1.3); Discrete vs
Analog signals (Section 1.4); Frequency de�nitions and periodicity (Section 1.5); Exercises (Section 1.7)

1.7 Exercises20

Problems related to the Signals chapter. (Section 1.1)

Exercise 1.7.1 (Solution on p. 21.)

Find the digital frequency of x (n) = cos
(
2π ×

√
3n
)
. Is the signal periodic? If so, �nd the shortest

possible period.

Exercise 1.7.2 (Solution on p. 21.)

Find the digital frequency of x (n) = cos
(
2π ×

√
4n
)
. Is the signal periodic? If so, �nd the shortest

possible period.

Exercise 1.7.3 (Solution on p. 21.)

Find the digital frequency of x (n) = sin (2π1.5n). Is the signal periodic? If so, �nd the shortest
possible period.

Exercise 1.7.4 (Solution on p. 21.)

Referring to example 2 (Example 1.9) �nd the analog and digital frequency of x1 (t) and x2 (n)
respectively.

18http://cnx.rice.edu/content/m11526/latest/energy_area.m
19http://cnx.rice.edu/content/m11526/latest/power_sine.m
20This content is available online at <http://cnx.org/content/m11482/1.10/>.
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Solutions to Exercises in Chapter 1

Solution to Exercise 1.7.1 (p. 20)
Write cos

(
2π ×

√
3n
)
as cos (2πfn), where f is the digital frequency. We see that the digital frequency is√

3. For a trigonometric signal to be periodic the digital frequency has to be a rational number, i.e f = m
N ,

where both m,N are integers. N is the signal period. Here the digital frequency is not a rational number,
hence the signal is not periodic.
Solution to Exercise 1.7.2 (p. 20)
Write cos

(
2π ×

√
4n
)
as cos (2πfn), where f is the digital frequency. We see that the digital frequency is√

4 = 2. For a trigonometric signal to be periodic the digital frequency has to be a rational number, i.e
f = m

N , where both m,N are integers. N is the signal period. In this case the digital frequency is a rational
number, f = 2

1 , hence the signal is periodic. The period, N, is given by N = m
f = m

2 . Since N has to be an
integer, we obtain the shortest possible period letting m = 2, which yields N = 1.
Solution to Exercise 1.7.3 (p. 20)
Write sin (2π1.5n) as sin (2πfn), where f is the digital frequency. We see that the digital frequency is 1.5.
The digital frequency is a rational number(3/2), hence the signal is periodic. The period, N, is given by
N = m

f = 2m
3 . Since N has to be an integer, we obtain the shortest possible period letting m = 3, which

yields N = 2.
Solution to Exercise 1.7.4 (p. 20)
Using the same reasoning as above we easily see that the analog sine has frequency 1, while the discrete
time sine has digital frequency 1/20.
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Chapter 2

Convolution

2.1 Introduction to Convolution1

In addition to the operations performed on signals in the Signals (Section 1.2) chapter there are several more.
The most important operation is linear �ltering, which can be performed by convolution. The reason that
linear �ltering is so important to signal processing is that it solves many problems and that is relatively
simple to describe mathematically. In this chapter we will be looking at convolution.

Convolution helps to determine the e�ect a system has on an input signal. It can be shown that a
linear, time-invariant system2 is completely characterized by its impulse response. Using the sampling
property (Section 1.3.2.1: The (Dirac) delta function) of the delta function (Section 1.3.2.1: The (Dirac)
delta function) for for continuous time signals and the unit sample (Section 1.2.3.1: The unit sample) for
discrete time signals we can decompose a signal into an in�nite sum / integral of scaled and shifted impulses.
By knowing how a system a�ects a single impulse, and by understanding the way a signal is comprised of
scaled and summed impulses, it seems reasonable that it should be possible to scale and sum the impulse
responses of a system in order to determine what output signal will results from a particular input. This is
precisely what convolution does - convolution determines the system's output from knowledge of
the input and the system's impulse response.

Contents of this chapter

• Introduction (current module)
• Convolution - Discrete time3

• Convolution - Continuous time (Section 2.3)
• Properties of convolution (Section 2.5)

2.2 Discrete Time Convolution4

2.2.1 Introduction

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output a system produces for a given input signal. It can be shown that a linear time invariant system is
completely characterized by its impulse response. The sifting property of the discrete time impulse function
tells us that the input signal to a system can be represented as a sum of scaled and shifted unit impulses.
Thus, by linearity, it would seem reasonable to compute of the output signal as the sum of scaled and shifted

1This content is available online at <http://cnx.org/content/m11542/1.3/>.
2"System Classi�cations and Properties" <http://cnx.org/content/m10084/latest/>
3"Convolution - Discrete time" <http://cnx.org/content/m11539/latest/>
4This content is available online at <http://cnx.org/content/m10087/2.27/>.
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unit impulse responses. That is exactly what the operation of convolution accomplishes. Hence, convolution
can be used to determine a linear time invariant system's output from knowledge of the input and the impulse
response.

2.2.2 Convolution and Circular Convolution

2.2.2.1 Convolution

2.2.2.1.1 Operation De�nition

Discrete time convolution is an operation on two discrete time signals de�ned by the integral

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) (2.1)

for all signals f, g de�ned on Z. It is important to note that the operation of convolution is commutative,
meaning that

f ∗ g = g ∗ f (2.2)

for all signals f, g de�ned on Z. Thus, the convolution operation could have been just as easily stated using
the equivalent de�nition

(f ∗ g) (n) =
∞∑

k=−∞

f (n− k) g (k) (2.3)

for all signals f, g de�ned on Z. Convolution has several other important properties not listed here but
explained and derived in a later module.

2.2.2.1.2 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a system input signal x we would like to compute the system output signal H (x). First, we note that the
input can be expressed as the convolution

x (n) =
∞∑

k=−∞

x (k) δ (n− k) (2.4)

by the sifting property of the unit impulse function. By linearity

Hx (n) =
∞∑

k=−∞

x (k)Hδ (n− k) . (2.5)

Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
∞∑

k=−∞

x (k)h (n− k) = (x ∗ h) (n) . (2.6)

Hence, convolution has been de�ned such that the output of a linear time invariant system is given by the
convolution of the system input with the system unit impulse response.
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2.2.2.1.3 Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes.
Consider the convolution of two functions f, g given by

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) =
∞∑

k=−∞

f (n− k) g (k) . (2.7)

The �rst step in graphically understanding the operation of convolution is to plot each of the functions.
Next, one of the functions must be selected, and its plot re�ected across the k = 0 axis. For each real t, that
same function must be shifted left by t. The product of the two resulting plots is then constructed. Finally,
the area under the resulting curve is computed.

Example 2.1
Recall that the impulse response for a discrete time echoing feedback system with gain a is

h (n) = anu (n) , (2.8)

and consider the response to an input signal that is another exponential

x (n) = bnu (n) . (2.9)

We know that the output for this input is given by the convolution of the impulse response with
the input signal

y (n) = x (n) ∗ h (n) . (2.10)

We would like to compute this operation by beginning in a way that minimizes the algebraic
complexity of the expression. However, in this case, each possible coice is equally simple. Thus, we
would like to compute

y (n) =
∞∑

k=−∞

aku (k) bn−ku (n− k) . (2.11)

The step functions can be used to further simplify this sum. Therefore,

y (n) = 0 (2.12)

for n < 0 and

y (n) =
n∑
k=0

(ab)k (2.13)

for n ≥ 0. Hence, provided ab 6= 1, we have that

y (n) = {
0 n < 0

1−(ab)n+1

1−(ab) n ≥ 0
. (2.14)
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2.2.2.2 Circular Convolution

Discrete time circular convolution is an operation on two �nite length or periodic discrete time signals de�ned
by the integral

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) (2.15)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. It is important to

note that the operation of circular convolution is commutative, meaning that

f ∗ g = g ∗ f (2.16)

for all signals f, g de�ned on Z [0, N − 1]. Thus, the circular convolution operation could have been just as
easily stated using the equivalent de�nition

(f ∗ g) (n) =
N−1∑
k=0

^
f (n− k)

^
g (k) (2.17)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. Circular convolution

has several other important properties not listed here but explained and derived in a later module.
Alternatively, discrete time circular convolution can be expressed as the sum of two summations given

by

(f ∗ g) (n) =
n∑
k=0

f (k) g (n− k) +
N−1∑
k=n+1

f (k) g (n− k +N) (2.18)

for all signals f, g de�ned on Z [0, N − 1].
Meaningful examples of computing discrete time circular convolutions in the time domain would involve

complicated algebraic manipulations dealing with the wrap around behavior, which would ultimately be
more confusing than helpful. Thus, none will be provided in this section. Of course, example computations
in the time domain are easy to program and demonstrate. However, disrete time circular convolutions are
more easily computed using frequency domain tools as will be shown in the discrete time Fourier series
section.

2.2.2.2.1 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a �nite or periodic system input signal x we would like to compute the system output signal H (x). First,
we note that the input can be expressed as the circular convolution

x (n) =
N−1∑
k=0

^
x (k)

^
δ (n− k) (2.19)

by the sifting property of the unit impulse function. By linearity,

Hx (n) =
N−1∑
k=0

^
x (k)H

^
δ (n− k) . (2.20)
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Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
N−1∑
k=0

^
x (k)

^
h (n− k) = (x ∗ h) (n) . (2.21)

Hence, circular convolution has been de�ned such that the output of a linear time invariant system is given
by the convolution of the system input with the system unit impulse response.

2.2.2.2.2 Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical
processes. Consider the circular convolution of two �nite length functions f, g given by

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) =

N−1∑
k=0

^
f (n− k)

^
g (k) . (2.22)

The �rst step in graphically understanding the operation of convolution is to plot each of the periodic
extensions of the functions. Next, one of the functions must be selected, and its plot re�ected across the
k = 0 axis. For each k ∈ Z [0, N − 1], that same function must be shifted left by k. The product of the two
resulting plots is then constructed. Finally, the area under the resulting curve on Z [0, N − 1] is computed.
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2.2.3 Interactive Element

Figure 2.1: Interact (when online) with the Mathematica CDF demonstrating Discrete Linear Convo-
lution. To download, right click and save �le as .cdf
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2.2.4 Convolution Summary

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output signal of a linear time invariant system for a given input signal with knowledge of the system's unit
impulse response. The operation of discrete time convolution is de�ned such that it performs this function
for in�nite length discrete time signals and systems. The operation of discrete time circular convolution is
de�ned such that it performs this function for �nite length and periodic discrete time signals. In each case,
the output of the system is the convolution or circular convolution of the input signal with the unit impulse
response.

2.3 Convolution - Analog5

In this module we examine convolution for continuous time signals. This will result in the convolution
integral and its properties (Section 2.5). These concepts are very important in Electrical Engineering and
will make any engineer's life a lot easier if the time is spent now to truly understand what is going on.

In order to fully understand convolution, you may �nd it useful to look at the discrete-time convolution
(Section 2.2) as well. Accompanied to this module there is a fully worked out example (Section 2.4) with
mathematics and �gures. It will also be helpful to experiment with the Convolution - Continuous time6

applet available from Johns Hopkins University7 . These resources o�ers di�erent approaches to this crucial
concept.

2.3.1 Derivation of the convolution integral

The derivation used here closely follows the one discussed in the motivation section above. To begin this, it
is necessary to state the assumptions we will be making. In this instance, the only constraints on our system
are that it be linear and time-invariant.

Brief Overview of Derivation Steps:

1. An impulse input leads to an impulse response output.
2. A shifted impulse input leads to a shifted impulse response output. This is due to the time-invariance

of the system.
3. We now scale the impulse input to get a scaled impulse output. This is using the scalar multiplication

property of linearity.
4. We can now "sum up" an in�nite number of these scaled impulses to get a sum of an in�nite number

of scaled impulse responses. This is using the additivity attribute of linearity.
5. Now we recognize that this in�nite sum is nothing more than an integral, so we convert both sides into

integrals.
6. Recognizing that the input is the function f (t), we also recognize that the output is exactly the

convolution integral.

5This content is available online at <http://cnx.org/content/m11540/1.7/>.
6http://www.jhu.edu/∼signals/convolve/
7http://www.jhu.edu
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Figure 2.2: We begin with a system de�ned by its impulse response, h (t).

Figure 2.3: We then consider a shifted version of the input impulse. Due to the time invariance of the
system, we obtain a shifted version of the output impulse response.

Figure 2.4: Now we use the scaling part of linearity by scaling the system by a value, f (τ), that is
constant with respect to the system variable, t.

Figure 2.5: We can now use the additivity aspect of linearity to add an in�nite number of these, one
for each possible τ . Since an in�nite sum is exactly an integral, we end up with the integration known
as the Convolution Integral. Using the sampling property (Section 1.3.2.1: The (Dirac) delta function),
we recognize the left-hand side simply as the input f (t).
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2.3.2 Convolution Integral

As mentioned above, the convolution integral provides an easy mathematical way to express the output of an
LTI system based on an arbitrary signal, x (t), and the system's impulse response, h (t). The convolution
integral is expressed as

y (t) =
∫ ∞
−∞

x (τ)h (t− τ) dτ (2.23)

Convolution is such an important tool that it is represented by the symbol *, and can be written as

y (t) = x (t) ∗ h (t) (2.24)

By making a simple change of variables into the convolution integral, τ = t − τ , we can easily show that
convolution is commutative:

x (t) ∗ h (t) = h (t) ∗ x (t) (2.25)

which gives an equivivalent form of (2.23)

y (t) =
∫ ∞
−∞

x (t− τ)h (τ) dτ (2.26)

For more information on the characteristics of the convolution integral, read about the Properties of Con-
volution (Section 2.5).

2.3.3 Implementation of Convolution

Taking a closer look at the convolution integral, we �nd that we are multiplying the input signal by the
time-reversed impulse response and integrating. This will give us the value of the output at one given value
of t. If we then shift the time-reversed impulse response by a small amount, we get the output for another
value of t. Repeating this for every possible value of t, yields the total output function. While we would
never actually do this computation by hand in this fashion, it does provide us with some insight into what
is actually happening. We �nd that we are essentially reversing the impulse response function and sliding
it across the input function, integrating as we go. This method, referred to as the graphical method,
provides us with a much simpler way to solve for the output for simple (contrived) signals, while improving
our intuition for the more complex cases where we rely on computers. In fact Texas Instruments8 develops
Digital Signal Processors9 which have special instruction sets for computations such as convolution.

8http://www.ti.com
9http://dspvillage.ti.com/docs/toolssoftwarehome.jhtml



32 CHAPTER 2. CONVOLUTION

2.3.4 Summary

Convolution is a truly important concept, which must be well understood.

note: y (t) =
∫∞
−∞ x (τ)h (t− τ) dτ

note: y (t) =
∫∞
−∞ h (τ)x (t− τ) dτ

2.3.5

Go to? Introduction (Section 2.1); Convolution - Full example (Section 2.4); Convolution - Discrete time
(Section 2.2); Properties of convolution (Section 2.5)

2.4 Convolution - Complete example10

2.4.1 Basic Example

Let us look at a basic continuous-time convolution example to help express some of the important ideas. We
will convolve together two square pulses, x (t) and h (t), as shown in Figure 2.6

(a)

(b)

Figure 2.6: Two basic signals that we will convolve together.

2.4.1.1 Re�ect and Shift

Now we will take one of the functions and re�ect it around the y-axis. Then we must shift the function, such
that the origin, the point of the function that was originally on the origin, is labeled as point t. This step is
shown in Figure 2.7, h (t− τ).

10This content is available online at <http://cnx.org/content/m11541/1.7/>.
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(a) (b)

Figure 2.7: h (−τ) and h (t− τ). (a) Re�ected square pulse. (b) Re�ected and shifted square pulse.

Note that in Figure 2.7 τ is the 1st axis variable while t is a constant (in this �gure). Since convolution is
commutative it will never matter which function is re�ected and shifted; however, as the functions become
more complicated re�ecting and shifting the "right one" will often make the problem much easier.

2.4.1.2 Regions of Integration

We start out with the convolution integral, y (t) =
∫∞
−∞ x (τ)h (t− τ) dτ . The value of the function y at time

t is given by the amount of overlap(to be precise the integral of the overlapping region) between h (t− τ)
and x (τ).

Next, we want to look at the functions and divide the span of the functions into di�erent limits of
integration. These di�erent regions can be understood by thinking about how we slide h (t− τ) over x (τ),
see Figure 2.8.
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(a)

(b)

(c)

(d)

Figure 2.8: Figures to help understand the regions of intergration (a) No overlap. (b) h (t− τ) on its
way "into" x (τ) (c) h (t− τ) on its way "out of" x (τ) (d) No overlap.
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In this case we will have the following four regions. Compare these limits of integration to the four
illustrations of h (t− τ) and x (τ) in Figure 2.8.

Four Limits of Integration

1. t < 0
2. 0 ≤ t < 1
3. 1 ≤ t < 2
4. t ≥ 2

2.4.1.3 Using the Convolution Integral

Finally we are ready for a little math. Using the convolution integral, let us integrate the product of
x (τ)h (t− τ). For our �rst and fourth region this will be trivial as it will always be 0. The second region,
0 ≤ t < 1, will require the following math:

y (t) =
∫ t

0
1dτ

= t
(2.27)

The third region, 1 ≤ t < 2, is solved in much the same manner. Take note of the changes in our integration
though. As we move h (t− τ) across our other function, the left-hand edge of the function, t − 1, becomes
our lowlimit for the integral. This is shown through our convolution integral as

y (t) =
∫ 1

t−1
1dτ

= 1− (t− 1)

= 2− t

(2.28)

The above formulas show the method for calculating convolution; however, do not let the simplicity of this
example confuse you when you work on other problems. The method will be the same, you will just have to
deal with more math in more complicated integrals.

Note that the value of y (t) at all time is given by the integral of the overlapping functions. In this
example y for a given t equals the gray area in the plots in Figure 2.8.

2.4.1.4 Convolution Results

Thus, we have the following results for our four regions:

y (t) =


0 if t < 0

t if 0 ≤ t < 1

2− t if 1 ≤ t < 2

0 if t ≥ 2

(2.29)

Now that we have found the resulting function for each of the four regions, we can combine them together
and graph the convolution of x (t) ∗ h (t).
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Figure 2.9: Shows the system's output in response to the input, x (t).

2.4.1.5 Common sense approach

By looking at Figure 2.8 we can obtain the system output, y (t), by "common" sense. For t < 0 there is no
overlap, so y (t) is 0. As t goes from 0 to 1 the overlap will linearly increase with a maximum for t = 1,
the maximum corresponds to the peak value in the triangular pulse. As t goes from 1 to 2 the overlap will
linearly decrease. For t > 2 there will be no overlap and hence no output.

We see readily from the "common" sense approach that the output function y (t) is the same as obtained
above with calculations. When convolving to square pulses the result will always be a triangular pulse. Its
origin, peak value and strech will, of course, vary.

2.4.2

• Introduction (Section 2.1)
• Convolution - Discrete time11

• Convolution - Analog (Section 2.3)
• Properties of convolution (Section 2.5)

2.5 Properties of Continuous Time Convolution12

2.5.1 Introduction

We have already shown the important role that continuous time convolution plays in signal processing. This
section provides discussion and proof of some of the important properties of continuous time convolution.
Analogous properties can be shown for continuous time circular convolution with trivial modi�cation of the
proofs provided except where explicitly noted otherwise.

11"Convolution - Discrete time" <http://cnx.org/content/m11539/latest/>
12This content is available online at <http://cnx.org/content/m10088/2.17/>.
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2.5.2 Continuous Time Convolution Properties

2.5.2.1 Associativity

The operation of convolution is associative. That is, for all continuous time signals f1, f2, f3 the following
relationship holds.

f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3 (2.30)

In order to show this, note that

(f1 ∗ (f2 ∗ f3)) (t) =
∫∞
−∞

∫∞
−∞ f1 (τ1) f2 (τ2) f3 ((t− τ1)− τ2) dτ2dτ1

=
∫∞
−∞

∫∞
−∞ f1 (τ1) f2 ((τ1 + τ2)− τ1) f3 (t− (τ1 + τ2)) dτ2dτ1

=
∫∞
−∞

∫∞
−∞ f1 (τ1) f2 (τ3 − τ1) f3 (t− τ3) dτ1dτ3

= ((f1 ∗ f2) ∗ f3) (t)

(2.31)

proving the relationship as desired through the substitution τ3 = τ1 + τ2.

2.5.2.2 Commutativity

The operation of convolution is commutative. That is, for all continuous time signals f1, f2 the following
relationship holds.

f1 ∗ f2 = f2 ∗ f1 (2.32)

In order to show this, note that

(f1 ∗ f2) (t) =
∫∞
−∞ f1 (τ1) f2 (t− τ1) dτ1

=
∫∞
−∞ f1 (t− τ2) f2 (τ2) dτ2

= (f2 ∗ f1) (t)

(2.33)

proving the relationship as desired through the substitution τ2 = t− τ1.

2.5.2.3 Distribitivity

The operation of convolution is distributive over the operation of addition. That is, for all continuous time
signals f1, f2, f3 the following relationship holds.

f1 ∗ (f2 + f3) = f1 ∗ f2 + f1 ∗ f3 (2.34)

In order to show this, note that

(f1 ∗ (f2 + f3)) (t) =
∫∞
−∞ f1 (τ) (f2 (t− τ) + f3 (t− τ)) dτ

=
∫∞
−∞ f1 (τ) f2 (t− τ) dτ +

∫∞
−∞ f1 (τ) f3 (t− τ) dτ

= (f1 ∗ f2 + f1 ∗ f3) (t)

(2.35)

proving the relationship as desired.
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2.5.2.4 Multilinearity

The operation of convolution is linear in each of the two function variables. Additivity in each variable
results from distributivity of convolution over addition. Homogenity of order one in each varible results from
the fact that for all continuous time signals f1, f2 and scalars a the following relationship holds.

a (f1 ∗ f2) = (af1) ∗ f2 = f1 ∗ (af2) (2.36)

In order to show this, note that

(a (f1 ∗ f2)) (t) = a
∫∞
−∞ f1 (τ) f2 (t− τ) dτ

=
∫∞
−∞ (af1 (τ)) f2 (t− τ) dτ

= ((af1) ∗ f2) (t)

=
∫∞
−∞ f1 (τ) (af2 (t− τ)) dτ

= (f1 ∗ (af2)) (t)

(2.37)

proving the relationship as desired.

2.5.2.5 Conjugation

The operation of convolution has the following property for all continuous time signals f1, f2.

f1 ∗ f2 = f1 ∗ f2 (2.38)

In order to show this, note that (
f1 ∗ f2

)
(t) =

∫∞
−∞ f1 (τ) f2 (t− τ) dτ

=
∫∞
−∞ f1 (τ) f2 (t− τ)dτ

=
∫∞
−∞ f1 (τ) f2 (t− τ) dτ

=
(
f1 ∗ f2

)
(t)

(2.39)

proving the relationship as desired.

2.5.2.6 Time Shift

The operation of convolution has the following property for all continuous time signals f1, f2 where ST is
the time shift operator.

ST (f1 ∗ f2) = (ST f1) ∗ f2 = f1 ∗ (ST f2) (2.40)

In order to show this, note that

ST (f1 ∗ f2) (t) =
∫∞
−∞ f2 (τ) f1 ((t− T )− τ) dτ

=
∫∞
−∞ f2 (τ)ST f1 (t− τ) dτ

= ((ST f1) ∗ f2) (t)

=
∫∞
−∞ f1 (τ) f2 ((t− T )− τ) dτ

=
∫∞
−∞ f1 (τ)ST f2 (t− τ) dτ

= f1 ∗ (ST f2) (t)

(2.41)

proving the relationship as desired.
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2.5.2.7 Di�erentiation

The operation of convolution has the following property for all continuous time signals f1, f2.

d

dt
(f1 ∗ f2) (t) =

(
df1

dt
∗ f2

)
(t) =

(
f1 ∗

df2

dt

)
(t) (2.42)

In order to show this, note that

d
dt (f1 ∗ f2) (t) =

∫∞
−∞ f2 (τ) d

dtf1 (t− τ) dτ

=
(
df1
dt ∗ f2

)
(t)

=
∫∞
−∞ f1 (τ) d

dtf2 (t− τ) dτ

=
(
f1 ∗ df2

dt

)
(t)

(2.43)

proving the relationship as desired.

2.5.2.8 Impulse Convolution

The operation of convolution has the following property for all continuous time signals f where δ is the Dirac
delta funciton.

f ∗ δ = f (2.44)

In order to show this, note that

(f ∗ δ) (t) =
∫∞
−∞ f (τ) δ (t− τ) dτ

= f (t)
∫∞
−∞ δ (t− τ) dτ

= f (t)

(2.45)

proving the relationship as desired.

2.5.2.9 Width

The operation of convolution has the following property for all continuous time signals f1, f2 where
Duration (f) gives the duration of a signal f .

Duration (f1 ∗ f2) = Duration (f1) +Duration (f2) (2.46)

. In order to show this informally, note that (f1 ∗ f2) (t) is nonzero for all t for which there is a τ such that
f1 (τ) f2 (t− τ) is nonzero. When viewing one function as reversed and sliding past the other, it is easy to
see that such a τ exists for all t on an interval of length Duration (f1) +Duration (f2). Note that this is not
always true of circular convolution of �nite length and periodic signals as there is then a maximum possible
duration within a period.

2.5.3 Convolution Properties Summary

As can be seen the operation of continuous time convolution has several important properties that have
been listed and proven in this module. With slight modi�cations to proofs, most of these also extend to
continuous time circular convolution as well and the cases in which exceptions occur have been noted above.
These identities will be useful to keep in mind as the reader continues to study signals and systems.
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Chapter 3

Analog Filtering

3.1 Frequency response from a circuit diagram1

In this module we calculate the frequency response from a circuit diagram of a simple analog �lter,
as shown in Figure 3.1 (Simple Circuit). We know that the frequency response, denoted by H (j (Ω)), is
calculated as ratio of the output and input voltages (in the frequency domain). That is,

Vout

Vin
= H (jΩ) (3.1)

Notice that we use capital letters in these relations. This is to indicate that they are frequency domain
descriptions.

Now, to calculate the frequency response we �nd expressions for Vin, and Vout, as follows

Vin = IR+ Vout (3.2)

Further, the current in the circuit can be expressed as

I = jCΩVout (3.3)

Then, the frequency response is given as:

Vout
Vin

= H (jΩ)

= 1
jΩRC+1

(3.4)

Note that above we have used impedance considerations. Have a look at The Impedance concept2 and
Impedance3 for a quick summary of impedance considerations.

Implicit in using the transfer function is that the input is a complex exponential, and the output is also
a complex exponential having the same frequency. The transfer function reveals how the circuit modi�es the
input amplitude in creating the output amplitude. Thus, the transfer function completely describes how
the circuit processes the input complex exponential to produce the output complex exponential. The circuit's
function is thus summarized by the transfer function. In fact, circuits are often designed to meet transfer
function speci�cations. Because transfer functions are complex-valued, frequency-dependent quantities, we
can better appreciate a circuit's function by examining the magnitude and phase of its transfer function
(Figure 3.2 (Magnitude and phase of the transfer function)). Note that in Figure 3.2 (Magnitude and phase
of the transfer function) we plot the magnitude phase as a function of the frequency F , instead of the

1This content is available online at <http://cnx.org/content/m13646/1.2/>.
2"The Impedance Concept" <http://cnx.org/content/m0024/latest/>
3"Impedance" <http://cnx.org/content/m0025/latest/>
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angular frequency Ω. Since Ω = 2πF , this is just a matter of taste, see Frequency de�nitions and peridocity
(Section 1.5) for details.

Simple Circuit

Figure 3.1: A simple RC circuit.

Magnitude and phase of the transfer function

(a)

(b)

Figure 3.2: Magnitude and phase of the transfer function of the RC circuit shown in Figure 3.1 (Simple
Circuit) when RC = 1. (a) |H (jF ) | = 1√

(2πFRC)2+1
(b) ∠ (H (jF )) = −arctan (2πFRC)

Several things to note about this transfer function.
We can compute the frequency response for both positive and negative frequencies. Recall that sinusoids

consist of the sum of two complex exponentials, one having the negative frequency of the other. We will
consider how the circuit acts on a sinusoid soon. Do note that the magnitude has even symmetry: The
negative frequency portion is a mirror image of the positive frequency portion: |H (− (jF )) | = |H (jF ) |.
The phase has odd symmetry: ∠ (H (− (jF ))) = −∠ (H (jF )). These properties of this speci�c example
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apply for all transfer functions associated with circuits. Consequently, we don't need to plot the negative
frequency component; we know what it is from the positive frequency part.

The magnitude equals 1√
2
of its maximum gain (1 at F = 0) when 2πFRC = 1 (the two terms in the

denominator of the magnitude are equal). The frequency Fc = 1
2πRC de�nes the boundary between two

operating ranges.

• For frequencies below this frequency, the circuit does not much alter the amplitude of the complex
exponential source.

• For frequencies greater than Fc, the circuit strongly attenuates the amplitude. Thus, when the source
frequency is in this range, the circuit's output has a much smaller amplitude than that of the source.

For these reasons, this frequency is known as the cuto� frequency. In this circuit the cuto� frequency
depends only on the product of the resistance and the capacitance. Thus, a cuto� frequency of 1 kHz occurs

when 1
2πRC = 103 or RC = 10−3

2π = 1.59 × 10−4. Thus resistance-capacitance combinations of 1.59 kΩ and
100 nF or 10 Ω and 1.59 µF result in the same cuto� frequency.

The phase shift caused by the circuit at the cuto� frequency precisely equals −π4 . Thus, below the cuto�
frequency, phase is little a�ected, but at higher frequencies, the phase shift caused by the circuit becomes
−π2 . This phase shift corresponds to the di�erence between a cosine and a sine.

We can use the transfer function to �nd the output when the input voltage is a sinusoid for two reasons.
First of all, a sinusoid is the sum of two complex exponentials, each having a frequency equal to the negative
of the other. Secondly, because the circuit is linear, superposition applies. If the source is a sine wave, we
know that

vin (t) = Asin (Ωt)

= A
2j

(
ejΩt − e−(jΩt)

) (3.5)

Since the input is the sum of two complex exponentials, we know that the output is also a sum of two
similar complex exponentials, the only di�erence being that the complex amplitude of each is multiplied by
the transfer function evaluated at each exponential's frequency.

vout (t) =
A

2j
H (jΩ) ejΩt − A

2j
H (− (jΩ)) e−(jΩt) (3.6)

As noted earlier, the transfer function is most conveniently expressed in polar form: H (jΩ) =
|H (jΩ) |ej∠(H(jΩ)). Furthermore, |H (− (jΩ)) | = |H (jΩ) | (even symmetry of the magnitude) and
∠ (H (− (jΩ))) = −∠ (H (jΩ)) (odd symmetry of the phase). The output voltage expression simpli�es
to

vout (t) = A|H (jΩ) |sin (Ωt+ ∠ (H (jΩ)))

= A
2j |H (j (Ω)) |ejΩt+∠(H(jΩ)) − A

2j |H (jΩ) |e(−(jΩt))−∠(H(jΩ))
(3.7)

The circuit's output to a sinusoidal input is also a sinusoid, having a gain equal to the
magnitude of the circuit's transfer function evaluated at the source frequency and a phase
equal to the phase of the transfer function at the source frequency. It will turn out that this
input-output relation description applies to any linear circuit having a sinusoidal source.

The notion of impedance arises when we assume the sources are complex exponentials. This assumption
may seem restrictive; what would we do if the source were a unit step? When we use impedances to �nd the
transfer function between the source and the output variable, we can derive from it the di�erential equation
that relates input and output. The di�erential equation applies no matter what the source may be. As
we have argued, it is far simpler to use impedances to �nd the di�erential equation (because we can use
series and parallel combination rules) than any other method. In this sense, we have not lost anything by
temporarily pretending the source is a complex exponential.

In fact we can also solve the di�erential equation using impedances! Thus, despite the apparent restric-
tiveness of impedances, assuming complex exponential sources is actually quite general.
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Chapter 4

Sampling

4.1 Introduction1

Contents of Sampling chapter

• Introduction(Current module)
• Proof (Section 4.2)
• Illustrations (Section 4.3)
• Matlab Example (Section 4.4)
• Hold operation (Section 4.6)
• System view (Section 4.7)
• Aliasing applet (Section 4.5)
• Exercises (Section 4.8)
• Table of formulas (Chapter 8)

4.1.1 Why sample?

This section introduces sampling. Sampling is the necessary fundament for all digital signal processing and
communication. Sampling can be de�ned as the process of measuring an analog signal at distinct points.

Digital representation of analog signals o�ers advantages in terms of

• robustness towards noise, meaning we can send more bits/s
• use of �exible processing equipment, in particular the computer
• more reliable processing equipment
• easier to adapt complex algorithms

1This content is available online at <http://cnx.org/content/m11419/1.29/>.

45



46 CHAPTER 4. SAMPLING

4.1.2 Claude E. Shannon

Figure 4.1: Claude Elwood Shannon (1916-2001)

Claude Shannon2 has been called the father of information theory, mainly due to his landmark papers on
the "Mathematical theory of communication"3 . Harry Nyquist4 was the �rst to state the sampling theorem
in 1928, but it was not proven until Shannon proved it 21 years later in the paper "Communications in the
presence of noise"5 .

4.1.3 Notation

In this chapter we will be using the following notation

• Original analog signal x (t)
• Sampling frequency Fs
• Sampling interval Ts (Note that: Fs = 1

Ts
)

• Sampled signal xs (n). (Note that xs (n) = x (nTs))
• Real angular frequency Ω
• Digital angular frequency ω. (Note that: ω = ΩTs)

4.1.4 The Sampling Theorem

note: When sampling an analog signal the sampling frequency must be greater than twice the
highest frequency component of the analog signal to be able to reconstruct the original signal from
the sampled version.

2http://www.research.att.com/∼njas/doc/ces5.html
3http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
4http://www.wikipedia.org/wiki/Harry_Nyquist
5http://www.stanford.edu/class/ee104/shannonpaper.pdf
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4.1.5

Finished? Have at look at: Proof (Section 4.2); Illustrations (Section 4.3); Matlab Example (Section 4.4);
Aliasing applet (Section 4.5); Hold operation (Section 4.6); System view (Section 4.7); Exercises (Section 4.8)

4.2 Proof6

note: In order to recover the signal x (t) from it's samples exactly, it is necessary to sample x (t)
at a rate greater than twice it's highest frequency component.

4.2.1 Introduction

As mentioned earlier (p. 45), sampling is the necessary fundament when we want to apply digital signal
processing on analog signals.

Here we present the proof of the sampling theorem. The proof is divided in two. First we �nd an
expression for the spectrum of the signal resulting from sampling the original signal x (t). Next we show
that the signal x (t) can be recovered from the samples. Often it is easier using the frequency domain when
carrying out a proof, and this is also the case here.

Key points in the proof

• We �nd an equation (4.8) for the spectrum of the sampled signal
• We �nd a simple method to reconstruct (4.14) the original signal
• The sampled signal has a periodic spectrum...
• ...and the period is 2× πFs

4.2.2 Proof part 1 - Spectral considerations

By sampling x (t) every Ts second we obtain xs (n). The inverse fourier transform of this time discrete signal
(Section 1.2) is

xs (n) =
1

2π

∫ π

−π
Xs

(
ejω
)
ejωndω (4.1)

For convenience we express the equation in terms of the real angular frequency Ω using ω = ΩTs. We then
obtain

xs (n) =
Ts
2π

∫ π
Ts

−π
Ts

Xs

(
ejΩTs

)
ejΩTsndΩ (4.2)

The inverse fourier transform of a continuous signal is

x (t) =
1

2π

∫ ∞
−∞

X (jΩ) ejΩtdΩ (4.3)

From this equation we �nd an expression for x (nTs)

x (nTs) =
1

2π

∫ ∞
−∞

X (jΩ) ejΩnTsdΩ (4.4)

To account for the di�erence in region of integration we split the integration in (4.4) into subintervals of
length 2π

Ts
and then take the sum over the resulting integrals to obtain the complete area.

x (nTs) =
1

2π

∞∑
k=−∞

∫ (2k+1)π
Ts

(2k−1)π
Ts

X (jΩ) ejΩnTsdΩ (4.5)

6This content is available online at <http://cnx.org/content/m11423/1.27/>.
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Then we change the integration variable, setting Ω = η + 2×πk
Ts

x (nTs) =
1

2π

∞∑
k=−∞

∫ π
Ts

−π
Ts

X

(
j

(
η +

2× πk
Ts

))
ej(η+ 2×πk

Ts
)nTsdη (4.6)

We obtain the �nal form by observing that ej2×πkn = 1, reinserting η = Ω and multiplying by Ts
Ts

x (nTs) =
Ts
2π

∫ π
Ts

−π
Ts

∞∑
k=−∞

1
Ts
X

(
j

(
Ω +

2× πk
Ts

))
ejΩnTsdΩ (4.7)

To make xs (n) = x (nTs) for all values of n, the integrands in (4.2) and (4.7) have to agreee, that is

Xs

(
ejΩTs

)
=

1
Ts

∞∑
k=−∞

X

(
j

(
Ω +

2πk
Ts

))
(4.8)

This is a central result. We see that the digital spectrum consists of a sum of shifted versions of the original,
analog spectrum. Observe the periodicity!

We can also express this relation in terms of the digital angular frequency ω = ΩTs

Xs

(
ejω
)

=
1
Ts

∞∑
k=−∞

X

(
j
ω + 2× πk

Ts

)
(4.9)

This concludes the �rst part of the proof. Now we want to �nd a reconstruction formula, so that we can
recover x (t) from xs (n).

4.2.3 Proof part II - Signal reconstruction

For a bandlimited (Figure 4.3) signal the inverse fourier transform is

x (t) =
1

2π

∫ π
Ts

−π
Ts

X (jΩ) ejΩtdΩ (4.10)

In the interval we are integrating we have: Xs

(
ejΩTs

)
= X(jΩ)

Ts
. Substituting this relation into (4.10) we

get

x (t) =
Ts
2π

∫ π
Ts

−π
Ts

Xs

(
ejΩTs

)
ejΩtdΩ (4.11)

Using the DTFT (Chapter 8) relation for Xs

(
ejΩTs

)
we have

x (t) =
Ts
2π

∫ π
Ts

−π
Ts

∞∑
n=−∞

xs (n) e−(jΩnTs)ejΩtdΩ (4.12)

Interchanging integration and summation (under the assumption of convergence) leads to

x (t) =
Ts
2π

∞∑
n=−∞

xs (n)
∫ π

Ts

−π
Ts

ejΩ(t−nTs)dΩ (4.13)

Finally we perform the integration and arrive at the important reconstruction formula

x (t) =
∞∑

n=−∞
xs (n)

sin
(
π
Ts

(t− nTs)
)

π
Ts

(t− nTs)
(4.14)

(Thanks to R.Loos for pointing out an error in the proof.)
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4.2.4 Summary

note: Xs

(
ejΩTs

)
= 1

Ts

∑∞
k=−∞X

(
j
(

Ω + 2πk
Ts

))

note: x (t) =
∑∞
n=−∞ xs (n)

sin( π
Ts

(t−nTs))
π
Ts

(t−nTs)

4.2.5

Go to Introduction (Section 4.1); Illustrations (Section 4.3); Matlab Example (Section 4.4); Hold operation
(Section 4.6); Aliasing applet (Section 4.5); System view (Section 4.7); Exercises (Section 4.8) ?

4.3 Illustrations7

In this module we illustrate the processes involved in sampling and reconstruction. To see how all these
processes work together as a whole, take a look at the system view (Section 4.7). In Sampling and recon-
struction with Matlab (Section 4.4) we provide a Matlab script for download. The matlab script shows the
process of sampling and reconstruction live.

4.3.1 Basic examples

Example 4.1
To sample an analog signal with 3000 Hz as the highest frequency component requires sampling
at 6000 Hz or above.

Example 4.2
The sampling theorem can also be applied in two dimensions, i.e. for image analysis. A 2D
sampling theorem has a simple physical interpretation in image analysis: Choose the sampling
interval such that it is less than or equal to half of the smallest interesting detail in the image.

4.3.2 The process of sampling

We start o� with an analog signal. This can for example be the sound coming from your stereo at home or
your friend talking.

The signal is then sampled uniformly. Uniform sampling implies that we sample every Ts seconds. In
Figure 4.2 we see an analog signal. The analog signal has been sampled at times t = nTs.

7This content is available online at <http://cnx.org/content/m11443/1.33/>.
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Figure 4.2: Analog signal, samples are marked with dots.

In signal processing it is often more convenient and easier to work in the frequency domain. So let's look
at at the signal in frequency domain, Figure 4.3. For illustration purposes we take the frequency content
of the signal as a triangle. (If you Fourier transform the signal in Figure 4.2 you will not get such a nice
triangle.)

Figure 4.3: The spectrum X (jΩ).

Notice that the signal in Figure 4.3 is bandlimited. We can see that the signal is bandlimited because
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X (jΩ) is zero outside the interval [−Ωg,Ωg]. Equivalentely we can state that the signal has no angular

frequencies above Ωg, corresponding to no frequencies above Fg = Ωg
2π .

Now let's take a look at the sampled signal in the frequency domain. While proving (Section 4.2) the
sampling theorem we found the the spectrum of the sampled signal consists of a sum of shifted versions of
the analog spectrum. Mathematically this is described by the following equation:

Xs

(
ejΩTs

)
=

1
Ts

∞∑
k=−∞

X

(
j

(
Ω +

2πk
Ts

))
(4.15)

4.3.2.1 Sampling fast enough

In Figure 4.4 we show the result of sampling x (t) according to the sampling theorem (Section 4.1.4: The
Sampling Theorem). This means that when sampling the signal in Figure 4.2/Figure 4.3 we use Fs ≥ 2Fg.
Observe in Figure 4.4 that we have the same spectrum as in Figure 4.3 for Ω ∈ [−Ωg,Ωg], except for the
scaling factor 1

Ts
. This is a consequence of the sampling frequency. As mentioned in the proof (Key points

in the proof, p. 47) the spectrum of the sampled signal is periodic with period 2πFs = 2π
Ts
.

Figure 4.4: The spectrum Xs. Sampling frequency is OK.

So now we are, according to the sample theorem (Section 4.1.4: The Sampling Theorem), able to recon-
struct the original signal exactly. How we can do this will be explored further down under reconstruction
(Section 4.3.3: Reconstruction). But �rst we will take a look at what happens when we sample too slowly.

4.3.2.2 Sampling too slowly

If we sample x (t) too slowly, that is Fs < 2Fg, we will get overlap between the repeated spectra, see
Figure 4.5. According to (4.15) the resulting spectra is the sum of these. This overlap gives rise to the
concept of aliasing.

note: If the sampling frequency is less than twice the highest frequency component, then frequen-
cies in the original signal that are above half the sampling rate will be "aliased" and will appear in
the resulting signal as lower frequencies.

The consequence of aliasing is that we cannot recover the original signal, so aliasing has to be avoided.
Sampling too slowly will produce a sequence xs (n) that could have orginated from a number of signals. So
there is no chance of recovering the original signal. To learn more about aliasing, take a look at this module
(Section 4.5). (Includes an applet for demonstration!)
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Figure 4.5: The spectrum Xs. Sampling frequency is too low.

To avoid aliasing we have to sample fast enough. But if we can't sample fast enough (possibly due to
costs) we can include an Anti-Aliasing �lter. This will not able us to get an exact reconstruction but can
still be a good solution.

note: Typically a low-pass �lter that is applied before sampling to ensure that no components
with frequencies greater than half the sample frequency remain.

Example 4.3
The stagecoach e�ect

In older western movies you can observe aliasing on a stagecoach when it starts to roll. At �rst
the spokes appear to turn forward, but as the stagecoach increase its speed the spokes appear to
turn backward. This comes from the fact that the sampling rate, here the number of frames per
second, is too low. We can view each frame as a sample of an image that is changing continuously
in time. (Applet illustrating the stagecoach e�ect8 )

4.3.3 Reconstruction

Given the signal in Figure 4.4 we want to recover the original signal, but the question is how?
When there is no overlapping in the spectrum, the spectral component given by k = 0 (see (4.15)),is

equal to the spectrum of the analog signal. This o�ers an oppurtunity to use a simple reconstruction process.
Remember what you have learned about �ltering. What we want is to change signal in Figure 4.4 into that
of Figure 4.3. To achieve this we have to remove all the extra components generated in the sampling process.
To remove the extra components we apply an ideal analog low-pass �lter as shown in Figure 4.6 As we see
the ideal �lter is rectangular in the frequency domain. A rectangle in the frequency domain corresponds to
a sinc9 function in time domain (and vice versa).

8http://�owers.ofthenight.org/wagonWheel/wagonWheel.html
9http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html
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Figure 4.6: H (jΩ) The ideal reconstruction �lter.

Then we have reconstructed the original spectrum, and as we know if two signals are identical in
the frequency domain, they are also identical in the time domain. End of reconstruction.

4.3.4 Conclusions

The Shannon sampling theorem requires that the input signal prior to sampling is band-limited to at most
half the sampling frequency. Under this condition the samples give an exact signal representation. It is truly
remarkable that such a broad and useful class signals can be represented that easily!

We also looked into the problem of reconstructing the signals form its samples. Again the simplicity of
the principle is striking: linear �ltering by an ideal low-pass �lter will do the job. However, the ideal �lter
is impossible to create, but that is another story...

4.3.5

Go to? Introduction (Section 4.1); Proof (Section 4.2); Illustrations (Section 4.3); Matlab Example (Sec-
tion 4.4); Aliasing applet (Section 4.5); Hold operation (Section 4.6); System view (Section 4.7); Exercises
(Section 4.8)

4.4 Sampling and reconstruction with Matlab10

4.4.1 Matlab �les

Samprecon.m11

4.4.2

Introduction (Section 4.1); Proof (Section 4.2); Illustrations (Section 4.3); Aliasing applet (Section 4.5); Hold
operation (Section 4.4); System view (Section 4.7); Exercises (Section 4.8)

4.5 Aliasing Applet12

The applet is courtesy of the Digital Signal Processing tutorial at freeuk.com,
http://www.dsptutor.freeuk.com/. You can also have a look at the Light Wheel applet13 .

10This content is available online at <http://cnx.org/content/m11549/1.9/>.
11http://cnx.rice.edu/content/m11549/latest/Samprecon.m
12This content is available online at <http://cnx.org/content/m11448/1.14/>.
13http://�owers.ofthenight.org/wagonWheel/lightWheel.html
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4.5.1 Introduction

In this module we shall look at sampling a sinusoidal signal. According to the sampling theorem (Sec-
tion 4.1.4: The Sampling Theorem), a sinusoidal signal can be exactly reconstructed from values sampled
at discrete, uniform intervals as long as the signal frequency is less than half the sampling frequency. Any
component of a sampled signal with a frequency above this limit, often referred to as the folding frequency,
is subject to aliasing (p. 51).

The applet is based on a �xed sampling rate of Fs = 8000samplespersecond (one sample every 0.125
milliseconds, i.e Ts = 1

8000 ).

4.5.2 Instructions

Set the frequency of the sinusoidal signal, in Hz, in the "Input frequency" box, i.e choose an f in the following
signal: sin (2πft). When you click the "Plot" button, with "Input signal" checked, the input signal is plotted
against time.

The "Grid" checkbox toggles on and o� vertical gridlines indicating the instants at which the signal is
sampled. The "Sample points", representing the sampled values of the input signal, can also be toggled.

Finally, the "Alias frequency" checkbox (visible only when aliasing (p. 51) occurs) controls the plotting
of the "reconstructed" sinusoidal signal, with f = falias.

4.5.3 Overview of the process

When using the applet it is important to have an understanding of where the di�erent signals occur in a
sampling system.

Figure 4.7: Ideal sampling process

Relating the applet signals to the �gure we get

• Input signal = x (t) = sin (2πft), where f is the input frequency chosen by the user.
• The sampled signal = xs (n) = sin (2πfnTs) = sin

(
2πfn× 1

8000

)
.

• The reconstructed signal = x̂ ((t)), is shown as the original signal if sampling is done fast enough, or
as the aliased signal if sampling is too slow.

(h (t) is an ideal reconstruction �lter).

4.5.4 Aliasing demo applet

This is a Java Applet. To view, please see http://cnx.org/content/m11448/latest/

4.6 Hold operation14

Any practical reconstruction system must input �nite length pulses into the reconstruction �lter. The reason
is that we need nonzero energy (Section 1.6.1: Signal Energy) in the nonzero pulses.

14This content is available online at <http://cnx.org/content/m11458/1.10/>.
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4.6.1 Introduction

The operation performed to produce these pulses is called hold. Using the hold-operation we get pulses
with a prede�ned length and height proportional to the input to the digital-to-analog converter. By means
of the hold operation we get nonzero pulses with energy (Section 1.6.1: Signal Energy).

Figure 4.8: Output signal from the hold device

As we have made changes relative to the ideal reconstruction (p. 52), we need to look at the output
signal the reconstruction �lter will give us. Quite obviously the output will not be the original signal. So, is
it still useful?

4.6.2 Analysis

As before, and as will be the situation later, using the frequency domain simpli�es the analysis. To model
the hold operation we use convolution (Chapter 8) with a delta function (Chapter 8) and a square pulse.
The square pulse has unit height and duration τ . The duration τ is the holding time, i.e. how long we
hold the incoming value. For the pulses not to overlap we must choose τ < Ts. The convolution can be seen
as a �ltering operation, using the square pulse as the impulse response. If we fourier transform (Chapter 8)
the square pulse we obtain the frequency response of the �lter, which is a sinc15 function.

Figure 4.9 shows the frequency response of the analog square pulse �lter. We have plotted the frequency
response for τ = Ts and τ = Ts

2 .

15http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html
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Figure 4.9: Frequency response of the analog square �lter as a function of digital frequency f.

From the �gure we can make the following observations

• The signal will be attenuated more and more towards the band edge, f = 0.5
• For τ = Ts the maximum attenuation is 3 dB at f = 0.5.
• For τ = Ts

2 the maximum attenuation is 0.82 dB at f = 0.5.

The distortion is a result of linear operations and can thus be compensated for by using a �lter with opposite
frequency response in the passband, f ∈ [−0.5, 0.5]. The compensation will not be exact, but we can make
the approximation as accurate as we wish. The compensation can be made in the reconstruction �lter or
after the reconstruction by using a separate analog �lter. One can also predistort the signal in a digital �lter
before reconstruction. Where to put the compensator and it's quality are cost considerations.

4.6.3

Go to? Introduction (Section 4.1); Proof (Section 4.2); Illustrations (Section 4.3); Aliasing applet (Sec-
tion 4.5); System view (Section 4.7); Exercises (Section 4.8)

4.7 Systems view of sampling and reconstruction16

4.7.1 Ideal reconstruction system

Figure 4.10 shows the ideal reconstruction system based on the results of the Sampling theorem proof
(Section 4.2).

Figure 4.10 consists of a sampling device which produces a time-discrete sequence xs (n). The recon-

struction �lter, h (t), is an ideal analog sinc17 �lter, with h (t) = sinc
(
t
Ts

)
. We can't apply the time-discrete

16This content is available online at <http://cnx.org/content/m11465/1.20/>.
17http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html
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sequence xs (n) directly to the analog �lter h (t). To solve this problem we turn the sequence into an analog
signal using delta functions (Chapter 8). Thus we write xs (t) =

∑∞
n=−∞ xs (n) δ (t− nT ).

Figure 4.10: Ideal reconstruction system

But when will the system produce an output x̂ (t) = x (t)? According to the sampling theorem (Sec-
tion 4.1.4: The Sampling Theorem) we have x̂ (t) = x (t) when the sampling frequency, Fs, is at least twice
the highest frequency component of x (t).

4.7.2 Ideal system including anti-aliasing

To be sure that the reconstructed signal is free of aliasing it is customary to apply a lowpass �lter, an
anti-aliasing �lter (p. 52), before sampling as shown in Figure 4.11.

Figure 4.11: Ideal reconstruction system with anti-aliasing �lter (p. 52)

Again we ask the question of when the system will produce an output x̂ (t) = s (t)? If the signal is entirely
con�ned within the passband of the lowpass �lter we will get perfect reconstruction if Fs is high enough.

But if the anti-aliasing �lter removes the "higher" frequencies, (which in fact is the job of the anti-aliasing
�lter), we will never be able to exactly reconstruct the original signal, s (t). If we sample fast enough we
can reconstruct x (t), which in most cases is satisfying.

The reconstructed signal, x̂ (t), will not have aliased frequencies. This is essential for further use of the
signal.

4.7.3 Reconstruction with hold operation

To make our reconstruction system realizable there are many things to look into. Among them are the fact
that any practical reconstruction system must input �nite length pulses into the reconstruction �lter. This
can be accomplished by the hold operation (Section 4.6). To alleviate the distortion caused by the hold
opeator we apply the output from the hold device to a compensator. The compensation can be as accurate
as we wish, this is cost and application consideration.
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Figure 4.12: More practical reconstruction system with a hold component (Section 4.6)

By the use of the hold component the reconstruction will not be exact, but as mentioned above we can
get as close as we want.

4.7.4

Introduction (Section 4.1); Proof (Section 4.2); Illustrations (Section 4.3); Matlab example (Section 4.4);
Hold operation (Section 4.6); Aliasing applet (Section 4.5); Exercises (Section 4.8)

4.8 Exercises18

Problems related to the Sampling Theorem module. (Section 4.1)

Exercise 4.8.1 (Solution on p. 60.)

Express the sampling theorem in words.

Exercise 4.8.2 (Solution on p. 60.)

Theoretically, why is the sinc-function so important for reconstruction? Sketch a sinc(t). What
are the values for integer values of t?

Exercise 4.8.3 (Solution on p. 60.)

Argue that the sampling rate for CD should be over 40KHz.

Exercise 4.8.4 (Solution on p. 60.)

(By Don Johnson)
What is the simplest bandlimited signal? Using this signal, convince yourself that less than two
samples/period will not su�ce to specify it. If the sampling rate 1

Ts
is not high enough, what signal

would your resulting undersampled signal become? Hint: Try the aliasing applet (Section 4.5).

Exercise 4.8.5 (Solution on p. 60.)

Are the �lter h(t) described by the sinc function the only �lter we can use as a perfect reconstruction
�lter? If not what are the condition that would allow us to use another �lter?

Exercise 4.8.6 (Solution on p. 60.)

If you found that it is possible to use another �lter in Exercise 4.8.5 specify such a �lter. Hint:
Try using the domain which usually simpli�es things...

Exercise 4.8.7 (Solution on p. 60.)

What are the di�culties introduced when we want to apply the results of this chapter in practice?

Exercise 4.8.8 (Solution on p. 60.)

If a real signal has frequency content up to F1. What is then the bandwith of the signal?

Exercise 4.8.9 (Solution on p. 60.)

If a real signal has frequency content con�ned in the interval [−F1, F1]. What is then the bandwith
of the signal?

18This content is available online at <http://cnx.org/content/m11442/1.16/>.
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Exercise 4.8.10 (Solution on p. 60.)

What can be said in general for the spectrum of a discrete signal which is the result of sampling
an analog signal that is NOT bandlimited?

4.8.1 Exercises related to the Aliasing applet

Link to the aliasing applet (Section 4.5) (Right click if you want to open it in a new window).
In the following problems, as in the aliasing applet, we are studying a sinusoidal signal, x (t) = sin (2πft),

which is sampled at Fs = 8000.
Exercise 4.8.11 (Solution on p. 60.)

What is the frequency limitation of an analog sinusoidal signal if we want to avoid aliasing, given
Fs = 8000?
Exercise 4.8.12 (Solution on p. 60.)

Describe with words the type of signal we "reconstruct" from the samples when the input frequency
(of the sinusoidal signal) is higher than the sample rate can deal with?

Exercise 4.8.13 (Solution on p. 60.)

Find an expression the signal we "reconstruct" from the samples when the input frequency is 6000
Hz.

Exercise 4.8.14 (Solution on p. 60.)

Explain the "strange" sample points when the input input frequency is 4000 Hz.

Exercise 4.8.15 (Solution on p. 60.)

Explain the "strange" sample points when the input input frequency is 8000 Hz.

Exercise 4.8.16 (Solution on p. 60.)

Find an expression for the signal we can reconstruct from the samples when the input frequency
is 4000 Hz.

Exercise 4.8.17 (Solution on p. 61.)

Find an expression for the "reconstructed" signal from the samples when the input frequency is
8000 Hz.
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.8.1 (p. 58)
Fill in the solution here...
Solution to Exercise 4.8.2 (p. 58)
Fill in the solution here...
Solution to Exercise 4.8.3 (p. 58)
The human ear can hear frequencies up to 20 KHz, so according to the sampling theorem we should sample
at a rate equal to or exceeding 40KHz. In practice we always have to sample at more than the double rate,
partly due to �nite precision.
Solution to Exercise 4.8.4 (p. 58)
The simplest bandlimited signal is the sine wave. At the Nyquist frequency, exactly two samples/period
would occur. Reducing the sampling rate would result in fewer samples/period, and these samples would
appear to have arisen from a lower frequency sinusoid.
Solution to Exercise 4.8.5 (p. 58)
Fill in a solution here
Solution to Exercise 4.8.6 (p. 58)
Fill in a solution here
Solution to Exercise 4.8.7 (p. 58)
Fill in a solution here
Solution to Exercise 4.8.8 (p. 58)
Fill in a solution here
Solution to Exercise 4.8.9 (p. 58)
Fill in a solution here
Solution to Exercise 4.8.10 (p. 59)
The spectrum will ALWAYS overlap,there will always be aliasing.
Solution to Exercise 4.8.11 (p. 59)
With a sampling frequency of 8000 Hz, the maximum frequency of the analog signal is 4000 Hz, as given
by the sampling theorem (Section 4.1.4: The Sampling Theorem).
Solution to Exercise 4.8.12 (p. 59)
The signal we "reconstruct" is a sinusoidal signal with a frequency that is lower than the original because
of aliasing.
Solution to Exercise 4.8.13 (p. 59)
When the input frequency is 6000 Hz, a sampling frequency of 8000 Hz is to low, i.e aliasing will occur.
The sampled signal will have frequency components at +6000 Hz and -6000 Hz plus some new frequency
components as a result of aliasing.

We know from the proof of the sampling theorem (Section 4.2.1: Introduction) that the sampled signal
is periodic with Fs = 8000. Thus a frequency component at 6000 Hz implies frequencies at -2000 Hz, -10000
Hz, 14000 Hz and so on. Similarly a frequency component at -6000 Hz give rise to(among others) a 2000
Hz component. Looking only at the positive frequencies the "reconstructed" signal will only have a 2000 Hz
frequency component. The removal of the 6000 Hz and above frequencies are due to the reconstruction �lter.
The �lter is designed based on a maximum input signal frequency of 4000 Hz. Thus the "reconstructed"
signal can be written as: sin (2π2000t).
Solution to Exercise 4.8.14 (p. 59)
The sampled signal can be written as xs (n) = sin

(
2π4000 n

8000

)
= sin (πn) = 0. Thus all the samples are

zero-valued.
Solution to Exercise 4.8.15 (p. 59)
The sampled signal can be written as xs (n) = sin

(
2π8000 n

8000

)
= sin (2πn) = 0. Thus all the samples are

zero-valued.
Solution to Exercise 4.8.16 (p. 59)
As shown in problem 14, the samples are zero valued. A reconstructing �lter cannot distinguish this from
the all zero signal so the reconstructed signal will be the all zero signal.
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Note that a small change in the sinusoidal signals phase would produce samples that are not only zero-
valued. The "reconstructed" signal will then be a equal to the original signal. This problem illustrates that
sampling twice the signals highest frequency component does not always guarantee perfect recontstruction.
If we could increase the sampling frequency to, say, Fs = 8000.00001, we could reconstruct the original signal.
I.e sampling at a rate greater than twice the highest frequency component yields the desired reconstruction.
Solution to Exercise 4.8.17 (p. 59)
As shown in problem 15, the samples are zero valued. A reconstructing �lter cannot distinguish this from
the all zero signal so the reconstructed signal will be the all zero signal.

Note that a small change in the sinusoidal signals phase would produce samples that are not only zero-
valued. The "reconstructed" signal will then be a signal with aliased components.
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Chapter 5

Information theory

5.1 Introduction1

In this and the following modules the basic concepts of information theory will be introduced. For simplicity
we assume that the signals are time discrete. Time discrete signals often arise from sampling a time continous
signal. The assumption of time discrete signal is valid because we will only be looking at bandlimited signals
(Figure 4.3). (Which can, as we know (Section 4.1.4: The Sampling Theorem), be perfectly reconstructed).

In treating time discrete signal and their information content we have to distinguish between two types
of signals:

• signals have amplitude levels belonging to a �nite set
• signals that have amplitudes taken from the real line

In the �rst case we can measure the information content in terms of entropy (Section 5.4), while in the second
case the entropy is in�nte and we must resort to characterise the source by means of di�erential entropy
(Section 5.5).

5.1.1 Examples of information sources

The signals treated are mainly of a stochastic nature, i.e. the signal is unknown to us. Since the signal is not
known to the destination (because of it's stochastic nature), it is then best modeled as a random process,
discrete-time or continuous time. Examples of information sources that we model as random processes are:

• Digital data source (e.g. a text) can be modeled as a random process.
• Video signals can be modeled as a random process. Such signals are mainly bandlimited to around 5

MHz (the value depends on the standards used to raster the frames of image).
• Audio signals can be modeled as a random process. Speech is typically between 300 Hz and 3400 Hz,

see Figure 5.1.

1This content is available online at <http://cnx.org/content/m11838/1.5/>.
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Figure 5.1: Power spectral density plot of speech

Video and speech are analog information signals are bandlimited. Therefore, if sampled faster than two
times the highest fequency component, they can be reconstructed from their sample values.

Example 5.1
A speech signal with bandwidth of 3100 Hz can be sampled at the rate of 6.2 KHz. If the samples
are quantized with a 8 level quantizer then the speech signal can be represented with a binary
sequence with bit rate

6200log28 = 18600bits/sec (5.1)

Figure 5.2: Analog speech signal sampled and quantised

The sampled real values can be quantized to create a discrete-time discrete-valued random
process.

5.1.2 The Core of Information theory

The key observation from the discussion above is that for a reveiver the signals are unknown. It is exact
this uncertainty that enables the signal to transmit information. This is the core of information theory:

note: Information transfer happens when the receiver is unable to know or predict at message
before it is received.
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5.1.3 Some statistics

Here we present some statistics with the intent of reviewing a few basic concepts and to introduce the
notation.

Let X be a stochastic variable. Let X = xi and X = xj denote two outcomes of X.

• Dependent outcomes implies: Pr [X = xi, X = xj ] = Pr [X = xi]Pr [X = xj | xi] =
Pr [X = xj ]Pr [X = xi | xj ]

• Independent outcomes implies Pr [X = xi, X = xj ] = Pr [X = xi]Pr [X = xj ]
• Bayes' rule: Pr [X = xj | xi] = Pr[X=xi | xj ]Pr[X=xj ]

Pr[X=xi]

More about basic probability theory and a derivation of Bayes' rule can be found here2.

5.2 Information3

In this module we introduce the concept of self information for an outcome of a stochastic variable.

5.2.1

Example 5.2
Bergen, Norway is a rainy city. If the locals are "lucky" there is "only" 200 rainy days in a
particular year. Let the random variable Z take the two values: "Rain", "No rain". Assuming
200 rainy days a year, we get Pr [Z = Rain] = 200

365 and Pr [Z = No Rain] = 165
365 . We state that

Z = No Rain carries more information than Z = Rain, the reason is that the inhabitans of Bergen
expect rain, so whenever it's not raining they are (more) surprised. An intuitive de�nition of an
information measure should be larger when the probability is small.

Example 5.3
The information content in a statement about the temperature and new lottery millionaires in
Verdal,Norway on a given saturday should be the sum of the information on temperature on the
particular saturday in Verdal and the information of the number of new lucky lottery winners,
(under the assumption that these observations are independent). Let I denote the information of
an event, then

I (temperature, lottery winners) = I (temperature) + I (lottery winners) (5.2)

5.2.2 The self information formula

An intuitive and meaningful measure of self information in an event should have the following properties:

1. The more uncertain you, in advance, are about the outcome, the more new information you
get by observing the actual outcome, or equivalently an event with low probability, pn, has high self
information I (pn). I (pn) should be a monotonically decreasing function of pn.

2. Oberserving an event with certain outcome, i.e pn = 1, should give zero information. The event pn
is then said to have zero self information. Since I (pn) is monotonically decreasing for pn ∈ [0, 1] this
implies that the self information can never be less than zero, the observer can never lose information
by observing an outcome.

2"Foundations of Probability Theory: Basic De�nitions" <http://cnx.org/content/m11245/latest/>
3This content is available online at <http://cnx.org/content/m11841/1.2/>.
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3. If we receive independent messages, the information should accumulate. This means that the measure
must be additive.

It can be shown that there only exists one function satisfying the above conditions.

note: I (pn) = logb
1
pn

= −logbpn

In the above equation the logarithm base can be chosen arbitrary. Usually b = 2 is chosen so that the
denomination is information bit. The choice b = 2 is made to adapt to a digital "world", that is to
facilitate electronic storage and transmission.

5.3 Representing symbols by bits4

5.3.1 Introduction

Often we want to represent data, e.g. characters, images, in a binary form. By binary form we mean
representing by the symbols "0", and "1". Using binary representation allows us to conveniently store,
retrieve, and manipulate them with a computer. To work with data in binary form we must have a �xed
way of encoding (representing) a �xed data stream. The set of all binary sequences in a representation of
some data is called a code. (Note that this has nothing to do with cryptology). Usually we refer to the data
that we want to represent by bits as a source.

Example 5.4: Representing English Characters
Let us consider a very practical example of the above ideas. Let our source be a stream of
English characters. Now we want to represent this stream of characters as bits, say to store it on
a computer or send it over the Internet. First we need to know the number of such characters,
which is (traditonally) conveniently set to 128. The number 128 is obtained by summing upper
case charachters (26), lower case (26), digits (10), brackets and punctuation (20), odd characters
(14) (the "&" is an odd character), and control characters (32).

Obviously we need to have a unique representation of each of the 128 characters, this can e.g.
be obtained by exhausting the 128 bit combinations which concatenating 7 bits give. Thus we have
devised an 7-bit code. A well known 7-bit code is ASCII, short for "American Standard Code for
Information Interchange". Adding a parity bit for error control to the ASCII code forms an 8-bit
code. As an example, the representation of an "A" in ASCII is 1000001.

Now, one can ask whether the 7-bit ASCII code is an optimal representation in terms of using,
on average, the minimum number of bits representing the English characters? We will return to
this question later (in example 3 (Example 5.6: Optimality of the ASCII code)).

5.3.2 Minimal representation

When representing a source we want to use as few bits as possible, as this will imply that less disk space
is required for storage or that transmission over the Internet is quicker. However, we do not want to use so
few bits that the receiver cannot determine what was sent or stored.

So, for a given source what is the minimal representation? Here we consider the minimal representation
as the representation that uses the minimum number of bits (on average) to encode the source without
errors. According to Shannon's5 source coding theorem, a source that produces statistically independent
outcomes, the minimum average number of bits per symbol is the entropy (Section 5.4) of the source! (A
classical example of a source that produces statistically independent outcomes is throwing a die.)

Average indicates that the number of bits used for a speci�c symbol may be di�erent from the number
of bits representing another. E.g., as opposed to ASCII coding, we might represent an "A" with 7 bits, but

4This content is available online at <http://cnx.org/content/m11869/1.2/>.
5http://en.wikipedia.org/wiki/Claude_Shannon
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an "E" with 3 bits. But it also implies that when you receive a series of symbols, the number you receive
per time unit, say per second, will not be exactly the same, but averaged over a long term period, the rate
is proportional to time with the rate per symbol as the proportionality constant.

Let us assume that we represent a symbol xn, with probability pn, by ln bits. Then, the average number
of bits spent per symbol will be

−
L=

N∑
n=1

pnln (5.3)

We see that this equation is equal to the entropy if the code words are selected to have the lengths
ln = −logpn. Thus, if the source produces stochastically independent outcomes with probabilities pn, such
that logpn is an integer, then we can easily �nd an optimal code as we show in the next example.

Example 5.5: Finding a minimal representation
A four-symbol alphabet produces stochastically independent outcomes with the following proba-
bilities.

Pr [x1] =
1
2

Pr [x2] =
1
4

Pr [x3] =
1
8

Pr [x4] =
1
8

and an entropy of 1.75 bits/symbol. Let's see if we can �nd a codebook for this four-letter alphabet
that satis�es the Source Coding Theorem. The simplest code to try is known as the simple binary
code: convert the symbol's index into a binary number and use the same number of bits for each
symbol by including leading zeros where necessary.

x1 ↔ 00 x2 ↔ 01 x3 ↔ 10 x4 ↔ 11 (5.4)

As all symbols are represented by 2 bits, obviously the average number of bits per symbol is
2. Because the entropy equals 1.75 bits, the simple binary code is not a minimal representation
according to the source coding theorem. If we chose a codebook with di�ering number of bits for the
symbols, a smaller average number of bits can indeed be obtained. The idea is to use shorter bit
sequences for the symbols that occur more often, i.e., symbols that have a higher probability.
One codebook like this is

x1 ↔ 0 x2 ↔ 10 x3 ↔ 110 x4 ↔ 111 (5.5)

Now
−
L= 1× 1

2 + 2× 1
4 + 3× 1

8 + 3× 1
8 = 1.75. We can reach the entropy limit! This should come as

no surprise, as promised above, when logpn is an integer for all n, the optimal code is easily found.
The simple binary code is, in this case, less e�cient than the unequal-length code. Using

the e�cient code, we can transmit the symbolic-valued signal having this alphabet 12.5% faster.
Furthermore, we know that no more e�cient codebook can be found because of Shannon's source
coding theorem.

Example 5.6: Optimality of the ASCII code
Let us return to the ASCII codes presented in Example 5.4 (Representing English Characters).
Is the 7-bit ASCII code optimal, i.e., is it a minimal representation? The 7-bit ASCII code assign
an equal length (7-bit) to all characters it represents. Thus, it would be optimal if all of the 128
characters were equiprobable, that is each character should have a probability of 1

128 . To �nd out
whether the characters really are equiprobable an analysis of all English texts would be needed.
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Such an analysis is di�cult to do. However, the letter "E" is more probable than the letter "Z", so
the equiprobable assumption does not hold, and the ASCII code is not optimal.

(A technical note: We should take into account that in English text subsequent outcomes
are not stochastically independent. To see this, assume the �rst letter to be "b", then it is more
probable that the next letter is "e", than "z". In the case where the outcomes are not stochastically
independent, the formulation we have given of Shannon's source coding theorem is no longer valid,
to �x this, we should replace the entropy with the entropy rate, but we will not pursue this here).

5.3.3 Generating e�cient codes

From Shannon's source coding theorem we know what the minimum average rate needed to represent a
source is. But other than in the case when the logarithm of the probabilities gives an integer, we do not get
any indications on how to obtain that rate. It is a large area of research to get close to the Shannon entropy
bound. One clever way to do encoding is the Hu�man coding (Section 5.6) scheme.

5.4 Entropy6

5.4.1

The self information (Section 5.2) gives the information in a single outcome. In most cases, e.g in data
compression, it is much more interesting to know the average information content of a source. This
average is given by the expected value of the self information with respect to the source's probability
distribution. This average of self information is called the source entropy.

5.4.1.1 De�nition of entropy

De�nition 5.1: Entropy
1. The entropy (average self information) of a discrete random variable X is a function of its
probability mass function and is de�ned as

H (X) = −
N∑
i=1

pX (xi) logpX (xi) (5.6)

where N is the number of possible values of X and PX (xi) = Pr [X = xi]. If log is base 2 then
the unit of entropy is bits per (source)symbol. Entropy is a measure of uncertainty in a random
variable and a measure of information it can reveal.
2. If symbol has zero probability, which means it never occurs, it should not a�ect the entropy.
Letting 0× log0 = 0, we have dealt with that.

In texts you will �nd that the argument to the entropy function may vary. The two most common are
H (X) and H (p). We calculate the entropy of a source X, but the entropy is, strictly speaking, a function
of the source's probabilty function p. So both notations are justi�ed.

5.4.1.2 Calculating the binary logarithm

Most calculators does not allow you to directly calculate the logarithm with base 2, so we have to use a
logarithm base that most calculators support. Fortunately it is easy to convert between di�erent bases.

Assume you want to calculate log2x, where x > 0. Then log2x = y implies that 2y = x. Taking the
natural logarithm on both sides we obtain

note: log2x = ln(x)
ln(2)

6This content is available online at <http://cnx.org/content/m11839/1.4/>.
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5.4.1.3 Examples

Example 5.7
When throwing a dice, one may ask for the average information conveyed in a single throw. Using
the formula for entropy we get H (X) = −

∑6
i=1 pX (xi) logpX (xi) = log6bits/symbol

Example 5.8
If a soure produces binary information {0, 1} with probabilities p and 1 − p. The entropy of the
source is

H (X) = (− (plog2p))− (1− p) log2 (1− p) (5.7)

If p = 0 then H (X) = 0, if p = 1 then H (X) = 0, if p = 1/2 then H (X) = 1. The source has its
largest entropy if p = 1/2 and the source provides no new information if p = 0 or p = 1.

Figure 5.3

Example 5.9
An analog source is modeled as a continuous-time random process with power spectral density
bandlimited to the band between 0 and 4000 Hz. The signal is sampled at the Nyquist rate. The
sequence of random variables, as a result of sampling, are assumed to be independent. The samples
are quantized to 5 levels {−2,−1, 0, 1, 2}. The probability of the samples taking the quantized
values are

{
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
16

}
, respectively. The entropy of the random variables are

H (X) = −
∑5
i=1 pX (xi) logpX (xi)

= 1
2 + 1

2 + 3
8 + 1

4 + 1
4

= 15
8 bits/sample

(5.8)

There are 8000 samples per second. Therefore, the source produces 8000× 15
8 = 15000 bits/sec of

information.

Entropy is closely tied to source coding. The extent to which a source can be compressed is related to its
entropy. There are many interpretations possible for the entropy of a random variable, including

• (Average)Self information in a random variable
• Minimum number of bits per source symbol required to describe the random variable without loss
• Description complexity
• Measure of uncertainty in a random variable

5.4.2 References

• Øien, G.E. and Lundheim,L. (2003) Information Theory, Coding and Compression, Trondheim:
Tapir Akademisk forlag.
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5.5 Di�erential Entropy7

Consider the entropy of continuous random variables. Whereas the (normal) entropy (Section 5.4) is
the entropy of a discrete random variable, the di�erential entropy is the entropy of a continuous random
variable.

5.5.1 Di�erential Entropy

De�nition 5.2: Di�erential entropy
The di�erential entropy h (X) of a continuous random variable X with a pdf f (x) is de�ned as

h (X) = −
∫ ∞
−∞

f (x) logf (x) dx (5.9)

Usually the logarithm is taken to be base 2, so that the unit of the di�erential entropy is bits/symbol.
Note that is the discrete case, h (X) depends only on the pdf of X. Finally, we note that the di�erential
entropy is the expected value of −logf (x), i.e.,

h (X) = −E (logf (x)) (5.10)

Now, consider a calculating the di�erential entropy of some random variables.

Example 5.10
Consider a uniformly distributed random variable X from c to c+ ∆. Then its density is 1

∆ from
c to c+ ∆, and zero otherwise.

We can then �nd its di�erential entropy as follows,

h (X) = −
∫ c+∆

c
1
∆ log 1

∆dx

= log∆
(5.11)

Note that by making ∆ arbitrarily small, the di�erential entropy can be made arbitrarily negative,
while taking ∆ arbitrarily large, the di�erential entropy becomes arbitrarily positive.

Example 5.11
Consider a normal distributed random variable X, with mean m and variance σ2. Then its density

is
√

1
2πσ2 e

− (x−m)2

2σ2 .

We can then �nd its di�erential entropy as follows, �rst calculate −logf (x):

−logf (x) =
1
2

log
(
2πσ2

)
+ loge

(x−m)2

2σ2
(5.12)

Then since E
(

(X −m)2
)

= σ2, we have

h (X) = 1
2 log

(
2πσ2

)
+ 1

2 loge

= 1
2 log

(
2πeσ2

) (5.13)

7This content is available online at <http://cnx.org/content/m11840/1.3/>.
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5.5.2 Properties of the di�erential entropy

In the section we list some properties of the di�erential entropy.

• The di�erential entropy can be negative
• h (X + c) = h (X), that is translation does not change the di�erential entropy.
• h (aX) = h (X) + log|a|, that is scaling does change the di�erential entropy.

The �rst property is seen from both Example 5.10 and Example 5.11. The two latter can be shown by using
(5.9).

5.6 Hu�man Coding8

One particular source coding9 algorithm is the Hu�man encoding algorithm. It is a source coding algorithm
which approaches, and sometimes achieves, Shannon's bound for source compression. A brief discussion of
the algorithm is also given in another module10.

5.6.1 Hu�man encoding algorithm

1. Sort source outputs in decreasing order of their probabilities
2. Merge the two least-probable outputs into a single output whose probability is the sum of the corre-

sponding probabilities.
3. If the number of remaining outputs is more than 2, then go to step 1.
4. Arbitrarily assign 0 and 1 as codewords for the two remaining outputs.
5. If an output is the result of the merger of two outputs in a preceding step, append the current codeword

with a 0 and a 1 to obtain the codeword the the preceding outputs and repeat step 5. If no output is
preceded by another output in a preceding step, then stop.

Example 5.12
X ∈ {A,B,C,D} with probabilities { 1

2 ,
1
4 ,

1
8 ,

1
8}

Figure 5.4

Average length = 1
21 + 1

42 + 1
83 + 1

83 = 14
8 . As you may recall, the entropy of the source was

also H (X) = 14
8 . In this case, the Hu�man code achieves the lower bound of 14

8
bits

output .

8This content is available online at <http://cnx.org/content/m10176/2.10/>.
9"Source Coding" <http://cnx.org/content/m10175/latest/>

10"Compression and the Hu�man Code" <http://cnx.org/content/m0092/latest/>
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In general, we can de�ne average code length as

−
`=

∑
x∈X

p X (x ) ` (x) (5.14)

where X is the set of possible values of x.
It is not very hard to show that

H (X) ≥
−
`> H (X) + 1 (5.15)

For compressing single source output at a time, Hu�man codes provide nearly optimum code lengths.
The drawbacks of Hu�man coding

1. Codes are variable length.
2. The algorithm requires the knowledge of the probabilities, p X (x ) for all x ∈ X.

Another powerful source coder that does not have the above shortcomings is Lempel and Ziv.



Chapter 6

Decibel scale with signal processing

applications1

6.1 Introduction

The concept of decibel originates from telephone engineers who were working with power loss in a telephone
line consisting of cascaded circuits. The power loss in each circuit is the ratio of the power in to the power
out, or equivivalently, the power gain is the ratio of the power out to the power in.

Let Pin be the power input to a telephone line and Pout the power out. The power gain is then given by

Gain =
Pout

Pin
(6.1)

Taking the logarithm of the gain formula we obtain a comparative measure called Bel.

note: Gain (Bel) = logPout
Pin

This measure is in honour of Alexander G. Bell, see Figure 6.1.

1This content is available online at <http://cnx.org/content/m12452/1.9/>.
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APPLICATIONS

Figure 6.1: Alexander G. Bell

6.2 Decibel

Bel is often a to large quantity, so we de�ne a more useful measure, decibel:

Gain (dB) = 10log
Pout

Pin
(6.2)

Please note from the de�nition that the gain in dB is relative to the input power. In general we de�ne:

Number of decibels = 10log
P

Pref
(6.3)

If no reference level is given it is customary to use Pref = 1W , in which case we have:

note: Number of decibels = 10logP

Example 6.1
Given the power spectrum density (psd) function of a signal x (n), Sxx (jf). Express the magnitude
of the psd in decibels.

We �nd Sxx (dB) = 10log|Sxx (jf) |.

6.3 More about decibels

Above we've calculated the decibel equivalent of power. Power is a quadratic variable, whereas voltage and

current are linear variables. This can be seen, for example, from the formulas P = V 2

R and P = I2R.
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So if we want to �nd the decibel value of a current or voltage, or more general an amplitude we use:

Amplitude (dB) = 20log
Amplitude

Amplituderef

(6.4)

This is illustrated in the following example.

Example 6.2
Express the magnitude of the �lter H (jf) in dB scale.

The magnitude is given by |H (jf) |, which gives: |H (dB) | = 20log|H (jf) |.
Plots of the magnitude of an example �lter |H (jf) | and its decibel equivalent are shown in Figure 6.2.

Figure 6.2: Magnitude responses.

6.4 Some basic arithmetic

The ratios 1,10,100, 1000 give dB values 0 dB, 10 dB, 20 dB and 30 dB respectively. This implies that an
increase of 10 dB corresponds to a ratio increase by a factor 10.

This can easily be shown: Given a ratio R we have R[dB] = 10 log R. Increasing the ratio by a factor of
10 we have: 10 log (10*R) = 10 log 10 + 10 log R = 10 dB + R dB.

Another important dB-value is 3dB. This comes from the fact that:
An increase by a factor 2 gives: an increase of 10 log 2 ≈ 3 dB. A �increase� by a factor 1/2 gives: an

�increase� of 10 log 1/2 ≈ -3 dB.



76
CHAPTER 6. DECIBEL SCALE WITH SIGNAL PROCESSING

APPLICATIONS

Example 6.3
In �lter terminology the cut-o� frequency is a term that often appears. The cuto� frequency
(for lowpass and highpass �lters (Chapter 7)), fc, is the frequency at which the squared magnitude
response in dB is ½. In decibel scale this corresponds to about -3 dB.

6.5 Decibels in linear systems

In signal processing we have the following relations for linear systems:

Y (jf) = H (jf)X (jf) (6.5)

where X and H denotes the input signal and the �lter respectively. Taking absolute values on both sides of
(6.5) and converting to decibels we get:

note: The output amplitude at a given frequency is simply given by the sum of the �lter gain
and the input amplitude, both in dB.

6.6 Other references:

Above we have used Pref = 1W as a reference and obtained the standard dB measure. In some applications
it is more useful to use Pref = 1mW and we then have the dBm measure.

Another example is when calculating the gain of di�erent antennas. Then it is customary to use an
isotropic (equal radiation in all directions) antenna as a reference. So for a given antenna we can use the
dBi measure. (i -> isotropic)

6.7 Matlab �les

�lter_example.m2

2http://cnx.rice.edu/content/m12452/latest/�lter_example.m



Chapter 7

Filter types1

So what is a �lter? In general a �lter is a device that discriminates, according to one or more attributes at its
input, what passes through it. One example is the colour �lter which absorbs light at certain wavelengths.
Here we shall describe frequency-selective �lters. It is called freqency-selective because it discriminates
among the various frequency compononents of its input. By �lter design we can create �lters that pass
signals with frequency components in some bands, and attenuates signals with content in other frequency
bands.

It is customary to classify �lters according to their frequency domain charachteristics. In the following
we will take a look at: lowpass, highpass, bandpass, bandstop, allpass and notch �lters. (All of the �lters
shown are discrete-time)

7.1 Ideal �lter types

7.1.1 Lowpass

Attenuates frequencies above cuto� frequency, letting frequencies below cuto�( fc) through, see Figure 7.1.

Figure 7.1: An ideal lowpass �lter.

7.1.2 Highpass

Highpass �lters stops low frequencies, letting higher frequencies through, see Figure 7.2.

1This content is available online at <http://cnx.org/content/m11868/1.6/>.
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Figure 7.2: An ideal highpass �lter.

7.1.3 Bandpass

Letting through only frequencies in a certain range, see Figure 7.3.

Figure 7.3: An ideal bandpass �lter.

7.1.4 Bandstop

Stopping frequencies in a certain range, see Figure 7.4.

Figure 7.4: An ideal bandstop �lter.
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7.1.5 Allpass

Letting all frequencies through, see see Figure 7.5.

Figure 7.5: An ideal allpass �lter.

Does this imply that the allpass �lter is useless? The answer is no, because it may have e�ect on the
signals phase. A �lter is allpass if |H

(
ej2πf

)
| = 1, ∀f : (f). The allpass �lter �nds further applications as

building blocks for many higher order �lters.

7.2 Other �lter types

7.2.1 Notch �lter

The notch �lter recognized by its perfect nulls in the frequency response, see Figure 7.6.

Figure 7.6: Notch �lter.

Notch �lters have many applications. One of them is in recording systems, where the notch �lter serve to
remove the power-line frequency 50 Hz and its harmonics(100 Hz, 150 Hz,...). Some audio equalisers include
a notch �lter.
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7.3 Matlab �les

idealFilters.m2 , notchFilter.m3

2http://cnx.org/content/m11868/latest/idealFilters.m
3http://cnx.org/content/m11868/latest/notchFilter.m
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Chapter 8

Table of Formulas1

Analog Time Discrete

Delta function Unit sample

δ (t) = 0 for t 6= 0,
∫∞
−∞ δ (t) dt = 1 δ (n) =

 1 if n = 0

0 otherwise

Unit step function Unit step function

u (t) =

 1 if t ≥ 0

0 otherwise
u (n) =

 1 if n ≥ 0

0 otherwise

Angular frequency Angular frequency

Ω = 2πF ω = 2πf

Energy Ea =
∫∞
−∞ (|x (t) |)2

dt Energy Ed =
∑∞
n=−∞ (|x (n) |)2

Power Pa = 1
T0

∫ T0
2

−T0
2

(|x (t) |)2
dt Power Pd = 1

N

∑N1+N−1
n=N1

(|x (n) |)2

Convol. y (t) =
∫∞
−∞ x (τ)h (t− τ) dτ Convol. y (n) =

∑∞
k=−∞ x (k)h (n− k)

Fourier Transformation Discrete Time Fourier Transform

X (jΩ) =
∫∞
−∞ x (t) e−(jΩt)dt X

(
ejω
)

=
∑∞
n=−∞ x (n) e−(jωn)

Inverse Fourier Transform Inverse DTFT

x (t) = 1
2π

∫∞
−∞X (jω) ejΩtdΩ x (n) = 1

2π

∫ π
−πX

(
ejω
)
ejωndω

Fourier coe�ecients Discrete Fourier Transform

αk = 1
T0

∫ T0

0
x (t) e−(jkΩ0t)dt X (k) =

∑N−1
n=0 x (n) e−(j 2π

N kn)

Series expansion Inverse DFT

x (t) =
∑∞
k=−∞ αke

jkΩ0t x (n) = 1
N

∑N−1
k=0 X (k) ej

2π
N kn

Parseval Parseval∫ T0

T1
(|x (t) |)2

dt =
∑∞
k=1 (|αk|)2 1

N

∑N−1
k=0 (|X (k) |)2 =

∑N−1
n=0 (|x (n) |)2

1This content is available online at <http://cnx.org/content/m11450/1.22/>.
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Chapter 9

Library1

What follows is a collection of links to other Signal processing and Information theory resources avaliable.
Please report dead links and suggestions to links that we should include.

In addition to these links you should try the Connexions search function2 which allows you to search
through all the material in the Connexions system.

9.1 Signal processing

Fundamentals of Electrical Engineering3 . A comprehensive course availiable in Roadmap/Connexions.
Signals and Systems4 . A comprehensive course availiable in Roadmap/Connexions.
Complex to Real5 Basic concepts, Fourier Analysis, ISI, Eye diagram...
Johns Hopkins University: Signals, Systems and Control Demonstrations. Signal Processing Tutorial6

An impressive collection of Java Applets demonstrating various concepts. Recommended.
Java Digital Signal Processing Editor7 . The J-DSP Editor, the �rst on-line DSP editor, is used to

simulate various DSP techniques. The simulation is performed at a high level which gives the "big picture".
IEEE Signal Processing Society8 .

9.2 Information Theory

Information Theory, Inference, and Learning Algorithms9 . Free book by David MacKay of University of
Cambridge.

A short course in Information Theory10 , by David MacKay of University of Cambridge.
IEEE Information Theory Society 11 .

1This content is available online at <http://cnx.org/content/m11787/1.2/>.
2http://cnx.rice.edu/content/search
3http://cnx.rice.edu/content/col10040/1.5/
4http://cnx.rice.edu/content/col10064/1.4/
5http://www.complextoreal.com
6http://www.jhu.edu/∼signals/
7http://www.eas.asu.edu/∼midle/jdsp/
8http://www.ieee.org/organizations/society/sp/index.html
9http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

10http://http://www.inference.phy.cam.ac.uk/mackay/info-theory/course.html
11http://golay.uvic.ca/
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Glossary

D Di�erential entropy

The di�erential entropy h (X) of a continuous random variable X with a pdf f (x) is de�ned as

h (X) = −
∫ ∞
−∞

f (x) logf (x) dx (5.9)

E Entropy

1. The entropy (average self information) of a discrete random variable X is a function of its
probability mass function and is de�ned as

H (X) = −
N∑
i=1

pX (xi) logpX (xi) (5.6)

where N is the number of possible values of X and PX (xi) = Pr [X = xi]. If log is base 2 then
the unit of entropy is bits per (source)symbol. Entropy is a measure of uncertainty in a random
variable and a measure of information it can reveal.

2. If symbol has zero probability, which means it never occurs, it should not a�ect the entropy.
Letting 0× log0 = 0, we have dealt with that.
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