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Chapter 1

Vision and Image Characteristics useful

for Compression

1.1 Introduction1

Image Coding (often more correctly known as Image Compression) is the art / science of representing
images with the least information (no. of bits) consistent with achieving an acceptable image quality
/ usefulness.

In order to do this, we try to take advantage of:

1. Physiological characteristics of human vision;
2. Statistical characteristics of typical images;
3. E�cient binary source coding methods.

We shall consider these in turn.

1.2 Human Vision2

1.2.1 Colours

The human vision system perceives images in colour using receptors on the retina of the eye which respond
to three relatively broad colour bands in the regions of red, green and blue (RGB) in the colour spectrum
(red, orange, yellow, green, blue, indigo, violet).

Colours in between these are perceived as di�erent linear combinations of RGB. Hence colour TVs and
monitors can form almost any perceivable colour by controlling the relative intensities of R, G and B light
sources. Thus most colour images which exist in electronic form are fundamentally represented by 3 intensities
(R, G and B) at each picture element (pel) position.

The numerical values used for these intensities are usually chosen such that equal increments in value
result in approximately equal apparent increases in brightness. In practise this means that the numerical
value is approximately proportional to the log of the true light intensity (energy of the wave) - this is
Weber's Law. Throughout this course, we shall refer to these numerical values as intensities, since for
compression it is most convenient to use a subjectively linear scale.

1This content is available online at <http://cnx.org/content/m11083/2.3/>.
2This content is available online at <http://cnx.org/content/m11084/2.5/>.
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1.2.2 The YUV Colour Space

The eye is much more sensitive to overall intensity (luminance) changes than to colour changes. Usually
most of the information about a scene is contained in its luminance rather than its colour (chrominance).

This is why black-and-white (monochrome) reproduction was acceptable for photography and TV for
many years until technology provided colour reproduction at a su�cient cheap price to make its modest
advantages worth having.

The luminance (Y ) of a pel may be obtained from its RGB components as:

Y = 0.3R+ 0.6G+ 0.1B (1.1)

These coe�cients are only approximate, and are the values de�ned in the JPEG Book. In other places
values of 0.3, 0.59 and 0.11 are used.

RGB representations of images are normally de�ned so that if R = G = B, the pel is always some shade
of gray, and if Y = R = G = B in these cases, the 3 coe�cients in (1.1) should sum to unity.

When Y de�nes the luminance of a pel, its chrominance is usually de�ned by U and V such that:

U = 0.5 (B − Y )

V = 0.625 (R− Y ) (1.2)

Note that gray pels will always have U = V = 0.
The transformation between RGB and YUV colour spaces is linear and may be achieved by a 3×3 matrix

C and its inverse: 
Y

U

V

 = C


R

G

B

 (1.3)

where C =


0.3 0.6 0.1

−0.15 −0.3 0.45

0.4375 −0.3750 −0.0625

 and


R

G

B

 = C−1


Y

U

V

 (1.4)

where C−1 =


1 0 1.6

1 −0.3333 −0.8

1 2 0


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1.2.3 Visual Sensitivity

Figure 1.1: Sensitivity of the eye to luminance and chrominance intensity changes.

Figure 1.1 shows the sensitivity of the eye to luminance (Y ) and chrominance (U , V ) components of images.
The horizontal scale is spatial frequency, and represents the frequency of an alternating pattern of parallel
stripes with sinusoidally varying intensity. The vertical scale is the contrast sensitivity of human vision,
which is the ratio of the maximum visible range of intensities to the minimum discernible peak-to-peak
intensity variation at the speci�ed frequency.

In Figure 1.1 we see that:

• the maximum sensitivity to Y occurs for spatial frequencies around 5 cycles / degree, which corresponds
to striped patterns with a half-period (stripe width) of 1.8 mm at a distance of 1 m (∼arm's length).

• The eye has very little response above 100 cycles / degree, which corresponds to a stripe width of 0.1
mm at 1 m. On a standard PC display of width 250 mm, this would require 2500 pels per line! Hence
the current SVGA standard of 1024 × 768 pels still falls somewhat short of the ideal and is limited
by CRT spot size. Modern laptop displays have a pel size of about 0.3 mm, but are pleasing to view
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because the pel edges are so sharp (and there is no �icker).
• The sensitivity to luminance drops o� at low spatial frequencies, showing that we are not very good

at estimating absolute luminance levels as long as they do not change with time - the luminance
sensitivity to temporal �uctuations (�icker) does not fall o� at low spatial frequencies.

• The maximum chrominance sensitivity is much lower than the maximum luminance sensitivity with
blue-yellow (U) sensitivity being about half of red-green (V ) sensitivity and about 1

6 of the maximum
luminance sensitivity.

• The chrominance sensitivities fall o� above 1 cycle / degree, requiring a much lower spatial bandwidth
than luminance.

We can now see why it is better to convert to the YUV domain before attempting image compression. The
U and V components may be sampled at a lower rate than Y (due to narrower bandwidth) and may be
quantised more coarsely (due to lower contrast sensitivity).

A colour demonstration on the computer will show this e�ect.

1.2.4 Colour compression Strategy

The 3 RGB samples at each pel are transformed into 3 YUV samples using (1.3).
Most image compression systems then subsample the U and V information by 2:1 horizontally and

vertically so that there is one U and one V pel for each 2 × 2 block of Y pels. The subsampled U and V
pels are obtained by averaging the four U and V samples, from (1.3). The quarter-size U and V subimages
are then compressed using the same techniques as the full-size Y image, except that coarser quantisation
may be used for U and V , so the total cost of adding colour may only be about 25% increase in bit rate.
Sometimes U and V are subsamples 4:1 each way (16:1 total), giving an even lower cost of colour.

From now on we will mostly be considering compression of the monochrome Y image, and assume that
similar techniques will be used for the smaller U and V subimages.

1.2.5 Activity Masking

A �nal feature of human vision, which is useful for compression, is that the contrast sensitivity to a given
pattern is reduced in the presence of other patterns (activity) in the same region. This is known as activity
masking.

It is a complicated subject as it depends on the similarity between the given pattern and the background
activity. However in general, the higher the variance of the pels in a given region (typically ∼ 8 to 16 pels
across), the lower is the contrast sensitivity.

Hence compression schemes which adapt the quantisation to local image activity tend to perform better
than those which use uniform quantisation.

A computer demonstration will show the e�ect of reduced sensitivity to quantisation e�ects when noise
is added to an image.

1.3 Image Characteristics3

We now consider statistical characteristics of typical images which can permit compression. If all images
comprised dots with uncorrelated random intensities, then each pel would need to be coded independently
and we could not achieve any useful gains. However typical images are very di�erent from random dot
patterns and signi�cant compression gains are possible.

Some compression can be achieved even if no additional distortion is permitted (lossless coding) but
much greater compression is possible if some additional distortion is allowed (lossy coding). Lossy coding
is the main topic of this course but we try to keep the added distortions near or below the human visual
sensitivity (Section 1.2.3: Visual Sensitivity) thresholds discussed previously.

3This content is available online at <http://cnx.org/content/m11085/2.9/>.
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Statistical characteristics of signals can often be most readily appreciated by frequency domain analysis
since the power spectrum is the Fourier transform of the autocorrelation function. The 2-D FFT is a
convenient tool for analysing images. Figure 1.2 shows the 256× 256 pel 'Lenna' image and its Fourier log
power spectrum. Zero frequency is at the centre of the spectrum image and the log scale shows the lower
spectral components much more clearly.

Figure 1.2: 256× 256 pel 'Lenna' image and its Fourier log power spectrum.

The bright region near the centre of the spectrum shows that the main concentration of image energy is
at low frequencies, which implies strong correlation between nearby pels and is typical of real-world images.
The diagonal line of spectral energy at about -30 ◦ is due to the strong diagonal edges of the hat normal to
this direction. Similarly the near-horizontal spectral line comes from the strong near-vertical stripe of hair
to the right of the face. Any other features are di�cult to distinguish in this global spectrum.

A key property of real-world images is that their statistics are not stationary over the image. Figure 1.3
demonstrates this by splitting the 'Lenna' image into 64 blocks of 32× 32 pels, and calculating the Fourier
log power spectrum of each block. The wide variation in spectra is clearly seen. Blocks with dominant
edge directions produce spectra with lines normal to the edges, and those containing the feathers of the
hat generate a broad spread of energy at all frequencies. However a bright centre, indicating dominant low
frequency components, is common to all blocks.
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Figure 1.3: Fourier log power spectra of 'Lenna' image split into 64 blocks of 32× 32 pels.

We conclude that in many regions of a typical image, most of the signal energy is contained in a relatively
small number of spectral components, many of which are at low frequencies. However, between regions, the
location of the main components changes signi�cantly.

The concentration of spectral energy is the key to compression. If a signal can be recon-
structed from its Fourier transform, and many of the transform coe�cients are very small,
then a close approximation to the original can be reconstructed from just the larger transform
coe�cients, so only these coe�cients need be transmitted.

In practice, the Fourier transform is not very suitable for compression because it generates complex
coe�cients and it is badly a�ected by discontinuities at block boundaries (half-sine windowing was used in
Figure 1.2 and Figure 1.3 to reduce boundary e�ects but this would prevent proper reconstruction of the
image). In further discussion (Section 2.2), we demonstrate the principles of image compression using the
Haar transform, perhaps the simplest of all transforms.



Chapter 2

A Basic Image Compression Example

2.1 A Basic Image Compression Example1

We shall represent a monochrome (luminance) image by a matrix x whose elements are x (n), where n =(
n1 n2

)
is the integer vector of row and column indexes. The energy of x is de�ned as

Energy of x =
∑
n

x2 (n) (2.1)

where the sum is performed over all n in x.

Figure 2.1: The basic block diagram of an image coding system.

Figure 2.1 shows the main blocks in any image coding system. The decoder is the inverse of the encoder.
The three encoder blocks perform the following tasks:

• Energy compression - This is usually a transformation or �ltering process which aims to concentrate
a high proportion of the energy of the image x into as few samples (coe�cients) of y as possible while
preserving the total energy of x in y. This minimises the number of non-zero samples of y which need

to be transmitted for a given level of distortion in the reconstructed image
^
x.

1This content is available online at <http://cnx.org/content/m11086/2.5/>.
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• Quantisation - This represents the samples of y to a given level of accuracy in the integer matrix q.
The quantiser step size controls the tradeo� between distortion and bit rate and may be adapted to

take account of human visual sensitivities. The inverse quantiser reconstructs
^
y, the best estimate of

y from q.
• Entropy coding - This encodes the integers in q into a serial bit stream d, using variable-length

entropy codes which attempt to minimise the total number of bits in d, based on the statistics (PDFs)
of various classes of samples in q.

The energy compression / reconstruction and the entropy coding / decoding processes are normally all

lossless. Only the quantiser introduces loss and distortion:
^
y is a distorted version of y, and hence

^
x is a

distorted version of x. In the absence of quantisation, if
^
y= y, then

^
x= x.

2.2 The Haar Transform2

Probably the simplest useful energy compression process is the Haar transform. In 1-dimension, this trans-

forms a 2-element vector
(
x (1) x (2)

)T
into

(
y (1) y (2)

)T
using: y (1)

y (2)

 = T

 x (1)

x (2)

 (2.2)

where T = 1√
2

 1 1

1 −1

. Thus y (1) and y (2) are simply the sum and di�erence of x (1) and x (2), scaled

by 1√
2
to preserve energy.

Note that T is an orthonormal matrix because its rows are orthogonal to each other (their dot products
are zero) and they are normalised to unit magnitude. Therefore T−1 = TT . (In this case T is symmetric so
TT = T .) Hence we may recover x from y using: x (1)

x (2)

 = TT

 y (1)

y (2)

 (2.3)

In 2-dimensions x and y become 2×2 matrices. We may transform �rst the columns of x, by premultiplying
by T , and then the rows of the result by postmultiplying by TT . Hence:

y = TxTT (2.4)

and to invert:
x = TT yT (2.5)

To show more clearly what is happening:
If

x =

 a b

c d


then

y =
1
2

 a+ b+ c+ d a− b+ c− d
a+ b− c− d a− b− c+ d


These operations correspond to the following �ltering processes:

2This content is available online at <http://cnx.org/content/m11087/2.6/>.
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• Top left: a+ b+ c+ d = 4-point average or 2-D lowpass (Lo-Lo) �lter.
• Top right: a − b + c − d = Average horizontal gradient or horizontal highpass and vertical lowpass

(Hi-Lo) �lter.
• Lower left: a + b − c − d = Average vertical gradient or horizontal lowpass and vertical highpass

(Lo-Hi) �lter.
• Lower right: a− b− c+ d = Diagonal curvature or 2-D highpass (Hi-Hi) �lter.

To apply this transform to a complete image, we group the pels into 2 × 2 blocks and apply (2.4) to each
block. The result (after reordering) is shown in Figure 2.2(b). To view the result sensibly, we have grouped
all the top left components of the 2× 2 blocks in y together to form the top left subimage in Figure 2.2(b),
and done the same for the components in the other 3 positions to form the corresponding other 3 subimages.

(a) (b)

Figure 2.2: Original Figure 2.2(a) and the Level 1 Haar transform Figure 2.2(b) of the 'Lenna' image.

It is clear from Figure 2.2(b) that most of the energy is contained in the top left (Lo-Lo) subimage and
the least energy is in the lower right (Hi-Hi) subimage. Note how the top right (Hi-Lo) subimage contains
the near-vertical edges and the lower left (Lo-Hi) subimage contains the near-horizontal edges.

The energies of the subimages and their percentages of the total are:

Lo-Lo Hi-Lo Lo-Hi Hi-Hi

201.73× 106 4.56× 106 1.89× 106 0.82× 106

96.5% 2.2% 0.9% 0.4%

Table 2.1

Total energy in Figure 2.2(a) and Figure 2.2(b) = 208.99× 106.
We see that a signi�cant compression of energy into the Lo-Lo subimage has been achieved. However the

energy measurements do not tell us directly how much data compression this gives.
A much more useful measure than energy is the entropy of the subimages after a given amount of

quantisation. This gives the minimum number of bits per pel needed to represent the quantised data for
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each subimage, to a given accuracy, assuming that we use an ideal entropy code. By comparing the total
entropy of the 4 subimages with that of the original image, we can estimate the compression that one level
of the Haar transform can provide.

2.3 Entropy3

Entropy of source information was discussed in the third-year E5 Information and Coding course. For an
image x, quantised to M levels, the entropy Hx is de�ned as:

Hx =
∑M−1
i=0 pilog2

1
pi

= −
∑M−1
i=0 pilog2pi

(2.6)

where pi, i = 0 to M − 1, is the probability of the ith quantiser level being used (often obtained from a
histogram of the pel intensities).

Hx represents the mean number of bits per pel with which the quantised image x can be represented
using an ideal variable-length entropy code. A Hu�man code usually approximates this bit-rate quite closely.

To obtain the number of bits to code an image (or subimage) x containing N pels:

• A histogram of x is measured using M bins corresponding to the M quantiser levels.
• The M histogram counts are each divided by N to give the probabilities pi, which are then converted

into entropies hi = − (pilog2pi). This conversion law is illustrated in Figure 2.3 and shows that
probabilities close to zero or one produce low entropy and intermediate values produce entropies near
0.5.

• The entropies hi of the separate quantiser levels are summed to give the total entropy Hx for the
subimage.

• Multiplying Hx by N gives the estimated total number of bits needed to code x, assuming an ideal
entropy code is available which is matched to the histogram of x.

3This content is available online at <http://cnx.org/content/m11088/2.4/>.
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Figure 2.3: Conversion from probability pi to entropy hi = − (pilog2pi).

Figure 2.4 shows the probabilities pi and entropies hi for the original Lenna image and Figure 2.5 shows
these for each of the subimages in this previous �gure (Figure 2.2), assuming a uniform quantiser with a
step-size Qstep = 15 in each case. The original Lenna image contained pel values from 3 to 238 and a mean
level of 120 was subtracted from each pel value before the image was analysed or transformed in order that
all samples would be approximately evenly distributed about zero (a natural feature of highpass subimages).
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Figure 2.4: Probability histogram (dashed) and entropies (solid) of the Lenna image in (original image
(Figure 2.2(a))).
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Figure 2.5: Probability histogram (dashed) and entropies (solid) of the four subimages of the Level 1
Haar transform of Lenna (see previous �gure (Figure 2.2(b))).

The Haar transform preserves energy and so the expected distortion energy from quantising the trans-
formed image y with a given step size Qstep will be approximately the same as that from quantising the input
image x with the same step size. This is because quantising errors can usually be modeled as independent

random processes with variance (energy) =
Qstep

2

12 and the total squared quantising error (distortion) will
tend to the sum of the variances over all pels. This applies whether the error energies are summed before or
after the inverse transform (reconstruction) in the decoder.

Hence equal quantiser step sizes before and after an energy-preserving transformation
should generate equivalent quantising distortions and provide a fair estimate of the com-
pression achieved by the transformation.

The �rst two columns of Figure 2.6 (original and level 1) compare the entropy (mean bit rate) per pel for
the original image (3.71 bit / pel) with that of the Haar transformed image of this previous �gure (Figure 2.2)
(2.08 bit / pel), using Qstep = 15. Notice that the entropy of the original image is almost as great as the 4
bit / pel that would be needed to code the 16 levels using a simple �xed-length code, because the histogram
is relatively uniform.

The level 1 column of Figure 2.6 shows the contribution of each of the subimages of this previous �gure
(Figure 2.2(b)) to the total entropy per pel (the entropies from Figure 2.5 have been divided by 4 since each
subimage has one quarter of the total number of pels). the Lo-Lo subimage contributes 56% to the total
entropy (bit rate) and has similar spatial correlations to the original image. Hence it is a logical step to
apply the Haar transform again to this subimage.
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Figure 2.6: Mean bit rate for the original Lenna image and for the Haar transforms of the image after
1 to 4 levels, using a quantiser step size Qstep = 15.

2.4 The Multi-level Haar Transform4

(a) of Figure 2.7 shows the result of applying the Haar transform to the Lo-Lo subimage of this previous
�gure (Figure 2.2(b)) and Figure 2.8 shows the probabilities pi and entropies hi for the 4 new subimages.

The level 2 column of the �gure Cumulative Entropies of Subimages for Qstep=15 (Figure 2.6) shows
how the total bit rate can be reduced by transforming the level 1 Lo-Lo subimage into four level 2 subimages.
The process can be repeated by transforming the �nal Lo-Lo subimage again and again, giving the subimages
in (b) of Figure 2.7 and (c) of Figure 2.7 and the histograms in Figure 2.9 and Figure 2.10. The levels 3
and 4 columns of the �gure Cumulative Entropies of Subimages for Qstep=15 (Figure 2.6) show that little
is gained by transforming to more than 4 levels.

However a total compression ratio of 4 bit/pel : 1.61 bit/pel = 2.45 : 1 has been achieved
(in theory).

4This content is available online at <http://cnx.org/content/m11089/2.4/>.
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Figure 2.7: Levels 2(a), 3(b), and 4(c) Haar transforms of Lenna; and at all of levels 1 to 4(d).
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Figure 2.8: The probabilities pi and entropies hi for the 4 subimages at level 2.
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Figure 2.9: The probabilities pi and entropies hi for the 4 subimages at level 3.
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Figure 2.10: The probabilities pi and entropies hi for the 4 subimages at level 4.
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Figure 2.11: Images reconstructed from (a) the original Lenna, and (b) the 4-level Haar transform,
each quantised with Qstep = 15. The rms error of (a) = 4.3513, and of (b) = 3.5343.

Note the following features of the 4-level Haar transform:

• (d) of Figure 2.7 shows the subimages from all 4 levels of the transform and illustrates the transform's
multi-scale nature. It also shows that all the subimages occupy the same total area as the original
and hence that the total number of transform output samples (coe�cients) equals the number of input
pels - there is no redundancy.

• From the Lo-Lo subimage histograms of the �gure Haar Transform, Level 1 energies, and entropies for
Qstep=15 (Figure 2.5), Figure 2.8, Figure 2.9 and Figure 2.10, we see the magnitudes of the Lo-Lo
subimage samples increasing with transform level. This is because energy is being conserved and most
of it is being concentrated in fewer and fewer Lo-Lo samples. (The DC gain of the Lo-Lo �lter of this
previous equation (2.4) is 2.)

• We may reconstruct the image from the transform samples ((d) of Figure 2.7), quantised to Qstep = 15,
by inverting the transform, using the right hand part of this equation (2.5). We then get the image
in (b) of Figure 2.11. Contrast this with (a) of Figure 2.11, obtained by quantising the pels of the
original directly to Qstep = 15, in which contour artifacts are much more visible. Thus the transform
provides improved subjective quality as well as signi�cant data compression. The improved quality
arises mainly from the high amplitude of the low frequency transform samples, which means that they
are quantised to many more levels than the basic pels would be for a given Qstep.

• If Qstep is doubled to 30, then the entropies of all the subimages are reduced as shown in Figure 2.12
(compare this with the �gure, Cumulative Entropies of Subimages for Qstep=15 (Figure 2.6) in which
Qstep = 15). The mean bit rate with the 4-level Haar transform drops from 1.61 to 0.97 bit/pel.
However the reconstructed image quality drops to that shown in (b) of Figure 2.13. For comparison,
(a) of Figure 2.13 shows the quality if x is directly quantised with Qstep = 30.
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Figure 2.12: Mean bit rate for the original Lenna image and for the Haar transforms of the image
after 1 to 4 levels, using a quantiser step size Qstep = 30.
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Figure 2.13: Images reconstructed from (a) the original Lenna, and (b) the 4-level Haar transform,
each quantised with Qstep = 30. The rms error of (a) = 8.6219, and of (b) = 5.8781.

2.5 Use of Laplacian PDFs in Image Compression5

It is found to be appropriate and convenient to model the distribution of many types of transformed image
coe�cients by Laplacian distributions. It is appropriate because much real data is approximately modeled
by the Laplacian probability density function (PDF), and it is convenient because the mathematical form of
the Laplacian PDF is simple enough to allow some useful analytical results to be derived.

A Laplacian PDF is a back-to-back pair of exponential decays and is given by:

p (x) =
1

2x0
e−
|x|
x0 (2.7)

where x0 is the equivalent of a time constant which de�nes the width of the PDF from the centre to
the 1

e points. The initial scaling factor ensures that the area under p (x) is unity, so that it is a valid PDF.
Figure 2.14 shows the shape of p (x).

5This content is available online at <http://cnx.org/content/m11090/2.4/>.
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Figure 2.14: Laplacian PDF, p (x), and typical quantiser decision thresholds, shown for the case when
the quantiser step size Q = 2x0

The mean of this PDF is zero and the variance is given by:

v (x0) =
∫∞
−∞ x2p (x) dx

= 2
∫

x2

2x0
e−

x
x0 dx

= 2x0
2

(2.8)

(using integration by parts twice).
Hence the standard deviation is:

σ (x0) =
√
v (x0)

=
√

2x0

(2.9)

Given the variance (power) of a subimage of transformed pels, we may calculate x0 and hence determine the
PDF of the subimage, assuming a Laplacian shape. We now show that, if we quantise the subimage using a
uniform quantiser with step size Q, we can calculate the entropy of the quantised samples and thus estimate
the bit rate needed to encode the subimage in bits/pel. This is a powerful analytical tool as it shows how
the compressed bit rate relates directly to the energy of a subimage. The vertical dashed lines in Figure 2.14
show the decision thresholds for a typical quantiser for the case when Q = 2x0.

First we analyse the probability of a pel being quantised to each step of the quantiser. This is given by
the area under p (x) between each adjacent pair of quantiser thresholds.

• Probability of being at step 0, p0 = Pr
[
−
(

1
2Q
)
< x < 1

2Q
]

= 2Pr
[
0 < x < 1

2Q
]

• Probability of being at step k, pk = Pr
[(
k − 1

2

)
Q < x <

(
k + 1

2

)
Q
]

First, for x2 ≥ x1 ≥ 0, we calculate:

Pr [x1 < x < x2] =
∫ x2

x1

p (x) dx =
(
−1

2

)
e−

x
x0 |x2

x1
=

1
2

(
e−

x1
x0 − e−

x2
x0

)
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Therefore,

p0 = 1− e−
Q

2x0 (2.10)

and, for k ≥ 1,

pk = 1
2

(
e−

(k− 1
2 )Q
x0 − e−

(k+ 1
2 )Q
x0

)
= sinh

(
Q

2x0

)
e−

kQ
x0

(2.11)

By symmetry, if k is nonzero, p−k = pk = sinh
(
Q

2x0

)
e−
|k|Q
x0

Now we can calculate the entropy of the subimage:

H = −
∑∞
k=−∞ pklog2pk

= (− (p0log2p0))− 2
∑∞
k=1 pklog2pk

(2.12)

To make the evaluation of the summation easier when we substitute for pk, we let

pk = αrk

where α = sinh
(
Q

2x0

)
and r = e−

Q
x0 . Therefore,

∑∞
k=1 pklog2pk =

∑∞
k=1 αr

klog2

(
αrk

)
=

∑∞
k=1 αr

k (log2α+ klog2r)

= αlog2α
∑∞
k=1 r

k + αlog2r
∑∞
k=1 kr

k

(2.13)

Now
∑∞
k=1 r

k = r
1−r and, di�erentiating by r:

∑∞
k=1 kr

k−1 = 1
(1−r)2 . Therefore,∑∞

k=1 pklog2pk = αlog2α
r

1−r + αlog2r
r

(1−r)2

= αr
1−r

(
log2α+ log2r

1−r

) (2.14)

and
p0log2p0 =

(
1−
√
r
)
log2

(
1−
√
r
)

(2.15)

Hence the entropy is given by:

H =
(
−
((

1−
√
r
)
log2

(
1−
√
r
)))
− 2αr

1− r

(
log2α+

log2r

1− r

)
(2.16)

Because both α and r are functions of Q
x0
, then H is a function of just Q

x0
too. We expect that, for constant

Q, as the energy of the subimage increases, the entropy will also increase approximately logarithmically, so
we plot H against x0

Q in dB in Figure 2.15. This shows that our expectations are born out.
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Figure 2.15: Entropy H and approximate entropy Ha of a quantised subimage with Laplacian PDF,
as a function of x0

Q
in dB.

We can show this in theory by considering the case when x0
Q � 1, when we �nd that:

α ' Q

2x0

r ' 1− Q

x0
' 1− 2α

√
r ' 1− α

Using the approximation log2 (1− ε) ' − ε
ln(2) for small ε, it is then fairly straightforward to show that

H ' −log2α+
1

ln (2)
' log2

2ex0

Q

We denote this approximation as Ha in Figure 2.15, which shows how close to H the approximation is, for
x0 > Q (i.e. for x0

Q > 0 dB).

We can compare the entropies calculated using (2.16) with those that were calculated from the bandpass
subimage histograms, as given in these �gures describing Haar transform energies and entropies; level 1 ener-
gies (Figure 2.5), level 2 energies (Figure 2.8), level 3 energies (Figure 2.9), and level 4 energies (Figure 2.10).
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(The Lo-Lo subimages have PDFs which are more uniform and do not �t the Laplacian model well.) The
values of x0 are calculated from:

x0 =
std. dev.√

2
=

√
subimage energy

2 (no of pels in subimage)

The following table shows this comparison:

Transform
level

Subimage
type

Energy (×
106)

No of pels x0 Laplacian
entropy

Measured
entropy

1 Hi-Lo 4.56 16384 11.80 2.16 1.71

1 Lo-Hi 1.89 16384 7.59 1.58 1.15

1 Hi-Hi 0.82 16384 5.09 1.08 0.80

2 Hi-Lo 7.64 4096 30.54 3.48 3.00

2 Lo-Hi 2.95 4096 18.98 2.81 2.22

2 Hi-Hi 1.42 4096 13.17 2.31 1.75

3 Hi-Lo 13.17 1024 80.19 4.86 4.52

3 Lo-Hi 3.90 1024 43.64 3.99 3.55

3 Hi-Hi 2.49 1024 34.87 3.67 3.05

4 Hi-Lo 15.49 256 173.9 5.98 5.65

4 Lo-Hi 6.46 256 112.3 5.35 4.75

4 Hi-Hi 3.29 256 80.2 4.86 4.38

Table 2.2

We see that the entropies calculated from the energy via the Laplacian PDF method (second column
from the right) are approximately 0.5 bit/pel greater than the entropies measured from the Lenna subimage
histograms. This is due to the heavier tails of the actual PDFs compared with the Laplacian exponentially
decreasing tails. More accurate entropies can be obtained if x0 is obtained from the mean absolute values of
the pels in each subimage. For a Laplacian PDF we can show that

Mean absolute value =
∫∞
−∞ |x|p (x) dx

= 2
∫∞
0

x
2x0

e−
x
x0 dx

= x0

(2.17)

This gives values of x0 that are about 20% lower than those calculated from the energies and the calculated
entropies are then within approximately 0.2 bit/pel of the measured entropies.

2.6 Practical Entropy Coding Techniques6

In the module of Use of Laplacian PDFs in Image Compression (Section 2.5) we have assumed that ideal
entropy coding has been used in order to calculate the bit rates for the coded data. In practise we must use
real codes and we shall now see how this a�ects the compression performance.

There are three main techniques for achieving entropy coding:

6This content is available online at <http://cnx.org/content/m11091/2.3/>.
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• Hu�man Coding - one of the simplest variable length coding schemes.
• Run-length Coding (RLC) - very useful for binary data containing long runs of ones of zeros.
• Arithmetic Coding - a relatively new variable length coding scheme that can combine the best

features of Hu�man and run-length coding, and also adapt to data with non-stationary statistics.

We shall concentrate on the Hu�man and RLC methods for simplicity. Interested readers may �nd out more
about Arithmetic Coding in chapters 12 and 13 of the JPEG Book.

First we consider the change in compression performance if simple Hu�man Coding is used to code the
subimages of the 4-level Haar transform.

The calculation of entropy in this equation (2.6) from our discussion of entropy assumed that each
message with probability pi could be represented by a word of length [U+EF59]i = −log2pi bits. Hu�man
codes require the [U+EF59]i to be integers and assume that the pi are adjusted to become:

^
pi= 2−[U+EF59]i (2.18)

where the [U+EF59]i are integers, chosen subject to the constraint that
∑
i

^
pi≤ 1 (to guarantee that su�-

cient uniquely decodable code words are available) and such that the mean Hu�man word length (Hu�man

entropy),
^
H=

∑
i pi[U+EF59]i, is minimised.

We can use the probability histograms which generated the entropy plots in �gures of level 1 energies
(Figure 2.5), level 2 energies (Figure 2.8), level 3 energies (Figure 2.9) and level 4 energies (Figure 2.10) to

calculate the Hu�man entropies
^
H for each subimage and compare these with the true entropies to see the

loss in performance caused by using real Hu�man codes.
An algorithm for �nding the optimum codesizes [U+EF59]i is recommended in the JPEG speci�cation

[the JPEG Book, Appendix A, Annex K.2, �g K.1]; and a Mathlab M-�le to implement it is given in M-�le
code (p. 30).
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Figure 2.16: Comparison of entropies (columns 1, 3, 5) and Hu�man coded bit rates (columns 2, 4,
6) for the original (columns 1 and 2) and transformed (columns 3 to 6) Lenna images. In columns 5 and
6, the zero amplitude state is run-length encoded to produce many states with probabilities < 0.5.
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Numerical results used in the �gure - Entropies and Bit rates of Subimages for Qstep=15

Column: 1 2 3 4 5 6 -

0.0264 0.0265 0.0264 0.0266

0.0220 0.0222 0.0221 0.0221 Level 4

0.0186 0.0187 0.0185 0.0186

0.0171 0.0172 0.0171 0.0173 -

0.0706 0.0713 0.0701 0.0705

0.0556 0.0561 0.0557 0.0560 Level 3

3.7106 3.7676 0.0476 0.0482 0.0466 0.0471 -

0.1872 0.1897 0.1785 0.1796

0.1389 0.1413 0.1340 0.1353 Level 2

0.1096 0.1170 0.1038 0.1048 -

0.4269 0.4566 0.3739 0.3762

0.2886 0.3634 0.2691 0.2702 Level 1

0.2012 0.3143 0.1819 0.1828 -

Totals: 3.7106 3.7676 1.6103 1.8425 1.4977 1.5071

Table 2.3

Figure 2.16 shows the results of applying this algorithm to the probability histograms and Table 2.3:
Numerical results used in the �gure - Entropies and Bit rates of Subimages for Qstep=15 lists the same
results numerically for ease of analysis. Columns 1 and 2 compare the ideal entropy with the mean word
length or bit rate from using a Hu�man code (the Hu�man entropy) for the case of the untransformed image
where the original pels are quantized with Qstep = 15. We see that the increase in bit rate from using the
real code is:

3.7676
3.7106

− 1 = 1.5%

But when we do the same for the 4-level transformed subimages, we get columns 3 and 4. Here we see that
real Hu�man codes require an increase in bit rate of:

1.8425
1.6103

− 1 = 14.4%

Comparing the results for each subimage in columns 3 and 4, we see that most of the increase in bit rate
arises in the three level-1 subimages at the bottom of the columns. This is because each of the probability
histograms for these subimages (see �gure (Figure 2.5)) contain one probability that is greater than 0.5.
Hu�man codes cannot allocate a word length of less than 1 bit to a given event, and so they start to lose
e�ciency rapidly when −log2pi becomes less than 1, ie when pi > 0.5.

Run-length codes (RLCs) are a simple and e�ective way of improving the e�ciency of Hu�man coding
when one event is much more probable than all of the others combined. They operate as follows:

• The pels of the subimage are scanned sequentially (usually in columns or rows) to form a long 1-
dimensional vector.

• Each run of consecutive zero samples (the most probable events) in the vector is coded as a single
event.

• Each non-zero sample is coded as a single event in the normal way.
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• The two types of event (runs-of-zeros and non-zero samples) are allocated separate sets of codewords
in the same Hu�man code, which may be designed from a histogram showing the frequencies of all
events.

• To limit the number of run events, the maximum run length may be limited to a certain value (we
have used 128) and runs longer than this may be represented by two or more run codes in sequence,
with negligible loss of e�ciency.

Hence RLC may be added before Hu�man coding as an extra processing step, which converts the most
probable event into many separate events, each of which has pi < 0.5 and may therefore be coded e�ciently.
Figure 2.17 shows the new probability histograms and entropies for level 1 of the Haar transform when
RLC is applied to the zero event of the three bandpass subimages. Comparing this with a previous �gure
(Figure 2.5), note the absence of the high probability zero events and the new states to the right of the
original histograms corresponding to the run lengths.

Figure 2.17: Probability histograms (dashed) and entropies (solid) of the four subimage of the Level
1 Haar transform of Lenna (see �gure (Figure 2.2(b))) after RLC.

The total entropy per event for an RLC subimage is calculated as before from the entropy histogram.
However to get the entropy per pel we scale the entropy by the ratio of the number of events (runs and
non-zero samples) in the subimage to the number of pels in the subimage (note that with RLC this ratio
will no longer equal one - it will hopefully be much less).

Figure 2.17 gives the entropies per pel after RLC for each subimage, which are now less than the entropies
in this �gure (Figure 2.5). This is because RLC takes advantage of spatial clustering of the zero samples in
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a subimage, rather than just depending on the histogram of amplitudes.
Clearly if all the zeros were clustered into a single run, this could be coded much more e�ciently than if

they are distributed into many runs. The entropy of the zero event tells us the mean number of bits to code
each zero pel if the zero pels are distributed randomly, ie if the probability of a given pel being zero
does not depend on the amplitudes of any nearby pels.

In typical bandpass subimages, non-zero samples tend to be clustered around key features such as object
boundaries and areas of high texture. Hence RLC usually reduces the entropy of the data to be coded.
There are many other ways to take advantage of clustering (correlation) of the data - RLC is just one of the
simplest.

In Figure 2.16, comparing column 5 with column 3, we see the modest (7%) reduction in entropy per pel
achieved by RLC, due clustering in the Lenna image. The main advantage of RLC is apparent in column
6, which shows the mean bit rate per pel when we use a real Hu�man code on the RLC histograms of
Figure 2.17. The increase in bit rate over the RLC entropy is only

1.5071
1.4977

− 1 = 0.63%

compared with 14.4% when RLC is not used (columns 3 and 4).
Finally, comparing column 6 with column 3, we see that, relative to the simple entropy measure, combined

RLC and Hu�man coding can reduce the bit rate by

1− 1.5071
1.6103

= 6.4%

The closeness of this ratio to unity justi�es our use of simple entropy as a tool for assessing the information
compression properties of the Haar transform - and of other energy compression techniques as we meet them.

The following is the listing of the M-�le to calculate the Hu�man entropy from a given histogram.

% Find Huffman code sizes: JPEG fig K.1, procedure Code_size.

% huffhist contains the histogram of event counts (frequencies).

freq = huffhist(:);

codesize = zeros(size(freq));

others = -ones(size(freq)); %Pointers to next symbols in code tree.

% Find non-zero entries in freq, and loop until only 1 entry left.

nz = find(freq > 0);

while length(nz) > 1,

% Find v1 for least value of freq(v1) > 0.

[y,i] = min(freq(nz));

v1 = nz(i);

% Find v2 for next least value of freq(v2) > 0.

nz = nz([1:(i-1) (i+1):length(nz)]); % Remove v1 from nz.

[y,i] = min(freq(nz));

v2 = nz(i);

% Combine frequency values.

freq(v1) = freq(v1) + freq(v2);

freq(v2) = 0;

codesize(v1) = codesize(v1) + 1;

% Increment code sizes for all codewords in this tree branch.

while others(v1) > -1,

v1 = others(v1);
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codesize(v1) = codesize(v1) + 1;

end

others(v1) = v2;

codesize(v2) = codesize(v2) + 1;

while others(v2) > -1,

v2 = others(v2);

codesize(v2) = codesize(v2) + 1;

end

nz = find(freq > 0);

end

% Generate Huffman entropies by multiplying probabilities by code sizes.

huffent = (huffhist(:)/sum(huffhist(:))) .* codesize;
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Chapter 3

The DCT and the JPEG Standard

3.1 The Discrete Cosine Transform (DCT)1

The main standard for image compression in current use is the JPEG (Joint Picture Experts Group) standard,
devised and re�ned over the period 1985 to 1993. It is formally known as ISO Draft International standard
10981-1 and CCITT Recommendation T.81, and is described in depth in The JPEG Book byW B Pennebaker
and J L Mitchell, Van Nostrand Reinhold 1993.

We shall brie�y outline the baseline version of JPEG but �rst we consider its energy compression technique
- the discrete cosine transform (DCT).

3.1.1 The Discrete Cosine Transform (DCT)

In this equation (2.2) from our discussion of the Haar transform, we met the 2-point Haar transform and in
this equation (2.3) we saw that it can be easily inverted if the transform matrix T is orthonormal so that
T−1 = TT .

If T is of size n x n, where n = 2m, then we may easily generate larger orthonormal matrices, which lead
to de�nitions of larger transforms.

An n-point transform is de�ned as: 
y (1)

. . .

y (n)

 = T


x (1)

. . .

x (n)

 (3.1)

where T =


t1,1 . . . t1,n
...

...
...

tn,1 . . . tn,n


1This content is available online at <http://cnx.org/content/m11092/2.3/>.
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A 4-point orthonormal transform matrix that is equivalent to 2 levels of the Haar transform is:

T = 1√
2


1 0 1 0

1 0 −1 0

0
√

2 0 0

0 0 0
√

2

 1√
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1



= 1
2


1 1 1 1

1 1 −1 −1
√

2 −
√

2 0 0

0 0
√

2 −
√

2


(3.2)

where 1√
2


1 0 1 0

1 0 −1 0

0
√

2 0 0

0 0 0
√

2

 is Haar level 2 and 1√
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 is Haar level 1. Similarly 3

and 4 level Haar transforms may be expressed using 8 and 16 point transform matrices respectively.
However for n > 2, there are better matrices than those based on the Haar transform, where better

means with improved energy compression properties for typical images.
Discrete Cosine Transforms (DCTs) have some of these improved properties and are also simple to de�ne

and implement. The n rows of an n-point DCT matrix T are de�ned by:

∀i = 1→ n :

(
t1,i =

√
1
n

)

∀ (i = 1→ n) ∧ (k = 2→ n) :

(
tk,i =

√
2
n

cos
(
π (2i− 1) (k − 1)

2n

))
(3.3)

It is straightforward to show that this matrix is orthonormal for n even, since the norm of each row is unity
and the dot product of any pair of rows is zero (the product terms may be expressed as the sum of a pair of
cosine functions, which are each zero mean).

The 8-point DCT matrix ( n = 8) is:

T =



0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

0.4904 0.4157 0.2778 0.0975 −0.0975 −0.2778 −0.4157 −0.4904

0.4619 0.1913 −0.1913 −0.4619 −0.4619 −0.1913 0.1913 0.4619

0.4157 −0.0975 −0.4904 −0.2778 0.2778 0.4904 0.0975 −0.4157

0.3536 −0.3536 −0.3536 0.3536 0.3536 −0.3536 −0.3536 0.3536

0.2778 −0.4904 0.0975 0.4157 −0.4157 −0.0975 0.4904 −0.2778

0.1913 −0.4619 0.4619 −0.1913 −0.1913 0.4619 −0.4619 0.1913

0.0975 −0.2778 0.4157 −0.4904 0.4904 −0.4157 0.2778 −0.0975


(3.4)

The rows of T , known as basis function, are plotted as asterisks in Figure 3.1. The asterisks are superimposed
on the underlying continuous cosine functions, used in all sizes of DCT. Only the amplitude scaling and the
maximum frequency vary with the size n.
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Figure 3.1: The 8-point DCT basis functions(*) and their underlying continuous cosine waves.

When we take the transform of an n-point vector using y = Tx, x is decomposed into a linear combination
of the basis function (rows) of T , whose coe�cients are the samples of y, because x = TT y.

The basis functions may also be viewed as the impulse responses of FIR �lters, being applied to the data
x.

The DCT is closely related to the discrete Fourier transform (DFT). It represents the result of applying
the 2n-point DFT to a vector:

x2n =

 x

xrev



where xrev =


x (n)

. . .

x (1)

. x2n is symmetric about its centre and so the 2n Fourier coe�cients are all purely

real and symmetric about zero frequency. The n DCT coe�cients are then the �rst n Fourier coe�cients.

note: The DFT must be de�ned with a half sample period o�set on the indexing of the input
samples for the above to be strictly true.
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3.1.1.1 Standards

The 8-point DCT is the basis of the JPEG standard, as well as several other standards such as MPEG-1 and
MPEG-2 (for TV and video) and H.263 (for video-phones). Hence we shall concentrate on it as our main
example, but bear in mind that DCTs may be de�ned for a wide range of sizes n.

3.2 Fast Algorithms for the DCT2

The basic n-point DCT requires n2 multiplications and n (n− 1) additions to calculate y = Tx (64 mults
and 56 adds for n = 8).

From the �gure (Figure 3.1) in our discussion of DCT, it is clear that symmetries exist in the DCT basis
functions. These can be exploited to reduce the computation load of the DCT.

All the odd rows of T in this equation (3.4) from our discussion of DCT possess even symmetry about
their centres and all the even rows possess odd symmetry. Hence we may form:

∀i, i = 1→ 4 : ((u (i) = x (i) + x (9− i)) ∧ (v (i) = x (i)− x (9− i))) (3.5)

and then form the odd and even terms in y from two 4× 4 transforms:


y (1)

y (3)

y (5)

y (7)

 = Tleft,oddu

 ∧




y (2)

y (4)

y (6)

y (8)

 = Tleft,evenv

 (3.6)

where Tleft,odd and Tleft,even are the 4x 4 matrices formed by the left halves of the odd and even rows of T .
This reduces the computation to 8 add/subtract operations for (3.5) and 2 × 16 mults and 2 × 12 adds

for (3.6) - almost halving the total computation load.
The matrix Tleft,even cannot easily be simpli�ed much further, but Tleft,odd can, as it possesses the same

symmetries as T (it is equivalent to a 4-point DCT matrix). Hence we may use the same technique on this
matrix to reduce the 16 mults and 12 adds for this product to 4 add/subtract operations followed by a pair
of 2 x 2 matrix products, requiring 2 × 4 mults and 2 × 2 adds. Finally two of these mults may be saved
since one of the 2 x 2matrices is just a scaled add/subtract matrix (like the Haar transform).

The total computation load for the 8× 8 DCT then becomes:

• 8 + 12 + 4 + 2 + 2 = 28 add/subtract operations;
• 16 + 4 + 2 = 22 multiply operations.

More complicated algorithms exist (JPEG Book, sections 4.3.2 to 4.3.5) which reduce the number of multiplies
further. However these all require more intermediate results to be stored. In modern DSP chips this can
cost more CPU cycles than the extra multiplications which can often be done simultaneously with additions.
Hence the simple approach given above is frequently optimal.

3.3 The 2-dimensional DCT3

In the equation from our discussion of the Haar transform:

y = TxTT

and to invert:
x = TT yT

2This content is available online at <http://cnx.org/content/m11093/2.3/>.
3This content is available online at <http://cnx.org/content/m11094/2.4/>.
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we saw how a 1-D transform could be extended to 2-D by pre- and post-multiplication of a square matrix
x to give a matrix result y. Our example then used 2 × 2 matrices, but this technique applies to square
matrices of any size.

Hence the DCT may be extended into 2-D by this method.
E.g. the 8× 8 DCT transforms a subimage of 8× 8 pels into a matrix of 8× 8 DCT coe�cients.
The 2-D basis functions, from which x may be reconstructed, are given by the n2 separate products of

the columns of TT with the rows of T . These are shown for n = 8 in (a) of Figure 3.2 as 64 subimages of
size 8× 8 pels.

The result of applying the 8× 8 DCT to the Lenna image is shown in (b) of Figure 3.2. Here each 8× 8
block of pels x is replaced by the 8 × 8 block of DCT coe�cients y. This shows the 8 × 8 block structure
clearly but is not very meaningful otherwise.

Part(c) of Figure 3.2 shows the same data, reordered into 64 subimages of 32 × 32 coe�cients each so
that each subimage contains all the coe�cients of a given type - e.g: the top left subimage contains all the
coe�cients for the top left basis function from (a) of Figure 3.2. The other subimages and basis functions
correspond in the same way.

We see the major energy concentration to the subimages in the top left corner. (d) of Figure 3.2 is an
enlargement of the top left 4 subimages of (c) of Figure 3.2 and bears a strong similarity to the group of
third level Haar subimages in (b) of this �gure (Figure 2.7). To emphasise this the histograms and entropies
of these 4 subimages are shown in Figure 3.3.

Comparing Figure 3.3 with this �gure (Figure 2.9), the Haar transform equivalent, we see that the Lo-Lo
bands have identical energies and entropies. This is because the basis functions are identical �at surfaces
in both cases. Comparing the other 3 bands, we see that the DCT bands contain more energy and entropy
than their Haar equivalents, which means less energy (and so hopefully less entropy) in the higher DCT
bands (not shown) because the total energy is �xed (the transforms all preserve total energy). The mean
entropy for all 64 subimages is 1.3622 bit/pel, which compares favourably with the 1.6103 bit/pel for the
4-level Haar transformed subimages using the same Qstep = 15.
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Figure 3.2: (a) Basis functions of the 8 × 8 DCT; (b) Lenna transformed by the 8 × 8 DCT; (c)
reordered into subimages grouped by coe�cient type; (d) top left 4 subimages from (c).
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Figure 3.3: The probabilities pi and entropies hi for the 4 subimages from the top left of the 8 × 8
DCT ((d) of Figure 3.2).
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Figure 3.4: (a) Mesh and (b) row plots of the entropies of the subimages of (c) of Figure 3.2.

Figure 3.5: Lenna transformed by the 4× 4 DCT (a) and 16× 16 DCT (b).
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3.3.1 What is the optimum DCT size?

This is a similar question to: What is the optimum number of levels for the Haar transform?
We have analysed Lenna using DCT sizes from 2× 2 to 16× 16 to investigate this. Figure 3.5 shows the

4× 4 and 16× 16 sets of DCT subimages. The 2× 2 DCT is identical to the level 1 Haar transform (so see
(b) of Figure 3.2) and the 8× 8 set is in (c) of Figure 3.2.

Figure 3.6 and Figure 3.7 show the mesh plots of the entropies of the subimages in Figure 3.5.
Figure 3.8 compares the total entropy per pel for the 4 DCT sizes with the equivalent 4 Haar transform

sizes. We see that the DCT is signi�cantly better than the rather simpler Haar transform.
As regards the optimum DCT size, from Figure 3.8, the 16×16 DCT seems to be marginally better than

the 8× 8 DCT, but subjectively this is not the case since quantisation artefacts become more visible as the
block size increases. In practise, for a wide range of images and viewing conditions, 8× 8 has been found to
be the optimum DCT block size and is speci�ed in most current coding standards.

Figure 3.6: (a) Mesh and (b) row plots of the entropies of the 4× 4 DCT in (a) of Figure 3.5.
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Figure 3.7: (a) Mesh and (b) row plots of the entropies of the 16× 16 DCT in (b) of Figure 3.5.
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Figure 3.8: Comparison of the mean entropies of the Haar transform of Lenna at levels 1 to 4, and of
the DCT for sizes from 2× 2 to 16× 16 pels with Qstep = 15.

3.4 Quantisation of DCT Coe�cients4

For our discussion of the 2-D DCT (Section 3.3) we assumed a quantiser step size of 15 to allow direct
comparison of entropies with the Haar transform. But what step size do we really need?

Figure 3.9(a) and (b) show images reconstructed from the 8 × 8 DCT of Lenna (see sub�gure (c) (Fig-
ure 3.2)), when all the DCT coe�cients are quantised with step sizes of 15 and 30 respectively. It is di�cult
to see quantising artefacts in Figure 3.9(a) ( Qstep = 15) but they are quite noticeable in Figure 3.9(b) (
Qstep = 30).

The visibility of the 8× 8 DCT basis functions of sub�gure (a) (Figure 3.2) in our discussion of the 2-D
DCT has been measured (for a 720 × 576 image viewed from 6 times the image width) and the minimum
quantiser steps have been determined which will give artefacts just at the threshold of visibility. The matrices

4This content is available online at <http://cnx.org/content/m11095/2.4/>.
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(JPEG Book, p37) for the luminance and chrominance threshold step sizes are:

Qlum =



16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99


(3.7)

Qchr =



17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99


(3.8)

Figure 3.9(c) shows the reconstructed image when each of the subimages of (c) (Figure 3.2) is quantised
using the corresponding step size from Qlum. It is certainly di�cult to detect any quantising artefacts, even
though many of the step sizes are greater than Qstep = 30, used in Figure 3.9(b). Figure 3.9(d) is the
reconstructed image using step sizes of 2Qlum and the artefacts are still quite low.

Figure 3.9: Images reconstructed using the 8 × 8 DCT with (a) Qstep = 15, (b) Qstep = 30, (c)
Qstep = Qlum, the JPEG luminance matrix, and (d) Qstep = 2Qlum.
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Figure 3.10: Plots of the entropies of the 8× 8 DCT quantised subimages for the four reconstructed
images of Figure 3.9.

Figure 3.10 shows the entropies of the 64 quantised subimages used to reconstruct each of the four images
in Figure 3.9. Also given on each plot is the mean entropy (giving the bits/pel for the image) and the rms
quantising error between the quantised image and the original.

We see that Figure 3.9(c) has about the same mean entropy and rms error as Figure 3.9(b), but that its
quantising artefacts are much less visible. Figure 3.9(d) has similar visibility of artefacts to Figure 3.9(b),
but has signi�cantly lower entropy and hence greater compression (similarly for Figure 3.9(c) versus
Figure 3.9(a)).

This shows the distinct advantages of subjectively weighted quantisation, and also that it is unwise
to rely too much on the rms error as a measure of image quality.

3.5 JPEG Entropy Coding5

The entropy plots of the Quantisation of the DCT coe�cients (Section 3.4) show the theoretical entropies
of each DCT sub-band. In practise this would be a poor way to code the data because:

• 64 separate entropy codes would be required (each requiring many extra states to represent run-length
coding of zeros).

• The statistics for each code are likely to vary signi�cantly from image to image.

5This content is available online at <http://cnx.org/content/m11096/2.4/>.
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• To transmit the code table for each sub-band as header information would involve a large coding
overhead (many extra bits).

• Coding the sub-bands separately does not take account of the correlations which exist between the
positions of the non-zero coefs in one sub-band with those of nearby sub-bands (see sub�gures (c) and
(d) (Figure 3.2) from a previous module).

JPEG uses a clever alternative method of coding, based on combining run-length and amplitude information
into a single Hu�man code for the whole of the image (except the DC sub-band which is coded separately
because its statistics are so di�erent).

The code is applied to each block of 8×8 quantised DCT coefs from a single 8×8 pel region. The blocks
are the coefs before reordering as shown in sub�gure (b) (Figure 3.2) of a previous module and comprise
one coef from each of the 64 sub-bands.

Each block of 8× 8 quantised coefs is formed into a 1-D vector by zig-zag scanning in the sequence:

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63



3.5.1 The JPEG Code for DC coefs

The �rst coe�cient (0) of each block (vector) is the DC coef, which represents the mean value of the pels in
the block (see the top left basis function in sub�gure (a) (Figure 3.2) from previous discussion).

The DC coefs still exhibit signi�cant local correlations (top left of sub�gure (b) (Figure 3.2)), so di�er-
ential coding is used in which the value to be coded is the di�erence between the current DC coef and that
of the previous block - the blocks are scanned from left to right, row by row. The �rst block in each row is
coded with respect to zero.

The histogram of entropies of the DC coef di�erences is compared in Figure 3.11 with that of the raw
DC coefs from this previous �gure (Figure 3.2). We note the histogram peak around zero and see that the
entropy is reduced from 6.42 bits to 6.07 bits.
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Figure 3.11: Histograms of the DC coe�cients from the 8 × 8 DCT of Lenna, showing the entropy
reduction with di�erential coding.

The size of the di�erences can in theory be up to ± (255× 8) = ± (2040) if the input pels occupy the range
−128 to + (127) (the DCT has a gain of 8 at very low frequencies). Hence the Hu�man code table would
have to be quite large. JPEG adopts a much smaller code by using a form of �oating-point representation,
where Size is the base-2 exponent and Additional Bits are used to code the polarity and precise amplitude
as follows:

DC Coef Di�erence Size Typical Hu�man
codes for Size

Additional Bits (in
binary)

0 0 00 -

-1,1 1 010 0,1

-3,-2,2,3 2 011 00,01,10,11

continued on next page
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-7,. . .,-4,4,. . .,7 3 100 000,. . .,011,100,. . .111

-15,. . .-8,8,. . .,15 4 101 0000,. . .,0111,1000,. . .,1111
...

...
...

...

-1023,. . .-
512,512,. . .,1023

10 1111 1110 00 0000 0000,. . .,11
1111 1111

-2047,. . .-
1024,1024,. . .2047

11 1 1111 1110 000 0000 0000,. . .,111
1111 1111

Table 3.1

Only Size needs to be Hu�man coded in the above scheme, since, within a given Size, all the input values
have su�ciently similar probabilities for there to be little gain from entropy coding the Additional Bits
(hence they are coded in simple binary as listed). Each coded Size is followed by the appropriate number of
Additional Bits (equal to Size) to de�ne the sign and magnitude of the coe�cient di�erence exactly.

There are only 12 Sizes to be Hu�man coded, so specifying the code table can be very simple and require
relatively few bits in the header.

In JPEG all Hu�man code tables are de�ned in the image header. Each table requires 16 + n bytes,
where n is the number of codewords in the table.

The �rst 16 bytes list the number of codewords of each length from 1 to 16 bits (codewords longer than
16 bits are forbidden). The remaining n bytes list the decoded output values of the n codewords in ascending
codeword order ( n < 256).

Hence 16 + 12 = 28 bytes are needed to specify the code table for DC coe�cients.

3.5.2 The JPEG Run-Amplitude Code

The remaining 63 coefs (the AC coefs) of each 64-element vector usually contain many zeros and so are
coded with a combined run-amplitude Hu�man code.

The codeword represents the run-length of zeros before a non-zero coef and the Size of that coef. This is
then followed by the Additional Bits which de�ne the coef amplitude and sign precisely. Size and Additional
Bits are de�ned just as for DC coefs.

This 2-dimensional Hu�man code (Run, Size) is e�cient because there is a strong correlation between
the Size of a coef and the expected Run of zeros which precedes it - small coefs usually follow long runs;
larger coefs tend to follow shorter runs. No single 2-D event is so probable that the Hu�man code becomes
ine�cient.

In order to keep the code table size n below 256, only the following Run and Size values are coded:

Run = 0→ 15

Size = 1→ 10

These require 160 codes. Two extra codes, corresponding to (Run,Size) = (0,0) and (15,0) are used for EOB
(End-of-block) and ZRL (Zero run length).

EOB is transmitted after the last non-zero coef in a 64-vector. It is the most e�cient way of coding the
�nal run of zeros. It is omitted in the rare case that the �nal element of the vector is non-zero.

ZRL is transmitted whenever Run > 15, and represents a run of 16 zeros (15 zeros and a zero amplitude
coef) which can be part of a longer run of any length. Hence a run of 20 zeros followed by -5 would be coded
as
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(ZRL) (4,3) 010

When the code tables are de�ned in the image header, each codeword is assigned to a given (Run,Size) pair
by making the decoded output byte Code Byte equal to ( 16Run + Size).

The default JPEG code for (Run,Size) of AC luminance DCT coe�cients is summarised below in order
of decreasing code probability:

(Run,Size) Code Byte
(hex)

Code Word
(binary)

(Run,Size) Code Byte
(hex)

Code Word
(binary)

(0,1) 01 00 (0,6) 06 1111000

(0,2) 02 01 (1,3) 13 1111001

(0,3) 03 100 (5,1) 51 1111010

(EOB) 00 1010 (6,1) 61 1111011

(0,4) 04 1011 (0,7) 07 11111000

(1,1) 11 1100 (2,2) 22 11111001

(0,5) 05 11010 (7,1) 71 11111010

(1,2) 12 11011 (1,4) 14 111110110

(2,1) 21 11100
...

(3,1) 31 111010 (ZRL) F0 11111111001

(4,1) 41 111011
...

Table 3.2

As an example, let us code the following 8× 8 block:

−13 −3 2 0 0 0 1 0

6 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Concerting this to (DC Size) or (Run,Size) and values for the Additional Bits gives:

(4) -13 (0,2) -3 (0,3) 6 (2,2) 2 (3,1) -1 (ZRL) (1,1) 1 (EOB)

101 0010 01 00 100 110 11111001 10 111010 0 11111111001 1100 1 1010
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The compressed bitstream for this block is listed on the lower line, assuming that the default Hu�man code
tables, given above, are used.

Figure 3.12 shows the histogram of probabilities for the (Run,Size) codewords used to code Lenna using
the Qlum quantisation matrix. The bin number represents the decoded byte value.

Figure 3.13 shows the equivalent histogram when the quantisation matrix is 2Qlum.

Figure 3.12: Histogram of the (Run,Size) codewords for the DCT of Lenna, quantised using Qlum.
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Figure 3.13: Histogram of the (Run,Size) codewords for the DCT of Lenna, quantised using 2Qlum.

Note the strong similarity between these histograms, despite the fact that Figure 3.13 represents only
2
3 as many events. Only the EOB probability changes signi�cantly, because its probability goes up as the
number of events (non-zero coefs) per block goes down.

It turns out that the (Run,Size) histogram remains relatively constant over a wide range of image material
and across di�erent regions of each image. This is because of the strong correlation between the run lengths
and expected coef sizes. The number of events per block varies considerably depending on the local activity
in the image, but the probability distribution of those events (except for EOB) changes much less.

Figure 3.12 and Figure 3.13 also give the mean bit rates to code Lenna for the two quantisation matrices.
Comparing these with the theoretical entropies from this �gure (Figure 3.10) (lower row) we get:

Q matrix Mean Entropy (b/pel) JPEG Bit Rate (b/pel) JPEG e�ciency

Qlum 0.8595 0.8709 98.7%

2Qlum 0.5551 0.5595 99.21%

Table 3.3

Hence we see the high e�ciency of the (Run,Size) code at two quite di�erent compression factors. This
tends to apply over a wide range of images and compression factors and is an impressive achievement.
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There is even very Little e�ciency lost if a single code table is used for many images, which can avoid the
need to transmit the 16+n (168 bytes) of code de�nition in the header of each image. Using the recommended
JPEG default luminance tables (Annex K.3.3) the above e�ciencies drop to 97.35% and 95.74% respectively.

3.6 Sync and Headers6

We have described how individual 8× 8 blocks of DCT coe�cients are coded. Now we shall brie�y look at
the sync codes and header information that are needed in order to complete the coding process.

JPEG is rather complex in this aspect, so we shall just give an overview of the basic principles (see the
JPEG Book, chapter 7 for the full picture).

JPEG data is divided into segments, each of which starts with a 2-byte marker.
All markers are byte-aligned - they start on the byte boundaries of the transmission/storage medium.

Any variable-length data which precedes a marker is padded with extra ones to achieve this.
The �rst byte of each marker is FFH . The second byte de�nes the type of marker.
To allow for recovery in the presence of errors, it must be possible to detect markers without decoding

all of the intervening data. Hence markers must be unique. To achieve this, if an FFH byte occurs in the
middle of a segment, an extra 00H stu�ed byte is inserted after it and 00H is never used as the second byte
of a marker.

Some important markers in the order they are often used are:

Name Code (hex) Purpose

SOI FFD8 Start of image.

COM FFFE Comment (segment ignored
by decoder). Lseg, <Text
comments>

DQT FFDB De�ne quantisation table(s).
Lseg, < Qlum, Qchr . . . >

SOF0 FFC0 Start of Baseline DCT frame.
Lseg, <Frame size, no. of com-
ponents (colours), sub-sampling
factors, Q-table selectors>

DHT FFC4 De�ne Hu�man table(s). Lseg,
<DC Size and AC (Run,Size) ta-
bles for each component>

SOS FFDA Start of scan. Lseg, <Hu�man
table selectors for each
component> <Entropy coded
DCT blocks>

continued on next page

6This content is available online at <http://cnx.org/content/m11097/2.3/>.
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EOI FFD9 End of image.

Table 3.4

In Table 3.4 the data which follows each marker is shown between <> brackets. The �rst 2-byte word of
most segments is the length (in bytes) of the segment, Lseg. The length of <Entropy coded DCT blocks>,
which forms the main bulk of the compressed data, is not speci�ed explicitly, since it may be determined by
decoding the entropy codes. This also allows the data to be transmitted with minimal delay, since it is not
necessary to determine the total length of the compressed data before any of the DCT block data can be
sent.

Long blocks of entropy-coded data are rather prone to being corrupted by transmission errors. To mitigate
the worst aspects of this, Restart Markers (FFD0 → FFD7) may be included at regular intervals (say at
the start of each row of DCT blocks in the image) so that separate parts of the entropy coded stream may
be decoded independently of errors in other parts. The restart interval, if required, is de�ned by a DRI
(FFDD) marker segment. There are 8 restart markers, which are used in sequence, so that if one (or more)
is corrupted by errors, its absence may be easily detected.

The use of multiple scans within each image frame and multiple frames within a given image allows many
variations on the ordering and interleaving of the compressed data. For example:

• Chrominance and luminance components may be sent in separate scans or interleaved into a single
scan.

• Lower frequency DCT coefs may be sent in one or more scans before higher frequency coefs.
• Coarsely quantised coefs may be sent in one or more scans before �ner (re�nement) coefs.
• A coarsely sampled frame of the image may be sent initially and then the detail may be progressively

improved by adding di�erentially-coded correction frames of increasing resolution.
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Chapter 4

Filter Banks and Wavelets

4.1 The 2-band Filter Bank1

Digital �lter banks have been actively studied since the 1960s, whereas Wavelet theory is a new subject area
that was developed in the 1980s, principally by French and Belgian mathematicians, notably Y. Meyer, I.
Daubechies, and S. Mallat. The two topics are now �rmly linked and of great importance for signal analysis
and compression.

4.1.1 The 2-band Filter Bank

Recall the 1-D Haar transform from our previous discussion (Section 2.2). y (1)

y (2)

 = T

 x (1)

x (2)

 (4.1)

where T = 1√
2

 1 1

1 −1


We can write this in expanded form as:

y (1) =
1√
2
x (1) +

1√
2
x (2) (4.2)

y (2) =
1√
2
x (1)− 1√

2
x (2) (4.3)

More generally if x is a longer sequence and the results are placed in two separate sequences y0 and y1, we
de�ne the process as:

y0 (n) =
1√
2
x (n− 1) +

1√
2
x (n) (4.4)

y1 (n) =
1√
2
x (n− 1)− 1√

2
x (n) (4.5)

These can be expressed as 2 FIR �lters with tap vectors h0 =
(

1√
2

1√
2

)
and h1 =

(
1√
2

−1√
2

)
. Hence

as z-transforms, (4.4) and (4.5) become:

Y0 (z) = H0 (z)X (z) (4.6)

1This content is available online at <http://cnx.org/content/m11135/2.3/>.
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where H0 (z) = 1√
2

(
z−1 + 1

)
Y1 (z) = H1 (z)X (z) (4.7)

where H1 (z) = 1√
2

(
z−1 − 1

)
. (We shall later extend these �lters to be more complicated.)

In practice, we only calculate y0 (n) and y1 (n) at alternate (say even) values of n so that the total number
of samples in y0 and y1 is the same as in x.

We may thus represent the Haar transform operation by a pair of �lters followed by downsampling by 2,
as shown in Figure 4.1(a). This is known as a 2-band analysis �lter bank.

Figure 4.1: Two-band �lter banks for analysis (a) and reconstruction (b).

In this equation (2.3) in our discussion of the Haar transform, to reconstruct x from y we calculated
x = TT y. For long sequences this may be written:

∀n, n = even :
(
x (n− 1) =

1√
2
y0 (n) +

1√
2
y1 (n)

)
(4.8)

∀n, n = even :
(
x (n) =

1√
2
y0 (n)− 1√

2
y1 (n)

)
(4.9)

Since y0 (n) and y1 (n) are only calculated at even values of n, we may assume that they are zero at odd
values of n. We may then combine (4.8) and (4.9) into a single expression for x (n), valid for all n:

x (n) =
1√
2

(y0 (n+ 1) + y0 (n)) +
1√
2

(y1 (n+ 1)− y1 (n)) (4.10)

or as z-transforms:
X (z) = G0 (z)Y0 (z) +G1 (z)Y1 (z) (4.11)

where (
G0 (z) =

1√
2

(z + 1)
)
∧
(
G1 (z) =

1√
2

(z − 1)
)

(4.12)

In (4.11) the signals Y0 (z) and Y1 (z) are not really the same as Y0 (z) and Y1 (z) in (4.6) and (4.7) because
those in (4.6) and (4.7) have not had alternate samples set to zero. Also, in (4.11) X (z) is the reconstructed
output whereas in (4.6) and (4.7) it is the input signal.
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To avoid confusion we shall use
^
X,

^
Y0 and

^
Y1 for the signals in (4.11) so it becomes:

^
X (z) = G0 (z)

^
Y0 (z) +G1 (z)

^
Y1 (z) (4.13)

We may show this reconstruction operation as upsampling followed by 2 �lters, as in Figure 4.1(b).

If
^
Y0 and

^
Y1 are not the same as Y0 and Y1, how do they relate to each other?

Now

∀n, n = even :
(
^
y0 (n) = y0 (n)

)
(4.14)

∀n, n = odd :
(
^
y0 (n) = 0

)
(4.15)

Therefore
^
Y0 (z) is a polynomial in z, comprising only the terms in even powers of z from Y0 (z). This may

be written as:
^
Y0 (z) =

∑
even n y0 (n) z−n

=
∑

all n
1
2

(
y0 (n) z−n + y0 (n) (−z)−n

)
= 1

2 (Y0 (z) + Y0 (−z))

(4.16)

Similarly
^
Y1 (z) =

1
2

(Y1 (z) + Y1 (−z)) (4.17)

This is our general model for downsampling by 2, followed by upsampling by 2 as de�ned in (4.14) and
(4.15).

4.2 Perfect Reconstruction (PR)2

We are now able to generalize our analysis for arbitrary �lters H0, H1, G0 and G1. Substituting this equation
(4.16) and this equation (4.17) in our discussion of 2-band �lter bank into this earlier equation (4.13) and
then using this equation (4.6) and this equation (4.7) from the same discussion, we get:

^

X (z) = 1
2
G0 (z) (Y0 (z) + Y0 (−z)) + 1

2
G1 (z) (Y1 (z) + Y1 (−z)) =

1
2
G0 (z) H0 (z) X (z) + 1

2
G0 (z) H0 (−z) X (−z) + 1

2
G1 (z) H1 (z) X (z) +

1
2
G1 (z) H1 (−z) X (−z) = 1

2
X (z) (G0 (z) H0 (z) + G1 (z) H1 (z)) +

1
2
X (−z) (G0 (z) H0 (−z) + G1 (z) H1 (−z))

(4.18)

If we require
^
X (z) ≡ X (z) - the Perfect Reconstruction (PR) condition - then:

G0 (z)H0 (z) +G1 (z)H1 (z) ≡ 2 (4.19)

and
G0 (z)H0 (−z) +G1 (z)H1 (−z) ≡ 0 (4.20)

Identity (4.20) is known as the anti-aliasing condition because the term in X (−z) in (4.18) is the
unwanted aliasing term caused by down-sampling y0 and y1 by 2.

2This content is available online at <http://cnx.org/content/m11136/2.3/>.
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It is straightforward to show that the expression for H0, H1, G0 and G1, given in this equation (4.6),
this equation (4.7), this equation and this equation for the �lters based on the Haar transform, satisfy (4.19)
and (4.20). They are the simplest set of �lters which do.

Before we look at more complicated PR �lters, we examine how the �lter structures of this �gure (Fig-
ure 4.1) may be extended to form a binary �lter tree (and the discrete wavelet transform).

4.3 The Binary Filter Tree3

Recall that for image compression (see The 2-band Filter Bank (Section 4.1)), the purpose of the 2-band
�lter bank in the Haar transform is to compress most of the signal energy into the low-frequency band.

We may achieve greater compression if the low brand is further split into two. This may be repeated a
number of times to give the binary �lter tree, shown with 4 levels in Figure 4.2.

Figure 4.2: Extension of the 2-band �lter bank into a binary �lter tree.

In 1-D, this is analogous to the way the 2-D Haar transform (Section 2.2) was extended to the multi-level
Haar transform (Section 2.4).

For an N -sample input vector x, the sizes and bandwidths of the signals of the 4-level �lter tree are:

Signal No. of samples Approximate pass band

x N 0→ 1
2fs

y1
N
2

1
4 →

1
2fs

y01
N
4

1
8 →

1
4fs

y001
N
8

1
16 →

1
8fs

y0001
N
16

1
32 →

1
16fs

y0000
N
16 0→ 1

32fs

Table 4.1

3This content is available online at <http://cnx.org/content/m11137/2.3/>.
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Because of the downsampling (decimation) by 2 at each level, the total number of output samples = N ,
regardless of the number of levels in the tree.

The H0 �lter is normally designed to be a lowpass �lter with a passband from 0 to approximately 1
4

of the input sampling frequency for that stage; and H1 is a highpass (bandpass) �lter with a pass band
approximately from 1

4 to 1
2 of the input sampling frequency.

When formed into a 4-level tree, the �lter outputs have the approximate pass bands given in Table 4.1.
The �nal output y0000 is a lowpass signal, while the other outputs are all bandpass signals, each covering a
band of approximately one octave.

An inverse tree, mirroring Figure 4.2, may be constructed using �lters G0 and G1 instead of H0 and
H1, as shown for just one level in part (b) of this �gure (Section 4.1). If the PR conditions of this previous
equation (4.19) and this previous equation (4.20) are satis�ed, then the output of each level will be identical
to the input of the equivalent level in Figure 4.2, and the �nal output will be a perfect reconstruction of the
input signal.

4.3.1 Multi-rate �ltering theorem

To calculate the impulse and frequency responses for a multistage network with downsampling at each stage,
as in Figure 4.2, we must �rst derive an important theorem for multirate �lters.

Figure 4.3: Multi-rate �ltering - the result of shifting a �lter ahead of a downsampling operation or
after an upsampling operation.

Theorem 4.1:
The downsample-�lter-upsample operation of Figure 4.3(a) is equivalent to either the �lter-
downsample-upsample operation of Figure 4.3(b) or the downsample-upsample-�lter operation of
Figure 4.3(c), if the �lter is changed from H (z) to H

(
z2
)
.

Proof:
From Figure 4.3(a):

^
y (n) =


∑
i x (n− 2i)h (i) if n is even

0 if n is odd
(4.21)

Take z-transforms:
^
Y (z) =

∑
n

^
y (n) z−n

=
∑

even n

∑
i x (n− 2i)h (i) z−n

(4.22)
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Reverse the order of summation and let m = n− 2i: therefore,

^
Y (z) =

∑
i h (i)

∑
even m x (m) z−mz−2i

=
∑
i h (i) z−2i

∑
even m x (m) z−m

= H
(
z2
)

1
2 (X (z) +X (−z))

= 1
2

(
H
(
z2
)
X (z) +H

(
(−z)2

)
X (−z)

)
= 1

2 (Y (z) + Y (−z))

(4.23)

where Y (z) = H
(
z2
)
X (z)

This describes the operations of Figure 4.3(b). Hence the �rst result is proved.
The result from line 3 in (4.23)

^
Y (z) = 1

2 (X (z) +X (−z))H
(
z2
)

=
^
X (z)H

(
z2
) (4.24)

shows that the �lter H
(
z2
)
may be placed after the down/up-sampler as in Figure 4.3(c), which

proves the second result.

4.3.2 General results for M:1 subsampling

It can be shown that:

• H (z) becomes H
(
zM
)
if shifted ahead of an M:1 downsampler or following an M:1 upsampler.

• M:1 down/up-sampling of a signal X (z) produces:

^
X (z) =

1
M

M−1∑
m=0

X
(
ze

j2πm
M

)
(4.25)

4.3.3 Transformation of the �lter tree

Using the result of (4.23), Figure 4.2 can be redrawn as in Figure 4.4 with all downsamplers moved to the
outputs. (Note Figure 4.4 requires much more computation than Figure 4.2.)

Figure 4.4: Binary �lter tree, transformed so that all downsampling operations occur at the outputs.



61

We can now calculate the transfer function to each output (before the downsamplers) as:

H01 (z) = H0 (z)H1

(
z2
)

(4.26)

H001 (z) = H0 (z)H0

(
z2
)
H1

(
z4
)

(4.27)

H0001 (z) = H0 (z)H0

(
z2
)
H0

(
z4
)
H1

(
z8
)

(4.28)

H0000 (z) = H0 (z)H0

(
z2
)
H0

(
z4
)
H0

(
z8
)

(4.29)

In general the transfer functions to the two outputs at level k of the tree are given by:

Hk,1 =
k−2∏
i=0

H0

(
z2i
)
H1

(
z2k−1

)
(4.30)

Hk,0 =
k−1∏
i=0

H0

(
z2i
)

(4.31)

For the Haar �lters of this equation (4.6) and this equation (4.7) from our discussion of the 2-band �lter
bank, the transfer functions to the outputs of the 4-level tree become:

H01 (z) =
1
2
(
z−3 + z−2 − z−1 + 1

)
(4.32)

H001 (z) =
1

2×
√

2

(
z−7 + z−6 + z−5 + z−4 − z−3 + z−2 + z−1 + 1

)
(4.33)

H0001 (z) = 1
4
(z−15 + z−14 + z−13 + z−12 + z−11 + z−10 + z−9 + z−8 − z−7 + z−6 + z−5 + z−4 + z−3 + z−2 + z−1 + 1)(4.34)

H0000 (z) = 1
4
(z−15 + z−14 + z−13 + z−12 + z−11 + z−10 + z−9 + z−8 + z−7 + z−6 + z−5 + z−4 + z−3 + z−2 + z−1 + 1)(4.35)

4.4 Wavelets4

The process of creating the outputs y1 to y0000 from x is known as the discrete wavelet transform (DWT);
and the reconstruction process is the inverse DWT.

The word wavelet refers to the impulse response of the cascade of �lters which leads to a given bandpass
output. The frequency response of the wavelet at level k is obtained by substituting z = ejωTs in the z-
transfer function Hk,1 from this equation (4.30) and this equation (4.31) from our discussion of the binary
�lter tree. Ts is the sampling period at the input to the �lter tree.

Since the frequency responses of the bandpass bands are scaled down by 2:1 at each level, their impulse
responses become longer by the same factor at each level, BUT their shapes remain very similar. The basic
impulse response wave shape is almost independent of scale and known as the mother wavelet.

The impulse response to a lowpass output Hk,0 is called the scaling function at level k.
Figure 4.5 shows these e�ects using the impulse responses and frequency responses for the �ve outputs of

the 4-level tree of Haar �lters, based on the z-transforms given in this group of equations (4.32). Notice the

4This content is available online at <http://cnx.org/content/m11138/2.3/>.
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abrupt transitions in the middle and at the ends of the Haar wavelets. These result in noticeable blocking
artefacts in decompressed images (as in part (b) of this previous �gure (Figure 2.13)).

Figure 4.5: Impulse responses and frequency responses of the 4-level tree of Haar �lters.

4.5 Good Filters / Wavelets5

Our main aim now is to search for better �lters / wavelets which result in compression performance that
rivals or beats the DCT.

We assume that perfect reconstruction is a prime requirement, so that the only image degradations are
caused by coe�cient quantisation, and may be made as small as we wish by increasing bit rate.

We start our search with the two PR identities from our discussion of Perfect Reconstruction (4.19),
which we repeat here:

G0 (z)H0 (z) +G1 (z)H1 (z) ≡ 2 (4.36)

and
G0 (z)H0 (−z) +G1 (z)H1 (−z) ≡ 0 (4.37)

The usual way of satisfying the anti-aliasing condition ((4.37)), while permitting H0 and G0 to have lowpass
responses (passband where < (z) > 0) andH1 and G1 to have highpass responses (passband where < (z) < 0),

5This content is available online at <http://cnx.org/content/m11139/2.3/>.
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is with the following relations:
H1 (z) = z−kG0 (−z) (4.38)

and
G1 (z) = zkH0 (−z) (4.39)

where k must be odd so that:

G0 (z)H0 (−z) +G1 (z)H1 (−z) = G0 (z)H0 (−z) + zkH0 (−z) (−z)−kG0 (z) = 0

Now de�ne the lowpass product �lter:
P (z) = H0 (z)G0 (z) (4.40)

and substitute relations (4.38) and (4.39) into identity (4.36) to get:

G0 (z)H0 (z) +G1 (z)H1 (z) = G0 (z)H0 (z) +H0 (−z)G0 (−z)
= P (z) + P (−z)
= 2

(4.41)

This requires all P (z) terms in even powers of z to be zero, except the z0 term which should be 1. The
P (z) terms in odd powers of z may take any desired values since they cancel out in (4.41).

A further constraint on P (z) is that it should be zero phase, in order to minimise the visibility of any
distortions due to the high-band being quantised to zero. Hence P (z) should be of the form:

P (z) = · · ·+ p5z
5 + p3z

3 + p1z + 1 + p1z
−1 + p3z

−3 + p5z
−5 + . . . (4.42)

The design of a set of PR �lters H0, H1 and G0, G1 can now be summarised as:

1. Choose a set of coe�cients p1, p3, p5 . . . to give a zero-phase lowpass product �lter P (z) with desirable
characteristics. (This is non-trivial and is discussed below.)

2. Factorize P (z) into H0 (z) and G0 (z), preferably so that the two �lters have similar lowpass frequency
responses.

3. Calculate H1 (z) and G1 (z) from (4.38) and (4.39).

It can help to simplify the tasks of choosing P (z) and factorising it if, based on the zero-phase requirement,
we transform P (z) into Pt (Z) such that:

P (z) = Pt (Z)

= 1 + pt,1Z + pt,3Z
3 + pt,5Z

5 + . . .
(4.43)

where Z = 1
2

(
z + z−1

)
. To calculate the frequency response of Pt, let z = ejωTs : therefore,

Z = 1
2

(
ejωTs + e−(jωTs)

)
= cos (ωTs)

(4.44)

This is a purely real function of ω, varying from 1 at ω = 0 to -1 at ωTs = π (half the sampling frequency).
A Belgian mathematician, Ingrid Daubechies, did much pioneering work on wavelets in the 1980s. She

discovered that to achieve smooth wavelets after many levels of the binary tree, the lowpass �lters H0 (z)
and G0 (z) must both have a number of zeros at half the sampling frequency (at z = −1). These will also
be zeros of P (z), and so Pt (z) will have zeros at Z = −1.

The simplest case is a single zero at Z = −1, so that Pt (z) = 1 + Z. Therefore,

P (z) =
1
2
(
z + 2 + z−1

)
=

1
2

(z + 1)
(
1 + z−1

)
= G0 (z)H0 (z)



64 CHAPTER 4. FILTER BANKS AND WAVELETS

which gives the familiar Haar �lters.
As we have seen, the Haar wavelets have signi�cant discontinuities so we need to add more zeros at

Z = −1. However to maintain PR, we must also ensure that all terms in even powers of Z are zero, so the
next more complicated Pt must be of the form:

Pt (z) = (1 + Z)2 (1 + αZ)

= 1 + (2 + α)Z + (1 + 2α)Z2 + αZ3
(4.45)

if α = − 1
2 to suppress the term in Z2,

Pt (z) = 1 +
3
2
Z − 1

2
Z3

If we allocate the factors of Pt such that ( 1 + Z) gives H0 and (1 + Z) (1 + αZ) gives G0, we get:

H0 (z) =
1
2
(
z + 2 + z−1

)
(4.46)

G0 (z) =
1
8
(
z + 2 + z−1

) (
−z + 4− z−1

)(1
8
(
−z2 + 2z + 6 + 2z−1 − z−2

))
(4.47)

Using (4.38) and (4.39) with k = 1, the corresponding highpass �lters then become:

G1 (z) = zH0 (−z)
= 1

2z
(
−z + 2− z−1

) (4.48)

H1 (z) = z−1G0 (−z)
= 1

8z
−1
((
−z2

)
− 2z + 6− 2z−1 − z−2

) (4.49)

This is often known as the LeGall 3,5-tap �lter set, since it was �rst published in the context of 2-band
�lter banks by Didier LeGall in 1988.

The wavelets of the LeGall 3,5-tap �lters, H0 and H1 above, and their frequency responses are shown in
Figure 4.6. The scaling function (bottom left) converges to a pure triangular pulse and the wavelets are the
superposition of two triangular pulses.
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Figure 4.6: Impulse responses and frequency responses of the 4-level tree of LeGall 3,5-tap �lters.

The triangular scaling function produces linear interpolation between consecutive lowband coe�cients
and also causes the wavelets to be linear interpolations of the coe�cients of the H1 �lter, -1, -2, 6, -2, -1
(scaled appropriately).

These wavelets have quite desirable properties for image compression (note the absence of waveform
discontinuities and the much lower sidelobes of the frequency responses), and they represent probably the
simplest useful wavelet design. Unfortunately there is one drawback � the inverse wavelets are not very
good. These are formed from the LeGall 5,3-tap �lter pair, G0 and G1 above, whose wavelets and frequency
responses are shown in Figure 4.7.
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Figure 4.7: Impulse responses and frequency responses of the 4-level tree of LeGall 5,3-tap �lters.

The main problem is that the wavelets do not converge after many levels to a smooth function and hence
the frequency responses have large unwanted sidelobes. The jaggedness of the scaling function and wavelets
causes highly visible coding artefacts if these �lters are used for reconstruction of a compressed image.

However the allocation of the factors of Pt (Z) to H0 and G0 is a free design choice, so we may swap the
factors (and hence swap G and H) in order that the smoother 3,5-tap �lters become G0, G1 and are used for
reconstruction. We shall show later that this leads to a good low-complexity solution for image compression
and that the jaggedness of the analysis �lters is not critical.

Unbalance between analysis and reconstruction �lters / wavelets is nevertheless often regarded as be-
ing undesirable, particularly as it prevents the �ltering process from being represented as an orthonormal
transformation of the input signal (since an orthonormally transformed signal may be reconstructed simply
by transposing the transform matrix). An unbalanced PR �lter system is often termed a bi-orthogonal
transformation.

We now consider ways to reduce this unbalance.

4.5.1 Filters with balanced H and G frequency responses (but non-linear phase
responses) - Daubechies wavelets:

In the above analysis, we used the factorisation of Pt (Z) to give us H0 and G0. This always gives unbalanced
factors if terms of Pt in even powers of Z are zero.
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However each of these factors in Z may itself be factorised into a pair of factors in z, since:

(αz + 1)
(
1 + αz−1

)
= αz + 1 + α2 + αz−1

= 1 + α2 + 2αZ

=
(
1 + α2

)
(1 + βZ)

(4.50)

where β = 2α
1+α2 .

For each factor of Pt (Z), we may allocate one of its z subfactors to H0 (z) and the other to G0 (z). Where
roots of Pt (Z) are complex, the subfactors must be allocated in conjugate pairs so that H0 and G0 remain
purely real.

Since the subfactors occur in reciprocal pairs (roots at z = α and α−1), we �nd that

G0 (z) = H0

(
z−1
)

(4.51)

which means that the impulse response of G0 is the time-reverse of H0.
Therefore the frequency responses are related by G0

(
ejωTs

)
= H0

(
e−(jωTs)

)
.

Hence the magnitudes of the frequency responses are the same, and their phases are opposite. It may
be shown that this is su�cient to obtain orthogonal wavelets, but unfortunately the separate �lters are no
longer zero (or linear) phase. (Linear phase is zero phase with an arbitrary delay z−k.)

Daubechies wavelets may be generated in this way, with the added constraint that the maximum number
of zeros of Pt (Z) are placed at Z = −1 (producing pairs of zeros of P (z) at z = −1), consistent with terms
in even powers of Z being zero.

If Pt (Z) is of order 2K − 1, then it may have K zeros at Z = −1 such that

Pt (Z) = (1 + Z)KRt (Z) (4.52)

where Rt (Z) is of order K − 1 and its K − 1 roots may be chosen such that terms of Pt (Z) in the K − 1
even powers of Z are zero.

(4.45) is the K = 2 solution to (4.52). Therefore, Rt (Z) = 1 − 1
2Z so β = − 1

2 and, from (4.50), the
factors of R (z) are

R (z) =
(αz + 1)

(
1 + αz−1

)
1 + α2

where α =
√

3− 2. Also

(1 + Z)2 =
1
2
(Z + 1)2

1
2
(
1 + z−1

)2
Hence

H0 (z) =
1

2
√

1 + α2

(
1 + z−1

)2 (
1 + αz−1

)
= 0.4830 + 0.8365z−1 + 0.2241z−2 − 0.1294z−3

and
H1 (z) = z−3G0 (−z) = z−3H0

(
−z−1

)
= 0.1294 + 0.2241z−1 − 0.8365z−2 + 0.4830z−3

The wavelets and frequency responses for these �lters are shown in Figure 4.8. It is clear that the wavelets
and scaling function are no longer linear phase and are less smooth than those for the LeGall 3,5-tap �lters.
The frequency responses also show worse sidelobes. The G0, G1 �lters give the time reverse of these wavelets
and identical frequency responses.
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Figure 4.8: Impulse responses and frequency responses of the 4-level tree of Daubechies 4-tap �lters.

Higher order Daubechies �lters achieve smooth wavelets but they still su�er from non-linear phase. This
tends to result in more visible coding artefacts than linear phase �lters, which distribute any artefacts equally
on either side of sharp edges in the image.

Linear phase �lters also allow an elegant technique, known as symmetric extension, to be used at the
outer edges of images, where wavelet �lters would otherwise require the size of the transformed image to be
increased to allow for convolution with the �lters. Symmetric extension assumes that the image is re�ected
by mirrors at each edge, so that an in�nitely tessellated plane of re�ected images is generated. Re�ections
avoid unwanted edge discontinuities. If the �lters are linear phase, then the DWT coe�cients also form
re�ections and no increase in size of the transformed image is necessary to accomodate convolution e�ects.

4.5.2 Filters with linear phase and nearly balanced frequency responses:

To ensure that the �lters H0, H1 and G0, G1 are linear phase, the factors in Z must be allocated to H0 or
G0 as a whole and not be split, as was done for the Daubechies �lters. In this way the symmetry between z
and z−1 is preserved in all �lters.

Perfect balance of frequency responses between H0 and G0 is then not possible, if PR is preserved, but
we have found a factorisation of Pt (Z) which achieves near balance of the responses.

This is:
Pt (Z) = (1 + Z)

(
1 + aZ + bZ2

)
(1 + Z) (1 + cZ) (4.53)

This is a 5th order polynomial, and if the terms in Z2 and Z4 are to be zero, there are two constraints on
the 3 unknowns [a, b, c] so that one of them (say c) may be regarded as a free parameter. These constraints
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require that:

a = − (1 + 2c)2

2(1 + c)2
(4.54)

and

b =
c (1 + 2c)
2(1 + c)2

(4.55)

c may then be adjusted to give maximum similarity between the left and right pairs of factors in (4.53) as
Z varies from 1 to -1 ( ωTs varies from 0 to π).

It turns out that c = − 2
7 gives good similarity and when substituted into (4.54), (4.55) and (4.53) gives:

Pt (Z) =
1
50
(
50 + 41Z − 15Z2 − 6Z3

) 1
7
(
7 + 5Z − 2Z2

)
(4.56)

We get G0 (z) and H0 (z) by substituting Z = 1
2

(
z + z−1

)
into these two polynomial factors. This results

in 5,7-tap �lters whose wavelets and frequency responses are shown in Figure 4.9.

Figure 4.9: Impulse responses and frequency responses of the 4-level tree of near-balanced 5,7-tap
�lters.

The near balance of the responses may be seen from Figure 4.10 which shows the alternative 7,5-tap
versions (i.e. with H and G swapped). It is quite di�cult to spot the minor di�erences between these
�gures.



70 CHAPTER 4. FILTER BANKS AND WAVELETS

Figure 4.10: Impulse responses and frequency responses of the 4-level tree of near-balanced 7,5-tap
�lters.

4.5.3 Smoother Wavelets

In all of the above designs we have used the substitution Z = 1
2

(
z + z−1

)
. However other substitutions may

be used to create improved wavelets. To preserve PR, the substitution should contain only odd powers of z
(so that odd powers of Z should produce only odd powers of z), and to produce zero phase, the coe�cients
of the substitution should be symmetric about z0.

A substitution, which can give much greater �atness near z = ± (1) while still satisfying Z = ± (1) when
z = ± (1), is:

Z = pz3 − 1
2
(
z + z−1

)
+ pz−3 (4.57)

Z then becomes the following function of frequency when z = ejωTs :

Z = 1cos (ωTs) + 2pcos (3ωTs) (4.58)

A high degree of �atness (with some ripple) is achieved near ωTs = 0 and π, when p = − 3
32 . This is

equivalent to more zeros near z = −1 for each ( Z + 1) factor than when Z = 1
2

(
z + z−1

)
is used.

The 2nd order factor in Pt (Z) now produces terms from z6 to z−6 and the 3rd order factor produces
terms from z9 to z−9. Hence the �lters become 13 and 19 tap �lters, although 2 taps of each are zero and
the outer two taps of the 19-tap �lter are very small ( ≈

(
10−4

)
).
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Figure 4.11 shows the wavelets and frequency responses of the 13,19-tap �lters, obtained by substituting
(4.57) into (4.56). Note the smoother wavelets and scaling function and the much lower sidelobes in the
frequency responses from these higher order �lters.

Figure 4.11: Impulse responses and frequency responses of the 4-level tree of near-balanced 13,19-tap
�lters.

Figure 4.12 demonstrates that the near balanced properties of (4.56) are preserved in the high order
�lters.
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Figure 4.12: Impulse responses and frequency responses of the 4-level tree of near-balanced 19,13-tap
�lters.

There are many other types of wavelets with varying features and complexities, but we have found the
examples given to be near optimum for image compression.

4.6 The 2-D DWT6

We have already seen in our discussion of The Haar Transform (Section 2.2) how the 1-D Haar transform
(or wavelet) could be extended to 2-D by �ltering the rows and columns of an image separably.

All 1-D 2-band wavelet �lter banks can be extended in a similar way. Figure 4.13 shows two levels of
a 2-D �lter tree. The input image at each level is split into 4 bands (Lo-Lo = y00, Lo-Hi = y01, Hi-Lo =
y10, and Hi-Hi = y11) using the lowpass and highpass wavelet �lters on the rows and columns in turn. The
Lo-Lo band subimage y00 is then used as the input image to the next level. Typically 4 levels are used, as
for the Haar transform.

6This content is available online at <http://cnx.org/content/m11140/2.3/>.
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Figure 4.13: Two levels of a 2-D �lter tree, formed from 1-D lowpass ( H0) and highpass (H1) �lters.

Filtering of the rows of an image by Ha (z1) and of the columns by Hb (z2), where a, b = 0 or 1, is
equivalent to �ltering by the 2-D �lter:

Hab (z1, z2) = Ha (z1)Hb (z2) (4.59)

In the spatial domain, this is equivalent to convolving the image matrix with the 2-D impulse response
matrix

ha,b = hahb
T (4.60)

where ha and hb are column vectors of the 1-D �lter impulse responses. However note that performing the
�ltering separably (i.e. as separate 1-D �lterings of the rows and columns) is much more computationally
e�cient.

To obtain the impulse responses of the four 2-D �lters at each level of the 2-D DWT we form ha,b from
h0 and h1 using (4.60) with ab = 00, 01, 10 and 11.
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Figure 4.14: 2-D impulse responses of the level-4 wavelets and scaling functions derived from the
LeGall 3,5-tap �lters (a), and the near-balanced 5,7-tap (b) and 13,19-tap (c) �lters.

Figure 4.14 shows the impulse responses at level 4 as images for three 2-D wavelet �lter sets, formed from
the following 1-D wavelet �lter sets:

1. The LeGall 3,5-tap �lters: H0 and H1 from these equations (4.46), and these equations (4.48) in our
discussion of Good Filters / Wavelets.

2. The near-balanced 5,7-tap �lters: substituting Z = 1
2

(
z + z−1

)
into this previous equation (4.56).

3. The near-balanced 13,19-tap �lters: substituting this equation (4.57) into this equation (4.56).

Note the sharp points in Figure 4.14(b), produced by the sharp peaks in the 1-D wavelets of this previous
�gure (Figure 4.9) (Impulse and frequency responses of the 4-level tree of near-balanced 5,7-tap �lters).
These result in noticeable artefacts in reconstructed images when these wavelets are used. The smoother
wavelets of Figure 4.14(c) are much better in this respect.

The 2-D frequency responses of the level 1 �lters, derived from the LeGall 3,5-tap �lters, are shown in �gs
Figure 4.15 (in mesh form) and Figure 4.16 (in contour form). These are obtained by substituting z1 = ejω1

and z2 = ejω2 into (4.59). (4.59) demonstrates that the 2-D frequency response is just the product of the
responses of the relevant 1-D �lters.



75

Figure 4.15: Mesh frequency response plots of the 2-D level 1 �lters, derived from the LeGall 3,5-tap
�lters.
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Figure 4.16: Contour plots of the frequency responses of Figure 4.15.

Figure 4.17 and Figure 4.18 are the equivalent plots for the 2-D �lters derived from the near-balanced
13,19-tap �lters. We see the much sharper cut-o�s and better de�ned pass and stop bands of these �lters.
The high-band �lters no longer exhibit gain peaks, which are rather undesirable features of the LeGall 5-tap
�lters.
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Figure 4.17: Mesh frequency response plots of the 2-D level 1 �lters, derived from the near-balanced
13,19-tap �lters.
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Figure 4.18: Contour plots of the frequency responses of Figure 4.17.

4.7 Compression Properties of Wavelets7

We now look at how well the various wavelet �lters perform in practice. We have used them in place of
the Haar transform (Section 2.2) discussed earlier, and have measured the entropies and reconstructed the
images from quantised coe�cients.

In order to allow a fair comparison with the JPEG DCT results, we have modi�ed the DWT quantising
strategy to take advantage of the reduced visibility of the higher frequency wavelets. This approximately
matches the e�ects achieved by the JPEG Qlum matrix of this previous equation (3.7). To achieve a high
degree of compression we have used the following allocation of quantiser step sizes to the 4-level DWT bands:

7This content is available online at <http://cnx.org/content/m11141/2.3/>.
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Levels Qstep

All bands at levels 3 and 4: 50

Hi-Lo and Lo-Hi bands at level 2: 50

Hi-Hi band at level 2: 100

Hi-Lo and Lo-Hi bands at level 1: 100

Hi-Hi band at level 1: 200

Table 4.2

A similar compressed bit rate is produced by the 8× 8 DCT when Qstep = 5Qlum.
For reference, Figure 4.19 compares the DCT and Haar transforms using these two quantisers. The

rms errors between the reconstructed images and the original are virtually the same at 10.49 and 10.61
respectively, but the DCT entropy of 0.2910 bit/pel is signi�cantly lower than the Haar entropy of 0.3820
bit/pel. Both images display signi�cant blocking artefacts at this compression level.

Figure 4.19: Reconstructions after coding using the 8× 8 DCT (a) with Qstep = 5Qlum, and (b) using
the Haar transform with Qstep from Table 4.2.

Figure 4.20 shows the reconstructed images for the following four DWTs using the quantiser of Table 4.2:

• The LeGall 3,5-tap �lters: H0, H1 and G0, G1 from these previous equations (4.46) and these previous
equations (4.48) from our discussion of good �lters/wavelets.

• The inverse-LeGall 5,3-tap �lters: these previous equations (4.46) and these previous equations (4.48)
from our discussion of good �lters/wavelets with H0, H1 and G0, G1 swapped.

• The near-balanced 5,7-tap �lters: substituting Z = 1
2

(
z + z−1

)
into this equation (4.56) from Good

Filter/Wavelets.
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• The near-balanced 13,19-tap �lters: substituting this previous equation (4.57) into this equation (4.56).

We see that the LeGall 3,5-tap �lters (Figure 4.20(a)) produce a poor image, whereas the other three images
are all signi�cantly better. The poor image is caused by the roughness of the LeGall 5,3-tap �lters (shown in
this previous �gure (Figure 4.7)) which are used for reconstructing he image when the 3,5-tap �lters are used
for analysing the image. When these �lters are swapped, so that the reconstruction �lters are the 3,5-tap
ones of this �gure (Figure 4.6), the quality is greatly improved (Figure 4.20(b)).

The near-balanced 5,7-tap �lters (Figure 4.20(c)) produce a relatively good image but there are still a
few bright or dark point-artefacts produced by the sharp peaks in the wavelets (shown in this previous �gure
(Figure 4.9)). The smoother 13,19-tap wavelets (see this �gure (Figure 4.10)) eliminate these, but their
longer impulse responses tend to cause the image to have a slightly blotchy or mottled appearance.
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Figure 4.20: Reconstructions after coding using Qstep from Table 4.2 with (a) the LeGall 3,5-tap �lters,
(b) the inverse-LeGall 5,3-tap �lters, (c) the near-balanced 5,7-tap �lters, and (d) the near-balanced
13,19-tap �lters.

Figure 4.21 shows the entropies (with RLC) of the separate subimages of the 4-level DWT for the Haar
�lter set and the four �lter sets of Figure 4.20. Qstep is de�ned by Table 4.2 and it is particularly noticeable
how the higher step sizes at levels 1 and 2 substantially reduce the entropy required to code these levels
(compare with this previous �gure (Figure 2.12)). In fact the Hi-Hi band at level 1 is not coded at all! The
reduction of entropy with increasing �lter smoothness is also apparent.
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Figure 4.21: Entropies of 4-level DWT subimages using Qstep de�ned by Table 4.2, for �ve di�erent
wavelet �lter pairs.

note: We see that we have now been able to reduce the bit rate to around 0.3 bit/pel.

However measurement of entropy is not the whole story, as it is the tradeo� of entropy vs quantising error
which is important. Figure 4.22 attempts to show this trade-o� by plotting rms quantising error (obtained
by subtracting the reconstructed image from the original) versus the entropy for the 8 × 8 DCT and the
�ve DWTs. To show the slope of the curves, the measurements are repeated with an 80% lower quantiser
step-size, giving lower rms errors and higher entropies. The pair of points for each con�guration are jointed
by lines which indicate the slope of the rate-distortion curve.

Measurements at many more step sizes can be taken in order to give more compete rate-distortion curves
if required.
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Figure 4.22: RMS error vs. entropy for the 8 × 8 DCT and �ve wavelet �lter pairs. For the DCT,
Qstep = 5Qlum and 4Qlum; for the DWT, Qstep is 1.0 and 0.8 of the values in (Table 4.2).

The good performance of the 13,19-tap �lters is clear, but the inverse-LeGall �lters do surprisingly well -
showing that the poor smoothness of the analysis �lters does not seem to matter. Correct ways to characterise
unbalanced �lter sets to account properly for this phenomenon are still the subject of current research.

note: What is clear is that when �lters are unbalanced between analysis and reconstruction, the
ones which give smoother wavelets must be used for reconstruction.

Finally, in these tests, the assessments of subjective image quality approximately match the assessments
based on rms errors. However this is not always true and one must be careful to backup any conclusions
from rms error measurements with at least some subjective tests.
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Chapter 5

Video Compression and Motion

Processing

5.1 Motion-Compensated Predictive Coding1

Video compression is concerned with coding image sequences at low bit rates. In an image sequence, there are
typically high correlations between consecutive frames of the sequence, in addition to the spatial correlations
which exist naturally within each frame.

Video coders aim to take maximum advantage of interframe temporal correlations (between frames) as
well as intraframe spatial correlations (within frames).

5.1.1 Motion-Compensated Predictive Coding

Motion-compensated predictive coding (MCPC) is the technique that has been found to be most
successful for exploiting interframe correlations.

Figure 5.1 shows the basic block diagram of a MCPC video encoder.

1This content is available online at <http://cnx.org/content/m11142/2.3/>.
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Figure 5.1: Motion compensated prediction coding (MCPC) video encoder.

The transform, quantise, and entropy encode functions are basically the same as those employed for still
image coding. The �rst frame in a sequence is coded in the normal way for a still image by switching the
prediction frame to zero.

For subsequent frames, the input to the transform stage is the di�erence between the input frame and
the prediction frame, based on the previous decoded frame. This di�erence frame is usually known as the
prediction error frame.

The purpose of employing predictions is to reduce the energy of the prediction error frames so that they
have lower entropy after transformation and can therefore be coded with a lower bit rate.

If there is motion in the sequence, the prediction error energy may be signi�cantly reduced by motion
compensation. This allows regions in the prediction frame to be generated from shifted regions from the
previous decoded frame. Each shift is de�ned by a motion vector which is transmitted to the decoder in
addition to the coded transform coe�cients. The motion vectors are usually entropy coded to minimise the
extra bit rate needed to do this.

The multiplexer combines the various types of coded information into a single serial bit stream, and
the bu�er smoothes out the �uctuations in bit rate caused by varying motion in the sequence and by scene
changes. The controller adjusts coding parameters (such as the quantiser step size) in order to maintain the
bu�er at approximately half-full, and hence it keeps the mean bit rate of the encoder equal to that of the
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channel.
Decoded frames are produced in the encoder, which are identical to those generated in the decoder. The

decoder comprises a bu�er, de-multiplexer, and entropy decoder to invert the operations of the equivalent
encoder blocks, and then the decoded frames are produced by the part of the encoder loop comprising the
inverse quantiser, inverse transform, adder, frame store, motion compensator and switch.

H.261 is a CCITT standard for video encoding for video-phone and video conferencing applications. Video
is much more important in a multi-speaker conferencing environment than in simple one-to-one conversations.
H.261 employs coders of the form shown in Figure 5.1 to achieve reasonable quality head-and-shoulder images
at rates down to 64 kb/s (one ISDN channel). A demonstration of H.261 coding at 64 and 32 kb/s will be
shown.

A development of this, H.263, is now in current use, to allow the bit rate to be reduced down to about
20 kb/s, without too much loss of quality, for modems and mobile channels. This uses some of the more
advanced motion methods from MPEG (see later), and it also forms the basis for baseline MPEG-4 coders.

5.2 Motion Estimation2

Motion estimation is the processes which generates the motion vectors that determine how each motion
compensated prediction frame is created from the previous frame.

Block Matching (BM) is the most common method of motion estimation. Typically each macroblock
( 16× 16 pels) in the new frame is compared with shifted regions of the same size from the previous decoded
frame, and the shift which results in the minimum error is selected as the best motion vector for that
macroblock. The motion compensated prediction frame is then formed from all the shifted regions from the
previous decoded frame.

BM can be very computationally demanding if all shifts of each macroblock are analysed. For example,
to analyse shifts of up to ± (15) pels in the horizontal and vertical directions requires 31× 31 = 961 shifts,
each of which involves 16× 16 = 256 pel di�erence computations for a given macroblock. This is known as
exhaustive search BM.

Signi�cant savings can be made with hierarchical BM, in which an approximate motion estimate is
obtained from exhaustive search using a lowpass subsampled pair of images, and then the estimate is re�ned
by a small local search using the full resolution images. Subsampling 2:1 in each direction reduces the number
of macroblock pels and the number of shifts by 4:1, producing a computational saving of 16:1!

There are many other approaches to motion estimation, some using the frequency or wavelet domains,
and designers have considered scope to invent new methods since this process does not need to be speci�ed
in coding standards. The standards need only specify how the motion vectors should be interpreted by the
decoder (a much simpler process). Unfortunately, we do not have time to discuss these other approaches
here.

5.3 The MPEG Standard3

As a sequel to the JPEG standards committee, the Moving Picture Experts Group (MPEG) was set up in
the mid 1980s to agree standards for video sequence compression.

Their �rst standard was MPEG-1, designed for CD-ROM applications at 1.5 Mb/s, and their more recent
standard, MPEG-2, is aimed at broadcast quality TV signals at 4 to 10 Mb/s and is also suitable for high-
de�nition TV (HDTV) at 20 Mb/s. We shall not go into the detailed di�erences between these standards,
but simply describe some of their important features. MPEG-2 is used for digital TV and DVD in the UK
and throughout the world.

2This content is available online at <http://cnx.org/content/m11143/2.3/>.
3This content is available online at <http://cnx.org/content/m11144/2.3/>.
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MPEG coders all use the MCPC structure of this previous �gure (Figure 5.1), and employ the 8 × 8
DCT as the basic transform process. So in many respects they are similar to H.261 coders, except that they
operate with higher resolution frames and higher bit rates.

The main di�erence from H.261 is the concept of a Group of Pictures (GOP) Layer in the coding hierarchy,
shown in Figure 5.2 . However we describe the other layers �rst:

• The Sequence Layer contains a complete image sequence, possibly hundreds or thousands of frames.
• The Picture Layer contains the code for a single frame, which may either be coded in absolute form or

coded as the di�erence from a predicted frame.
• The Slice Layer contains one row of macroblocks ( 16× 16 pels) from a frame. (48 macroblocks give a

row 768 pels wide.)
• The Macroblock Layer contains a single macroblock � usually 4 blocks of luminance, 2 blocks of

chrominance and a motion vector.
• The Block Layer contains the DCT coe�cients for a single 8×8 block of pels, coded almost as in JPEG

using zig-zag scanning and run-amplitude Hu�man codes.

The GOP Layer contains a small number of frames (typically 12) coded so that they can be decoded
completely as a unit, without reference to frames outside of the group. There are three types of frame:

• Intra coded frames (I) � which are coded as single frames as in JPEG, without reference to any
other frames.

• Predictive coded frames (P) � which are coded as the di�erence from a motion compensated
prediction frame, generated from an earlier I or P frame in the GOP.

• Bi-directional coded frames (B) � which are coded as the di�erence from a bi-directionally interpo-
lated frame, generated from earlier and later I or P frames in the sequence (with motion compensation).
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Figure 5.2: MPEG Layers.

The main purpose of the GOP is to allow editing and splicing of video material from di�erent sources
and to allow rapid forward or reverse searching through sequences. A GOP usually represents about half a
second of the image sequence.

Figure 5.3 shows a typical GOP and how the coded frames depend on each other. The �rst frame of the
GOP is always an I frame, which may be decoded without needing data from any other frame. At regular
intervals through the GOP, there are P frames, which are coded relative to a prediction from the I frame or
previous P frame in the GOP. Between each pair of I / P frames are one or more B frames.
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Figure 5.3: GOP Layer � Intra (I), Predicted (P) and Bi-directional (B) frames.

The I frame in each GOP requires the most bits per frame and provides the initial reference for all other
frames in the GOP. Each P frame typically requires about one third of the bits of an I frame, and there may
be 3 of these per GOP. Each B frame requires about half the bits of a P frame and there may be 8 of these
per GOP. Hence the coded bits are split about evenly between the three frame types.

B frames require fewer bits than P frames mainly because bi-directional prediction allows uncovered
background areas to be predicted from a subsequent frame. The motion-compensated prediction in a B
frame may be forward, backward, or a combination of the two (selected in the macroblock layer). Since
no other frames are predicted from them, B frames may be coarsely quantised in areas of high motion and
comprise mainly motion prediction information elsewhere.

In order to keep all frames in the coded bit stream causal, B frames are always transmitted after the
I/P frames to which they refer, as shown at the bottom of Figure 5.3 .

One of the main ways that the H.263 (enhanced H.261) standard is able to code at very low bit rates is
the incorporation of the B frame concept.

Considerable research work at present is being directed towards more sophisticated motion models, which
are based more on the outlines of objects rather than on simple blocks. These will form the basis of extensions
to the new low bit-rate video standard, MPEG-4 (MPEG-3 is an audio coding standard).



INDEX 91

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

1 1-D Haar transform, � 4.1(55), � 4.6(72)

2 2-band �lter bank, � 4.3(58)
2-D DWT, � 4.6(72)
2-D �lter bank, � 4.1(55)
2-dimensional, � 3.3(36)

A Algorithms, � 3.2(36)
anti-aliasing condition, � 4.2(57), 57
arbitrary �lters, � 4.2(57)
Arithmetic Coding, � 2.6(25), 26

B Bi-directional coded frames, 88
bi-orthogonal transformation, 66
Block Matching, � 5.2(87), 87

C Coding, � 3.5(45)
color, � 1.2(1)
Color Compression, � 1.2(1)
compression, � 4.7(78)

D DCT, � 3.4(43)
DCT coe�cients, � 3.4(43)
Discrete Cosine Transform (DCT), � 3.1(33),
� 3.2(36), � 3.3(36)
discrete wavelet transform, 61
discrete wavelet transform (DWT), � 4.4(61)

E Energy Compression, � 2.1(7), 7
Entropy, � 2.3(10), � 2.6(25), � 3.5(45)
Entropy Coding, � 2.1(7), 8
exhaustive search BM, 87

F �lters, � 4.5(62)

H Haar Transform, � 2.2(8), � 2.4(14)
Header, � 3.6(52)
hierarchical BM, 87
Hu�man Coding, � 2.6(25), 26
Human Vision, � 1.2(1)

I Image Characteristics, � 1.3(4)
Image Coding, � 1.1(1)
Image Compression, � 1.1(1), � 2.1(7),

� 2.5(21), � 3.1(33), � 4.3(58)
Intra coded frames, 88
inverse DWT, 61

J JPEG, � 3.5(45)
JPEG Standard, � 3.1(33)

L Laplacian PDF, � 2.5(21)
LeGall 3,5-tap �lter set, 64
lossless coding, 4
lossy coding, 4

M M:1 subsampling, � 4.3(58)
mother wavelet, � 4.4(61), 61
motion compensation, 86
motion estimation, � 5.2(87)
motion vector, 86
Motion-Compensated, � 5.1(85)
Motion-compensated predictive coding, 85
MPEG Standard, � 5.3(87)
Multi-level, � 2.4(14)
multi-rate �ltering theorem, � 4.3(58)

P perfect reconstruction, � 4.2(57), � 4.5(62)
prediction error frame, 86
Predictive coded frames, 88
Predictive Coding, � 5.1(85)

Q Quantisation, � 2.1(7), 8, � 3.4(43)

R reconstruction, � 4.1(55)
RGB, � 1.2(1)
Run-length Coding (RLC), � 2.6(25), 26

S scaling function, � 4.4(61), 61
Sync, � 3.6(52)

T transformation of the �lter tree, � 4.3(58)

V Visual Sensitivity, � 1.2(1)

W wavelet, � 4.4(61), 61, � 4.7(78)
wavelet �lter, � 4.7(78)
wavelets, � 4.5(62)



92 INDEX

Weber's Law, 1 Y YUV color space, � 1.2(1)



ATTRIBUTIONS 93

Attributions

Collection: Image Coding
Edited by: Nick Kingsbury
URL: http://cnx.org/content/col10206/1.3/
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction"
By: Nick Kingsbury
URL: http://cnx.org/content/m11083/2.3/
Page: 1
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Human Vision"
By: Nick Kingsbury
URL: http://cnx.org/content/m11084/2.5/
Pages: 1-4
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Image Characteristics"
By: Nick Kingsbury
URL: http://cnx.org/content/m11085/2.9/
Pages: 4-6
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "A Basic Image Compression Example"
By: Nick Kingsbury
URL: http://cnx.org/content/m11086/2.5/
Pages: 7-8
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "The Haar Transform"
By: Nick Kingsbury
URL: http://cnx.org/content/m11087/2.6/
Pages: 8-10
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Entropy"
By: Nick Kingsbury
URL: http://cnx.org/content/m11088/2.4/
Pages: 10-14
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0



94 ATTRIBUTIONS

Module: "The Multi-level Haar Transform"
By: Nick Kingsbury
URL: http://cnx.org/content/m11089/2.4/
Pages: 14-21
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Use of Laplacian PDFs in Image Compression"
By: Nick Kingsbury
URL: http://cnx.org/content/m11090/2.4/
Pages: 21-25
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Practical Entropy Coding Techniques"
By: Nick Kingsbury
URL: http://cnx.org/content/m11091/2.3/
Pages: 25-31
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "The Discrete Cosine Transform (DCT)"
By: Nick Kingsbury
URL: http://cnx.org/content/m11092/2.3/
Pages: 33-36
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Fast Algorithms for the DCT"
By: Nick Kingsbury
URL: http://cnx.org/content/m11093/2.3/
Page: 36
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "The 2-dimensional DCT"
By: Nick Kingsbury
URL: http://cnx.org/content/m11094/2.4/
Pages: 36-43
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Quantisation of DCT Coe�cients"
By: Nick Kingsbury
URL: http://cnx.org/content/m11095/2.4/
Pages: 43-45
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0



ATTRIBUTIONS 95

Module: "JPEG Entropy Coding"
By: Nick Kingsbury
URL: http://cnx.org/content/m11096/2.4/
Pages: 45-52
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Sync and Headers"
By: Nick Kingsbury
URL: http://cnx.org/content/m11097/2.3/
Pages: 52-53
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "The 2-band Filter Bank"
By: Nick Kingsbury
URL: http://cnx.org/content/m11135/2.3/
Pages: 55-57
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Perfect Reconstruction (PR)"
By: Nick Kingsbury
URL: http://cnx.org/content/m11136/2.3/
Pages: 57-58
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "The Binary Filter Tree"
By: Nick Kingsbury
URL: http://cnx.org/content/m11137/2.3/
Pages: 58-61
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Wavelets"
By: Nick Kingsbury
URL: http://cnx.org/content/m11138/2.3/
Pages: 61-62
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Good Filters / Wavelets"
By: Nick Kingsbury
URL: http://cnx.org/content/m11139/2.3/
Pages: 62-72
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0



96 ATTRIBUTIONS

Module: "The 2-D DWT"
By: Nick Kingsbury
URL: http://cnx.org/content/m11140/2.3/
Pages: 72-78
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Compression Properties of Wavelets"
By: Nick Kingsbury
URL: http://cnx.org/content/m11141/2.3/
Pages: 78-83
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Motion-Compensated Predictive Coding"
By: Nick Kingsbury
URL: http://cnx.org/content/m11142/2.3/
Pages: 85-87
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "Motion Estimation"
By: Nick Kingsbury
URL: http://cnx.org/content/m11143/2.3/
Page: 87
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0

Module: "The MPEG Standard"
By: Nick Kingsbury
URL: http://cnx.org/content/m11144/2.3/
Pages: 87-90
Copyright: Nick Kingsbury
License: http://creativecommons.org/licenses/by/1.0



About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.


