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Chapter 1

Gravitation1

Gravitation is an inherent property of all matter. Two bodies attract each other by virtue of their mass.
This force between two bodies of any size (an atom or a galaxy) signi�es existence of matter and is known
as gravitational force.

Gravitational force is weakest of four fundamental forces. It is, therefore, experienced only when at least
one of two bodies has considerable mass. This presents di�culties in setting up illustrations with terrestrial
objects. On the other hand, gravitation is the force that sets up our universe and governs motions of all
celestial bodies. Orbital motions of satellites � both natural and arti�cial � are governed by gravitational
force.

Newton derived a law to quantify gravitational force between two �particles�. The famous incidence
of an apple falling from a tree stimulated Newton's mind to analyze observations and carry out series of
calculations that �nally led him to propose universal law of gravitation. A possible sequence of reasoning,
leading to the postulation is given here :

1: The same force of attraction works between �Earth (E) and an apple (A)� and between �Earth (E)
and Moon (M)�.

2: From the analysis of data available at that time, he observed that the ratio of forces of attraction
for the above two pairs is equal to the ratio of square of distance involved as :

1This content is available online at <http://cnx.org/content/m15085/1.3/>.
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2 CHAPTER 1. GRAVITATION

Gravitational force

Figure 1.1: Earth - moon - apple system

FME

FAE
=
rAE2

rME2

3: From above relation, Newton concluded that the force of attraction between any pair of two bodies
is inversely proportional to the square of linear distance between them.

F ∝ 1
r2

4: From second law of motion, force is proportional to mass of the body being subjected to gravitational
force. From third law of motion, forces exist in equal and opposite pair. Hence, gravitational force is also
proportional to the mass of other body. Newton concluded that force of gravitation is proportional to the
product of mass of two bodies.

F ∝ m1m2

5: Combining two �proportional� equations and introducing a constant of proportionality,"G", Newton
proposed the gravitational law as :

⇒ F =
Gm1m2

r2

In order to emphasize the universal character of gravitational force, the constant �G� is known as �Uni-
versal gravitational constant�. Its value is :

G = 6.67X10−11 N −m2/kg2

This law was formulated based on the observations on real bodies - small (apple) and big (Earth and
moon). However, Newton's law of gravitation is stated strictly for two particles. The force pair acts between
two particles, along the line joining their positions as shown in the �gure :
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Gravitational force

Figure 1.2: Force between two particles placed at a distance

Extension of this law to real bodies like Earth and Moon pair can be understood as bodies are separated
by large distance (about 0.4X106 km), compared to dimension of bodies (in thousands km). Two bodies,
therefore, can be treated as particles.

On the other hand, Earth can not be treated as particle for �Earth and Apple� pair, based on the reasoning
of large distance. Apple is right on the surface of Earth. Newton proved a theorem that every spherical shell
(hollow sphere) behaves like a particle for a particle external to it. Extending this theorem, Earth, being
continuous composition of in�nite numbers of shells of di�erent radii, behaves - as a whole - like a particle
for external object like an apple.

As a matter of fact, we will prove this theorem, employing gravitational �eld concept for a spherical mass
like that of Earth. For the time being, we consider Earth and apple as particles, based on the Newton's shell
theory. In that case, the distance between Apple and center of Earth is equal to the radius of Earth i.e 6400
km.

1.1 Magnitude of force

The magnitude of gravitational force between terrestrial objects is too small to experience. A general question
that arises in the mind of a beginner is �why do not we experience this force between, say, a book and pencil?�
The underlying fact is that gravitational force is indeed a very small force for masses that we deal with in
our immediate surrounding - except Earth.

We can appreciate this fact by calculating force of gravitation between two particle masses of 1 kg each,
which are 1 m apart :

⇒ F =
6.67X10−11X1X1

12
= 6.67X10−11 N

This is too insigni�cant a force to manifest against bigger forces like force of gravitation due to Earth,
friction, force due to atmospheric pressure, wind etc.

Evidently, this is the small value of �G�, which renders force of gravitation so small for terrestrial objects.
Gravitation plays visible and signi�cant role, where masses are signi�cant like that of planets including our
Earth, stars and such other massive aggregation, including �black holes� with extraordinary gravitational
force to hold back even light. This is the reason, we experience gravitational force of Earth, but we do not
experience gravitational force due to a building or any such structures on Earth.

1.2 Gravitational force vector

Newton's law of gravitation provides with expression of gravitational force between two bodies. Here,
gravitational force is a vector. However, force vector is expressed in terms of quantities, which are not
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vectors. The linear distance between two masses, appearing in the denominator of the expression, can have
either of two directions from one to another point mass.

Even if, we refer the linear distance between two particles to a reference direction, the vector appears in
the denominator and is, then, squared also. In order to express gravitational force in vector form, therefore,
we shall consider a unit vector in the reference direction and use the same to denote the direction of force
as:

Direction of gravitational force

Figure 1.3: Force between two particles placed at a distance

F12 =
Gm1m2

^
r

r2

F21 = −Gm1m2
^
r

r2

Note that we need to put a negative sign before the second expression to make the direction consistent
with the direction of gravitational force of attraction. We can easily infer that sign in the expression actually
depends on the choice of reference direction.

1.3 Net gravitational force

Gravitation force is a vector quantity. The net force of gravitation on a particle is equal to resultant of forces
due to all other particles. This is also known as �superposition principle�, according to which net e�ect is
sum of individual e�ects. Mathematically,

⇒ F = ΣFi

Here, F is the net force due to other particles 1, 2, 3, and so on.
An extended body is considered to be continuous aggregation of elements, which can be treated as

particles. This fact can be represented by an integral of all elemental forces due to all such elements of a
body, which are treated as particles. The force on a particle due to an extended body, therefore, can be
computed as :
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Net gravitational force

Figure 1.4: Net gravitational force is vector sum of individual gravitations due to particle like masses.

F =
∫
dF

where integration is evaluated to include all mass of a body.

1.4 Examples

1.4.1

Problem 1: Three identical spheres of mass �M� and radius �R� are assembled to be in contact with each
other. Find gravitational force on any of the sphere due to remaining two spheres. Consider no external
gravitational force exists.
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Three identical sphered in contact

Figure 1.5: Three identical spheres of mass �M� and radius �R� are assembled in contact with each
other.

Solution : The gravitational forces due to pairs of any two speres are equal in magnitude, making an
angle of 60 ◦ with each other. The resultant force is :

Three identical sphered in contact

Figure 1.6: Each sphere is attracted by other two spheres.

⇒ R =
√(

F 2 + F 2 + 2F 2cos600
)
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⇒ R =

√(
2F 2 + 2F 2X

1
2

)
⇒ R =

√
3F

Now, the distance between centers of mass of any pair of spheres is �2R�. The gravitational force is :

F =
GM2

(2R)2
=
GM2

4R2

Therefore, the resultant force on a sphere is :

F =
√

3GM2

4R2

1.4.2

Problem 2: Two identical spheres of uniform density are in contact. Show that gravitational force is
proportional to the fourth power of radius of either sphere.

Solution : The gravitational force between two spheres is :

F =
Gm2

(2r)2

Now, mass of each of the uniform sphere is :

m =
4πr3Xρ

3
Putting this expression in the expression of force, we have :

⇒ F =
GX16π2r6ρ2

9X4r2
=
Gx16π2r4ρ2

36
Since all other quantities are constants, including density, we conclude that gravitational force is propor-

tional to the fourth power of radius of either sphere,

⇒ F ∝ r4

1.5 Measurement of universal gravitational constant

The universal gravitational constant was �rst measured by Cavendish. The measurement was an important
achievement in the sense that it could measure small value of �G� quite accurately.

The arrangement consists of two identical small spheres, each of mass �m�. They are attached to a light
rod in the form of a dumb-bell. The rod is suspended by a quartz wire of known coe�cient of torsion �k�
such that rod lies in horizontal plane. A mirror is attached to quartz wire, which re�ects a light beam falling
on it. The re�ected light beam is read on a scale. The beam, mirror and scale are all arranged in one plane.
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Cavendish experiment

Figure 1.7: Measurement of universal gravitational constant

The rod is �rst made to suspend freely and stabilize at an equilibrium position. As no net force acts
in the horizontal direction, the rod should rest in a position without any torsion in the quartz string. The
position of the re�ected light on the scale is noted. This reading corresponds to neutral position, when no
horizontal force acts on the rod. The component of Earth's gravitation is vertical. Its horizontal component
is zero. Therefore, it is important to keep the plane of rotation horizontal to eliminate e�ect of Earth's
gravitation.

Two large and heavier spheres are, then brought across, close to smaller sphere such that centers of all
spheres lie on a circle as shown in the �gure above. The gravitational forces due to each pair of small and
big mass, are perpendicular to the rod and opposite in direction. Two equal and opposite force constitutes
a couple, which is given by :

τG = FGL

where �L� is the length of the rod.
The couple caused by gravitational force is balanced by the torsion in the quartz string. The torque is

proportional to angle �θ� through which the rod rotates about vertical axis.

τT = kθ

The position of the re�ected light is noted on the scale for the equilibrium. In this condition of equilibrium,

⇒ FGL = kθ

Now, the expression of Newton's law of gravitation for the gravitational force is:
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FG =
GMm

r2

where �m� and �M� are mass of small and big spheres. Putting this in the equilibrium equation, we have
:

⇒ GMmL

r2
= kθ

Solving for �G�, we have :

⇒ G =
r2kθ

MmL

In order to improve accuracy of measurement, the bigger spheres are, then, placed on the opposite sides
of the smaller spheres with respect to earlier positions (as shown in the �gure below). Again, position of
re�ected light is noted on the scale for equilibrium position, which should lie opposite to earlier reading
about the reading corresponding to neutral position.

Cavendish experiment

Figure 1.8: Measurement of universal gravitational constant

The di�erence in the readings (x) on the scale for two con�gurations of larger spheres is read. The
distance between mirror and scale (y) is also determined. The angle subtended by the arc �x� at the mirror
is twice the angle through which mirror rotates between two con�gurations. Hence,
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Cavendish experiment

Figure 1.9: Measurement of angle

⇒ 4θ =
x

y

⇒ θ =
x

4y

We see here that beam, mirror and scale arrangement enables us to read an angle, which is 2 times larger
than the actual angle involved. This improves accuracy of the measurement. Putting the expression of angle,
we have the �nal expression for determination of �G�,

G =
r2kx

4MmLy



Chapter 2

Gravity1

The term �gravity� is used for the gravitation between two bodies, one of which is Earth.
Earth is composed of layers, having di�erent densities and as such is not uniform. Its density varies from

2 kg/m3 for crust to nearly 14 kg/m3 for the inner core. However, inner di�erentiation with respect to mass
is radial and not directional. This means that there is no preferential direction in which mass is aggregated
more than other regions. Applying Newton's shell theorem, we can see that Earth, if considered as a solid
sphere, should behave as a point mass for any point on its surface or above it.

In the nutshell, we can conclude that density di�erence is not relevant for a point on the surface or above
it so long Earth can be considered spherical and density variation is radial and not directional. As this is
approximately the case, we can treat Earth, equivalently as a sphere of uniform mass distribution, having
an equivalent uniform (constant) density. Thus, force of gravitation on a particle on the surface of Earth is
given by :

F =
GMm

R2

where �M� and �m� represents masses of Earth and particle respectively. For any consideration on Earth's
surface, the linear distance between Earth and particle is constant and is equal to the radius of Earth (R).

2.1 Gravitational acceleration (acceleration due to gravity)

In accordance with Newton's second law of motion, gravity produces acceleration in the particle, which is
situated on the surface. The acceleration of a particle mass �m', on the surface of Earth is obtained as :

⇒ a =
F

m
=
GM

R2

The value corresponding to above expression constitutes the reference gravitational acceleration. How-
ever, the calculation of gravitational acceleration based on this formula would be idealized. The measured
value of gravitational acceleration on the surface is di�erent. The measured value of acceleration incorporates
the e�ects of factors that we have overlooked in this theoretical derivation of gravitational acceleration on
Earth.

We generally distinguish gravitational acceleration as calculated by above formula as � g0 � to di�erentiate
it from the one, which is actually measured(g) on the surface of Earth. Hence,

g0 = a =
F

m
=
GM

R2

1This content is available online at <http://cnx.org/content/m15087/1.4/>.
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12 CHAPTER 2. GRAVITY

This is a very signi�cant and quite remarkable relationship. The gravitational acceleration does not
dependent on the mass of the body on which force is acting! This is a special characteristic of gravitational
force. For all other forces, acceleration depends on the mass of the body on which force is acting. We can
easily see the reason. The mass of the body appears in both Newton's law of motion and Newton's law of
gravitation. Hence, they cancel out, when two equations are equated.

2.2 Factors a�ecting Gravitational acceleration

The formulation for gravitational acceleration considers Earth as (i) uniform (ii) spherical and (iii) station-
ary body. None of these assumptions is true. As such, measured value of acceleration (g) is di�erent to
gravitational acceleration, � g0 �, on these counts :

1. Constitution of the Earth
2. Shape of the Earth
3. Rotation of the Earth

In addition to these inherent factors resulting from the consequence of �real� Earth, the measured value
of acceleration also depends on the point of measurement in vertical direction with respect to mean surface
level or any reference for which gravitational acceleration is averaged. Hence, we add one more additional
factor responsible for variation in the gravitational acceleration. The fourth additional factor is relative
vertical position of measurement with respect to Earth's surface.

2.2.1 Constitution of the Earth

Earth is not uniform. Its density varies as we move from its center to the surface. In general, Earth can be
approximated to be composed of concentric shells of di�erent densities. For all practical purpose, we consider
that the density gradation is radial and is approximated to have an equivalent uniform density within these
concentric shells in all directions.
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Constitution of the Earth

Figure 2.1: Density of Earth varies radially.

The main reason for this directional uniformity is that bulk of the material constituting Earth is �uid
due to high temperature. The material, therefore, has a tendency to maintain uniform density in a given
shell so conceived.

We have discussed that the radial density variation has no e�ect on a point on the surface or above it.
This variation of density, however, impacts gravitational acceleration, when the point in the question is at a
point below Earth's surface.

In order to understand the e�ect, let us have a look at the expression of gravitational expression :

g0 =
F

m
=
GM

R2

The impact of moving down below the surface of Earth, therefore, depends on two factors

1. Mass (M) and
2. Distance from the center of Earth (r)

A point inside a deep mine shaft, for example, will result in a change in the value of gravitational
acceleration due to above two factors.

We shall know subsequently that gravitational force inside a spherical shell is zero. Therefore, mass of
the spherical shell above the given point does not contribute to gravitational force and hence acceleration at
that point. Thus, the value of �M� in the expression of gravitational acceleration decreases as we go down
from the Earth's surface. This, in turn, decreases gravitational acceleration at a point below Earth's surface.
At the same time, the distance to the center of Earth decreases. This factor, in turn, increases gravitational
acceleration.
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If we assume uniform density, then the impact of �decrease in mass� is greater than that of impact of
�decrease in distance�. We shall prove this subsequently when we consider the e�ect of vertical position. As
such, acceleration is expected to decrease as we go down from Earth's surface.

In reality the density is not uniform. Crust being relatively light and thin, the impact of �rst factor i.e.
�decrease in mass� is less signi�cant initially and consequently gravitational acceleration actually increases
initially for some distance as we go down till it reaches a maximum value at certain point below Earth's
surface. For most of depth beyond, however, gravitational acceleration decreases with depth.

2.2.2 Shape of the Earth

Earth is not a sphere. It is an ellipsoid. Its equatorial radius is greater than polar radius by 21 km. A point
at pole is closer to the center of Earth. Consequently, gravitational acceleration is greater there than at the
equator.

Besides, some part of Earth is protruded and some part is depressed below average level. Once again,
factors of mass and distance come into picture. Again, it is the relative impact of two factors that determine
the net e�ect. Consider a point right at the top of Mt. Everest, which is about 8.8 km from the mean
sea level. Imagine incrementing radius of Earth's sphere by 8.8 km. Most of the volume so created is not
�lled. The proportionate increase in mass (mass of Everest mountain range) is less than that in the squared
distance from the center of Earth. As such, gravitational acceleration is less than its average value on the
surface. It is actually 9.80 m/s2 as against the average of 9.81 m/s2 , which is considered to be the accepted
value for the Earth's surface.

2.2.3 Rotation of Earth

Earth rotates once about its axis of rotation in 1 day and moves around Sun in 365 days. Since Earth and a
particle on Earth both move together with a constant speed around Sun, there is no e�ect in the measured
acceleration due to gravity on the account of Earth's translational motion. The curved path around Sun can
be approximated to be linear for distances under consideration. Hence, Earth can serve as inertial frame of
reference for the application of Newton's law of motion, irrespective of its translational motion.

However, consideration of rotation of Earth about its axis changes the nature of Earth's reference. It
is no more an inertial frame. A particle at a point, �P�, is rotating about the axis of rotation. Clearly,
a provision for the centripetal force should exist to meet the requirement of circular motion. We should
emphasize here that centripetal force is not an additional force by itself, but is a requirement of circular
motion, which should be met with by the forces operating on the particle. Here, gravitational force meets
this requirement and, therefore, gets modi�ed to that extent.

Here, we shall restrict our consideration speci�cally to the e�ect of rotation. We will ignore other factors
that a�ect gravitational acceleration. This means that we consider Earth is a solid uniform sphere. If it is
so then, measured value of acceleration is equal to reference gravitational acceleration ( g0 ) as modi�ed by
rotation.

As we have studied earlier, we can apply Newton's law in a non-inertial reference by providing for pseudo
force. We should recall that pseudo force is applied in the direction opposite to the direction of acceleration
of the frame of reference, which is centripetal acceleration in this case. The magnitude of pseudo force is
equal to the product of mass of the particle and centripetal acceleration. Thus,

FP = mω2r

After considering pseudo force, we can enumerate forces on the particle at �P� at an latitude �φ� as shown
in the �gure :

1. Pseudo force ( mω2r )
2. Normal force (N)
3. gravitational force ( mg0 )
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Forces on the particle on the surface of Earth

Figure 2.2: The particle is at rest under action of three forces.

The particle is subjected to normal force against the net force on the particle or the weight as measured.
Two forces are equal in magnitude, but opposite in direction.

N = W = mg

It is worthwhile to note here that gravitational force and normal force are di�erent quantities. The
measured weight of the particle is equal to the product of mass and the measured acceleration. It is given
by the expression �mg�. On the other hand, Gravitational force is given by the Newton's equation, which
considers Earth at rest. It is equal to � mg0 �.

⇒ FG =
GM

R2
= mg0

Since particle is stationary on the surface of Earth, three forces as enumerated above constitute a balanced
force system. Equivalently, we can say that the resultant of pseudo and gravitational forces is equal in
magnitude, but opposite in direction to the normal force.

N = FG + FP

In other words, resultant of gravitational and pseudo forces is equal to the magnitude of measured weight
of the particle. Applying parallelogram theorem for vector addition of gravitational and pseudo forces, the
resultant of the two forces is :
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Forces on the particle on the surface of Earth

Figure 2.3: The particle is at rest under action of three forces.

N2 = (mg0)2 +
(
mω2R

)2
+ 2m2ω2g0Rcos (180− φ)

Putting N = mg and rearranging, we have:

⇒ m2g2 = m2g2
0 +m2ω4R2 − 2m2ω2g0Rcosφ

Angular velocity of Earth is quite a small value. It may be interesting to know the value of the term
having higher power of angular velocity. Since Earth completes one revolution in a day i.e an angle of �2π�
in 24 hrs, the angular speed of Earth is :

⇒ ω =
2π

24X60X60
= 7.28X10−5 rad/s

The fourth power of angular speed is almost a zero value :

⇒ ω4 = 2.8X10−17

We can, therefore, safely neglect the term � m2ω4r2 �. The expression for the measured weight of the
particle, therefore, reduces to :

⇒ g2 = g2
0 − 2ω2g0Rcosφ

⇒ g = g0

(
1− 2ω2Rcosφ

g0

)1/2

Neglecting higher powers of angular velocity and considering only the �rst term of the binomial expansion,

⇒ g = g0

(
1− 1

2
X

2ω2Rcosφ
g0

)
⇒ g = g0 − ω2Rcosφ

This is the �nal expression that shows the e�ect of rotation on gravitational acceleration ( mg0 ). The
important point here is that it is not only the magnitude that is a�ected by rotation, but its direction is also
a�ected as it is no more directed towards the center of Earth.

There is no e�ect of rotation at pole. Being a point, there is no circular motion involved and hence,
there is no reduction in the value of gravitational acceleration. It is also substantiated from the expression
as latitude angle is φ = 90 ◦ for the pole and corresponding cosine value is zero. Hence,
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⇒ g = g0 − ω2Rcos900 = g0

The reduction in gravitational acceleration is most (maximum) at the equator, where latitude angle is φ
= 0 ◦ and corresponding cosine value is maximum (=1).

⇒ g = g0 − ω2Rcos00 = g0 − ω2R

We can check approximate reduction at the equator, considering R = 6400 km = 6400000 m = 6.4X106

m.

⇒ ω2R =
(
7.28X10−5

)2
X
(
6.4X106

)
= 3.39X10−3 m/s2 = 0.0339 m/s2

This is the maximum reduction possible due to rotation. Indeed, we can neglect this variation for all
practical purposes except where very high accuracy is required.

2.2.4 Vertical position

In this section, we shall discuss the e�ect of the vertical position of the point of measurement. For this,
we shall consider Earth as a perfect sphere of radius �R� and uniform density, �ρ�. Further, we shall �rst
consider a point at a vertical height �h� from the surface and then a point at a vertical depth �d� from the
surface.

2.2.4.1 Gravitational acceleration at a height

Gravitational acceleration due to Earth on its surface is equal to gravitational force per unit mass and is
given by :

g0 =
F

m
=
GM

R2

Gravity at an altitude

Figure 2.4: Distance between center of Earth and particle changes at an altitude.
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where �M� and �R� are the mass and radius of Earth. It is clear that gravitational acceleration will
decrease if measured at a height �h� from the Earth's surface. The mass of Earth remains constant, but
the linear distance between particle and the center of Earth increases. The net result is that gravitational
acceleration decreases to a value �g� ' as given by the equation,

⇒ g′ = F ′
m

=
GM

(R+ h)2

We can simplify this equation as,

⇒ g′ = GM

R2
(
1 + h

R

)2
Substituting for the gravitational acceleration at the surface, we have :

⇒ g′ = g0(
1 + h

R

)2
This relation represents the e�ect of height on gravitational acceleration. We can approximate the

expression for situation where h� R.

⇒ g′ = g0(
1 + h

R

)2 = g0

(
1 +

h

R

)−2

As h�R, we can neglect higher powers of �h/R� in the binomial expansion of the power term,

⇒ g′ = g0

(
1− 2h

R

)
We should always keep in mind that this simpli�ed expression holds for the condition, h � R. For small

vertical altitude, gravitational acceleration decreases linearly with a slope of �-2/R�. If the altitude is large
as in the case of a communication satellite, then we should resort to the original expression,

⇒ g′ = GM

(R+ h)2

If we plot gravitational acceleration .vs. altitude, the plot will be about linear for some distance.
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Acceleration .vs. linear distance

Figure 2.5: The plot shows variations in gravitational acceleration as we move vertically upwards from
center of Earth.

2.2.4.2 Gravitational acceleration at a depth

In order to calculate gravitational acceleration at a depth �d�, we consider a concentric sphere of radius �R-d�
as shown in the �gure. Here, we shall make use of the fact that gravitational force inside a spherical shell
is zero. It means that gravitational force due to the spherical shell above the point is zero. On the other
hand, gravitational force due to smaller sphere can be calculated by treating it as point mass. As such, net
gravitational acceleration at point �P� is :
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Gravity at a depth

Figure 2.6: Distance between center of Earth and particle changes at an altitude.

⇒ g′ = F ′
m

=
GM ′

(R− d)2

where �M�' is the mass of the smaller sphere. If we consider Earth as a sphere of uniform density, then :

M = V ρ

⇒ ρ =
M

4
3πR

3

Hence, mass of smaller sphere is equal to the product :

M ′ = ρV ′

⇒M ′ =
4
3π(R− d)3XM

4
3πR

3
=

(R− d)3XM
R3

Substituting in the expression of gravitational acceleration, we have :

⇒ g′ = G(R− d)3XM
(R− d)2R3

Inserting gravitational acceleration at the surface ( g0 = GM/R2 ), we have :
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⇒ g′ = g0(R− d)3

(R− d)2R
=
g0 (R− d)

R

g′ = g0

(
1− d

R

)
This is also a linear equation. We should note that this expression, unlike earlier case of a point above

the surface, makes no approximation . The gravitational acceleration decreases linearly with distance as
we go down towards the center of Earth. Conversely, the gravitational acceleration increases linearly with
distance as we move from the center of Earth towards the surface.

Acceleration .vs. linear distance

Figure 2.7: The plot shows variations in gravitational acceleration as we move away from center of
Earth.

The plot above combines the e�ect of altitude and the e�ect of depth along a straight line, starting from
the center of Earth.

2.3 Gravitational acceleration .vs. measured acceleration

We have made distinction between these two quantities. Here, we shall discuss the di�erences once again as
their references and uses in problem situations can be confusing.

1: For all theoretical discussion and formulations, the idealized gravitational acceleration ( g0 ) is
considered as a good approximation of actual gravitational acceleration on the surface of Earth, unless
otherwise told. The e�ect of rotation is indeed a small value and hence can be neglected for all practical
purposes, unless we deal with situation, requiring higher accuracy.
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2: We should emphasize that both these quantities ( g0 and g) are referred to the surface of Earth. For
points above or below, we use symbol (g') for e�ective gravitational acceleration.

3: If context requires, we should distinguish between �g0� and �g�. The symbol � g0 � denotes idealized
gravitational acceleration on the surface, considering Earth (i) uniform (ii) spherical and (iii) stationary. On
the other hand, �g� denotes actual measurement. We should, however, be careful to note that measured value
is also not the actual measurement of gravitational acceleration. This will be clear from the point below.

4: The nature of impact of �rotation� on gravitational acceleration is di�erent than due to other factors.
We observed in our discussion in this module that �constitution of Earth� impacts the value of gravitational
acceleration for a point below Earth's surface. Similarly, shape and vertical positions of measurements a�ect
gravitational acceleration in di�erent ways. However, these factors only account for the �actual� change in
gravitational acceleration. Particularly, they do not modify the gravitational acceleration itself. For example,
shape of Earth accounts for actual change in the gravitational acceleration as polar radius is actually smaller
than equatorial radius.

Now, think about the change due to rotation. What does it do? It conceals a part of actual gravitational
acceleration itself. A part of gravitational force is used to provide for the centripetal acceleration. We measure
a di�erent gravitational acceleration than the actual one at that point. We should keep this di�erence in mind
while interpreting acceleration. In the nutshell, rotation alone a�ects measurement of actual gravitational
acceleration, whereas other factors re�ect actual change in gravitational acceleration.

5: What is actual gravitational acceleration anyway? From the discussion as above, it is clear that
actual gravitational acceleration on the surface of Earth needs to account for the part of the gravitational
force, which provides centripetal force. Hence, actual gravitational acceleration is :

gactual = g + ω2Rcosφ

Note that we have made correction for centripetal force in the measured value (g) � not in the idealized
value ( g0 ). It is so because measured value accounts actual impacts due to all factors. Hence, if we correct
for rotation � which alone a�ects measurement of actual gravitational acceleration, then we get the actual
gravitational acceleration at a point on the surface of the Earth.
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Gravity (application)1

Questions and their answers are presented here in the module text format as if it were an extension of the
treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory.
Solution presented is, therefore, treated as the part of the understanding process � not merely a Q/A session.
The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put
to real time situation.

3.1 Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to gravity. The questions are
categorized in terms of the characterizing features of the subject matter :

• Acceleration at a Height
• Acceleration at a Depth
• Comparison of acceleration due to gravity
• Rotation of Earth
• Comparison of gravitational acceleration
• Rate of change of gravity

3.2 Acceleration at a Height

Problem 1 : At what height from the surface of Earth will the acceleration due to gravity is reduced by
36 % from the value at the surface. Take, R = 6400 km.

Solution : The acceleration due to gravity decreases as we go vertically up from the surface. The
reduction of acceleration by 36 % means that the height involved is signi�cant. As such, we can not use the
approximated expression of the e�ective accelerations for h� R as given by :

g′ = g

(
1− 2h

R

)
Instead, we should use the relation,

⇒ g′ = g(
1 + h

R

)2
Note that we have considered reference gravitational acceleration equal to acceleration on the surface.

Now, it is given that :

1This content is available online at <http://cnx.org/content/m15088/1.2/>.
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⇒ g′ = 0.64g

Hence,

⇒ 0.64g =
g(

1 + h
R

)2
⇒
(

1 +
h

R

)2

X0.64 = 1

⇒
(

1 +
h

R

)
=

10
8

=
5
4

⇒ h

R
=

5
4
− 1 =

1
4

⇒ h =
R

4
=

6400
4

= 1600 km

Note : If we calculate, considering h � R, then

⇒ 0.64g = g

(
1− 2h

R

)
⇒ 0.64R = R− 2h

⇒ h =
R (1− 0.64)

2
= 0.18R = 0.18X6400 = 1152 km

3.3 Acceleration at a Depth

Problem 2 : Assuming Earth to be uniform sphere, how much a weight of 200 N would weigh half way
from the center of Earth.

Solution : Assuming, g = g0 , the accelerations at the surface (g) and at a depth (g') are related as :

g′ = g

(
1− d

R

)
In this case,

⇒ d = R− R

2
=
R

2
Putting in the equation of e�ective acceleration, we have :

⇒ g′ = g

(
1− R

2R

)
=
g

2

The weight on the surface corresponds to �mg� and its weight corresponds to �mg� '. Hence,

⇒ mg′ = mg

2
=

200
2

= 100 N
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3.4 Comparison of acceleration due to gravity

Problem 3 : Find the ratio of acceleration due to gravity at a depth �h� and at a height �h� from Earth's
surface. Consider h � R, where �R� is the radius of Earth.

Solution : The acceleration due to gravity at appoint �h� below Earth's surface is given as :

g1 = g0

(
1− h

R

)
The acceleration due to gravity at a point �h� above Earth's surface is given as :

g2 =
g0(

1 + h
R

)2
Note that we have not incorporated approximation for h�R. We shall a�ect the same after getting the

expression for the ratio .
The required ratio without approximation is :

⇒ g1
g2

=
g0
(
1− h

R

) (
1 + h

R

)2
g0

⇒ g1
g2

=
(

1− h

R

)(
1 +

h

R

)2

⇒ g1
g2

=
(

1− h

R

)(
1 +

h2

R2
+

2h
R

)
For h � R, we can neglect terms of higher power than 1,

⇒ g1
g2

=
(

1− h

R

)(
1 +

2h
R

)

⇒ g1
g2

=
(

1− h

R
+

2h
R
− 2h2

R2

)
Again, neglecting term with higher power,

⇒ g1
g2

=
(

1 +
h

R

)

3.5 Rotation of Earth

3.5.1

Problem 4 : If �ρ� be the uniform density of a spherical planet, then �nd the shortest possible period of
rotation of the planet about its axis of rotation.

Solution : A planet needs to hold material it is composed. We have seen that centripetal force required
for a particle on the surface is maximum at the equator. Therefore, gravitational pull of the planet should
be as least su�cient enough to hold the particle at the equator. Corresponding maximum angular speed
corresponding to this condition is obtained as :

GMm

R2
= mω2R

Time period is related to angular speed as :
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ω =
2π
T

Substituting for angular speed in force equation, we get the expression involving shortest time period :

⇒ T 2 =
4π2R3

GM

The mass of the spherical planet of uniform density is :

⇒M =
4πρR3

3
Putting in the equation of time period,

⇒ T 2 =
4x3π2R3

Gx4πρR3
=

3π
Gρ

⇒ T =

√(
3π
Gρ

)

3.5.2

Problem 5 : Considering Earth to be a sphere of uniform density, what should be the time period of its
rotation about its own axis so that acceleration due to gravity at the equator becomes zero. Take g = 10
m/s2 and R = 6400 km.

Solution : We know that the measurement of gravitational acceleration due to gravity is a�ected by
rotation of Earth. Let g' be the e�ective acceleration and g0 = g . Then,

g′ = g −Rω2cosΦ

where Φ is latitude angle.

Here, Φ = 00, cosΦ = cos00 = 1,

g′ = g −Rω2

Now, angular velocity is connected to time period as :

ω =
2π
T

Combining two equations, we have :

⇒ g′ = g − RX4π2

T 2

⇒ 4π2R = (g − g′)T 2

⇒ T =

√
4π2R

(g − g′)

According to question, e�ective acceleration is zero,

g′ = 0
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Hence,

⇒ T = 2π

√
6400X103

10

⇒ T = πX1600 s

T = 1.4 hr

3.6 Comparison of gravitational acceleration

Problem 6 : A planet has 8 times the mass and average density that of Earth. Find acceleration on the
surface of planet, considering both bodies spherical in shape. Take acceleration on the surface of Earth as
10 m/s2.

Solution : Let subscript �1� and �2� denote Earth and planet respectively. Then, ratio of accelerations
is :

g2
g1

=
GM2
R2

2
GM1
R2

1

=
M2R

2
1

M1R2
2

Here,

M2 = 8M1

⇒ g2
g1

=
8M1R

2
1

M1R2
2

=
8R2

1

R2
2

We need to relate radii in order to evaluate the ratio as above. For this, we shall use given information
about density. Here,

⇒ ρ2 = 8ρ1

⇒ M2

V2
=

8M1

V1

But,M2 = 8M1,

⇒ 8M1

V2
=

8M1

V1

⇒ V1 = V2

⇒ R1 = R2

Now, evaluating the ratio of accelerations, we have :

⇒ g2 = 8g1 = 8X10 = 80 m/s2
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3.7 Rate of change of gravity

3.7.1

Problem 7 : Find the rate of change of weight with respect height �h� near Earth's surface.
Solution : According to question, we are required to �nd the rate of change of the weight near Earth's

surface. Hence, we shall use the expression for h�R/ Also let g0 = g. Then,

g′ = g

(
1− 2h

R

)
Weight at height, �h�, is given by :

⇒W = mg′ = mg

(
1− 2h

R

)
= mg − 2mgh

R

The rate of change of acceleration due to gravity at a height �h� is given as :

⇒ dW

dh
=

d

dh

(
mg − 2mgh

R

)

⇒ dW

dh
= −2mg

R

3.7.2

Problem 8 : What is fractional change in gravitational acceleration at a height �h� near the surface of
Earth.

Solution : The fractional change of a quantity �x� is de�ned as �∆x/x�. Hence, fractional change in
gravitational acceleration is �∆ g/g�. Let g0 = g. Now, e�ective acceleration at a height �h� near Earth's
surface is given by :

g′ = g

(
1− 2h

R

)

⇒ g′ − g = −2hg
R

⇒ g′ − g
g

= −2h
R

⇒ ∆g
g

= −2h
R
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Gravitational potential energy1

The concept of potential energy is linked to a system � not to a single particle or body. So is the case with
gravitational potential energy. True nature of this form of energy is often concealed in practical consideration
and reference to Earth. Gravitational energy is not limited to Earth, but is applicable to any two masses
of any size and at any location. Clearly, we need to expand our understanding of various physical concepts
related with gravitational potential energy.

Here, we shall recapitulate earlier discussions on potential energy and apply the same in the context of
gravitational force.

4.1 Change in gravitational potential energy

The change in the gravitational potential energy of a system is related to work done by the gravitational
force. In this section, we shall derive an expression to determine change in potential energy for a system of
two particles. For this, we consider an elementary set up, which consists of a stationary particle of mass, "
m1 " and another particle of mass, " m2 ", which moves from one position to another.

Now, we know that change in potential energy of the system is equal to negative of the work by gravita-
tional force for the displacement of second particle :

∆U = −WG

On the other hand, work by gravitational force is given as :

WG =
∫
FGdr

Combining two equations, the mathematical expression for determining change in potential energy of the
system is obtained as :

⇒ ∆U = −
r2∫
r1

FGdr

In order to evaluate this integral, we need to set up the di�erential equation �rst. For this, we assume
that stationary particle is situated at the origin of reference. Further, we consider an intermediate position
of the particle of mass " m2 " between two positions through which it is moved along a straight line. The
change in potential energy of the system as the particle moves from position �r� to �r+dr� is :

dU = −FGdr

1This content is available online at <http://cnx.org/content/m15090/1.3/>.
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Change in gravitational potential energy

Figure 4.1: The particle is moved from one position to another.

We get the expression for the change in gravitational potential energy by integrating between initial and
�nal positions of the second particle as :

∆U = −
r2∫
r1

FGdr

We substitute gravitational force with its expression as given by Newton's law of gravitation,

F = −Gm1m2

r2

Note that the expression for gravitational force is preceded by a negative sign as force is directed opposite
to displacement. Now, putting this value in the integral expression, we have :

⇒ ∆U =

r2∫
r1

Gm1m2dr

r2

Taking out constants from the integral and integrating between the limits, we have :

⇒ ∆U = Gm1m2

[
−1
r

]r2

r1

⇒ ∆U = U2 − U1 = Gm1m2

[
1
r1
− 1
r2

]
This is the expression of gravitational potential energy change, when a particle of mass � m2 � moves

from its position from � r1 � to � r2 � in the presence of particle of mass � m1 �. It is important to realize here
that � 1/r1 � is greater than � 1/r2 �. It means that the change in gravitational potential energy is positive
in this case. In other words, it means that �nal value is greater than initial value. Hence, gravitational
potential energy of the two particles system is greater for greater linear distance between particles.

4.2 Absolute gravitational potential energy

An arrangement of the system is referred to possess zero potential energy with respect to a particular
reference. For this we visualize that particles are placed at very large distance. Theoretically, the conservative
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force like gravitation will not a�ect bodies which are at in�nity. For this reason, zero gravitational reference
potential of a system is referred to in�nity. The measurement of gravitational potential energy of a system
with respect to this theoretical reference is called absolute gravitational potential energy of the system.

U (r) = −
r∫
∞

FGdr

As a matter of fact, this integral can be used to de�ne gravitational potential energy of a system:

De�nition 4.1: Gravitational potential energy
The gravitational potential energy of a system of particles is equal to �negative� of the work by
the gravitational force as a particle is brought from in�nity to its position in the presence of other
particles of the system.

For practical consideration, we can choose real speci�c reference (other than in�nity) as zero potential
reference. Important point is that selection of zero reference is not a limitation as we almost always deal
with change in potential energy � not the absolute potential energy. So long we are consistent with zero
potential reference (for example, Earth's surface is considered zero gravitational potential reference), we will
get the same value for the di�erence in potential energy, irrespective of the reference chosen.

We can also de�ne gravitation potential energy in terms of external force as :

De�nition 4.2: Gravitational potential energy
The gravitational potential energy of a system of particles is equal to the work by the external
force as a particle is brought from in�nity slowly to its position in the presence of other particles
of the system.

4.3 Earth systems

We have already formulated expressions for gravitational potential energy for �Earth � body� system in the
module on potential energy.

The potential energy of a body raised to a height �h� has been obtained as :

U = mgh

Generally, we refer gravitational potential energy of "Earth- particle system" to a particle � not to a
system. This is justi�ed on the basis of the fact that one member of the system is relatively very large in
size.

All terrestrial bodies are very small with respect to massive Earth. A change in potential energy of the
system is balanced by a corresponding change in kinetic energy in accordance with conservation of mechanical
energy. Do we expect a change in the speed of Earth due to a change in the position of ,say, a tennis ball?
All the changes due to change in the position of a tennis ball is re�ected as the change in the speed of the
ball itself � not in the speed of the Earth. So dropping reference to the Earth is not inconsistent to physical
reality.

4.4 Gravitational potential energy of two particles system

We can determine potential energy of two particles separated by a distance �r�, using the concept of zero
potential energy at in�nity. According to de�nition, the integral of potential energy of the particle is evaluated
for initial position at in�nity to a �nal position, which is at a distance �r� from the �rst particle at the origin
of reference.

Here,

U1 = 0
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U2 = U ( say)

r1 =∞

r2 = r (say)

Putting values in the expression of the change of potential energy, we have :

⇒ U − 0 = Gm1m2

[
1
∞
− 1
r

]

⇒ U = −Gm1m2

r

By de�nition, this potential energy is equal to the negative of work by gravitational force and equal to
the work by an external force, which does not produce kinetic energy while the particle of mass � m2 � is
brought from in�nity to a position at a distance �r� from other particle of mass � m1 �.

We see here that gravitational potential energy is a negative quantity. As the particles are farther apart,
"1/r" becomes a smaller fraction. Potential energy, being a negative quantity, increases. But, the magnitude
of potential energy becomes smaller. The maximum value of potential energy is zero for r = ∞ i.e. when
particles are at very large distance from each other[U+F02E]

On the other hand, the fraction "1/r" is a bigger fraction when the particles are closer. Gravitational
potential energy, being a negative quantity, decreases. The magnitude of potential energy is larger. This
is consistent with the fact that particles are attracted by greater force when they are closer. Hence, if a
particles are closer, then it is more likely to be moved by the gravitational force. A particle away from the
�rst particle has greater potential energy, but smaller magnitude. It is attracted by smaller gravitational
force and is unlikely to be moved by gravitational force as other forces on the particle may prevail.

4.5 Gravitational potential energy of a system of particles

We have formulated expression for the gravitational potential energy of two particles system. In this section,
we shall �nd gravitational potential energy of a system of particles, starting from the beginning. We know
that zero gravitational potential energy is referred to in�nity. There will no force to work with at an in�nite
distance. Since no force exists, no work is required for a particle to bring the �rst particle from in�nity to
a point in a gravitation free region. So the work by external force in bringing �rst particle in the region of
zero gravitation is "zero".
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Gravitational potential energy

Figure 4.2: First particle is brought in a region of zero gravitation.

What about bringing the second particle (2) in the vicinity of the �rst particle (1)? The second particle
is brought in the presence of �rst particle, which has certain mass. It will exert gravitational attraction on
the second particle. The potential energy of two particles system will be given by the negative of work by
gravitational force due to particle (1)as the second particle is brought from in�nity :

Gravitational potential energy

Figure 4.3: Second particle is brought in the gravitation of �rst particle.

U12 = −Gm1m2

r12

We have subscripted linear distance between �rst and second particle as � r12 �. Also note that work by
gravitational force is independent of the path i.e. how force and displacement are oriented along the way
second particle is brought near �rst particle.

Now, what about bringing the third particle of mass, � m3 �, in the vicinity of the �rst two particles?
The third particle is brought in the presence of �rst two particles, which have certain mass. They will exert



34 CHAPTER 4. GRAVITATIONAL POTENTIAL ENERGY

gravitational forces on the third particle. The potential energy due to �rst particle is equal to the negative
of work by gravitational force due to it :

Gravitational potential energy

Figure 4.4: Third particle is brought in the gravitation of �rst and second particles.

U13 = −Gm1m3

r13

Similarly, the potential energy due to second particle is equal to the negative of work by gravitational
force due to it :

U23 = −Gm2m3

r23

Thus, potential energy of three particles at given positions is algebraic sum of negative of gravitational
work in (i) bringing �rst particle (ii) bringing second particle in the presence of �rst particle and (iii) bringing
third particle in the presence of �rst two particles :

⇒ U = −G
(
m1m2

r12
+
m1m3

r13
+
m2m3

r23

)
Induction of forth particle in the system will involve work by gravitation in assembling three particles as

given by the above expression plus works by the individual gravitation of three already assembled particles
when fourth particle is brought from the in�nity.

⇒ U = −G
(
m1m2

r12
+
m1m3

r13
+
m2m3

r23
+
m1m4

r14
+
m2m4

r24
+
m3m4

r34

)
Proceeding in this fashion, we can calculate potential energy of a system of particles. We see here that

this process resembles the manner in which a system of particles like a rigid body is constituted bit by bit.
As such, this potential energy of the system represents the �energy of constitution� and is called �self energy�
of the rigid body or system of particles. We shall develop alternative technique (easier) to measure potential
energy and hence �self energy� of regular geometric shapes with the concept of gravitational potential in a
separate module.
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4.5.1 Examples

Problem 1: Find the work done in bringing three particles, each having a mass of 0.1 kg from large
distance to the vertices of an equilateral triangle of 10 cm in a gravity free region. Assume that no change
of kinetic energy is involved in bringing particles.

Solution : We note here that all three particles have same mass. Hence, product of mass in the
expression of gravitational potential energy reduces to square of mass. The gravitational potential energy of
three particles at the vertices of the equilateral triangle is :

U = −3Gm2

a

where �a� is the side of the equilateral triangle.
Putting values,

⇒ U = −3X6.67X10−11X0.12
0.1

= −3X6.67X10−10X0.01 = −20X10−12 J

⇒ U = −2X10−11 J

Hence, work done by external force in bringing three particles from large distance is :

⇒W = U = −2X10−11J

4.6 Work and energy

An external force working on a system brings about changes in the energy of system. If change in energy is
limited to mechanical energy, then work by external force will be related to change in mechanical energy as :

WF = ∆E = ∆U + ∆K

A change in gravitational potential energy may or may not be accompanied with change in kinetic energy.
It depends on the manner external force works on the system. If we work on the system in such a manner
that we do not impart kinetic energy to the particles of the system, then there is no change in kinetic energy.
In that case, the work by external force is equal to the change in gravitational potential energy alone.

There can be three di�erent situations :
Case 1 : If there is change in kinetic energy, then work by external force is equal to the change in potential

and kinetic energy:

WF = ∆U + ∆K

Case 2 : If there is no change in kinetic energy, then work by external force is equal to the change in
potential energy alone :

∆K = 0

Putting in the expression of work,

WF = ∆U

Case 3 : If there is no external force, then work by external force is zero. The change in one form of
mechanical energy is compensated by a corresponding negative change in the other form. This means that
mechanical energy of the system is conserved. Here,

WF = 0
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Putting in the expression of work,

⇒ ∆U + ∆K = 0

We shall, now, work with two illustrations corresponding to following situations :

• Change in potential energy without change in kinetic energy
• Change in potential energy without external force

4.6.1 Change in potential energy without change in kinetic energy

Problem 2: Three particles, each having a mass of 0.1 kg are placed at the vertices of an equilateral triangle
of 10 cm. Find the work done to change the positions of particles such that side of the triangle is 20 cm.
Assume that no change of kinetic energy is involved in changing positions.

Solution : The work done to bring the particles together by external force in gravitational �eld is
equal to potential energy of the system of particles. This means that work done in changing the positions of
the particles is equal to change in potential energy due to change in the positions of particles. For work by
external force,

WF = ∆U + ∆K

Here, ∆K = 0

WF = ∆U

Now, we have seen that :

U = −3Gm2

a

Hence, change in gravitational potential energy is :

⇒ ∆U = −3Gm2

a2
−
(
−3Gm2

a1

)

⇒ ∆U = 3Gm2

[
− 1
a2

+
1
a1

]
Putting values, we have :

⇒ ∆U = 3X6.67X10−11X0.12

[
− 1

0.2
+

1
0.1

]

⇒ ∆U = 3X6.67X10−11X0.12X5

⇒ ∆U = 1.00X10−11 J
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4.6.2 Change in potential energy without external force

Problem 3: Three identical solid spheres each of mass �m� and radius �R� are released from positions as
shown in the �gure (assume no external gravitation). What would be the speed of any of three spheres just
before they collide.

Three particles system

Figure 4.5: Positions before being released.

Solution : Since no external force is involved, the mechanical energy of the system at the time of release
should be equal to mechanical energy just before the collision. In other words, the mechanical energy of the
system is conserved. The initial potential energy of system is given by,

Ui = −3Gm2

a

Let �v� be the speed of any sphere before collision. The con�guration just before the collision is shown in
the �gure. We can see that linear distance between any two centers of two identical spheres is �2R�. Hence,
potential energy of the con�guration before collision is,
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Three particles system

Figure 4.6: Positions just before collision.

Uf = −3Gm2

2R
Applying conservation of mechanical energy,

Ki + Ui = Kf + Uf

⇒ 0− 3Gm2

a
=

1
2
mv2 − 3Gm2

2R

v =

√
{Gm

(
1
R
− 2
a

)
}



Chapter 5

Gravitational �eld1

We have studied gravitational interaction in two related manners. First, we studied it in terms of force and
then in terms of energy. There is yet another way to look at gravitational interactions. We can study it in
terms of gravitational �eld.

In the simplest form, we de�ne a gravitational �eld as a region in which gravitational force can be
experienced. We should, however, be aware that the concept of force �eld has deeper meaning. Forces like
gravitational force and electromagnetic force work with �action at a distance�. As bodies are not in contact,
it is conceptualized that force is communicated to bodies through a force �eld, which operates on the entities
brought in its region of in�uence.

Electromagnetic interaction, which also abides inverse square law like gravitational force, is completely
described in terms of �eld concept. Theoretical conception of gravitational force �eld, however, is not
complete yet. For this reason, we would restrict treatment of gravitational force �eld to the extent it is
in agreement with well established known facts. In particular, we would not conceptualize about physical
existence of gravitational �eld unless we refer �general relativity�.

A body experiences gravitational force in the presence of another mass. This fact can be thought to be
the result of a process in which presence of a one mass modi�es the characteristics of the region around
itself. In other words, it creates a gravitational �eld around itself. When another mass enters the region of
in�uence, it experiences gravitational force, which is given by Newton's law of gravitation.

5.1 Field strength

Field strength (E) is equal to gravitational force experienced by unit mass in a gravitational �eld. Mathe-
matically,

E =
F

m

Its unit is N/kg. Field strength is a vector quantity and abides by the rules of vector algebra, including
superposition principle. Hence, if there are number of bodies, then resultant or net gravitational �eld due
to them at a given point is vector sum of individual �elds,

E = E1 + E2 + E3 + . . . . . . .

⇒ E = ΣEi

1This content is available online at <http://cnx.org/content/m15091/1.5/>.
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5.2 Signi�cance of �eld strength

An inspection of the expression of gravitational �eld reveals that its expression is exactly same as that of
acceleration of a body of mass, �m�, acted upon by an external force, �F�. Clearly,

E = a =
F

m

For this reason, gravitational �eld strength is dimensionally same as acceleration. Now, dropping vector
notation for action in a particular direction of force,

⇒ E = a =
F

m

We can test this assertion. For example, Earth's gravitational �eld strength can be obtained, by substi-
tuting for gravitational force between Earth of mass,"M", and a particle of mass, "m" :

⇒ E =
F

m
=
GMm

r2m
=
GM

r2
= g

Thus, Earth's gravitational �eld strength is equal to gravitational acceleration, �g�.
Field strength, apart from its interpretation for the action at a distance, is a convenient tool to map a

region and thereby �nd the force on a body brought in the �eld. It is something like knowing �unit rate�.
Suppose if we are selling pens and if we know its unit selling price, then it is easy to calculate price of
any numbers of pens that we sale. We need not compute the unit selling price incorporating purchase cost,
overheads, pro�t margins etc every time we make a sale.

Similar is the situation here. Once gravitational �eld strength in a region is mapped (known), we need not
be concerned about the bodies which are responsible for the gravitational �eld. We can compute gravitational
force on any mass that enters the region by simply multiplying the mass with the unit rate of gravitational
force i.e. �eld strength,

F = mE

In accordance with this interpretation, we determine gravitational force on a body brought in the gravi-
tational �eld of Earth by multiplying the mass with the gravitational �eld strength,

⇒ F = mE = mg

This approach has following advantages :
1: We can measure gravitational force on a body without reference to other body responsible for

gravitational �eld. In the context of Earth, for example, we compute gravitational force without any reference
to the mass of Earth. The concept of �eld strength allows us to study gravitational �eld in terms of the
mass of one body and as such relieves us from considering it always in terms of two body system. The e�ect
of one of two bodies is actually represented by its gravitational �eld strength.

2: It simpli�es mathematical calculation for gravitational force. Again referring to the context of
Earth's gravity, we see that we hardly ever use Newton's gravitational law. We �nd gravitational force
by just multiplying mass with gravitational �eld strength (acceleration). Imagine if we have to compute
gravitational force every time, making calculation with masses of Earth and the body and the squared
distance between them!

5.2.1 Comparison with electrostatic �eld

There is one very important aspect of gravitational �eld, which is unique to it. We can appreciate this special
feature by comparing gravitational �eld with electrostatic �eld. We know that the electrostatic force, like
gravitational force, also follows inverse square law. Electrostatic force for two point charges separated by a
linear distance, "r", is given by Coulomb's law as :
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FE =
1

4πε0
Qq

r2

The electrostatic �eld ( EE )is de�ned as the electrostatic force per unit positive charge and is expressed
as :

EE =
FE

q
=

1
4πε0

Qq

r2
q =

1
4πε0

Q

r2

The important point, here, is that electrostatic �eld is not equal to acceleration. Recall that Newton's
second law of motion connects force (any type) with "mass" and "acceleration" as :

F = ma

This relation is valid for all kinds of force - gravitational or electrostatic or any other type. What we
mean to say that there is no corresponding equation like "F=qa". Mass only is the valid argument of this
relation. As such, electrostatic �eld can not be equated with acceleration as in the case of gravitational �eld.

Thus, equality of "�eld strength" with "acceleration" is unique and special instance of gravitational �eld
- not a common feature of other �elds. As a matter of fact, this instance has a special signi�cance, which is
used to state "equivalence of mass" - the building block of general theory of relativity.

We shall discuss this concept in other appropriate context. Here, we only need to underline this important
feature of gravitational �eld.

5.2.2 Example

Problem 1: A charged particle of mass �m� carries a charge �q�. It is projected upward from Earth's surface
in an electric �eld �E�, which is directed downward. Determine the nature of potential energy of the particle
at a given height, �h�.

Solution : The charged particle is acted upon simultaneously by both gravitational and electrostatic
�elds. Here, gravity works against displacement. The work by gravity is, therefore, negative. Hence,
potential energy arising from gravitational �eld (with reference from surface) is positive as :

UG = −WG = − (−FGh) = mEGh = mgh

As given in the question, the electrostatic �eld is acting downward. Since charge on the particle is
positive, electrostatic force acts downward. It means that work by electrostatic force is also negative. Hence,
potential energy arising from electrostatic �eld (with reference from surface) is :

UE = −WE = − (−FEh) = qEEh = qEh

Total potential energy of the charged particle at a height �h� is :

⇒ U = UG + UE = (mgh+ qEh) = (mg + qE)h

The quantities in the bracket are constant. Clearly, potential energy is a function of height.
It is important to realize that description in terms of respective �elds enables us to calculate forces

without referring to either Newton's gravitation law or Coulomb's law of electrostatic force.

5.3 Gravitational �eld due to a point mass

Determination of gravitational force strength due to a point mass is easy. It is so because, Newton's law of
gravitation provides the expression for determining force between two particles.

Let us consider a particle of mass, "M", for which we are required to �nd gravitational �eld strength at a
certain point, "P". For convenience, let us consider that the particle is situated at the origin of the reference
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system. Let the point, where gravitational �eld is to be determined, lies at a distance "r" from the origin
on the reference line.

Gravitational �eld strength

Figure 5.1: Gravitational �eld at a point "P" due to mass "M"

We should make it a point to understand that the concept of gravitational �eld is essentially "one"
particle/ body/entity concept. We need to measure gravitational force at the point, "P", on a unit mass
as required by the de�nition of �eld strength. It does not exist there. In order to determine �eld strength,
however, we need to visualize as if unit mass is actually present there.

We can do this two ways. Either we visualize a point mass exactly of unit value or we visualize any mass,
"m", and then calculate gravitational force. In the later case, we divide the gravitational force as obtained
from Newton's law of gravitation by the mass to get the force per unit mass. In either case, we call this
point mass as test mass. If we choose to use a unit mass, then :

⇒ E = F =
GMX1
r2

=
GM

r2

On the other hand, if we choose any arbitrary test mass, "m", then :

⇒ E =
F

m
=
GMm

r2m
=
GM

r2

However, there is a small catch here. The test mass has its own gravitational �eld. This may unduly
a�ect determination of gravitational �eld due to given particle. In order to completely negate this possibility,
we may consider a mathematical expression as given here, which is more exact for de�ning gravitational �eld
:

E = lim
m→0

F

m

Nevertheless, we know that gravitational force is not a very strong force. The �eld of a particle of unit
mass can safely be considered negligible.

The expression for the gravitational �eld at point "P", as obtained above, is a scalar value. This ex-
pression, therefore, measures the magnitude of gravitational �eld - not its direction. We can realize from
the �gure shown above that gravitational �eld is actually directed towards origin, where the �rst particle is
situated. This direction is opposite to the positive reference direction. Hence, gravitational �eld strength in
vector form is preceded by a negative sign :

⇒ E =
F

m
= −GM

r2
^
r
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where "
^
r " is unit vector in the reference direction.

The equation obtained here for the gravitational �eld due to a particle of mass, "M", is the basic equation
for determining gravitational �eld for any system of particles or rigid body. The general idea is to consider
the system being composed of small elements, each of which can be treated at particle. We, then, need to
�nd the net or resultant �eld, following superposition principle. We shall use this technique to determine
gravitational �eld due to certain regularly shaped geometric bodies in the next module.

5.4 Example

Problem 2 : The gravitational �eld in a region is in xy-plane is given by 3i + j. A particle moves along
a straight line in this �eld such that work done by gravitation is zero. Find the slope of straight line.

Solution : The given gravitational �eld is a constant �eld. Hence, gravitational force on the particle
is also constant. Work done by a constant force is given as :

W = F.r

Let "m" be the mass of the particle. Then, work is given in terms of gravitational �eld as :

⇒W = mE.r

Work done in the gravitational �eld is zero, if gravitational �eld and displacement are perpendicular to
each other. If � s1 � and � s2 � be the slopes of the direction of gravitational �eld and that of straight path,
then the slopes of two quantities are related for being perpendicular as :
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Work by gravitational force

Figure 5.2: Gravitational �eld and displacement of particle are perpendicular to each other.

s1s2 = −1

Note that slope of a straight line is usually denoted by letter �m�. However, we have used letter �s� in
this example to distinguish it from mass, which is also represented by letter �m�.

In order to �nd the slope of displacement, we need to know the slope of the straight line, which is
perpendicular to the direction of gravitational �eld.

Now, the slope of the line of action of gravitational �eld is :

⇒ s1 =
1
3

Hence, for gravitational �eld and displacement to be perpendicular,

⇒ s1s2 =
(

1
3

)
s2 = −1

s2 = −3
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Gravitational �eld due to rigid bodies1

6.1 Gravitational �eld of rigid bodies

We shall develop few relations here for the gravitational �eld strength of bodies of particular geometric shape
without any reference to Earth's gravitation.

Newton's law of gravitation is stated strictly in terms of point mass. The expression of gravitational �eld
due to a particle, as derived from this law, serves as starting point for developing expressions of �eld strength
due to rigid bodies. The derivation for �eld strength for geometric shapes in this module, therefore, is based
on developing technique to treat a real body mass as aggregation of small elements and combine individual
e�ects. There is a bit of visualization required as we need to combine vectors, having directional property.

Along these derivations for gravitational �eld strength, we shall also establish Newton's shell theory,
which has been the important basic consideration for treating spherical mass as point mass.

The celestial bodies - whose gravitational �eld is appreciable and whose motions are subject of great
interest - are usually spherical. Our prime interest, therefore, is to derive expression for �eld strength of
solid sphere. Conceptually, a solid sphere can be considered being composed of in�nite numbers of closely
packed spherical shells. In turn, a spherical shell can be conceptualized to be aggregation of thin circular
rings of di�erent diameters.

The process of �nding the net e�ect of these elements �ts perfectly well with integration process. Our
major task, therefore, is to suitably set up an integral expression for elemental mass and then integrate the
elemental integral between appropriate limits. It is clear from the discussion here that we need to begin the
process in the sequence starting from ring �> spherical shell �> solid sphere.

6.1.1 Gravitational �eld due to a uniform circular ring

We need to �nd gravitational �eld at a point �P� lying on the central axis of the ring of mass �M� and radius
�a�. The arrangement is shown in the �gure. We consider a small mass �dm� on the circular ring. The
gravitational �eld due to this elemental mass is along PA. Its magnitude is given by :

1This content is available online at <http://cnx.org/content/m15104/1.2/>.
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Gravitational �eld due to a ring

Figure 6.1: The gravitational �eld is measured on axial point "P".

dE =
Gdm

PA2 =
Gdm

(a2 + r2)

We resolve this gravitational �eld in the direction parallel and perpendicular to the axis in the plane of
OAP.

Gravitational �eld due to a ring

Figure 6.2: The net gravitational �eld is axial.

dE|| = dEcosθ
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dE⊥ = dEsinθ

We note two important things. First, we can see from the �gure that measures of �y� and �θ� are same
for all elemental mass. Further, we are considering equal elemental masses. Therefore, the magnitude of
gravitational �eld due any of the elements of mass �dm� is same, because they are equidistant from point
�P�.

Second, perpendicular components of elemental �eld intensity for pair of elemental masses on diamet-
rically opposite sides of the ring are oppositely directed. On integration, these perpendicular components
will add up to zero for the whole of ring. It is clear that we can assume zero �eld strength perpendicular to
axial line, if mass distribution on the ring is uniform. For uniform ring, the net gravitational intensity will
be obtained by integrating axial components of elemental �eld strength only. Hence,

Gravitational �eld due to a ring

Figure 6.3: Perpendicular components cancel each other.

⇒ E =
∫
dEcosθ

⇒ E =
∫
Gdmcosθ
(a2 + r2)

The trigonometric ratio �cosθ� is a constant for all points on the ring. Taking out cosine ratio and other
constants from the integral,

⇒ E =
Gcosθ

(a2 + r2)

∫
dm

Integrating for m = 0 to m = M, we have :

⇒ E =
GMcosθ
(a2 + r2)

From triangle OAP,

⇒ cosθ =
r

(a2 + r2)
1
2



48 CHAPTER 6. GRAVITATIONAL FIELD DUE TO RIGID BODIES

Substituting for �cosθ� in the equation ,

⇒ E =
GMr

(a2 + r2)
3
2

For r = 0, E = 0. The gravitation �eld at the center of ring is zero. This result is expected also as
gravitational �elds due to two diametrically opposite equal elemental mass are equal and opposite and hence
balances each other.

6.1.1.1 Position of maximum gravitational �eld

We can get the maximum value of gravitational �eld by di�erentiating its expression w.r.t linear distance
and equating the same to zero,

dE

dr
= 0

This yields,

⇒ r =
a√
2

Substituting in the expression of gravitational �eld, the maximum �eld strength due to a circular ring is
:

⇒ Emax =
GMa

2
1
2
(
a2 + a2

2

) 3
2

=
GMa

3
√

3a2

The plot of gravitational �eld with axial distance shows the variation in the magnitude,
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Gravitational �eld due to a ring

Figure 6.4: The gravitational �eld along the axial line.

6.1.2 Gravitational �eld due to thin spherical shell

The spherical shell of radius �a� and mass �M� can be considered to be composed of in�nite numbers of thin
rings. We consider one such ring of in�nitesimally small thickness �dx� as shown in the �gure. We derive
the required expression following the sequence of steps as outlined here :
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Gravitational �eld due to thin spherical shell

Figure 6.5: The gravitational �eld is measured on axial point "P".

(i) Determine mass of the elemental ring in terms of the mass of shell and its surface area.

dm =
M

4πa2
X2πasinαdx =

Masinαdx
2a2

From the �gure, we see that :

dx = adα

Putting these expressions,

⇒ dm =
Masinαdx

2a2
=
Masinαadα

2a2
=
Msinαdα

2
(ii) Write expression for the gravitational �eld due to the elemental ring. For this, we employ the

formulation derived earlier for the ring,

⇒ dE =
Gdmcosθ
AP 2

Putting expression for elemental mass,

⇒ dE =
GMsinαdαcosθ

2y2

(v) Set up integral for the whole disc
We see here that gravitational �elds due to all concentric rings are directed towards the center of spherical

shell along the axis.
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⇒ E = GM

∫
sinαcosθdα

2y2

The integral expression has three varibles "α","θ" and "y".Clearly, we need to express variables in one
variable �x�. From triangle, OAP,

⇒ y2 = a2 + r2 − 2arcosα

Di�erentiating each side of the equation,

⇒ 2ydy = 2arsinαdα

⇒ sinαdα =
ydy

ar

Again from triangle OAP,

⇒ a2 = y2 + r2 − 2yrcosθ

⇒ cosθ =
y2 + r2 − a2

2yr

Putting these values in the integral,

⇒ E = GM

∫
dy
(
y2 + r2 − a2

)
4ar2y2

⇒ E = GM

∫
dy

4ar2

(
1− a2 − r2

y2

)
We shall decide limits of integration on the basis of the position of point �P� � whether it lies inside or

outside the shell. Integrating expression on right side between two general limits, initial ( L1 ) and �nal (
L2),

⇒ E = GM

L2∫
L1

dy

4ar2

(
1− a2 − r2

y2

)

⇒ E =
GM

4ar2

[
y +

a2 − r2

y

]L2

L1

6.1.2.1 Evaluation of integral for the whole shell

Case 1 : The point �P� lies outside the shell. The total gravitational �eld is obtained by integrating the
integral from y = r-a to y = r+a,

⇒ E =
GM

4ar2

[
y +

a2 − r2

y

]r+a

r−a

⇒ E =
GM

4ar2

[
r + a+

a2 − r2

r + a
− r + a− a2 − r2

r − a

]

⇒ E =
GM

4ar2

[
2a+

(
a2 − r2

)( 1
r + a

− 1
r − a

)]
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⇒ E =
GM

4ar2
X4a

⇒ E =
GM

r2

This is an important result. We have been using this result by the name of Newton's shell theory.
According to this theory, a spherical shell, for a particle outside it, behaves as if all its mass is concentrated
at its center. This is how we could calculate gravitational attraction between Earth and an apple. Note that
radius of the shell, �a�, does not come into picture.

Case 2 : The point �P� lies outside the shell. The total gravitational �eld is obtained by integrating
the integral from x = a-r to x = a+r,

⇒ E =
GM

4ar2

[
y +

a2 − r2

y

]a+r

a−r

⇒ E =
GM

4ar2

[
a+ r +

a2 − r2

a+ r
− a+ r − a2 − r2

a− r

]

⇒ E =
GM

4ar2

[
2r +

(
a2 − r2

)( 1
a+ r

− 1
a− r

)]

⇒ E =
GM

4ar2
[2r − 2r] = 0

This is yet another important result, which has been used to determine gravitational acceleration below
the surface of Earth. The mass residing outside the sphere drawn to include the point below Earth's surface,
does not contribute to gravitational force at that point.

The mass outside the sphere is considered to be composed of in�nite numbers of thin shells. The point
within the Earth lies inside these larger shells. As gravitational intensity is zero within a shell, the outer
shells do not contribute to the gravitational force on the particle at that point.

A plot, showing the gravitational �eld strength, is shown here for regions both inside and outside spherical
shell :
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Gravitational �eld due to thin spherical shell

Figure 6.6: The gravitational �eld along linear distance from center.

6.1.3 Gravitational �eld due to uniform solid sphere

The uniform solid sphere of radius �a� and mass �M� can be considered to be composed of in�nite numbers
of thin spherical shells. We consider one such spherical shell of in�nitesimally small thickness �dx� as shown
in the �gure. The gravitational �eld strength due to thin spherical shell at a point outside shell, which is at
a linear distance �r� from the center, is given by
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Gravitational �eld due to solid sphere

Figure 6.7: The gravitational �eld at a distance "r" from the center of sphere.

dE =
Gdm

r2

The gravitational �eld strength acts along the line towards the center of sphere. As such, we can add
gravitational �eld strengths of individual shells to obtain the �eld strength of the sphere. In this case, most
striking point is that the centers of all spherical shells are coincident at one point. This means that linear
distance between centers of spherical shell and the point ob observation is same for all shells. In turn, we can
conclude that the term � r2 � is constant for all spherical shells and as such can be taken out of the integral,

⇒ E =
∫
Gdm

r2
=
G

r2

∫
dm =

GM

r2

We can see here that a uniform solid sphere behaves similar to a shell. For a point outside, it behaves as
if all its mass is concentrated at its center. Note that radius of the sphere, �a�, does not come into picture.
Sphere behaves as a point mass for a point outside.

6.1.3.1 Gravitational �eld at an inside point

We have already derived this relation in the case of Earth.
For this reason, we will not derive this relation here. Nevertheless, it would be intuitive to interpret the

result obtained for the acceleration (�eld strength) earlier,
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Gravitational �eld inside solid sphere

Figure 6.8: The gravitational �eld at a distance "r" from the center of sphere.

⇒ g′ = g0

(
1− d

R

)
Putting value of �g0� and simplifying,

⇒ g′ = GM

R2

(
1− d

R

)
=
GM

R2

(
R− d
R

)
=
GMr

R3

As we have considered �a� as the radius of sphere here � not �R� as in the case of Earth, we have the
general expression for the �eld strength insider a uniform solid sphere as :

⇒ E =
GMr

a3

The �eld strength of uniform solid sphere within it decreases linearly within �r� and becomes zero as we
reach at the center of the sphere. A plot, showing the gravitational �eld strength, is shown here for regions
both inside and outside :
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Gravitational �eld due to uniform solid sphere

Figure 6.9: The gravitational �eld along linear distance from center.



Chapter 7

Gravitational �eld (application)1

Questions and their answers are presented here in the module text format as if it were an extension of the
treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory.
Solution presented is, therefore, treated as the part of the understanding process � not merely a Q/A session.
The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put
to real time situation.

7.1 Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to gravitational �eld. The questions
are categorized in terms of the characterizing features of the subject matter :

• Gravitational �eld
• Gravitational force
• Superposition principle

7.2 Gravitational �eld

Problem 1 : Calculate gravitational �eld at a distance �r� from the center of a solid sphere of uniform
density, �ρ�, and radius �R�. Given that r < R.

1This content is available online at <http://cnx.org/content/m15106/1.1/>.
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Gravitational �eld

Figure 7.1: Gravitational �eld inside a solid sphere.

Solution : The point is inside the solid sphere of uniform density. We apply the theorem that
gravitational �eld due to mass outside the sphere of radius �r� is zero at the point where �eld is being
calculated. Let the mass of the sphere of radius �r� be �m�, then :

m =
4
3
πr3ρ

The gravitational �eld due to this sphere on its surface is given by :

E =
Gm

r2
=
GX 4

3πr
3ρ

r2

⇒ E =
4Gπrρ

3

7.3 Gravitational force

Problem 2 : A sphere of mass �2M� is placed a distance �
√
3 R� on the axis of a vertical ring of radius �R�

and mass �M�. Find the force of gravitation between two bodies.
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Gravitational force

Figure 7.2: The center of sphere lies on the axis of ring.

Solution : Here, we determine gravitational �eld due to ring at the axial position, where center of
sphere lies. Then, we multiply the gravitational �eld with the mass of the sphere to calculate gravitational
force between two bodies.

The gravitational �eld due to ring on its axis is given as :

E =
GMx

(R2 + x2)
3
2

Putting values,

⇒ E =
GM
√

3R

{R2 +
(√

3R
)2} 3

2

⇒ E =
√

3GM
8R2

The sphere acts as a point mass. Therefore, the gravitational force between two bodies is :

⇒ F = 2ME =
2
√

3GM2

8R2
=
√

3GM2

4R2

7.4 Superposition principle

7.4.1

Problem 3 : A spherical cavity is made in a solid sphere of mass �M� and radius �R� as shown in the �gure.
Find the gravitational �eld at the center of cavity due to remaining mass.
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Superposition principle

Figure 7.3: The gravitational �eld at the center of spherical cavity

Solution : According to superposition principle, gravitational �eld (E) due to whole mass is equal to
vector sum of gravitational �eld due to remaining mass ( E1 ) and removed mass ( E2 ).

E = E1 + E2

The gravitation �eld due to a uniform solid sphere is zero at its center. Therefore, gravitational �eld
due to removed mass is zero at its center. It means that gravitational �eld due to solid sphere is equal to
gravitational �eld due to remaining mass. Now, we know that �E� at the point acts towards center of sphere.
As such both �E� and � E1 � acts along same direction. Hence, we can use scalar form,

E1 = E

Now, gravitational �eld due to solid sphere of radius �R� at a point �r� within the sphere is given as :

E =
GMr

R3

Here,
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Superposition principle

Figure 7.4: The gravitational �eld at the center of spherical cavity

r = R− R

2
=
R

2
Thus,

⇒ E =
GMR

2R3
=
GM

2R2

Therefore, gravitational �eld due to remaining mass, � E1 �, is :

⇒ E1 = E =
GM

2R2

7.4.2

Problem 4 : Two concentric spherical shells of mass � m1 � and � m2 � have radii � r1 � and � r2 �
respectively, where r2> r1. Find gravitational intensity at a point, which is at a distance �r� from the
common center for following situations, when it lies (i) inside smaller shell (ii) in between two shells and (iii)
outside outer shell.

Solution : Three points �A�, �B� and �C� corresponding to three given situations in the question are
shown in the �gure :
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Superposition principle

Figure 7.5: The gravitational �eld at three di�erent points

The point inside smaller shell is also inside outer shell. The gravitational �eld inside a shell is zero.
Hence, net gravitational �eld at a position inside the smaller shell is zero,

E1 = 0

The gravitational �eld strength due to outer shell ( Eo ) at a point inside is zero. On the other hand,
gravitational �eld strength due to inner shell ( Ei) at a point outside is :

⇒ Ei =
GM

r2

Hence, net gravitational �eld at position in between two shells is :

E2 = Ei + Eo =
Gm1

r2

A point outside outer shell is also outside inner shell. Hence, net �eld strength at a position outside outer
shell is :

E3 = Ei+ Eo =
Gm1

r2
+
Gm2

r2

⇒ E3 =
G (m1 +m2)

r2
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Gravitational potential1

Description of force having �action at a distance� is best described in terms of force �eld. The �per unit�
measurement is central idea of a force �eld. The �eld strength of a gravitational �eld is the measure of
gravitational force experienced by unit mass. On a similar footing, we can associate energy with the force
�eld. We shall de�ne a quantity of energy that is associated with the position of unit mass in the gravitational
�eld. This quantity is called gravitational potential (V) and is di�erent to potential energy as we have studied
earlier. Gravitational potential energy (U) is the potential energy associated with any mass - as against unit
mass in the gravitational �eld.

Two quantities (potential and potential energy) are though di�erent, but are closely related. From the
perspective of force �eld, the gravitational potential energy (U) is the energy associated with the position of
a given mass in the gravitational �eld. Clearly, two quantities are related to each other by the equation,

U = mV

The unit of gravitational potential is Joule/kg.
There is a striking parallel among various techniques that we have so far used to study force and motion.

One of the techniques employs vector analysis, whereas the other technique employs scalar analysis. In
general, we study motion in terms of force (vector context), using Newton's laws of motion or in terms of
energy employing �work-kinetic energy� theorem or conservation law (scalar context).

In the study of conservative force like gravitation also, we can study gravitational interactions in terms
of either force (Newton's law of gravitation) or energy (gravitational potential energy). It follows, then,
that study of conservative force in terms of �force �eld� should also have two perspectives, namely that of
force and energy. Field strength presents the perspective of force (vector character of the �eld), whereas
gravitational potential presents the perspective of energy (scalar character of �eld).

8.1 Gravitational potential

The de�nition of gravitational potential energy is extended to unit mass to de�ne gravitational potential.

De�nition 8.1: Gravitational potential
The gravitational potential at a point is equal to �negative� of the work by the gravitational force
as a particle of unit mass is brought from in�nity to its position in the gravitational �eld.

Or

De�nition 8.2: Gravitational potential
The gravitational potential at a point is equal to the work by the external force as a particle of
unit mass is brought from in�nity to its position in the gravitational �eld.

1This content is available online at <http://cnx.org/content/m15105/1.2/>.
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Mathematically,

V = −WG = −
r∫
∞

FGdr

m
= −

r∫
∞

Edr

Here, we can consider gravitational �eld strength, �E� in place of gravitational force, � FG � to account
for the fact we are calculating work per unit mass.

8.2 Change in gravitational potential in a �eld due to point mass

The change in gravitational potential energy is equal to the negative of work by gravitational force as a
particle is brought from one point to another in a gravitational �eld. Mathematically,

∆U = −
r2∫
r1

FGdr

Clearly, change in gravitational potential is equal to the negative of work by gravitational force as a
particle of unit mass is brought from one point to another in a gravitational �eld. Mathematically, :

⇒ ∆V =
∆U
m

= −
r2∫
r1

Edr

We can easily determine change in potential as a particle is moved from one point to another in a
gravitational �eld. In order to �nd the change in potential di�erence in a gravitational �eld due to a point
mass, we consider a point mass �M�, situated at the origin of reference. Considering motion in the reference
direction of �r�, the change in potential between two points at a distance �r� and �r+dr� is :

Gravitational potential

Figure 8.1: Gravitational potential di�erence in a gravitational �eld due to a point.

⇒ ∆V = −
r2∫
r1

GMdr

r2

⇒ ∆V = −GM
[
−1
r

]r2

r1
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⇒ ∆V = GM

[
1
r1
− 1
r2

]
In the expression, the ratio � 1

r1
� is smaller than � 1

r2
�. Hence, change in gravitational potential is

positive as we move from a point closer to the mass responsible for gravitational �eld to a point away from
it.

8.2.1 Example

Problem 1: A particle of mass 2 kg is brought from one point to another. The increase in kinetic energy
of the mass is 4 J, whereas work done by the external force is -10 J. Find potential di�erence between two
points.

Solution : So far we have considered work by external force as equal to change in potential energy.
However, if we recall, then this interpretation of work is restricted to the condition that work is done slowly
in such a manner that no kinetic energy is imparted to the particle. Here, this is not the case. In general, we
know from the conservation of mechanical energy that work by external force is equal to change in mechanical
energy:

WF = ∆Emech = ∆K + ∆U

Putting values,

⇒ −10 = 4 + ∆U

⇒ ∆U = −10− 4 = −14 J

As the change in potential energy is negative, it means that �nal potential energy is less than initial
potential energy. It means that �nal potential energy is more negative than the initial.

Potential change is equal to potential energy change per unit mass. The change in potential energy per
unit mass i.e. change in potential is :

⇒ ∆V =
∆U
m

= −14
2

= −7 J

8.3 Absolute gravitational potential in a �eld due to point mass

The expression for change in gravitational potential is used to �nd the expression for the potential at a point
by putting suitable values. When,

V1 = 0

V2 = V (say)

r1 =∞

r2 = r (say)

⇒ v = −GM
r
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This is the expression for determining potential at a point in the gravitational �eld of a particle of mass
�M�. We see here that gravitational potential is a negative quantity. As we move away from the particle, 1/r
becomes a smaller fraction. Therefore, gravitational potential increases being a smaller negative quantity.
The magnitude of potential, however, becomes smaller. The maximum value of potential is zero for r = ∞.

This relation has an important deduction. We know that particle of unit mass will move towards the
particle responsible for the gravitational �eld, if no other force exists. This fact underlies the natural tendency
of a particle to move from a higher gravitational potential (less negative) to lower gravitational potential
(more negative). This deduction, though interpreted in the present context, is not speci�c to gravitational
�eld, but is a general characteristic of all force �elds. This aspect is more emphasized in the electromagnetic
�eld.

8.4 Gravitational potential and �eld strength

A change in gravitational potential (∆V) is equal to the negative of work by gravity on a unit mass,

∆V = −E∆r

For in�nitesimal change, we can write the equation,

⇒ dV = −Edr

⇒ E = −dV
dr

Thus, if we know potential function, we can �nd corresponding �eld strength. In words, gravitational
�eld strength is equal to the negative potential gradient of the gravitational �eld. We should be slightly
careful here. This is a relationship between a vector and scalar quantity. We have taken the advantage by
considering �eld in one direction only and expressed the relation in scalar form, where sign indicates the
direction with respect to assumed positive reference direction. In three dimensional region, the relation is
written in terms of a special vector operator called �grad�.

Further, we can see here that gravitational �eld � a vector � is related to gravitational potential (scalar)
and position in scalar form. We need to resolve this so that evaluation of the di�erentiation on the right
yields the desired vector force. As a matter of fact, we handle this situation in a very unique way. Here, the
di�erentiation in itself yields a vector. In three dimensions, we de�ne an operator called �grad� as :

grad =
(
∂

∂x
i+

∂

∂y
j +

∂

∂z
k

)
where " ∂

∂x � is partial di�erentiation operator with respect to "x". This is same like normal di�erentiation
except that it considers other dimensions (y,z) constant. In terms of �grad�,

E = −grad V

8.5 Gravitational potential and self energy of a rigid body

Gravitational potential energy of a particle of mass �m� is related to gravitational potential of the �eld by
the equation,

U = mV

This relation is quite handy in calculating potential energy and hence �self energy� of a system of particles
or a rigid body. If we recall, then we calculated �self energy� of a system of particles by a summation process of
work in which particles are brought from in�nity one by one. The important point was that the gravitational
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force working on the particle kept increasing as more and more particles were assembled. This necessitated
to calculate work by gravitational forces due to each particle present in the region, where they are assembled.

Now, we can use the �known� expressions of gravitational potential to determine gravitational potential
energy of a system, including rigid body. We shall derive expressions of potential energy for few regular
geometric bodies in the next module. One of the important rigid body is spherical shell, whose gravitational
potential is given as :

Gravitational potential due to spherical shell

Figure 8.2: Gravitational potential at points inside and outside a spherical shell.

For a point inside or on the shell of radius �a�,

V = −GM
a

This means that potential inside the shell is constant and is equal to potential at the surface.
For a point outside shell of radius �a� (at a linear distance, �r� from the center of shell) :

V = −GM
r

This means that shell behaves as a point mass for potential at a point outside the shell. These known
expressions allow us to calculate gravitational potential energy of the spherical shell as explained in the
section below.

8.5.1 Self energy of a spherical shell

The self potential energy is equal to work done by external force in assembling the shell bit by bit. Since
zero gravitational potential energy is referred to in�nity, the work needs to be calculated for a small mass
at a time in bringing the same from in�nity.

In order to calculate work, we draw a strategy in which we consider that some mass has already been
placed symmetrically on the shell. As such, it has certain gravitational potential. When a small mass �dm�
is brought, the change in potential energy is given by :
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Self energy of a spherical shell

Figure 8.3: Self energy is equal to work in bringing particles one by one from the in�nity.

dU = V dm = −Gm
R

dm

We can determine total potential energy of the shell by integrating the expressions on either side of the
equation,

⇒
∫
dU = −G

R

∫
mdm

Taking constants out from the integral on the right side and taking into account the fact that initial
potential energy of the shell is zero, we have :

⇒ U = −G
R

[
m2

2

]M

0

⇒ U = −GM
2

2R
This is total potential energy of the shell, which is equal to work done in bringing mass from in�nity to

form the shell. This expression, therefore, represents the self potential energy of the shell.
In the same manner, we can also �nd �self energy� of a solid sphere, if we know the expression for the

gravitational potential due to a solid sphere.
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Gravitational potential due to rigid
body1

We have derived expression for gravitational potential due to point mass of mass, �M�, as :

V = −GM
r

We can �nd expression of potential energy for real bodies by considering the same as aggregation of small
elements, which can be treated as point mass. We can, then, combine the potential algebraically to �nd the
potential due to the body.

The derivation is lot like the derivation of gravitational �eld strength. There is, however, one important
di�erence. Derivation of potential expression combines elemental potential � a scalar quantity. As such, we
can add contributions from elemental parts algebraically without any consideration of direction. Indeed, it
is a lot easier proposition.

Again, we are interested in �nding gravitational potential due to a solid sphere, which is generally the
shape of celestial bodies. As discussed earlier in the course, a solid sphere is composed of spherical shells
and spherical shell, in turn, is composed of circular rings of di�erent radii. Thus, we proceed by determining
expression of potential from ring �> spherical shell �> solid sphere.

9.1 Gravitational potential due to a uniform circular ring

We need to �nd gravitational potential at a point �P� lying on the central axis of the ring of mass �M� and
radius �a�. The arrangement is shown in the �gure. We consider a small mass �dm� on the circular ring.
The gravitational potential due to this elemental mass is :

1This content is available online at <http://cnx.org/content/m15108/1.3/>.
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Gravitational potential due to a uniform circular ring

Figure 9.1: Gravitational potential at an axial point

dV = −Gdm
PA

= − Gdm

(a2 + r2)
1
2

We can �nd the sum of the contribution by other elements by integrating above expression. We note that
all elements on the ring are equidistant from the point, �P�. Hence, all elements of same mass will contribute
equally to the potential. Taking out the constants from the integral,

⇒ V = − G

(a2 + r2)
1
2

M∫
0

dm

⇒ V = − GM

(a2 + r2)
1
2

= −GM
y

This is the expression of gravitational potential due to a circular ring at a point on its axis. It is clear
from the scalar summation of potential due to elemental mass that the ring needs not be uniform. As no
directional attribute is attached, it is not relevant whether ring is uniform or not? However, we have kept
the nomenclature intact in order to correspond to the case of gravitational �eld, which needs to be uniform
for expression as derived. The plot of gravitational potential for circular ring is shown here as we move away
from the center.
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Gravitational potential due to a uniform circular ring

Figure 9.2: The plot of gravitational potential on axial position

Check : We can check the relationship of potential, using di�erential equation that relates gravitational
potential and �eld strength.

⇒ E = −dV
dr

=
d

dr
{ GM

(a2 + r2)
1
2
}

⇒ E = GMx− 1
2
X
(
a2 + r2

)− 1
2−1

X2r

⇒ E = − GMr

(a2 + r2)
3
2

The result is in excellent agreement with the expression derived for gravitational �eld strength due to a
uniform circular ring.

9.2 Gravitational potential due to thin spherical shell

The spherical shell of radius �a� and mass �M� can be considered to be composed of in�nite numbers of thin
rings. We consider one such thin ring of in�nitesimally small thickness �dx� as shown in the �gure. We
derive the required expression following the sequence of steps as outlined here :
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Gravitational potential due to thin spherical shell

Figure 9.3: Gravitational �eld due to thin spherical shell at a distance "r"

(i) Determine mass of the elemental ring in terms of the mass of shell and its surface area.

dm =
M

4πa2
X2πasinαdx =

Masinαdx
2a2

From the �gure, we see that :

dx = adα

Putting these expressions,

⇒ dm =
Masinαdx

2a2
=
Masinαadα

2a2
=
Msinαdα

2
(ii) Write expression for the gravitational potential due to the elemental ring. For this, we employ the

formulation derived earlier,

dV = −Gdm
y

Putting expression for elemental mass,

⇒ dV = −GMsinαdα
2y

(i) Set up integral for the whole disc

⇒ V = −GM
∫

sinαdα
2y
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Clearly, we need to express variables in one variable �x�. From triangle, OAP,

y2 = a2 + r2 − 2arcosα

Di�erentiating each side of the equation,

⇒ 2ydy = 2arsinαdα

⇒ sinαdα =
ydy

ar

Replacing expression in the integral,

⇒ V = −GM
∫

dy

2ar

We shall decide limits of integration on the basis of the position of point �P� � whether it lies inside or
outside the shell. Integrating expression on right side between two general limits, initial ( L1 ) and �nal (
L2 ),

⇒ V = −GM
2ar

[y]L2
L1

9.2.1 Case 1: Gravitational potential at a point outside

The total gravitational �eld is obtained by integrating the integral from y = r-a to y = r+a,

⇒ V = −GM
2ar

[y]r+a
r−a

⇒ V = −GM
2ar

[[r + a− r + a]] = −GM
2ar

2a

⇒ V − GM

r

This is an important result. It again brings the fact that a spherical shell, for a particle outside it, behaves
as if all its mass is concentrated at its center. In other words, a spherical shell can be considered as particle
for an external point.

Check : We can check the relationship of potential, using di�erential equation that relates gravitational
potential and �eld strength.

E = −dV
dr

=
d

dr

GM

r

⇒ E = −GMX − 1Xr−2

⇒ E = −GM
r2

The result is in excellent agreement with the expression derived for gravitational �eld strength outside a
spherical shell.
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9.2.2 Case 2: Gravitational potential at a point inside

The total gravitational �eld is obtained by integrating the integral from y = a-r to y = a+r,

⇒ V = −GM
2ar

[y]a+r
a−r

We can see here that "a-r" involves mass of the shell to the right of the point under consideration, whereas
"a+r" involves mass to the left of it. Thus, total mass of the spherical shell is covered by the limits used.
Now,

⇒ V = −GM
2ar

[a+ r − a+ r] = −GM
2ar

2r = −GM
a

The gravitational potential is constant inside the shell and is equal to the potential at its surface. The
plot of gravitational potential for spherical shell is shown here as we move away from the center.

Gravitational potential due to thin spherical shell

Figure 9.4: The plot of gravitational potential inside spherical shell

Check : We can check the relationship of potential, using di�erential equation that relates gravitational
potential and �eld strength.

E = −dV
dr

= − d

dr

GM

a

⇒ E = 0

The result is in excellent agreement with the result obtained for gravitational �eld strength inside a
spherical shell.
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9.3 Gravitational potential due to uniform solid sphere

The uniform solid sphere of radius �a� and mass �M� can be considered to be composed of in�nite numbers
of thin spherical shells. We consider one such thin spherical shell of in�nitesimally small thickness �dx� as
shown in the �gure.

Gravitational potential due to solid sphere

Figure 9.5: Solid sphere is composed of in�nite numbers of thin spherical shells

9.3.1 Case 1 : The point lies outside the sphere

In this case, potential due to elemental spherical shell is given by :

dV = −Gdm
r

In this case, most striking point is that the centers of all spherical shells are coincident at center of sphere.
This means that linear distance between centers of spherical shells and the point of observation is same for
all shells. In turn, we conclude that the term �r� is constant for all spherical shells and as such can be taken
out of the integral,

⇒ V = −G
r

∫
dm

⇒ V = −GM
r

9.3.2 Case 2 : The point lies inside the sphere

We calculate potential in two parts. For this we consider a concentric smaller sphere of radius �r� such that
point �P� lies on the surface of sphere. Now, the potential due to whole sphere is split between two parts :
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Gravitational potential due to solid sphere

Figure 9.6: The solid sphere is split in two parts - a smaller sphere of radius "r" and remaining part
of the solid sphere.

V = VS + VR

Where " VS" denotes potential due to solid sphere of radius �r� and " VS " denotes potential due to
remaining part of the solid sphere between x = r and x = a. The potential due to smaller sphere is :

⇒ VS = −GM ′
r

The mass, �M�' of the smaller solid sphere is :

M ′ = 3M
4πa3

X
4πr3

3
=
Mr3

a3

Putting in the expression of potential, we have :

⇒ VS = −GMr2

a3

In order to �nd the potential due to remaining part, we consider a spherical shell of thickness �dx� at a
distance �x� from the center of sphere. The shell lies between x = r and x =a. The point �P� is inside this
thin shell. As such potential due to the shell at point �P� inside it is constant and is equal to potential at
the spherical shell. It is given by :



77

Gravitational potential due to remaining part

Figure 9.7: A spherical shell between point and the surface of solid sphere

⇒ dVR = −Gdm
x

We need to calculate the mass of the thin shell,

⇒M ′ = 3M
4πa3

X4πx2dx =
3Mx2dx

a3

Substituting in the expression of potential,

⇒ dVR = −G3Mx2dx

a3x

We integrate the expression for obtaining the potential at �P� between limits x = r and x =a,

⇒ VR = −3GM
a3

a∫
r

xdx

⇒ VR = −3GM
a3

[
x2

2

]a

r

⇒ VR = −3GM
2a3

(
a2 − r2

)
Adding two potentials, we get the expression of potential due to sphere at a point within it,

⇒ VR = −GMr2

a3
− 3GM

2a3

(
a2 − r2

)
⇒ VR = −GM

2a3

(
3a2 − r2

)
This is the expression of gravitational potential for a point inside solid sphere. The potential at the center

of sphere is obtained by putting r = 0,
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⇒ VC = −3GM
2a

This may be an unexpected result. The gravitational �eld strength is zero at the center of a solid sphere,
but not the gravitational potential. However, it is entirely possible because gravitational �eld strength is
rate of change in potential, which may be zero as in this case.

The plot of gravitational potential for uniform solid sphere is shown here as we move away from the
center.

Gravitational potential due to solid sphere

Figure 9.8: The plot of gravitational potential for uniform solid sphere



Chapter 10

Gravitational potential (application)1

Questions and their answers are presented here in the module text format as if it were an extension of the
treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory.
Solution presented is, therefore, treated as the part of the understanding process � not merely a Q/A session.
The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put
to real time situation.

10.1 Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to gravitational �eld. The questions
are categorized in terms of the characterizing features of the subject matter :

• Potential
• Gravitational �eld
• Potential energy
• Conservation of mechanical energy

10.2 Potential

10.2.1

Problem 1 : A particle of mass �m� is placed at the center of a uniform spherical shell of equal mass and
radius �R�. Find the potential at a distance �R/4� from the center.

Solution : The potential at the point is algebraic sum of potential due to point mass at the center and
spherical shell. Hence,

V = −Gm
R
4

− Gm

R

⇒ V = −5Gm
R

1This content is available online at <http://cnx.org/content/m15109/1.2/>.
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10.2.2

Problem 2 : The gravitational �eld due to a mass distribution is given by the relation,

E =
A

x2

Find gravitational potential at �x�.
Solution : Gravitational �eld is equal to negative of �rst di�erential with respect to displacement in a

given direction.

E = −dV
dx

Substituting the given expression for �E�, we have :

⇒ A

x2
= −dV

dx

⇒ dV = −Adx
x2

Integrating between initial and �nal values of in�nity and �x�,

⇒ ∆V = Vf − Vi = −A
∫
dx

x2

We know that potential at in�nity is zero gravitational potential reference. Hence, Vi = 0. Let Vf = V,
then:

⇒ V = −A [−1/x]x∞ = −A
[
− 1
x

+ 0
]

=
A

x

10.3 Gravitational �eld

Problem 3 : A small hole is created on the surface of a spherical shell of mass, �M� and radius �R�. A
particle of small mass �m� is released a bit inside at the mouth of the shell. Describe the motion of particle,
considering that this set up is in a region free of any other gravitational force.
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Gravitational force

Figure 10.1: A particle of small mass �m� is released at the mouth of hole.

Solution : The gravitational potential of a shell at any point inside the shell or on the surface of shell
is constant and it is given by :

V = −GM
R

The gravitational �eld,�E�, is :

E = −dV
dr

As all quantities in the expression of potential is constant, its di�erentiation with displacement is zero.
Hence, gravitational �eld is zero inside the shell :

E = 0

It means that there is no gravitational force on the particle. As such, it will stay where it was released.

10.4 Potential energy

Problem 4 : A ring of mass �M� and radius �R� is formed with non-uniform mass distribution. Find the
minimum work by an external force to bring a particle of mass �m� from in�nity to the center of ring.

Solution : The work done in carrying a particle slowly from in�nity to a point in gravitational �eld is
equal to potential energy of the �ring-particle� system. Now, Potential energy of the system is :

WF = U = mV

The potential due to ring at its center is independent of mass-distribution. Recall that gravitational
potential being a scalar quantity are added algebraically for individual elemental mass. It is given by :

V = −GM
r

Hence, required work done,
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⇒WF = U = −GMm

r

The negative work means that external force and displacement are opposite to each other. Actually, such
is the case as the particle is attracted into gravitational �eld, external force is applied so that particle does
not acquire kinetic energy.

10.5 Conservation of mechanical energy

Problem 5 : Imagine that a hole is drilled straight through the center of Earth of mass �M� and radius
�R�. Find the speed of particle of mass dropped in the hole, when it reaches the center of Earth.

Solution : Here, we apply conservation of mechanical energy to �nd the required speed. The initial
kinetic energy of the particle is zero.

Ki = 0

On the other hand, the potential energy of the particle at the surface is :

Ui = mV i = −GMm

R

Let �v� be the speed of the particle at the center of Earth. Its kinetic energy is :

Kf =
1
2
mv2

The potential energy of the particle at center of Earth is :

Uf = mVf = −3GMm

2R
Applying conservation of mechanical energy,

Ki + Ui = Kf + Uf

⇒ 0− GMm

R
=

1
2
mv2 − 3GMm

2R

v =

√(
GM

R

)
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Arti�cial satellites1

The motion of a satellite or space-station is a direct consequence of Earth's gravity. Once launched in the
appropriate orbit, these man-made crafts orbit around Earth without any propulsion. In this module, we
shall study basics of satellite motion without going into details of the technology. Also, we shall develop
analysis framework of arti�cial satellite, which can as well be extended to analysis of natural satellite like
our moon. For the analysis here, we shall choose a simple framework of �two � body� system, one of which
is Earth.

We should be aware that gravity is not the only force of gravitation working on the satellite, particularly if
satellite is far o� from Earth's surface. But, Earth being the closest massive body, its gravitational attraction
is dominant to the extent of excluding e�ect of other bodies. For this reason, our analysis of satellite motion
as �isolated two body system� is good �rst approximation.

Mass of arti�cial satellite is negligible in comparison to that of Earth. The �center of mass� of the
�two body system� is about same as the center of Earth. There is possibility of di�erent orbits, which are
essentially elliptical with di�erent eccentricity. A satellite close to the surface up to 2000 km describes nearly
a circular trajectory. In this module, we shall con�ne ourselves to the analysis of satellites having circular
trajectory only.

11.1 Speed of the satellite

Satellites have speci�c orbital speed to move around Earth, depending on its distance from the center of
Earth. The satellite is launched from the surface with the help of a rocket, which parks it in particular orbit
with a tangential speed appropriate for that orbit. Since satellite is orbiting along a circular path, there is
requirement for the provision of centripetal force, which is always directed towards the center of orbit. This
requirement of centripetal force is met by the force of gravity. Hence,

1This content is available online at <http://cnx.org/content/m15114/1.4/>.
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Satellite

Figure 11.1: Gravitational attraction provides for the requirement of centripetal force for circular
motion of satellite.

GMm

r2
=
mv2

r

⇒ v =

√(
GM

r

)
where �M� is Earth's mass and �r� is linear distance of satellite from the "center of mass" of Earth.
The important thing to realize here are : (i) orbital speed of the satellite is independent of the mass of

the satellite (ii) a satellite at a greater distance moves with lesser velocity. As the product �GM� appearing
in the numerator of the expression is constant, we can see that

⇒ v ∝ 1√
r

This conclusion is intuitive in the sense that force of gravitation is lesser as we move away from Earth's
surface and the corresponding centripetal force as provided by gravity is smaller. As such, orbital speed is
lesser.

This fact has compounding e�ect on the time period of the satellite. In the �rst place, a satellite at a
greater distance has to travel a longer distance in one revolution than the satellite closer to Earth's surface.
At the same time, orbital speed is lesser as we move away. It is, then, imperative that time period of
revolution increases for satellite at greater distance.

We can write the equation of orbital speed in terms of acceleration due to gravity at the surface (g = g0
), which is given by :

g =
GM

R2
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⇒ GM = gR2

Substituting in the equation of orbital velocity, we have :

⇒ v =

√(
GM

r

)
=

√(
gR2

r

)
=

√(
gR2

R+ h

)
where �h� is the vertical height of the satellite above the surface. Rearranging,

⇒ v = R

√(
g

R+ h

)

11.2 Time period of revolution

Time period of revolution is equal to time taken to travel the perimeter of circular path. The time period of
rotation is :

T =
2πr
v

Substituting expression of �v� as obtained earlier,

T =
2πr

3
2√

(GM)

This is the expression of time period for a satellite revolving in a circular orbit. Like orbital speed, the
time period is also independent of the mass of the satellite. Now, squaring both sides, we have :

⇒ T 2 =
2πr3

GM

Clearly, square of time period of a satellite is proportional the cube of the linear distance for the circular
orbit,

⇒ T 2 ∝ r3

11.3 Example

Problem 1: Two satellites revolve around Earth along a coplanar circular orbit in the plane of equator.
They move in the same sense of direction and their periods are 6 hrs and 24 hrs respectively. The satellite
having period of 6 hrs is at a distance 10000 km from the center of Earth. When the satellites are at
the minimum possible separation between each other, �nd the magnitude of relative velocity between two
satellites.

Solution : Let us denote two satellites with subscripts �1� and �2�. Let the satellite designated with �1�
is closer to the Earth. The positions of satellites, corresponding to minimum possible separation, are shown
in the �gure.
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Pair of satellites

Figure 11.2: Two satellites move around Earth in two concentric circular orbits.

The distance between center of Earth and the satellite �1� is 10000 km, but this data is not available for
the other satellite. However, we can evaluate other distance, using the fact that square of time period of a
satellite is proportional to the cube of the linear distance for the circular orbit.

r32
r31

=
T 2

2

T 2
1

=
(

24
6

)2

= 16

⇒ r2
r1

= 2

⇒ r2 = 2r1 = 2x104 = 2X104 km

We can now determine velocity of each satellite as :

v =
2πr
T

For the �rst satellite,

⇒ v1 =
2πX10000

6
=

10000π
3

For the second satellite,

⇒ v2 =
2πX20000

24
=

10000π
6
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Hence, magnitude of relative velocity is :

⇒ v1 − v2 =
π

6
X10000 = 5238 km/hr

11.4 Energy of �Earth-satellite� system

For consideration of energy, Earth can be treated as particle of mass �M�. Thus, potential energy of �Earth
� satellite� as two particles system is given by :

U = −GMm

R

Since expression of orbital speed of the satellite is known, we can also determine kinetic energy of the
satellite as :

K =
1
2
mv2

Putting expression of speed, �v�, as determined before,

⇒ K =
GMm

2r
Note that kinetic energy of the satellite is positive, which is consistent with the fact that kinetic energy

can not be negative. Now, mechanical energy is algebraic sum of potential and kinetic energy. Hence,
mechanical energy of �Earth � satellite� system is :

⇒ E = K + U =
GMm

2r
− GMm

r

⇒ E = −GMm

2r
Here, total mechanical energy of the system is negative. We shall subsequently see that this is charac-

teristic of a system, in which bodies are bounded together by internal force.

11.4.1 Relation among energy types

The expression of mechanical energy of the �Earth � satellite� system is typical of two body system in which
one body revolves around other along a circular path. Particularly note the expression of each of the energy
in the equation,

E = K + U

⇒ −GMm

2r
=
GMm

2r
− GMm

r

Comparing above two equations, we see that magnitude of total mechanical energy is equal to kinetic
energy, but di�erent in sign. Hence,

E = −K

Also, we note that total mechanical energy is half of potential energy. Hence,

E =
U

2
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These relations are very signi�cant. We shall �nd resemblance of forms of energies in the case of Bohr's
orbit as well. In that case, nucleus of hydrogen atom and electron form the two � body system and are held
together by the electrostatic force.

Importantly, it provides an unique method to determine other energies, if we know any of them. For
example, if the system has mechanical energy of −200X106 J , then :

K = −E = −
(
−200X106

)
= 200X106 J

and

U = 2E = −400X106 J

11.4.2 Energy plots of a satellite

An inspection of the expression of energy forms reveals that that linear distance �r� is the only parameter
that can be changed for a satellite of given mass, �m�. From these expressions, it is also easy to realize that
they have similar structure apart from having di�erent signs. The product �GMm� is divided by �r� or �2r�.
This indicates that nature of variation in their values with linear distance �r� should be similar.

Energy plots

Figure 11.3: Plots of kinetic, potential and mechanical energy .vs. distance

Since kinetic energy is a positive quantity, a plot of kinetic energy .vs. linear distance, �r�, is a hyperbola
in the �rst quadrant. The expression of mechanical energy is exactly same except for the negative sign. Its
plot with linear distance, therefore, is an inverted replica of kinetic energy plot in fourth quadrant. Potential
energy is also negative like mechanical energy. Its plot also falls in the fourth quadrant. However, magnitude
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of potential energy is greater than that of mechanical energy as such the plot is displaced further away from
the origin as shown in the �gure.

From plots, we can conclude one important aspect of zero potential reference at in�nity. From the �gure,
it is clear that as the distance increases and becomes large, not only potential energy, but kinetic energy
also tends to become zero. We can, therefore, conclude that an object at in�nity possess zero potential and
kinetic energy. In other words, mechanical energy of an object at in�nity is considered zero.

11.5 Gravitational binding energy

A system is bounded when constituents of the system are held together. The �Earth-satellite� system is a
bounded system as members of the system are held together by gravitational attraction. Subsequently, we
shall study such other bounded systems, which exist in other contexts as well. Bounded system of nucleons
in a nucleus is one such example.

The characterizing aspect of a bounded system is that mechanical energy of the system is negative.
However, we need to qualify that it is guaranteed to be negative when zero reference potential energy is at
in�nity.

Let us check out this requirement for the case of �Earth-satellite� system. The mechanical energy of
Earth- satellite system is indeed negative :

E = −GMm
2r

where �M� and �m� are the mass of Earth and satellite. Hence, "Earth - satellite" system is a bounded
system.

We can infer from the discussion of a bounded system that the "binding energy" is the amount of energy
required to disintegrate (dismember) a bounded system. For example, we can consider a pebble lying on
Earth's surface. What is the energy required to take this pebble far o� in the interstellar space, where Earth's
gravity ceases to exist? We have seen that in�nity serves as a theoretical reference, where gravitational �eld
ceases to exits. Further, if we recall, then potential energy is de�ned as the amount of work done by external
agency to bring a particle slowly from in�nity to a position in gravitational �eld. The work by external
force is negative as its acts opposite to the displacement. Clearly, taking pebble to the in�nity is reverse
action. Work by external force is in the direction of displacement. As such, work done in this case is positive.
Therefore, binding energy of the pebble is a positive quantity and is equal to the magnitude of potential
energy for the pebble. If its mass is �m�, then binding energy of the "Earth-pebble" system is :

⇒ EB = −U = −
(
−GMm

r

)
=
GMm
r

where �M� and �m� are the mass of Earth and pebble respectively and �R� is the radius of Earth.
This is, however, a speci�c description of dismembering process. In general, a member of the system will

have kinetic energy due to its motion. Let us consider the case of �Earth-satellite� system. The satellite has
certain kinetic energy. If we want to take this satellite to in�nity, we would �rst require to bring the satellite
to a dead stop and then take the same to in�nity. Therefore, binding energy of the system is a positive
quantity, which is equal to the magnitude of the mechanical energy of the system.

De�nition 11.1: Binding energy
Binding energy is equal to the modulus of mechanical energy.

Going by the de�nition, the binding energy of the �Earth-satellite� system is :

⇒ EB = −E = −
(
−GMm

2r

)
=
GMm

2r

where �r� is the linear distance between the center of Earth and satellite.
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11.6 Satellite systems

The satellites are made to speci�c tasks. One of the most signi�cant applications of arti�cial satellite is its
use in telecast around the world. Earlier it was di�cult to relay telecast signals due to spherical shape of
Earth. In recent time, advancements in communication have brought about astounding change in the way
we live. The backbone of this communication wonder is variety of satellite systems orbiting around Earth.

Satellite systems are classi�ed for di�erent aspects of satellite motion. From the point of physics, it is the
orbital classi�cation of satellite systems, which is more interesting. Few of the famous orbits are described
here. Almost all orbits generally describe an elliptical orbit. We shall discuss elliptical orbits in the module
dedicated to Kepler's law. For the present, however, we can approximate them to be circular for analysis
purpose.

1: Geocentric orbit : It is an orbit around Earth. This is the orbit of arti�cial satellite, which is launched
to revolve around Earth. Geocentric orbit is further classi�ed on the basis of distance from Earth's surface
(i) low Earth orbit up to 2000 km (ii) middle Earth orbit between 2000 and geo-synchronous orbit (36000
km) and (iii) high Earth orbit above geo-synchronous orbit (36000 km).

2: Heliocentric Orbit : It is an orbit around Sun. The orbits of planets and all other celestial bodies in
the solar system describe heliocentric orbits.

3: Geosynchronous Orbit : The time period of this orbit is same as the time period of Earth.
4: Geostationary Orbit : The plane of rotation is equatorial plane. The satellite in this orbit has time

period equal to that of Earth. Thus, motion of satellite is completely synchronized with the motion of Earth.
The sense of rotation of the satellite is same as that of Earth. The satellite, therefore, is always above a
given position on the surface. The orbit is at a distance of 36000 km from Earth's surface and about 42400
(= 36000 + 6400) km from the center of Earth. The orbit is also known as Clarke's orbit after the name of
author, who suggested this orbit.

5: Molniya Orbit � It is an orbit having inclination of 63.4 ◦ with respect to equatorial plane and orbital
period equal to half that of Earth.

6: Polar orbit : The orbit has an inclination of 90 ◦ with respect to the equatorial plane and as such,
passes over Earth's poles.

Another important classi�cation of satellite runs along the uses of satellites. Few important satellite
types under this classi�cation are :

1: Communication satellites : They facilitate communication around the world. The geostationary
satellite covers ground locations, which are close to equator. Geostationary satellites appears low from a
positions away from equator. For locations at di�erent latitudes away from equator, we need to have suitably
designed orbits so that the area can be covered round the clock. Molniya orbit is one such orbit, which is
designed to provide satellite coverage through a satellite system, consisting of more than one satellite.

2: Astronomical satellites : They are designed for studying celestial bodies.
3: Navigational satellites : They are used to specify location on Earth and develop services based on

navigation.
4: Earth observation satellites : They are designed for studying Earth system, environment and disaster

management.
5: Weather satellites : They facilitate to monitor weather and related services.
6: Space station : It is an arti�cial structure in space for human beings to stay and do assigned

experiments/works
As a matter of fact, there is quite an elaborate classi�cation system. We have only named few important

satellite systems. In particular, there are varieties of satellite systems, including reconnaissance satellites, to
meet military requirement.
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Chapter 12

Projection in gravitational �eld1

Gravitational force of attraction is a binding force. An object requires certain minimum velocity to break free
from this attraction. We are required to impart object with certain kinetic energy to enable it to overcome
gravitational pull. As the object moves away, gravitational pull becomes smaller. However, at the same time,
speed of the object gets reduced as kinetic energy of the object is continuously transferred into potential
energy. Remember, potential energy is maximum at the in�nity.

Depending on the initial kinetic energy imparted to the projectile, it will either return to the surface or
will move out of the Earth's gravitational �eld.

The motion of a projectile, away from Earth's surface, is subjected to variable force � not a constant
gravity as is the case for motion near Earth's surface. Equivalently, acceleration due to gravity, �g�, is no
more constant at distances thousands of kilometers away. As such, equations of motion that we developed
and used (like v = u+at) for constant acceleration is not valid for motion away from Earth.

We have already seen that analysis using energy concept is suitable for such situation, when acceleration
is not constant. We shall, therefore, develop analysis technique based on conservation of energy.

12.1 Context of motion

We need to deal with two forces for projectile : air resistance i.e. friction and gravitational force. Air
resistance is an external non-conservative force, whereas gravity is an internal conservative force to the
"Earth-projectile" system. The energy equation for this set up is :

WF = ∆K + ∆U

Our treatment in the module, however, will neglect air resistance for mathematical derivation. This is a
base consideration for understanding motion of an object in a gravitational �eld at greater distances. Actual
motion will not be same as air resistance at higher velocity generates tremendous heat and the projectile, as
a matter of fact, will either burn up or will not reach the distances as predicted by the analysis. Hence, we
should keep this limitation of our analysis in mind.

Nevertheless, the situation without friction is an ideal situation to apply law of conservation of energy.
There is only conservative force in operation on the object in translation. The immediate consequence is
that work by this force is independent of path. As there is no external force on the system, the changes
takes place between potential and kinetic energy in such a manner that overall change in mechanical energy
always remains zero. In other words, only transfer of energy between kinetic and gravitational potential
energy takes place. As such,

⇒ ∆K + ∆U = 0

1This content is available online at <http://cnx.org/content/m15150/1.3/>.
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12.1.1 Change in potential energy

Earlier, we used the expression �mgh� to compute potential energy or change in potential energy. We need to
correct this formula for determining change in potential energy by referring calculation of potential energy
to in�nity. Using formula of potential energy with in�nity as reference, we determine the potential di�erence
between Earth's surface and a point above it, as :

Gravitational potential di�erence

Figure 12.1: An object at a height "h"

⇒ ∆U = − GMm

(R+ h)
−
(
−GMm

R

)

⇒ ∆U = GMm

(
1
R
− 1
R+ h

)
We can eliminate reference to gravitational constant and mass of Earth by using relation of gravitational

acceleration at Earth's surface ( g = g0 ),

g =
GM

R2

⇒ GM = gR2

Substituting in the equation of change in potential energy, we have :

⇒ ∆U = mgR2

(
1
R
− 1
R+ h

)



93

⇒ ∆U = mgR2X
h

R (R+ h)

⇒ ∆U =
mgh

1 + h
R

It is expected that this general formulation for the change in potential energy should be reduced to
approximate form. For h�R, we can neglect �h/R� term and,

⇒ ∆U = mgh

12.1.2 Maximum Height

For velocity less than escape velocity (the velocity at which projectile escapes the gravitation �eld of Earth),
the projected particle reaches a maximum height and then returns to the surface of Earth.

When we consider that acceleration due to gravity is constant near Earth's surface, then applying con-
servation of mechanical energy yields :

1
2
mv2 + 0 = 0 +mgh

⇒ h =
v2

2g

However, we have seen that �mgh� is not true measure of change in potential energy. Like in the case of
change in potential energy, we come around the problem of variable acceleration by applying conservation
of mechanical energy with reference to in�nity.
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Maximum height

Figure 12.2: The velocity is zero at maximum height, "h".

Ki + Ui = Kf + Uf

⇒ −GMm

R
+

1
2
mv2 = 0 +−GMm

R+ h

⇒ GM

R+ h
=
GM

R
− v2

2

⇒ R+ h =
GM

GM
R − v2

2

⇒ h =
GM

GM
R − v2

2

−R

⇒ h =
GM −GM + v2R

2
GM
R − v2

2

⇒ h =
v2R

2GM
R − v2

We can also write the expression of maximum height in terms of acceleration at Earth's surface using
the relation :

⇒ GM = gR2
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Substituting in the equation and rearranging,

⇒ h =
v2

2g − v2

R

This is the maximum height attained by a projection, which is thrown up from the surface of Earth.

12.1.3 Example

Problem 1: A particle is projected vertically at 5 km/s from the surface Earth. Find the maximum height
attained by the particle. Given, radius of Earth = 6400 km and g = 10 m/s2.

Solution : We note here that velocity of projectile is less than escape velocity 11.2 km/s. The maximum
height attained by the particle is given by:

h =
v2

2g − v2

R

Putting values,

⇒ h =

(
5X103

)2
2X10− (5X103)2

(6.4X106)

⇒ h =

(
25X106

)
2X10− (25X106)

(6.4X106)

⇒ h = 1.55x106 = 1550000 m = 1550 km

It would be interesting to compare the result, if we consider acceleration to be constant. The height
attained is :

h =
v2

2
g = 25X

106

20
= 1.25X106 = 1250000 m = 1250 km

As we can see, approximation of constant acceleration due to gravity, results in huge discrepancy in the
result.

12.2 Escape velocity

In general, when a body is projected up, it returns to Earth after achieving a certain height. The height
of the vertical �ight depends on the speed of projection. Greater the initial velocity greater is the height
attained.

Here, we seek to know the velocity of projection for which body does not return to Earth. In other words,
the body escapes the gravitational in�uence of Earth and moves into interstellar space. We can know this
velocity in verities of ways. The methods are equivalent, but intuitive in approach. Hence, we shall present
here all such considerations :

12.2.1 1: Binding energy :

Gravitational binding energy represents the energy required to eject a body out of the in�uence of a gravi-
tational �eld. It is equal to the energy of the system, but opposite in sign. In the absence of friction, this
energy is the mechanical energy (sum of potential and kinetic energy) in gravitational �eld.

Now, it is clear from the de�nition of binding energy itself that the initial kinetic energy of the projection
should be equal to the binding energy of the body in order that it moves out of the gravitational in�uence.
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Now, the body to escape is at rest before being initiated in projection. Thus, its binding energy is equal to
potential energy only.

Therefore, kinetic energy of the projection should be equal to the magnitude of potential energy on the
surface of Earth,

1
2
mv2

e =
GMm

R

where � ve � is the escape velocity. Note that we have used �R� to denote Earth's radius, which is
the distance between the center of Earth and projectile on the surface. Solving above equation for escape
velocity, we have :

⇒ ve =

√(
2GM
R

)

12.2.2 2. Conservation of mechanical energy :

The act of putting a body into interstellar space is equivalent to taking the body to in�nity i.e. at a very
large distance. In�nity, as we know, has been used as zero potential energy reference. The reference is also
said to represent zero kinetic energy.

From conservation of mechanical energy, it follows that total mechanical energy on Earth's should be
equal to mechanical energy at in�nity i.e. should be equal to zero. But, we know that potential energy at
the surface is given by :

U = −GMm

R

On the other hand, for body to escape gravitational �eld,

K + U = 0

Therefore, kinetic energy required by the projectile to escape is :

⇒ K = −U =
GMm

R

Now, putting expression for kinetic energy and proceeding as in the earlier derivation :

⇒ ve =

√(
2GM
R

)

12.2.3 3: Final velocity is not zero :

We again use conservation of mechanical energy, but with a di�erence. Let us consider that projected body
of mass, �m� has initial velocity �u� and an intermediate velocity, �v�, at a height �h�. The idea here is to
�nd condition for which intermediate velocity ,�v�, never becomes zero and hence escape Earth's in�uence.
Applying conservation of mechanical energy, we have :

Ei = Ef

Ki + Ui = Kf + Uf

1
2
mu2 − GMm

R
=

1
2
mv2 − GMm

R+ h
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Rearranging,

⇒ 1
2
mv2 =

1
2
mu2 − GMm

R
+
GMm

R+ h

In order that, �nal velocity (�v�) is positive, the expressions on the right should evaluate to a positive
value. For this,

⇒ 1
2
mu2 ≥ GMm

R

For the limiting case, u = ve ,

⇒ ve =

√(
2GM
R

)

12.3 Interpreting escape velocity

These three approaches to determine escape velocity illustrates how we can analyze a given motion in
gravitational �eld in many di�erent ways. We should be aware that we have determined the minimum
velocity required to escape Earth's gravity. It is so because we have used the expression of potential energy,
which is de�ned for work by external force slowly.

However, it is found that the velocity so calculated is good enough for escaping gravitational �eld. Once
projected body achieves considerable height, the gravitational attraction due to other celestial bodies also
facilitates escape from Earth's gravity.

Further, we can write the expression of escape velocity in terms of gravitational acceleration (consider
g = g0 ),

g =
GM

r2

⇒ GM

r
= gr

Putting in the expression of escape velocity, we have :

⇒ ve =

√(
2GM
R

)
=
√

(2gR)

12.3.1 Escape velocity of Earth

In the case of Earth,

M = 5.98X1024 kg

R = 6.37X106 m

⇒ ve =

√(
2X6.67X10−11X5.98X1024

6.37X106

)
⇒ ve = 11.2 km/s
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We should understand that this small numerical value is deceptive. Actually, it is almost impossible to
impart such magnitude of speed. Let us have a look at the magnitude in terms of �km/hr�,

ve = 11.2 km/s = 11.2X60x60 = 40320 km/hr

If we compare this value with the speed of modern jet (which moves at 1000 km/hr), this value is nearly
40 times! It would be generally a good idea to project object from an arti�cial satellite instead, which itself
may move at great speed of the order of about 8-9 km/s. The projectile would need only additional 2 or 3
km/hr of speed to escape, if projected in the tangential direction of the motion of the satellite.

This mechanism is actually in operation in multistage rockets. Each stage acquires the speed of previous
stage. The object (probe or vehicle) can, then, be let move on its own in the �nal stage to escape Earth's
gravity. The mechanism as outlined here is actually the manner an interstellar probe or vehicle is sent out
of the Earth's gravitational �eld. We can also appreciate that projection, in this manner, has better chance
to negotiate friction e�ectively as air resistance at higher altitudes is signi�cantly less or almost negligible.

This discussion of escape velocity also underlines that the concept of escape velocity is related to object,
which is not propelled by any mechanical device. An object, if propelled, can escape gravitational �eld at
any speed.

Escape velocity of Moon :
In the case of Earth's moon,

M = 7.4X1020 kg

R = 1.74X106 m

⇒ ve =

√(
2X6.67X10−11X7.4X1020

1.74X106

)
⇒ ve = 2.4 km/s

The root mean square velocity of gas is greater than this value. This is the reason, our moon has
no atmosphere. Since sound requires a medium to propagate, we are unable to talk directly there as a
consequence of the absence of atmosphere.

12.3.2 Direction of projection

It may appear that we may need to �re projectile vertically to let it escape in interstellar space. This is not
so. The spherical symmetry of Earth indicates that we can project body in any direction with the velocity as
determined such that it clears physical obstructions in its path. From this point of view, the term �velocity�
is a misnomer as direction of motion is not involved. It would have been more appropriate to call it �speed�.

The direction, however, makes a di�erence in escape velocity for some other reason. The Earth rotates
in particular direction � it rotates from East to west at a linear speed of 465 m/s. So if we project the body
in the tangential direction east-ward, then Earth rotation helps body's escape. The e�ective escape velocity
is 11200 � 465 = 10735 m/s. On the other hand, if we project west-ward, then escape velocity is 11200 +
465 = 11635 m/s.

12.3.3 Escape velocity and Black hole

Black holes are extremely high density mass. This represents the �nal stage of evolution of a massive star,
which collapses due to its own gravitational force. Since mass remains to be very large while radius is reduced
(in few kms), the gravitational force becomes extremely large. Such great is the gravitational force that it
does not even allow light to escape.
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Lesser massive star becomes neutron star instead of black hole. Even neutron star has very high gravi-
tational �eld. We can realize this by calculating escape velocity for one such neutron star,

M = 3X1030 kg

R = 3X104 m

⇒ ve =

√(
2X6.67X10−11X3X1030

3X104

)
⇒ ve = 1.1X105 m/s

It is quite a speed comparable with that of light. Interstellar Black hole is suggested to be 5 times the
mass of neutron star and 10 times the mass of sun! On the other hand, its dimension is in few kilometers.
For this reason, following is possible :

⇒ ve =

√(
2GM
R

)
> c

where �c� is the speed of light. Hence even light will not escape the gravitational force of a black hole as
the required velocity for escape is greater than speed of light.

12.4 Nature of trajectory

In this section, we shall attempt to analyze trajectory of a projectile for di�erent speed range. We shall
strive to get the qualitative assessment of the trajectory � not a quantitative one.

In order to have a clear picture of the trajectory of a projectile, let us assume that a projectile is projected
from a height, in x-direction direction as shown. The point of projection is, though, close to the surface; but
for visualization, we have shown the same at considerable distance in terms of the dimension of Earth.
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Projection in Earth's gravitation

Figure 12.3: Projectile is projected with certain velocity in x-direction.

Let � vO � be the speed of a satellite near Earth's surface and � ve � be the escape velocity for Earth's
gravity. Then,

vO =
√

(gR)

ve =
√

(2gR)

Di�erent possibilities are as following :
1 : v = 0 : The gravity pulls the projectile back on the surface. The trajectory is a straight line (OA

shown in the �gure below).
2 : v < vC : We denote a projection velocity � vC � of the projectile such that it always clears Earth's

surface (OC shown in the �gure below). A limiting trajectory will just clear Earth's surface. If the projection
velocity is less than this value then the trajectory of the projectile will intersect Earth and projectile will hit
the surface (OB shown in the �gure below).



101

Projection in Earth's gravitation

Figure 12.4: Projectile is projected with certain velocity in x-direction.

3 : vC < v < vO : Since projection velocity is greater than limiting velocity to clear Earth and less
than the benchmark velocity of a satellite in circular orbit, the projectile will move along an elliptical orbit.
The Earth will be at one of the foci of the elliptical trajectory (see �gure above).

4 : v = vO : The projectile will move along a circular trajectory (see inner circle in the �gure below).
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Projection in Earth's gravitation

Figure 12.5: Projectile is projected with certain velocity in x-direction.

5 : vO < v < ve : The projection velocity is greater than orbital velocity for circular trajectory, the
path of the projectile is not circular. On the other hand, since projection velocity is less than escape velocity,
the projectile will not escape gravity either. It means that projectile will be bounded to the Earth. Hence,
trajectory of the projectile is again elliptical with Earth at one of the foci (see outer ellipse in the �gure
above).

6 : v = ve : The projectile will escape gravity. In order to understand the nature of trajectory, we
can think of force acting on the particle and resulting motion. The gravity pulls the projectile in the radial
direction towards the center of Earth. Thus, projectile will have acceleration in radial direction all the time.
The component of gravity along x-direction is opposite to the direction of horizontal component of velocity.
As such, the particle will be retarded in x-direction. On the other hand, vertical component of gravity will
accelerate projectile in the negative y � direction.



103

Projection in Earth's gravitation

Figure 12.6: Projectile is projected with certain velocity in x-direction.

However, as the projection speed of the projectile is equal to escape velocity, the projectile will neither
be intersected by Earth's surface nor be bounded to the Earth. The resulting trajectory is parabola leading
to the in�nity. It is an open trajectory.

7 : v > ve : We can infer that projection velocity is just too great. The impact of gravity will be for a
very short duration till the projectile is close to Earth. However, as distance increases quickly, the impact
of gravitational force becomes almost negligible. The �nal path is parallel to x-direction.
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Projection in Earth's gravitation

Figure 12.7: Projectile is projected with certain velocity in x-direction.



Chapter 13

Projection in gravitational �eld
(application)1

Questions and their answers are presented here in the module text format as if it were an extension of the
treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory.
Solution presented is, therefore, treated as the part of the understanding process � not merely a Q/A session.
The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put
to real time situation.

13.1 Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the projection in gravitational
�eld. The questions are categorized in terms of the characterizing features of the subject matter :

• Satellite
• Vertical projection
• Escape velocity

13.2 Satellite

13.2.1

Problem 1: A satellite of mass �m� is to be launched into an orbit around Earth of mass �M� and radius
�R� at a distance �2R� from the surface. Find the minimum energy required to launch the satellite in the
orbit.

Solution : The energy to launch the satellite should equal to di�erence of total mechanical energy of
the system in the orbit and at Earth's surface. The mechanical energy of the satellite at the surface is only
its potential energy. It is given by,

ES = −GMm

R

On the other hand, satellite is placed at a total distance of R + 2R = 3R. The total mechanical energy
of the satellite in the orbit is,

EO = −GMm

2r
= −GMm

2X3R
= −GMm

6R
1This content is available online at <http://cnx.org/content/m15151/1.1/>.
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Hence, energy required to launch the satellite is :

E = EO − ES

⇒ E = −GMm

6R
−
(
−GMm

R

)
=

5GMm

6R

13.2.2

Problem 2: A satellite revolves around Earth of radius �R� with a speed �v�. If rockets are �red to stop
the satellite to make it standstill, then �nd the speed with which satellite will strike the Earth. Take g = 10
m / s2.

Solution : When the seed of satellite is reduced to zero, it starts falling towards center of Earth. Let
the velocity with which it strikes the surface be �v� ' and distance between center of Earth and satellite be
�r�.

Applying conservation of energy :

1
2
mv′2 − GMm

R
= 0− GMm

r

For satellite, we know that kinetic energy is :

1
2
mv2 =

GMm

2r
Also, we can express "GM" in terms of acceleration at the surface,

gR2 = GM

Substituting these expressions in the equation of law of conservation of mechanical energy and rearranging,

⇒ 1
2
mv′2 = gRm−mv2

⇒ 1
2
v′2 = gR− v2

⇒ v′ =
√

2 (gR− v2)

⇒ v′ =
√

(20R− 2v2)

13.3 Vertical projection

Problem 3: A particle is projected with initial speed equal to the orbital speed of a satellite near Earth's
surface. If the radius of Earth is �R�, then �nd the height to which the particle rises.

Solution : It is given that speed of projection is equal to orbital speed of a satellite near Earth's
surface. The orbital speed of the satellite near Earth's surface is given by putting "r = R" in the expression
of orbital velocity :

v =

√(
GM

R

)

v2 =
GM

R
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Since orbital velocity is less than escape velocity, the particle is returned to the surface after attaining a
certain maximum height, �h�. Applying conservation of energy, the height attained by projectile is obtained
as :

h =
v2

2g − v2

R

Substituting for �v� and �g�, we have :

⇒ h =
GM
R

2GM
R2 − GM

R

⇒ h = R

13.4 Escape velocity

13.4.1

Problem 4: A particle is �red with a velocity 16 km/s from the surface Earth. Find its velocity with
which it moves in the interstellar space. Consider Earth's escape velocity as 11.2 km/s and neglect friction.

Solution : We observe here that initial velocity of the particle is greater than Earth's escape velocity.
We can visualize this situation in terms of energy. The kinetic energy of the particle is used to (i) overcome
the mechanical energy binding it to the gravitational in�uence of Earth and (ii) to move into interstellar
space with a certain velocity.

Let �v�, � ve � and � vi � be velocity of projection, escape velocity and velocity in the interstellar space
respectively. Then, applying law of conservation of energy :

1
2
mv2 − GMm

R
=

1
2
mv2

i

⇒ 1
2
mv2 =

GMm

R
+

1
2
mv2

i

Here, we have considered gravitational potential energy in the interstellar space as zero. Also, we know
that kinetic energy corresponding to escape velocity is equal to the magnitude of gravitational potential
energy of the particle on the surface. Hence,

⇒ 1
2
mv2 =

1
2
mv2

e +
1
2
mv2

i

⇒ v2
i = v2 − v2

e

The escape velocity for Earth is 11.2 km/s. Putting values in the equation, we have :

⇒ v2
i = (16)2 − (11.2)2

⇒ v2
i = 256− 125.44 = 130.56

⇒ vi = 11.43 km/s



108 CHAPTER 13. PROJECTION IN GRAVITATIONAL FIELD (APPLICATION)

13.4.2

Problem 5: A satellite is orbiting near surface with a speed �v�. What additional velocity is required to
be imparted to the satellite so that it escapes Earth's gravitation. Consider, g = 10 m / s2 and R = 6400
km.

Solution : The orbital speed of the satellite near Earth's surface is given by :

v =

√(
GM

R

)
We can write this expression in terms of acceleration at the surface (g),

⇒ v =

√(
GM

R

)
=

√(
gR2

R

)
=
√

(gR)

On the other hand, escape velocity is given by :

ve =
√

(2gR)

Hence, additional velocity to be imparted is di�erence of two speeds,

⇒ ve − v =
√

(2gR)−
√

(gR)

⇒ ve − v =
(√

2− 1
)√

(gR)

⇒ ve − v =
(√

2− 1
)√(

10X6.4X106
)

ve − v = 3.31X103 m/s



Chapter 14

Two body system - linear motion1

�Two body� system represents the starting point for studying motion of celestial bodies, including Earth.
In general, gravitational force is dominant for a pair of masses in such a manner that in�uence of all other
bodies can be neglected as �rst approximation. In that case, we are left with an isolated �two body� system.
The most important deduction of this simplifying assumption is that isolated system is free of external force.
This means that �center of mass� of the isolated system in not accelerated.

In the solar system, one of the massive bodies is Sun and the other is one of the planets. In this case,
Sun is relatively much larger than second body. Similarly, in Earth-moon system, Earth is relatively much
larger than moon. On the other hand, bodies are of similar mass in a �binary stars� system. There are
indeed various possibilities. However, we �rst need to understand the basics of the motion of isolated two
bodies system, which is interacted by internal force of attraction due to gravitation. Specially, how do they
hold themselves in space?

In this module, we shall apply laws of mechanics, which are based on Newton's laws of motion and
Newton's law of gravitation. Most characterizing aspect of the motion is that two bodies, in question, move
in a single plane, which contains their center of mass. What it means that the motion of two body system
is coplanar.

1This content is available online at <http://cnx.org/content/m15152/1.3/>.
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Two body system

Figure 14.1: The plane of "one body and center of mass" and plane of "other body and center of
mass" are in the same plane.

Newtonian mechanics provides a general solution in terms of trajectory of a conic section with di�erent
eccentricity. The trajectories like linear, circular, elliptical, parabolic, hyperbolic etc are subsets of this
general solution with speci�c eccentricity. Here, we do not seek mathematical derivation of generalized
solution of the motion. Rather, we want to introduce simpler trajectories like that of a straight line, circle
etc. �rst and then interpret elliptical trajectory with simplifying assumptions. In this module, we shall limit
ourselves to the motion of �two body� system along a straight line. We shall take up circular motion in the
next module.

In a way, the discussion of motion of �two body� system is preparatory before studying Kepler's laws of
planetary motion, which deals with speci�c case of elliptical trajectory.

note: The general solution of two bodies system involves polar coordinates (as it suits the situa-
tion), vector algebra and calculus. In this module, however, we have retained rectangular coordi-
nates for the most part with scalar derivation and limited our discussion to speci�c case of linear
trajectory.

14.1 Straight line trajectory

This is simplest motion possible for "two body" system. The bodies under consideration are initially at rest.
In this case, center of mass of two bodies is a speci�c point in the given reference. Also, it is to be noted
that center of mass lies always between two bodies and not beyond them.

Since no external force is applied, the subsequent motion due to internal gravitational force does not
change the position of center of mass in accordance with second law of motion. The bodies simply move
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towards each other such that center of mass remains at rest.
The two bodies move along a straight line joining their centers. The line of motion also also passes

through center of mass. This has one important implication. The plane containing one body and �center of
mass� and the plane containing other body and �center of mass� are same. It means that motions of two
bodies are �coplanar� with line joining the centers of bodies and center of mass. The non-planar motions as
shown in the �gure below are not possible as motion is not along the line joining the centers of two bodies.

Two body system

Figure 14.2: The motion of two body system can not be non-planar.

Let suscripts "1" and "2" denote two bodies. Also, let � r1 �, � v1 �, � a1 � and � r2 �, � v2�, � a2 � be the
magnitudes of linear distance from the center of mass, speeds and magnitudes of accelerations respectively
of two bodies under consideration. Also let �center of mass� of the system is the origin of reference frame.
Then, by de�nition of center of mass :

Two body system

Figure 14.3: Center of mass is the origin of reference frame.

rcm =
−m1r1 +m2r2
m1 +m2

But �center of mass� lies at the origin of the reference frame,

⇒ rcm =
−m1r1 +m2r2
m1 +m2

= 0



112 CHAPTER 14. TWO BODY SYSTEM - LINEAR MOTION

⇒ m1r1 = m2r2

Taking �rst di�erentiation of position with respect to time, we have :

⇒ vcm =
−m1v1 +m2v2

m1 +m2
= 0

⇒ m1v1 = m2v2

Taking �rst di�erentiation of velocity with respect to time, we have :

⇒ acm =
−m1a1 +m2a2

m1 +m2
= 0

⇒ m1a1 = m2a2

Considering only magnitude and combining with Newton's law of gravitation,

F12 = F21 =
Gm1m2

(r1 + r2)2

Since distance of bodies from center of mass changes with time, the gravitational force on two bodies is
equal in magnitude at a given instant, but varies with time.

14.2 Newton's Second law of motion

We can treat �two body� system equivalent to �one body� system by stating law of motion in appropriate
terms. For example, it would be interesting to know how force can be related to the relative acceleration
with which two bodies are approaching towards each other. Again, we would avoid vector notation and only
consider the magnitudes of accelerations involved. The relative acceleration is sum of the magnitudes of
individual accelerations of the bodies approaching towards each other :

ar = a1 + a2

According to Newton's third law, gravitational force on two bodies are pair of action and reaction and
hence are equal in magnitude. The magnitude of force on each of the bodies is related to acceleration as :

F = m1a1 = m2a2

⇒ m1a1 = m2a2

We can note here that this relation, as a matter of fact, is same as obtained using concept of center of
mass. Now, we can write magnitude of relative acceleration of two bodies, � ar �, in terms of individual
accelerations is :

⇒ ar = a1 +
m1a1

m2

⇒ ar = a1

(
m1 +m2

m2

)
⇒ a1 =

m2ar

m1 +m2

Substituting in the Newton's law of motion,
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⇒ F = m1a1 =
m1m2ar

m1 +m2

⇒ F = µar

Where,

⇒ µ =
m1m2

m1 +m2

14.2.1 Reduced mass

The quantity given by the expression :

µ =
m1m2

m1 +m2

is known as �reduced mass�. It has the same unit as that of �mass�. It represents the �e�ect� of two
bodies, if we want to treat �two body� system as �one body� system.

In the nutshell, we can treat motion of �two body� system along a straight line as �one body� system,
which has a mass equal to �µ� and acceleration equal to relative acceleration, � ar �.

14.2.2 Velocity of approach

The two bodies are approaching towards each other. Hence, magnitude of velocity of approach is given by :

Velocity of approach

Figure 14.4: Two bodies are approaching each other along a straight line.

vr = v1 + v2

This is the expression of the magnitude of velocity of approach. We can write corresponding vector
equation for velocity of approach in relation to reference direction. In this module, however, we will avoid
vector notation or vector interpretation to keep the discussion simpli�ed.

14.3 Kinetic energy

The kinetic energy of the �two body� system is given as the sum of kinetic energy of individual bodies,

K =
1
2
m1v

2
1 +

1
2
m2v

2
2
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We can write this expression of kinetic energy in terms of relative velocity i.e. velocity of approach. For
this, we need to express individual speeds in terms of relative speed as :

vr = v1 + v2

But,

m1v1 = m2v2

⇒ v2 =
m1v1
m2

Substituting in the expression of relative velocity,

⇒ vr = v1 +
m1v1
m2

⇒ v1 =
m2vr

m1 +m2

Similarly,

⇒ v2 =
m1vr

m1 +m2

Now, putting these expressions of individual speed in the equation of kinetic energy :

⇒ K =
m1m

2
2v

2
r

(m1 +m2)2
+

m2m
2
1v

2
r

(m1 +m2)2

⇒ K =
m1m2v

2
r

(m1 +m2)2
(m1 +m2)

⇒ K =
m1m2v

2
r

m1 +m2

⇒ K =
1
2
µv2

r

This result also indicates that we can treat �two body� system as �one body� system from the point of
view of kinetic energy, as if the body has reduced mass of �µ� and speed equal to the magnitude of relative
velocity, � vr�.

14.3.1 Example

Problem 1: Two masses � m1 � and � m2 � are initially at rest at a great distance. At a certain instant,
they start moving towards each other, when released from their positions. Considering absence of any other
gravitational �eld, calculate velocity of approach when they are at a distance �r� apart.

Solution : The bodies are at large distance in the beginning. There is no external gravitational �eld.
Hence, we can consider initial gravitational energy of the system as zero (separated y in�nite distance). Also,
the bodies are at rest in the beginning. The initial kinetic energy is also zero. In turn, initial mechanical
energy of the system is zero.

Let � vr � be the velocity of approach, when the bodies are at a distance �r� apart. Applying conservation
of mechanical energy, we have :

Ki + Ui = Kf + Uf



115

⇒ 0 + 0 =
1
2
µv2

r −
Gm1m2

r

⇒ v2
r =

2Gm1m2

µr
=

2Gm1m2 (m1 +m2)
m1m2r

⇒ vr =

√
{2G (m1 +m2)

r
}

14.4 Conclusions

From the discussion above, we conclude the followings about the motion of �two body� system along a
straight line :

1: Each body follows a straight line trajectory.
2: The line joining centers of two bodies pass through center of mass.
3: The planes of two motions are in the same plane. In other words, two motions are coplanar.
4: Magnitude of gravitational force is same for two bodies, but they vary as the distance between them

changes.
5: We can treat �two body� system equivalent to �one body� system by using concepts of (i) reduced

mass �µ� (ii) relative velocity, � vr � and (iii) relative acceleration � ar �.
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Chapter 15

Two body system - circular motion1

The trajectory of two body system depends on the initial velocities of the bodies and their relative mass. If
the mass of the bodies under consideration are comparable, then bodies move around their �center of mass�
along two separate circular trajectories. This common point about which two bodies revolve is also known
as �barycenter�.

In order to meet the requirement imposed by laws of motion and conservation laws, the motion of two
bodies executing circular motion is constrained in certain ways.

15.1 Circular trajectory

Since external force is zero, the acceleration of center of mass is zero. This is the �rst constraint. For
easy visualization of this constraint, we consider that center of mass of the system is at rest in a particular
reference frame.

Now, since bodies are moving along two circular paths about "center of mass", their motions should be
synchronized in a manner so that the length of line, joining their centers, is a constant . This is required;
otherwise center of mass will not remain stationary in the chosen reference. Therefore, the linear distance
between bodies is a constant and is given by :

1This content is available online at <http://cnx.org/content/m15153/1.4/>.
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Two body system - circular motion

Figure 15.1: Each body moves around center of mass.

r = r1 + r2

Now this condition can be met even if two bodies move in di�erent planes. However, there is no external
torque on the system. It means that the angular momentum of the system is conserved. This has an
important deduction : the plane of two circular trajectories should be same.

Mathematically, we can conclude this, using the concept of angular momentum. We know that torque is
equal to time rate of change of angular momentum,

dL

dt
= r × F

But, external torque is zero. Hence,

⇒ r × F = 0

It means that �r� and �F� are always parallel. It is only possible if two planes of circles are same. We,
therefore, conclude that motions of two bodies are coplanar. For coplanar circular motion, center of mass is
given by de�nition as :
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Two body system - circular motion

Figure 15.2: Each body moves around center of mass.

rcm =
−m1r1 +m2r2
m1 +m2

= 0

⇒ m1r1 = m2r2

Taking �rst di�erentiation with respect to time, we have :

⇒ m1v1 = m2v2

Now dividing second equation by �rst,

⇒ m1v1
m1r1

=
m2v2
m2r2

⇒ v1
r1

=
v2
r2

⇒ ω1 = ω2 = ω (say)

It means that two bodies move in such a manner that their angular velocities are equal.
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Two body system - circular motion

Figure 15.3: Both bodies move with same angular velocity.

15.1.1 Gravitational force

The gravitational force on each of the bodies is constant and is given by :

F =
Gm1m2

(r1 + r2)2
=
Gm1m2

r2

Since gravitational force provides for the requirement of centripetal force in each case, it is also same in
two cases. Centripetal force is given by :

FC = m1r1ω
2 = m2r2ω

2 =
Gm1m2

r2

15.2 Angular velocity

Each body moves along a circular path. The gravitational force on either of them provides the centripetal
force required for circular motion. Hence, centripetal force is :

m1r1ω
2 =

Gm1m2

(r1 + r2)2

⇒ ω2 =
Gm2

r1(r1 + r2)2
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Let the combined mass be �M�. Then,

M = m1 +m2

Using relation m1r1 = m2r2 , we have :

⇒M =
m2r2
r1

+m2 = m2

(
r1 + r2
r1

)

⇒ m2 =
Mr1
r1 + r2

Substituting in the equation, involving angular velocity,

⇒ ω2 =
GMr1

r1(r1 + r2)3
=
GM

r3

⇒ ω =

√(
GM

r3

)
This expression has identical form as for the case when a body revolves around another body at rest

along a circular path (compare with �Earth � satellite� system). Here, combined mass �M� substitutes for
the mass of heavier mass at the center and sum of the linear distance replaces the radius of rotation.

The linear velocity is equal to the product of the radius of circle and angular velocity. Hence,

v1 = ωr1

v2 = ωr2

15.2.1 Time period

We can easily �nd the expression for time period of revolution as :

T =
2π
ω

=
2πr

3
2√

(GM)

This expression also has the same form as for the case when a body revolves around another body at rest
along a circular path (compare with �Earth � satellite� system). Further squaring on either side, we have :

⇒ T 2 ∝ r3

15.3 Moment of inertia

Here, we set out to �nd moment of inertia of the system about the common axis passing through center of
mass and perpendicular to the plane of rotation. For this, we consider each of the bodies as point mass. Note
that two bodies are rotating about a common axis with same angular velocity. Clearly, MI of the system is :

I = m1r
2
1 +m2r

2
2

We can express individual distance in terms of their sum using following two equations,

r = r1 + r2
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m1r1 = m2r2

Substituting for � r1 � in the equation or "r", we have :

⇒ r =
m2r2
m1

+ r2 = r2

(
m1 +m2

m1

)
⇒ r2 =

rm1

m1 +m2

Similarly, we can express, � r1 � as :

⇒ r1 =
rm2

m1 +m2

Substituting for � r1 � and � r2 � in the expression of moment of inertia,

⇒ I =
m1m

2
2r

2

(m1 +m2)2
+

m2m
2
1r

2

(m1 +m2)2

⇒ I =
m1m2r

2

(m1 +m2)2
X (m1 +m2)

⇒ I =
m1m2r

2

m1 +m2

⇒ I = µr2

This expression is similar to the expression of momemnt of inertia of a particle about an axis at a
perpendicualr distance, "r". It is, therefore, clear that �Two body� system orbiting around center of mass
can be treated as �one body� system by using concepts of net distance �r� and reduced mass �µ�.

15.4 Angular momentum

The bodies move about the same axis with the same sense of rotation. The angular momentum of the
system, therefore, is algebraic sum of individual angular momentums.

L = L1 + L2 = m1r
2
1ω +m2r

2
2ω

Substituting for � r1 � and � r2 � with expressions as obtained earlier,

⇒ L =
m1m

2
2r

2ω

(m1 +m2)2
+

m2m
2
1r

2ω

(m1 +m2)2

⇒ L =
m1m2r

2ω

(m1 +m2)2
X (m1 +m2)

⇒ L =
m1m2r

2ω

(m1 +m2)

⇒ L = µr2ω

This expression is similar to the expression of angular momemntum of a particle about an axis at a
perpendicualr distance, "r". Once again, we see that �Two body� system orbiting around center of mass can
be treated as �one body� system by using concepts of net distance �r� and reduced mass �µ�.
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15.5 Kinetic energy

The kinetic energy of the system is equal to the algebraic sum of the kinetic energy of the individual body.
We write expression of kinetic energy in terms of angular velocity � not in terms of linear velocity. It is so
because angular velocity is same for two bodies and can, therefore, be used to simplify the expression for
kinetic energy. Now, kinetic energy of the system is :

K =
1
2
m1r

2
1ω

2 +
1
2
m2r

2
2ω

2

Substituting for � r1 � and � r2 � with expressions as obtained earlier,

⇒ K =
m1m

2
2r

2ω2

2(m1 +m2)2
+

m2m
2
1r

2ω2

2(m1 +m2)2

⇒ K =
m1m2r

2ω2

2(m1 +m2)2
X (m1 +m2)

⇒ K =
m1m2r

2ω2

2 (m1 +m2)

⇒ K =
1
2
µr2ω2

This expression of kinetic energy is also similar to the expression of kinetic energy of a particle rotating
about an axis at a perpendicualr distance, "r". Thus, this result also substantiates equivalence of �Two
body� system as �one body� system, using concepts of net distance �r� and reduced mass �µ�.

15.6 Example

Problem 1 : In a binary star system, two stars of �m� and �M� move along two circular trajectories. If
the distance between stars is �r�, then �nd the total mechanical energy of the system. Consider no other
gravitational in�uence on the system.

Solution : Mechanical energy of the system comprises of potential and kinetic energy. Hence,

E =
1
2
µr2w2 − GMm

r

We know that angular velocity for �two body� system in circular motion is given by :

⇒ ω =

√
{G (M +m)

r3
}

Also, reduced mass is given by :

µ =
Mm

M +m

Putting in the expression of mechanical energy,

⇒ E =
mMr2G (m+M)

2 (m+M) r3
− GMm

r

⇒ E =
GMm

2r
− GMm

r

⇒ E = −GMm

2r
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15.7 Conclusions

Thus, we conclude the following :
1: Each body follows a circular path about center of mass.
2: The line joining centers of two bodies pass through center of mass.
3: The planes of two motions are in the same plane. In other words, two motions are coplanar.
4: The angular velocities of the two bodies are equal.
5: The linear distance between two bodies remains constant.
6: Magnitude of gravitational force is constant and same for two bodies.
7: Magnitude of centripetal force required for circular motion is constant and same for two bodies.
8: Since linear velocity is product of angular velocity and distance from the center of revolution, it may

be di�erent if the radii of revolutions are di�erent.
9: We can treat two body system with an equivalent one body system by using concepts of (i) combined

mass, �M�, (ii) net distance �r� and (iii) reduced mass �µ�.

Two body system - circular motion

Figure 15.4: Two body system as equivalent to one body system.



Chapter 16

Planetary motion1

The trajectory of motion resulting from general solution of �two body� system is a conic section. Subject
to initial velocities and relative mass, eccentricity of conic section can have di�erent values. We interpret a
conic section for di�erent eccentricity to represent di�erent types of trajectories. We have already discussed
straight line and circular trajectories. In this module, we shall discuss elliptical trajectory, which is the
trajectory of a planet in the solar system.

In a general scenario of �two body system�, involving elliptical trajectory, each body revolves around the
common �center of mass� called �barycenter�. The two elliptical paths intersect, but bodies are not at the
point of intersection at the same time and as such there is no collision.

1This content is available online at <http://cnx.org/content/m15186/1.10/>.
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Two body system

Figure 16.1: Elliptical trajectories

In this module, however, we shall keep our focus on the planetary motion and Kepler's planetary laws.
We are basically seeking to describe planetary motion � particularly that in our solar system. The trajectory
of planet is elliptical with one quali�cation. The Sun, being many times heavier than the planets, is almost
at rest in the reference frame of motion. It lies at one of the foci of the elliptical path of the planets around
it. Here, we assume that center of mass is about same as the center of Sun. Clearly, planetary motion is a
special case of elliptical motion of �two body system� interacted by mutual attraction.

We should, however, be aware that general solution of planetary motion involves second order di�erential
equation, which is solved using polar coordinates.

16.1 Ellipse

We need to learn about the basics of elliptical trajectory and terminology associated with it. It is important
from the point of view of applying laws of Newtonian mechanics. We shall, however, be limited to the basics
only.

16.1.1 Conic section

Conic section is obtained by the intersection of a plane with a cone. Two such intersections, one for a circle
and one for an ellipse are shown in the �gure.
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Conic sections

Figure 16.2: Two conic sections representing a circle and an ellipse are shown.

16.1.2 Elliptical trajectory

Here, we recount the elementary geometry of an ellipse in order to understand planetary motion. The
equation of an ellipse centered at the origin of a rectangular coordinate (0,0) is :

x2

a2
+
y2

b2
= 1

where �a� is semi-major axis and �b� is semi-minor axis as shown in the �gure.
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Ellipse

Figure 16.3: Semi major and minor axes of an ellipse

Note that � F1 � and � F2 � are two foci of the ellipse.

16.1.3 Eccentricity

The eccentricity of a conic section is measure of �how di�erent it is from a circle�. Higher the eccentricity,
greater is deviation. The eccentricity (e) of a conic section is de�ned in terms of �a� and �b� as :

e =

√(
1− kb2

a2

)
where �k� is 1 for an ellipse, 0 for parabola and -1 for hyperbola. The values of eccentricity for di�erent

trajectories are as give here :

1. The eccentricity of a straight line is 1, if we consider b=0 for the straight line.
2. The eccentricity of an ellipse falls between 0 and 1.
3. The eccentricity of a circle is 0
4. The eccentricity of a parabola is 1.
5. The eccentricity of a hyperbola is greater than 1.

16.1.4 Focal points

Focal points ( F1 and F2 ) lie on semi major axis at a distance from the origin given by
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Focal points

Figure 16.4: Focal distances from the center of ellipse

f = ae

The focus of an ellipse is at a distance �ae� from the center on the semi-major axis. Area of the ellipse
is "πab".

16.1.5 Semi latus rectum

Semi latus rectum is equal to distance between one of the foci and ellipse as measured along a line perpen-
dicular to the major axis. This is shown in the �gure.
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Semi latus rectum

Figure 16.5: Semi latus rectum is perpendicular distance as shown in the �gure.

For an ellipse, Semi latus rectum has the expression in terms of �a� and �b� as :

` =
b2

a

We can also express the same involving eccentricity as :

⇒ ` = a
(
1− e2

)
16.2 Solar system

The solar system consists of Sun and its planets. The reason they are together is gravitation. The mass of
the planet is relatively small with respect to Sun. For example, Earth compares about 105 times smaller in
mass with respect to Sun :

Mass of Earth :
5.98X1024 kg

Mass of Sun :
1.99X1030 kg

The planetary motion, therefore, �ts nicely with elliptical solution obtained from consideration of me-
chanics. Sun, being many times heavier, appears to be at the �center of mass� of the system i.e. at one of
the foci, while planets revolve around it in elliptical orbits of di�erent eccentricities.

16.2.1 Equation in polar coordinates

Polar coordinates generally suite geometry of ellipse. The �gure shows the polar coordinates of a point on
the ellipse. It is important to note that one of foci serves as the origin of polar coordinates, whereas the
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other focus lies on the negative x-axis. For this reason orientation of x-axis is reversed in the �gure. The
angle is measured anti-clockwise and the equation of ellipse in polar coordinates is :

Equation in polar coordinate

Figure 16.6: Second focus lies on negative x-axis.

r =
`

1 + ecosθ
Substituting expression for semi latus rectum

⇒ r =
a
(
1− e2

)
1 + ecosθ

16.2.1.1 Perihelion distance

Perihelion position corresponds to minimum distance between Sun and planet. If we consider Sun to be at
one focus (say F1 ), then perihelion distance is " F1A " as shown in the �gure. We can see that angle θ =
0 ◦ for this position.

⇒ rmin =
a
(
1− e2

)
1 + e

= a (1− e)
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Minimum and maximum distance

Figure 16.7: Positions correspond to perihelion and aphelion positions.

From the �gure also, it is clear that minimum distance is equal to �a - ae= a(1-e)�.

16.2.1.2 Aphelion distance

Aphelion position corresponds to maximum distance between Sun and planet. If we consider Sun to be at
one focus (say F1 ), then perihelion distance is " F1A' " as shown in the �gure. We can see that angle θ =
180 ◦ for this position.

⇒ rmax =
a
(
1− e2

)
1− e

= a (1 + e)

From the �gure also, it is clear that maximum distance is equal to �a + ae= a(1+e)�.
We can also prove that the semi-major axis, �a� is arithmetic mean, whereas semi-minor axis, �b�, is

geometric mean of � rmin � and � rmax�.

16.3 Description of planetary motion

We can understand planetary motion by recognizing important aspects of motion like force, velocity, angular
momentum, energy etc. The �rst important di�erence to motion along circular path is that linear distance
between Sun and planet is not constant. The immediate implication is that gravitation force is not constant.
It is maximum at perihelion position and minimum at aphelion position.

If �R� is the radius of curvature at a given position on the elliptical trajectory, then centripetal force
equals gravitational force as given here :

mv2

R
= mω2R =

GMm

r2

Where �M� and �m� are the mass of Sun and Earth; and �r� is the linear distance between Sun and Earth.
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Except for parameters �r� and �R�, others are constant in the equation. We note that radii of curvature
at perihelion and aphelion are equal. On the other hand, centripetal force is greatest at perihelion and least
at aphelion. From the equation above, we can also infer that both linear and angular velocities of planet are
not constant.

16.3.1 Angular momentum

The angular velocity of the planet about Sun is not constant. However, as there is no external torque working
on the system, the angular momentum of the system is conserved. Hence, angular momentum of the system
is constant unlike angular velocity.

The description of motion in angular coordinates facilitates measurement of angular momentum. In the
�gure below, linear momentum is shown tangential to the path in the direction of velocity. We resolve
the linear momentum along the parallel and perpendicular to radial direction. By de�nition, the angular
momentum is given by :

Angular momentum

Figure 16.8: Angular momentum of the system is constant.

L = rXp⊥

L = rXp⊥ = rmv⊥ = rmXωr = mωr2

Since mass of the planet �m� is constant, it emerges that the term � ωr2 � is constant. It clearly shows
that angular velocity (read also linear velocity) increases as linear distance between Sun and Earth decreases
and vice versa.
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16.3.2 Maximum and minimum velocities

Maximum velocity corresponds to perihelion position and minimum to aphelion position in accordance with
maximum and minimum centripetal force at these positions. We can �nd expressions of minimum and
maximum velocities, using conservation laws.

Maximum and minimum velocities

Figure 16.9: Velocities at these positions are perpendicular to semi major axis.

Let � r1 � and � r2 � be the minimum and maximum distances, then :

r1 = a (1− e)

r2 = a (1 + e)

We see that velocities at these positions are perpendicular to semi major axis. Applying conservation of
angular momentum,

L = r1mv1 = r2mv2

r1v1 = r2v2

Applying conservation of energy, we have :

1
2
mv2

1 −
GMm

r1
=

1
2
mv2

2 −
GMm

r2

Substituting for � v2 �, � r1 � and � r2 �, we have :

v1 = vmax =

√
{GM
a

(
1 + e

1− e

)
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v2 = vmin =

√
{GM
a

(
1− e
1 + e

)

16.3.3 Energy of Sun-planet system

As no external force is working on the system and there is no non-conservative force, the mechanical energy of
the system is conserved. We have derived expression of linear velocities at perihelion and aphelion positions
in the previous section. We can, therefore, �nd out energy of �Sun-planet� system by determining the same
at either of these positions.

Let us consider mechanical energy at perihelion position. Here,

E =
1
2
mv2

1 −
GMm

r1

Substituting for velocity and minimum distance, we have :

⇒ E =
mGM (1 + e)

2a (1 + e)
− GMm

a (1− e)

⇒ E =
mGM

a (1− e)

(
1 + e

2
− 1
)

⇒ E =
mGM

a (1− e)

(
e− 1

2

)

⇒ E = −GMm

2a
We see that expression of energy is similar to that of circular trajectory about a center with the exception

that semi major axis �a� replaces the radius of circle.

16.3.4 Kepler's laws

Johannes Kepler analyzed Tycho Brahe's data and proposed three basic laws that govern planetary motion
of solar system. The importance of his laws lies in the fact that he gave these laws long before Newton's
laws of motion and gravitation. The brilliance of the Kepler's laws is remarkable as his laws are consistent
with Newton's laws and conservation laws.

Kepler proposed three laws for planetary motion. First law tells about the nature of orbit. Second law
tells about the speed of the planet. Third law tells about time period of revolution.

• Law of orbits
• Law of velocities
• Law of time periods

16.3.4.1 Law of orbits

The �rst law (law of orbits) is stated as :

De�nition 16.1: Law of orbits
The orbit of every planet is an ellipse with the sun at one of the foci.

This law describes the trajectory of a planet, which is an ellipse � not a circle. We have seen that
application of mechanics also provides for elliptical trajectory. Only additional thing is that solution of
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mechanics yields possibilities of other trajectories as well. Thus, we can conclude that Kepler's law of orbit
is consistent with Newtonian mechanics.

We should, however, note that eccentricity of elliptical path is very small for Earth (0.0167) and large
for Mercury (0.206) and Pluto (0.25).

16.3.4.2 Law of velocities

Law of velocities is a statement of comparative velocities of planets at di�erent positions along the elliptical
path.

De�nition 16.2: Law of velocities
The line joining a planet and Sun sweeps equal area in equal times in the planet's orbit.

This law states that the speed of the planet is not constant as generally might have been conjectured
from uniform circular motion. Rather it varies along its path. A given area drawn to the focus is wider when
it is closer to Sun. From the �gure, it is clear that planet covers smaller arc length when it is away and a
larger arc length when it is closer for a given orbital area drawn from the position of Sun. It means that
speed of the planet is greater at positions closer to the Sun and smaller at positions away from the Sun.

Equal area swept in equal time

Figure 16.10: Speed of the planet is greater at positions closer to the Sun and smaller at positions
away from the Sun.

Further on close examination, we �nd that Kepler's second law, as a matter of fact, is an statement of
the conservations of angular momentum. In order to prove this, let us consider a small orbital area as shown
in the �gure.
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Area swept

Figure 16.11: Time rate of area is statement of conservation of angular momentum.

∆A =
1
2
XBaseXHeight =

1
2
r∆θr =

1
2
r2∆θ

For in�nitesimally small area, the �area speed� of the planet (the time rate at which it sweeps orbital
area drawn from the Sun) is :

⇒ A

t
=

1
2
r2
θ

t
=

1
2
r2ω

Now, to see the connection of this quantity with angular momentum, let us write the equation of angular
momentum :

L = rXp⊥ = rmv⊥ = rmXωr = mωr2

⇒ ωr2 =
L

m

Substituting this expression in the equation of area � speed, we have :

⇒ A

θ
=

L

2m
As no external torque is assumed to exist on the �Sun-planet� system, its angular momentum is conserved.

Hence, parameters on the right hand side of the equation i.e. �L� and �m� are constants. This yields that
area-speed is constant as proposed by Kepler.

We can interpret the above result other way round also. Kepler's law says that area-speed of a planet is
constant. His observation is based on measured data by Tycho Brahe. It implies that angular momentum
of the system remains constant. This means that no external torque applies on the �Sun � planet� system.
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16.3.4.3 Law of time periods

The law relates time period of the planet with semi major axis of the elliptical trajectory.

De�nition 16.3: Law of time periods
The square of the time period of a planet is proportional to the cube of the semi-major axis.

We have already seen in the case of circular trajectory around a larger mass and also in the case of
two body system (see Two body system - circular motion )in which each body is moving along two circular
trajectories that time period is given by :

T =
2πr

3
2√

(GM)

The expression of time period for elliptical trajectory is similar except that semi-major axis replaces �r�.
We have not proved this in the module, but can be so derived. Squaring each of the side and replacing "r"
by "a", we have :

⇒ T 2 =
4π2a3

GM

⇒ T 2 ∝ a3

16.4 Conclusions

Thus, we conclude the following :
1: The planet follows a elliptical path about Sun.
2: The Sun lies at one of the foci.
3: Gravitational force, centripetal force, linear and angular velocities are variable with the motion.
4: Velocities are maximum at perihelion and minimum at aphelion.
5: Although angular velocity is variable, the angular momentum of the system is conserved.
6: The expression of total mechanical energy is same as in the case of circular motion with the exception

that semi major axis, �a�, replaces radius, �r�.
7: The expression of time period is same as in the case of circular motion with the exception that semi

major axis, �a�, replaces radius, �r�.
8: Kepler's three laws are consistent with Newtonian mechanics.
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Glossary

B Binding energy

Binding energy is equal to the modulus of
mechanical energy.

G Gravitational potential energy

The gravitational potential energy of a
system of particles is equal to the work by
the external force as a particle is brought
from in�nity slowly to its position in the
presence of other particles of the system.

Gravitational potential energy

The gravitational potential energy of a
system of particles is equal to �negative�
of the work by the gravitational force as
a particle is brought from in�nity to its
position in the presence of other particles
of the system.

Gravitational potential

The gravitational potential at a point is
equal to the work by the external force as
a particle of unit mass is brought from

in�nity to its position in the gravitational
�eld.

Gravitational potential

The gravitational potential at a point is
equal to �negative� of the work by the
gravitational force as a particle of unit
mass is brought from in�nity to its
position in the gravitational �eld.

L Law of orbits

The orbit of every planet is an ellipse
with the sun at one of the foci.

Law of time periods

The square of the time period of a planet
is proportional to the cube of the
semi-major axis.

Law of velocities

The line joining a planet and Sun sweeps
equal area in equal times in the planet's
orbit.
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R r, 118
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� 6(45), � 7(57), � 9(69), � 10(79), � 11(83),
� 12(91), � 13(105), � 14(109), � 15(117),
� 16(125)

V velocity, � 1(1), � 2(11), � 3(23), � 4(29),
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W work, � 1(1), � 2(11), � 3(23), � 4(29), � 5(39),
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