
Finite Impulse Response

By:
Hyeokho Choi

Finite Impulse Response

By:
Hyeokho Choi

Online:
< http://cnx.org/content/col10226/1.1/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Hyeokho Choi. It is licensed under the

Creative Commons Attribution 1.0 license (http://creativecommons.org/licenses/by/1.0).

Collection structure revised: February 16, 2004

PDF generated: February 4, 2011

For copyright and attribution information for the modules contained in this collection, see p. 40.

Table of Contents

1 Chapter 1

1.1 TMS320C6211 Architecture Overview . 1
1.2 C62x Assembly Primer II . 3
Solutions . 18

2 Chapter 2

2.1 Fixed Point Arithmetic . 19
Solutions . 25

3 Chapter 3

3.1 Unit Sample Signal . 27
3.2 Discrete-TIme Filtering . 27
3.3 Filter design by windowing . 28
3.4 Parks-McClellan Optimal FIR Filter Design . 29
3.5 FIR Filter Design using MATLAB . 29
3.6 MATLAB FIR Filter Design Exercise . 30
3.7 Assembly Implementation of FIR Filters on TI TMS320C62x . 30
3.8 C Language Implementation of FIR Filters on TMS320C62x . 32
3.9 Linear Assembly Implementation of FIR Filters on TMS320C62x . 32
Solutions . 35

4 Supplemental Material

4.1 Rice DSP Lab Setup . 37
4.2 Testing Filters in Rice DSP Lab . 38

Index . 39
Attributions . 40

iv

Chapter 1

Chapter 1

1.1 TMS320C6211 Architecture Overview1

1.1.1 Overview of C6211 Architecture

The C62x consists of internal memory, peripherals (serial port, external memory interface, etc.), and most
importantly, the CPU that has the registers and the functional units for execution of instructions. Figure 1-1
on the next page illustrates the internal structure of the CPU and the relation with the peripherals outside
the CPU. Although you don't need to care about the internal architecture of the CPU for compiling and
running programs, it is necessary to understand how the CPU fetches and executes the assembly instructions
to write a highly optimized assembly program.

We demonstrate the architecture and basic function of each CPU unit through the development of simple
assembly language programs.

1.1.1.1 Core DSP operation

In many DSP algorithms, the Sum of Product or Multiply-Accumulate (MAC) operations are very common.
A DSP CPU is designed to handle the math-intensive calculations necessary for DSP algorithms. For e�cient
implementation of the MAC operations, the C6211 CPU has two multipliers and each of them can perform
a 16-bit multiplication in each clock cycle. For example, if we want to compute the dot product of two
length-40 vectors an and xn, we need to compute

∑40
n=1 anxn. (For example, the FIR �ltering algorithm is

exactly same as this dot product operation.) When an and xn are stored in memory, starting from n = 1, we
need to compute anxn and add it to y (y is initially 0) and repeat this up to n = 40. In the C62x assembly,
this MAC operation can be written as

MPY .M a,x,prod

ADD .L y,prod,y

Ignore .M and .L for now. Here, a,x,prod,y are numbers stored in memory and the instruction MPYmultiplies
two numbers a and x together and stores the result in prod. The ADD instruction adds two numbers y and
prod together storing the result back to y.

1This content is available online at <http://cnx.org/content/m10872/2.5/>.

1

2 CHAPTER 1. CHAPTER 1

1.1.1.2 Register Files

Where are the numbers stored in the CPU? In C62x, the numbers used in operations are stored in the
registers. Because the registers are directly accessible through the data bus of the CPU, accessing the
registers are much faster than accessing data in the external memory.

The C62x CPU has two register �les consisting of sixteen 32-bit registers each. There are two separate
register �les (A and B). Each of these �les contains sixteen 32-bit registers (A0-A15 for �le A and B0-B15
for �le B). The general-purpose registers can be used for data, data address pointers, or condition registers.

The general-purpose register �les support data ranging in size from 16-bit data through 40-bit �xed-
point. Values larger than 32 bits, such as 40-bit long quantities, are stored in register pairs. In a register
pair, the 32 LSBs of data are placed in an even-numbered register and the remaining 8 MSBs in the next
upper register (which is always an odd-numbered register). In assembly language syntax, a colon between
two register names denotes the register pairs, and the odd-numbered register is speci�ed �rst. For example,
A1:A0 represents the register pair consisting of A0 and A1. But you don't need to be concerned with the
40-bit numbers too much. Throughout this course, you will be mostly handling either 16 or 32-bit values
stored in a single register. Let's for now focus on �le A only. The registers in the register �le A are named A0
to A15. Each register can store a 32-bit binary number. The numbers such as a,x,prod,y above are stored
in these registers. For example, register A0 stores a. For now, let's assume we interpret all 32-bit numbers
stored in registers as unsigned integer. Therefore, the range of values we can represent is 0 to 232 − 1. (For
representation of real numbers using binary bits, we will learn about the Q format numbers for �xed-point
representation of real numbers.) Let's assume the numbers a,x,prod,y are in the registers A0,A1,A3,A4,
respectively. Then, the above assembly instructions can be written speci�cally

MPY .M1 A0,A1,A3

ADD .L1 A4,A3,A4

The TI C62x CPU has a load/store architecture. This means that all the numbers must be stored in the
registers for being used as operands for the operations for instructions such as MPY and ADD. The numbers
can be read from a memory location to a register (using, for example, LDW, LDB instructions) or a register
can be loaded with a constant value. The content of a register can be stored to a memory location (using,
for example, STW, STB instructions).

In addition to the general-purpose register �les, the CPU has a separate register �le for the control
registers. The control registers are used to control various CPU functions such as addressing mode, interrupts,
etc. You will learn more about some of the control registers when we learn each individual topic.

1.1.1.3 Functional units

Then, where do the actual operations such as multiplication and addition take place? The C62x CPU has
several functional units that perform the actual operations. Each register �le has 4 functional units named
.M, .L, .S, and .D. (See Figure 1-1). The 4 functional units connected to the register �le A are named .L1,
.S1, .D1, and .M1. Those connected to the register �le B are named .L2, .S2, .D2, and .M2. See Figure
1-1. For example, the functional unit .M1 performs multiplication on the operands that are in register �le A.
When the CPU executes the MPY .M1 A0,A1,A3 above, the functional unit .M1 takes the values stored in A0

and A1, multiply them together and stores the result to A3. The .M1 in MPY .M1 A0,A1,A3 indicates that
this operation is performed in the .M1 unit. The .M1 unit has a 16 bit multiplier and all the multiplications
are performed by the .M1 unit.

Similarly, the ADD operation can be executed by the .L1 unit. The .L1 can perform all the logical
operations such as bitwise AND operation (AND instruction) as well as basic addition (ADD instruction) and
subtraction (SUB instruction).

3

For complete list of instructions executed by each function unit, see Table 3-2 in the handout
TMS320C62x/C64x/C67x Fixed-Point Instruction Set. We will later learn more about assigning
the functional units for assembly instructions.

Exercise 1.1 (Solution on p. 18.)

Read the description of ADD and MPY instructions in the TI manual handed out. Write an assembly
program that computes

A0*(A1+A2)+A3

.

1.2 C62x Assembly Primer II2

1.2.1 Typical Assembly Operations

1.2.1.1 Loading constants to registers

Quite often you need to load a register with a constant. The C62x instructions you can use for this task
are MVK, MVKL, and MVKH. Each of these instructions can load a 16-bit constant to a register. Read and
understand the description of these instructions in the manual.

Exercise 1.2 (Solution on p. 18.)

(Loading constants): Write assembly instructions to do the following:

1. Load the 16-bit constant 0xff12 to A1.
2. Load the 32-bit constant 0xabcd45ef to B0.

1.2.1.2 Register moves, zeroing

Contents of one register can be copied to another register by using the MV instruction. There is also the
ZERO instruction to set a register to zero. Learn how to use these instructions by reading the appropriate TI
manual pages.

1.2.1.3 Loading from memory to registers

Because the C62x processor has the so-called load/store architecture, you must �rst load up the content
of memory to a register to be able to manipulate it. The basic assembly instructions you use for loading
are LDB, LDH, and LDW for loading up 8-, 16-, and 32-bit data from memory. (There are some variations to
these instructions for di�erent handling of the signs of the loaded values.) Read and understand how these
instructions work.

However, to specify the address of the memory location to load from, you need to load up another register
(used as an address index) and you can use various addressing modes to specify the memory locations in
many di�erent ways. The addressing modes is the method by which an instruction calculates the location
of an object in memory. The table below lists all the possible di�erent ways to handle the address pointers
in C62x CPU. Note the similarity with the C pointer manipulation.

2This content is available online at <http://cnx.org/content/m11051/2.3/>.

4 CHAPTER 1. CHAPTER 1

Syntax Memory address accessed Pointer modi�cation

*R R None

*++R R Preincrement

*�R R Predecrement

*R++ R Postincrement

*R� R Postdecrement

*+R[disp] R+disp None

*-R[disp] R+disp None

*++R[disp] R+disp Preincrement

*�R[disp] R+disp Predecrement

*R++[disp] R+disp Postincrement

*R�[disp] R+disp Postdecrement

Table 1.1

The [disp] speci�es the number of elements in word, halfword, or byte, depending on the instruction
type and it can be either 5-bit constant or a register. The increment/decrement of the index registers are
also in terms of the number of bytes in word, halfword or byte. The addressing modes with displacements
are useful when a block of memory locations is accessed. Those with automatic increment/decrement are
useful when a block is accessed consecutively to implement a bu�er, for example, to store signal samples to
implement a digital �lter.

Exercise 1.3 (Solution on p. 18.)

(Load from memory): Assume the following values are stored in memory addresses:

100h fe54 7834h

104h 3459 f34dh

108h 2ef5 7ee4h

10ch 2345 6789h

110h ffff eeddh

114h 3456 787eh

118h 3f4d 7ab3h

Suppose A10 = 0000 0108h. Find the contents of A1 and A10 after executing the each of the
following instructions.

1. LDW .D1 *A10, A1

2. LDH .D1 *A10, A1

3. LDB .D1 *A10, A1

4. LDW .D1 *-A10[1], A1

5. LDW .D1 *+A10[1], A1

6. LDW .D1 *+A10[2], A1

7. LDB .D1 *+A10[2], A1

8. LDW .D1 *++A10[1], A1

9. LDW .D1 *�A10[1], A1

10. LDB .D1 *++A10[1], A1

11. LDB .D1 *�A10[1], A1

5

12. LDW .D1 *A10++[1], A1

13. LDW .D1 *A10�[1], A1

1.2.1.4 Storing data to memory

Storing the register contents uses the same addressing modes. The assembly instructions used for storing
are STB, STH, and STW. Read and understand these instructions in the TI manual.

Exercise 1.4 (Solution on p. 18.)

(Storing to memory): Write assembly instructions to store 32-bit constant 53fe 23e4h to memory
address 0000 0123h.

Sometimes, it becomes necessary to access part of the data stored in memory. For example, if you store
the 32-bit word 0x11223344 at memory location 0x8000, the four bytes having addresses location 0x8000,
location 0x8001, location 0x8002, and location 0x8003 contain the value 0x11223344. Then, if I read the
byte data at memory location 0x8000, what would be the byte value to be read?

The answer depends on the endian mode of the memory system. In the little endian mode, the lower
memory addresses contain the LSB part of the data. Thus, the bytes stored in the four byte addresses will
be as shown in Table 1.2.

0x8000 0x44

0x8001 0x33

0x8002 0x22

0x8003 0x11

Table 1.2

In the big endian mode, the lower memory addresses contain the MSB part of the data. Thus, we have

0x8000 0x11

0x8001 0x22

0x8002 0x33

0x8003 0x44

Table 1.3

In this course, we use the little endian mode by default and all the lab programming must assume the
little endian mode.

Exercise 1.5 (Solution on p. 18.)

(Little endian mode): What will be the value in A0 after executing the following assembly instruc-
tions? (functional unit speci�cations were omitted.)

1. MVKL 0x80000000, A10

2. MVKH 0x80000000, A10

3. MVKL 0x12345678, A9

4. MVKH 0x12345678, A9

5. STW A9, *A10

6. LDB *+A10[2],A0

6 CHAPTER 1. CHAPTER 1

What will be the value in A0 if the system uses the big endian mode?

In fact, the above addressing method describes the so-called linear addressing mode (default upon reset),
where the o�set or increment/decrement of pointers occur without bound. There is a circular addressing
modes that can handle a �nite size bu�er e�ciently. You will implement circular bu�ers for the FIR �ltering
algorithm in the FIR �ltering experiments later.

In the C62x CPU, it takes exactly one CPU clock cycle to execute each instruction. However, the
instructions such as LDW need to access the slow external memory and the results of the load are not available
immediately at the end of the execution. This delay of the execution results is called delay slots.

Example 1.1
For example, let's consider loading up the content of memory content at address pointed by A10 to
A1 and then moving the loaded data to A2. You might be tempted to write simple 2 line assembly
code as follows:

1 LDW .D1 *A10, A1

2 MV .D1 A1,A2

What is wrong with the above code? The result of the LDW instruction is not available immediately
after LDW is executed. As a consequence, the MV instruction does not copy the desired value of A1 to
A2. To prevent this undesirable execution, we need to make the CPU wait until the result of the LDW
instruction is correctly loaded to A1 before executing the MV instruction. For load instructions, we
need extra 4 clock cycles until the load results are valid. To make the CPU wait for 4 clock cycles,
we need to insert 4 NOP (no operations) instructions between LDW and MV. Each NOP instruction
makes the CPU idle for one clock cycle. The resulting code will be like this:

1 LDW .D1 *A10, A1

2 NOP

3 NOP

4 NOP

5 NOP

6 MV .D1 A1,A2

or simply you can write

1 LDW .D1 *A10, A1

2 NOP 4

3 MV .D1 A1,A2

Then, why didn't the designer of the CPU make such that LDW instruction takes 5 clock cycles to begin
with, rather than let the programmer insert 4 NOPs? The answer is that you can insert other instructions
other than NOPs as far as those instructions do not use the result of the LDW instruction above. By doing
this, the CPU can execute additional instructions while waiting for the result of the LDW instruction to be
valid, greatly reducing the total execution time of the entire program.

1.2.1.5 More on instructions with delay slots

The Table 3-5 in TI's instruction set description shows the execution of the instructions with delay slots in
more detail. The instructions with delay slots are multiply (MPY, 1 delay slot), the load (LDB, LDW etc. 4
delay slots) instructions, and the branch (B, 5 delay slots) instruction.

7

The functional unit latency indicates for how many clock cycles each instructions actually use a
functional unit. All C62x instructions have 1 functional unit latency, meaning that each functional unit is
ready to execute the next instruction after 1 clock cycle regardless of the delay slots of the instructions.
Therefore, the following instructions are valid:

1 LDW .D1 *A10, A4

2 ADD .D1 A1,A2,A3

Although the �rst LDW instruction do not load the A4 register correctly while the ADD is executed, the D1

functional unit becomes available in the clock cycle right after the one in which LDW is executed.
To clarify the execution of instructions with delay slots, let's think of the following example of LDW

instruction. Let's assume A10 = 0x0100 A2=1, and your intent is loading A9 with the 32-bit word at the
address 0x0104. The 3 MV instructions are not related to the LDW instruction. They do something else.

1 LDW .D1 *A10++[A2], A9

2 MV .L1 A10, A8

3 MV .L1 A1, A10

4 MV .L1 A1, A2

5 ...

We can ask several interesting questions at this point:

1. What is the value loaded to A8? That is, in which clock cycle, the address pointer is updated?
2. Can we load the address o�set register A2 before the LDW instruction �nishes the actual loading?
3. Is it legal to load to A10 before the �rst LDW �nishes loading the memory content to A9? That is, can

we change the address pointer before the 4 delay slots elapse?

Here are the answers:

1. Although it takes extra 4 clock cycles for the LDW instruction to load the memory content to A9, the
address pointer and o�set registers (A10 and A2) are read and updated in the clock cycle the LDW

instruction is issued. Therefore, in line 2, A8 is loaded with the updated A10, that is A10 = A8 =

0x104.
2. Because the LDW reads the A10 and A2 registers in the �rst clock cycle, you are free to change these

registers and do not a�ect the operation of the �rst LDW.
3. This was already answered above.

Similar theory holds for MPY and B (when using a register as a branch address) instructions. The MPY

reads in the source values in the �rst clock cycle and loads the multiplication result after the 2nd clock cycle.
For B, the address pointer is read in the �rst clock cycle, and the actual branching occurs after the 5th clock
cycle. Thus, after the �rst clock cycle, you are free to modify the source or the address pointer registers.
For more details, refer Table 3-5 in the instruction set description or read the description of the individual
instruction.

1.2.1.6 Addition, Subtraction and Multiplication

There are several instructions for addition, subtraction and multiplication on C62x CPU. The basic instruc-
tions are ADD, SUB, and MPY. Learn about these instructions in the TI manual. ADD and SUB have 0 delay
slots (meaning the results of operation are immediately available), but the MPY has 1 delay slot (the result
of multiplication is valid after additional 1 clock cycle).

Exercise 1.6 (Solution on p. 18.)

(Add, subtract, and multiply): Write an assembly program to compute (0000 ef35h + 0000

33dch - 0000 1234h) * 0000 0007h

8 CHAPTER 1. CHAPTER 1

1.2.1.7 Branching and conditional operations

Often you need to control the �ow of the program execution by branching to another block of code. The B
instruction does the job in the C62x CPU. The address of the branch can be speci�ed either by displacement
or stored in a register to be used by the B instruction. Read and understand the B instruction in the manual.
The B instruction has 5 delay slots, meaning that the actual branch occurs in the 5th clock cycle after the
instruction is executed.

In many cases, depending on the result of previous operations, you execute the branch instruction con-
ditionally. For example, to implement a loop, you decrement the loop counter by 1 each time you run a
set of instructions and whenever the loop counter is not zero, you need to branch to the beginning of the
code block to iterate the loop operations. In C62x CPU, this conditional branching is implemented using
the conditional operations. Although B may be the instruction implemented using conditional operations
most often, all instructions in C62x can be conditional.

Conditional instructions are represented in code by using square brackets, [], surrounding the condition
register name. For example, the following B instruction is executed only if B0 is nonzero:

1 [B0] B .L1 A0

To execute an instruction conditionally when the condition register is zero, we use ! in front of the register.
For example, the B instruction is executed when B0 is zero.

1 [!B0] B .L1 A0

Not all registers can be used as the condition registers. In C62x CPU, the registers that can be tested in
conditional operations are B0, B1, B2, A1, A2.

Exercise 1.7 (Solution on p. 18.)

(Simple loop): Write an assembly program computing the summation
∑100

n=1 n by implementing a
simple loop.

1.2.1.8 Logical operations and bit manipulation

The logical operations and bit manipulations are accomplished by the AND, OR, XOR, CLR, SET, SHL, and SHR

instructions. Read and understand the operations of these instructions.

1.2.1.9 Other assembly instructions

Other useful instructions include IDLE and compare instructions such as CMPEQ etc. Read and understand
the operations of these instructions.

1.2.1.10 C62x instruction set summary

The set of instructions that can be performed in each functional unit is as follows (See Table 1.4: .S Unit,
Table 1.5: .L Unit, Table 1.6: .D Unit and Table 1.7: .M Unit). Please refer to TMS320C62x/C67x CPU
and Instruction Set Reference Guide for detailed description of each instruction.

.S Unit

9

Instruction Description

ADD(U) signed or unsigned integer addition without satura-
tion

ADDK integer addition using signed 16-bit constant

ADD2 two 16-bit integer adds on upper and lower register
halves

B branch using a register

CLR clear a bit �eld

EXT extract and sign-extend a bit �eld

MV move from register to register

MVC move between the control �le and the register �le

MVK move a 16-bit constant into a register and sign ex-
tend

MVKH move 16-bit constant into the upper bits of a regis-
ter

NEG negate (pseudo-operation)

NOT bitwise NOT

OR bitwise OR

SET set a bit �eld

SHL arithmetic shift left

SHR arithmetic shift right

SSHL shift left with saturation

SUB(U) signed or unsigned integer subtraction without sat-
uration

SUB2 two 16-bit integer integer subs on upper and lower
register halves

XOR exclusive OR

ZERO zero a register (pseudo-operation)

Table 1.4

.L Unit

Instruction Description

ABS integer absolute value with saturation

continued on next page

10 CHAPTER 1. CHAPTER 1

ADD(U) signed or unsigned integer addition without satura-
tion

AND bitwise AND

CMPEQ integer compare for equality

CMPGT(U) signed or unsigned integer compare for greater than

CMPLT(U) signed or unsigned integer compare for less than

LMBD leftmost bit detection

MV move from register to register

NEG negate (pseudo-operation)

NORM normalize integer

NOT bitwise NOT

+OR bitwise OR

SADD integer addition with saturation to result size

SAT saturate a 40-bit integer to a 32-bit integer

SSUB integer subtraction with saturation to result size

SUBC conditional integer subtraction and shift - used for
division

XOR exclusive OR

ZERO zero a register (pseudo-operation)

Table 1.5

.D Unit

Instruction Description

ADD(U) signed or unsigned integer addition without satura-
tion

ADDAB (B/H/W) integer addition using addressing mode

LDB (B/H/W) load from memory with a 15-bit constant o�set

MV move from register to register

STB (B/H/W) store to memory with a register o�set or 5-bit un-
signed constant o�set

SUB(U) signed or unsigned integer subtraction without sat-
uration

continued on next page

11

SUBAB (B/H/W) integer subtraction using addressing mode

ZERO zero a register (pseudo-operation)

Table 1.6

.M Unit

Instruction Description

MPY (U/US/SU) signed or unsigned integer multiply 16lsb*16lsb

MPYH (U/US/SU) signed or unsigned integer multiply 16msb*16msb

MPYLH signed or unsigned integer multiply 16lsb*16msb

MPYHL signed or unsigned integer multiply 16msb*16lsb

SMPY (HL/LH/H) integer multiply with left shift and saturation

Table 1.7

1.2.2 Useful assembler directives

Other than the CPU instruction set, there are special commands to the assembler that direct the assembler
to do various jobs when assembling the code. You should learn about some of these assembler directives to
be able to write an assembly program. There are useful assembler directives you can use to let the assembler
know various settings, such as .set, .macro, .endm, .ref, .align, .word, .byte .include.,

The .set directive de�nes a symbolic name. For example, you can have

1 count .set 40

Then, the assembler replaces each occurrence of count with 40.
You have already seen how the .ref directive is used to declare symbolic names de�ned in another �le.

It is similar to the extern declaration in C.
The .space directive reserves a memory space with speci�ed number of bytes. For example, you can

have

1 buffer .space 128

to de�ne a bu�er of size 128 bytes. The symbol buffer has the address of the �rst byte reserved by .space.
The .bes directive is similar to .space, but the label has the address of the last byte reserved.

To put a constant value in the memory, you can use .byte, .word, etc. If you have

1 const1 .word 0x1234

the assembler places the word constant 0x1234 at a memory location and const1 has the address of the
memory location. .byte etc. works similarly.

Sometimes you need to place your data or code at a speci�c memory address boundaries such as word,
halfword, etc. You can use the .align directive to do this. For example, if you have

12 CHAPTER 1. CHAPTER 1

1 .align 4

2 buffer .space 128

3 ...

Then, the �rst address of the reserved 128 bytes is at the word boundary in memory, that is the 2 LSBs of
the address (in binary) are 0. Similarly, for half-word alignment, you should have .align directive to do
this. For example, if you have

1 .align 2

2 buffer .space 128

3 ...

The .include directive is used to read the source lines from another �le. If you have

1 .include ``other.asm''

will input the lines in other.asm at this location. This is useful when working with multiple �les. Instead
of making a project having multiple �les, you can simply include these di�erent �les in one �le.

Other assembler directives include .end, etc. You will learn about the macro directives .macro, .endm

later .
How do you write comments in your assembly program? Anything that follows ; is considered as a

comment and ignored by the assembler. For example,

1 ; this is a comment

2 ADD .L1 A1,A2,A3 ;add a1 and a2

1.2.3 Assigning functional units

Each instruction has particular functional units that can execute it. For a complete list of the instructions
that can be executed in each functional unit, see Table 3-2 in the instruction set manual. Note that some
instructions can be executed by several di�erent functional units.

shows how data and addresses can be transfered between the registers, functional units and the external
memory. If you observe carefully, the destination path (marked as dst) going out of the .L1, .S1, .M1 and
D1 units are connected to the register �le A.

note: This means that any instruction with one of the A registers as destination (the result of
operation is stored in one of A registers) should be executed in one of these 4 functional units.

For the same reason, if the instructions have B registers as destination, the .L2, .S2, .M2 and D2 units
should be used.

Therefore if you know the instruction and the destination register, you should be able to assign the
functional unit to it.

Exercise 1.8 (Solution on p. 18.)

(Functional units): List all the functional units you can assign to each of these instructions:

1. ADD .?? A0,A1,A2

13

2. B .?? A1

3. MVKL .?? 000023feh, B0

4. LDW .?? *A10, A3

If you look at again, each functional unit must receive one of the source data from the corresponding register
�le. For example, look at the following assembly instruction:

1 ADD .L1 A0,B0,A1

The .L1 unit gets data from A0 (this is natural) and B0 (this is not) and stores the result in A1 (this is a
must). The data path through which the content of B0 is conveyed to the .L1 unit is called 1X cross path.
When this happens, we add x to the functional unit to designate the cross path:

1 ADD .L1x A0,B0,A1

Similarly the data path from register �le B to the .M2, .S2 and .L2 units are called 2X cross path.

Exercise 1.9 (Solution on p. 18.)

(Cross path): List all the functional units that can be assigned to each of the instruction:

1. ADD .??? B0,A1,B2

2. MPY .??? A1,B2,A4

In fact, when you write an assembly program, you can omit the functional unit assignment altogether. The
assembler �gures out the available functional units and properly assigns them. However, manually assigned
functional units help you to �gure out where the actual execution takes place and how the data move around
between register �les and functional units. This is particularly useful when you put multiple instructions in
parallel. We will learn about the parallel instructions later on.

1.2.4 Writing the inner product program

Now you should know enough about C62x assembly to implement the inner product algorithm to compute

y =
10∑

n=1

an × xn

Exercise 1.10 (Solution on p. 18.)

(Inner product): Write the complete inner product assembly program to compute

y =
10∑

n=1

an × xn

where an and xn take the following values:

a[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, a }

x[] = { f, e, d, c, b, a, 9, 8, 7, 6 }

The an and xn values must be stored in memory and the inner product is computed by reading the
memory contents.

14 CHAPTER 1. CHAPTER 1

1.2.5 Pipeline, Delay slots and Parallel instructions

When an instruction is executed, it takes several steps, which are fetching, decoding, and execution. If these
steps are done one at a time for each instruction, the CPU resources are not fully utilized. To increase the
throughput, CPUs are designed to be pipelined, meaning that the foregoing steps are carried out at the same
time.

On the C6x processor, the instruction fetch consists of 4 phases; generate fetch address (F1), send address
to memory (F2), wait for data (F3), and read opcode from memory (F4). Decoding consists of 2 phases;
dispatching to functional units (D1) and decoding (D2). The execution step may consist of up to 6 phases
(E1 to E6) depending on the instructions. For example, the multiply (MPY) instructions has 1 delay resulting
in 2 execution phases. Similarly, load (LDx) and branch (B) instructions have 4 and 5 delays respectively.

When the outcome of an instruction is used by the next instruction, an appropriate number of NOPs (no
operation or delay) must be added after multiply (one NOP), load (four NOPs, or NOP 4), and branch (�ve
NOPs, or NOP 5) instructions in order to allow the pipeline to operate properly. Otherwise, before the outcome
of the current instruction is available (which is to be used by the next instruction), the next instructions are
executed by the pipeline, generating undesired results. The following code is an example of pipelined code
with NOPs inserted:

1 MVK 40,A2

2 loop: LDH *A5++,A0

3 LDH *A6++,A1

4 NOP 4

5 MPY A0,A1,A3

6 NOP

7 ADD A3,A4,A4

8 SUB A2,1,A2

9 [A2] B loop

10 NOP 5

11 STH A4,*A7

In line 4, we need 4 NOPs because the A1 is loaded by the LDH instruction in line 3 with 4 delays. After 4
delays, the value of A1 is available to be used in the MPY A0,A1,A3 in line 5. Similarly, we need 5 delays
after the [A2] B loop instruction in line 9 to prevent the execution of STH A4,*A7 before branching occurs.

The C6x Very Large Instruction Word (VLIW) architecture, several instructions are captured and pro-
cessed simultaneously. This is referred to as a Fetch Packet (FP). This Fetch Packet allows C6x to fetch
eight instructions simultaneously from on-chip memory. Among the 8 instructions fetched at the same time,
multiple of them can be executed at the same time if they do not use same CPU resources at the same
time. Because the CPU has 8 separate functional units, maximum 8 instructions can be executed in parallel,
although the type of parallel instructions are limited because they must not con�ict each other in using CPU
resources. In assembly listing, parallel instructions are indicated by double pipe symbols (||). When writing
assembly code, by designing code to maximize parallel execution of instructions (through proper functional
unit assignments, etc.) the execution cycle of the code can be reduced.

1.2.6 Parallel instructions and constraints

We have seen that C62x CPU has 8 functional units. Each assembly instruction is executed in one of these 8
functional units, and it takes exactly one clock cycle for the execution. Then, while one instruction is being
executed in one of the functional units, what are other 7 functional units doing? Can other functional units
execute other instructions at the same time?

The answer is YES. Thus, the CPU can execute maximum 8 instructions in each clock cycle. The
instructions executed in the same clock cycle are called parallel instructions. Then, what instructions can

15

be executed in parallel? A short answer is: as far as the parallel instructions do not use the same resource
of the CPU, they can be put in parallel. For example, the following two instructions do not use the same
CPU resource and they can be executed in parallel.

1 ADD .L1 A0,A1,A2

2 || ADD .L2 B0,B1,B2

1.2.6.1 Resource constraints

Then, what are the constraints on the parallel instructions? Let's look at the resource constraints in more
detail.

1.2.6.1.1 Functional unit constraints

This is simple. Each functional unit can execute only one instruction per each clock cycle. In other words,
instructions using the same functional unit cannot be put in parallel.

1.2.6.1.2 Cross paths constraints

If you look at the data path diagram of the C62x CPU, there exists only one cross path from B register �le
to the L1, M1 and S1 functional units. This means the cross path can be used only once per each clock cycle.
Thus, the following parallel instructions are invalid because the 1x cross path is used for both instructions.

1 ADD .L1x A0,B1,A2

2 || MPY .M1x A5,B0,A3

The same rule holds for the 2x cross path from the A register �le to the L2, M2 and S2 functional units.

1.2.6.1.3 Loads and Stores constraints

The D units are used for load and store instructions. If you examine the C62x data path diagram, the
addresses for load/store can be obtained from either A or B side using the multiplexers connecting crisscross
to generate the addresses DA1 and DA2. Thus, the instructions such as

1 LDW .D2 *B0, A1

is valid. The functional unit must be on the same side as the address source register (address
index in B0 and therefore D2 above), because D1 and D2 units must receive the addresses from A and B sides,
respectively.

Another constraint is that while loading a register in one register �le from memory, you cannot simulta-
neously store a register in the same register �le to memory. For example, the following parallel instructions
are invalid:

1 LDW .D1 *A0, A1

2 || STW .D2 A2, *B0

16 CHAPTER 1. CHAPTER 1

1.2.6.1.4 Constraints on register reads

You cannot have more than four reads from the same register in each clock cycle. Thus, the following is
invalid:

1 ADD .L1 A1, A1, A2

2 || MPY .M1 A1, A1, A3

3 || SUB .D1 A1, A4, A5

1.2.6.1.5 Constraints on register writes

A register cannot be written to more than once in a single clock cycle. However, note that the actual writing
to registers may not occur in the same clock cycle during which the instruction is executed. For example,
the MPY instruction writes to the destination register in the next clock cycle. Thus, the following is valid:

1 ADD .L1 A1, A1, A2

2 || MPY .M1 A1, A1, A2

The following two instructions (not parallel) are invalid (why?):

1 MPY .M1 A1, A1, A2

2 ADD .L1 A3, A4, A2

Some of these write con�icts are very hard to detect and not detected by the assembler. Extra caution
should be exercised with the instructions having nonzero delay slots.

1.2.7 Ad-Hoc software pipelining

At this point, you might have wondered why the C62x CPU allows parallel instructions and generate so
much headache with the resource constraints, especially with the instructions with delay slots. And, why
not just make the MPY instruction take 2 clock cycles to execute so that we can always use the multiplied
result after issuing it?

The reason is that by executing instructions in parallel, we can reduce the total execution time of the
program. A well-written assembly program executes as many instructions as possible in each clock cycle to
implement the desired algorithm.

The reason for allowing delay slots is that although it takes 2 clock cycles for an MPY instruction generate
the result, we can execute another instruction while waiting for the result. This way, you can reduce the
clock cycles wasted while waiting for the result from slow instructions, thus increasing the overall execution
speed.

However, how can we put instructions in parallel? Although there's a systematic way of doing it (we
will learn a bit later), at this point you can try to restructure your assembly code to execute as many
instructions as possible in parallel. And, you should try to execute other instructions in the delay slots
of those instructions such as MPY, LDW, etc., instead of inserting NOPs to wait the instructions produce the
results.

Exercise 1.11 (Solution on p. 18.)

(parallel instructions): Modify your assembly program for the inner product computation in the
previous exercise to use parallel instructions as much as possible. Also, try to �ll the delay slots

17

as much as possible. Using the code composer's pro�ling, compare the clock cycles necessary for
executing the modi�ed program. How many clock cycles could you save?

18 CHAPTER 1. CHAPTER 1

Solutions to Exercises in Chapter 1

Solution to Exercise 1.1 (p. 3)
solution here
Solution to Exercise 1.2 (p. 3)
Intentionally left blank.
Solution to Exercise 1.3 (p. 4)
Intentionally left blank.
Solution to Exercise 1.4 (p. 5)
Intentionally left blank.
Solution to Exercise 1.5 (p. 5)
Intentionally left blank.
Solution to Exercise 1.6 (p. 7)
Intentionally left blank.
Solution to Exercise 1.7 (p. 8)
Intentionally left blank.
Solution to Exercise 1.8 (p. 12)
Intentionally left blank.
Solution to Exercise 1.9 (p. 13)
Intentionally left blank.
Solution to Exercise 1.10 (p. 13)
Intentionally left blank.
Solution to Exercise 1.11 (p. 16)
Intentionally left blank.

Chapter 2

Chapter 2

2.1 Fixed Point Arithmetic1

2.1.1 Fixed-point arithmetic

This handout explains how numbers are represented in the �xed point TI C6211 DSP processor. Because
hardware can only store and process bits, all the numbers must be represented as a collection of bits.
Each bit represents either "0" or "1", hence the number system naturally used in microprocessors is the
binary system. This handout explains how numbers are represented and processed in DSP processors for
implementing DSP algorithms.

2.1.1.1 How numbers are represented

A collection of N binary digits (bits) has 2N possible states. This can be seen from elementary counting
theory, which tells us that there are two possibilities for the �rst bit, two possibilities for the next bit, and
so on until the last bit, resulting in

2× 2× 2 · · · = 2N

possibilities or states. In the most general sense, we can allow these states to represent anything conceivable.
The point is that there is no meaning inherent in a binary word, although most people are tempted to
think of them as positive integers. However, the meaning of an N -bit binary word depends entirely on its
interpretation.

2.1.1.1.1 Unsigned integer representation

The natural binary representation interprets each binary word as a positive integer. For example, we
interpret an 8-bit binary word

b7b6b5b4b3b2b1b0

as an integer

x = b727 + b626 + · · ·+ b12 + b0 =
7∑

i=0

2ibi

This way, an N -bit binary word corresponds to an integer between 0 and 2N −1. Conversely, all the integers
in this range can be represented by an N -bit binary word. We call this interpretation of binary words
unsigned integer representation, because each word corresponds to a positive (or unsigned) integer.

We can add and multiply two binary words in a straightforward fashion. Because all the numbers are
positive, the results of addition or multiplication are also positive.

1This content is available online at <http://cnx.org/content/m11054/2.2/>.

19

20 CHAPTER 2. CHAPTER 2

However, the result of adding two N -bit words in general results in an N + 1 bits. When the result
cannot be represented as an N -bit word, we say that an over�ow has occurred. In general, the result of
multiplying two N -bit words is a 2N bit word. Note that as we multiply numbers together, the number of
necessary bits increases inde�nitely. This is undesirable in DSP algorithms implemented on hardware. So,
later (Section 2.1.1.1.3: Fractional representation) we will introduce the fractional interpretation of binary
words, to overcome this problem.

Another problem of the unsigned integer representation is that it can only represent positive integers. To
represent negative values, naturally we need a di�erent interpretation of binary words, and we introduce the
two's complement representation and corresponding operations to implement arithmetic on the numbers
represented in the two's complement format.

2.1.1.1.2 Two's complement integer representation

Using the natural binary representation, an N -bit word can represent integers from 0 to 2N −1. However, to
represent negative numbers as well as positive integers, we can use the two's complement representation.
In 2's complement representation, an N -bit word represents integers from (−2)N−1

to 2N−1 − 1.
For example, we interpret an 8-bit binary word

b7b6b5b4b3b2b1b0

as an integer

x = −
(
b727

)
+ b626 + · · ·+ b12 + b0 = −

(
b727

)
+

6∑
i=0

2ibi

in the 2's complement representation, and x ranges from −128 (−27) to 127 (27 − 1). Several examples:

binary decimal

00000000 0

00000001 1

01000000 64

01111111 127

10000000 -128

10000001 -127

11000000 -64

11111111 -1

Table 2.1

When x is a positive (negative) number in 2's complement format, −x can be found by inverting each bit
and adding 1. For example, 01000000 is 64 in decimal and −64 is found by �rst inverting the bits to obtain
10111111 and adding 1, thus −64 is 11000000 as shown in the above table. Because the MSB indicates the
sign of the number represented by the binary word, we call this bit the sign bit. If the sign bit is 0, the
word represents positive number, while negative numbers have 1 as the sign bit.

In 2's compliment representation, subtraction of two integers can be accomplished by usual binary sum-
mation by computing x− y as x +−y. We investigate the operations on the 2's compliment numbers later
(Section 2.1.1.2: Two's complement arithmetic). However, when you add two 2's complement numbers, you
must keep in mind that the 1 in MSB is actually -1.

21

Exercise 2.1 (Solution on p. 25.)

(2's complement): What are the decimal numbers corresponding to the 2's complement 8-bit binary
numbers; 01001101, 11100100, 01111001, and 10001011?

Sometimes, you need to convert an 8-bit 2's complement number to a 16-bit number. What is the 16-bit
2's complement number representing the same value as the 8-bit numbers 01001011 and 10010111? The
answer is 0000000001001000 and 1111111110010111. For nonnegative numbers (sign bit = 0), you simply
add enough 0's to extend the number of bits. For negative numbers, you add enough 1's. This operation
is called sign extension. The same rule holds for extending a 16-bit 2's complement number to a 32-bit
number.

For the arithmetic assembly instructions, C62x CPU has di�erent versions depending on how it handles
the signs. For example, the load instructions LDH and LDB load halfword and byte value to a 32-bit register
with sign extension. That is, the loaded values are converted to 32-bit 2's complement number and loaded
into a register. The instructions LDHU and LDBU do not perform sign extension. They simply �ll zeros for
the upper 16- and 24-bits, respectively.

For the shift right instructions SHR and SHRU, the same rule applies. The ADDU instruction simply treats
the operands as unsigned values.

2.1.1.1.3 Fractional representation

Although using 2's compliment integers we can implement both addition and subtraction by usual binary
addition (with special care for the sign bit), the integers are not convenient to handle to implement DSP
algorithms. For example, If we multiply two 8-bit words together, we need 16 bits to store the result. The
number of required word length increases without bound as we multiply numbers together more. Although
not impossible, it is complicated to handle this increase in word-length using integer arithmetic. The problem
can be easily handled by using numbers between −1 and 1, instead of integers, because the product of two
numbers in [−1, 1] are always in the same range.

In the 2's complement fractional representation, an N bit binary word can represent 2N equally space

numbers from (−2)N−1

2N−1 = 1 to 2−(N−1)

2N−1 = 1− 2N−1.
For example, we interpret an 8-bit binary word

b7b6b5b4b3b2b1b0

as a fractional number

x =
−
(
b727

)
+ b626 + · · ·+ b12 + b0

27
=

(
− (b7) +

6∑
i=0

2i−7bi

)
∈
[
−1, 1− 2−7

]
This representation is also referred as Q-format. We can think of having an implied binary digit right

after the MSB. If we have an N -bit binary word with MSB as the sign bit, we have N − 1 bits to represent
the fraction. We say the number has Q-(N −1) format. For example, in the example, x is a Q-7 number. In
C6211, it is easiest to handle Q-15 numbers represented by each 16 bit binary word, because the multiplication
of two Q-15 numbers results in a Q-30 number that can still be stored in a 32-bit wide register of C6211.
The programmer needs to keep track of the implied binary point when manipulating Q-format numbers.

Exercise 2.2 (Solution on p. 25.)

(Q format): What are the decimal fractional numbers corresponding to the Q-7 format binary
numbers; 01001101, 11100100, 01111001, and 10001011?

2.1.1.2 Two's complement arithmetic

The convenience of 2's compliment format comes from the ability to represent negative numbers and compute
subtraction using the same algorithm as a binary addition. The C62x processor has instructions to add,

22 CHAPTER 2. CHAPTER 2

subtract and multiply numbers in the 2's compliment format. Because, in most digital signal processing
algorithms, Q-15 format is most easy to implement on C62x processors, we only focus on the arithmetic
operations on Q-15 numbers in the following.

2.1.1.2.1 Addition and subtraction

The addition of two binary numbers is computed in the same way as we compute the sum of two decimal
numbers. Using the relation 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 and 1 + 1 = 10, we can easily compute the sum of
two binary numbers. The C62x instruction ADD performs this binary addition on di�erent operands.

However, care must be taken when adding binary numbers. Because each Q-15 number can represent
numbers in the range

[
−1, 1− 215

]
, if the result of summing two Q-15 numbers is not in this range, we

cannot represent the result in the Q-15 format. When this happens, we say an over�ow has occurred.
Unless carefully handled, the over�ow makes the result incorrect. Therefore, it is really important to prevent
over�ows from occurring when implementing DSP algorithms. One way of avoiding over�ow is to scale all the
numbers down by a constant factor, e�ectively making all the numbers very small, so that any summation
would give results in the [−1, 1) range. This scaling is necessary and it is important to �gure out how much
scaling is necessary to avoid over�ow. Because scaling results in loss of e�ective number of digits, increasing
quantization errors, we usually need to �nd the minimum amount of scaling to prevent over�ow.

Another way of handling the over�ow (and under�ow) is saturation. If the result is out of the range that
can be properly represented in the given data size, the value is saturated, meaning that the value closest to
the true result is taken in the range representable. Such instructions as SADD, SSUB perform the operations
followed by saturation.

Exercise 2.3 (Solution on p. 25.)

(Q format addition, subtraction): Perform the additions 01001101 + 11100100, and 01111001 +
10001011 when the binary numbers are Q-7 format. Also compute 01001101 − 11100100 and
10001011− 00110111. In which cases, do you have over�ow?

2.1.1.2.2 Multiplication

Multiplication of two 2's complement numbers is a bit complicated because of the sign bit. Similar to
the multiplication of two decimal fractional numbers, the result of multiplying two Q-N numbers is Q-2N ,
meaning that we have 2N binary digits following the implied binary digit. However, depending on the
numbers multiplied, the result can have either 1 or 2 binary digits before the binary point. We call the digit
right before the binary point the sign bit and the one proceeding the sign bit (if any) the extended sign
bit.

The following is the two examples of binary fractional multiplications:

0.110 0.75 Q-3

X 1.110 -0.25 Q-3

0000

0110

0110

1010

1110100 -0.1875 Q-6

Above, all partial products are computed and represented in Q-6 format for summation. For example,
0.110*0.010 =0.01100 in Q-6 for the second partial product. For the 4th partial product, care must be

23

taken because in 0.110*1.000, 1.000 represents −1, so the product is -0.110 = 1.01000 (in Q-6 format)
that is 2's complement of 0.11000. As noticed in this example, it is important to represent each partial
product in Q-6 (or in general Q- 2N) format before adding them together. Another example makes this
point clearer:

1.110 -0.25 Q-3

X 0.110 0.75 Q-3

0000

111110

11110

0000

11110100 -0.1875 Q-6

For the second partial product, we need 1.110*0.010 in Q-6 format. This is obtained as 1111100 in Q-6
(check!). A simple way to obtain it is to �rst perform the multiplication in normal fashion as 1110*0010
= 11100 ignoring the binary points, then perform sign extension by putting enough 1s (if the result is
negative) or 0s (if the result is nonnegative), then put the binary point to obtain a Q-6 number. Also notice
that we need to remove the extra sign bit to obtain the �nal result.

In C62x, if we multiply two Q-15 numbers using one of multiply instruction (for example MPY), we obtain
32 bit result in Q-30 format with 2 sign bits. To obtain the result back in Q-15 format, (i) �rst we remove
15 trailing bits and (ii) remove the extended sign bit.

Exercise 2.4 (Solution on p. 25.)

(Q format multiplication): Perform the multiplications 01001101*11100100, and
01111001*10001011 when the binary numbers are Q-7 format.

2.1.1.3 Assembly language implementation

When A0 and A1 contain two 16-bit numbers in the Q-15 format, we can perform the multiplications using
MPY followed by a right shift.

1 MPY .M1 A0,A1,A2

2 NOP

3 SHR .S1 A2,15,A2 ;lower 16 bit contains result

4 ;in Q-15 format

Rather than throwing away the 15 LSBs of the multiplication result by shifting, you can round up the result
by adding 0x4000 before shifting.

1 MPY .M1 A0,A1,A2

2 NOP

3 ADDK .S1 4000h,A6

4 SHR .S1 A2,15,A2 ;lower 16 bit contains result

5 ;in Q-15 format

24 CHAPTER 2. CHAPTER 2

2.1.1.4 C language implementation

Let's suppose we have two 16-bit numbers in Q-15 format, stored in variable x and y as follows:

short x = 0x0011; /* 0.000518799 in decimal */

short y = 0xfe12; /* -0.015075684 in decimal */

short z; /* variable to store x*y */

The product of x and y can be computed and stored in Q-15 format as follows:

z = (x * y) � 15;

The result of x*y is a 32-bit word with 2 sign bits. Right shifting it by 15 bits ignores the last 15 bits, and
storing the shifted result in z that is a short variable (16 bit) removes the extended sign bit by taking only
lower 16 bits.

25

Solutions to Exercises in Chapter 2

Solution to Exercise 2.1 (p. 20)
Intentionally left blank.
Solution to Exercise 2.2 (p. 21)
Intentionally left blank.
Solution to Exercise 2.3 (p. 22)
Intentionally left blank.
Solution to Exercise 2.4 (p. 23)
Intentionally left blank.

26 CHAPTER 2. CHAPTER 2

Chapter 3

Chapter 3

3.1 Unit Sample Signal1

3.1.1 Unit Sample Signal

The unit sample signal (unit impulse) in discrete-time systems is one of the most important signals, which
is de�ned by

Unit Sample Signal
(3.1)

Unit Sample Signal

This is an unsupported media type. To view, please see http://cnx.org/content/m10897/latest/

Figure 3.1

A discrete-time signal has a decomposition as a summation of weighted and shifted unit sample.

(3.2)

3.2 Discrete-TIme Filtering2

3.2.1 Discrete-Time Filtering

Most of you should be already familiar with continuous-time �lters, which takes continuous-time input signal
and output a continuous-time signal. Discrete-time �lters, which the sampling device and digital-to-analog

1This content is available online at <http://cnx.org/content/m10897/2.1/>.
2This content is available online at <http://cnx.org/content/m10908/2.3/>.

27

28 CHAPTER 3. CHAPTER 3

converter, can perform the same function as the continuous-time �lters with properly designed system blocks.
Continuous-time �lters are fully speci�ed by its impulse response h (t) and the output signal y (t) for input
signal x (t) is given by the convolution integral

(3.3)

Similarly, discrete-time �lters are speci�ed by their unit sample response h (n). The output signal y (n) for
the input signal x (n) (samples of input continuous-time signal x (t)) is given by the discrete-time convolution

(3.4)

3.2.2 Discrete-Time Filter Design

The discrete-time �lter design problem is to design the impulse response h (n) so that the discrete-time �lter,
together with the sampling device and the discrete-to-continuous time converter, performs the same signal
processing functions as an analog �lter. There are many algorithms to design h (n) to implement desired
�ltering.

3.3 Filter design by windowing3

3.3.1 FIR Filter Design by Windowing

3.3.1.1 Desired Ideal Filter Response

Unlike the design of IIR �lters, the design of FIR �lters starts from the spectrum of the desired �lter in the

DTFT domain. Let Hd

(
e

i
ω

)
be the ideal desired frequency response. Then, the impulse response hd [n]

corresponding to Hd

(
e

i
ω

)
is obtained by the inverse DTFT as

(3.5)

For general desired frequency response, hd [n] is usually noncausal and in�nitely long.

3.3.1.2 Windowing of Impulse Response

To obtain an FIR �lter approximating the frequency response of the desired ideal �lter, we need to �nd a
�lter impulse response a causal and �nite h [n] that approximates hd [n]. The simplest way to obtain such
h [n] is to de�ne a new system with impulse response h [n] given by

(3.6)

where w [n] is a �nite duration window. For example, simple truncation corresponds to the boxcar window
given as

(3.7)

Other commonly used windows include Bartlett, Hamming, Hanning, and Blackman windows.

3.3.1.3 Frequency Response of Windowed Impulse Response

Because the multiplication by the window function in time domain corresponds to a convolution in the DTFT
domain, we can easily visualize the spectrum of the designed FIR �lter. Di�erent window functions have
di�erent main lobe width and peak sidelobe heights. The width of the main lobe governs the property of
the frequency transition at band edges. The height of the peak sidelobes is related to the oscillations near
the transition frequencies.

3This content is available online at <http://cnx.org/content/m10912/2.2/>.

29

3.4 Parks-McClellan Optimal FIR Filter Design4

3.5 FIR Filter Design using MATLAB5

3.5.1 FIR Filter Design Using MATLAB

3.5.1.1 Design by windowing

The MATLAB function fir1() designs conventional lowpass, highpass, bandpass, and bandstop linear-phase
FIR �lters based on the windowing method. The command

b = fir1(N,Wn)

returns in vector b the impulse response of a lowpass �lter of order N. The cut-o� frequency Wn must be
between 0 and 1 with 1 corresponding to the half sampling rate.

The command

b = fir1(N,Wn,'high')

returns the impulse response of a highpass �lter of order N with normalized cuto� frequency Wn.
Similarly, b = fir1(N,Wn,'stop') with Wn a two-element vector designating the stopband designs a

bandstop �lter.
Without explicit speci�cation, the Hamming window is employed in the design. Other windowing

functions can be used by specifying the windowing function as an extra argument of the function. For
example, Blackman window can be used instead by the command b = fir1(N, Wn, blackman(N)).

3.5.1.2 Parks-McClellan FIR �lter design

The MATLAB command

b = remez(N,F,A)

returns the impulse response of the length N+1 linear phase FIR �lter of order N designed by Parks-McClellan
algorithm. F is a vector of frequency band edges in ascending order between 0 and 1 with 1 corresponding
to the half sampling rate. A is a real vector of the same size as F which speci�es the desired amplitude of
the frequency response of the points (F(k),A(k)) and (F(k+1),A(k+1)) for odd k. For odd k, the bands
between F(k+1) and F(k+2) is considered as transition bands.

4This content is available online at <http://cnx.org/content/m10914/2.2/>.
5This content is available online at <http://cnx.org/content/m10917/2.2/>.

30 CHAPTER 3. CHAPTER 3

3.6 MATLAB FIR Filter Design Exercise6

3.6.1 FIR Filter Design MATLAB Exercise

3.6.1.1 Design by windowing

Exercise 3.1 (Solution on p. 35.)

Assuming sampling rate at 48kHz, design an order-40 low-pass �lter having cut-o� frequency 10kHz
by windowing method. In your design, use Hamming window as the windowing function.

3.6.1.2 Parks-McClellan Optimal Design

Exercise 3.2 (Solution on p. 35.)

Assuming sampling rate at 48kHz, design an order-40 lowpass �lter having transition band 10kHz-
11kHz using the Parks-McClellan optimal FIR �lter design algorithm.

3.7 Assembly Implementation of FIR Filters on TI TMS320C62x7

3.7.1 Implementation of FIR �lters in assembly

3.7.1.1 Storing �lter coe�cients

Rather than de�ning the �lter coe�cients in your main assembly program �le, it is usually more convenient
to store them in a separate �le. By de�ning the coe�cients in a separate assembly (for example, coeff.asm)
�le, you can load the coe�cients at a desired memory location at the run time, although it is not essential
for the current simple FIR �ltering lab.

The assembly �le containing the �lter coe�cients can be written as follows:

.def _coef

.sect "coeffs"

_coef:

.short 0ff9bh

.short 0ff06h

.short 0feffh

.short 0ff93h

.short 070h

.short 0117h

.short 0120h

.short 07bh

Each coe�cient must be converted to the Q-15 format and de�ned by each .short assembly directive. For
your convenience, I wrote a short MATLAB script save_coef.m that converts the �lter coe�cients stored as
a MATLAB vector to Q-15 format and then writes to a �le exactly in the above format. (You can download

6This content is available online at <http://cnx.org/content/m10918/2.2/>.
7This content is available online at <http://cnx.org/content/m10920/2.4/>.

31

save_coef.m from the course web page.) The section coeffs should be de�ned in the link command �le so
that the coe�cients are to be loaded at the correct memory location.

You can simply include the coeff.asm using the .include directive at the beginning of your main
assembly program.

Exercise 3.3 (Solution on p. 35.)

Make coe�cient �les for each of the �lters you designed in the previous exercise.

3.7.1.2 Assembly implementation

Based on the codec input and output program you have written in the previous labs, you can now implement
a real-time FIR �ltering algorithm.

Exercise 3.4 (Solution on p. 35.)

Write an assembly routine that implements the FIR �lter by modifying the inner product program
you have written in Lab 3. Combine the FIR �ltering routine with the interrupt-based codec
input-output code you wrote in the previous lab. Your code should perform FIR �ltering on the
input samples and output the �ltered result to the codec. Both the left and right channels should
be �ltered. To write the designed MATLAB vector of �lter coe�cients as a .asm �le, use the
provided save_coef.m matlab function. First implement the length-40 lowpass �lter with 10kHz
cuto� designed using the remez.m.

3.7.1.3 Implementation using circular addressing modes

As you might already have noticed, a lot of cycles are wasted in FIR �ltering while maintaining the bu�er
to see if you reached the end of bu�er and update the address pointers properly. To avoid this unnecessary
bu�er maintenance, the TI DSP processors have a special addressing mode, called circular addressing.
Using circular addressing, you can de�ne a block of memory as a circular bu�er. As you increase (or decrease)
the pointer register pointing to the bu�er index beyond the bu�er limit, it automatically points to the other
end of the bu�er, implementing a circle of data array. Instead of moving the data samples themselves, you
can move the pointer which speci�es the beginning of the bu�er, as each new sample is processed. You don't
need to check if you reached the end of bu�er because the address pointer returns to the beginning of the
bu�er immediately after reaching the end.

Of the 32 registers on the C6x, 8 of them can perform circular addressing. These registers are A4 through
A7 and B4 through B7. Since circular addressing is not default, each of these registers must be speci�ed as
circular using the AMR (Address Mode Register) register. The lower 16 bits of the AMR are used to select the
mode for each of the 8 registers. The upper 10 bits (6 are reserved) are used to set the length of the circular
bu�er. Bu�er size is determined by 2N+1 bytes, where N is the value appearing in the block size �elds of the
AMR register. The top address of the bu�er needs to be aligned with proper physical memory block address
using the .align assembler directive.

Exercise 3.5 (Solution on p. 35.)

First read TMS320C62x/C67x CPU and Instruction Set Reference Guide to learn how to de�ne
circular bu�ers. Modify your FIR �ltering assembly code to use circular addressing modes. After
optimizing your code as much as you can, count the number of required clock cycles for each FIR
�lter output computation. Compare the number with the code written without circular addressing.

32 CHAPTER 3. CHAPTER 3

3.8 C Language Implementation of FIR Filters on TMS320C62x8

3.8.1 C Language Implementation of FIR Filters

Exercise 3.6 (Solution on p. 35.)

Write a C function implementing an FIR �lter. Combine this routine with the provided codec
input/output loop program to implement a real-time FIR �lter. Test your �lter program.

3.9 Linear Assembly Implementation of FIR Filters on TMS320C62x9

3.9.1 FIR Filter Implementation in TI Linear Assembly

3.9.1.1 What is Linear Assembly?

TI's linear assembly language enables you to write an assembly-like programs without worrying about register
usage, pipelining, delay slots, etc. The assembler optimizer program reads the linear assembly code to �gure
out the algorithm, and then it produces an optimized list of assembly code to perform the operations. The
linear assembly programming lets you:

• use symbolic names,
• forget pipeline issues,
• ignore putting NOPs, parallel bars, functional units, register names,
• more e�ciently use CPU resources than C.

The linear assembly �les have .sa extensions. When you have a linear assembly �le in your Code
Composer Studio project, the assembly optimizer is invoked automatically to generate optimized actual
assembly routine. You can consider the linear assembly language as a tool to describe algorithms. To
e�ectively convey the intent of the programmer to the assembly optimizer for proper optimization, there are
quite a few extra directives in linear assembly.

3.9.1.2 C callable Linear Assembly procedure

The following is an example of C callable linear assembly routine that computes the dot product of two
vectors. It implements a C function

short dotp(short* a, short* x, int count);

If a[] and x[] are two length-40 vectors, the C function call has the form

short a[];

short x[];

short z;

...

...

z = dotp(a,x,40);

8This content is available online at <http://cnx.org/content/m10923/2.1/>.
9This content is available online at <http://cnx.org/content/m10922/2.2/>.

33

...

(see below how the arguments are passed and the pointers are used.) In the following, you learn various
assembler directives used below and how the optimized assembly code is generated by the assembler optimizer.

_dotp: .cproc ap,xp,cnt

.reg a,x,prod,y

MVK 40,cnt

loop: .trip 40

LDH *ap++,a

LDH *ax++,x

MPY a,x,prod

ADD y,prod,y

SUB cnt,1,cnt

[cnt] B loop

.return y

.endproc

The .cproc directive starts a C callable procedure. It must be used with .endproc to end a C procedure.
_dotp: is the label used to name the procedure. By using .cproc to start the procedure, the assembly
optimizer performs some operations automatically in a .cproc region in order to make the function conform
to the C calling conventions and to C register usage convention. The following optional variables (ap,xp,cnt
above) represent function parameters. The variable entries are very similar to parameters declared in a C
function.

The arguments to the .cproc directive can be either machine-register names or symbolic names. When
register names are speci�ed, its position in the argument list must correspond to the argument passing
conventions for C. For example, the �rst argument in C function must be register A4. When symbolic names
are speci�ed, the assembly optimizer ensures proper allocation and initialization (if necessary) of registers
at the beginning of the procedure. To represent a 40-bit argument, a register pair can be speci�ed as an
argument. In this lab, however, we only use 32bit values as arguments.

The .reg directive allows you to use descriptive names for values that will be stored in registers. It is
valid only within procedures only.

The .return directive functionality is equivalent to the return statement in C code. It places the optional
argument in the appropriate register for a return value as per the C calling conventions. If no argument is
speci�ed, no value is returned, similar to a void function in C code. To perform a conditional .return, you
can simply put conditional branch around a .return as:

[!cc] B around

.return

around:

34 CHAPTER 3. CHAPTER 3

The .trip directive speci�es the value of the trip count. The trip count indicates how many times a loop
will iterate. By giving this extra information to the assembler optimizer, a better optimization is achieved
for loops. The label preceding .trip directive represents the beginning of the loop. This is a required
parameter.

For more information on writing C callable linear assembly procedure, refer to TMS320C6x Optimiz-
ing C Compiler User's Guide. For C6x assembly instructions, refer to TMS320C62x/C67x CPU
and Instruction Set Reference Guide.

Exercise 3.7 (Solution on p. 35.)

Write a C callable FIR �ltering routine in linear assembly. When using di�erent optimization
levels, what is the number of clock cycles of each FIR �ltering?

35

Solutions to Exercises in Chapter 3

Solution to Exercise 3.1 (p. 30)

b = fir1(40,10.0/48.0)

Solution to Exercise 3.2 (p. 30)

b = remez(40,[1 1 0 0],[0 10/48 11/48 1])

Solution to Exercise 3.3 (p. 31)

Solution to Exercise 3.4 (p. 31)

Solution to Exercise 3.5 (p. 31)

Solution to Exercise 3.6 (p. 32)

Solution to Exercise 3.7 (p. 34)

36 CHAPTER 3. CHAPTER 3

Chapter 4

Supplemental Material

4.1 Rice DSP Lab Setup1

4.1.1 Laboratory Equipment

Each lab PC is equipped with a Texas Instrument TMS320C6211 DSK board. The DSK board is hooked
to the parallel port of the PC running Windows 2000; the PC can control the DSK via the development
environment called �Code Composer Studio� (CCS) developed by Texas Instrument. Currently we use CCS
version 2.1. If you have your owlnet account, create the Samba password to log in to the machines. If you
don't have an owlnet account, the TA will give you a username and password for local log in.

For analog signal input and output, the DSK board has a PCM3003 codec daughtercard mounted on the
board. This board provides 16 bit stereo analog input and output channels at maximum sampling rate of
48kHz. Currently, the jumpers on the board are con�gured to provide a �xed 48kHz sampling rate both for
input and output. Do not change the jumper settings unless you know what you are doing. For
variable sampling rates, the timers of the C6211 processor can be used to generate appropriate clock signal.
You will learn how to use the CPU timers in Lab 4.

Each lab station is equipped with a function generator to provide signal to be used to test your signal-
processing algorithms and an oscilloscope to display the processed waveforms.

The source analog signal also can be generated using the soundcard of the PC and input to the DSK
board for processing. There are two shareware softwares installed on each PC that enables you to use the
sound card as a tone generator and a simple spectrum analyzer. In the lab experiments, you will be using
the tone generator to generate white noise input to the DSK board and you can watch the spectrum of the
DSK output using the soundcard spectrum analyzer.

4.1.2 Hardware Setup

The TI DSK board is connected to the parallel port of the PC. The board requires external power supply
connected to it. A speaker and microphone can be connected to the board via the two 3.5mm jacks mounted
on the daughtercard that are connected to the PCM3003 codec. The hardware reset button (white) is on
the DSK board to enable hardware reset of the board. When reset, the board goes through several steps
of self testing and initialization. Please refer to the online help of the Code Composer Studio for detailed
board operation. After each hardware reset, the DSK board tends to lose the connection with the host PC.
Therefore, you should close the CCS before performing hardware reset. Be sure to save all the �les before
closing the CCS. After the DSK board �nishes the reset, start the CCS again.

Be careful when you handle cables, tools, etc, not to short any circuits on the board.

1This content is available online at <http://cnx.org/content/m10871/2.3/>.

37

38 CHAPTER 4. SUPPLEMENTAL MATERIAL

4.2 Testing Filters in Rice DSP Lab2

4.2.1 Testing �lters in Rice DSP Laboratory

You can test the implemented �lters using the tone generator and spectrum analyzer on the PC.

1. Connect the soundcard tone generator to the codec microphone jack to input 5kHz sine wave. Connect
the oscilloscope to observe both the codec input and output. As you change the frequency of the sine
wave, observe how the amplitude of the �lter output changes.

2. Input white noise from PC sound card to the codec input and observe the spectrum of the �lter output
using the spectrum analyzer program. Can you see the �lter frequency response?

2This content is available online at <http://cnx.org/content/m10921/2.2/>.

INDEX 39

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

5 5-bit constant, 4

A addressing modes, 3
architecture, � 1.1(1)
assembler directives, 11
assembly, � 1.2(3), � 3.7(30)

B big endian mode, 5

C C, � 3.8(32)
circular, 6
circular addressing, 31
conditional operations, 8
cross path, 13

D delay slots, 6
DSP, � 4.1(37)

E endian mode, 5
exercise, � 3.6(30)
extended sign bit, 22

F �lter, � 4.2(38)
FIR, � 3.5(29), � 3.6(30), � 3.7(30), � 3.8(32)
�xed point arithmetic, � 2.1(19)
functional unit, � 1.1(1)
functional unit latency, 7

L laboratory, � 4.1(37)

linear, 6
linear assembly, � 3.9(32)
little endian mode, 5

M MATLAB, � 3.5(29), � 3.6(30)

N natural binary, 19

O over�ow, 20, 22

P parallel instructions, 14
processing, � 4.1(37)

Q Q-format, 21

R register, � 1.1(1), 4
Rice DSP, � 4.2(38)

S saturation, 22
sign bit, 20, 22
sign extension, 21
signal, � 4.1(37)

T test, � 4.2(38)
TMS320C6211, � 1.1(1)
TMS320C62x, � 3.7(30), � 3.8(32), � 3.9(32)
two's complement, 20, 20

U unsigned integer, 19

40 ATTRIBUTIONS

Attributions

Collection: Finite Impulse Response
Edited by: Hyeokho Choi
URL: http://cnx.org/content/col10226/1.1/
License: http://creativecommons.org/licenses/by/1.0

Module: "TMS320C6211 Architecture Overview"
By: Hyeokho Choi
URL: http://cnx.org/content/m10872/2.5/
Pages: 1-3
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "C62x Assembly Primer II"
By: Hyeokho Choi
URL: http://cnx.org/content/m11051/2.3/
Pages: 3-17
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Fixed Point Arithmetic"
By: Hyeokho Choi
URL: http://cnx.org/content/m11054/2.2/
Pages: 19-24
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Unit Sample Signal"
By: Hyeokho Choi
URL: http://cnx.org/content/m10897/2.1/
Page: 27
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-TIme Filtering"
By: Hyeokho Choi
URL: http://cnx.org/content/m10908/2.3/
Pages: 27-28
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Filter design by windowing"
By: Hyeokho Choi
URL: http://cnx.org/content/m10912/2.2/
Page: 28
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 41

Module: "Parks-McClellan Optimal FIR Filter Design"
By: Hyeokho Choi
URL: http://cnx.org/content/m10914/2.2/
Page: 29
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "FIR Filter Design using MATLAB"
By: Hyeokho Choi
URL: http://cnx.org/content/m10917/2.2/
Page: 29
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "MATLAB FIR Filter Design Exercise"
By: Hyeokho Choi
URL: http://cnx.org/content/m10918/2.2/
Page: 30
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Assembly Implementation of FIR Filters on TI TMS320C62x"
By: Hyeokho Choi
URL: http://cnx.org/content/m10920/2.4/
Pages: 30-31
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "C Language Implementation of FIR Filters on TMS320C62x"
By: Hyeokho Choi
URL: http://cnx.org/content/m10923/2.1/
Page: 32
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Linear Assembly Implementation of FIR Filters on TMS320C62x"
By: Hyeokho Choi
URL: http://cnx.org/content/m10922/2.2/
Pages: 32-34
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Rice DSP Lab Setup"
By: Hyeokho Choi
URL: http://cnx.org/content/m10871/2.3/
Page: 37
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Testing Filters in Rice DSP Lab"
By: Hyeokho Choi
URL: http://cnx.org/content/m10921/2.2/
Page: 38
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Finite Impulse Response
A course on FIR �lter design.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

