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Chapter 1

Preface: Fast Fourier Transforms1

This book focuses on the discrete Fourier transform (DFT), discrete convolution, and, partic-
ularly, the fast algorithms to calculate them. These topics have been at the center of digital
signal processing since its beginning, and new results in hardware, theory and applications
continue to keep them important and exciting.

As far as we can tell, Gauss was the �rst to propose the techniques that we now call the fast
Fourier transform (FFT) for calculating the coe�cients in a trigonometric expansion of an
asteroid's orbit in 1805 [174]. However, it was the seminal paper by Cooley and Tukey [88]
in 1965 that caught the attention of the science and engineering community and, in a way,
founded the discipline of digital signal processing (DSP).

The impact of the Cooley-Tukey FFT was enormous. Problems could be solved quickly
that were not even considered a few years earlier. A �urry of research expanded the theory
and developed excellent practical programs as well as opening new applications [94]. In
1976, Winograd published a short paper [403] that set a second �urry of research in motion
[86]. This was another type of algorithm that expanded the data lengths that could be
transformed e�ciently and reduced the number of multiplications required. The ground
work for this algorithm had be set earlier by Good [148] and by Rader [308]. In 1997 Frigo
and Johnson developed a program they called the FFTW (fastest Fourier transform in the
west) [130], [135] which is a composite of many of ideas in other algorithms as well as new
results to give a robust, very fast system for general data lengths on a variety of computer
and DSP architectures. This work won the 1999 Wilkinson Prize for Numerical Software.

It is hard to overemphasis the importance of the DFT, convolution, and fast algorithms. With
a history that goes back to Gauss [174] and a compilation of references on these topics that
in 1995 resulted in over 2400 entries [362], the FFT may be the most important numerical
algorithm in science, engineering, and applied mathematics. New theoretical results still are
appearing, advances in computers and hardware continually restate the basic questions, and
new applications open new areas for research. It is hoped that this book will provide the

1This content is available online at <http://cnx.org/content/m16324/1.6/>.
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2 CHAPTER 1. PREFACE: FAST FOURIER TRANSFORMS

background, references, programs and incentive to encourage further research and results in
this area as well as provide tools for practical applications.

Studying the FFT is not only valuable in understanding a powerful tool, it is also a prototype
or example of how algorithms can be made e�cient and how a theory can be developed to
de�ne optimality. The history of this development also gives insight to the process of research
where timing and serendipity play interesting roles.

Much of the material contained in this book has been collected over 40 years of teaching
and research in DSP, therefore, it is di�cult to attribute just where it all came from. Some
comes from my earlier FFT book [59] and some from the FFT chapter in [217]. Certainly
the interaction with people like Jim Cooley and Charlie Rader was central but the work with
graduate students and undergraduates was probably the most formative. I would particularly
like to acknowledge Ramesh Agarwal, Howard Johnson, Mike Heideman, Henrik Sorensen,
Doug Jones, Ivan Selesnick, Haitao Guo, and Gary Sitton. Interaction with my colleagues,
Tom Parks, Hans Schuessler, Al Oppenheim, and Sanjit Mitra has been essential over many
years. Support has come from the NSF, Texas Instruments, and the wonderful teaching and
research environment at Rice University and in the IEEE Signal Processing Society.

Several chapters or sections are written by authors who have extensive experience and depth
working on the particular topics. Ivan Selesnick had written several papers on the design of
short FFTs to be used in the prime factor algorithm (PFA) FFT and on automatic design
of these short FFTs. Markus Püschel has developed a theoretical framework for �Algebraic
Signal Processing" which allows a structured generation of FFT programs and a system
called �Spiral" for automatically generating algorithms speci�cally for an architicture. Steven
Johnson along with his colleague Matteo Frigo created, developed, and now maintains the
powerful FFTW system: the Fastest Fourier Transform in the West. I sincerely thank these
authors for their signi�cant contributions.

I would also like to thank Prentice Hall, Inc. who returned the copyright on Chapter 4 of
Advanced Topics in Signal Processing [49] around which some of this book is built.
The content of this book is in the Connexions (http://cnx.org/content/col10550/) repository
and, therefore, is available for on-line use, pdf down loading, or purchase as a printed,
bound physical book. I certainly want to thank Daniel Williamson, Amy Kavalewitz, and
the sta� of Connexions for their invaluable help. Additional FFT material can be found
in Connexions, particularly content by Doug Jones [205]. Note that this book and all the
content in Connexions are copyrighted under the Creative Commons Attribution license
(http://creativecommons.org/).

If readers �nd errors in any of the modules of this collection or have suggestions for improve-
ments or additions, please email the author of the collection or module.

C. Sidney Burrus
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Chapter 2

Introduction: Fast Fourier Transforms1

The development of fast algorithms usually consists of using special properties of the algo-
rithm of interest to remove redundant or unnecessary operations of a direct implementation.
Because of the periodicity, symmetries, and orthogonality of the basis functions and the
special relationship with convolution, the discrete Fourier transform (DFT) has enormous
capacity for improvement of its arithmetic e�ciency.

There are four main approaches to formulating e�cient DFT [50] algorithms. The �rst two
break a DFT into multiple shorter ones. This is done in Multidimensional Index Mapping
(Chapter 3) by using an index map and in Polynomial Description of Signals (Chapter 4) by
polynomial reduction. The third is Factoring the Signal Processing Operators (Chapter 6)
which factors the DFT operator (matrix) into sparse factors. The DFT as Convolution or
Filtering (Chapter 5) develops a method which converts a prime-length DFT into cyclic
convolution. Still another approach is interesting where, for certain cases, the evaluation of
the DFT can be posed recursively as evaluating a DFT in terms of two half-length DFTs
which are each in turn evaluated by a quarter-length DFT and so on.

The very important computational complexity theorems of Winograd are stated and brie�y
discussed in Winograd's Short DFT Algorithms (Chapter 7). The speci�c details and evalu-
ations of the Cooley-Tukey FFT and Split-Radix FFT are given in The Cooley-Tukey Fast
Fourier Transform Algorithm (Chapter 9), and PFA and WFTA are covered in The Prime
Factor and Winograd Fourier Transform Algorithms (Chapter 10). A short discussion of
high speed convolution is given in Convolution Algorithms (Chapter 13), both for its own
importance, and its theoretical connection to the DFT. We also present the chirp, Goertzel,
QFT, NTT, SR-FFT, Approx FFT, Autogen, and programs to implement some of these.

Ivan Selesnick gives a short introduction in Winograd's Short DFT Algorithms (Chapter 7)
to using Winograd's techniques to give a highly structured development of short prime length
FFTs and describes a program that will automaticlly write these programs. Markus Pueschel
presents his �Algebraic Signal Processing" in DFT and FFT: An Algebraic View (Chapter 8)

1This content is available online at <http://cnx.org/content/m16325/1.6/>.
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6 CHAPTER 2. INTRODUCTION: FAST FOURIER TRANSFORMS

on describing the various FFT algorithms. And Steven Johnson describes the FFTW (Fastest
Fourier Transform in the West) in Implementing FFTs in Practice (Chapter 11)

The organization of the book represents the various approaches to understanding the FFT
and to obtaining e�cient computer programs. It also shows the intimate relationship between
theory and implementation that can be used to real advantage. The disparity in material
devoted to the various approaches represent the tastes of this author, not any intrinsic
di�erences in value.

A fairly long list of references is given but it is impossible to be truly complete. I have
referenced the work that I have used and that I am aware of. The collection of computer
programs is also somewhat idiosyncratic. They are in Matlab and Fortran because that is
what I have used over the years. They also are written primarily for their educational value
although some are quite e�cient. There is excellent content in the Connexions book by Doug
Jones [206].



Chapter 3

Multidimensional Index Mapping1

A powerful approach to the development of e�cient algorithms is to break a large problem
into multiple small ones. One method for doing this with both the DFT and convolution
uses a linear change of index variables to map the original one-dimensional problem into a
multi-dimensional problem. This approach provides a uni�ed derivation of the Cooley-Tukey
FFT, the prime factor algorithm (PFA) FFT, and the Winograd Fourier transform algorithm
(WFTA) FFT. It can also be applied directly to convolution to break it down into multiple
short convolutions.

The basic de�nition of the discrete Fourier transform (DFT) is

C (k) =
N−1∑
n=0

x (n) W nk
N (3.1)

where n, k, and N are integers, j =
√
−1, the basis functions are the N roots of unity,

WN = e−j2π/N (3.2)

and k = 0, 1, 2, · · · , N − 1.

If the N values of the transform are calculated from the N values of the data, x (n), it is
easily seen that N2 complex multiplications and approximately that same number of complex
additions are required. One method for reducing this required arithmetic is to use an index
mapping (a change of variables) to change the one-dimensional DFT into a two- or higher
dimensional DFT. This is one of the ideas behind the very e�cient Cooley-Tukey [89] and
Winograd [404] algorithms. The purpose of index mapping is to change a large problem into
several easier ones [46], [120]. This is sometimes called the �divide and conquer" approach [26]
but a more accurate description would be �organize and share" which explains the process
of redundancy removal or reduction.

1This content is available online at <http://cnx.org/content/m16326/1.8/>.
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8 CHAPTER 3. MULTIDIMENSIONAL INDEX MAPPING

3.1 The Index Map

For a length-N sequence, the time index takes on the values

n = 0, 1, 2, ..., N − 1 (3.3)

When the length of the DFT is not prime, N can be factored as N = N1N2 and two new
independent variables can be de�ned over the ranges

n1 = 0, 1, 2, ..., N1 − 1 (3.4)

n2 = 0, 1, 2, ..., N2 − 1 (3.5)

A linear change of variables is de�ned which maps n1 and n2 to n and is expressed by

n = ((K1n1 +K2n2))N (3.6)

where Ki are integers and the notation ((x))N denotes the integer residue of x modulo
N [232]. This map de�nes a relation between all possible combinations of n1 and n2 in (3.4)
and (3.5) and the values for n in (3.3). The question as to whether all of the n in (3.3) are
represented, i.e., whether the map is one-to-one (unique), has been answered in [46] showing
that certain integer Ki always exist such that the map in (3.6) is one-to-one. Two cases must
be considered.

3.1.1 Case 1.

N1 and N2 are relatively prime, i.e., the greatest common divisor (N1, N2) = 1.

The integer map of (3.6) is one-to-one if and only if:

(K1 = aN2) and/or (K2 = bN1) and (K1, N1) = (K2, N2) = 1 (3.7)

where a and b are integers.

3.1.2 Case 2.

N1 and N2 are not relatively prime, i.e., (N1, N2) > 1.

The integer map of (3.6) is one-to-one if and only if:

(K1 = aN2) and (K2 6= bN1) and (a,N1) = (K2, N2) = 1 (3.8)

or

(K1 6= aN2) and (K2 = bN1) and (K1, N1) = (b,N2) = 1 (3.9)

Reference [46] should be consulted for the details of these conditions and examples. Two
classes of index maps are de�ned from these conditions.
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3.1.3 Type-One Index Map:

The map of (3.6) is called a type-one map when integers a and b exist such that

K1 = aN2 and K2 = bN1 (3.10)

3.1.4 Type-Two Index Map:

The map of (3.6) is called a type-two map when when integers a and b exist such that

K1 = aN2 or K2 = bN1, but not both. (3.11)

The type-one can be used only if the factors of N are relatively prime, but the type-two
can be used whether they are relatively prime or not. Good [149], Thomas, and Winograd
[404] all used the type-one map in their DFT algorithms. Cooley and Tukey [89] used the
type-two in their algorithms, both for a �xed radix

(
N = RM

)
and a mixed radix [301].

The frequency index is de�ned by a map similar to (3.6) as

k = ((K3k1 +K4k2))N (3.12)

where the same conditions, (3.7) and (3.8), are used for determining the uniqueness of this
map in terms of the integers K3 and K4.

Two-dimensional arrays for the input data and its DFT are de�ned using these index maps
to give

^
x (n1, n2) = x((K1n1 +K2n2))N (3.13)

^
X (k1, k2) = X((K3k1 +K4k2))N (3.14)

In some of the following equations, the residue reduction notation will be omitted for clarity.
These changes of variables applied to the de�nition of the DFT given in (3.1) give

C (k) =

N2−1∑
n2=0

N1−1∑
n1=0

x (n) WK1K3n1k1
N WK1K4n1k2

N WK2K3n2k1
N WK2K4n2k2

N (3.15)

where all of the exponents are evaluated modulo N .

The amount of arithmetic required to calculate (3.15) is the same as in the direct calculation
of (3.1). However, because of the special nature of the DFT, the constants integers Ki can
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be chosen in such a way that the calculations are �uncoupled" and the arithmetic is reduced.
The requirements for this are

((K1K4))N = 0 and/or ((K2K3))N = 0 (3.16)

When this condition and those for uniqueness in (3.6) are applied, it is found that the Ki

may always be chosen such that one of the terms in (3.16) is zero. If the Ni are relatively
prime, it is always possible to make both terms zero. If the Ni are not relatively prime, only
one of the terms can be set to zero. When they are relatively prime, there is a choice, it is
possible to either set one or both to zero. This in turn causes one or both of the center two
W terms in (3.15) to become unity.

An example of the Cooley-Tukey radix-4 FFT for a length-16 DFT uses the type-two map
with K1 = 4, K2 = 1, K3 = 1, K4 = 4 giving

n = 4n1 + n2 (3.17)

k = k1 + 4k2 (3.18)

The residue reduction in (3.6) is not needed here since n does not exceed N as n1 and n2

take on their values. Since, in this example, the factors of N have a common factor, only
one of the conditions in (3.16) can hold and, therefore, (3.15) becomes

^
C (k1, k2) = C (k) =

3∑
n2=0

3∑
n1=0

x (n) W n1k1
4 W n2k1

16 W n2k2
4 (3.19)

Note the de�nition of WN in (3.3) allows the simple form of WK1K3
16 = W4

This has the form of a two-dimensional DFT with an extra term W16, called a �twiddle
factor". The inner sum over n1 represents four length-4 DFTs, the W16 term represents 16
complex multiplications, and the outer sum over n2 represents another four length-4 DFTs.
This choice of the Ki �uncouples" the calculations since the �rst sum over n1 for n2 = 0

calculates the DFT of the �rst row of the data array
^
x (n1, n2), and those data values are

never needed in the succeeding row calculations. The row calculations are independent, and
examination of the outer sum shows that the column calculations are likewise independent.
This is illustrated in Figure 3.1.
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Figure 3.1: Uncoupling of the Row and Column Calculations (Rectangles are Data
Arrays)

The left 4-by-4 array is the mapped input data, the center array has the rows transformed,
and the right array is the DFT array. The row DFTs and the column DFTs are independent of
each other. The twiddle factors (TF) which are the centerW in (3.19), are the multiplications
which take place on the center array of Figure 3.1.

This uncoupling feature reduces the amount of arithmetic required and allows the results of
each row DFT to be written back over the input data locations, since that input row will
not be needed again. This is called �in-place" calculation and it results in a large memory
requirement savings.

An example of the type-two map used when the factors of N are relatively prime is given
for N = 15 as

n = 5n1 + n2 (3.20)

k = k1 + 3k2 (3.21)

The residue reduction is again not explicitly needed. Although the factors 3 and 5 are
relatively prime, use of the type-two map sets only one of the terms in (3.16) to zero. The
DFT in (3.15) becomes

X =
4∑

n2=0

2∑
n1=0

x W n1k1
3 W n2k1

15 W n2k2
5 (3.22)

which has the same form as (3.19), including the existence of the twiddle factors (TF). Here
the inner sum is �ve length-3 DFTs, one for each value of k1. This is illustrated in (3.2)
where the rectangles are the 5 by 3 data arrays and the system is called a �mixed radix"
FFT.
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Figure 3.2: Uncoupling of the Row and Column Calculations (Rectangles are Data
Arrays)

An alternate illustration is shown in Figure 3.3 where the rectangles are the short length 3
and 5 DFTs.

Figure 3.3: Uncoupling of the Row and Column Calculations (Rectangles are Short
DFTs)

The type-one map is illustrated next on the same length-15 example. This time the situation
of (3.7) with the �and" condition is used in (3.10) using an index map of

n = 5n1 + 3n2 (3.23)

and

k = 10k1 + 6k2 (3.24)



13

The residue reduction is now necessary. Since the factors of N are relatively prime and the
type-one map is being used, both terms in (3.16) are zero, and (3.15) becomes

^
X=

4∑
n2=0

2∑
n1=0

^
x W n1k1

3 W n2k2
5 (3.25)

which is similar to (3.22), except that now the type-one map gives a pure two-dimensional
DFT calculation with no TFs, and the sums can be done in either order. Figures Figure 3.2
and Figure 3.3 also describe this case but now there are no Twiddle Factor multiplications
in the center and the resulting system is called a �prime factor algorithm" (PFA).

The purpose of index mapping is to improve the arithmetic e�ciency. For example a direct
calculation of a length-16 DFT requires 256 real multiplications and an uncoupled version
requires 144. A direct calculation of a length-15 DFT requires 225 multiplications but with
a type-two map only 135 and with a type-one map, 120. Recall one complex multiplication
requires four real multiplications and two real additions.

Algorithms of practical interest use short DFT's that require fewer than N2 multiplications.
For example, length-4 DFTs require no multiplications and, therefore, for the length-16 DFT,
only the TFs must be calculated. That calculation uses 16 multiplications, many fewer than
the 256 or 144 required for the direct or uncoupled calculation.

The concept of using an index map can also be applied to convolution to convert a lengthN =
N1N2 one-dimensional cyclic convolution into a N1 by N2 two-dimensional cyclic convolution
[46], [6]. There is no savings of arithmetic from the mapping alone as there is with the DFT,
but savings can be obtained by using special short algorithms along each dimension. This is
discussed in Algorithms for Data with Restrictions (Chapter 12) .

3.2 In-Place Calculation of the DFT and Scrambling

Because use of both the type-one and two index maps uncouples the calculations of the
rows and columns of the data array, the results of each short length Ni DFT can be written
back over the data as it will not be needed again after that particular row or column is
transformed. This is easily seen from Figures Figure 3.1, Figure 3.2, and Figure 3.3 where
the DFT of the �rst row of x (n1, n2) can be put back over the data rather written into a new
array. After all the calculations are �nished, the total DFT is in the array of the original
data. This gives a signi�cant memory savings over using a separate array for the output.

Unfortunately, the use of in-place calculations results in the order of the DFT values being
permuted or scrambled. This is because the data is indexed according to the input map
(3.6) and the results are put into the same locations rather than the locations dictated by
the output map (3.12). For example with a length-8 radix-2 FFT, the input index map is

n = 4n1 + 2n2 + n3 (3.26)
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which to satisfy (3.16) requires an output map of

k = k1 + 2k2 + 4k3 (3.27)

The in-place calculations will place the DFT results in the locations of the input map
and these should be reordered or unscrambled into the locations given by the output map.
Examination of these two maps shows the scrambled output to be in a �bit reversed" order.

For certain applications, this scrambled output order is not important, but for many applica-
tions, the order must be unscrambled before the DFT can be considered complete. Because
the radix of the radix-2 FFT is the same as the base of the binary number representation, the
correct address for any term is found by reversing the binary bits of the address. The part
of most FFT programs that does this reordering is called a bit-reversed counter. Examples
of various unscramblers are found in [146], [60] and in the appendices.

The development here uses the input map and the resulting algorithm is called �decimation-
in-frequency". If the output rather than the input map is used to derive the FFT algorithm
so the correct output order is obtained, the input order must be scrambled so that its values
are in locations speci�ed by the output map rather than the input map. This algorithm
is called �decimation-in-time". The scrambling is the same bit-reverse counting as before,
but it precedes the FFT algorithm in this case. The same process of a post-unscrambler or
pre-scrambler occurs for the in-place calculations with the type-one maps. Details can be
found in [60], [56]. It is possible to do the unscrambling while calculating the FFT and to
avoid a separate unscrambler. This is done for the Cooley-Tukey FFT in [192] and for the
PFA in [60], [56], [319].

If a radix-2 FFT is used, the unscrambler is a bit-reversed counter. If a radix-4 FFT is used,
the unscrambler is a base-4 reversed counter, and similarly for radix-8 and others. However,
if for the radix-4 FFT, the short length-4 DFTs (butter�ies) have their outputs in bit-revered
order, the output of the total radix-4 FFT will be in bit-reversed order, not base-4 reversed
order. This means any radix-2n FFT can use the same radix-2 bit-reversed counter as an
unscrambler if the proper butter�ies are used.

3.3 E�ciencies Resulting from Index Mapping with the

DFT

In this section the reductions in arithmetic in the DFT that result from the index mapping
alone will be examined. In practical algorithms several methods are always combined, but
it is helpful in understanding the e�ects of a particular method to study it alone.
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The most general form of an uncoupled two-dimensional DFT is given by

X (k1, k2) =

N2−1∑
n2=0

{
N1−1∑
n1=0

x (n1, n2) f1 (n1, n2, k1)} f2 (n2, k1, k2) (3.28)

where the inner sum calculates N2 length-N1 DFT's and, if for a type-two map, the e�ects
of the TFs. If the number of arithmetic operations for a length-N DFT is denoted by F (N),
the number of operations for this inner sum is F = N2F (N1). The outer sum which gives N1

length-N2 DFT's requires N1F (N2) operations. The total number of arithmetic operations
is then

F = N2F (N1) +N1F (N2) (3.29)

The �rst question to be considered is for a �xed length N , what is the optimal relation of
N1 and N2 in the sense of minimizing the required amount of arithmetic. To answer this
question, N1 and N2 are temporarily assumed to be real variables rather than integers. If
the short length-Ni DFT's in (3.28) and any TF multiplications are assumed to require N2

i

operations, i.e. F (Ni) = N2
i , "E�ciencies Resulting from Index Mapping with the DFT"

(Section 3.3: E�ciencies Resulting from Index Mapping with the DFT) becomes

F = N2N
2
1 +N1N

2
2 = N (N1 +N2) = N

(
N1 +NN−1

1

)
(3.30)

To �nd the minimum of F over N1, the derivative of F with respect to N1 is set to zero
(temporarily assuming the variables to be continuous) and the result requires N1 = N2.

dF/dN1 = 0 => N1 = N2 (3.31)

This result is also easily seen from the symmetry of N1 and N2 in N = N1N2. If a more
general model of the arithmetic complexity of the short DFT's is used, the same result
is obtained, but a closer examination must be made to assure that N1 = N2 is a global
minimum.

If only the e�ects of the index mapping are to be considered, then the F (N) = N2 model is
used and (3.31) states that the two factors should be equal. If there are M factors, a similar
reasoning shows that all M factors should be equal. For the sequence of length

N = RM (3.32)

there are now M length-R DFT's and, since the factors are all equal, the index map must
be type two. This means there must be twiddle factors.

In order to simplify the analysis, only the number of multiplications will be considered. If
the number of multiplications for a length-R DFT is F (R), then the formula for operation
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counts in (3.30) generalizes to

F = N
M∑
i=1

F (Ni) /Ni = NMF (R) /R (3.33)

for Ni = R

F = NlnR (N)F (R) /R = (NlnN) (F (R) / (RlnR)) (3.34)

This is a very important formula which was derived by Cooley and Tukey in their famous
paper [89] on the FFT. It states that for a given R which is called the radix, the number of
multiplications (and additions) is proportional to NlnN . It also shows the relation to the
value of the radix, R.

In order to get some idea of the �best" radix, the number of multiplications to compute a
length-R DFT is assumed to be F (R) = Rx. If this is used with (3.34), the optimal R can
be found.

dF/dR = 0 => R = e1/(x−1) (3.35)

For x = 2 this gives R = e, with the closest integer being three.

The result of this analysis states that if no other arithmetic saving methods other than index
mapping are used, and if the length-R DFT's plus TFs require F = R2 multiplications, the
optimal algorithm requires

F = 3Nlog3N (3.36)

multiplications for a length N = 3M DFT. Compare this with N2 for a direct calculation
and the improvement is obvious.

While this is an interesting result from the analysis of the e�ects of index mapping alone, in
practice, index mapping is almost always used in conjunction with special algorithms for the
short length-Ni DFT's in (3.15). For example, if R = 2 or 4, there are no multiplications
required for the short DFT's. Only the TFs require multiplications. Winograd (see Winorad's
Short DFT Algorithms) has derived some algorithms for short DFT's that require O (N)
multiplications. This means that F (Ni) = KNi and the operation count F in "E�ciencies
Resulting from Index Mapping with the DFT" (Section 3.3: E�ciencies Resulting from Index
Mapping with the DFT) is independent of Ni. Therefore, the derivative of F is zero for all
Ni. Obviously, these particular cases must be examined.

3.4 The FFT as a Recursive Evaluation of the DFT

It is possible to formulate the DFT so a length-N DFT can be calculated in terms of two
length-(N/2) DFTs. And, if N = 2M , each of those length-(N/2) DFTs can be found in
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terms of length-(N/4) DFTs. This allows the DFT to be calculated by a recursive algorithm
with M recursions, giving the familiar order Nlog (N) arithmetic complexity.

Calculate the even indexed DFT values from (3.1) by:

C (2k) =
N−1∑
n=0

x (n) W 2nk
N =

N−1∑
n=0

x (n) W nk
N/2 (3.37)

C (2k) =

N/2−1∑
n=0

x (n) W 2nk
N +

N−1∑
n=N/2

x (n) W nk
N/2 (3.38)

C (2k) =

N/2−1∑
n=0

{x (n) + x (n+N/2)} W nk
N/2 (3.39)

and a similar argument gives the odd indexed values as:

C (2k + 1) =

N/2−1∑
n=0

{x (n) − x (n+N/2)} W n
N W nk

N/2 (3.40)

Together, these are recursive DFT formulas expressing the length-N DFT of x (n) in terms
of length-N/2 DFTs:

C (2k) = DFTN/2{x (n) + x (n+N/2)} (3.41)

C (2k + 1) = DFTN/2{[x (n) − x (n+N/2)]W n
N} (3.42)

This is a �decimation-in-frequency" (DIF) version since it gives samples of the frequency
domain representation in terms of blocks of the time domain signal.

A recursive Matlab program which implements this is given by:
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function c = dftr2(x)

% Recursive Decimation-in-Frequency FFT algorithm, csb 8/21/07

L = length(x);

if L > 1

L2 = L/2;

TF = exp(-j*2*pi/L).^[0:L2-1];

c1 = dftr2( x(1:L2) + x(L2+1:L));

c2 = dftr2((x(1:L2) - x(L2+1:L)).*TF);

cc = [c1';c2'];

c = cc(:);

else

c = x;

end

Listing 3.1: DIF Recursive FFT for N = 2M

A DIT version can be derived in the form:

C (k) = DFTN/2{x (2n)} + W k
NDFTN/2{x (2n+ 1)} (3.43)

C (k +N/2) = DFTN/2{x (2n)} − W k
NDFTN/2{x (2n+ 1)} (3.44)

which gives blocks of the frequency domain from samples of the signal.

A recursive Matlab program which implements this is given by:
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function c = dftr(x)

% Recursive Decimation-in-Time FFT algorithm, csb

L = length(x);

if L > 1

L2 = L/2;

ce = dftr(x(1:2:L-1));

co = dftr(x(2:2:L));

TF = exp(-j*2*pi/L).^[0:L2-1];

c1 = TF.*co;

c = [(ce+c1), (ce-c1)];

else

c = x;

end

Listing 3.2: DIT Recursive FFT for N = 2M

Similar recursive expressions can be developed for other radices and and algorithms. Most
recursive programs do not execute as e�ciently as looped or straight code, but some can be
very e�cient, e.g. parts of the FFTW.

Note a length-2M sequence will require M recursions, each of which will require N/2 multi-
plications. This give the Nlog (N) formula that the other approaches also derive.
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Chapter 4

Polynomial Description of Signals1

Polynomials are important in digital signal processing because calculating the DFT can be
viewed as a polynomial evaluation problem and convolution can be viewed as polynomial
multiplication [27], [261]. Indeed, this is the basis for the important results of Winograd
discussed in Winograd's Short DFT Algorithms (Chapter 7). A length-N signal x (n) will
be represented by an N − 1 degree polynomial X (s) de�ned by

X (s) =
N−1∑
n=0

x (n) sn (4.1)

This polynomial X (s) is a single entity with the coe�cients being the values of x (n). It
is somewhat similar to the use of matrix or vector notation to e�ciently represent signals
which allows use of new mathematical tools.

The convolution of two �nite length sequences, x (n) and h (n), gives an output sequence
de�ned by

y (n) =
N−1∑
k=0

x (k) h (n− k) (4.2)

n = 0, 1, 2, · · · , 2N − 1 where h (k) = 0 for k < 0. This is exactly the same operation as
calculating the coe�cients when multiplying two polynomials. Equation (4.2) is the same as

Y (s) = X (s) H (s) (4.3)

In fact, convolution of number sequences, multiplication of polynomials, and the multipli-
cation of integers (except for the carry operation) are all the same operations. To obtain
cyclic convolution, where the indices in (4.2) are all evaluated modulo N , the polynomial
multiplication in (4.3) is done modulo the polynomial P (s) = sN −1. This is seen by noting
that N = 0 mod N , therefore, sN = 1 and the polynomial modulus is sN − 1.

1This content is available online at <http://cnx.org/content/m16327/1.5/>.
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4.1 Polynomial Reduction and the Chinese Remainder

Theorem

Residue reduction of one polynomial modulo another is de�ned similarly to residue reduction
for integers. A polynomial F (s) has a residue polynomial R (s) modulo P (s) if, for a given
F (s) and P (s), a Q (S) and R (s) exist such that

F (s) = Q (s)P (s) +R (s) (4.4)

with degree{R (s)} < degree{P (s)}. The notation that will be used is

R (s) = ((F (s)))P (s) (4.5)

For example,

(s+ 1) =
((
s4 + s3 − s− 1

))
(s2−1)

(4.6)

The concepts of factoring a polynomial and of primeness are an extension of these ideas
for integers. For a given allowed set of coe�cients (values of x (n)), any polynomial has a
unique factored representation

F (s) =
M∏
i=1

Fi(s)
ki (4.7)

where the Fi (s) are relatively prime. This is analogous to the fundamental theorem of
arithmetic.

There is a very useful operation that is an extension of the integer Chinese Remainder
Theorem (CRT) which says that if the modulus polynomial can be factored into relatively
prime factors

P (s) = P1 (s) P2 (s) (4.8)

then there exist two polynomials, K1 (s) and K2 (s), such that any polynomial F (s) can be
recovered from its residues by

F (s) = K1 (s)F1 (s) +K2 (s)F2 (s) mod P (s) (4.9)

where F1 and F2 are the residues given by

F1 (s) = ((F (s)))P1(s) (4.10)

and

F2 (s) = ((F (s)))P2(s) (4.11)
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if the order of F (s) is less than P (s). This generalizes to any number of relatively prime
factors of P (s) and can be viewed as a means of representing F (s) by several lower degree
polynomials, Fi (s).

This decomposition of F (s) into lower degree polynomials is the process used to break a
DFT or convolution into several simple problems which are solved and then recombined using
the CRT of (4.9). This is another form of the �divide and conquer" or �organize and share"
approach similar to the index mappings in Multidimensional Index Mapping (Chapter 3).

One useful property of the CRT is for convolution. If cyclic convolution of x (n) and h (n) is
expressed in terms of polynomials by

Y (s) = H (s)X (s) mod P (s) (4.12)

where P (s) = sN − 1, and if P (s) is factored into two relatively prime factors P = P1P2,
using residue reduction of H (s) and X (s) modulo P1 and P2, the lower degree residue
polynomials can be multiplied and the results recombined with the CRT. This is done by

Y (s) = ((K1H1X1 +K2H2X2))P (4.13)

where

H1 = ((H))P1
, X1 = ((X))P1

, H2 = ((H))P2
, X2 = ((X))P2

(4.14)

and K1 and K2 are the CRT coe�cient polynomials from (4.9). This allows two shorter
convolutions to replace one longer one.

Another property of residue reduction that is useful in DFT calculation is polynomial eval-
uation. To evaluate F (s) at s = x, F (s) is reduced modulo s− x.

F (x) = ((F (s)))s−x (4.15)

This is easily seen from the de�nition in (4.4)

F (s) = Q (s) (s− x) +R (s) (4.16)

Evaluating s = x gives R (s) = F (x) which is a constant. For the DFT this becomes

C (k) = ((X (s)))s−Wk (4.17)

Details of the polynomial algebra useful in digital signal processing can be found in [27],
[233], [261].
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4.2 The DFT as a Polynomial Evaluation

The Z-transform of a number sequence x (n) is de�ned as

X (z) =
∞∑
n=0

x (n) z−n (4.18)

which is the same as the polynomial description in (4.1) but with a negative exponent. For
a �nite length-N sequence (4.18) becomes

X (z) =
N−1∑
n=0

x (n) z−n (4.19)

X (z) = x (0) + x (1) z−1 + x (2) z−2 + ·+ x (N − 1) z−N+1 (4.20)

This N − 1 order polynomial takes on the values of the DFT of x (n) when evaluated at

z = ej2πk/N (4.21)

which gives

C (k) = X (z) |z=ej2πk/N =
N−1∑
n=0

x (n) e−j2πnk/N (4.22)

In terms of the positive exponent polynomial from (4.1), the DFT is

C (k) = X (s) |s=Wk (4.23)

where

W = e−j2π/N (4.24)

is an N th root of unity (raising W to the N th power gives one). The N values of the DFT
are found from X (s) evaluated at the N N th roots of unity which are equally spaced around
the unit circle in the complex s plane.

One method of evaluating X (z) is the so-called Horner's rule or nested evaluation. When
expressed as a recursive calculation, Horner's rule becomes the Goertzel algorithm which has
some computational advantages especially when only a few values of the DFT are needed.
The details and programs can be found in [272], [61] and The DFT as Convolution or Filter-
ing: Goertzel's Algorithm (or A Better DFT Algorithm) (Section 5.3: Goertzel's Algorithm
(or A Better DFT Algorithm))
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Another method for evaluating X (s) is the residue reduction modulo
(
s−W k

)
as shown in

(4.17). Each evaluation requires N multiplications and therefore, N2 multiplications for the
N values of C (k).

C (k) = ((X (s)))(s−Wk) (4.25)

A considerable reduction in required arithmetic can be achieved if some operations can be
shared between the reductions for di�erent values of k. This is done by carrying out the
residue reduction in stages that can be shared rather than done in one step for each k in
(4.25).

The N values of the DFT are values of X (s) evaluated at s equal to the N roots of the
polynomial P (s) = sN − 1 which are W k. First, assuming N is even, factor P (s) as

P (s) =
(
sN − 1

)
= P1 (s) P2 (s) =

(
sN/2 − 1

) (
sN/2 + 1

)
(4.26)

X (s) is reduced modulo these two factors to give two residue polynomials, X1 (s) and
X2 (s). This process is repeated by factoring P1 and further reducing X1 then factoring P2

and reducing X2. This is continued until the factors are of �rst degree which gives the desired
DFT values as in (4.25). This is illustrated for a length-8 DFT. The polynomial whose roots
are W k, factors as

P (s) = s8 − 1 (4.27)

=
[
s4 − 1

] [
s4 + 1

]
(4.28)

=
[(
s2 − 1

) (
s2 + 1

)] [(
s2 − j

) (
s2 + j

)]
(4.29)

= [(s− 1) (s+ 1) (s− j) (s+ j)] [(s− a) (s+ a) (s− ja) (s+ ja)] (4.30)

where a2 = j. Reducing X (s) by the �rst factoring gives two third degree polynomials

X (s) = x0 + x1s+ x2s
2 + ...+ x7s

7 (4.31)

gives the residue polynomials

X1 (s) = ((X (s)))(s4−1) = (x0 + x4) + (x1 + x5) s+ (x2 + x6) s
2 + (x3 + x7) s

3 (4.32)

X2 (s) = ((X (s)))(s4+1) = (x0 − x4) + (x1 − x5) s+ (x2 − x6) s
2 + (x3 − x7) s

3 (4.33)

Two more levels of reduction are carried out to �nally give the DFT. Close examination
shows the resulting algorithm to be the decimation-in-frequency radix-2 Cooley-Tukey FFT
[272], [61]. Martens [227] has used this approach to derive an e�cient DFT algorithm.

Other algorithms and types of FFT can be developed using polynomial representations and
some are presented in the generalization in DFT and FFT: An Algebraic View (Chapter 8).
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Chapter 5

The DFT as Convolution or Filtering1

A major application of the FFT is fast convolution or fast �ltering where the DFT of the
signal is multiplied term-by-term by the DFT of the impulse (helps to be doing �nite impulse
response (FIR) �ltering) and the time-domain output is obtained by taking the inverse DFT
of that product. What is less well-known is the DFT can be calculated by convolution.
There are several di�erent approaches to this, each with di�erent application.

5.1 Rader's Conversion of the DFT into Convolution

In this section a method quite di�erent from the index mapping or polynomial evaluation
is developed. Rather than dealing with the DFT directly, it is converted into a cyclic
convolution which must then be carried out by some e�cient means. Those means will
be covered later, but here the conversion will be explained. This method requires use of
some number theory, which can be found in an accessible form in [234] or [262] and is easy
enough to verify on one's own. A good general reference on number theory is [259].

The DFT and cyclic convolution are de�ned by

C (k) =
N−1∑
n=0

x (n) W nk (5.1)

y (k) =
N−1∑
n=0

x (n) h (k − n) (5.2)

For both, the indices are evaluated modulo N . In order to convert the DFT in (5.1) into the
cyclic convolution of (5.2), the nk product must be changed to the k − n di�erence. With
real numbers, this can be done with logarithms, but it is more complicated when working
in a �nite set of integers modulo N . From number theory [28], [234], [262], [259], it can be
shown that if the modulus is a prime number, a base (called a primitive root) exists such

1This content is available online at <http://cnx.org/content/m16328/1.7/>.
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that a form of integer logarithm can be de�ned. This is stated in the following way. If N is
a prime number, a number r called a primitive roots exists such that the integer equation

n = ((rm))N (5.3)

creates a unique, one-to-one map of the N −1 member set m = {0, ..., N −2} and the N −1
member set n = {1, ..., N − 1}. This is because the multiplicative group of integers modulo
a prime, p, is isomorphic to the additive group of integers modulo (p− 1) and is illustrated
for N = 5 below.

r m= 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1

2 1 2 4 3 1 2 4 3

3 1 3 4 2 1 3 4 2

4 1 4 1 4 1 4 1 4

5 * 0 0 0 * 0 0 0

6 1 1 1 1 1 1 1 1

Table 5.1: Table of Integers n = ((rm)) modulo 5, [* not de�ned]

Table 5.1 is an array of values of rm modulo N and it is easy to see that there are two
primitive roots, 2 and 3, and equation (5.3) de�nes a permutation of the integers n from the
integers m (except for zero). Equation (5.3) and a primitive root (usually chosen to be the
smallest of those that exist) can be used to convert the DFT in (5.1) to the convolution in
(5.2). Since (5.3) cannot give a zero, a new length-(N-1) data sequence is de�ned from x (n)
by removing the term with index zero. Let

n = r−m (5.4)

and

k = rs (5.5)

where the term with the negative exponent (the inverse) is de�ned as the integer that
satis�es ((

r−mrm
))
N

= 1 (5.6)

If N is a prime number, r−m always exists. For example, ((2−1))5 = 3. Equation (5.1) now
becomes

C (rs) =
N−2∑
m=0

x
(
r−m

)
W r−mrs + x (0) , (5.7)
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for s = 0, 1, .., N − 2, and

C (0) =
N−1∑
n=0

x (n) (5.8)

New functions are de�ned, which are simply a permutation in the order of the original
functions, as

x' (m) = x
(
r−m

)
, C ' (s) = C (rs) , W ' (n) = W rn (5.9)

Equation (5.7) then becomes

C ' (s) =
N−2∑
m=0

x' (m) W ' (s−m) + x (0) (5.10)

which is cyclic convolution of length N-1 (plus x (0)) and is denoted as

C ' (k) = x' (k) ∗W ' (k) + x (0) (5.11)

Applying this change of variables (use of logarithms) to the DFT can best be illustrated
from the matrix formulation of the DFT. Equation (5.1) is written for a length-5 DFT as

C (0)

C (1)

C (2)

C (3)

C (4)


=



0 0 0 0 0

0 1 2 3 4

0 2 4 1 3

0 3 1 4 2

0 4 3 2 1





x (0)

x (1)

x (2)

x (3)

x (4)


(5.12)

where the square matrix should contain the terms ofW nk but for clarity, only the exponents
nk are shown. Separating the x (0) term, applying the mapping of (5.9), and using the
primitive roots r = 2 (and r−1 = 3) gives

C (1)

C (2)

C (4)

C (3)

 =


1 3 4 2

2 1 3 4

4 2 1 3

3 4 2 1




x (1)

x (3)

x (4)

x (2)

+


x (0)

x (0)

x (0)

x (0)

 (5.13)

and

C (0) = x (0) + x (1) + x (2) + x (3) + x (4) (5.14)

which can be seen to be a reordering of the structure in (5.12). This is in the form of cyclic
convolution as indicated in (5.10). Rader �rst showed this in 1968 [234], stating that a prime
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length-N DFT could be converted into a length-(N-1) cyclic convolution of a permutation
of the data with a permutation of the W's. He also stated that a slightly more complicated
version of the same idea would work for a DFT with a length equal to an odd prime to a
power. The details of that theory can be found in [234], [169].

Until 1976, this conversion approach received little attention since it seemed to o�er few
advantages. It has specialized applications in calculating the DFT if the cyclic convolution
is done by distributed arithmetic table look-up [77] or by use of number theoretic transforms
[28], [234], [262]. It and the Goertzel algorithm [273], [62] are e�cient when only a few DFT
values need to be calculated. It may also have advantages when used with pipelined or vector
hardware designed for fast inner products. One example is the TMS320 signal processing
microprocessor which is pipelined for inner products. The general use of this scheme emerged
when new fast cyclic convolution algorithms were developed by Winograd [405].

5.2 The Chirp Z-Transform (or Bluestein's Algorithm)

The DFT of x (n) evaluates the Z-transform of x (n) on N equally spaced points on the unit
circle in the z plane. Using a nonlinear change of variables, one can create a structure which
is equivalent to modulation and �ltering x (n) by a �chirp" signal. [34], [306], [298], [273],
[304], [62].

The mathematical identity (k − n)2 = k2 − 2kn+ n2 gives

nk =
(
n2 − (k − n)2 + k2

)
/2 (5.15)

which substituted into the de�nition of the DFT in Multidimensional Index Mapping: Equa-
tion 1 (3.1) gives

C (k) = {
N−1∑
n=0

[
x (n) W n2/2

]
W−(k−n)2/2} W k2/2 (5.16)

This equation can be interpreted as �rst multiplying (modulating) the data x (n) by a chirp
sequence (W n2/2, then convolving (�ltering) it, then �nally multiplying the �lter output by
the chirp sequence to give the DFT.

De�ne the chirp sequence or signal as h (n) = W n2/2 which is called a chirp because the
squared exponent gives a sinusoid with changing frequency. Using this de�nition, (5.16)
becomes

C (n) = {[x (n) h (n)] ∗ h−1} h (n) (5.17)

We know that convolution can be carried out by multiplying the DFTs of the signals, here
we see that evaluation of the DFT can be carried out by convolution. Indeed, the convolution
represented by ∗ in (5.17) can be carried out by DFTs (actually FFTs) of a larger length.
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This allows a prime length DFT to be calculated by a very e�cient length-2M FFT. This
becomes practical for large N when a particular non-composite (or N with few factors)
length is required.

As developed here, the chirp z-transform evaluates the z-transform at equally spaced points
on the unit circle. A slight modi�cation allows evaluation on a spiral and in segments [298],
[273] and allows savings with only some input values are nonzero or when only some output
values are needed. The story of the development of this transform is given in [304].

Two Matlab programs to calculate an arbitrary length DFT using the chirp z-transform is
shown in p. ??.
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function y = chirpc(x);

% function y = chirpc(x)

% computes an arbitrary-length DFT with the

% chirp z-transform algorithm. csb. 6/12/91

%

N = length(x); n = 0:N-1; %Sequence length

W = exp(-j*pi*n.*n/N); %Chirp signal

xw = x.*W; %Modulate with chirp

WW = [conj(W(N:-1:2)),conj(W)]; %Construct filter

y = conv(WW,xw); %Convolve w filter

y = y(N:2*N-1).*W; %Demodulate w chirp

function y = chirp(x);

% function y = chirp(x)

% computes an arbitrary-length Discrete Fourier Transform (DFT)

% with the chirp z transform algorithm. The linear convolution

% then required is done with FFTs.

% 1988: L. Arevalo; 11.06.91 K. Schwarz, LNT Erlangen; 6/12/91 csb.

%

N = length(x); %Sequence length

L = 2^ceil(log((2*N-1))/log(2)); %FFT length

n = 0:N-1;

W = exp(-j*pi*n.*n/N); %Chirp signal

FW = fft([conj(W), zeros(1,L-2*N+1), conj(W(N:-1:2))],L);

y = ifft(FW.*fft(x.'.*W,L)); %Convolve using FFT

y = y(1:N).*W; %Demodulate

Figure 5.1

5.3 Goertzel's Algorithm (or A Better DFT Algorithm)

Goertzel's algorithm [144], [62], [269] is another methods that calculates the DFT by con-
verting it into a digital �ltering problem. The method looks at the calculation of the DFT
as the evaluation of a polynomial on the unit circle in the complex plane. This evaluation is
done by Horner's method which is implemented recursively by an IIR �lter.
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5.3.1 The First-Order Goertzel Algorithm

The polynomial whose values on the unit circle are the DFT is a slightly modi�ed z-transform
of x(n) given by

X (z) =
N−1∑
n=0

x (n) z−n (5.18)

which for clarity in this development uses a positive exponent . This is illustrated for a
length-4 sequence as a third-order polynomial by

X (z) = x (3) z3 + x (2) z2 + x (1) z + x (0) (5.19)

The DFT is found by evaluating (5.18) at z = W k, which can be written as

C (k) = X (z) |z=Wk = DFT{x (n)} (5.20)

where

W = e−j2π/N (5.21)

The most e�cient way of evaluating a general polynomial without any pre-processing is by
�Horner's rule" [208] which is a nested evaluation. This is illustrated for the polynomial in
(5.19) by

X (z) = {[x (3) z + x (2)] z + x (1)}z + x (0) (5.22)

This nested sequence of operations can be written as a linear di�erence equation in the form
of

y (m) = z y (m− 1) + x (N −m) (5.23)

with initial condition y (0) = 0, and the desired result being the solution at m = N . The
value of the polynomial is given by

X (z) = y (N) . (5.24)

Equation (5.23) can be viewed as a �rst-order IIR �lter with the input being the data
sequence in reverse order and the value of the polynomial at z being the �lter output sampled
at m = N . Applying this to the DFT gives the Goertzel algorithm [283], [269] which is

y (m) = W ky (m− 1) + x (N −m) (5.25)

with y (0) = 0 and

C (k) = y (N) (5.26)
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where

C (k) =
N−1∑
n=0

x (n) W nk. (5.27)

The �owgraph of the algorithm can be found in [62], [269] and a simple FORTRAN program
is given in the appendix.

When comparing this program with the direct calculation of (5.27), it is seen that the number
of �oating-point multiplications and additions are the same. In fact, the structures of the
two algorithms look similar, but close examination shows that the way the sines and cosines
enter the calculations is di�erent. In (5.27), new sine and cosine values are calculated for
each frequency and for each data value, while for the Goertzel algorithm in (5.25), they are
calculated only for each frequency in the outer loop. Because of the recursive or feedback
nature of the algorithm, the sine and cosine values are �updated" each loop rather than
recalculated. This results in 2N trigonometric evaluations rather than 2N2. It also results
in an increase in accumulated quantization error.

It is possible to modify this algorithm to allow entering the data in forward order rather
than reverse order. The di�erence equation (5.23) becomes

y (m) = z−1y (m− 1) + x (m− 1) (5.28)

if (5.24) becomes

C (k) = zN−1 y (N) (5.29)

for y (0) = 0. This is the algorithm programmed later.

5.3.2 The Second-Order Goertzel Algorithm

One of the reasons the �rst-order Goertzel algorithm does not improve e�ciency is that
the constant in the feedback or recursive path is complex and, therefore, requires four real
multiplications and two real additions. A modi�cation of the scheme to make it second-order
removes the complex multiplications and reduces the number of required multiplications by
two.

De�ne the variable q (m) so that

y (m) = q (m)− z−1 q (m− 1) . (5.30)

This substituted into the right-hand side of (5.23) gives

y (m) = z q (m− 1)− q (m− 2) + x (N −m) . (5.31)
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Combining (5.30) and (5.31) gives the second order di�erence equation

q (m) =
(
z + z−1

)
q (m− 1)− q (m− 2) + x (N −m) (5.32)

which together with the output equation (5.30), comprise the second-order Goertzel algo-
rithm where

X (z) = y (N) (5.33)

for initial conditions q (0) = q (−1) = 0.

A similar development starting with (5.28) gives a second-order algorithm with forward
ordered input as

q (m) =
(
z + z−1

)
q (m− 1)− q (m− 2) + x (m− 1) (5.34)

y (m) = q (m)− z q (−1) (5.35)

with

X (z) = zN−1 y (N) (5.36)

and for q (0) = q (−1) = 0.

Note that both di�erence equations (5.32) and (5.34) are not changed if z is replaced with z−1,
only the output equations (5.30) and (5.35) are di�erent. This means that the polynomial
X (z) may be evaluated at a particular z and its inverse z−1 from one solution of the di�erence
equation (5.32) or (5.34) using the output equations

X (z) = q (N)− z−1 q (N − 1) (5.37)

and

X (1/z) = zN−1 (q (N)− z q (N − 1)) . (5.38)

Clearly, this allows the DFT of a sequence to be calculated with half the arithmetic since
the outputs are calculated two at a time. The second-order DE actually produces a solution
q (m) that contains two �rst-order components. The output equations are, in e�ect, zeros
that cancel one or the other pole of the second-order solution to give the desired �rst-order
solution. In addition to allowing the calculating of two outputs at a time, the second-order
DE requires half the number of real multiplications as the �rst-order form. This is because
the coe�cient of the q (m− 2) is unity and the coe�cient of the q (m− 1) is real if z and
z−1 are complex conjugates of each other which is true for the DFT.
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5.3.3 Analysis of Arithmetic Complexity and Timings

Analysis of the various forms of the Goertzel algorithm from their programs gives the fol-
lowing operation count for real multiplications and real additions assuming real data.

Algorithm Real Mults. Real Adds Trig Eval.

Direct DFT 4N2 4N2 2N2

First-Order 4N2 4N2 − 2N 2N

Second-Order 2N2 + 2N 4N2 2N

Second-Order 2 N2 +N 2N2 +N N

Table 5.2

Timings of the algorithms on a PC in milliseconds are given in the following table.

Algorithm N = 125 N = 257

Direct DFT 4.90 19.83

First-Order 4.01 16.70

Second-Order 2.64 11.04

Second-Order 2 1.32 5.55

Table 5.3

These timings track the �oating point operation counts fairly well.

5.3.4 Conclusions

Goertzel's algorithm in its �rst-order form is not particularly interesting, but the two-at-a-
time second-order form is signi�cantly faster than a direct DFT. It can also be used for any
polynomial evaluation or for the DTFT at unequally spaced values or for evaluating a few
DFT terms. A very interesting observation is that the inner-most loop of the Glassman-
Ferguson FFT [124] is a �rst-order Goertzel algorithm even though that FFT is developed
in a very di�erent framework.

In addition to �oating-point arithmetic counts, the number of trigonometric function eval-
uations that must be made or the size of a table to store precomputed values should be
considered. Since the value of the W nk terms in (5.23) are iteratively calculate in the IIR
�lter structure, there is round-o� error accumulation that should be analyzed in any appli-
cation.
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It may be possible to further improve the e�ciency of the second-order Goertzel algorithm
for calculating all of the DFT of a number sequence. Perhaps a fourth order DE could
calculate four output values at a time and they could be separated by a numerator that
would cancel three of the zeros. Perhaps the algorithm could be arranged in stages to give
an N log (N) operation count. The current algorithm does not take into account any of the
symmetries of the input index. Perhaps some of the ideas used in developing the QFT [53],
[155], [158] could be used here.

5.4 The Quick Fourier Transform (QFT)

One stage of the QFT can use the symmetries of the sines and cosines to calculate a DFT
more e�ciently than directly implementing the de�nition Multidimensional Index Mapping:
Equation 1 (3.1). Similar to the Goertzel algorithm, the one-stage QFT is a better N2 DFT
algorithm for arbitrary lengths. See The Cooley-Tukey Fast Fourier Transform Algorithm:
The Quick Fourier Transform, An FFT based on Symmetries (Section 9.4: The Quick Fourier
Transform, An FFT based on Symmetries).



38 CHAPTER 5. THE DFT AS CONVOLUTION OR FILTERING



Chapter 6

Factoring the Signal Processing

Operators1

A third approach to removing redundancy in an algorithm is to express the algorithm as
an operator and then factor that operator into sparse factors. This approach is used by
Tolimieri [382], [384], Egner [118], Selesnick, Elliott [121] and others. It is presented in a
more general form in DFT and FFT: An Algebraic View (Chapter 8) The operators may be
in the form of a matrix or a tensor operator.

6.1 The FFT from Factoring the DFT Operator

The de�nition of the DFT in Multidimensional Index Mapping: Equation 1 (3.1) can written
as a matrix-vector operation by C = WX which, for N = 8 is

C (0)

C (1)

C (2)

C (3)

C (4)

C (5)

C (6)

C (7)


=



W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0

W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7

W 0 W 2 W 4 W 6 W 8 W 10 W 12 W 14

W 0 W 3 W 6 W 9 W 12 W 15 W 18 W 21

W 0 W 4 W 8 W 12 W 16 W 20 W 24 W 28

W 0 W 5 W 10 W 15 W 20 W 25 W 30 W 35

W 0 W 6 W 12 W 18 W 24 W 30 W 36 W 42

W 0 W 7 W 14 W 21 W 28 W 35 W 42 W 49





x (0)

x (1)

x (2)

x (3)

x (4)

x (5)

x (6)

x (7)


(6.1)

which clearly requires N2 = 64 complex multiplications and N (N − 1) additions. A factor-
ization of the DFT operator, W , gives W = F1 F2 F3 and C = F1 F2 F3 X or, expanded,

1This content is available online at <http://cnx.org/content/m16330/1.6/>.
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C (0)

C (4)

C (2)

C (6)

C (1)

C (5)

C (3)

C (7)



=



1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 −1





1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

W 0 0 −W 2 0 0 0 0 0

0 W 0 0 −W 2 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 W 0 0 −W 0 0

0 0 0 0 0 W 2 0 −W 2



(6.2)



1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

W 0 0 0 0 −W 0 0 0 0

0 W 1 0 0 0 −W 1 0 0

0 0 W 2 0 0 0 −W 2 0

0 0 0 W 3 0 0 0 −W 3





x (0)

x (1)

x (2)

x (3)

x (4)

x (5)

x (6)

x (7)


(6.3)

where the Fi matrices are sparse. Note that each has 16 (or 2N) non-zero terms and F2 and
F3 have 8 (or N) non-unity terms. If N = 2M , then the number of factors is log (N) = M . In
another form with the twiddle factors separated so as to count the complex multiplications
we have 

C (0)

C (4)

C (2)

C (6)

C (1)

C (5)

C (3)

C (7)


=



1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 −1


(6.4)
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1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 W 0 0 0 0 0 0

0 0 0 W 2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 W 0 0

0 0 0 0 0 0 0 W 2





1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

1 0 −1 0 0 0 0 0

0 1 0 −1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 −1 0

0 0 0 0 0 1 0 −1


(6.5)



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 W 0 0 0 0

0 0 0 0 0 W 1 0 0

0 0 0 0 0 0 W 2 0

0 0 0 0 0 0 0 W 3





1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1





x (0)

x (1)

x (2)

x (3)

x (4)

x (5)

x (6)

x (7)


(6.6)

which is in the form C = A1 M1 A2 M2 A3 X described by the index map. A1, A2, and
A3 each represents 8 additions, or, in general, N additions. M1 and M2 each represent 4 (or
N/2) multiplications.

This is a very interesting result showing that implementing the DFT using the factored form
requires considerably less arithmetic than the single factor de�nition. Indeed, the form of
the formula that Cooley and Tukey derived showing that the amount of arithmetic required
by the FFT is on the order of Nlog (N) can be seen from the factored operator formulation.

Much of the theory of the FFT can be developed using operator factoring and it has some
advantages for implementation of parallel and vector computer architectures. The eigenspace
approach is somewhat of the same type [18].

6.2 Algebraic Theory of Signal Processing Algorithms

A very general structure for all kinds of algorithms can be generalized from the approach
of operators and operator decomposition. This is developed as �Algebraic Theory of Signal
Processing" discussed in the module DFT and FFT: An Algebraic View (Chapter 8) by
Püschel and others [118].



42
CHAPTER 6. FACTORING THE SIGNAL PROCESSING

OPERATORS



Chapter 7

Winograd's Short DFT Algorithms1

In 1976, S. Winograd [406] presented a new DFT algorithm which had signi�cantly fewer
multiplications than the Cooley-Tukey FFT which had been published eleven years earlier.
This new Winograd Fourier Transform Algorithm (WFTA) is based on the type- one index
map from Multidimensional Index Mapping (Chapter 3) with each of the relatively prime
length short DFT's calculated by very e�cient special algorithms. It is these short algo-
rithms that this section will develop. They use the index permutation of Rader described
in the another module to convert the prime length short DFT's into cyclic convolutions.
Winograd developed a method for calculating digital convolution with the minimum number
of multiplications. These optimal algorithms are based on the polynomial residue reduction
techniques of Polynomial Description of Signals: Equation 1 (4.1) to break the convolution
into multiple small ones [29], [235], [263], [416], [408], [197].

The operation of discrete convolution de�ned by

y (n) =
∑
k

h (n− k) x (k) (7.1)

is called a bilinear operation because, for a �xed h (n), y (n) is a linear function of x (n)
and for a �xed x (n) it is a linear function of h (n). The operation of cyclic convolution is
the same but with all indices evaluated modulo N .

Recall from Polynomial Description of Signals: Equation 3 (4.3) that length-N cyclic convo-
lution of x (n) and h (n) can be represented by polynomial multiplication

Y (s) = X (s) H (s) mod
(
sN − 1

)
(7.2)

This bilinear operation of (7.1) and (7.2) can also be expressed in terms of linear matrix
operators and a simpler bilinear operator denoted by o which may be only a simple element-
by-element multiplication of the two vectors [235], [197], [212]. This matrix formulation

1This content is available online at <http://cnx.org/content/m16333/1.11/>.

43



44 CHAPTER 7. WINOGRAD'S SHORT DFT ALGORITHMS

is

Y = C [AXoBH] (7.3)

where X, H and Y are length-N vectors with elements of x (n), h (n) and y (n) respectively.
The matrices A and B have dimension M x N , and C is N x M with M ≥ N . The
elements of A, B, and C are constrained to be simple; typically small integers or rational
numbers. It will be these matrix operators that do the equivalent of the residue reduction
on the polynomials in (7.2).

In order to derive a useful algorithm of the form (7.3) to calculate (7.1), consider the polyno-
mial formulation (7.2) again. To use the residue reduction scheme, the modulus is factored
into relatively prime factors. Fortunately the factoring of this particular polynomial, sN −1,
has been extensively studied and it has considerable structure. When factored over the
rationals, which means that the only coe�cients allowed are rational numbers, the factors
are called cyclotomic polynomials [29], [235], [263]. The most interesting property for our
purposes is that most of the coe�cients of cyclotomic polynomials are zero and the others
are plus or minus unity for degrees up to over one hundred. This means the residue reduction
will generally require no multiplications.

The operations of reducing X (s) and H (s) in (7.2) are carried out by the matrices A and
B in (7.3). The convolution of the residue polynomials is carried out by the o operator and
the recombination by the CRT is done by the C matrix. More details are in [29], [235],
[263], [197], [212] but the important fact is the A and B matrices usually contain only zero
and plus or minus unity entries and the C matrix only contains rational numbers. The only
general multiplications are those represented by o. Indeed, in the theoretical results from
computational complexity theory, these real or complex multiplications are usually the only
ones counted. In practical algorithms, the rational multiplications represented by C could
be a limiting factor.

The h (n) terms are �xed for a digital �lter, or they represent the W terms from Multidi-
mensional Index Mapping: Equation 1 (3.1) if the convolution is being used to calculate a
DFT. Because of this, d = BH in (7.3) can be precalculated and only the A and C opera-
tors represent the mathematics done at execution of the algorithm. In order to exploit this
feature, it was shown [416], [197] that the properties of (7.3) allow the exchange of the more
complicated operator C with the simpler operator B. Speci�cally this is given by

Y = C [AXoBH] (7.4)

Y ' = BT
[
AXoCTH '

]
(7.5)

where H' has the same elements as H, but in a permuted order, and likewise Y ' and Y . This
very important property allows precomputing the more complicated CTH' in (7.5) rather
than BH as in (7.3).



45

Because BH or CTH' can be precomputed, the bilinear form of (7.3) and (7.5) can be written
as a linear form. If an M x M diagonal matrix D is formed from d = CTH, or in the case
of (7.3), d = BH, assuming a commutative property for o, (7.5) becomes

Y ' = BTDAX (7.6)

and (7.3) becomes

Y = CDAX (7.7)

In most cases there is no reason not to use the same reduction operations on X and H,
therefore, B can be the same as A and (7.6) then becomes

Y ' = ATDAX (7.8)

In order to illustrate how the residue reduction is carried out and how the A matrix is
obtained, the length-5 DFT algorithm started in The DFT as Convolution or Filtering:
Matrix 1 (5.12) will be continued. The DFT is �rst converted to a length-4 cyclic convolution
by the index permutation from The DFT as Convolution or Filtering: Equation 3 (5.3) to
give the cyclic convolution in The DFT as Convolution or Filtering (Chapter 5). To avoid
confusion from the permuted order of the data x (n) in The DFT as Convolution or Filtering
(Chapter 5), the cyclic convolution will �rst be developed without the permutation, using
the polynomial U (s)

U (s) = x (1) + x (3) s+ x (4) s2 + x (2) s3 (7.9)

U (s) = u (0) + u (1) s+ u (2) s2 + u (3) s3 (7.10)

and then the results will be converted back to the permuted x (n). The length-4 cyclic
convolution in terms of polynomials is

Y (s) = U (s) H (s) mod
(
s4 − 1

)
(7.11)

and the modulus factors into three cyclotomic polynomials

s4− 1 =
(
s2 − 1

) (
s2 + 1

)
(7.12)

= (s− 1) (s+ 1)
(
s2 + 1

)
(7.13)

= P1 P2 P3 (7.14)

Both U (s) and H (s) are reduced modulo these three polynomials. The reduction modulo
P1 and P2 is done in two stages. First it is done modulo (s2 − 1), then that residue is further
reduced modulo (s− 1) and (s+ 1).

U (s) = u0 + u1s+ u2s
2 + u3s

3 (7.15)
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U ' (s) = ((U (s)))(s2−1) = (u0 + u2) + (u1 + u3) s (7.16)

U1 (s) =
((
U ' (s)

))
P1

= (u0 + u1 + u2 + u3) (7.17)

U2 (s) =
((
U ' (s)

))
P2

= (u0 − u1 + u2 − u3) (7.18)

U3 (s) = ((U (s)))P3
= (u0 − u2) + (u1 − u3) s (7.19)

The reduction in (7.16) of the data polynomial (7.15) can be denoted by a matrix operation
on a vector which has the data as entries.

 1 0 1 0

0 1 0 1



u0

u1

u2

u3

 =

 u0 + u2

u1 + u3

 (7.20)

and the reduction in (7.19) is

 1 0 −1 0

0 1 0 −1



u0

u1

u2

u3

 =

 u0 − u2

u1 − u3

 (7.21)

Combining (7.20) and (7.21) gives one operator
1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




u0 + u2

u1 + u3

u0 − u2

u1 − u3

 =


u0 + u2

u1 + u3

u0 − u2

u1 − u3

 =


w0

w1

v0

v1

 (7.22)

Further reduction of v0 + v1s is not possible because P3 = s2 + 1 cannot be factored over
the rationals. However s2 − 1 can be factored into P1P2 = (s− 1) (s+ 1) and, therefore,
w0 + w1s can be further reduced as was done in (7.17) and (7.18) by

[
1 1

] w0

w1

 = w0 + w1 = u0 + u2 + u1 + u3 (7.23)
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[
1 −1

] w0

w1

 = w0 − w1 = u0 + u2 − u1 − u3 (7.24)

Combining (7.22), (7.23) and (7.24) gives
1 1 0 0

1 −1 0 0

0 0 1 0

0 0 0 1




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




u0

u1

u2

u3

 =


r0

r1

v0

v1

 (7.25)

The same reduction is done toH (s) and then the convolution of (7.11) is done by multiplying
each residue polynomial of X (s) and H (s) modulo each corresponding cyclotomic factor of
P (s) and �nally a recombination using the polynomial Chinese Remainder Theorem (CRT)
as in Polynomial Description of Signals: Equation 9 (4.9) and Polynomial Description of
Signals: Equation 13 (4.13).

Y (s) = K1 (s)U1 (s)H1 (s) +K2 (s)U2 (s)H2 (s) +K3 (s)U3 (s)H3 (s) (7.26)

mod (s4 − 1)

where U1 (s) = r1 and U2 (s) = r2 are constants and U3 (s) = v0 + v1s is a �rst degree
polynomial. U1 times H1 and U2 times H2 are easy, but multiplying U3 time H3 modulo
(s2 + 1) is more di�cult.

The multiplication of U3 (s) times H3 (s) can be done by the Toom-Cook algorithm [29],
[235], [263] which can be viewed as Lagrange interpolation or polynomial multiplication
modulo a special polynomial with three arbitrary coe�cients. To simplify the arithmetic,
the constants are chosen to be plus and minus one and zero. The details of this can be found
in [29], [235], [263]. For this example it can be veri�ed that

((v0 + v1s) (h0 + h1s))s2+1 = (v0h0 − v1h1) + (v0h1 + v1h0) s (7.27)

which by the Toom-Cook algorithm or inspection is

 1 −1 0

−1 −1 1





1 0

0 1

1 1


 v0

v1

 o


1 0

0 1

1 1


 h0

h1


 =

 y0

y1

 (7.28)

where o signi�es point-by-point multiplication. The total A matrix in (7.3) is a combination
of (7.25) and (7.28) giving

AX = A1A2A3X (7.29)
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=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 1




1 1 0 0

1 −1 0 0

0 0 1 0

0 0 0 1




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




u0

u1

u2

u3

 =


r0

r1

v0

v1

 (7.30)

where the matrix A3 gives the residue reduction s
2− 1 and s2 + 1, the upper left-hand part

of A2 gives the reduction modulo s−1 and s+1, and the lower right-hand part of A1 carries
out the Toom-Cook algorithm modulo s2 + 1 with the multiplication in (7.5). Notice that
by calculating (7.30) in the three stages, seven additions are required. Also notice that A1

is not square. It is this �expansion" that causes more than N multiplications to be required
in o in (7.5) or D in (7.6). This staged reduction will derive the A operator for (7.5)

The method described above is very straight-forward for the shorter DFT lengths. For
N = 3, both of the residue polynomials are constants and the multiplication given by
o in (7.3) is trivial. For N = 5, which is the example used here, there is one �rst degree
polynomial multiplication required but the Toom-Cook algorithm uses simple constants and,
therefore, works well as indicated in (7.28). For N = 7, there are two �rst degree residue
polynomials which can each be multiplied by the same techniques used in the N = 5 example.
Unfortunately, for any longer lengths, the residue polynomials have an order of three or
greater which causes the Toom-Cook algorithm to require constants of plus and minus two
and worse. For that reason, the Toom-Cook method is not used, and other techniques such
as index mapping are used that require more than the minimum number of multiplications,
but do not require an excessive number of additions. The resulting algorithms still have the
structure of (7.8). Blahut [29] and Nussbaumer [263] have a good collection of algorithms for
polynomial multiplication that can be used with the techniques discussed here to construct
a wide variety of DFT algorithms.

The constants in the diagonal matrix D can be found from the CRT matrix C in (7.5) using
d = CTH' for the diagonal terms in D. As mentioned above, for the smaller prime lengths
of 3, 5, and 7 this works well but for longer lengths the CRT becomes very complicated. An
alternate method for �ndingD uses the fact that since the linear form (7.6) or (7.8) calculates
the DFT, it is possible to calculate a known DFT of a given x (n) from the de�nition of the
DFT in Multidimensional Index Mapping: Equation 1 (3.1) and, given the A matrix in (7.8),
solve for D by solving a set of simultaneous equations. The details of this procedure are
described in [197].

A modi�cation of this approach also works for a length which is an odd prime raised to
some power: N = PM . This is a bit more complicated [235], [416] but has been done for
lengths of 9 and 25. For longer lengths, the conventional Cooley-Tukey type- two index
map algorithm seems to be more e�cient. For powers of two, there is no primitive root,
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and therefore, no simple conversion of the DFT into convolution. It is possible to use two
generators [235], [263], [408] to make the conversion and there exists a set of length 4, 8, and
16 DFT algorithms of the form in (7.8) in [235].

In an operation count of several short DFT algorithms is presented. These are practical algo-
rithms that can be used alone or in conjunction with the index mapping to give longer DFT's
as shown in The Prime Factor and Winograd Fourier Transform Algorithms (Chapter 10).
Most are optimized in having either the theoretical minimum number of multiplications or
the minimum number of multiplications without requiring a very large number of additions.
Some allow other reasonable trade-o�s between numbers of multiplications and additions.
There are two lists of the number of multiplications. The �rst is the number of actual �oating
point multiplications that must be done for that length DFT. Some of these (one or two in
most cases) will be by rational constants and the others will be by irrational constants. The
second list is the total number of multiplications given in the diagonal matrix D in (7.8). At
least one of these will be unity ( the one associated with X (0)) and in some cases several
will be unity ( for N = 2M ). The second list is important in programming the WFTA
in The Prime Factor and Winograd Fourier Transform Algorithm: The Winograd Fourier
Transform Algorithm (Section 10.2: The Winograd Fourier Transform Algorithm).

Length Mult Mult Adds

N Non-one Total

2 0 4 4

3 4 6 12

4 0 8 16

5 10 12 34

7 16 18 72

8 4 16 52

9 20 22 84

11 40 42 168

13 40 42 188

16 20 36 148

17 70 72 314

19 76 78 372

25 132 134 420

32 68 - 388
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Table 7.1: Number of Real Multiplications and Additions for a Length-N DFT of Complex
Data

Because of the structure of the short DFTs, the number of real multiplications required for
the DFT of real data is exactly half that required for complex data. The number of real
additions required is slightly less than half that required for complex data because (N − 1)
of the additions needed when N is prime add a real to an imaginary, and that is not actually
performed. When N = 2m, there are (N − 2) of these pseudo additions. The special case
for real data is discussed in [101], [177], [356].

The structure of these algorithms are in the form of X ' = CDAX or BTDAX or ATDAX
from (7.5) and (7.8). The A and B matrices are generally M by N with M ≥ N and have
elements that are integers, generally 0 or ±1. A pictorial description is given in Figure 7.1.

1.000

--1.250

-- j  1.539

j 0.588

j 0.362

0.559

Figure 7.1: Flow Graph for the Length-5 DFT

Figure 7.2: Block Diagram of a Winograd Short DFT
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The �ow graph in Figure 7.1 should be compared with the matrix description of (7.8) and
(7.30), and with the programs in [29], [235], [63], [263] and the appendices. The shape in
Figure 7.2 illustrates the expansion of the data by A. That is to say, AX has more entries
than X because M > N . The A operator consists of additions, the D operator gives the M
multiplications (some by one) and AT contracts the data back to N values with additions
only. M is one half the second list of multiplies in .

An important characteristic of the D operator in the calculation of the DFT is its entries
are either purely real or imaginary. The reduction of the W vector by

(
s(N−1)/2 − 1

)
and(

s(N−1)/2 + 1
)
separates the real and the imaginary constants. This is discussed in [416],

[197]. The number of multiplications for complex data is only twice those necessary for real
data, not four times.

Although this discussion has been on the calculation of the DFT, very similar results are
true for the calculation of convolution and correlation, and these will be further developed in
Algorithms for Data with Restrictions (Chapter 12). The ATDA structure and the picture
in Figure 7.2 are the same for convolution. Algorithms and operation counts can be found
in [29], [263], [7].

7.1 The Bilinear Structure

The bilinear form introduced in (7.3) and the related linear form in (7.6) are very powerful
descriptions of both the DFT and convolution.

Bilinear: Y = C [AX o BH] (7.31)

Linear: Y = CDA X (7.32)

Since (7.31) is a bilinear operation de�ned in terms of a second bilinear operator o , this
formulation can be nested. For example if o is itself de�ned in terms of a second bilinear
operator @, by

X o H = C '
[
A'X @ B'H

]
(7.33)

then (7.31) becomes

Y = CC '
[
A'AX @ B'BH

]
(7.34)

For convolution, if A represents the polynomial residue reduction modulo the cyclotomic
polynomials, then A is square (e.g. (7.25) and o represents multiplication of the residue
polynomials modulo the cyclotomic polynomials. If A represents the reduction modulo the
cyclotomic polynomials plus the Toom-Cook reduction as was the case in the example of
(7.30), then A is NxM and o is term-by- term simple scalar multiplication. In this case AX
can be thought of as a transform of X and C is the inverse transform. This is called a
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rectangular transform [7] because A is rectangular. The transform requires only additions
and convolution is done with M multiplications. The other extreme is when A represents
reduction over the N complex roots of sN − 1. In this case A is the DFT itself, as in the
example of (43), and o is point by point complex multiplication and C is the inverse DFT.
A trivial case is where A, B and C are identity operators and o is the cyclic convolution.

This very general and �exible bilinear formulation coupled with the idea of nesting in (7.34)
gives a description of most forms of convolution.

7.2 Winograd's Complexity Theorems

Because Winograd's work [29], [235], [416], [408], [413], [419] has been the foundation of
the modern results in e�cient convolution and DFT algorithms, it is worthwhile to look at
his theoretical conclusions on optimal algorithms. Most of his results are stated in terms of
polynomial multiplication as Polynomial Description of Signals: Equation 3 (4.3) or (7.11).
The measure of computational complexity is usually the number of multiplications, and only
certain multiplications are counted. This must be understood in order not to misinterpret
the results.

This section will simply give a statement of the pertinent results and will not attempt to
derive or prove anything. A short interpretation of each theorem will be given to relate
the result to the algorithms developed in this chapter. The indicated references should be
consulted for background and detail.

Theorem 1 [416] Given two polynomials, x (s) and h (s), of degree N and M respectively,
each with indeterminate coe�cients that are elements of a �eld H, N+M+1 multiplications
are necessary to compute the coe�cients of the product polynomial x (s)h (s). Multiplication
by elements of the �eld G (the �eld of constants), which is contained in H, are not counted
and G contains at least N +M distinct elements.

The upper bound in this theorem can be realized by choosing an arbitrary modulus polyno-
mial P (s) of degree N+M+1 composed of N+M+1 distinct linear polynomial factors with
coe�cients in G which, since its degree is greater than the product x (s)h (s), has no e�ect
on the product, and by reducing x (s) and h (s) to N+M+1 residues modulo the N+M+1
factors of P (s). These residues are multiplied by each other, requiring N + M + 1 mul-
tiplications, and the results recombined using the Chinese remainder theorem (CRT). The
operations required in the reduction and recombination are not counted, while the residue
multiplications are. Since the modulus P (s) is arbitrary, its factors are chosen to be simple
so as to make the reduction and CRT simple. Factors of zero, plus and minus unity, and
in�nity are the simplest. Plus and minus two and other factors complicate the actual calcu-
lations considerably, but the theorem does not take that into account. This algorithm is a
form of the Toom-Cook algorithm and of Lagrange interpolation [29], [235], [263], [416]. For
our applications, H is the �eld of reals and G the �eld of rationals.
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Theorem 2 [416] If an algorithm exists which computes x (s)h (s) in N + M + 1 multipli-
cations, all but one of its multiplication steps must necessarily be of the form

mk =
(
gk' + x (gk)

)
(gk” + h (gk)) for k = 0, 1, ..., N +M (7.35)

where gk are distinct elements of G; and g
'

k and gk” are arbitrary elements of G

This theorem states that the structure of an optimal algorithm is essentially unique although
the factors of P (s) may be chosen arbitrarily.

Theorem 3 [416] Let P (s) be a polynomial of degree N and be of the form P (s) = Q (s) k,
where Q (s) is an irreducible polynomial with coe�cients in G and k is a positive integer.
Let x (s) and h (s) be two polynomials of degree at least N − 1 with coe�cients from H,
then 2N − 1 multiplications are required to compute the product x (s)h (s) modulo P (s).

This theorem is similar to Theorem 1 (p. 52) with the operations of the reduction of the
product modulo P (s) not being counted.

Theorem 4 [416] Any algorithm that computes the product x (s)h (s) modulo P (s) accord-
ing to the conditions stated in Theorem 3 and requires 2N−1 multiplications will necessarily
be of one of three structures, each of which has the form of Theorem 2 internally.

As in Theorem 2 (p. 52), this theorem states that only a limited number of possible structures
exist for optimal algorithms.

Theorem 5 [416] If the modulus polynomial P (s) has degree N and is not irreducible, it
can be written in a unique factored form P (s) = Pm1

1 (s)Pm2
2 (s) ...Pmk

k (s) where each of the
Pi (s) are irreducible over the allowed coe�cient �eld G. 2N−k multiplications are necessary
to compute the product x (s)h (s) modulo P (s) where x (s) and h (s) have coe�cients in
H and are of degree at least N − 1. All algorithms that calculate this product in 2N − k
multiplications must be of a form where each of the k residue polynomials of x (s) and h (s)
are separately multiplied modulo the factors of P (s) via the CRT.

Corollary: If the modulus polynomial is P (s) = sN − 1, then 2N − t (N) multiplications are
necessary to compute x (s)h (s) modulo P (s), where t (N) is the number of positive divisors
of N .

Theorem 5 (p. 53) is very general since it allows a general modulus polynomial. The proof of
the upper bound involves reducing x (s) and h (s) modulo the k factors of P (s). Each of the
k irreducible residue polynomials is then multiplied using the method of Theorem 4 (p. 53)
requiring 2Ni−1 multiplies and the products are combined using the CRT. The total number
of multiplies from the k parts is 2N−k. The theorem also states the structure of these optimal
algorithms is essentially unique. The special case of P (s) = sN − 1 is interesting since it
corresponds to cyclic convolution and, as stated in the corollary, k is easily determined. The
factors of sN−1 are called cyclotomic polynomials and have interesting properties [29], [235],
[263].
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Theorem 6 [416], [408] Consider calculating the DFT of a prime length real-valued number
sequence. If G is chosen as the �eld of rational numbers, the number of real multiplications
necessary to calculate a length-P DFT is u (DFT (N)) = 2P − 3− t (P − 1) where t (P − 1)
is the number of divisors of P − 1.

This theorem not only gives a lower limit on any practical prime length DFT algorithm, it also
gives practical algorithms forN = 3, 5, and 7. Consider the operation counts in to understand
this theorem. In addition to the real multiplications counted by complexity theory, each
optimal prime-length algorithm will have one multiplication by a rational constant. That
constant corresponds to the residue modulo (s-1) which always exists for the modulus P (s) =
sN−1−1. In a practical algorithm, this multiplication must be carried out, and that accounts
for the di�erence in the prediction of Theorem 6 p. 54 and count in . In addition, there is
another operation that for certain applications must be counted as a multiplication. That
is the calculation of the zero frequency term X (0) in the �rst row of the example in The
DFT as Convolution or Filtering: Matrix 1 (5.12). For applications to the WFTA discussed
in The Prime Factor and Winograd Fourier Transform Algorithms: The Winograd Fourier
Transform Algorithm (Section 10.2: The Winograd Fourier Transform Algorithm), that
operation must be counted as a multiply. For lengths longer than 7, optimal algorithms
require too many additions, so compromise structures are used.

Theorem 7 [419], [171] If G is chosen as the �eld of rational numbers, the number of real
multiplications necessary to calculate a length-N DFT where N is a prime number raised to
an integer power: N = Pm , is given by

u (DFT (N)) = 2N − ((m2 +m) /2) t (P − 1)−m− 1 (7.36)

where t (P − 1) is the number of divisors of (P − 1).

This result seems to be practically achievable only for N = 9, or perhaps 25. In the case of
N = 9, there are two rational multiplies that must be carried out and are counted in but are
not predicted by Theorem 7 (p. 54). Experience [187] indicates that even for N = 25, an
algorithm based on a Cooley-Tukey FFT using a type 2 index map gives an over-all more
balanced result.

Theorem 8 [171] If G is chosen as the �eld of rational numbers, the number of real multipli-
cations necessary to calculate a length-N DFT where N = 2m is given by

u (DFT (N)) = 2N −m2−m− 2 (7.37)

This result is not practically useful because the number of additions necessary to realize this
minimum of multiplications becomes very large for lengths greater than 16. Nevertheless,
it proves the minimum number of multiplications required of an optimal algorithm is a
linear function of N rather than of NlogN which is that required of practical algorithms.
The best practical power-of-two algorithm seems to the Split-Radix [105] FFT discussed
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in The Cooley-Tukey Fast Fourier Transform Algorithm: The Split-Radix FFT Algorithm
(Section 9.2: The Split-Radix FFT Algorithm).

All of these theorems use ideas based on residue reduction, multiplication of the residues,
and then combination by the CRT. It is remarkable that this approach �nds the minimum
number of required multiplications by a constructive proof which generates an algorithm
that achieves this minimum; and the structure of the optimal algorithm is, within certain
variations, unique. For shorter lengths, the optimal algorithms give practical programs. For
longer lengths the uncounted operations involved with the multiplication of the higher degree
residue polynomials become very large and impractical. In those cases, e�cient suboptimal
algorithms can be generated by using the same residue reduction as for the optimal case, but
by using methods other than the Toom-Cook algorithm of Theorem 1 (p. 52) to multiply
the residue polynomials.

Practical long DFT algorithms are produced by combining short prime length optimal DFT's
with the Type 1 index map from Multidimensional Index Mapping (Chapter 3) to give the
Prime Factor Algorithm (PFA) and the Winograd Fourier Transform Algorithm (WFTA)
discussed in The Prime Factor and Winograd Fourier Transform Algorithms (Chapter 10).
It is interesting to note that the index mapping technique is useful inside the short DFT
algorithms to replace the Toom-Cook algorithm and outside to combine the short DFT's to
calculate long DFT's.

7.3 The Automatic Generation of Winograd's Short DFTs

by Ivan Selesnick, Polytechnic Institute of New York University

7.3.1 Introduction

E�cient prime length DFTs are important for two reasons. A particular application may
require a prime length DFT and secondly, the maximum length and the variety of lengths
of a PFA or WFTA algorithm depend upon the availability of prime length modules.

This [329], [335], [331], [333] discusses automation of the process Winograd used for con-
structing prime length FFTs [29], [187] for N < 7 and that Johnson and Burrus [197]
extended to N < 19. It also describes a program that will design any prime length FFT in
principle, and will also automatically generate the algorithm as a C program and draw the
corresponding �ow graph.

Winograd's approach uses Rader's method to convert a prime length DFT into a P−1 length
cyclic convolution, polynomial residue reduction to decompose the problem into smaller con-
volutions [29], [263], and the Toom-Cook algorithm [29], [252]. The Chinese Remainder
Theorem (CRT) for polynomials is then used to recombine the shorter convolutions. Unfor-
tunately, the design procedure derived directly fromWinograd's theory becomes cumbersome
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for longer length DFTs, and this has often prevented the design of DFT programs for lengths
greater than 19.

Here we use three methods to facilitate the construction of prime length FFT modules. First,
the matrix exchange property [29], [197], [218] is used so that the transpose of the reduction
operator can be used rather than the more complicated CRT reconstruction operator. This is
then combined with the numerical method [197] for obtaining the multiplication coe�cients
rather than the direct use of the CRT. We also deviate from the Toom-Cook algorithm,
because it requires too many additions for the lengths in which we are interested. Instead we
use an iterated polynomial multiplication algorithm [29]. We have incorporated these three
ideas into a single structural procedure that automates the design of prime length FFTs.

7.3.2 Matrix Description

It is important that each step in the Winograd FFT can be described using matrices. By
expressing cyclic convolution as a bilinear form, a compact form of prime length DFTs can
be obtained.

If y is the cyclic convolution of h and x, then y can be expressed as

y = C [Ax. ∗Bh] (7.38)

where, using the Matlab convention, .∗ represents point by point multiplication. When A,B,
and C are allowed to be complex, A and B are seen to be the DFT operator and C, the
inverse DFT. When only real numbers are allowed, A, B, and C will be rectangular. This
form of convolution is presented with many examples in [29]. Using the matrix exchange
property explained in [29] and [197] this form can be written as

y = RBT
[
CTRh. ∗ Ax

]
(7.39)

where R is the permutation matrix that reverses order.

When h is �xed, as it is when considering prime length DFTs, the term CTRh can be precom-
puted and a diagonal matrix D formed by D = diag{CTRh}. This is advantageous because
in general, C is more complicated than B, so the ability to �hide" C saves computation.
Now y = RBTDAx or y = RATDAx since A and B can be the same; they implement a
polynomial reduction. The form y = RTDAxT can also be used for the prime length DFTs,
it is only necessary to permute the entries of x and to ensure that the DC term is computed
correctly. The computation of the DC term is simple, for the residue of a polynomial modulo
a − 1 is always the sum of the coe�cients. After adding the x0 term of the original input
sequence, to the s− l residue, the DC term is obtained. Now DFT{x} = RATDAx. In [197]
Johnson observes that by permuting the elements on the diagonal of D, the output can be
permuted, so that the R matrix can be hidden in D, and DFT{x} = ATDAx. From the
knowledge of this form, once A is found, D can be found numerically [197].
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7.3.3 Programming the Design Procedure

Because each of the above steps can be described by matrices, the development of a prime
length FFTs is made convenient with the use of a matrix oriented programming language
such as Matlab. After specifying the appropriate matrices that describe the desired FFT
algorithm, generating code involves compiling the matrices into the desired code for execu-
tion.

Each matrix is a section of one stage of the �ow graph that corresponds to the DFT program.
The four stages are:

1. Permutation Stage: Permutes input and output sequence.
2. Reduction Stage: Reduces the cyclic convolution to smaller polynomial products.
3. Polynomial Product Stage: Performs the polynomial multiplications.
4. Multiplication Stage: Implements the point-by-point multiplication in the bilinear

form.

Each of the stages can be clearly seen in the �ow graphs for the DFTs. Figure 7.3 shows the
�ow graph for a length 17 DFT algorithm that was automatically drawn by the program.
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Figure 7.3: Flowgraph of length-17 DFT

The programs that accomplish this process are written in Matlab and C. Those that compute
the appropriate matrices are written in Matlab. These matrices are then stored as two ASCII
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�ies, with the dimensions in one and the matrix elements in the second. A C program then
reads the �ies and compiles them to produce the �nal FFT program in C [335]

7.3.4 The Reduction Stage

The reduction of an N th degree polynomial, X (s), modulo the cyclotomic polynomial factors
of
(
sN − 1

)
requires only additions for many N, however, the actual number of additions

depends upon the way in which the reduction proceeds. The reduction is most e�ciently
performed in steps. For example, if N = 4 and

(
(X (s))s−1 ,

(
(X (s))s+1and

(
(X (s))s2+1

where the double parenthesis denote polynomial reduction modulo (s− 1), s+ 1, and s2 + 1,
then in the �rst step ((X (s)))s2−1, and ((Xs))s2+1 should be computed. In the second step,
((Xs))s−1 and ((Xs))s+1 can be found by reducing ((X (s)))s2−1 This process is described
by the diagram in Figure 7.4.

s4 - 1

s2 - 1 s2 + 1

s - 1 s + 1

Figure 7.4: Factorization of s4 − 1 in steps

When N is even, the appropriate �rst factorization is
(
SN/2 − 1

) (
sN/2 + 1

)
, however, the

next appropriate factorization is frequently less obvious. The following procedure has been
found to generate a factorization in steps that coincides with the factorization that minimizes
the cumulative number of additions incurred by the steps. The prime factors of N are the
basis of this procedure and their importance is clear from the useful well-known equation
sN − 1 =

∏
n|NCn (s) where Cn (s) is the nth cyclotomic polynomial.

We �rst introduce the following two functions de�ned on the positive integers,

ψ (N) = the smallest prime factor of N forN > 1 (7.40)

and ψ (1) = 1.

Suppose P (s) is equal to either
(
sN − 1

)
or an intermediate noncyclotomic polynomial

appearing in the factorization process, for example, (a2 − 1), above. Write P (s) in terms of
its cyclotomic factors,

P (s) = Ck1 (s) Ck2 (s) · · ·CkL (7.41)
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de�ne the two sets, G and G , by

G = {k1, · · · , kL} and G = {k/gcd (G) : k ∈ G} (7.42)

and de�ne the two integers, t and T , by

t = min{ψ (k) : k ∈ G , k > 1} and T = maxnu (k, t) : k ∈ G} (7.43)

Then form two new sets,

A = {k ∈ G : T | k} and B = {k ∈ G : T |k} (7.44)

The factorization of P (s),

P (s) =

(∏
k∈A

Ck (s)

)(∏
k∈B

Ck (s)

)
(7.45)

has been found useful in the procedure for factoring
(
sN − 1

)
. This is best illustrated with

an example.

Example: N = 36

Step 1. Let P (s) = s36 − 1. Since P = C1C2C3C4C6C9C12C18C36

G = G = {1, 2, 3, 4, 6, 9, 12, 18, 36} (7.46)

t = min{2, 3} = 2 (7.47)

A = {k ∈ G : 4|k} = {1, 2, 3, 6, 9, 18} (7.48)

B = {k ∈ G : 4|k} = {4, 12, 36} (7.49)

Hence the factorization of s36 − 1 into two intermediate polynomials is as expected,∏
k∈A

Ck (s) = s18 − 1,
∏
k∈B

Ck (s) = s18 + 1 (7.50)

If a 36th degree polynomial, X (s), is represented by a vector of coe�cients, X =
(x35, · · · , x0)

', then
(
(X (s))s18−1 (represented by X') and

(
(X (s))s18+1 (represented by X")

is given by

test (7.51)

which entails 36 additions.
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Step 2. This procedure is repeated with P (s) = s18 − 1 and P (s) = s18 + 1. We will just
show it for the later. Let P (s) = s18 + 1. Since P = C4C12C36

G = {4, 12, 36}, G' = {l, 3, 9} (7.52)

t = min3 = 3 (7.53)

T = maxν (k, 3) : k ∈ G = maxl, 3, 9 = 9 (7.54)

A = k ∈ G : 9|k} = {4, 12} (7.55)

B = k ∈ G : 9|k} = {36} (7.56)

This yields the two intermediate polynomials,

s6 + 1, and s12 − s6 + 1 (7.57)

In the notation used above,

 X '

X ''

 =


I6 −I6 I6

I6 I6

−I6 I6

X (7.58)

entailing 24 additions. Continuing this process results in a factorization in steps

In order to see the number of additions this scheme uses for numbers of the form N = P − 1
(which is relevant to prime length FFT algorithms) �gure 4 shows the number of additions
the reduction process uses when the polynomial X(s) is real.

Figure 4: Number of Additions for Reduction Stage

7.3.5 The Polynomial Product Stage

The iterated convolution algorithm can be used to construct an N point linear convolution
algorithm from shorter linear convolution algorithms [29]. Suppose the linear convolution y,
of the n point vectors x and h (h known) is described by

y = ET
n D En x (7.59)

where En is an �expansion" matrix the elements of which are ±l's and 0's and D is an
appropriate diagonal matrix. Because the only multiplications in this expression are by the
elements of D, the number of multiplications required,M (n), is equal to the number of rows
of En. The number of additions is denoted by A (n).
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Given a matrix En1 and a matrix En2 , the iterated algorithm gives a method for combining
En1 and En2 to construct a valid expansion matrix, En, for N ≤ n1n2. Speci�cally,

En1,n2 =
(
IM(n2) ⊗ En1

)
(En2 × In1) (7.60)

The product n1n2 may be greater than N , for zeros can be (conceptually) appended to x.
The operation count associated with En1,n2 is

A (n1, n2) = n!A (n2) + A (n1)Mn2 (7.61)

M (n1, n2) = M (n1) M (n2) (7.62)

Although they are both valid expansion matrices, En1,n2 6= En2,n1 and An1,n2 6= An2,n1

Because Mn1,n2 6= Mn2,n1 it is desirable to chose an ordering of factors to minimize the
additions incurred by the expansion matrix. The following [7], [263] follows from above.

7.3.5.1 Multiple Factors

Note that a valid expansion matrix, EN , can be constructed from En1,n2 and En3 , for N ≤
n1n2n3. In general, any number of factors can be used to create larger expansion matrices.
The operation count associated with En1,n2,n3 is

A (n1, n2, n3) = n1n2A (n3) + n1A (n2)M (n3) + A (n1)M (n2)M (n3) (7.63)

M (n1, n2, n3) = M (n1)M (n2)M (n3) (7.64)

These equations generalize in the predicted way when more factors are considered. Because
the ordering of the factors is relevant in the equation for A (.) but not for M (.), it is again
desirable to order the factors to minimize the number of additions. By exploiting the fol-
lowing property of the expressions for A (.) and M (.), the optimal ordering can be found
[7].

reservation of Optimal Ordering. Suppose A (n1, n2, n3) ≤ min{A (nk1 , nk2 , nk3) : k1, k2, k3 ∈
{1, 2, 3} and distinct}, then

1.
A (n1, n2) ≤ A (n2, n1) (7.65)

2.
A (n2, n3) ≤ A (n3, n2) (7.66)

3.
A (n1, n3) ≤ A (n3, n1) (7.67)
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The generalization of this property to more than two factors reveals that an optimal ordering
of {n1, · · · , nL−i} is preserved in an optimal ordering of {n1, · · ·nL}. Therefore, if (n1, · · ·nL)
is an optimal ordering of {n1, · · ·nL}, then (nk, nk+1) is an optimal ordering of {nk, nk+1}
and consequently

A (nk)

M (nk)− nk
≤ A (nk+1)

M (nk+1)− nk+1

(7.68)

for all k = 1, 2, · · · , L− 1.

This immediately suggests that an optimal ordering of {n1, · · ·nL} is one for which

A (n1)

M (n1)− n1

· · · A (nL)

M (nL)− nL
(7.69)

is nondecreasing. Hence, ordering the factors, {n1, · · ·nL}, to minimize the number of
additions incurred by En1,··· ,nL simply involves computing the appropriate ratios.

7.3.6 Discussion and Conclusion

We have designed prime length FFTs up to length 53 that are as good as the previous designs
that only went up to 19. Table 1 gives the operation counts for the new and previously
designed modules, assuming complex inputs.

It is interesting to note that the operation counts depend on the factorability of P − 1. The
primes 11, 23, and 47 are all of the form 1 + 2P1 making the design of e�cient FFTs for
these lengths more di�cult.

Further deviations from the original Winograd approach than we have made could prove use-
ful for longer lengths. We investigated, for example, the use of twiddle factors at appropriate
points in the decomposition stage; these can sometimes be used to divide the cyclic convolu-
tion into smaller convolutions. Their use means, however, that the 'center* multiplications
would no longer be by purely real or imaginary numbers.
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N Mult Adds

7 16 72

11 40 168

13 40 188

17 82 274

19 88 360

23 174 672

29 190 766

31 160 984

37 220 920

41 282 1140

43 304 1416

47 640 2088

53 556 2038

Table 7.2: Operation counts for prime length DFTs

The approach in writing a program that writes another program is a valuable one for several
reasons. Programming the design process for the design of prime length FFTs has the
advantages of being practical, error-free, and �exible. The �exibility is important because it
allows for modi�cation and experimentation with di�erent algorithmic ideas. Above all, it
has allowed longer DFTs to be reliably designed.

More details on the generation of programs for prime length FFTs can be found in the 1993
Technical Report.
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Chapter 8

DFT and FFT: An Algebraic View1

by Markus Pueschel, Carnegie Mellon University

In in�nite, or non-periodic, discrete-time signal processing, there is a strong connection
between the z-transform, Laurent series, convolution, and the discrete-time Fourier trans-
form (DTFT) [277]. As one may expect, a similar connection exists for the DFT but bears
surprises. Namely, it turns out that the proper framework for the DFT requires modulo
operations of polynomials, which means working with so-called polynomial algebras [138].
Associated with polynomial algebras is the Chinese remainder theorem, which describes the
DFT algebraically and can be used as a tool to concisely derive various FFTs as well as
convolution algorithms [268], [409], [414], [12] (see also Chapter Winograd's Short DFT Al-
gorithms (Chapter 7)). The polynomial algebra framework was fully developed for signal
processing as part of the algebraic signal processing theory (ASP). ASP identi�es the struc-
ture underlying many transforms used in signal processing, provides deep insight into their
properties, and enables the derivation of their fast algorithms [295], [293], [291], [294]. Here
we focus on the algebraic description of the DFT and on the algebraic derivation of the
general-radix Cooley-Tukey FFT from Factoring the Signal Processing Operators (Chap-
ter 6). The derivation will make use of and extend the Polynomial Description of Signals
(Chapter 4). We start with motivating the appearance of modulo operations.

The z-transform associates with in�nite discrete signals X = (· · · , x (−1) , x (0) , x (1) , · · · )
a Laurent series:

X 7→ X (s) =
∑
n∈Z

x (n) sn. (8.1)

Here we used s = z−1 to simplify the notation in the following. The DTFT of X is the
evaluation of X (s) on the unit circle

X
(
e−jω

)
, − π < ω ≤ π. (8.2)

1This content is available online at <http://cnx.org/content/m16331/1.11/>.

65
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Finally, �ltering or (linear) convolution is simply the multiplication of Laurent series,

H ∗X ↔ H (s)X (s) . (8.3)

For �nite signalsX = (x (0) , · · · , x (N − 1)) one expects that the equivalent of (8.1) becomes
a mapping to polynomials of degree N − 1,

X 7→ X (s) =
N−1∑
n=0

x (n) sn, (8.4)

and that the DFT is an evaluation of these polynomials. Indeed, the de�nition of the DFT
in Winograd's Short DFT Algorithms (Chapter 7) shows that

C (k) = X
(
W k
N

)
= X

(
e−j

2πk
N

)
, 0 ≤ k < N, (8.5)

i.e., the DFT computes the evaluations of the polynomial X (s) at the nth roots of unity.

The problem arises with the equivalent of (8.3), since the multiplication H (s)X (s) of two
polynomials of degree N − 1 yields one of degree 2N − 2. Also, it does not coincide with the
circular convolution known to be associated with the DFT. The solution to both problems
is to reduce the product modulo sn − 1:

H∗circX ↔ H (s)X (s) mod (sn − 1) . (8.6)

Concept In�nite Time Finite Time

Signal X (s) =
∑

n∈Zx (n) sn
∑N−1

n=0 x (n) sn

Filter H (s) =
∑

n∈Zh (n) sn
∑N−1

n=0 h (n) sn

Convolution H (s)X (s) H (s)X (s)mod (sn − 1)

Fourier transform DTFT: X (e−jω) , − π < ω ≤ π DFT: X
(
e−j

2πk
n

)
, 0 ≤ k < n

Table 8.1: In�nite and �nite discrete time signal processing.

The resulting polynomial then has again degree N − 1 and this form of convolution becomes
equivalent to circular convolution of the polynomial coe�cients. We also observe that the
evaluation points in (8.5) are precisely the roots of sn−1. This connection will become clear
in this chapter.

The discussion is summarized in Table 8.1.

The proper framework to describe the multiplication of polynomials modulo a �xed polyno-
mial are polynomial algebras. Together with the Chinese remainder theorem, they provide
the theoretical underpinning for the DFT and the Cooley-Tukey FFT.
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In this chapter, the DFT will naturally arise as a linear mapping with respect to chosen bases,
i.e., as a matrix. Indeed, the de�nition shows that if all input and outputs are collected into
vectors X = (X (0) , · · · , X (N − 1)) and C = (C (0) , · · ·C (N − 1)), then is equivalent to

C = DFTNX, (8.7)

where

DFTN =
[
W kn
N

]
0≤k,n<N . (8.8)

The matrix point of view is adopted in the FFT books [388], [381].

8.1 Polynomial Algebras and the DFT

In this section we introduce polynomial algebras and explain how they are associated to
transforms. Then we identify this connection for the DFT. Later we use polynomial algebras
to derive the Cooley-Tukey FFT.

For further background on the mathematics in this section and polynomial algebras in par-
ticular, we refer to [138].

8.1.1 Polynomial Algebra

An algebra A is a vector space that also provides a multiplication of its elements such that
the distributivity law holds (see [138] for a complete de�nition). Examples include the sets of
complex or real numbers C or R, and the sets of complex or real polynomials in the variable
s: C [s] or R [s].

The key player in this chapter is the polynomial algebra. Given a �xed polynomial P (s)
of degree deg (P ) = N , we de�ne a polynomial algebra as the set

C [s] /P (s) = {X (s) | deg (X) < deg (P )} (8.9)

of polynomials of degree smaller than N with addition and multiplication modulo P . Viewed
as a vector space, C [s] /P (s) hence has dimension N .

Every polynomial X (s) ∈ C [s] is reduced to a unique polynomial R (s) modulo P (s) of
degree smaller than N . R (s) is computed using division with rest, namely

X (s) = Q (s)P (s) +R (s) , deg (R) < deg (P ) . (8.10)

Regarding this equation modulo P , P (s) becomes zero, and we get

X (s) ≡ R (s) mod P (s) . (8.11)
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We read this equation as �X (s) is congruent (or equal) R (s) modulo P (s).� We will also
write X (s) mod P (s) to denote that X (s) is reduced modulo P (s). Obviously,

P (s) ≡ 0 mod P (s) . (8.12)

As a simple example we consider A = C [s] / (s2 − 1), which has dimension 2. A possible
basis is b = (1, s). In A, for example, s · (s+ 1) = s2 + s ≡ s + 1 mod (s2 − 1), obtained
through division with rest

s2 + s = 1 ·
(
s2 − 1

)
+ (s+ 1) (8.13)

or simply by replacing s2 with 1 (since s2 − 1 = 0 implies s2 = 1).

8.1.2 Chinese Remainder Theorem (CRT)

Assume P (s) = Q (s)R (s) factors into two coprime (no common factors) polynomials Q
and R. Then the Chinese remainder theorem (CRT) for polynomials is the linear mapping2

∆ : C [s] /P (s) → C [s] /Q (s)⊕ C [s] /R (s) ,

X (s) 7→ (X (s) mod Q (s) , X (s) mod R (s)) .
(8.14)

Here, ⊕ is the Cartesian product of vector spaces with elementwise operation (also called
outer direct sum). In words, the CRT asserts that computing (addition, multiplication,
scalar multiplication) in C [s] /P (s) is equivalent to computing in parallel in C [s] /Q (s) and
C [s] /R (s).

If we choose bases b, c, d in the three polynomial algebras, then ∆ can be expressed as a
matrix. As usual with linear mappings, this matrix is obtained by mapping every element
of b with ∆, expressing it in the concatenation c ∪ d of the bases c and d, and writing the
results into the columns of the matrix.

As an example, we consider again the polynomial P (s) = s2 − 1 = (s− 1) (s+ 1) and the
CRT decomposition

∆ : C [s] /
(
s2 − 1

)
→ C [s] / (x− 1)⊕ C [s] / (x+ 1) . (8.15)

As bases, we choose b = (1, x) , c = (1) , d = (1). ∆ (1) = (1, 1) with the same coordinate
vector in c ∪ d = (1, 1). Further, because of x ≡ 1 mod (x− 1) and x ≡ −1 mod (x+ 1),
∆ (x) = (x, x) ≡ (1,−1) with the same coordinate vector. Thus, ∆ in matrix form is the

so-called butter�y matrix, which is a DFT of size 2: DFT 2 =

 1 1

1 −1

.
2More precisely, isomorphism of algebras or isomorphism of A-modules.
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8.1.3 Polynomial Transforms

Assume P (s) ∈ C [s] has pairwise distinct zeros α = (α0, · · · , αN−1). Then the CRT can be
used to completely decompose C [s] /P (s) into its spectrum:

∆ : C [s] /P (s) → C [s] / (s− α0)⊕ · · · ⊕ C [s] / (s− αN−1) ,

X (s) 7→ (X (s) mod (s− α0) , · · · , X (s) mod (s− αN−1))

= (s (α0) , · · · , s (αN−1)) .

(8.16)

If we choose a basis b = (P0 (s) , · · · , PN−1 (s)) in C [s] /P (s) and bases bi = (1) in each
C [s] / (s− αi), then ∆, as a linear mapping, is represented by a matrix. The matrix is
obtained by mapping every basis element Pn, 0 ≤ n < N , and collecting the results in the
columns of the matrix. The result is

Pb,α = [Pn (αk)]0≤k,n<N (8.17)

and is called the polynomial transform for A = C [s] /P (s) with basis b.

If, in general, we choose bi = (βi) as spectral basis, then the matrix corresponding to the
decomposition (8.16) is the scaled polynomial transform

diag0≤k<N (1/βn)Pb,α, (8.18)

where diag0≤n<N (γn) denotes a diagonal matrix with diagonal entries γn.

We jointly refer to polynomial transforms, scaled or not, as Fourier transforms.

8.1.4 DFT as a Polynomial Transform

We show that the DFTN is a polynomial transform for A = C [s] /
(
sN − 1

)
with basis

b =
(
1, s, · · · , sN−1

)
. Namely,

sN − 1 =
∏

0≤k<N

(
x−W k

N

)
, (8.19)

which means that ∆ takes the form

∆ : C [s] /
(
sN − 1

)
→ C [s] / (s−W 0

N)⊕ · · · ⊕ C [s] /
(
s−WN−1

N

)
,

X (s) 7→
(
X (s) mod (s−W 0

N) , · · · , X (s) mod
(
s−WN−1

N

))
=
(
X (W 0

N) , · · · , X
(
WN−1
N

))
.

(8.20)

The associated polynomial transform hence becomes

Pb,α =
[
W kn
N

]
0≤k,n<N = DFTN . (8.21)



70 CHAPTER 8. DFT AND FFT: AN ALGEBRAIC VIEW

This interpretation of the DFT has been known at least since [409], [268] and clari�es the
connection between the evaluation points in (8.5) and the circular convolution in (8.6).

In [40], DFTs of types 1�4 are de�ned, with type 1 being the standard DFT. In the algebraic
framework, type 3 is obtained by choosing A = C [s] /

(
sN + 1

)
as algebra with the same

basis as before:

Pb,α =
[
W

(k+1/2)n
N

]
0≤k,n<N

= DFT -3N , (8.22)

The DFTs of type 2 and 4 are scaled polynomial transforms [295].

8.2 Algebraic Derivation of the Cooley-Tukey FFT

Knowing the polynomial algebra underlying the DFT enables us to derive the Cooley-Tukey
FFT algebraically. This means that instead of manipulating the DFT de�nition, we ma-
nipulate the polynomial algebra C [s] /

(
sN − 1

)
. The basic idea is intuitive. We showed that

the DFT is the matrix representation of the complete decomposition (8.20). The Cooley-
Tukey FFT is now derived by performing this decomposition in steps as shown in Figure 8.1.
Each step yields a sparse matrix; hence, the DFTN is factorized into a product of sparse
matrices, which will be the matrix representation of the Cooley-Tukey FFT.

Figure 8.1: Basic idea behind the algebraic derivation of Cooley-Tukey type algorithms

This stepwise decomposition can be formulated generically for polynomial transforms [292],
[294]. Here, we consider only the DFT.

We �rst introduce the matrix notation we will use and in particular the Kronecker product
formalism that became mainstream for FFTs in [388], [381].

Then we �rst derive the radix-2 FFT using a factorization of sN − 1. Subsequently, we
obtain the general-radix FFT using a decomposition of sN − 1.
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8.2.1 Matrix Notation

We denote the N ×N identity matrix with IN , and diagonal matrices with

diag0≤k<N (γk) =



γ0

. . .

γN−1


. (8.23)

The N ×N stride permutation matrix is de�ned for N = KM by the permutation

LNM : iK + j 7→ jM + i (8.24)

for 0 ≤ i < K, 0 ≤ j < M . This de�nition shows that LNM transposes a K ×M matrix
stored in row-major order. Alternatively, we can write

LNM : i 7→ iM mod N − 1, for 0 ≤ i < N − 1, N − 1 7→ N − 1. (8.25)

For example (· means 0),

L6
2 =



1 · · · · ·
· · 1 · · ·
· · · · 1 ·
· 1 · · · ·
· · · 1 · ·
· · · · · 1


. (8.26)

LNN/2 is sometimes called the perfect shu�e.

Further, we use matrix operators; namely the direct sum

A⊕B =


A

B

 (8.27)

and the Kronecker or tensor product

A⊗B = [ak,`B]k,`, for A = [ak,`] . (8.28)
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In particular,

In ⊗ A = A⊕ · · · ⊕ A =



A

. . .

A


(8.29)

is block-diagonal.

We may also construct a larger matrix as a matrix of matrices, e.g., A B

B A

 . (8.30)

If an algorithm for a transform is given as a product of sparse matrices built from the
constructs above, then an algorithm for the transpose or inverse of the transform can be
readily derived using mathematical properties including

(AB)T = BTAT , (AB)−1 = B−1A−1,

(A⊕B)T = AT ⊕BT , (A⊕B)−1 = A−1 ⊕B−1,

(A⊗B)T = AT ⊗BT , (A⊗B)−1 = A−1 ⊗B−1.

(8.31)

Permutation matrices are orthogonal, i.e., P T = P−1. The transposition or inversion of
diagonal matrices is obvious.

8.2.2 Radix-2 FFT

The DFT decomposes A = C [s] /
(
sN − 1

)
with basis b =

(
1, s, · · · , sN−1

)
as shown in

(8.20). We assume N = 2M . Then

s2M − 1 =
(
sM − 1

) (
sM + 1

)
(8.32)

factors and we can apply the CRT in the following steps:

C [s] /
(
sN − 1

)
→ C [s] /

(
sM − 1

)
⊕ C [s] /

(
sM + 1

) (8.33)

→ ⊕
0≤i<M

C [s] / (x−W 2i
N )⊕ ⊕

0≤i<M
C [s] /

(
x−W 2i+1

M

)
(8.34)
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→ ⊕
0≤i<N

C [s] / (x−W i
N) . (8.35)

As bases in the smaller algebras C [s] /
(
sM − 1

)
and C [s] /

(
sM + 1

)
, we choose c = d =(

1, s, · · · , sM−1
)
. The derivation of an algorithm for DFTN based on (8.33)-(8.35) is now

completely mechanical by reading o� the matrix for each of the three decomposition steps.
The product of these matrices is equal to the DFTN .

First, we derive the base change matrix B corresponding to (8.33). To do so, we have to
express the base elements sn ∈ b in the basis c ∪ d; the coordinate vectors are the columns
of B. For 0 ≤ n < M , sn is actually contained in c and d, so the �rst M columns of B are

B =

 IM ∗
IM ∗

 , (8.36)

where the entries ∗ are determined next. For the base elements sM+n, 0 ≤ n < M , we have

sM+n ≡ sn mod
(
sM − 1

)
,

sM+n ≡ −sn mod
(
sM + 1

)
,

(8.37)

which yields the �nal result

B =

 IM IM

IM −IM

 = DFT 2 ⊗ IM . (8.38)

Next, we consider step (8.34). C [s] /
(
sM − 1

)
is decomposed byDFTM and C [s] /

(
sM + 1

)
by DFT -3M in (8.22).

Finally, the permutation in step (8.35) is the perfect shu�e LNM , which interleaves the even
and odd spectral components (even and odd exponents of WN).

The �nal algorithm obtained is

DFT 2M = LNM (DFTM ⊕DFT -3M) (DFT 2 ⊗ IM) . (8.39)

To obtain a better known form, we useDFT -3M = DFTMDM , withDM = diag0≤i<M (W i
N),

which is evident from (8.22). It yields

DFT 2M = LNM (DFTM ⊕DFTMDM) (DFT 2 ⊗ IM)

= LNM (I2 ⊗DFTM) (IM ⊕DM) (DFT 2 ⊗ IM) .
(8.40)
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The last expression is the radix-2 decimation-in-frequency Cooley-Tukey FFT. The cor-
responding decimation-in-time version is obtained by transposition using (8.31) and the
symmetry of the DFT:

DFT 2M = (DFT 2 ⊗ IM) (IM ⊕DM) (I2 ⊗DFTM)LN2 . (8.41)

The entries of the diagonal matrix IM ⊕DM are commonly called twiddle factors.

The above method for deriving DFT algorithms is used extensively in [268].

8.2.3 General-radix FFT

To algebraically derive the general-radix FFT, we use the decomposition property of
sN − 1. Namely, if N = KM then

sN − 1 =
(
sM
)K − 1. (8.42)

Decomposition means that the polynomial is written as the composition of two polynomials:
here, sM is inserted into sK − 1. Note that this is a special property: most polynomials do
not decompose.

Based on this polynomial decomposition, we obtain the following stepwise decomposition
of C [s] /

(
sN − 1

)
, which is more general than the previous one in (8.33)�(8.35). The basic

idea is to �rst decompose with respect to the outer polynomial tK − 1, t = sM , and then
completely [292]:

C [s] /
(
sN − 1

)
= C [x] /

((
sM
)K − 1

)
→ ⊕

0≤i<K
C [s] /

(
sM −W i

K

) (8.43)

→ ⊕
0≤i<K

⊕
0≤j<M

C [s] /
(
x−W jK+i

N

)
(8.44)

→ ⊕
0≤i<N

C [s] / (x−W i
N) . (8.45)

As bases in the smaller algebras C [s] /
(
sM −W i

K

)
we choose ci =

(
1, s, · · · , sM−1

)
. As

before, the derivation is completely mechanical from here: only the three matrices corre-
sponding to (8.43)�(8.45) have to be read o�.

The �rst decomposition step requires us to compute sn mod
(
sM −W i

K

)
, 0 ≤ n < N . To

do so, we decompose the index n as n = `M +m and compute

sn = s`M+m =
(
sM
)`
sm ≡ W `m

k sm mod
(
sM −W i

K

)
. (8.46)

This shows that the matrix for (8.43) is given by DFTK ⊗ IM .
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In step (8.44), each C [s] /
(
sM −W i

K

)
is completely decomposed by its polynomial transform

DFTM (i,K) = DFTM · diag0≤i<M
(
W ij
N

)
. (8.47)

At this point, C [s] /
(
sN − 1

)
is completely decomposed, but the spectrum is ordered ac-

cording to jK + i, 0 ≤ i < M , 0 ≤ j < K (j runs faster). The desired order is iM + j.

Thus, in step (8.45), we need to apply the permutation jK + i 7→ iM + j, which is exactly
the stride permutation LNM in (8.24).

In summary, we obtain the Cooley-Tukey decimation-in-frequency FFT with arbitrary radix:

LNM

(
⊕

0≤i<K
DFTM · diagM−1

j=0

(
W ij
N

))
(DFT k ⊗ IM)

= LNM (IK ⊗DFTM)TNM (DFT k ⊗ IM) .

(8.48)

The matrix TNM is diagonal and usually called the twiddle matrix. Transposition using
(8.31) yields the corresponding decimation-in-time version:

(DFT k ⊗ IM)TNM (IK ⊗DFTM)LNK . (8.49)

8.3 Discussion and Further Reading

This chapter only scratches the surface of the connection between algebra and the DFT or
signal processing in general. We provide a few references for further reading.

8.3.1 Algebraic Derivation of Transform Algorithms

As mentioned before, the use of polynomial algebras and the CRT underlies much of the early
work on FFTs and convolution algorithms [409], [268], [12]. For example, Winograd's work on
FFTs minimizes the number of non-rational multiplications. This and his work on complexity
theory in general makes heavy use of polynomial algebras [409], [414], [417] (see Chapter
Winograd's Short DFT Algorithms (Chapter 7) for more information and references). See
[72] for a broad treatment of algebraic complexity theory.

Since C [x] /
(
sN − 1

)
= C [CN ] can be viewed a group algebra for the cyclic group, the

methods shown in this chapter can be translated into the context of group representation
theory. For example, [256] derives the general-radix FFT using group theory and also uses
already the Kronecker product formalism. So does Beth and started the area of FFTs
for more general groups [23], [231]. However, Fourier transforms for groups have found only
sporadic applications [317]. Along a related line of work, [117] shows that using group theory
it is possible that to discover and generate certain algorithms for trigonometric transforms,
such as discrete cosine transforms (DCTs), automatically using a computer program.
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More recently, the polynomial algebra framework was extended to include most trigonometric
transforms used in signal processing [293], [295], namely, besides the DFT, the discrete cosine
and sine transforms and various real DFTs including the discrete Hartley transform. It turns
out that the same techniques shown in this chapter can then be applied to derive, explain,
and classify most of the known algorithms for these transforms and even obtain a large
class of new algorithms including general-radix algorithms for the discrete cosine and sine
transforms (DCTs/DSTs) [292], [294], [398], [397].

This latter line of work is part of the algebraic signal processing theory brie�y discussed
next.

8.3.2 Algebraic Signal Processing Theory

The algebraic properties of transforms used in the above work on algorithm derivation hints
at a connection between algebra and (linear) signal processing itself. This is indeed the case
and was fully developed in a recent body of work called algebraic signal processing theory
(ASP). The foundation of ASP is developed in [295], [293], [291].

ASP �rst identi�es the algebraic structure of (linear) signal processing: the common as-
sumptions on available operations for �lters and signals make the set of �lters an algebraA
and the set of signals an associated A-module M. ASP then builds a signal processing
theory formally from the axiomatic de�nition of a signal model: a triple (A,M,Φ), where
Φ generalizes the idea of the z-transform to mappings from vector spaces of signal values
toM. If a signal model is given, other concepts, such as spectrum, Fourier transform, fre-
quency response are automatically de�ned but take di�erent forms for di�erent models. For
example, in�nite and �nite time as discussed in Table 8.1 are two examples of signal models.
Their complete de�nition is provided in Table 8.2 and identi�es the proper notion of a �nite
z-transform as a mapping Cn → C [s] / (sn − 1).

Signal model In�nite time Finite time

A {
∑

n∈ZH (n) sn |
(· · · , H (−1) , H (0) , H (1) , · · · ) ∈
`1 (Z)}

C [x] / (sn − 1)

continued on next page
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M {
∑

n∈ZX (n) sn |
(· · · , X (−1) , X (0) , X (1) , · · · ) ∈
`2 (Z)}

C [s] / (sn − 1)

Φ Φ : `2 (Z)→M Φ : Cn →M
de�ned in (8.1) de�ned in (8.4)

Table 8.2: In�nite and �nite time models as de�ned in ASP.

ASP shows that many signal models are in principle possible, each with its own notion of
�ltering and Fourier transform. Those that support shift-invariance have commutative alge-
bras. Since �nite-dimensional commutative algebras are precisely polynomial algebras, their
appearance in signal processing is explained. For example, ASP identi�es the polynomial
algebras underlying the DCTs and DSTs, which hence become Fourier transforms in the ASP
sense. The signal models are called �nite space models since they support signal processing
based on an undirected shift operator, di�erent from the directed time shift. Many more
insights are provided by ASP including the need for and choices in choosing boundary con-
ditions, properties of transforms, techniques for deriving new signal models, and the concise
derivation of algorithms mentioned before.
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Chapter 9

The Cooley-Tukey Fast Fourier

Transform Algorithm1

The publication by Cooley and Tukey [90] in 1965 of an e�cient algorithm for the calculation
of the DFT was a major turning point in the development of digital signal processing. During
the �ve or so years that followed, various extensions and modi�cations were made to the
original algorithm [95]. By the early 1970's the practical programs were basically in the
form used today. The standard development presented in [274], [299], [38] shows how the
DFT of a length-N sequence can be simply calculated from the two length-N/2 DFT's of
the even index terms and the odd index terms. This is then applied to the two half-length
DFT's to give four quarter-length DFT's, and repeated until N scalars are left which are the
DFT values. Because of alternately taking the even and odd index terms, two forms of the
resulting programs are called decimation-in-time and decimation-in-frequency. For a length
of 2M , the dividing process is repeated M = log2N times and requires N multiplications
each time. This gives the famous formula for the computational complexity of the FFT of
Nlog2N which was derived in Multidimensional Index Mapping: Equation 34 (3.34).

Although the decimation methods are straightforward and easy to understand, they do
not generalize well. For that reason it will be assumed that the reader is familiar with that
description and this chapter will develop the FFT using the index map fromMultidimensional
Index Mapping (Chapter 3).

The Cooley-Tukey FFT always uses the Type 2 index map from Multidimensional Index
Mapping: Equation 11 (3.11). This is necessary for the most popular forms that have
N = RM , but is also used even when the factors are relatively prime and a Type 1 map could
be used. The time and frequency maps from Multidimensional Index Mapping: Equation 6
(3.6) and Multidimensional Index Mapping: Equation 12 (3.12) are

n = ((K1n1 +K2n2))N (9.1)

1This content is available online at <http://cnx.org/content/m16334/1.11/>.
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k = ((K3k1 +K4k2))N (9.2)

Type-2 conditions Multidimensional Index Mapping: Equation 8 (3.8) and Multidimensional
Index Mapping: Equation 11 (3.11) become

K1 = aN2 or K2 = bN1 but not both (9.3)

and

K3 = cN2 or K4 = dN1 but not both (9.4)

The row and column calculations in Multidimensional Index Mapping: Equation 15 (3.15)
are uncoupled by Multidimensional Index Mapping: Equation 16 (3.16) which for this case
are

((K1K4))N = 0 or ((K2K3))N = 0 but not both (9.5)

To make each short sum a DFT, the Ki must satisfy

((K1K3))N = N2 and ((K2K4))N = N1 (9.6)

In order to have the smallest values for Ki the constants in (9.3) are chosen to be

a = d = K2 = K3 = 1 (9.7)

which makes the index maps of (9.1) become

n = N2n1 + n2 (9.8)

k = k1 +N1k2 (9.9)

These index maps are all evaluated modulo N , but in (9.8), explicit reduction is not nec-
essary since n never exceeds N . The reduction notation will be omitted for clarity. From
Multidimensional Index Mapping: Equation 15 (3.15) and example Multidimensional Index
Mapping: Equation 19 (3.19), the DFT is

X =

N2−1∑
n2=0

N1−1∑
n1=0

x W n1k1
N1

W n2k1
N W n2k2

N2
(9.10)

This map of (9.8) and the form of the DFT in (9.10) are the fundamentals of the Cooley-
Tukey FFT.

The order of the summations using the Type 2 map in (9.10) cannot be reversed as it can
with the Type-1 map. This is because of the WN terms, the twiddle factors.
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Turning (9.10) into an e�cient program requires some care. From Multidimensional Index
Mapping: E�ciencies Resulting from Index Mapping with the DFT (Section 3.3: E�ciencies
Resulting from Index Mapping with the DFT) we know that all the factors should be equal.
If N = RM , with R called the radix, N1 is �rst set equal to R and N2 is then necessarily
RM−1. Consider n1 to be the index along the rows and n2 along the columns. The inner
sum of (9.10) over n1 represents a length-N1 DFT for each value of n2. These N2 length-
N1 DFT's are the DFT's of the rows of the x (n1, n2) array. The resulting array of row
DFT's is multiplied by an array of twiddle factors which are the WN terms in (9.10). The
twiddle-factor array for a length-8 radix-2 FFT is

TF : W n2k1
8 =


W 0 W 0

W 0 W 1

W 0 W 2

W 0 W 3

 =


1 1

1 W

1 −j
1 −jW

 (9.11)

The twiddle factor array will always have unity in the �rst row and �rst column.

To complete (9.10) at this point, after the row DFT's are multiplied by the TF array, the N1

length-N2 DFT's of the columns are calculated. However, since the columns DFT's are of
length RM−1, they can be posed as a RM−2 by R array and the process repeated, again using
length-R DFT's. After M stages of length-R DFT's with TF multiplications interleaved,
the DFT is complete. The �ow graph of a length-2 DFT is given in Figure 1 (7.18) and is
called a butter�y because of its shape. The �ow graph of the complete length-8 radix-2 FFT
is shown in Figure 2 (7.19) .

X(0) = x(0) + x(1) 

X(0) = x(0) - x(1) 

x(0)

x(1)

Figure 9.1: A Radix-2 Butter�y
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Figure 9.2: Length-8 Radix-2 FFT Flow Graph

This �ow-graph, the twiddle factor map of (9.11), and the basic equation (9.10) should be
completely understood before going further.

A very e�cient indexing scheme has evolved over the years that results in a compact and
e�cient computer program. A FORTRAN program is given below that implements the
radix-2 FFT. It should be studied [64] to see how it implements (9.10) and the �ow-graph
representation.
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N2 = N

DO 10 K = 1, M

N1 = N2

N2 = N2/2

E = 6.28318/N1

A = 0

DO 20 J = 1, N2

C = COS (A)

S =-SIN (A)

A = J*E

DO 30 I = J, N, N1

L = I + N2

XT = X(I) - X(L)

X(I) = X(I) + X(L)

YT = Y(I) - Y(L)

Y(I) = Y(I) + Y(L)

X(L) = XT*C - YT*S

Y(L) = XT*S + YT*C

30 CONTINUE

20 CONTINUE

10 CONTINUE

Listing 9.1: A Radix-2 Cooley-Tukey FFT Program

This discussion, the �ow graph of Winograd's Short DFT Algorithms: Figure 2 (Figure 7.2)
and the program of p. ?? are all based on the input index map of Multidimensional Index
Mapping: Equation 6 (3.6) and (9.1) and the calculations are performed in-place. Accord-
ing to Multidimensional Index Mapping: In-Place Calculation of the DFT and Scrambling
(Section 3.2: In-Place Calculation of the DFT and Scrambling), this means the output is
scrambled in bit-reversed order and should be followed by an unscrambler to give the DFT
in proper order. This formulation is called a decimation-in-frequency FFT [274], [299], [38].
A very similar algorithm based on the output index map can be derived which is called a
decimation-in-time FFT. Examples of FFT programs are found in [64] and in the Appendix
of this book.
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9.1 Modi�cations to the Basic Cooley-Tukey FFT

Soon after the paper by Cooley and Tukey, there were improvements and extensions made.
One very important discovery was the improvement in e�ciency by using a larger radix of
4, 8 or even 16. For example, just as for the radix-2 butter�y, there are no multiplications
required for a length-4 DFT, and therefore, a radix-4 FFT would have only twiddle factor
multiplications. Because there are half as many stages in a radix-4 FFT, there would be half
as many multiplications as in a radix-2 FFT. In practice, because some of the multiplications
are by unity, the improvement is not by a factor of two, but it is signi�cant. A radix-4 FFT
is easily developed from the basic radix-2 structure by replacing the length-2 butter�y by
a length-4 butter�y and making a few other modi�cations. Programs can be found in [64]
and operation counts will be given in "Evaluation of the Cooley-Tukey FFT Algorithms"
(Section 9.3: Evaluation of the Cooley-Tukey FFT Algorithms).

Increasing the radix to 8 gives some improvement but not as much as from 2 to 4. Increasing
it to 16 is theoretically promising but the small decrease in multiplications is somewhat
o�set by an increase in additions and the program becomes rather long. Other radices are
not attractive because they generally require a substantial number of multiplications and
additions in the butter�ies.

The second method of reducing arithmetic is to remove the unnecessary TF multiplications
by plus or minus unity or by plus or minus the square root of minus one. This occurs
when the exponent of WN is zero or a multiple of N/4. A reduction of additions as well
as multiplications is achieved by removing these extraneous complex multiplications since
a complex multiplication requires at least two real additions. In a program, this reduction
is usually achieved by having special butter�ies for the cases where the TF is one or j. As
many as four special butter�ies may be necessary to remove all unnecessary arithmetic, but
in many cases there will be no practical improvement above two or three.

In addition to removing multiplications by one or j, there can be a reduction in multiplica-
tions by using a special butter�y for TFs with WN/8, which have equal real and imaginary
parts. Also, for computers or hardware with multiplication considerably slower than ad-
dition, it is desirable to use an algorithm for complex multiplication that requires three
multiplications and three additions rather than the conventional four multiplications and
two additions. Note that this gives no reduction in the total number of arithmetic opera-
tions, but does give a trade of multiplications for additions. This is one reason not to use
complex data types in programs but to explicitly program complex arithmetic.

A time-consuming and unnecessary part of the execution of a FFT program is the calculation
of the sine and cosine terms which are the real and imaginary parts of the TFs. There are
basically three approaches to obtaining the sine and cosine values. They can be calculated
as needed which is what is done in the sample program above. One value per stage can be
calculated and the others recursively calculated from those. That method is fast but su�ers
from accumulated round-o� errors. The fastest method is to fetch precalculated values from
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a stored table. This has the disadvantage of requiring considerable memory space.

If all the N DFT values are not needed, special forms of the FFT can be developed using
a process called pruning [226] which removes the operations concerned with the unneeded
outputs.

Special algorithms are possible for cases with real data or with symmetric data [82]. The
decimation-in-time algorithm can be easily modi�ed to transform real data and save half the
arithmetic required for complex data [357]. There are numerous other modi�cations to deal
with special hardware considerations such as an array processor or a special microprocessor
such as the Texas Instruments TMS320. Examples of programs that deal with some of these
items can be found in [299], [64], [82].

9.2 The Split-Radix FFT Algorithm

Recently several papers [228], [106], [393], [350], [102] have been published on algorithms to
calculate a length-2M DFT more e�ciently than a Cooley-Tukey FFT of any radix. They
all have the same computational complexity and are optimal for lengths up through 16 and
until recently was thought to give the best total add-multiply count possible for any power-
of-two length. Yavne published an algorithm with the same computational complexity in
1968 [421], but it went largely unnoticed. Johnson and Frigo have recently reported the
�rst improvement in almost 40 years [201]. The reduction in total operations is only a few
percent, but it is a reduction.

The basic idea behind the split-radix FFT (SRFFT) as derived by Duhamel and Hollmann
[106], [102] is the application of a radix-2 index map to the even-indexed terms and a radix-4
map to the odd- indexed terms. The basic de�nition of the DFT

Ck =
N−1∑
n=0

xn W
nk (9.12)

with W = e−j2π/N gives

C2k =

N/2−1∑
n=0

[
xn + xn+N/2

]
W 2nk (9.13)

for the even index terms, and

C4k+1 =

N/4−1∑
n=0

[(
xn − xn+N/2

)
− j

(
xn+N/4 − xn+3N/4

)]
W n W 4nk (9.14)
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and

C4k+3 =

N/4−1∑
n=0

[(
xn − xn+N/2

)
+ j

(
xn+N/4 − xn+3N/4

)]
W 3n W 4nk (9.15)

for the odd index terms. This results in an L-shaped �butter�y" shown in Figure 9.3
which relates a length-N DFT to one length-N/2 DFT and two length-N/4 DFT's with
twiddle factors. Repeating this process for the half and quarter length DFT's until scalars
result gives the SRFFT algorithm in much the same way the decimation-in-frequency radix-2
Cooley-Tukey FFT is derived [274], [299], [38]. The resulting �ow graph for the algorithm
calculated in place looks like a radix-2 FFT except for the location of the twiddle factors.
Indeed, it is the location of the twiddle factors that makes this algorithm use less arithmetic.
The L- shaped SRFFT butter�y Figure 9.3 advances the calculation of the top half by one
of the M stages while the lower half, like a radix-4 butter�y, calculates two stages at once.
This is illustrated for N = 8 in Figure 9.4.

j
-

-

-

Figure 9.3: SRFFT Butter�y
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j

j

j

w

w3

Figure 9.4: Length-8 SRFFT

Unlike the �xed radix, mixed radix or variable radix Cooley-Tukey FFT or even the prime
factor algorithm or Winograd Fourier transform algorithm , the Split-Radix FFT does not
progress completely stage by stage, or, in terms of indices, does not complete each nested
sum in order. This is perhaps better seen from the polynomial formulation of Martens
[228]. Because of this, the indexing is somewhat more complicated than the conventional
Cooley-Tukey program.

A FORTRAN program is given below which implements the basic decimation-in-frequency
split-radix FFT algorithm. The indexing scheme [350] of this program gives a structure
very similar to the Cooley-Tukey programs in [64] and allows the same modi�cations and
improvements such as decimation-in-time, multiple butter�ies, table look-up of sine and
cosine values, three real per complex multiply methods, and real data versions [102], [357].
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SUBROUTINE FFT(X,Y,N,M)

N2 = 2*N

DO 10 K = 1, M-1

N2 = N2/2

N4 = N2/4

E = 6.283185307179586/N2

A = 0

DO 20 J = 1, N4

A3 = 3*A

CC1 = COS(A)

SS1 = SIN(A)

CC3 = COS(A3)

SS3 = SIN(A3)

A = J*E

IS = J

ID = 2*N2

40 DO 30 I0 = IS, N-1, ID

I1 = I0 + N4

I2 = I1 + N4

I3 = I2 + N4

R1 = X(I0) - X(I2)

X(I0) = X(I0) + X(I2)

R2 = X(I1) - X(I3)

X(I1) = X(I1) + X(I3)

S1 = Y(I0) - Y(I2)

Y(I0) = Y(I0) + Y(I2)

S2 = Y(I1) - Y(I3)

Y(I1) = Y(I1) + Y(I3)

S3 = R1 - S2

R1 = R1 + S2

S2 = R2 - S1

R2 = R2 + S1

X(I2) = R1*CC1 - S2*SS1

Y(I2) =-S2*CC1 - R1*SS1

X(I3) = S3*CC3 + R2*SS3

Y(I3) = R2*CC3 - S3*SS3

30 CONTINUE

IS = 2*ID - N2 + J

ID = 4*ID

IF (IS.LT.N) GOTO 40

20 CONTINUE

10 CONTINUE

IS = 1

ID = 4

50 DO 60 I0 = IS, N, ID

I1 = I0 + 1

R1 = X(I0)

X(I0) = R1 + X(I1)

X(I1) = R1 - X(I1)

R1 = Y(I0)

Y(I0) = R1 + Y(I1)

60 Y(I1) = R1 - Y(I1)

IS = 2*ID - 1

ID = 4*ID

IF (IS.LT.N) GOTO 50

Listing 9.2: Split-Radix FFT FORTRAN Subroutine
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As was done for the other decimation-in-frequency algorithms, the input index map is used
and the calculations are done in place resulting in the output being in bit-reversed order.
It is the three statements following label 30 that do the special indexing required by the
SRFFT. The last stage is length- 2 and, therefore, inappropriate for the standard L-shaped
butter�y, so it is calculated separately in the DO 60 loop. This program is considered a one-
butter�y version. A second butter�y can be added just before statement 40 to remove the
unnecessary multiplications by unity. A third butter�y can be added to reduce the number
of real multiplications from four to two for the complex multiplication when W has equal real
and imaginary parts. It is also possible to reduce the arithmetic for the two- butter�y case
and to reduce the data transfers by directly programming a length-4 and length-8 butter�y
to replace the last three stages. This is called a two-butter�y-plus version. Operation counts
for the one, two, two-plus and three butter�y SRFFT programs are given in the next section.
Some details can be found in [350].

The special case of a SRFFT for real data and symmetric data is discussed in [102]. An
application of the decimation-in-time SRFFT to real data is given in [357]. Application to
convolution is made in [110], to the discrete Hartley transform in [352], [110], to calculating
the discrete cosine transform in [393], and could be made to calculating number theoretic
transforms.

An improvement in operation count has been reported by Johnson and Frigo [201] which
involves a scaling of multiplying factors. The improvement is small but until this result, it
was generally thought the Split-Radix FFT was optimal for total �oating point operation
count.

9.3 Evaluation of the Cooley-Tukey FFT Algorithms

The evaluation of any FFT algorithm starts with a count of the real (or �oating point)
arithmetic. Table 9.1 gives the number of real multiplications and additions required to
calculate a length-N FFT of complex data. Results of programs with one, two, three and
�ve butter�ies are given to show the improvement that can be expected from removing
unnecessary multiplications and additions. Results of radices two, four, eight and sixteen
for the Cooley-Tukey FFT as well as of the split-radix FFT are given to show the relative
merits of the various structures. Comparisons of these data should be made with the table
of counts for the PFA and WFTA programs in The Prime Factor and Winograd Fourier
Transform Algorithms: Evaluation of the PFA and WFTA (Section 10.4: Evaluation of the
PFA and WFTA). All programs use the four-multiply-two-add complex multiply algorithm.
A similar table can be developed for the three-multiply-three-add algorithm, but the relative
results are the same.

From the table it is seen that a greater improvement is obtained going from radix-2 to 4 than
from 4 to 8 or 16. This is partly because length 2 and 4 butter�ies have no multiplications
while length 8, 16 and higher do. It is also seen that going from one to two butter�ies gives
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more improvement than going from two to higher values. From an operation count point of
view and from practical experience, a three butter�y radix-4 or a two butter�y radix-8 FFT
is a good compromise. The radix-8 and 16 programs become long, especially with multiple
butter�ies, and they give a limited choice of transform length unless combined with some
length 2 and 4 butter�ies.

N M1 M2 M3 M5 A1 A2 A3 A5

2 4 0 0 0 6 4 4 4

4 16 4 0 0 24 18 16 16

8 48 20 8 4 72 58 52 52

16 128 68 40 28 192 162 148 148

32 320 196 136 108 480 418 388 388

64 768 516 392 332 1152 1026 964 964

128 1792 1284 1032 908 2688 2434 2308 2308

256 4096 3076 2568 2316 6144 5634 5380 5380

512 9216 7172 6152 5644 13824 12802 12292 12292

1024 20480 16388 14344 13324 30720 28674 27652 27652

2048 45056 36868 32776 30732 67584 63490 61444 61444

4096 98304 81924 73736 69644 147456 139266 135172 135172

4 12 0 0 0 22 16 16 16

16 96 36 28 24 176 146 144 144

64 576 324 284 264 1056 930 920 920

256 3072 2052 1884 1800 5632 5122 5080 5080

1024 15360 11268 10588 10248 28160 26114 25944 25944

continued on next page
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4096 73728 57348 54620 53256 135168 126978 126296 126296

8 32 4 4 4 66 52 52 52

64 512 260 252 248 1056 930 928 928

512 6144 4100 4028 3992 12672 11650 11632 11632

4096 65536 49156 48572 48280 135168 126978 126832 126832

16 80 20 20 20 178 148 148 148

256 2560 1540 1532 1528 5696 5186 5184 5184

4096 61440 45060 44924 44856 136704 128514 128480 128480

2 0 0 0 0 4 4 4 4

4 8 0 0 0 20 16 16 16

8 24 8 4 4 60 52 52 52

16 72 32 28 24 164 144 144 144

32 184 104 92 84 412 372 372 372

64 456 288 268 248 996 912 912 912

128 1080 744 700 660 2332 2164 2164 2164

256 2504 1824 1740 1656 5348 5008 5008 5008

512 5688 4328 4156 3988 12060 11380 11380 11380

1024 12744 10016 9676 9336 26852 25488 25488 25488

2048 28216 22760 22076 21396 59164 56436 56436 56436

4096 61896 50976 49612 48248 129252 123792 123792 123792

Table 9.1: Number of Real Multiplications and Additions for Complex Single Radix FFTs

In Table 9.1 Mi and Ai refer to the number of real multiplications and real additions used
by an FFT with i separately written butter�ies. The �rst block has the counts for Radix-
2, the second for Radix-4, the third for Radix-8, the fourth for Radix-16, and the last for
the Split-Radix FFT. For the split-radix FFT, M3 and A3 refer to the two- butter�y-plus
program and M5 and A5 refer to the three-butter�y program.

The �rst evaluations of FFT algorithms were in terms of the number of real multiplications
required as that was the slowest operation on the computer and, therefore, controlled the
execution speed. Later with hardware arithmetic both the number of multiplications and
additions became important. Modern systems have arithmetic speeds such that indexing
and data transfer times become important factors. Morris [249] has looked at some of
these problems and has developed a procedure called autogen to write partially straight-line
program code to signi�cantly reduce overhead and speed up FFT run times. Some hardware,
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such as the TMS320 signal processing chip, has the multiply and add operations combined.
Some machines have vector instructions or have parallel processors. Because the execution
speed of an FFT depends not only on the algorithm, but also on the hardware architecture
and compiler, experiments must be run on the system to be used.

In many cases the unscrambler or bit-reverse-counter requires 10% of the execution time,
therefore, if possible, it should be eliminated. In high-speed convolution where the convo-
lution is done by multiplication of DFT's, a decimation-in-frequency FFT can be combined
with a decimation-in-time inverse FFT to require no unscrambler. It is also possible for a
radix-2 FFT to do the unscrambling inside the FFT but the structure is not very regular
[299], [193]. Special structures can be found in [299] and programs for data that are real or
have special symmetries are in [82], [102], [357].

Although there can be signi�cant di�erences in the e�ciencies of the various Cooley-Tukey
and Split-Radix FFTs, the number of multiplications and additions for all of them is on the
order of NlogN . That is fundamental to the class of algorithms.

9.4 The Quick Fourier Transform, An FFT based on Sym-

metries

The development of fast algorithms usually consists of using special properties of the algo-
rithm of interest to remove redundant or unnecessary operations of a direct implementation.
The discrete Fourier transform (DFT) de�ned by

C (k) =
N−1∑
n=0

x (n) W nk
N (9.16)

where

WN = e−j2π/N (9.17)

has enormous capacity for improvement of its arithmetic e�ciency. Most fast algorithms use
the periodic and symmetric properties of its basis functions. The classical Cooley-Tukey FFT
and prime factor FFT [64] exploit the periodic properties of the cosine and sine functions.
Their use of the periodicities to share and, therefore, reduce arithmetic operations depends
on the factorability of the length of the data to be transformed. For highly composite lengths,
the number of �oating-point operation is of order N log (N) and for prime lengths it is of
order N2.

This section will look at an approach using the symmetric properties to remove redundancies.
This possibility has long been recognized [176], [211], [344], [270] but has not been developed
in any systematic way in the open literature. We will develop an algorithm, called the quick
Fourier transform (QFT) [211], that will reduce the number of �oating point operations
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necessary to compute the DFT by a factor of two to four over direct methods or Goertzel's
method for prime lengths. Indeed, it seems the best general algorithm available for prime
length DFTs. One can always do better by using Winograd type algorithms but they must
be individually designed for each length. The Chirp Z-transform can be used for longer
lengths.

9.4.1 Input and Output Symmetries

We use the fact that the cosine is an even function and the sine is an odd function. The
kernel of the DFT or the basis functions of the expansion is given by

W nk
N = e−j2πnk/N = cos (2πnk/N) + j sin (2πnk/N) (9.18)

which has an even real part and odd imaginary part. If the data x (n) are decomposed into
their real and imaginary parts and those into their even and odd parts, we have

x (n) = u (n) + j v (n) = [ue (n) + uo (n)] + j [ve (n) + vo (n)] (9.19)

where the even part of the real part of x (n) is given by

ue (n) = (u (n) + u (−n)) /2 (9.20)

and the odd part of the real part is

uo (n) = (u (n)− u (−n)) /2 (9.21)

with corresponding de�nitions of ve (n) and vo (n). Using Convolution Algorithms: Equation
32 (13.32) with a simpler notation, the DFT of Convolution Algorithms: Equation 29 (13.29)
becomes

C (k) =
N−1∑
n=0

(u+ j v) (cos− jsin) . (9.22)

The sum over an integral number of periods of an odd function is zero and the sum of an
even function over half of the period is one half the sum over the whole period. This causes
(9.16) and (9.22) to become

C (k) =

N/2−1∑
n=0

[ue cos+ vo sin] + j [ve cos− vo sin] . (9.23)

for k = 0, 1, 2, · · · , N − 1.

The evaluation of the DFT using equation (9.23) requires half as many real multiplication
and half as many real additions as evaluating it using (9.16) or (9.22). We have exploited
the symmetries of the sine and cosine as functions of the time index n. This is independent
of whether the length is composite or not. Another view of this formulation is that we have
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used the property of associatively of multiplication and addition. In other words, rather
than multiply two data points by the same value of a sine or cosine then add the results, one
should add the data points �rst then multiply the sum by the sine or cosine which requires
one rather than two multiplications.

Next we take advantage of the symmetries of the sine and cosine as functions of the frequency
index k. Using these symmetries on (9.23) gives

C (k) =

N/2−1∑
n=0

[ue cos+ vo sin] + j [ve cos− vo sin] (9.24)

C (N − k) =

N/2−1∑
n=0

[ue cos− vo sin] + j [ve cos+ vo sin] . (9.25)

for k = 0, 1, 2, · · · , N/2 − 1. This again reduces the number of operations by a factor of
two, this time because it calculates two output values at a time. The �rst reduction by a
factor of two is always available. The second is possible only if both DFT values are needed.
It is not available if you are calculating only one DFT value. The above development has
not dealt with the details that arise with the di�erence between an even and an odd length.
That is straightforward.

9.4.2 Further Reductions if the Length is Even

If the length of the sequence to be transformed is even, there are further symmetries that
can be exploited. There will be four data values that are all multiplied by plus or minus the
same sine or cosine value. This means a more complicated pre-addition process which is a
generalization of the simple calculation of the even and odd parts in (9.20) and (9.21) will
reduce the size of the order N2 part of the algorithm by still another factor of two or four. It
the length is divisible by 4, the process can be repeated. Indeed, it the length is a power of
2, one can show this process is equivalent to calculating the DFT in terms of discrete cosine
and sine transforms [156], [159] with a resulting arithmetic complexity of order N log (N)
and with a structure that is well suited to real data calculations and pruning.

If the �ow-graph of the Cooley-Tukey FFT is compared to the �ow-graph of the QFT, one
notices both similarities and di�erences. Both progress in stages as the length is continually
divided by two. The Cooley-Tukey algorithm uses the periodic properties of the sine and
cosine to give the familiar horizontal tree of butter�ies. The parallel diagonal lines in this
graph represent the parallel stepping through the data in synchronism with the periodic basis
functions. The QFT has diagonal lines that connect the �rst data point with the last, then
the second with the next to last, and so on to give a �star" like picture. This is interesting in
that one can look at the �ow graph of an algorithm developed by some completely di�erent
strategy and often �nd section with the parallel structures and other parts with the star
structure. These must be using some underlying periodic and symmetric properties of the
basis functions.



95

9.4.3 Arithmetic Complexity and Timings

A careful analysis of the QFT shows that 2N additions are necessary to compute the even and
odd parts of the input data. This is followed by the length N/2 inner product that requires
4(N/2)2 = N2 real multiplications and an equal number of additions. This is followed by the
calculations necessary for the simultaneous calculations of the �rst half and last half of C (k)
which requires 4 (N/2) = 2N real additions. This means the total QFT algorithm requires
M2 real multiplications and N2 + 4N real additions. These numbers along with those for
the Goertzel algorithm [52], [64], [270] and the direct calculation of the DFT are included
in the following table. Of the various order-N2 DFT algorithms, the QFT seems to be the
most e�cient general method for an arbitrary length N .

Algorithm Real Mults. Real Adds Trig Eval.

Direct DFT 4N2 4N2 2N2

Mod. 2nd Order Goertzel N2 +N 2N2 +N N

QFT N2 N2 + 4N 2N

Table 9.2

Timings of the algorithms on a PC in milliseconds are given in the following table.

Algorithm N = 125 N = 256

Direct DFT 4.90 19.83

Mod. 2O. Goertzel 1.32 5.55

QFT 1.09 4.50

Chirp + FFT 1.70 3.52

Table 9.3

These timings track the �oating point operation counts fairly well.
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9.4.4 Conclusions

The QFT is a straight-forward DFT algorithm that uses all of the possible symmetries of
the DFT basis function with no requirements on the length being composite. These ideas
have been proposed before, but have not been published or clearly developed by [211], [344],
[342], [168]. It seems that the basic QFT is practical and useful as a general algorithm
for lengths up to a hundred or so. Above that, the chirp z-transform [64] or other �lter
based methods will be superior. For special cases and shorter lengths, methods based on
Winograd's theories will always be superior. Nevertheless, the QFT has a de�nite place in
the array of DFT algorithms and is not well known. A Fortran program is included in the
appendix.

It is possible, but unlikely, that further arithmetic reduction could be achieved using the
fact that WN has unity magnitude as was done in second-order Goertzel algorithm. It is
also possible that some way of combining the Goertzel and QFT algorithm would have some
advantages. A development of a complete QFT decomposition of a DFT of length-2M shows
interesting structure [156], [159] and arithmetic complexity comparable to average Cooley-
Tukey FFTs. It does seem better suited to real data calculations with pruning.



Chapter 10

The Prime Factor and Winograd Fourier

Transform Algorithms1

The prime factor algorithm (PFA) and the Winograd Fourier transform algorithm (WFTA)
are methods for e�ciently calculating the DFT which use, and in fact, depend on the Type-1
index map from Multidimensional Index Mapping: Equation 10 (3.10) and Multidimensional
Index Mapping: Equation 6 (3.6). The use of this index map preceded Cooley and Tukey's
paper [150], [302] but its full potential was not realized until it was combined with Winograd's
short DFT algorithms. The modern PFA was �rst presented in [213] and a program given
in [57]. The WFTA was �rst presented in [407] and programs given in [236], [83].

The number theoretic basis for the indexing in these algorithms may, at �rst, seem more
complicated than in the Cooley-Tukey FFT; however, if approached from the general index
mapping point of view of Multidimensional Index Mapping (Chapter 3), it is straightfor-
ward, and part of a common approach to breaking large problems into smaller ones. The
development in this section will parallel that in The Cooley-Tukey Fast Fourier Transform
Algorithm (Chapter 9).

The general index maps of Multidimensional Index Mapping: Equation 6 (3.6) and Mul-
tidimensional Index Mapping: Equation 12 (3.12) must satisfy the Type-1 conditions of
Multidimensional Index Mapping: Equation 7 (3.7) and Multidimensional Index Mapping:
Equation 10 (3.10) which are

K1 = aN2 and K2 = bN1 with (K1, N1) = (K2, N2) = 1 (10.1)

K3 = cN2 and K4 = dN1 with (K3, N1) = (K4, N2) = 1 (10.2)

The row and column calculations in Multidimensional Index Mapping: Equation 15 (3.15)
are uncoupled by Multidimensional Index Mapping: Equation 16 (3.16) which for this case

1This content is available online at <http://cnx.org/content/m16335/1.7/>.
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are

((K1K4))N = ((K2K3))N = 0 (10.3)

In addition, to make each short sum a DFT, the Ki must also satisfy

((K1K3))N = N2 and ((K2K4))N = N1 (10.4)

In order to have the smallest values for Ki, the constants in (10.1) are chosen to be

a = b = 1, c =
((
N−1

2

))
N
, d =

((
N−1

1

))
N

(10.5)

which gives for the index maps in (10.1)

n = ((N2n1 +N1n2))N (10.6)

k = ((K3k1 +K4k2))N (10.7)

The frequency index map is a form of the Chinese remainder theorem. Using these index
maps, the DFT in Multidimensional Index Mapping: Equation 15 (3.15) becomes

X =

N2−1∑
n2=0

N1−1∑
n1=0

x W n1k1
N1

W n2k2
N2

(10.8)

which is a pure two-dimensional DFT with no twiddle factors and the summations can be
done in either order. Choices other than (10.5) could be used. For example, a = b = c =
d = 1 will cause the input and output index map to be the same and, therefore, there will be
no scrambling of the output order. The short summations in (96), however, will no longer
be short DFT's [57].

An important feature of the short Winograd DFT's described in Winograd's Short DFT Al-
gorithms (Chapter 7) that is useful for both the PFA andWFTA is the fact that the multiplier
constants in Winograd's Short DFT Algorithms: Equation 5 (7.6) or Winograd's Short DFT
Algorithms: Equation 8 (7.8) are either real or imaginary, never a general complex number.
For that reason, multiplication by complex data requires only two real multiplications, not
four. That is a very signi�cant feature. It is also true that the j multiplier can be commuted
from the D operator to the last part of the AT operator. This means the D operator has
only real multipliers and the calculations on real data remains real until the last stage. This
can be seen by examining the short DFT modules in [65], [198] and in the appendices.

10.1 The Prime Factor Algorithm

If the DFT is calculated directly using (10.8), the algorithm is called a prime factor algorithm
[150], [302] and was discussed in Winograd's Short DFT Algorithms (Chapter 7) and Multi-
dimensional Index Mapping: In-Place Calculation of the DFT and Scrambling (Section 3.2:
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In-Place Calculation of the DFT and Scrambling). When the short DFT's are calculated
by the very e�cient algorithms of Winograd discussed in Factoring the Signal Processing
Operators (Chapter 6), the PFA becomes a very powerful method that is as fast or faster
than the best Cooley-Tukey FFT's [57], [213].

A �ow graph is not as helpful with the PFA as it was with the Cooley-Tukey FFT, how-
ever, the following representation in Figure 10.1 which combines Figures Multidimensional
Index Mapping: Figure 1 (Figure 3.1) and Winograd's Short DFT Algorithms: Figure 2
(Figure 7.2) gives a good picture of the algorithm with the example of Multidimensional
Index Mapping: Equation 25 (3.25)

5 10

0

8

3

11

6

14

9

2

5

0

8

3

11

6

14

9

4

13

12

7

1

2

12

10

Figure 10.1: A Prime Factor FFT for N = 15

If N is factored into three factors, the DFT of (10.8) would have three nested summations
and would be a three-dimensional DFT. This principle extends to any number of factors;
however, recall that the Type-1 map requires that all the factors be relatively prime. A very
simple three-loop indexing scheme has been developed [57] which gives a compact, e�cient
PFA program for any number of factors. The basic program structure is illustrated in p. ??
with the short DFT's being omitted for clarity. Complete programs are given in [65] and in
the appendices.
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C---------------PFA INDEXING LOOPS--------------

DO 10 K = 1, M

N1 = NI(K)

N2 = N/N1

I(1) = 1

DO 20 J = 1, N2

DO 30 L=2, N1

I(L) = I(L-1) + N2

IF (I(L .GT.N) I(L) = I(L) - N

30 CONTINUE

GOTO (20,102,103,104,105), N1

I(1) = I(1) + N1

20 CONTINUE

10 CONTINUE

RETURN

C----------------MODULE FOR N=2-----------------

102 R1 = X(I(1))

X(I(1)) = R1 + X(I(2))

X(I(2)) = R1 - X(I(2))

R1 = Y(I(1))

Y(I(1)) = R1 + Y(I(2))

Y(I(2)) = R1 - Y(I(2))

GOTO 20

C----------------OTHER MODULES------------------

103 Length-3 DFT

104 Length-4 DFT

105 Length-5 DFT

etc.

Listing 10.1: Part of a FORTRAN PFA Program

As in the Cooley-Tukey program, the DO 10 loop steps through the M stages (factors of
N) and the DO 20 loop calculates the N/N1 length-N1 DFT's. The input index map of
(10.6) is implemented in the DO 30 loop and the statement just before label 20. In the PFA,
each stage or factor requires a separately programmed module or butter�y. This lengthens
the PFA program but an e�cient Cooley-Tukey program will also require three or more
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butter�ies.

Because the PFA is calculated in-place using the input index map, the output is scrambled.
There are �ve approaches to dealing with this scrambled output. First, there are some ap-
plications where the output does not have to be unscrambled as in the case of high-speed
convolution. Second, an unscrambler can be added after the PFA to give the output in
correct order just as the bit-reversed-counter is used for the Cooley-Tukey FFT. A simple
unscrambler is given in [65], [57] but it is not in place. The third method does the unscram-
bling in the modules while they are being calculated. This is probably the fastest method
but the program must be written for a speci�c length [65], [57]. A fourth method is similar
and achieves the unscrambling by choosing the multiplier constants in the modules properly
[198]. The �fth method uses a separate indexing method for the input and output of each
module [65], [320].

10.2 The Winograd Fourier Transform Algorithm

The Winograd Fourier transform algorithm (WFTA) uses a very powerful property of the
Type-1 index map and the DFT to give a further reduction of the number of multiplications
in the PFA. Using an operator notation where F1 represents taking row DFT's and F2

represents column DFT's, the two-factor PFA of (10.8) is represented by

X = F2 F1 x (10.9)

It has been shown [410], [190] that if each operator represents identical operations on each
row or column, they commute. Since F1 and F2 represent length N1 and N2 DFT's, they
commute and (10.9) can also be written

X = F1 F2 x (10.10)

If each short DFT in F is expressed by three operators as in Winograd's Short DFT
Algorithms: Equation 8 (7.8) and Winograd's Short DFT Algorithms: Figure 2 (Figure 7.2),
F can be factored as

F = ATDA (10.11)

where A represents the set of additions done on each row or column that performs the
residue reduction as Winograd's Short DFT Algorithms: Equation 30 (7.30). Because of
the appearance of the �ow graph of A and because it is the �rst operator on x, it is called
a preweave operator [236]. D is the set of M multiplications and AT (or BT or CT ) from
Winograd's Short DFT Algorithms: Equation 5 (7.5) or Winograd's Short DFT Algorithms:
Equation 6 (7.6) is the reconstruction operator called the postweave. Applying (10.11) to
(10.9) gives

X = AT2 D2 A2 A
T
1 D1 A1 x (10.12)
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This is the PFA of (10.8) and Figure 10.1 where A1D1A1 represents the row DFT's on the
array formed from x. Because these operators commute, (10.12) can also be written as

X = AT2 AT1 D2 D1 A2 A1 x (10.13)

or

X = AT1 AT2 D2 D1 A2 A1 x (10.14)

but the two adjacent multiplication operators can be premultiplied and the result represented
by one operator D = D2 D1 which is no longer the same for each row or column. Equation
(10.14) becomes

X = AT1 AT2 D A2 A1 x (10.15)

This is the basic idea of the Winograd Fourier transform algorithm. The commuting of
the multiplication operators together in the center of the algorithm is called nesting and it
results in a signi�cant decrease in the number of multiplications that must be done at the
execution of the algorithm. Pictorially, the PFA of Figure 10.1 becomes [213] the WFTA in
Figure 10.2.

Figure 10.2: A Length-15 WFTA with Nested Multiplications

The rectangular structure of the preweave addition operators causes an expansion of the data
in the center of the algorithm. The 15 data points in Figure 10.2 become 18 intermediate
values. This expansion is a major problem in programming the WFTA because it prevents
a straightforward in-place calculation and causes an increase in the number of required
additions and in the number of multiplier constants that must be precalculated and stored.

From Figure 10.2 and the idea of premultiplying the individual multiplication operators,
it can be seen why the multiplications by unity had to be considered in Winograd's Short
DFT Algorithms: Table 1. Even if a multiplier in D1 is unity, it may not be in D2D1. In
Figure 10.2 with factors of three and �ve, there appear to be 18 multiplications required
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because of the expansion of the length-5 preweave operator, A2, however, one of multipliers
in each of the length three and �ve operators is unity, so one of the 18 multipliers in the
product is unity. This gives 17 required multiplications - a rather impressive reduction from
the 152 = 225 multiplications required by direct calculation. This number of 17 complex
multiplications will require only 34 real multiplications because, as mentioned earlier, the
multiplier constants are purely real or imaginary while the 225 complex multiplications are
general and therefore will require four times as many real multiplications.

The number of additions depends on the order of the pre- and postweave operators. For
example in the length-15 WFTA in Figure 10.2, if the length-5 had been done �rst and last,
there would have been six row addition preweaves in the preweave operator rather than the
�ve shown. It is di�cult to illustrate the algorithm for three or more factors of N, but the
ideas apply to any number of factors. Each length has an optimal ordering of the pre- and
postweave operators that will minimize the number of additions.

A program for the WFTA is not as simple as for the FFT or PFA because of the very
characteristic that reduces the number of multiplications, the nesting. A simple two-factor
example program is given in [65] and a general program can be found in [236], [83]. The
same lengths are possible with the PFA and WFTA and the same short DFT modules can be
used, however, the multiplies in the modules must occur in one place for use in the WFTA.

10.3 Modi�cations of the PFA and WFTA Type Algo-

rithms

In the previous section it was seen how using the permutation property of the elementary
operators in the PFA allowed the nesting of the multiplications to reduce their number. It
was also seen that a proper ordering of the operators could minimize the number of additions.
These ideas have been extended in formulating a more general algorithm optimizing problem.
If the DFT operator F in (10.11) is expressed in a still more factored form obtained from
Winograd's Short DFT Algorithms: Equation 30 (7.30), a greater variety of ordering can be
optimized. For example if the A operators have two factors

F1 = AT1A
'T
1 D1 A

'

1A1 (10.16)

The DFT in (10.10) becomes

X = AT2A
'

2
TD2A

'
2A2A

T
1A

'

1
TD1A

'
1A1x (10.17)

The operator notation is very helpful in understanding the central ideas, but may hide some
important facts. It has been shown [410], [198] that operators in di�erent Fi commute with
each other, but the order of the operators within an Fi cannot be changed. They represent
the matrix multiplications in Winograd's Short DFT Algorithms: Equation 30 (7.30) or
Winograd's Short DFT Algorithms: Equation 8 (7.8) which do not commute.
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This formulation allows a very large set of possible orderings, in fact, the number is so
large that some automatic technique must be used to �nd the �best". It is possible to set
up a criterion of optimality that not only includes the number of multiplications but the
number of additions as well. The e�ects of relative multiply-add times, data transfer times,
CPU register and memory sizes, and other hardware characteristics can be included in the
criterion. Dynamic programming can then be applied to derive an optimal algorithm for
a particular application [190]. This is a very interesting idea as there is no longer a single
algorithm, but a class and an optimizing procedure. The challenge is to generate a broad
enough class to result in a solution that is close to a global optimum and to have a practical
scheme for �nding the solution.

Results obtained applying the dynamic programming method to the design of fairly long
DFT algorithms gave algorithms that had fewer multiplications and additions than either
a pure PFA or WFTA [190]. It seems that some nesting is desirable but not total nesting
for four or more factors. There are also some interesting possibilities in mixing the Cooley-
Tukey with this formulation. Unfortunately, the twiddle factors are not the same for all rows
and columns, therefore, operations cannot commute past a twiddle factor operator. There
are ways of breaking the total algorithm into horizontal paths and using di�erent orderings
along the di�erent paths [264], [198]. In a sense, this is what the split-radix FFT does with
its twiddle factors when compared to a conventional Cooley-Tukey FFT.

There are other modi�cations of the basic structure of the Type-1 index map DFT algorithm.
One is to use the same index structure and conversion of the short DFT's to convolution
as the PFA but to use some other method for the high-speed convolution. Table look-up of
partial products based on distributed arithmetic to eliminate all multiplications [78] looks
promising for certain very speci�c applications, perhaps for specialized VLSI implementation.
Another possibility is to calculate the short convolutions using number-theoretic transforms
[30], [236], [264]. This would also require special hardware. Direct calculation of short
convolutions is faster on certain pipelined processor such as the TMS-320 microprocessor
[216].

10.4 Evaluation of the PFA and WFTA

As for the Cooley-Tukey FFT's, the �rst evaluation of these algorithms will be on the number
of multiplications and additions required. The number of multiplications to compute the PFA
in (10.8) is given by Multidimensional Index Mapping: Equation 3 (3.3). Using the notation
that T (N ) is the number of multiplications or additions necessary to calculate a length-N
DFT, the total number for a four-factor PFA of length-N, where N = N1N2N3N4 is

T (N) = N1N2N3T (N4) +N2N3N4T (N1) +N3N4N1T (N2) +N4N1N2T (N3) (10.18)

The count of multiplies and adds in Table 10.1 are calculated from (105) with the counts
of the factors taken from Winograd's Short DFT Algorithms: Table 1. The list of lengths
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are those possible with modules in the program of length 2, 3, 4, 5, 7, 8, 9 and 16 as is
true for the PFA in [65], [57] and the WFTA in [236], [83]. A maximum of four relatively
prime lengths can be used from this group giving 59 di�erent lengths over the range from
2 to 5040. The radix-2 or split-radix FFT allows 12 di�erent lengths over the same range.
If modules of length 11 and 13 from [188] are added, the maximum length becomes 720720
and the number of di�erent lengths becomes 239. Adding modules for 17, 19 and 25 from
[188] gives a maximum length of 1163962800 and a very large and dense number of possible
lengths. The length of the code for the longer modules becomes excessive and should not be
included unless needed.

The number of multiplications necessary for the WFTA is simply the product of those
necessary for the required modules, including multiplications by unity. The total number may
contain some unity multipliers but it is di�cult to remove them in a practical program. Table
10.1 contains both the total number (MULTS) and the number with the unity multiplies
removed (RMULTS).

Calculating the number of additions for the WFTA is more complicated than for the PFA
because of the expansion of the data moving through the algorithm. For example the number
of additions, TA, for the length-15 example in Figure 10.2 is given by

TA (N) = N2TA (N1) + TM1TA (N2) (10.19)

where N1 = 3, N2 = 5, TM1 = the number of multiplies for the length-3 module and
hence the expansion factor. As mentioned earlier there is an optimum ordering to minimize
additions. The ordering used to calculate Table 10.1 is the ordering used in [236], [83] which
is optimal in most cases and close to optimal in the others.

Length PFA PFA WFTA WFTA WFTA

N Mults Adds Mults RMults Adds

10 20 88 24 20 88

12 16 96 24 16 96

14 32 172 36 32 172

15 50 162 36 34 162

continued on next page
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18 40 204 44 40 208

20 40 216 48 40 216

21 76 300 54 52 300

24 44 252 48 36 252

28 64 400 72 64 400

30 100 384 72 68 384

35 150 598 108 106 666

36 80 480 88 80 488

40 100 532 96 84 532

42 152 684 108 104 684

45 190 726 132 130 804

48 124 636 108 92 660

56 156 940 144 132 940

60 200 888 144 136 888

63 284 1236 198 196 1394

70 300 1336 216 212 1472

72 196 1140 176 164 1156

80 260 1284 216 200 1352

84 304 1536 216 208 1536

90 380 1632 264 260 1788

105 590 2214 324 322 2418

112 396 2188 324 308 2332

120 460 2076 288 276 2076

continued on next page
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126 568 2724 396 392 3040

140 600 2952 432 424 3224

144 500 2676 396 380 2880

168 692 3492 432 420 3492

180 760 3624 528 520 3936

210 1180 4848 648 644 5256

240 1100 4812 648 632 5136

252 1136 5952 792 784 6584

280 1340 6604 864 852 7148

315 2050 8322 1188 1186 10336

336 1636 7908 972 956 8508

360 1700 8148 1056 1044 8772

420 2360 10536 1296 1288 11352

504 2524 13164 1584 1572 14428

560 3100 14748 1944 1928 17168

630 4100 17904 2376 2372 21932

720 3940 18276 2376 2360 21132

840 5140 23172 2592 2580 24804

1008 5804 29100 3564 3548 34416

1260 8200 38328 4752 4744 46384

1680 11540 50964 5832 5816 59064

2520 17660 82956 9504 9492 99068

5040 39100 179772 21384 21368 232668

Table 10.1: Number of Real Multiplications and Additions for Complex PFA and WFTA
FFTs

from Table 10.1 we see that compared to the PFA or any of the Cooley-Tukey FFT's, the
WFTA has signi�cantly fewer multiplications. For the shorter lengths, the WFTA and the
PFA have approximately the same number of additions; however for longer lengths, the PFA
has fewer and the Cooley-Tukey FFT's always have the fewest. If the total arithmetic, the
number of multiplications plus the number of additions, is compared, the split-radix FFT,
PFA and WFTA all have about the same count. Special versions of the PFA and WFTA
have been developed for real data [178], [358].
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FOURIER TRANSFORM ALGORITHMS

The size of the Cooley-Tukey program is the smallest, the PFA next and the WFTA largest.
The PFA requires the smallest number of stored constants, the Cooley-Tukey or split-radix
FFT next, and theWFTA requires the largest number. For a DFT of approximately 1000, the
PFA stores 28 constants, the FFT 2048 and the WFTA 3564. Both the FFT and PFA can be
calculated in-place and the WFTA cannot. The PFA can be calculated in-order without an
unscrambler. The radix-2 FFT can also, but it requires additional indexing overhead [194].
The indexing and data transfer overhead is greatest for the WFTA because the separate
preweave and postweave sections each require their indexing and pass through the complete
data. The shorter modules in the PFA and WFTA and the butter�ies in the radix 2 and
4 FFT's are more e�cient than the longer ones because intermediate calculations can be
kept in cpu registers rather general memory [250]. However, the shorter modules and radices
require more passes through the data for a given approximate length. A proper comparison
will require actual programs to be compiled and run on a particular machine. There are
many open questions about the relationship of algorithms and hardware architecture.



Chapter 11

Implementing FFTs in Practice1

by Steven G. Johnson (Department of Mathematics, Massachusetts Institute of Technology)
and Matteo Frigo (Cilk Arts, Inc.)

11.1 Introduction

Although there are a wide range of fast Fourier transform (FFT) algorithms, involving a
wealth of mathematics from number theory to polynomial algebras, the vast majority of
FFT implementations in practice employ some variation on the Cooley-Tukey algorithm
[92]. The Cooley-Tukey algorithm can be derived in two or three lines of elementary algebra.
It can be implemented almost as easily, especially if only power-of-two sizes are desired;
numerous popular textbooks list short FFT subroutines for power-of-two sizes, written in
the language du jour. The implementation of the Cooley-Tukey algorithm, at least, would
therefore seem to be a long-solved problem. In this chapter, however, we will argue that
matters are not as straightforward as they might appear.

For many years, the primary route to improving upon the Cooley-Tukey FFT seemed to be
reductions in the count of arithmetic operations, which often dominated the execution time
prior to the ubiquity of fast �oating-point hardware (at least on non-embedded processors).
Therefore, great e�ort was expended towards �nding new algorithms with reduced arith-
metic counts [114], from Winograd's method to achieve Θ (n) multiplications2 (at the cost
of many more additions) [411], [180], [116], [114] to the split-radix variant on Cooley-Tukey
that long achieved the lowest known total count of additions and multiplications for power-
of-two sizes [422], [107], [391], [230], [114] (but was recently improved upon [202], [225]).
The question of the minimum possible arithmetic count continues to be of fundamental the-
oretical interest�it is not even known whether better than Θ (nlogn) complexity is possible,
since Ω (nlogn) lower bounds on the count of additions have only been proven subject to

1This content is available online at <http://cnx.org/content/m16336/1.12/>.
2We employ the standard asymptotic notation of O for asymptotic upper bounds, Θ for asymptotic tight

bounds, and Ω for asymptotic lower bounds [210].
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restrictive assumptions about the algorithms [248], [280], [281]. Nevertheless, the di�erence
in the number of arithmetic operations, for power-of-two sizes n, between the 1965 radix-2
Cooley-Tukey algorithm (∼ 5nlog2n [92]) and the currently lowest-known arithmetic count
(∼ 34

9
nlog2n [202], [225]) remains only about 25%.

Figure 11.1: The ratio of speed (1/time) between a highly optimized FFT (FFTW
3.1.2 [133], [134]) and a typical textbook radix-2 implementation (Numerical Recipes in

C [290]) on a 3 GHz Intel Core Duo with the Intel C compiler 9.1.043, for single-precision
complex-data DFTs of size n, plotted versus log2n. Top line (squares) shows FFTW
with SSE SIMD instructions enabled, which perform multiple arithmetic operations at
once (see section ); bottom line (circles) shows FFTW with SSE disabled, which thus
requires a similar number of arithmetic instructions to the textbook code. (This is not
intended as a criticism of Numerical Recipes�simple radix-2 implementations are rea-
sonable for pedagogy�but it illustrates the radical di�erences between straightforward
and optimized implementations of FFT algorithms, even with similar arithmetic costs.)
For n & 219, the ratio increases because the textbook code becomes much slower (this
happens when the DFT size exceeds the level-2 cache).

And yet there is a vast gap between this basic mathematical theory and the actual practice�
highly optimized FFT packages are often an order of magnitude faster than the textbook
subroutines, and the internal structure to achieve this performance is radically di�erent
from the typical textbook presentation of the �same� Cooley-Tukey algorithm. For example,
Figure 11.1 plots the ratio of benchmark speeds between a highly optimized FFT [133], [134]
and a typical textbook radix-2 implementation [290], and the former is faster by a factor
of 5�40 (with a larger ratio as n grows). Here, we will consider some of the reasons for
this discrepancy, and some techniques that can be used to address the di�culties faced by a
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practical high-performance FFT implementation.3

In particular, in this chapter we will discuss some of the lessons learned and the strategies
adopted in the FFTW library. FFTW [133], [134] is a widely used free-software library that
computes the discrete Fourier transform (DFT) and its various special cases. Its performance
is competitive even with manufacturer-optimized programs [134], and this performance is
portable thanks the structure of the algorithms employed, self-optimization techniques,
and highly optimized kernels (FFTW's codelets) generated by a special-purpose compiler.

This chapter is structured as follows. First "Review of the Cooley-Tukey FFT" (Section 11.2:
Review of the Cooley-Tukey FFT), we brie�y review the basic ideas behind the Cooley-
Tukey algorithm and de�ne some common terminology, especially focusing on the many
degrees of freedom that the abstract algorithm allows to implementations. Next, in "Goals
and Background of the FFTW Project" (Section 11.3: Goals and Background of the FFTW
Project), we provide some context for FFTW's development and stress that performance,
while it receives the most publicity, is not necessarily the most important consideration in
the implementation of a library of this sort. Third, in "FFTs and the Memory Hierarchy"
(Section 11.4: FFTs and the Memory Hierarchy), we consider a basic theoretical model
of the computer memory hierarchy and its impact on FFT algorithm choices: quite general
considerations push implementations towards large radices and explicitly recursive structure.
Unfortunately, general considerations are not su�cient in themselves, so we will explain in
"Adaptive Composition of FFT Algorithms" (Section 11.5: Adaptive Composition of FFT
Algorithms) how FFTW self-optimizes for particular machines by selecting its algorithm at
runtime from a composition of simple algorithmic steps. Furthermore, "Generating Small
FFT Kernels" (Section 11.6: Generating Small FFT Kernels) describes the utility and the
principles of automatic code generation used to produce the highly optimized building blocks
of this composition, FFTW's codelets. Finally, we will brie�y consider an important non-
performance issue, in "Numerical Accuracy in FFTs" (Section 11.7: Numerical Accuracy in
FFTs).

11.2 Review of the Cooley-Tukey FFT

The (forward, one-dimensional) discrete Fourier transform (DFT) of an array X of n complex
numbers is the array Y given by

Y [k] =
n−1∑
`=0

X [`]ω`kn , (11.1)

where 0 ≤ k < n and ωn = exp (−2πi/n) is a primitive root of unity. Implemented directly,
(11.1) would require Θ (n2) operations; fast Fourier transforms are O (nlogn) algorithms

3We won't address the question of parallelization on multi-processor machines, which adds even greater
di�culty to FFT implementation�although multi-processors are increasingly important, achieving good
serial performance is a basic prerequisite for optimized parallel code, and is already hard enough!



112 CHAPTER 11. IMPLEMENTING FFTS IN PRACTICE

to compute the same result. The most important FFT (and the one primarily used in
FFTW) is known as the �Cooley-Tukey� algorithm, after the two authors who rediscovered
and popularized it in 1965 [92], although it had been previously known as early as 1805 by
Gauss as well as by later re-inventors [173]. The basic idea behind this FFT is that a DFT
of a composite size n = n1n2 can be re-expressed in terms of smaller DFTs of sizes n1 and
n2�essentially, as a two-dimensional DFT of size n1 × n2 where the output is transposed.
The choices of factorizations of n, combined with the many di�erent ways to implement the
data re-orderings of the transpositions, have led to numerous implementation strategies for
the Cooley-Tukey FFT, with many variants distinguished by their own names [114], [389].
FFTW implements a space of many such variants, as described in "Adaptive Composition
of FFT Algorithms" (Section 11.5: Adaptive Composition of FFT Algorithms), but here we
derive the basic algorithm, identify its key features, and outline some important historical
variations and their relation to FFTW.

The Cooley-Tukey algorithm can be derived as follows. If n can be factored into n = n1n2,
(11.1) can be rewritten by letting ` = `1n2 + `2 and k = k1 + k2n1. We then have:

Y [k1 + k2n1] =

n2−1∑
`2=0

[(
n1−1∑
`1=0

X [`1n2 + `2]ω
`1k1
n1

)
ω`2k1n

]
ω`2k2n2

, (11.2)

where k1,2 = 0, ..., n1,2 − 1. Thus, the algorithm computes n2 DFTs of size n1 (the inner
sum), multiplies the result by the so-called [139] twiddle factors ω`2k1n , and �nally computes
n1 DFTs of size n2 (the outer sum). This decomposition is then continued recursively. The
literature uses the term radix to describe an n1 or n2 that is bounded (often constant); the
small DFT of the radix is traditionally called a butter�y.

Many well-known variations are distinguished by the radix alone. A decimation in time
(DIT) algorithm uses n2 as the radix, while a decimation in frequency (DIF) algorithm
uses n1 as the radix. If multiple radices are used, e.g. for n composite but not a prime power,
the algorithm is called mixed radix. A peculiar blending of radix 2 and 4 is called split
radix, which was proposed to minimize the count of arithmetic operations [422], [107], [391],
[230], [114] although it has been superseded in this regard [202], [225]. FFTW implements
both DIT and DIF, is mixed-radix with radices that are adapted to the hardware, and
often uses much larger radices (e.g. radix 32) than were once common. On the other end of
the scale, a �radix� of roughly

√
n has been called a four-step FFT algorithm (or six-step,

depending on how many transposes one performs) [14]; see "FFTs and the Memory Hier-
archy" (Section 11.4: FFTs and the Memory Hierarchy) for some theoretical and practical
discussion of this algorithm.

A key di�culty in implementing the Cooley-Tukey FFT is that the n1 dimension corresponds
to discontiguous inputs `1 in X but contiguous outputs k1 in Y, and vice-versa for n2. This
is a matrix transpose for a single decomposition stage, and the composition of all such
transpositions is a (mixed-base) digit-reversal permutation (or bit-reversal, for radix 2).
The resulting necessity of discontiguous memory access and data re-ordering hinders e�cient
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use of hierarchical memory architectures (e.g., caches), so that the optimal execution order
of an FFT for given hardware is non-obvious, and various approaches have been proposed.

2 2 2 2

4 4

8

2 2 2 2

4 4

8

breadth-first depth-first

Figure 11.2: Schematic of traditional breadth-�rst (left) vs. recursive depth-�rst (right)
ordering for radix-2 FFT of size 8: the computations for each nested box are completed
before doing anything else in the surrounding box. Breadth-�rst computation performs
all butter�ies of a given size at once, while depth-�rst computation completes one sub-
transform entirely before moving on to the next (as in the algorithm below).

One ordering distinction is between recursion and iteration. As expressed above, the Cooley-
Tukey algorithm could be thought of as de�ning a tree of smaller and smaller DFTs, as
depicted in Figure 11.2; for example, a textbook radix-2 algorithm would divide size n into
two transforms of size n/2, which are divided into four transforms of size n/4, and so on
until a base case is reached (in principle, size 1). This might naturally suggest a recursive
implementation in which the tree is traversed �depth-�rst� as in Figure 11.2(right) and the
algorithm of p. ??�one size n/2 transform is solved completely before processing the other
one, and so on. However, most traditional FFT implementations are non-recursive (with rare
exceptions [341]) and traverse the tree �breadth-�rst� [389] as in Figure 11.2(left)�in the
radix-2 example, they would perform n (trivial) size-1 transforms, then n/2 combinations
into size-2 transforms, then n/4 combinations into size-4 transforms, and so on, thus making
log2n passes over the whole array. In contrast, as we discuss in "Discussion" (Section 11.5.2.6:
Discussion), FFTW employs an explicitly recursive strategy that encompasses both depth-
�rst and breadth-�rst styles, favoring the former since it has some theoretical and practical
advantages as discussed in "FFTs and the Memory Hierarchy" (Section 11.4: FFTs and the
Memory Hierarchy).
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Y [0, ..., n− 1]← recfft 2 (n,X, ι ):
IF n=1 THEN

Y [0]← X [0]
ELSE

Y [0, ..., n/2− 1]← recfft2 (n/2,X, 2ι )
Y [n/2, ..., n− 1]← recfft2 (n/2,X + ι , 2ι )
FOR k_1 = 0 TO (n/2)− 1 DO

t← Y [k_1]
Y [k_1]← t+ ω _nˆk_1Y [k_1 + n/2]
Y [k_1 + n/2]← t− ω _nˆk_1Y [k_1 + n/2]

END FOR

END IF

Listing 11.1: A depth-�rst recursive radix-2 DIT Cooley-Tukey FFT to compute a DFT
of a power-of-two size n = 2m. The input is an array X of length n with stride ι (i.e., the
inputs are X [`ι] for ` = 0, ..., n−1) and the output is an array Y of length n (with stride
1), containing the DFT of X [Equation 1]. X + ι denotes the array beginning with X [ι].
This algorithm operates out-of-place, produces in-order output, and does not require a
separate bit-reversal stage.

A second ordering distinction lies in how the digit-reversal is performed. The classic approach
is a single, separate digit-reversal pass following or preceding the arithmetic computations;
this approach is so common and so deeply embedded into FFT lore that many practitioners
�nd it di�cult to imagine an FFT without an explicit bit-reversal stage. Although this
pass requires only O (n) time [207], it can still be non-negligible, especially if the data is
out-of-cache; moreover, it neglects the possibility that data reordering during the transform
may improve memory locality. Perhaps the oldest alternative is the Stockham auto-sort
FFT [367], [389], which transforms back and forth between two arrays with each butter�y,
transposing one digit each time, and was popular to improve contiguity of access for vector
computers [372]. Alternatively, an explicitly recursive style, as in FFTW, performs the digit-
reversal implicitly at the �leaves� of its computation when operating out-of-place (see section
"Discussion" (Section 11.5.2.6: Discussion)). A simple example of this style, which computes
in-order output using an out-of-place radix-2 FFT without explicit bit-reversal, is shown in
the algorithm of p. ?? [corresponding to Figure 11.2(right)]. To operate in-place with O (1)
scratch storage, one can interleave small matrix transpositions with the butter�ies [195],
[375], [297], [166], and a related strategy in FFTW [134] is brie�y described by "Discussion"
(Section 11.5.2.6: Discussion).

Finally, we should mention that there are many FFTs entirely distinct from Cooley-Tukey.
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Three notable such algorithms are the prime-factor algorithm for gcd (n1, n2) = 1 [278],
along with Rader's [309] and Bluestein's [35], [305], [278] algorithms for prime n. FFTW
implements the �rst two in its codelet generator for hard-coded n "Generating Small FFT
Kernels" (Section 11.6: Generating Small FFT Kernels) and the latter two for general prime
n (sections "Plans for prime sizes" (Section 11.5.2.5: Plans for prime sizes) and "Goals and
Background of the FFTW Project" (Section 11.3: Goals and Background of the FFTW
Project)). There is also the Winograd FFT [411], [180], [116], [114], which minimizes the
number of multiplications at the expense of a large number of additions; this trade-o� is not
bene�cial on current processors that have specialized hardware multipliers.

11.3 Goals and Background of the FFTW Project

The FFTW project, begun in 1997 as a side project of the authors Frigo and Johnson as
graduate students at MIT, has gone through several major revisions, and as of 2008 consists
of more than 40,000 lines of code. It is di�cult to measure the popularity of a free-software
package, but (as of 2008) FFTW has been cited in over 500 academic papers, is used in
hundreds of shipping free and proprietary software packages, and the authors have received
over 10,000 emails from users of the software. Most of this chapter focuses on performance
of FFT implementations, but FFTW would probably not be where it is today if that were
the only consideration in its design. One of the key factors in FFTW's success seems to
have been its �exibility in addition to its performance. In fact, FFTW is probably the most
�exible DFT library available:

• FFTW is written in portable C and runs well on many architectures and operating
systems.

• FFTW computes DFTs in O (nlogn) time for any length n. (Most other DFT imple-
mentations are either restricted to a subset of sizes or they become Θ (n2) for certain
values of n, for example when n is prime.)

• FFTW imposes no restrictions on the rank (dimensionality) of multi-dimensional trans-
forms. (Most other implementations are limited to one-dimensional, or at most two-
and three-dimensional data.)

• FFTW supports multiple and/or strided DFTs; for example, to transform a 3-
component vector �eld or a portion of a multi-dimensional array. (Most implemen-
tations support only a single DFT of contiguous data.)

• FFTW supports DFTs of real data, as well as of real symmetric/anti-symmetric data
(also called discrete cosine/sine transforms).

Our design philosophy has been to �rst de�ne the most general reasonable functionality, and
then to obtain the highest possible performance without sacri�cing this generality. In this
section, we o�er a few thoughts about why such �exibility has proved important, and how
it came about that FFTW was designed in this way.
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FFTW's generality is partly a consequence of the fact the FFTW project was started in
response to the needs of a real application for one of the authors (a spectral solver for
Maxwell's equations [204]), which from the beginning had to run on heterogeneous hardware.
Our initial application required multi-dimensional DFTs of three-component vector �elds
(magnetic �elds in electromagnetism), and so right away this meant: (i) multi-dimensional
FFTs; (ii) user-accessible loops of FFTs of discontiguous data; (iii) e�cient support for non-
power-of-two sizes (the factor of eight di�erence between n × n × n and 2n × 2n × 2n was
too much to tolerate); and (iv) saving a factor of two for the common real-input case was
desirable. That is, the initial requirements already encompassed most of the features above,
and nothing about this application is particularly unusual.

Even for one-dimensional DFTs, there is a common misperception that one should always
choose power-of-two sizes if one cares about e�ciency. Thanks to FFTW's code generator
(described in "Generating Small FFT Kernels" (Section 11.6: Generating Small FFT Ker-
nels)), we could a�ord to devote equal optimization e�ort to any n with small factors (2, 3,
5, and 7 are good), instead of mostly optimizing powers of two like many high-performance
FFTs. As a result, to pick a typical example on the 3 GHz Core Duo processor of Figure 11.1,
n = 3600 = 24 · 32 · 52 and n = 3840 = 28 · 3 · 5 both execute faster than n = 4096 = 212.
(And if there are factors one particularly cares about, one can generate code for them too.)

One initially missing feature was e�cient support for large prime sizes; the conventional wis-
dom was that large-prime algorithms were mainly of academic interest, since in real applica-
tions (including ours) one has enough freedom to choose a highly composite transform size.
However, the prime-size algorithms are fascinating, so we implemented Rader's O (nlogn)
prime-n algorithm [309] purely for fun, including it in FFTW 2.0 (released in 1998) as a
bonus feature. The response was astonishingly positive�even though users are (probably)
never forced by their application to compute a prime-size DFT, it is rather inconvenient to
always worry that collecting an unlucky number of data points will slow down one's analysis
by a factor of a million. The prime-size algorithms are certainly slower than algorithms for
nearby composite sizes, but in interactive data-analysis situations the di�erence between 1
ms and 10 ms means little, while educating users to avoid large prime factors is hard.

Another form of �exibility that deserves comment has to do with a purely technical aspect of
computer software. FFTW's implementation involves some unusual language choices inter-
nally (the FFT-kernel generator, described in "Generating Small FFT Kernels" (Section 11.6:
Generating Small FFT Kernels), is written in Objective Caml, a functional language espe-
cially suited for compiler-like programs), but its user-callable interface is purely in C with
lowest-common-denominator datatypes (arrays of �oating-point values). The advantage of
this is that FFTW can be (and has been) called from almost any other programming lan-
guage, from Java to Perl to Fortran 77. Similar lowest-common-denominator interfaces are
apparent in many other popular numerical libraries, such as LAPACK [10]. Language prefer-
ences arouse strong feelings, but this technical constraint means that modern programming
dialects are best hidden from view for a numerical library.
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Ultimately, very few scienti�c-computing applications should have performance as their top
priority. Flexibility is often far more important, because one wants to be limited only by one's
imagination, rather than by one's software, in the kinds of problems that can be studied.

11.4 FFTs and the Memory Hierarchy

There are many complexities of computer architectures that impact the optimization of FFT
implementations, but one of the most pervasive is the memory hierarchy. On any modern
general-purpose computer, memory is arranged into a hierarchy of storage devices with in-
creasing size and decreasing speed: the fastest and smallest memory being the CPU registers,
then two or three levels of cache, then the main-memory RAM, then external storage such
as hard disks.4 Most of these levels are managed automatically by the hardware to hold the
most-recently-used data from the next level in the hierarchy.5 There are many complications,
however, such as limited cache associativity (which means that certain locations in memory
cannot be cached simultaneously) and cache lines (which optimize the cache for contiguous
memory access), which are reviewed in numerous textbooks on computer architectures. In
this section, we focus on the simplest abstract principles of memory hierarchies in order to
grasp their fundamental impact on FFTs.

Because access to memory is in many cases the slowest part of the computer, especially
compared to arithmetic, one wishes to load as much data as possible in to the faster levels
of the hierarchy, and then perform as much computation as possible before going back to
the slower memory devices. This is called temporal locality: if a given datum is used
more than once, we arrange the computation so that these usages occur as close together as
possible in time.

11.4.1 Understanding FFTs with an ideal cache

To understand temporal-locality strategies at a basic level, in this section we will employ an
idealized model of a cache in a two-level memory hierarchy, as de�ned in [137]. This ideal
cache stores Z data items from main memory (e.g. complex numbers for our purposes):
when the processor loads a datum from memory, the access is quick if the datum is already
in the cache (a cache hit) and slow otherwise (a cache miss, which requires the datum to
be fetched into the cache). When a datum is loaded into the cache,6 it must replace some

4A hard disk is utilized by �out-of-core� FFT algorithms for very large n [389], but these algorithms
appear to have been largely superseded in practice by both the gigabytes of memory now common on
personal computers and, for extremely large n, by algorithms for distributed-memory parallel computers.

5This includes the registers: on current �x86� processors, the user-visible instruction set (with a small
number of �oating-point registers) is internally translated at runtime to RISC-like �µ-ops� with a much larger
number of physical rename registers that are allocated automatically.

6More generally, one can assume that a cache line of L consecutive data items are loaded into the cache
at once, in order to exploit spatial locality. The ideal-cache model in this case requires that the cache be
tall: Z = Ω

(
L2
)
[137].
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other datum, and the ideal-cache model assumes that the optimal replacement strategy is
used [20]: the new datum replaces the datum that will not be needed for the longest time in
the future; in practice, this can be simulated to within a factor of two by replacing the least-
recently used datum [137], but ideal replacement is much simpler to analyze. Armed with
this ideal-cache model, we can now understand some basic features of FFT implementations
that remain essentially true even on real cache architectures. In particular, we want to know
the cache complexity, the number Q (n;Z) of cache misses for an FFT of size n with an
ideal cache of size Z, and what algorithm choices reduce this complexity.

First, consider a textbook radix-2 algorithm, which divides n by 2 at each stage and operates
breadth-�rst as in Figure 11.2(left), performing all butter�ies of a given size at a time. If
n > Z, then each pass over the array incurs Θ (n) cache misses to reload the data, and
there are log2n passes, for Θ (nlog2n) cache misses in total�no temporal locality at all is
exploited!

One traditional solution to this problem is blocking: the computation is divided into maxi-
mal blocks that �t into the cache, and the computations for each block are completed before
moving on to the next block. Here, a block of Z numbers can �t into the cache7 (not in-
cluding storage for twiddle factors and so on), and thus the natural unit of computation is
a sub-FFT of size Z. Since each of these blocks involves Θ (ZlogZ) arithmetic operations,
and there are Θ (nlogn) operations overall, there must be Θ

(
n
Z
logZn

)
such blocks. More

explicitly, one could use a radix-Z Cooley-Tukey algorithm, breaking n down by factors of
Z [or Θ (Z)] until a size Z is reached: each stage requires n/Z blocks, and there are logZn
stages, again giving Θ

(
n
Z
logZn

)
blocks overall. Since each block requires Z cache misses to

load it into cache, the cache complexity Qb of such a blocked algorithm is

Qb (n;Z) = Θ (nlogZn) . (11.3)

In fact, this complexity is rigorously optimal for Cooley-Tukey FFT algorithms [184], and
immediately points us towards large radices (not radix 2!) to exploit caches e�ectively in
FFTs.

However, there is one shortcoming of any blocked FFT algorithm: it is cache aware, mean-
ing that the implementation depends explicitly on the cache size Z. The implementation
must be modi�ed (e.g. changing the radix) to adapt to di�erent machines as the cache size
changes. Worse, as mentioned above, actual machines have multiple levels of cache, and
to exploit these one must perform multiple levels of blocking, each parameterized by the
corresponding cache size. In the above example, if there were a smaller and faster cache
of size z < Z, the size-Z sub-FFTs should themselves be performed via radix-z Cooley-
Tukey using blocks of size z. And so on. There are two paths out of these di�culties: one
is self-optimization, where the implementation automatically adapts itself to the hardware

7Of course, O (n) additional storage may be required for twiddle factors, the output data (if the FFT is
not in-place), and so on, but these only a�ect the n that �ts into cache by a constant factor and hence do
not impact cache-complexity analysis. We won't worry about such constant factors in this section.
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(implicitly including any cache sizes), as described in "Adaptive Composition of FFT Algo-
rithms" (Section 11.5: Adaptive Composition of FFT Algorithms); the other is to exploit
cache-oblivious algorithms. FFTW employs both of these techniques.

The goal of cache-obliviousness is to structure the algorithm so that it exploits the cache
without having the cache size as a parameter: the same code achieves the same asymptotic
cache complexity regardless of the cache size Z. An optimal cache-oblivious algorithm
achieves the optimal cache complexity (that is, in an asymptotic sense, ignoring constant
factors). Remarkably, optimal cache-oblivious algorithms exist for many problems, such
as matrix multiplication, sorting, transposition, and FFTs [137]. Not all cache-oblivious
algorithms are optimal, of course�for example, the textbook radix-2 algorithm discussed
above is �pessimal� cache-oblivious (its cache complexity is independent of Z because it
always achieves the worst case!).

For instance, Figure 11.2(right) and the algorithm of p. ?? shows a way to obliviously exploit
the cache with a radix-2 Cooley-Tukey algorithm, by ordering the computation depth-�rst
rather than breadth-�rst. That is, the DFT of size n is divided into two DFTs of size n/2, and
one DFT of size n/2 is completely �nished before doing any computations for the second
DFT of size n/2. The two subtransforms are then combined using n/2 radix-2 butter�ies,
which requires a pass over the array and (hence n cache misses if n > Z). This process is
repeated recursively until a base-case (e.g. size 2) is reached. The cache complexity Q2 (n;Z)
of this algorithm satis�es the recurrence

Q2 (n;Z) = {
n n ≤ Z

2Q2 (n/2;Z) + Θ (n) otherwise
. (11.4)

The key property is this: once the recursion reaches a size n ≤ Z, the subtransform �ts
into the cache and no further misses are incurred. The algorithm does not �know� this and
continues subdividing the problem, of course, but all of those further subdivisions are in-
cache because they are performed in the same depth-�rst branch of the tree. The solution
of (11.4) is

Q2 (n;Z) = Θ (nlog [n/Z]) . (11.5)

This is worse than the theoretical optimum Qb (n;Z) from (11.3), but it is cache-oblivious
(Z never entered the algorithm) and exploits at least some temporal locality.8 On the other
hand, when it is combined with FFTW's self-optimization and larger radices in "Adaptive
Composition of FFT Algorithms" (Section 11.5: Adaptive Composition of FFT Algorithms),
this algorithm actually performs very well until n becomes extremely large. By itself, how-
ever, the algorithm of p. ?? must be modi�ed to attain adequate performance for reasons
that have nothing to do with the cache. These practical issues are discussed further in
"Cache-obliviousness in practice" (Section 11.4.2: Cache-obliviousness in practice).

8This advantage of depth-�rst recursive implementation of the radix-2 FFT was pointed out many years
ago by Singleton (where the �cache� was core memory) [341].
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There exists a di�erent recursive FFT that is optimal cache-oblivious, however, and that
is the radix-

√
n �four-step� Cooley-Tukey algorithm (again executed recursively, depth-�rst)

[137]. The cache complexity Qo of this algorithm satis�es the recurrence:

Qo (n;Z) = {
n n ≤ Z

2
√
nQo (

√
n;Z) + Θ (n) otherwise

. (11.6)

That is, at each stage one performs
√
n DFTs of size

√
n (recursively), then multiplies by the

Θ (n) twiddle factors (and does a matrix transposition to obtain in-order output), then �nally
performs another

√
n DFTs of size

√
n. The solution of (11.6) is Qo (n;Z) = Θ (nlogZn),

the same as the optimal cache complexity ((11.3))!

These algorithms illustrate the basic features of most optimal cache-oblivious algorithms:
they employ a recursive divide-and-conquer strategy to subdivide the problem until it �ts
into cache, at which point the subdivision continues but no further cache misses are required.
Moreover, a cache-oblivious algorithm exploits all levels of the cache in the same way, so an
optimal cache-oblivious algorithm exploits a multi-level cache optimally as well as a two-level
cache [137]: the multi-level �blocking� is implicit in the recursion.

11.4.2 Cache-obliviousness in practice

Even though the radix-
√
n algorithm is optimal cache-oblivious, it does not follow that FFT

implementation is a solved problem. The optimality is only in an asymptotic sense, ignoring
constant factors, O (n) terms, etcetera, all of which can matter a great deal in practice. For
small or moderate n, quite di�erent algorithms may be superior, as discussed in "Memory
strategies in FFTW" (Section 11.4.3: Memory strategies in FFTW). Moreover, real caches
are inferior to an ideal cache in several ways. The unsurprising consequence of all this is
that cache-obliviousness, like any complexity-based algorithm property, does not absolve
one from the ordinary process of software optimization. At best, it reduces the amount of
memory/cache tuning that one needs to perform, structuring the implementation to make
further optimization easier and more portable.

Perhaps most importantly, one needs to perform an optimization that has almost nothing to
do with the caches: the recursion must be �coarsened� to amortize the function-call overhead
and to enable compiler optimization. For example, the simple pedagogical code of the
algorithm in p. ?? recurses all the way down to n = 1, and hence there are≈ 2n function calls
in total, so that every data point incurs a two-function-call overhead on average. Moreover,
the compiler cannot fully exploit the large register sets and instruction-level parallelism
of modern processors with an n = 1 function body.9 These problems can be e�ectively
erased, however, simply by making the base cases larger, e.g. the recursion could stop when

9In principle, it might be possible for a compiler to automatically coarsen the recursion, similar to how
compilers can partially unroll loops. We are currently unaware of any general-purpose compiler that performs
this optimization, however.
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n = 32 is reached, at which point a highly optimized hard-coded FFT of that size would
be executed. In FFTW, we produced this sort of large base-case using a specialized code-
generation program described in "Generating Small FFT Kernels" (Section 11.6: Generating
Small FFT Kernels).

One might get the impression that there is a strict dichotomy that divides cache-aware
and cache-oblivious algorithms, but the two are not mutually exclusive in practice. Given
an implementation of a cache-oblivious strategy, one can further optimize it for the cache
characteristics of a particular machine in order to improve the constant factors. For example,
one can tune the radices used, the transition point between the radix-

√
n algorithm and the

bounded-radix algorithm, or other algorithmic choices as described in "Memory strategies
in FFTW" (Section 11.4.3: Memory strategies in FFTW). The advantage of starting cache-
aware tuning with a cache-oblivious approach is that the starting point already exploits all
levels of the cache to some extent, and one has reason to hope that good performance on one
machine will be more portable to other architectures than for a purely cache-aware �blocking�
approach. In practice, we have found this combination to be very successful with FFTW.

11.4.3 Memory strategies in FFTW

The recursive cache-oblivious strategies described above form a useful starting point, but
FFTW supplements them with a number of additional tricks, and also exploits cache-
obliviousness in less-obvious forms.

We currently �nd that the general radix-
√
n algorithm is bene�cial only when n becomes

very large, on the order of 220 ≈ 106. In practice, this means that we use at most a single
step of radix-

√
n (two steps would only be used for n & 240). The reason for this is that

the implementation of radix
√
n is less e�cient than for a bounded radix: the latter has

the advantage that an entire radix butter�y can be performed in hard-coded loop-free code
within local variables/registers, including the necessary permutations and twiddle factors.

Thus, for more moderate n, FFTW uses depth-�rst recursion with a bounded radix, similar
in spirit to the algorithm of p. ?? but with much larger radices (radix 32 is common) and base
cases (size 32 or 64 is common) as produced by the code generator of "Generating Small FFT
Kernels" (Section 11.6: Generating Small FFT Kernels). The self-optimization described in
"Adaptive Composition of FFT Algorithms" (Section 11.5: Adaptive Composition of FFT
Algorithms) allows the choice of radix and the transition to the radix-

√
n algorithm to be

tuned in a cache-aware (but entirely automatic) fashion.

For small n (including the radix butter�ies and the base cases of the recursion), hard-coded
FFTs (FFTW's codelets) are employed. However, this gives rise to an interesting problem:
a codelet for (e.g.) n = 64 is ∼ 2000 lines long, with hundreds of variables and over 1000
arithmetic operations that can be executed in many orders, so what order should be chosen?
The key problem here is the e�cient use of the CPU registers, which essentially form a nearly
ideal, fully associative cache. Normally, one relies on the compiler for all code scheduling and
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register allocation, but but the compiler needs help with such long blocks of code (indeed, the
general register-allocation problem is NP-complete). In particular, FFTW's generator knows
more about the code than the compiler�the generator knows it is an FFT, and therefore
it can use an optimal cache-oblivious schedule (analogous to the radix-

√
n algorithm) to

order the code independent of the number of registers [128]. The compiler is then used only
for local �cache-aware� tuning (both for register allocation and the CPU pipeline).10 As a
practical matter, one consequence of this scheduler is that FFTW's machine-independent
codelets are no slower than machine-speci�c codelets generated by an automated search
and optimization over many possible codelet implementations, as performed by the SPIRAL
project [420].

(When implementing hard-coded base cases, there is another choice because a loop of small
transforms is always required. Is it better to implement a hard-coded FFT of size 64, for
example, or an unrolled loop of four size-16 FFTs, both of which operate on the same amount
of data? The former should be more e�cient because it performs more computations with
the same amount of data, thanks to the logn factor in the FFT's nlogn complexity.)

In addition, there are many other techniques that FFTW employs to supplement the basic
recursive strategy, mainly to address the fact that cache implementations strongly favor ac-
cessing consecutive data�thanks to cache lines, limited associativity, and direct mapping
using low-order address bits (accessing data at power-of-two intervals in memory, which is dis-
tressingly common in FFTs, is thus especially prone to cache-line con�icts). Unfortunately,
the known FFT algorithms inherently involve some non-consecutive access (whether mixed
with the computation or in separate bit-reversal/transposition stages). There are many op-
timizations in FFTW to address this. For example, the data for several butter�ies at a time
can be copied to a small bu�er before computing and then copied back, where the copies
and computations involve more consecutive access than doing the computation directly in-
place. Or, the input data for the subtransform can be copied from (discontiguous) input to
(contiguous) output before performing the subtransform in-place (see "Indirect plans" (Sec-
tion 11.5.2.4: Indirect plans)), rather than performing the subtransform directly out-of-place
(as in algorithm 1 (p. ??)). Or, the order of loops can be interchanged in order to push the
outermost loop from the �rst radix step [the `2 loop in (11.2)] down to the leaves, in order
to make the input access more consecutive (see "Discussion" (Section 11.5.2.6: Discussion)).
Or, the twiddle factors can be computed using a smaller look-up table (fewer memory loads)
at the cost of more arithmetic (see "Numerical Accuracy in FFTs" (Section 11.7: Numerical
Accuracy in FFTs)). The choice of whether to use any of these techniques, which come
into play mainly for moderate n (213 < n < 220), is made by the self-optimizing planner as
described in the next section.

10One practical di�culty is that some �optimizing� compilers will tend to greatly re-order the code, de-
stroying FFTW's optimal schedule. With GNU gcc, we circumvent this problem by using compiler �ags that
explicitly disable certain stages of the optimizer.
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11.5 Adaptive Composition of FFT Algorithms

As alluded to several times already, FFTW implements a wide variety of FFT algorithms
(mostly rearrangements of Cooley-Tukey) and selects the �best� algorithm for a given n
automatically. In this section, we describe how such self-optimization is implemented, and
especially how FFTW's algorithms are structured as a composition of algorithmic fragments.
These techniques in FFTW are described in greater detail elsewhere [134], so here we will
focus only on the essential ideas and the motivations behind them.

An FFT algorithm in FFTW is a composition of algorithmic steps called a plan. The
algorithmic steps each solve a certain class of problems (either solving the problem directly
or recursively breaking it into sub-problems of the same type). The choice of plan for a given
problem is determined by a planner that selects a composition of steps, either by runtime
measurements to pick the fastest algorithm, or by heuristics, or by loading a pre-computed
plan. These three pieces: problems, algorithmic steps, and the planner, are discussed in the
following subsections.

11.5.1 The problem to be solved

In early versions of FFTW, the only choice made by the planner was the sequence of radices
[131], and so each step of the plan took a DFT of a given size n, possibly with discontiguous
input/output, and reduced it (via a radix r) to DFTs of size n/r, which were solved recur-
sively. That is, each step solved the following problem: given a size n, an input pointer I,
an input stride ι, an output pointer O, and an output stride o, it computed the DFT
of I [`ι] for 0 ≤ ` < n and stored the result in O [ko] for 0 ≤ k < n. However, we soon found
that we could not easily express many interesting algorithms within this framework; for ex-
ample, in-place (I = O) FFTs that do not require a separate bit-reversal stage [195], [375],
[297], [166]. It became clear that the key issue was not the choice of algorithms, as we had
�rst supposed, but the de�nition of the problem to be solved. Because only problems that
can be expressed can be solved, the representation of a problem determines an outer bound
to the space of plans that the planner can explore, and therefore it ultimately constrains
FFTW's performance.

The di�culty with our initial (n, I, ι,O, o) problem de�nition was that it forced each algo-
rithmic step to address only a single DFT. In fact, FFTs break down DFTs into multiple
smaller DFTs, and it is the combination of these smaller transforms that is best addressed
by many algorithmic choices, especially to rearrange the order of memory accesses between
the subtransforms. Therefore, we rede�ned our notion of a problem in FFTW to be not a
single DFT, but rather a loop of DFTs, and in fact multiple nested loops of DFTs. The
following sections describe some of the new algorithmic steps that such a problem de�nition
enables, but �rst we will de�ne the problem more precisely.
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DFT problems in FFTW are expressed in terms of structures called I/O tensors,11 which
in turn are described in terms of ancillary structures called I/O dimensions. An I/O di-
mension d is a triple d = (n, ι, o), where n is a non-negative integer called the length, ι is
an integer called the input stride, and o is an integer called the output stride. An I/O
tensor t = {d1, d2, ..., dρ} is a set of I/O dimensions. The non-negative integer ρ = |t| is
called the rank of the I/O tensor. A DFT problem, denoted by dft (N,V, I,O), consists
of two I/O tensors N and V, and of two pointers I and O. Informally, this describes |V|
nested loops of |N|-dimensional DFTs with input data starting at memory location I and
output data starting at O.

For simplicity, let us consider only one-dimensional DFTs, so that N = {(n, ι, o)} implies a
DFT of length n on input data with stride ι and output data with stride o, much like in the
original FFTW as described above. The main new feature is then the addition of zero or
more �loops� V. More formally, dft (N, {(n, ι, o)} ∪V, I,O) is recursively de�ned as a �loop�
of n problems: for all 0 ≤ k < n, do all computations in dft (N,V, I + k · ι,O + k · o). The
case of multi-dimensional DFTs is de�ned more precisely elsewhere [134], but essentially each
I/O dimension in N gives one dimension of the transform.

We call N the size of the problem. The rank of a problem is de�ned to be the rank of
its size (i.e., the dimensionality of the DFT). Similarly, we call V the vector size of the
problem, and the vector rank of a problem is correspondingly de�ned to be the rank of
its vector size. Intuitively, the vector size can be interpreted as a set of �loops� wrapped
around a single DFT, and we therefore refer to a single I/O dimension of V as a vector
loop. (Alternatively, one can view the problem as describing a DFT over a |V|-dimensional
vector space.) The problem does not specify the order of execution of these loops, however,
and therefore FFTW is free to choose the fastest or most convenient order.

11.5.1.1 DFT problem examples

A more detailed discussion of the space of problems in FFTW can be found in [134] , but
a simple understanding can be gained by examining a few examples demonstrating that
the I/O tensor representation is su�ciently general to cover many situations that arise in
practice, including some that are not usually considered to be instances of the DFT.

A single one-dimensional DFT of length n, with stride-1 input X and output Y, as in (11.1),
is denoted by the problem dft ({(n, 1, 1)}, {},X,Y) (no loops: vector-rank zero).

As a more complicated example, suppose we have an n1 × n2 matrix X stored as
n1 consecutive blocks of contiguous length-n2 rows (this is called row-major format).
The in-place DFT of all the rows of this matrix would be denoted by the prob-
lem dft ({(n2, 1, 1)}, {(n1, n2, n2)},X,X): a length-n1 loop of size-n2 contiguous DFTs,

11I/O tensors are unrelated to the tensor-product notation used by some other authors to describe FFT
algorithms [389], [296].
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where each iteration of the loop o�sets its input/output data by a stride n2. Con-
versely, the in-place DFT of all the columns of this matrix would be denoted by
dft ({(n1, n2, n2)}, {(n2, 1, 1)},X,X): compared to the previous example, N and V are
swapped. In the latter case, each DFT operates on discontiguous data, and FFTW might
well choose to interchange the loops: instead of performing a loop of DFTs computed indi-
vidually, the subtransforms themselves could act on n2-component vectors, as described in
"The space of plans in FFTW" (Section 11.5.2: The space of plans in FFTW).

A size-1 DFT is simply a copy Y [0] = X [0], and here this can also be denoted by
N = {} (rank zero, a �zero-dimensional� DFT). This allows FFTW's problems to repre-
sent many kinds of copies and permutations of the data within the same problem frame-
work, which is convenient because these sorts of operations arise frequently in FFT al-
gorithms. For example, to copy n consecutive numbers from I to O, one would use the
rank-zero problem dft ({}, {(n, 1, 1)}, I,O). More interestingly, the in-place transpose
of an n1 × n2 matrix X stored in row-major format, as described above, is denoted by
dft ({}, {(n1, n2, 1) , (n2, 1, n1)},X,X) (rank zero, vector-rank two).

11.5.2 The space of plans in FFTW

Here, we describe a subset of the possible plans considered by FFTW; while not exhaustive
[134], this subset is enough to illustrate the basic structure of FFTW and the necessity of
including the vector loop(s) in the problem de�nition to enable several interesting algorithms.
The plans that we now describe usually perform some simple �atomic� operation, and it may
not be apparent how these operations �t together to actually compute DFTs, or why certain
operations are useful at all. We shall discuss those matters in "Discussion" (Section 11.5.2.6:
Discussion).

Roughly speaking, to solve a general DFT problem, one must perform three tasks. First, one
must reduce a problem of arbitrary vector rank to a set of loops nested around a problem
of vector rank 0, i.e., a single (possibly multi-dimensional) DFT. Second, one must reduce
the multi-dimensional DFT to a sequence of of rank-1 problems, i.e., one-dimensional DFTs;
for simplicity, however, we do not consider multi-dimensional DFTs below. Third, one must
solve the rank-1, vector rank-0 problem by means of some DFT algorithm such as Cooley-
Tukey. These three steps need not be executed in the stated order, however, and in fact,
almost every permutation and interleaving of these three steps leads to a correct DFT plan.
The choice of the set of plans explored by the planner is critical for the usability of the
FFTW system: the set must be large enough to contain the fastest possible plans, but it
must be small enough to keep the planning time acceptable.

11.5.2.1 Rank-0 plans

The rank-0 problem dft ({},V, I,O) denotes a permutation of the input array into the output
array. FFTW does not solve arbitrary rank-0 problems, only the following two special cases
that arise in practice.
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• When |V| = 1 and I 6= O, FFTW produces a plan that copies the input array into the
output array. Depending on the strides, the plan consists of a loop or, possibly, of a
call to the ANSI C function memcpy, which is specialized to copy contiguous regions of
memory.

• When |V| = 2, I = O, and the strides denote a matrix-transposition problem, FFTW
creates a plan that transposes the array in-place. FFTW implements the square trans-
position dft ({}, {(n, ι, o) , (n, o, ι)}, I,O) by means of the cache-oblivious algorithm
from [137], which is fast and, in theory, uses the cache optimally regardless of the
cache size (using principles similar to those described in the section "FFTs and the
Memory Hierarchy" (Section 11.4: FFTs and the Memory Hierarchy)). A generaliza-
tion of this idea is employed for non-square transpositions with a large common factor
or a small di�erence between the dimensions, adapting algorithms from [100].

11.5.2.2 Rank-1 plans

Rank-1 DFT problems denote ordinary one-dimensional Fourier transforms. FFTW deals
with most rank-1 problems as follows.

11.5.2.2.1 Direct plans

When the DFT rank-1 problem is �small enough� (usually, n ≤ 64), FFTW produces a direct
plan that solves the problem directly. These plans operate by calling a fragment of C code (a
codelet) specialized to solve problems of one particular size, whose generation is described
in "Generating Small FFT Kernels" (Section 11.6: Generating Small FFT Kernels). More
precisely, the codelets compute a loop (|V| ≤ 1) of small DFTs.

11.5.2.2.2 Cooley-Tukey plans

For problems of the form dft ({(n, ι, o)},V, I,O) where n = rm, FFTW generates a plan
that implements a radix-r Cooley-Tukey algorithm "Review of the Cooley-Tukey FFT" (Sec-
tion 11.2: Review of the Cooley-Tukey FFT). Both decimation-in-time and decimation-in-
frequency plans are supported, with both small �xed radices (usually, r ≤ 64) produced
by the codelet generator "Generating Small FFT Kernels" (Section 11.6: Generating Small
FFT Kernels) and also arbitrary radices (e.g. radix-

√
n).

The most common case is a decimation in time (DIT) plan, corresponding to a radix r =
n2 (and thus m = n1) in the notation of "Review of the Cooley-Tukey FFT" (Section 11.2:
Review of the Cooley-Tukey FFT): it �rst solves dft ({(m, r · ι, o)},V ∪ {(r, ι,m · o)}, I,O),
then multiplies the output array O by the twiddle factors, and �nally solves
dft ({(r,m · o,m · o)},V ∪ {(m, o, o)},O,O). For performance, the last two steps are not
planned independently, but are fused together in a single �twiddle� codelet�a fragment of C
code that multiplies its input by the twiddle factors and performs a DFT of size r, operating
in-place on O.
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11.5.2.3 Plans for higher vector ranks

These plans extract a vector loop to reduce a DFT problem to a problem of lower vector
rank, which is then solved recursively. Any of the vector loops of V could be extracted in
this way, leading to a number of possible plans corresponding to di�erent loop orderings.

Formally, to solve dft (N,V, I,O), where V = {(n, ι, o)}∪V1, FFTW generates a loop that,
for all k such that 0 ≤ k < n, invokes a plan for dft (N,V1, I + k · ι,O + k · o).

11.5.2.4 Indirect plans

Indirect plans transform a DFT problem that requires some data shu�ing (or discontiguous
operation) into a problem that requires no shu�ing plus a rank-0 problem that performs the
shu�ing.

Formally, to solve dft (N,V, I,O) where |N| > 0, FFTW generates a plan that �rst solves
dft ({},N ∪V, I,O), and then solves dft (copy − o (N) , copy − o (V) ,O,O). Here we de�ne
copy − o (t) to be the I/O tensor {(n, o, o) | (n, ι, o) ∈ t}: that is, it replaces the input
strides with the output strides. Thus, an indirect plan �rst rearranges/copies the data to
the output, then solves the problem in place.

11.5.2.5 Plans for prime sizes

As discussed in "Goals and Background of the FFTW Project" (Section 11.3: Goals and
Background of the FFTW Project), it turns out to be surprisingly useful to be able to
handle large prime n (or large prime factors). Rader plans implement the algorithm from
[309] to compute one-dimensional DFTs of prime size in Θ (nlogn) time. Bluestein plans
implement Bluestein's �chirp-z� algorithm, which can also handle prime n in Θ (nlogn) time
[35], [305], [278]. Generic plans implement a naive Θ (n2) algorithm (useful for n . 100).

11.5.2.6 Discussion

Although it may not be immediately apparent, the combination of the recursive rules in
"The space of plans in FFTW" (Section 11.5.2: The space of plans in FFTW) can produce
a number of useful algorithms. To illustrate these compositions, we discuss three particular
issues: depth- vs. breadth-�rst, loop reordering, and in-place transforms.
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Figure 11.3: Two possible decompositions for a size-30 DFT, both for the arbitrary
choice of DIT radices 3 then 2 then 5, and prime-size codelets. Items grouped by a "{"
result from the plan for a single sub-problem. In the depth-�rst case, the vector rank was
reduced to zero as per "Plans for higher vector ranks" (Section 11.5.2.3: Plans for higher
vector ranks) before decomposing sub-problems, and vice-versa in the breadth-�rst case.

As discussed previously in sections "Review of the Cooley-Tukey FFT" (Section 11.2: Review
of the Cooley-Tukey FFT) and "Understanding FFTs with an ideal cache" (Section 11.4.1:
Understanding FFTs with an ideal cache), the same Cooley-Tukey decomposition can be
executed in either traditional breadth-�rst order or in recursive depth-�rst order, where the
latter has some theoretical cache advantages. FFTW is explicitly recursive, and thus it
can naturally employ a depth-�rst order. Because its sub-problems contain a vector loop
that can be executed in a variety of orders, however, FFTW can also employ breadth-�rst
traversal. In particular, a 1d algorithm resembling the traditional breadth-�rst Cooley-Tukey
would result from applying "Cooley-Tukey plans" (Section 11.5.2.2.2: Cooley-Tukey plans)
to completely factorize the problem size before applying the loop rule "Plans for higher
vector ranks" (Section 11.5.2.3: Plans for higher vector ranks) to reduce the vector ranks,
whereas depth-�rst traversal would result from applying the loop rule before factorizing each
subtransform. These two possibilities are illustrated by an example in Figure 11.3.

Another example of the e�ect of loop reordering is a style of plan that we sometimes call
vector recursion (unrelated to �vector-radix� FFTs [114]). The basic idea is that, if one has
a loop (vector-rank 1) of transforms, where the vector stride is smaller than the transform
size, it is advantageous to push the loop towards the leaves of the transform decomposition,
while otherwise maintaining recursive depth-�rst ordering, rather than looping �outside�
the transform; i.e., apply the usual FFT to �vectors� rather than numbers. Limited forms
of this idea have appeared for computing multiple FFTs on vector processors (where the
loop in question maps directly to a hardware vector) [372]. For example, Cooley-Tukey
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produces a unit input-stride vector loop at the top-level DIT decomposition, but with a
large output stride; this di�erence in strides makes it non-obvious whether vector recursion
is advantageous for the sub-problem, but for large transforms we often observe the planner
to choose this possibility.

In-place 1d transforms (with no separate bit reversal pass) can be obtained as follows by a
combination DIT and DIF plans "Cooley-Tukey plans" (Section 11.5.2.2.2: Cooley-Tukey
plans) with transposes "Rank-0 plans" (Section 11.5.2.1: Rank-0 plans). First, the transform
is decomposed via a radix-p DIT plan into a vector of p transforms of size qm, then these
are decomposed in turn by a radix-q DIF plan into a vector (rank 2) of p× q transforms of
size m. These transforms of size m have input and output at di�erent places/strides in the
original array, and so cannot be solved independently. Instead, an indirect plan "Indirect
plans" (Section 11.5.2.4: Indirect plans) is used to express the sub-problem as pq in-place
transforms of size m, followed or preceded by an m × p × q rank-0 transform. The latter
sub-problem is easily seen to be m in-place p × q transposes (ideally square, i.e. p = q).
Related strategies for in-place transforms based on small transposes were described in [195],
[375], [297], [166]; alternating DIT/DIF, without concern for in-place operation, was also
considered in [255], [322].

11.5.3 The FFTW planner

Given a problem and a set of possible plans, the basic principle behind the FFTW planner
is straightforward: construct a plan for each applicable algorithmic step, time the execution
of these plans, and select the fastest one. Each algorithmic step may break the problem
into subproblems, and the fastest plan for each subproblem is constructed in the same way.
These timing measurements can either be performed at runtime, or alternatively the plans
for a given set of sizes can be precomputed and loaded at a later time.

A direct implementation of this approach, however, faces an exponential explosion of the
number of possible plans, and hence of the planning time, as n increases. In order to
reduce the planning time to a manageable level, we employ several heuristics to reduce the
space of possible plans that must be compared. The most important of these heuristics is
dynamic programming [96]: it optimizes each sub-problem locally, independently of the
larger context (so that the �best� plan for a given sub-problem is re-used whenever that sub-
problem is encountered). Dynamic programming is not guaranteed to �nd the fastest plan,
because the performance of plans is context-dependent on real machines (e.g., the contents
of the cache depend on the preceding computations); however, this approximation works
reasonably well in practice and greatly reduces the planning time. Other approximations,
such as restrictions on the types of loop-reorderings that are considered "Plans for higher
vector ranks" (Section 11.5.2.3: Plans for higher vector ranks), are described in [134].

Alternatively, there is an estimate mode that performs no timing measurements whatso-
ever, but instead minimizes a heuristic cost function. This can reduce the planner time by
several orders of magnitude, but with a signi�cant penalty observed in plan e�ciency; e.g.,
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a penalty of 20% is typical for moderate n . 213, whereas a factor of 2�3 can be su�ered for
large n & 216 [134]. Coming up with a better heuristic plan is an interesting open research
question; one di�culty is that, because FFT algorithms depend on factorization, knowing a
good plan for n does not immediately help one �nd a good plan for nearby n.

11.6 Generating Small FFT Kernels

The base cases of FFTW's recursive plans are its codelets, and these form a critical compo-
nent of FFTW's performance. They consist of long blocks of highly optimized, straight-line
code, implementing many special cases of the DFT that give the planner a large space of
plans in which to optimize. Not only was it impractical to write numerous codelets by hand,
but we also needed to rewrite them many times in order to explore di�erent algorithms and
optimizations. Thus, we designed a special-purpose �FFT compiler� called gen�t that pro-
duces the codelets automatically from an abstract description. gen�t is summarized in this
section and described in more detail by [128].

A typical codelet in FFTW computes a DFT of a small, �xed size n (usually, n ≤ 64),
possibly with the input or output multiplied by twiddle factors "Cooley-Tukey plans" (Sec-
tion 11.5.2.2.2: Cooley-Tukey plans). Several other kinds of codelets can be produced by
gen�t , but we will focus here on this common case.

In principle, all codelets implement some combination of the Cooley-Tukey algorithm from
(11.2) and/or some other DFT algorithm expressed by a similarly compact formula. However,
a high-performance implementation of the DFT must address many more concerns than
(11.2) alone suggests. For example, (11.2) contains multiplications by 1 that are more
e�cient to omit. (11.2) entails a run-time factorization of n, which can be precomputed
if n is known in advance. (11.2) operates on complex numbers, but breaking the complex-
number abstraction into real and imaginary components turns out to expose certain non-
obvious optimizations. Additionally, to exploit the long pipelines in current processors, the
recursion implicit in (11.2) should be unrolled and re-ordered to a signi�cant degree. Many
further optimizations are possible if the complex input is known in advance to be purely
real (or imaginary). Our design goal for gen�t was to keep the expression of the DFT
algorithm independent of such concerns. This separation allowed us to experiment with
various DFT algorithms and implementation strategies independently and without (much)
tedious rewriting.

gen�t is structured as a compiler whose input consists of the kind and size of the desired
codelet, and whose output is C code. gen�t operates in four phases: creation, simpli�cation,
scheduling, and unparsing.

In the creation phase, gen�t produces a representation of the codelet in the form of a di-
rected acyclic graph (dag). The dag is produced according to well-known DFT algorithms:
Cooley-Tukey (11.2), prime-factor [278], split-radix [422], [107], [391], [230], [114], and Rader
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[309]. Each algorithm is expressed in a straightforward math-like notation, using complex
numbers, with no attempt at optimization. Unlike a normal FFT implementation, however,
the algorithms here are evaluated symbolically and the resulting symbolic expression is rep-
resented as a dag, and in particular it can be viewed as a linear network [98] (in which
the edges represent multiplication by constants and the vertices represent additions of the
incoming edges).

In the simpli�cation phase, gen�t applies local rewriting rules to each node of the dag
in order to simplify it. This phase performs algebraic transformations (such as eliminating
multiplications by 1) and common-subexpression elimination. Although such transforma-
tions can be performed by a conventional compiler to some degree, they can be carried
out here to a greater extent because gen�t can exploit the speci�c problem domain. For
example, two equivalent subexpressions can always be detected, even if the subexpressions
are written in algebraically di�erent forms, because all subexpressions compute linear func-
tions. Also, gen�t can exploit the property that network transposition (reversing the
direction of every edge) computes the transposed linear operation [98], in order to transpose
the network, simplify, and then transpose back�this turns out to expose additional com-
mon subexpressions [128]. In total, these simpli�cations are su�ciently powerful to derive
DFT algorithms specialized for real and/or symmetric data automatically from the complex
algorithms. For example, it is known that when the input of a DFT is real (and the output
is hence conjugate-symmetric), one can save a little over a factor of two in arithmetic cost
by specializing FFT algorithms for this case�with gen�t , this specialization can be done
entirely automatically, pruning the redundant operations from the dag, to match the lowest
known operation count for a real-input FFT starting only from the complex-data algorithm
[128], [202]. We take advantage of this property to help us implement real-data DFTs [128],
[134], to exploit machine-speci�c �SIMD� instructions "SIMD instructions" (Section 11.6.1:
SIMD instructions) [134], and to generate codelets for the discrete cosine (DCT) and sine
(DST) transforms [128], [202]. Furthermore, by experimentation we have discovered addi-
tional simpli�cations that improve the speed of the generated code. One interesting example
is the elimination of negative constants [128]: multiplicative constants in FFT algorithms
often come in positive/negative pairs, but every C compiler we are aware of will generate
separate load instructions for positive and negative versions of the same constants.12 We
thus obtained a 10�15% speedup by making all constants positive, which involves propagat-
ing minus signs to change additions into subtractions or vice versa elsewhere in the dag (a
daunting task if it had to be done manually for tens of thousands of lines of code).

In the scheduling phase, gen�t produces a topological sort of the dag (a schedule). The
goal of this phase is to �nd a schedule such that a C compiler can subsequently perform a
good register allocation. The scheduling algorithm used by gen�t o�ers certain theoretical
guarantees because it has its foundations in the theory of cache-oblivious algorithms [137]
(here, the registers are viewed as a form of cache), as described in "Memory strategies in

12Floating-point constants must be stored explicitly in memory; they cannot be embedded directly into
the CPU instructions like integer �immediate� constants.
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FFTW" (Section 11.4.3: Memory strategies in FFTW). As a practical matter, one conse-
quence of this scheduler is that FFTW's machine-independent codelets are no slower than
machine-speci�c codelets generated by SPIRAL [420].

In the stock gen�t implementation, the schedule is �nally unparsed to C. A variation from
[127] implements the rest of a compiler back end and outputs assembly code.

11.6.1 SIMD instructions

Unfortunately, it is impossible to attain nearly peak performance on current popular pro-
cessors while using only portable C code. Instead, a signi�cant portion of the available
computing power can only be accessed by using specialized SIMD (single-instruction multi-
ple data) instructions, which perform the same operation in parallel on a data vector. For
example, all modern �x86� processors can execute arithmetic instructions on �vectors� of four
single-precision values (SSE instructions) or two double-precision values (SSE2 instructions)
at a time, assuming that the operands are arranged consecutively in memory and satisfy
a 16-byte alignment constraint. Fortunately, because nearly all of FFTW's low-level code
is produced by gen�t , machine-speci�c instructions could be exploited by modifying the
generator�the improvements are then automatically propagated to all of FFTW's codelets,
and in particular are not limited to a small set of sizes such as powers of two.

SIMD instructions are super�cially similar to �vector processors�, which are designed to per-
form the same operation in parallel on an all elements of a data array (a �vector�). The
performance of �traditional� vector processors was best for long vectors that are stored in
contiguous memory locations, and special algorithms were developed to implement the DFT
e�ciently on this kind of hardware [372], [166]. Unlike in vector processors, however, the
SIMD vector length is small and �xed (usually 2 or 4). Because microprocessors depend
on caches for performance, one cannot naively use SIMD instructions to simulate a long-
vector algorithm: while on vector machines long vectors generally yield better performance,
the performance of a microprocessor drops as soon as the data vectors exceed the capac-
ity of the cache. Consequently, SIMD instructions are better seen as a restricted form of
instruction-level parallelism than as a degenerate �avor of vector parallelism, and di�erent
DFT algorithms are required.

The technique used to exploit SIMD instructions in gen�t is most easily understood for
vectors of length two (e.g., SSE2). In this case, we view a complex DFT as a pair of real
DFTs:

DFT (A+ i ·B) = DFT (A) + i ·DFT (B) , (11.7)

where A and B are two real arrays. Our algorithm computes the two real DFTs in parallel
using SIMD instructions, and then it combines the two outputs according to (11.7). This
SIMD algorithm has two important properties. First, if the data is stored as an array of
complex numbers, as opposed to two separate real and imaginary arrays, the SIMD loads
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and stores always operate on correctly-aligned contiguous locations, even if the the complex
numbers themselves have a non-unit stride. Second, because the algorithm �nds two-way
parallelism in the real and imaginary parts of a single DFT (as opposed to performing two
DFTs in parallel), we can completely parallelize DFTs of any size, not just even sizes or
powers of 2.

11.7 Numerical Accuracy in FFTs

An important consideration in the implementation of any practical numerical algorithm is
numerical accuracy: how quickly do �oating-point roundo� errors accumulate in the course
of the computation? Fortunately, FFT algorithms for the most part have remarkably good
accuracy characteristics. In particular, for a DFT of length n computed by a Cooley-Tukey
algorithm with �nite-precision �oating-point arithmetic, the worst-case error growth is
O (logn) [139], [373] and the mean error growth for random inputs is only O

(√
logn

)
[326],

[373]. This is so good that, in practical applications, a properly implemented FFT will rarely
be a signi�cant contributor to the numerical error.

The amazingly small roundo� errors of FFT algorithms are sometimes explained incorrectly
as simply a consequence of the reduced number of operations: since there are fewer operations
compared to a naive O (n2) algorithm, the argument goes, there is less accumulation of
roundo� error. The real reason, however, is more subtle than that, and has to do with the
ordering of the operations rather than their number. For example, consider the computation
of only the output Y [0] in the radix-2 algorithm of p. ??, ignoring all of the other outputs of
the FFT. Y [0] is the sum of all of the inputs, requiring n− 1 additions. The FFT does not
change this requirement, it merely changes the order of the additions so as to re-use some
of them for other outputs. In particular, this radix-2 DIT FFT computes Y [0] as follows:
it �rst sums the even-indexed inputs, then sums the odd-indexed inputs, then adds the two
sums; the even- and odd-indexed inputs are summed recursively by the same procedure.
This process is sometimes called cascade summation, and even though it still requires
n − 1 total additions to compute Y [0] by itself, its roundo� error grows much more slowly
than simply adding X [0], X [1], X [2] and so on in sequence. Speci�cally, the roundo� error
when adding up n �oating-point numbers in sequence grows as O (n) in the worst case,
or as O (

√
n) on average for random inputs (where the errors grow according to a random

walk), but simply reordering these n-1 additions into a cascade summation yields O (logn)
worst-case and O

(√
logn

)
average-case error growth [182].

However, these encouraging error-growth rates only apply if the trigonometric �twiddle�
factors in the FFT algorithm are computed very accurately. Many FFT implementations,
including FFTW and common manufacturer-optimized libraries, therefore use precomputed
tables of twiddle factors calculated by means of standard library functions (which compute
trigonometric constants to roughly machine precision). The other common method to com-
pute twiddle factors is to use a trigonometric recurrence formula�this saves memory (and
cache), but almost all recurrences have errors that grow as O (

√
n), O (n), or even O (n2)
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[374], which lead to corresponding errors in the FFT. For example, one simple recurrence is
ei(k+1)θ = eikθeiθ, multiplying repeatedly by eiθ to obtain a sequence of equally spaced angles,
but the errors when using this process grow as O (n) [374]. A common improved recurrence
is ei(k+1)θ = eikθ + eikθ

(
eiθ − 1

)
, where the small quantity13 eiθ − 1 = cos (θ)− 1 + isin (θ) is

computed using cos (θ)− 1 = −2sin2 (θ/2) [341]; unfortunately, the error using this method
still grows as O (

√
n) [374], far worse than logarithmic.

There are, in fact, trigonometric recurrences with the same logarithmic error growth as the
FFT, but these seem more di�cult to implement e�ciently; they require that a table of
Θ (logn) values be stored and updated as the recurrence progresses [42], [374]. Instead, in
order to gain at least some of the bene�ts of a trigonometric recurrence (reduced memory
pressure at the expense of more arithmetic), FFTW includes several ways to compute a much
smaller twiddle table, from which the desired entries can be computed accurately on the �y
using a bounded number (usually < 3) of complex multiplications. For example, instead of
a twiddle table with n entries ωkn, FFTW can use two tables with Θ (

√
n) entries each, so

that ωkn is computed by multiplying an entry in one table (indexed with the low-order bits
of k) by an entry in the other table (indexed with the high-order bits of k).

There are a few non-Cooley-Tukey algorithms that are known to have worse error charac-
teristics, such as the �real-factor� algorithm [313], [114], but these are rarely used in practice
(and are not used at all in FFTW). On the other hand, some commonly used algorithms for
type-I and type-IV discrete cosine transforms [372], [290], [73] have errors that we observed
to grow as

√
n even for accurate trigonometric constants (although we are not aware of any

theoretical error analysis of these algorithms), and thus we were forced to use alternative
algorithms [134].

To measure the accuracy of FFTW, we compare against a slow FFT implemented in
arbitrary-precision arithmetic, while to verify the correctness we have found the O (nlogn)
self-test algorithm of [122] very useful.

11.8 Concluding Remarks

It is unlikely that many readers of this chapter will ever have to implement their own fast
Fourier transform software, except as a learning exercise. The computation of the DFT,
much like basic linear algebra or integration of ordinary di�erential equations, is so central to
numerical computing and so well-established that robust, �exible, highly optimized libraries
are widely available, for the most part as free/open-source software. And yet there are
many other problems for which the algorithms are not so �nalized, or for which algorithms
are published but the implementations are unavailable or of poor quality. Whatever new
problems one comes across, there is a good chance that the chasm between theory and
e�cient implementation will be just as large as it is for FFTs, unless computers become

13In an FFT, the twiddle factors are powers of ωn, so θ is a small angle proportional to 1/n and eiθ is
close to 1.
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much simpler in the future. For readers who encounter such a problem, we hope that these
lessons from FFTW will be useful:

• Generality and portability should almost always come �rst.
• The number of operations, up to a constant factor, is less important than the order of

operations.
• Recursive algorithms with large base cases make optimization easier.
• Optimization, like any tedious task, is best automated.
• Code generation reconciles high-level programming with low-level performance.

We should also mention one �nal lesson that we haven't discussed in this chapter: you can't
optimize in a vacuum, or you end up congratulating yourself for making a slow program
slightly faster. We started the FFTW project after downloading a dozen FFT implementa-
tions, benchmarking them on a few machines, and noting how the winners varied between
machines and between transform sizes. Throughout FFTW's development, we continued to
bene�t from repeated benchmarks against the dozens of high-quality FFT programs available
online, without which we would have thought FFTW was �complete� long ago.
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Chapter 12

Algorithms for Data with Restrictions1

12.1 Algorithms for Real Data

Many applications involve processing real data. It is ine�cient to simply use a complex FFT
on real data because arithmetic would be performed on the zero imaginary parts of the input,
and, because of symmetries, output values would be calculated that are redundant. There
are several approaches to developing special algorithms or to modifying complex algorithms
for real data.

There are two methods which use a complex FFT in a special way to increase e�ciency [39],
[359]. The �rst method uses a length-N complex FFT to compute two length-N real FFTs
by putting the two real data sequences into the real and the imaginary parts of the input
to a complex FFT. Because transforms of real data have even real parts and odd imaginary
parts, it is possible to separate the transforms of the two inputs with 2N-4 extra additions.
This method requires, however, that two inputs be available at the same time.

The second method [359] uses the fact that the last stage of a decimation-in-time radix-2
FFT combines two independent transforms of length N/2 to compute a length-N transform.
If the data are real, the two half length transforms are calculated by the method described
above and the last stage is carried out to calculate the total length-N FFT of the real data.
It should be noted that the half-length FFT does not have to be calculated by a radix-2
FFT. In fact, it should be calculated by the most e�cient complex-data algorithm possible,
such as the SRFFT or the PFA. The separation of the two half-length transforms and the
computation of the last stage requiresN−6 real multiplications and (5/2)N−6 real additions
[359].

It is possible to derive more e�cient real-data algorithms directly rather than using a complex
FFT. The basic idea is from Bergland [21], [22] and Sande [325] which, at each stage, uses
the symmetries of a constant radix Cooley-Tukey FFT to minimize arithmetic and storage.
In the usual derivation [275] of the radix-2 FFT, the length-N transform is written as the

1This content is available online at <http://cnx.org/content/m16338/1.5/>.
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combination of the length-N/2 DFT of the even indexed data and the length-N/2 DFT
of the odd indexed data. If the input to each half-length DFT is real, the output will
have Hermitian symmetry. Hence the output of each stage can be arranged so that the
results of that stage stores the complex DFT with the real part located where half of the
DFT would have gone, and the imaginary part located where the conjugate would have
gone. This removes most of the redundant calculations and storage but slightly complicates
the addressing. The resulting butter�y structure for this algorithm [359] resembles that
for the fast Hartley transform [353]. The complete algorithm has one half the number of
multiplications and N-2 fewer than half the additions of the basic complex FFT. Applying
this approach to the split-radix FFT gives a particularly interesting algorithm [103], [359],
[111].

Special versions of both the PFA and WFTA can also be developed for real data. Because the
operations in the stages of the PFA can be commuted, it is possible to move the combination
of the transform of the real part of the input and imaginary part to the last stage. Because
the imaginary part of the input is zero, half of the algorithm is simply omitted. This results
in the number of multiplications required for the real transform being exactly half of that
required for complex data and the number of additions being about N less than half that
required for the complex case because adding a pure real number to a pure imaginary number
does not require an actual addition. Unfortunately, the indexing and data transfer becomes
somewhat more complicated [179], [359]. A similar approach can be taken with the WFTA
[179], [359], [284].

12.2 Special Algorithms for input Data that is mostly Zero,

for Calculating only a few Outputs, or where the Sampling

is not Uniform

In some cases, most of the data to be transformed are zero. It is clearly wasteful to do
arithmetic on that zero data. Another special case is when only a few DFT values are
needed. It is likewise wasteful to calculate outputs that are not needed. We use a process
called �pruning" to remove the unneeded operations.

In other cases, the data are non-uniform sampling of a continuous time signal [13].

12.3 Algorithms for Approximate DFTs

There are applications where approximations to the DFT are all that is needed.[161], [163]



Chapter 13

Convolution Algorithms1

13.1 Fast Convolution by the FFT

One of the main applications of the FFT is to do convolution more e�ciently than the direct
calculation from the de�nition which is:

y (n) =
n∑

m=0

h (m) x (n−m) (13.1)

which can also be written as:

y (n) =
n∑

m=0

x (m) h (n−m) (13.2)

This is often used to �lter a signal x (n) with a �lter whose impulse response is h (n). Each
output value y (n) requires N multiplications and N − 1 additions if y (n) has N terms. So,
for N output values, on the order of N2 arithmetic operations are required.

Because the DFT converts convolution to multiplication:

DFT{y (n)} = DFT{h (n)} DFT{x (n)} (13.3)

can be calculated with the FFT and bring the order of arithmetic operations down to
Nlog (N) which can be signi�cate with large N .

This approach, which is called �fast convolutions", is a form of block processing since a whole
block of x (n) must be available to calculate even one output value, y (n). So, a time delay
of one block length is always required. Another problem is the �ltering use of convolution
is usually non-cyclic and the convolution implemented with the DFT is cyclic. This is dealt
with by appending zeros to x (n) and h (n) such that the output of the cyclic convolution
gives one block of the output of the desired non-cyclic convolution.

1This content is available online at <http://cnx.org/content/m16339/1.6/>.
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For �ltering and some other applications, one want �on going" convolution where the �lter
response h (n) may be �nite in length or duration, but the input x (n) is of arbitrary length.
Two methods have traditionally used to break the input into blocks and use the FFT to con-
volve the block so that the output that would have been calculated by directly implementing
(13.1) or (13.3) can be constructed e�ciently. These are called �overlap-add" and �over-lap
save".

13.1.1 Fast Convolution by Overlap-Add

In order to use the FFT to convolve (or �lter) a long input sequence x (n) with a �nite
length-M impulse response, h (n), we partition the input sequence in segments or blocks of
length L. Because convolution (or �ltering) is linear, the output is a linear sum of the result
of convolving the �rst block with h (n) plus the result of convolving the second block with
h (n), plus the rest. Each of these block convolutions can be calculated by using the FFT.
The output is the inverse FFT of the product of the FFT of x (n) and the FFT of h (n).
Since the number of arithmetic operation to calculate the convolution directly is on the order
of M2 and, if done with the FFT, is on the order of Mlog (M), there can be a great savings
by using the FFT for large M .

The reason this procedure is not totally straightforward, is the length of the output of
convolving a length-L block with a length-M �lter is of length L + M − 1. This means the
output blocks cannot simply be concatenated but must be overlapped and added, hence the
name for this algorithm is �Overlap-Add".

The second issue that must be taken into account is the fact that the overlap-add steps
need non-cyclic convolution and convolution by the FFT is cyclic. This is easily handled by
appending L− 1 zeros to the impulse response and M − 1 zeros to each input block so that
all FFTs are of length M + L − 1. This means there is no aliasing and the implemented
cyclic convolution gives the same output as the desired non-cyclic convolution.

The savings in arithmetic can be considerable when implementing convolution or performing
FIR digital �ltering. However, there are two penalties. The use of blocks introduces a delay
of one block length. None of the �rst block of output can be calculated until all of the �rst
block of input is available. This is not a problem for �o� line" or �batch" processing but can
be serious for real-time processing. The second penalty is the memory required to store and
process the blocks. The continuing reduction of memory cost often removes this problem.

The e�ciency in terms of number of arithmetic operations per output point increases for
large blocks because of theMlog (M) requirements of the FFT. However, the blocks become
very large (L > > M), much of the input block will be the appended zeros and e�ciency
is lost. For any particular application, taking the particular �lter and FFT algorithm being
used and the particular hardware being used, a plot of e�ciency vs. block length, L should
be made and L chosen to maximize e�ciency given any other constraints that are applicable.
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Usually, the block convolutions are done by the FFT, but they could be done by any ef-
�cient, �nite length method. One could use �rectangular transforms" or �number-theoretic
transforms". A generalization of this method is presented later in the notes.

13.1.2 Fast Convolution by Overlap-Save

An alternative approach to the Overlap-Add can be developed by starting with segmenting
the output rather than the input. If one considers the calculation of a block of output, it
is seen that not only the corresponding input block is needed, but part of the preceding
input block also needed. Indeed, one can show that a length M + L − 1 segment of the
input is needed for each output block. So, one saves the last part of the preceding block and
concatenates it with the current input block, then convolves that with h (n) to calculate the
current output

13.2 Block Processing, a Generalization of Overlap Meth-

ods

Convolution is intimately related to the DFT. It was shown in The DFT as Convolution or
Filtering (Chapter 5) that a prime length DFT could be converted to cyclic convolution. It
has been long known [276] that convolution can be calculated by multiplying the DFTs of
signals.

An important question is what is the fastest method for calculating digital convolution.
There are several methods that each have some advantage. The earliest method for fast
convolution was the use of sectioning with overlap-add or overlap-save and the FFT [276],
[300], [66]. In most cases the convolution is of real data and, therefore, real-data FFTs
should be used. That approach is still probably the fastest method for longer convolution
on a general purpose computer or microprocessor. The shorter convolutions should simply
be calculated directly.

13.3 Introduction

The partitioning of long or in�nite strings of data into shorter sections or blocks has been
used to allow application of the FFT to realize on-going or continuous convolution [368],
[181]. This section develops the idea of block processing and shows that it is a generalization
of the overlap-add and overlap-save methods [368], [147]. They further generalize the idea to
a multidimensional formulation of convolution [3], [47]. Moving in the opposite direction, it
is shown that, rather than partitioning a string of scalars into blocks and then into blocks of
blocks, one can partition a scalar number into blocks of bits and then include the operation
of multiplication in the signal processing formulation. This is called distributed arithmetic
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[45] and, since it describes operations at the bit level, is completely general. These notes try
to present a coherent development of these ideas.

13.4 Block Signal Processing

In this section the usual convolution and recursion that implements FIR and IIR discrete-
time �lters are reformulated in terms of vectors and matrices. Because the same data is
partitioned and grouped in a variety of ways, it is important to have a consistent notation
in order to be clear. The nth element of a data sequence is expressed h (n) or, in some cases
to simplify, hn. A block or �nite length column vector is denoted hn with n indicating the
nth block or section of a longer vector. A matrix, square or rectangular, is indicated by an
upper case letter such as H with a subscript if appropriate.

13.4.1 Block Convolution

The operation of a �nite impulse response (FIR) �lter is described by a �nite convolution as

y (n) =
L−1∑
k=0

h (k) x (n− k) (13.4)

where x (n) is causal, h (n) is causal and of length L, and the time index n goes from zero
to in�nity or some large value. With a change of index variables this becomes

y (n) =
n∑
k=0

h (n− k) x (k) (13.5)

which can be expressed as a matrix operation by
y0

y1

y2

...

 =


h0 0 0 · · · 0

h1 h0 0

h2 h1 h0

...
...




x0

x1

x2

...

 . (13.6)

The H matrix of impulse response values is partitioned into N by N square sub matrices
and the X and Y vectors are partitioned into length-N blocks or sections. This is illustrated
for N = 3 by

H0 =


h0 0 0

h1 h0 0

h2 h1 h0

 H1 =


h3 h2 h1

h4 h3 h2

h5 h4 h3

 etc. (13.7)
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x0 =


x0

x1

x2

 x1 =


x3

x4

x5

 y
0

=


y0

y1

y2

 etc. (13.8)

Substituting these de�nitions into (13.6) gives
y

0

y
1

y
2
...

 =


H0 0 0 · · · 0

H1 H0 0

H2 H1 H0

...
...




x0

x1

x2

...

 (13.9)

The general expression for the nth output block is

y
n

=
n∑
k=0

Hn−k xk (13.10)

which is a vector or block convolution. Since the matrix-vector multiplication within the
block convolution is itself a convolution, (13.11) is a sort of convolution of convolutions and
the �nite length matrix-vector multiplication can be carried out using the FFT or other fast
convolution methods.

The equation for one output block can be written as the product

y
2

= [H2H1H0]


x0

x1

x2

 (13.11)

and the e�ects of one input block can be written
H0

H1

H2

x1 =


y

0

y
1

y
2

 . (13.12)

These are generalize statements of overlap save and overlap add [368], [147]. The block
length can be longer, shorter, or equal to the �lter length.

13.4.2 Block Recursion

Although less well-known, IIR �lters can be implemented with block processing [145], [74],
[396], [43], [44]. The block form of an IIR �lter is developed in much the same way as for
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the block convolution implementation of the FIR �lter. The general constant coe�cient
di�erence equation which describes an IIR �lter with recursive coe�cients al, convolution
coe�cients bk, input signal x (n), and output signal y (n) is given by

y (n) =
N−1∑
l=1

al yn−l +
M−1∑
k=0

bk xn−k (13.13)

using both functional notation and subscripts, depending on which is easier and clearer.
The impulse response h (n) is

h (n) =
N−1∑
l=1

al h (n− l) +
M−1∑
k=0

bk δ (n− k) (13.14)

which can be written in matrix operator form

1 0 0 · · · 0

a1 1 0

a2 a1 1

a3 a2 a1

0 a3 a2

...
...





h0

h1

h2

h3

h4

...


=



b0

b1

b2

b3

0
...


(13.15)

In terms of N by N submatrices and length-N blocks, this becomes
A0 0 0 · · · 0

A1 A0 0

0 A1 A0

...
...




h0

h1

h2

...

 =


b0

b1

0
...

 (13.16)

From this formulation, a block recursive equation can be written that will generate the
impulse response block by block.

A0 hn + A1 hn−1 = 0 for n ≥ 2 (13.17)

hn = −A−1
0 A1 hn−1 = K hn−1 for n ≥ 2 (13.18)

with initial conditions given by

h1 = −A−1
0 A1A

−1
0 b0 + A−1

0 b1 (13.19)
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This can also be written to generate the square partitions of the impulse response matrix
by

Hn = KHn−1 for n ≥ 2 (13.20)

with initial conditions given by

H1 = KA−1
0 B0 + A−1

0 B1 (13.21)

ane K = −A−1
0 A1. This recursively generates square submatrices of H similar to those

de�ned in (13.7) and (13.9) and shows the basic structure of the dynamic system.

Next, we develop the recursive formulation for a general input as described by the scalar
di�erence equation (13.14) and in matrix operator form by

1 0 0 · · · 0

a1 1 0

a2 a1 1

a3 a2 a1

0 a3 a2

...
...





y0

y1

y2

y3

y4

...


=



b0 0 0 · · · 0

b1 b0 0

b2 b1 b0

0 b2 b1

0 0 b2
...

...





x0

x1

x2

x3

x4

...


(13.22)

which, after substituting the de�nitions of the sub matrices and assuming the block length
is larger than the order of the numerator or denominator, becomes

A0 0 0 · · · 0

A1 A0 0

0 A1 A0

...
...




y

0

y
1

y
2
...

 =


B0 0 0 · · · 0

B1 B0 0

0 B1 B0

...
...




x0

x1

x2

...

 . (13.23)

From the partitioned rows of (13.24), one can write the block recursive relation

A0 yn+1
+ A1 yn = B0 xn+1 +B1 xn (13.24)

Solving for y
n+1

gives

y
n+1

= −A−1
0 A1 yn + A−1

0 B0 xn+1 + A−1
0 B1 xn (13.25)

y
n+1

= K y
n

+H0 xn+1 + H̃1 xn (13.26)

which is a �rst order vector di�erence equation [43], [44]. This is the fundamental block
recursive algorithm that implements the original scalar di�erence equation in (13.14). It has
several important characteristics.
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• The block recursive formulation is similar to a state variable equation but the states
are blocks or sections of the output [44], [220], [427], [428].

• The eigenvalues of K are the poles of the original scalar problem raised to the N power
plus others that are zero. The longer the block length, the �more stable" the �lter is,
i.e. the further the poles are from the unit circle [43], [44], [427], [15], [16].

• If the block length were shorter than the denominator, the vector di�erence equation
would be higher than �rst order. There would be a non zero A2. If the block length
were shorter than the numerator, there would be a non zero B2 and a higher order
block convolution operation. If the block length were one, the order of the vector
equation would be the same as the scalar equation. They would be the same equation.

• The actual arithmetic that goes into the calculation of the output is partly recursive
and partly convolution. The longer the block, the more the output is calculated by
convolution and, the more arithmetic is required.

• It is possible to remove the zero eigenvalues in K by making K rectangular or square
and N by N This results in a form even more similar to a state variable formulation
[240], [44]. This is brie�y discussed below in section 2.3.

• There are several ways of using the FFT in the calculation of the various matrix
products in (13.25) and in (13.27) and (13.28). Each has some arithmetic advantage
for various forms and orders of the original equation. It is also possible to implement
some of the operations using rectangular transforms, number theoretic transforms,
distributed arithmetic, or other e�cient convolution algorithms [44], [427], [54], [48],
[426], [286].

• By choosing the block length equal to the period, a periodically time varying �lter can
be made block time invariant. In other words, all the time varying characteristics are
moved to the �nite matrix multiplies which leave the time invariant properties at the
block level. This allows use of z-transform and other time-invariant methods to be
used for stability analysis and frequency response analysis [244], [245]. It also turns
out to be related to �lter banks and multi-rate �lters [222], [221], [97].

13.4.3 Block State Formulation

It is possible to reduce the size of the matrix operators in the block recursive description
(13.26) to give a form even more like a state variable equation [240], [44], [428]. If K in
(13.26) has several zero eigenvalues, it should be possible to reduce the size of K until it has
full rank. That was done in [44] and the result is

zn = K1 zn−1 +K2 xn (13.27)

y
n

= H1 zn−1 +H0 xn (13.28)
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where H0 is the same N by N convolution matrix, N1 is a rectangular L by N partition of
the convolution matrix H, K1 is a square N by N matrix of full rank, and K2 is a rectangular
N by L matrix.

This is now a minimal state equation whose input and output are blocks of the original input
and output. Some of the matrix multiplications can be carried out using the FFT or other
techniques.

13.4.4 Block Implementations of Digital Filters

The advantage of the block convolution and recursion implementations is a possible improve-
ment in arithmetic e�ciency by using the FFT or other fast convolution methods for some of
the multiplications in (13.10) or (13.25) [246], [247]. There is the reduction of quantization
e�ects due to an e�ective decrease in the magnitude of the eigenvalues and the possibility of
easier parallel implementation for IIR �lters. The disadvantages are a delay of at least one
block length and an increased memory requirement.

These methods could also be used in the various �ltering methods for evaluating the DFT.
This the chirp z-transform, Rader's method, and Goertzel's algorithm.

13.4.5 Multidimensional Formulation

This process of partitioning the data vectors and the operator matrices can be continued by
partitioning (13.10) and (13.24) and creating blocks of blocks to give a higher dimensional
structure. One should use index mapping ideas rather than partitioned matrices for this
approach [3], [47].

13.4.6 Periodically Time-Varying Discrete-Time Systems

Most time-varying systems are periodically time-varying and this allows special results to be
obtained. If the block length is set equal to the period of the time variations, the resulting
block equations are time invariant and all to the time varying characteristics are contained
in the matrix multiplications. This allows some of the tools of time invariant systems to be
used on periodically time-varying systems.

The PTV system is analyzed in [425], [97], [81], [244], the �lter analysis and design problem,
which includes the decimation�interpolation structure, is addressed in [126], [245], [222], and
the bandwidth compression problem in [221]. These structures can take the form of �lter
banks [387].

13.4.7 Multirate Filters, Filter Banks, and Wavelets

Another area that is related to periodically time varying systems and to block processing
is �lter banks [387], [152]. Recently the area of perfect reconstruction �lter banks has been
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further developed and shown to be closely related to wavelet based signal analysis [97], [99],
[151], [387]. The �lter bank structure has several forms with the polyphase and lattice being
particularly interesting.

An idea that has some elements of multirate �lters, perfect reconstruction, and distributed
arithmetic is given in [142], [140], [141]. Parks has noted that design of multirate �lters has
some elements in common with complex approximation and of 2-D �lter design [337], [338]
and is looking at using Tang's method for these designs.

13.4.8 Distributed Arithmetic

Rather than grouping the individual scalar data values in a discrete-time signal into blocks,
the scalar values can be partitioned into groups of bits. Because multiplication of integers,
multiplication of polynomials, and discrete-time convolution are the same operations, the bit-
level description of multiplication can be mixed with the convolution of the signal processing.
The resulting structure is called distributed arithmetic [45], [402]. It can be used to create
an e�cient table look-up scheme to implement an FIR or IIR �lter using no multiplications
by fetching previously calculated partial products which are stored in a table. Distributed
arithmetic, block processing, and multi-dimensional formulations can be combined into an
integrated powerful description to implement digital �lters and processors. There may be a
new form of distributed arithmetic using the ideas in [140], [141].

13.5 Direct Fast Convolution and Rectangular Transforms

A relatively new approach uses index mapping directly to convert a one dimensional con-
volution into a multidimensional convolution [47], [8]. This can be done by either a type-1
or type-2 map. The short convolutions along each dimension are then done by Winograd's
optimal algorithms. Unlike for the case of the DFT, there is no savings of arithmetic from
the index mapping alone. All the savings comes from e�cient short algorithms. In the case
of index mapping with convolution, the multiplications must be nested together in the cen-
ter of the algorithm in the same way as for the WFTA. There is no equivalent to the PFA
structure for convolution. The multidimensional convolution can not be calculated by row
and column convolutions as the DFT was by row and column DFTs.

It would �rst seem that applying the index mapping and optimal short algorithms directly
to convolution would be more e�cient than using DFTs and converting them to convolution
to be calculated by the same optimal algorithms. In practical algorithms, however, the DFT
method seems to be more e�cient [286].

A method that is attractive for special purpose hardware uses distributed arithmetic [45].
This approach uses a table look up of precomputed partial products to produce a system
that does convolution without requiring multiplications [79].
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Another method that requires special hardware uses number theoretic transforms [31], [237],
[265] to calculate convolution. These transforms are de�ned over �nite �elds or rings with
arithmetic performed modulo special numbers. These transforms have rather limited �exi-
bility, but when they can be used, they are very e�cient.

13.6 Number Theoretic Transforms for Convolution

13.6.1 Results from Number Theory

A basic review of the number theory useful for signal processing algorithms will be given
here with speci�c emphasis on the congruence theory for number theoretic transforms [279],
[165], [260], [237], [328].

13.6.2 Number Theoretic Transforms

Here we look at the conditions placed on a general linear transform in order for it to support
cyclic convolution. The form of a linear transformation of a length-N sequence of number is
given by

X (k) =
N−1∑
n=0

t (n, k) x (n) (13.29)

for k = 0, 1, · · · , (N − 1). The de�nition of cyclic convolution of two sequences is given by

y (n) =
N−1∑
m=0

x (m) h (n−m) (13.30)

for n = 0, 1, · · · , (N − 1) and all indices evaluated modulo N. We would like to �nd the
properties of the transformation such that it will support the cyclic convolution. This means
that if X (k), H (k), and Y (k) are the transforms of x (n), h (n), and y (n) respectively,

Y (k) = X (k) H (k) . (13.31)

The conditions are derived by taking the transform de�ned in (13.4) of both sides of equation
(13.5) which gives

Y (k) =
N−1∑
n=0

t (n, k)
N−1∑
m=0

x (m) h (n−m) (13.32)

=
N−1∑
m=0

N−1∑
n=0

x (m) h (n−m) t (n, k) . (13.33)
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Making the change of index variables, l = n−m, gives

=
N−1∑
m=0

N−1∑
l=0

x (m) h (l) t (l +m, k) . (13.34)

But from (13.6), this must be

Y (k) =
N−1∑
n=0

x (n) t (n, k)
N−1∑
m=0

x (m) t (m, k) (13.35)

=
N−1∑
m=0

N−1∑
l=0

x (m) h (l) t (n, k) t (l, k) . (13.36)

This must be true for all x (n), h (n), and k, therefore from (13.9) and (13.11) we have

t (m+ l, k) = t (m, k) t (l, k) (13.37)

For l = 0 we have

t (m, k) = t (m, k) t (0, k) (13.38)

and, therefore, t (0, k) = 1. For l = m we have

t (2m, k) = t (m, k) t (m, k) = t2 (m, k) (13.39)

For l = pm we likewise have

t (pm, k) = tp (m, k) (13.40)

and, therefore,

tN (m, k) = t (Nm, k) = t (0, k) = 1. (13.41)

But

t (m, k) = tm (1, k) = tk (m, 1) , (13.42)

therefore,

t (m, k) = tmk (1, 1) . (13.43)

De�ning t (1, 1) = α gives the form for our general linear transform (13.4) as

X (k) =
N−1∑
n=0

αnk x (n) (13.44)

where α is a root of order N , which means that N is the smallest integer such that αN = 1.
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Theorem 1 The transform (13.13) supports cyclic convolution if and only if α is a root of
order N and N−1 is de�ned.

This is discussed in [2], [4].

Theorem 2 The transform (13.13) supports cyclic convolution if and only if

N |O (M) (13.45)

where

O (M) = gcd{p1 − 1, p2 − 1, · · · , pl − 1} (13.46)

and

M = pr11 pr22 · · · p
rl
l . (13.47)

This theorem is a more useful form of Theorem 1. Notice that Nmax = O (M).

One needs to �nd appropriate N , M , and α such that

• N should be appropriate for a fast algorithm and handle the desired sequence lengths.

• M should allow the desired dynamic range of the signals and should allow simple
modular arithmetic.

• α should allow a simple multiplication for αnk x (n).

We see that if M is even, it has a factor of 2 and, therefore, O (M) = Nmax = 1 which
implies M should be odd. If M is prime the O (M) = M − 1 which is as large as could be
expected in a �eld of M integers. For M = 2k − 1, let k be a composite k = pq where p is
prime. Then 2p−1 divides 2pq−1 and the maximum possible length of the transform will be
governed by the length possible for 2p − 1. Therefore, only the prime k need be considered
interesting. Numbers of this form are know as Mersenne numbers and have been used by
Rader [311]. For Mersenne number transforms, it can be shown that transforms of length
at least 2p exist and the corresponding α = −2. Mersenne number transforms are not of as
much interest because 2p is not highly composite and, therefore, we do not have FFT-type
algorithms.

For M = 2k + 1 and k odd, 3 divides 2k + 1 and the maximum possible transform length is
2. Thus we consider only even k. Let k = s2t, where s is an odd integer. Then 22t divides
2s2

t
+ 1 and the length of the possible transform will be governed by the length possible for

22t + 1. Therefore, integers of the form M = 22t + 1 are of interest. These numbers are
known as Fermat numbers [311]. Fermat numbers are prime for 0 ≤ t ≤ 4 and are composite
for all t ≥ 5.

Since Fermat numbers up to F4 are prime, O (Ft) = 2b where b = 2t and we can have a
Fermat number transform for any length N = 2m where m ≤ b. For these Fermat primes
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the integer α = 3 is of order N = 2b allowing the largest possible transform length. The
integer α = 2 is of order N = 2b = 2t+1. This is particularly attractive since α to a power is
multiplied times the data values in (13.4).

The following table gives possible parameters for various Fermat number moduli.

t b M = Ft N2 N√2 Nmax α for Nmax

3 8 28 + 1 16 32 256 3

4 16 216 + 1 32 64 65536 3

5 32 232 + 1 64 128 128
√

2

6 64 264 + 1 128 256 256
√

2

Table 13.1

This table gives values of N for the two most important values of α which are 2 and
√

2. The
second column give the approximate number of bits in the number representation. The third
column gives the Fermat number modulus, the fourth is the maximum convolution length
for α = 2, the �fth is the maximum length for α =

√
2, the sixth is the maximum length

for any α, and the seventh is the α for that maximum length. Remember that the �rst two
rows have a Fermat number modulus which is prime and second two rows have a composite
Fermat number as modulus. Note the di�erences.

The books, articles, and presentations that discuss NTT and related topics are [209], [237],
[265], [31], [253], [257], [288], [312], [311], [1], [55], [2], [4]. A recent book discusses NT in a
signal processing context [215].
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Comments: Fast Fourier Transforms1

14.1 Other work and Results

This section comes from a note describing results on e�cient algorithms to calculate the
discrete Fourier transform (DFT) that were collected over years. Perhaps the most interesting
is the discovery that the Cooley-Tukey FFT was described by Gauss in 1805 [175]. That
gives some indication of the age of research on the topic, and the fact that a 1995 compiled
bibliography [363] on e�cient algorithms contains over 3400 entries indicates its volume.
Three IEEE Press reprint books contain papers on the FFT [303], [84], [85]. An excellent
general purpose FFT program has been described in [132], [129] and is used in Matlab and
available over the internet.

In addition to this book there are several others [238], [266], [25], [170], [383], [254], [33], [37],
[345] that give a good modern theoretical background for the FFT, one book [67] that gives
the basic theory plus both FORTRAN and TMS 320 assembly language programs, and other
books [219], [348], [70] that contain chapters on advanced FFT topics. A good up-to-date,
on-line reference with both theory and programming techniques is in [11]. The history of the
FFT is outlined in [87], [175] and excellent survey articles can be found in [115], [93]. The
foundation of much of the modern work on e�cient algorithms was done by S. Winograd.
These results can be found in [412], [415], [418]. An outline and discussion of his theorems
can be found in [219] as well as [238], [266], [25], [170].

E�cient FFT algorithms for length-2M were described by Gauss and discovered in modern
times by Cooley and Tukey [91]. These have been highly developed and good examples of
FORTRAN programs can be found in [67]. Several new algorithms have been published
that require the least known amount of total arithmetic [423], [108], [104], [229], [394], [71].
Of these, the split-radix FFT [108], [104], [392], [366] seems to have the best structure for
programming, and an e�cient program has been written [351] to implement it. A mixture of
decimation-in-time and decimation-in-frequency with very good e�ciency is given in [323],
[324] and one called the Sine-Cosine FT [71]. Recently a modi�cation to the split-radix algo-

1This content is available online at <http://cnx.org/content/m16434/1.6/>.
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rithm has been described [203] that has a slightly better total arithmetic count. Theoretical
bounds on the number of multiplications required for the FFT based on Winograd's theories
are given in [170], [172]. Schemes for calculating an in-place, in-order radix-2 FFT are given
in [17], [19], [196], [379]. Discussion of various forms of unscramblers is given in [51], [321],
[186], [123], [318], [400], [424], [370], [315]. A discussion of the relation of the computer
architecture, algorithm and compiler can be found in [251], [242]. A modi�cation to allow
lengths of N = q 2m for q odd is given in [24].

The �other� FFT is the prime factor algorithm (PFA) which uses an index map originally
developed by Thomas and by Good. The theory of the PFA was derived in [214] and further
developed and an e�cient in-order and in-place program given in [58], [67]. More results on
the PFA are given in [377], [378], [379], [380], [364]. A method has been developed to use
dynamic programming to design optimal FFT programs that minimize the number of addi-
tions and data transfers as well as multiplications [191]. This new approach designs custom
algorithms for a particular computer architecture. An e�cient and practical development
of Winograd's ideas has given a design method that does not require the rather di�cult
Chinese remainder theorem [219], [199] for short prime length FFT's. These ideas have been
used to design modules of length 11, 13, 17, 19, and 25 [189]. Other methods for designing
short DFT's can be found in [376], [223]. A use of these ideas with distributed arithmetic
and table look-up rather than multiplication is given in [80]. A program that implements
the nested Winograd Fourier transform algorithm (WFTA) is given in [238] but it has not
proven as fast or as versatile as the PFA [58]. An interesting use of the PFA was announced
[75] in searching for large prime numbers.

These e�cient algorithms can not only be used on DFT's but on other transforms with a
similar structure. They have been applied to the discrete Hartley transform [354], [36] and
the discrete cosine transform [394], [401], [314].

The fast Hartley transform has been proposed as a superior method for real data analysis
but that has been shown not to be the case. A well-designed real-data FFT [360] is always
as good as or better than a well-designed Hartley transform [354], [113], [289], [386], [371].
The Bruun algorithm [41], [369] also looks promising for real data applications as does the
Rader-Brenner algorithm [310], [76], [386]. A novel approach to calculating the inverse DFT
is given in [109].

General length algorithms include [340], [143], [125]. For lengths that are not highly com-
posite or prime, the chirp z-transform in a good candidate [67], [307] for longer lengths and
an e�cient order-N2 algorithm called the QFT [343], [157], [160] for shorter lengths. A
method which automatically generates near-optimal prime length Winograd based programs
has been given in [199], [330], [332], [334], [336]. This gives the same e�ciency for shorter
lengths (i.e. N ≤ 19) and new algorithms for much longer lengths and with well-structured
algorithms. Another approach is given in [285]. Special methods are available for very long
lengths [183], [365]. A very interesting general length FFT system called the FFTW has
been developed by Frigo and Johnson at MIT. It uses a library of e�cient �codelets" which
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are composed for a very e�cient calculation of the DFT on a wide variety of computers
[132], [129], [136]. For most lengths and on most computers, this is the fastest FFT today.
Surprisingly, it uses a recursive program structure. The FFTW won the 1999 Wilkinson
Prize for Numerical Software.

The use of the FFT to calculate discrete convolution was one of its earliest uses. Although
the more direct rectangular transform [9] would seem to be more e�cient, use of the FFT
or PFA is still probably the fastest method on a general purpose computer or DSP chip
[287], [360], [113], [241]. On special purpose hardware or special architectures, the use of
distributed arithmetic [80] or number theoretic transforms [5] may be even faster. Special
algorithms for use with the short-time Fourier transform [346] and for the calculation of a few
DFT values [349], [316], [347] and for recursive implementation [399], [129] have also been
developed. An excellent analysis of e�cient programming the FFT on DSP microprocessors
is given in [243], [242]. Formulations of the DFT in terms of tensor or Kronecker products
look promising for developing algorithms for parallel and vector computer architectures [361],
[383], [200], [390], [385], [154], [153].

Various approaches to calculating approximate DFTs have been based on cordic methods,
short word lengths, or some form of pruning. A new method that uses the characteristics of
the signals being transformed has combined the discrete wavelet transform (DWT) combined
with the DFT to give an approximate FFT with O (N) multiplications [162], [164], [69] for
certain signal classes. A similar approach has been developed using �lter banks [339], [185].

The study of e�cient algorithms not only has a long history and large bibliography, it is still
an exciting research �eld where new results are used in practical applications.

More information can be found on the Rice DSP Group's web page2

2http://www-dsp.rice.edu
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Chapter 15

Conclusions: Fast Fourier Transforms1

This book has developed a class of e�cient algorithms based on index mapping and polyno-
mial algebra. This provides a framework from which the Cooley-Tukey FFT, the split-radix
FFT, the PFA, and WFTA can be derived. Even the programs implementing these algo-
rithms can have a similar structure. Winograd's theorems were presented and shown to be
very powerful in both deriving algorithms and in evaluating them. The simple radix-2 FFT
provides a compact, elegant means for e�ciently calculating the DFT. If some elaboration
is allowed, signi�cant improvement can be had from the split-radix FFT, the radix-4 FFT
or the PFA. If multiplications are expensive, the WFTA requires the least of all.

Several method for transforming real data were described that are more e�cient than directly
using a complex FFT. A complex FFT can be used for real data by arti�cially creating a
complex input from two sections of real input. An alternative and slightly more e�cient
method is to construct a special FFT that utilizes the symmetries at each stage.

As computers move to multiprocessors and multicore, writing and maintaining e�cient pro-
grams becomes more and more di�cult. The highly structured form of FFTs allows auto-
matic generation of very e�cient programs that are tailored speci�cally to a particular DSP
or computer architecture.

For high-speed convolution, the traditional use of the FFT or PFA with blocking is proba-
bly the fastest method although rectangular transforms, distributed arithmetic, or number
theoretic transforms may have a future with special VLSI hardware.

The ideas presented in these notes can also be applied to the calculation of the discrete
Hartley transform [355], [112], the discrete cosine transform [119], [395], and to number
theoretic transforms [32], [239], [267].

There are many areas for future research. The relationship of hardware to algorithms, the
proper use of multiple processors, the proper design and use of array processors and vector
processors are all open. There are still many unanswered questions in multi-dimensional

1This content is available online at <http://cnx.org/content/m16340/1.5/>.
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algorithms where a simple extension of one-dimensional methods will not su�ce.



Chapter 16

Appendix 1: FFT Flowgraphs1

16.1 Signal Flow Graphs of Cooley-Tukey FFTs

The following four �gures are �ow graphs for Radix-2 Cooley-Tukey FFTs. The �rst is a
length-16, decimation-in-frequency Radix-2 FFT with the input data in order and output
data scrambled. The �rst stage has 8 length-2 "butter�ies" (which overlap in the �gure)
followed by 8 multiplications by powers of W which are called "twiddle factors". The second
stage has 2 length-8 FFTs which are each calculated by 4 butter�ies followed by 4 multiplies.
The third stage has 4 length-4 FFTs, each calculated by 2 butter�ies followed by 2 multiplies
and the last stage is simply 8 butter�ies followed by trivial multiplies by one. This �ow
graph should be compared with the index map in Chapter 3, the polynomial decomposition
in Chapter 4, and the program in Appendix 3. In the program, the butter�ies and twiddle
factor multiplications are done together in the inner most loop. The outter most loop indexes
through the stages. If the length of the FFT is a power of two, the number of stages is that
power (log N).

The second �gure below is a length-16, decimation-in-time FFT with the input data scram-
bled and output data in order. The �rst stage has 8 length-2 "butter�ies" followed by 8
twiddle factors multiplications. The second stage has 4 length-4 FFTs which are each cal-
culated by 2 butter�ies followed by 2 multiplies. The third stage has 2 length-8 FFTs, each
calculated by 4 butter�ies followed by 8 multiplies and the last stage is simply 8 length-2
butter�ies. This �ow graph should be compared with the index map in Chapter 3, the poly-
nomial decomposition in Chapter 4, and the program in Appendix 3. Here, the FFT must
be preceded by a scrambler.

The third and fourth �gures below are a length-16 decimation-in-frequency and a decimation-
in-time but, in contrast to the �gures above, the DIF has the output in order which requires
a scrambled input and the DIT has the input in order which requires the output be unscram-
bled. Compare with the �rst two �gures. Note the order of the twiddle factors. The number

1This content is available online at <http://cnx.org/content/m16352/1.9/>.
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of additions and multiplications in all four �ow graphs is the same and the structure of the
three-loop program which executes the �ow graph is the same.
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Figure 16.1: Length-16, Decimation-in-Frequency, In-order input, Radix-2 FFT
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Figure 16.2: Length-16, Decimation-in-Time, In-order output, Radix-2 FFT
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Figure 16.3: Length-16, alternate Decimation-in-Frequency, In-order output, Radix-2
FFT
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Figure 16.4: Length-16, alternate Decimation-in-Time, In-order input, Radix-2 FFT

The following is a length-16, decimation-in-frequency Radix-4 FFT with the input data in
order and output data scrambled. There are two stages with the �rst stage having 4 length-4
"butter�ies" followed by 12 multiplications by powers of W which are called "twiddle factors.
The second stage has 4 length-4 FFTs which are each calculated by 4 butter�ies followed
by 4 multiplies. Note, each stage here looks like two stages but it is one and there is only
one place where twiddle factor multiplications appear. This �ow graph should be compared
with the index map in Chapter 3, the polynomial decomposition in Chapter 4, and the
program in Appendix 3. Log to the base 4 of 16 is 2. The total number of twiddle factor
multiplication here is 12 compared to 24 for the radix-2. The unscrambler is a base-four
reverse order counter rather than a bit reverse counter, however, a modi�cation of the radix
four butter�ies will allow a bit reverse counter to be used with the radix-4 FFT as with the
radix-2.
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Figure 16.5: Length-16, Decimation-in-Frequency, In-order input, Radix-4 FFT

The following two �owgraphs are length-16, decimation-in-frequency Split Radix FFTs with
the input data in order and output data scrambled. Because the "butter�ies" are L shaped,
the stages do not progress uniformly like the Radix-2 or 4. These two �gures are the same
with the �rst drawn in a way to compare with the Radix-2 and 4, and the second to illustrate
the L shaped butter�ies. These �ow graphs should be compared with the index map in
Chapter 3 and the program in Appendix 3. Because of the non-uniform stages, the program
indexing is more complicated. Although the number of twiddle factor multiplications is 12
as was the radix-4 case, for longer lengths, the split-radix has slightly fewer multiplications
than the radix-4.

Because the structures of the radix-2, radix-4, and split-radix FFTs are the same, the number
of data additions is same for all of them. However, each complex twiddle factor multiplication
requires two real additions (and four real multiplications) the number of additions will be
fewer for the structures with fewer multiplications.
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Figure 16.6: Length-16, Decimation-in-Frequency, In-order input, Split-Radix FFT

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

W 0

W 1

W 2

W 2

W 0

W 3

W 0

W 4

W 6

W 3

W 6

W 9

X (0)

X (8)

X (4)

X (12)

X (2)

X (10)

X (6)

X (14)

X (1)

X (9)

X (5)

X (13)

X (3)

X (11)

X (7)

X (15)

Figure 16.7: Length-16, Decimation-in-Frequency, Split-Radix with special BFs FFT
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Appendix 2: Operation Counts for

General Length FFT1

17.1 Figures

The Glassman-Ferguson FFT is a compact implementation of a mixed-radix Cooley-Tukey
FFT with the short DFTs for each factor being calculated by a Goertzel-like algorithm. This
means there are twiddle factor multiplications even when the factors are relatively prime,
however, the indexing is simple and compact. It will calculate the DFT of a sequence of any
length but is e�cient only if the length is highly composite. The �gures contain plots of
the number of �oating point multiplications plus additions vs. the length of the FFT. The
numbers on the vertical axis have relative meaning but no absolute meaning.

Figure 17.1: Flop-Count vs Length for the Glassman-Ferguson FFT

1This content is available online at <http://cnx.org/content/m16353/1.6/>.
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GENERAL LENGTH FFT

Note the parabolic shape of the curve for certain values. The upper curve is for prime lengths,
the next one is for lengths that are two times a prime, and the next one is for lengths that
are for three times a prime, etc. The shape of the lower boundary is roughly N log N. The
program that generated these two �gures used a Cooley-Tukey FFT if the length is two to
a power which accounts for the points that are below the major lower boundary.

Figure 17.2: Flop-Count vs Length for the Glassman-Ferguson FFT
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Appendix 3: FFT Computer Programs1

18.1 Goertzel Algorithm

A FORTRAN implementation of the �rst-order Goertzel algorithm with in-order input as
given in () and [68] is given below.

1This content is available online at <http://cnx.org/content/m17397/1.3/>.
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C----------------------------------------------

C GOERTZEL'S DFT ALGORITHM

C First order, input inorder

C C. S. BURRUS, SEPT 1983

C---------------------------------------------

SUBROUTINE DFT(X,Y,A,B,N)

REAL X(260), Y(260), A(260), B(260)

Q = 6.283185307179586/N

DO 20 J=1, N

C = COS(Q*(J-1))

S = SIN(Q*(J-1))

AT = X(1)

BT = Y(1)

DO 30 I = 2, N

T = C*AT - S*BT + X(I)

BT = C*BT + S*AT + Y(I)

AT = T

30 CONTINUE

A(J) = C*AT - S*BT

B(J) = C*BT + S*AT

20 CONTINUE

RETURN

END

Listing 18.1: First Order Goertzel Algorithm

18.2 Second Order Goertzel Algorithm

Below is the program for a second order Goertzel algorithm.
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C----------------------------------------------

C GOERTZEL'S DFT ALGORITHM

C Second order, input inorder

C C. S. BURRUS, SEPT 1983

C---------------------------------------------

SUBROUTINE DFT(X,Y,A,B,N)

REAL X(260), Y(260), A(260), B(260)

C

Q = 6.283185307179586/N

DO 20 J = 1, N

C = COS(Q*(J-1))

S = SIN(Q*(J-1))

CC = 2*C

A2 = 0

B2 = 0

A1 = X(1)

B1 = Y(1)

DO 30 I = 2, N

T = A1

A1 = CC*A1 - A2 + X(I)

A2 = T

T = B1

B1 = CC*B1 - B2 + Y(I)

B2 = T

30 CONTINUE

A(J) = C*A1 - A2 - S*B1

B(J) = C*B1 - B2 + S*A1

20 CONTINUE

C

RETURN

END

Listing 18.2: Second Order Goertzel Algorithm

18.3 Second Order Goertzel Algorithm 2

Second order Goertzel algorithm that calculates two outputs at a time.
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C-------------------------------------------------------

C GOERTZEL'S DFT ALGORITHM, Second order

C Input inorder, output by twos; C.S. Burrus, SEPT 1991

C-------------------------------------------------------

SUBROUTINE DFT(X,Y,A,B,N)

REAL X(260), Y(260), A(260), B(260)

Q = 6.283185307179586/N

DO 20 J = 1, N/2 + 1

C = COS(Q*(J-1))

S = SIN(Q*(J-1))

CC = 2*C

A2 = 0

B2 = 0

A1 = X(1)

B1 = Y(1)

DO 30 I = 2, N

T = A1

A1 = CC*A1 - A2 + X(I)

A2 = T

T = B1

B1 = CC*B1 - B2 + Y(I)

B2 = T

30 CONTINUE

A2 = C*A1 - A2

T = S*B1

A(J) = A2 - T

A(N-J+2) = A2 + T

B2 = C*B1 - B2

T = S*A1

B(J) = B2 + T

B(N-J+2) = B2 - T

20 CONTINUE

RETURN

END

Figure. Second Order Goertzel Calculating Two Outputs at a Time

18.4 Basic QFT Algorithm

A FORTRAN implementation of the basic QFT algorithm is given below to show how the
theory is implemented. The program is written for clarity, not to minimize the number of
�oating point operations.
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C

SUBROUTINE QDFT(X,Y,XX,YY,NN)

REAL X(0:260),Y(0:260),XX(0:260),YY(0:260)

C

N1 = NN - 1

N2 = N1/2

N21 = NN/2

Q = 6.283185308/NN

DO 2 K = 0, N21

SSX = X(0)

SSY = Y(0)

SDX = 0

SDY = 0

IF (MOD(NN,2).EQ.0) THEN

SSX = SSX + COS(3.1426*K)*X(N21)

SSY = SSY + COS(3.1426*K)*Y(N21)

ENDIF

DO 3 N = 1, N2

SSX = SSX + (X(N) + X(NN-N))*COS(Q*N*K)

SSY = SSY + (Y(N) + Y(NN-N))*COS(Q*N*K)

SDX = SDX + (X(N) - X(NN-N))*SIN(Q*N*K)

SDY = SDY + (Y(N) - Y(NN-N))*SIN(Q*N*K)

3 CONTINUE

XX(K) = SSX + SDY

YY(K) = SSY - SDX

XX(NN-K) = SSX - SDY

YY(NN-K) = SSY + SDX

2 CONTINUE

RETURN

END

Listing 18.3: Simple QFT Fortran Program
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18.5 Basic Radix-2 FFT Algorithm

Below is the Fortran code for a simple Decimation-in-Frequency, Radix-2, one butter�y
Cooley-Tukey FFT followed by a bit-reversing unscrambler.

C

C A COOLEY-TUKEY RADIX-2, DIF FFT PROGRAM

C COMPLEX INPUT DATA IN ARRAYS X AND Y

C C. S. BURRUS, RICE UNIVERSITY, SEPT 1983

C---------------------------------------------------------

SUBROUTINE FFT (X,Y,N,M)

REAL X(1), Y(1)

C--------------MAIN FFT LOOPS-----------------------------

C

N2 = N

DO 10 K = 1, M

N1 = N2

N2 = N2/2

E = 6.283185307179586/N1

A = 0

DO 20 J = 1, N2

C = COS (A)

S = SIN (A)

A = J*E

DO 30 I = J, N, N1

L = I + N2

XT = X(I) - X(L)

X(I) = X(I) + X(L)

YT = Y(I) - Y(L)

Y(I) = Y(I) + Y(L)

X(L) = C*XT + S*YT

Y(L) = C*YT - S*XT

30 CONTINUE

20 CONTINUE

10 CONTINUE

C

C------------DIGIT REVERSE COUNTER-----------------

100 J = 1

N1 = N - 1

DO 104 I=1, N1

IF (I.GE.J) GOXTO 101

XT = X(J)

X(J) = X(I)
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X(I) = XT

XT = Y(J)

Y(J) = Y(I)

Y(I) = XT

101 K = N/2

102 IF (K.GE.J) GOTO 103

J = J - K

K = K/2

GOTO 102

103 J = J + K

104 CONTINUE

RETURN

END

Figure: Radix-2, DIF, One Butterfly Cooley-Tukey FFT

18.6 Basic DIT Radix-2 FFT Algorithm

Below is the Fortran code for a simple Decimation-in-Time, Radix-2, one butter�y Cooley-
Tukey FFT preceeded by a bit-reversing scrambler.

C

C A COOLEY-TUKEY RADIX-2, DIT FFT PROGRAM

C COMPLEX INPUT DATA IN ARRAYS X AND Y

C C. S. BURRUS, RICE UNIVERSITY, SEPT 1985

C

C---------------------------------------------------------

SUBROUTINE FFT (X,Y,N,M)

REAL X(1), Y(1)

C------------DIGIT REVERSE COUNTER-----------------

C

100 J = 1

N1 = N - 1

DO 104 I=1, N1

IF (I.GE.J) GOTO 101

XT = X(J)

X(J) = X(I)

X(I) = XT

XT = Y(J)

Y(J) = Y(I)

Y(I) = XT
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101 K = N/2

102 IF (K.GE.J) GOTO 103

J = J - K

K = K/2

GOTO 102

103 J = J + K

104 CONTINUE

C--------------MAIN FFT LOOPS-----------------------------

C

N2 = 1

DO 10 K = 1, M

E = 6.283185307179586/(2*N2)

A = 0

DO 20 J = 1, N2

C = COS (A)

S = SIN (A)

A = J*E

DO 30 I = J, N, 2*N2

L = I + N2

XT = C*X(L) + S*Y(L)

YT = C*Y(L) - S*X(L)

X(L) = X(I) - XT

X(I) = X(I) + XT

Y(L) = Y(I) - YT

Y(I) = Y(I) + YT

30 CONTINUE

20 CONTINUE

N2 = N2+N2

10 CONTINUE

C

RETURN

END

18.7 DIF Radix-2 FFT Algorithm

Below is the Fortran code for a Decimation-in-Frequency, Radix-2, three butter�y Cooley-
Tukey FFT followed by a bit-reversing unscrambler.

C A COOLEY-TUKEY RADIX 2, DIF FFT PROGRAM

C THREE-BF, MULT BY 1 AND J ARE REMOVED

C COMPLEX INPUT DATA IN ARRAYS X AND Y

C TABLE LOOK-UP OF W VALUES
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C C. S. BURRUS, RICE UNIVERSITY, SEPT 1983

C---------------------------------------------------------

SUBROUTINE FFT (X,Y,N,M,WR,WI)

REAL X(1), Y(1), WR(1), WI(1)

C--------------MAIN FFT LOOPS-----------------------------

C

N2 = N

DO 10 K = 1, M

N1 = N2

N2 = N2/2

JT = N2/2 + 1

DO 1 I = 1, N, N1

L = I + N2

T = X(I) - X(L)

X(I) = X(I) + X(L)

X(L) = T

T = Y(I) - Y(L)

Y(I) = Y(I) + Y(L)

Y(L) = T

1 CONTINUE

IF (K.EQ.M) GOTO 10

IE = N/N1

IA = 1

DO 20 J = 2, N2

IA = IA + IE

IF (J.EQ.JT) GOTO 50

C = WR(IA)

S = WI(IA)

DO 30 I = J, N, N1

L = I + N2

T = X(I) - X(L)

X(I) = X(I) + X(L)

TY = Y(I) - Y(L)

Y(I) = Y(I) + Y(L)

X(L) = C*T + S*TY

Y(L) = C*TY - S*T

30 CONTINUE

GOTO 25

50 DO 40 I = J, N, N1

L = I + N2

T = X(I) - X(L)

X(I) = X(I) + X(L)
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TY = Y(I) - Y(L)

Y(I) = Y(I) + Y(L)

X(L) = TY

Y(L) =-T

40 CONTINUE

25 A = J*E

20 CONTINUE

10 CONTINUE

C------------DIGIT REVERSE COUNTER Goes here----------

RETURN

END

18.8 Basic DIF Radix-4 FFT Algorithm

Below is the Fortran code for a simple Decimation-in-Frequency, Radix-4, one butter�y
Cooley-Tukey FFT to be followed by an unscrambler.

C A COOLEY-TUKEY RADIX-4 DIF FFT PROGRAM

C COMPLEX INPUT DATA IN ARRAYS X AND Y

C LENGTH IS N = 4 ** M

C C. S. BURRUS, RICE UNIVERSITY, SEPT 1983

C---------------------------------------------------------

SUBROUTINE FFT4 (X,Y,N,M)

REAL X(1), Y(1)

C--------------MAIN FFT LOOPS-----------------------------

N2 = N

DO 10 K = 1, M

N1 = N2

N2 = N2/4

E = 6.283185307179586/N1

A = 0

C--------------------MAIN BUTTERFLIES-------------------

DO 20 J=1, N2

B = A + A

C = A + B

CO1 = COS(A)

CO2 = COS(B)

CO3 = COS(C)

SI1 = SIN(A)

SI2 = SIN(B)

SI3 = SIN(C)
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A = J*E

C----------------BUTTERFLIES WITH SAME W---------------

DO 30 I=J, N, N1

I1 = I + N2

I2 = I1 + N2

I3 = I2 + N2

R1 = X(I ) + X(I2)

R3 = X(I ) - X(I2)

S1 = Y(I ) + Y(I2)

S3 = Y(I ) - Y(I2)

R2 = X(I1) + X(I3)

R4 = X(I1) - X(I3)

S2 = Y(I1) + Y(I3)

S4 = Y(I1) - Y(I3)

X(I) = R1 + R2

R2 = R1 - R2

R1 = R3 - S4

R3 = R3 + S4

Y(I) = S1 + S2

S2 = S1 - S2

S1 = S3 + R4

S3 = S3 - R4

X(I1) = CO1*R3 + SI1*S3

Y(I1) = CO1*S3 - SI1*R3

X(I2) = CO2*R2 + SI2*S2

Y(I2) = CO2*S2 - SI2*R2

X(I3) = CO3*R1 + SI3*S1

Y(I3) = CO3*S1 - SI3*R1

30 CONTINUE

20 CONTINUE

10 CONTINUE

C-----------DIGIT REVERSE COUNTER goes here-----

RETURN

END

18.9 Basic DIF Radix-4 FFT Algorithm

Below is the Fortran code for a Decimation-in-Frequency, Radix-4, three butter�y Cooley-
Tukey FFT followed by a bit-reversing unscrambler. Twiddle factors are precalculated and
stored in arrays WR and WI.

C
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C A COOLEY-TUKEY RADIX-4 DIF FFT PROGRAM

C THREE BF, MULTIPLICATIONS BY 1, J, ETC. ARE REMOVED

C COMPLEX INPUT DATA IN ARRAYS X AND Y

C LENGTH IS N = 4 ** M

C TABLE LOOKUP OF W VALUES

C

C C. S. BURRUS, RICE UNIVERSITY, SEPT 1983

C

C---------------------------------------------------------

C

SUBROUTINE FFT4 (X,Y,N,M,WR,WI)

REAL X(1), Y(1), WR(1), WI(1)

DATA C21 / 0.707106778 /

C

C--------------MAIN FFT LOOPS-----------------------------

C

N2 = N

DO 10 K = 1, M

N1 = N2

N2 = N2/4

JT = N2/2 + 1

C---------------SPECIAL BUTTERFLY FOR W = 1---------------

DO 1 I = 1, N, N1

I1 = I + N2

I2 = I1 + N2

I3 = I2 + N2

R1 = X(I ) + X(I2)

R3 = X(I ) - X(I2)

S1 = Y(I ) + Y(I2)

S3 = Y(I ) - Y(I2)

R2 = X(I1) + X(I3)

R4 = X(I1) - X(I3)

S2 = Y(I1) + Y(I3)

S4 = Y(I1) - Y(I3)

C

X(I) = R1 + R2

X(I2)= R1 - R2

X(I3)= R3 - S4

X(I1)= R3 + S4

C

Y(I) = S1 + S2

Y(I2)= S1 - S2
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Y(I3)= S3 + R4

Y(I1)= S3 - R4

C

1 CONTINUE

IF (K.EQ.M) GOTO 10

IE = N/N1

IA1 = 1

C--------------GENERAL BUTTERFLY-----------------

DO 20 J = 2, N2

IA1 = IA1 + IE

IF (J.EQ.JT) GOTO 50

IA2 = IA1 + IA1 - 1

IA3 = IA2 + IA1 - 1

CO1 = WR(IA1)

CO2 = WR(IA2)

CO3 = WR(IA3)

SI1 = WI(IA1)

SI2 = WI(IA2)

SI3 = WI(IA3)

C----------------BUTTERFLIES WITH SAME W---------------

DO 30 I = J, N, N1

I1 = I + N2

I2 = I1 + N2

I3 = I2 + N2

R1 = X(I ) + X(I2)

R3 = X(I ) - X(I2)

S1 = Y(I ) + Y(I2)

S3 = Y(I ) - Y(I2)

R2 = X(I1) + X(I3)

R4 = X(I1) - X(I3)

S2 = Y(I1) + Y(I3)

S4 = Y(I1) - Y(I3)

C

X(I) = R1 + R2

R2 = R1 - R2

R1 = R3 - S4

R3 = R3 + S4

C

Y(I) = S1 + S2

S2 = S1 - S2

S1 = S3 + R4
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S3 = S3 - R4

C

X(I1) = CO1*R3 + SI1*S3

Y(I1) = CO1*S3 - SI1*R3

X(I2) = CO2*R2 + SI2*S2

Y(I2) = CO2*S2 - SI2*R2

X(I3) = CO3*R1 + SI3*S1

Y(I3) = CO3*S1 - SI3*R1

30 CONTINUE

GOTO 20

C------------------SPECIAL BUTTERFLY FOR W = J-----------

50 DO 40 I = J, N, N1

I1 = I + N2

I2 = I1 + N2

I3 = I2 + N2

R1 = X(I ) + X(I2)

R3 = X(I ) - X(I2)

S1 = Y(I ) + Y(I2)

S3 = Y(I ) - Y(I2)

R2 = X(I1) + X(I3)

R4 = X(I1) - X(I3)

S2 = Y(I1) + Y(I3)

S4 = Y(I1) - Y(I3)

C

X(I) = R1 + R2

Y(I2)=-R1 + R2

R1 = R3 - S4

R3 = R3 + S4

C

Y(I) = S1 + S2

X(I2)= S1 - S2

S1 = S3 + R4

S3 = S3 - R4

C

X(I1) = (S3 + R3)*C21

Y(I1) = (S3 - R3)*C21

X(I3) = (S1 - R1)*C21

Y(I3) =-(S1 + R1)*C21

40 CONTINUE

20 CONTINUE

10 CONTINUE

C-----------DIGIT REVERSE COUNTER----------
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100 J = 1

N1 = N - 1

DO 104 I = 1, N1

IF (I.GE.J) GOTO 101

R1 = X(J)

X(J) = X(I)

X(I) = R1

R1 = Y(J)

Y(J) = Y(I)

Y(I) = R1

101 K = N/4

102 IF (K*3.GE.J) GOTO 103

J = J - K*3

K = K/4

GOTO 102

103 J = J + K

104 CONTINUE

RETURN

END

18.10 Basic DIF Split Radix FFT Algorithm

Below is the Fortran code for a simple Decimation-in-Frequency, Split-Radix, one butter�y
FFT to be followed by a bit-reversing unscrambler.

C A DUHAMEL-HOLLMANN SPLIT RADIX FFT PROGRAM

C FROM: ELECTRONICS LETTERS, JAN. 5, 1984

C COMPLEX INPUT DATA IN ARRAYS X AND Y

C LENGTH IS N = 2 ** M

C C. S. BURRUS, RICE UNIVERSITY, MARCH 1984

C

C---------------------------------------------------------

SUBROUTINE FFT (X,Y,N,M)

REAL X(1), Y(1)

C--------------MAIN FFT LOOPS-----------------------------

C

N1 = N

N2 = N/2

IP = 0

IS = 1

A = 6.283185307179586/N
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DO 10 K = 1, M-1

JD = N1 + N2

N1 = N2

N2 = N2/2

J0 = N1*IP + 1

IP = 1 - IP

DO 20 J = J0, N, JD

JS = 0

JT = J + N2 - 1

DO 30 I = J, JT

JSS= JS*IS

JS = JS + 1

C1 = COS(A*JSS)

C3 = COS(3*A*JSS)

S1 = -SIN(A*JSS)

S3 = -SIN(3*A*JSS)

I1 = I + N2

I2 = I1 + N2

I3 = I2 + N2

R1 = X(I ) + X(I2)

R2 = X(I ) - X(I2)

R3 = X(I1) - X(I3)

X(I2) = X(I1) + X(I3)

X(I1) = R1

C

R1 = Y(I ) + Y(I2)

R4 = Y(I ) - Y(I2)

R5 = Y(I1) - Y(I3)

Y(I2) = Y(I1) + Y(I3)

Y(I1) = R1

C

R1 = R2 - R5

R2 = R2 + R5

R5 = R4 + R3

R4 = R4 - R3

C

X(I) = C1*R1 + S1*R5

Y(I) = C1*R5 - S1*R1

X(I3) = C3*R2 + S3*R4

Y(I3) = C3*R4 - S3*R2

30 CONTINUE

20 CONTINUE
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IS = IS + IS

10 CONTINUE

IP = 1 - IP

J0 = 2 - IP

DO 5 I = J0, N-1, 3

I1 = I + 1

R1 = X(I) + X(I1)

X(I1) = X(I) - X(I1)

X(I) = R1

R1 = Y(I) + Y(I1)

Y(I1) = Y(I) - Y(I1)

Y(I) = R1

5 CONTINUE

RETURN

END

18.11 DIF Split Radix FFT Algorithm

Below is the Fortran code for a simple Decimation-in-Frequency, Split-Radix, two butter�y
FFT to be followed by a bit-reversing unscrambler. Twiddle factors are precalculated and
stored in arrays WR and WI.

C--------------------------------------------------------------C

C A DUHAMEL-HOLLMAN SPLIT RADIX FFT C

C REF: ELECTRONICS LETTERS, JAN. 5, 1984 C

C COMPLEX INPUT AND OUTPUT DATA IN ARRAYS X AND Y C

C LENGTH IS N = 2 ** M, OUTPUT IN BIT-REVERSED ORDER C

C TWO BUTTERFLIES TO REMOVE MULTS BY UNITY C

C SPECIAL LAST TWO STAGES C

C TABLE LOOK-UP OF SINE AND COSINE VALUES C

C C.S. BURRUS, RICE UNIV. APRIL 1985 C

C--------------------------------------------------------------C

C

SUBROUTINE FFT(X,Y,N,M,WR,WI)

REAL X(1),Y(1),WR(1),WI(1)

C81= 0.707106778

N2 = 2*N

DO 10 K = 1, M-3

IS = 1

ID = N2

N2 = N2/2

N4 = N2/4
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2 DO 1 I0 = IS, N-1, ID

I1 = I0 + N4

I2 = I1 + N4

I3 = I2 + N4

R1 = X(I0) - X(I2)

X(I0) = X(I0) + X(I2)

R2 = Y(I1) - Y(I3)

Y(I1) = Y(I1) + Y(I3)

X(I2) = R1 + R2

R2 = R1 - R2

R1 = X(I1) - X(I3)

X(I1) = X(I1) + X(I3)

X(I3) = R2

R2 = Y(I0) - Y(I2)

Y(I0) = Y(I0) + Y(I2)

Y(I2) =-R1 + R2

Y(I3) = R1 + R2

1 CONTINUE

IS = 2*ID - N2 + 1

ID = 4*ID

IF (IS.LT.N) GOTO 2

IE = N/N2

IA1 = 1

DO 20 J = 2, N4

IA1 = IA1 + IE

IA3 = 3*IA1 - 2

CC1 = WR(IA1)

SS1 = WI(IA1)

CC3 = WR(IA3)

SS3 = WI(IA3)

IS = J

ID = 2*N2

40 DO 30 I0 = IS, N-1, ID

I1 = I0 + N4

I2 = I1 + N4

I3 = I2 + N4

C

R1 = X(I0) - X(I2)

X(I0) = X(I0) + X(I2)

R2 = X(I1) - X(I3)

X(I1) = X(I1) + X(I3)

S1 = Y(I0) - Y(I2)
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Y(I0) = Y(I0) + Y(I2)

S2 = Y(I1) - Y(I3)

Y(I1) = Y(I1) + Y(I3)

C

S3 = R1 - S2

R1 = R1 + S2

S2 = R2 - S1

R2 = R2 + S1

X(I2) = R1*CC1 - S2*SS1

Y(I2) =-S2*CC1 - R1*SS1

X(I3) = S3*CC3 + R2*SS3

Y(I3) = R2*CC3 - S3*SS3

30 CONTINUE

IS = 2*ID - N2 + J

ID = 4*ID

IF (IS.LT.N) GOTO 40

20 CONTINUE

10 CONTINUE

C

IS = 1

ID = 32

50 DO 60 I = IS, N, ID

I0 = I + 8

DO 15 J = 1, 2

R1 = X(I0) + X(I0+2)

R3 = X(I0) - X(I0+2)

R2 = X(I0+1) + X(I0+3)

R4 = X(I0+1) - X(I0+3)

X(I0) = R1 + R2

X(I0+1) = R1 - R2

R1 = Y(I0) + Y(I0+2)

S3 = Y(I0) - Y(I0+2)

R2 = Y(I0+1) + Y(I0+3)

S4 = Y(I0+1) - Y(I0+3)

Y(I0) = R1 + R2

Y(I0+1) = R1 - R2

Y(I0+2) = S3 - R4

Y(I0+3) = S3 + R4

X(I0+2) = R3 + S4

X(I0+3) = R3 - S4

I0 = I0 + 4

15 CONTINUE
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60 CONTINUE

IS = 2*ID - 15

ID = 4*ID

IF (IS.LT.N) GOTO 50

C

IS = 1

ID = 16

55 DO 65 I0 = IS, N, ID

R1 = X(I0) + X(I0+4)

R5 = X(I0) - X(I0+4)

R2 = X(I0+1) + X(I0+5)

R6 = X(I0+1) - X(I0+5)

R3 = X(I0+2) + X(I0+6)

R7 = X(I0+2) - X(I0+6)

R4 = X(I0+3) + X(I0+7)

R8 = X(I0+3) - X(I0+7)

T1 = R1 - R3

R1 = R1 + R3

R3 = R2 - R4

R2 = R2 + R4

X(I0) = R1 + R2

X(I0+1) = R1 - R2

C

R1 = Y(I0) + Y(I0+4)

S5 = Y(I0) - Y(I0+4)

R2 = Y(I0+1) + Y(I0+5)

S6 = Y(I0+1) - Y(I0+5)

S3 = Y(I0+2) + Y(I0+6)

S7 = Y(I0+2) - Y(I0+6)

R4 = Y(I0+3) + Y(I0+7)

S8 = Y(I0+3) - Y(I0+7)

T2 = R1 - S3

R1 = R1 + S3

S3 = R2 - R4

R2 = R2 + R4

Y(I0) = R1 + R2

Y(I0+1) = R1 - R2

X(I0+2) = T1 + S3

X(I0+3) = T1 - S3

Y(I0+2) = T2 - R3

Y(I0+3) = T2 + R3

C
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R1 = (R6 - R8)*C81

R6 = (R6 + R8)*C81

R2 = (S6 - S8)*C81

S6 = (S6 + S8)*C81

C

T1 = R5 - R1

R5 = R5 + R1

R8 = R7 - R6

R7 = R7 + R6

T2 = S5 - R2

S5 = S5 + R2

S8 = S7 - S6

S7 = S7 + S6

X(I0+4) = R5 + S7

X(I0+7) = R5 - S7

X(I0+5) = T1 + S8

X(I0+6) = T1 - S8

Y(I0+4) = S5 - R7

Y(I0+7) = S5 + R7

Y(I0+5) = T2 - R8

Y(I0+6) = T2 + R8

65 CONTINUE

IS = 2*ID - 7

ID = 4*ID

IF (IS.LT.N) GOTO 55

C

C------------BIT REVERSE COUNTER-----------------

C

100 J = 1

N1 = N - 1

DO 104 I=1, N1

IF (I.GE.J) GOTO 101

XT = X(J)

X(J) = X(I)

X(I) = XT

XT = Y(J)

Y(J) = Y(I)

Y(I) = XT

101 K = N/2

102 IF (K.GE.J) GOTO 103

J = J - K

K = K/2



188 CHAPTER 18. APPENDIX 3: FFT COMPUTER PROGRAMS

GOTO 102

103 J = J + K

104 CONTINUE

RETURN

END

18.12 Prime Factor FFT Algorithm

Below is the Fortran code for a Prime-Factor Algorithm (PFA) FFT allowing factors of the
length of 2, 3, 4, 5, and 7. It is followed by an unscrambler.

C---------------------------------------------------

C

C A PRIME FACTOR FFT PROGRAM WITH GENERAL MODULES

C COMPLEX INPUT DATA IN ARRAYS X AND Y

C COMPLEX OUTPUT IN A AND B

C LENGTH N WITH M FACTORS IN ARRAY NI

C N = NI(1)*NI(2)* ... *NI(M)

C UNSCRAMBLING CONSTANT UNSC

C UNSC = N/NI(1) + N/NI(2) +...+ N/NI(M), MOD N

C C. S. BURRUS, RICE UNIVERSITY, JAN 1987

C

C--------------------------------------------------

C

SUBROUTINE PFA(X,Y,N,M,NI,A,B,UNSC)

C

INTEGER NI(4), I(16), UNSC

REAL X(1), Y(1), A(1), B(1)

C

DATA C31, C32 / -0.86602540,-1.50000000 /

DATA C51, C52 / 0.95105652,-1.53884180 /

DATA C53, C54 / -0.36327126, 0.55901699 /

DATA C55 / -1.25 /

DATA C71, C72 / -1.16666667,-0.79015647 /

DATA C73, C74 / 0.055854267, 0.7343022 /

DATA C75, C76 / 0.44095855,-0.34087293 /

DATA C77, C78 / 0.53396936, 0.87484229 /

C

C-----------------NESTED LOOPS----------------------

C

DO 10 K=1, M

N1 = NI(K)
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N2 = N/N1

DO 15 J=1, N, N1

IT = J

DO 30 L=1, N1

I(L) = IT

A(L) = X(IT)

B(L) = Y(IT)

IT = IT + N2

IF (IT.GT.N) IT = IT - N

30 CONTINUE

GOTO (20,102,103,104,105,20,107), N1

C

C----------------WFTA N=2--------------------------------

C

102 R1 = A(1)

A(1) = R1 + A(2)

A(2) = R1 - A(2)

C

R1 = B(1)

B(1) = R1 + B(2)

B(2) = R1 - B(2)

C

GOTO 20

C----------------WFTA N=3--------------------------------

C

103 R2 = (A(2) - A(3)) * C31

R1 = A(2) + A(3)

A(1)= A(1) + R1

R1 = A(1) + R1 * C32

C

S2 = (B(2) - B(3)) * C31

S1 = B(2) + B(3)

B(1)= B(1) + S1

S1 = B(1) + S1 * C32

C

A(2) = R1 - S2

A(3) = R1 + S2

B(2) = S1 + R2

B(3) = S1 - R2

C

GOTO 20

C
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C----------------WFTA N=4---------------------------------

C

104 R1 = A(1) + A(3)

T1 = A(1) - A(3)

R2 = A(2) + A(4)

A(1) = R1 + R2

A(3) = R1 - R2

C

R1 = B(1) + B(3)

T2 = B(1) - B(3)

R2 = B(2) + B(4)

B(1) = R1 + R2

B(3) = R1 - R2

C

R1 = A(2) - A(4)

R2 = B(2) - B(4)

C

A(2) = T1 + R2

A(4) = T1 - R2

B(2) = T2 - R1

B(4) = T2 + R1

C

GOTO 20

C

C----------------WFTA N=5--------------------------------

C

105 R1 = A(2) + A(5)

R4 = A(2) - A(5)

R3 = A(3) + A(4)

R2 = A(3) - A(4)

C

T = (R1 - R3) * C54

R1 = R1 + R3

A(1) = A(1) + R1

R1 = A(1) + R1 * C55

C

R3 = R1 - T

R1 = R1 + T

C

T = (R4 + R2) * C51

R4 = T + R4 * C52

R2 = T + R2 * C53
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C

S1 = B(2) + B(5)

S4 = B(2) - B(5)

S3 = B(3) + B(4)

S2 = B(3) - B(4)

C

T = (S1 - S3) * C54

S1 = S1 + S3

B(1) = B(1) + S1

S1 = B(1) + S1 * C55

C

S3 = S1 - T

S1 = S1 + T

C

T = (S4 + S2) * C51

S4 = T + S4 * C52

S2 = T + S2 * C53

C

A(2) = R1 + S2

A(5) = R1 - S2

A(3) = R3 - S4

A(4) = R3 + S4

C

B(2) = S1 - R2

B(5) = S1 + R2

B(3) = S3 + R4

B(4) = S3 - R4

C

GOTO 20

C-----------------WFTA N=7--------------------------

C

107 R1 = A(2) + A(7)

R6 = A(2) - A(7)

S1 = B(2) + B(7)

S6 = B(2) - B(7)

R2 = A(3) + A(6)

R5 = A(3) - A(6)

S2 = B(3) + B(6)

S5 = B(3) - B(6)

R3 = A(4) + A(5)

R4 = A(4) - A(5)

S3 = B(4) + B(5)
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S4 = B(4) - B(5)

C

T3 = (R1 - R2) * C74

T = (R1 - R3) * C72

R1 = R1 + R2 + R3

A(1) = A(1) + R1

R1 = A(1) + R1 * C71

R2 =(R3 - R2) * C73

R3 = R1 - T + R2

R2 = R1 - R2 - T3

R1 = R1 + T + T3

T = (R6 - R5) * C78

T3 =(R6 + R4) * C76

R6 =(R6 + R5 - R4) * C75

R5 =(R5 + R4) * C77

R4 = R6 - T3 + R5

R5 = R6 - R5 - T

R6 = R6 + T3 + T

C

T3 = (S1 - S2) * C74

T = (S1 - S3) * C72

S1 = S1 + S2 + S3

B(1) = B(1) + S1

S1 = B(1) + S1 * C71

S2 =(S3 - S2) * C73

S3 = S1 - T + S2

S2 = S1 - S2 - T3

S1 = S1 + T + T3

T = (S6 - S5) * C78

T3 = (S6 + S4) * C76

S6 = (S6 + S5 - S4) * C75

S5 = (S5 + S4) * C77

S4 = S6 - T3 + S5

S5 = S6 - S5 - T

S6 = S6 + T3 + T

C

A(2) = R3 + S4

A(7) = R3 - S4

A(3) = R1 + S6

A(6) = R1 - S6

A(4) = R2 - S5

A(5) = R2 + S5
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B(4) = S2 + R5

B(5) = S2 - R5

B(2) = S3 - R4

B(7) = S3 + R4

B(3) = S1 - R6

B(6) = S1 + R6

C

20 IT = J

DO 31 L=1, N1

I(L) = IT

X(IT) = A(L)

Y(IT) = B(L)

IT = IT + N2

IF (IT.GT.N) IT = IT - N

31 CONTINUE

15 CONTINUE

10 CONTINUE

C

C-----------------UNSCRAMBLING----------------------

C

L = 1

DO 2 K=1, N

A(K) = X(L)

B(K) = Y(L)

L = L + UNSC

IF (L.GT.N) L = L - N

2 CONTINUE

RETURN

END

C

18.13 In Place, In Order Prime Factor FFT Algorithm

Below is the Fortran code for a Prime-Factor Algorithm (PFA) FFT allowing factors of
the length of 2, 3, 4, 5, 7, 8, 9, and 16. It is both in-place and in-order, so requires no
unscrambler.

C

C A PRIME FACTOR FFT PROGRAM

C IN-PLACE AND IN-ORDER

C COMPLEX INPUT DATA IN ARRAYS X AND Y

C LENGTH N WITH M FACTORS IN ARRAY NI
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C N = NI(1)*NI(2)*...*NI(M)

C REDUCED TEMP STORAGE IN SHORT WFTA MODULES

C Has modules 2,3,4,5,7,8,9,16

C PROGRAM BY C. S. BURRUS, RICE UNIVERSITY

C SEPT 1983

C----------------------------------------------------

C

SUBROUTINE PFA(X,Y,N,M,NI)

INTEGER NI(4), I(16), IP(16), LP(16)

REAL X(1), Y(1)

DATA C31, C32 / -0.86602540,-1.50000000 /

DATA C51, C52 / 0.95105652,-1.53884180 /

DATA C53, C54 / -0.36327126, 0.55901699 /

DATA C55 / -1.25 /

DATA C71, C72 / -1.16666667,-0.79015647 /

DATA C73, C74 / 0.055854267, 0.7343022 /

DATA C75, C76 / 0.44095855,-0.34087293 /

DATA C77, C78 / 0.53396936, 0.87484229 /

DATA C81 / 0.70710678 /

DATA C95 / -0.50000000 /

DATA C92, C93 / 0.93969262, -0.17364818 /

DATA C94, C96 / 0.76604444, -0.34202014 /

DATA C97, C98 / -0.98480775, -0.64278761 /

DATA C162,C163 / 0.38268343, 1.30656297 /

DATA C164,C165 / 0.54119610, 0.92387953 /

C

C-----------------NESTED LOOPS----------------------------------

C

DO 10 K=1, M

N1 = NI(K)

N2 = N/N1

L = 1

N3 = N2 - N1*(N2/N1)

DO 15 J = 1, N1

LP(J) = L

L = L + N3

IF (L.GT.N1) L = L - N1

15 CONTINUE

C

DO 20 J=1, N, N1

IT = J

DO 30 L=1, N1
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I(L) = IT

IP(LP(L)) = IT

IT = IT + N2

IF (IT.GT.N) IT = IT - N

30 CONTINUE

GOTO (20,102,103,104,105,20,107,108,109,

+ 20,20,20,20,20,20,116),N1

C----------------WFTA N=2--------------------------------

C

102 R1 = X(I(1))

X(I(1)) = R1 + X(I(2))

X(I(2)) = R1 - X(I(2))

C

R1 = Y(I(1))

Y(IP(1)) = R1 + Y(I(2))

Y(IP(2)) = R1 - Y(I(2))

C

GOTO 20

C

C----------------WFTA N=3--------------------------------

C

103 R2 = (X(I(2)) - X(I(3))) * C31

R1 = X(I(2)) + X(I(3))

X(I(1))= X(I(1)) + R1

R1 = X(I(1)) + R1 * C32

C

S2 = (Y(I(2)) - Y(I(3))) * C31

S1 = Y(I(2)) + Y(I(3))

Y(I(1))= Y(I(1)) + S1

S1 = Y(I(1)) + S1 * C32

C

X(IP(2)) = R1 - S2

X(IP(3)) = R1 + S2

Y(IP(2)) = S1 + R2

Y(IP(3)) = S1 - R2

C

GOTO 20

C

C----------------WFTA N=4---------------------------------

C

104 R1 = X(I(1)) + X(I(3))
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T1 = X(I(1)) - X(I(3))

R2 = X(I(2)) + X(I(4))

X(IP(1)) = R1 + R2

X(IP(3)) = R1 - R2

C

R1 = Y(I(1)) + Y(I(3))

T2 = Y(I(1)) - Y(I(3))

R2 = Y(I(2)) + Y(I(4))

Y(IP(1)) = R1 + R2

Y(IP(3)) = R1 - R2

C

R1 = X(I(2)) - X(I(4))

R2 = Y(I(2)) - Y(I(4))

C

X(IP(2)) = T1 + R2

X(IP(4)) = T1 - R2

Y(IP(2)) = T2 - R1

Y(IP(4)) = T2 + R1

C

GOTO 20

C----------------WFTA N=5--------------------------------

C

105 R1 = X(I(2)) + X(I(5))

R4 = X(I(2)) - X(I(5))

R3 = X(I(3)) + X(I(4))

R2 = X(I(3)) - X(I(4))

C

T = (R1 - R3) * C54

R1 = R1 + R3

X(I(1)) = X(I(1)) + R1

R1 = X(I(1)) + R1 * C55

C

R3 = R1 - T

R1 = R1 + T

C

T = (R4 + R2) * C51

R4 = T + R4 * C52

R2 = T + R2 * C53

C

S1 = Y(I(2)) + Y(I(5))

S4 = Y(I(2)) - Y(I(5))
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S3 = Y(I(3)) + Y(I(4))

S2 = Y(I(3)) - Y(I(4))

C

T = (S1 - S3) * C54

S1 = S1 + S3

Y(I(1)) = Y(I(1)) + S1

S1 = Y(I(1)) + S1 * C55

C

S3 = S1 - T

S1 = S1 + T

C

T = (S4 + S2) * C51

S4 = T + S4 * C52

S2 = T + S2 * C53

C

X(IP(2)) = R1 + S2

X(IP(5)) = R1 - S2

X(IP(3)) = R3 - S4

X(IP(4)) = R3 + S4

C

Y(IP(2)) = S1 - R2

Y(IP(5)) = S1 + R2

Y(IP(3)) = S3 + R4

Y(IP(4)) = S3 - R4

C

GOTO 20

C-----------------WFTA N=7--------------------------

C

107 R1 = X(I(2)) + X(I(7))

R6 = X(I(2)) - X(I(7))

S1 = Y(I(2)) + Y(I(7))

S6 = Y(I(2)) - Y(I(7))

R2 = X(I(3)) + X(I(6))

R5 = X(I(3)) - X(I(6))

S2 = Y(I(3)) + Y(I(6))

S5 = Y(I(3)) - Y(I(6))

R3 = X(I(4)) + X(I(5))

R4 = X(I(4)) - X(I(5))

S3 = Y(I(4)) + Y(I(5))

S4 = Y(I(4)) - Y(I(5))

C
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T3 = (R1 - R2) * C74

T = (R1 - R3) * C72

R1 = R1 + R2 + R3

X(I(1)) = X(I(1)) + R1

R1 = X(I(1)) + R1 * C71

R2 =(R3 - R2) * C73

R3 = R1 - T + R2

R2 = R1 - R2 - T3

R1 = R1 + T + T3

T = (R6 - R5) * C78

T3 =(R6 + R4) * C76

R6 =(R6 + R5 - R4) * C75

R5 =(R5 + R4) * C77

R4 = R6 - T3 + R5

R5 = R6 - R5 - T

R6 = R6 + T3 + T

C

T3 = (S1 - S2) * C74

T = (S1 - S3) * C72

S1 = S1 + S2 + S3

Y(I(1)) = Y(I(1)) + S1

S1 = Y(I(1)) + S1 * C71

S2 =(S3 - S2) * C73

S3 = S1 - T + S2

S2 = S1 - S2 - T3

S1 = S1 + T + T3

T = (S6 - S5) * C78

T3 = (S6 + S4) * C76

S6 = (S6 + S5 - S4) * C75

S5 = (S5 + S4) * C77

S4 = S6 - T3 + S5

S5 = S6 - S5 - T

S6 = S6 + T3 + T

C

X(IP(2)) = R3 + S4

X(IP(7)) = R3 - S4

X(IP(3)) = R1 + S6

X(IP(6)) = R1 - S6

X(IP(4)) = R2 - S5

X(IP(5)) = R2 + S5

Y(IP(4)) = S2 + R5

Y(IP(5)) = S2 - R5
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Y(IP(2)) = S3 - R4

Y(IP(7)) = S3 + R4

Y(IP(3)) = S1 - R6

Y(IP(6)) = S1 + R6

C

GOTO 20

C-----------------WFTA N=8--------------------------

C

108 R1 = X(I(1)) + X(I(5))

R2 = X(I(1)) - X(I(5))

R3 = X(I(2)) + X(I(8))

R4 = X(I(2)) - X(I(8))

R5 = X(I(3)) + X(I(7))

R6 = X(I(3)) - X(I(7))

R7 = X(I(4)) + X(I(6))

R8 = X(I(4)) - X(I(6))

T1 = R1 + R5

T2 = R1 - R5

T3 = R3 + R7

R3 =(R3 - R7) * C81

X(IP(1)) = T1 + T3

X(IP(5)) = T1 - T3

T1 = R2 + R3

T3 = R2 - R3

S1 = R4 - R8

R4 =(R4 + R8) * C81

S2 = R4 + R6

S3 = R4 - R6

R1 = Y(I(1)) + Y(I(5))

R2 = Y(I(1)) - Y(I(5))

R3 = Y(I(2)) + Y(I(8))

R4 = Y(I(2)) - Y(I(8))

R5 = Y(I(3)) + Y(I(7))

R6 = Y(I(3)) - Y(I(7))

R7 = Y(I(4)) + Y(I(6))

R8 = Y(I(4)) - Y(I(6))

T4 = R1 + R5

R1 = R1 - R5

R5 = R3 + R7

R3 =(R3 - R7) * C81

Y(IP(1)) = T4 + R5
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Y(IP(5)) = T4 - R5

R5 = R2 + R3

R2 = R2 - R3

R3 = R4 - R8

R4 =(R4 + R8) * C81

R7 = R4 + R6

R4 = R4 - R6

X(IP(2)) = T1 + R7

X(IP(8)) = T1 - R7

X(IP(3)) = T2 + R3

X(IP(7)) = T2 - R3

X(IP(4)) = T3 + R4

X(IP(6)) = T3 - R4

Y(IP(2)) = R5 - S2

Y(IP(8)) = R5 + S2

Y(IP(3)) = R1 - S1

Y(IP(7)) = R1 + S1

Y(IP(4)) = R2 - S3

Y(IP(6)) = R2 + S3

C

GOTO 20

C-----------------WFTA N=9-----------------------

C

109 R1 = X(I(2)) + X(I(9))

R2 = X(I(2)) - X(I(9))

R3 = X(I(3)) + X(I(8))

R4 = X(I(3)) - X(I(8))

R5 = X(I(4)) + X(I(7))

T8 =(X(I(4)) - X(I(7))) * C31

R7 = X(I(5)) + X(I(6))

R8 = X(I(5)) - X(I(6))

T0 = X(I(1)) + R5

T7 = X(I(1)) + R5 * C95

R5 = R1 + R3 + R7

X(I(1)) = T0 + R5

T5 = T0 + R5 * C95

T3 = (R3 - R7) * C92

R7 = (R1 - R7) * C93

R3 = (R1 - R3) * C94

T1 = T7 + T3 + R3

T3 = T7 - T3 - R7
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T7 = T7 + R7 - R3

T6 = (R2 - R4 + R8) * C31

T4 = (R4 + R8) * C96

R8 = (R2 - R8) * C97

R2 = (R2 + R4) * C98

T2 = T8 + T4 + R2

T4 = T8 - T4 - R8

T8 = T8 + R8 - R2

C

R1 = Y(I(2)) + Y(I(9))

R2 = Y(I(2)) - Y(I(9))

R3 = Y(I(3)) + Y(I(8))

R4 = Y(I(3)) - Y(I(8))

R5 = Y(I(4)) + Y(I(7))

R6 =(Y(I(4)) - Y(I(7))) * C31

R7 = Y(I(5)) + Y(I(6))

R8 = Y(I(5)) - Y(I(6))

T0 = Y(I(1)) + R5

T9 = Y(I(1)) + R5 * C95

R5 = R1 + R3 + R7

Y(I(1)) = T0 + R5

R5 = T0 + R5 * C95

T0 = (R3 - R7) * C92

R7 = (R1 - R7) * C93

R3 = (R1 - R3) * C94

R1 = T9 + T0 + R3

T0 = T9 - T0 - R7

R7 = T9 + R7 - R3

R9 = (R2 - R4 + R8) * C31

R3 = (R4 + R8) * C96

R8 = (R2 - R8) * C97

R4 = (R2 + R4) * C98

R2 = R6 + R3 + R4

R3 = R6 - R8 - R3

R8 = R6 + R8 - R4

C

X(IP(2)) = T1 - R2

X(IP(9)) = T1 + R2

Y(IP(2)) = R1 + T2

Y(IP(9)) = R1 - T2

X(IP(3)) = T3 + R3

X(IP(8)) = T3 - R3
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Y(IP(3)) = T0 - T4

Y(IP(8)) = T0 + T4

X(IP(4)) = T5 - R9

X(IP(7)) = T5 + R9

Y(IP(4)) = R5 + T6

Y(IP(7)) = R5 - T6

X(IP(5)) = T7 - R8

X(IP(6)) = T7 + R8

Y(IP(5)) = R7 + T8

Y(IP(6)) = R7 - T8

C

GOTO 20

C-----------------WFTA N=16------------------------

C

116 R1 = X(I(1)) + X(I(9))

R2 = X(I(1)) - X(I(9))

R3 = X(I(2)) + X(I(10))

R4 = X(I(2)) - X(I(10))

R5 = X(I(3)) + X(I(11))

R6 = X(I(3)) - X(I(11))

R7 = X(I(4)) + X(I(12))

R8 = X(I(4)) - X(I(12))

R9 = X(I(5)) + X(I(13))

R10= X(I(5)) - X(I(13))

R11 = X(I(6)) + X(I(14))

R12 = X(I(6)) - X(I(14))

R13 = X(I(7)) + X(I(15))

R14 = X(I(7)) - X(I(15))

R15 = X(I(8)) + X(I(16))

R16 = X(I(8)) - X(I(16))

T1 = R1 + R9

T2 = R1 - R9

T3 = R3 + R11

T4 = R3 - R11

T5 = R5 + R13

T6 = R5 - R13

T7 = R7 + R15

T8 = R7 - R15

R1 = T1 + T5

R3 = T1 - T5

R5 = T3 + T7
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R7 = T3 - T7

X(IP( 1)) = R1 + R5

X(IP( 9)) = R1 - R5

T1 = C81 * (T4 + T8)

T5 = C81 * (T4 - T8)

R9 = T2 + T5

R11= T2 - T5

R13 = T6 + T1

R15 = T6 - T1

T1 = R4 + R16

T2 = R4 - R16

T3 = C81 * (R6 + R14)

T4 = C81 * (R6 - R14)

T5 = R8 + R12

T6 = R8 - R12

T7 = C162 * (T2 - T6)

T2 = C163 * T2 - T7

T6 = C164 * T6 - T7

T7 = R2 + T4

T8 = R2 - T4

R2 = T7 + T2

R4 = T7 - T2

R6 = T8 + T6

R8 = T8 - T6

T7 = C165 * (T1 + T5)

T2 = T7 - C164 * T1

T4 = T7 - C163 * T5

T6 = R10 + T3

T8 = R10 - T3

R10 = T6 + T2

R12 = T6 - T2

R14 = T8 + T4

R16 = T8 - T4

R1 = Y(I(1)) + Y(I(9))

S2 = Y(I(1)) - Y(I(9))

S3 = Y(I(2)) + Y(I(10))

S4 = Y(I(2)) - Y(I(10))

R5 = Y(I(3)) + Y(I(11))

S6 = Y(I(3)) - Y(I(11))

S7 = Y(I(4)) + Y(I(12))

S8 = Y(I(4)) - Y(I(12))

S9 = Y(I(5)) + Y(I(13))
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S10= Y(I(5)) - Y(I(13))

S11 = Y(I(6)) + Y(I(14))

S12 = Y(I(6)) - Y(I(14))

S13 = Y(I(7)) + Y(I(15))

S14 = Y(I(7)) - Y(I(15))

S15 = Y(I(8)) + Y(I(16))

S16 = Y(I(8)) - Y(I(16))

T1 = R1 + S9

T2 = R1 - S9

T3 = S3 + S11

T4 = S3 - S11

T5 = R5 + S13

T6 = R5 - S13

T7 = S7 + S15

T8 = S7 - S15

R1 = T1 + T5

S3 = T1 - T5

R5 = T3 + T7

S7 = T3 - T7

Y(IP( 1)) = R1 + R5

Y(IP( 9)) = R1 - R5

X(IP( 5)) = R3 + S7

X(IP(13)) = R3 - S7

Y(IP( 5)) = S3 - R7

Y(IP(13)) = S3 + R7

T1 = C81 * (T4 + T8)

T5 = C81 * (T4 - T8)

S9 = T2 + T5

S11= T2 - T5

S13 = T6 + T1

S15 = T6 - T1

T1 = S4 + S16

T2 = S4 - S16

T3 = C81 * (S6 + S14)

T4 = C81 * (S6 - S14)

T5 = S8 + S12

T6 = S8 - S12

T7 = C162 * (T2 - T6)

T2 = C163 * T2 - T7

T6 = C164 * T6 - T7

T7 = S2 + T4

T8 = S2 - T4
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S2 = T7 + T2

S4 = T7 - T2

S6 = T8 + T6

S8 = T8 - T6

T7 = C165 * (T1 + T5)

T2 = T7 - C164 * T1

T4 = T7 - C163 * T5

T6 = S10 + T3

T8 = S10 - T3

S10 = T6 + T2

S12 = T6 - T2

S14 = T8 + T4

S16 = T8 - T4

X(IP( 2)) = R2 + S10

X(IP(16)) = R2 - S10

Y(IP( 2)) = S2 - R10

Y(IP(16)) = S2 + R10

X(IP( 3)) = R9 + S13

X(IP(15)) = R9 - S13

Y(IP( 3)) = S9 - R13

Y(IP(15)) = S9 + R13

X(IP( 4)) = R8 - S16

X(IP(14)) = R8 + S16

Y(IP( 4)) = S8 + R16

Y(IP(14)) = S8 - R16

X(IP( 6)) = R6 + S14

X(IP(12)) = R6 - S14

Y(IP( 6)) = S6 - R14

Y(IP(12)) = S6 + R14

X(IP( 7)) = R11 - S15

X(IP(11)) = R11 + S15

Y(IP( 7)) = S11 + R15

Y(IP(11)) = S11 - R15

X(IP( 8)) = R4 - S12

X(IP(10)) = R4 + S12

Y(IP( 8)) = S4 + R12

Y(IP(10)) = S4 - R12

C

GOTO 20

C

20 CONTINUE

10 CONTINUE
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RETURN

END



Chapter 19

Appendix 4: Programs for Short FFTs1

This appendix will discuss e�cient short FFT programs that can be used in both the Cooley-
Tukey and the Prime Factor FFT algorithms. Links and references are given to Fortran
listings that can be used "as is" or put into the indexed loops of existing programs to give
greater e�ciency and/or a greater variety of allowed lengths. Special programs have been
written for lengths: N = 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 25, etc.

In the early days of the FFT, multiplication was done in software and was, therefore, much
slower than an addition. With modem hardware, a �oating point multiplication can be done
in one clock cycle of the computer, microprocessor, or DSP chip, requiring the same time as
an addition. Indeed, in some computers and many DSP chips, both a multiplication and an
addition (or accumulation) can be done in one cycle while the indexing and memory access
is done in parallel. Most of the algorithms described here are not hardware architecture
speci�c but are designed to minimize both multiplications and additions.

The most basic and often used length FFT (or DFT) is for N = 2. In the Cooley Tukey
FFT, it is called a "butter�y" and its reason for fame is requiring no multiplications at
all, only one complex addition and one complex subtraction and needing only one complex
temporary storage location. This is illustrated in Figure 9.1 and code is shown in {Figure 9.3
and 17.5}. The second most used length is N = 4 because it is the only other short length
requiring no multiplications and a minimum of additions. All other short FFT require some
multiplication but for powers of two, N = 8 and N = 16 require few enough to be worth
special coding for some situations.

Code for other short lengths such as the primes N = 3, 5, 7, 11, 13, 17, and 19 and the
composites N = 9 and 25 are included in the programs for the prime factor algorithm or
the WFTA. They are derived using the theory in Chapters 5, 6, and 9. They can also be
found in references ... and

If these short FFTs are used as modules in the basic prime factor algorithm (PFA), then
the straight forward development used for the modules in Figure 17.12 are used. However if

1This content is available online at <http://cnx.org/content/m17646/1.2/>.
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the more complicated indexing use to achieve in-order, in-place calculation used in {xxxxx}
require di�erent code.

For each of the indicated lengths, the computer code is given in a Connexions module.

They are not in the collection Fast Fourier Transforms2 as the printed version would be too
long. However, one can link to them on-line from the following buttons:

N=23

N=34

N=45

N=56

N=77

N= 8

N= 9

N= l1

N= 13

N= 16

N= 17

N= 19

N= 25

Versions for the in-place, in-order prime factor algorithm {pfa} can be obtained from:

N=28

N=39

N=410

N=511

N=712

N=813

N=914

N=l115

2
Fast Fourier Transforms <http://cnx.org/content/col10550/latest/>

3"N=2" <http://cnx.org/content/m17625/latest/>
4"N=3" <http://cnx.org/content/m17626/latest/>
5"N=4" <http://cnx.org/content/m17627/latest/>
6"N=5" <http://cnx.org/content/m17628/latest/>
7"N=7" <http://cnx.org/content/m17629/latest/>
8"pN=2" <http://cnx.org/content/m17631/latest/>
9"pN=3" <http://cnx.org/content/m17632/latest/>
10"pN=4" <http://cnx.org/content/m17633/latest/>
11"pN=5" <http://cnx.org/content/m17634/latest/>
12"pN=7" <http://cnx.org/content/m17635/latest/>
13"pN=8" <http://cnx.org/content/m17636/latest/>
14"pN=9" <http://cnx.org/content/m17637/latest/>
15"N = 11 Winograd FFT module" <http://cnx.org/content/m17377/latest/>
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N=1316

N=1617

N=1718

N=1919

N=2520

A technical report that describes the length 11, 13, 17, and 19 is in {report 8105} and
another technical report that describes a program that will automatically generate a prime
length FFT and its �ow graph si in {report xxx}.

16"N = 13 Winograd FFT module" <http://cnx.org/content/m17378/latest/>
17"N = 16 FFT module" <http://cnx.org/content/m17382/latest/>
18"N = 17 Winograd FFT module" <http://cnx.org/content/m17380/latest/>
19"N = 19 Winograd FFT module" <http://cnx.org/content/m17381/latest/>
20"N = 25 FFT module" <http://cnx.org/content/m17383/latest/>
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Fast Fourier Transforms
This book uses an index map, a polynomial decomposition, an operator factorization, and a
conversion to a �lter to develop a very general and e�cient description of fast algorithms to
calculate the discrete Fourier transform (DFT). The work of Winograd is outlined, chapters
by Selesnick, Pueschel, and Johnson are included, and computer programs are provided.
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