
Engineering Computation for Power
Engineers

Collection Editor:
Serhat Beyenir

Engineering Computation for Power
Engineers

Collection Editor:
Serhat Beyenir

Authors:
Anders Gjendemsjø

Darryl Morrell

Online:
< http://cnx.org/content/col11234/1.1/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Serhat Beyenir. It is licensed under the

Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: October 28, 2010

PDF generated: February 6, 2011

For copyright and attribution information for the modules contained in this collection, see p. 14.

Table of Contents

1 Introduction to the M-�le Connexions Modules . 1
2 Using MATLAB . 3
3 Graphical representation of data in MATLAB . 7
Index . 13
Attributions . 14

iv

Chapter 1

Introduction to the M-�le Connexions

Modules1

MATLAB has emerged as a widely used computational tool in many �elds of engineering. MATLAB consists
of a programming language used in an interactive computing environment that supports the development of
programs to solve complex problems. The MATLAB language has become a defacto standard that is also
used by several other computational packages, including LabVIEW MathScript and Octave. Generically,
we refer to these packages as m-�le environments because the program �les typically are identi�ed by an
extension of "m".

The Connexions modules in this course2 are intended to introduce freshman engineering students to
problem solving using an m-�le environment. Most of the information in these modules applies to any
m-�le environment (MATLAB, LabVIEW MathScript, Octave, etc.). There are some di�erences between
environments, and occasionally some material will be speci�c to a given environment. This material is o�set
from the surrounding text and labeled with the appropriate environment. For example:

note: Matlab is a commercial product of The MathWorks3 .

note: LabVIEW MathScript is a commercial product of National Instruments4 .

note: Octave is an open source environment that is available without charge. Information about
Octave is available at the Octave home page5 .

1This content is available online at <http://cnx.org/content/m13749/1.1/>.
2Freshman Engineering Problem Solving with MATLAB <http://cnx.org/content/col10325/latest/>
3http://www.mathworks.com/
4http://www.ni.com/
5http://www.octave.org/

1

2 CHAPTER 1. INTRODUCTION TO THE M-FILE CONNEXIONS MODULES

Chapter 2

Using MATLAB1

2.1 Matlab Help

MATLAB has a great on-line help system accessible using the help command. Typing
help <function>
will return text information about the chosen function. For example to get information about the built-in

function sum type:
help sum

To list the contents of a toolbox type help <toolbox>, e.g. to show all the functions of the signal
processing toolbox enter

help signal processing

If you don't know the name of the function but a suitable keyword use the lookfor followed by a keyword
string, e.g.

lookfor 'discrete fourier'

To explore the extensive help system use the "Help menu" or try the commands helpdesk or demo.

2.2 Matrices, vectors and scalars

MATLAB uses matrices as the basic variable type. Scalars and vectors are special cases of matrices having
size 1x1, 1xN or Nx1. In MATLAB, there are a few conventions for entering data:

• Elements of a row are separated with blanks or commas.
• Each row is ended by a semicolon, ;.
• A list of elements must be surrounded by square brackets, []

Example 2.1

It is easy to create basic variables.
x = 1 (scalar)
y = [2 4 6 8 10] (row vector)
z = [2; 4; 6; 8; 10] (column vector)
A = [4 3 2 1 0; 1 3 5 7 9] (2 x 5 matrix)

Regularly spaced values of a vector can be entered using the following compact notation
start:skip:end

Example 2.2

A more compact way of entering variables than in Example 1 (Example 2.1) is shown here:

1This content is available online at <http://cnx.org/content/m13254/1.5/>.

3

4 CHAPTER 2. USING MATLAB

y= 2 : 2 : 10

A=[4:-1:0;1:2:9]

If the skip is omitted it will be set to 1, i.e., the following are equivalent
start:1:end and start:end

To create a string use the single quotation mark " ' ", e.g. by entering x = 'This is a string'.

2.3 Indexing matrices and vectors

Indexing variables is straightforward. Given a matrix M the element in the i'th row, j'th column is given by
M(i,j). For a vector v the i'th element is given by v(i). Note that the lowest allowed index in MATLAB is
1. This is in contrast with many other programming languages (e.g. JAVA and C), as well as the common
notation used in signal processing, where indexing starts at 0. The colon operator is also of great help when
accessing speci�c parts of matrices and vectors, as shown below.

Example 2.3

This example shows the use of the colon operator for indexing matrices and vectors.
A(1,:) returns the �rst row of the matrix A.
A(:,3) returns the third column of the matrix A.
A(2,1:5) returns the �rst �ve elements of the second row.
x(1:2:10) returns the �rst �ve odd-indexed elements of the vector x.

2.4 Basic operations

MATLAB has built-in functions for a number of arithmetic operations and functions. Most of them are
straightforward to use. The Table (Table 2.1: Common mathematical operations in MATLAB) below lists
the some commonly used functions. Let x and y be scalars, M and N matrices.

Common mathematical operations in MATLAB

MATLAB

xy x*y

xy x^y

ex exp(x)

log(x) log10(x)

ln(x) log(x)

log2(x) log2(x)

MN M*N

M−1 inv(M)

continued on next page

5

MT M'

det(M) det(M)

Table 2.1

• Dimensions - MATLAB functions length and size are used to �nd the dimensions of vectors and
matrices, respectively.

• Elementwise operations - If an arithmetic operation should be done on each component in a vector (or
matrix), rather than on the vector (matrix) itself, then the operator should be preceded by ".", e.g .*,
.^ and ./.

Example 2.4

Elementwise operations, part I

Let A =

 1 1

1 1

. Then A^2 will return AA =

 2 2

2 2

, while A.^2 will return 12 12

12 12

 =

 1 1

1 1

.

Example 2.5

Elementwise operations, part II
Given a vector x, and a vector y having elements y (n) = 1

sin(x(n)) . This can be easily be done in

MATLAB by typing y=1./sin(x) Note that using / in place of ./ would result in the (common)
error Matrix dimensions must agree.

2.5 Complex numbers

MATLAB has excellent support for complex numbers with several built-in functions available. The imaginary
unit is denoted by i or (as preferred in electrical engineering) j. To create complex variables z1 = 7 + i and
z2 = 2eiπ simply enter z1 = 7 + j and z2 = 2*exp(j*pi)

The Table below gives an overview of the basic functions for manipulating complex numbers, where z is
a complex number.

Manipulating complex numbers in MATLAB

MATLAB

Re(z) real(z)

Im(z) imag(z)

|z| abs(z)

Angle(z) angle(z)

continued on next page

6 CHAPTER 2. USING MATLAB

z∗ conj(z)

Table 2.2

2.6 Other Useful Details

• A semicolon added at the end of a line tells MATLAB to suppress the command output to the display.
• MATLAB and case sensitivity. For variables MATLAB is case sensitive, i.e., b and B are di�erent.

For functions it is case insensitive, i.e., sum and SUM refer to the same function.
• Often it is useful to split a statement over multiple lines. To split a statement across multiple lines,

enter three periods "..." at the end of the line to indicate that it continues on the next line.

Example 2.6

Splitting y = a + b + c over multiple lines.

y = a...

+ b...

+ c;

Chapter 3

Graphical representation of data in

MATLAB1

3.1 Graphical representation of data in MATLAB

MATLAB provides a great variety of functions and techniques for graphical display of data. The �exibility
and ease of use of MATLAB's plotting tools is one of its key strengths. In MATLAB graphs are shown in a
�gure window. Several �gure windows can be displayed simultaneously, but only one is active. All graphing
commands are applied to the active �gure. The command figure(n)will activate �gure number n or create
a new �gure indexed by n.

3.2 Tools for plotting

In this section we present some of the most commonly used functions for plotting in MATLAB.

• plot- The plot and stem functions can take a large number of arguments, see help plot and help stem.
For example the line type and color can easily be changed. plot(y) plots the values in vector yversus
their index. plot(x,y) plots the values in vector yversus x. The plot function produces a piecewise
linear graph between its data values. With enough data points it looks continuous.

• stem- Using stem(y)the data sequence yis plotted as stems from the x-axis terminated with circles for
the data values. stem is the natural way of plotting sequences. stem(x,y) plots the data sequence y

at the values speci�ed in x.
• xlabel('string')- Labels the x-axis with string.
• ylabel('string')- Labels the y-axis with string.
• title('string')- Gives the plot the title string.

To illustrate this consider the following example.

Example 3.1

In this example we plot the function y = x2 for x 2 [-2; 2].
x = -2:0.2:2;

y = x.^2;

figure(1);

1This content is available online at <http://cnx.org/content/m13252/1.1/>.

7

8 CHAPTER 3. GRAPHICAL REPRESENTATION OF DATA IN MATLAB

plot(x,y);

xlabel('x');

ylabel('y=x^2');

title('Simple plot');

figure(2);

stem(x,y);

xlabel('x');

ylabel('y=x^2');

title('Simple stem plot');

This code produces the following two �gures.

Figure 3.1

Figure 3.2

9

Some more commands that can be helpful when working with plots:

• hold on / o� - Normally hold is o�. This means that the plot command replaces the current plot with
the new one. To add a new plot to an existing graph use hold on. If you want to overwrite the current
plot again, use hold off.

• legend('plot1','plot2',...,'plot N')- The legend command provides an easy way to identify
individual plots when there are more than one per �gure. A legend box will be added with strings
matched to the plots.

• axis([xmin xmax ymin ymax])- Use the axis command to set the axis as you wish. Use axis on/off

to toggle the axis on and o� respectively.
• subplot(m,n,p) -Divides the �gure window into m rows, n columns and selects the pp'th subplot as the

current plot, e.g subplot(2,1,1) divides the �gure in two and selects the upper part. subplot(2,1,2)
selects the lower part.

• grid on/off - This command adds or removes a rectangular grid to your plot.

Example 3.2

This example illustrates hold, legend and axis.
x = -3:0.1:3; y1 = -x.^2; y2 = x.^2;

figure(1);

plot(x,y1);

hold on;

plot(x,y2,'�');

hold off;

xlabel('x');

ylabel('y_1=-x^2 and y_2=x^2');

legend('y_1=-x^2','y_2=x^2');

figure(2);

plot(x,y1);

hold on;

plot(x,y2,'�');

hold off;

xlabel('x');

ylabel('y_1=-x^2 and y_2=x^2');

legend('y_1=-x^2','y_2=x^2');

axis([-1 1 -10 10]);

10 CHAPTER 3. GRAPHICAL REPRESENTATION OF DATA IN MATLAB

The result is shown below.

(a) (b)

Figure 3.3

Example 3.3

In this example we illustrate subplot and grid.
x = -3:0.2:3; y1 = -x.^2; y2 = x.^2;

subplot(2,1,1);

plot(x,y1);

xlabel('x'); ylabel('y_1=-x^2');

grid on;

subplot(2,1,2);

plot(x,y2);

xlabel('x');

ylabel('y_2=x^2');

Now, the result is shown below.

11

Figure 3.4

3.3 Printing and exporting graphics

After you have created your �gures you may want to print them or export them to graphic �les. In the
"File" menu use "Print" to print the �gure or "Save As" to save your �gure to one of the many available
graphics formats. Using these options should be su�cient in most cases, but there are also a large number
of adjustments available by using "Export setup", "Page Setup" and "Print Setup".

To streamline the graphics exportation, take a look at export�g package at Mathworks.com, URL:
http://www.mathworks.com/matlabcentral/�leexchange/loadFile.do?objectId=7272 .

3.4 3D Graphics

We end this module on graphics with a sneak peek into 3D plots. The new functions here are meshgrid and
mesh. In the example below we see that meshgridproduces xand yvectors suitable for 3D plotting and that
mesh(x,y,z) plots z as a function of both x and y.

Example 3.4

Example: Creating our �rst 3D plot.
[x,y] = meshgrid(-3:.1:3);

z = x.^2+y.^2;

mesh(x,y,z);

xlabel('x');

ylabel('y');

zlabel('z=x^2+y^2');

2http://www.mathworks.com/matlabcentral/�leexchange/loadFile.do?objectId=727

12 CHAPTER 3. GRAPHICAL REPRESENTATION OF DATA IN MATLAB

This code gives us the following 3D plot.

Figure 3.5

INDEX 13

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

H Help, � 2(3)

I Introduction, � 1(1)

L LabVIEW MathScript, � 1(1)

M MATLAB, � 1(1)

Matrix, � 2(3)

O Octave, � 1(1)

V Vector, � 2(3)

W Workspace, � 2(3)

14 ATTRIBUTIONS

Attributions

Collection: Engineering Computation for Power Engineers

Edited by: Serhat Beyenir
URL: http://cnx.org/content/col11234/1.1/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction to the M-�le Connexions Modules"
By: Darryl Morrell
URL: http://cnx.org/content/m13749/1.1/
Page: 1
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Using MATLAB"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m13254/1.5/
Pages: 3-6
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/2.0/

Module: "Graphical representation of data in MATLAB"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m13252/1.1/
Pages: 7-12
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/2.0/

Engineering Computation for Power Engineers

This textbook is intended for use in Power Engineering courses.

About Connexions

Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

