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Chapter 1

Detection Theory Basics1

Detection theory concerns making decisions from data. Decisions are based on presumptive models that
may have produced the data. Making a decision involves inspecting the data and determining which model
was most likely to have produced them. In this way, we are detecting which model was correct. Decision
problems pervade signal processing. In digital communications, for example, determining if the current bit
received in the presence of channel disturbances was a zero or a one is a detection problem.

More concretely, we denote by Mi the i
th model that could have generated the data R. A "model"

is captured by the conditional probability distribution of the data, which is denoted by the vector R. For
example, model i is described by p R |Mi

(r ). Given all the models that can describe the data, we need to
choose which model best matched what was observed. The word "best" is key here: what is the optimality
criterion, and does the detection processing and the decision rule depend heavily on the criterion used? Sur-
prisingly, the answer to the second question is "No." All of detection theory revolves around the likelihood
ratio test, which as we shall see, emerges as the optimal detector under a wide variety of optimality criteria.

1.1 The Likelihood Ratio Test

In a binary detection problem in which we have two models, four possible decision outcomes can result.
Model M0 did in fact represent the best model for the data and the decision rule said it was (a correct
decision) or said it wasn't (an erroneous decision). The other two outcomes arise when model M1 was in
fact true with either a correct or incorrect decision made. The decision process operates by segmenting the
range of observation values into two disjoint decision regions Z0 and Z1. All values of R fall into either
Z0 or Z1. If a given R lies in Z0, we will announce our decision "modelM0 was true"; if in Z1, modelM1

would be proclaimed. To derive a rational method of deciding which model best describes the observations,
we need a criterion to assess the quality of the decision process so that optimizing this criterion will specify
the decision regions.

The Bayes' decision criterion seeks to minimize a cost function associated with making a decision.
Let Cij be the cost of mistaking model j for model i (i 6= j) and Cii the presumably smaller cost of correctly
choosing model i: Cij > Cii, i 6= j. Let πi be the a priori probability of model i. The so-called Bayes' cost
−
C is the average cost of making a decision.

−
C =

∑
i,j{i,j} CijPr [say Mi when Mj true]

=
∑
i,j{i,j} CijπjPr [ say Mi | Mj true]

(1.1)

1This content is available online at <http://cnx.org/content/m16250/1.6/>.
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2 CHAPTER 1. DETECTION THEORY BASICS

The Bayes' cost can be expressed as

−
C=

∑
i,j{i,j}CijπjPr [R ∈ Zi | Mj true] =

∑
i,j{i,j}Cijπj

∫
p R |Mj

(r ) dr =∫ (
C00π0p R |M0 (r ) + C01π1p R |M1 (r )

)
dr+

∫ (
C10π0p R |M0 (r ) + C11π1p R |M1 (r )

)
dr

(1.2)

To minimize this expression with respect to the decision regions Z0 and Z1, ponder which integral would
yield the smallest value if its integration domain included a speci�c value of the observation vector. To
minimize the sum of the two integrals, whichever integrand is smaller should include that value of r in its
integration domain. We conclude that we choose M0 for those values of r yielding a smaller value for the
�rst integral.

π0C00p R |M0 (r ) + π1C01p R |M1 (r ) < π0C10p R |M0 (r ) + π1C11p R |M1 (r )

We chooseM1 when the inequality is reversed. This expression is easily manipulated to obtain the crowning
result of detection theory: the likelihood ratio test.

p R |M1 (r )
p R |M0 (r )

M1

≷
M0

π0 (C10 − C00)
π1 (C01 − C11)

(1.3)

The comparison relation means selecting model M1 if the left-hand ratio exceeds the value on the right;

otherwise,M0 is selected. The likelihood ratio
p R |M1 ( r )

p R |M0 ( r ) , symbolically represented by Λ (r), encapsulates
the signal processing performed by the optimal detector on the observations r. The optimal decision rule

then compares that scalar-valued result with a threshold η equaling π0(C10−C00)
π1(C01−C11) . The likelihood ratio test

can be succinctly expressed as the comparison of the likelihood ratio with a threshold.

Λ (r)
M1

≷
M0

η (1.4)

The data processing operations are captured entirely by the likelihood ratio Λ (r). However, the calcu-
lations required by the likelihood ratio can be simpli�ed in many cases. Note that only the value of the
likelihood ratio relative to the threshold matters. Consequently, we can perform any positively monotonic
transformation simultaneously on the likelihood ratio and the threshold without a�ecting the result of the
comparison. For example, we can multiply by a positive constant, add any constant or apply a monotoni-
cally increasing function to reduce the complexity of the expressions. We single out one such function, the
logarithm, because it often simpli�es likelihood ratios that commonly occur in signal processing applications.
Known as the log-likelihood, we explicitly express the likelihood ratio test with it as

ln (Λ (r))
M1

≷
M0

ln (η) (1.5)

What simplifying transformations are useful are problem-dependent. But, by laying bare what aspect of the
observations is essential to the model-testing problem, we reveal the su�cient statistic Υ (r): the scalar
quantity which best summarizes the data for detection purposes. The likelihood ratio test is best expressed
in terms of the su�cient statistic.

Υ (r)
M1

≷
M0

γ (1.6)

We denote the threshold value for the su�cient statistic by γ or by η when the likelihood ratio is used in
the comparison.

The likelihood ratio is comprised of the quantities p R |Mi
(r ), which are known as likelihood functions

and play an important role in estimation theory. It is the likelihood function that portrays the probabilistic
model describing data generation. The likelihood function completely characterizes the kind of "world"
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assumed by each model. For each model, we must specify the likelihood function so that we can solve the
hypothesis testing problem.

A complication, which arises in some cases, is that the su�cient statistic may not be monotonic. If it
is monotonic, the decision regions Z0 and Z1 are simply connected: all portions of a region can be reached
without crossing into the other region. If not, the regions are not simply connected and decision region islands
are created. Disconnected regions usually complicate calculations of decision performance. Monotonic or
not, the decision rule proceeds as described: the su�cient statistic is computed for each observation vector
and compared to a threshold.

Example 1.1

The coach of a soccer team suspects his goalie has been less than attentive to his training regimen.
The coach focuses on the kicks the goalie makes to send the ball down the �eld. The data r he
observes is the length of a kick. The coach de�nes the models as

• M0: not maintaining a training regimen
• M1: is maintaining a training regimen

The conditional densities�models�of the kick length are shown in Figure 1.1.

Figure 1.1: Conditional densities for the distribution of the lengths of soccer kicks assuming that the
goalie has not attended to his training (M0) or did (M1) are shown in the top row. The lower portion
depicts the likelihood ratio formed from these densities.

Based on knowledge of soccer player behavior, the coach assigns a priori probabilities of π0 = 1/4
and π1 = 3/4. The costs Cij are chosen to re�ect the coach's sensitivity to the goalies feelings:
C01 = 1 = C10 (an erroneous decision either way is given the same cost) and C00 = 0 = C11. The
likelihood ratio is plotted in Figure 1.1 and the threshold value η, which is computed from the a
priori probabilities and the costs to be 1/3, is indicated. The calculations of this comparison can
be simpli�ed in an obvious way.

r

50

M1

≷
M0

1/3

or

r
M1

≷
M0

50/3 = 16.7
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The multiplication by the factor of 50 is a simple illustration of the reduction of the likelihood
ratio to a su�cient statistic. Based on the assigned costs and a priori probabilities, the optimum
decision rule says the coach must assume that the student did not train if a kick is less than 16.7;
if greater, the goalie is assumed to have trained despite producing an abysmally short kick such
as 20. Note that as the densities given by each model overlap entirely: the possibility of making
the wrong interpretation always haunts the coach. However, no other procedure will be better
(produce a smaller Bayes' cost)!



Chapter 2

Detection Performance Criteria1

The criterion used in the previous section�minimize the average cost of an incorrect decision�may seem
to be a contrived way of quantifying decisions. Well, often it is. For example, the Bayesian decision rule
depends explicitly on the a priori probabilities. A rational method of assigning values to these�either by
experiment or through true knowledge of the relative likelihood of each model�may be unreasonable. In this
section, we develop alternative decision rules that try to respond to such objections. One essential point will
emerge from these considerations: the likelihood ratio persists as the core of optimal detectors as

optimization criteria and problem complexity change. Even criteria remote from performance error
measures can result in the likelihood ratio test. Such an invariance does not occur often in signal processing
and underlines the likelihood ratio test's importance.

2.1 Maximizing the Probability of a Correct Decision

As only one model can describe any given set of data (the models are mutually exclusive), the probability
of being correct Pc for distinguishing two models is given by

Pc = Pr [say M0 when M0 true] + Pr [say M1 when M1 true]

We wish to determine the optimum decision region placement. Expressing the probability of being correct
in terms of the likelihood functions p R |Mi

(r ), the a priori probabilities and the decision regions, we have

Pc =
∫
π0p R |M0 (r ) dr +

∫
π1p R |M1 (r ) dr

We want to maximize Pc by selecting the decision regions Z0 and Z1. Mimicking the ideas of the previous
section, we associate each value of r with the largest integral in the expression for Pc. Decision region Z0, for
example, is de�ned by the collection of values of r for which the �rst term is largest. As all of the quantities
involved are non-negative, the decision rule maximizing the probability of a correct decision is

note: Given r, chooseMi for which the product πip R |Mi
(r ) is largest.

When we must select among more than two models, this result still applies (prove this for yourself). Simple
manipulations lead to the likelihood ratio test when we must decide between two models.

p R |M1 (r )
p R |M0 (r )

M1

≷
M0

π0

π1

Note that if the Bayes' costs were chosen so that Cii = 0 and Cij = C, (i 6= j), the Bayes' cost and the
maximum-probability-correct thresholds would be the same.

1This content is available online at <http://cnx.org/content/m16251/1.4/>.
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6 CHAPTER 2. DETECTION PERFORMANCE CRITERIA

To evaluate the quality of the decision rule, we usually compute the probability of error Pe rather than
the probability of being correct. This quantity can be expressed in terms of the observations, the likelihood
ratio, and the su�cient statistic.

Pe = π0

∫
p R |M0 (r ) dr + π1

∫
p R |M1 (r ) dr

= π0

∫
p Λ |M0 (Λ) dΛ + π1

∫
p Λ |M1 (Λ) dΛ

= π0

∫
p Υ |M0 (Υ) dΥ + π1

∫
p Υ |M1 (Υ) dΥ

(2.1)

These expressions point out that the likelihood ratio and the su�cient statistic can each be considered
a function of the observations r; hence, they are random variables and have probability densities for each
model. When the likelihood ratio is non-monotonic, the �rst expression is most di�cult to evaluate. When
monotonic, the middle expression often proves to be the most di�cult. No matter how it is calculated, no
other decision rule can yield a smaller probability of error. This statement is obvious as we minimized
the probability of error implicitly by maximizing the probability of being correct because Pe = 1− Pc.

From a grander viewpoint, these expressions represent an achievable lower bound on performance (as
assessed by the probability of error). Furthermore, this probability will be non-zero if the conditional
densities overlap over some range of values of r, such as occurred in the previous example. Within regions of
overlap, the observed values are ambiguous: either model is consistent with the observations. Our "optimum"
decision rule operates in such regions by selecting that model which is most likely (has the highest probability)
of generating the measured data.

2.2 Neyman-Pearson Criterion

Situations occur frequently where assigning or measuring the a priori probabilities πi is unreasonable. For
example, just what is the a priori probability of a supernova occurring in any particular region of the sky?
We clearly need a model evaluation procedure that can function without a priori probabilities. This kind of
test results when the so-called Neyman-Pearson criterion is used to derive the decision rule.

Using nomenclature from radar, where modelM1 represents the presence of a target andM0 its absence,
the various types of correct and incorrect decisions have the following names.2

Detection Probability - we say it's there when it is; PD = Pr [ say M1 | M1 true]
False-alarm Probability - we say it's there when it's not; PF = Pr [ say M1 | M0 true]
Miss Probability - we say it's not there when it is; PM = Pr [ say M0 | M1 true]

The remaining probability Pr [ say M0 | M0 true] has historically been left nameless and equals 1 − PF .
We should also note that the detection and miss probabilities are related by PM = 1 − PD. As these are
conditional probabilities, they do not depend on the a priori probabilities. Furthermore, the two probabilities
PF and PD characterize the errors when any decision rule is used.

These two probabilities are related to each other in an interesting way. Expressing these quantities in
terms of the decision regions and the likelihood functions, we have

PF =
∫
p R |M0 (r ) dr

PD =
∫
p R |M1 (r ) dr

As the region Z1 shrinks, both of these probabilities tend toward zero; as Z1 expands to engulf the entire
range of observation values, they both tend toward unity. This rather direct relationship between PD and
PF does not mean that they equal each other; in most cases, as Z1 expands, PD increases more rapidly than

2In statistics, a false-alarm is known as a type I error and a miss a type II error.
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PF (we had better be right more often than we are wrong!). However, the "ultimate" situation where a rule
is always right and never wrong (PD = 1, PF = 0) cannot occur when the conditional distributions overlap.
Thus, to increase the detection probability we must also allow the false-alarm probability to increase. This
behavior represents the fundamental tradeo� in detection theory.

One can attempt to impose a performance criterion that depends only on these probabilities with the
consequent decision rule not depending on the a priori probabilities. The Neyman-Pearson criterion assumes
that the false-alarm probability is constrained to be less than or equal to a speci�ed value α while we
maximize the detection probability PD.

∀P F, PF ≤ α : (maxZ 1 {Z 1, PD})

A subtlety of the solution we are about to obtain is that the underlying probability distribution functions may
not be continuous, with the consequence that PF can never equal the constraining value α. Furthermore,
a (unlikely) possibility is that the optimum value for the false-alarm probability is somewhat less than
the criterion value. Assume, therefore, that we rephrase the optimization problem by requiring that the
false-alarm probability equal a value α′ that is the largest possible value less than or equal to α.

This optimization problem can be solved using Lagrange multipliers3; we seek to �nd the decision rule
that maximizes

F = PD − λ (PF − α′)

where λ is a positive Lagrange multiplier. This optimization technique amounts to �nding the decision rule
that maximizes F , then �nding the value of the multiplier that allows the criterion toinge the detection
probability in competition with false-alrm probabilities in excess of the criterion value. As is usual in the
derivation of optimum decision rules, we maximize these quantities with respect to the decision regions.
Expressing PD and PF in terms of them, we have

F =
∫
p R |M1 (r ) dr − λ

(∫
p R |M0 (r ) dr − α′

)
= λα′ +

∫ (
p R |M1 (r )− λp R |M0 (r )

)
dr

(2.2)

To maximize this quantity with respect to Z1, we need only to integrate over those regions of r where the
integrand is positive). The region Z1 thus corresponds to those values of r where p R |M1 (r ) > λp R |M0 (r )
and the resulting decision rule is

p R |M1 (r )
p R |M0 (r )

M1

≷
M0

λ

The ubiquitous likelihood ratio test again appears; it is indeed the fundamental quantity in hypothesis
testing. Using either the logarithm of the likelihood ratio or the su�cient statistic, this result can be
expressed as

ln (Λ (r))
M1

≷
M0

ln (λ)

or

Υ (r)
M1

≷
M0

γ

We have not as yet found a value for the threshold. The false-alarm probability can be expressed in terms
of the Neyman-Pearson threshold in two (useful) ways.

PF =
∫∞
λ
p Λ |M0 (Λ) dΛ

=
∫∞
γ
p Υ |M0 (Υ) dΥ

(2.3)

One of these implicit equations must be solved for the threshold by setting PF equal to α′. The selection
of which to use is usually based on pragmatic considerations: the easiest to compute. From the previous

3"Constrained Optimization" <http://cnx.org/content/m11223/latest/>
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discussion of the relationship between the detection and false-alarm probabilities, we �nd that to maximize
PD we must allow α′ to be as large as possible while remaining less than α. Thus, we want to �nd the
smallest value of λ consistent with the constraint. Computation of the threshold is problem-dependent, but
a solution always exists.

Example 2.1

An important application of the likelihood ratio test occurs when R is a Gaussian random vector
for each model. Suppose the models correspond to Gaussian random vectors having di�erent mean
values but sharing the same covariance.

• M0: R ∼ N
(
0, σ2I

)
• M1: R ∼ N

(
m,σ2I

)
R is of dimension L and has statistically independent, equi-variance components. The vector of
means m = (m0, . . . ,mL−1)T distinguishes the two models. The likelihood functions associated
this problem are

p R |M0 (r ) =
L−1∏
l=0

1√
2πσ2

e
−

“
1/2( rlσ )2

”

p R |M1 (r ) =
L−1∏
l=0

1√
2πσ2

e
−

„
1/2

“
rl−ml
σ

”2
«

The likelihood ratio Λ (r) becomes

Λ (r) =
∏L−1
l=0 e

−
„

1/2
“
rl−ml
σ

”2
«

∏L−1
l=0 e

−
“

1/2( rlσ )2
”

This expression for the likelihood ratio is complicated. In the Gaussian case (and many others), we
use the logarithm the reduce the complexity of the likelihood ratio and form a su�cient statistic.

ln (Λ (r)) =
∑L−1
l=0 −1/2 (rl−ml)2

σ2 + 1/2 rl
2

σ2

= 1
σ2

∑L−1
l=0 mlrl − 1

2σ2

∑L−1
l=0 ml

2
(2.4)

The likelihood ratio test then has the much simpler, but equivalent form

L−1∑
l=0

mlrl
M1

≷
M0

σ2ln (η) + 1/2
L−1∑
l=0

ml
2

To focus on the model evaluation aspects of this problem, let's assume the means equal each other
and are a positive constant: ml = m > 0.4 We now have

L−1∑
l=0

rl
M1

≷
M0

σ2

m
ln (η) +

Lm

2

Note that all that need be known about the observations {rl} is their sum. This quantity is the
su�cient statistic for the Gaussian problem: Υ (r) =

∑
rl and γ = σ2ln

(
η
m

)
+ Lm

2 .
When trying to compute the probability of error or the threshold in the Neyman-Pearson crite-

rion, we must �nd the conditional probability density of one of the decision statistics: the likelihood
ratio, the log-likelihood, or the su�cient statistic. The log-likelihood and the su�cient statistic are
quite similar in this problem, but clearly we should use the latter. One practical property of the suf-
�cient statistic is that it usually simpli�es computations. For this Gaussian example, the su�cient
statistic is a Gaussian random variable under each model.

4What would happen if the mean were negative?
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• M0: Υ (r) ∼ N
(
0, Lσ2

)
• M1: Υ (r) ∼ N

(
Lm,Lσ2

)
To �nd the probability of error from (2.1), we must evaluate the area under a Gaussian probability
density function. These integrals are succinctly expressed in terms of Q (x), which denotes the
probability that a unit-variance, zero-mean Gaussian random variable exceeds x.

Q (x) =
∫ ∞
x

1√
2πσ2

e−
α2
2 dα

As 1−Q (x) = Q (−x), the probability of error can be written as

Pe = π1Q

(
Lm− γ√

Lσ

)
+ π0Q

(
γ√
Lσ

)
An interesting special case occurs when π0 = 1/2 = π1. In this case, γ = Lm

2 and the probability
of error becomes

Pe = Q

(√
Lm

2σ

)
As Q (·) is a monotonically decreasing function, the probability of error decreases with increasing

values of the ratio
√
Lm
2σ . However, as shown in here5, Q (·) decreases in a nonlinear fashion. Thus,

increasing m by a factor of two may decrease the probability of error by a larger or a smaller factor;
the amount of change depends on the initial value of the ratio.

To �nd the threshold for the Neyman-Pearson test from the expressions given on (2.3), we need
the area under a Gaussian density.

PF = Q
(

γ√
Lσ2

)
= α′

(2.5)

As Q (·) is a monotonic and continuous function, we can set α′ equal to the criterion value α with
the result

γ =
√
LσQ−1 (α)

where Q−1 (·) denotes the inverse function of Q (·). The solution of this equation cannot be per-
formed analytically as no closed form expression exists for Q (·) (much less its inverse function).
The criterion value must be found from tables or numerical routines. Because Gaussian problems
arise frequently, the accompanying table (Table 2.1) provides numeric values for this quantity at
the decade points.

x Q−1 (x)

10−1 1.281

10−2 2.396

10−3 3.090

10−4 3.719

10−5 4.265

10−6 4.754

Table 2.1

5"The Gaussian Random Variable", Figure 1 <http://cnx.org/content/m11250/latest/#�g1>



10 CHAPTER 2. DETECTION PERFORMANCE CRITERIA

The table displays interesting values for Q−1 (·) that can be used to determine thresholds in the
Neyman-Pearson variant of the likelihood ratio test. Note how little the inverse function changes
for decade changes in its argument; Q (·) is indeed very nonlinear. The detection probability of
the Neyman-Pearson decision rule is given by

PD = Q

(
Q−1 (α)−

√
Lm

σ

)



Chapter 3

Detection of Signals in Noise1

Far and away the most common decision problem in signal processing is determining which of several signals
occurs in data contaminated by additive noise. Specializing to the case when one of two possible of signals
is present, the data models are

• M0 : R (l) = s0 (l) +N (l) , 0 ≤ l < L
• M1 : R (l) = s1 (l) +N (l) , 0 ≤ l < L

where {si (l)} denotes the known signals and N (l) denotes additive noise modeled as a stationary stochastic
process. This situation is known as the binary detection problem: distinguish between two possible
signals present in a noisy waveform.

We form the discrete-time observations into a vector: R = (R (0) , . . . , R (L− 1))T . Now the models
become

• M0 : R = s0 +N
• M1 : R = s1 +N

To apply our detection theory results, we need the probability density of R under each model. As the only
probabilistic component of the observations is the noise, the required density for the detection problem is
given by

p R |Mi
(r ) = p N (r − si )

and the corresponding likelihood ratio by

Λ (r) =
p N (r − s1 )
p N (r − s0 )

Much of detection theory revolves about interpreting this likelihood ratio and deriving the detection thresh-
old.

3.1 Additive White Gaussian Noise

By far the easiest detection problem to solve occurs when the noise vector consists of statistically independent,
identically distributed, Gaussian random variables, what is commonly termed white Gaussian noise. The
mean of white noise is usually taken to be zero2 and each component's variance is σ2. The equal-variance
assumption implies the noise characteristics are unchanging throughout the entire set of observations. The

1This content is available online at <http://cnx.org/content/m16253/1.9/>.
2The zero-mean assumption is realistic for the detection problem. If the mean were non-zero, simply subtracting it from the

observed sequence results in a zero-mean noise component.

11



12 CHAPTER 3. DETECTION OF SIGNALS IN NOISE

probability density of the noise vector evaluated at r − si equals that of a Gaussian random vector having
independent components with mean si.

p N (r − si ) =
(

1
2πσ2

)L
2

e−( 1
2σ2 (r−si)T (r−si))

The resulting detection problem is similar to the Gaussian example we previously examined, with the dif-
ference here being a non-zero mean�the signal�under both models. The logarithm of the likelihood ratio
becomes

(r − s0)T (r − s0)− (r − s1)T (r − s1)
M1

≷
M0

2σ2ln (η)

The usual simpli�cations yield in

rT s1 −
s1
T s1

2
−
(
rT s0 −

s0
T s0

2

)
M1

≷
M0

σ2ln (η)

The model-speci�c components on the left side express the signal processing operations for each model.3

Each term in the computations for the optimum detector has a signal processing interpretation. When
expanded, the term si

T si equals
∑L−1
l=0 si

2 (l), the signal energy Ei. The remaining term, rT si, is the
only one involving the observations and hence constitutes the su�cient statistic Υi (r) for the additive white
Gaussian noise detection problem.

Υi (r) = rT si

An abstract, but physically relevant, interpretation of this important quantity comes from the theory of
linear vector spaces. In that context, the quantity rT si would be termed the projection of r onto si.
From the Schwarz inequality, we know that the largest value of this projection occurs when these vectors are
proportional to each other. Thus, a projection measures how much alike two vectors are: they are completely
alike when they are parallel (proportional to each other) and completely dissimilar when orthogonal (the
projection is zero). In e�ect, the projection operation removes those components from the observations which
are orthogonal to the signal, thereby generalizing the familiar notion of �ltering a signal contaminated by
broadband noise. In �ltering, the signal-to-noise ratio of a bandlimited signal can be drastically improved
by lowpass �ltering; the output would consist only of the signal and "in-band" noise. The projection serves
a similar role, ideally removing those "out-of-band" components (the orthogonal ones) and retaining the
"in-band" ones (those parallel to the signal).

3.2 Matched Filtering

The projection operation can be expanded as rT si =
∑L−1
l=0 r (l) si (l) another signal processing interpretation

emerges. The projection now describes a �nite impulse response (FIR) �ltering operation evaluated at a
speci�c index. To demonstrate this interpretation, let h (l) be the unit-sample response of a linear, shift-
invariant �lter where h (l) = 0 for l < 0 and l ≥ L. Letting r (l) be the �lter's input sequence, the convolution
sum expresses the output.

r (k) ∗ h (k) =
k∑

l=k−(L−1)

r (l)h (k − l)

Letting k = L− 1, the index at which the unit-sample response's last value overlaps the input's value at the
origin, we have

r (k) ∗ h (k) |k=L−1 =
L−1∑
l=0

r (l)h (L− 1− l)

3If more than two signals were assumed possible, quantities such as these would need to be computed for each signal and
the largest selected.
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Suppose we set the unit-sample response equal to the index-reversed, then delayed signal.

h (l) = si (L− 1− l)

In this case, the �ltering operation becomes a projection operation.

r (k) ∗ si (L− 1− k) |k=L−1 =
L−1∑
l=0

r (l) si (l)

Figure 3.1 depicts these computations graphically.

Figure 3.1: The detector for signals contained in additive, white Gaussian noise consists of a matched
�lter, whose output is sampled at the duration of the signal and half of the signal energy is subtracted
from it. The optimum detector incorporates a matched �lter for each signal compares their outputs to
determine the largest.

The su�cient statistic for the ith signal is thus expressed in signal processing notation as r (k) ∗
si (L− 1− k) |k=L−1 −

Ei
2 . The �ltering term is called a matched �lter because the observations are

passed through a �lter whose unit-sample response "matches" that of the signal being sought. We sample
the matched �lter's output at the precise moment when all of the observations fall within the �lter's memory
and then adjust this value by half the signal energy. The adjusted values for the two assumed signals are
subtracted and compared to a threshold.

3.3 Detection Performance

To compute the performance probabilities, the expressions should be simpli�ed in the ways discussed in
previous sections. As the energy terms are known a priori they can be incorporated into the threshold with
the result

L−1∑
l=0

r (l) (s1 (l)− s0 (l))
M1

≷
M0

σ2ln (η) +
E1 − E0

2

The left term constitutes the su�cient statistic for the binary detection problem. Because the additive
noise is presumed Gaussian, the su�cient statistic is a Gaussian random variable no matter which model is
assumed. UnderMi, the speci�cs of this probability distribution are

L−1∑
l=0

r (l) (s1 (l)− s0 (l)) ∼ N (mi, vari)

where the mean and variance of the Gaussian distribution are given respectively by

mi =
∑

si (l) (s1 (l)− s0 (l))
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vari = σ2
∑

(s1 (l)− s0 (l))2

Note that the variance does not depend on model. The false-alarm probability is given by

PF = Q

(
σ2ln (η) + E1−E0

2 −m0

var
1
2

)

The signal-related terms in the numerator of this expression can be manipulated so that the false-alarm
probability of the optimal white Gaussian noise detector is succinctly expressed by

PF = Q

 ln (η) + 1
2σ2

∑
(s1 (l)− s0 (l))2

1
σ

(∑
(s1 (l)− s0 (l))2

) 1
2


Note that the only signal-related quantity a�ecting this performance probability (and all of the others as

well) is the ratio of the energy in the di�erence signal to the noise variance. The larger this ratio,
the better (i.e., smaller) the performance probabilities become. Note that the details of the signal waveforms
do not greatly a�ect the energy of the di�erence signal. For example, consider the case where the two signal
energies are equal (E0 = E1 = E); the energy of the di�erence signal is given by 2E − 2

∑
s0 (l) s1 (l). The

largest value of this energy occurs when the signals are negatives of each other, with the di�erence-signal
energy equaling 4E. Thus, equal-energy but opposite-signed signals such as sine waves, square-waves, Bessel
functions, etc. all yield exactly the same performance levels. The essential signal properties that do yield
good performance values are elucidated by an alternate interpretation. The term

∑
(s1 (l)− s0 (l))2

equals

(‖ s1 − s0 ‖)2
, the L2 norm of the di�erence signal. Geometrically, the di�erence-signal energy is the same

quantity as the square of the Euclidean distance between the two signals. In these terms, a larger distance
between the two signals means better performance.

Example 3.1: Detection, Gaussian example

A common detection problem is to determine whether a signal is present (M1) or not (M0). To
model the latter case, the signal equals zero: s0 (l) = 0. The optimal detector relies on �ltering
the data with a matched �lter having a unit-sample response based on the signal that might be
present. Letting the signal underM1 be denoted simply by s (l), the optimal detector consists of

r (l) ∗ s (L− 1− l) |l=L−1 −
E

2

M1

≷
M0

σ2ln (η)

or

r (l) ∗ s (L− 1− l) |l=L−1

M1

≷
M0

γ

The false-alarm and detection probabilities are given by

PF = Q

 γ

E
1
2

σ



PD = Q

(
Q−1 (PF )−

√
E

σ

)
Figure 3.2 displays the probability of detection as a function of the signal-to-noise ratio E

σ2 for
several values of false-alarm probability. Given an estimate of the expected signal-to-noise ratio,
these curves can be used to assess the trade-o� between the false-alarm and detection probabilities.
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Figure 3.2: The probability of detection is plotted versus signal-to-noise ratio for various values of the
false-alarm probability PF . False-alarm probabilities range from 10−1 down to 10−6 by decades. The
matched �lter receiver was used since the noise is white and Gaussian. Note how the range of signal-to-
noise ratios over which the detection probability changes shrinks as the false-alarm probability decreases.
This e�ect is a consequence of the non-linear nature of the function Q (·).

The important parameter determining detector performance derived in this example is the signal-to-noise
ratio E

σ2 : the larger it is, the smaller the false-alarm probability is (generally speaking). Signal-to-noise
ratios can be measured in many di�erent ways. For example, one measure might be the ratio of the rms
signal amplitude to the rms noise amplitude. Note that the important one for the detection problem is much
di�erent. The signal portion is the sum of the squared signal values over the entire set of observed values -
the signal energy; the noise portion is the variance of each noise component - the noise power. Thus, energy
can be increased in two ways that increase the signal-to-noise ratio: the signal can be made larger or the
observations can be extended to encompass a larger number of values.

To illustrate this point, how a matched �lter operates is shown in Figure 3.3. The signal is very di�cult
to discern in the presence of noise. However, the signal-to-noise ratio that determines detection performance
belies the eye. The matched �lter output demonstrates an amazingly clean signal.
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Figure 3.3: The signal consists of ten cycles of sin (ω0l) with ω0 = 2π0.1. The middle panel shows the
signal with noise added. The lower portion depicts the matched-�lter output. The detection threshold
was set for a false-alarm probability of 10−2. Even though the matched �lter output crosses the threshold
several times, only the output at l = L− 1 matters. For this example, it coincides with the peak output
of the matched �lter.



Chapter 4

Beyond the Basics1

4.1 For more...

Many problems in statistical signal processing and communications can be solved using basic detection
theory. For example, determining whether an airplane is located at a speci�c range and direction with
radar and whether a received bit is a 0 or a 1 are both solved with matched �lter detectors (Section 3.2:
Matched Filtering). However, many elaborations of deciding which of two models best describes a given
dataset abound. For instance, suppose we have more than two models for the data. Previous modules hint
at how to expand beyond two models (see Section 2.1 (Maximizing the Probability of a Correct Decision)
and Section 3.1 (Additive White Gaussian Noise)). However, no extensions for Neyman-Pearson detectors
for more than two models exists.

To learn more about the basics of detection theory and beyond, see the books by Van Trees[4], Kay [1]
and McDonough and Whalen[2], and several modules on Connexions (search for 'likelihood ratio', 'detection
theory' and 'matched �lter'). The Wikipedia article on Statistical Hypothesis Testing2 describes what is
called detection theory here more abstractly from a statistician's viewpoint.

4.2 Beyond Simple Problems

More interesting (and challenging) are situations where the data models are imprecise to some degree. The
simplest case is when some model parameter is not known. For example, suppose the exact time of the radar
return is not known (i.e., the airplane's range is uncertain). Here, the unknown parameter is the signal's
time-of-origin. We must somehow determine that parameter and determine if the signal is actually present.

As you might expect, the likelihood ratio remains the focus of attention, now in the guise of what is
known as the generalized likelihood ratio test (GLRT) (see this Connexions module3).4 This technique
and others opens the door to what are known as simultaneous estimation and detection algorithms.

Some unknowns may not be parametric and prevent a precise description of a model by a probabil-
ity function. What do we do when the amplitude distribution function of the additive noise is not well
characterized? So-called robust detection represents one attempt to address these problems. See [3] for
more.

Beyond variations of model uncertainties are new approaches to solving detection problems. For example,
a subtlety in the basic formulation is that all the data are available. Can we do just as well by attempting to
make a decision prematurely as the data arrive? Note that always taking a �xed fewer number of samples

1This content is available online at <http://cnx.org/content/m16799/1.4/>.
2http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
3"Non-Random Parameters" <http://cnx.org/content/m11238/latest/>
4The Wikipedia article on the Likelihood-ratio test (<http://en.wikipedia.org/wiki/Likelihood_ratio>) is concerned with

the Generalized Likelihood Ratio Test.

17
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always leads to worse performance. Instead, we acquire only the amount of data needed to make a decision.
This approach is known as sequential detection or the sequential probability ratio test (SPRT). See
modules in Connexions and the classic book by Wald[5].
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