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Chapter 1

Special theory of relativity1

The Newtonian mechanics is considered to be valid in all inertial frames of reference, which are moving at
a constant relative velocity with respect to each other. Einstein broadened the scope of this theorem and
extended the validity of all physical laws including electromagnetic theory to all inertial frames of reference.
Now, constancy of speed of light in vacuum is a core consideration in the electromagnetic theory. Therefore,
Einstein postulated that speed of light is a constant in all inertial frames of reference. The speed of light
does not depend upon the motion of either the source emitting it or the receiver of the light. This simple
assertion about the constancy of the speed of light in vacuum is an epoch making assertion as it contradicts
one of the equally fundamental assertion that speed (velocity) is a relative concept and that it essentially
depends on the state of motion of observer.

We can comprehend the import of special theory of relativity by a simple example. Let a light pulse is
moving in x-direction with its speed �c� and let a space craft is also moving ahead in the same direction with
a speed �v�. These motions are observed from a position on the ground. Let us also assume that there is no
atmosphere and we are observing motions in vacuum. Now, the speed with which light reaches spacecraft
should be the relative speed �c-v�. This is what we deduce classically. Special theory of relativity, however,
asserts that the relative speed of light with respect to spacecraft is �c� only � notwithstanding the speed of
spacecraft (v).

1This content is available online at <http://cnx.org/content/m32527/1.36/>.
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2 CHAPTER 1. SPECIAL THEORY OF RELATIVITY

Motion of a light pulse and a spacecraft

Figure 1.1: Motion of a light pulse and a spacecraft

The physical interpretation of the assertion of special theory of relativity is quite unthinkable classically.
The constant relative speed of approach by light in the above example is possible only if the constituents
of speed (distance and time) are di�erent for observers having di�erent motions. In the instant example,
both �distance� and �time� as measured by spacecraft are di�erent than the corresponding measurements by
a ground observer which is observing motions of both light and spacecraft. The measurements of �distance�
and �time� in two di�erent frames of reference need to be di�erent such that speed ratio for light in vacuum
i.e. �x/t� or "x'/t'" in two inertial references (parameters in one reference is denoted by unprimed varibales
whereas parameters in other reference is denoted be primed variables) remains a constant.
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Motion of a light pulse and a spacecraft

Figure 1.2: Motion of a light pulse and a spacecraft

In the �gure above, we consider motion of a light pulse and spacecraft which are moving with speed "c"
and "v" respectively in x-direction. They are initially at x=0 when t =0. The positions of light pulse and
spacecraft are also shown after 1 second. As seen from the reference of ground (coordinate system), pulse
and spacecraft travel "c" and "v" meters respectively. The linear distance between spacecraft and pulse after
1 second is "c-v" in ground reference. But according to special relativity, the linear distance between light
pulse and spacecraft after 1 second should be "c" in the reference of spacecraft. As "c-v" can not be "c", it
is deduced that measurements of distance and time in two references are di�erent. A part of discripancy is
due to di�erence in the measurement of distance and the remaining due to di�erence in the measurement of
time. These di�ferences need to be such that ratio of ditance and time is a constant for the pulse of light in
all inertial references.

In essence, special theory of relativity removes �relativity� from �speed of light� and attaches �relativity� to
�space (distance)� and �time�. This is the di�cult part. Classically, we have considered both these elements
as universally invariants with respect to all frames of reference which are moving with constant relative
velocity (inertial frames of reference). We shall try to come to terms with these new ideas in subsequent
modules. But the essence of special theory of relativity is captured as follows : The speed of light in vacuum
is invariant whereas distance between two points and time intervals are variant in the system of inertial
frames of reference.

The ideas of classical relativity, where in space and time are invarinat and speed of light is variant, is
captured by Galilean transformation which enables us to measure motion in two inertial frames of reference.
The speed of an object is modi�ed by the relative speed of the frames of reference.

u' = u ± v
where �u� and �u� ' are the speeds of an object as measured in two frames of reference which themselves
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move with a speed �v� with respect to each other.
Einstein employed a di�erent transform called �Lorentz transformation� to capture the idea of invariant

speed of light and variant distance and time measurements. The Lorentz tansformation provides the exact
relation between coordinates (space and time) of inertial references. We shall discuss these transformations
separately in the module.

Further, since we are considering constancy of speed of light in relation to inertial references only, the
special theory of relativity is �restricted� to inertial frames of reference and therefore is �special� not �general�.

1.1 Postulates of Special Theory of relativity

There are many versions of postulates. The essence of special theory of relativity is �nally agreed to be
captured by following two principles/ postulates :

1. The principle of relativity : The laws of physics are the same for all observers in uniform motion
relative to one another (inertial frames of reference).

2. The principle of constancy of speed of light in vacuum : Light in vacuum propagates with
the constant speed through all systems of inertial coordinates, regardless of the state of motion of the light
source.

Few scholars consider either of above postulates su�cient to describe special theory of relativity. They
are supplementary to each other. As a matter of fact, one can be deduced from other and vice �versa with
certain extrapolation.

Proceeding from the principle of relativity, we can arrive at the principle of constancy of speed of light
in vacuum. The principle of relativity considers validity of all physical laws across all inertial frames of
reference. This means that law of propagation of light (electromagnetic theory) is same across coordinates
systems in uniform translatory motion. But, the law of propagation of light says that light moves at a
constant speed in vacuum and is independent of the motion of source. Thus, speed of light is constant in
terms of any system of inertial coordinates, regardless of the state of motion of the light source. This is
exactly the the principle of constancy of speed of light in vacuum.

Similarly, we can proceed from the principle of constancy of speed of light in vacuum to the principle of
relativity. If we accept constancy of speed of light in vacuum across all inertial references, then we consider
that law of propagation of light in vacuum (electromagnetic theory) is valid in them. Now, the laws of
motion are already considered to be independent of inertial frames of reference. Addition of electromagnetic
theory to this class of invariants suggests that other physical laws in their simplest form are also valid in all
inertial references. This is exactly the principle of relativity.

Clearly, two principles are deducible from each other. Yet, we require to state special theory of relativity
in terms of two principles. We see that though we are able to deduce second principle from �rst, but in the
process we have narrowed the scope of principle of relativity. The principle of relativity is a very general
principle extending to all physical laws - not only to laws of motion and propagation of light. Similarly, the
deduction of �rst principle from second is not direct deduction - rather an extension. For these reasons, it
is generally prudent to state both the principles of special theory of relativity.

The important consideration of special theory of relativity is the inclusion of Maxwell's electromagnetic
theory being valid in inertial references. Earlier we limited the scope of validity only to Newton's laws of
motion. We should understand that Newton's laws of motion are special case of a more general special theory
of relativity. Let us have a look at the validity of the Newton's laws motion in inertial references involving
relativistic consideration at higher speed :

1: Newton's �rst law of motion of motion is valid in inertial references.
2: Newton's second law of motion which de�nes force in terms of time rate of change of linear momentum

is valid in inertial references.
3: Newton's second law of motion which de�nes force in terms of the product of mass and acceleration

is not valid in inertial references, because mass is not a constant in relativistic mechanics. The more general
relativistic or modi�ed form of Newton's second law valid in all inertial references, however, reduces to
classical Newton's second law of motion at lower speed.
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4: Newton's third law of motion as stated in the form of equal and opposite action and reaction is not
valid in inertial references.

5: The conservation of linear momentum, which is the consequence of Newton's third law, is valid in
inertial references.

We shall return to these aspects in detail subsequently.

1.2 Studying special theory of relativity

The idea of constancy of speed of light in all inertial references shakes up well rooted concepts about distance
(space) and time. It raises many questions and makes the study of special theory of relativity a bit di�cult.
Generally the explanations appear to be inadequate or not very convincing. As a matter of fact, there is
a temptation to view the theory with a sense of disbelief. But the fact of life is that relativity (we shall
use this term to mean �special theory of relativity� for brevity), there is not even a single �exception of� or
�departure from� the predictions of special relativity as on date (spanning a period of more than a century).

After many readings of relativity theories, it emerges that it would be futile to follow the conventional
approach of studying relativity by explaining the �unthinkable� �rst and then derive conclusions. No descrip-
tion, however good, satis�es a reader that incidence of time for an event or length of a rod is di�erent in two
inertial references. Keeping this aspect of study in mind, we shall attempt a slightly di�erent approach here.
Upfront, we shall accept relativistic assertions about distance (space) and time. This is a better approach as
it allows us to proceed with the theory and come back to the lingering thoughts when we are equipped with
the basic or working knowledge of the theory. After all, electromagnetic theory of light (and hence constancy
of speed of light in vacuum) is such an elegant and complete theory that we can only be more than willing
to accept assertions which are based on it.

Yet another aspect of the study of relativity is that it relates phenomena which occur over a very
large spatial extent. The consideration of motion of light even for 0.1 second involves a linear extent of
30000000 meters. Clearly, there is limitation to pick examples or illustration from our real world. Most
of the experiments or illustrations cited in the study of relativity are reasonable as imagined. Conception
of special theory of relativity is more an outcome of �experiments in head� than the actual ones, but such
experiments are rigorous and subject to direct or indirect scienti�c veri�cation. This process of performing
mental experiments is known by a German term �Gedankenexperimenten�. Einstein used this process often
to reach conclusions. Clearly, we shall also be required to do a bit of �Gedankenexperimenten� to understand
his theories. In a nutshell, we should be ready to imagine spacecrafts or space objects moving at very
high speeds without any inhibition. We may even imagine ourselves sitting in those high speed spacecraft.
Similarly, we may imagine a train which is moving at a speed of say 100000 km/hr. Apart form the scienti�c
validity of reasoning, there is no constraint in imagining experiments or examples which otherwise can not
be realized in our small world.

1.3 What is time ?

We do not know exactly what is time. But we know some of its properties. The closest that we come to
de�ne time is about the manner in which we measure it. This measurement is essentially an outcome of
the characteristic of time known as �simultaneity�. Einstein wrote "That train arrives here at 7 o'clock", I
mean something like this : "The pointing of the small hand of my watch to 7 and the arrival of the train
are simultaneous events." Thus, we measure time of an event by way of the simultaneity of two events �
one belonging to measuring device and other belonging to an arbitrary event like arrival of a train. This
argument clinches the issue of time from the relativistic perspective. If we are able to prove that two events
which are simultaneous in one inertial frame of reference but �not� simultaneous in another, then we can be
sure that measurements of time in two inertial references could indeed be di�erent.

In special theory of relativity, time and time rate in two inertial references are treated as di�erent. If t
and t' be the time recorded for a given event in two inertial references, then t may not equal to t'. We shall
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return to this topic again.

1.4 Absolute and stationary reference

There is no preferred inertial reference frame. This idea predates special relativity. It means that there is no
absolute reference frame. Had there been an absolute reference, then we would have a �xed universal space
in which all other objects (references) would be considered to be either in rest or moving. But the concept of
space is a variant. In other words, the perception of space changes from one reference (say ground) to other
reference (say moving train). If we drop a stone from a train, then the trajectory of the stone is a straight
vertical line for an observer on the train. The same stone, however, is seen to follow a parabolic trajectory for
an observer on the ground. Referring to these trajectories for a single motion of a stone, Einstein questioned
the very concept of �xed space.

Trajectory of motion

Figure 1.3: Trajectory of motion

Though there is no absolute reference, but the notion of a stationary reference is a powerful idea which
stems from our life long perception of stationary objects in Earth's reference. Despite the fact that Earth
is moving at about 107,278 km/hr (29.8 km/s) around Sun, we are generally not aware about it unless we
make detailed observations about celestial objects. But as the concept of stationary system is ingrained in
our perception, we employ this concept with great e�ect in the study of relative motion. We refer either of
the moving systems as stationary in which an observer is making the measurements. Consider for example
two spacecrafts moving with uniform velocities. We can refer either of spacecrafts as stationary and other
as moving with a velocity which is measured from the referred stationary reference (spacecraft). There is
no preference. In the case of a motion of a train, for example, we consider Earth as stationary and train as
moving reference. There is no bar though that we consider moving train as stationary reference with the
observer and Earth as moving reference in the opposite direction to the moving train.

The "rest" is local concept. The object like a house is at rest in Earth's reference. But the same object
as seen from a spaceship is not stationary.
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1.5 Constancy of speed of light

Constancy of speed of light has two di�erent considerations in the study of relativity. In the �rst place,
it is the central idea of special relativity. But besides this consideration, the constancy of light has other
important consideration in that it is one of the measuring standards which can not be challenged in any
inertial reference. This aspect is important as meaning of space and time in di�erent inertial frames is not
very explicit. We shall see subsequently that they are in fact entangled. Further, the distance (space) and
time are relative and are therefore very subjective in conception and measurement.

On the other hand, speed of light in vacuum is invariant in inertial references (though it is not invariant
in accelerated references). As such, it can be used as a parameter to measure �time� and �distance�. A
linear distance, for example, can be expressed in terms of �time� taken by light to cover a given distance.
Alternatively, a particular time interval can be expressed in terms of �linear distance� covered by the light
in a given time.

The o�cial measure of speed of light in vacuum is as given here :
c = 299,792,458 meters/second

1.6 Galilean transformation

The transforms are mathematical constructs which allow us to convert one set of spatial (x,y,z) and time (t)
measurements in one frame of reference to another frame of reference based on certain physical principle or
law. Our current context is limited to inertial frames of reference. Therefore, we shall study transforms which
refer to inertial frames of reference. Here, we shall study Galilean and Lorentz transforms. The Galilean
transform encapsulates the ideas of non-relativistic mechanics whereas Lorentz transform encapsulates the
ideas of relativistic mechanics.

The concepts of a transform, physical laws and inertial frames of reference are entangled with each other.
The physical laws are required to be valid across all inertial frames of references.

Galilean transform gives the relation between two inertial systems which are moving at a constant velocity
with respect to each other. If space (co-ordinates) and time values in one reference are known, then we can
�nd out space and time values using Galilean transform in another reference which is moving at a constant
velocity �v' with respect to �rst in x-direction. Let two inertial reference systems are denoted by unprimed
and primed variables and their spatial origins coincide at t = t' = 0. Then, space (x',y',z') and time (t')
co-ordinates of a "single arbitrary event" in primed inertial reference is related to space (x,y,z) and time (t)
of unprimed inertial reference as :
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Galilean transformation

Figure 1.4: Time is same in two inertial references.

x′ = x− vt

y′ = y

z′ = z

t′ = t

We can also express unprimed variables in terms of primed variable by solving for unprimed variable as :

x = x′+ vt

y = y′

z = z′

t = t′

The most important aspect of Galilean transform is the last equation, t' = t, denoting that time is an
invariant for inertial frames of references. The constancy of time across inertial frames of reference is the
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key consideration here. With the advent of special theory of relativity, however, this transform is considered
as a restricted case as it is valid for small relative speed,v, only. At higher values of relative speed �v�, we
need to employ Lorentz transform in accordance with special theory of relativity such that speed of light in
vacuum is constant in all inertial references.

Further, we get the equation for the velocities of a particle or object at position "x" or "x'" in the
unprimed and primed references respectively by di�erentiating �rst equation of the transform,

u' = u - v
where �u� and �u� ' are the speeds of a particle or object as measured in two frames of reference which

themselves move with a speed �v� with respect to each other.

1.7 Lorentz transformation

Like Galilean transform, Lorentz transform provides relation for space and time between inertial systems
for all possible range of relative velocity. Importantly, it satis�es the postulate of special theory of relativity
that speed of light in vacuum is a constant. The derivation of Lorentz transform has elaborate historical
perspectives and is also the subject of insight into the relativistic space and time concepts. For this reason,
we shall keep the derivation of this separate to be dealt later. Here, we shall restrict our consideration to the
�nal form of Lorentz transform only. Let two inertial reference systems are denoted by unprimed and primed
variables and their spatial origins coincide at t = t' = 0. Then, space (x',y',z') and time (t') co-ordinates
of a "single arbitrary event" in primed inertial reference is related to space (x,y,z) and time (t) of primed
inertial reference as :

Lorentz transformation

Figure 1.5: Time is not same in two inertial references.
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x′ = γ (x− vt)

y′ = y

z′ = z

t′ = γ
(
t− vx

c2

)
where,

γ =
1√

(1− β2)
=

1√(
1− v2

c2

)
The dimensionless γ is called Lorentz factor and dimensionless β is called speed factor. For small relative

velocity, v, the terms v2/c2 → 0, v/c2 → 0 and γ → 1. In this case, the Lorentz transform is reduced
to Galilean transform as expected. Further, we can write transformation in the direction from primed to
unprimed reference as :

x = γ (x′+ vt′)

t = γ
(
t′+ vx′

c2

)
Note the change of the sign between terms on right hand side.

1.7.1 Transformation involving two events

If two events, separated by a distance, occur along x axis at two instants, then we can write Lorentz
transformations of space and time di�erences using following notations :

∆x = x2 − x1; ∆t = t2 − t1; ∆x′ = x2′ − x1′; ∆t′ = t2′ − t1′

The subscripts 1 and 2 denote two events respectively. The transformations in the direction from un-
primed to primed references are :

∆x′ = γ (∆x− v∆t)

∆t′ = γ

(
∆t− v∆x

c2

)
The transformations in the direction from primed to unprimed references are :

∆x = γ (∆x′+ v∆t′)

∆t′ = γ

(
∆t′+ v∆x′

c2

)
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1.7.2 Constancy of speed of light in inertial references

We can test Lorentz transform against the basic assumption that speed of light in vacuum is constant. Let
a light pulse moves along x-axis. Then, consideration in unprimed reference gives speed of light as :

c =
x

t

If Lorentz transform satis�es special theory of relativity for constancy of speed of light, then the prop-
agation of light as seen from the primed reference should also yield the ratio x'/t' equal to c i.e. speed of
light in vacuum. Now,

x′
t′

=
γ (x− vt)
γ
(
t− vx

c2

) =
(x− vt)(
t− vx

c2

)
Dividing numerator and denominator by �t� and substituting x/t by c, we have :

⇒ x′
t′

=

(
x
t − v

)(
1− vx

tc2

)
⇒ x′

t′
=

(c− v)(
1− vc

c2

) =
(c− v)(
1− v

c

)
⇒ x′

t′
=
c (c− v)
(c− v)

= c

Clearly, Lorentz transform meets the requirement of special theory of relativity in so far as to guarantee
that speed of light in vacuum is indeed a constant.

1.8 Lorentz factor

Lorentz factor ,γ, is the multiplicative factor in the transformation equations for x-coordinate and time.
It is a dimensionless number whose value depends on the relative speed �v�. Note that the relativistic
transformation for x-coordinate is just Lorentz factor times the non-relativistic or Galilean transformation.

x′ = γ (x− vt)

Lorentz factor appears in most of the relativistic equations including the calculation of relativistic e�ects
like time dilation, length contraction, mass etc. An understanding of the beahviour of this factor at di�erent
relative velocity is intuitive for assessing the extent of relativistic e�ect. Few values of Lorentz factor are
tabulated here.

Lorentz factors

Speed (v) 0 0.1c 0.2c 0.3c 0.4c 0.5c 0.6c 0.7c 0.8c 0.9c
0.99c 0.999c

Lorentz factor (γ) 1.000 1.005 1.021 1.048 1.091 1.115 1.250 1.400
1.667 2.294 7.089 22.366

Table 1.1

Lorentz factor begins at 1 and as v->c, y-> in�nity. It is either equal to 1 or greater than 1. In other
words, it is never less than 1. A plot of Lorentz factor .vs. relative speed is shown here.
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Lorentz factor .vs. speed plot

Figure 1.6: Lorentz factor .vs. speed plot

1.9 Space-time interpretation

We identify an event with spatial (x,y,z) and temporal (t) coordinates. Important point is that an event
does not belong to any reference. It is described by di�erent coordinates in di�erent reference system. In
classical description, spatial and temporal parameters are essentially independent of each other. The time
t of an event can not be dependent on spatial speci�cation (x,y,z,). Now, this independence is not there in
relativistic kinematics. In order to imbibe the nature of space time relation, we shall work with few Lorentz
transformations here.

We interpret an event in two inertial references which are moving with respect to each other at a velocity
say 0.3c in x-direction. We shall consider very small time interval like 0.000005 second so that distance
involved is easy to visualize. For convenience, we consider the approximate value of speed of light 300000000
m/s. In time 0.000005 s, the separation of two reference frame at the speed 0.3c works out to be 0.3 X
300000000 X 0.000005 = 450 m.
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Lorentz transformation

Figure 1.7: Time and space are entangled.

Here, we calculate both Galilean and Lorentz distance and time of events in two references for events
identi�ed in �rst reference by x and t values. Unprimed values refer to stationary reference, whereas primed
values refer to moving reference which is moving right in x-direction with a relative velocity 0.3c. The
calculations have been done using Excel worksheet (Reader can also try and verify the results) where distance
is in meters and time in seconds.

Lorentz factors

x t x'(Galilean) t'(Galilean) x'(Lorentz) t'(Lorentz)

0 0 0 0 0 0

2 0.000005 -448 0.000005 -469.6317 0.0000052393

100 0.000005 -350 0.000005 -366.8998 0.0000051366

Table 1.2

Since the origins of two references coincide for both Galilean and Lorentz transformations at t= t'=0,
the space and time values are all zero as shown in the �rst row of the table.

Let us now consider the second row of the table. Here, position of event is x=2 m at time, t = 0.000005
s. In this time, primed reference has moved 450 m. According to Galilean transform, the event takes place
at -450+2 = -448 m (to the left of origin) in the moving reference. Since time is invariant in Galilean
transformation, the time of event is same in moving reference for non-relativistic Galilean transformation.
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However, when we employ relativistic Lorentz transformation, the event occurs at -469.6317 m (to the left
of origin) in the moving reference. Here, the measurement of distance in moving reference is di�erent than
that calculated with Galilean transformation. Also, time is not invariant. The event occurs at 0.0000052393
s in this reference instead of 0.000005 s in the unprimed stationary reference. Thus, we see that both space
and time are not invariant in Lorentz transformation.

Now, we set out to compare the values of second and third row to see the e�ect of change in the position
of event while keeping the time of event same. In the relativistic transformation, we see that time value
changes just because there is spatial change in stationary reference. The time values are 0.0000052393 s
and 0.0000051366 s for x = 2 m and x = 100 m respectively. This is yet another dimension of relativistic
kinematics. This suggests that space and time are entangled. Individual measurements of event parameters
do not only change because of relative speed (It is a foregone conclusion in relativistic kinematics). The
additional point here is that time value changes simply because of change in space value (x) even when the
relative velocity is kept constant.

We conclude thus :
1: Spatial and temporal values in the inertial references are di�erent on account of relative velocity.
2: The temporal (t) values are dependent on spatial values (x,y,z). The space and time speci�cations

of an event are entangled.
The spatial dependence of temporal parameter, as a matter of fact, is also evident from the relativistic

time relation :

t′ = γ
(
t− vx

c2

)
Note the presence of spatial parameter (x) on the right hand side of the equation. Clearly, spatial and

temporal values of an event are entangled.

1.10 Velocity addition

Let us consider a scenario of police car chase. The police personnel �res a shot in the direction of the
criminal's car speeding ahead. What is the velocity of the bullet? It depends on the observer. The bullet
moves from the gun, which is stationary in the reference of police car. The velocity of bullet will be as per
the speci�cation of the gun. This will be the same velocity as when �red from ground. Let this velocity
be u'. Clearly, this velocity is inherent to the gun irrespective of its motion. If �v� be the velocity of the
police car, then according to Galilean transformation, the velocity of bullet in the ground reference, "u", is
obtained by addition of two velocities :

u = v + u'
When a javelin is thrown, the velocity of javelin is sum of the velocities of the javelin thrower and the

javelin itself with respect to thrower. The very idea of thrower to throw javelin while running is to leverage
his/her velocity towards increasing the velocity of javelin in ground reference. Also, consider motion of two
cars which are moving towards each other with velocities u and w along a straight line. The velocity of
approach for any of two cars is u+w. These are well established results which are outcome of non-relativistic
Newtonian kinematics.

The seemingly well de�ned algorithm about algebraic addition of velocity runs into serious problem when
we extend this concept to high speed cases. Let us do a bit of �Gedankenexperimenten�. Let two spaceships
are approaching with a velocity c/2 and 3c/4. What is the velocity of approach? Clearly, it is c/2+3c/4 =
5c/4. This is a speed which exceeds the speed of light. Take another example. Let us consider that we move
to a light source like a bulb in our house. Of course, we imagine that there is no atmosphere. The speed
of approach here is speed of light plus our speed of approach � again exceeding the speed of light and also
rendering it a variable dependent on our motion.

On the other hand, electromagnetic theory speci�es the speed of light in vacuum to be exactly c. Not only
that, Michelson's experiment concluded that speed of light is a constant in all directions. Lorentz experiment
proved that speed of light in vacuum is independent of motion of source emitting it. We, therefore, deduce
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Galilean or non-relativistic addition of Velocity is not true at high speed or in the relativistic context. This
is one aspect of relativistic consideration. The other aspect emerges from special theory of relativity which
embodies Lorentz transformation. Let us explore Lorentz factor :

γ =
1√(

1− v2

c2

)
When v->c, γ -> ∞. For v=0.999999999c, γ= 22360. When v=c, γ is unde�ned (a ratio with zero as

denominator). When v>c, γ is imaginary. Clearly, speed of light (electromagnetic wave) in vacuum is the
highest speed in nature. Matter can not achieve the speed of light. There is no question of exceeding it.
This aspect of speed limit for matter has been veri�ed experimentally, wherein it is found that a particle
acquires greater relativistic mass instead of gaining speed even when it is accelerated to achieve or exceed
speed of light (by continuously imparting energy). We shall describe this experiment after we have discussed
about relativistic mass. We should, however, treat this violation of addition of velocity as one of the key
experimental evidence that gave strong credence to special theory of relativity in the initial years.
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Chapter 2

Kirchho�'s circuit laws1

Kirchho�'s circuit laws are facilitating rules for analyzing electrical circuits. These rules are handy where
circuits are more complex beyond the scope of series and parallel combination of resistances and where
circuits involve intermixing of electrical sources and resistances (appliances or resistors). Kirchho�'s laws
are brilliant re�ection of fundamental laws like conservation of charge and energy in the context of electrical
circuits.

There are two Kirchho�'s laws which are known by di�erent names :
1: Kirchho�'s current law (KCL) : It is also referred as Junction or point or Kirchho�'s �rst rule.
2: Kirchho�'s voltage law (KVL) : It is also referred as Loop or Mesh or Kirchho�'s second rule.

2.1 Kirchho�'s current law (KCL)

No point in the circuit accumulates charge. This is the basic consideration here. Then, the principle of
conservation of charge implies that the amount of current �owing towards a point should be equal to the
amount of current �owing away from that point. In other words, net current at a point in the circuit is zero.
We follow the convention whereby incoming current is treated as positive and outgoing current as negative.
Mathematically, ∑

I = 0

There is one exception to this law. A point on a capacitor plate is a point of accumulation of charge.

Example 2.1
Problem : Consider the network of resistors as shown here :

1This content is available online at <http://cnx.org/content/m30943/1.8/>.
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Network of resistors

Figure 2.1: Each resistor in the network has resistance R.

Each resistor in the network has resistance R. The EMF of battery is E having internal resistance
r. If I be the current that �ows into the network at point A, then �nd current in each resistor.

Solution :
It would be very di�cult to reduce this network and obtain e�ective or equivalent resistance

using theorems on series and parallel combination. Here, we shall use the property of symmetric
distribution of current at each node and apply KCL. The current is equally distributed to the
branches AB, AD and AK due to symmetry of each branch meeting at A. We should be very
careful about symmetry. The mere fact that resistors in each of three arms are equal is not su�cient.
Consider branch AB. The end point B is connected to a network BCML, which in turn is connected
to other networks. In this case, however, the branch like AK is also connected to exactly similar
networks. Thus, we deduce that current is equally split in three parts at the node A. If I be the
current entering the network at A, then applying KCL :

Current �owing away from A = Current �owing towards A
As currents are equal in three branches, each of them is equal to one-third of current entering

the circuit at A :

IAB = IAD = IAK =
I

3
Currents are split at other nodes like B, D and K symmetrically. Applying KCL at all these

nodes, we have :

IBC = IBL = IDC = IDN = IKN = IKL =
I

6
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Network of resistors

Figure 2.2: Current in resistors

On the other hand, currents recombine at points C, L, N and M. Applying KCL at C,L and N,
we have :

ILM = ICM = INM =
I

3
These three currents regroup at M and �nally current I emerges from the network.

2.2 Kircho�'s Voltage law (KVL)

This law is based on conservation of energy. Sum of potential di�erence (drop or gain) in a closed circuit
is zero. It follows from the fact that if we start from a point and travel along the closed path to the same
point, then the potential di�erence is zero. Recall that electrical work done in carrying electrical charge in
a closed path is zero and hence potential di�erence is also zero :∑

V = 0

where V stands for potential di�erence across an element of the circuit.

2.3 Applications

Kirchho�'s laws are extremely helpful in analyzing complex circuits. Their application requires a bit of
practice and handful of methods i.e. techniques. Many people like to use a set of procedures which yield
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results, but they are not intuitive. We shall take a midway approach. We shall rely mostly on the laws as
de�ned and few additional techniques. Some of the useful techniques or procedures are discussed here with
examples illustrating the application. The basic idea is to generate as many equations as there are unknowns
(current, voltage etc.) to analyze the circuit.

2.3.1 Direction of current (DOC)

We assign current direction between two nodes i.e. in the arm in any manner we wish. The solution of the
problem will eventually yield either positive or negative current value. A positive value indicates that the
assumed direction of current is correct. On the other hand, a negative value simply means that current in
that particular arm �ows in a direction opposite to assumed direction. See the manner in which current
directions are indicated for the same circuit in two di�erent ways :

Direction of currents

(a) (b)

Figure 2.3: (a) Direction of current can be arbitrarily chosen. (b) Direction of current can be arbitrarily
chosen.

Application of KCL to the current assignments in �rst �gure at node C yields :∑
I = I1 + I2 + I3 = 0

Application of KCL to the current assignments in �rst �gure at node C yields :∑
I = −I1 + I2 − I3 = 0

Alternatively, we denote currents in di�erent branches such that numbers of unknowns are minimized.
We can use KCL to reduce number of variables in the circuit using �rst �gure as :

I3 = − (I1 + I2)
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Current in resistors

Figure 2.4: Network of resistors

Further, we should also clearly understand that direction of current (DOC) in a closed loop need not be
cyclic. Consider the loop EDCFE in the �gure above. Here I1 is clockwise whereas I2 is anticlockwise.

2.3.2 Direction of travel (DOT)

We apply Kirchho�'s voltage law to each of the closed loop. In the �gure below, there are two loops ABCFA
and EDCFE. We arbitrarily select direction of travel (DOT) either clockwise or counterclockwise. There
is no restriction on the choice because a change in the direction changes the sign of voltage drop for all
elements, which is equated to zero. Hence, choice of direction of travel does not e�ect the �nal equation. We
write down voltage drop across various circuit elements moving from a node following DOT till we return to
the starting node.
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Direction of travel

Figure 2.5: Network of resistors

2.3.3 Voltage across resistor and power source

The sign of voltage drop across a resistor depends on the relative direction of DOC and DOT. Consider the
loop EDCFE. Starting from node E (say), we move toward D following clockwise DOT (Direction of Travel).
From the direction of current (DOC), it is clear that the end of resistor 5 Ω where current enters is at higher
potential than at the end where current exits the resistor. Hence, there is a potential drop, which is indicated
by a negative sign. On the other hand, we move in the arm CF from C to F in the opposite direction of the
current (COD). Here again, the end of resistor 4 Ω where current enters is at higher potential than at the
end where current exits the resistor. Hence, there is a potential gain as we move across resistor from C to
F, which is indicated by a positive sign.

We conclude that if DOT and DOC are same then potential di�erence across resistor is negative and if
they are opposite then the potential di�erence across resistor is positive.

The sign of power source is easier to decide. It merely depends on the direction of travel (DOT).
Moving across a EMF source from negative to positive terminal is like moving from a point of lower to point
of higher potential. Thus, if traveling across a source, we move from negative to positive terminal then
potential di�erence is positive otherwise negative.

Combining above considerations, we write KVL equations for loops ABCFA and EDCFE as :
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Voltage across circuit elements

Figure 2.6: Network of resistors

Loop EDCFE (Starting from E) :∑
V = −10− 5I1 + 4I2 + 8 = 0

5I1 − 4I2 = −2

Loop ABCFA (Starting from A) :∑
V = −5 + 5 (I1 + I2) + 4I2 + 8 = 0

⇒ 5 (I1 + I2) + 4I2 = −3

⇒ 5I1 + 9I2 = −3

Subtracting �rst from second we eliminate I1 and we have :

⇒ 13I2 = −1

⇒ I2 = − 1
13

A

Current in ED,
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⇒ I1 =
(−2 + 4I2)

5
=

(
−2 + 4X −1

13

)
5

= − 6
13

A

Current in BA,

⇒ (I1 + I2) = − 1
13
− 6

13
= − 7

13
A

Clearly, direction of current in each of the branch are opposite to the ones assumed.
Example 2.2
Problem : Consider the network of resistors as shown here :

Network of resistors

Figure 2.7: Network of resistors connected to EMF source

Each resistor in the network has resistance 2 Ω. The EMF of battery is 10 V having internal
resistance 1/6 Ω. Determine the equivalent resistance of the network.

Solution : We have seen in the earlier example that if I be the current, then current is
distributed in di�erent branches of the network as shown in the �gure.
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Network of resistors

Figure 2.8: Network of resistors connected to EMF source

Clearly, we need to determine current I in order to calculate equivalent resistance of the network.
For this, we consider the loop ABCMA in clockwise direction. Applying KVL :∑

V = −I
3
− I

6
− I

3
− IX 1

6
+ 10 = 0

⇒ 5I
6

+
I

6
= 10

⇒ I = 10 A

Let Req be the equivalent resistance of the network. Reducing given circuit and applying KVL
in clockwise direction, we have :
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Equivalent resistance

Figure 2.9: Network of resistors connected to EMF source

∑
V = −10XReq − 10X

1
6

+ 10 = 0

⇒ Req =
50
60

=
5
6

Ω

2.4 Exercise

Exercise 2.1 (Solution on p. 29.)

Consider the network of resistors as shown here :
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Electrical Network

Figure 2.10: Electrical Network

Determine the equivalent resistance of the network between A and C.

Exercise 2.2 (Solution on p. 30.)

Consider the network of resistors and batteries as shown here :
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Electrical Network

Figure 2.11: Electrical Network

Find the currents in di�erent braches of the network.
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Solutions to Exercises in Chapter 2

Solution to Exercise 2.1 (p. 26)
In order to determine equivalent resistance, we assume that given network is connected to an external source
of EMF equal to E. Now, the external EMF is related to e�ective resistance as :

E = IReq

Once this relation is known, we can determine equivalent resistance of the given network. It is important
to note that current distribution is already given in the problem �gure.

Electrical Network

Figure 2.12: Electrical Network

Considering loop ABCEA in clockwise travel, we have KVL equation as :∑
V = −I1R1 − I2R2 + E = 0

⇒ E = I1R1 + I2R2

Considering loop ABDA in clockwise travel, we have KVL equation as :∑
V = −I1R1 − (I1 − I2)R3 + I2R2 = 0

We solve for I2 to get an expression for it in terms of I1 as :

⇒ I2 =
I1 (R1 +R3)
(R2 +R3)
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Substituting above expression of I2 in the equation obtained earlier for E, we have :

⇒ E = I1R1 +
I1 (R1 +R3)R2

(R2 +R3)

⇒ I1 =
(R2 +R3)E

[R3 (R1 +R2) + 2R1R2]

Putting this expression for I1 in the expression obtained earlier for I2, we have :

⇒ I2 =
(R1 +R3)E

[R3 (R1 +R2) + 2R1R2]

But, we know that :

I = I1 + I2

⇒ I =
(R1 +R2 + 2R3)E

[R3 (R1 +R2) + 2R1R2]

Thus,

⇒ Req =
E

I
=

[R3 (R1 +R2) + 2R1R2]
(R1 +R2 + 2R3)

Solution to Exercise 2.2 (p. 27)
We assign currents with directions in di�erent branches as shown in the �gure. We can, however, assign
current directions in any other manner we wish. Here, starting from I1 and I2 in branches CA and AB
respectively and applying KCL at A, the current in AD is I1 − I2. Let the current in FE is I3. Applying
KCL at B, current in BC is I2 + I3. Again applying KCL at C, current in CD is I2 + I3 − I1.
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Electrical Network

Figure 2.13: Electrical Network

Considering loop ABCA in clockwise travel, we have KVL equation as :∑
V = −2I2 − 1 (I2 + I3)− 2I1 + 20 = 0

⇒ 2I1 + 3I2 + I3 = 20

Considering loop ADCA in anticlockwise travel, we have KVL equation as :∑
V = −2 (I1 − I2) + (I2 + I3 − I1)− 2I1 + 20 = 0

⇒ 5I1 − 3I2 − I3 = 20

Considering loop BCDFEB in anticlockwise travel, we have KVL equation as :∑
V = − (I2 + I3)− (I2 + I3 − I1) + 10− 2I3 = 0

⇒ −I1 + 2I2 + 4I3 = 10

We have three equations with three variables. Solving, we have :

I1 = 40/7 A; I2 = 13/7 A; I3 = 3 A

Currents in di�erent branches are :
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ICA = I1 =
40
7

A; IAB = I2 =
13
7

A

IAD = I1 − I2 =
40
7
− 13

7
=

27
7

A

IBC = I2 + I3 =
13
7

+ 3 =
34
7

A

ICD = I2 + I3 − I1 =
34
7
− 40

7
= −6

7
A

IDFEB = I3 = 3 A

Note that current in branch CD is negative. It means that current in the branch is opposite to the
assumed direction.



Chapter 3

Biot - Savart Law1

Biot � Savart law is the basic law providing a relation between cause and e�ect in electromagnetism. In
electrostatics, Coulomb's law tells us the relation between point charge (cause) and electric �eld (e�ect)
that the charge produces in its surrounding. Similarly, Biot-Savart's law tells us the relation between
current element or moving charge (cause) and magnetic �eld (e�ect) that the current element or moving
charge produces in its surrounding. Besides, Biot � Savart law is an empirical law (a result of experimental
observations) just like Coulomb's law.

Clearly, there is a strong evidence of parallelism in the study of electrostatics and electromagnetism.
There is, however, one important distinction between them. The electric �eld is along the straight line
joining charge and the position in space i.e. along displacement vector. The relationship here is linear.
The magnetic �eld, on the other hand, is along the perpendicular direction of the plane constituted by the
small current element and displacement vector. This feature of magnetic �eld introduces a new dimension
to the formulation of Biot-Savart law. We have to compulsorily rely on vector notations and operations.
In a nutshell, we are required to be a bit conscious of the direction of magnetic �eld, which often requires
visualization in three dimensional space.

3.1 Magnetic �eld due to small thin current element

The Biot � Savart law is formulated in a restricted context. This law is true for (i) a small element "dl "
of a thin wire carrying current and (ii) steady current i.e. �ow of charge per unit time through the wire is
constant. Biot � Savart's law for free space is given by :

B =
µ0

4π
IlXr
r3

1This content is available online at <http://cnx.org/content/m31057/1.17/>.
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Magnetic �eld due to small thin current element

Figure 3.1: Magnetic �eld acts perpendicular to the drawing plane containing wire.

The ratio µ0/4π is the proportionality constant and has the value of 10−7Tm/A. The constant µ0 is
known as permeability of free space. The SI unit of magnetic �eld is Tesla (T), which is de�ned in the
context of magnetic force on a moving charge in magnetic �eld ( See module Lorentz force (Section 7.3:
Magnetic �eld (B) )). It is expressed as 1 Newton per Ampere - meter. Further, the vector representation
of small length element of wire "dl" in the expression is referred as "current length element" and the vector
"Idl" is referred simply as "current element". The direction of current length vector "dl" is the direction of
tangent drawn to it in the direction of current in the wire.

Note the vector cross product in the numerator. Direction of magnetic �eld produced is given by the
direction of vector cross product dlXr . Further, it is also clear that as far as magnitude of magnetic �eld is
concerned it is inversely proportional to the square of the linear distance i.e. 1/r2 (one of r in the numerator
cancels with that in the denominator). This means that Biot-Savart Law is also inverse square law like
Coulomb's law.

Now, the unit vector in the direction of line joining current element and point is given by :

^
r =

r
r

⇒ r = r
^
r

Substituting in the Biot-Savart expression for r, we have :
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B =
µ0

4π

IlX
^
r

r2

Some important deductions arising from Biot-Savart law are given in the following subsections.

3.1.1 Direction of magnetic �eld and superposition principle

The direction of magnetic �eld is the direction of vector cross product dl X r. In the �gure shown below,
the wire and displacement vector are considered to be in the plane of drawing (xy plane). Clearly, direction
of magnetic �eld is perpendicular to the plane of drawing. In order to know the orientation, we align or
curl the �ngers of right hand as we travel from vector dl to vector r as shown in the �gure. The extended
thumb indicates that magnetic �eld is into the plane of drawing (-z direction), which is shown by a cross
(X) symbol at point P.

Magnetic �eld due to small thin current element

Figure 3.2: Magnetic �eld acts perpendicular to the drawing plane

This was a simpli�ed situation. What if wire lies in three dimensional space (not in xy plane of reference
shown in �gure) such that di�erent parts of the wire form di�erent planes with displacement vectors. In
such situations, magnetic �elds due to di�erent current elements of the current carrying wire are in di�erent
directions as shown here.
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Magnetic �eld due to small thin current element

Figure 3.3: Magnetic �eld acts perpendicular to the plane formed by current element and displacement
vectors

It is clear that directions of magnetic �eld due to di�erent elements of the wire may not be along the
same line. On the other hand, a single mathematical expression such as that of Biot-Savart can not denote
multiple directions. For this reason, Biot-Savart's law is stated for a small element of wire carrying current
� not for the extended wire carrying current. However, we can �nd magnetic �eld due to extended wire
carrying current by using superposition principle i.e. by using vector additions of the individual magnetic
�elds due to various current elements. We shall see subsequently that as a matter of fact we can integrate
Biot-Savart's vector expression for certain situations like straight wire or circular coil etc as :

B =
∫

B =
∫

µ0

4π

IlX
^
r

r2

For better appreciation of directional property of magnetic �eld, yet another visualization of three di-
mensional representation of magnetic �eld due to a small element of current is shown here :
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Magnetic �eld due to small thin current element

Figure 3.4: Magnetic �eld acts perpendicular to the plane formed by current element and displacement
vectors

The circles have been drawn such that their centers lie on the tangent YY' drawn along the current length
element dl and the planes of circles are perpendicular to it as shown in the �gure. Note that magnetic �eld
being perpendicular to the plane formed by vectors dl and r are tangential to the circles drawn. Also, each
point on the circle is equidistant from the current element. As such, magnitudes of magnetic �eld along the
circumference are having same value. Note, however, that they have shown as di�erent vectors B1 , B2 etc.
as their directions are di�erent.

For the time being we shall use the right hand rule for the vector cross product to determine the direction
of magnetic �eld for each current element. There are, however, few elegant direction �nding rules for cases of
extended wires carrying current like straight wire or circular coil. These rules will be described in separate
modules on the respective topics.

3.1.2 Magnitude of magnetic �eld

The magnitude of magnetic �eld is given by :

B =
µ0

4π
Ilsinθ
r2

The magnitude depends on angle (θ) between two vector elements "dl" and "r". For a point on the wire
element or on the tangent drawn to it, the angle θ = 0 ◦ or 180 ◦ and the trigonometric sine ratio of the
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angle is zero i.e. sinθ = 0. Thus, magnetic �eld at a point on the extended line passing through vector "dl"
is zero.

Further magnetic �eld is very small due to small value of proportionality constant, which is equal to 10−7

SI unit. The relative weakness of magnetic �eld is evident from the fact that proportionality constant for
Coulomb's law has the value 9X109 in SI unit.

3.1.3 Other form of Biot � Savart's law

We have stated earlier that source of magnetic �eld is a small element of current or a moving charge. After
all, current is nothing but passage of charge. Clearly, there needs to be an alternative expression for the
Biot-Savart's law in terms of charge and its velocity. Now, for steady current :

Il =
q

t
l = q

l

t
= qv

This equivalence for current with moving charge with respect to production of magnetic �eld helps us to
formulate Biot � Savart' law for a charge q, which is moving with constant speed v as :

B =
µ0

4π

qvX
^
r

r2

The equivalence noted for current and moving charge is quite interesting for sub-atomic situations. An
electron moving around nucleus can be considered to be equivalent to current. In Bohr's atom,

I =
−e
T

where T is time period of revolution. Now,

T =
2πr
v

where v is the speed of electron moving around. Combining above two equations, we have :

⇒ I = − ev

2πr
Thus, an electron moving in circular path is equivalent to a steady current I. Negative sign here indicates

that the equivalent current is opposite to the direction of motion of electron around nucleus.

3.1.4 The source (cause) of magnetic �eld

The basic source (cause) of electric �eld is a scalar point charge. What is the correspondence here? Is
current (I) the corresponding basic source for the magnetic �eld? An examination of the Biot � Savart's law
reveals that it is not �I� alone which is basic source (cause) � rather it is the vector Idl, referred as "current
element". This means that the source responsible for magnetic �eld is identi�ed by current (I) and length
of element (dl) together. Equivalently, the basic source of magnetism is a moving charge represented by the
vector qv.

3.2 Experimental veri�cation of Biot-Savart's law

Current �ows through a closed circuit. As such, it would be di�cult to determine magnetic �eld due to a
small current element as required for veri�cation of Biot-Savart's law. There is, however, a cleverly designed
circuit arrangement which allows us to approximate requirements of determining magnetic �eld due to small
current element. Look at the circuit arrangement shown in the �gure. The parts of the wire along AB and
CD when extended meet at point P. We arrange the layout in such a manner that the segment AD represents
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a small current element. The direction of magnetic �eld produced at P due to this small current element is
out of the plane of drawing (shown by a �lled circle i.e. dot) as current �ows upward in the arm AD (apply
right hand vector product rule).

Magnetic �eld due to small thin current element

Figure 3.5: Magnetic �eld acts perpendicular to the plane formed by current element and displacement
vectors

The current in the arm AB and CD do not produce magnetic �eld at point P as the point lies on the
extended line of the current length element. Recall that θ=0, sinθ=0, hence B=0. On the other hand the
wire segment BC is designed to be far o� from point P in comparison to small wire segment AD. Since
magnetic �eld due to individual current element of segment AD is inversely proportional to the square of
linear distance, the magnetic �eld at P due to AC is relatively negligible with respect to magnetic �eld due
to small wire element AD. Clearly, magnetic �eld at P is nearly equal to magnetic �eld due to small current
element AD. The measurement of magnetic �eld at P with this arrangement allows us to determine magnetic
�eld due to small current element AD and thus, allows us to verify the law.

3.3 Electromagnetism

We study magnetism under the nomenclature �electromagnetism� to emphasize that magnetism is actually a
speci�c facet of electrical phenomenon. This is not farther from the reality as well. Let us see what happens
when charge �ows through the wire. Every particle carrying charge is capable of producing electrical �eld.
In this case of a wire carrying steady current, however, charge is moving with certain velocity through the
wire (conductor). Though, there is net velocity associated with the charge, the net electric charge in any
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in�nitesimal volume element is zero. This means that the "charge density" at any point is zero but the
"current density" at that point is non-zero for a conductor carrying current.

Since there is no charge density, there is no electric �eld. Recall that a net charge stationary or moving
produces electric �eld. On the other hand, since there is net motion of charge, there is magnetic �eld.

Subsequently, we shall learn that a varying or changing magnetic �eld sets up an electric �eld. This aspect
is brought out by Faraday's induction law. The electromagnetic induction sets up the basis of interlinking
of electrical and magnetic phenomena. The production of electric �eld (and hence current in a conductor)
due to varying magnetic �eld suggests that its inverse should also be true. As a matter of fact, this is so.
Maxwell discovered that a varying electric �eld sets up a magnetic �eld. Thus, two phenomena are reciprocal
of each other and prove the strong connection between electricity and magnetism.

In general, we consider electrical property to be the precursor of magnetic property. One of the most
important arguments that advances this thinking is the existence of electrical monople i.e. a charge of speci�c
polarity. There is no such magnetic monopole as yet. Magnetic polarities exist in pair (recall a magnet has
a pair of north and south pole).

The connection between electric and magnetic �eld is futher veri�ed by the fact that a stationary charge
in one frame of reference sets up only electric �eld in that reference. But the same stationary charge in one
frame of reference sets up both electric and magnetic �elds in a frame of reference, which is moving at certain
relative velcoity with respect to �rst reference. Similarly, a moving charge in one frame of reference sets up
both electric and magnetic �elds in that frame of reference, but it sets up only electric �eld in a reference in
which the moving charge is stationary (we can always imagine one such frame to exist).

The above discussion also draws an important distinction between �current in wire� and �moving charge�,
which have been said to be equivalent in earlier text. Current in wire sets up only magnetic �eld. Moving
charge, on the other hand, sets up magnetic �eld in addition to electric �eld as there is net charge � unlike
the case of current in wire in which there is no net charge. Clearly, equivalence of "current in small element
of wire" and "moving charge" is limited to production of magnetic �eld only.



Chapter 4

Magnetic �eld due to current in straight
wire1

The Biot-Savart law allows us to calculate magnetic �eld due to steady current through a small element of
wire. Since direction of magnetic �eld due to di�erent current elements of an extended wire carrying current
is not unique, we need to add individual magnetic vectors to obtain resultant or net magnetic �eld at a point.
This method of determining the net magnetic �eld follows superposition principle, which says that magnetic
�elds due to individual small current element are independent of each other and that the net magnetic �eld
at a point is obtained by vector sum of individual magnetic �eld vectors :

B =
∑

Bi = B1 + B2 + B3 + . . . . . .

We calculate magnetic �eld due to individual current element (I dl) using Biot-Savart law :

dB =
µ0

4π
IlXr
r3

where "dl" is referred as �current length element� and "I dl" as �current element�.
In the case of a straight wire, the task of vector addition is simpli�ed to a great extent because direction

of magnetic �eld at a point due to all current elements comprising the straight wire is same.

4.1 Direction of magnetic �eld (Right hand thumb rule)

A straight line and a point constitute an unique plane. This is true for all points in three dimensional
rectangular space (x,y,z). For convenience, let us consider that the point of observation (P) lies in xy plane
as shown in the �gure below. We can say that the straight wire along y-axis also lie in xy plane. Clearly, this
plane is the plane of current length element dl and displacement vector r, which appear in the Biot-Savart
expression. The direction of magnetic �eld is vector cross product dlX r, which is clearly perpendicular
to the plane xy. This means that the magnetic �eld is along z-axis. This conclusion is independent of the
relative positions of current length elements of the wire with respect to observation point P.

In a nutshell, we conclude that the directions of magnetic �elds due to all current elements constituting
straight wire at a point P are same. Though, magnitudes of magnetic �elds are di�erent as di�erent current
elements are located at di�erent linear distance from the point i.e. displacement vectors (r) are di�erent for
di�erent current length elements (dl).

1This content is available online at <http://cnx.org/content/m31103/1.10/>.
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Magnetic �eld due to current in straight wire

Figure 4.1: Magnetic �elds due to all current elements constituting straight wire at a point P are
same.

See in the �gure how magnetic �elds due to three current elements in positive y-direction are acting in
negative z-direction. The magnetic �elds due to di�erent current elements are B1 , B2 and B3 acting along
PZ' as shown in the �gure. Note that magnitudes of magnetic �elds are not equal as current elements are
positioned at di�erent linear distance.

The magnetic �eld is along z-axis either in positive or negative z direction depending on the direction of
current and whether observation point is on right or left of the current carrying straight wire. By convention,
magnetic �eld vector into the plane of drawing is denoted by a cross (X) and magnetic �eld vector out of
the plane of drawing is denoted by a dot (.). Following this convention, magnetic �eld depicted on either
side of a current carrying straight wire is as shown here :
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Magnetic �eld due to current in straight wire

Figure 4.2: Representation of magnetic �eld in terms of cross and dot.

Here B1 , B2 , B3 and B4 are the net magnetic �elds at four di�erent positions due to all current
elements of the wire. If we draw a circular path around the straight wire such that its plane is perpendicular
to the wire and its center lies on it, then each point on the perimeter is equidistant from the center. As
such magnitudes of magnetic �eld on all points on the circle are equal. The direction of magnetic �eld as
determined by right hand vector cross product rule is tangential to the circle.
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Magnetic �eld due to current in straight wire

Figure 4.3: Magnetic �eld on the perimeter of circle is tangential.

The observations as above are the basis of Right hand thumb rule for �nding direction of magnetic
�eld due to current in straight wire. If holding straight wire with right hand so that the extended thumb
points in the direction of current, then curl of the �ngers gives the direction of magnetic �eld around the
straight wire.
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Right hand thumb rule

Figure 4.4: If holding straight wire with right hand so that the extended thumb points in the direction
of current, then curl of the �ngers gives the direction of magnetic �eld around the straight wire.

4.2 Magnetic �eld due to current in �nite straight wire

Since directions of magnetic �elds due to all current elements are same, we can integrate the expression of
magnitude as given by Biot-Savart law for the small current element (we have replaced dl by dy in accordance
with notation in the �gure) :

B =
∫

B =
µ0

4π

∫
Iysinθ
r2
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Magnetic �eld due current in �nite straight wire

Figure 4.5: Magnitude of magnetic �eld is obtained by integration of elemental magnetic �eld.

In order to evaluate this integral in terms of angle φ, we determine �y, r and θ in terms of perpendicular
distance �R� (which is a constant for a given point) and angle �φ�. Here,

y = Rtanφ

dy = Rsec2φφ

r = Rsecφ

θ =
π

2
− φ

Substituting in the integral, we have :

⇒ B =
µ0

4π

∫
IRsec2φφsin

(
π
2 − φ

)
R2sec2φ

=
µ0

4π

∫
Icosφφ
R

Taking out I and R out of the integral as they are constant :

⇒ B =
µ0I

4πR

∫
cosφφ

Integrating between angle �φ1� and �φ2�, we have :
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⇒ B =
µ0I

4πR

φ2∫
φ1

Icosφφ

⇒ B =
µ0I

4πR
(sinφ2 − sinφ1)

We follow the convention whereby angle is measured from perpendicular line. The angle below perpen-
dicular line is treated negative and angle above perpendicular line is positive. In case, we want to do away
with the sign of angle, we put φ1 = −φ1 in above equation :

⇒ B =
µ0I

4πR
(sinφ1 + sinφ2)

Note that angles being used with this expression are positive numbers only. Also note that the magnitude
of magnetic �eld depends on where the point of observation P lies with respect to straight wire, which is
re�ected in the value of angle φ.

We can also express magnetic �eld due to current in a straight wire at a perpendicular distance �R� in
terms of angles between straight wire and line joining point of observation and end points.

Magnetic �eld due to current in wire

Figure 4.6: Magnetic �eld due current in �nite straight wire

B =
µ0I

4πR
X
[
sin
(π

2
− θ1

)
+ sin

(π
2
− θ2

)]
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⇒ B =
µ0I

4πR
X [cosθ1 + cosθ2]

4.2.1 Magnetic �eld at a point on perpendicular bisector

In this case, angles on either side of the bisector are equal :

φ1 = φ2 = φ

Magnetic �eld at a point on perpendicular bisector

Figure 4.7: Magnetic �eld at a point on perpendicular bisector

Magnetic �eld at a point on perpendicular bisector is :

B =
µ0I

4πR
X [sinφ1 + sinφ2] =

µ0I

4πR
X2sinφ

⇒ B =
µ0Isinφ

2πR
Let �L� be the length of wire. Then,

sinφ =
OC

PC
=

L
2√

{
(
L
2

)2
+R2}

=
L√

(L2 + 4R2)
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Putting in the equation of magnetic �eld,

⇒ B =
µ0Isinφ

2πR
=

µ0IL

2πR
√

(L2 + 4R2)

Example 4.1
Problem : A square loop of side �L� carries a current �I�. Determine the magnetic �eld at the
center of loop.

Solution : The magnetic �eld due to each side of the square here is same as Magnetic �eld
due to current in straight wire at a distance L/2 on the perpendicular bisector. The magnetic �elds
due to current in the four sides are in the same direction. Hence, magnitude of magnetic �eld due
to current in loop is four times the magnetic �eld due to current in one side :

⇒ B = 4X
µ0IL

2πR
√

(L2 + 4R2)

Here, R = L/2

Magnetic �eld at the center of square loop

Figure 4.8: Magnetic �eld at the center of square loop

⇒ B = 4X
µ0IL

2πL2

√
{L2 + 4

(
L
2

)2} =
4µ0IL

πL
√

2L
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⇒ B =
2
√

2µ0I

πL

4.2.2 Magnetic �eld at a point near the end of current carrying �nite straight
wire

In this case, the angles involved are :

Magnetic �eld due current in �nite straight wire

Figure 4.9: Magnitude of magnetic �eld is obtained by integration of elemental magnetic �eld.

φ1 = 0; φ2 = φ

and

⇒ B =
µ0I

4πR
(sin0 + sinφ) =

µ0Isinφ
4πR

We can also get the expression for magnetic �eld in terms of length of wire. Here,

sinφ =
OC

PC
=

L√
(L2 +R2)

Putting in the expression of magnetic �eld, we have :
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B =
µ0IL

4πR
√

(L2 +R2)

In case, R = L, then,

⇒ B =
µ0IL

4πL
√

(L2 + L2)
=

µ0I

4πL
√

2
=
√

2µ0I

8πL

Example 4.2
Problem : A current 10 ampere �ows through the wire having con�guration as shown in the
�gure. Determine magnetic �eld at P.

Magnetic �eld due to current in the arrangment

Figure 4.10: Magnetic �eld due current in the arrangment

Solution : We shall determine magnetic �eld to di�erent straight segments of wires. Let us
consider the out of plane orientation as positive. Now, for wire segment AC, the point P is at the
end of straight wire of length 4 m and is at a perpendicular linear distance of 4 m. The magnetic
�eld at P due to segment AC is perpendicular and out of the plane of drawing. The magnetic �eld
due to segment AC is :

BAC =
√

2µ0I

8πL
=
√

2µ0I

8πX4
=
√

2µ0I

32π
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For the wire segment CD, the point P lies on the extended line passing through the wire. The
magnetic �eld due to this segment, therefore, is zero.

BCD = 0

For the wire segment DE, the angles between the line segment and line joining the point P with
end points are known by geometry of the �gure. Hence, Magnetic �eld due to this segment is :

BDE = − µ0I

4πR
(cosθ1 + cosθ2) = − µ0I

4π
√

2
X
(
cos450 + cos450

)
⇒ BDE = − µ0I

4π
√

2
X

2√
2

= −µ0I

4π

For the wire segment EF, the point P lies on the extended line passing through the wire. The
magnetic �eld due to this segment, therefore, is zero.

BEF = 0

For the wire segment GA, the point P is at the end of straight wire of length 4 m and is at a
perpendicular linear distance of 4 m. The magnetic �eld at P due to segment GA is perpendicular
and out of the plane of drawing. The magnetic �eld is :

BFA =
√

2µ0I

32π
The net magnetic �eld at P is :

B = BAC +BCD +BDE +BEF +BFA

⇒ B =
√

2µ0I

32π
+ 0− µ0I

4π
+ 0 +

√
2µ0I

32π

⇒ B =
µ0I

(√
2− 4

)
16π

⇒ B = −2.59X4πX10−7X10
16π

= −2.59X10−7X10
4

⇒ B = −0.65X10−6 = −6.5X10−5 T

The net magnetic �eld is into the plane of drawing.

4.3 Magnetic �eld due to current in in�nite (long) straight wire

The expression for the magnitude of magnetic �eld due to in�nite wire can be obtained by suitably putting
appropriate values of angles in the expression of magnetic �eld due to �nite wire. Here,

φ1 =
π

2
; φ2 =

π

2
and

B =
µ0I

4πR
(sinφ1 + sinφ2)
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⇒ B =
µ0I

4πR

(
sin

π

2
+ sin

π

2

)
⇒ B =

µ0I

2πR
The important point to note here is that magnetic �eld is independent of the relative angular position

of point of observation with respect to in�nite wire. Magnetic �eld, however, depends on the perpendicular
distance from the wire.

In reality, however, we always work with �nite wire or at the most with long wire. A �nite length wire
is approximated as in�nite or long wire for at least for close points around the wire.

4.3.1 Magnetic �eld at a point near the end of current carrying long wire

The wire here extends from an identi�ed position to in�nity in only one direction. In this case, the angles
involved are :

φ1 = 0; φ2 =
π

2
and

⇒ B =
µ0I

4πR

(
sin0 + sin

π

2

)
⇒ B =

µ0I

4πR
Example 4.3
Problem : Calculate magnetic �eld at point P due to current 5 A �owing through a long wire
bent at right angle as shown in the �gure. The point P lies at a linear distance 1 m from the corner.
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Magnetic �eld due to current in wire

Figure 4.11: Magnetic �eld due to current in wire.

The point P lies on the extension of wire segment in x-direction. Here angle between current
element and displacement vectors is zero i.e. θ =0 and sinθ . As such this segment does not produce
any magnetic �eld at point P. On the other hand, the point P lies near one of the end of the segment
of wire in y-direction. The wire being long, the magnetic �eld due to wire segment in y-direction
is :

B =
µ0I

4πR
Putting values,

⇒ B =
µ0I

4πR
=

10−7X5
1

= 5X10−7 T

Applying Right hand thumb rule, the magnetic �eld at P is perpendicular to xy plane and into
the plane of drawing (i.e. negative z-direction).

⇒ B = −5X10−7k

4.4 Exercises

Exercise 4.1 (Solution on p. 57.)

Two long straight wires at A and C, perpendicular to the plane of drawing, carry currents such
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that point D is a null point. The wires are placed at a linear distance of 10 m. If the current in
the wire at A is 10 A and its direction is out of the plane of drawing, then �nd (i) the direction of
current and (ii) magnitude of current in the second wire.

Two straight wires carrying current

Figure 4.12: Two straight wires carrying current

Exercise 4.2 (Solution on p. 57.)

Calculate magnetic �eld at the center due to current �owing in clockwise direction through a wire
in the shape of regular hexagon. The arm of hexagon measures 0.2 m and current through the wire
is 10 A.

Exercise 4.3 (Solution on p. 58.)

A current 10
√
2 ampere �ows through the wire having con�guration as shown in the �gure.

Determine magnetic �eld at P.



56 CHAPTER 4. MAGNETIC FIELD DUE TO CURRENT IN STRAIGHT WIRE

Magnetic �eld due to current in wire

Figure 4.13: Magnetic �eld due to current in wire
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 54)
In order to nullify the magnetic �eld at D due to current in wire at A, the direction of magnetic �eld due to
current in the wire at C should be equal and opposite. This means that the current in the wire at C should
be opposite that of wire at A. Hence, the direction of current in the wire at C should be into the plane of
drawing. Now, the magnitudes of magnetic �elds due to currents are equal. Let the current in second wire
be I, then:

Two straight wires carrying current

Figure 4.14: Two straight wires carrying current

µ0I

2πX5
=
µ0X10
2πX15

⇒ I =
50
15

= 3.34 A

Solution to Exercise 4.2 (p. 55)
Applying right hand rule for vector cross product, we realize that magnetic �eld due to each arm of the
hexagon for given current direction (clockwise) is into the plane of hexagon. As such, we can algebraically
add magnetic �eld due to each arm to obtain net magnetic �eld.

B = 6Ba
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where Ba is magnetic �eld due to current in one of the arms. Now, we consider one of the arms of
hexagon as shown in the �gure. Here,

Magnetic �eld at the center due current

Figure 4.15: Magnitude of magnetic �eld is six times the magnetic �eld due to one arm.

φ1 =
π

6
; φ2 =

π

6

R =
a

2
cotφ1 =

0.2
2

cot
φ

6
= 0.1X

√
3 = 0.1732 m

and

⇒ B = 6Ba =
6µ0I

4πR

(
sin

π

6
+ sin

π

6

)
Putting values, we have :

⇒ B =
6X10−7X10X1

0.1732
== 3.462X10−5 T

Solution to Exercise 4.3 (p. 55)
We shall determine magnetic �eld to di�erent straight segments of wires. Let us consider the out of plane
orientation as positive. Now, for wire segment AC, the point P is at the end of straight wire of length 4 m
and is at a perpendicular linear distance of 4 m. The magnetic �eld at P due to segment AC is perpendicular
and out of the plane of drawing. The magnetic �eld due to segment AC is :
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BAC =
√

2µ0I

8πL
=
√

2µ0I

8πX4
=
√

2µ0I

32π
For the wire segment CD, the point P lies on the extended line passing through the wire. The magnetic

�eld due to this segment, therefore, is zero.

BCD = 0

For the wire segment DE, the point P is at the end of straight wire of length 2 m and is at a perpendicular
linear distance of 2 m. The magnetic �eld at P due to segment DE is perpendicular and into the plane of
drawing. The magnetic �eld is :

BDE = −
√

2µ0I

8πL
= −
√

2µ0I

8πX2
= −
√

2µ0I

16π
For the wire segment EF, the point P is at the end of straight wire of length 2 m and is at a perpendicular

linear distance of 2 m. The magnetic �eld at P due to segment DE is perpendicular and into the plane of
drawing. The magnetic �eld is :

BEF = −
√

2µ0I

16π
For the wire segment FG, the point P lies on the extended line passing through the wire. The magnetic

�eld due to this segment, therefore, is zero.

BFG = 0

For the wire segment GA, the point P is at the end of straight wire of length 4 m and is at a perpendicular
linear distance of 4 m. The magnetic �eld at P due to segment GA is perpendicular and out of the plane of
drawing. The magnetic �eld is :

BGA =
√

2µ0I

32π
The net magnetic �eld at P is :

B = BAC +BCD +BDE +BEF +BFG +BGA

⇒ B =
√

2µ0I

32π
+ 0−

√
2µ0I

16π
−
√

2µ0I

16π
+ 0 +

√
2µ0I

32π

⇒ B = −
√

2µ0I

16π

⇒ B = −
√

2X4πX10−7X10
√

2
16π

= −2X10−7X10
4

⇒ B = −5X10−7 T

The net magnetic �eld is into the plane of drawing.
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Chapter 5

Magnetic �eld due to current in a
circular wire1

Magnetic �eld due to current in circular wire is largely axial. It means that we need to concentrate our
investigation of magnetic �eld on axial positions. One of the important axial positions is center of the
circular wire itself. We shall limit our discussion in this module to this case of magnetic �eld at the center
of circular coil. The procedure for deriving expression for the magnetic �eld due to current in circular wire
is same as that of current carrying straight wire. Here also, we make use of superposition principle whereby
we combine the small magnetic �elds due to each of the small current elements composing the circular coil.

Circular wire is considered to be composed of small linear current elements. We determine magnetic �eld
due to each of the linear current elements applying Biot-Savart law. Finally, we determine net magnetic �eld
using superposition principle (i.e. by determining vector sum of magnetic �elds due to all current elements).

In general, the bending of current carrying wire in circular shape has the e�ect of strengthening or
localizing magnetic �eld in narrower region about the axis.

5.1 Direction of magnetic �eld (Right hand thumb rule)

Let us consider two diametrically opposite small current elements on the circular wire. The magnetic �eld
lines are compressed inside the circle as it accommodates all the circular closed lines drawn outside. This
compression of magnetic �eld lines is maximum at the center. In the �gure here, we consider the circular
coil in horizontal plane. The magnetic �eld lines being perpendicular to current elements are in the plane of
drawing.

1This content is available online at <http://cnx.org/content/m31199/1.11/>.
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WIRE

Magnetic �eld due to current in circular wire

Figure 5.1: Magnetic �eld lines due to oppositely placed current elements

Such is the case with any other pair of current elements as well. This means that magnetic �eld line
passing though axis is reinforced by all such diametrically opposite pairs of current element. The magnetic
�eld due to current in circular wire, therefore, is nearly axial.

The observations as above are the basis of Right hand thumb rule for current in circular wire. If we
orient right hand such that curl of �ngers follows the direction of current in the circular wire, then extended
thumb points in the direction of magnetic �eld at its center.
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Right hand thumb rule

Figure 5.2: If we orient right hand such that curl of �ngers follows the direction of current in the
circular wire, then extended thumb points in the direction of magnetic �eld at its center.

Right hand thumb rules for straight wire and circular wire are opposite in the notations. The curl of hand
represents magnetic �eld in the case of straight wire, whereas it represents current in the case of circular
wire. Similarly, the extended thumb represents current in the case of straight wire, whereas it represents
magnetic �eld in the case of circular wire.

There is yet another simple way to �nd the direction of axial magnetic �eld at the center. Just look at
the circular loop facing it. If the current is clockwise, then magnetic �eld is away from you and if the current
is anticlockwise, then magnetic �eld is towards you.

5.1.1 Current in circular wire and magnet

The directional attributes of the magnetic �eld due to current in circular wire have an important deduction.
If the current in a circular loop is anticlockwise when we look from one end (face), then the same current
is clockwise when we look from opposite end (face). What it means that if direction of magnetic �eld is
towards you from one face, then the direction of magnetic �eld is away from you from the other end and
vice versa.



64
CHAPTER 5. MAGNETIC FIELD DUE TO CURRENT IN A CIRCULAR

WIRE

Directions of current in circular wire

Figure 5.3: Directions of current in circular wire

The magnetic lines of force enters from the face in which current is clockwise and exits from the face in
which current is anticlockwise. This is exactly the con�guration with real magnet. The anticlockwise face
of the circular wire is equivalent to north pole and clockwise face is equivalent to south pole of the physical
magnet. For this reason, a current in a circular wire is approximately equivalent to a tiny bar magnet.
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Equivalence of current in circular wire with magnet

Figure 5.4: The magnetic �eld lines are similar in two cases

We shall learn more about this aspect when we study magnetic moment and physical magnets.

5.2 Magnitude of magnetic �eld due to current in circular wire

Evaluation of Biot-Savart expression at the center of circle for current in circular wire is greatly simpli�ed.
There are threefold reasons :

1: The directions of magnetic �elds due to all current elements at the center are same just as in the case
of straight wire.

2: The linear distance (r) between current length element (dl) and the point of observation (center of
circular wire) is same for all current elements.

3: The angle between current length element vector (dl) and displacement vector (R) is right angle for
all current elements. Recall that angle between tangent and radius of a circle is right angle at all positions
on the perimeter of a circle.
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WIRE

Magnetic �eld due to current in circular wire

Figure 5.5: Magnetic �eld due to current in circular wire

The magnitude of magnetic �eld due to a current element according to Biot-Savart law (Section 3.1.2:
Magnitude of magnetic �eld ) is given by :

B =
µ0

4π
Ilsinθ
r2

But, θ=90 ◦ and sin90 ◦=1. Also, r = R = Radius of circular wire.

⇒ B =
µ0

4π
Il

R2

All parameters except "�l" in the right hand expression of the equation are constants and as such they
can be taken out of the integral.

B =
∫

B =
µ0I

4πR2

∫
l

The integration of dl over the complete circle is equal to its perimeter i.e. 2πR.

⇒ B =
µ0I

4πR2
X2πR =

µ0I

2R
If the wire is a coil having N circular turns, then magnetic �led at the center of coil is reinforced N times

:

B =
µ0NI

2R



67

Example 5.1
Problem : A thin ring of radius �R� has uniform distribution of charge, q, on it. The ring is made
to rotate at an angular velocity �ω� about an axis passing through its center and perpendicular to
its plane. Determine the magnitude of magnetic �eld at the center.

Solution : A charged ring rotating at constant angular velocity is equivalent to a steady
current in circular wire. We need to determine this current in order to calculate magnetic �eld. For
this, let us concentrate at any cross section of the ring. All the charge passes through this cross
section in one time period of revolution. Thus, equivalent current is :

I =
q

T
=
qω

2π
Now, magnetic �eld due to steady current in circular wire is :

B =
µ0I

2R
Substituting for current, we have :

⇒ B =
µ0qω

4πR

Example 5.2
Problem : Calculate magnetic �eld at the center O for the current �owing through wire segment
as shown in the �gure. Here, current through wire is 10 A and radius of the circular part is 0.1 m.

Magnetic �eld due to current in wire

Figure 5.6: Magnetic �eld due to current in wire

Solution : Magnetic �eld at O is contributed by long straight wire and circular wire. The
direction of magnetic �eld at O due to straight part of the wire is into the plane of drawing as
obtained by applying Right hand thumb rule for straight wire. The direction of current in the
circular part is anticlockwise and hence magnetic �eld due to this part is out of the plane of
drawing as obtained by applying Right hand thumb rule for circular wire.

The magnitude of magnetic �eld due to circular wire is :
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BC =
µ0I

2R
The magnitude of magnetic �eld due to straight wire is :

BS =
µ0I

2πR
Hence, magnitude of magnetic �eld at O is algebraic sum of two magnetic �elds (we consider

outward direction as positive) :

B = BC −BS =
µ0I

2R
− µ0I

2πR
Putting values :

⇒ B =
4π10−7X10

2X0.1
− 4π10−7X10

2πX0.1

⇒ B = 62.9X10−6 − 20X10−6 = 42.9 µT

The net magnetic �eld is acting out of the plane of paper.

5.3 Magnitude of magnetic �eld due to current in circular arc

The magnitude of magnetic �eld due to current in arc shaped wire can be obtained by integrating Biot-Savart
expression in an appropriate range. Now, the integral set up for current in circular wire is :

B =
∫
B =

µ0I

4πR2

∫
l

Circular arc is generally referred in terms of the angle θ, it subtends at the center of the circle. From
geometry, we know that :

l = Rθ

Substituting in the integral and taking the constant R out of the integral, we have :

B =
µ0I

4πR

∫
θ

⇒ B =
µ0Iθ

4πR
This is the expression for the magnitude of magnetic �eld due to current in an arc which subtends an

angle θ at the center. Note that the expression is true for the circle for which θ = 2π and magnetic �eld is :

⇒ B =
µ0IX2π

4πR
=
µ0I

2R

Example 5.3
Problem : Find the magnetic �eld at the corner O due to current in the wire as shown in the
�gure. Here, radius of curvature is 0.1 m for the quarter circle arc and current is 10 A.
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Magnetic �eld due to current in wire

Figure 5.7: Magnetic �eld due to current in wire

Solution :
Here the straight line wire segment AB and CD when extended meet at O. As such, there is no

magnetic �eld due to current in these segments. The magnetic �eld at O is, therefore, solely due
to magnetic �eld due to quarter arc AC. The arc subtends an angle π/2 at its center i.e O. Now,

B =
µ0Iθ

4πR
Putting values, we have :

⇒ B =
10−7X10Xπ

0.1X2
= 0.157X10−6 = 0.157 µT

Since current in the arc is anticlockwise, magnetic �eld is perpendicular and out of the plane of
drawing.

5.4 Current in straight wire .vs. current in circular wire

A length of wire, say L, is given and it is asked to maximize magnetic �eld in a region due to a current I in
the wire. Which con�guration would we consider � a straight wire or a circular wire? Let us examine the
magnetic �elds produced by these two con�gurations.

If we bend the wire in the circle, then the radius of the circle is :
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R =
L

2π
The magnetic �eld due to current I in the circular wire is :

BC =
µ0I

2R
=

2πµ0I

2L
=
πµ0I

L
=

3.14µ0I

L

In the case of straight wire, let us consider that wire is long enough for a point around middle of the
wire. For comparison purpose, we assume that perpendicular linear distance used for calculating magnetic
�eld due to current in straight wire is equal to the radius of circle. The magnetic �eld at a perpendicular
distance �R� due to current in long straight wire is given as :

BL =
µ0I

4πR
=
µ0IX2π

4πL
=
µ0I

2L
=

0.5µ0I

L

Clearly, the magnetic �eld due to current in circular wire is 6.28 times greater than that due to current in
straight wire at comparable points of observations. Note that this is so even though we have given advantage
to straight wire con�guration by assuming it to be long wire. In a nutshell, a circular con�guration tends to
concentrate magnetic �eld along axial direction which is otherwise spread over the whole length of wire.

Example 5.4
Problem : A current 10 A �owing through a straight wire is split at point A in two semicircular
wires of radius 0.1 m. The resistances of upper and lower semicircular wires are 10 Ω and 20 Ω
respectively. The currents rejoin to �ow in the straight wire again as shown in the �gure. Determine
the magnetic �eld at the center �O�.
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Magnetic �eld due to current in wire

Figure 5.8: Magnetic �eld due to current in wire

Solution : The straight wire sections on extension pass through the center. Hence, magnetic
�eld due to straight wires is zero. Here, the incoming current at A is distributed in the inverse
proportion of resistances. Let the subscripts �1� and �2' denote upper and lower semicircular sections
respectively. The two sections are equivalent to two resistances in parallel combination as shown
in the �gure. Here, potential di�erence between �A� and �B� is :
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Currents in semicircular segments

Figure 5.9: Currents in semicircular segments

VAB =
IXR1XR2

(R1 +R2)
= I1R1 = I2R2

⇒ I1 =
IXR2

(R1 +R2)
=

10X20
30

=
20
3

A

⇒ I2 =
IXR1

(R1 +R2)
=

10X10
30

=
10
3

A

We see that current in the upper section is twice that in the lower section i.e. I1 = 2I2. Also,
the magnetic �eld is perpendicular to the plane of semicircular section (plane of drawing). The
current in the upper semicircular wire is clockwise. Thus, the magnetic �eld due to upper section
is into the plane of drawing. However, the current in the lower semicircular is anticlockwise. Thus,
the magnetic �eld due to lower section is out of the plane of drawing. Putting θ = π for each
semicircular section, the net magnetic �eld due to semicircular sections at �O� is:

B =
µ0I1π

4πR
− µ0I2π

4πR

⇒ B =
µ0I1π

4πR
− µ0I1π

8πR
=
µ0I1π

8πR

⇒ B =
10−7X20
3X8X0.1

= 8.3X10−7 T

The net magnetic �eld is into the plane of drawing.
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5.5 Exercises

Exercise 5.1 (Solution on p. 76.)

An electron circles a single proton nucleus of radius 3.2X10−11 m with a frequency of 1016 Hz.
The charge on the electron is 1.6X10−19 Coulomb. What is the magnitude of magnetic �eld due
to orbiting electron at the nucleus?

Exercise 5.2 (Solution on p. 76.)

Calculate the magnetic �eld at O for the current loop shown in the �gure.

Magnetic �eld due to current in wire

Figure 5.10: Magnetic �eld due to current in wire

Exercise 5.3 (Solution on p. 76.)

A current of 10 ampere �ows in anticlockwise direction through the arrangement shown in the
�gure. Determine the magnetic �eld at the center �O�.
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Magnetic �eld due to current in wire

Figure 5.11: Magnetic �eld due to current in wire

Exercise 5.4 (Solution on p. 77.)

A current of 10 ampere �ows in anticlockwise direction through the arrangement shown in the
�gure. The curved part is a semicircular arc. Determine the magnetic �eld at the center �O�.
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Magnetic �eld due to current in wire

Figure 5.12: Magnetic �eld due to current in wire

Exercise 5.5 (Solution on p. 77.)

A thin disc of radius �R� has uniform distribution of charge, q, on it. The ring is made to rotate
at an angular velocity �ω� about an axis passing through its center and perpendicular to its plane.
Determine the magnitude of magnetic �eld at the center of the disc.
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Solutions to Exercises in Chapter 5

Solution to Exercise 5.1 (p. 73)
The equivalent current is given by :

I =
q

T
= qν

where ν and T are frequency and time period of revolutions respectively. The magnitude of magnetic
�eld due to circular wire is given by :

B =
µ0I

2R
Substituting for I, we have :

⇒ B =
µ0I

2R
=
µ0qν

2R
Putting values,

⇒ B =
4π10−7X1.6X10−19X1016

2X3.2X10−11

⇒ B = 31.4 T

Solution to Exercise 5.2 (p. 73)
The magnetic �eld due to linear part of the wire is zero as they pass through O when extended. The
magnetic �eld due to inner arc is greater than outer arc. Further, magnetic �eld due to anticlockwise current
in the inner arc is out of the plane of drawing and magnetic �eld due to clockwise current in the outer arc is
into the plane of drawing. Net magnetic �eld due to the current in the wire is out of the plane of drawing,
whose magnitude is :

B =
µ0Iθ

4πr1
− µ0Iθ

4πr2

⇒ B =
µ0Iπ

4πr1X4
− µ0Iπ

4πr2X4

⇒ B =
µ0I

16
(r2 − r1)
r1r2

Solution to Exercise 5.3 (p. 73)
The magnetic �eld at �O� due to ¾ th of the circular arc is :

BC =
µ0IX3π
4πRX2

=
3µ0I

8R
=

3X4πX10−7X10
8X3

⇒ BC = 5πX10−7 = 15.7X10−7 T

Two linear part segments when extended pass through �O� and as such do not contribute to magnetic
�eld. The magnetic �eld at �O� due to one 5 m segment is :

BL1 =
√

2µ0I

8πR
=
√

2X4πX10−7X10
8πX5

BL1 =
√

2X10−7 T

The magnetic �eld at �O� due to two 5 m segments is :
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BL = 2XBL1 = 2X
√

2X10−7 = 2.83X10−7 T

Magnetic �elds due to both circular arc and linear segments are acting out of the plane of drawing, the
net magnetic �eld at �O� is :

B = BC +BL = 15.7X10−7 + 2.83X10−7 = 18.53XX10−7 = 1.853X10−6T

Solution to Exercise 5.4 (p. 74)
The magnetic �eld at �O� due to semicircular arc acts upward and its magnitude is :

BC =
µ0IXπ

4πR
=

µ0I

4X1
=

4πX10−7X10
4

= 31.4X10−7 T

The magnetic �eld due to lower straight conductor acts upward and its magnitude is :

BL1 =
√

2µ0I

8πR
=
√

2X4πX10−7X10
8πX1

⇒ BL1 =
√

2X5X10−7 = 7.07X10−7 T

The magnetic �eld due to upper straight conductor acts upward and its magnitude is equal to that due
to lower straight conductor :

⇒ BL2 =
√

2X5X10−7 = 7.07X10−7 T

For the straight conductor at the far end, the center �O� lies on the bisector. The magnetic �eld acts
upward and its magnitude is :

BL3 =
µ0IL

4πR
√

(L2 + 4R2)

Here, R = 2 m, L = 2 m. Putting values in the equation, we have :

⇒ BL3 =
µ0IL

4πR
√

(L2 + 4R2)
=

4πX10−7X10X2
4πX2

√
(22 + 4X22)

⇒ BL3 =
√

5X10−7 = 2.24X10−7 T

The net magnetic �eld at �O� is :

B = BC +BL1 +BL2 +BL3

⇒ B = 31.4X10−7 + 7.07X10−7 + 7.07X10−7 + 2.24X10−7

⇒ B = 4.78X10−6 T

Solution to Exercise 5.5 (p. 75)
We consider disc to be composed of in�nite numbers of thin ring. We consider one such ring of thickness dr
at a distance �r� from the center carrying charge dq. This ring carrying charge �dq� and rotating is equivalent
to a current. The magnetic �eld at the center to this thin ring is (as obtained earlier in the example problem)
:
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Magnetic �eld due to rotating charged disc

Figure 5.13: Magnetic �eld due to rotating charged disc

B =
µ0qω

4πr
We need to determine �dq� in terms of given parameters. The current surface density, σ, is :

σ =
q

πR2

The area of the thin ring is :

A = 2πrr

Hence, charge on the ring is :

q = σA =
2πrqr
πR2

=
2rqr
R2

Putting this espression for �dq�, the expression of magnetic �eld at the center due to rotating ring is :

B =
µ02rqωr
4πrR2

=
µ0qωr

2πR2
=
µ0ωqr

2πR2

In order to obtain magnetic �eld due to the rotating disc, we integrate the expression of magnetic �eld
due to ring from r = 0 to r =R.
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B =
∫

B =

R∫
0

µ0ωqr

2πR2

Taking out constants out of the integration sign, we have :

⇒ B =
µ0wq

2πR2

R∫
0

r

⇒ B =
µ0wq

2πR
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Chapter 6

Magnetic �eld at an axial point due to
current in circular wire1

We have already determined magnetic �eld due to current in circular wire at its center. The approach to
determine magnetic �eld at an axial point is similar. We begin with magnetic �eld due to small current
element and then try to integrate the Biot-Savart expression for the small magnetic �eld for the entire circle
following superposition principle.

This extension of earlier procedure, however, demands a bit of extra three dimensional imagination to
arrive at the correct result. In this module, we shall attempt to grasp three dimensional elements as clearly
as possible with �gures. Let us have a look at the di�erential Biot-Savart expression :

B =
µ0

4π
IlXr
r3

There are three vector quantities dB, dl and r. We investigate the spatial relation among these quantities
for magnetic �eld at an axial point.

6.1 Magnetic �eld on an axial point

The magnitude of magnetic �eld due to current in a current element is given by :

B =
µ0

4π
Ilsinθ
r2

In order to evaluate magnetic �eld due to complete circular wire, we need to set up corresponding integral
properly with respect to various elements constituting the expression. In following subsections, we study
these elements in which point of observation is a point on axial line.

6.1.1 The angle between current length element and displacement vectors

The angle (θ ) as appearing in the Biot-Savart expression between current length element vector dl and
displacement vector r is right angle. See �gure. This right angle should be distinguished with acute angle
φ, which is the angle between OA and AP as shown in the �gure.

1This content is available online at <http://cnx.org/content/m31277/1.3/>.

81
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The angle between current length element and displacement vectors

Figure 6.1: The angle between current length element and displacement vectors is right angle.

The above fact reduces Biot-Savart expression to :

B =
µ0

4π
Ilsin90
r2

=
µ0

4π
Il

r2

This simpli�cation due to enclosed angle being right angle is true for all points on the circle.

6.1.2 Magnitude of magnetic �eld

All current elements are at equal linear distance from point P. As a result, the magnitude of magnetic �eld
at P due to any of the equal current elements is same.

B1 = B2 = . . . . . . .

6.1.3 Direction of elemental magnetic �eld

Unlike enclosed angle (θ), linear distance (r) and magnitude of magnetic �eld, the direction of magnetic �eld
due to current elements are not same. As such, we can not integrate Biot-Savart di�erential expression to
determine net magnetic �eld at P. Let us investigate the direction of magnetic �elds due to two diametrically
opposite current elements. Let the circular wire lie in yz plane as shown in the �gure.



83

Direction of elemental magnetic �eld

Figure 6.2: Magnetic �eld is perpendicular to plane formed by current length element and displacement
vectors.

The current length vector dl1 and displacement vector r1 form a plane shown as plane 1 and the magnetic
�eld due to current element, B1, is perpendicular to plane 1. Similarly, the current length vector dl2 and
displacement vector r2 form a plane shown as plane 2 and the magnetic �eld due to current element, B2),
is perpendicular to plane 2. Clearly, these magnetic �elds are directed in three dimensional space. If we
imagine magnetic �elds due to other current elements of the circular wire, then it is not di�cult to imagine
that these elemental magnetic �elds are aligned on the outer surface of a conic section and that they are not
in same plane.
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Direction of elemental magnetic �eld

Figure 6.3: Magnetic �elds are aligned on the outer surface of a conic section.

Another important point to observe is that all elemental magnetic �eld vectors form same angle φ. This
can be veri�ed from the fact that B1 is perpendicular to AP and Px is perpendicular to OA. Hence, angle
between B1 and Px is equal to angle between OA and AP i.e. φ with x-axis. By symmetry, we can see that
all elemental magnetic �eld vectors form the same angle with x- axis.

6.1.4 Resolution of elemental magnetic �eld vectors and net magnetic �eld

We resolve magnetic �eld vectors along x-axis and perpendicular to it, which lies on a plane perpendicular
to axis i.e a plane parallel to the plane of circular coil (yz plane) as shown in the �gure. We have shown two
pairs of diametrically opposite current elements. See that axial components are in positive x-direction. The
perpendicular components, however, cancels each other for a diametrically opposite pair.
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Resolution of elemental magnetic �eld vectors and net magnetic �eld

Figure 6.4: Net magnetic �eld is axial.

This situation greatly simpli�es the integration process. We need only to algebraically add axial compo-
nents. Since all are in same direction, we integrate the axial component of di�erential Biot-Savart expression
:

B =
∫
B =

µ0I

4π

∫
l

r2
cosφ

Note that both r and cos φ are constants and they can be taken out of integral,

⇒ B =
µ0Icosφ

4πr2

∫
l

⇒ B =
µ0Icosφ

4πr2
X2πR =

µ0IRcosφ
2r2

Now,

r =
(
x2 +R2

) 1
2

In triangle OAP,

cosφ =
R

r
=

R

(x2 +R2)
1
2

Putting these values in the expression of magnetic �eld, we have :
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⇒ B =
µ0IRcosφ

2r2
=

µ0IR
2

2(x2 +R2)
3
2

This is the expression of magnitude of magnetic �eld on axial line. Note that we have derived this
expression for anticlockwise current. For clockwise current, the magnetic �eld will have same magnitude but
oriented towards the circular wire. Clearly, direction of axial magnetic �eld follows Right hand thumb rule.

If there are N turns of circular wires stacked, then magnetic �eld is reinforced N times and magnetic �eld
is :

⇒ B =
µ0NIR

2

2(x2 +R2)
3
2

In order to show the direction, we may write the expression for magnetic �eld vector using unit vector
in the axial direction as :

⇒ B =
µ0NIR

2

2(x2 +R2)
3
2
i

Recall that one of the faces of circular wire has clockwise direction of current, whereas other face of the
same circular wire has anticlockwise direction of current. The magnetic �eld lines enter from the face where
current is clockwise and exit from the face where current is anticlockwise.

Example 6.1
Problem : Two identical circular coils of radius R are placed face to face with their centers on
a straight line at a distance 2

√
3 R apart. If the current in each coil is I �owing in same direction,

then determine the magnetic �eld at a point �O� midway between them on the straight line.
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Two identical circular coils at a distance

Figure 6.5: Two identical circular coils at a distance

Solution : For an observer at �O�, the current in coil A is anticlockwise. The magnetic �eld
due to this coil is towards the observer i.e. towards right. On the other hand, the current in coil
C is clockwise for an observer at �O�. The magnetic �eld due to this coil is away from the observer
i.e. again towards right. The magnitude of magnetic �eld due to either coil is :

B′ = µ0IR
2

2(x2 +R2)3/2

Here, x =
√
3 R,

⇒ B′ = µ0IR
2

2(3R2 +R2)3/2
=

µ0IR
2

2(4R2)3/2
=
µ0I

16R

The net magnetic �eld is twice the magnetic �eld due to one coil,

⇒ B = 2B′

⇒ B = 2B′ = 2X
µ0I

16R
=
µ0I

8R
The net magnetic �eld is directed towards right.
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6.2 Variation of magnetic �eld along the axis

As far as magnitude of magnetic �eld is concerned, it decreases away from the circular wire. It is maximum
when point of observation is center. In this case,

x = 0 and magnetic �eld, B is :

B =
µ0IR

2

2(x2 +R2)
3
2

=
µ0IR

2

2R3
=
µ0I

2R

This result is consistent with the one derived for this case in earlier module. For magnetic �eld at a far
o� point on the axis,

x2 � R2

x2 +R2 ≈ x2

Putting in the expression of magnetic �eld, we have :

B =
µ0IR

2

2(x2 +R2)
3
2

=
µ0IR

2

2x3

Clearly, magnetic �eld falls o� rapidly i.e. inversely with the cube of linear distance x along the axis. A
plot of the magnitude of current is shown here in the �gure :

Variation of magnetic �eld along the axis

Figure 6.6: Variation of magnetic �eld along the axis
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6.3 Magnetic moment

The concept of moment is a very helpful concept for describing magnetic properties. The description of
circular coil as magnetic source in terms of magnetic moment, as a matter of fact, underlines yet another
parallelism that runs between electrostatics and electromagnetism.

Magnetic moment of a closed shaped wire is given by :

M = NIA

For a single turn of circular wire :

M = IA

The magnetic moment is a vector obtained by multiplying area vector with current. The direction of
area vector is perpendicular to the plane of wire. For circular wire shown in the module,

A = πR2i

Now, axial magnetic �eld vector is given by :

B =
µ0IR

2

2(x2 +R2)
3
2
i

But,

M = IA = IπR2i

Substituting in the expression of magnetic �eld,

⇒ B =
µ0M

2π(x2 +R2)
3
2

For a far o� axial point (x2 +R2 ≈ x2):

⇒ B =
µ0M
2πx3

=
µ02M
4πx3

See the resemblance; it has the same form as that for electrical �eld due to an electrical dipole having
dipole moment pon an axial point :

E =
2p

4πε0x3
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Chapter 7

Lorentz force1

Lorentz force is the electromagnetic force on a point or test charge. The corresponding force law for elec-
tromagnetic force is an empirical law providing the combined expression for electrical and magnetic forces
experienced by the test charge. Lorentz force for a point charge comes into existence under certain conditions.
The existence of either electrical or magnetic or both �elds is primary requirement.

The force law sets up the framework under which two force types (electrical and magnetic) operate.
The law is fundamental to the study of electromagnetic interactions in terms of �eld concepts. For the
consideration of force(s) on the test charge, the important deduction is that electrical �eld interacts only
with electrical �eld and magnetic �eld interacts only with magnetic �eld. In our context of electromagnetic
force, we can say that electrical force results from interaction of two electrical �elds and magnetic force
results from interaction of two magnetic �elds.

7.1 Lorentz force expression

The law is stated in vector form as :

F = q [E + (vXB)]

We may recognize that Lorentz force is actually vector sum of two forces :

⇒ F = qE + q (vXB)

For convenience, we refer the �rst force as Lorentz electrical force and second force as Lorentz magnetic
force. The Lorentz electrical force is given by �rst part as :

FE = qE

The electrical part of law is actually the relation we have already studied in the context of Coulomb's
law and Electrical �eld. Electrical force on the point charge "q" acts in the direction of electrical �eld (E)
and as such the particle carrying the charge is accelerated in the direction of E. If "m" be the mass of the
particle carrying charge, then acceleration of the particle is :

aE =
FE
m

=
qE
m

Lorentz magnetic force is given by second part as :

FM = q (vXB)

1This content is available online at <http://cnx.org/content/m31327/1.10/>.

91



92 CHAPTER 7. LORENTZ FORCE

Magnetic force on the point charge "q" acts in the direction perpendicular to the plane formed by v and
B vectors. The direction of vector cross product is the direction of magnetic �eld, provided test charge is
positive. The orientation of vector cross product is determined using Right hand thumb rule. If the curl of
right hand follows the direction from vector v to B, then extended thumb points in the direction of vector
cross product.

Direction of vector cross product

Figure 7.1: The direction of vector cross product is given by Right hand thumb rule.

We should understand an important point that direction of magnetic �eld is determined not by the
direction of vector cross product vXB alone, but by the direction of expression "q(vXB)". What it means
that if charge is negative, then direction of force is opposite to that determined by vector cross product
"vXB". The �gure below shows the opposite orientations of vector cross product "vXB" and the magnetic
force.
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Lorentz magnetic force

Figure 7.2: Directions of vector cross product and magnetic force are opposite when charge is negative

The acceleration of the particle is given by :

aM =
FM
m

=
q (vXB)

m

The magnitude of magnetic force is given by :

FM = qvBsinθ

where θ is the smaller angle between v and B vectors. The magnitude of magnetic �eld is maximum
when θ = 90 or 270 and the maximum value of magnetic �eld is qvB. It is also clear from the expression of
magnitude that magnetic force is zero even when magnetic �eld exists for following cases :

1: charge is stationary i.e. v=0
2: when charge is moving in the direction of magnetic �eld or in opposite direction i.e. θ=0 or 180 and

sin θ =0.
Further, if only electrical �eld exists, then only electrical force applies on the point charge and the point

charge is accelerated in the direction of electrical �eld (E). If only magnetic �eld exists, then only magnetic
force applies on the point charge except for the cases mentioned above (when magnetic force is zero) and
the point charge is accelerated in the direction of vector expression q(vXB). If both electrical and magnetic
�eld exist, then charge is subjected to both kinds of force provided conditions for zero magnetic force are
not met. In the last case, acceleration of the point charge is in the direction of resultant force :

a =
F
m

=
q [E + (vXB)]

m
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Example 7.1
Problem : An electron, moving along x-axis in an uniform magnetic �eld B, experiences
maximum magnetic force along z-axis. Find the direction of magnetic �eld.

Solution : Since the particle experiences maximum magnetic force, the angle between velocity
and magnetic �eld vector is right angle. Now, magnetic force in z-direction is also perpendicular to
the magnetic �eld. Hence, magnetic �eld is either in positive or negative y-direction. By applying
Right hand rule of vector cross product, we �nd that it is oriented in positive y-direction if the
charge is positive. But, charge on electron is negative.

Lorentz magnetic force

Figure 7.3: Orientations of direction of vector cross product and magnetic force

Hence, magnetic �eld is oriented along negative y-direction.

7.1.1 Nature of magnetic force

The nature of magnetic force is di�erent to electrical force. First, it is not linear in the sense that it does not
operate in the direction of magnetic �eld. This is unlike electric force which acts in the direction of applied
electric �eld. The magnetic force, as we have seen in the preceding section, acts in the side-way direction
following vector cross product rule. Also, magnetic force is relatively weaker as magnetic �eld is a weaker
�eld in comparison with electric �eld.

The �rst of the two distinguishing characteristics as described above has important implications. Since
magnetic force is perpendicular to the direction of velocity, it can only change the direction of motion �
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not its magnitude. The magnetic force can not change the magnitude of velocity i.e. speed of the charged
particle. In turn, we can say that magnetic force can not bring about a change in the kinetic energy of the
charged particle as speed remains same due to magnetic �eld.

An immediate fall out of the magnetic force is very interesting. This force does no work. We know
work is scalar dot product of force and displacement. Now, velocity is time rate of displacement. It means
velocity and displacement have same direction. Since magnetic force is perpendicular to velocity, it is also
perpendicular to small elemental displacement. What it means that magnetic force is always perpendicular
to displacement. Thus, work done by magnetic force is zero.

Yet another important consequence of the nature of magnetic force is that a charged particle in magnetic
�eld keeps changing direction of motion of the particle all the time. Since direction of velocity is changed
every instant, direction of magnetic force being perpendicular to it is also changed all the time. Note that
direction of magnetic force is automatically adjusted or changed with the motion. If the particle does not
escape out of the magnetic �eld, the implication is that the particle may approximate a circular path. At
any moment � whether particle completes a circular path or not � the magnetic force acts in radial direction
to the motion. On a comparison note, we can see that the electric force is independent of the direction of
motion. It is along electric �eld. It does not change with motion.

Lorentz magnetic force

Figure 7.4: Magnetic force changes direction as direction of motion changes.

We make use of this feature in many important applications like cyclotron to accelerate particle or
entrapping plasma etc. But we should be aware of its role in these applications. The e�ect of Magnetic force
is limited to change in direction only. Change in speed is e�ected by electric �eld.
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7.1.2 Magnitude of magnetic force

The magnetic �eld is a weak �eld and so is the magnetic force. Let us consider an electron moving with
a velocity 3X107 m/s in a magnetic �eld of 5X10−3 T. If velocity and magnetic �eld are perpendicular to
each other, then magnetic force on the electron is :

FM = qvB = 1.6X10−19X3X107X5X10−3 = 2.4X10−14 N

Clearly, magnetic force is really very weak. However, even this weak force is great enough for subatomic
particle like electron. For example, the acceleration of electron due to this magnetic force is :

a =
FM
m

=
2.4X10−14

9.1X10−31 = 2.6X1016 m/s2

Indeed this is an extraordinary acceleration.

7.1.3 Context of Lorentz force law

Lorentz magnetic force law completes the picture on �e�ect side� in the study of electromagnetism. The
�cause side� i.e. generation of magnetic �eld is described by Biot-Savart law. Thus, Lorentz force law
describes the e�ect of electric and magnetic �elds on a test charge � but not the cause of these �elds. This
is a serious limitation because test charge on its own is also the cause of electric and magnetic �elds. These
�elds, in turn, would modify the �elds operating on the test charge.

Also, the electromagnetic force causes acceleration of test charge. An accelerated charge, in turn, radiates.
As such, application of Lorentz force law by itself would not be su�cient to describe motion of test charge. A
charged electron which is expected to describe a circular motion under magnetic �eld without consideration
of radiation would actually spiral down with radiation as shown in the �gure and expected motion might
simply be not there.

Motion of charge under magnetic �eld

Figure 7.5: Motion of charge under magnetic �eld

Recall that this was the reason for which Rutherford's atomic model was eventually rejected and Bohr's
model was accepted. We shall, however, ignore radiation while studying motion of charged particles under
electromagnetic �elds � unless state speci�cally to consider radiation.
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Example 7.2
Problem : A particle carrying a charge 1µC is moving with velocity 3i � 3k in a uniform �eld
-5 k. If units are SI units, then determine the angle between velocity and magnetic �eld vectors.
Also determine the magnetic force.

Solution : The cosine of the enclosed angle is :

cosθ =
v.B
|v||B|

=
(3i− 3k) . (−5k)
| (3i− 3k) || − 5k|

⇒ cosθ =
15

15
√

2
=

1√
2

⇒ θ = 45 ◦

Magnetic force

Figure 7.6: Magnetic force is perpendicular to plane formed by velocity and magnetic �eld vectors.

The velocity and magnetic �eld vectors lie in x-z plane. The magnetic force is :

FM = q (vXB) = 1X10−6 [(3i− 3k)X − 5k]

⇒ FM = 1X10−6X15j = 15X10−6j

Magnetic force is along positive y � direction, which is perpendicular to the x-z plane of velocity
and magnetic �eld vectors.
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7.2 Context of electromagnetic interactions

In the discussion so far, we have assumed existence of electrical and magnetic �elds. Here, we shall consider
about the manner in which electrical and magnetic �elds are set up by a source like charge or current and
then investigate forces being experienced by the test charge. We shall consider three important cases in which
(i) a stationary charge sets up an electrical �eld (ii) a moving charge sets up both electrical and magnetic
�elds and (iii) a current carrying wire sets up magnetic �eld. For each case, we shall discuss two states of
test charge (i) it is stationary and (ii) it is moving. Also, note that we shall be deliberately concentrating on
the forces experienced by the test charge. It is, however, implied that source charge or conductor carrying
current also experiences the same amount of force in accordance with Newton's third law of motion.

7.2.1 Force due to stationary charge

A stationary point source charge changes electrical properties of space around it. This property is quanti�ed
by the electrical �eld E at a particular point. If another point test charge is brought at that point, then it
experiences electrical force, which is given by electrical part of the Lorentz force.

What happens when the test charge is moving also? It still experiences only the electrical force. No
magnetic force is in play. See here that stationary source charge produces only electrical �eld around it. On
the other hand, moving charge brought in its �eld sets up both electric and magnetic �elds. The electric
�eld is set up because moving test charge represents a net charge. But since it is also moving, magnetic �eld
is set up by it in its surrounding in accordance with Biot-Savart Law.

We can easily see that two electrical �elds (one due to stationary source charge and other due to moving
test charge) interact to result in electrical force. However, there is only one magnetic �eld due to moving
test charge without other magnetic �eld to interact with. As such, moving charge experiences only Lorentz
electrical force in the presence of a stationary source charge.

7.2.2 Force due to moving charge

We now consider a moving charge, which acts as the source for setting up the �elds. A moving charge produces
both electrical and magnetic �elds. If we bring another charge in its surrounding, then it experiences only
electrical force. No magnetic force is in play. A stationary test charge only produces electrical �eld. There
is no magnetic �eld to interact with the magnetic �eld produced by the moving source charge.

However, if we introduce moving test charge in the surrounding of source moving charge, then the moving
test charge experiences both electrical and magnetic �elds except for the situation when motion of the charge
is neither parallel or anti-parallel to the magnetic �eld. However, if the motion of test charge is either parallel
or anti-parallel to magnetic �eld produced by moving source charge, then the test charge only experiences
electrical force.

7.2.3 Force due to current in wire

The current in wire sets up magnetic �eld in accordance with Biot-Savart law. Importantly, it does not set
up electric �eld around it. Current through conductor is equivalent to passage of charge. Though, there is
net transfer of electrons across a cross section of wire, but there is no accumulation of charge anywhere. As
such, the wire carrying current is charge neutral even though there is �ow of charge through it.

Now when a test charge is brought at a point in the surrounding of wire, the test charge does not
experience any force. The wire sets up a magnetic �eld whereas charge sets up electrical �eld. These two
di�erent �eld types do not interact and there is no force on the test charge. On the other hand, if test charge
is moving with certain velocity then it sets up electrical as well as magnetic �elds. Two magnetic �elds
interact and as a result, the test charge experiences magnetic force except for the situation when motion of
the charge is either parallel or anti-parallel to the magnetic �eld of the current in wire.
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7.3 Magnetic �eld (B)

Strangely we have discussed and used the concept of magnetic �eld quite frequently, but without even de�ning
it. There are certain di�culties involved here. There is no magnetic monopole like electrical monopole i.e.
point charge. The smallest unit considered to be the source of magnetic �eld is a small current element. The
Biot-Savart law gives relation for magnetic �eld due to a small current element. But, it is not quanti�able.
How much is the �small� magnetic �eld or the �small� current length element?

As a matter of fact, the expression of Lorentz magnetic force provides us a measurable set up which can
be used to de�ne magnetic �eld. We have noted that magnitude of magnetic force is maximum when angle
between velocity and magnetic �eld vectors is right angle.

Fmax = qvB

B =
Fmax

qv

Thus we can de�ne magnetic �eld (B) as a vector whose magnitude is equal to the maximum force
experienced by a charge q divided the product �qv�. The direction of magnetic �eld is given by vector
expression q(vXB). The SI unit of magnetic �eld is Tesla, which is written in abbreviated form as T.
One Tesla (T), therefore, is de�ned as the magnetic �eld under which 1 coulomb test charge moving in
perpendicular direction to it at a velocity 1 m/s experiences a force of 1 Newton.

7.4 Exercise

Exercise 7.1 (Solution on p. 100.)

A proton is projected in positive x-direction with a speed of 3 m/s in a magnetic �eld of (2i+3j)
X 10−6 T . Determine the force experienced by the particle.
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Solutions to Exercises in Chapter 7

Solution to Exercise 7.1 (p. 99)
Here,

v = 3i m/s

B = (2i + 3j)X10−6 T

q = 1.6X10−19 C

The magnetic force is given by :

FM = q (vXB)

⇒ FM = 1.6X10−19
[
3iX (2i + 3j) 10−6

]
⇒ FM = 1.6X10−19X9X10−6k

⇒ FM = 1.44X10−24k Newton



Chapter 8

Motion of a charged particle in magnetic
�eld1

Motion of a charged particle in magnetic �eld is characterized by the change in the direction of motion.
It is expected also as magnetic �eld is capable of only changing direction of motion. In order to keep the
context of study simpli�ed, we assume magnetic �eld to be uniform. This assumption greatly simpli�es the
description and lets us easily visualize the motion of a charged particle in magnetic �eld.

Lorentz magnetic force law is the basic consideration here. Hence, we shall �rst take a look at the Lorentz
magnetic force expression :

F = q (vXB)

We brie�y describe following important points about this expression :
1: There is no magnetic force on a stationary charge (v=0). As such, our study here refers to situations

in which charge is moving with certain velocity in the magnetic �eld. This condition is met when the charge
is released with certian velocity in the magnetic �eld.

2: The magnetic �eld (B) is an uniform stationary magnetic �eld for our consideration in the module.
It means that the magnitude and direction of magnetic �eld do not change during motion. The charged
particle, however, is subjected to magnetic force acting side way. The direction of motion of charged particle,
therefore, changes. In turn, the direction of magnetic force being perpendicular to velocity also changes.
Important point to underline here is that this loop of changing directions of velocity and magnetic force is
continuous. In other words, the directions of both velocity and magnetic force keeps changing continuously
with the progress of motion.

This aspect of continuous change is shown in the �gure below. Note that direction of magnetic �eld is
�xed in y-direction. Initially, the charged particle is at the origin of coordinate reference with a velocity v
in x-direction. Applying right hand rule for vector cross product and considering a point positive charge, we
see that magnetic force is directed in z-direction. As a result, the particle is drawn to move along a curved
path with velocity (having same speed) directed tangential to it. The magnetic force vector also changes
sign being perpendicular to velocity vector. In this manner, we see that the directions of both velocity and
magnetic force keeps changing continuously as pointed out.

1This content is available online at <http://cnx.org/content/m31345/1.9/>.

101



102 CHAPTER 8. MOTION OF A CHARGED PARTICLE IN MAGNETIC FIELD

Motions of a charged particle in magnetic �eld

Figure 8.1: Motions of a charged particle in magnetic �eld

3: The nature of motion depends on the initial directions of both velocity and magnetic �eld. The initial
angle between velocity and magnetic �eld ultimately determines the outcome i.e. nature of motion.

We shall, therefore, discuss motion of charged particular on the basis of the enclosed angle (θ) between
velocity and magnetic �eld vectors. There are following three cases :
• The motion of the charged particle is along the direction of magnetic �eld.
• The motion of the charged particle is perpendicular to the direction of magnetic �eld.
• The motion of the charged particle is neither along nor perpendicular to the direction of magnetic �eld.

8.1 Motion of the charged particle along magnetic �eld

There are two possibilities. The enclosed angle (θ) is either 0 ◦ or 180 ◦. In either case, sine of the angle
is zero. Therefore, magnetic force is zero and the motion of particle remains una�ected (of course here we
assume that there is no other force �eld present).

8.2 Motion of the charged particle perpendicular to magnetic �eld

This is the case in which charged particle experiences maximum magnetic force. It is given by :

F = qBvsin90 ◦ = qvB
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If the span of magnetic �eld is su�cient around the charged particle, then it will describe a circular
path as magnetic force is always perpendicular to the motion. The magnetic force provides the centripetal
force required for circular motion. The span of magnetic �eld around charged particle is important. Here,
we consider some interesting cases as shown in the �gure. For all cases, we assume that motion of charged
particle is in the plane of the drawing and magnetic �eld is perpendicular and into the plane of drawing.
Magnetic �eld is shown by evenly distributed X sign indicating that it is an uniform magnetic �eld directed
into the plane of drawing.

Motions of a charged particle in magnetic �eld

Figure 8.2: Motions of a charged particle in magnetic �eld

In the �rst case, there is su�cient span of magnetic �eld around charged particle and it is able to describe
circular path. In second case, the charged particle enters the region of magnetic �eld and never completes
the circular trajectory. Similarly, the charged particle in third case also does not complete the circular path
as it comes out of the region of magnetic �eld even before completing half circle.

Now, we consider the �rst case in which the charged particle is able to complete circular path. Let the
mass of the particle carrying charge is m. Then, magnetic force is equal to centripetal force,

mv2

R
= qvB

mv

R
= qB

The radius of circular path, R, is given as :

R =
mv

qB

We can easily interpret the e�ects of various parameters in determining the radius of circular path.
Greater charge and magnetic �eld result in smaller radius. On the other hand, greater mass and speed result
in greater radius. Now, the time period of revolution is :

T =
2πR
v

=
2πm
qB
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Frequency of revolution is :

ν =
1
T

=
qB

2πm
Angular speed is :

ω = 2πν =
2πqB
2πm

=
qB

m

Important aspect of these results is that properties related to periodicity of revolutions i.e. time period,
frequency and angular velocity all are independent of the speed of the particle. It is a very important result
which is used in cyclotron (to accelerate charged particle) to synchronize with the frequency of application
of electric �eld. We shall learn about this in another module.

8.2.1 Speci�c charge

The ratio of charge and mass of the particle is known as speci�c charge and is denoted by α. Evidently, its
unit is Coulomb/kg. This quantity is important in describing motion of charged particle in magnetic �eld.
We observe that magnetic force is proportional to charge q, whereas acceleration of the particle carrying
charge is inversely proportional to mass m. Clearly, the e�ects of these two quantities are opposite and hence
they appear as the ratio q/m in most of the formula describing motion. Recasting formulas with speci�c
charge, we have :

R =
v

αB
; T =

2π
αB

; ν =
αB

2π
; ω = αB

8.2.2 Angular deviation

Having known the time period, it is easy to know the angle subtended at the center by the arc of travel
during the motion in a particular time interval. Since time period T corresponds to a angular travel of 2π,
the angular travel or deviation (φ) corresponding to any time travel, t, is :

φ =
2π
T
Xt =

2πqBt
2πm

=
qBt

m

Alternatively,

φ = ωt =
qBt

m

8.2.3 Equations of motion

We consider circular motion of a particle carrying a positive charge q moving in x-direction with velocity v0

in a uniform magnetic �eld B, which is perpendicular and into the plane of drawing. Let xy be the plane of
drawing and -z be the direction of magnetic �eld. Here,

v0 = v0i; B = −Bk

where v0 is the magnitude of velocity. Applying Right hand rule of vector cross product, we see that
magnetic force F is directed in y-direction. These initial orientations are shown in the �gure assuming that
we begin our observation of motion when particle is at the origin.
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Motion of particle carrying charge

Figure 8.3: Motion of particle carrying charge

The magnetic force F provides the necessary centripetal force for the particle to execute circular motion
in xy plane in anticlockwise direction with center of circle lying on y-axis. Let the particle be at a point P
after time t. Expressing velocity vector in components :

v = vxi + vyj

Let the velocity vector makes an angle φ with the x-axis. As the magnitude of velocity does not change
due to magnetic force, we have :

⇒ v = v0cosφi + v0sinφj

Since particle is executing a uniform circular motion with a constant angular speed,

φ = ωt

Substituting this in the expression of velocity,

⇒ v = v0cosωti + v0sinωtj

Again substituting for angular speed,

⇒ v = v0cos
qBt

m
i + v0sin

qBt

m
j



106 CHAPTER 8. MOTION OF A CHARGED PARTICLE IN MAGNETIC FIELD

This is the expression of velocity at any time "t" after the start of motion. Let the displacement vector
of the particle from the origin is r. Then :

r = xi + yj

⇒ r = Rsinφi + (R−Rcosφ) j

Substituting for R and φ,

⇒ r =
mv0
Bq

[
sin

qBt

m
φi +

(
1− cos

qBt

m

)
j
]

8.2.4 Motion of charged particle entering a magnetic �eld

The charged particle entering a magnetic �eld describes an arc which is at most a semicircle. If the span of
magnetic �eld is limited, then there is no further bending of path due to magnetic force. Let us consider a
case in which a particle traveling in the plane of drawing enters a region of magnetic �eld at angle α.

Motion of charged particle entering a magnetic �eld

Figure 8.4: Motion of charged particle entering a magnetic �eld

We should realize here that even though the charged particle enters magnetic region obliquely (i.e at an
angle) in the plane of motion, the directions of velocity and magnetic �eld are still perpendicular to each
other. The particle, in turn, follows a circular path. However, the particle needs to move in the region
behind the boundary YY' in order to complete the circular path. But, there is no magnetic �eld behind the
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boundary. Therefore, the charged particle is unable to complete the circular path. From geometry, it is clear
that point of entry and point of exit are points on the circle which is intersected by the boundary YY'. By
symmetry, the angle that the velocity vector makes with the boundary YY' at the point of entry is same as
the angle that velocity vector makes with the boundary YY' at the point of exit.

By geometry, the angle between pair of lines is same as the angle between the lines perpendicular to
them. Hence,

∠OAD = ∠COD = α

and

⇒ ∠AOC = 2α

The length of arc, AEC is :

l = AEC = 2αR

Substituting for R, we have :

⇒ l =
2αmv
qB

The time of travel in the magnetic �eld is :

⇒ t =
l

v
=

2αm
qB

When charged particle enters magnetic �eld at right angle, velocity vector is perpendicular to the bound-
ary of magnetic �eld. We know that a tangent can be drawn on a circle in this direction only at the points
obtained by the intersection of the circle by the boundary line which divides the circle in two equal sections.
A charged particle can, therefore, travel a semicircular path when it enters into the region magnetic �eld at
right angle, provided of course the span of magnetic is su�cient.
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Motion of charged particle entering a magnetic �eld at right angle

Figure 8.5: Motion of charged particle entering a magnetic �eld at right angle

We should understand that circular arc path as obtained by the analysis above can be subject to avail-
ability of magnetic �eld till the charged particle begins to move backwards. For a smaller extent of the
magnetic �eld, we �nd that the particle emerges out of the magnetic �eld without being further deviated. If
the extent of magnetic �eld is greater than or equal to R, then charged particle describes up to a semicircle
depending on the angle at which it enters magnetic region. However, if the extent of magnetic �eld is less
than R, then particle emerges out of the magnetic �eld without being further deviated.

8.3 Motion of the charged particle oblique to magnetic �eld

This is the general case of motion of a charged particle in magnetic �eld. Here, velocity and magnetic �eld
vectors are at an acute angle θ. In order to study the motion, we resolve the velocity vector such that one
of the components is parallel and other is perpendicular to the magnetic �eld.

v|| = vcosθ

v⊥ = vcosθ

The velocity component perpendicular to the magnetic �eld results in a magnetic force which provides
the necessary centripetal force for the particle to move along a circular path as discussed in previous section.
On the other hand, the velocity component parallel to magnetic �eld results in zero magnetic force and
motion in this direction is una�ected due to this component of velocity. The charged particle moves in this
direction without being accelerated.
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We can visualize superimposition of two motions. The initial conditions of set up are shown in the �gure
in which particle is shown to have velocity v at the origin of coordinate system. The magnetic �eld is
directed in x-direction. The magnetic force (F) due to perpendicular component of velocity and magnetic
�eld is directed in negative z-direction.

Helical motion

Figure 8.6: Motion of charged particle oblique to magnetic �eld

If we ignore the parallel component of velocity, then particle will follow circular path due to perpendicular
component of velocity in y-z plane as shown here :
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Helical motion

Figure 8.7: Motion of charged particle oblique to magnetic �eld

But, there is a component of velocity in x-direction. The charged particle still completes a revolution, but
not in the circular plane because charged particle also moves in the direction perpendicular to the circular
plane. The net result is that the path of revolution is a stretched out series of circles in the form of a helix.



111

Helical motion

Figure 8.8: Motion of charged particle oblique to magnetic �eld

The expression for radius is similar as that for the circular motion under magnetic �eld (earlier case).
The only change is that v is exchanged by v⊥ .

R =
mv⊥
qB

=
mvsinθ
qB

The expressions for time period, frequency and angular velocity etc do not change as these parameters
are independent of velocity.

The distance between two consecutive points in x-direction determines the pitch of the helical path. This
distance in x-direction is traveled by the particle with the parallel component of velocity in the time in which
particle completes a revolution. If T be the time period of revolution, then pitch, p, of the helical path is :

p = v||T = vT cosθ =
2πmvcosθ

qB

Example 8.1
Problem : An electron with a kinetic energy of 10 eV moves into a region of uniform magnetic
�eld of 5X10−4 T. The initial angle between velocity and magnetic �eld vectors is 60 degree.
Determine the pitch of resulting helical motion.

Solution : The expression of pitch of helical path is :

p =
2πmvcosθ

qB
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We notice here that speed is not directly given. However, kinetic energy is given in electron volt
unit. By de�nition, an electron volt is equal to kinetic energy gained by an electron while passing
through a potential di�erence of 1 V. We get kinetic energy in Joule by multiplying electron-volt
value by 1.6X10−19 .

K =
mv2

2
= 10eV = 10X1.6X10−19J = 16X−19J

⇒ v =

√(
2K
m

)
=

√(
2X16X10−19

9.1X10−31

)
=
√(

3.52X1012
)

= 1.88X106 m/s

Putting values in the expression of pitch :

⇒ p =
2πX9.1X10−31X1.88X106X0.5

1.6X10−19X5X10−4

⇒ p = 6.71X10−2 m = 6.71 cm

8.4 Magnetic bottle

In plasma research, one of the main tasks is to contain plasma (ions or charged elementary particles). Plasma
particles can not be restrained in any material con�nement because of extraordinarily high temperature
associated with them. A magnetic bottle is an arrangement of two magnetic sources (solenoids or any other
magnetic source) which produce magnetic �elds. The arrangement is such that direction of magnetic �eld is
from one solenoid to another. The magnetic �eld between two solenoids is non-uniform. It is stronger near
the solenoid and weaker in the middle. See that lines of force are denser near the solenoids and rarer in the
middle.

A charged particle is in the helical motion in this magnetic region. As it moves in stronger magnetic
region near the solenoid, the radius of helical path is smaller. On the other hand, the radius of helical path
is greater in the middle as magnetic �eld is weaker there.

R =
mv

qB
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Magnetic bottle

Figure 8.9: The charged particle is trapped in magnetic �eld

As the particle reaches towards the solenoid i.e. end of the arrangement, it is rebounded because there is a
component of magnetic force pointing towards the central part of the arrangement. See �gure that how force
components point toward middle. This component decelerates the particle till it stops and starts moving
in opposite direction. The stronger magnetic region near the solenoid, therefore, functions as re�ector of
charged particles.

In this manner, plasma particles are con�ned within a region due to suitably designed magnetic �eld.
The whole arrangement works like a bottle for the charged particles and hence is called magnetic bottle.
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Chapter 9

Motion of a charged particle in electric
and magnetic �elds1

Motion of a charged particle in the simultaneous presence of both electric and magnetic �elds has variety of
manifestations ranging from straight line motion to the cycloid and other complex motion. Both electric and
magnetic �elds impart acceleration to the charged particle. But, there is a quali�cation for magnetic �eld
as acceleration due to magnetic �eld relates only to the change of direction of motion. Magnetic force being
always normal to the velocity of the particle tends to move the particle about a circular trajectory. On the
other hand, electric force is along electric �eld and is capable to bring about change in both direction and
magnitude depending upon the initial direction of velocity of the charged particle with respect to electric
�eld. If velocity and electric vectors are at an angle then the particle follows a parabolic path.

One of the important orientations of electric and magnetic �elds is referred as �crossed �elds�. We use
the term �crossed �elds� to mean simultaneous presence of electric and magnetic �elds at right angle. The
behavior of charged particles such as electrons under crossed �elds has important signi�cance in the study of
electromagnetic measurement and application (determination of speci�c charge of electron, cyclotron etc.).

Before we proceed, we should understand that elementary charged particles have mass of the order of
10−28 kg or less. Therefore, even small electric or magnetic force is capable to generate very high acceleration
of the order of 1012 m/s2 or more. Under proper set up, these particles achieve velocity comparable to speed
of light. In order to keep our discussion in the simple classical context, however, we shall con�ne our
discussion limited to the cases which are less complicated and which neglect relativistic e�ects.

Some of the important applications or phenomena associated with simultaneous presence of two �elds
include :

• Motion of a charged particle in electric and magnetic �elds
• Measurement of speci�c charge of an electron (J.J.Thomson experiment)
• Acceleration of charged particles (cyclotron)

In this module, we shall study �rst two of the listed application or phenomena. The third one i.e.
cyclotron will be discussed in a separate module.

9.1 Motion of a charged particle in electric and magnetic �elds

We have already studied motion of charged particle in individual �elds. Here, we shall combine the e�ects
of two �elds. Few of the interesting cases are discussed here.

1This content is available online at <http://cnx.org/content/m31547/1.2/>.
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9.1.1 Charged particle is moving along parallel electric and magnetic �eld

The velocity, electric and magnetic vectors are in in the same direction. Let they are aligned along x-axis.
Since magnetic �eld and velocity vectors are parallel, there is no magnetic force.

FM = v0qBsin0 ◦ = 0

where v0 is initial speed of the particle. The charged particle is, however, acted upon by electric �eld. It
is accelerated or decelerated depending on the polarity of charge and direction of electric �eld. Considering
positive charge, the electric force on the charge is given as :

FE = qE

The acceleration of particle carrying charge in x-direction is :

⇒ ay =
FE
m

=
qE

m

The displacement along x-axis after time �t� is given by :

x = v0t+
1
2
ayt

2

⇒ x = v0t+
qEt2

2m

9.1.2 Charge is moving perpendicular to parallel electric and magnetic �elds

Let electric and magnetic �elds align along y-direction and velocity vector is aligned along positive x-direction.
Let the charge be positive and initial velocity be v0 .In this case, velocity and magnetic �eld vectors are
perpendicular to each other. Applying Right hand vector cross product rule, we determine that magnetic
force is acting in positive z-direction. If electric �eld is not present, then the particle revolves along a circle
in xz plane as shown in the �gure below.
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Motion of a charged particle in magnetic �eld

Figure 9.1: Motion of a charged particle in magnetic �eld

However, electric �eld in y-direction imparts acceleration in that direction. The particle, therefore,
acquires velocity in y-direction and resulting motion is a helical motion. But since particle is accelerated in
y �direction, the linear distance between consecutive circular elements of helix increases. In other words, the
resulting motion is a helical motion with increasing pitch.



118
CHAPTER 9. MOTION OF A CHARGED PARTICLE IN ELECTRIC AND

MAGNETIC FIELDS

Motion of a charged particle in electric and magnetic �elds

Figure 9.2: Resulting motion is a helical motion with increasing pitch.

The radius of each of the circular element and other periodic attributes like time period, frequency and
angular frequency are same as for the case of circular motion of charged particle in perpendicular to magnetic
�eld.

R =
v

αB
; T =

2π
αB

; ν = αB/2π; ω = αB

9.1.2.1 Velocity of the charged particle

The velocity of the particle in xz plane (as also derived in the module Motion of a charged particle in
magnetic �eld (Section 8.2.3: Equations of motion ) ) is :

v = vxi + vzj = v0cosωti + vosinωtk

⇒ v = v0cos (αBt) i + v0sin (αBt) k

where α is speci�c charge. We know that magnetic force does not change the magnitude of velocity. It
follows then that magnitude of velocity is xy plane is a constant given as :

v2
x + v2

z = vxy
2

But, there is electric �eld in y-direction. This imparts linear acceleration to the charged particle. As such,
the particle which was initially having no component in y direction gains velocity with time as electric �eld
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imparts acceleration to the particle in y direction. The velocity components in xz plane, however, remain
same. The acceleration in y-direction due to electric �eld is :

⇒ ay =
FE
m

=
qE

m
= αE

Since initial velocity in y-direction is zero, the velocity after time t is :

⇒ vy = ayt = αEt

The velocity of the particle at a time t, therefore, is given in terms of component velocities as :

v = vxi + vyj + vjk

⇒ v = v0cos (αBt) i + αEtj + v0sin (αBt) k

9.1.2.2 Displacement of the charged particle

Component of displacement of the charged particle in xz plane is given (see module Motion of a charged
particle in magnetic �eld (Section 8.2.3: Equations of motion ) ) as :

Displacement of the charged particle in xz plane

Figure 9.3: Displacement of the charged particle in xz plane

x = Rsin (αBt) =
v0
αB

sin (αBt)
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z = R [1− cos (αBt)] =
v0
αB

[1− cos (αBt)]

The motion in y-direction is due to electric force. Let the displacement in this direction be y after time
t. Then :

y =
1
2
ayt

2 =
1
2
αEt2

The position vector of the particle after time t is :

r = xi + yj + zk

⇒ r =
v0
αB

sin (αBt) i +
1
2
αEt2j +

v0
αB

[1− cos (αBt)] k

9.1.3 Charge is placed at rest in crossed electric and magnetic �elds

Let electric and magnetic �elds are aligned along z and x directions and charge is placed at the origin of
coordinate system. Initially, there is no magnetic force as charge is at rest. However, there is electric force,
which accelerates the charge in z-direction. As the particle acquires velocity in z-direction, the magnetic
force comes into play and tries to rotate the particle in xz plane about a center on x-axis.

Cycloid motion

Figure 9.4: Cycloid motion
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However, z-component of velocity keeps increasing with time due to electric force in that direction. The
magnetic force though draws the charged particle away from z-axis along a curved path. This action of
magnetic force is countered by electric force in z-direction. The velocity of charged particle ultimately
reduces to zero at x-axis. This cycle repeats itself forming cycloid motion. The cycloid path is generated by
a point on the circumference of a rolling wheel. Here, we shall skip the mathematical derivation and limit
ourselves to a descriptive analysis only.

9.2 Determination of speci�c charge of electron (J.J.Thomson's ex-
periment)

The speci�c charge of an electron is ratio of charge and mass of electron. The speci�c charge (α) of electron
is measured employing crossed �elds on a beam of electrons. The beam of electrons emerging from cathode
plate passes through a very narrow slit in anode plate. The electrons are accelerated between cathode and
anode due to applied electrical potential V. The kinetic energy of the electron emerging from the slit is given
by :

1
2
mv2 = eV

⇒ mv2 = 2eV

where v is the velocity of electron moving into the region of force �elds.
Two parallel plates connected to an electric source produce a uniform electric �eld E from positive plate

to negative plate. The electrical force works in the direction opposite to the direction of �eld E as charge
on electron is negative. In the �gure, electric �eld is directed in downward direction. Hence, electric force
acts in upward direction.

On the other hand, the magnetic �eld is produced by a solenoid in a circular region covering the plate as
shown in the �gure. Its direction is chosen such that it applies a force in the opposite direction to that applied
by the electrical �eld. For a magnetic �eld into the plane of drawing as shown by uniformly distributed cross
signs, the magnetic �eld applies a upward magnetic force on a positive charge. However, as the charge on
the electron is negative, the magnetic force acts in downward direction.
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J.J.Thomson's experimental set up

Figure 9.5: Measurement of speci�c charge of electron

The beam of electrons hit the center of �uorescent screen, producing light as electrons collide with it
when electric and magnetic �elds are switched o�. The point on the �uorescent screen is noted. Then, the
electric �eld is switched on which moves the electron beam in upward direction following a parabolic path.
Finally, magnetic �eld is turned and its magnitude is adjusted such that electric and magnetic forces acting
in opposite directions balance each other and the electron is brought to hit original spot as noted earlier for
the �elds in switched o� condition. In this situation:

eE = evB

⇒ v =
E

B

Note that maximum magnetic force applies as velocity and magnetic �eld vectors are perpendicular to
each other. Substituting expression of v in the kinetic energy equation obtained earlier, we have :

mE2

B2
= 2eV

⇒ α =
e

m
=

E2

2V B2

All the quantities on the right hand side of the equation are measurable, allowing us to measure the
speci�c charge of electron. As a matter of fact, the determination of speci�c charge of particles composing
cathode ray by J.J.Thomson is considered to be the discovery of electron. It can also be easily inferred
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that he could determine the nature of charge of an electron by studying direction of deviation (upward or
downward) when only either of the �elds operate. In the derivation above, we measure potential di�erence
applied to accelerate particle between cathode and anode. We should, however, realize that we can determine
speci�c charge measuring some other quantities as well. We can measure the de�ection of electron beam
when either of two �elds operates and use the data to determine speci�c charge of an electron.

Example 9.1
Problem : The d.c. voltage applied to accelerate particle between cathode and anode and the
d.c. voltage applied to the plates to produce electric �eld perpendicular to electrons beam are equal
in the Thomson's experimental set up. If each of the two d.c. voltages as applied are doubled, then
by what factor should the magnetic �eld be changed to keep the electron beam un-de�ected.

Solution : Let V1 , E1 and B1 be the potential di�erence, electric �eld and magnetic �eld for
un-de�ected condition. Then, the speci�c charge is given by :

α =
e

m
=

E2
1

2V1B2
1

Here, the electric �eld can be expressed in terms of potential di�erence provided we know the
separation between plates. Let the separation be d.

E1 =
V1

d

Putting in the equation above, we have :

⇒ α =
V 2

1

2d2V1B2
1

=
V1

2d2B2
1

Let B2 be the new magnetic �eld when two potential di�erences as applied are doubled. Here,

V2 = 2V1

Putting new values in the expression for speci�c charge (note that speci�c charge of electron is
a constant),

α =
2V1

2d2B2
2

Combining two equations,

2V1

2d2B2
2

=
V1

2d2B2
1

⇒ 2V1d
2B2

2 = 4V1d
2B2

1

⇒ B2
2

B2
1

= 2

⇒ B2

B1
=
√

2
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9.2.1 Measurement of de�ection by magnetic �eld

Once the magnetic and electric forces are balanced, electric �eld is switched o� and electron beam is allowed
to be deviated due to magnetic �eld. The magnetic force acts always perpendicular to the direction of
motion. The particle, therefore, moves along a circular path inside the region of magnetic �eld. When
electron moves out of the magnetic �eld, it moves along the straight line and hits the �uorescent screen. If
R be the radius of curvature, then :

mv2

R
= evB

⇒ mv = eRB

Substituting v = E/B as obtained earlier

α =
e

m
=

E

RB2

We measure R using geometry. We see that the angles enclosed between pairs of two perpendicular lines
are equal. Hence,

J.J.Thomson's experimental set up

Figure 9.6: Deviation due to only magnetic �eld

φ =
DG

R
=

OI

FO
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⇒ R =
FOXDG

OI

We approximate DG to be equal to the width of magnetic region.

9.2.2 Measurement of de�ection by electric �eld

In this case, once the magnetic and electric forces are balanced, electric �eld is switched o� and electron
beam is allowed to be deviated due to electric �eld. The electron beam moving into the region of electric
�eld experiences an upward force. The force in upward (y-direction) imparts acceleration in y-direction. The
particle, however, moves with same velocity in x-direction. As a result, path of motion is parabolic. Let the
length of plate be L and y be the de�ection inside the plate. Then, time to travel through the plate is :

J.J.Thomson's experimental set up

Figure 9.7: Deviation due to only electric �eld

t =
L

v

and acceleration of the particle in y-direction is :

ay =
FE
m

=
eE

m

The vertical displacement is :
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y =
1
2
ayt

2

Substituting for time and acceleration, we have :

y =
1
2
X
eE

m
X
L2

v2
=
eEL2

2mv2

Substituting v=E/B as obtained earlier,

y =
eEL2

2m
X

(
B

E

)2

=
αEL2

2
X

(
B

E

)2

⇒ α =
e

m
=

2yE
B2L2

It is clear that measuring GH and HI, we can determine angle φ and then y as required.



Chapter 10

Cyclotron1

High speed charged particles are required for nuclear and atomic investigations. Cyclotron is one of the
devices popularly known as �particle accelerator� to accelerate charged particle to a very high speed. It uses
�crossed� magnetic and electric �elds at right angles to achieve the objective. The chief role of magnetic
�eld is to make the process of acceleration con�ned to a small and manageable region. As far as the change
in speed is concerned, it is a�ected only by the electric �eld. Recall that magnetic �eld can not change
magnitude of velocity i.e. speed.

But we should be careful in extrapolating above facts to obvious conclusions. As a matter of fact, we shall
�nd that magnetic �eld actually a�ects the speed attained by the charged particle indirectly by controlling
number of revolutions in the cyclotron. On the other hand, the speed acquired by the charged particle is
independent of applied voltage. We shall explore all these aspects in detail in this module.

10.1 Acceleration due to electric �eld

Electric force accelerates particle only to change its speed if motion of the charged particle is in the direction
of electric �eld. A potential di�erence V accelerates particle to achieve a speed as given by :

1
2
mv2 = eV

⇒ v =

√(
2eV
m

)
There is, however, di�culty in generating potential di�erence greater than 106 V. For this limiting value,

the speed attained by a proton would be :

⇒ v =
√(

2X1.6X10−19X106/1.66X10−27
)

⇒ v =
√(

1.928X1014
)

= 1.39X107 m/s

This is just 4.63 % of the speed of light and is not good enough. This speed of the particle is thus required
to be subjected to repeated application of electric force. This is done linearly by electric force in what is
known as �linear accelerator�. Else, we use magnetic �eld to bend the path of motion and present the charged
particle repeatedly to electric �eld for acceleration as in cyclotron. We should know that there is relative
size and cost comparison and advantages between linear accelerator and cyclotron. Sometimes though, the
two types of accelerators are used in conjunction where cyclotron functions as the initial accelerator for the
system of particle accelerators.

1This content is available online at <http://cnx.org/content/m31761/1.2/>.
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10.2 Working of cyclotron

10.2.1 The particles accelerated by cyclotron

The accelerators are used for accelerating charged elementary particles or charged ions. It can not accelerate
a neutral particle. Besides, the cyclotron as described generally, is not used for accelerating light mass
particles like electron or positron. The reason is that electron having negligible mass accelerates rather too
quickly for repeated acceleration within the given size of cyclotron. Instead, the light mass charged particles
are accelerated by a device known as �betatron� which uses torus shaped vacuum tube as secondary coil.
The tube is a hollow cylinder shaped in a circle. The varying magnetic �eld, produced by secondary coil,
sets up electric �eld which, in turn, accelerates electron through the tube. On the other hand, the magnetic
�eld due to primary coil, spins the electron and keeps it in the center of the path.

We shall, therefore, refer cyclotron with acceleration of charged particles such as proton, ionized deuteron,
alpha particle and similar other ions.

10.2.2 Construction of cyclotron

It consists of two hollow semicircular Dees so named because of their D-shape. The plane of Dees is the
plane of revolution of charged particle, preferably a plane midway in the Dees. The Dees are constructed
of conducting material like copper in order (i) to function as electrodes for applying alternating electrical
potential using electrical source known as �electrical oscillator� and (ii) to shield moving charged particle
from electric �eld within the Dees. The Dees are kept face to face diametrically opposite at a small distance
known as the �gap�. Electric �eld operates only in the gap to change speed of the charged particle. We
should note that electric �eld does not accelerate charged particle when it is moving along semicircular path
within the Dees as it is shielded from electrical �eld.
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Cyclotron

Figure 10.1: Cyclotron

There is an exit channel at the perimeter of one of Dees which �nally guides the accelerated charged
particle towards a target. The whole set up of Dees is placed between two poles of a powerful magnetic such
that its �eld is perpendicular to the plane of Dees and hence perpendicular to the plane of motion.

This system of Dees is placed in evacuated con�nement so that the charged particle moves unhindered.

10.2.3 Working principle

The charged particle (say a positively charged proton) is released near mid point of the face of one of the
Dees. Being in the electric �eld from one Dee to another, it is accelerated by the electric force in the
direction of electric �eld. As the particle enters the adjoining Dee, the magnetic force, being perpendicular
to it, renders the charged particle to move along a semicircular path within the Dee. By the time, it emerges
again in the narrow gap separating the two Dees, the electrical polarity of Dees changes so that the particle
is again accelerated again with an increase in speed.



130 CHAPTER 10. CYCLOTRON

Working of cyclotron

Figure 10.2: Working of cyclotron

But as the speed of the particle has increased, the radius of curvature of the semicircular path increases
in accordance with the formula :

r =
mv

qB

For given charge, mass and magnetic �eld, the radius is proportional to the speed. Clearly, the charged
particle begins to move in a larger semicircular path after every passage through the gap. By the time
particle reaches the gap successively, electric polarity of Dees keeps changing ensuring that the charged
particle is accelerated with an increase in speed. This process continues till the charged particle reaches the
periphery and exits through the guide with high energy and bombards a given target being investigated.
The description of di�erent segments of the path of accelerated particle is given here :

1: Path is a straight line. Particle is accelerated due to electric force. Speed and kinetic energy of the
particle increase.

2: Path is a semicircular curve. Particle is accelerated due to magnetic force. This acceleration is
centripetal acceleration without any change in speed and kinetic energy of the particle.

3: Path is a straight line. Particle is accelerated due to electric force in the direction opposite to the
direction as in case 1. Speed and kinetic energy of the particle increase by same amount as in the case 1.

4: Path is a semicircular curve of greater radius of curvature due to increased speed. Particle is accelerated
due to magnetic force. This acceleration is centripetal acceleration without any change in speed and kinetic
energy of the particle.

5: Path is a straight line. Particle is accelerated due to electric force in the direction opposite to the
direction as in case 1. Speed and kinetic energy of the particle increase by same amount as in the case 1 or
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3.
We see that the particle follows consecutive larger semicircular path due to increase in the speed at the

end of semicircular journey. The resulting path of charged particle, therefore, is a spiral path � not circular.

10.2.4 Frequency of alternating voltage supply

What should be the frequency at which the electrical oscillator changes sign? As per the account given in the
previous section, the particle is required to be accelerated after completion of every semicircular journey of
charged particle in the Dee. Does it mean that electrical polarity should be changed twice for one revolution
in the magnetic �eld? Answer is no. Though particle is speeded up twice in a cycle, it requires change of
direction of electric �eld only once. One of the directions is the existing direction and other is the reversed
or changed direction. See the �gure. Count the numbers of �change of directions� involved and numbers of
revolutions. There are 7 occasions each when electric �eld has one of two possible directions. On the other
hand, there are 7 revolutions counted from the beginning. Clearly, numbers of changes in directions are equal
to numbers of revolutions. This means that frequency of electric oscillator should be equal to frequency of
revolutions.

Frequency of oscillator

Figure 10.3: Frequency of oscillator

From the perspective of energy also, it is required that energy is added up to the moving charge at its
natural frequency. This is the principle involved in resonance phenomena. We can pump energy to a periodic
or oscillating system by supplying energy in small quantity at the natural frequency of the system. Hence,
frequency of electrical oscillator is :
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ν =
qB

2πm
Note that periodic properties of spiral motion are exactly same as that of circular motion of a charged

particle in magnetic �eld. The frequency at which the charged particle completes spiral revolution is inde-
pendent of the velocity. It is a very important feature of motion of charged particle in magnetic �eld. So
even if the speed of the particle is increased with every passage through the gap, the time taken to reach the
gap consecutively is same. It is the core consideration here allowing us to have a �xed frequency of electrical
oscillator for a given magnetic �eld or conversely allowing us to have a constant magnetic �eld for a given
frequency of electric oscillator. Of course, these constant values are determined keeping in mind the speci�c
charge (charge and mass ratio) and size of the cyclotron.

Example 10.1
Problem : A frequency of an electric oscillator is 10 MHz. What should be the magnitude
of magnetic �eld for accelerating doubly ionized alpha particle? Assume mass of alpha particle 4
times that of proton.

Solution : The frequency of cyclotron is :

ν =
qB

2πm

⇒ B =
2πmν
q

Putting values,

⇒ B =
2X3.14X4X1.66X10−27X10X106

2X1.6X10−19

⇒ B = 1.3.T

10.2.5 Energy of charged particle

The energy of the �nally accelerated particle corresponds to the speed when it travels in the outermost
semicircular path having radius equal to that of Dees.

R =
mvmax
qB

⇒ vmax =
qBR

m

⇒ Kmax =
1
2
mvmax

2 =
q2B2R2

2m

Example 10.2
Problem : Compare the �nal velocities of a proton particle and ionized deuteron when accelerated
by a cyclotron. It is given that radius of cyclotron is 0.3 m and magnetic �eld is 2 T. Assume mass
of deuteron twice that of the proton.

Solution : Let subscripts 1 and 2 correspond to proton and deuteron respectively. Note
that deuteron is an isotope of hydrogen comprising of 1 proton and 1 neutron in the nucleus. The
ionized deuteron thus carries one electronic positive charge same as proton. Now, �nal velocity of
the charged particle accelerated by cyclotron is given as :
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vmax =
qBR

m

Hence,

vmax1
vmax2

=
q1B1R1m2

q2B2R2m1

But R1 = R2 , q1 = q2 , B1 = B2 and m2 = 2m1 . Thus,

⇒ vmax1
vmax2

= 2

10.2.6 Numbers of revolutions

The kinetic energy of the charged particle is increased every time it comes in the gap between the Dees.
The energy is imparted to the charged particle in �lumps�. By design of the equipment of cyclotron, it is
also evident that the amount of energy imparted to the particle is equal at every instance it crosses the gap
between Dees.

Since particle is imparted energy twice in a revolution, the increase in energy corresponding to one
revolution is :

∆E = 2qV

Let there be N completed revolutions. Then total energy,

⇒ E = N∆E = 2qNV

Equating this with the expression obtained earlier for energy, we have :

⇒ 2qNV =
q2B2R2

2m

⇒ N =
q2B2R2

4mqV

10.2.7 Magnetic �eld and energy

From the expression of kinetic energy of the accelerated particle, it is clear that kinetic energy of the
charged particle increases with the magnitude of magnetic �eld � even though magnetic �eld is incapable
to bring about change in speed of the particle being always perpendicular to the motion. It is so because
increasing magnetic �eld reduces the radius of curved motion inside Dees. Therefore, there are greater
numbers of revolutions before reaching to the periphery. See that numbers of completed revolutions are
directly proportional to the square of magnetic �eld.

N =
q2B2R2

4mqV

Greater numbers of revolutions result in greater numbers of times electrons are subjected to electrical
potential di�erence in the gap between Dees. The maximum kinetic energy of the particle is :

Kmax = 2qNV

As such, energy of the emerging particle increases for a given construction of cyclotron when magnetic
�eld increases.
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10.2.8 Potential di�erence and energy

Again, it is clear from the expression of kinetic energy of the accelerated particle that the energy of emerging
particle from the cyclotron is independent of potential applied in the gap. It appears to contradict the fact
that it is the electric force which accelerates the charged particle in the gap. No doubt, the greater potential
di�erence results in greater electric force on the charged particle. This, in turn, results in greater acceleration
of the particle and hence velocity. But then, particle begins to rotate in greater semicircle. This results in
lesser numbers of rotations possible within the �xed extent of Dees. In other words, the greater potential
di�erence results in greater acceleration but lesser numbers of opportunities for acceleration. Now,

N =
q2B2R2

4mqV

and

Kmax = 2qNV

Clearly, the numbers of revolutions is inversely proportional to the potential di�erence applied in the gap.
On the other hand, maximum energy of the particle is directly proportional to the product �NV�. Combining
two facts, we �nd that energy of the particle is indeed independent of the applied voltage in the gap.

10.3 Limitations of cyclotron

We have already noted two limitations of cyclotron as accelerator. One limitation is that it can not accelerate
neutral particle. Second limitation is that lighter elementary particles like electrons or positrons can not be
accelerated and requires important changes or modi�cations of the device. In addition to these, there are
two other important limitations as described here.

10.3.1 Relativistic e�ect

The relativistic e�ect becomes signi�cant enough to be neglected when particle achieve 10 % of the speed
of light. The energy corresponding to this speed for a proton is about 5MeV. Initially, the small relativistic
e�ect is accommodated by an standard cyclotron, but it begins to fail to accelerate charged particle at higher
energy level of 50 MeV or so.

At higher speed, the mass of the particle increases in accordance with following equation :

m =
m0√(
1− v2

c2

)
where mo is rest mass and c is the speed of light in vacuum. The particle becomes heavier at higher

speed. Putting this in the expression of frequency, we have :

⇒ ν =
qB
√(

1− v2

c2

)
2πm0

⇒ ν = ν0

√(
1− v2

c2

)
where ν0 is classical frequency. Clearly, the frequency of revolution decreases with increasing velocity

whereas frequency of applied electrical oscillator is �xed. The particle, therefore, gets out of step with the
alternating electrical �eld. As a result, speed of the particle does not increase beyond a certain value.
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10.3.2 High energy particle

The cyclotron is also limited by the mere requirement of magnet size as radius of Dees increases with
increasing speed of the particle being accelerated. Let us calculate speed corresponding of a 100 GeV
particle in a magnetic �eld of 1 T. The radius of revolution is related to kinetic energy :

Kmax =
q2B2R2

2m

⇒ R =

√(
2mKmax

q2B2

)
The given kinetic energy is :

⇒ Kmax = 100X109 eV = 1011X1.6X10−19 = 1.6X10−8 J

Now, putting values assuming particle to be a proton,

⇒ R =

√√√√(2X1.66X10−27X1.6X10−8(
1.6X10−19

)2
X1

)

⇒ R = 0.144X102 = 14.4m

We can imagine how costly it would be to create magnet of such an extent. For higher energy, the
required radius could be in kilometers.

10.3.3 Synchrocyclotron and Synchrotron

The synchrocyclotron is a device that addresses the limitation due to relativistic e�ect. The frequency of
oscillator is reduced gradually in order to maintain the resonance with the spiral motion of charged particle.
Note that magnetic �eld remains constant as in the case of cyclotron.

In synchrotron as against synchrocyclotron, both magnetic �eld and electric �eld are variable. It aims to
address both the limitations due to relativistic e�ect as well as due to the requirement of large cross section
of magnets. The particle is accelerated along a �xed large circular path inside a torus shaped tunnel. The
magnetic �eld here bends the particle, where as electric �eld changes speed. Clearly, the requirement of a
large cross section of magnet is converted into multiple bending magnets along a large radius �xed circular
path.
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Chapter 11

Ampere's law1

Ampere law supplements Biot-Savart law (Chapter 3) in providing relation between current and magnetic
�eld. Biot-Savart law provides expression of magnetic �eld for a small current element. If we need to
�nd magnetic �eld due to any extended conductor carrying current, then we are required to use techniques
like integration and superposition principle. Ampere law is another law that relates magnetic �eld and
current that produces it. This law provides some elegant and simple derivation of magnetic �eld where
derivation using Biot-Savart law would be a di�cult proposition. This advantage of Ampere law lies with
the geometric symmetry, which is also its disadvantage. If the conductor or circuit lacks symmetry, then
integration involving Ampere's law is di�cult.

Ampere law as modi�ed by Maxwell for displacement current is one of four electromagnetic equations.

11.1 Basis of Ampere law

In order to understand the basis of Ampere law, we investigate here the magnetic �eld produced by a straight
conductor carrying current. The expression of magnetic �eld due to long straight (in�nite) conductor carrying
current as obtained by applying Biot-Savart law (Chapter 3) is :

B =
µ0I

2πR
where R is the perpendicular distance between straight conductor and point of observation. Rearranging,

we have :

⇒ 2πRB = µ0I

If we carefully examine the left hand expression, then we �nd that it is an integral of the scalar product of
magnetic �eld and length element about the perimeter of a circle drawn with center on the straight conductor
and point of observation lying on it. ∫

B.l = µ0I

Now, we evaluate the left hand integral to see whether our observation is correct or not? For the
imaginary circular path, the direction of length element and magnetic �eld are tangential to the circle. The
angle between two vector quantities is zero. Hence, left hand side integral is :∫

B.l =
∫
Blcos0 ◦ =

∫
Bl

1This content is available online at <http://cnx.org/content/m31895/1.8/>.
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Integration along circular path

Figure 11.1: The angle between magnetic and line element vectors is zero.

Since magnitude of magnetic �eld due to current in straight wire are same at all points on the circular
path - being at equal distance from the center, we take magnetic �eld out of the integral,

⇒
∫

B.l = B

∫
l = 2πRB

Substituting in the equation of line integral of magnetic �eld as formulated earlier, we have the same
expression of magnetic �eld for long straight conductor as obtained by applying Biot-Savart law :

B =
µ0I

2πR
It is clear here that the left hand side integration should be carried out over a �closed� path. This closed

path is termed as �closed imaginary line� or �Ampere loop�. Hence, we write the equation as :∮
B.l = µ0I

Note the circle in the middle of integration sign which indicates a closed path of integration. This
formulation is evidently an alternative to Biot-Savart law in the instant case. Now the question is whether
this relation is valid for any �closed imaginary line�? The answer is yes. Though the above equation involving
closed line integral is valid for any closed imaginary path, but only few of these closed paths allow us to
use the equation for determining magnetic �eld. For instance, if we consider a square path around the
straight wire, then we face the problem that points on the path are not equidistant from the wire and as
such magnetic �eld is not same as in the case of a circular path. It is also evident that we need to choose
a loop which passes through the point of observation. After all, we are interested to know magnetic �eld
due to currents at a particular point in a region. See Ampere's law(exercise) : Problem 1 (Section 12.1.2: )
which illustrates this aspect of application of Ampere's law.

Further, considering our ability or constraints for integration around any path, we look for a contour
which passes through points where magnetic �eld is same or where certain simplifying relation between
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magnetic �eld and line element vectors exists. This issue is important as it renders integration derivable.
Clearly, this is where symmetry of object carrying current comes into play.

Thus, symmetry of object carrying current and selection of path for the integration are two impor-
tant requirements for putting Ampere law to use though the law itself is true for all closed path and any
con�guration of conductor.

11.2 Statement of Ampere law

There are few variants of this law. We shall begin with the simplest form. There is one precondition as
well. This law in the form discussed here is true for steady current and is not valid for time varying current.
In the simplest form, it states that the line integral of scalar product of magnetic �eld and length element
vectors along a closed imaginary line is equal to the product of absolute permeability of free space and the
net "free" current through the imaginary closed line. Mathematically,∮

B.l = µ0I

The "free" current represents the current owing to moving electrons or ions. This law is modi�ed by
Maxwell for time dependent varying current using the concept of "displacement" current. We shall brie�y
discuss displacement current and the Maxwell modi�cation in the next section.

The sign of current through the loop is determined by the direction in which line integral is executed. We
curl �ngers of right hand such that it is aligned with the direction of integration along the closed path. The
extended thumb, then, points in the direction of positive current. Alternatively, if the direction of integration
is counterclockwise, then current coming toward the viewer of closed path is positive and the current going
away is negative. The net current through the loop is the algebraic sum of positive and negative currents.
See Ampere's law(exercise) : Problem 2 and 4 (Section 12.1.3: ) for illustrations.
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Sign of current

Figure 11.2: We curl �ngers of right hand such that it is aligned with the direction of integration
along the closed path. The extended thumb, then, points in the direction of positive current.

In the second form of the law, the right hand side of the equation is substituted with a surface integral
as given here : ∮

B.l = µ0

∮
J.S

Here J is current density through surface S. The S is the surface for which imaginary closed line serves
as boundary. Note that we consider surface area element (�S) as a vector. The surface area element vector
is normal to the surface and its orientation across the surface is determined in the same manner as we
determine the sign of the current. We curl �ngers of right hand such that it is aligned with the direction of
integration along the closed path. The extended thumb, then, points in the direction of surface area element
vector. Alternatively, if the direction of integration along the Ampere loop is anticlockwise, then surface area
element vector is directed toward the viewer of closed path and if the direction of integration is clockwise,
then surface area element vector is directed away from the viewer of closed path.
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Direction of surface

Figure 11.3: We curl �ngers of right hand such that it is aligned with the direction of integration
along the closed path. The extended thumb, then, points in the direction of surface area vector.

Since surface area vector is always normal, we may use the concept of normal unit vector n and denote
surface vector as :

S =
^
nS and S =

^
nS

Now, there can be in�nite numbers of surfaces which can be drawn for a given closed boundary line. The
choice of surface is easier to make if the imaginary closed line (loop) is in one plane. The surface in the
same plane is generally chosen in that case. However, if the loop is not in one plane, then there is no simple
choice. It does not matter then. The law is valid for all surfaces which are bounded by the loop.
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Ampere loop and surfaces

Figure 11.4: Surfaces may be drawn in three dimensions with Ampere loop as boundary.

If the consideration of magnetic �eld and current is done in a medium, then we need to substitute �µ0�
by �µ0µr�or �µ� representing permeability of the medium.

11.2.1 Ampere loop and enclosed current

One important consequence of freedom to draw imaginary loop is that it is our choice to keep a current
inside or outside the loop. This appears to be a perplexing situation as we know that magnetic �eld at a
point results due to magnetic �elds due to each current. For illustration, let us consider �ve current carrying
long conductors as shown in the �gure, two of which are into the plane (shown by cross signs) and three are
out of the plane of drawing (shown by �lled circles). Now, we can draw valid Ampere loop in di�erent ways
to determine magnetic �eld at a point P in the plane of drawing as shown in the �gure here.



143

Magnetic �eld at a point

Figure 11.5: The currents are �owing perpendicular to the plane of drawing.

Here, the currents are �owing perpendicular to the plane of drawing. The magnetic �elds due to currents
in long wires are in the plane of drawing as we can check by applying Right hand thumb rule. Since point P
is not equidistant from the length elements of the loops drawn, the actual integration would be very rigorous
and di�cult. We shall, therefore, make only qualitative assertions here which are consistent with Ampere's
law. Further, we also make the simplifying assumptions that current in each wire is �I� and that we carry
out integration in anticlockwise direction in each case. Let the magnetic �eld at point P is B as shown.

For the loop 1, there are two currents out of the page and one into the page. Thus, the net current is �I�
�owing out of the page. For the loop 2, there are two currents out of the page and two into the page. Thus,
the net current is zero. For the loop 3, there is no current at all. Thus, the net current is again zero. Now,
how is it possible that integration of magnetic �elds in three cases yields an unique value of magnetic �eld
at P? The point to understand here is that when we integrate along a path, the sum of vector dot product
�B.dl� for the complete closed path, due to currents lying outside the loop, cancels out. However, it does not
cancel out for the currents inside. This is the reason Ampere's law considers only currents enclosed within
the imaginary boundary.

This fact underlines an important fact that absence of current across Ampere loop does not ensures that
magnetic �eld in a region is zero. We can verify this by using a square loop inside a solenoid. A solenoid, as
we shall study, produces a uniform magnetic �eld within it. Let the magnetic �eld be B as shown. Clearly,
there is no current passing through the enclosure of the square loop as current in solenoid �ows through
the helical coil covering the region under consideration. Let us now carry out the integration in clockwise
direction along ACDEA.



144 CHAPTER 11. AMPERE'S LAW

Magnetic �eld at a point

Figure 11.6: The currents are �owing perpendicular to the plane of drawing.

∮
B.l =

∫
AC

B.l +
∫
CD

B.l +
∫
DE

B.l +
∫
EA

B.l

∮
B.l =

∫
AC

Blcos0 ◦ +
∫
CD

Blcos90 ◦ +
∫
DE

Blcos180 ◦ +
∫
EA

Blcos90 ◦

∮
B.l = Ba+ 0−Ba+ 0 = 0

Clearly, existence of magnetic �eld does not require net current through the loop. For another example,
see Ampere's law(exercise) : Problem 3 (Section 12.1.4: )

11.2.2 Maxwell modi�cation

The basic assertion of Maxwell electromagnetic theory is that changing electric �led sets up magnetic �eld
in the same manner in which a varying magnetic �eld sets up electric �eld as given by Farady's induction
law. The Maxwell equation is complementary to Farady's induction law and is given as :∮

B.l = µ0ε0
φE
t

Note how the time rate of change of electric �eld φE

t is related to magnetic �eld (B) by this equation.
In order to account for this additional cause of magnetic �eld resulting from varying electric �eld, a more
generalized form of Ampere law including the term given by Maxwell is :∮

B.l = µ0I + µ0ε0
φE
t

Of course for situation involving only steady current, the form of Ampere's law is reduced to its original
form.
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The presence of magnetic �eld between capacitor plates during charging of a capacitor con�rms Maxwell
law. As the charge builds up on the capacitor plate, there is varying electric �eld in the gap between plates.
This varying electric �eld, in turn, sets up magnetic �eld. We can, therefore, suggest that the varying electric
�eld is equivalent to a current. After all, a current also produces magnetic �eld. But we know there is no
actual current between two plates. Hence, this equivalent current is a sort of pseudo current and is known
as "displacement" current, which when present would have produced the same magnetic �eld in the gap as
actually produced by the varying electric �eld.

We should understand that this assertion about displacement current or setting up of magnetic �eld due
to varying electric �eld is an important step in explaining electromagnetic propagation. In a nutshell, it says
that the presence or propagation of magnetic or electric �eld do not require either a charge or a current.
That is exactly what we see with the propagation of electromagnetic �eld which is known to be composed
of time varying electric and magnetic components. The changing electric �eld sets up magnetic �eld and
changing magnetic �eld sets up electric �eld in a complementary manner. This is how electromagnetic �eld
is continuously driven to propagate electromagnetic wave without presence of either charge or current. In
other words, the two varying �elds drive each other without the conventional source like charge or current.

11.3 Application of Ampere's law

Ampere's law is a powerful tool for calculating magnetic �eld for certain geometric forms of conductors
carrying current. It was, however, pointed out that this law may be limited as well for many other situations
where left hand side integral can not be evaluated easily. Though there are no speci�c rules for selecting
a closed Ampere loop, but there are certain guidelines which can be helpful in applying this law. These
guidelines are :

• Draw closed loop such that the point of observation lies on the loop.
• If required, draw closed loop such that magnetic �eld is constant along the path of integration.
• If required, draw closed loop such that magnetic �eld and line vectors are along the same direction or

are perpendicular to each other.
• If required, draw closed loop such that there is no magnetic �eld. This may appear bizarre but we draw

such segment of Ampere loop as in the case of solenoid (we shall see this consideration subsequently
in this module).

• If required, draw closed loop as a combination of segments (like a rectangular path with four arms) in
a manner which takes advantages of the situations enumerated at 2, 3 and 4.

11.3.1 Magnetic �eld due to a long cylindrical conductor

We consider three points of observation (i) A, inside the conductor (ii) C, just outside the conductor and
(iii) D, outside conductor for applying Ampere's law. One important consideration here is that magnetic
�eld due to in�nite conductor is independent of the elevations of observation points with respect to the
straight cylindrical conductor. The magnetic �eld only depends on the perpendicular linear distance (r) of
the observation point from the axis of cylindrical conductor. This situation is approximately valid for long
conductor as well. If the conductor is not long enough then also we can meet the requirement of independence
for observation points at those points, which are close to the conductor and the ones which are not near the
ends of the conductor.

In order to apply Ampere's law, we consider three imaginary circles containing these points separately
with their centers lying on the axis of cylinder such that their planes are at right angles to the cylinder. Let
the current through the conductor is I. We note here that current in the conductor is con�ned only to the
surface of cylinder of radius R.
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Magnetic �eld due to current in cylindrical conductor

Figure 11.7: The currents are �owing perpendicular to the plane of drawing.

For the point A inside the conductor, the current inside the loop is zero.∮
B.l = µ0I = 0

⇒ BX2πr1 = 0

⇒ B = 0

Note that absence of current here is used to deduce that magnetic �eld is also absent. We can do this
with the circular symmetry having constant magnetic �eld along the path as circle is a continuous curve
without any possibility that integral values in di�erent segments of imaginary loop cancel out along the
circular path. Thus, if I = 0, then B=0.

Now, for the point B just outside the conductor, the current inside the loop is I.∮
B.l = µ0I

⇒ BX2πR = I

B =
µ0I

2πR



147

For the point C outside the conductor, the current inside the loop is I.∮
B.l = µ0I

⇒ BX2πr2 = I

B =
µ0I

2πr2

11.3.2 Magnetic �eld due to a long cylindrical conductor with uniform current
density

In this case, current is distributed across the cross section uniformly. In order to apply Ampere's law, we
consider three imaginary circles containing these points separately with their centers lying on the axis of
cylinder such that their planes are at right angles to the cylinder. Let the total current through the conductor
is I.

Magnetic �eld due to a long cylindrical conductor with uniform current density

Figure 11.8: The currents are �owing perpendicular to the plane of drawing.

For the point A inside the conductor, the current inside the loop is not zero. Since current is distributed
over the cross section area uniformly, the current through the loop area is proportionately smaller and is
given by :
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I′ = πr21I

πR2
=
r21I

R2

Now, ∮
B.l = µ0I′

⇒ BX2πr1 =
µ0r

2
1I

R2

⇒ B =
µ0r1I

2πR2

For the point B just outside the conductor, the current inside the loop is I.∮
B.l = µ0I

⇒ BX2πR = I

⇒ B =
µ0I

2πR
For the point C outside the conductor, the current inside the loop is I.∮

B.l = µ0I

⇒ BX2πr2 = I

⇒ B =
µ0I

2πr2

Example 11.1
Problem : The current density varies within a long cylindrical wire of radius �R� as J=kr where
�r� is linear distance from the center in the perpendicular cross section of wire. Find the magnetic
�eld at a distance r= R/2 and at a point outside the wire.

Solution : In order to �nd the current within the conductor, we consider an annular ring of
in�nitesimally small thickness �dr�. The current through the small cross section of annular ring is :
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Magnetic �eld due to a long cylindrical conductor with non-uniform current density

Figure 11.9: The currents are �owing perpendicular to the plane of drawing.

I = JA = JX2πrr = krX2πrr = 2πkr2r

Integrating between r = 0 and r =R/2, the current inside the circular loop of radius R/2 is,

I =
∫ R/2

0

2πkr2r

⇒ I = 2πk
[
r3

3

]R/2
0

⇒ I = 2πk
[
R3

24

]
=
πkR3

12
Applying Ampere's law about a loop of radius R/2,∮

B.l = µ0I

⇒ BX
2πR

2
=
µ0πkR

3

12

⇒ B =
µ0kR

2

12
For additional examples, see Ampere's law(exercise) : Problem 5,6,7 and 9 (Section 12.1.6: )
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11.3.3 Solenoid

A solenoid is a tightly wound helical coil. It works as a magnet when current is passed through the coil. We
may treat a solenoid as the aggregation of large numbers of circular current aligned about a common axis. It
tends to reinforce magnetic �eld due to each of the circular coil, resulting into a device to produce magnetic
�eld. An ideal solenoid has in�nite length. A long coil approximates an ideal solenoid. The consideration
here is valid for even short solenoid for points which are well inside the coil.

Solenoid

Figure 11.10: A solenoid is a tightly wound helical coil.

11.3.3.1 Nature of magnetic �eld

The current in left end coil is clockwise and serves as south end of solenoid i.e. end through which magnetic
�eld enters the solenoid. On the other hand, the current in the right end coil is anticlockwise and serves as
north end of solenoid i.e. end through which magnetic �eld exits the solenoid. The magnetic �elds between
two adjacent coils at the periphery (edge) cancel each other. The magnetic �eld outside solenoid is nearly
zero or comparatively much weaker to be considered to be zero. The �eld inside the solenoid is uniform.
The magnetic �eld at the ends of solenoid, however, spreads out. The nature of magnetic �eld of a solenoid
is similar to magnetic �eld due to a bar magnet.
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Magnetic �eld due to a solenoid

Figure 11.11: A solenoid is a tightly wound helical coil.

11.3.3.2 Magnitude of magnetic �eld

We draw a rectangular Ampere loop ACDEA as shown in the �gure. The directions of currents at the edges
are shown by �lled circle for currents coming out of the plane of drawing and by cross for currents going into
the plane of drawing. We carry out the integration in anticlockwise direction such that currents coming out
of the plane of drawing are considered positive.
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Magnetic �eld due to a solenoid

Figure 11.12: A solenoid is a tightly wound helical coil.

Applying Ampere's law, ∮
B.l =

∫
AC

B.l +
∫
CD

B.l +
∫
DE

B.l +
∫
EA

B.l

We see that magnetic �led is either perpendicular or there is no magnetic �eld in transverse directions
from C to D and from E to A. For these conditions, the integral along these paths are zero. Further, the
line segment DE falls in the region where magnetic �eld is zero. Thus, all three integrals except the �rst on
the right hand side are equal to zero. ∮

B.l =
∫
AC

Bdlcos0 ◦ = Ba

The total current through the loop is numbers of times the wire crosses the plane of drawing. If �n� be
the numbers of turns per unit length, then total current is �na�. Hence,

⇒ Ba = µ0naI

⇒ B = µ0nI

The magnetic �eld is proportional to the current and numbers of turns per unit length of solenoid.
Importantly, it does not depend on the radius of coil.

For illustration, see Ampere's law(exercise) : Problem 8 (Section 12.1.9: ).
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11.3.4 Toroid

A toroid is solenoid bent along a circular path in the shape of a doughnut. By symmetry, the magnetic �eld
is circular inside the toroid and is zero outside it. It is also constant on a circular loop of radius �r� drawn
inside the toroid being equidistant from the center of doughnut. The total current passing through Ampere
loop is NI where N is the total numbers of turns. Applying Ampere's law, we have :

Magnetic �eld due to a toroid

Figure 11.13: A toroid is solenoid bent along a circular path in the shape of a doughnut.

∮
B.l = µ0NI

The magnetic �eld and line element vectors are in the same direction. Hence,

⇒ BX2πr = µ0NI

⇒ B =
µ0NI

2πr
It is important to observe that magnetic �eld inside the toroid is not constant across the cross-section.

It is inversely proportional to �r�. It depends upon the linear distance as we move from the interior side to
exterior side. We may also write this expression in terms of numbers of turns per unit length as :

n =
N

2πr
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and

⇒ B = µ0nI

But this form is not advisable as it conceals the non-uniform nature of magnetic �eld inside the toroid. It
is easy to �nd the direction of magnetic �eld. We orient the �ngers of right hand in the direction of current
along the turn of coil. Then, the extended thumb gives the direction of magnetic �eld.
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Ampere's law (Exercise)1

12.1 Worked out exercises

12.1.1

Problem 1: Two wires each carrying current I are perpendicular to xy plane. The current in one of them
is into the plane denoted by a cross sign and the current in the other wire is out of the plane denoted by a
�lled circle. If the linear distance between the positions of two wires is �2a�, then �nd the net magnetic �eld
at a distance �b� on the perpendicular bisector of the line joining the positions of two wires.

1This content is available online at <http://cnx.org/content/m31927/1.3/>.
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Magnetic �eld at perpendicular bisector

Figure 12.1: Magnetic �eld at perpendicular bisector

Solution : The magnitudes of magnetic �elds due to wires at A and B are equal. Applying Ampere's
law, the magnetic �eld due to each wire is :

B =
µ0I

2πr
The magnetic �elds are directed tangential to the circle drawn containing point �P� with centers �A� and

�B� as shown in the �gure. Each magnetic �eld makes an angle say �θ� with the bisector. The components in
y-direction cancel out, whereas x-components add up. Clearly, the net magnetic �eld is directed in negative
x � direction. The magnitude of net magnetic �eld is :
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Magnetic �eld at perpendicular bisector

Figure 12.2: Magnetic �eld at perpendicular bisector

⇒ B = 2X
µ0Icosθ

2πr
=
µ0Icosθ
πr

Now,

cosθ =
a

r
=

a√
(a2 + b2)

and

r =
√

(a2 + b2)

Putting these expressions in the equation for the magnetic �eld at �P�, we have :

⇒ B =
µ0Icosθ
πr

=
µ0Ia

π
√

(a2 + b2)
√

(a2 + b2)

⇒ B =
µ0Ia

π (a2 + b2)
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12.1.2

Problem 2: Five straight wires, carrying current I, are perpendicular to the plane of drawing. Four of
them are situated at the corners and �fth wire is situated at the center of a square of side "a". Two of the
wires at the corners are �owing into the plane whereas the remaining three are �owing out of the plane.
Find the net magnetic �eld at the center of square.

Five straight wires, carrying current I

Figure 12.3: Five straight wires, carrying current I

Solution : According to Ampere's law (Section 11.1: Basis of Ampere law ), the magnetic �eld due to
a straight wire carrying current "I" at a perpendicular distance "r" is given as :

B =
µ0I

2πR
The wires at the corners carry equal currents and the center "O" is equidistant from these wires. Thus,

magnetic �elds due to these four wires have equal magnitude. In order to �nd the directions of magnetic
�elds, we draw circles containing point of observation "O". The direction of magnetic �eld is tangential to
the circle. Applying Right hand thumb rule for straight wire, we determine the orientation of magnetic �eld
as shown in the �gure. Clearly, the net magnetic �eld due to these four wires at the center is zero.
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Directions of magnetic �elds

Figure 12.4: Directions of magnetic �elds

Now, magnetic �eld at a point on the wire itself is zero. Thus, magnetic �elds due to all the �ve wires at
the center "O" is zero.

It is interesting to note that if straight wires with currents are arranged di�erently, for example, two
currents out of the plane at A and C respectively and the other two currents into the plane at D and E
respectively are arranged, then magnetic �elds do not cancel and there is net non-zero magnetic �eld at "O"
due to currents in four wires.
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12.1.3

Problem 3: There are �ve long wires perpendicular to the plane of drawing, each carrying current I as
shown by �lled circles (out of plane) and crosses (into the plane) in the �gure below. Determine closed line
integrals

∮
B.dl for each of the four contours in the direction of integration shown.

Currents and Ampere's loops

Figure 12.5: Currents and Ampere's loops

Solution :
According to Ampere's law (Section 11.2: Statement of Ampere law ), the closed line integral is related

to enclosed current as : ∮
B.l = µ0I

For loop 1, the integration direction is anticlockwise. The current out of the page is positive and current
into the page is negative. There are one in and one out current here. The net current is zero. Hence,

⇒
∮

B.l = 0

For loop 2, the integration direction is clockwise. The current out of the page is negative and current
into the page is positive. There are one in and two out current here. The net current is one out current i.e.
�-I�. Hence, ∮

B.l = −µ0I

For loop 3, the integration direction is clockwise. The current out of the page is negative and current
into the page is positive. There are one in and one out current here. The net current is zero. Hence,
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∮
B.dl = 0

For loop 4, the integration direction is clockwise. The current out of the page is negative and current
into the page is positive. There are three in and two out current here. The net current is one in current i.e.
�I�. Hence, ∮

B.l = µ0I

12.1.4

Problem 4: The magnetic �eld in a region is given by relation :

B = 5
^
l

Closed line integral of magnetic �eld

Figure 12.6: Closed line integral of magnetic �eld

where i is the unit vector in x direction. Determine closed line integral of magnetic �eld along the triangle
ACD.

Solution :
For line segment AC, magnetic �eld and length element are in the same direction. Applying Ampere's

law : ∫
AC

B.l =
∫
AC

5xcos0 ◦ =
∫
AC

5x
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⇒
∫
AC

B.l = 5
∫
AC

x = 5X8 = 40 Tm

We see that magnetic �eld is perpendicular to line segment CD. Therefore, magnetic line integral for this
segment is equal to zero.

For the line segment DA, the length is
√

(82 + 62) = 10 m.

Closed line integral of magnetic �eld

Figure 12.7: Closed line integral of magnetic �eld

∫
DA

B.l =
∫
DA

5xcos∠AEF = 5
∫
DA

xcos (π − ∠DEF ) = −5
∫
DA

xcos∠DEF

⇒
∫
DA

B.l = −5
∫
DA

xcos∠DAC = −5
∫
DA

AC

AD
x = −5

∫
DA

8
10
x

⇒
∫
DA

B.l == −4
∫
DA

x = −4XDA = −40 Tm

Adding two values, the value of closed line integral is zero.∮
B.l = 0

Thus, we see that current though the region is zero even though there exists magnetic �eld in the region.

12.1.5

Problem 5: Straight wires are mounted tightly over a long hollow cylinder of radius "R" such that they
are parallel to the axis of cylinder. The perpendicular cross-section of the arrangement is shown in the �gure
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below. If there are N such wires each carrying a current I, then determine magnetic �eld inside and outside
the cylinder.

Magnetic �eld due to current in tightly packed straight wires

Figure 12.8: Magnetic �eld due to current in tightly packed straight wires

Solution : We draw an Ampere loop of radius "r" for applying Ampere's law (Section 11.2: Statement
of Ampere law ) at a point inside the cylinder. But there is no current inside. Hence,
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Magnetic �eld due to current in tightly packed straight wires

Figure 12.9: Magnetic �eld due to current in tightly packed straight wires

∮
B.l = 0

Here integration of dl along the loop is equal to perimeter of loop i.e. 2πr. Hence, B = 0. For determining
magnetic �eld at an outside point, we draw an Ampere loop of radius "r". Here, the total current is NI.
Hence, ∮

B.l = µ0NI

⇒ 2πrB = µ0NI

⇒ B =
µ0NI

2πr

12.1.6

Problem 6: A cylindrical conductor of radius R carries current I distributed uniformly across the cross-
section. Draw the curve showing variation of magnetic �eld as we move away from the axis of conductor in
perpendicular direction.

Solution : Let the perpendicular direction to the axis be x-axis. The magnetic �eld at a point inside
the conductor is given by :
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B =
µ0Ix

2πR2

Clearly, magnetic �eld increases linearly as move away from the axis towards the edge of conductor and
attains the maximum at the surface, when x=R and magnetic �eld is given as:

B =
µ0IR

2πR2
=

µ0I

2πR
The magnetic �eld at a point outside the conductor is :

B =
µ0I

2πx
The magnetic �eld is inversely proportional to the linear distance �x�. The required plot of magnetic �eld

.vs. x is as shown in the �gure below :

Variation of magnetic �eld

Figure 12.10: Variation of magnetic �eld

12.1.7

Problem 7: A long annular cylindrical conductor of radii �a� and �b� carries current I. The perpendicular
cross section of annular cylinder is shown in the �gure below. If the current distribution in the annular
region is uniform, determine magnetic �eld at a point in the annular region at a radial distance �r� from the
axis.
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Magnetic �eld due to current in annular cylindrical conductor

Figure 12.11: Magnetic �eld due to current in annular cylindrical conductor

Solution : According to Ampere's law (Section 3.2: Experimental veri�cation of Biot-Savart's law ),∮
B.l = µ0I

In order to evaluate this equation, we need to know the current in the annular region from r=a to r=r.
For this we need the value of current density. Here, total current is given. Dividing this by the total area of
the region gives us the current density,

J =
I

π (b2 − a2)

The net current through the Ampere loop of radius �r� falling in the annular region is given by multiplying
current density with the annular area between r=a and r=r. Applying Ampere's law for a loop of radius r,
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Magnetic �eld due to current in annular cylindrical conductor

Figure 12.12: Magnetic �eld due to current in annular cylindrical conductor

∮
B.l = µ0π

(
r2 − a2

)
J =

µ0π
(
r2 − a2

)
I

π (b2 − a2)

⇒ 2πrB =
µ0I

(
r2 − a2

)
(b2 − a2)

⇒ B =
µ0I

(
r2 − a2

)
2πr (b2 − a2)

; a < r < b

12.1.8

Problem 8: A long annular cylindrical conductor of radii �a� and �b� carries a current. If the current
distribution in the annular region is given as J = kr, where k is a constant, then determine magnetic �eld at
a point in the annular region at a radial distance �r� from the axis.

Solution : This question is similar to earlier question with one di�erence that areal current density
is not uniform. We see here that the current distribution in the annular region is given as J=kr. Clearly,
current density increases as we move from inner edge to the outer edge of the annular cylinder. The current
in the small strip �r is :

I = 2πrrJ = 2πrrkr = 2πkr2r



168 CHAPTER 12. AMPERE'S LAW (EXERCISE)

Magnetic �eld due to current in annular cylindrical conductor

Figure 12.13: Magnetic �eld due to current in annular cylindrical conductor

Applying Ampere's law for a loop of radius r and considering that current is distributed from r=a to r=r,

∮
B.dl = µ0

∮
dI = µ0

r∫
a

2πkr2dr = 2πµ0k

r∫
a

r2dr

⇒ 2πrB = 2πµ0k

[
r3

3

]r
a

=
2πµ0k

(
r3 − a3

)
3

⇒ B =
µ0k

(
r3 − a3

)
3r

; a < r < b

12.1.9

Problem 9: A long solenoid having 1000 turns per meter carries a current of 1 A. A long straight conductor
of radius 0.5 cm and carrying a current of 10π A is placed coaxially along the axis of solenoid. Compare
magnetic �elds due to two currents at that point. Also determine magnetic �eld at a point on the surface of
straight conductor.

Solution : The magnetic �eld due to solenoid is uniform inside the solenoid and is given as :

BS = µ0nI = 4πX10−7X1000X1 = 4πX10−4 T

The magnetic �eld due to straight conductor on its surface is :

BC =
µ0I

2πR
=

4πX10−7X10π
2πX0.5X10−2 = 4πX10−4 T
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Magnetic �eld due solenoid and straight conductor

Figure 12.14: Magnetic �eld due solenoid and straight conductor

The magnetic �eld due to straight conductor is tangential to the circumference and hence is perpendicular
to magnetic �eld due to solenoid. The resultant magnetic �eld is, therefore,

B =
√(

2X16π2X10−8
)

=
√

2X4πX10−4 = 1.778X10−3 T

Both solenoid and straight conductor produces equal magnetic �eld at the surface of conductor. It is
interesting to observe that a straight conductor requires a current of magnitude which is 10π i.e. 31.4 times
the current in solenoid. This illustrates the e�ectiveness of solenoid over a straight conductor in setting up
a magnetic �eld with respect to straight conductor. For this reason, a solenoid is generally used as a magnet
in application situations.

12.1.10

Problem 10: A long cylindrical conductor of radii �a� is coaxially placed inside an annular cylindrical
conductor of radii �b� and �c�. The perpendicular cross section of the coaxial annular cylinders is shown in
the �gure below. If currents in two conductors are I each but in opposite direction, then �nd magnetic �eld
at a point (i) inside the inner conductor (ii) region between two cylinders (iii) inside annular cylinder and
(iv) outside the annular cylinder. Assume current density to be uniform in both cylinders.
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Magnetic �eld due to current in coaxial cylindrical conductors

Figure 12.15: Magnetic �eld due to current in coaxial cylindrical conductors

Solution : We note that current densities in two cylinders are uniform. To �nd magnetic �eld at a
point inside the inner cylinder, we �rst determine its current density.

Ji =
I

πa2

Note that current outside the Ampere loop in the inner cylinder and current in the outer conductor
do not contribute towards enclosed current. Applying Ampere's law for a loop of radius r inside the inner
cylinder, ∮

B.l = µ0πr
2J =

µ0πr
2I

πa2
=
µ0Ir

2

a2

⇒ 2πrB =
µ0Ir

2

a2

⇒ B =
µ0Ir

2

2πra2
; r < a

To �nd magnetic �eld at a point between inner and outer cylinders, we apply Ampere's law for a loop
of radius r between the region (a<r<b). Note that outer conductor does not contribute towards enclosed
current. Applying Ampere's law (Section 11.2: Statement of Ampere law ) for a loop of radius r between
inner and outer cylinders, ∮

B.l = µ0I

⇒ 2πrB = µ0I
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⇒ B =
µ0I

2πr
To �nd magnetic �eld at a point inside the outer cylinder, we apply Ampere's law for a loop of radius r

between the region (b<r<c). Note that current in the inner conductor and annular region de�ned by b<r<c
contribute towards enclosed current. In order to �nd the enclosed current in the outer cylinder, we �rst
determine its current density.

Jo =
I

π (c2 − b2)

Further the current in inner and outer cylinders are opposite in direction. We observe here that current
density of inner cylinder is greater as current I is divided by smaller area. Thus, we shall deduct the current
through the annular region of outer cylinder from the current in inner cylinder. Applying Ampere's law for
a loop of radius r inside the outer cylinder,∮

B.l = µ0I − µ0X
π
(
r2 − b2

)
XI

π (c2 − b2)
= µ0

[
I −

(
r2 − b2

)
XI

(c2 − b2)

]

⇒ 2πrB =
µ0I

(
c2 − b2 − r2 + b2

)
(c2 − b2)

=
µ0I

(
c2 − r2

)
(c2 − b2)

⇒ B =
µ0I

(
c2 − r2

)
2πr (c2 − b2)

To �nd magnetic �eld at a point outside the outer cylinder, we apply Ampere's law for a loop of radius
r (r>c). The net current the loop is zero. Hence,∮

B.l = 0

⇒ 2πrB = 0

⇒ B = 0
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Chapter 13

Magnetic force on a conductor1

We have seen that a moving charge experiences force in the presence of magnetic �eld. Now, current in a
wire or a conductor results from the motion of negatively charged �free� or �conduction� electrons. It is,
therefore, imperative that these moving electrons will experience �magnetic force� due to the presence of
magnetic �eld.

When a straight conductor carrying current is placed in a magnetic �eld, then conduction electrons in the
conductor are under the in�uence of both electric and magnetic �elds. The presence of electric �eld results
in �net drift of charge (electrons)� in the conductor and it is the cause of current in the conductor. The
presence of magnetic �eld, on the other hand, results in side way force on individual electrons (perpendicular
to the conductor) resulting in the development of electrical potential across the width of the conductor or
a force on the conductor itself depending on whether we are considering current through a wide conductor
strip or a thin wire.

The di�erence in the e�ect of applications of two �eld types lies in the di�erence of nature of force they
apply. Electrical force is linear force i.e. in the direction of electric �eld and is responsible for current in
conductor. Magnetic force is non-linear side way force perpendicular to the direction of velocity of moving
charge. The magnetic force acts to de�ect electrons to the edge of a conductor. If we are considering a wide
strip of conductor, then there is scope for electrons to move laterally across the width of the strip. In this
case, we observe development of electrical potential di�erence between the edges of the conductor (known
as Hall's e�ect). However, if we are considering current through a thin wire, electrons have no scope for
transverse motion and they are also not allowed to move out of the body of wire due to electric attractive
force. The side way magnetic force, therefore, results in a transverse magnetic force on the wire itself.

1This content is available online at <http://cnx.org/content/m32246/1.3/>.
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Magnetic force and its e�ect

Figure 13.1: Magnetic force and its e�ect

The conductor can have any orientation with respect to magnetic �eld. Irrespective of the orientations
of conductor and magnetic �eld, the magnetic force is always perpendicular to both conductor length and
magnetic �eld vectors. This fact simpli�es our investigation a great deal as we need to consider only transverse
magnetic force which is always perpendicular to the direction of current or the conductor length vector. This
aspect is illustrated in the �gure below in which conductor length vector (in the direction of current) and
the magnetic �eld vector are oriented at an arbitrary angle �θ�, but magnetic force is perpendicular to the
conductor.
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Direction of Magnetic force

Figure 13.2: Direction of Magnetic force

13.1 Hall's e�ect

Here, we consider a wide strip of a conductor of width �a� and thickness �b�, which is carrying a current �I�.
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Wide strip of a conductor

Figure 13.3: Wide strip of a conductor

Let the direction of conventional current be from right to left so that charge carrier electrons are moving
from left to right. Also, let magnetic �eld be directed in to the plane of drawing. The direction of magnetic
force is direction of vector expression � −e (vdXB) �. Applying Right hand thumb rule, the direction of
vector cross product �vdXB � is upward direction. Hence, the direction of magnetic force i.e. direction of
vector �−e (vdXB) � is downward as shown in the �gure.
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Direction of magnetic force

Figure 13.4: Direction of magnetic force

The magnetic force in the downward direction tends to drift electron in downward direction following a
parabolic path. This drifting polarizes the conductor strip electrically. We know that each in�nitesimally
small element of the conductor is electrically neutral. But, there is accumulation of negative charge at
lower edge as electrons drift down due to magnetic force. Correspondingly, there is accumulation of positive
charge at the upper edge as there is depletion of electrons exposing immobile positive atoms in that region.
The process of polarization, however, continues only momentarily. At any moment, the opposite polarity of
charges at the edges sets up an electric �eld. In this case, the electric �eld is directed from upper (positive
edge) to lower edge (negative edge). This electric �eld, in turn, pulls electron upward.
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Polarization of charges and electric �eld

Figure 13.5: Polarization of charges and electric �eld

The dynamic condition is brought under equilibrium when electric force equals magnetic force. Let �E�
be the electric �eld at equilibrium,

eE = evdB

⇒ vd =
E

B

where vd is the drift velocity. Once the equilibrium is reached, electrons keep moving with the drift velocity
as they would have moved in the absence of magnetic �eld. Here, the opposite edges of the conductor strip
function as in�nite charged plates. The electric �eld, E, is given as :

E =
V

a

where, �a� is the width of the conductor strip and �V� is the electrical potential di�erence between the
edges of conductor strip. This potential di�erence between the edges is known as Hall's potential. We can
measure it by connecting a voltmeter to the edges of the conductor strip.

13.1.1 Numbers of free electrons per unit volume

The �Hall e�ect� can be used to measure numbers of electrons per unit volume in a conductor. We know
that the drift velocity of an electron is :

vd =
I

neA

where �n� is numbers of free electrons per unit volume and �A� is the cross section area of the strip.
Substituting in the equation of equilibrium, we have :

vd =
E

B
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I

neA
=
E

B

Substituting for �E�, we have :

⇒ I

neA
=

V

aB

⇒ n =
IaB

eAV

Also, the area A is product of width and thickness, A = ab. Hence,

⇒ n =
IB

ebV

The quantities in the right hand expression are either known or measurable. Thus, we are able to measure
the numbers of free (conduction) electrons per unit volume using Hall's e�ect.

13.1.2 Drift Velocity

Use of Hall's e�ect allows measurement of drift velocity as well. The magnitude of drift velocity is about
0.0003 m/s, which is quite a small value that can be measured in the laboratory. The determination of drift
velocity uses a very simple technique based on the detection of Hall's e�ect.

The idea here is to move the conductor strip carrying current in the direction opposite to the direction
of drift velocity i.e. in the direction of conventional current in the presence of uniform magnetic �eld. The
motion of conductor is adjusted such that the relative drift velocity of electron with respect to stationary
magnetic �eld is zero. In this case, speed of conductor strip is equal to the drift speed of electron. Also, the
magnetic force is zero as relative velocity of electrons with respect to stationary magnetic �eld is zero. In
turn, there is no drifting of electron towards the edge of the conductor and the Hall potential is zero. Thus,
we are able to detect when the velocity of conductor strip equals drift velocity of electron.

13.1.3 Motion of a conductor strip in magnetic �eld

The net drift velocity in a conductor is zero unless an electric potential di�erence is applied to the conductor.
If we move the conductor strip in a uniform magnetic �eld, then free or conduction electrons acquire relative
velocity with respect to stationary magnetic �eld. This, in turn, would set up a magnetic force on the
conduction electrons. Clearly, the action to move conductor strip in the magnetic �eld is equivalent to
imparting a net drift velocity to the conduction electrons.
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Motion of a conductor strip in magnetic �eld

Figure 13.6: Motion of a conductor strip in magnetic �eld

Let us consider a metallic strip of width �a� and thickness �b� moving in x-direction as shown in the �gure
with a velocity �v�. Also let the magnetic �eld is in the y-direction. Applying Right hand rule, we see that
�vXB� is directed in z-direction and �-e(vXB)� is directed in negative z-direction. As a result, one edge is
negatively charged and the other edge is positively charged. At equilibrium,
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Polarization of charges and electric �eld

Figure 13.7: Polarization of charges and electric �eld

v =
E

B

and potential di�erence across the edge is :

⇒ V = Ea = vBa

13.2 Magnetic force on a straight wire

In the case of a thin wire, there is no room for electrons to move sideways as in the case of wide strip of
conductor. The sideway motion thus produces a thrust on the wire and there is a net magnetic force on
the wire. It is evident that we need to account for magnetic force on each of the free conduction electrons.
Since each of these forces is transverse to the straight wire, the direction of net force is same as that of the
magnetic force working on any of the conduction electrons. This fact allows us to simply add individual
forces arithmetically to determine the resultant force. Further, the net force on wire will also depend on the
length of wire being considered as the numbers of free electrons is proportional to the length of wire.

According to Lorentz law (Chapter 7) the magnetic force on a single electron :

Fi = evdBsinθ
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Net magnetic force on the wire

Figure 13.8: Net magnetic force on the wire is arithmetic sum of individual magnetic forces on
conduction electrons.

where θ is the angle between magnetic �eld and drift velocity. Let there be �n� electrons per unit volume.
Also, let �L� and �A� be the length and cross section respectively of the wire under consideration. Clearly,
the total numbers of electrons in the length �L� of the wire is :

N = nAL

Hence, total magnetic force on the wire of length "L" is :

F =
∑

Fi = nALXFi = nALevdBsinθ

But we know that :

vd =
I

neA

Substituting, we have :

⇒ F =
nALeXIXBsinθ

neA
= ILBsinθ

In vector form, this is written using concept of cross vector product as :

⇒ F = ILXB

The direction of length vector is same as that of the direction of current in wire.
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13.2.1 Magnetic force on a non-linear wire

If the wire under consideration is not a straight wire, then we can not use the expression formulated above.
It is important to understand here that the above expression is valid for a straight wire. This is the basic
assumption which allowed us to carry out arithmetic sum of individual forces as directions of magnetic forces
on individual electrons were same. However, if the wire is not straight, then it would not be possible to do
the arithmetic sum for obtaining the resultant force as the directions of magnetic force would be di�erent.

For such situation involving nonlinear wire, we prefer to have an expression for a in�nitesimally small
length of wire. This consideration of very small length of wire guarantees that the wire element is straight.
Following the similar argument as for a straight wire, the magnetic force on an in�nitesimally small length
of wire is :

F = ILXB

We can, then, use this expression and integrate along non-linear wire. Of course, such calculation will
depend on the possibility to divide the given wire into segments for which integration of this expression is
possible.

13.2.2 Current element and moving charge

We have pointed out the equivalent role of current element and moving charge in the context of production
or setting up of magnetic �eld. An inspection of the expression of magnetic force on a charge and a current
element indicate that the equivalence is true also in the case of experiencing magnetic force. In the case of
moving charge, the magnetic force is given by :

F = q (vXB)

On the other hand, the magnetic force on a small current carrying wire element is :

F = ILXB

Clearly, the term �qv� and �IdL� play the equivalent role in two cases.
Example 13.1
Problem : An irregular shaped �exible wire loop of length �L� is placed in a perpendicular and
uniform magnetic �eld �B� as shown in the �gure below (The magnetic force represented by �lled
circle is perpendicular and out of the plane of drawing). Determine the tension in the loop if a
current �I� is passed through it in anticlockwise direction.
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An irregular shaped �exible wire loop in magnetic �eld

Figure 13.9: An irregular shaped �exible wire loop in magnetic �eld

Solution : The wire loop is �exible. There would be tension, provided the loop elements
experience magnetic force in outward direction at all points on it. Applying Right hand thumb rule
for any small segment of the loop, we �nd that the wire is indeed subjected to outward magnetic
force. Clearly, the loop expands to become a circular loop. The radius of the circle is given by :
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An irregular shaped �exible wire loop in magnetic �eld

Figure 13.10: An irregular shaped �exible wire loop straightens up to acquire a circular shape due to
magnetic force.

2πr = L

⇒ r =
L

2π
In order to determine tension in the wire, we consider a very small element of the circular loop.

Let the loop element subtends an angle dθ at the center. Let �T� be the tension in the wire. It is
clear that components of tension in the downward direction should be equal to magnetic force on
the small wire element.
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The tension in the circular loop carrying current

Figure 13.11: The tension in the circular loop carrying current

2T sin
θ

2
= FM

Since loop element is very small, we approximate as :

sin
θ

2
≈ θ

2
Further, we can consider the small loop element to be a straight wire for the calculation of

magnetic force. Now, the magnetic force on the loop element is :

FM = IBL = IBrθ

Substituting in the equilibrium equation,

⇒ 2T
θ

2
= IBrdθ

⇒ T = IBr

Again substituting for the radius of circle, we have :

⇒ T =
ILB

2π
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13.3 Magnetic force between parallel wires carrying current

The situation here is just an extension of the study of the magnetic force on a current carrying wire. The
basic consideration here is that a wire carrying current can function in either of following two roles : (i) it
produces magnetic �eld and (ii) it experiences magnetic force.

In the case of two parallel wires, one of the wires works as the producer of magnetic �eld whereas the
other wire is considered to experience the magnetic force due to magnetic �eld produced by the �rst wire.
This role is completely exchangeable. It only depends on what we want to observe. If we want to observe the
magnetic force on the �rst wire, then the second wire works as the producer of magnetic �eld and vice-versa.

Let us consider here two long straight wires carrying currents I1 and I2 in the same direction. It is
important to note here that one of two wires is a long straight wire. It ensures that magnetic �eld due to
one of them is same at equal perpendicular distance. Otherwise, it would be di�cult to determine magnetic
force as they will be di�erent at di�erent points of the other wire. According to Ampere's law (Chapter 11),
the magnetic �eld due to �rst long wire at a perpendicular distance �r� is :

B =
µ0I1
2πr

Magnetic force between two parallel wires carrying current

Figure 13.12: Magnetic force between two parallel wires carrying current

Applying Right hand thumb rule, we see that magnetic �eld is perpendicular and into the plane of
drawing. Thus, angle between length and magnetic �eld vector is right angle. The magnetic force on the
second wire is:
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F = I2LBsinθ = I2LBsin900 = I2LB

The direction of magnetic force is obtained again by applying Right hand thumb rule. We curl �ngers of
right hand such that it follows the curve as we move from the length vector to the magnetic �eld vector. The
extended thumb, then, points in the direction of magnetic force. In this case, magnetic force acts towards
right as shown in the �gure. The magnetic force on unit length of second wire is obtained by putting L=1
m,

F = I2B

Substituting for B, we have :

⇒ F =
µ0I1I2

2πr
The above expression gives the magnetic force on second wire due to �rst wire. We should here understand

that second wire also applies equal and opposite force on the �rst wire in accordance with Newton's third
law. Thus, two parallel wires carrying current in the same direction attract each other. If the currents are
in the opposite directions, then two wires repel each other.

If one of two wires is a �nite wire of length �L�, then magnetic force on either of the parallel wires is given
by multiplying the force per unit length with the length of �nite wire,

⇒ F =
µ0I1I2L

2πr

13.3.1 De�nition of an Ampere

The SI unit of current i.e. Ampere is de�ned in terms of magnetic force between two parallel wires carrying
current. Signi�cantly, this unit is not de�ned in terms of charge per unit time as measuring the same is
di�cult.

Putting, I1 = I2 = 1A, r = 1m , the magnetic force per unit length is :

⇒ F =
µ0I1I2

2πr
=

4πX10−7X1X1
2πX1

= 2X10−7 N

Thus, one Ampere is that constant current which, if maintained in two straight parallel conductors of in�nite
length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce between these
conductors a force equal to 2X10−7 Newton per meter of length.

Example 13.2
Problem : Two horizontal copper wires are parallel to each other in a vertical plane with a
separation of 0.5 cm. The wires carry equal magnitude of current such that the lower wire becomes
weightless. The mass per unit length of wires is 0.05 kg/m. Determine the currents in the wire and
their relative directions.

Solution : The lower wire has its weight due to its mass and gravity. If it becomes weightless
on passage of currents in the wire, then it means that the lower wire is attracted by the upper wire.
Clearly, currents in two parallel wires are �owing in the same direction. Now, magnetic force per
unit length on the wire should be equal to weight of the wire per unit length.

F = mg

Where �F� is magnetic force per unit length and �m� is mass per unit length. Putting expression
of magnetic �eld in the equation, we have :

⇒ µ0I1I2
2πr

= mg
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Since I1 = I2 = I , we have:

⇒ µ0I
2

2πr
= mg

I =

√(
2πrmg
µ0

)
Putting values,

⇒ I =

√(
2πX0.5X10−2X0.05X10

4πX10−7

)
⇒ I =

√(
1.25X104

)
⇒ I = 110 A

13.4 Magnetic force between two charges moving parallel to each
other

Let two charge carrying particles are at a linear distance �r� at a given instant. The initial state of motions
of two charges is shown in the �gure.

Magnetic force between two charges moving parallel to each other

Figure 13.13: Magnetic force between two charges moving parallel to each other

The magnetic �eld at the position of second charge due to �rst charge is given by Biot-Savart law
(Chapter 3) as expressed for moving charge is:
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Magnetic force between two charges moving parallel to each other

Figure 13.14: Magnetic force between two charges moving parallel to each other

B =
µ0q1v1
4πr2

The direction of magnetic �eld is �vXr�, which is into the plane of drawing. Now, magnetic force on the
charge is given by Lorentz force law (Chapter 7) as :

FM = q2v2B

Substituting for magnetic �eld, we have :

⇒ FM =
µ0q1q2v1v2

4πr2
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