
ELEC 301 Projects Fall 2009

Collection Editor:
Rice University ELEC 301

ELEC 301 Projects Fall 2009

Collection Editor:
Rice University ELEC 301

Authors:

Anthony Austin
Jeffrey Bridge

Robert Brockman
Dan Calderon

Lei Cao
Grant Cathcart

Sharon Du
Catherine Elder

Jose Garcia
Gilberto Hernandez

Peter Hokanson
Seoyeon(Tara) Hong

Graham Houser
Chinwei Hu
Alysha Jeans
Stephen Jong

James Kohli
Stephen Kruzick

Kyle Li
Haiying Lu

Stamatios Mastrogiannis
Nicholas Newton

Norman Pai
Sam Soundar
Cynthia Sung

Matt Szalkowski
Brian Viel
Yilong Yao

Jeff Yeh
Aron Yu

Graham de Wit

Online:
< http://cnx.org/content/col11153/1.3/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Rice University ELEC 301. It is licensed

under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: December 26, 2009

PDF generated: April 21, 2011

For copyright and attribution information for the modules contained in this collection, see p. 154.

Table of Contents

1 Digital Song Identi�cation Using Frequency Analysis

1.1 Introduction . 1
1.2 The Fingerprint of a Song . 1
1.3 The Fingerprint Finding Algorithm . 2
1.4 The Resulting Fingerprint . 4
1.5 Matched Filter for Spectrogram Peaks . 6
1.6 The Matched Filter Algorithm . 6
1.7 Results . 9
1.8 About the Team . 12

2 A Matrix Completion Approach to Sensor Network Localization

2.1 Introduction . 13
2.2 Matrix Completion: An Overview . 13
2.3 Simulation Procedure . 14
2.4 Results, Conclusions, and Future Work . 16
2.5 Acknowledgments . 25
2.6 References . 25

3 Discrete Multi-Tone Communication Over Acoustic Channel
3.1 Introduction . 27
3.2 The Problem . 27
3.3 Transmitter . 28
3.4 The Channel . 31
3.5 Receiver . 33
3.6 Results and Conclusions . 34
3.7 Our Gang . 37
3.8 Acknowledgements . 37

4 Language Recognition Using Vowel PMF Analysis

4.1 Meet the Team . 39
4.2 Introduction and some Background Information . 40
4.3 Our System Setup . 41
4.4 Behind the Scene: From Formants to PMFs . 43
4.5 Results . 49
4.6 Conclusions . 51

5 A Flag Semaphore Computer Vision System

5.1 A Flag Semaphore Computer Vision System: Introduction . 53
5.2 A Flag Semaphore Computer Vision System: Program Flow . 54
5.3 A Flag Semaphore Computer Vision System: Program Assessment . 56
5.4 A Flag Semaphore Computer Vision System: Demonstration 57
5.5 A Flag Semaphore Computer Vision System: TCP/IP . 59
5.6 A Flag Semaphore Computer Vision System: Future Work . 60
5.7 A Flag Semaphore Computer Vision System: Acknowledgements . 61
5.8 A Flag Semaphore Computer Vision System: Additional Resources . 61
5.9 A Flag Semaphore Computer Vision System: Conclusions . 62

6 License Plate Extraction
6.1 Prelude . 63
6.2 Image Processing - License Plate Localization and Letters Extraction . 63
6.3 SVM Train . 67
6.4 Conclusions . 70

iv

7 An evaluation of several ECG analysis Algorithms for a low-cost portable ECG detector

7.1 Introduction . 71
7.2 How ECG Signals Are Analyzed . 72
7.3 Algorithms . 74
7.4 Testing . 77
7.5 Conclusion . 78

8 Sparse Signal Recovery in the Presence of Noise

8.1 Introduction . 81
8.2 Theory . 81
8.3 Implementation . 83
8.4 Conclusion . 92
8.5 Code . 93
8.6 References and Acknowledgements . 96
8.7 Team . 97

9 Video Stabilization
9.1 Introduction 101
9.2 Background . 101
9.3 Procedures . 102
9.4 Results . 104
9.5 Sources 105
9.6 The Team . 105
9.7 Code . 106
9.8 Future Work . 112

10 Facial Recognition using Eigenfaces

10.1 Facial Recognition using Eigenfaces: Introduction . 113
10.2 Facial Recognition using Eigenfaces: Background . 114
10.3 Facial Recognition using Eigenfaces: Obtaining Eigenfaces 115
10.4 Facial Recognition using Eigenfaces: Projection onto Face Space 120
10.5 Facial Recognition using Eigenfaces: Results . 122
10.6 Facial Recognition using Eigenfaces: Conclusion . 125
10.7 Facial Recognition using Eigenfaces: References and Acknowledgements 126

11 Speak and Sing

11.1 Speak and Sing - Introduction 129
11.2 Speak and Sing - Recording Procedure . 130
11.3 Speak and Sing - Song Interpretation 130
11.4 Speak and Sing - Syllable Detection . 131
11.5 Speak and Sing - Time Scaling with WSOLA 137
11.6 Speak and Sing - Pitch Correction with PSOLA . 142
11.7 Speak and Sing - Conclusion . 146

12 Musical Instrument Recognition Through Fourier Analysis

12.1 Musical Instrument Recognition Through Fourier Analysis . 149

Bibliography . 151
Index . 152
Attributions .154

Chapter 1

Digital Song Identi�cation Using

Frequency Analysis

1.1 Introduction1

Imagine sitting at a café (or �other� public venue) and you hear a song playing on the stereo. You decide
that you really like it, but you don't know the name of the song. There's a solution for that. Software
song identi�cation has been a topic of interest for years. However, it is computationally di�cult to tackle
this problem using conventional algorithms. Frequency analysis provides for a fast and accurate solution to
this problem, and we decided to use this analysis to come up with a fun project idea. The main purpose of
our project was to be able to accurately match a noisy song segment with a song in our song library. The
company Shazam was our main inspiration and we started out by studying how Shazam works.

1.2 The Fingerprint of a Song2

Just like how every individual has a unique �ngerprint that can be used to distinguish one person from
another, our algorithm creates a digital �ngerprint for each song that can be used to distinguish two songs.
The song's �ngerprint consists of list of time-frequency pairs that uniquely represent all the signi�cant peaks
in the song's spectrogram. To assure accurate matching between two �ngerprints, our algorithm needs to
take into account the following issues when choosing peaks for the �ngerprint:

• Uniqueness � The �ngerprint of each song needs to be unique to that one song. Fingerprints of
di�erent songs need to be di�erent enough to be easily distinguished by our scoring algorithm.

• Sparseness � The computational time of our matched �lter depends on the amount of data in each
song's �ngerprint. Thus each �ngerprint needs to sparse enough for fast results, but still contain enough
information to provide accurate matches.

• Noise Resistant � Song data may contain large amounts of background noise. The �ngerprinting
algorithm must be able to di�erentiate between the signal and added noise, storing only the signal
information in the �ngerprint.

These criteria are all met by identifying major peaks in the song's spectrogram. The following section
describes the �ngerprinting algorithm in more detail.

1This content is available online at <http://cnx.org/content/m33185/1.2/>.
2This content is available online at <http://cnx.org/content/m33186/1.2/>.

1

2
CHAPTER 1. DIGITAL SONG IDENTIFICATION USING FREQUENCY

ANALYSIS

1.3 The Fingerprint Finding Algorithm3

1.3.1 Filtering and Resampling

After the song data is imported, the signal is then resampled to 8000 samples per second in order to reduce
the number of columns in the spectrogram. This will speed up later computations but still leaves enough
resolution in the data for accurate results.

Then the data is high-pass �ltered using a 30th order �lter with a cuto� frequency around 2KHz (half
the bandwidth of the resampled signal). Filtering is used because the higher frequencies in songs are more
unique to each individual song. The bass, however, tends to overshadow these frequencies, thus the �lter
is used make �ngerprint include more high frequencies points. Testing has shown that the algorithm has a
much easier time distinguishing songs after they are high-pass �ltering.

1.3.2 The Spectrogram

The spectrogram of the signal is then taken in order to view the frequencies present in each time slice. The
spectrogram below is from a 10 second noisy recording.

Figure 1.1: The e�ect of the low-pass �lter is clearly visible in the spectrogram. However, local maxima
in the low frequencies still exist and will still show up in the �ngerprint.

3This content is available online at <http://cnx.org/content/m33188/1.4/>.

3

Each vertical time slice in the bin is then analyzed for prominent local maxima as described in the next
section.

1.3.3 Finding the Local Maxima

In the �rst time slice, the �ve greatest local maxima are stored as points in the �ngerprint. Then a threshold
is created by convolving these �ve maxima with a Gaussian curve, creating a di�erent value for the threshold
at each frequency. An example threshold is shown in the �gure below. The threshold is used to spread out
the data stored in the �ngerprint, since peaks that are close in time and frequency are stored as one point.

Figure 1.2: The initial threshold, formed by convolving the peaks in the �rst time slice with a Gaussian
curve.

For each of the remaining time slices, up to �ve local maxima above the threshold are added to �ngerprint.
If there are more than �ve maxima, then the �ve greatest in amplitude are chosen. The threshold is then
updated by adding new Gaussian curves centered at the frequencies of the newly found peaks. Finally the
threshold is scaled down so that it decays exponentially over time. The following �gure shows how the
threshold changes over time.

4
CHAPTER 1. DIGITAL SONG IDENTIFICATION USING FREQUENCY

ANALYSIS

Figure 1.3: The threshold increases whenever a new peak is formed around that peak's frequency and
decays exponentially over time.

The �nal list of the time and frequencies of the local maxima above the threshold are returned as the
song's �ngerprint.

1.4 The Resulting Fingerprint4

The following is the �ngerprint of the sample signal from the examples above.

4This content is available online at <http://cnx.org/content/m33189/1.4/>.

5

Figure 1.4: The �ngerprint of the 10 second segment from the previous examples

From the graph, it is easy to see patterns and di�erent notes in the song. Lets see how the algorithm
addresses the three issues identi�ed in the �rst paragraph:

• Uniqueness � The algorithm only stores the prominent peaks in the spectrogram. Di�erent songs have
a di�erent pattern of peaks in frequency and time, thus each song will have a unique �ngerprint.

• Sparseness � The algorithm only picks up at most �ve peaks per time slice. This limits the number
of peaks in the resulting �ngerprint. The threshold spreads out the positions of peaks so that the
�ngerprint is more representational of the data.

• Noise Resistant � Unless the background noise is loud enough to create peaks greater than the peaks
present in the song, then very little noise will show up in the �ngerprint. Also, a ten second segment has
around 6000 data points, so a matched �lter will be able to detect a match between two �ngerprints,
even with a reasonable amount of added noise.

The next section will detail the process used to compare the �ngerprint of the song segment to the �ngerprints
of the songs in the library.

6
CHAPTER 1. DIGITAL SONG IDENTIFICATION USING FREQUENCY

ANALYSIS

1.5 Matched Filter for Spectrogram Peaks5

In order to compare songs, we can generate match scores for them using a matched �lter. We wanted a
�lter capable of taking the spectral peaks information generated by the �ngerprint �nding algorithm for two
di�erent songs and produce a single number that would tell us how much the two songs being compared look
alike. We wanted this �lter to be as insensitive as possible to noise and produce a score that is independent
of the length of each recording.

Our approach to this was completely di�erent from that used by the creators of Shazam, as we did not
use Hash tables at all and did not combine the peaks into pairs limited by certain regions, as they did. In
the end we still managed to get very good accuracy and decent performance by using a matched �lter.

1.6 The Matched Filter Algorithm6

1.6.1 Preparation

Before �ltering, we take the lists of spectral peaks that is the output of the landmarks generator algorithm
and generate matrices that are the same size as the spectrograms, with the peaks replaced by 1's in their
respective positions and all other points replaced by 0's. At some point during our project we had the idea
of convolving this matrix with a Gaussian curve, in order to allow peaks to match somewhat if they were
shifted only slightly. However, we later determined that even a very small Gaussian would worsen our noise
resistance, so this idea was dropped. So basically now we have one map for each song that shows the position
in time and frequency bins of all peaks. Next we normalize these matrices using their Frobenius norm. This
ensures that the �nal score is normalized. Then we apply the matched �lter which basically consists of
�ipping one of the matrices and convolving them, which is done by zero padding them both to the proper
size and multiplying their 2D FFT's, for speed. The result is a cross correlation matrix, but we still need to
extract a single number from it to be our match score.

1.6.2 Extracting Information from the Cross Correlation Matrix

Through much testing, we determined that the most accurate and noise-resistant measure of the match was
simply taking the global maximum of the result. Other approaches that we tried, such as taking the trace
of the XTX or the sum of the global maxima for each row or column, had much more frequent mismatches.
Taking just the global maximum of the whole matrix was simple and extremely e�ective.

When looking at test results, however, we saw that the score still had a certain dependency on the
size of the segments being compared. Through more testing, we determined that this dependency looked
approximately like a dependency on the square root of the ratio of the lower number of peaks by the higher
number of peaks, when testing with a noiseless fragment of a larger song. This can be seen in this plot:

5This content is available online at <http://cnx.org/content/m33191/1.1/>.
6This content is available online at <http://cnx.org/content/m33193/1.3/>.

7

Figure 1.5: A plot showing the score of a song fragment that should perfectly match the song it was
taken from, seen without correcting the square root dependency mentioned above

In the plot above, the original segment has 6915 peaks and the fragment was tested with between 100
and 5000 peaks, in intervals of 100. Since smaller sample sizes usually lead to having fewer peaks, we had
to get rid of this dependency. To prevent the square root growth of the scores, the �nal score is multiplied
by the inverse of this square root, yielding a match score that is approximately independent of sample size.
This can be seen in the next stem plot, made with the same segments as the �rst:

8
CHAPTER 1. DIGITAL SONG IDENTIFICATION USING FREQUENCY

ANALYSIS

Figure 1.6: The same plot shown before, but with the square root dependency on number of peaks
removed

So clearly this allows us to get better match scores with small song segments. After this process, we had
a score that was approximately independent of segment size, normalized and could tell apart matches and
mismatches, even with lots of noise. All that was left was to test it against di�erent sets of data and set a
threshold for distinguishing between matches and non-matches.

1.6.3 Setting a Threshold

The �lter's behavior proved to be very consistent. Perfect matches (trying to match a segment with itself)
always got scores of 1. Matching noiseless segments to the whole song usually yielded scores in the upper
.8's or in the .9's, with a few rare exceptions that could have been caused by a bad choice of segment, such
as a segment with a long period of silence, for example. Noisy segments usually gave us low scores such as
in the .1's, but more importantly mismatches were even lower, in the .05's to .07's or so. This allowed us to
set a threshold for determining when we have a match or not.

During our testing, we considered using a statistical approach to set the threshold. For example, if we
wanted a 95% certainty that a song matched, we could require the highest match score to be greater than
1.66*[σ/sqrt(n)] + µ, where σ is the standard deviation, n is the sample size and µ is the mean. However,
with our very small sample size, this threshold seemed to yield inaccurate results, so the simple threshold
criterion of the highest match having to be at least 1.5 times the second highest in order to be considered a

9

match was used.

1.6.4 Similarities and Di�erences from Shazam's Approach

Even though we followed the ideas in the paper by Wang, we still had some signi�cant di�erences from
the approach used by Shazam. We followed the ideas they had for �ngerprint creation, to a certain extent,
however the company uses hash tables instead of matched �lters to perform the comparison. While evidently
faster than using a matched �lter, hash tables are not covered in ELEC 301. Furthermore, when making a
hash, Wang says they combine several points in an area with an anchor point and pair them up combinato-
rially. This allows the identi�cation of a time o�set to be used with the hash tables and makes the algorithm
even faster and more robust. Perhaps investigating this would be an interesting extension of the project, if
we had more time.

1.7 Results7

The �nal step in the project was to test the algorithm we had created so we went ahead and conducted a
series of tests that would evaluate mostly correctness but also, to some extent, performance.

1.7.1 Testing

First, we wanted to test to make sure that our algorithm was working properly. To do this, we attempted to
match short segments of the original song (i.e. �noiseless�, actual copies of the library songs) of approximately
ten seconds in length. The table below shows how these original clips matched. The titles from left to right
are song segments, and titles running from top to bottom are library songs. We abbreviated them from
the original, so they would �t in the matrix. The original names are �Stop this Train�, by John Mayer,
�Semi-Charmed Life�, by Third Eye Blind, �I've got a Feeling� by Black Eyed Peas, �Love Like Rockets�, by
Angels and Airwaves, �Crash Into Me�, by Dave Matthews Band and �Just Another Day in Paradise�, by
Phil Vassar.

Figure 1.7: This matrix shows the match score results of the six noiseless recordings made from
fragments of songs in the database, each of them compared to all songs in the database

7This content is available online at <http://cnx.org/content/m33194/1.3/>.

10
CHAPTER 1. DIGITAL SONG IDENTIFICATION USING FREQUENCY

ANALYSIS

The clear matches with highest scores can be seen along the diagonal. Most of these are close to 1, and
each match meets our criteria of being 1.5 times greater than the other scores (comparing horizontally.) This
was a good test that we were able to use to modify our algorithm and try di�erent techniques. Ultimately,
the above results showed that our code was su�cient for our needs.

We then needed to see if our code actually worked with real world (noisy) song segments. Songs were
recorded on an iPhone simultaneously with various types of noise as follows: Train- low volume talking, Life-
loud recording (clipping), Crash- typing, Rockets- repeating computer error noise, Feeling- Gaussian noise
(added in Matlab to wav �le), and Paradise- very loud talking. There were two additional songs we used in
this test to check for robustness and proper matching. One is a live version of Crash, which includes a lot
of crowd noise but does not necessarily have all the identical features of the original Crash �ngerprint. The
other additional song, �Yellow�, by Coldplay, is a song that is not in our library at all.

Figure 1.8: This matrix shows the match score results of the six noisy recordings made from fragments
of songs in the database, plus a live version of a song in the database and another song entirely not in
the database

Again, the clear matches are highlighted in yellow along the diagonal. The above results show that our
algorithm can still accurately match the song segments in more realistic conditions. The graph below shows
more interesting results.

11

Figure 1.9: This plot is a visual representation of the results matrix seen above

1.7.2 Conclusions

As before, the matches in the �rst six songs (from left to right) are obvious, and Yellow does not show any
clear correlation to any library song, as desired, but the live version of Crash presents an interesting question.
Do we actually want this song to match? Since we wanted our �ngerprinting method to be unique to each
song and song segment, we decided it would be best to have a non-match in this scenario. However, if one
observes closely, it can be seen that the closest match (though it is de�nitely not above the 1.5 mark) is,
in fact, matching to the original Crash. This emerges as a small feature of our results. This small �match�
says that although we may not match any songs in the library, we can tell you that this live version most
resembles the original Crash version, which may be a desirable outcome if we were to market this project.

We were amazed that the �nal �lter could perform so well. The idea of completely ignoring amplitude
information in the �lter came from the paper by Avery Li-Chun Wang, one of Shazam's developers. As he
mentions, discarding amplitude information makes the algorithm more insensitive to equalization. However,
this approach also makes it more noise resistant since, since what we do from there on basically consists of
counting matching peaks versus non-matching peaks. Any leftover noise will count very little towards the
�nal score, as the number of peaks per area in the spectrogram is limited by the thresholding algorithm and
all peaks have the same magnitude in the �lter.

12
CHAPTER 1. DIGITAL SONG IDENTIFICATION USING FREQUENCY

ANALYSIS

1.8 About the Team8

1.8.1 Team Members

• Dante Soares is a Junior ECE student at Martel. He is specializing in Computer Engineering.
• Yilong Yao is a Junior ECE student at Sid Richardson. He is specializing in Computer Engineering.
• Curtis Thompson is a Junior ECE at Sid Richardson College. He is specializing in Signals and Systems.
• Shahzaib Shaheen is a Junior ECE at Sid Rich. He is specializing in Photonics.

1.8.2 Special Thanks

We would like to thank Eva Dyer for her help with the algorithm and her feedback on the poster presentation.

1.8.3 Sources

Dan, Ellis. "Robust Landmark-Based Audio Fingerprinting." Lab ROSA. Columbia University, 7 June 2006.
Web. 6 Dec. 2009. <http://labrosa.ee.columbia.edu/>.

Dyer, Eva. Personal interview. 13 Nov. 2009.
Fiona, Harvey. "Name That Tune." Scienti�c American June 2003: 84-6. Print.
Wang, Avery Li-Chun. An Industrial-Strength Audio Search Algorithm. Bellingham: Society of Photo-

Optical Instrumentation Engineers, 2003. Print. SPIE proceedings series.

8This content is available online at <http://cnx.org/content/m33196/1.2/>.

Chapter 2

A Matrix Completion Approach to

Sensor Network Localization

2.1 Introduction1

2.1.1 Introduction

Sensor network localization refers to the problem of trying to reconstruct the shape of a network of sensors �
that is, the positions of each sensor relative to all the others � from information about the pairwise distances
between them. If all of the pairwise distances are known exactly, then the shape of the network may be
recovered via a technique called multidimensional scaling (MDS) [10]. Of more practical interest is the case
in which many � even most � of the distances are unknown and in which the known distance measurements
have been corrupted with noise. Determining the shape of the network under these conditions is still an
open problem. Over the years, researchers have come up with a variety of di�erent approaches for tackling
this problem, with some of the most recent ones being based on graph rigidty theory, such as those in [10]
and [11]; however, for our project, we decided to examine this problem from a fundamentally di�erent tack.
Instead, we approach the problem using methods from the brand new �eld of matrix completion, which is
concerned with ��lling in the gaps" in a matrix for which not all of the entries may be known.

The remainder of this collection is divided as follows. In the next section, we provide an overview of the
most recent work in matrix completion for those who may not be familiar with this very new �eld. After
that, we discuss the procedures we used to conduct our investigation. Finally, we examine the results of our
simulations and present our conclusions.

2.2 Matrix Completion: An Overview2

2.2.1 Overview of Matrix Completion

The fundamental question that the new and emerging �eld of matrix completion seeks to answer is this:
Given a matrix with some of its entries missing, is it possible to determine what those entries should be?
Answering this question has an enormous number of potential practical applications. To be more concrete,
consider the problem of collaborative �ltering, of which perhaps the most famous example is the Net�ix
problem [9]. The Net�ix problem asks how one may be able to predict how an individual would rate movies
he or she has not seen based on the ratings that individual has made in the past and on the ratings of other
individuals stored in the database. This can be cast as a matrix completion problem in which each row of
the matrix corresponds to a particular user, each column to a movie, and each entry a rating that the user

1This content is available online at <http://cnx.org/content/m33135/1.1/>.
2This content is available online at <http://cnx.org/content/m33136/1.1/>.

13

14
CHAPTER 2. A MATRIX COMPLETION APPROACH TO SENSOR

NETWORK LOCALIZATION

of that entry's row has given to the movie in that entry's column. Because there is a large number of users
and movies and because each user has probably seen relatively few of the available movies, there are a large
number of entries missing. The idea is to somehow �ll in the missing entries and thereby determine how
every user would rate every movie available. For more examples of potential uses of matrix completion, see
the introduction of [2].

In general, matrix recovery is an impossible task because the unknown entries really could be anything;
however, if one makes a few reasonable assumptions about the original matrix underlying the one being
completed, then the matrix can indeed be reconstructed and often from a surprisingly low number of en-
tries. More precisely, in their May, 2008 paper Exact Matrix Completion via Convex Optimization, matrix
completion pioneers Emmanuel J. Candès and Benjamin Recht o�er the following de�nitions [3]:

De�nition: Let U be a subspace of Rn of dimension R, and let PU be the operator that projects
orthogonally onto U . The coherence µ (U) of U is de�ned by

µ (U) =
n

r
max
1≤i≤n

‖ PUei ‖2, (2.1)

where ei is the standard basis vector with a 1 in the ith coordinate and all other coordinates are zero.
De�nition: Let A be an m-by-n matrix of rank r with singular value decomposition

∑r
k=1 σkukv

∗
k, and

denote its column and row spaces by U and V , respectively. A is said to be (µ0, µ1)-incoherent if

1. There exists µ0 > 0 such that max (µ (U) , µ (V)) < µ0.
2. There exists µ1 > 0 such that all entires of the m-by-n matrix

∑r
k=1 ukv

∗
k are less than or equal to

µ1

√
r

mn in magnitude.

Qualitatively, this de�nition means that the singular vectors of a (µ0, µ1)-incoherent matrix aren't too �spiky"
and don't do anything �wild."

In the same paper, Candès and Recht go on to show that if A is an m-by-n(µ0, µ1)-incoherent matrix that
has rank r � N = max (m,n), then A can be recovered with high probability from a uniform sampling ofM
of its entries, whereM ≥ O

(
N1.2rlogN

)
[3]. This result was later strengthened toM ≥ O (Nrmax (r, logN))

by Keshavan, Montanari, and Oh in [6]. These results, coupled with the fact that many matrices that one
encounters in practice both satisfy the incoherence property and are of low rank means that matrix completion
has some serious potential for use in practical applications.

Once one knows that matrix completion can be done, the next question is how to go about doing it. There
are a variety of di�erent matrix completion algorithms available. Candès et al. have developed a method
that they call Singular Value Thresholding (SVT), which attempts to complete the matrix by solving the
following optimization problem [1]: Find a matrix X of that minimizes ‖ X ‖∗ subject to the condition that
the entries of X be equal to those entries of the matrix A to be completed for which we know the value. Here,
‖ X ‖∗ is the nuclear norm of X, de�ned to be the sum of the singular values of X. Keshavan, Montanari,
and Oh o�er an alternative algorithm, dubbed OptSpace, which is based on trimming the incomplete matrix
to remove so-called �overrepresented" rows and columns whose values do not help reveal much about the
unknown entries and then adjusting the trimmed matrix to minimize the error that is made at the entries
whose values are known via a gradient descent procedure [6], [7]. There are other algorithms as well, and
which algorithm to choose is really up to the user. For our work, we elected to use the OptSpace algorithm,
since it just seems to produce better results.

2.3 Simulation Procedure3

2.3.1 Simulation Procedure

For our project, we applied these new matrix completion techniques to the sensor network localization
problem. More explicitly, our idea was to take an incomplete matrix of distances between sensors and use

3This content is available online at <http://cnx.org/content/m33138/1.1/>.

15

the OptSpace algorithm mentioned previously to �ll in the missing entries, whereupon the network may be
reconstructed using multidimensional scaling methods. Because a matrix of Euclidean distances between
random points is, in general, full rank, it cannot be completed directly; however, the matrix of the squares
of the distances between the points has a �xed maximum rank depending on the dimension of the space in
which the points are embedded. To see this, suppose that we are given N points x1, ..., xn in Rn, and let
D2 be the N -by-N matrix of their squared distances; that is, the ij-entry of D2 is equal to ‖ xi − xj‖2 for

i, j = 1, ..., n. Denote the kth coordinate of xi by x
(k)
i . Because ‖ xi − xj‖2 =‖ xi‖2 − 2 (xi • xj) + ‖ xj ‖2

(where • denotes the usual dot product on Rn), we have

D2 =

‖ x1‖2 −2x(1)

1 · · · −2x(n)
1 1

...
...

...
...

‖ xN‖2 −2x(1)
N · · · −2x(n)

N 1

 ·

1 · · · 1

x
(1)
1 · · · x

(1)
N

...
...

x
(n)
1 · · · x

(n)
N

‖ x1‖2 · · · ‖ xN‖2

, (2.2)

and so D2 may be written as the product of a matrix with n + 2 columns and a matrix with n + 2 rows.
The rank of D2 may therefore not exceed n + 2. For our particular project, we restricted our attention to
sensors embedded in a plane (in which case the rank of D2 is at most 4 for any number of sensors N), but
this property of the matrix D2 o�ers a simple way to extend our work to higher dimensions.

To try out our ideas, we designed and executed several di�erent MATLAB simulations, each of which
proceded according to the following general outline:

1. Generate N = 200 uniformly distributed random points inside the unit square [0, 1]× [0, 1].
2. Form the matrix D of pairwise distances between the points. Add noise if necessary.
3. Form the matrix D2 of the squares of the (possibly noisy) distances between the points.
4. Knock out pairs of distances in D2 according one of two procedures (described below) to form the

partially observed matrix R.

5. Complete the matrix R using OptSpace to get
^
D2.

6. Form the matrix
^
D, which is the element-wise square-root of

^
D2.

7. Compare the completed matrix
^
D to the original D by measuring the relative Frobenius-norm error

e =‖
^
D −D ‖F /‖ D ‖F .

8. Repeat the above steps for 25 trials, and compute the average relative Frobenius-norm error at the
end.

We used two di�erent methods for determining which entries in the matrix to eliminate, which we call
�random" and �realistic" knock-out, respectively. By random knock-out, we mean that distance pairs were
selected at random to be knocked-out according to a �xed probability. In constrast, realistic knock-out
involves removing all entries of the matrix that exceed a certain threshold distance. The idea is that in a
realistic setting, sensors which are far apart from each other may not be able to construct an estimate of the
distance between themselves.

To simulate noise in the trials that required it, we randomly generated values from zero-mean Gaussian
distributions and added them to the entries in the matrix of distances. In order to understand what e�ect
the noise amplitude would have on the results, we used �ve di�erent values for the standard deviations of
these distributions: 0.01, 0.05, 0.1, 0.2, and 0.5.

A copy of the MATLAB code we wrote for the simulations is available here4 . The OptSpace code must
be downloaded separately and may be found at the OptSpace website listed in this project's References
module.

4http://cnx.org/content/m33138/latest/EXPT_CODE.zip

16
CHAPTER 2. A MATRIX COMPLETION APPROACH TO SENSOR

NETWORK LOCALIZATION

2.4 Results, Conclusions, and Future Work5

2.4.1 Results, Conclusions, and Future Work

2.4.1.1 Random Knock-Out Trials

The results from the simulations for the random knock-out runs are displayed in the �gures below, which
depict the average relative Frobenius-norm error over 25 trials versus fraction of unknown entries.

Figure 2.1: Simulation results for random knock-out trials with no noise.

5This content is available online at <http://cnx.org/content/m33141/1.1/>.

17

Figure 2.2: Simulation results for random knock-out trials with noise present.

As these two �gures illustrate, the results for the random knock-out trials were quite good. As expected,
as the fraction of unknown entries becomes large, the error eventually becomes severe, while for very low
fractions of unknown entries, the error is extremely small. What is amazing is that for moderate fractions of
unknown entries the algorithm still performs remarkably well, and its performance doesn't degrade much by
the loss of a few more entries: the graphs are nearly �at over the range from 0.3 to 0.8! As the second �gure
shows (and as might be imagined), noise only makes the error worse; however, the plot also shows that the
algorithm is reasonably robust to noise in that perturbations of the distance data by small amounts of noise
don't become magni�ed into massive errors.

As an example, consider Figure 3 below, which displays the results of a typical no-noise random knock-out
run with knock-out probability 0.5. On the left is a plot of the sparsity pattern for the incomplete matrix.
A blue dot represents a known entry, while a blank space represents an unknown one. On the right is a plot
of what the network looks like after being reconstructed using multidimensional scaling. Observe that the
red circles for the network corresponding to the network generated by the completed matrix enclose the blue
dots of the original network's structure quite well, indicating that the match is very good.

18
CHAPTER 2. A MATRIX COMPLETION APPROACH TO SENSOR

NETWORK LOCALIZATION

Figure 2.3: Results from a typical no-noise random knock-out trial with a knock-out probability of
0.5. Left: Sparsity pattern for the incomplete matrix. Right: Overlay �gure demonstrating degree of
agreement between the original network and the network generated from the completed matrix.

For an illustration of how the results look with noise, see Figure 4 below. This �gure shows the results of
a typical noise-present random knock-out run with knock-out probability of 0.5 and noise standard deviation
0.05. The agreement in the reconstructed network is not as good as it was for the no-noise case, but the
points of the reconstructed network are �clustered" in the right locations, and some of the prominent features
of the original network are present in the reconstructed one as well.

19

Figure 2.4: Results from a typical noise-present random knock-out trial with a knock-out probabil-
ity of 0.5 and a noise standard deviation of 0.05. Left: Sparsity pattern for the incomplete matrix.
Right: Overlay �gure demonstrating degree of agreement between the original network and the network
generated from the completed matrix.

2.4.1.2 Realistic Knock-Out Trials

The �gures below, which show the results for the realistic knock-out trials, are similar to those above except
that they plot the average relative Frobenius-norm error over 25 trials versus maximum radius as opposed
to fraction of unknown entries.

20
CHAPTER 2. A MATRIX COMPLETION APPROACH TO SENSOR

NETWORK LOCALIZATION

Figure 2.5: Simulation results for realistic knock-out trials without noise.

21

Figure 2.6: Simulation results for realistic knock-out trials with noise present.

The most salient feature of these graphs is the odd �hump" that appears from radius values of about 0.5
to 0.7, even in the no-noise case. Over this range, despite the fact that the radius is growing (meaning that
more pairwise distances are known), the error in the completed matrix is actually becoming worse rather
than better, which seems to contradict the excellent results discussed above for the random knock-out case.
At the time of this writing, we are still unsure as to why this �hump" appears; however, we suspect that it
may have something to do with the OptSpace algorithm itself because when we run the same experiment
using the SVT algorithm of Candès, the hump does not appear, as the �gure below shows. (Note that,
nevertheless, OptSpace tends to produce less error than SVT, even over the o�ending range of radii.)

22
CHAPTER 2. A MATRIX COMPLETION APPROACH TO SENSOR

NETWORK LOCALIZATION

Figure 2.7: OptSpace performance vs. SVT performance for realistic entry knock-out without noise.
SVT does not display a �hump," but OptSpace generally returns better error values.

Perhaps more important than the �hump," however, is the fact that the scales on the axes of the above
graphs alone are enough to demonstrate that the performance of the method in the realistic knock-out case
is decidedly worse than that for the random knock-out case. For example, consider the �gure below, which
shows the results of a typical no-noise, realistick knock-out trial with a maximum radius of 1. For this
particular trial, over 97 percent of the pairs are known. The reconstructed network matches the original
quite well near the �center" of the network, but at the edges, the match becomes much worse. This behavior
is not exhibited at all by random knock-out trials for comparable fractions of unknown entries, as the picture
at the bottom of the �gure illustrates, which was generated from a non-noise random knock-out trial in
which 90 percent of the pairs were known.

23

Figure 2.8: Results from a typical non-noise realistic knock-out trial with a maximum radius of 1. Top-
Left: Sparsity pattern for the incomplete matrix. Top-Right: Overlay �gure demonstrating degree of
agreement between the original network and the network generated from the completed matrix. Bottom:
Typical results from a non-noise random knock-out trial with knock out probability of 0.1 (90% of distance
pairs are known).

Shrinking the radius only makes matters worse, as the next �gure illustrates. The maximum radius here
is
√

2/2. Around 77 percent of the distance pairs are known, and yet the match is terrible.

24
CHAPTER 2. A MATRIX COMPLETION APPROACH TO SENSOR

NETWORK LOCALIZATION

Figure 2.9: Results from a typical non-noise realistic knock-out trial with a maximum radius of
√

2/2.
Left: Sparsity pattern for the incomplete matrix. Right: Overlay �gure demonstrating degree of agree-
ment between the original network and the network generated from the completed matrix.

Adding noise only makes the results even worse. At �rst glance, this behavior appears to be inexplicable;
however examining the sparsity patterns of the incomplete matrices reveals an interesting fact: the entry
knock-out in the realistic case is far from being �random!" The sparsity patterns for the realistic knock-out
matrices reveal clear patterns of lines in their knocked-out entries that are not present in those for random
knock-out cases. This unintended regularity of entry selection violates the assumption made in all of the
matrix completion literature that the known entries are taken from a uniform sampling of the matrix, so it
would seem that none of the theoretical results that have been derived apply in this case.

2.4.1.3 Conclusions

Our results show that matrix completion presents a viable means of approaching the sensor network local-
ization problem under the assumption that the known pairs of distances come from a uniform sampling of
the distance matrix. Under these conditions, matrix completion provides excellent network reconstruction
and is fairly robust to noise. Unfortunately, its performance in the more realistic case in which distance
information will be excluded or included based on a maximum possible distance over which two sensors can
communicate leaves much to be desired.

2.4.1.4 Future Work

With more time on this project, we would like to have explored the following questions further:

• What is the true origin of the mysterious �hump?" If it really is due to OptSpace as the above seems
to suggest, is there a way to modify the OptSpace algorithm to get it to go away?

• What is the fundamental reason that the realistic knock-out trials did not work? Is there a way to get
them to work better? (Perhaps something like permuting the distance entries in the matrix around
to make the sampling pattern apparently more random would do the trick. If the permutations are
stored somewhere, they can be undone after the matrix is completed if necessary.)

25

• The experiment worked pretty well in two dimensions, at least for the random knock-out case. Will
three dimensions show results that are any di�erent?

2.5 Acknowledgments6

2.5.1 Acknowledgments

We would like to thank Mr. Andrew Waters for the invaluable support and guidance he provided us while
we were working on this project as well as Prof. Baraniuk for suggesting such a fascinting project to us in
the �rst place.

2.6 References7

2.6.1 References

In addition to the papers that are cited throughout the other modules in this collection, we made use of the
following other resources when carrying out this project:

The OptSpace code written by Keshavan, Montanari, and Oh that was used for running the simulations
carried out in this project was obtained from http://www.stanford.edu/∼raghuram/optspace/code.html8 .
While the multidimensional scaling code used to generate the plots of the reconstructed networks was written
entirely by us, we made use of the following book for information on how to go about writing it:

I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and Applications. New York:
Springer, 1997. pg. 207-210, 261-267.

6This content is available online at <http://cnx.org/content/m33142/1.1/>.
7This content is available online at <http://cnx.org/content/m33146/1.1/>.
8http://www.stanford.edu/∼raghuram/optspace/code.html

26
CHAPTER 2. A MATRIX COMPLETION APPROACH TO SENSOR

NETWORK LOCALIZATION

Chapter 3

Discrete Multi-Tone Communication

Over Acoustic Channel

3.1 Introduction1

3.1.1 What is DMT and where is it used?

DMT is a form of Orthogonal Frequency Division Multiplexing. E�ectively, information is coded and mod-
ulated by several di�erent sub carriers. This is the same modulation scheme used in common DSL channels.
Speci�cally, at frequencies above those reserved for speech, there exist several hundred channels of the equal
bandwidth used to transmit data to and from the internet. This is very convenient for phone users, as these
DMT channels can be easily �ltered out using a simple low-pass �lter, preventing any possible interference
from connecting to the internet while talking on the phone.

3.1.2 Why transmit over an acoustic channel?

The acoustic channel, and the audible frequencies contained therein, was chosen as a test area for our DMT
project simply because of its accessibility. No complex or expensive hardware is necessary to transmit over
it, just a standard computer speaker and microphone setup.

3.1.3 What can DMT do for us?

As will be revealed in later modules, DMT modulation o�ers many features that protect our signal's in-
formation from being distorted by the channel. Speci�cally, by transmitting our information over several
subcarriers at the same time instead of just one carrier, we can use the frequency response of the system to
see which carriers are being attenuated and likewise increase the gain on those channels or get rid of them
altogether. You will discover, as we did, how di�cult that process turned out to be.

3.2 The Problem2

3.2.1 Creating a DSL Modem

Our goal is to use Discrete Multi-Tone modulation to transmit a text message over the audible range of
frequencies in an acoustic channel. We are creating a DSL modem that transmits through the air.

1This content is available online at <http://cnx.org/content/m33147/1.1/>.
2This content is available online at <http://cnx.org/content/m33155/1.1/>.

27

28
CHAPTER 3. DISCRETE MULTI-TONE COMMUNICATION OVER

ACOUSTIC CHANNEL

To do this, we will observe the frequency characteristics of the channel, and use that information to
equalize our received transmission in hope to preserve the maximum amount of content from the signal. As
in any engineering problem, we are constantly striving to push the data-rate of our system, while minimizing
the occurrence of errors. Here we go!

The Transmitter (Section 3.3)
The Channel (Section 3.4)
Receiver (Section 3.5)
Results and Conclusions (Section 3.6)

3.3 Transmitter3

3.3.1 Text to Binary Conversion

The �rst step is to convert our information into binary. We used the sentence �hello, this is our test message,�
repeated four times, as our text message. To get it into binary, we used standard ASCII text mapping.

hello = 01101000 01100101 01101100 01101100 01101111

3.3.2 Series to Parallel

The next step is converting this vector of zeros and ones into a matrix. The vector is simply broken up into
blocks of length L, and each block is used to form column of the matrix.

3.3.3 Constellation Mapping

Now the fun begins. The primary method of modulation in DMT is by inverse Fourier Transform. Although
it may seem counterintuitive to do so, by taking the inverse Fourier Transform of a vector or a matrix of
vectors, it e�ectively treats each value as the Fourier coe�cient of a sinusoid. Then, one could transmit this
sum of sinusoids to a receiver that would in turn take the Fourier Transform (the inverse transform of the
inverse transform, of course) and retrieve the original vectors.

But instead of taking the transform of our vectors of zeros and ones, we �rst convert bit streams of length
B to speci�c complex numbers. We draw these complex numbers from a constellation map (a table of values
spread out along the complex plane). See the �gure below for an example of a 4 bit mapping.

3This content is available online at <http://cnx.org/content/m33148/1.1/>.

29

Constellation Mapping Table

Figure 3.1: This table shows which bit stream is mapped to which complex value.

3.3.4 Signal Mirroring and Inverse Fourier Transform

Why would we do that, you might ask. Doesn't converting binary numbers to complex ones just make things
more complicated? Well, DMT utilizes the inverse Fourier Transform in order to attain its modulation. So
taking the IFFT of a vector of complex numbers will result in a sum of sinusoids, which are great signals to
be sending over any channel (they are the eigenfunctions of linear, time-invariant systems).

But before taking the inverse transform, the vectors/columns of the matrix must be mirrored and complex
conjugated. The Inverse Fourier Transform of a conjugate symmetric signal results in a real signal. And
since we can only transmit real signals in the real world, this is what we want.

3.3.5 Cyclic Pre�x

If we were transmitting over an ideal wire system, we would be done at this point. We could simply send it
over the line and start demodulating. But with most channels, especially our acoustic one, this is not the case.
The channel's impulse response has non-zero duration, and will therefore cause inter-symbol interference in
our output.

Intersymbol interference occurs during the convolution of the input and impulse response. Since the
impulse response has more than a single value length, it will thus cause one block's information to bleed into
the next one.

30
CHAPTER 3. DISCRETE MULTI-TONE COMMUNICATION OVER

ACOUSTIC CHANNEL

To prevent this, we added what is called a cyclic pre�x to each block. As long as the length of the cyclic
pre�x is at least as long as the impulse response, it should prevent ISI. However, it has a secondary e�ect as
well. We created the pre�x by adding the last N values of each block (where N is the length of the response)
to the beginning, preserving the order. Doing this e�ectively converts the linear convolution of the impulse
response with the block sequence to circular convolution with each block separately, since there will now be
the �wrap-around� e�ect. This will be handy later when we start characterizing the channel, since circular
convolution in time is equivalent to multiplication of DFT's in frequency.

00010110011010001 => 01000100010110011010001
The �rst six bits in the second bit stream, 010001, is the cylcic pre�x. Note that although these values

are binary, they could essentially range from -1 to 1 since they sample the sinusoid sum that was formed
after inverse Fourier Transforming.

Please see the block diagram below. It summarizes the entire transmission process covered above.

Transmission Block Diagram

Figure 3.2: This diagram shows the all of the components and �ow of our transmission system.

31

3.4 The Channel4

3.4.1 The Channel

To characterize the channel, we input an impulse by recording the tapping of the mic with our �ngers. We
then played that sound through the speaker and recorded the response with the mic. The signal is below,
along with its spectrum.

Impulse Response of the Channel and its Spectrum

Figure 3.3: These graphs characterize the channel that we are transmitting through

We did this in preparation for the receiving end of the system to divide the received signal's FFT by the
impulse response's FFT.

Below are plots of our transmitted and received signals, along with their spectrums. You will notice a
great similarity between the signals in time, however a distinct di�erence in frequency. Unfortunately, this
loss in frequency will translate to a loss of information.

4This content is available online at <http://cnx.org/content/m33144/1.1/>.

32
CHAPTER 3. DISCRETE MULTI-TONE COMMUNICATION OVER

ACOUSTIC CHANNEL

Transmitted and Received Signals in the time domain

Figure 3.4: These are the signals in time that we transmitted (green) and that we received (red). As
you can see they look very similar, and take it from us, they also sound similar.

Transmitted and Received Signal Spectrums

Figure 3.5: The green spectrum is of the signal we transmitted, and the red is the spectrum of the
signal we received. We see a much bigger visual di�erence than we did in the time domain.

Above are plots for our transmitted and received signals. Here we used a block length of half the duration
of the signal and sent it through the air at 44.1 kHz.

33

3.5 Receiver5

3.5.1 Decoding the Transmission

Since the receiver has full knowledge of all the steps taken to transmit, the reception process is the exact
inverse of transmission. The only di�erence is the addition of the channel equalization described in the
previous part. To get back the information we originally sent, we simply:

• Take the FFT of the reception and divide it by the FFT of the impulse response. Then iFFT it back.
• Remove the cyclic pre�x
• Take the Fourier Transform
• Demirror the vector
• Approximate each received value to nearest point in constellation and map them back to the original

bit sequences. See �gure below for example in 4 bit approximation.
• Convert the binary series back to ascii letter equivalents.

Approximation of Constellation Map

Figure 3.6: The map on the left was approximated to the one on the right with a 2.15% percent error.

Please see the block diagram below. It summarizes the reception process.

5This content is available online at <http://cnx.org/content/m33151/1.1/>.

34
CHAPTER 3. DISCRETE MULTI-TONE COMMUNICATION OVER

ACOUSTIC CHANNEL

Receive Block Diagram

Figure 3.7: This diagram shows the all of the components and �ow of our receiver system.

3.6 Results and Conclusions6

Results
Unfortunately, our microphone-speaker system was not successful in transmitting a text message. The

measured transfer function seemed reasonable since it modeled a low-pass �lter. But it was ine�ective in
equalizing our received signal. This is most likely because the channel added far too much noise, in addition
to attenuating many of the frequencies beyond recovery.

Since we were unable to acquire the desired results on bit-rate maximization and error minimization in
the acoustic channel, we created an arti�cial channel, using our observed frequency response plus Gaussian
noise. Modeling this channel in Matlab produced notable results. See the �gures below.

6This content is available online at <http://cnx.org/content/m33152/1.1/>.

35

Bit-rate vs Block Length (2 and 4 bit)

Figure 3.8: This graph illustrates the fact that data rate increases as we increase block length. It also
shows that a 4-bit scheme has twice the data rate of a 2-bit scheme, as one would expect.

36
CHAPTER 3. DISCRETE MULTI-TONE COMMUNICATION OVER

ACOUSTIC CHANNEL

Percent Error vs Block Length (2 and 4 bit)

Figure 3.9: This graph illustrates the fact that as block length increases so will the amount of errors.
Also we see that the 4-bit scheme has a much greater amount of errors than the 2-bit.

These �gures indicate that both bit-rate and error-rate go up as block length increases. This makes
sense since increasing the block length increases the number of channels (Taking the iFFT of a longer signal
produces more unique sinusoids.). Squeezing more sinusoid carriers over the same bandlimited channel (0-
22kHz) should result in more errors in demodulation, while transmitting more bits at the same time. It also
makes sense that the 4 bit constellation mapping yielded higher bit-rates and error percentages since each
sinusoid carries more information, yet can more easily be approximated to the wrong constellation point.

The next project dealing with Discrete Multi-Tone modulation in the acoustic channel should certainly
involve a more professional recording system.

37

3.7 Our Gang7

3.7.1 Gang Members

Dangerous Brian Viel �Electrical and Computational Engineering
Soarin' Dylan Rumph � Electrical and Computational Engineering

3.8 Acknowledgements8

We would like to thank:
Jason Laska � Our project advisor for giving us moral support and steering us in the right direction.
Rich Baraniuk � Hell, he taught us all we know about DSP
2003 DMT Group (Travis White, Eric Garza, Chris Sramek) � We used much of their original matlab

code as a start for our modulation.

7This content is available online at <http://cnx.org/content/m33153/1.1/>.
8This content is available online at <http://cnx.org/content/m33140/1.1/>.

38
CHAPTER 3. DISCRETE MULTI-TONE COMMUNICATION OVER

ACOUSTIC CHANNEL

Chapter 4

Language Recognition Using Vowel PMF

Analysis

4.1 Meet the Team1

4.1.1 Language Recognition Using Vowel PMF Analysis

4.1.1.1 Meet the 4 Guys

Haiying Lu (hl6@) � Chinese boi from Mississippi. Likes sweet tea, fried chicken, and believes in true love.
Dream occupation: Save the world with a law degree and lots of love.

Wharton Wang(wkw1@) �Culturally confused. 6'1 height complete waste. Fashion guru. Dream occu-
pation: First Asian American President or win an Oscar, Grammy, & Tony.

Jason Xu (jax1@) � Hair never grows longer than one inch. Desires life to be like a musical. Diva. Dream
occupation: Be the next Yao Ming or open his own gym.

Qian Zhang (qz1@) � Enjoys good tv shows and will critique your dance move. Campus celebrity. Dream
occupation: Runway model or Pokemon Master.

1This content is available online at <http://cnx.org/content/m33133/1.2/>.

39

40 CHAPTER 4. LANGUAGE RECOGNITION USING VOWEL PMF ANALYSIS

Figure 4.1

From L-R: Haiying Lu,Wharton Wang, Jason Xu, Qian Zhang

4.2 Introduction and some Background Information2

4.2.1 Introduction: Language Recognition Using Vowel PMF Analysis

In recent years, voice and sound recognition technology has become increasingly prevalent in general society.
Early applications focused on security and privacy measures were utilized by a small portion of the total
population. However, today virtually every person who owns a computer has access to such technology.
There are programs which transcribe speech into text, identify di�erent speakers, identify what song is being
played, and accept audio signals as valuable input in general.

Our goal is to add language recognition to the growing list. The inspiration is from the multi-language
background of all the group members and about 60% of the Rice students speak at least two languages
�uently. Therefore, we think it will be interesting to develop a system which can �listen� to a speech sample
and recognize the language it is using.

2This content is available online at <http://cnx.org/content/m33121/1.2/>.

41

4.2.2 Background: Formant Analysis of Vowel Sounds

Formants are broad peak envelopes found in the spectrum of sound. Vowel sounds are pronounced with an
open vocal tract which creates a periodic resonance in air pressure. In contrast, consonant sounds require a
closure of the tract at some point during pronunciation, making them devoid of the same type of resonance
found in vowels. This results in easily identi�able di�erences between the two types of sounds in the frequency
domain�one of the most evident being the emergence of clear formants in vowels.

Each vowel sound generally has 3 or 4 formants located at speci�c frequency ranges corresponding to
how `open', `closed', `front', `back', or `round' the sound is. These characteristics depend on how the lips,
tongue, and jaw are used in pronunciation. Although there are 3 or 4 total formants for most vowel sounds,
the �rst two formants are usually all that is required to distinguish between them.

For our purposes of �nding PMFs of vowel sounds in di�erent languages, we are only looking at 5 most
basic vowel sounds so it is usually su�cient to check up to the �rst two formants to decide the vowel sound.
In addition to a vowel sound's natural frequency, the speaker's pitch will also vary the position of the
formant. Therefore, we only used male speech samples consistently so that we have a relatively consistent
vowel distribution for every sample.

4.3 Our System Setup3

4.3.1 Our System Setup

We plan to use the probability mass function (PMF) of 5 di�erent vowel sounds in 3 di�erent languages to
determine which language a speech sample is spoken in. However, before we can attempt to carry out that
task, we require a means of counting the number of occurrences of the 5 di�erent vowel sounds in any given
speech sample to create the PMFs.

We chose English, Spanish and Japanese to analyze in this project. Spanish and Japanese both have
simple vowel sounds. For example, 90% of Japanese speaking consists of the 5 basic vowel sounds in our
database. Spanish is similar and English is a little more complicated in pronunciation but we can still
�nd an approximate distribution with our system and database. The choice of these languages has a good
representation of western and eastern language and they are all widely used languages.

Two important databases are crucial in order for the system to perform at this point. One is the formant's
frequency of the 5 most basic vowel sounds (a, i, u, e, o). The other database we want to have is the reference
PMF of the 3 languages we are using. If we believe that there is a certain pattern in the PMF of the vowel
sound distribution in these languages, then statistically, if we have a large enough sample, the PMF should
represent the population parameters. In our case, we decided to use a long speech sample of each language
and use its vowel sound PMF as the reference data, which will be used later in the system to match smaller
random speech samples.

3This content is available online at <http://cnx.org/content/m33115/1.1/>.

42 CHAPTER 4. LANGUAGE RECOGNITION USING VOWEL PMF ANALYSIS

Figure 4.2

Figure 4.3

43

4.4 Behind the Scene: From Formants to PMFs4

4.4.1 Identifying Vowel Sounds in a Speech Sample

We exploit each vowel sound's unique formant distribution to identify every occurrence of certain vowel
sounds in a sample of speech. This was done by:

Inputting a speech sample � Since human speech typically maxes out at frequencies of 4 kHz, we
chose to sample at 8000 Hz. This enabled us to compile our PMF data much more quickly than if we had
sampled at a higher standard of 44.1 kHz.

Windowing � A Hamming window is utilized to break our sample into separate chunks to be analyzed
one at a time for the presence/absence of a vowel sound. Since the Hamming window slowly tapers towards
zero at the edges, the spectrum will appear much smoother and less `jagged' than it would have had we used
a rectangular window.

Figure 4.4

4.4.2 Frequency domain analysis of formants:

The code works as following:
Locate the peaks, decide the formant according to the frequencies of 3 or more consecutive high magni-

tude, set �ags for the 5 vowel sound, go through the database to match, decide the vowel or consonant.
Look at each window and determine whether or not there is a vowel there; a string of a certain vowel

sound (2 or more) will be treated as a `vowel', otherwise �not a vowel�. Then the system gives the output as
a string of the �ve vowels: a, e, i, o, u and �C� if there is a consonant detected in between.

The plots below are generated by the code when we were building the formants data base using vowel
sound samples.

4This content is available online at <http://cnx.org/content/m33134/1.3/>.

44 CHAPTER 4. LANGUAGE RECOGNITION USING VOWEL PMF ANALYSIS

Figure 4.5

45

Figure 4.6

46 CHAPTER 4. LANGUAGE RECOGNITION USING VOWEL PMF ANALYSIS

Figure 4.7

47

Figure 4.8

48 CHAPTER 4. LANGUAGE RECOGNITION USING VOWEL PMF ANALYSIS

Figure 4.9

4.4.3 Creating Language PMFs

In order to create probability mass functions for the distribution of our 5 vowel sounds in di�erent languages,
we �rst gathered several speech samples of di�erent languages. Since our code operates on .wav �les sampled
at 8000 kHz, we re-sampled all of our speech samples to meet these speci�cations. Using our code, we
identi�ed how often the 5 sounds occurred in all of the samples of one language, and then created a probability
mass distribution function based o� of that information.

function answer = langdetect(x)

%Transform the character string from formants.m to recognizable numerical

%values

x = double(x);

%Initiate count vector

count = zeros(5,1);

%Count the number of occurences for each vowel

for i=1:length(x)

if x(i) == 97

count(1) = count(1) + 1;

elseif x(i) == 101

count(2) = count(2) + 1;

elseif x(i) == 105

count(3) = count(3) + 1;

elseif x(i) == 111

count(4) = count(4) + 1;

49

elseif x(i) == 117

count(5) = count(5) + 1;

else

continue;

end

end

%Normalize

count = count/(sum(count));

%PMF Bank

JAP = [0.25 0.35 0.12 0.23 0.05];

SPA = [0.06 0.45 0.19 0.2 0.1];

ENG = [0.15 0.35 0.05 0.4 0.05];

%Finding the difference between the sample and the reference

japdiff = abs(count'-JAP);

spadiff = abs(count'-SPA);

engdiff = abs(count'-ENG);

%Put the sum of the differences into a vector

diff = [sum(japdiff), sum(spadiff), sum(engdiff)];

%Find the index and magnitude of the minimum difference

[Y,I] = min(diff);

%Check and output which language has the lowest absolute difference

if I == 1

answer = 'Japanese';

elseif I == 2

answer = 'Spanish';

else

answer = 'English';

end

4.5 Results5

4.5.1 Detection

For each language, we prepared �ve samples for detection. In essence, our code compares the pmfs of the
sample with the reference pmfs in our database. The most straightforward method is to subtract the sample
PMF vector from the 3 reference PMF vectors in the database and look at the sum of the di�erence from 5
vowels. The one with the smallest total error will be the output decision of the language.

Reference PMFs

a E i o u

JAP 0.25 0.35 0.12 0.23 0.05

SPANISH 0.06 0.45 0.19 0.2 0.1

ENGLISH 0.15 0.35 0.5 0.4 0.5

Table 4.1: Reference pmfs compiled from sixty minute samples for each language

5This content is available online at <http://cnx.org/content/m33113/1.2/>.

50 CHAPTER 4. LANGUAGE RECOGNITION USING VOWEL PMF ANALYSIS

4.5.2 Results

Japanese

a e i o u

0.1866 0.4249 0.1593 0.2018 0.0273

0.2592 0.3723 0.1105 0.2020 0.0559

0.2606 0.3092 0.1238 0.2427 0.0635

0.2412 0.3496 0.1344 0.2092 0.0656

0.0816 0.3754 0.0727 0.3071 0.1632

Table 4.2: Pmfs generated from �ve �ve-minute Japanese samples

Spanish

a e i o u

0.1008 0.4258 0.2145 0.1398 0.1192

0.0396 0.4578 0.1887 0.2559 0.0580

0.0506 0.454 0.1902 0.1979 0.1074

0.0682 0.4763 0.1630 0.2187 0.0738

0.0608 0.4053 0.2055 0.1929 0.1355

Table 4.3: Pmfs generated from �ve �ve-minute Spanish samples

English

a e i o U

0.1580 0.3553 0.0769 0.3764 0.0335

0.1830 0.2468 0.1450 0.3021 0.1231

0.1798 0.4568 0.1023 0.2029 0.0582

0.1013 0.5023 0.0803 0.2587 0.0287

0.1670 0.3897 0.0598 0.3667 0.0168

Table 4.4: Pmfs generated from �ve �ve-minute English samples

Detection Results

Sample1 Sample2 Sample3 Sample4 Sample5

Japanese Japanese Japanese Japanese Japanese English

Spanish Spanish Spanish Spanish Spanish Spanish

English English Japanese Japanese Spanish English

Table 4.5: Detection results of the �ve samples of each language

51

4.6 Conclusions6

4.6.1 Conclusions

After generating the PMFs from samples of each language, we notice that, for Japanese, the probability of
the �u� sound is comparatively smaller than the other vowel sounds. This supports the fact that �u� sound
is actually quite uncommon in the Japanese language. In addition, from our generated pmfs, it appears
that detection for Japanese is fairly consistent, with only one sample missed. For Spanish, each of the �ve
samples was detected correctly. However, for English, only two of the �ve samples were detected correctly.
This result may suggest that English has greater variability in its vowel sounds than Spanish and Japanese.
Therefore, �ve-minute samples are not enough for proper detection.

We conclude that our approach is inadequate for proper language detection. First, the PMFs of vowel
sounds for di�erent languages do not vary as much as we initially thought. Therefore, languages of similar
origins (e.g. romantic languages) are di�cult to di�erentiate apart. Second, our approach is extremely
sample-size dependent, because it relies on the sample PMF to converge to the reference PMF. By the law of
large numbers, our approach would only work with large sample sizes. In addition, there is no guarantee that
our reference PMF is the expected PMF of the language. We compiled our reference PMF from sixty total
minutes of samples, but the actual expected PMF may require much larger samples. Third, our method is
quite tedious. Our samples require signi�cant signal processing before it can be used in our system, including
down-sampling, ampli�cation, and noise removal. Also, each person speaks at di�erent formant frequencies.
Therefore, the vowel sound recognition system needs to be synced to each speaker. In conclusion, our
language detection system is functional but severely limited.

4.6.2 Improvements

There's always room for improvement! As mentioned, a larger sample size would greatly improve the
accuracy of our system. In addition, since what separate languages are not their vowels but consonants,
I believe a consonant sound recognition system in complement with our vowel sound recognition system
would drastically improve the applicability of our system. Finally, the detection process, especially the
preparation of the speech samples, can be automated to lessen hardship on the tester.

4.6.3 Acknowledgements

We would like to extend our thanks to Professor Richard Baraniuk, Matthew Moravec, Daniel Williamson,
and our mentor Stephen Schnelle.

6This content is available online at <http://cnx.org/content/m33127/1.3/>.

52 CHAPTER 4. LANGUAGE RECOGNITION USING VOWEL PMF ANALYSIS

Chapter 5

A Flag Semaphore Computer Vision

System

5.1 A Flag Semaphore Computer Vision System: Introduction1

5.1.1 A Flag Semaphore Recognition System

We seek to implement a computer vision system for classifying and interpreting �ag semaphore systems,
as recorded by something as simple and commonplace as a webcam. The classi�cation is implemented in
a MATLAB script that, taking an input video �le in wmv format, produces a string of the message in
semaphore in the video. This can optionally produce a marked-up video, showing the semaphores as they
are recognized, overlaid with the video. Note that this can process video �les faster than they can be played,
and could be implemented in realtime with parallel capture methods.

We also seek to implement a related Internet Engineering Task Force protocol documented in RFC 4824.
This documents transmitting IP datagrams over a link layer implemented in �ag semaphore. We seek to
bridge this link layer and a more standard Ethernet connection.

5.1.1.1 A Maritime Signaling System

Flag semaphore is a perhaps-archaic system for transmitting signals through a line of sight connections with
di�erent positions of colored �ags. With one �ag in each arm, and eight possible positions for each �ag, there
are 28 possible static signals with distinct positions for each �ag, with an additional �attention� dynamic
signal, and space, denoted with both �ags down.

The traditional naval semaphore �ags, as used in the system we have implemented are square, are square
and are divided into two large red and yellow triangles across the diagonal. Because the �ags are not rigid,
they deform, making traditional matched �ltering di�cult, but the colorful design of the �ags is helpful,
because it allows us to use color tracking to determine the �ags' positons.

1This content is available online at <http://cnx.org/content/m33092/1.2/>.

53

54 CHAPTER 5. A FLAG SEMAPHORE COMPUTER VISION SYSTEM

Figure 5.1: A diagram of signal "J" (courtesy of Wikipedia). This symbol is always used to begin
transmission.

5.2 A Flag Semaphore Computer Vision System: Program Flow2

5.2.1 Program Computational Flow

This section describes the processes that the �ag semaphore computer vision system we implemented un-
dergoes in order to process input signals an produce output, separating the description into sections about
the input, classi�cation, and ouput. Refer to the �ow chart in Figure 5.2 for an illustration and concise
description.

Figure 5.2: This �ow chart illustrates the processes involved in the �ag semaphore computer vision
system from input signal to various outputs.

2This content is available online at <http://cnx.org/content/m33095/1.2/>.

55

5.2.2 Input

The �ag semaphore computer vision and interpretation system we developed takes a prerecorded video �le
as input to a MATLAB function. The video signal should be produced with two semaphore signaling �ags
of the red and yellow triangle type. For best performance, the signaler should be near the center of the
video frame images and as close to the camera as possible while ensureing that the vertical and horizontal
signaling range �ts within the images. The signaler may either signal facing the camera or signal facing away
from the camera, and the proper adjustment will automatically be made by the program. Also, The upward
direction of the camera must correspond to the upward direction of the signaler.

All signals should be formed through rapid motion to the desired �ag positions. A signal is only guaran-
teed to register if it is held in place for at least the speci�ed hold time (which defaults to 1 second). However,
the framerate of the video �le and the rate at which a person can signal limit the signaling rates compati-
ble with this program to reasonable values. Increasing the hold time increases the accuracy of the output.
Repeated characters should be formed by signaling a space between them. Please note that the "chip-chop"
attention signal is not supported at this time. (It is an error in the RFC 4824 protocol.) Every signal must
begin with the alphabetic character (J) on the �rst frame, which is used to determine the direction the
signaler is facing and the pixel position of the signaler. This �rst character will not be displayed.

The video �le itself should be in a wmv format, although other �le types compatible with mmread may
also function correctly. The �le should be placed in the same directory as this �le (FlagSemaphore.m) and
the �le name should be passed to the function in a string as the �rst arguement.

The second arguement, which is optional, supplies the desired time, in seconds, for which a signal must
be held in order to be guarenteed to register. Increasing this parameter decreases the likelihood that a
slow transition between two signals will be incorrectly registered as a signal, but decreases the best possible
signaling rate. Thus, signal transitions should be fast and abrupt for this reason. The default hold time is
one second.

5.2.3 Classi�cation

The �ag semaphore computer vision and interpretation system we developed, after extracting half of the
hold time blocks of input video data as RGB matrices, classi�es the signal as a �ag semaphore symbol and
then produces several forms of output. Because of the objects of interest in the image are two bright red
and yellow �ags, the classi�cation problem suggests color tracking as a promising approach.

Hence, our classi�er begins by performing color matching with the RGB matrix data of each frame in the
half of the hold time interval in order to �nd the red regions and yellow regions in the image. Color matching
is a somewhat di�cult problem since the RGB regions corresponding to a given color are, in general, not
convex and di�cult to describe algorithmically. However, our rudimentary color matching algorithm was
always su�cient to highlight the �ag regions.

Because there are multiple �ags in the image and there could be similarly colored objects nearby, we use
a 2D matched �lter with a small square box as the �ltering signal implemented in the frequency domain
for speed in order to discriminate between objects of the same color. A simple peak �nding algorithm then
�nds the pixel locations of the red objects and the pixel locations of the red objects. Since our �ags are
red and yellow, we search for red objects near yellow objects and identify those as �ags, with special case
handling so that the cases in which less than two red objects or less than two yellow objects are found may
still be correctly identi�ed using saved data from the previous �ag locations. This produces results that are
highly resistant to noise contamination unless the noisy objects are colored with large patches of both red
and yellow.

Each of the �ag positions are then placed in one of eight angular regions about an estimate of the center
of the signaler corresponding to the eight �ag positions used to form �ag semaphore signals. If the �ags
remain in the same angular region for the vast majority of the frames considered, the �ags are not in motion
and a symbol is registered according to which angular regions contain the �ags. Otherwise, the �ags are
taken to be in transition. Thereafter, the output symbol is interpreted in the context of the sequence of
previous symbols to produce a character or to toggle between letters and numbers.

56 CHAPTER 5. A FLAG SEMAPHORE COMPUTER VISION SYSTEM

5.2.4 Output

Several other inputs can optionally be supplied to specify other options. The print �ag is the second
argument and determines whether the interpreted message will be displayed on the MATLAB prompt. The
third argument is the play �ag which speci�es whether the video will be played in a MATLAB �gure window.
The fourth argument is the transceiver �ag which determines whether the program will attempt to send and
receive TCP/IP packets (currently ignored). The �nal two arguments determine whether an output video
�le will be produced and specify the name of the output �le. For information on how to form packets of
TCP/IP data, refer to the RFC 4824 documentation3 .

For example, the following would store a the message interpreted from the video �le example1.wmv into
the string message1 without printing to the MATLAB prompt, playing the video �le, attempting to transmit
and recieve packets, or writing an output video �le.

message1=FlagSemaphore('example1.wmv');

This, on the other hand, would store a the message interpreted from the video �le example2.wmv into
the string message2 while printing to the MATLAB prompt but not playing the video �le, attempting to
transmit and recieve packets, or writing an output video �le.

message2=FlagSemaphore('example2.wmv',1,1,0,0,0,'');

This, example would store a the message interpreted from the video �le example3.wmv into the string
message3 while playing the video �le but not printing to the MATLAB prompt, attempting to transmit and
recieve packets, or writing an output video �le.

message3=FlagSemaphore('example3.wmv',1,0,1,0,0,'');

This, example would store a the message interpreted from the video �le example4.wmv into the string
message4 while attempting to transmit and recieve packets but not playing the video �le, printing to the
MATLAB prompt, or writing an output video �le. Note that this option is not yet implemented and will be
ignored.

message4=FlagSemaphore('example4.wmv',1,0,0,1,0,'');

This, example would store a the message interpreted from the video �le example5.wmv into the string
message5 while writing an output video �le but not playing the video �le, printing to the MATLAB prompt,
or attempting to transmit and receive packets.

message5=FlagSemaphore('example5.wmv',1,0,0,0,1,'exampleoutput5.wmv');

Some example �ag semaphore signal input video �les and output video �les can be found in the demon-
strations section. Links to the full source code can be found in the additional resources section.

5.3 A Flag Semaphore Computer Vision System: Program
Assessment4

5.3.1 Program Approach Advantages

The approach taken to the implementation of our �ag semaphore computer vision classi�cation and inter-
pretation system described in the program �ow module provides several important bene�ts.

Due to the use of the Fast Fourier Transform to implement the matched �lter in the frequency domain,
the program runs su�ciently fast that it could be used for real time video processing with the aid of
additional parallel video capture software, such as that which can be found in the MATLAB Data Acquisition

3http://tools.ietf.org/html/rfc4824
4This content is available online at <http://cnx.org/content/m33098/1.2/>.

57

Toolbox. When additional speed is desired, we note that the program remains highly accurate, even with a
downsampling factor of three in both spacial dimensions.

Furthermore, the program demonstrates robustness when presented data contaminated with noise in the
form of extraneous red or yellow objects as a result of the use of both the red and yellow region data when
attempting to identify the �ags. Detailed special case handling prevents video frames in which one or more
complete color region of a �ag is occluded from ruining the color tracking.

Although it is di�cult to get a good estimate of the accuracy of the classi�er, limited testing, which
can be seen on the demonstrations page, suggests that the results are quite accurate. Additionally, the
program provides for variable accuracy by increasing or decreasing the signal hold time parameter This
boosts accuracy by reducing the likelihood that a transition between symbols will be classi�ed as a symbol
but decreases the maximum possible signaling rate due to increased required pause time at each symbol.
Hence this option represents a tradeo�, the optimal value of which will be di�erent for di�erent signalers.

5.3.2 Program Approach Disadvantages

Although su�ciently e�ective for the test videos, the color matching and peak detection algorithms used are
not perfect. A full treatment of color matching would be somewhat di�cult as RGB regions corresponding
to a given color are, in general, not convex and thus di�cult to describe. The solutions used are ad hoc
solutions that we developed for the problems of color matching and peak detection, so there likely exist
superior algorithms to perform those tasks.

Also, the program models the signaler arms as rotating about a single point, but there is width between
human shoulders. While this problem was e�ectively overcome with empirical adjustment of the size of the
angular regions by observation of signaler habits, it remains a weakness of the model.

Occasionally incorrect signaling due to signaler error makes it di�cult to get a good estimate of the
accuracy of the classi�er, but the program works well for some hold time for every test signal video recorded.

5.4 A Flag Semaphore Computer Vision System: Demonstration5

5.4.1 Example Video Input and Output

In the testing of the recognition system, several basic signals were recorded. These tested things like rec-
ognizing the position of the sender from the �rst semaphore "J". This is essential to properly recognize all
eight positions of the �ags, each of which occurs in our test signals. We also test the letters to numbers state
transition.

Example 5.1

Example Input Video: ELEC 301

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/uU3_7cNT_7U&hl=en_US&fs=1&>

Figure 5.3: A sample signal that spells out the course number ELEC 301, which includes both letters
and numbers.

5This content is available online at <http://cnx.org/content/m33100/1.2/>.

58 CHAPTER 5. A FLAG SEMAPHORE COMPUTER VISION SYSTEM

Example Output Video: ELEC 301

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/5EeiXKrKwC8&hl=en_US&fs=1&>

Figure 5.4: The output of the the �lter for the signal "ELEC 301 " above. Notice the blank output
for the control codes for letters (the �rst) and numbers. This �le is output directly from the MATLAB
code.

Example 5.2

Example Input Video: ABCDEFG

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/IbJ2fDOtUVs&hl=en_US&fs=1&>

Figure 5.5: A simple alphabetic test case of the �ag semaphore recognition system. Note some of the
patterns formed in the standard semaphore alphabet.

Example Output Video: ABCDEFG

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/EC-3Ql_983c&hl=en_US&fs=1&>

Figure 5.6: The output of the recognition system for the signal "ABCDEFG". Note that the system
correctly di�erentiates between the signals, even when little motion is involved.

Example 5.3

Example Input Video: WRC

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/KgqXqYYVEpI&hl=en_US&fs=1&>

Figure 5.7: A short test signal "WRC". This was our �rst test case, and performs well.

59

Example Output Video: WRC

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/LB4jJqiV0-A&hl=en_US&fs=1&>

Figure 5.8: The system correctly handles this three-letter signal.

5.5 A Flag Semaphore Computer Vision System: TCP/IP6

5.5.1 A Link-Level Layer for IP Transmissions

The idea of using �ag semaphore to transmit Internet Protocol packets is suggested in RFC 4824[4]. This
presents a link-layer protocol, suitable for encapsulating and transmitting IP packets, analogous to the
Ethernet protocol frequently used for wire transmissions between machines, described by RFC 894[5] and
other Internet Engineering Task Force (ITEF) standards.

This protocol was presented as a Request For Comments on April �rst, 2007. To our knowledge, no
working implementation of this protocol has been implemented, although several errata in the original
publication have been identi�ed. A similar protocol, RFC 1149, which transfers IP datagrams over avian
carriers, was successfully tested in 2001 by a Linux User Group in Bergen, Norway[8], more than ten years
after the original speci�cation was published.

Having implemented a �ag semaphore recognition system, it seems reasonable to attempt to use it to
implement the protocol described in RFC 4824. It even seems reasonable to attempt to write a IP-SFS to
Ethernet bridge, but technical limitations prevented the completion of the bridge functionality. A complete
receiver and transmitter framework exists, although the handling of states is incomplete.

5.5.1.1 IP-SFS Channel Design in Summary

The suggested channel protocol uses 25 of the alphabetic symbols in the standard semaphore alphabet. The
�rst 16 characters are reserved for data transmission, and the remaining 9 are used for channel control codes.

The interface is half-duplex, in that an interface may be either idle, transmitting, or receiving. The idle
state is characterized by occasional KAL keep-alive signals, and either interface can initiate a state change
from idle to transmitting by sending a RTT signal.

5.5.1.2 Decoding IP-SFS Packets

In an incoming IP-SFS character stream, as with the one created by our MATLAB interface. We can use
an internal state machine, which encodes frames as strings between FST and FEN signals, with characters
deleted by the appropriate FUN or SUN undo signals. Note that this reception is received asynchronously, in
a separate instance if IpSfssRx, so that decoding bottlenecks will not a�ect our semaphore receiver.

Once an entire packet is received, and control signals are stripped out, it is possible to condense our
semaphore sequence to a byte array, as each signal represents a 4-bit nibble. A small amount of byte
manipulation shifts each pair of semaphores into a single byte. Note that the number of semaphores received
must be even.

The �rst two and last two bytes of each IP-SFS frame are header and footer data � the header de�nes
one of �ve possible encapsulated protocols with support for compressed or uncompressed IPv4 or IPv6, and

6This content is available online at <http://cnx.org/content/m33094/1.2/>.

60 CHAPTER 5. A FLAG SEMAPHORE COMPUTER VISION SYSTEM

an optional cyclic redundancy check method � CRC CCITT 16, a standard polynomial redundancy check
that is easy to implement. The last two bytes of the frame are the checksum of the frame so far.

The IpSfssFrame class can be constructed using a string � such a sequence of data semaphores. This
will throw an exception in case of error, or create an instance of the frame. Errors are thrown for format
violations or CRC failures. The object allows us to return the encapsulated packet as a byte array.

5.5.1.3 Sending IP-SFS Packets

The system also supports the propagation of IP datagrams. An IpSfssFrame can also be instantiated with
a raw IP packet with any of the standard options, including compression and verifying checksums.

An asynchronous transmitter, IpSfssTx, can be instantiated. Running this in a separate thread allows
semaphores to be queued, without the function blocking for completion. This is especially important because
there is a (con�gurable) minimum display time for each signal. A Swing-based GUI can display these signals
on the screen.

5.5.1.4 IP-SFS to Ethernet Bridge

The original goal was to produce an IP-SFS to Ethernet bridge, such that IP packets transmitted as the
payload of SFS frames could be placed onto the outgoing queue of a running machine with a network
connection.

Such �raw sockets� does not natively exist on Windows, although the WinPcap project o�ers link-layer
access. The link-layer access, however, requires proper Ethernet headers on outgoing packets, which could
likely be fabricated with additional time spent on the project.

The Java libpcap interface also o�ers methods to dump incoming packets to a �le. This makes network
sni�ng possible, but does not allow packets to be read in real time.

5.5.1.5 Future Expansion

Because of time and scope constraints, the IP-SFS to Ethernet bridge was not satisfactorily completed. In
the future, expanding this to full functionality would be quite an interesting project.

It should also be noted that much of the IpSfssFrame functionality was written in haste, and while it
was tested on reasonable cases, more automated unit testing on this and other classes in the Java IP-SFS
framework would be ideal.

The internal state of the transceiver is also partially incomplete. It does not respect the state (transmit-
ting, receiving, idle), of the connection, nor does it acknowledge packet receptions with ACK signals (or NAK
on errors), because the receiver and transmitter are not su�ciently connected.

5.6 A Flag Semaphore Computer Vision System: Future Work7

5.6.1 Real Time Video Processing

The �ag semaphore computer vision and interpretation program that our group has a reasonably fast runtime
due to the use of a matched �lter implemented in the frequency domain and the accuracy of the program
under spatial downsampling. In fact, the program runs in considerably less time than the duration of
input video �le provided that the program is not also attempting to write an output video �le, clocking
approximately 15 seconds for an approximately 20 second video. Consequently, this video processing could
be performed in real time with the aid of video capture software operating in parallel, such as is provided
in the MATLAB Data Acquisition Toolbox. However, due to a lack of funds, this was not implemented and
left as a possible future addition that would require very little modi�cation to our existing code.

7This content is available online at <http://cnx.org/content/m33103/1.2/>.

61

5.6.2 Identi�cation of all Symbols

While we could successfully identify all of the static symbols in the �ag semaphore symbol set, we left the
�chip-chop� attention symbol unidenti�ed as it is not used under the RFC 4828 TCP/IP standard and its
exclusion greatly simpli�ed the code. However, any future modi�cations may wish to support its identi�cation
for completeness.

5.6.3 TCP/IP Transceiver Implementation

Because of time and scope constraints, the IP-SFS to Ethernet bridge was not satisfactorily completed. In
the future, expanding this to full functionality would be quite an interesting project. It should also be noted
that much of the IpSfssFrame functionality was written in haste, and while it was tested on reasonable
cases, more automated unit testing on this and other classes in the Java IP-SFS framework would be ideal.
The internal state of the transceiver is also partially incomplete. It does not respect the state (transmitting,
receiving, idle), of the connection, nor does it acknowledge packet receptions with ACK signals (or NAK on
errors), because the receiver and transmitter are not su�ciently connected.

5.6.4 Miscellaneous

Other possible future expansions and modi�cations of our program could include improvements in the color
matching and peak detection algorithms used to determine the positions of the �ags. Although the current
versions function correctly with a high degree of accuracy, they are ad hoc solutions that we developed to
the problems of color matching and peak detection, so there may exist superior algorithms to perform those
tasks. Further optimization of code for improved speed performance is desirable in order to perform both real
time processing and real time video output writing to make the program more useful even if it is impractical.

5.7 A Flag Semaphore Computer Vision System: Acknowledgements8

5.7.1 Acknowledgements

The authors would now like to acknowledge some of the other people who have contributed to the success
of this project. First, we thank Chinmay Hegde and Dr. Rich Baraniuk for mentoring our project group
and instructing our ELEC 301 class, respectively. We also appreciate Dr. Alan Cox for providing us with
information on the use of raw TCP sockets. Finally, we send our thanks to Micah Richert who published a
program enabling our old version of MATLAB to read and write from wmv �les and to the jNetPcap and
WinPcap developers for their e�orts.

5.8 A Flag Semaphore Computer Vision System: Additional
Resources9

5.8.1 Semaphore Related Resources

• A section10 of the 1913 Royal Navy Handbook of Signaling is available from the World War I Document
Archive.11

• RFC 482412 documents sending IP datagrams over �ag semaphore.

8This content is available online at <http://cnx.org/content/m33106/1.2/>.
9This content is available online at <http://cnx.org/content/m33107/1.2/>.

10http://www.gwpda.org/naval/s0900000.htm
11http://gwpda.org/
12http://tools.ietf.org/html/rfc4824

62 CHAPTER 5. A FLAG SEMAPHORE COMPUTER VISION SYSTEM

5.8.2 Project Resources

• The SourceForge13 project page for our project is available: A Flag Semaphore Computer Vision
System.14

• The videos15 for the project are available on YouTube.

5.9 A Flag Semaphore Computer Vision System: Conclusions16

5.9.1 Conclusions

Over the course of the past month, our project group successfully implemented a computer vision system
for the interpretation of �ag semaphore signals. The approach taken has yielded accurate results that are
robust under noise contamination and can withstand substantial spacial downsampling. However, weaknesses
in color matching and peak detection along with several missing desirable features leaves room for future
improvement. Notably, the program would be capable of processing video input in real time with the aid
of parallel video capture software with few additional changes to the code. Also, signi�cant progress toward
fully implementing a TCP/IP packet transceiver using the RFC 4824 standard was made. Our limited testing
results suggest that the program yields results that are of reasonably high accuracy, with a tradeo� between
accuracy and signaling rate. Hence, we conclude with the primary demonstration of our projects success in
the output video below that signals the class name �ELEC 301�.

Example Output Video: ELEC 301

This media object is a Flash object. Please view or download it at
<http://www.youtube.com/v/5EeiXKrKwC8&hl=en_US&fs=1&>

Figure 5.9: The output of the the �lter for the signal "ELEC 301 " above. Notice the blank output
for the control codes for letters (the �rst) and numbers. This �le is output directly from the MATLAB
code.

13http://sf.net
14http://sourceforge.net/projects/�agsemaphore/
15http://www.youtube.com/user/smkruzick
16This content is available online at <http://cnx.org/content/m33109/1.2/>.

Chapter 6

License Plate Extraction

6.1 Prelude1

6.1.1 Purpose

To develop an algorithm for extraction of license plate numbers from still photos of stationary cars.

6.1.2 Methods

We divided this project into two sections- Image Processing and Support Vector Machine (SVM) Training:

• We take picture of a still car (from either front or back), compress and crop out to speed up the process,
localize the plate position and extract the letters into individual binary matrices.

• We take each of the matrix generated in the previous process and use the SVM algorithm to distinguish
which letter exactly it is.

6.1.3 Applications

This algorithm can be integrated to the related vehicle identi�cation applications such as:

1. Parking lot registration
2. Tra�c violation tracking
3. Vehicle surveillance

6.2 Image Processing - License Plate Localization and Letters
Extraction2

The general method we used for extracting the license plate letters out of a picture was:

1This content is available online at <http://cnx.org/content/m33154/1.2/>.
2This content is available online at <http://cnx.org/content/m33156/1.2/>.

63

64 CHAPTER 6. LICENSE PLATE EXTRACTION

Figure 6.1: Overall method for �nding license plate letters/numbers.

1. Compression and Cropping: decreases the size of the photo and and blacks out areas that de�nitely
do not contain license plate.

2. License Plate Localization: determines the location of the plate in the photo
3. Letter Extraction: searches within the plate for the plate letters/numbers and copies them out of

the photo.

Following is an explanation of the individual sections. Included are also images showing the e�ects of each
section on the following picture:

Figure 6.2: Original image.

6.2.1 Compression and Cropping

In order to decrease image processing time, we �rst compress all pictures to a standard size and black out
all areas that are de�nitely not license plates. The size we chose was 640px by 480px, the smallest size at
which we could still reasonably read the license plates.

65

To determine which areas were de�nitely not license plates, we realized that the typical Texas plate
contained red, blue, and white as major colors. Therefore, we focused on these two colors, making our
cropping algorithm:

1. Separate the JPEG picture into its three layers of red, green, and blue.
2. Consider the area around a blue pixel, and black it out if the density of red is lower than a certain

threshold value.

Figure 6.3: Compressed and cropped image (Note the black areas around the right and bottom of the
photo).

6.2.2 License Plate Localization

Once we determined which areas possibly contained license plates, we looked in those areas for the plates
themselves. We determined that most plates contain dark letters on light backgrounds and so looked for
areas of high contrast.

Our �nal algorithm looked as follows:

1. Turn the cropped photo into black-and-white for easier di�erentiation between dark and light spots.
2. Filter the image to remove noise (single-pixel white spots).
3. Locate the license plate position by scanning the photo vertically. We expect a row running through

the license plate row to have a maximum number of individual dark spots, or "clusters." Therefore, we
�nd and store the two rows in the image with that contain the most clusters.

4. To �nd the horizontal position of the plate, scan the picture horizontally by moving a square window
from left to right and counting the number of clusters inside. The �nal position of the license plate is
square that contains the greatest number of clusters. If any two squares contain the same number of
clusters, the two are merged together.

66 CHAPTER 6. LICENSE PLATE EXTRACTION

Figure 6.4: Close-up of the license plate as determined by the algorithm.

6.2.3 Letter Extraction

To �nd the letters on a license plate, we �rst determined some identifying characteristics:

1. Usually, and always on Texas plates, the letters of the plate are dark on a light background.
2. The letters are uniform in height
3. The letters all occur in approximately the same area.
4. There are usually between 3 and 7 letters on a plate.

These characteristics give us the form for our letter extracting algorithm.

1. From the plate-locating algorithm, we have a small 200px by 200px image that contains the car's license
plate.

2. We convert the image into grayscale for easier processing.
3. We locate all the dark (low intensity) spots in the picture that are surrounded by light (high intensity)

spots. We determine the separation between these dark spots and give each individual spot a label.
4. Compare the sizes of the spots and look for about six that have the same height. These six spots are

the letters on the plate.
5. Save the pixels that make up the letters into their individual matrices.

We tried this algorithm and found that it worked for all images for which the plate-locating algorithm
returned an image containing the entire plate.

67

Figure 6.5: Letters extracted from the photo.

6.3 SVM Train3

6.3.1 The Math and Algorithm

For digit recognition, we use Support Vector Machine (SVM) as a learning machine to perform multi-class
classi�cation.

The way SVM works is to map vectors into an N-dimensional space and use an (N-1)-dimensional hy-
perplane as a decision plane to classify data. The task of SVM modeling is to �nd the optimal hyperplane
that separates di�erent class membership.

Example 6.1
Let's take a look at a simple schematic example where every object either belongs to GREEN or
RED.

Figure 6.6: Picture from: Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector
machines, 2001.

SVM �nds the line de�ning the boundary between the two types. Then, it can classify a new
object by looking at on which side of the line it falls.

However, it is unlikely that we can always have a linear dividing boundary. Rather than �tting
nonlinear curves to the data, we can map each object into a di�erent space via a kernel function
where a linear dividing hyperplane is feasible.

3This content is available online at <http://cnx.org/content/m33159/1.2/>.

68 CHAPTER 6. LICENSE PLATE EXTRACTION

Figure 6.7: Hyperplane classifying the two cases (Picture from: Chih-Chung Chang and Chih-Jen Lin,
LIBSVM : a library for support vector machines, 2001.)

The concept of the kernel mapping function is so powerful that SVM can perform separation
with very complex boundaries. The kernel function we use in this project is radial basis function
(RBF).

6.3.1.1 SVM Working Principles

• Vectorize each instance into an array of features (attributes).
• Model with training data to �nd optimal dividing hyperplane with maximal margin.
• Use SVM to map all the objects into a di�erent space via a kernel function (see Figure 3 for examples).
• Classify new object according to its position with respect to hyperplane.
• Errors in training are allowed while the goal of training is to maximize the margin and minimize errors.

Namely, �nd the solution to optimization problem in Figure 4, where x is the attribute, y is the object
label, ξ is the error and φ is the mapping function.

69

Figure 6.8: A few examples on the kernel functions; for our case we choose the radial basis function
(RBF)

Figure 6.9: Find a hyperplane with the maximized margin space to split the two classes. (Equation
from: Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 2001.)

6.3.2 Methods and Running Routines

1. Collect the matrices obtained from the Image Processing section and label each of the instances.
2. Select a reasonable amount as the training set, and the rest as the testing set, with a balanced choice

for each of the instances.
3. Feed the training set into the SVM-train process to generate a model. This calculation takes time, but

it only needs to be done once.
4. Now we're ready to make predictions to a given license plate! An input of labeled data will give us the

accuracy of this algorithm; an unlabeled instance can also be fed in to see the prediction.

note: The SVM library we used is available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm

70 CHAPTER 6. LICENSE PLATE EXTRACTION

6.4 Conclusions4

6.4.1 Results

We were able to successfully locate the license plate in about 70% of our sample pictures, and of the characters
we extracted, we were able to recognize them with about 72.7% accuracy (619 sets of training data).

6.4.2 Future Improvements

6.4.2.1 Compression and Cropping

Since we were targeting Texas plates, which only have red, blue, and white colors, we were able to black out
many parts of the images by wiping out all green regions. In the future, however, we would like to be able
to recognize plates not from Texas that might have green components. Therefore, we should �nd a criteria
for �nding the plates other than color.

6.4.2.2 Letter Recognition

Acquiring State Pattern and Convention Attributes
In many license plates, it is di�cult to tell the di�erence between a zero and an O, even for a human.
Therefore, for the purposes of this project, zeros and Os were considered the same. However, in many states,
it is actually possible to tell the di�erence because the license plate has a set pattern (e.g., 2 letters, 2
numbers, 2 letters). In the future, we could identify what state the plate comes from and then make use of
this knowledge to get more accuracy in letter recognition.
Multi-class Support Vector Machine
In addition, one of the characteristics of SVM is that is solves a two-class problem. In order to get around
this, for our project, we used a one-against-the-rest approach. This meant that we basically used the SVM
machine to answer the question, "Is this a __?" 35 (A-Z, 1-9) times for each unknown letter/digit. In the
future, we will want to look at more e�cient and accurate methods. One of the possible improvement can
be found in the work by T.-K. Huang, R. C. Weng, and C.-J. Lin. Generalized Bradley-Terry Models and
Multi-class Probability Estimates. Journal of Machine Learning Research5

Automated Training Set Generation and Extraction E�ciency
Finally, currently, any digit that we feed into the SVM will register as something; we have no way of telling
whether the image is in fact a letter/digit. In the future, we would like to train the machine to be able to
tell characters from non-characters. This will allow less rigorous (and time-consuming) computation in the
image-processing section and give our algorithm greater �exibility.

6.4.3 References

Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm6

6.4.4 Special Thanks

Thanks to:

• Dr. Aswin Sankaranarayanan, our mentor
• Dr. Richard Baraniuk, the ELEC 301 instructor
• Dr. Fatih Porikli (MERL), for providing us with a license plate dataset
• Drew Bryant and Brian Bue for technical advising

4This content is available online at <http://cnx.org/content/m33160/1.3/>.
5http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/#9
6http://www.csie.ntu.edu.tw/∼cjlin/libsvm

Chapter 7

An evaluation of several ECG analysis

Algorithms for a low-cost portable ECG

detector

7.1 Introduction1

Introduction
Measuring vital signs is a crucial part of health care in hospitals across the world. However, these

systems are often extremely expensive, and can often only be given to patients already in intensive care.
Upon entering the Emergency ward, however, a patient often needs to wait before receiving direct medical
attention, since it is important for health care professionals to prioritize to whom they direct attention. If a
low-cost system of constant monitoring of vital signs existed, the emergency wards could potentially provide
simple vital sign monitoring for every patient that entered the hospital, assisting in resource management
and providing better tools with which to evaluate patients [1]. We aim in this module to discuss the basic
physiology behind the ECG trace, provide an overview of the primary signal processing methods used to
develop a heart rate calculator, and describe a test bed that can be used to test an algorithm, with some
demo results. We will end with a discussion on the possibilities these algorithms provide for implementation
of a real-time heart rate monitor.

The most important vital sign that can be monitored is the heart rate. Many physiological conditions can
be diagnosed by analyzing heart rate abnormality, and abnormal heart rate has been shown to be a leading
indicator for heart attack[2]. The primary conditions that are diagnosed are bradycardia and tachycardia.
Bradycardia is known as the slowing of the heart rate; for adults, below 60 bpm. Tachycardia is the abnormal
quickening of the heart; for adults, above 100 bpm.

Tachycardia has been shown to indicate greater oxygen demand for the heart, and eventually, can lead
to a heart attack. More speci�cally, the case of ventricular tachycardia

is known to be a potentially life-threatening condition that can lead to sudden death if not immediately
detected and treated.

Bradycardia also takes on di�erent forms. Sinus bradycardia is a particularly slow heartrate that is
associated with heart diseases. It is also possible for sinus bradycardia not to indicate any medical condition
whatsoever, such as a patient's good �tness. An alternate form of bradycardia known as Sick sinus syndrome
is caused by complications with the sinoatrial node, which naturally monitors the heart. Heart block is the
most serious complication, as it can arise suddenly and lead to sudden cardiac arrest or other medical
emergency [3].

1This content is available online at <http://cnx.org/content/m33167/1.3/>.

71

72
CHAPTER 7. AN EVALUATION OF SEVERAL ECG ANALYSIS

ALGORITHMS FOR A LOW-COST PORTABLE ECG DETECTOR

The primary action that needs to be taken in order to monitor these potentially life-threatening conditions
is to take an ECG (electrocardiogram) recording of the signal. The Electrocardiogram has been extensively
researched in the literature, and is relied upon and accepted by many medical professionals as the best
way to measure and diagnose abnormal rhythms of the heart. An ECG machine works by measuring the
electrical activity of the heart over time using electrodes placed at key places of the body. The electric
potential between two electrodes is termed a lead, and averages are taken of di�erent leads around the body
to determine the overall electrical activity through di�erent axes of the body. The current gold standard is
the 12-lead ECG.

Even though the standard ECG is relied upon as the primary means of diagnosing abnormal rhythms,
to actually glean this information o� of the reading of the trace paper requires a great deal of training and
specialization. Unless the trained specialist is present to continuously evaluate every patient's

ECG recording, in an emergency situation a medical complication may go unnoticed.

7.2 How ECG Signals Are Analyzed2

How ECG Signals Are Analyzed :
Methods have been developed to analyze the heart rate automatically, by reading the ECG signal trace

and performing certain types of signal processing in order to extract the heart rate information. In analyzing
the ECG, the most important parameter to focus on is the QRS complex. The ECG signal is split up in the
literature into di�erent waves, each with its own nomenclature.

Figure 7.1

2This content is available online at <http://cnx.org/content/m33166/1.2/>.

73

Figure 7.2

The QRS complex stands for the key portion of the ECG wave that involves the depolarization of the right
and left ventricles. The QRS complex thus contains the peak of the pulse, and indicates that a heartbeat
has occurred.

QRS detection is the most important parameter in the determination of heart rate variability []. Although
not every QRS complex contains three separate Q, R and S waves, any conventional combination of these
can be considered a QRS complex. However, in order to understand the ECG reading and analyze it, it is
necessary to label each part of the complex. Once they are identi�ed, they can be employed to characterize
heartbeats.

Once the QRS has been detected, the location of the QRS in time can be annotated as a beat, and a
sequence of beat annotation over time can be charted. A heart rate algorithm that takes the sequence of
beat annotations, measures the time di�erence between beats to calculate a heart rate at every moment in
time can then analyze this sequence of beat annotations.

74
CHAPTER 7. AN EVALUATION OF SEVERAL ECG ANALYSIS

ALGORITHMS FOR A LOW-COST PORTABLE ECG DETECTOR

Figure 7.3

Now, with the necessary heart rate information extracted, basic thresholds can be put on a heart rate
variability system in order to determine if the patient has exited a normal state. If the heart rate is below
60 bpm or above 100 bpm for a normal adult, an alarm can be raised to alert the medical personnel that
the patient requires particular attention.

7.3 Algorithms3

There are a range of available algorithms for QRS detection, based on various methods such as peak detection,
slope transform analysis, and length transform analysis. Most of these algorithms involve the use of adaptive
�lters, and others use non-adaptive �lters. Adaptive �lters are preferred when it comes to heart rate analysis,
largely because ECG signals are non-linear. For this reason, it is necessary to periodically analyze the output
and modify the �lter parameters accordingly.

We aim in this project to give a brief overview of the existing literature and algorithms, and compare
the robustness of two leading QRS detection algorithms in accurately detecting heartbeats.

Algorithms for ECG Analysis
There is an extensive library of QRS detection algorithms available in the medical literature, since QRS

detectors are the most important signal processing algorithm involved in ECG analysis. We will here analyze
three primary algorithm methods: Peak Detections, Slope transform analysis, and length transform analysis.

Particular Peak Detection Algorithm
The peak detection algorithm that we chose to analyze speci�cally looks at a 160ms window, splits the

window into three segments, and �nds if the maximum value is contained within the center segment; if so, a
beat is annotated. If no beat is detected for longer than 200ms, the threshold is updated using an adaptive
�lter that functions according to the rate described below:

3This content is available online at <http://cnx.org/content/m33164/1.2/>.

75

Figure 7.4

We were unable to generate a working peak detection algorithm in order to insert it into the algorithm
tester; however, an in-depth review of the literature indicated that it was overall less accurate than the other
two algorithms.

SQRS
The slope-detection algorithm that we chose uses a Finite Impulse response �lter with the following �lter

mask:
[1 4 6 4 1 −1 −4 −6 −4 −1];
This �lter mask corresponds to the basic shape of a QRS wave. After low-pass �ltering to eliminate any

remaining noise, this QRS �template� is convolved with the actual signal; the output of the convolution thus
provides information about the places in which the signal best matches the QRS shape, wherein the peaks
of the convolution correspond to the best matches.

Figure 7.5

The algorithm incorporates an adaptive threshold that updates at every beat annotation, after 2 seconds
without a beat annotation, or if the signal proves too noisy and contains too many physiologically impossible
false positive detections. This is one of the two algorithms we investigated and tested. The algorithm is
described by the following �ow chart:

WQRS:
Finally, the second �lter that we are investigating and testing is based on what is called the WQRS

algorithm. This algorithm is di�erent from the SQRS algorithm in the information it extracts from the raw
ECG signal and the manner in which it does so. The main step in this algorithm that makes it di�erent
from the SQRS algorithm is that this takes a length transform of the ECG signal. This is a transformation

76
CHAPTER 7. AN EVALUATION OF SEVERAL ECG ANALYSIS

ALGORITHMS FOR A LOW-COST PORTABLE ECG DETECTOR

that essentially serves to convert the erratic ECG signal into another signal from which it is easier to analyze
and extract useful information. When applied to a potential QRS complex, the length transform can tell us
how wide the distance from Q to S is, and where the onset and the end of the complex are located in time.
The length transformation also introduces a non-linear scaling factor into the mix, which scales di�erent
parts of the signal di�erently. This results in areas that we are interested in, i.e. the QRS complex being
accentuated, and the areas that we do not require, such as noise and the P and T waves, being suppressed.
Thus, we are able to obtain the information necessary to determine the heart rate whilst not letting noise
interfere.

Figure 7.6

The �rst step in the algorithm is to low pass �lter the signal in order to eliminate noise. Following this,
the length transform is applied and a threshold value of the algorithm is set as three times the mean value
of the length transform of the �rst set of data points. After 10 seconds have elapsed, the threshold value is
readjusted to be one-third the threshold base value. Following this, the threshold base value is periodically
adjusted.

77

Figure 7.7

Once the algorithm detects a potential QRS complex in which the length of QS has just exceeded the
threshold, the time `t' the event occurred is saved. Then we travel backward for 125 ms to the minimum
value of the length Lmin and forward for 125 ms from `t' to obtain the maximum value Lmax, where L is
the magnitude of the length transform. Next, we again travel backward to recover where the QRS onset is
located in time and forward to recover where the end is located in time. The onset and end times are added
with -20ms and +20ms respectively, in order to provide for potential losses caused by the threshold. This
adjustment is based on statistical observations of typical heart rates and ECG signals. Finally, the algorithm
waits for 250ms before proceeding to check for another QRS complex in order to avoid detecting the same
beat again by mistake.

7.4 Testing4

Test-bed
A test bed can be setup using C. The data set used for testing in this module was a subset of the MIT-

BIH Noise Stress test available online at www.physionet.org5 . To evaluate sensitivity to noise, one can read
di�erent noise level recordings; here, we analyze three in particular from the Physionet Noise Stress Test
tool, selecting 3 di�erent Signal to Noise Ratios (SNR): 24 dB, 18 dB, and 0 dB.

First, download all of the compilers and specialized libraries for gathering ECG data, initialize storage
spaces, processing signals stored in a certain format, formatting outputs for consistency and re-use in other
algorithms, etc. This is all contained in the WFDB library toolkit. Then, download a speci�c heart rate �le
of your choice from the Physionet database and run one of the C programs containing one of the available
algorithms under the physiological signal processing header. These algorithms are designed to output a
Physionet-compatible annotation �le. This annotation �le can then be processed manually by running the
instantaneous heart rate algorithm (ihr). Using this setup also allows one to save the output of the algorithm
as a regular annotation �le. This ensures that in the future, the setup could be used to read annotation �les
and save them directly onto a memory storage unit for processing elsewhere.

The test here constructed consists of running each one of the three algorithms on 3 di�erent data �les
from the noise stress test. The annotations are compared to reference annotations available on the Physionet-
website. Using Physionet's �bxb� program, one can compare the annotations beat by beat. The bxb program

4This content is available online at <http://cnx.org/content/m33168/1.2/>.
5http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560458/www.physionet.org

78
CHAPTER 7. AN EVALUATION OF SEVERAL ECG ANALYSIS

ALGORITHMS FOR A LOW-COST PORTABLE ECG DETECTOR

outputs the two key parameters of interest in the analysis of heart beat detection: Sensitivity and Positive
Predictivity.

Sensitivity (Se) = TP/(TP+MB)
Positive Predictivity (+P) = TP/(TP+FP)
TP: number of true positive detections.
MB: number of false negatives or missed beats
FP: number of false positives; the system detected a beat where the reference annotation showed no beat.
Results
Table 1

Noisy Signal with
0dB SNR

Noisy Signal with
18dB SNR

Noisy Signal with
24dB SNR

Non-Noisy Signal

SQRS WQRS SQRS WQRS SQRS WQRS SQRS WQRS

QRS
Sensitiv-
ity:

54.91% 99.53% 92.80% 100.00% 97.70% 100.00% 96.55% 99.97%

QRS
Positive
Predic-
tivity:

77.75% 57.68% 95.18% 98.46% 98.63% 99.64% 99.76% 99.27%

Table 7.1

As can be seen from Table 1, the WQRS algorithm is overall more robust and tolerant to noise than
the SQRS algorithm, particularly in the Sensitivity ratio. To note, however, is the situation that occurs to
WQRS at 0dB noise, wherein the SQRS actually obtains a better Positive Predictivity ratio. This indicates
that the WQRS formula is particularly adept at correctly noting beats and rarely misses beats, but is less
capable of avoiding false positives at high noise levels. However, the WQRS also suppresses information in
the ECG signal that we do not need i.e. the P and T waves which also lends to the �lters e�ectiveness. Given
that the overall spread from the other noise levels favors WQRS more, it seems best to side with WQRS for
most applications.

7.5 Conclusion6

Conclusion
We have thus shown in this module an overview of the large body of established research in signal

processing from which to draw from in developing a functional QRS detector and heart rate analyzer. The
open-source community has developed a robust set of algorithms from which to streamline algorithm testing
and implementation. We have conclusively demonstrated that the algorithms developed are capable of noise
tolerance to an acceptable medical standard, with high sensitivity ratio and high Positive Predictivity ratio.

In particular, we found the WQRS algorithm was the most consistently noise-tolerant, and most accurate
at all noise levels, and we recommend its use in implementation trials.

Given the open-source nature of the programs here analyzed, the reader is encouraged to download the
toolkit and run the programs themselves to verify the conclusions of this module.

Having completed this testing, it is clear that this capable testbed available from the MIT Physiotoolkit
database would allow a team to implement readily the software onto a processing program for real-time.

The particular steps that a team needs to take in order to implement this algorithm are to modify it for
real-time signal analysis by attaching a set of electrodes to the patient, creating a set of analog �lters to

6This content is available online at <http://cnx.org/content/m33165/1.2/>.

79

remove noise, and programming a data bu�er from which to read in analog voltage signals from electrodes
and separate them into discrete components that an Analog to Digital Converter can sample and read into
a digital processor. These are topics out of the scope of this module.

80
CHAPTER 7. AN EVALUATION OF SEVERAL ECG ANALYSIS

ALGORITHMS FOR A LOW-COST PORTABLE ECG DETECTOR

Chapter 8

Sparse Signal Recovery in the Presence

of Noise

8.1 Introduction1

8.1.1 Introduction

As we progress into the era of information overload, it becomes increasingly important to �nd ways to
extract information e�ciently from data sets. One of the key concerns in signal processing is the accurate
decoding and interpretation of an input in a minimal period of time. In the distant past, the information
theorists' objective primarily involved reducing the signal elements to be processed. Now, with a multitude
of extraction options, we are also concerned about the computation time required to interpret each element.

In this project, we investigate a few methods by which we can �accurately� reconstruct an arbitrarily
complex signal using a minimum number of iterations. The input signals we probe are deemed sparse �
that is, they are constructed using a number of basis vectors that is small relative to the length of the signal.
This generally means that the signals consist mostly of zero values, with spikes at a few selected positions.
We compare the signal-to-noise ratios achieved by our recovery methods after speci�ed numbers of iterations
upon a variety of input signals, and deduce a few conclusions about the most e�cient and most feasible
recovery methods.

8.2 Theory2

8.2.1 Theory

8.2.1.1 Motivation

In theory, we should never have to 'recover' a signal � it should merely pass from one location to another,
undisturbed. However, all real-world signals pass through the infamous �channel� � a path between the
transmitter and the receiver that includes a variety of hazards, including attenuation, phase shift, and,
perhaps most insidiously, noise. Nonetheless, we depend upon precise signal transmission daily � in our
watches, computer networks, and advanced defense systems. Therefore, the �eld of signal processing concerns
itself not only with the deployment of a signal, but also with its recovery in the most e�cient and most
accurate manner.

1This content is available online at <http://cnx.org/content/m33082/1.2/>.
2This content is available online at <http://cnx.org/content/m33087/1.2/>.

81

82 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

8.2.1.2 Types of Noise

Noise takes many forms. The various 'colors' of noise are used to refer to the di�erent power spectral density
curves that types of noise exhibit. For example, the power density of pink noise falls o� at 10dB per decade.
The power density spectrum of pink noise is �at in logarithmic space. The most common type of noise,
however, is white noise. White noise exhibits a �at power density spectrum in linear space. In many
physical process (and in this report), we deal primarily with Additive White Gaussian Noise � abbreviated
AWGN. As a reminder, the Gaussian distribution has the following PDF (Probability Density Function):

Figure 8.1

µ is the mean; σ2 ≥ 0 is the variance.

8.2.1.3 Sparse Signals

An additional constraint we imposed upon our input signals was that they were required to be sparse. A
signal that is sparse in a given basis can be reconstructed using a small number of the basis vectors in that
basis. In the standard basis for Rn, for example, the signal (1,0,0,0,...,0) would be as sparse as possible � it
requires only the basis vector e1 for reconstruction (in fact, e1 is the signal!). By assuming that the original
signals are sparse, we are able to employ novel recovery methods and minimize computation time.

8.2.1.4 Typical Reconstruction Approaches

We have a number of choices for the recovery of sparse signals. As a �rst idea, we could �optimally select�
the samples we use for our calculations from the signal. However, this is a complicated and not always
fruitful process.

Another approach is Orthogonal Matching Pursuit (OMP). OMP essentially involves projecting a
length-n signal into the space determined by the span of a k-component �nearly orthonormal� basis (a random
array of 1/sqrt(n) and (-1)/sqrt(n) values). Such a projection is termed a Random Fourier Projection.
Entries in the projection that do not reach a certain threshold are assigned a value of zero. This computation
is iterated and the result obtained is an approximation of the original sparse signal. Unfortunately, OMP
itself can be fairly complicated, as the optimal basis is often a wavelet basis. Wavelets are frequency �packets�
- that is, localized in both time and frequency; in contrast, the Fourier transform is only localized in frequency.

8.2.1.5 Signal Reconstruction: Our Method

The fundamental principle for our method of signal analysis is determining where the signal is not, rather
than �nding where it is. This information is stored in a mask that, when multiplied with the running
average of the signal, will provide the current approximation of the signal. This mask is built up by
determining whether a given value in the signal is above a threshold, which is determined by the standard
deviation of the noise; if so, the value is most likely a signal element. This process is repeated until the
signal expected is approximately equal to a signal stored in a library on the device. While this operation is
naturally more noticeable at each iteration with sparse signals, even for non-sparse signals the only limiting

83

factor is the minimum value of the signal. For reasons of application, the primary limiting factor is the
number of samples required to recover the signal. This is because the raw mathematical operations take
fractions of a second to a few seconds to execute (which is more than enough for conventional applications).
The signal itself may be transmitted for a very short period; the requisite number of samples must be
garnered before transmission halts. Further, given an arbitrary amount of computation time, our algorithm
can reconstruct a sparse signal contaminated with any level of AWGN � there is no mathematical limit on
the recovery process. This is an impressive and surprising feat.

8.3 Implementation3

8.3.1 Implementation

Our implementation of the system was based around a controller program, which accepts the password to
be transmitted, and then simulate the transmission and reconstruction. The program then returns whether
or not the password received is the same as that which activated the system. In the �nal application, the
controller is called repeatedly until the system is activated; it returns immediately after a non-match, and
continues in sequence after the �rst element is matched.

For each of the passwords element's iterations in the controller the following algorithm is used. The
threshold is set to [the minimum value of the ideal signal minus three times the standard deviation of the
base noise] (in our case one), and the mask is initialized to all ones. Then we prime the noise to reach either
that standard deviation or less by priming the running total with a series of samples, the exact number of
which is determined by the standard deviation of the noise. Then we execute the following function until
either it runs a set number of times, or succeeds. Then the program compares the reconstructed signal after
the iteration with the ideal signals, and returns if there is a reasonable match.

This function does the following four times: it samples the signal, updates the running total, and counts
whether the maximum imaginary or real part of the Fourier transform of the signal is greater than the
threshold. If at least two of the four cycles result in a value greater than the threshold, the mask's value
at that point is set to the previous value of the mask; otherwise, the mask's value is set to zero. This
allows a degree of leniency (which is useful in an inherently probabilistic method) and drastically reduces
the probability of failure, albeit at the expense of increasing processing time.

The priming of the noise either reduces it to a standard deviation of two and a half, or three, based on
the standard deviation of the noise. The method which is selected will result in fewer net samples required
than the alternative method: although processing the information can take large quantities of samples, pre-
processing requires sd^2/(2.5^2) or sd^2/(3^2) samples; hence, a larger denominator can cut o� incredible
quantities of samples. The reason why these values in particular were selected is that experimentally we
determined that at 2.5 standard deviations, most signals required only one additional sample to become fully
reconstructed, while at 3 standard deviations, they took a couple dozen to a few hundred, and a maximum
of a few thousand additional samples, but it appeared to terminate the vast majority of the time as shown
in Figure 1 and Figure 2.

3This content is available online at <http://cnx.org/content/m33081/1.2/>.

84 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

Figure 8.2

The success of a simple signal as a function of the standard deviation of the noise for a single cycle of a
sinusoid with no priming(50 repetitions at each point).

85

Figure 8.3

The success of a sum of a frequency one sine wave, a frequency four sine wave, and a frequency 20 cosine
wave as a function of the standard deviation of the noise with no priming(50 repetitions at each point).

The priming is a necessity, since without it, the probability of success decreases rapidly as the standard
deviation increases, but with it the probability of success, while not one, remains constantly above 99%.
This is because after priming the e�ective standard deviation is always three or less, making the original
signal consistently recoverable.

8.3.2 Timing Analysis

All of the initializitions before the priming, assignations etc. require O(1) operations. The priming itself
requires O(sd^2) operations. The post priming processing, requires O(library size) operations since although
the �t is O(N*logN), N is bounded and therefore even if the sd wasn't bounded to minimize the computation
it still would always be less than a constant value. The only variable processing part is the comparisons with
the library, which is O(libsize*N*logN) with N being bounded, simplifying to O(libsize). This means that
the algorithm itself is O(sd^2)+O(libsize)=O(sd^2) since libsize will tend to be small. This is supported by
experimental results as shown in Figure 1 and Figure 2.

86 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

Figure 8.4

The average time of execution as a function of the standard deviation of the noise for a single cycle
sinusoid (50 repetitions per point).

87

Figure 8.5

The average time of execution as a function of the standard deviation of the noise for the sum of a
frequency 1, sine wave, a frequency 4 sine wave, and a frequency 20 cosine wave (50 repetitions per point).

For a real world application, it is also important to know not only the time it takes to execute the
entire program, but also the number of samples that are required in order to reconstruct the signal. This is
because the signal will only be transmitted for a limited time, so the hardware must be able to take the right
number of samples in that time. From the processing perspective, even with very slow hardware the signal
could eventually be reconstructed, but the same is not the case if the correct number of samples cannot
be garnered. The number of samples required is always on O(sd^2) speci�cally sd^2/6.25+1 if sd<76, and
sd^2/9+∼200 if sd>=76. The experimental values are shown in Figure 3 and Figure 4.

88 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

Figure 8.6

The average number of samples required to reconstruct the signal as standard deviation increases for a
single cycle sine wave (50 repetitions at each point).

89

Figure 8.7

The average number of samples to reconstruct the signal as a function of the standard deviation of the
noise for the sum of a frequency 1 sine wave, a frequency 4 sine wave, and a frequency 20 cosine wave (50
repetitions per point).

8.3.3 Examples of Execution

All of the following �gures are comprised of a series of graphs. The �rst graph is the initial signal with noise,
as well as the initial signal; the next four graphs are the reconstructed signal at consecutive iterations along
with the initial signal; the �nal graph is the �nal reconstructed signal along with the initial signal.

90 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

Figure 8.8

Execution from algorithm for signal 1, a frequency 1 sine wave with noise standard deviation of 5.

91

Figure 8.9

Execution from algorithm for signal 10, a frequency 10 cosine wave with noise standard deviation of 5.

92 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

Figure 8.10

Execution from algorithm for signal 13, the sum of a frequency 1 sine wave, a frequency 4 sine wave, and
a frequency 20 cosine wave with noise standard deviation of 5.

8.4 Conclusion4

8.4.1 Conclusion

With priming, the regression line correlating number of samples and standard deviation is roughly
(sd^2)/6.5 + 1, which amounts to O(N^2) complexity. However, although this may seem slow, our method
permits perfect recovery of complicated (albeit sparse) signals with arbitrary levels of AWGN. Thus, for
reasonable data set sizes and values of standard deviation, the algorithm functions quite nicely for accurate
signal reconstruction. Although if given in�nite samples and time, it can recover any signal that is relatively
sparse given in�nite time.

Without priming the noise, and taking 50 samples, we can achieve O(1) complexity � extremely
desirable, but the recovery percentage falls o� rapidly with increase in noise standard deviation starting at
standard deviation values around 3.5. Thus, this version of the algorithm could be desirable in non-critical

4This content is available online at <http://cnx.org/content/m33080/1.2/>.

93

applications where the strength of the noise is known to be low relative to that of the signal. We certainly
would not recommend using the non-primed algorithm in data sensitive digital applications.

8.4.2 Further Avenues of Inquiry

Colored Noise
It would be interesting to extend the algorithm to accept di�erent types of noise � pink, brown, purple, etc.
Logically the exact same algorithm would work on these, but it would be nice to verify this experimentally.
Physical Prototype
A physical prototype of this system would allow a far better testing of the theory than simple simulation.
Unfortunately, due to the cost of even moderate quality receivers and FPGAs, this was not feasible.
Dynamic Noise
One major bene�t of a noise resistant system is ECCM, Electronic Counter Countermeasures (counter-
jamming). It would be interesting to test whether a system using the described algorithm could resist noise
from a transmitter moving towards the system (without simply taking a conservative estimate of worst-case
noise during the signal reconstruction period).
Dynamic Priming
A useful addition to this algorithm, would be to be able to pick the optimal bound for priming to minimize
the number of samples rather than simply choosing the best of two options.

8.5 Code5

8.5.1 Code

The following is the MATLAB source code for each of the components of our project.

8.5.1.1 addNoise.m

function out = addNoise(sig,mean,sd,Plot)

%addNoise

%adds noise with given mean and sd to the signal

rand=randn(1,1000)*sd+mean;

out=sig+rand;

if(Plot==1)

plot(1:1000,out,1:1000,sig);

end

end

8.5.1.2 sample.m

function out = sample(sd,plot,sig)

%sample

%samples a manually constructed signal, and adds gaussian noise to it

%with a standard deviation that is provided

out=fft(addNoise(sig,0,sd,plot));

end

5This content is available online at <http://cnx.org/content/m33079/1.2/>.

94 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

8.5.1.3 init.m

function [out,samp]=init(sig,sd)

%averages the signal and the noise over a number of samples to make the

%noise level manageable

out=sig+randn(1,1000).*sd;

%optimize number of samples

if sd<76
val=6.25;

else

val=9;

end

samp=floor((ceil(sd))^2/(val));

for n=2:samp

out=(out.*(n-1)+sig+randn(1,1000).*sd)/n;

end

out=fft(out);

end

8.5.1.4 simpleIterate.m

function [mask, NSig,runT] = simpleIterate(sigMask,threshold,run,n,sd,sig)

%simpleIterate(sigMask,threshold,run,n)

%computes an iteration of the thresholding, with a running average of run,

%on iteration n, with the current signal mask of sigMask

%returns the new signal mask, the current signal(non-masked) NSig and the

%running average of the signal runT

siz=size(sigMask);

temp=zeros(1,siz(2));

for i=1:4

NSig=sample(sd,0,sig).*sigMask;

if(n==1)

runT=NSig;

else

runT=(run.*(n-1)+NSig)/n;

end

%temp=temp+(max(abs(real(NSig)),abs(imag(NSig)))>threshold);
temp=temp+(max(abs(real(runT)),abs(imag(runT)))>threshold);
%temp=temp+(abs(NSig)>threshold);

end

mask=zeros(1,siz(2));

for l=1:siz(2)

if(temp(l)<2)
mask(l)=0;

else

mask(l)=sigMask(l);

end

end

end

95

8.5.1.5 testArbitary.m

function [flag,samples,time]=testArbitrary(sig,sd)

%Simulates the transmission of a signal in the library, and tests whether

%or not it can be recovered.

siglib=cat(1,sin(0:pi/500:(1000*pi-1)/500),sin(0:pi/250:(2000*pi-1)/500),sin(0:pi/125:(4000*pi-1)/500),sin(0:pi/50:(10000*pi-1)/500),sin(0:pi/25:(20000*pi-1)/500));

siglib=cat(1,siglib,sin(0:pi/500:(1000*pi-1)/500)+sin(0:pi/50:(10000*pi-1)/500),cos(0:pi/500:(1000*pi-1)/500),cos(0:pi/250:(2000*pi-1)/500),cos(0:pi/125:(4000*pi-1)/500),cos(0:pi/50:(10000*pi-1)/500));

siglib=cat(1,siglib,cos(0:pi/25:(20000*pi-1)/500),cos(0:pi/25:(20000*pi-1)/500)+sin(0:pi/500:(1000*pi-1)/500),sin(0:pi/500:(1000*pi-1)/500)+sin(0:pi/125:(4000*pi-1)/500)+cos(0:pi/25:(20000*pi-1)/500));

sigmax=max(abs(fft(siglib(sig,:))));

threshhold=sigmax-3*max(abs(real(fft(randn(1,1000)))));

tolerance=.5;

A=ones(1,1000);

flag=0;

tic

[C,samples]=init(siglib(sig,:),sd);

for i=1:10000

[A,B,C]=simpleIterate(A,threshhold,C,i+samples,sd,siglib(sig,:));

for j=1:size(siglib)

if(abs(ifft(A.*C)-siglib(j,:))<tolerance)
flag=j;

break;

end

end

if(flag>0)
break;

end

end

samples=samples+i;

time=toc;

end

8.5.1.6 Controller.m

function accepted = Controller(enteredpassword,sd)

%Tests whether or not a transmission of a password will activate the system

%This simulates the noise and processing as well as the values

actualpassword=cat(1,13,5,10,4,2,8);

accepted=1;

redundancy=3;

for i=1:size(actualpassword);

flag=0;

%while flag==0

for j=1:redundancy

[flag,runs]=testArbitrary(enteredpassword(i),sd);

end

if(flag∼=actualpassword(i))
accepted=-i;

break;

end

end

96 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

end

8.5.1.7 Controller2.m

function Controller2()

%Helper function used to graph trends

sig=1;

for sd=0:30

passed=0;

for reps=1:50

if(testArbitrary(sig,3+sd/10)==sig)

passed=passed+1;

end

end

temp(sd*10-29)=passed

end

subplot(1,1,1);

plot(temp);

end

8.6 References and Acknowledgements6

8.6.1 References and Acknowledgements

We wish to thank our mentor, JP Slavinsky. Without your guidance and support, this project would not
have been possible.

Many thanks also to Dr. Rich Baraniuk � for creating Connexions, and (arguably more importantly),
for presenting inspiring signal processing lectures throughout the semester.

J D Haupt's presentation to the Electrical Engineering department on sparse signal reconstruction was
integral to the development of our algorithm, although it concentrated on e�ciency rather than arbitrary
reconstruction.

The algorithms and techniques discussed in the following papers were used for comparison against our
algorithm:

Haupt, J. and R. Nowak. "Signal Reconstruction From Noisy Random Pro-
jections." IEEE Trans. Info. Theory, vol.52, no.9, pp.4036-4048, 2006.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1683924&isnumber=354597

J. Tropp and A. Gilbert, "Signal Recovery from Partial Information via Orthogonal Match-
ing Pursuit." IEEE Trans. Info. Theory, vol. 53, no. 12, pp. 4655�4666, 2007.
http://www.math.lsa.umich.edu/∼annacg/papers/TG05-signal-recovery-rev-v2.pdf8

6This content is available online at <http://cnx.org/content/m33083/1.2/>.
7http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1683924&isnumber=35459
8http://www.math.lsa.umich.edu/∼annacg/papers/TG05-signal-recovery-rev-v2.pdf

97

8.7 Team9

8.7.1 Team

8.7.1.1 Grant Cathcart

Figure 8.11

Grant Cathcart was born in Cleveland Ohio, in 1989. Grant is currently a junior Electrical Engineering
major at Rice University specializing in signals and systems. Grant is employed by the Navy as part of the
Tactical Electronic Warfare Division. When not working on projects and cursing matlab, Grant likes to play
chess and video games.

9This content is available online at <http://cnx.org/content/m33086/1.2/>.

98 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

8.7.1.2 Graham de Wit

Figure 8.12

Graham was born in Cincinnati, OH in 1989. However, he spent most of his life in Memphis, TN, the Home
of the Blues. Graham is currently a junior Electrical Engineering major at Rice University specializing in
Computer Engineering. Graham enjoys convolving signals, computing Fourier Transforms, and inducing
capacitor explosions. When he is not buried in problem sets, Graham spends time eating, sleeping, hanging
out with friends, and composing music via his synthesizers.

99

8.7.1.3 Nicholas �Re'Sean� Newton

Figure 8.13

Nicholas Newton was born in Wichita Falls,TX in 1989. He is currently an junior Electrical Engineering
major with a specialization in Computer Engineering at Rice University . He plans to attend Graduate
School after he graduates from Rice. Nicholas has a deep passion for the Computer Engineering industry
and computers in general. Outside of his academic career, Nicholas enjoys working out and a number of
di�erent sports.

100 CHAPTER 8. SPARSE SIGNAL RECOVERY IN THE PRESENCE OF NOISE

Chapter 9

Video Stabilization

9.1 Introduction1

Introduction
A common problem in dealing with Unmanned Aerial Vehicles (UAVs) is image stabilization. If an operator
wishes to control the craft in real-time, a camera mounted on the UAV is often a good solution. This video
feed, if left in its original state, has varying amounts of jitter, which in turn makes operating the craft more
di�cult and makes the footage of the �ight much less pleasant to watch. We decided that we could stabilize
the video without using any additional hardware-based assistance (such as gyroscopes) with the digital
signal processing techniques we've learned over the semester. Our �rst approach to solving this problem
was to correlate each video frame with the previous one, but this proved to be less than optimal ; there
exists a faster, more accurate technique. Enter KLT feature tracking and Serial A�ne Transformation. We
used a freely-available KLT feature tracker from Stan Birch�eld, then prototyped our a�ne transformation
techniques in MATLAB. We have started porting our work to C, and in the future we expect this sort of
solution to be fully implemented on GPUs for real-time processing.

9.2 Background2

Background
Image stabilization can be done in many di�erent ways. Kanade-Lucas-Tomasi (KLT) feature tracking3 is
one of the computationally inexpensive ways, in comparison to 2-D correlation and even SIFT. We chose
Stan Birch�eld's implementation because it is written in C and we found it easy to interface to in comparison
with other open-source implementations.

When we have a set of common features between two images, we can 'undo' the transformation that
makes the second image's features reside in a di�erent location than the �rst, creating a new image whose
features have similar locations to those in the �rst image.

In order to accomplish this, we use a series of least-squares a�ne transformations on the set of features to
determine the `best' values for the un-a�ne we perform to correct the later image. After this, we then �lter
the resulting a�ne transformation, keeping the low-frequency movement (such as panning) and removing
the high-frequency jitter.

Pictorally, the process is as such:

1This content is available online at <http://cnx.org/content/m33246/1.1/>.
2This content is available online at <http://cnx.org/content/m33247/1.1/>.
3http://en.wikipedia.org/wiki/Kanade-Lucas-Tomasi_Feature_Tracker

101

102 CHAPTER 9. VIDEO STABILIZATION

9.3 Procedures4

9.3.1 A�ne Transform Estimation

We wish to approximate the movement of the feature points by an a�ne transform, because it can account
for rotation, zooming, and panning, all of which are common features in videos. The coordinates of a feature

4This content is available online at <http://cnx.org/content/m33251/1.1/>.

103

in the old frame are written as (x0, y0) and in the new frame as (x1, y1). Then an a�ne transform can be
written as: x1

y1

 =

 a b

c d

 x0

y0

+

 e

f

 (9.1)

However, this form needs some modi�cation to deal with multiple point pairs at once, and needs rearranging
to �nd a, b, c, d, e, and f . It can be easily veri�ed that the form below is equivalent to the one just given:

 x0 y0 0 0 1 0

0 0 x0 y0 0 1

a

b

c

d

e

f

=

 x1

y1

 (9.2)

With this form, it is easy to add multiple feature points by stacking two additional rows on the left

and on the right. Denoting the pairs of points as
((
x

(1)
0 , y

(1)
0

)
,
(
x

(1)
1 , y

(1)
1

))
,
((
x

(2)
0 , y

(2)
0

)
,
(
x

(2)
1 , y

(2)
1

))
,((

x
(3)
0 , y

(3)
0

)
,
(
x

(3)
1 , y

(3)
1

))
, etc, the matrices will now look like:

x
(1)
0 y

(1)
0 0 0 1 0

0 0 x
(1)
0 y

(1)
0 0 1

x
(2)
0 y

(2)
0 0 0 1 0

0 0 x
(2)
0 y

(2)
0 0 1

x
(3)
0 y

(3)
0 0 0 1 0

0 0 x
(3)
0 y

(3)
0 0 1

...
...

...
...

...
...

a

b

c

d

e

f

=

x
(1)
1

y
(1)
1

x
(2)
1

y
(2)
1

x
(3)
1

y
(3)
1

...

(9.3)

So long as there are more than three points, the system of equations will be overdetermined. Therefore the
objective is to �nd the solution [a, b, c, d, e, f] in the least squares sense. This is done using the pseudoinverse
of the matrix on the left.

9.3.2 Filtering

The a�ne transforms produced above only relate one video frame to the one immediately after it. The
problem with this is that if the video is jerky, it will take several consecutive frames to have a good idea of
what the average position of the camera is during this time. Then the di�erence between the current location
and the moving-average location can be used to correct the current frame to be in this average position.

When the features are tracked frame-to-frame, it constitutes an implicit di�erentiation in terms of mea-
suring the overall movement of the camera. In order to track changes across many frames, we sequentially
accumulate the frame-to-frame di�erences. This is akin to an integral operator. Unfortunately, when inte-
grating imperfect data, errors will build up linearly in time, and that is true here. However, since the stream
of integrated a�ne transforms is not used directly, these errors are not as important.

Once the stream of integrated a�ne transforms is generated, the goal is to undo high-frequency motions,
while leaving the low-frequency motions intact. This is done by treating the coe�cients of the stream
of integrated a�ne transforms as independent, and applying six high pass �lters, one for each stream of

104 CHAPTER 9. VIDEO STABILIZATION

coe�cients. Although this technique works, it is hoped that a more elegant way of handling the �ltering
may be developed in the future.

Since a high pass �lter is being used, it is important to not have large phase o�sets created by the �lter.
If the transform which ideally stabilized frame #5 was instead applied to frame #10, and so forth, the delay
would wholly invalidate the o�sets, and the resulting video would be more jerky than before, instead of less.
Therefore, we decided to use the zero phase �ltering technique of applying a �lter in both the forward and
reverse time directions sequentially. This is handled by the Matlab function �lt�lt.

Initially, we tried various order-4 to order-8 IIR �lters with cuto� frequencies around 0.1 pi. However,
the unit step response of nearly all IIR �lters involves a signi�cant amount of overshoot and ringing. Since
our signal is best viewed as a time-domain signal instead of a frequency-domain signal, we sought to avoid
this overshoot. Therefore, we switched to a truncated Gaussian FIR �lter, which averages across a bit more
than one second worth of video at a time. This removed the overshoot and ringing which had been visible
with the IIR �lters.

In the algorithm we used, the high pass �lter is implicitly generated by using a low pass �lter, then
subtracting the low-pass version from the original. It would be mathematically equivalent to simply change
the impulse response of the �lter and skip the subtraction step.

The last wrinkle is that for a�ne transforms, the identity transform has the a and d coe�cients equal to
one, instead of zero. The high pass �lter will create a stream of transforms which are centered around having
all the coe�cients zero. Therefore, after the high pass �lter, we added 1 back to the a and d coe�cients of
the stream of a�ne transforms, so they would be centered on the identity transform.

9.4 Results5

Results: Output Quality
We successfully used Stan Birchfeld's KLT tracker with our implementation of a�ne transforms in MATLAB
to stabilize the sample UAV video that Aswin provided us. The video is of six cars at the end of a runway
with the plane slowly circling them. There is some jitter, and evidence of a couple of dropped frames. Our
�lter completely removes these, but it also eliminates the perspective change caused by the movement of the
plane. This introduces considerable distortion after more than about 10 seconds. High pass �ltering of the
a�ne transformation series does remove the jitter while preserving the overall motion.

UAV Footage Stabilized with KLT + A�ne Transforms

This media object is a video �le. Please view or download it at<uav_source.avi>
(a)

This media object is a video �le. Please view or download it at<uav_stable.avi>
(b)

Figure 9.1: Source footage provided by Aswin Sankaranarayanan.

We wanted a more serious test of the jitter reduction, with more sudden motion. To do this we wrote
some MATLAB code that takes an individual frame and generates a sequence of frames based on it, each
with a random displacement from the original. The e�ect is that of a VERY jerky camera. The KLT-a�ne
transform combination undoes this severe jitter quite nicely. We then superimposed a circular motion on
top of the jitter to see if the �ltered a�ne transformation series would preserve it while still removing the
jitter. It does an acceptable job at this, although there are a few visible kinks.

5This content is available online at <http://cnx.org/content/m33248/1.1/>.

105

Shifted Image Sequence Stabilized with KLT + Filtered A�ne Transforms

This media object is a video �le. Please view or download it at<owl_source.avi>
(a)

This media object is a video �le. Please view or download it at<owl_stable.avi>
(b)

Figure 9.2

Additional testing revealed that although the KLT tracker we used does a good job on tracking features
through sudden translations, it cannot e�ectively deal with large sudden rotations. It loses track of all
features in these cases. Hopefully this will not be an issue for our ultimate application, or we will be able to
compensate for the rotation using additional input from gyros.

We also experimented with stabilizing jerky footage from movies, such as the opening scene to Saving
Private Ryan. This works quite well! We invite you to test out our code on DVD-quality video and see what
you think of the results. (At some point we plan to �stabilize� The Blair Witch Project so those of us prone
to motion sickness can watch it without becoming ill.) Of course the output needs to be cropped somewhat
to eliminate the black border caused by shifting the image: we cannot create data from nothing!
Results: Speed
Our code is not nearly fast enough for real-time use. Greyscale output at 640x480 resolution runs at about
one-third of realtime, whereas color output at the same resolution is about one-tenth real time, on the 2GHz
Intel Core2 Duo laptop used for testing. The biggest bottleneck right now seems to be in the interpolation
used to assign pixel intensity values for the corrected frames. The KLT tracker itself is the next slowest
component. Hopefully converting the code to C and/or o�oading some of the work to the GPU will improve
performance.

9.5 Sources6

We'd like to thank Aswin Sankaranarayanan at Rice DSP for pointing us in the correct direction early in
our work and steering us away from trouble. Also, a key piece of the project required using Stan Birchfeld's
KLT feature tracker7 and the interface code he wrote to easily move the table of features into MATLAB.

9.6 The Team8

Je�rey A. Bridge
Studying for a BS Electrical Engineering at Rice University in 2011. I am interested in space�ight and hope
to do more aerospace related research in the future.
Robert T. Brockman II
Rice University Computer Science, Lovett '11. I'm interested in arti�cial intelligence and neuroscience and
hope to do graduate work in one of those �elds.
Stamatios Mastrogiannis
Rice University ECE, Brown '11. I'm interested in bionics, cybernetics, and anything that brings man and
machine closer together. I plan on going into medical research to further these �elds.

6This content is available online at <http://cnx.org/content/m33249/1.1/>.
7http://www.ces.clemson.edu/∼stb/klt/
8This content is available online at <http://cnx.org/content/m33250/1.1/>.

106 CHAPTER 9. VIDEO STABILIZATION

9.7 Code9

The main pieces of code used to accomplish the stabilization are shown below. There are several addition
�les needed for the complete program, which are available for download instead of being shown inline:

• tracker.c10

• im2_jpeg.c11

• imload_bw.m12

• write_jpeg_bw.m13

• write_jpeg_col.m14

l2a�.m

% Least Squares Affine Transformation

% ELEC 301 Group Project

% 11/29/2009

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

%

% Calculate the least squares affine transformation for two corresponding

% sets of pixel locations.

% px inputs are of the form:

%[x_1 y_1

% x_2 y_2

% : :

% x_N y_N]

%

% [x'] = [a, b] * [x] + [e]

% [y'] [c, d] [y] [f]

function Aff = l2aff(pxold, pxnew)

b = reshape(pxnew.', [], 1);

A = makenice(pxold);

x = pinv(A) * b; % Was psinv, our version of computing the pseudoinv

Aff = [x(1), x(2), x(5); ...

x(3), x(4), x(6)];

return

function A = makenice(pxold)

[r, c] = size(pxold);

A = zeros(2*r, 6);

for k=1:r

x = pxold(k,1);

y = pxold(k,2);

%correspond to a, b, c, d, e, f

A(2*k-1, :) = [x, y, 0, 0, 1, 0];

A(2*k , :) = [0, 0, x, y, 0, 1];

end

return

9This content is available online at <http://cnx.org/content/m33253/1.1/>.
10See the �le at <http://cnx.org/content/m33253/latest/tracker.c>
11See the �le at <http://cnx.org/content/m33253/latest/im2_jpeg.c>
12See the �le at <http://cnx.org/content/m33253/latest/imload_bw.m>
13See the �le at <http://cnx.org/content/m33253/latest/write_jpeg_bw.m>
14See the �le at <http://cnx.org/content/m33253/latest/write_jpeg_col.m>

107

a�_mul.m

% ELEC 301 Group Project

% 2009 December 12

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

%

% Combine two affine transforms into one

%

% Aff = [a b e

% c d f]

%

% [x'] = [a, b] * [x] + [e]

% [y'] [c, d] [y] [f]

function Aff = aff_mul(Aff2, Aff1)

a1 = Aff1(1,1);

b1 = Aff1(1,2);

c1 = Aff1(2,1);

d1 = Aff1(2,2);

e1 = Aff1(1,3);

f1 = Aff1(2,3);

a2 = Aff2(1,1);

b2 = Aff2(1,2);

c2 = Aff2(2,1);

d2 = Aff2(2,2);

e2 = Aff2(1,3);

f2 = Aff2(2,3);

Aff = [...

a2*a1 + b2*c1, ...

a2*b1 + b2*d1, ...

a2*e1 + e2; ...

c2*d1 + c2*a1, ...

c2*b1 + d1*d2, ...

d2*f1 + f2];

return

stabilize.m

% Perform video stabilization on a set of jpeg images

% ELEC 301 Group Project

% 11/29/2009

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

%

% Uses KLT features generated via track_destabilize.sh

% or track_movie.sh

% Reads destabilized stream of jpegs from stabilize_input

% Outputs stabilized stream of jpegs to stabilize_output

%

% Use view_stabilize.sh to play back results

%

function stabilize()

108 CHAPTER 9. VIDEO STABILIZATION

% Read feature table. x and y contain coordinates of each feature

% for each frame. val is used to determine whether a feature has been

% replaced.

[x,y,val] = klt_read_featuretable('stabilize_input/features.txt');

% x, y are sets of column vectors, which we like.

% Extract number of features and frames from feature table.

[nFeatures, nFrames] = size(x);

invalid_inds = [];

% Each frame will have an affine transformation which allows it

% to be transformed back into the coordinates of the original frame.

% (These transforms will then be filtered to keep low-speed drift.)

Affs = zeros(nFrames,6);

% Affine transformation starts out as the identity transformation.

myAff = [1 0 0; 0 1 0];

% Iterate over all input frames

for n = 2:nFrames

fprintf('processing features for frame %d...', n);

% Position of features in previous frame.

pxold = [x(:,n-1) y(:,n-1)];

% Position of features in new frame.

pxnew = [x(:,n) y(:,n)];

% Features which have replaced those that have left the scene

% have non-zero values in the feature table. These must be excluded

% from computing our affine transformation

ind = find(val(:,n) ∼= 0);

invalid_inds = ind;

% These are the indices of valid rows in our feature table

valid_inds = setdiff([1:nFeatures].', invalid_inds);

fprintf(' only %d features left\n', length(valid_inds));

% Extract valid features.

valid_pxold = pxold(valid_inds,:);

valid_pxnew = pxnew(valid_inds,:);

% Compute affine transformation which minimizes least squares

% difference in distances between features in the previous frame

% vs. the new frame transformed back to the original coordinates.

aff = l2aff(valid_pxold, valid_pxnew);

% Combine this "frame-by-frame" transformation with those from

% all previous frames to get an affine transformation that will

% transform the current frame into the coordinate system of the

109

% FIRST frame.

myAff = aff_mul(aff, myAff);

% Make the resulting transform into a vector for ease of filtering

% and add it to the array of transforms for each frame.

Affs(n,:) = reshape(myAff,1,[]);

end

% High-pass filter the series of affine transformations to allow low

% frequency movement (panning, etc.) to show up in the final output.

%

% We do this by first low-pass filtering the series and then subtracting

% the result from the original.

%%{

switch 2 % Choose a filter

case 1 % Butterworth filter

[b, a] = butter(4,.05);

case 2 % Gaussian filter

b = exp(-linspace(-3,3,41).^2/2);

b = b / sum(b);

a = [1];

otherwise

error('Bad filter number');

end

filter_a = a;

filter_b = b;

% Pad beginning of transformation series with identity transforms

% to eliminate startup distortion.

eyeAff = [1 0 0 1 0 0];

prepCount = 1;

filtinAffs = [eyeAff(ones(prepCount,1),:); Affs(2:end,:)];

% LFP the affine transforms TWICE, the second time in time-reversed

% sequence. This eliminates phase distortion caused by the filter.

LpAffs = filtfilt(filter_b, filter_a, filtinAffs);

LpAffs = LpAffs(prepCount:end,:); % Remove padding

% HPF by subtracting LPF'd series from original.

Affs = Affs - LpAffs;

% Add back 1's in corners of rotation matrix component of transform

% removed by LPF. (Add back in identity transform)

Affs(:,1) = Affs(:,1) + 1;

Affs(:,4) = Affs(:,4) + 1;

%}

% Apply affine transforms to each frame to provide video stabilization.

%%{

for n = 2:nFrames

110 CHAPTER 9. VIDEO STABILIZATION

% Get transform back into matrix form.

aff = reshape(Affs(n,:),2,3);

fprintf('interpolating image %d...\n', n);

disp(aff);

filename = sprintf('stabilize_input/D%08d.jpg', n);

% Black and white output is 3x faster to compute.

if 1

A = imread(filename);

Ar = single(A(:,:,1));

Ag = single(A(:,:,2));

Ab = single(A(:,:,3));

%B is image in coordinate system of first frame.

Br = im_unaff(Ar, aff);

Bg = im_unaff(Ag, aff);

Bb = im_unaff(Ab, aff);

B = cat(3,Br,Bg,Bb);

write_jpeg_col(B,sprintf('stabilize_output/S%08d.jpg',n));

else

A = imload_bw(filename);

B = im_unaff(A, aff);

write_jpeg_bw(B,sprintf('stabilize_output/S%08d.jpg',n));

end

end

%}

return

destabilize.m

% Generate Synthetic unstable test data

% ELEC 301 Group Project

% 11/29/2009

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

function destabilize()

% Load a big source image, and split it into colors

filename = 'destabilize_input.jpg';

A = imread(filename);

Ar = single(A(:,:,1));

Ag = single(A(:,:,2));

Ab = single(A(:,:,3));

% Size of output image to generate, a subset of the source image

output_w = 560;

output_h = 400;

% Center of source image

[r,c] = size(Ar);

111

center_row = r/2;% - 50;

center_col = c/2;

% Number of output frames to generate

N = 300;

% Standard deviation of jerky movement in pixels

dev = 5;

% Parameters controlling slow drift

drift_radius = 10;

drift_period = 100;

for n = 1:N

fprintf('Generating destabilized image %d...\n', n);

% Add in slow drift of the image center

drift_rows = drift_radius * sin(n*2*pi/drift_period);

drift_cols = drift_radius * cos(n*2*pi/drift_period);

% Add in fast random jerky movements

offset_rows = floor(randn(1) * dev);

offset_cols = floor(randn(1) * dev);

% Calculate current image boundaries

left = floor(center_col + drift_cols - output_w/2 + offset_cols);

right = left + output_w - 1;

top = floor(center_row + drift_rows - output_h/2 + offset_rows);

bottom = top + output_h - 1;

% Grab an offset portion of the larger image

Br = Ar(top:bottom, left:right);

Bg = Ag(top:bottom, left:right);

Bb = Ab(top:bottom, left:right);

% Save it to its own file

B = cat(3,Br,Bg,Bb);

write_jpeg_col(B,sprintf('destabilize_output/D%08d.jpg',n));

% Play back with view_destabilize.sh

end

return

im_una�.m

% IMage UNdo an AFFine transformation

% ELEC 301 Group Project

% 11/29/2009

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

%

% --- INPUTS ---

% Z = image matrix (2D grid of intensities)

% Aff = affine transformation

112 CHAPTER 9. VIDEO STABILIZATION

% [a b e

% c d f]

% [x'] = [a b]*[x] + [e]

% [y'] [c d] [y] [f]

%

% --- OUTPUTS ---

% ZI = output image matrix

function ZI = im_unaff(Z, Aff)

% Extract size of image.

[r,c] = size(Z);

% Extract affine transformation coefficients.

Aa = Aff(1,1);

Ab = Aff(1,2);

Ac = Aff(2,1);

Ad = Aff(2,2);

Ae = Aff(1,3);

Af = Aff(2,3);

% generate new sets of grid points

[X0,Y0] = meshgrid(1:c, 1:r);

% XI(c,r) and YI(c,r) contain where to look in Z for the correct

% intensity value to place in the new image ZI at coordinates (r,c).

XI = Aa*X0 + Ab*Y0 + Ae;

YI = Ac*X0 + Ad*Y0 + Af;

% Since XI and YI contain non-integer values, a simple lookup will not

% suffice. We must perform interpolation.

ZI = interp2(Z, XI, YI);

return

9.8 Future Work15

Future Work
Now that we basic algorithms down, the focus should be on improving the speed so we can get real-time
stabilized video feed while operating our UAV. This means converting the code to C. It may also be necessary
to use KLT trackers that use the video card GPU, as well as writing an equivalent of the MATLAB interp2
that does the same.

While taking the �rst steps towards this conversion, we realized that our video stabilizer would make
a pretty cool GStreamer plugin. GStreamer16 is a media framework for the open-sourse Gnome desktop
environment. With it, we will be able route video sources of many kinds through our stabilizer and then on
to our choice of video sinks. We have already �gured out how to implement a "null" plugin that just copies
frames from the source to the sink already, so once our algorithms are in C using GStreamer should be easy.

If these improvements can be made, the next step will be to test the code out with live footage from our
own UAV.

15This content is available online at <http://cnx.org/content/m33254/1.1/>.
16http://gstreamer.freedesktop.org/

Chapter 10

Facial Recognition using Eigenfaces

10.1 Facial Recognition using Eigenfaces: Introduction1

10.1.1 Introduction

10.1.1.1 Facial Recognition Preface

Although humans have an amazing ability to distinguish and recognize faces, facial recognition on computers
is an advanced �eld of study yet to be perfected. Only within the past decade have people seen the rise of
face tracking in digital cameras and public security systems. Unlike humans, computers are easily confused
by changes in illumination, variation in face angles, and accessories such as hair, glasses, and hats. However,
computer face recognition is worth pursuing, because of the wealth of applications in security, digital pho-
tography, social networking, and other �elds. This project uses the eigenface method to identify faces from
still images.

1This content is available online at <http://cnx.org/content/m33173/1.3/>.

113

114 CHAPTER 10. FACIAL RECOGNITION USING EIGENFACES

Figure 10.1: A potential face recognition/X-Ray technology application.

10.1.1.2 Facial Recognition Approach

When considering the proper approach for identifying faces, it was decided that the approach to be able to
deal with imperfect settings such as di�erent relative positions, sizes, and shapes of facial features such as
the eyes, nose, cheekbones, and jaw. While facial features are a major component of some facial recognition
algorithms, the extraction of landmarks were determined to be insu�ciently robust for this project without
a powerful normalization algorithm capable of features such as keeping a constant light intensity, correction
of angles and pose variations, and accounting for accessories like glasses.

10.2 Facial Recognition using Eigenfaces: Background2

10.2.1 Background

10.2.1.1 Computational Implementations

Current facial recognition algorithms can be separated into two groups: geometric and statistical. The
geometric approach looks into the distinguishing features of the face. The other algorithms are photometric,
a statistical approach that distills an image into values and compares those values with those from a template
or training set to eliminate variances. Some popular recognition algorithms include Principal Component
Analysis (eigenfaces), Linear Discriminate Analysis, Elastic Bunch Graph Matching (�sherfaces), the Hidden
Markov model, and dynamic link matching.

10.2.1.2 Eigenfaces

We decided to use eigenfaces for this project. Eigenfaces are created using a statistical tool called Principal
Component Analysis (PCA). Eigenfaces are useful because they focus on the di�erences between the

2This content is available online at <http://cnx.org/content/m33174/1.5/>.

115

data points (i.e., the small variations in eye shape, nose size, and skin color that humans unconsciously and
e�ectively use to tell each other apart). Eigenfaces can be speedily extracted from large data sets, so this
method is very applicable to our project.

However, the eigenface method has one major drawback: it is greatly a�ected by non-homogenous condi-
tions. For example, Matthew Turk and Alex Pentland of MIT found that the eigenface approach identi�ed
a face correctly 96% of the time with lighting variation, 85% with orientation variation, and only 64% with
size variation (1). Therefore, we decided to focus on one variable: lighting, background, face angle, position,
or expression, and keep all the others constant. Our pictures were taken in a well-lit room against a white
background, with the subject directly facing the camera, without accessories such as hats and glasses. We
found that facial expressions were the most fun variable and decided to focus on that.

We worked with two databases: Rice University, which we created, and JAFFE (Japanese Female Fa-
cial Expression) from http://face-rec.org/3 . The JAFFE database consists of 10 Japanese women, each
expressing each of seven emotions. For the Rice database, we chose students of both genders and diverse
ethnicities. Each subject was told to express each of six emotions: neutral, happy, sad, surprised, angry, and
disgusted. We had sixteen subjects, each with six emotions, and we took two pictures per emotion, resulting
in a database of 192 images. We used Matlab to process the images and create eigenfaces.

10.3 Facial Recognition using Eigenfaces: Obtaining Eigenfaces4

10.3.1 Obtaining Eigenfaces

10.3.1.1 Eigenface Concept

Each image is loaded into a computer as a matrix of di�erent intensities. All the images were converted to
gray scale so that we only need to operate on one layer of image (instead of three layers for a RBG image).
A vector whose direction is unchanged when multiplied by the matrix is referred to as an eigenvector of that
matrix. The eigenvectors of the covariance matrix associated with a large set of faces are called eigenfaces.
The eigenfaces can be thought of as a basis for the set of faces. Just as any vector in a vector space is
composed of a linear combination of the basis vectors, each face in the set can be expressed as a linear
combination of the eigenfaces.

10.3.1.2 Format Input Data

To compute the eigenfaces, a portion of a given dataset is �rst chosen randomly to be the training set. The
images in the training set are used to construct the image matrix A (Note: All images in the dataset must
have the same dimensions). The training set can be chosen by selecting a given percentage of the dataset
or by selecting a given number of images per person from the database. Once the images are selected, each
image I i is vectorized into a column vector Pi such that its length equals to the total number of pixels in the
image. This process brings the mathematics of all the computations down to a lower-dimensionality space.

I = N ×M ⇒ Pi = 1×NM (10.1)

3http://face-rec.org/
4This content is available online at <http://cnx.org/content/m33183/1.6/>.

116 CHAPTER 10. FACIAL RECOGNITION USING EIGENFACES

Figure 10.2: Sample training images

The mean face of the training set is computed and subtracted from all the images within the training set
(given W images in the training set).

µ =
1
W

W∑
i=0

Pi (10.2)

Vi = Pi − µ (10.3)

Figure 10.3: Mean face of HFH dataset

Finally, the mean subtracted training images are put into a single matrix of dimension NM x W, forming
the image matrix A.

A =
[
V1 V2 V3 ... VW

]
(10.4)

10.3.1.3 Compute Eigenfaces

Typical PCA calculation would �rst retrieve the covariance matrix C. Covariance measures the relation of
how much two random variables vary together such that if the covariance is positive when both dimensions

117

increase together and negative when they are inversely proportional. The eigenfaces were then obtained by
computing the eigenvectors of the covariance matrix C. This computation will yield NM unique eigenvectors.

C = AAT (10.5)

cov (X,Y) =
∑

(xi − x) (yi − y)
n− 1

(10.6)

But in the case of this project, these resulting matrix of dimension NM x NM was way too large for
MATLAB to process. Furthermore, even if MATLAB had the ability to process such a large matrix it would
still later be too computationally intensive. Instead of computing the covariance matrix C directly, this
project utilizes a smaller matrix S with dimensions W x W that can still be able to compute the eigenfaces
e�ciently. This simpli�cation stems from the fact that the rank of the covariance matrix C is limited by the
number of images in the training set. Since there are at most W-1 non-trivial eigenfaces for C, there is no
need to compute all of the eigenfaces for the dataset. This simpli�cation will prove to be useful as long as
NM�W.

S = ATA (10.7)

The smaller matrix dimensions will be computationally e�ective later when large databases will be sorted
through since only W eigenvalues and eigenfaces will be used.

Now, using some linear algebra tricks, we could show that the eigenvalues of C and S are the same and
that the top W eigenvectors of C (ui) can be obtained from the eigenvectors of S (vi).

Svi = λivi

ATAvi = λivi

AATAvi = λiAvi

CAvi = λiAvi

Cui = λiui

(10.8)

In this manner, we can see that the eigenvectors of C can be derived from

Avi = ui (10.9)

where the computation of vi's were much less computationally extensive than the direct computation of
ui's.

These ui vectors will constitute the columns of the eigenfaces.

Eigenface = [u1 u2 u3 ... uW

10.3.1.4 Top K Eigenfaces

Even with this complexity reduction, it is still redundant to use all W eigenfaces for the reconstruction
process. We could reduce the number of eigenfaces used even more by indentifying the eigenfaces that
contain more content than the others. To determine this property, we bring our attentions to the eigenvalues
that correspond to the individual eigenfaces. We immediately see that there are some eigenfaces that have
higher eigenvalues than the others.

118 CHAPTER 10. FACIAL RECOGNITION USING EIGENFACES

Figure 10.4: Eigenvalues of the corresponding eigenfaces of HFH dataset

After arranging the eigenvalues in descending order, the result becomes clearer. We conclude that the
eigenfaces corresponding to high eigenvalues contain more content. In other words, the higher the eigenvalue,
the more characteristic features of the face the particular eigenvector describes. Therefore, we simplify the
reconstruction process by only using the top K eigenfaces. This completes the training process of our
implementation.

Figure 10.5: Top 5 eigenfaces of HFH dataset

119

Figure 10.6: Last 5 eigenfaces of HFH dataset

In terms of the eigenfaces themselves, we found that the more important eigenfaces (those with higher
eigenvalues) had lower spatial frequency than the less important eigenfaces (those with lower eigenvalues).
This is apparent in the �gure above, where the �rst eigenfaces look blurry and indistinct, and the later
eigenfaces have sharp edges and look more like individual people. This suggests that faces can be identi�ed
based on their low-frequency components alone.

10.3.2 Eigenface Recognition Face Datasets

10.3.2.1 Test 1 (JAFFE database)

For the �rst test of this project's eigenface generation algorithm, the Japanese Female Facial Expression
(JAFFE) Database was used. The JAFFE database �t our ideal conditions of similar lighting conditions,
solid white backgrounds, and normalization of facial features such as the nose, eyes, and lips. The database
is a set of 180 images of seven facial expressions (six basic facial expressions and one neutral).

10.3.2.2 Test 2 (Rice University)

For the Rice database, we chose students of both genders and diverse ethnicities. Each subject was told to
express each of six emotions: neutral, happy, sad, surprised, angry, and disgusted. We had sixteen subjects,
each with six emotions, and we took two pictures per emotion, resulting in a database of 192 images. We also
created a special database of two emotions: closed eyes and expression of choice, to be used for demonstration
at the poster session.

120 CHAPTER 10. FACIAL RECOGNITION USING EIGENFACES

10.3.2.3 Algorithm Concept

Figure 10.7: Diagram of eigenface computation and input with our algorithm. Also, a visual represen-
tation of K-dimensional �face space� and threshold setting between test image reconstruction (red dot)
and closest match image reconstruction (blue dot)

10.4 Facial Recognition using Eigenfaces: Projection onto Face
Space5

10.4.1 Projection onto Face Space

10.4.1.1 Compute Weight Matrix

Now that we have the eigenfaces, we could proceed to projecting the training images onto the face space.
The K-dimension face space is spanned with the top K eigenfaces. An interesting thing to note here is that
each axis of the face space is weighted with respect to the eigenvalue associated with it. So the �rst few axes
will contain more weight than the later axes.

To project the mean-subtracted training images Vi's onto the face space, we �rst take each image and
compute its weight wi on each of the axis by taking the dot product between the image and an eigenface.
This process is repeated for each eigenface with each training image. The resulting weights are put into a
weight matrix WM with a dimension of K x W.

Vj = w1u1 + w2u2 + ...+ wkuk (10.10)

5This content is available online at <http://cnx.org/content/m33182/1.6/>.

121

WM =

(w1)V1
(w1)V2

... (w1)VW

(w2)V1
(w2)V2

... (w2)VW

(w3)V1
(w3)V2

... (w3)VW

...

(wk)V1
(wk)V2

... (wk)VW

(10.11)

Figure 10.8: Projection of training images (blue dots) and test image (red dot) onto the 3-dimensional
face space

10.4.1.2 Compute Threshold Values

When given a test image (red dot), it is �rst projected onto the face space using the same method as before
and then categorized using some threshold values. By testing these and graphing the minimum distance
between each test image and the closest image in the training set, we were able to experimentally come up
with the thresholds. The following graph shows the result of a particular run on the HFH dataset.

122 CHAPTER 10. FACIAL RECOGNITION USING EIGENFACES

Figure 10.9: Minimum distances of various test images to determine thresholds

This graph shows the minimum distance between each test image and the closest image in the training
set. Images 0-91 represent faces in the training set, images 92-160 are faces not in the training set, and images
161-225 are images that are not faces. Because the training set is randomly selected from our databases,
the thresholds vary each time the code is run. The thresholds are dynamic values that change with respect
to the furthest distance d between any two training images. However, a trend emerged after looking at the
data, and we determined that the thresholds were to be set at 10% (0.1d) and 20%(0.2d) of the maximum
distance between two faces in the training set for determining if it was a match and whether or not the
image was a face at all, respectively. These thresholds are used when determining the success or failure of
recognition for both the JAFFE and Rice University datasets.

As the �gure shows, in this particular run, our algorithm successfully identi�ed all faces in the training
set as known faces. Similarly, all but one of the unknown faces fell within the correct threshold. However,
our algorithm had some trouble identifying images that were not faces: about ¼ of them were identi�ed as
unknown faces. We think this occurred because some non-face images had the same round shape as a face
(fruit, for example), or had features (animals). Despite this weakness, our algorithm was successful overall.

10.5 Facial Recognition using Eigenfaces: Results6

10.5.1 Results

10.5.1.1 JAFFE Results

For the JAFFE database, our algorithm recognized a new photo of the person 65% to 75% of the time. We
de�ned recognition as successfully matching a test image to a picture of the same person from the training

6This content is available online at <http://cnx.org/content/m33181/1.6/>.

123

set, even though the two images had di�erent expressions. Recognition rate increased dramatically as we
increased the number of eigenfaces, but stabilized after four eigenfaces (that is, our recognition rate did
not increase by using more than four eigenfaces). The recognition rate also increased when we used more
test images per person in the training set. Similarly, the recognition rate increased when we used a greater
percentage of the dataset in the training set (with pictures chosen randomly from the dataset).

Figure 10.10: Results when varying the number of training images per person & the percent of database
used to as input images

10.5.1.2 Rice University Field Test Results

For the Rice University database, our algorithm recognized a new photo of the person 65% to 75% of the
time. Again, recognition rate increased dramatically as we increased the number of eigenfaces. In this case,
the recognition rate stabilized after six eigenfaces. The recognition rate required more eigenfaces to stabilize
because the Rice database was more diverse, including people of both genders and many di�erent ethnicities.
Therefore, more eigenfaces are needed for an accurate representation of the Rice population. Again, the
recognition rate increased when we used more test images per person in the training set. The recognition
rate also increased when we used a greater percentage of the dataset in the training set.

124 CHAPTER 10. FACIAL RECOGNITION USING EIGENFACES

Figure 10.11: Results when varying the number of training images per person & the percent of database
used to as input images

The resulting �nal algorithm was able to determine, at the four rates shown in the previous two �gures,
whether a test image was a non-face or face and also a match to known face, �nding the closest match to a
known face (as shown below).

125

Figure 10.12: Counterclockwise from top left: Sample test image taken as input; test image recon-
structed using eigenfaces; closest reconstructed image match; corresponding closest match image.

10.6 Facial Recognition using Eigenfaces: Conclusion7

10.6.1 Conclusion

This project yielded fairly accurate face detection results using the eigenface method. Interestingly, we
found that a database of some 200 images can be accurately represented with only about 6 eigenfaces. This
demonstrates that the eigenface method is useful for its ability to compress large datasets into a small
number of eigenfaces and weights. We predict that our results will scale, that is, the number of eigenfaces
needed to represent a database of 1,000 or 1,000,000 images will be far fewer than the number of images.
Based on our results, we hypothesize that more diverse datasets require slightly more eigenfaces for accurate
representation. Our project demonstrates that the eigenface method is an e�cient and accurate technique
for facial recognition.

7This content is available online at <http://cnx.org/content/m33177/1.4/>.

126 CHAPTER 10. FACIAL RECOGNITION USING EIGENFACES

10.6.1.1 Further work

To improve the results of the eigenface method implemented, a normalization program could be developed to
determine the facial metrics and normalize the photos such that facial features are held in constant positions
and contrast and light intensities between photos are balanced. Localizing of the features would keep head
positions fairly consistent and yield better eigenfaces.

Creating a program to extract faces from their environment (for example, by using a matched �lter)
would expand the possible applications of this project. Individual faces could be extracted from security
cameras or group pictures.

A larger and more diverse dataset would also increase face identi�cation and recognition. We would like
to include people of diverse ages, since everyone in both the JAFFE and Rice datasets was in their teens or
twenties. Increasing the size and quality of the dataset would boost the recognition rate. We would like to
see how many eigenfaces are needed to represent a dataset of 1,000 or 1,000,000 images.

Because both our datasets have emotions as a variable, it would be interesting to create an �emotion
detector�, as was done with the JAFFE data. Despite the fact that emotions look di�erent on every person
(fear was found to be an especially problematic emotion), emotion recognition rates of over 67% were
attainedusing Gabor wavelets2 . It would be interesting to see how the eigenface method compares.

10.6.2 Facial Recognition Source Codes

• If you would like to try out out our facial recognition code for yourself, you can download them here8.
This code allows you to input one test image and matches it to the closest image in the given dataset.
The JAFFE dataset is included for testing.

• If you would like to test with our full code or to obtain the HFH dataset, please contact Aron Yu
(aron.yu@rice.edu9)

• GUI version of the code coming soon...

10.7 Facial Recognition using Eigenfaces: References and
Acknowledgements10

10.7.1 References and Acknowledgements

Team members:

• Catherine Elder (cje1@rice.edu)
• Norman Pai (nlp1@rice.edu)
• Je�rey Yeh (jwy1@rice.edu)
• Yingbo �Aron� Yu (yy4@rice.edu)

We would like to thank Manjari Narayan, our advisor for this project, for all her help. Finally, we would like
to thank professor Richard Baraniuk and Matthew Moravec for the opportunity to work on this project.

10.7.1.1 References

1. Zhao, W. et al. "Face Recognition: A Literature Survey." ACM Computing Surveys, Vol. 35, No. 4,
December 2003, pp. 399�458

2. M. Turk and A. Pentland (1991). "Face recognition using eigenfaces11 ". Proc. IEEE Conference on
Computer Vision and Pattern Recognition. pp. 586�591

8See the �le at <http://cnx.org/content/m33177/latest/SingleRun.rar>
9aron.yu@rice.edu

10This content is available online at <http://cnx.org/content/m33180/1.3/>.
11http://www.cs.ucsb.edu/∼mturk/Papers/mturk-CVPR91.pdf

127

3. JAFFE image database � "Coding Facial Expressions with Gabor Wavelets�, Michael J. Lyons, Shigeru
Akamatsu, Miyuki Kamachi, Jiro Gyoba < http://www.kasrl.org/ja�e.html12 >.

4. �Introduction to Fourier Transforms for Image Processing.� <http://www.cs.unm.edu/∼brayer/vision/fourier.html13
>.

5. �Face Recognition Using Eigenfaces.� <http://www.cs.princeton.edu/∼cdecoro/eigenfaces/14 >.
6. Pissarenko, Dimitri. �Eigenface-based facial recognition.� <http://openbio.sourceforge.net/resources/eigenfaces/eigenfaces-

html/facesOptions.html15 >.

12http://www.kasrl.org/ja�e.html
13http://www.cs.unm.edu/∼brayer/vision/fourier.html
14http://www.cs.princeton.edu/∼cdecoro/eigenfaces/
15http://openbio.sourceforge.net/resources/eigenfaces/eigenfaces-html/facesOptions.html

128 CHAPTER 10. FACIAL RECOGNITION USING EIGENFACES

Chapter 11

Speak and Sing

11.1 Speak and Sing - Introduction1

11.1.1 Speech Scaling and Pitch Correction

The speech scaling and pitch correction program, or �Speak & Sing�, generates a properly-timed and pitch-
accurate sample of a known song from recorded spoken words.

A voice modulation application which detects the timing and pitch of the recorded input and automat-
ically performs time scaling and pitch correction to match the speech to a pre-selected song, producing a
musical output.

11.1.1.1 Making a Smarter Autotuner

Pitch correction is used by musicians to improve the sound of song vocals by �xing o�-key singing or adding
distortion. It can be applied real-time using a synthesizer keyboard or added after recording. However, these
�autotuners� can't �x o�-tempo singing, and automatic autotuners depend on the singer to be relatively
close to the right pitch.

Goals for the Speak and Sing:

• Proof-of-concept of automated syllable detection, time scaling, and pitch correction in one robust
application

• Provides open-ended, customizable options for audio processing
• Demonstrates time and frequency DSP applications using MatLab

11.1.1.2 Implementation: An Overview

Recording:
Input voice samples are recorded in mono-channel audio at a sampling frequency of 16,000 (although any

sampling frequency can be used). It is then imported into MatLab and the following functions are run in
sequence:

Song Interpretation and Retrieval:
Contains data for selected songs based on sheet music. It returns a vector of fundamental note frequencies

and note lengths depending on the song selected and the desired tempo.
Available Songs:
1. Christina Aguilera - Genie in a Bottle
2. Mary Had a Little Lamb

1This content is available online at <http://cnx.org/content/m33229/1.1/>.

129

130 CHAPTER 11. SPEAK AND SING

3. Row, Row, Row Your Boat
Syllable Detection
Analyzes the input speech data and determines the locations and lengths of each syllable. After dividing

the signal up into several short windowed pieces, it detects the periodicity and energy of each window to
determine the type of sound (vowel, consonant, or noise). The locations of the syllables is then determined
based on the pattern of sounds.

Time scaling
Interprets the detected syllable locations and stretches or shrinks the syllable to match the length of the

word in the song. The time scaling is performed using a time-domain Waveform Similarity Overlap Add
(WSOLA) algorithm, which breaks up the signal into overlapping windows and copies each window to a
new location, either closer together or further apart. This stretches or compresses the length of the speech
without losing quality or information.

Pitch correction
Detects the pitch of the signal, compares it to the desired pitch of the song, and makes pitch corrections.

Pitch detection is done using FAST-autocorrelation, in which small windows of the signal are o�set and
autocorrelated to �nd the period, and thus frequency, of the signal for that interval. Pitch correction
is performed with Pitch Synchronous Overlap Add (PSOLA), which moves windowed segments closer or
further apart and overlap-added to alter the frequency without loss of sound.

11.1.1.3 The Result

The resulting audio �le sounds like the input speech or singing, but the words will now line up with those of
the original song and the pitch will be adjusted. The resulting impact on sound is that the recorded input
will now sound more like the song, without compromising the original voice or speech.

11.2 Speak and Sing - Recording Procedure2

11.2.1 Recording

Input voice samples are recorded in mono-channel audio with a sampling frequency of 16,000 Hz. The
sampling rate chosen allows for a balance of processing e�ciency and sound quality � the computation time
of the program generally scales linearly with increase in sampling rate. The selected sampling frequency is
also convenient for computation, as the MatLab program's wave audio operations perform best with sampling
frequencies in increments of 8,000 Hz. The program allows for the use of any sampling frequency and will
perform adequately for sampling frequencies up to and beyond the audio standard 44.1 kHz, but processing
time and program durability become an issue.

When recording, the best results are produced for input speech or song which is delivered slowly and
clearly, with either brief pauses or strongly-enunciated consonants between syllables and words.

The recorded sound is processed in Audacity, a freeware recording software, to trim out excess electrical
and environmental noise and remove existing DC o�sets. It is then ready for handling in the MatLab
environment.

11.3 Speak and Sing - Song Interpretation3

11.3.1 Song Interpretation

The songs to be used by the Speak and Sing were predetermined and preprogrammed. For simplicity, the
songs feature a one-to-one format. That means every syllable of the lyrics is associated with one duration
and one pitch, there are no rests and no slurs. The song interpretation is done in two vectors, one contains

2This content is available online at <http://cnx.org/content/m33233/1.1/>.
3This content is available online at <http://cnx.org/content/m33237/1.1/>.

131

all of the durations (in seconds) to be used by the duration matching, and the other contains all of the note
frequencies (in hertz) to be used by the pitch matching.

Here is an example of a measure of sheet music that has been turned into a useable vector.

Mary Had a Little Lamb

Figure 11.1

notes = ([246.94; 220;196; 220; 246.94; 246.94; 246.94;]);

duration = ([.5; .5; .5; .5; .5; .5; .5;]);

Three songs were made available for use:
1. Christina Aguilera - Genie in a Bottle
2. Mary Had a Little Lamb
3. Row, Row, Row Your Boat

11.4 Speak and Sing - Syllable Detection4

11.4.1 Syllable Detection

The syllable detection algorithm takes as its input recorded speech and produces an output matrix denoting
the start and end times of each syllable in the recording. There are two main parts to the algorithm. First,
each sound in the input �le must be classi�ed as a vowel, consonant, or noise. Second, the algorithm must
determine which sequences of sounds correspond to valid syllables.

11.4.1.1 Sound Classi�cation

The sound classi�cation step splits the input signal into many small windows to be analyzed separately. The
classi�cation of these windows as vowels, consonants, or noise relies on two core characteristics of the signal:
energy and periodicity. Vowels stand out as having the highest energy and periodicity values, noise ideally
has extremely low energy, and consonants are everything that falls between these two extremes.

The energy of a window of the input vector W is calculated as

E = |W|^2.

However it is necessary to set general energy thresholds that are valid for speech samples of varying volume.
In order to accomplish this, after the energies of all the windows have been calculated, they are converted
into decibels relative to the maximum energy value.

4This content is available online at <http://cnx.org/content/m33241/1.1/>.

132 CHAPTER 11. SPEAK AND SING

E' = 10*log10(E/max(E)).

The energy thresholds are then de�ned in terms of a percent of the total energy range. For example, if an
energy threshold was 25 percent and the energies ranged from -100 to 0 dB, then everything from -25 to 0
dB would be above the threshold.

In some cases, energy alone is enough to determine whether a certain sound is a vowel, consonant, or
noise. For instance, here is a plot of the energy vs. time of a recording of the spoken word "cat." It is easy
to tell which portions of the �gure correspond to vowels, consonants, and noise by inspection:

Figure 11.2: The energy threshold clearly divides the high-energy vowel portion of the signal from the
consonants.

However, energy cannot always separate vowels and consonants so dramatically. For example, the word
"zoo."

133

Figure 11.3: The ending vowel sound drops too close to the threshold.

Although a portion of the vowel still has signi�cantly higher energy than the consonant, the ending
portion of the vowel drops in energy to the point where it is dangerously close to the threshold. Raising
the threshold so that the "z" sound is certain not to be counted as a vowel only makes it more likely that
portions of the "oo" sound will be mistakenly classi�ed as consonants. Clearly, additional steps are necessary
to more accurately di�erentiate between consonants and vowels.

11.4.1.2 Periodicity Analysis

The algorithm uses the periodicity of the signal to accomplish this task. The periodicity is obtained using
the autocovariance of the window being analyzed. This is calculated as:

C(m) = E[(W(n+m)-mu)*conj(W(n)-mu)]

Mu is the mean of the window W. It measures how similar the signal is to itself at shifts of m samples and can
therefore distinguish periodic signals from aperiodic ones due to their repetitive nature. The autocovariance
vector is most stable and therefore most meaningful for values of m relatively close to 0, since for larger m,
fewer samples are considered, causing the results to become more random and unreliable. Therefore, the

134 CHAPTER 11. SPEAK AND SING

sound classi�cation algorithm only considers autocovariance values with m less than 1/5 the total window
size. These autocovariance values are normalized so that the value at m = 0 is 1, the largest possible value.
The maximum autocovariance in this stable region is considered the periodicity of the window.

The periodicity values for vowels are extremely high, while most unvoiced, and some voiced, consonants
exhibit very low periodicity. Periodicity is especially useful in detecting fricative or a�ricate consonants
which are both characterized by a great deal of random, possibly high-energy, noise due to their method
of articulation. Examples of these consonants include "s," "z," "j," and "ch." The contrast between the
periodicity of a fricative consonant and a vowel can be clearly seen in this plot.

Figure 11.4

Putting it all together, the sound classi�cation portion of the algorithm �rst calculates the energy and
periodicity of each window of the input signal. If both the energy and periodicity are higher than certain
thresholds, the window is classi�ed as a vowel. If the energy is smaller than a very low threshold, the window
is counted as noise, and everything in between is considered a consonant. Let's take another look at the
energy characteristics of the word "zoo" (refer to �gure 2). Using this alone, we could not easily distinguish
the high-energy "z" from the lower-energy portion of the "oo." However, here is a plot of the periodicity vs.
time for the same recording.

135

Figure 11.5: The di�erence between the "z" and the "oo" is now much more pronounced.

This plot shows a clear contrast between the aperiodic fricative "z" and the periodic vowel. Taken
together, these data now provide su�cient information for the sound classi�cation algorithm to correctly
identify each sound in this recording.

This method works with a reasonable degree of accuracy, but there are a few challenges that must be
considered. The greatest among these is the handling of liquid consonants like "l," "y," or "m." In certain
cases, these sounds are used as consonants at syllable boundaries, while in other circumstances, they act as
a vowel usually would in making up the majority of the syllable. For example, in the word "little," the �rst
"l" is acting as a consonant, but the "l" sound is also used as the central portion of the second syllable.
Therefore, these sounds are not always accurately classi�ed, and they must be annunciated strongly in the
input recording if they are acting as syllable boundaries.

Another issue with this method is that sometimes it detects short bursts of one sound type in the middle
of another. For instance, there may be 1 or 2 consonant windows surrounded by a large number of noise
windows or a small number of vowel windows in the middle of a large section of consonant windows. Several
situations can lead to errors like this. For example, the background noise in a recording might boost the
energy of a window high enough to be classi�ed as a consonant, or random spikes in the periodicity of an
otherwise aperiodic signal could cause part of a consonant to be classi�ed as a vowel. These errors can be
minimized by imposing a length constraint on sounds. In order for a group of windows to be classi�ed as
a particular sound, they must represent a long enough chunk of time to be considered meaningful. If the
group of windows is too small, they are reclassi�ed to match the sound immediately preceding them.

136 CHAPTER 11. SPEAK AND SING

11.4.1.3 Syllable Interpretation

After each sound in the input has been classi�ed, it is necessary to determine which sound sequences should be
interpreted as syllables. This is accomplished using a tree-like decision structure which examines consecutive
elements of the sound classi�cation vector, comparing them to all possible sequences. Once a known sequence
is identi�ed, it is added to the list of syllables, and the algorithm moves on to the next ungrouped sounds.
The decision structure is depicted in the following �gure.

Figure 11.6

After this step, some syllables were occasionally much too short. For instance, the word "good" had a
small probability of being split up into two syllables ("goo"" and "d") depending on how much the speaker
emphasizes the voicing of the d. Further increasing the minimum allowable sound duration caused too much
information to be lost or misinterpreted, so a minimum syllable duration parameter was also added. If a
syllable is too short, it is combined with an adjacent syllable based on its surrounding sounds. If one of
the sounds adjacent to the short syllable is noise and the other is not, the short syllable is added to the
side without noise to preserve continuity of the signal. If neither sound adjacent to the syllable is noise,
the duration of each adjacent sound is calculated, and the syllable is tacked onto the side with the shortest
neighboring sound as this one is more likely to have been cut o� in error.

The following table lists the values for the various thresholds and parameters we found worked best for
relatively clean, noise-free, input signals. These parameters must be adjusted if a great deal of periodic or
energetic background noise, such as might be caused by a microphone picking up the sound of a computer

137

fan, is expected to corrupt the input recording.

Parameter Value

Window length 5 ms

Vowel periodicity threshold .75

Vowel energy threshold 27% of total energy range

Noise energy threshold 55% of total energy range

Minimum sound duration 40 ms

Minimum syllable length 80 ms

Table 11.1

11.5 Speak and Sing - Time Scaling with WSOLA5

11.5.1 Introduction

There are many applications for time-scale modi�cation ranging from post production of audio video synchro-
nization in �lm to voicemail playback. Time-scale modi�cation essentially is the process of either speeding
up or slowing down the apparent rate of speech without corrupting other characteristics of the signal such
as pitch and voice quality. Resampling is out of the question because is directly modi�es pitch and very
often voice quality loss is signi�cant. To maintain these characteristics, the short-time Fourier transform of
corresponding regions of the original (input) and scaled (output) signals should be very similar. Overlap add
algorithms achieve this by simply cutting out smoothly windowed chunks of the input signal, repositioning
them to corresponding time indexes in the output signal, overlapping the windows to achieve continuity, and
adding. WSOLA is unique among overlap add algorithms in that it maintains local Fourier similarity in
a time-scaled fashion but more importantly, the excised segment is similar to the segment adjacent to the
previously excised segment. This makes WSOLA a very robust time-scaling algorithm being able to time
scale even in the presence of noise and even competing voices in the input speech signal.

11.5.2 The Algorithm

The �rst step is to window the input signal with a smooth window such as a hanning window. Let w(n)
be the window. Then establish a time warp function τ(n) such that for n an index in the input signal τ(n)
equals the time scaled index in the output signal.

The input signal should then be windowed such that each segment overlaps with half of the previous
segment. Then copy the �rst windowed segment to the output signal. The �rst segment of the input should
be copied to the �rst segment in the output without consideration for the time warp function. Call the
location of the last copied segment in the input S1. Now the algorithm needs to �nd the next segment which
it will copy, overlap and add with the current output signal.

There are quite a few ways to �nd this next segment. The most obvious method is to simply copy the
segment at τ -1(S2) to the segment at S2 in the output. However, this would wreak havoc on the phase
synchronicity of the signal. The second method is to copy phase synchronous segment such that overlapping
and adding will not cause huge phase di�erences between the two segments. This would maintain Fourier
characteristics but would sound very choppy at syllable change edges in the speech. The WSOLA algorithm
looks for a segment near τ -1(S2) that is most similar to the segment at τ

-1(S2) + length(w). The next signal
must be near (within a threshold) of the index given by the time warp function but also similar in Fourier

5This content is available online at <http://cnx.org/content/m33240/1.1/>.

138 CHAPTER 11. SPEAK AND SING

characteristics to the next segment in the input signal. In other words, it �nds a segment near the time
scaled index such that it is very similar to the next naturally occurring segment in the input signal.

There are many ways to de�ne most similar. The easiest way is Euclidian distance between the two signals.
But computing the distance between the segments is computationally very expensive O(N2). The cross-
correlation between the next adjacent segment and the region of interest seems to be the next alternative.
The normalized cross-correlation if computed in the time domain is equally expensive. However, in the
frequency domain, the computation is rather fast O(NlogN). The peak of the normalized cross-correlation
occurs at the point of highest similarity. The segment corresponding to this point is then taken as the next
segment and copied over to the output signal, overlapped with the existing signal and added. This is done
iteratively until the entire output signal is created.

This algorithm can take arbitrary time-warp functions and can time-scale a signal while reliably main-
taining Fourier characteristics. It is also less computationally expensive than simple up sampling or down
sampling for non-integer scaling factors. In fact, sampling rate modi�cation cannot be easily done for irra-
tional scaling factors but this algorithm will even handle that.

11.5.3 Implementation

This algorithm was implemented in matlab and achieved good results even with arbitrary constant time
warp functions. Constants ranging from .1 to 10 were tested with satisfactory results.

139

Figure 11.7: Short sample of a speech signal

140 CHAPTER 11. SPEAK AND SING

Figure 11.8: Time scaled version of previous speech signal

141

Figure 11.9: Fourier Transform of speech signal

142 CHAPTER 11. SPEAK AND SING

Figure 11.10: Fourier Transform of time scaled speech signal

11.6 Speak and Sing - Pitch Correction with PSOLA6

11.6.1 Introduction

Pitch correction of the human voice is a common activity, with applications in music, entertainment, and
law. It can be used to alter pitch to produce a more accurate or more pleasing tone in music, as well as
add distortion e�ects. Several programs for entertainment use a form of pitch correction to modulate and
distort a user's voice, allowing one to sound like a di�erent gender or emulate a celebrity or other well-known
voice. Voice distortion is also often required to protect the anonymity of individuals in the criminal justice
system. However, it is the �rst of these applications that we are most interested in - producing a pleasing,
tone-accurate song from a human voice.
Implementation
Pitch adjustment of a digitally-sampled audio �le can be implemented simply using resampling. However,
this completely alters the time scaling and cannot account for changes in the pitch and in�ection of a voice
over time, and thus cannot be considered. Instead, we shall use the more sophisticated Pitch-Synchronous

6This content is available online at <http://cnx.org/content/m33242/1.1/>.

143

Overlap Add algorithm, which allows us to modify pitch without compromised information or modifying the
time scaling.

The pitch correction method involves the following basic steps:

• Detection of original pitch
• Parsing of desired pitch frequencies
• Correction of pitch

11.6.2 Pitch Detection

First, the pitch of the original signal is determined. This is done using the FAST-Autocorrelation algorithm.
This algorithm makes use of the fact that for a signal to have pitch, it must have a somewhat periodic nature,
even if it is not a strictly periodic wave. The signal is divided into several small windows, each only a few
milliseconds long and containing thousands of samples - enough to detect at least two periods and thus to
determine the window's frequency.
Finding periods
Each windowed segment is autocorrelated with itself to identify the length of the period. This is done by
convolving the signal with itself with an increasing o�set τ to obtain the autocorrelation function:

R(τ) = f(-τ) * f(τ)
For discrete, �nite-length signals, it can be found as a sum of the product of the signal and its o�set, in

this form:
R(s) = Sum(x(n)x(n-s))
This autocorrelation acts as a match �lter: the signal and its o�set form will be the most alike when o�set

s is equal to one period. Thus, the autocorrelation function is at a minimum when the o�set corresponds to
the length of one period, in samples.
Making it FAST
Autocorrelation in this fashion is very computationally expensive - one can expect that the algorithm will
have to convolve two length-1000 signals several hundred times for each window to obtain the frequency
from within the full possible range of frequencies for a human voice. To speed this up, we can make two
assumptions:

1. The frequency of a window should be relatively close to that of the window before it
2. The �rst minimum corresponds to the period, so no further minima are needed

By starting at an o�set relatively close to the previously found period length (perhaps 20 samples before
where the period was found), we can eliminate a few hundred calculations per window. If a minimum is not
found in this area, we simply broaden our range and try again. To reduce the computation time further,
we also calculate the derivative dR(s)/ds to determine where the minimum occurs. Once we �nd the �rst
minimum, we are �nished with obtaining the frequency for this window, having shaved o� up to 70% of our
computation time.
When we're done...
Once a frequency has been found for every window, a vector of frequencies (one for each window) is compiled
and returned to the pitch correction handler function.

144 CHAPTER 11. SPEAK AND SING

Figure 11.11: Waveform of an input audio signal (speech: "Mary had a little lamb...")

Figure 11.12: Detected frequencies of the signal above, one per window. Here it is easier to observe
the spikes in frequency for parts of speech that may be spoken higher in pitch. If this input was sung
rather than spoken, this plot would be much smoother and look closer to the desired frequency.

11.6.3 Desired pitch

The PSOLA pitch correction algorithm requires both an original pitch and a "target" pitch to achieve. If
this were a fully-automated pitch-smoothing autotuner, the target pitch would be whatever "note" frequency
was closest to the one observed. We on the other hand would like to bend the pitch to the speci�c frequency
of the song, regardless of our starting point. To this end, we must generate a vector of desired frequencies.

145

Fortunately, thanks to our song interpretation earlier, we already have vectors of the pitch and length of
each note in the song at hand. These vectors assume the following format:

◦ Frequencies: fundamental frequency in Hz (one per note)
◦ Durations: length in seconds independent of sampling frequency (one per note)

First, we generate a vector of frequencies for each sample at our de�ned sampling rate. This is as simple
as producing a vector with a length equal to the total length of the song in seconds times the sampling
frequency (thus, lengthN = sum(durations)*Fs). Then, for each note, we copy the frequency of that note
over every sample in the vector for a range of the note's duration. This is most easily done using MatLab's
"cumsum" function on the durations vector to make each note indexed by the cumulative time passed, and
then multiply these by the sampling frequency to produce the index of each note in samples.

Now that we have the frequency for every sample, we can chop up this full-length signal into windows
just as we did to the input signal. For each window's range, we simply take the mode of the frequencies
in that range (given their short length, a window will never span more than two notes) and let that be the
desired frequency for that window.

Figure 11.13: A plot of the desired frequency-per-window of "Mary Had a Little Lamb". The high and
low notes are very clearly distinguishable.

11.6.4 PSOLA

Now that we have our original and target frequencies, we can exercise the Pitch-Synchronous Overlap Add
algorithm to attempt to correct the frequencies. Like autocorrelation, the PSOLA begins with a windowed,
segmented signal. Because we have already determined pitches for a speci�c number of segments, the PSOLA
computations will use the same segment length. This is easy to remember, but introduces some issues. For
example, the PSOLA algorithm can make the �nest pitch corrections with a greater number of smaller
segments, allowing for smoother correction across the signal. But what would happen to the autocorrelation
pitch detector if the segment was so small that a full period could not be obtained? A compromise must be
made on a segment length which allows for optimal pitch detection and pitch correction, with guesswork as
the only means of �nding the "happy medium".

146 CHAPTER 11. SPEAK AND SING

Modifying pitch with Hanning windows
The signal we input to the PSOLA algorithm is already "windowed" into several overlapping segments. For
each segment, the PSOLA creates Hanning windows (windows with a centralized hump-shaped distribution)
centralized around the pitch-marks, or spikes in the amplitude. Once the segment is divided into overlapping
windows, these windowed areas can be arti�cially pushed closer together for a shorter, higher-pitched signal,
or farther apart for a longer, lower-pitched signal. The jumps between the beginning of each window is
shortened or lengthened, and segments are duplicated or omitted where necessary. Unlike resampling, this
change of pitch and duration does not compromise the underlying information.
Smoothing it out with Overlap and Add
Once the pitch and duration of the signal have been adjusted, the segments are then recombined by over-
lapping and adding. This Overlap-Add method exploits the knowledge that a long discrete convolution can
be simpli�ed as the sum of several short convolutions, which is convenient for us since we already have a
number of short segments. The Overlap-Add produces a signal which is the same duration as its input
and has roughly the same spectrum as the input, but now contains bands of frequency close to our desired
frequency and, when played back, shows the result of our desired pitch correction e�ect.

The PSOLA algorithm described here is the Time-Domain PSOLA. Alternative PSOLA methods exist
which depend on linear predictor coe�cients rather than segmented waves. The TD-PSOLA is used for its
simplicity in programming versus marginal increase in computational cost.

11.6.5 References

Gareth Middleton, "Pitch Detection Algorithms," Connexions, December 17, 2003,
http://cnx.org/content/m11714/1.2/7

Lemmetty, Sami. Review of Speech Synthesis Technology. (Master's Thesis: Helsinki University of
Technology) March 1999. http://www.acoustics.hut.�/∼slemmett/dippa/thesis.pdf8

Upperman, Gina. "Changing Pitch with PSOLA for Voice Conversion." Connexions. December 17, 2004.
http://cnx.org/content/m12474/1.3/9

11.7 Speak and Sing - Conclusion10

11.7.1 Results

After the signal has been processed by the various functions, we obtain a resultant signal (in the form of a
data vector) which has been time-scaled and pitch-corrected. The resulting audio playback is (presumably)
on-beat, in time with the song, and of the correct pitch. The individual results of each step's implementation
are described individually below.
Syllable Detection
The method of detecting sound types by energy and periodicity proved highly e�ective, with a decent rate
of accuracy. The syllable identi�cation by patterns seems to cover all cases e�ectively (assuming sound type
detection worked). The input signal may need to be "doctored" a bit to remove the DC o�set, amplify the
signal, and remove excessive noise caused by noisy environments or electronic interference.
Time Scaling
The WSOLA algorithm works very well for duration scaling. It is able to shorten or expand syllables
dramatically without any discernible loss of information. Tests indicate that the signal could be stretched to
ten times its original length without audio artifacting occurring. Assuming the syllable detection function
was accurate, the time scaling function produces a signal timed exactly to the song.

7"Pitch Detection Algorithms" <http://cnx.org/content/m11714/1.2/>
8http://www.acoustics.hut.�/∼slemmett/dippa/thesis.pdf
9"Changing Pitch with PSOLA for Voice Conversion" <http://cnx.org/content/m12474/1.3/>

10This content is available online at <http://cnx.org/content/m33243/1.1/>.

147

Pitch Correction
The PSOLA algorithm works as designed and introduces pitch correction. Given a relatively pitch-accurate
input signal (such as a song or a sine wave), it will correct the input to the desired frequency. However,
attempting to correct a dramatically di�erent pitch (such as correcting the low timbre of a male voice
speaking to a middle true C-note) causes a discernible gap between frequencies when listening to the signal.
The result does not truly bend the pitch of the signal, but rather introduces harmonized distortion (hereafter
dubbed "the T-Pain e�ect11 ").

11.7.2 Limitations and areas for improvement

Song Interpretation

◦ No allowance is made for note slurs or variations within a syllable. Sustained words which vary in
pitch are not currently supported. This would be relatively simple to implement by modifying the
song vectors so that each syllable can contain multiple notes and durations.

◦ Songs must currently be coded by hand by examining sheet music or "playing by ear". For this reason,
song selection is limited to how many man-hours are put into song coding. In the future, a MIDI �le
decoder could automate this task. A more advanced approach would be to develop a pitch detector
which identi�es the vocal component of the song and then detects pitch.

Syllable Detection

◦ A relatively "clean" pre-processed signal produces best results. It would be possible to include DC
o�set removal, ampli�cation, and �ner noise detection in the MatLab function itself rather than rely
on an outside program.

◦ Soft consonants (L, R, Y, and others) do not produce the same contrasting energy and periodicity
as hard consonants. Multiple syllables which are separated by a soft consonant which is not clearly
enunciated or emphasized may be grouped together as one. Further research and a more robust
understanding of this sound type should allow for changes which will improve detection.

Pitch Correction

• The PSOLA algorithm is well-suited for minor pitch corrections but cannot produce major pitch bends;
attempts to do so result in the T-Pain e�ect. A more aggressive pitch correction method could produce
tonal sound from any input but would compromise the sound information, leaving very little of the
original speech intact.

• The FAST-autocorrelation and PSOLA algorithms must use the same length and number of windowed
segments. This creates a trade-o�: autocorrelation can catch higher pitches and detect more accurately
when using a longer window length, while PSOLA is able to make �ner adjustments when given a larger
number of smaller windows. If the window length is too small, autocorrelation may not detect any
periods and would return zero frequency for that window. If the window length is too large, shorter
sounds would not be pitch-corrected.

• The repeated convolutions of the autocorrelation and PSOLA algorithms make this the most compu-
tationally expensive step in the process. Methods such as the FAST method of reducing the number
of test cases have dramatically improved this time, but there is still room for improvement.

11.7.3 Potential Applications

The Speak and Sing is a robust package which o�ers functionality and techniques not found in conventional
autotuners. This all-in-one program and derivatives thereof show potential for applications in:

11http://www.youtube.com/watch?v=R7yfISlGLNU

148 CHAPTER 11. SPEAK AND SING

• Music: the Speak and Sing could provide a multi-functional alternative in situations where pitch
correction and autotuner distortion are desired. It can also provide tempo and timing corrections on
a dynamic scale.

• Entertainment: the Speak and Sing would, at the very least, make for an interesting iPhone app of
the same name.

• Communication: pitch correction and timescaling are important facets of voice synthesis and could
be used to augment human-interface and accessibility programs.

• Speech analysis: the syllable detection algorithm can be used to parse recordings and perhaps �nd
use in speech-to-text applications.

11.7.4 In conclusion...

The Speak and Sing has served as an excellent demonstration of core digital signal processing techniques.
Its development has served as a great learning experience for the team and has allowed each of us to �ex our
creative muscle.

While the "spoken words to full song" concept was not fully realized within this limited framework,
the Speak and Sing is nonethelesss a functional, robust, and impressive program. It executes its syllable
detection, time scaling, and pitch correction components correctly and produces an audible, tangible result
from the input speech.

Chapter 12

Musical Instrument Recognition

Through Fourier Analysis

12.1 Musical Instrument Recognition Through Fourier Analysis1

Introduction
Di�erent instruments produce distinct sounds that are easily distinguishable by a human ear. Our goal
was to create a digital system that can accomplish the same thing. This has potential future application
in helping to decode: Old recordings Multiple instruments overlapping (orchestras, bands, etc.) With a
computer system that can automatically detect what is being played, confusion caused by our human ability
to distinguish sounds can be avoided by looking at the physics behind sounds and how these are formed.
All instruments make distinct sounds by producing vibrations in di�erent ways. This leads to the signals
they produce having di�erent properties that can be distinguished by a computer system. By analyzing
the harmonic frequencies from a sound �le, and by looking at the di�erent energy levels on each and how
they relate to each other, one can determine what the source of this sound is. A system such as this could
potentially be applied to things such as converting audio to formats to MIDI or determining what instruments
were used in a big band recording.
Theory
When a note is played on a musical instrument, we associate it with a certain frequency. However it is really
a combination of the frequency we hear (the note played) and a series of less powerful harmonic frequencies.
The combination of these creates the tone, or timbre, we associate with each instrument. Our job was to
write a program that looks at these harmonics and how they relate to the strongest pitch and judge what
type of instrument was most likely to have made the sound. We did this by coming up with a point system
that gives points to each family based on what qualities are displayed in the sample we took.
Method
Our system for determining which instrument family a .wav �le comes from: 1. Take a .05 second sample
of the wav �le 2. Take the FFT of the sample 3. Figure out how many harmonics there are (i.e. spikes at
least 1/10 as powerful as the main tone) 4. Assign points to each family based on the order and power of
harmonics 5. Repeat for the next sample 6. When one family has enough points over the other families,
stop the system and declare that family the winner For instance, string instruments have fewer and less
powerful overtones than brass instruments, while woodwinds fall somewhere between the two. The ratio of
an overtone to the previous overtone is also much more likely to be below one in string instruments.
Results
We tested our system with multiple samples of instruments playing individual notes in Propellerhead's
Reason software, as well as with recordings of live solo performances. Because our program takes many

1This content is available online at <http://cnx.org/content/m33260/1.1/>.

149

150
CHAPTER 12. MUSICAL INSTRUMENT RECOGNITION THROUGH

FOURIER ANALYSIS

samples from di�erent points in each track, it does a good job of identifying which instrument is being used
in which song. Our biggest problem was not with the live performances, but with computer samples playing
notes that are out of some instruments' standard ranges. For instance, the FFT of a bassoon playing in
its upper ranges looks extremely similar to that of a violin. However, our system can accurately place the
following instruments: Violin (3 Reason samples, 2 live performances), Trumpet (2 Reason samples, 2 live
performance), English Horn (1 Reason sample), Oboe (2 Reason samples, 2 live performances), Cello (1
Reason sample, 1 live performance), Tuba (1 Reason Sample), low range Bassoon (2 Reason Samples)
Conclusion
We were able to create a system that is capable of classifying instruments in separate families. By analyzing
the di�erent composition of the sound waves created by di�erent instruments, we were able to �nd traits
common to multiple instruments in each category. These were present in many instruments under each family
since they produce sound in similar ways, allowing us to successfully separate them into strings, woodwinds
or brass.

Bibliography

[1] J. Cai, E. J. Cand[U+FFFD] and Z. Shen. A singular value thresholding algorithm for matrix completion.
arXiv:0810.3286v1, October 2008.

[2] E. J. Cand[U+FFFD]nd Y. Plan. Matrix completion with noise. arXiv:0903.3131v1, March 2009.

[3] E. J. Cand[U+FFFD]nd B. Recht. Exact matrix completion via convex optimization. arXiv:0805.4471v1,
May 2008.

[4] J. Hofmueller, A. Bachmann, and I. O. zmoelnig. The transmission of ip datagrams over the semaphore
�ag signaling system (sfss). http://tools.ietf.org/html/rfc4824, April 2007.

[5] C. Hornig. A standard for the transmission of ip datagrams over ethernet networks.
http://tools.ietf.org/html/rfc894, April 1984.

[6] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. arXiv:0901.3150v4,
September 2009.

[7] R. H. Keshavan and S. Oh. Optspace: A gradient descent algorithm on the grassman manifold for
matrix completion. arXiv:0910.5260v2, November 2009.

[8] Audun Larsen. The highly uno�cial cpip wg. http://www.blug.linux.no/rfc1149/, April 2001.

[9] Net�ix. Net�ix prize. http://www.net�ixprize.com//index.

[10] A. Singer. A remark on global positioning from local distances. Proc. Natl. Acad. Sci. USA, 105:9507�
9511, July 2008.

[11] L. Zhang, L. Liu, C. Gotsman, and S.J. Gortler. An as-rigid-as-possible approach to sensor network
localization. Harvard Computer Science Technical Report: TR-01-09, January 2009.

151

152 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A Adaptive Filter, � 7.1(71)
a�ne, � 9.7(106)
a�ne transform, � 9.3(102)
arbitrary levels of AWGN, 92
attenuation, 81
autotune, � 11.1(129)
AWGN, 82

C code, � 8.5(93)
completion, � 2.1(13), � 2.2(13), � 2.3(14),
� 2.4(16), � 2.5(25), � 2.6(25)
computer vision, � 5.2(54), � 5.3(56), � 5.4(57),
� 5.5(59), � 5.6(60), � 5.7(61), � 5.8(61),
� 5.9(62)

D detection, � 11.1(129), � 11.4(131)
di�erent types of noise, 93
DSP, � 1.1(1), � 1.2(1), � 1.3(2), � 1.4(4),
� 1.5(6), � 1.6(6), � 1.7(9), � 1.8(12)

E ECG, � 7.1(71)
eigenface, � 10.1(113)
ELEC 301, � 1.1(1), � 1.2(1), � 1.3(2), � 1.4(4),
� 1.5(6), � 1.6(6), � 1.7(9), � 1.8(12), � 2.1(13),
� 2.2(13), � 2.3(14), � 2.4(16), � 2.5(25),
� 2.6(25), � 5.2(54), � 5.3(56), � 5.4(57),
� 5.5(59), � 5.6(60), � 5.7(61), � 5.8(61),
� 5.9(62), � 6.2(63), � 7.1(71)
ELEC301, � 4.3(41), � 4.5(49), � 8.1(81),
� 8.2(81), � 8.3(83), � 8.4(92), � 8.5(93),
� 8.6(96), � 8.7(97)
ELEC303, � 4.1(39), � 4.4(43)

F face, � 10.1(113)
facial, � 10.1(113)
�lter, � 9.7(106)
Final Project, � 1.2(1)
Flag Semaphore, � 5.1(53), � 5.2(54),
� 5.3(56), � 5.4(57), � 5.5(59), � 5.6(60),
� 5.7(61), � 5.8(61), � 5.9(62)

G Group Project, � 1.1(1)

I image stabilization, � 9.1(101)

K Kanade-Lucas-Tomasi, � 9.3(102)

L least squares, � 9.3(102)
LiPE, � 6.2(63)
localization, � 2.1(13), � 2.2(13), � 2.3(14),
� 2.4(16), � 2.5(25), � 2.6(25)

M mask, 82
matrix, � 2.1(13), � 2.2(13), � 2.3(14),
� 2.4(16), � 2.5(25), � 2.6(25)
minimum value, 83
motion tracking, � 9.3(102)

N network, � 2.1(13), � 2.2(13), � 2.3(14),
� 2.4(16), � 2.5(25), � 2.6(25)
noise, � 8.2(81), 81, � 8.3(83), � 8.4(92),
� 8.5(93), � 8.6(96)
number of samples, 83

O O(1), 92
O(N^2), 92
optimally select, 82
Orthogonal Matching Pursuit (OMP), 82

P phase shift, 81
processing, � 11.1(129), � 11.4(131)

R Random Fourier Projection, 82
recognition, � 10.1(113)
reconstruction, � 8.1(81), � 8.2(81), � 8.3(83),
� 8.4(92), � 8.5(93), � 8.6(96), � 8.7(97)
recovery, � 8.1(81), � 8.2(81), � 8.3(83),
� 8.4(92), � 8.5(93), � 8.6(96), � 8.7(97)
Rice, � 1.3(2), � 1.7(9), � 1.8(12), � 8.1(81),
� 8.2(81), � 8.3(83), � 8.4(92), � 8.5(93),
� 8.6(96), � 8.7(97)
Rice University, � 5.2(54), � 5.3(56), � 5.4(57),
� 5.5(59), � 5.6(60), � 5.7(61), � 5.8(61),
� 5.9(62), � 6.2(63)
running average, 82

S scale, � 11.1(129)

INDEX 153

sensor, � 2.1(13), � 2.2(13), � 2.3(14),
� 2.4(16), � 2.5(25), � 2.6(25)
signal, � 8.1(81), � 8.2(81), � 8.3(83), � 8.4(92),
� 8.5(93), � 8.6(96), � 8.7(97), � 11.1(129),
� 11.4(131)
Signal Processing, � 5.1(53)
Song Recognition, � 1.1(1), � 1.2(1), � 1.3(2),
� 1.4(4), � 1.5(6), � 1.6(6), � 1.7(9), � 1.8(12)
sound, � 11.4(131)
source, � 8.5(93)
sparse, � 8.1(81), 81, � 8.2(81), 82, � 8.4(92),
� 8.5(93), � 8.6(96), � 8.7(97)

stabilization, � 9.7(106)
syllable, � 11.1(129), � 11.4(131)

T team, � 8.7(97)
term project, � 5.2(54), � 5.3(56), � 5.4(57),
� 5.5(59), � 5.6(60), � 5.8(61), � 5.9(62)
term projects, � 5.7(61)
time, � 11.1(129)
Time-scale modi�cation, � 11.5(137)

W white noise, 82
With priming, 92
Without priming, 92

154 ATTRIBUTIONS

Attributions

Collection: ELEC 301 Projects Fall 2009
Edited by: Rice University ELEC 301
URL: http://cnx.org/content/col11153/1.3/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction"
By: Yilong Yao
URL: http://cnx.org/content/m33185/1.2/
Page: 1
Copyright: Yilong Yao
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Fingerprint of a Song"
By: Yilong Yao
URL: http://cnx.org/content/m33186/1.2/
Page: 1
Copyright: Yilong Yao
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Fingerprint Finding Algorithm"
By: Yilong Yao
URL: http://cnx.org/content/m33188/1.4/
Pages: 2-4
Copyright: Yilong Yao
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Resulting Fingerprint"
By: Yilong Yao
URL: http://cnx.org/content/m33189/1.4/
Pages: 4-5
Copyright: Yilong Yao
License: http://creativecommons.org/licenses/by/3.0/

Module: "Matched Filter for Spectrogram Peaks"
By: Yilong Yao
URL: http://cnx.org/content/m33191/1.1/
Page: 6
Copyright: Yilong Yao
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Matched Filter Algorithm"
By: Yilong Yao
URL: http://cnx.org/content/m33193/1.3/
Pages: 6-9
Copyright: Yilong Yao
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 155

Module: "Results"
By: Yilong Yao
URL: http://cnx.org/content/m33194/1.3/
Pages: 9-11
Copyright: Yilong Yao
License: http://creativecommons.org/licenses/by/3.0/

Module: "About the Team"
By: Yilong Yao
URL: http://cnx.org/content/m33196/1.2/
Page: 12
Copyright: Yilong Yao
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction"
By: Anthony Austin, Gilberto Hernandez, Jose Garcia, Stephen Jong
URL: http://cnx.org/content/m33135/1.1/
Page: 13
Copyright: Anthony Austin, Gilberto Hernandez, Jose Garcia, Stephen Jong
License: http://creativecommons.org/licenses/by/3.0/

Module: "Matrix Completion: An Overview"
By: Anthony Austin, Jose Garcia, Stephen Jong, Gilberto Hernandez
URL: http://cnx.org/content/m33136/1.1/
Pages: 13-14
Copyright: Anthony Austin, Jose Garcia, Stephen Jong, Gilberto Hernandez
License: http://creativecommons.org/licenses/by/3.0/

Module: "Simulation Procedure"
By: Anthony Austin, Gilberto Hernandez, Jose Garcia, Stephen Jong
URL: http://cnx.org/content/m33138/1.1/
Pages: 14-15
Copyright: Anthony Austin, Gilberto Hernandez, Jose Garcia, Stephen Jong
License: http://creativecommons.org/licenses/by/3.0/

Module: "Results, Conclusions, and Future Work"
By: Anthony Austin, Jose Garcia, Stephen Jong, Gilberto Hernandez
URL: http://cnx.org/content/m33141/1.1/
Pages: 16-25
Copyright: Anthony Austin, Jose Garcia, Stephen Jong, Gilberto Hernandez
License: http://creativecommons.org/licenses/by/3.0/

Module: "Acknowledgments"
By: Anthony Austin, Gilberto Hernandez, Jose Garcia, Stephen Jong
URL: http://cnx.org/content/m33142/1.1/
Page: 25
Copyright: Anthony Austin, Gilberto Hernandez, Jose Garcia, Stephen Jong
License: http://creativecommons.org/licenses/by/3.0/

Module: "References"
By: Anthony Austin, Jose Garcia, Stephen Jong, Gilberto Hernandez
URL: http://cnx.org/content/m33146/1.1/
Page: 25
Copyright: Anthony Austin, Jose Garcia, Stephen Jong, Gilberto Hernandez
License: http://creativecommons.org/licenses/by/3.0/

156 ATTRIBUTIONS

Module: "Introduction"
By: Brian Viel
URL: http://cnx.org/content/m33147/1.1/
Page: 27
Copyright: Brian Viel
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Problem"
By: Brian Viel
URL: http://cnx.org/content/m33155/1.1/
Pages: 27-28
Copyright: Brian Viel
License: http://creativecommons.org/licenses/by/3.0/

Module: "Transmitter"
By: Brian Viel
URL: http://cnx.org/content/m33148/1.1/
Pages: 28-30
Copyright: Brian Viel
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Channel"
By: Brian Viel
URL: http://cnx.org/content/m33144/1.1/
Pages: 31-32
Copyright: Brian Viel
License: http://creativecommons.org/licenses/by/3.0/

Module: "Receiver"
By: Brian Viel
URL: http://cnx.org/content/m33151/1.1/
Pages: 33-34
Copyright: Brian Viel
License: http://creativecommons.org/licenses/by/3.0/

Module: "Results and Conclusions"
By: Brian Viel
URL: http://cnx.org/content/m33152/1.1/
Pages: 34-36
Copyright: Brian Viel
License: http://creativecommons.org/licenses/by/3.0/

Module: "Our Gang"
By: Brian Viel
URL: http://cnx.org/content/m33153/1.1/
Page: 37
Copyright: Brian Viel
License: http://creativecommons.org/licenses/by/3.0/

Module: "Acknowledgements"
By: Brian Viel
URL: http://cnx.org/content/m33140/1.1/
Page: 37
Copyright: Brian Viel
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 157

Module: "Meet the Team"
By: Haiying Lu
URL: http://cnx.org/content/m33133/1.2/
Pages: 39-40
Copyright: Haiying Lu
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction and some Background Information"
By: Haiying Lu
URL: http://cnx.org/content/m33121/1.2/
Pages: 40-41
Copyright: Haiying Lu
License: http://creativecommons.org/licenses/by/3.0/

Module: "Our System Setup"
By: Haiying Lu
URL: http://cnx.org/content/m33115/1.1/
Pages: 41-43
Copyright: Haiying Lu
License: http://creativecommons.org/licenses/by/3.0/

Module: "Behind the Scene: From Formants to PMFs"
By: Haiying Lu
URL: http://cnx.org/content/m33134/1.3/
Pages: 43-49
Copyright: Haiying Lu
License: http://creativecommons.org/licenses/by/3.0/

Module: "Results"
By: Haiying Lu
URL: http://cnx.org/content/m33113/1.2/
Pages: 49-50
Copyright: Haiying Lu
License: http://creativecommons.org/licenses/by/3.0/

Module: "Conclusions"
By: Haiying Lu
URL: http://cnx.org/content/m33127/1.3/
Page: 51
Copyright: Haiying Lu
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Flag Semaphore Computer Vision System: Introduction"
By: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
URL: http://cnx.org/content/m33092/1.2/
Pages: 53-54
Copyright: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Flag Semaphore Computer Vision System: Program Flow"
By: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
URL: http://cnx.org/content/m33095/1.2/
Pages: 54-56
Copyright: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
License: http://creativecommons.org/licenses/by/3.0/

158 ATTRIBUTIONS

Module: "A Flag Semaphore Computer Vision System: Program Assessment"
By: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
URL: http://cnx.org/content/m33098/1.2/
Pages: 56-57
Copyright: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Flag Semaphore Computer Vision System: Demonstration"
By: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
URL: http://cnx.org/content/m33100/1.2/
Pages: 57-59
Copyright: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Flag Semaphore Computer Vision System: TCP/IP"
By: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
URL: http://cnx.org/content/m33094/1.2/
Pages: 59-60
Copyright: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Flag Semaphore Computer Vision System: Future Work"
By: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
URL: http://cnx.org/content/m33103/1.2/
Pages: 60-61
Copyright: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Flag Semaphore Computer Vision System: Acknowledgements"
By: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
URL: http://cnx.org/content/m33106/1.2/
Page: 61
Copyright: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Flag Semaphore Computer Vision System: Additional Resources"
By: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
URL: http://cnx.org/content/m33107/1.2/
Pages: 61-62
Copyright: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Flag Semaphore Computer Vision System: Conclusions"
By: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
URL: http://cnx.org/content/m33109/1.2/
Page: 62
Copyright: Stephen Kruzick, Peter Hokanson, Seoyeon(Tara) Hong
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 159

Module: "Prelude"
By: Chinwei Hu, Kyle Li, Cynthia Sung, Lei Cao
URL: http://cnx.org/content/m33154/1.2/
Page: 63
Copyright: Chinwei Hu, Kyle Li, Cynthia Sung, Lei Cao
License: http://creativecommons.org/licenses/by/3.0/

Module: "Image Processing - License Plate Localization and Letters Extraction"
By: Cynthia Sung, Chinwei Hu, Kyle Li, Lei Cao
URL: http://cnx.org/content/m33156/1.2/
Pages: 63-67
Copyright: Cynthia Sung, Chinwei Hu, Kyle Li, Lei Cao
License: http://creativecommons.org/licenses/by/3.0/

Module: "SVM Train"
By: Chinwei Hu, Kyle Li, Cynthia Sung, Lei Cao
URL: http://cnx.org/content/m33159/1.2/
Pages: 67-69
Copyright: Chinwei Hu, Kyle Li, Cynthia Sung, Lei Cao
License: http://creativecommons.org/licenses/by/3.0/

Module: "Conclusions"
By: Chinwei Hu, Cynthia Sung, Kyle Li, Lei Cao
URL: http://cnx.org/content/m33160/1.3/
Page: 70
Copyright: Chinwei Hu, Cynthia Sung, Kyle Li, Lei Cao
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction"
By: Sharon Du, Dan Calderon
URL: http://cnx.org/content/m33167/1.3/
Pages: 71-72
Copyright: Sharon Du, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

Module: "How ECG Signals Are Analyzed"
By: Sharon Du, Dan Calderon
URL: http://cnx.org/content/m33166/1.2/
Pages: 72-74
Copyright: Sharon Du, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

Module: "Algorithms"
By: Sharon Du, Dan Calderon
URL: http://cnx.org/content/m33164/1.2/
Pages: 74-77
Copyright: Sharon Du, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

Module: "Testing"
By: Sharon Du, Dan Calderon
URL: http://cnx.org/content/m33168/1.2/
Pages: 77-78
Copyright: Sharon Du, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

160 ATTRIBUTIONS

Module: "Conclusion"
By: Sharon Du, Dan Calderon
URL: http://cnx.org/content/m33165/1.2/
Pages: 78-79
Copyright: Sharon Du, Dan Calderon
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction"
By: Graham de Wit, Nicholas Newton, Grant Cathcart
URL: http://cnx.org/content/m33082/1.2/
Page: 81
Copyright: Graham de Wit, Nicholas Newton, Grant Cathcart
License: http://creativecommons.org/licenses/by/3.0/

Module: "Theory"
By: Graham de Wit, Nicholas Newton, Grant Cathcart
URL: http://cnx.org/content/m33087/1.2/
Pages: 81-83
Copyright: Graham de Wit, Nicholas Newton, Grant Cathcart
License: http://creativecommons.org/licenses/by/3.0/

Module: "Implementation"
By: Grant Cathcart, Graham de Wit, Nicholas Newton
URL: http://cnx.org/content/m33081/1.2/
Pages: 83-92
Copyright: Grant Cathcart, Graham de Wit, Nicholas Newton
License: http://creativecommons.org/licenses/by/3.0/

Module: "Conclusion"
By: Graham de Wit, Nicholas Newton, Grant Cathcart
URL: http://cnx.org/content/m33080/1.2/
Pages: 92-93
Copyright: Graham de Wit, Nicholas Newton, Grant Cathcart
License: http://creativecommons.org/licenses/by/3.0/

Module: "Code"
By: Graham de Wit, Nicholas Newton, Grant Cathcart
URL: http://cnx.org/content/m33079/1.2/
Pages: 93-96
Copyright: Graham de Wit, Nicholas Newton, Grant Cathcart
License: http://creativecommons.org/licenses/by/3.0/

Module: "References and Acknowledgements"
By: Graham de Wit, Nicholas Newton, Grant Cathcart
URL: http://cnx.org/content/m33083/1.2/
Page: 96
Copyright: Graham de Wit, Nicholas Newton, Grant Cathcart
License: http://creativecommons.org/licenses/by/3.0/

Module: "Team"
By: Graham de Wit, Nicholas Newton, Grant Cathcart
URL: http://cnx.org/content/m33086/1.2/
Pages: 97-99
Copyright: Graham de Wit, Nicholas Newton, Grant Cathcart
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 161

Module: "Introduction"
By: Robert Brockman
URL: http://cnx.org/content/m33246/1.1/
Page: 101
Copyright: Robert Brockman
License: http://creativecommons.org/licenses/by/3.0/

Module: "Background"
By: Stamatios Mastrogiannis
URL: http://cnx.org/content/m33247/1.1/
Pages: 101-102
Copyright: Stamatios Mastrogiannis
License: http://creativecommons.org/licenses/by/3.0/

Module: "Procedures"
By: Je�rey Bridge
URL: http://cnx.org/content/m33251/1.1/
Pages: 102-104
Copyright: Je�rey Bridge
License: http://creativecommons.org/licenses/by/3.0/

Module: "Results"
By: Robert Brockman, Je�rey Bridge, Stamatios Mastrogiannis
URL: http://cnx.org/content/m33248/1.1/
Pages: 104-105
Copyright: Robert Brockman, Je�rey Bridge, Stamatios Mastrogiannis
License: http://creativecommons.org/licenses/by/3.0/

Module: "Sources"
By: Robert Brockman
URL: http://cnx.org/content/m33249/1.1/
Page: 105
Copyright: Robert Brockman
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Team"
By: Stamatios Mastrogiannis
URL: http://cnx.org/content/m33250/1.1/
Page: 105
Copyright: Stamatios Mastrogiannis
License: http://creativecommons.org/licenses/by/3.0/

Module: "Code"
By: Je�rey Bridge
URL: http://cnx.org/content/m33253/1.1/
Pages: 106-112
Copyright: Je�rey Bridge
License: http://creativecommons.org/licenses/by/3.0/

Module: "Future Work"
By: Robert Brockman
URL: http://cnx.org/content/m33254/1.1/
Page: 112
Copyright: Robert Brockman
License: http://creativecommons.org/licenses/by/3.0/

162 ATTRIBUTIONS

Module: "Facial Recognition using Eigenfaces: Introduction"
By: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
URL: http://cnx.org/content/m33173/1.3/
Pages: 113-114
Copyright: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
License: http://creativecommons.org/licenses/by/3.0/

Module: "Facial Recognition using Eigenfaces: Background"
By: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
URL: http://cnx.org/content/m33174/1.5/
Pages: 114-115
Copyright: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
License: http://creativecommons.org/licenses/by/3.0/

Module: "Facial Recognition using Eigenfaces: Obtaining Eigenfaces"
By: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
URL: http://cnx.org/content/m33183/1.6/
Pages: 115-120
Copyright: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
License: http://creativecommons.org/licenses/by/3.0/

Module: "Facial Recognition using Eigenfaces: Projection onto Face Space"
By: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
URL: http://cnx.org/content/m33182/1.6/
Pages: 120-122
Copyright: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
License: http://creativecommons.org/licenses/by/3.0/

Module: "Facial Recognition using Eigenfaces: Results"
By: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
URL: http://cnx.org/content/m33181/1.6/
Pages: 122-125
Copyright: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
License: http://creativecommons.org/licenses/by/3.0/

Module: "Facial Recognition using Eigenfaces: Conclusion"
By: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
URL: http://cnx.org/content/m33177/1.4/
Pages: 125-126
Copyright: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
License: http://creativecommons.org/licenses/by/3.0/

Module: "Facial Recognition using Eigenfaces: References and Acknowledgements"
By: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
URL: http://cnx.org/content/m33180/1.3/
Pages: 126-127
Copyright: Aron Yu, Catherine Elder, Je� Yeh, Norman Pai
License: http://creativecommons.org/licenses/by/3.0/

Module: "Speak and Sing - Introduction"
By: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
URL: http://cnx.org/content/m33229/1.1/
Pages: 129-130
Copyright: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 163

Module: "Speak and Sing - Recording Procedure"
By: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
URL: http://cnx.org/content/m33233/1.1/
Page: 130
Copyright: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Speak and Sing - Song Interpretation"
By: Graham Houser, Matt Szalkowski, Alysha Jeans, Sam Soundar
URL: http://cnx.org/content/m33237/1.1/
Pages: 130-131
Copyright: Graham Houser, Matt Szalkowski, Alysha Jeans, Sam Soundar
License: http://creativecommons.org/licenses/by/3.0/

Module: "Speak and Sing - Syllable Detection"
By: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
URL: http://cnx.org/content/m33241/1.1/
Pages: 131-137
Copyright: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Speak and Sing - Time Scaling with WSOLA"
By: Sam Soundar, Alysha Jeans, Graham Houser, Matt Szalkowski
URL: http://cnx.org/content/m33240/1.1/
Pages: 137-142
Copyright: Sam Soundar, Alysha Jeans, Graham Houser, Matt Szalkowski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Speak and Sing - Pitch Correction with PSOLA"
By: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
URL: http://cnx.org/content/m33242/1.1/
Pages: 142-146
Copyright: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Speak and Sing - Conclusion"
By: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
URL: http://cnx.org/content/m33243/1.1/
Pages: 146-148
Copyright: Graham Houser, Alysha Jeans, Sam Soundar, Matt Szalkowski
License: http://creativecommons.org/licenses/by/3.0/

Module: "Musical Instrument Recognition Through Fourier Analysis"
By: James Kohli
URL: http://cnx.org/content/m33260/1.1/
Pages: 149-150
Copyright: James Kohli
License: http://creativecommons.org/licenses/by/3.0/

ELEC 301 Projects Fall 2009
A collection of the class projects of Rice University's Fall 2009 ELEC 301 Signals and Systems course.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

