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Chapter 1

Detection of Cell Boundaries in Optical

Fiber Probe Images

1.1 Introduction1

1.1.1 Introduction

1.1.1.1 Abstract

The nuclear-cytoplasmic ratio (NCR) is a widely used clinical indicator for cancer. The automated extraction
of cell size and nuclear size from tissue images is the only practical method to assess quantitatively the NCR
in a real-time clinical setting. In this study we demonstrate the feasibility of automatically detecting the cell
boundaries and estimating the cell sizes from images of chicken adipose tissue using several image processing
techniques and an implementation of the Hough Transform.

1.1.1.2 Goals

Using a completely non-invasive image capturing technique, we want to be able to automate a process to
detect the cells in the image, as well as calculate the area of the cells. By doing this, when imaging techniques
become more advanced, the process can be used to determine the NCR and thus, become an automated,
non-invasive indicator of the presence of cancer.

1.2 Image Acquisition2

1.2.1 Image Acquisition

1.2.1.1 The Optical-Fiber System

We have designed an optical system to test the imaging capabilities of a one millimeter diameter optical �ber
probe. We used a 455 nm Luxeon LED (Philips, San Jose, CA) as the illumination source in accordance with
our design goal of a device capable of both re�ectance and �uorescence imaging while remaining as simple
as possible. A broadband light source would be more ideal for re�ectance imaging. However, a broadband
light source could perform �uorescence imaging whereas our source would be suitable for both �uorescence
and re�ectance imaging. The LED was cooled by a heat sink and fan assembly mounted on its back and
powered by a 12V AC/DC adaptor. To mimic the fatty environment of the human breast, test images were
taken from samples of chicken adipose tissue.

1This content is available online at <http://cnx.org/content/m15686/1.1/>.
2This content is available online at <http://cnx.org/content/m15687/1.1/>.
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Figure 1.1

The 1-mm diameter �ber (Sumitomo Electric USA, Los Angeles, CA) was positioned next to the LED
and over a vertically adjustable sample stage. (Figure 2) The �ber tip was adjusted to receive maximum
illumination from the LED when it was in contact with the sample. The �ber collected the light re�ected by
the sample at its distal end and conveyed it to its proximal end. The proximal end of the �ber was focused
at the focal plane of an in�nity corrected microscope objective (Newport, Irvine, CA). The position of the
�ber was adjusted by a three-axis micro translation stage (Newport). The in�nity corrected object could
project an image from its rear that is in focus regardless of the distance between the object and the detector.
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Figure 1.2

The detector was a Zeiss MRc5 5.0 megapixels color CCD camera (Carl Zeiss, Thornwood, NY). The
magni�cation of the image on the detector relative to the image on the proximal �ber tip was the ratio between
the distance from the detector to the back of the objective and the distance from the front of the objective
to the �ber proximal tip. The in�nity corrected objective permitted a wide range of magni�cations (a while
range of allowable detector-objective separation) while maintaining the focus of the image. (Figure 3) This
feature could potentially allow the incorporation of a movable detector that can change the magni�cation of
the image on command.
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Figure 1.3

The image from the detector was captured onto a laptop computer (Lenovo, China) with the Zeiss
AxioVision camera software. (Figure 4) The image was exported as a bitmap �le. The bitmap �le was
subsequently processed in Matlab (Mathworks, Natick, MA).
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Figure 1.4

1.3 De�ning Borders3

1.3.1 De�ning Borders

1.3.1.1 Overview

With the original cell picture, as shown below, it is very di�cult to make out the cell borders due to the
lack of contrast between the borders and the background of the image. Our �rst goal, before edge detection
can even be done, is to create a sharper contrast between the borders and the background. This is shown in
Figure 1.

3This content is available online at <http://cnx.org/content/m15688/1.1/>.
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Figure 1.5

1.3.1.2 Thresholding

In order to create a higher contrast between a cell's borders and the background, thresholding was utilized.
Pixels of lower intensities, the background, were thrown out while pixels of higher intensities were kept. The
IMADJUST command in Matlab allowed us to specify a threshold intensity and mapped all pixels below
the threshold to zero. The result can be seen in Figure 2.

Figure 1.6



7

1.4 Filtering4

1.4.1 Filtering

1.4.1.1 Overview

Although we have more contrast between our cell borders and the background, there is still a lot of noise
which will need to be annihilated before edge detection can be successful. Ideally, we want to only preserve
pixels which constitute a cell border and map all other pixels to a zero intensity.

1.4.1.2 Conversion to Gray Scale

Filtering is more easily done on a grayscale image than on a colormap image. This is due to the fact
that grayscale images are intensity images with each pixel re�ecting a particular intensity, rather than a
combination of three colors (red, green and blue). With a grayscale image, �lters such as mean and mode
�lters can be more appropriately applied.

1.4.1.3 Mean Filtering

The �rst step in getting rid of unwanted pixels is to apply a mean �lter. This �lter will take a speci�ed
neighborhood around each pixel and set each pixel to the mean of its neighborhood. This is done with
Matlab's sliding neighborhood operation which will go through each pixel, taking its neighborhood pixels as
inputs into a speci�ed function and set each pixel as the output of the function.

In our case, the function we want to apply will take the neighboring pixels and output the mean. This
mean represents the average intensity of its neighboring pixels. Thus, a lone intense (lit) pixel way out in
the boondocks will be set to zero since there are no other high-intensity pixels nearby. This will e�ectively
eliminate lone high-intensity pixels and thus decrease noise.

Following mean �ltering, the image was converted to black and white. This was done by specifying a
threshold intensity and setting all pixels above the threshold to 1 (white) and all pixels below to 0 (black).
Why must this be done? Well, you'll just have to read on to see. . . Figure 1 shows our �nal result in this
step after converting to black and white.

4This content is available online at <http://cnx.org/content/m15689/1.1/>.
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Figure 1.7

1.5 Connecting Lines5

1.5.1 Connecting the Lines

1.5.1.1 Rationale

OK, so now we have a (relatively) clean image of the cell's borders. Can we run an edge detector now you
ask. . .? Hold your horses, Champ, we still have a ways to go. . .

Although it may make sense to run an edge detector at this point, seeing as we've got ourselves an image
where the cell borders are de�nitely distinguishable, there is still a problem. Edge detectors look for changes
in the gradient. Since our image was acquired utilizing optical �bers, our cell borders are not really solid
lines quite yet; they are merely groups of small dots which, together, make up the cell borders. If an edge
detector were utilized at this point, it would pick up each �ber optic probe, rather than the cell border we
want. There no need to despair; there is a solution for all this!

1.5.1.2 Mode Filtering

Although it may not be as simple as those connect-the-dots books we're used to, mode �ltering can be
an e�ective method of forming solid cell borders. The basic idea is this: if we used sliding neighborhood
operations again, but rather than look for the mean, look for the mode, we may be able to connect all our
little dots together! Why is this? Well, the mode �lter we implemented works like this:

1. Take a neighborhood of size [N M]
2. Find the mean of the entries in the matrix.
3. Since the image is in black and white, if the mean is greater than .5, then there are more ones, otherwise,

there are more zeros. This is basically determining the mode of the neighborhood.

5This content is available online at <http://cnx.org/content/m15690/1.1/>.



9

4. Thus, if the mode is 1, set the pixel to 1. If the mode is 0, set the pixel to 0.

How does this connect the lines? Think about this: we want to establish solid cell borders by turning ON
the black pixels which are part of the cell's border. Thus, we want to turn ON black pixels which are near
groups of white pixels which make up the cell borders and keep black pixels which are not part of the cell
borders (in areas with relatively few white pixels) OFF. Taking the mode of each pixel's neighborhood will
accomplish this since black pixels near large groups of white pixels will be turned on and the following image
shows what begins to look like solid cell borders. . . (Figure 1)

Figure 1.8

1.6 Edge Detection6

1.6.1 Edge Detection

1.6.1.1 Canny Edge Detector

We use the Canny Edge Detector to (hopefully) obtain sharp edges for our image now that we have �blurred�
together the dots which form the cell edges. The Canny edge detector �rst takes a gradient of the image. A
gradient magnitude, as well as the edge direction (which way the gradient is increasing) can then be found.
The Canny edge detector does this by using four di�erent �lters which can detect horizontal, vertical and
diagonal edges. For each pixel, the �lter which outputs the largest response can be found and the direction
determined.

6This content is available online at <http://cnx.org/content/m15691/1.1/>.
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1.6.1.2 Distance Matrix

Once we have run our image through the Canny edge detector, a distance �lter is used to connect all
remaining lines in a cell's border. The distance function calculates the Euclidean distance between each
pixel and the nearest pixel which is on. The output of the distance function is a matrix having the same
dimensions as the image matrix. The entries correspond to the distances; for example, if pixel (i,j) was a
distance x away from the nearest on pixel, the (i,j) entry in the distance matrix will be x.

After the distance matrix is found, an iterative method is used to go through each entry of the matrix.
A threshold distance is determined and every entry of the distance matrix which falls under the threshold
is mapped to one, and every entry which falls above is mapped to zero. What exactly is this doing? Well,
if a pixel is close enough to an on pixel, then we assume it is part of the cell's border, and thus must be
turned on as well. The distance function and subsequent thresholding is performed multiple times, with the
threshold getting small and small each time until the cell borders are completely continuous. The result is
shown below.

Figure 1.9

1.7 Hough Transform7

1.7.1 And now, Introducing the Hough Transform. . .

We are �nally about to get to the fun part: circle detection. . .

1.7.1.1 The Hough Transform

The Hough Transform is performed to recognize circular patterns based on parameters such as circle radius
range, gradient threshold and presence of concentric circles. The Hough Transform will in as an input a

7This content is available online at <http://cnx.org/content/m15692/1.1/>.
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range of radii. It will then generate circles of varying radii which cover the entire range. These circles are
convolved with the image and the goodness of match is recorded in an accumulation array.

Note: Generally, convolution is not performed, but rather, the FFTs are taken and multiplied together.
This is not only more e�cient, but more easily implemented as well!

We found a nifty Matlab function which implements the transform and ran it on our image. The
accumulation graph can be seen below, with the peaks corresponding to the best circle matches.

Figure 1.10

1.7.1.2 Circles, Circles, Circles!

With the circles detected, the areas where the best circular matches were can be drawn out in our original
image. The result is quite striking: of the twelve or so cells which could be picked out by the human eye,
the Hough Transform was able to detect roughly eight cells.
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Figure 1.11

1.8 Conclusion8

1.8.1 Conclusion

1.8.1.1 Area Calculation

With the accumulation array, we were able to extrapolate the sizes of the individual cells and it was deter-
mined that the average cell size in our image is roughly 150um2.

1.8.1.1.1 But what does it all mean?

When imaging techniques become more advanced, it is our hope that not only would we be able to calculate
the size of the cells, but the nucleus as well. By being able to calculate both the cell sizes as well as the
nucleus, the ratio between the two can be determined. This can then be used as a completely non-invasive
detector of cancer, with higher nucleus-to-cell ratios being indicative of the presence of cancer.

1.8.1.2 Improvements

Our area calculation is far from perfect and, with time, there are many improvements which can be made.

8This content is available online at <http://cnx.org/content/m15693/1.1/>.
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1.8.1.2.1 Image Acquisition

The image acquisition technique can be improved to not only be able to detect the nucleus, but to provide
better de�nition between a cell's border and the background as well. But. . . this we will leave to our
bioengineering friends.

1.8.1.2.2 Edge Detection

In our edge detection phase, one problem we faced was the varying thickness of cell borders. Sometimes,
especially thick borders would appear as a closed region resembling a cell when edge detection is performed!
This problem, however, we believe can be recti�ed using carefully constructed �lters which can hopefully
reduce the thickness of borders.

1.8.1.2.3 Circle Detection

The Hough Transform we used approximates cell sizes using the approximate circles. Cells, however, are
not always completely circular. A more generalized transform can be employed to more precisely detect the
shape of the cells and give a more precise area calculation.
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1.9 Team9

1.9.1 Project Group Members

1.9.1.1 Chenghao Shu, Bioengineer

Figure 1.12

9This content is available online at <http://cnx.org/content/m15694/1.3/>.
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1.9.1.2 Demetrius Austin, Electrical Engineer

Figure 1.13
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1.9.1.3 Thomas Yeh, Electrical Engineer

Figure 1.14
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1.9.1.4 Chirag Sequeira, Electrical Engineer

Figure 1.15
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Chapter 2

Tap That: A Virtual Drum Kit

2.1 Introduction to the Virtual Drum Kit1

Imagine This:
Having your own invisible and portable drum kit that not only takes up far less space, but also costs ten

times less than a real one. With virtual reality no longer a distant dream and technology headed towards
its implementation in all applications, a virtual interface for musical instruments is inevitable. This is the
focus of �Tap That� � creating a cost-e�ective, compact and enjoyable drumming experience by means of a
virtual drum kit.

2.1.1 Past Work

The �rst virtual drum kit was created by a French group (www.virtual-drums.com2 ). Their implementation
uses two webcams for 3D spatial analysis and extensive C++ coding. There are several other virtual drum
kits available on the internet, but they must be controlled with either a mouse or a keyboard, which detracts
from the drumming experience. The drum kits developed by the French group and our group give the user
a real feeling of playing the drums while actually being virtual.

2.1.2 Our Goal

This project aims at creating an a�ordable virtual drum kit for amateur drummers using readily available
materials. Music enthusiasts can �Tap That� with this cost-e�ective replacement of a real drum kit. This
instrument requires a web camera, Matlab 6.0 or higher, two LED lights (mounted on drumsticks for a more
authentic experience) and a computer.

1This content is available online at <http://cnx.org/content/m15698/1.1/>.
2http://www.virtual-drums.com/
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2.1.3 Summary

This project is based on a 2-dimensional tracking system. It tracks the LEDs in two dimensions and uses
velocity computations to determine when and where the drum was hit. The user positions himself or herself
on a chair in front of the webcam and runs the program. An animated image on the screen gives the user
the approximate positions of the drums. As the user moves the LEDs in the air, pretending to hit real
drums, Matlab calculates the position of the LEDs by carrying out a frame-by-frame analysis of the video
in real-time. The velocities of the LEDs are calculated, and when the LED starts moving upwards instead
of downwards, it means that a drum has been hit. Based on the position of the strike, the corresponding
drum's sound will be produced while the animation gives the user feedback about which drum they hit.
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2.2 A General Approach to Building Your Own Virtual Drum Kit3

2.2.1 Flow Chart

Figure 2.1

3This content is available online at <http://cnx.org/content/m15695/1.1/>.
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2.2.2 The LED Drum Sticks

Figure 2.2

The LED drumsticks consist of a simple LED circuit mounted on narrow pipes. Instead of using a battery
holder and a switch, we attached a pen �ashlight to the circuit. The program also requires that one of the
LEDs be red, and the other green. The circuit consisted of a super-bright LED, 9.11 ohm of resistance and
a 3 V source. A lower resistance will make the LED brighter, making its detection better. Alternatively,
the user can obtain LED sticks on the internet for $5 each. When the switch at the end of the �ashlight
is turned on, the LEDs will light up and serve as detection points of the drumsticks. The program stops
running if you switch o� the LED drum sticks.

The only limitation posed by the LED drumsticks is that they have to be used in a dimly lit area to be
detected without errors.

Now that you have your drumsticks, you are all set on the hardware and need to implement the software!
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Figure 2.3

2.3 Webcam Color Tracking in Matlab4

2.3.1 Back ground: Image Processing in Matlab

2.3.1.1 What composes an image?

Each image is composed of an array of M*N pixels (contraction of �picture element�) with M rows and N
columns of pixels. Each pixel contains a certain value for red, green and blue. Varying these values for red,
green, blue (RGB) we can get almost any color.

4This content is available online at <http://cnx.org/content/m15696/1.2/>.



24 CHAPTER 2. TAP THAT: A VIRTUAL DRUM KIT

Image Storage in Matlab

Figure 2.4

2.3.1.2 Color Detection

The RGB format is a practical method to represent color images. Matlab creates three matrices (or three
M x N arrays) with each matrix representing normalized components of red, green or blue to read and store
each of the frames of the video. Any pixel's color is determined by the combination of Red, Green and Blue
values stored in the three matrices at that pixel's location. This is how Matlab reads and manipulates .jpg
�les.

Images:
picture (row, column, rgb value)

For example, picture (12, 78, 1) corresponds to the red component of the pixel at row 12 and column 78;
picture(12, 78, 2) corresponds to the green component of the pixel and picture(12, 78, 3) gives us the blue
component of the pixel at that location.

Videos:
frames(row, column, rgb value, frame)

Videos have an extra dimension for the frame number. So frames(12,78,1,5) would correspond to the red
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component of the pixel in the 12th row and 78th column of the 5th frame. To get the entire frame, we could
just say frames(:,:,:,5).

2.3.2 Acquiring Images From The Webcam in Matlab

Digitization of the Images

Figure 2.5

How you acquire the images from the camera depends a lot on what software you are using to implement
it. Creating the interface between the computer and the drum using a lower level language like C or C++
will give you a lot of �exibility, but it will also involve a lot of work and background knowledge. Fortunately
for us, Matlab's Image Acquisition Toolbox has a variety of simple functions that can be used to create the
interface. The next few paragraphs will describe these functions and how we used them in some detail.

For Matlab to recognize the video camera you have to create it as an object using the command
obj=videoinput(`winvideo'). Matlab will automatically �nd the webcam connected to your computer.
Once it is an object in your workspace you can edit its settings, such as the number of frames per second,
to optimize it for your project. preview() and getframe() are two useful functions for determining if the
camera has been positioned properly. The �rst allows you to see what the camera sees, without collecting
any data from it, and the second acquires a single snapshot and stores it as in image.

Now we can start recording the video. With the start(obj) command, the camera will be triggered
and will start to collect as many frames as speci�ed by the FramesPerTrigger property. These frames are
stored in the camera's bu�er memory. These frames are stored in the 4D array as described above.

To retrieve them from the bu�er you could use either the getdata() function or the peekdata() function.

2.3.2.1 getdata(obj);

When this statement is encountered, the program retrieves all the frames acquired at the last trigger and
then empties the bu�er.

2.3.2.2 peekdata(obj,M);

This function allows us to �peek� at the last M frames collected by the camera. The frames are copied, but
not cleared, from the camera's bu�er into Matlab's workspace.
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Both functions take about the same amount of time to run. Interestingly, the number of frames acquired
at a time does not a�ect the execution time much. It takes about as long to acquire 1 frame as it does to
acquire 50. Therefore, to make the program more e�cient, we should collect large chunks of data at a time.

To make sure that we don't miss any of the action while the user is waving the drumsticks around in
front of the camera, we should also make sure that we can get all the frames from when the program starts
running till the user turns of the LEDs. Due to memory limitations, our computer could collect maximum of
240 frames, or about 8 seconds of the video, which is clearly not enough. It is unlikely that your computer
could do much better.

2.4 Implementation: Detecting a Hit5

2.4.1 Hitting the Drums: A Velocity Computational Approach

You now have the positions of the LEDs in every frame. Our goal here is to detect when and which drums
were hit so that the corresponding drums can produce their sounds.

2.4.1.1 Determining when a drum was hit

There are various innovative ways of tracking when the drums are hit. We chose to use a velocity compu-
tational approach due to its speed. Using this approach, you can look at the displacement of the LEDs in
consecutive frames and calculate the velocity. Using basic physics, if the velocity changes from positive to
negative (note that our coordinate system has the positive side of the y-axis pointing downwards) it implies a
change in direction of the drumstick, or that a drum was hit. You should be able to �gure out approximately
which frame the drum was hit in. Since the hit point is returned in terms of two-dimensional coordinates,
you can �gure out which drum(s) are hit.

5This content is available online at <http://cnx.org/content/m15714/1.1/>.
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Variation in velocity with the movement of the LEDs

Figure 2.6: See if you can guess when drums were hit.
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2.4.1.2 Determining which drum was hit

Position of the Drums

Figure 2.7: [1: Cymbal; 2: BigTom; 3: Small Tom; 4: Floor Tom; 4: Snare]

The frame should be broken down into rectangles with assigned x and y coordinates where the drums are
positioned. Our drum kit consists of the Crash Cymbal, the Big Tom, the Small Tom, the Floor Tom and
the Snare. We check to see if the hit-point falls in the space assigned for any of the drums, and if it does,
we move on to producing the sound and displaying the image on the computer screen. However, if the hit
point is outside the frame, it is taken as a missed hit.
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2.5 Implementation: Detecting the LEDs6

2.5.1 RGB in Each Individual Frame

Given the acquired frames, the �rst step is to locate the LEDs. The color of the LEDs can be described by
the intensity of red, green and blue. These are represented by values between 0 and 255 (going from null
intensity to full intensity) in the RGB matrices for each image. We can detect the LEDs by setting threshold
values for Red, Green and Blue. For example, to �nd the Red LED, you are looking for the part of the
frame with high Red values and low Blue and Green values. We would recommend using the data cursor to
analyze RGB values of the LED in the colormap. Play around with threshold values until you get the right
thresholds, i.e., only the LED you are trying to detect shows up.

6This content is available online at <http://cnx.org/content/m15699/1.1/>.
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A Sample Frame

Figure 2.8
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Spy Plots of the LEDs

(a) (b)

Figure 2.9: (a) Red LED (b) Green LED

In our project, we used the �nd function to look at the red, green and blue matrices separately and set
ones wherever the conditions were satis�ed. We multiply the three matrices of ones and zeros to produce
one �nal matrix with ones where all three color thresholds are satis�ed and the LED is detected.

2.5.2 Turn O� the LEDs

If the LEDs are not detected for 75% of the frames, it means that the LEDs are either turned o� or not in
the frame at all, and the program stops running. However, if the LEDs have been found, you can move on
to detecting when the drums are hit.

2.6 Producing Drum Sounds and Displaying the Drum7

2.6.1 Producing Drum Sounds and Displaying the Drum

Once we have determined which drum has been hit, we play the appropriate sound and display the corre-
sponding image. The drum sounds and images are preloaded in separate .mat �les at the beginning of the
program using the load command to expedite execution.

load drumsounds

load drumpics

2.6.1.1 Drum Sounds:

drumpics.mat was created by importing drum samples in the wav format using wavread() and wavadd().
wavread(`wavfile') is a Matlab function that stores wav �les as an Nx2 matrix. wavadd(sound1,sound2)
is a function that we created to allow the simultaneous play of two di�erent sounds. For example, if both the
snare and the crash cymbal were hit at the same time, we zero pad the shorter matrix and combine them as

7This content is available online at <http://cnx.org/content/m15697/1.1/>.
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one sound matrix. In the main program, the Matlab function soundsc(sound, fs) plays the corresponding
sound �le, where `fs' is the sampling rate. Our wav �les were sampled at 22 kHz to allow for smaller sound
variables without a�ecting the sound quality too much. All of our drum samples were obtained free online
from a Yamaha 9000 drum kit.

2.6.1.2 Drum Pictures:

drumsounds.mat was created by importing jpeg �les using the imread() Matlab command to store the
images as variables. The images were created from Google SketchUp, a free 3D modeling program available
online. Di�erent views were created to simulate the feel of animation.

Figure 2.10: Main view

Figure 2.11: Crash cymbal and snare were hit
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2.7 Implementation: Code8

To get a better understanding for how we implemented the drum kit, you might want to have a look at our
Matlab code.

The code is available at: http://www.geocities.com/tapthat_virtualdrum/tapthat.html

2.7.1 Essential Files:

proj_301.m- This is a wrapper function to set up video acquisition and collect frames from the camera.
detectcolor.m- This function checks for presence of the LED.
coord.m- This function �nds the position of the LED in each frame, computes its velocity and hit-point.
drumdet.m- This function determines which drum was hit.
drumdisp.m- It produces the sound and displays the image corresponding to the drum that was hit.

2.7.2 Files for debugging and setting up the system:

adjust.m- This is mainly for the user's convenience. It helps adjust the position of the user with respect to
the drums.

checkframe.m- This can be used to verify that the color detection works properly for a particular frame.

2.8 Results of the Virtual Drum Kit9

2.8.1 Results

While there are many ways to approach the virtual drum kit, we are pleased with the outcome of our
implementation using one webcam and velocity computation. We found that users enjoyed the drum kit
more after familiarizing themselves with the set-up.

2.8.1.1 Advantages

• High precision in detecting where the drums are hit. Our results showed that less than two hits were
missed in a minute's worth of playing.

• A�ordable solution for drumming enthusiasts.
• Easily Transportable.
• Runs in real time without a signi�cant delay with Matlab set to high priority.
• Easy to modify the Matlab code to make the system customizable.
• Animated interface gives a visual representation of drums as feedback hit instead of just bare audio.
• Absence of physical drums makes the drummer visible to the audience.

2.8.1.2 Limitations

• Slight delay due to processing power of the computer.
• Requires a dimly lit area for easy LED detection.

8This content is available online at <http://cnx.org/content/m15704/1.1/>.
9This content is available online at <http://cnx.org/content/m15711/1.1/>.
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2.9 Future Work for the Virtual Drum Kit10

2.9.1 Conclusion

While the virtual drum kit is not advanced enough to replace a real drum kit for a professional drummer, it
is an enjoyable alternative for anyone aspiring to learn how to play the drums or amateur music enthusiasts
looking for an a�ordable solution.

Further improvements in our implementation could lead to a drum kit that is almost as good as a real
drum kit.

2.9.1.1 Room for Improvement

• Addition of the bass drum, hi hat, ride cymbals for a fuller drum kit.
• Incorporation of a change in volume based on the acceleration with which drums are hit.
• Higher frame rate and more powerful machines to overcome the delay and visual latency.
• Adding customizability to allow the user to modify the positions of the drums, and the sounds that

are played.

2.9.2 Future Work

The concept of LED tracking forms the base of many useful implementations. More speci�cally, our Matlab
code can be easily modi�ed to implement a virtual whiteboard or any other percussion instrument.

With a sense of adventure and some degree of technological innovation and creativity, virtual musical
instruments can replace expensive physical musical instruments while delivering comparable results.

2.10 Team Members and Acknowledgments11

�Tap That� was brought to you by Janice Chow, Tanwee Misra and Kriti Charan.
Kriti Charan maintained the ca�einated group's sanity and ensured that we stuck to the cynical 6-

point project plan as outlined in Mr. Dye's o�ce. She connected the webcam to the computer. Not just by
plugging the USB cord in, but by writing proj_301.m. She also channeled her fear of insects into debugging
the code. Basically she was the project guru.

Janice Chow supplied us with free co�ee and was responsible for deciding where the user had to hit
to make the program react in a certain way, and what those reactions should be. In other words she wrote
drumdisp.m and drumdet.m, and by nefarious means, obtained all the images and sounds that were required.
She was also a great test subject to see if our program was working or not and tremendously enjoyed playing
with Google's ketchup.

Tanwee Misra kept us entertained with her French and was responsible for the program's ability to see
color and use that to �gure out what the test subject was doing with the drumsticks. In other words she
wrote coord.m and detectcolor.m. She also encouraged group projects by working with Janice to make the
poster, and Kriti to make the drumsticks.

We are grateful to Mr. Michael Dye and Dr. James Young for all the help they provided as we
made and repaired the drumsticks. We are also grateful to Dr. Kronister for unknowingly providing us
with so much.

We would also like to thank Dr. B (aka RichB) and Mr. D (aka Mark Davenport) for all the
help, support and guidance that they have provided at every step along the way.

Special thanks to all our rock star fans who tried our drum kit on the day of the presentation.

10This content is available online at <http://cnx.org/content/m15709/1.1/>.
11This content is available online at <http://cnx.org/content/m15713/1.1/>.



Chapter 3

Blind Source Separation via ICA

3.1 Blind Source Separation Via ICA: Introduction and Background1

3.1.1 Blind Source Separation via ICA

3.1.1.1 Introduction and Background

Imagine you are driving in a car with the radio on and your friends talking in the backseat. You wish to
make a phone call on your Blue-Tooth cell phone; however, the person on the other side of the line cannot
distinguish what you are saying due to the background noise. A digital signal processing system can be
developed to extract your voice signal from the rest of the noise and send it over to the cell phone tower.
One such system capable of doing this is blind source separation.

In this project, we present an introduction to the implementation and study of blind source separation
through independent component analysis (ICA). The aspiration of our project is to recover independent
source signals given only sensor recordings composed of unknown linear combinations of the independent
sources. Through ICA, we can successfully separate the two signals apart or extract a signal (i.e. a voice)
from background noise (i.e. music).

Figure 3.1

Figure 1: This is a pictorial representation of the process described above.
ICA separates the signals using second-order statistics and reduces the higher order statistical dependen-

cies in order to make the recovered separated signals as independent as possible.
Applying blind source separation via this method will enable many applications in signal processing such

as audio or image separation, telecommunications, and medical signal processing.

1This content is available online at <http://cnx.org/content/m15702/1.1/>.
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3.2 Blind Source Separation Via ICA: Implementation2

3.2.1 Blind Source Separation via ICA:

3.2.1.1 Implementation

Figure 3.2

In order to implement our design to enable the separation of two audio signals, we require two microphones
and a processing computer with audio output capabilities. When two microphones are present in an envi-
ronment with two sources, then they will record a mixing of both these signals, weighted by coe�cients base
on distance away from the microphone (remember that as a signal is further away from a recording source,
the quieter it will be).

The mixed signal inputs of these microphones must then be imported into a processing computer that is
able to run code based in C or MatLab (or potentially any other language, but the most e�cient algorithm
is run in MatLab and C).

The model for these mixed signals can be represented in matrix notation by:
x = As
As we can see, the signal vector is multiplied by some mixing matrix A. Therefore to isolate the signals

s based on the mixed signals x we must �nd an inverse matrix A-1. To do this we implement a piece
of Matlab code known as FastICA. The math behind the algorithm is explained elsewhere but the most
important piece of code, the iteration to �nd the inverse mixing matrix, is displayed here:

% Take a random initial vector of length 1 and orthogonalize it

% with respect to the other vectors.

if initialStateMode == 0

w = randn (vectorSize, 1);

elseif initialStateMode == 1

w=whiteningMatrix*guess(:,round);

end

w = w - B * B' * w;

w = w / norm(w);

wOld = zeros(size(w));

wOld2 = zeros(size(w));

% This is the actual fixed-point iteration loop.

% for i = 1 : maxNumIterations + 1

i = 1;

2This content is available online at <http://cnx.org/content/m15639/1.2/>.
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gabba = 1;

while i <= maxNumIterations + gabba

if (usedDisplay > 0)

drawnow;

end

% Project the vector into the space orthogonal to the space

% spanned by the earlier found basis vectors. Note that we can do

% the projection with matrix B, since the zero entries do not

% contribute to the projection.

w = w - B * B' * w;

w = w / norm(w);

if notFine

if i == maxNumIterations + 1

if b_verbose

fprintf('\nComponent number %d did not converge in %d iterations.\n', round,

maxNumIterations);

end

round = round - 1;

numFailures = numFailures + 1;

if numFailures > failureLimit

if b_verbose

fprintf('Too many failures to converge (%d). Giving up.\n', numFailures);

end

if round == 0

A=[];

W=[];

end

return;

end

% numFailures > failurelimit

break;

This iteration will guess a row of the demixing matrix (w in the code) and then run through a loop
until it �nds a projection that agrees with the statistical analysis behind the decoding.

After running on the supplied mixed signals, the program will output what it thinks are the two original
sources and the demixing matrix. We can then use these outputs to complete a variety of tasks such as
removing noise from the original signals, matching the original signals with other signals to detect base
elements of the mixed signal, or even just simply outputting the original signals through a speaker system.

3.3 Blind Source Separation Via ICA: Math Behind Method3

3.3.1 The Math of ICA

The Independent Components Analysis algorithm allows two source signals to be separated from two mixed
signals using statistical principles of independence and nongaussianity.

3This content is available online at <http://cnx.org/content/m15708/1.1/>.
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3.3.1.1 De�ning the Problem

ICA assumes that the value of each source at any given time is a random variable. It also assumes that each
source is statistically independent, meaning that the values of one source cannot be correlated to values in
any of the other sources.

With these assumptions, ICA allows us to separate source signals from mixtures of these source signals.
The algorithm requires that there be as many sensors as input signals. For example, with three independent
sources and three mixtures being recorded, the problem could be modeled as:

x1 (t) = as1 (t) + bs2 (t)

x2 (t) = cs1 (t) + ds2 (t)
(3.1)

Using matrix notation, the problem can be generalized to any number of mixtures. For some number of
sources n to be identi�ed, n mixtures would need to be recorded.

x = As (3.2)

The goal of blind source separation using ICA is to invert this procedure; that is, given the mixtures x as
inputs, ICA �nds s. Because the mixing matrix A is square, we can write the reverse procedure as

x = A−1s (3.3)

or, if we de�ne W to be equal to the inverse of A,

x = Ws (3.4)

is an equivalent expression of the problem at hand.

3.3.1.2 Isolating the Independent Sources

The Central Limit Theorem provides the key to unlocking the mystery matrixW. The central limit theorem
says that a sum of independent random variables can be approximated by a normal curve. The greater the
number of variables summed, the more normal, or gaussian, the distribution. Since each of the mixtures being
received by the sensors represents a linear combination of samples from each source in s, the distribution of
the mixed signals is more gaussian than either of the two independent sources (by the central limit theorem).

In order for the ICA algorithm to use this principle, the algorithm needs a way of determining how
gaussian a particular signal is. There are two main quantitative measures of nongaussianity. The �rst of
these measures is kurtosis, which measures the �spikiness� of a signal. Kurtosis is 0 for gaussian random
variables, positive for random variables that are more spiky than gaussian variables, and negative for random
variables that are �atter than gaussian variables. The second measure is negentropy, which measures the
�simplicity� of a signal. Negentropy is also 0 for gaussian random variables.

The FastICA package that we used for our project uses both of these measures of nongaussianity to
identify independent source signals. It begins by guessing a row of the matrix W, which we can call w.
This row represents the weighting coe�cients for �nding one of the original source signals. It then measures
the nongaussianity of the proposed independent source de�ned by its guess of w, and �nds the gradient of
nongaussianity in an n-dimensional space to determine how the coe�cients in w should change. It then uses
a projection of the gradient to create a new guess of the coe�cients in w, and continues in a cycle until the
coe�cients converge on certain values. Once this occurs, the resulting independent source is as nongaussian
as it can be. This in turn means that it is the furthest the algorithm could get from the source being a sum,
which means that one of the independent sources has been isolated.

The algorithm repeats this process for �nding all the rest of the independent sources, taking care not to
�nd the same source twice.
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3.3.1.3 Ambiguities and Limitations

Just by examining the statement of the problem at the beginning of this module, two signi�cant ambiguities
arise in the ICA algorithm.

3.3.1.3.1 Indeterminate Energy

Because a scalar multiplier could be pulled out of s and multiplied to A with no change in the above
equations, the ICA algorithm cannot determine the energy contained in any of the independent sources it
�nds. The amplitudes it gives the output components are arbitrary, and the true source signal could be one
the isolated sources multiplied by any scalar multiple. This includes a negative multiple, which means that
often, the output signals are also inversions of the original signals.

The seriousness of this ambiguity depends on the application. For sound signals, inversions are irrelevant
because the only important part of the signal is the di�erent between voltages, not the polarity. Gain can
also be added on to sound systems to deal with the amplitude ambiguity. In other applications, such as
image processing, the inability to distinguish energy is much more signi�cant.

3.3.1.3.2 Order Ambiguity

Because the algorithm chooses coe�cients of w at random when it searches for the sources, the isolated
sources that the algorithm �nds can come out in any order. So, it would take some additional processing to
determine which independent sources is the one of interest to you.

3.3.1.3.3 Under-Determination

There must be as many sensors as there are sources in order to properly isolate the sources. If there are not
enough sensors, the resulting signals will not match any of the sources, but rather will still be mixtures of
multiple sources.

3.3.1.3.4 Under-Determination

ICA can only handle linear mixtures that can be represented in the form x = As. The algorithm cannot
accurately guess the independent sources if the sources are out of phase in the mixtures or if the mixtures
have other nonlinear features.

3.4 Blind Source Separation Via ICA: Methods and Trials4

3.4.1 Blind Source Separation Via ICA: Methods and Trials

3.4.1.1 Methods and Trials

During our implementation stage we attempted several di�erent methods for blind source separation. We
came up with a plan for our initial goal: to have a working real-time system; our fallback was to have
preprocessed recordings and play them as .wav �les during our presentation. As is the case with many
projects, we ran into some problems that we were not expecting. We were forced to identify the problems
and adapt to seek new manners in which to perform blind source separation. We ran many trials with a
total of four di�erent methods.

4This content is available online at <http://cnx.org/content/m15638/1.3/>.
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3.4.1.1.1 First Trial

We began our �rst trial with the intent to gain a better understanding of the Matlab code as well as
get a feel for the recording process. Shortly after beginning, we ran into our �rst problem: Windows
operating system only recognizes one microphone input. Before buying software to overcome this, we looked
for solutions using two laptops.

Our system included an operator, who started recording on both laptops at the same time, two micro-
phones connected to the mono input of each laptop, as well as two speakers talking in di�erent places in the
room. We used Audacity to record and convert the microphone inputs to .wav �les. Matlab was used to
trim the two recordings to the same size and run them through FASTICA.m.

The two decoded signals were very noisy. There were also remnants of the other speaker in each of the
two decoded signals. After trying di�erent rooms, di�erent levels of noise, di�erent types of microphones
(mono and stereo), di�erent speakers, and di�erent locations of speakers and microphones, we could not
eliminate these imperfections. We were not happy with these results so we decided to try a di�erent method.

3.4.1.1.2 Second Trial

In our second trial, we aimed to eliminate the noise and remnants of the other speaker in our decoded
signals. We attributed these problems to our signals being asynchronous. In order to solve this problem, we
sought a method to record simultaneously on one computer. Using Garageband on a Mac, we recorded
two microphone inputs onto the two channels of a stereo recording. We converted the �le to a .wav �le and
separated the two channels in Matlab.

After running the two signals through the Matlab code, we encountered the same problems (noise and
other speaker interference). We tested while changing all the variables as in our �rst trial and received similar
results. This could have been from Garageband's method of recording to separate channels on stereo.

3.4.1.1.3 Third Trial

For our third trial, we implemented nearly the same system as the second trial. We were mainly testing to
observe if Labview would have better results using the method of saving to separate .wav �les instead of
separate stereo channels.

We wrote the following Labview module:
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Figure 3.3

Our results were the same as the �rst two trials. With this method, it seemed as though it would not be
possible to have the recordings asynchronous, but we were still receiving the same problems. This could be
either due to limitations in our recording equipment, or due to nonlinear combinations of the signal.

3.4.1.1.4 Fourth Trial

In our �nal trial, we recorded two signals separately using Audacity and one microphone input in a quiet
room. We manually combined these signals linearly in Matlab and after running the combined signals
through our code, �nally achieved a near perfect separation of the two signals. We concluded that our issues
in the �rst three trials were not due to phasing (eliminated in third trial), but were in fact due to non linear
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combinations of the signals, and also possibly to under determination caused by room noise being the third
input. We saved these recordings to use in our presentation as this process is too tedious to perform in a
real time demonstration.

3.5 Blind Source Separation Via ICA: Audio Demonstration5

3.5.1 Audio Demonstration

The following signals are examples of audio �les that we ran through our code. The two signals are linearly
mixed, then run through Matlab code to recover the original signals.

3.5.1.1 Demonstration 1

This is an example of ICA being used to separate out individual voices from two people simultaneously
talking. The �rst two are the linearly combined signals; the last two are the results of the ICA code.

This is an unsupported media type. To view, please see http://cnx.org/content/m15712/latest/Mixed
Signal 1A.wav

This is an unsupported media type. To view, please see http://cnx.org/content/m15712/latest/Mixed
Signal 1B.wav

This is an unsupported media type. To view, please see http://cnx.org/content/m15712/latest/Recovered
Signal 1A.wav

This is an unsupported media type. To view, please see http://cnx.org/content/m15712/latest/Recovered
Signal 1B.wav

3.5.1.2 Demonstration 2

This is an example of ICA being used to separate out individual songs that are playing at the same time.
The �rst two are the linearly combined signals; the last two are the results of the ICA code.

This is an unsupported media type. To view, please see http://cnx.org/content/m15712/latest/Mixed
Signal 2A.wav

5This content is available online at <http://cnx.org/content/m15712/1.1/>.
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This is an unsupported media type. To view, please see http://cnx.org/content/m15712/latest/Mixed
Signal 2B.wav

This is an unsupported media type. To view, please see http://cnx.org/content/m15712/latest/Recovered
Signal 2A.wav

This is an unsupported media type. To view, please see http://cnx.org/content/m15712/latest/Recovered
Signal 2B.wav

3.6 Blind Source Separation Via ICA: Signal Processing

Applications6

3.6.1 Blind Source Separation via ICA:

3.6.1.1 Applications: Audio/Visual Signal Processing

One of the most practical uses for blind source separation (BSS) is in the audio world. It has been used for
noise removal without the need of �lters or Fourier transforms, which leads to simpler processing methods.
There are various problems associated with noise removal in this way, but these can most likely be attributed
to the relative infancy of the BSS �eld and such limitations will be reduced as research increases in this �eld.

It isn't hard to imagine many situations where you receive a mixed audio signal and would love to be able
to isolate the various components. Now such situations can be resolved through the implementation and
algorithm presented in this project. Instruments can be separated from each other in a concert, background
noise can be eliminated in any environment, and two voices from a conversation can be completely separated,
as shown by �gure 1.

6This content is available online at <http://cnx.org/content/m15640/1.3/>.
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Figure 3.4

Figure 1
Voices could potentially be encrypted in this way, mixing together signals so that the original sources

are indistinguishable, but all you have to do to decrypt is break the signal down into the independent
components. Jamming signals sent to cell phone towers could be isolated and completely removed, something
that Special Operations forces around the world are apparently using to make sure their communications
can't be impeded.

In fact such transmission schemes such as code division multiple accesses (CDMA) can be implemented
with BSS instead of the traditional orthogonality, another function of BSS that directly applies to the
industry around cellular phones.

So long as you meet the required assumptions to be able to process data (that the components you are
trying to isolate are indeed independent and that you have as many mixed signals as you have sources) you
can process almost anything. The following images show BSS applied to visual examples of pictures. The
format doesn't matter; ICA can be run on anything, and will always provide correct results as long as the
sources are independent to begin with.
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Figure 3.5

Mixed image signals
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Figure 3.6

Separated Source Signals

3.7 Blind Source Separation Via ICA: Medical Imaging Applications7

3.7.1 Blind Source Separation via ICA

3.7.1.1 Applications: Medical Signal Processing

One of the most innovative �elds in which blind source separation applies to is in medical signal processing.
Medical imaging will bene�t immensely from new techniques of analysis based on ICA to reduce noise,
enhance images, and estimation of neuronal brain source signals.

One of the greatest challenges in neurophysiology is to analyze the physiological changes in di�erent parts
of the brain in a non-invasive method. Currently, electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) are two methods that analyze neural activity. In EEG analysis of neural activity,
images of the brain are taken by measuring the electric potential caused by neuron �ring. In each region of
the brain, non-local signals, generated in other areas, combine to form a single potential.

However, the sought after brain source signals are typically weak, non-stationary signals that are often
distorted by interference, large amounts of noise, and continuous brain activity. Such noise interference
consists of eye or muscle movements. The electrodes and sensors used for EEG picks up the superimposed
noise signals, which corrupt the brain source signals. Current methods do not have the capabilities to

7This content is available online at <http://cnx.org/content/m15701/1.1/>.
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separate some brain source signals based on the observed image because they are such weak signals that are
often �ltered out by the EEG recording systems.

Figure 3.7

Using ICA, medical technicians will be able to separate out noise and interfering artifacts from the raw
data. They will be able to recover neuronal brain source signals and trace them back to their origins.
In addition, the signal-to noise ratios (SNR) will be improved as well as the spatial resolution. Medical
technicians will be able to compare healthy brain signals to ones generated by an unhealthy brain.

One application example is to the early detection of Alzheimer's disease. EEG incorporating ICA will
be able to detect the slight changes caused by the prevalence of Alzheimer: dementia. The brain signals of
dementia are very small and di�cult to detect because they are located deep within the brain. However,
using blind source separation, doctors will be able to separate out the small independent signals and doctors
will be able to analyze any abnormalities. Since there is no current treatment for Alzheimer's disease, early
detection of dementia will be very useful in diagnosis as well as treatment.
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3.8 Blind Source Separation Via ICA: Conclusion8

3.8.1 Conclusions and Opportunities for Further Study

3.8.1.1 Conclusions

Our implementation of blind source separation using the FastICA algorithm led us to overall successful re-
sults. We were reliably able to record two independent sound signals, digitally mix them to create mixtures,
and then recover the original signals using ICA. Hardware de�ciencies and phase e�ects between inputs disal-
lowed us to do more real-time processing (where two microphone signals would simultaneously be recorded);
however, this also helped us understand the shortcomings of the ICA algorithm. As e�ective as the ICA
algorithm was under the right conditions, it could not work with nonlinear mixtures.

3.8.1.2 Opportunities for Further Study

Blind source separation, and ICA in particular, are currently cutting-edge �elds of research and development
in the signal processing world, so opportunities for further study abound. Every member of our group was
fascinated by the real-world applications of ICA, especially those applications related to medical imaging.
Within medical imaging, a great deal of research needs to be done on the most e�ective way to capture signals
from the body so that ICA can return signals useful to the medical world. Outside of the medical imaging
realm, applications of ICA like CDMA communication and image processing are still in their infancy, and a
great deal of research could be done to understand and improve these applications. And of course, �nding
new applications of the ICA algorithm would be very interesting research.

Another opportunity for further study would be in �nding ways to identify each of the resulting indepen-
dent components. For example, in applications where ICA is used to remove interference and background
noise, an important problem is that of determining which component is the desired original signal and which
component represents noise.

3.9 Blind Source Separation Via ICA: The Team and Thanks9

3.9.1 Blind Source Separation via ICA

3.9.1.1 The Team and Thanks

3.9.1.2 The Team

• Akshay Dayal, ECE Department, Akshay.Dayal@rice.edu10

• Mark Eastaway, ECE Department, Mark.Eastaway@rice.edu11

• Angela Qian, ECE Department, Angela.Qian@rice.edu12

• John Steinbauer, ECE Department, John.J.Steinbauer@rice.edu13

3.9.1.2.1 Thanks and Recognition

The team would also like to thank Professor Richard Barniuk and Mark Davenport, who helped jumpstart
us on our project. We also would like to thank Michael Dye and the Rice University ERC for providing the
microphone hardware we used to implement our project.
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Chapter 4

Remote Sound Detection Using a Laser

4.1 Introduction1

Our project provides a setup for detecting sound remotely by re�ecting a laser beam o� a hard surface,
usually a window. Any sound that is near a window causes the window to move, and this technology takes
advantage of that. It allows sounds to be heard from very far away because the sound information travels
using the light as a medium, instead of the pressure waves of sound, it attenuates much less quickly. Another
interesting thing to note is that the sound information is traveling at the speed of light instead of the speed
of sound, so the information arrives more quickly than it would in a normal situation.

As one might imagine, this has interesting surveillance applications. This technology is currently being
used by the CIA and many other surveillance-related organizations to eavesdrop. However, the main di�er-
ence is that they use phase detection and infrared lasers while we use amplitude detection and a ruby laser for
cost purposes. The phase modulation is much more accurate and much less noise prone, but requires a more
complicated setup and was also not the goal of our project. The infrared laser is also useful in real-world
scenarios because of the fact that it is invisible; the ruby laser might cause the surveillance subject to realize
that they are being watched.

4.2 Setup2

The setup itself is rather simple. It just consists of a laser pointer that is pointed at a window or any
re�ective hard surface. The sound vibrations cause the hard surface to act as a diaphragm and vibrate along
with the sound. There is also a photodetector that picks up the light and measures the intensity, which is
sent to a computer. We used the audio-in line on a laptop to input the changes in voltage measured by
the photodetector to the computer. Then, on the computer we performed all our signal processing through
Matlab 7.0 and Labview.

This vibration in the re�ective diaphragm causes the laser beam to change direction slightly, which causes
the intensity that is perceived by the photodetector to change. Our �rst laser pointer was more focused and
would cause our photodetector to maximize its output (causing railing or clipping) which would make changes
undetectable. To rectify this situation we moved the laser beam slightly o� the photodetector so that it was
only partially hitting. Causing it to rail then moving it slightly o� the photodetector resulted in the best
sounding signal. The resulting changes in intensity are then sent through the audio line.

There are several problems that must be dealt with in the implementation of this laser microphone that
are listed as follows:

1This content is available online at <http://cnx.org/content/m15680/1.1/>.
2This content is available online at <http://cnx.org/content/m15682/1.1/>.
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1. In addition to the laser light, ambient light is picked up by the photodetector. This ambient light
may change and vary randomly, or may be synched with the 60Hz frequency of the electrical grid if
the lights are �orescent, which most of them are. Most of the ambient light was removed by simply
adding a dark long tube for the laser to pass through before it reached the photodiode at the end.
Implementing this blocks out a large percentage of the light, as it is not aligned directly with the tube
and therefore cannot reach the photodiode. The back side of the tube must also be protected from
light, so an opaque cloth covering was used to allow the wires attached to the photodiode to have
freedom of movement.

2. There exists basic electrical noise on the circuit. This noise comes from both �uorescent lights, and
from EMF noise produced by the power grid being picked up on the wires. The noise is at 60Hz,
120Hz, and other harmonics of 60Hz.

3. most importantly, there are signi�cant changes in the sound signal due to the properties of the window.
The window has properties such as the size, thickness, and the choice of material. These properties
alter how the window vibrates when it receives the sound signal from the air. The window can be
treated as a �lter to the sound, as it resonates with certain frequencies and dampens others. We solved
this problem with a complex set of inverse �lters that will be explained in detail later in this document.

Figure 4.1

4.3 Implementation3

The hardware implementation of the Laser Microphone is relatively simple and can be done at a minimal
cost.

3This content is available online at <http://cnx.org/content/m15679/1.1/>.
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Figure 4.2

4.3.1 Laser/Photodetector:

The laser we used was a simple presentation laser pointer that outputted a red beam at approximately
a 650nm wavelength. To receive the signal, we used a low cost photodetector (TSL12s), which is simply
a photodiode and a trans-impedance ampli�er combined together in a single package. The peak of the
photodetector's spectral response characteristics coincide with the output wavelength of the laser pointer.

Figure 4.3

4.3.2 Detection Unit:

The laser capture setup was a cardboard tube with a small hole in one end for a photodetector in order to
obstruct as much ambient light as possible. A power supply was used to create the 5 volt supply voltage for
the photodetector and a spliced 1/8� phono jack connecter was connected to the outputted signal.
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Figure 4.4

4.3.3 DAC:

The Digital to Analog converter that we use to digitize the signal for further software processing is the mic-in
jack on a laptop. Using this 22.05 kHz DAC, we are able to cheaply and properly sample the 3.6 kHz speech
signal while following the Nyquist criterion and thus avoid any aliasing e�ects.

4.4 Inverse Filter4

We observed that the system did not transmit sound information perfectly, and transmitted speech signals
su�ered some distortion. This distortion happens for two reasons: (1) the physical properties of the glass
cause it to respond di�erently to di�erent frequencies, and (2) low-frequency vibrations caused by air-
conditioning systems and other building vibrations are constantly present in the window. We attempted to
compensate for this observed distortion by building an inverse �lter. We accomplished this in three steps:

4.4.1 Step 1: Measure the Frequency Response

In order to accurately model the system, we needed to measure its frequency response. We blasted a 30-
second sound clip of pure white noise at the window and recorded the signal measured by the detection
unit. Since we knew the input of the system (the white noise) had a completely �at spectrum, the output's
spectrum should represent the frequency response. To compute the spectrum of the output (the recorded
signal), we windowed portions of the signal using a Hamming window, computed the FFT's of each windowed
portion, and then averaged the FFT's. This average FFT represents the frequency response of our system.

4This content is available online at <http://cnx.org/content/m15685/1.1/>.
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Figure 4.5
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Figure 4.6

The plot shows some strong low-frequency vibrations in the window. We attributed these to the air-
conditioning unit in the building and to other random vibrations in the environment. We also noticed that
the window responded better to low frequencies than to high frequencies. This could be a result of the
physical properties of the glass as well as the physical dimensions of the window.

4.4.2 Step 2: Model the System

Once we had a good idea of the system's frequency response, we attempted to model the system using a linear
prediction �lter. We used a linear prediction �lter because it made the inverse �lter simple to implement,
and it guaranteed that the inverse �lter would be inherently stable and have a linear phase response. A
linear prediction �lter estimates its next output by the current input and a linear combination of n previous
outputs:

Figure 4.7

The �rst step to building this �lter is to compute the autocorrelation coe�cients of the recorded signal.
The autocorrelation coe�cients are a measure of the correlation between samples of the signal. Since the �lter
must accurately estimate the output based on previous outputs, it must preserve the correlation between
samples. One autocorrelation coe�cient r[i] can be expressed as:



57

Figure 4.8

The next step to building the �lter was to compute the �lter coe�cients. We used a recursive algorithm
called Burden's Algorithm to do this. We set the �rst coe�cient a[0] = 1 and then compute the other
coe�cients recursively:

Figure 4.9

We could perform this recursion as many times as we needed to compute the desired amount of coe�cients.
We wrote a MATLAB program to perform the algorithm N times on the windowed signal to generate N
coe�cients. We used these coe�cients in the feedback branches of the �lter. We found that we could
accurately model the system using a linear prediction �lter with 50 coe�cients. The frequency response of
this �lter has a similar shape to the measured frequency response of the system:
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Figure 4.10

Step 3: Build the Inverse Filter

4.4.3 Step 3: Build the Inverse Filter

The linear prediction �lter is simple to invert. Since it uses only the previous outputs to generate the next
output, it is an all-pole �lter with only feedback branches. To build the inverse �lter, we used all the feedback
coe�cients that we generated using Burden's Algorithm as the feed-forward coe�cients of the inverse �lter.
The frequency response of the inverse �lter looks like:
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Figure 4.11

We observed that the inverse �lter accurately inverted the response of the system. It successfully attenu-
ated the low-frequency window vibrations, and it ampli�ed the higher frequencies that the system attenuated.

4.5 Vocal Band Pass Filter5

After the inverse �lter, we decided to isolate the speech signal to remove some of the additive noise. We
accomplished this by applying a band pass �lter to the recorded signal. When �ltering signals, it is very
useful to have an understanding of where the important information in the signal lies. With a speech signal
there are a few things that we can take advantage of when attempting to �lter out noise.

Speech signals generally have a distinctive envelope in the frequency domain (pictured below). After our
preliminary �lters, we were able to use this envelope to check and see if our output matched.

5This content is available online at <http://cnx.org/content/m15683/1.1/>.
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Figure 4.12: Picture from "Speech Enhancement Theory and Practice" Philipos C. Loizou

Human speech exists within a �nite frequency range. As we are trying to eliminate noise to create a more
intelligible speech signal we can get rid of everything outside of this range. To do this we will use a band-pass
�lter. To get optimum intelligibility telephone companies will generally use a window from 300Hz-3600Hz.
The military uses around 400Hz-2800Hz to get rid of more background noise. We used a band-pass �lter
that went from 400Hz-3600Hz. In order to e�ciently design this �lter to have linear phase and a �nite
impulse response, we utilized the Remez Exchange (or Parks McClellan) algorithm. We accomplished this
in MATLAB, resulting in the frequency response shown below.
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Frequency Response of Bandpass Filter

Figure 4.13

4.6 Results6

Both the inverse �lter and the vocal band �lter performed well at improving the quality of the transmitted
signal by compensating for the observed distortion and removing additive noise. The inverse �lter successfully
boosted the high frequencies that were absorbed by the window. The vocal band �lter isolated the speech
portion of the signal and successfully removed much of the noise produced by the low-frequency window
vibrations. The spectrum of the �ltered signal appears similar in shape to the human voice spectrum in the
pass band.

4.6.1 Possible Improvements

In order to improve the quality of the recorded signal, we'd like to explore ways of improving the transmission
process to get better results. One method that we conceived is to modulate the laser beam at its source
with a carrier frequency. We could then demodulate the recorded signal digitally. In theory, this scheme

6This content is available online at <http://cnx.org/content/m15684/1.1/>.
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could considerably reduce the amount of additive noise in the transmitted signal by moving the transmitted
speech band away from the strong low-frequency noise and into the high-frequency range.

4.6.2 Conclusion

This project was an enjoyable experience for all the members in our group. We got to experiment with a
technology that was new to us, and we got to learn a lot about digital speech processing. Overall we are
proud of the project.
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MATLAB EQ

5.1 MATLAB EQ: Problem1

The challenge of this project was to implement the mathematical form a graphic equalizer into an intuitive
graphical user interface. The group chose to create the GUI in MATLAB. Working in MATLAB had many
advantages and disadvantages. The main advantage of working in MATLAB was that MATLAB was very
adept at signal manipulation. Since it was designed to manipulate matrices, MATLAB allowed for us to
easily code a working bin matrix, and to plot in real time the e�ects of our signal alterations in time and
frequency.

The main disadvantage of using MATLAB was that since MATLAB does not do things in parallel, we
were not able to simultaneously take input from the soundcard to our graphic equalizer, and send an output
to the soundcard.

Perhaps a better approach would have been to use LabView instead of MATLAB. LabView is designed
to interface with hardware, and now it has incorporated the ability to run .m �les in LabView. Therefore,
in hindsight, a better way to attack the problem would have been to use LabView.

However, we did make a working graphical user interface using MATLAB that was able to create a visual
output.

5.2 MATLAB EQ: Background on Equalization2

5.2.1 Introduction to Equalizers

This section will cover the basic principles that we used in the creation of our graphical equalizer: equalizer
principles, analog to digital conversion, Nyquist-Shannon sampling Theory, and the fast Fourier transform.

5.2.1.1 Equalizers

In audio processing, equalization is the process of changing the spectrum of a sound. Equalizers employ
low-pass, band-pass, and high-pass �lters to modify di�erent portions of a sound's spectrum. By changing
the gains on these �lters an operator is able to modify the sound. An easy example to understand would be
a `Bass Booster,' where the user adds gain to the low frequencies and thereby increases the `bass' of a song.
Generally, equalizers have ten di�erent bands that a person is able to manipulate, but high end models can
have up to thirty-one.

1This content is available online at <http://cnx.org/content/m15652/1.1/>.
2This content is available online at <http://cnx.org/content/m15655/1.1/>.
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5.2.1.2 Analog to Digital Conversion

Sampling is the process of converting a continuous real time signal into a discrete time signal. The basics
of sampling form the basis for much of today's music recording industry. Sophisticated digital to analog
converters (DAC) can be found in music studios across the world.

A DAC works by converting voltages into a digital number representing the corresponding voltage. The
digital representations of these signals can then be manipulated by a computer, introducing various e�ects
and gains. After processing, the signal can be converted back into an analog signal using a digital to analog
converter.

Figure 5.1: A visual example of digital sampling of an analog signal.

5.2.1.3 Nyquist-Shannon Sampling Theory and Aliasing

The Nyquist-Shannon theory states that exact reconstruction of a continuous time signal from its samples
is possible if the signal is bandlimited and the sampling frequency is at least twice that bamdwodth.

For example, the human ear can hear sounds from 20-20,000Hz. This means that if we want to recreate
an audio signal with the complete range of recorded frequencies we must sample the signal at a minimum
of 40,000Hz. Typical music is coded and sampled at 44,100Hz which obeys the Shannon-Nyquist theorem.
The reason for the extra bandwidth is due to imperfect low-pass �lter e�ects, which is outside the scope of
this module.

Figure 5.2: A visual example of an appropriately band limited signal.
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Aliasing occurs when the Nyquist-Shannon Theorem is not obeyed, i.e. when the sampling rate is not
at least two times the band limit's frequency. Aliasing is the overlap of spectrums at the band edges and
results in an incorrectly reproduced signal. These overlaps corrupt the signal by adding the two spectrums
from the overlapping bands.

Figure 5.3: A visual example of a aliasing in a signal.

5.2.1.4 Fast Fourier Transform

To be able to process bandwidth gains, one must move the samples of the continuous time signal into the
frequency regime. This is accomplished quickly and e�ciently using the Fast Fourier Transform (FFT). The
equation for this is as follows:

Figure 5.4: The Fast Fourier Transform.

This moves the signal into the frequency regime with N points. There is a problem in that you need a
very long FFT to accomplish a perfect spectrum. Long FFTs are computationally expensive and are di�cult
to accomplish in real time, and a compromise between speed an resolution must be made.

5.2.1.5 Inverse Fast Fourier Transform

Once the signal has been manipulated in the frequency regime, you have to convert those values back into
a digital representation of the signal. To do this you use the Inverse Fast Fourier Transform:
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Figure 5.5: The Inverse Fast Fourier Transform.

Since we have modi�ed the spectrum, this new digital signal may have imaginary parts in it. Digital to
analog converters do not interpret imaginary numbers so we must take the real part of the modi�ed signal
to be able to reproduce it.

5.3 MATLAB EQ: Sound Sampling3

5.3.1 Sampling Windows Audio Data in MATLAB

This module will walk you through the coding process of saving input audio data from a Windows sound
card.

5.3.1.1 Setup

The �rst thing you need to do is set how often you would like MATLAB to access your sound card, and
how fast you want it to do so. This multiplying these two values together will give you the total size of your
sample space. The code below is how we initialized our data input.

refreshrate = .04644; % sec

samplerate = 44100; % Hz

ai = analoginput('winsound', 1); %windows addchannel(ai,[1 2]); %two channels

samplerate = setverify(ai, 'SampleRate', samplerate);

5.3.1.2 Trigger

Next, you must set a command structure to let MATLAB know when to access the sound data. In the case
of our graphical equalizer we wanted MATLAB to sample until we told it to stop so we created an in�nite
trigger loop. To do this you must set the triggers on your input class.

ai.TimerPeriod = refreshrate;

spt = round(samplerate * refreshrate);

ai.SamplesPerTrigger = spt;

set(ai, 'TriggerRepeat', Inf);

set(ai, 'TimerFcn' , @getdata);

start(ai);

5.3.1.3 Storing Data and Stopping

Now that you have begun to sample the soundcard, you have to store the sampled data in a bu�er for
analysis. You need to �ush the data in your acquisition structure or you will su�er serious memory leaks.
Also, the try and catch structure allows the loading of empty values if the peekdata is empty (a type of error
suppression).

try

3This content is available online at <http://cnx.org/content/m15657/1.1/>.
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timesig = peekdata(ai,samples);

flushdata(ai)

catch

timesig = [];

end

Stopping the data acquisition is simple:

stop(ai)

5.4 MATLAB EQ: Approach: Use of Frequency Binning to Apply

Frequency Gains4

The main focus of a graphic equalizer is to manipulate di�erent bands of frequencies, and then reconstruct
them. Therefore, to manipulate the frequencies, a group of samples were taken, and the Fast Fourier
Transform of the sample set was computed. In order to maximize the e�ciency of the FFT, a sample set of
a power of two was used. FFTs maximize symmetry in the Discrete Fourier Transforms and are best able to
do that for signals of power of two lengths. Hence a refresh rate such that 2048 samples were taken in was
chosen.

Once the signal is put into the Fourier domain, we then need to separate the frequencies into the desired
bands so that they can be displayed, operated on, and then be displayed in their updated state. To do this
we used a binning matrix. The matrix binned according to a logarithmic Q binning pattern. This means it
puts the �rst and 2048th frequency in the �rst bin, the second, third, 2047th and 2046th frequencies in the
second bin and so on and so forth. The matrix below is an example of how a bin matrix would look for an
eight bit Fast Fourier Transform.

Figure 5.6: Example of a bin matrix for a length 8 FFT.

The code to generate matrices of this form is below.
[n, bin] = histc(freqs, freqbins);

bin = bin(:,1:spt/2);

binmatrixa0 = zeros(length(n)-1, length(bin));

for k = 1:(length(n)-1)

binmatrixa0(k,:) = bin == k ;

end

binmatrixb0 = fliplr(binmatrixa0);

binmatrix0 = [binmatrixa0, binmatrixb0]

4This content is available online at <http://cnx.org/content/m15650/1.1/>.
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Once the bins are generated by multiplying the bin matrix with the FFT vector, the bins' L2 norms are
generated and displayed in bar graph form. Then, all the contents of all the bins are multiplied by what the
user inputs in the GUI slide bars. The L2 norms are taken again and displayed in a bar graph as well.

The multiplying the frequency bins by a constant, it is the equivalent of passing the signal through several
di�erent ideal band pass �lters. This is possible, because the signals are of �nite length. Therefore, a discrete
sinc of this length can create a perfect discrete band pass �lter.

Once these gains have been applied, the vectors representing each of the bins are recombined to reform
a 2048 Fast Fourier Transform vector. The signal is then Inverse Fast Fourier Transformed to allow for the
display of the time wave form, and to allow for the application of time domain e�ects.

The last problem that needs to be taken into account is the phase. Due to the application of non-uniform
gain to the bins, there is phase added to the output waveform. This phase needs to be removed, because the
equalizer is supposed to output to speakers, and speakers can only interpret real signals.

5.5 MATLAB EQ: Approach: Time-Domain and E�ects5

5.5.1 Approach: Time-Domain and E�ects

Once the Inverse Fast Fourier Transform (IFFT) has taken place, we are able to apply our time-domain
e�ects: Reverb, Flange, and Distortion. When the e�ects have been implemented, we then output our
modi�ed signal into a plot where we are able to analyze the new spectrum of our signal. The last two e�ects,
Gain and Volume, are included at the end.

5.5.1.1 Flange

Flanging is another time-domain audio e�ect which happens when two audio signals are mixed together,
with the requirement that one of the signals is time-delayed by a very small amount of time. An analogy we
like is the simultaneous playing of two tape recorders playing the same track. Then if we pause one of them
for a small amount of time and then hit play, the combined audio of the two tape recorders is �anging.

In our coding, we used 15 refresh periods.

5This content is available online at <http://cnx.org/content/m15654/1.1/>.
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Figure 5.7

5.5.1.2 Reverb

By de�nition, reverberation is the lingering of sound in a given space once the original sound is removed.
It is not necessarily termed �echo� as reverb is the decay of a large number of echoes when the sound is
absorbed. Thus, once the sound signal stops, the reverberated re�ections carry on and gradually decrease in
amplitude until they zero out.

In our implementation, we used 15 consecutive refresh periods. This wasn't incredibly realistic as we
could have modi�ed our design to produce a better reverb, but this allowed our program to function smoothly
without memory over�ows in MATLAB.
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The main visual di�erence between �ange and reverb was the persistence of sound once the song/audio
clip ended.

Figure 5.8

5.5.1.3 Distortion

A distortion that we introduced in our equalizer can also be referred to as �audio clipping� as we cut o�
signals above a certain amplitude.

This is also called hard clipping. Distortion is usually an unwanted e�ect except in music, such as Gabber
(150-220 beats-per-minute hardcore techno) or as an electric guitar e�ect.
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In order to guarantee a visual representation, we went ahead and clipped our signals at the 0.5 mark in
amplitude.

Figure 5.9

5.5.1.4 Gain

In our equalizer, we implemented a gain control which provided for the increase of our input signal's amplitude
for a given frequency band. We had 10 frequency bands of which we could modify the gain levels.



72 CHAPTER 5. MATLAB EQ

Figure 5.10

5.5.1.5 Volume

Volume is the implementation of gain for all frequencies.
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Figure 5.11
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5.6 MATLAB EQ: Results6

5.6.1 Results

Figure 5.12

The above �gure is a demonstration of the end result of our Visual Equalizer.
As shown, we were able to implement a real-time spectrum analysis of the signal in dual-channel (stereo)

mode, with the preprocessed signal on the left and the post-processed signal on the right. The graphs on
the bottom represent the 10 binned frequency blocks in a logarithmic queue up to 22.05 KHz.

Each frequency block can be adjusted to modify the gain levels. The Distortion, Flange, and Reverb
options implement each command in the left channel, right channel, or dual-channel modes. The Volume
control is the Unity Gain, increasing the amplitude over all the frequency blocks. The Start and Stop buttons
begin or end the visual spectrum processing.

As a bonus, we threw in audio presets such as Rock, Treble Booster, Bass Booster, etc.

6This content is available online at <http://cnx.org/content/m15656/1.1/>.
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5.7 MATLAB EQ: The Team7

5.7.1 MATLAB EQ: The Team

Just us guys.

Figure 5.13

Chris Corbet
Chris is a senior electrical engineering and physics major at Rice University. He is a very sensitive guy

who enjoys watching sunsets and long walks on the beach. IN HELL.
Nik Maureira
Nik is a junior electrical engineering major at Rice University. He is the classy one of the group, and

would do anything for a bottle of �ne wine...WITH YOUR GIRLFRIEND.

7This content is available online at <http://cnx.org/content/m15653/1.2/>.
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Figure 5.14

Alex Mrozack
Alex is a junior electrical engineering major at Rice University. He brings soul and style to the group,

ready to dunk on you in his Nikes or his street shoes. IN YOUR FACE.



Chapter 6

CANADA: Continuous Adaptive

Non-Linear Analysis for Driving

Applications

6.1 Introduction1

6.1.1 Introduction

As personal computer applications become increasingly complex and personal computers themselves become
increasingly powerful multi-process machines, the issue of application control becomes an important issue.
While the keyboard and mouse previously reigned as the de facto computer inputs, the capability of today's
computers to do fast, adaptive signal analysis gives way to new and exciting control opportunities.

Most computers are equipped with basic microphones. Though the idea of spoken word or sound control
is not a new idea, most voice control systems require complex algorithms to �lter noise and account for the
many di�erences between peoples' voices. Our project takes advantage of the simple frequency patterns in
whistles in order to simplify this process.

To handle signal processing, we chose to utilize the features of the popular LabView development envi-
ronment. Combined with the powerful Java programming platform, we are able to send control commands in
order to drive an application, which in our case was iTunes. In the scope of our project, LabView instantiates
a Java control program which then passes commands onto iTunes.

6.2 Algorithm Overview2

6.2.1 Algorithm Overview

The �rst step in detecting a signal is to input it into the system. Since we are using an audio signal, a
microphone is the obvious choice. However, the desired control signal is not the only sound in the room.
There is also the music that is being played through the speakers as well as outside noise. Unfortunately,
there is not much that can be done about the random noise that is present in the room. However, there are
tools available that allow us to minimize the interference caused by the music. Speci�cally, we can use an
adaptive �lter to mimic the room's e�ect on the output of the sound card, providing us with an estimate of
the music's contribution to the signal received by the microphone. We can subtract the microphone's signal
from this estimate in order to obtain�hopefully�only the whistle.

1This content is available online at <http://cnx.org/content/m15674/1.2/>.
2This content is available online at <http://cnx.org/content/m15673/1.2/>.
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Figure 1 (Figure 6.1: Our System's Block Diagram) shows the block diagram of our system. All of these
components fall into four main categories:

1. Signal acquisition
2. Whistle isolation
3. Whistle frequency analysis
4. iTunes interface

The acquisition phase is the top portion of the diagram, the whistle isolation system is represented by the
�h box and the band pass �lter, the rest of the diagram (except for the Java controller) comprise the whistle
analysis phase, and the Java controller is the iTunes interface.
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Our System's Block Diagram

Figure 6.1: In our system, the sound is output through the speaker, and the microphone receives the
music and whistles while the sound card receives the audio without the room a�ecting it. We then remove
the music and process the whistle.
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After isolating the whistle, we apply a band pass �lter whose pass band corresponds to common whistle
frequencies in order to remove extraneous noise outside of these whistle frequencies.

We then take the Short Time Fourier Transform in order see how the frequency components of the whistle
change over time. If the frequency of the whistle is increasing iTunes should advance to the next track, and
a decreasing frequency will skip to the previous track. To accomplish this, we examine the frequency with
maximum power (the argmax in the �gure below) and accumulate several readings of this frequency. In
order to see if this function is increasing or decreasing we take the derivative and examine its average value.
If the average value is positive, the function must have been increasing and the whistle must have been from
high to low frequencies.

6.3 Least Mean Squares Adaptive Filters3

6.3.1 Least Mean Squares Adaptive Filters

6.3.1.1 Why LMS?

In our system, the music that is being played by the computer is a known output that is being fed into the
room, which has an unknown response, and picked up by the microphone. Since we have the signal both
before and after the in�uence of the room, this is a candidate for an adaptive �lter. The adaptive �lter can
be used to try to estimate the room's response based on the music being outputted and the input to the
microphone. Once an estimate is available, we can use it to remove the interference of the music from the
input to the microphone.

6.3.1.2 LMS Overview

One of the most popular adaptive algorithms used today is the Least Mean Squares (LMS) algorithm.
Essentially, this algorithm attempts to minimize the error that occurs between the detected (or desired
signal), d[n], and the estimated value of the signal, y[n]. This estimated signal is created by taking the
original input, x[n] , and running it through an approximation of the unknown channel. Basically:

y [n] = x [n] ∗
Θ

h [0] + x [n− 1] ∗
Θ

h [1] + · · ·+ x [n−N ] ∗
Θ

h [N ]
or

y [n] = xT
N [n] ∗

Θ

h [n]
where N is the order to which you are approximating the unknown system, xN is a vector of the last N

value of x, and each h[n] is a weight.

3This content is available online at <http://cnx.org/content/m15675/1.2/>.
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LMS Algorithm Block Diagram

Figure 6.2: x[n] is the input to the �lter, v[n] is the interference in the room, h[n] is the impulse response
we're modeling, and e[n] is the error in this modeling.

Once the signal and its approximation are found, the error is just the di�erence between the two signals
at the current point in time.

e [n] = d [n]− y [n]
Using the error, we can approximate the next set of weights as follows:
Θ

h [n+ 1] = h [n] + µ ∗ e [n] ∗ xN [n]
where µ is a constant.

6.3.1.3 Choosing µ

The choice of µ is an important one as it greatly a�ects how the system will perform. Small values allow for
greater precision in convergence, but slow down the response time of the system. If the value is too small,
then the adaptive �lter will not adapt fast enough. If it is too large, the system will not converge at all,
and the value weights will actually diverge. Experimentation with di�erent systems and environments is
necessary to choose the ideal value for µ.

6.3.1.4 Isolating the Whistle

It can be shown that the error value will converge on a minimum point. This theoretical minimum will likely
not be at zero error, since there is outside noise and interference, but it represents the original signal's e�ect
on d[n] being completely removed. In the case of our signal detection system, the whistle that we are trying
to detect will still be in the e[n] and therefore we will use e[n] as the input to the rest of our system. Once
the adaptive �lter has settled down, this signal will be the input to the microphone minus the estimated
value of the music when it reaches the microphone.
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6.4 Joint Time-Frequency Analysis4

6.4.1 Joint Time-Frequency Analysis

6.4.1.1 Short Time Fourier Transform

After our system has isolated the whistle sound, it is input to a continuously running analysis algorithm
based on the result of a Short-Time Fourier Transform. While the traditional Fourier transforms do not
maintain a sense of time, the STFT allows for joint time-frequency analysis. The formula for the STFT is:

STFT{x [n]} = X (m,w) =
∑∞

n=-∞ x [n]w [n−m] e−jwn

Individual sections of the signal are windowed and their FFT is taken. The result of this operation
is a two dimensional function in terms of the o�set from zero (�time�) and the frequency content of the
signal. According to the Heisenberg Uncertainty Principle, however, we cannot have an arbitrary amount of
resolution in both the time and frequency domains. For our application, we are only interested in detecting
trends in the frequency with highest power, so time resolution is less important.

6.4.1.2 Spectrogram

Squaring the magnitude of the STFT results in a 3-D function is known as a spectrogram. The spectrogram
of a whistle whose pitch goes from low to high looks like this.

4This content is available online at <http://cnx.org/content/m15676/1.2/>.
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Whistle Spectrogram

Figure 6.3: This is a whistle of increasing frequency. Each slice of the spectrogram is an FFT of a
certain windowed chunk of the signal. This embeds a sense of time in the spectrogram.

Notice that there is a dominant power (dark red) that shows a very clear upward trend over time. Each
slice of the frequency axis at a particular time corresponds to a single chunk of the signals' FFTs. The
dark red corresponds to the maximum of one of these FFTs, and as time passes (in the positive vertical
direction), we see the frequency of highest power increases. Below is a graph of three of these component
FFTs, illustrating how the peak frequency increases across time. Since pitch and frequency are essentially
synonymous, we can determine what kind of whistle is input by looking at trends in the frequency with the
dominant power.
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Power vs. Frequency for 3 Spectrogram Components

Figure 6.4: Here are 3 of the FFTs that comprise the spectrogram above. The frequency of maximum
power is increasing.

With the dominant frequency for any given windowed input now known, our system then takes the
discrete-time derivative of that frequency over the window. Calculus tells us that the derivative of a function
at a point is positive for increasing functions and negative for decreasing functions. By continuously taking
derivatives of these windows our system can track the basic shape of the spectrogram.

6.4.1.3 Analysis using the STFT

Our analysis algorithm keeps a running bu�er of the signs of these discrete-time derivatives. It then takes
the magnitude signs inside the bu�er. If the bu�er encounters a number of continuous signs above or below
a certain threshold, either positive or negative, it concludes that the input is a whistle with increasing or
decreasing pitch, respectively. Finding the optimal threshold value is mostly trial and error; we looked at
recordings of sine waves with constant frequencies and white noise in order to determine a reasonable upper
bound for the area under the derivative curve.

There is a tradeo� between the size of the bu�er and the quality of the analysis. Given that a whistle
may last up to three seconds, it's clear that the bu�er need not contain that many samples in order to �nd
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and characterize the whistle. But on the same token, too few samples will result in an unusual number of
false positives and change the song without any user interaction. And while this is not necessarily complex
math, doing it quickly and continuously requires the window be as small as possible.

6.5 iTunes Control Interface5

6.5.1 iTunes Control Interface

To accomplish anything useful with our signal processing, we need to drive an application. We chose iTunes, a
popular multiplatform program for playing digital music �les, as our example application for several reasons.
First, the ability to control iTunes through external means is well documented and fairly simple to achieve.
More important, however, is the aspect of music or audio playback in a room while simultaneously listening
for whistles.

6.5.1.1 Java-COM

iTunes is both the system to control as well as the dominant source of noise to combat. Based on the pro�le
of the whistle detected, whether it be increasing or decreasing in frequency, we will skip to the next or
previous track in iTunes. To accomplish this, LabVIEW makes a call to a Java program that interacts with
iTunes by accessing the Component Object Model (COM) interface of Windows. The JACOB6 library serves
as an intermediary to complete this task. JACOB7 is a native Java-COM bridge, allowing Java programs
to simultaneously run and interact with system applications. Once the COM interface receives instructions
from LabVIEW, it then interacts with iTunes and changes tracks appropriately.

6.6 Conclusion and Possible Improvements8

6.6.1 Conclusions and Possible Improvements

While we did not create a fully working prototype, we believe that our algorithm is a solid approach for
implementing a solution to this problem. While trying to implement the whistle detection in LabVIEW,
we were faced with obtaining synchronized samples from two audio input sources while outputting through
another. In order to assure that all samples are read in at the same time, we would need to use real time
operating system or at least the real time LabVIEW plugin. We believe the best solution to this problem
would be to implement the system in hardware where we would have complete control over sample acquisition.

We were able to implement the LMS �lter in MATLAB, but its running time was too long to be a
feasible solution. Its running time appeared to be O(n^2) and running the �lter on a 10 second clip from
a song took 4 hours to process. Again, since the LMS �lter is such a popular adaptive �lter, more e�cient
implementations must exist; and implementing it in hardware would surely provide a signi�cant performance
improvement.

Finally, one of the most important advantages of our design is that it's modular. While we chose to
implement a rising/falling frequency detector, any type of aural recognition could be implemented with this
system. For example, we could replace the STFT and increasing/decreasing detector with a voice recognition
system.

5This content is available online at <http://cnx.org/content/m15677/1.2/>.
6http://danadler.com/jacob/
7http://danadler.com/jacob/
8This content is available online at <http://cnx.org/content/m15678/1.2/>.
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Chapter 7

Tomographic Processing of

Spotlight-Mode SAR

7.1 Introduction1

7.1.1 Introduction

Our project covers an investigation of Synthetic Aperture Radar (SAR) and the Matlab processing of SAR
data we received from Ohio State University. The data was generated by a simulation of spotlight-mode
SAR, a speci�c type of SAR which takes advantage of a moving sensor tracking a single ground target. To
process this data, we utilize digital signal processing techniques such as interpolation and windowing along
with a knowledge of how SAR works.

7.2 Background2

7.2.1 Synthetic Aperture Radar: Background

7.2.1.1 What is Synthetic Aperture Radar?

Synthetic Aperture Radar (SAR) is a microwave imaging system that is used to obtain high resolution
pictures of large areas of terrain. The radar can be either airborne or spaceborne. As the platform moves,
closely spaced pulses are transmitted and the re�ected signals are received and processed using Fourier
methods. The processed data resembles data taken with a system that has a very large antenna, thus
allowing extremely high resolution.

Synthetic Aperture Radar was �rst developed in the early 1950's. The earliest type of SAR is called
strip-mapping mode SAR. It is primarily used for imaging large areas of terrain, such as the surface of a
nearby planet. This mode emits the radar pulses at a constant �look� angle to the surface while traveling
along a �ight path or orbit. This process creates a strip of mapped ground, and can be repeated along a
polar orbit to map the entire surface of a planet.

Spotlight mode SAR is a newer form of SAR and was developed in the early 1980's. It is more widely
used today than strip-mapping mode and it is what our project deals with. In spotlight mode, the radar is
steered continually as the carrier of the radar �ies over a patch of ground. In another word, the �look� angle
is constantly adjusted so that a single patch of ground is always illuminated. This method allows for higher
resolution in the azimuth �travel� direction of the platform but is not able to image as large of an area as
strip-mapping mode.

1This content is available online at <http://cnx.org/content/m15658/1.1/>.
2This content is available online at <http://cnx.org/content/m15667/1.1/>.
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7.2.1.2 How Does Imaging Radar Work?

As mentioned earlier, we use the Synthetic Aperture Radar processing technique because of its advantages
when it comes to imaging large areas at high resolutions. However, why do we even use radar to image
things in the �rst place?

Radar is used in imaging because of the minimal constraints that is has on time-of-day and atmospheric
conditions. The area of imaging does not have to be illuminated by sunlight in order to obtain a picture.
This allows for continuous mapping regardless of the position of the sun, which saves time and therefore,
money.

Radar also has the ability to penetrate cloud cover because one can choose a wavelength that is not
absorbed by water. This fact is what allowed scientists at NASA to provide stunning images of the surface
of Venus, which is completely shrouded in cloud-cover.

Imaging radar works by emitting a signal and then recording the strength of the re�ected signal (scattering
coe�cient) for that area. The pulses are emitted at an angle to the surface such that if they strike a smooth,
�at surface, very little of the signal will be re�ected back towards the antenna which corresponds to a darker
spot on our scattering coe�cient image.

When the radar pulse strikes uneven surfaces such as urban areas or vegetated areas, the signal gets
re�ected numerous times and there is an increased likelihood that the radar antenna will eventually receive
a large portion of the signal back, corresponding to a whiter spot on your image. Scientists use this fact to
determine the extent of �ooding in urban areas or to discern how much an oil spill in the ocean has grown.

7.2.1.3 Synthetic Aperture Radar and Microwave Imaging System

The resolution of an image taken from an imaging system is usually determined by the size of the Aperture
(lens for optical systems and antenna for radar). Conventional radar systems use passive methods deployed
with optical or short-wave infrared sector that rely on sunlight re�ection. On the other hand, synthetic
Aperture Radar uses a microwave imaging system. Two important advantages resulting from using microwave
pulses are that cloud cover can be penetrated and the imaging process can be performed at night.

However, antenna size limits one from applying microwave imaging systems. A very large size of antenna
is required to obtain satisfactory resolution. Therefore, the size of the antenna makes it impractical for the
radar carrier.

Synthetic Aperture Radar solves the problem by �simulating� a large Aperture. The radar sends and
receives signals from a relatively small antenna while the platform traveling along a �ight path. One can
then use the digital signal processing techniques to combine the data into a coherent image. The result is
the same as if one has used a very large antenna.

7.3 Projection-Slice Theorem3

3This content is available online at <http://cnx.org/content/m15663/1.1/>.
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7.3.1 Brief Review of Computer-Aided Tomography

Computer-Aided Tomography, or CAT (as in CAT scan) is a technique for remote 2-D and 3-D imaging.
By moving a sensor around a target, one can collect su�cient 1-dimensional data to reconstruct the original
multidimensional image. This process utilizes an amazing relationship called the Projection-Slice Theorem,
which states that each piece of projection data at some angle is the same as the Fourier transform of the
multidimensional object at that angle. Using a range of data from a range of angles, one can, given su�cient
computation resources, reconstruct the actual image by taking the inverse transform. The Projection-Slice
Theorem has found a range of applications in remote sensing, the most famous of which is the 3-D imaging
of humans, popularly known as the CAT scan. The focus of this project, Spotlight-Mode Synthetic Aperture
Radar, uses the Projection Slice Theorem in a way quite similar to CAT scan technology, except the way
radar projections are generated by the image is slightly di�erent from the way CAT scans use X-rays.

7.3.1.1 Projection-Slice Theorem

Let g(x,y) represent the radar re�ection of our image. The two-dimensional Fourier transform of g is de�ned
as

Figure 7.1

And

Figure 7.2

We can model the re�ection behavior of the incident radar by considering the following overhead diagram
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Figure 7.3

The smooth line outlines our image g(x,y), and the horizontal and vertical axes x,y are overlaid. The
radar is incident upon the target along the axis of the path u at an angle theta. For a target which is far
away, the radar wave front is approximately �at, and so this means that a re�ected beam which has traveled
a certain unique distance to and from the sensor comes from a straight path across the image, perpendicular
to u. This path is in the direction of v and can be represented by a line integral in the direction of v at
position u0. The formula for this is given by

Figure 7.4

The 1-D Fourier transform of p(u) is given by
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Figure 7.5

And then, through applying the equation for p(u) and simplifying, we are left with

Figure 7.6

This is the Projection Slice Theorem! What this states is that the Fourier transform of a projection
taken at an angle theta is equal to the 2-D Fourier transform of the image at that same angle theta. To
reconstruct the original image, one must merely take the inverse Fourier transform in two dimensions of
a set of data P(U). This is not as easy as it sounds for reasons discussed later. Notice how the Fourier
transform of the image G does not have the usual form, G(X,Y). It is instead expressed in polar form, and
the variable theta lets us know that we have only a slice of the transform for each P(U).

7.4 Tomographic Processing4

7.4.1 Data Processing

In the words of the highly esteemed Rich Baraniuk, the signals received by the radar sensor must be �munjed�
upon in order that the user can learn anything useful at all. We �esh-out the basic spotlight-mode SAR
derivation from start to �nish, noting the places in which we make approximations, all the while aiming at
interpreting our bit stream into the meaningful pieces of the Projection-Slice Theorem. Something to note
is that this theoretical approach does not include any Doppler shift analysis. Other approaches to synthetic
aperture radar heavily rely on phase data collected during a physical �yby of the target, where instrument
velocity plays an important role. The mathematics in this section follows as in David Munson's 1983 paper
on �A Tomographic Formulation of Spotlight-Mode Synthetic Aperture Radar.�

7.4.1.1 The Setup

The way spotlight-mode SAR collects data samples is by gathering image projections from a range of angles.
In our case, this range is broken down into a set of equally spaced angles so that essentially we have snapshots
at various views around a target. A depiction of what it would look like is given below.

4This content is available online at <http://cnx.org/content/m15661/1.1/>.
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Figure 7.7

This drawing shows how the altitude of the sensor platform might play a role in the angular view of the
target. For our derivation, we will ignore this parameter and assume that the radar is somehow incident at
ground level, that as the sensor moves closer to the target distances remain undistorted by this variation in
3-dimensions. This ground plane geometry is as shown below.
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Figure 7.8

Note that the angle theta is the same as that in the description of the Projection-Slice Theorem. The
distance from the center of the target image is given by the variable R, and the radius of a circular target
is given by L. The radar signal travels along and parallel to path u.

7.4.1.2 Generating the Re�ection Signal

At this point we are ready to start generating our signals! Our radar device works in a microwave frequency
range designed to penetrate clouds and other obstructions with ease. It emits a linear FM chirp pulse
waveform Re{s(t)} where

Figure 7.9
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In this signal, w0 is the RF carrier frequency and 2a is the FM rate. The frequency rises linearly with
time so that the minimum frequency is w0-aT and the maximum is w0+aT. The point re�ection o� of a
re�ection coe�cient at (x0,y0) given by g(x0,y0) can be written

Figure 7.10

Where R0 is the distance of g(x0,y0) from the radar, A accounts for propagation attenuation, c is the
speed of light, and 2R0/c accounts for the two-way travel time from radar to target.

7.4.1.3 Interpreting the Re�ection Signal

Points on the target ground patch equidistant from the radar lie on an arc, but typically R�L, so this
arc is nearly, and may be approximated as, a straight line. Combining this approximation with the polar
formulation of a di�erential line of scatterers (radar re�ectors), we can write down a new relation involving
a polar representation of the re�ection.

Figure 7.11

If R�L, we may take A as a constant over u, and this enables us to write the re�ection from the whole
ground patch as the integral of r1 over u.

Figure 7.12

This integral has the form of a convolution! This provides us a good hint that Fourier methods might be
the right way to analyze this signal. The signal stated here is really the raw data that we receive from the
radar. The return chirp is the projection slice convolved with the initial pulse.

7.4.1.4 Mixing the Re�ection Signal

It turns out that the correct way to process this raw data is to mix it with the starting signal, s(t). Written
out, r(t) has the form
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Figure 7.13

Figure 7.14

Mixing this signal with the real and imaginary parts of the signal s(t), low-pass �ltering the two, and
then adding them together gives us a complex signal.

Figure 7.15

The quadratic term in the exponential can be approximated as 0, and as that term disappears, we get a
very profound result

Figure 7.16

Which is the Fourier transform of p(t).
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Figure 7.17

7.4.1.5 Interpreting Our Result

From our formulation of r(t) above, we know the restriction on t. If we consider the argument of P( ) to
be X, the radial spatial frequency, we know P(X) is only determined for X between X1 and X2 where

Figure 7.18

Figure 7.19

The term 4aL/c will be negligible for typical SAR, so we can see that X1 and X2 are proportional to
the lowest and highest frequencies in the transmitted chirp pulse. X1 and X2 correspond to the inner and
outer radii for which P(X) is de�ned.

Figure 7.20

C(t) is the �nal form of the processed data! What this tells us is that after mixing the re�ection with the
real and imaginary parts of the original chirped pulse, low-pass �ltering, and linearly combining the two, we
are left with the Fourier transform of the projection p(t). From here we need to take the inverse transform
to �nally reconstruct g(x,y). Unfortunately, we have the polar form of a Fourier transform, whose known
values would be located somewhere on this Locus
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Figure 7.21

There exists a 2-D polar inverse Fourier transform, and this is the preferred method of transform for
the optimal quality reconstruction. This method, called Convolution Back-Projection, requires an enormous
number of computations to execute, however, and so in practice one has to either have a quite powerful
system or be ready to wait for results. The practical method attempts to remedy this issue by utilizing the
Fast Fourier Transform, or FFT. Although there is no known 2-dimensional FFT or inverse FFT for polar
coordinates, one may interpolate the polar data to rectify the coordinate system and then apply the 2-D
inverse FFT in the regular fashion. The recti�cation process requires windowing the data, and interpolation
is by its nature inexact, so this method ends up trading a great deal of resolution for extra speed.
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7.5 Data and Processing5

7.5.1 Introduction and Preparation of SAR Data

In order to simulate the processing of SAR data, we received SAR data from the ECE department at Ohio
State University. The data they gave us was acquired through a computer simulated �y-by past a CAD
model of a backhoe.

Figure 7.22

The data we received from OSU was in digital format, meaning the analog mixing and low pass �ltering
was already completed and we received digitized versions of Cθ(t). This function was shown to be equivalent
to Pθ(U), the Fourier transform of our projection slices pθ(u). The matlab �le that contained this information
was a 512x1541 matrix iq_lin, a vector of various Pθ signals for di�erent values of θ, the viewing angle.
There were 1541 di�erent viewing angles, listed in az_lin, that stepped by 1/14� for each element and
varied from -10� to 100�, a median viewing angle of 45�. We also received a vector of length 512 called
f that contained the microwave frequencies (7-13 GHz) that were transmitted and received. By using the
wideband approximation, we made the transformation from time frequency to spatial frequency via

R ≈ 2ω/c = (4π/c) f
where R is the radial spatial frequency and f is the microwave frequency content. By the projection slice

theorem, we have that the various Pθ are arranged radially in a polar grid along the various angles θ. We
then get that our data lies on a domain
−10 ◦ ≤ θ ≤ 100 ◦

R ∈ ∆R = [(4π/c) fmin, (4π/c) fmax]

5This content is available online at <http://cnx.org/content/m15659/1.1/>.
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Figure 7.23

7.5.2 Processing of SAR Data

Knowing that our data is the Fourier transform of our image, after the proper preparation we want to take
the inverse Fourier transform. To do this simply and e�ciently (we don't want Matlab running for hours!)
we linearly interpolate the data to a Cartesian grid. This is done in our Matlab function sar_lin (code
found in appendix). The idea is to �nd an inscribed rectangular grid inside our polar data. We chose to
use the square centered at 45� inscribed in our ribbon. To interpolate we made a Cartesian grid at this
location and computed the polar representation of each point in order to �nd its 4 nearest polar neighbors.
Once those neighbors were found, the Cartesian point's value was determined by linearly interpolating in
the R-direction for the two θ values and then linearly interpolating in the θ-direction. The end result of our
program's running of this is shown below.



100 CHAPTER 7. TOMOGRAPHIC PROCESSING OF SPOTLIGHT-MODE SAR

Figure 7.24

After linearly interpolating each point in the Cartesian grid we have formed, we now have our data in a
form that allows us to take the 2-d inverse DFT by the fast Fourier transform method. This is what saved
us computation time (program ran in about 15 seconds) and is the reason we interpolated to Cartesian
coordinates to begin with. Below is the image after taking the inverse Fourier transform.

Figure 7.25

7.6 Conclusions and Future Work6

7.6.1 Conclusions

Our project shows that an image can be extracted from scattering coe�cients obtained from SAR techniques.
One need only apply some digital signal processing techniques, such as the polar to Cartesian interpolation

6This content is available online at <http://cnx.org/content/m15660/1.1/>.
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of our data. SAR has many bene�ts and real world applications. For example, the microwave radiation used
in SAR penetrates cloud cover. This fact has been used to image Venus' surface, providing stunning visuals
otherwise unavailable. Another bene�t is that SAR does not require the construction of a large antenna as
the motion of the detector creates an arti�cial aperture.

7.6.2 Future Work

One negative aspect of our data is that the range of frequencies represented is very narrow. That is, the
interpolated grid we chose focuses on a small range of frequencies relative to the amount of data that we
received to work with. One potential �x for this is to do multiple interpolations of multiple Cartesian grids,
ensuring no overlap, and superimpose the images that result. As long as the relative location of the grids is
taken into account, then by linearity, we should be able to acquire a more detailed image by superimposing
the images. One might imagine, for example, that we could superimpose the grids shown below.

Figure 7.26
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Another possibility is to forego the interpolation, which restricts the amount of data that we can use,
and instead we can work in polar coordinates. This would allow us to use all of our data, cutting out
nothing. The downside to this is that there is no fast Fourier transform method for polar coordinates, so
the computational complexity increases the run time to be on the order of hours.

7.7 Appendix and References7

7.7.1 Appendix

7.7.1.1 MATLAB Function for Processing SAR Data

function img = sar_lin(f,az_lin,iq_lin)

% INITIALIZATION

R=4*pi*f/3e8;% Transformation of Time Freqeuncy to Spatial Frequency

A=pi/180*az_lin;% Transformation of Angle in degree to radians

for j=1:147

A(j)=A(j)-2*pi;% Adjustment so that all angular values are between 0 and pi

end

% Initialization of Cartesian Grid

X=zeros(1,175);

Y=zeros(175,1);

for j=1:175

X(j)=208+(j-1);

Y(j)=208+(j-1);

end

val=zeros(175);% Initialize the matrix of values in the cartesian grid.

% INTERPOLATOR

for j=1:175

j % Update on how far we are.

for k=1:175

r=sqrt(X(j)^2+Y(k)^2);

a=atan(Y(k)/X(k));

7This content is available online at <http://cnx.org/content/m15665/1.1/>.
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if (r>R(1) & r<R(512))

% Data index of cartesian point

J=ceil((r-R(1))*511/(R(512)-R(1)));

K=ceil((a-A(1))*1540/(A(1541)-A(1)));

% Linearly interpolate the cartesian point with its 4 nearest neighbor polar data

points.

% Interpolate in R

v0 = 1/(R(J+1)-R(J)) * ( iq_lin(J,K)*(R(J+1)-r) + iq_lin(J+1,K)*(r-R(J)) );

v1 = 1/(R(J+1)-R(J)) * ( iq_lin(J,K+1)*(R(J+1)-r) + iq_lin(J+1,K+1)*(r-R(J)) );

% Interpolate in THETA

val(j,k) = 1/(A(K+1)-A(K)) * ( v0*(A(K+1)-a) + v1*(a-A(K)) );

end

end

end

% Plot the interpolated values

figure(1)

imagesc(abs(val));

% Take the 2d inverse DFT to get the image

img = ifft2(val);

% Plot the image

figure(2)

imagesc(abs(img));
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Chapter 8

Laugh Track Suppression

8.1 Introduction1

This series of modules describes the design, implementation, and analysis of a real-time laugh track removal
system. We �rst give an analysis of the characteristics of a laugh track in both the frequency and time
domain, as can be found in the module Anatomy of a Laugh Track (Section 8.2). We then discuss methods
for detecting laugh tracks. The primary method can be found in the module Primary Detection Methods
for Laugh Tracks (Section 8.3). Another method with which we experimented can be found in the module
Secondary Detection Methods for Laugh Tracks (Section 8.4). We conclude with a discussion of the imple-
mentation of the real-time component. This can be found in the module DirectShow Filter Design for Laugh
Track Removal (Section 8.5). A summary can be found in the Conclusion (Section 8.6)

8.2 Anatomy of a Laugh Track2

8.2.1 Introduction

A laugh track is a commonly heard part of sitcoms and other comedy shows found on television since the
early 1950s. A laugh track can be de�ned as a prerecorded superposition of samples of people laughing mixed
into a television show to "enhance" it. A single laugh track can be composed of a variety of male laughter
and female laughter. Often individual, distinct laughs are added in at the end to make laugh tracks sound
like the laughter of a live audience instead of simply something generated from prerecorded samples. All of
this makes it very di�cult to detect a laugh track based on relatively simple heuristics.

8.2.2 Frequency Analysis

Looking at the Discrete Fourier Transforms of a laugh track(Fig. 1) and a two minute sample of a television
show(Fig. 2), we notice some characteristics of the laugh track such as the slightly larger spike in one of
the mid-range frequencies, which is di�cult to detect, there is not much di�erence in the spectrum in the
two signals. The spikes we see are also not characteristic of every laugh track, so it would be di�cult to
create a method of detecting laugh tracks solely by looking in the frequency domain. Factoring in variability
such as the dominance of male or female voices in the individual laugh track as well as varying lengths and
intensities of a laugh, the problem becomes even more di�cult when attempting detection using DFTs and
a bandpass �ltering scheme.

1This content is available online at <http://cnx.org/content/m15635/1.5/>.
2This content is available online at <http://cnx.org/content/m15644/1.3/>.
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TV Show Sample

Figure 8.1

Laugh Track Sample

Figure 8.2

8.2.3 Time Analysis

It is much easier to look for a laugh track in the time domain because the envelope that is characteristic of
a laugh track as can be seen in the �gure below is much more prominent than the spikes that we see in the
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DFT of the two signals. This envelope follows the magnitude of a normal laugh track. After a joke, people
abruptly start laughing and then the laughter slowly dies down. This is found to be the case in almost every
single laugh track instance found in the TV shows that we looked at. Even if a laugh track is short, we can
see the same envelope, just compressed more so than in the example. If a laugh track is quieter or louder, we
will still be able to see the envelope, though this makes detection based on height thresholds more di�cult
as regular speech may look very similar to our envelope when a laugh track is shorter and quieter.

Laugh Track in the Time Domain

Figure 8.3: A laugh track in the time domain, with the characteristic envelope drawn in red on the
original waveform.

8.2.4 Conclusion

Other approaches at detecting laugh tracks were also considered, but envelope detection in the time domain
proved to be the most e�ective manner of detecting laugh tracks. Matched �ltering and looking for distinctive
characteristics in the frequency domain proved to be fruitless. The envelope in the �gure above is quite
distinctive and relatively easy to detect, even with a fairly simple algorithm, so this approach was used in
our detection and removal scheme.

8.3 Primary Detection Methods for Laugh Tracks3

8.3.1 Introduction

Based on the distinct time-domain characteristics of a laugh track, it is possible to use a simple method to
detect such sounds. Our primary detection method uses the envelope of the input signal to �nd laughs.

3This content is available online at <http://cnx.org/content/m15642/1.2/>.
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8.3.2 Finding the Envelope

8.3.2.1 Method 1

We used two methods of �nding and smoothing the envelope of the input signal. In the �rst method, the
magnitude of the input signal is fed into a low pass �lter and then squared to obtain the envelope. The �lter
is a 1000-point �r, linear phase �lter generated by MATLAB. The method is simple and easy to implement,
but not very e�cient.

8.3.2.2 Method 2

Another method of �nding the envelope of a signal is by using the Hilbert Transform. The Hilbert Transform
shifts all the positive frequencies in a signal forward by pi/2 and all the negative frequencies backward by
the same amount. The envelope may then be calculated by taking the square root of the sum of the squares
of the Hilbert transform and the original signal. The Hilbert Transform is calculated by taking the FFT of
the input signal, multiplying the positive frequencies by j and the negative frequencies by �j, and taking the
inverse FFT. As in the �rst method, the envelope needs to be smoothed for further processing by low-pass
�ltering.

8.3.3 Locating Laughs

Once the envelope of the signal is found, laughs are detected by a threshold system. The location routine
iterates through the samples of the envelope looking for values above a given amplitude threshold. Once this
threshold is reached, the routine continues, tracking how long the envelope stays above a second amplitude
threshold (lower than the �rst). If this width reaches a given threshold, the part of the signal from where
its envelope rises above the �rst amplitude threshold to the part where its envelope drops below the second
amplitude threshold is �agged as a laugh.

Figure 8.4: Original signal with laughs highlighted



109

Figure 8.5: Envelope of signal with amplitude thresholds

Figure 8.6: Regions of input signal �agged as laughs
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Figure 8.7: Signal with laughs removed

8.3.4 Results

Our primary detection method gave us good results for the sound clips we used (sitcoms with audio tracks
consisting mostly of dialogue and laughs). It does however have a few shortcomings. This method has trouble
detecting laughs of low volume, and tends to cut out other sounds that overlap with the laughs. Additionally,
it has trouble �nding precisely the beginning and end of laughs, due to variations in the envelope shapes
of di�erent laughs. We had very little trouble with false positives in the clips we tested, however more
sophisticated methods would be required to distinguish between laughter and other sounds with similar
time-domain characteristics (such as applause).

8.4 Secondary Detection Methods for Laugh Tracks4

8.4.1 Introduction

In this module, some of the more exotic detection methods considered for our laugh track removal system
are discussed. In particular, a detection method using polynomial curve �tting in conjunction with support
vector machines.

4This content is available online at <http://cnx.org/content/m15637/1.2/>.



111

8.4.2 Support Vector Machine (SVM)/Polynomial Curve Fitting

As previously discussed in the Anatomy of a Laugh Track (Section 8.2) module, laugh tracks have a char-
acteristic shape in the time domain. In order to take advantage of this fact, one detection method we
considered involved using support vector machines and polynomial curve �tting to detect laughs. Given the
unique shape of a laugh track, one ought to be able to consistently �t the same polynomial curve onto a
signal representing a laugh. This curve can then be completely characterized in terms of its coe�cients. By
then building a database of positive and negative examples of polynomial coe�cients, and training a support
vector machine on this data, we ought to then be able to produce a fast detection scheme for laughs.

8.4.3 What are support vector machines?

Support vector machines are a relatively new technique for partitioning high dimensional datasets into
classes. At the simplest level, a SVM divides a high dimensional dataset using hyper-planes. These divisions
can then be completely characterized in terms of the data points � called support vectors � that are closest
to the hyper-plane of the division. In this way an enormously complex dataset can be partitioned, and
more importantly, these partitions are easy to describe. Once a training dataset is partitioned, new points
can be classi�ed by checking into which partition the point falls. Further complexity can be introduced by
switching from hyper-planes to other curves for partitioning a dataset. Common curves include polynomials,
sigmoids, and radial basis functions. More information about support vector machines can be found at
www.kernel-machines.org5 .

8.4.4 Polynomial Curve Fitting

Not to be confused with the polynomial curve potentially used by a SVM, we experimented using polynomial
curve �tting to characterize the shape of a laugh track. After experimenting with a handful of potential
curves, we chose the degree 9 polynomial as the best curve to use for �tting based on the low error, quick
�tting, and high dimension. The high dimension is important, because the power of SVMs becomes most
readily apparent in high dimensional space. In this case, our data consisted of 11 dimensional vectors: 9
dimensions from the coe�cients of a �tted polynomial plus the duration of the audio segment in question,
and the error of the �tted curve.

8.4.5 Implementation

In order to detect laugh tracks, we �rst divided the audio stream into smaller segments which we then approx-
imated with a polynomial curve and stored into a database for use in a SVM training regime. Observation
revealed that the shortest laugh track is approximately 1 second long. To generate our dataset, we considered
audio segments spaced slightly apart (0.25 to 0.33 seconds) of at least 1 second in duration. Having �t a
curve to the 1 second segment, we then examined a segment slightly longer. If the error of approximation
of the longer segment was better, then we considered an even long segment, until an optimal segment was
found. The coe�cients of the polynomial which was �t, the duration, the error, and the classi�cation (laugh,
not laugh), were then stored into a dataset.

Having built a su�ciently large training dataset, we then trained a support vector machine (LIB-
SVM [∼cjlin/libsvm/?]). Experimentation with parameters showed that the radial basis kernel produced
the best results. New audio segments were then classi�ed according to the partitions generated.

8.4.6 Results and Analysis

Overall, the results of this detection method were reasonable, although not ideal. In particular, a 70%
detection rate was achieved. Further analysis revealed several factors limited the e�ectiveness of this method.
First, the large number of negative to positive examples heavily skewed the dataset. Experiments showed that

5http://www.kernel-machines.org/
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results are exceedingly sensitive to parameter selection due to this fact. Second, a large amount of human
error existed in the dataset. The training dataset had to be constructed by hand, and variability as to what
did and did not qualify as a laugh introduced error. Finally, it is questionable as to how suitable polynomial
coe�cients are for classifying shape. Coe�cient values do not necessarily encode shape characteristics such as
duration, slope, and amplitude directly, and as such classi�cation along these lines may be di�cult. In sum,
this detection method was reasonable, but produced results that were worse than other, simpler methods.

8.5 DirectShow Filter Design for Laugh Track Removal6

8.5.1 Real Time Implementation for Laugh Track Removal

8.5.1.1 Overview

In order to make best use of the Laugh Track Assassinator's algorithm, we need to be able to run it
in real time with as wide a range of source materials as possible. To accomplish this lofty goal, we have
implemented a DirectShow �lter. DirectShow is Microsoft's technology for manipulating media on the
Windows platform. Nearly all media players, such as Windows Media Player, Media Player Classic, and
various DVD program, use DirectShow to render video and audio. By writing a DirectShow �lter, our
algorithm can be used to manipulate nearly any type of media, be it a DVD, an encoded movie, or a live
TV video stream.

8.5.1.2 Direct Show

All DirectShow operations are based on �lters. Filters describe the translation of data from one source or
type to another. DirectShow automatically �nds what �lters are needed to play a particular media �le. The
generated graph can be visualized in Microsoft's GraphEdit program. Here is what the generated graph
looks like for a source video �le with the Laugh Track Assassinator �lter inserted:

Filter Graph

Figure 8.8: This is the �lter graph generated by Microsoft DirectShow with the Laugh Track Assassi-
nator �lter already inserted.

DirectShow has generated an AVI splitter to transform the �le data into an audio and video stream.
The video is then sent to the �dshow Video Decoder �lter, which is then sent to the Video Renderer.
The audio stream is sent from the �le, through the MP3 Decoder, an AC3Filter, the Laugh Track
Assassinator, and �nally rendered to the speakers through the DirectSound �lter.

To create the DirectShow-compatible �lter we used Microsoft's Windows SDK, and rewrote the audio
transform �lter example. (The Windows SDK can be downloaded from Microsoft here7 ). We then coded
the two main steps in our algorithm: a low pass �lter and a threshold detection scheme.

6This content is available online at <http://cnx.org/content/m15641/1.5/>.
7http://www.microsoft.com/downloads/details.aspx?familyid=4377F86D-C913-4B5C-B87E-EF72E5B4E065&displaylang=en
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8.5.1.3 Low Pass Filter

In order to �nd a balance between frequency resolution and speed, we chose a 1000-point �nite impulse
response low pass �lter. We had Matlab generate the one thousand �lter weights, and then we converted
them into a C++ format suitable for DirectShow. Since the �lter requires 1000 previous samples to calculate
one low pass �ltered sample, we created a 1000 point circular bu�er to hold the last 1000 samples of the
input at any given time.

8.5.1.4 Finite State Machine

The �nal step in our removal algorithm requires a threshold detection in both amplitude (vertical) and time
(horizontal). The requirement for a time-based threshold meant we had to delay the input signal by at
least the width of the horizontal threshold. In the end we decided on a 1 second delay to allow for the
width threshold of 0.8 seconds, as well as making it easier to resynchronize the video signal with the audio
afterward.

The actual threshold test are performed by means of a �nite state machine. Here is an overview of the
FSM:

State Diagram

Figure 8.9: This is the state diagram for the real time Laugh Track Assassinator �lter.

As soon as the amplitude threshold for the low-passed signal is met, the �lter enters the Possible
Laugh state. From here, if the signal falls below the falling amplitude threshold, the machine returns to
the Initial State. If the width threshold is reached, then the machine enters the Laugh Detected state,
and continually suppress the output audio. During this transition, the last second of audio is also eliminated
from the output bu�er. Since the �lter is delayed by at least 1 second, as long as the width threshold is
less than this value, the output will re�ect the proper changes. Finally, as soon as the falling amplitude
threshold is passed, the machine again returns to its Initial State.

8.5.1.5 Optimization

The scheme described above generates a working laugh track removal �lter. One big problem, however, is
speed. Though the above system works on a high-end computer for a real time video signal, any moderate
computer will not be able to run it. The chief problem is in the low pass �ltering phase.

The low pass �lter takes 1000 samples to calculate 1 sample of the low passed signal. This means there
are roughly 2000 operations (1000 additions and 1000 multiplications) per sample. With a standard sampling
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rate of 44.1 kHz, that means the �lter uses 44.1 million operations per second. This is generally unacceptable
when accounting for the overhead in the �ltering process.

To speed the �lter up, we must �rst realize that we do not need an accurate low pass signal value for
every sample. In fact, if we took every 1000 samples of the low pass signal, we would only need to perform
2 operations per sample to get the same results. Using this method gives us a speed increase of 1000x by
e�ectively sampling the low pass �lter output. Generally, strictly sampling a signal like this produces rather
severe aliasing. But, since the signal is already low-pass-�ltered, the signal has already gone anti-aliasing
processing, and the optimization works out.

8.5.1.6 Download and Installation

The Laugh Track Assassinator �lter source code can be downloaded here8. The Hamming �lter we used
can be downloaded here9. This is not a complete source listing, but rather the function that handles the
actual laughtrack �ltering. This code is suitable to be ported to any system that operates on PCM audio
streams.

The Laugh Track Assassinator �lter can be downloaded here10. Since this is implemented as a
DirectShow �lter, this will only run on Windows-based computers.

To install, follow these steps:

• Copy the LaughTrackAssassinator.dll �le into your C:\Windows\System32 folder.
• Open a command prompt window (Start->Run->�cmd�).
• Type �regsvr32 LaughTrackAssassinator.dll� and press enter in the command box.
• The Laugh Track Assassinator is now registered with DirectShow.

Now that the �lter is registered, most any DirectShow based media player should be able to use the �lter on
any media. We tested the �lter with Media Player Classic, a free media player that can be downloaded
here11 . Here are the steps to get it to work:

• Open Media Player Classic.
• Go to View->Options->External Filters.
• Select �Add �lter...�.
• Select the Laugh Track Assassinator from the list of available �lters.
• Select the newly added �lter, and select the �Prefer� radio button.

You can now view any media that has audio and it will automatically run the Laugh Track Assassinator.
In order to get video back in sync with the audio, you can set the audio delay to 500ms in Media Player
Classic by using the + and � keys on the numpad of your keyboard.

8.6 Conclusion12

8See the �le at <http://cnx.org/content/m15641/latest/redist.cpp>
9See the �le at <http://cnx.org/content/m15641/latest/lp�lter.cpp>

10See the �le at <http://cnx.org/content/m15641/latest/LaughTrackAssassinator.dll>
11http://sourceforge.net/project/show�les.php?group_id=82303&package_id=84358
12This content is available online at <http://cnx.org/content/m15643/1.2/>.
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8.6.1 Summary

We have looked at the various ways that a laugh track can be detected and how to implement a laugh track
detection algorithm as a Directshow �lter. The most e�ective way of detecting a laugh track appears to be
looking at the waveform in the time domain instead of in the frequency domain. The algorithm to use for
envelope detection can be changed and become increasingly more sophisticated as we attempt to catch and
process correctly some of the more di�cult cases.

8.6.2 Detection Techniques

There are multiple ways to generate the envelope we use for detecting a laugh track. The simplest method
is to square the signal and then low pass �lter it, which gives quite good results. An even better algorithm
involves using a Hilbert transform to generate the envelope, but this was too computationally expensive to
implement in our Directshow �lter.

We have also brie�y discussed some of the ways to detect the envelope once we have generated a signal to
pick out laughs from. On the simpler range of the spectrum, we can have a width and height thresholds for
the laugh portion of the signal's envelope. On the other hand, we could also �t laugh tracks to polynomial
curves and then use a Support Vector Machine to detect laugh tracks based on a database of positive and
negative matches for laugh tracks.

In the end, we found that detecting and removing laugh tracks from an audio signal is much more
complicated than it may appear on the surface. As a human, it is very easy to spot a laugh in the signal,
but to create a system that can do this automatically is more complicated. Another interesting aspect of the
system is how to remove the laugh tracks, which can be complicated because people often talk over the laugh
tracks in our signals. To remove only the laugh track while leaving in the human voice signals is something
that needs further exploration.
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