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Chapter 1

Multirate Signal Processing

1.1 Fundamentals of Multirate Signal Processing

1.1.1 Upsampling1

1.1.1.1 Upsampling

The operation of upsampling by factor L ∈ N describes the insertion of L− 1 zeros between every sample
of the input signal. This is denoted by "↑ (L)" in block diagrams, as in Figure 1.1.

Figure 1.1

Formally, upsampling can be expressed in the time domain as

y [n] =

 x
[
n
L

]
if n

L ∈ Z

0 otherwise

In the z-domain,

Y (z) =
∑
n

y [n] z−n =
∑
n, nL∈Z

x
[n
L

]
z−n =

∑
k

x [k] z(−k)L = X
(
zL
)

and substituting z = ejω for the DTFT,

Y
(
ejω
)

= X
(
ejωL

)
(1.1)

1This content is available online at <http://cnx.org/content/m10403/2.15/>.
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2 CHAPTER 1. MULTIRATE SIGNAL PROCESSING

As shown in Figure 1.2, upsampling compresses the DTFT by a factor of L along with the ω axis.

Figure 1.2

1.1.2 Downsampling2

The operation of downsampling by factor M ∈ N describes the process of keeping every M th sample and
discarding the rest. This is denoted by " ↓ (M)" in block diagrams, as in Figure 1.3.

Figure 1.3

Formally, downsampling can be written as

y [n] = x [nM ]

2This content is available online at <http://cnx.org/content/m10441/2.12/>.
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In the z domain,

Y (z) =
∑
n y [n] z−n

=
∑
n x [nM ] z−n

=
∑
m x [m]

(
1
M

∑M−1
p=0 ej

2π
M pm

)
z
−m
M

(1.2)

where 1
M

∑M−1
p=0 ej

2π
M pm =

 1 if m is a multiple ofM

0 otherwise

Y (z) = 1
M

∑M−1
p=0

∑
m x [m]

(
e−(j 2π

M p)z
1
M

)−m
= 1

M

∑M−1
p=0 X

(
e−(j 2π

M p)z
1
M

) (1.3)

Translating to the frequency domain,

Y
(
ejω
)

=
1
M

M−1∑
p=0

X
(
ej

ω−2πp
M

)
(1.4)

As shown in Figure 1.4, downsampling expands each 2π -periodic repetition of X
(
ejω
)
by a factor of

M along the ω axis, and reduces the gain by a factor of M . If x [m] is not bandlimited to π
M , aliasing may

result from spectral overlap.

note: When performing a frequency-domain analysis of systems with up/downsamplers, it is
strongly recommended to carry out the analysis in the z-domain until the last step, as done above.
Working directly in the ejω-domain can easily lead to errors.

Figure 1.4
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1.1.3 Interpolation3

1.1.3.1 Interpolation

Interpolation is the process of upsampling and �ltering a signal to increase its e�ective sampling rate. To be
more speci�c, say that x [m] is an (unaliased) T -sampled version of xc (t) and v [n] is an L-upsampled version
version of x [m]. If we �lter v [n] with an ideal πL -bandwidth lowpass �lter (with DC gain L) to obtain y [n],
then y [n] will be a T

L -sampled version of xc (t). This process is illustrated in Figure 1.5.

Figure 1.5

We justify our claims about interpolation using frequency-domain arguments. From the sampling theo-
rem, we know that T - sampling xc (t) to create x [n] yields

X
(
ejω
)

=
1
T

∑
k

Xc

(
j
ω − 2πk

T

)
(1.5)

After upsampling by factor L, (1.5) implies

V
(
ejω
)

=
1
T

∑
k

Xc

(
j
ωL− 2πk

T

)
=

1
T

∑
k

Xc

(
j
ω − 2π

L k
T
L

)

Lowpass �ltering with cuto� π
L and gain L yields

Y
(
ejω
)

=
L

T

∑
k
L∈Z

Xc

(
j
ω − 2π

L k
T
L

)
=
L

T

∑
l

Xc

(
j
ω − 2πl

T
L

)

since the spectral copies with indices other than k = lL (for l ∈ Z) are removed. Clearly, this process yields
a T
L -shaped version of xc (t). Figure 1.6 illustrates these frequency-domain arguments for L = 2.

3This content is available online at <http://cnx.org/content/m10444/2.14/>.
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Figure 1.6

1.1.4 Application of Interpolation - Oversampling in CD Players4

1.1.4.1 Application of Interpolation- Oversampling in CD Players

The digital audio signal on a CD is a 44.1kHz sampled representation of a continuous signal with bandwidth
20kHz. With a standard ZOH-DAC, the analog reconstruction �lter would have passband edge at 20kHz and
stopband edge at 24.1kHz. (See Figure 1.7) With such a narrow transition band, this would be a di�cult
(and expensive) �lter to build.

Figure 1.7

If digital interpolation is used prior to reconstruction, the e�ective sampling rate can be increased and the
reconstruction �lter's transition band can be made much wider, resulting in a much simpler (and cheaper)
analog �lter. Figure 1.8 illustrates the case of interpolation by 4. The reconstruction �lter has passband
edge at 20kHz and stopband edge at 156.4kHz, resulting in a much wider transition band and therefore an
easier �lter design.

4This content is available online at <http://cnx.org/content/m11006/2.3/>.
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Figure 1.8

1.1.5 Decimation5

Decimation is the process of �ltering and downsampling a signal to decrease its e�ective sampling rate, as
illustrated in Figure 1.9. The �ltering is employed to prevent aliasing that might otherwise result from
downsampling.

Figure 1.9

To be more speci�c, say that
xc (t) = xl (t) + xb (t)

where xl (t) is a lowpass component bandlimited to 1
2MT Hz and xb (t) is a bandpass component with energy

between 1
2MT and 1

2T Hz. If sampling xc (t) with interval T yields an unaliased discrete representation x [m],
then decimating x [m] by a factor M will yield y [n], an unaliased MT -sampled representation of lowpass
component xl (t).

We o�er the following justi�cation of the previously described decimation procedure. From the sampling
theorem, we have

X
(
ejω
)

=
1
T

∑
k

Xl

(
j
ω − 2πk

T

)
+

1
T

∑
k

Xb

(
j
ω − 2πk

T

)
The bandpass component Xb (jΩ) is the removed by π

M -lowpass �ltering, giving

V
(
ejω
)

=
1
T

∑
k

Xl

(
j
ω − 2πk

T

)
5This content is available online at <http://cnx.org/content/m10445/2.11/>.
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Finally, downsampling yields

Y
(
ejω
)

= 1
MT

∑M−1
p=0

∑
kXl

(
j
ω−2πp
M −2πk

T

)
= 1

MT

∑M−1
p=0

∑
kXl

(
j ω−(2π)(kM+p)

MT

)
= 1

MT

∑
lXl

(
j ω−2πl
MT

) (1.6)

which is clearly a MT -sampled version of xl (t). A frequency-domain illustration for M = 2 appears in
Figure 1.10.

Figure 1.10

1.1.6 Resampling with Rational Factor6

Interpolation by L and decimation by M can be combined to change the e�ective sampling rate of a signal
by the rational factor L

M . This process is called resampling or sample-rate conversion. Rather than
cascading an anti-imaging �lter for interpolation with an anti-aliasing �lter for decimation, we implement
one �lter with the minimum of the two cuto�s

[
π
L ,

π
M

]
and the multiplication of the two DC gains (L and

1), as illustrated in Figure 1.11.

6This content is available online at <http://cnx.org/content/m10448/2.11/>.
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Figure 1.11

1.1.7 Digital Filter Design for Interpolation and Decimation7

First we treat �lter design for interpolation. Consider an input signal x [n] that is ω0-bandlimited in the
DTFT domain. If we upsample by factor L to get v [m], the desired portion of V

(
ejω
)
is the spectrum in[−π

L , πL
)
, while the undesired portion is the remainder of [−π, π). Noting from Figure 1.12 that V

(
ejω
)
has

zero energy in the regions [
2kπ + ω0

L
,

2 (k + 1)π − ω0

L

)
, k ∈ Z (1.7)

the anti-imaging �lter can be designed with transition bands in these regions (rather than passbands or
stopbands). For a given number of taps, the additional degrees of freedom o�ered by these transition bands
allows for better responses in the passbands and stopbands. The resulting �lter design speci�cations are
shown in the bottom subplot below (Figure 1.12).

7This content is available online at <http://cnx.org/content/m10870/2.6/>.
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Figure 1.12

Next we treat �lter design for decimation. Say that the desired spectral component of the input signal
is bandlimited to ω0

M < π
M and we have decided to downsample by M . The goal is to minimally distort the

input spectrum over
[−ω0
M , ω0

M

)
, i.e., the post-decimation spectrum over [−ω0, ω0). Thus, we must not allow

any aliased signals to enter [−ω0, ω0). To allow for extra degrees of freedom in the �lter design, we do allow
aliasing to enter the post-decimation spectrum outside of [−ω0, ω0) within [−π, π). Since the input spectral
regions which alias outside of [−ω0, ω0) are given by[

2kπ + ω0

L
,

2 (k + 1)π − ω0

L

)
, k ∈ Z (1.8)

(as shown in Figure 1.13), we can treat these regions as transition bands in the �lter design. The resulting
�lter design speci�cations are illustrated in the middle subplot (Figure 1.13).
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Figure 1.13

1.1.8 Noble Identities8

1.1.8.1

The Noble identities (illustrated in Figure 1.14 and Figure 1.15) describe when it is possible to reverse the
order of upsampling/downsampling and �ltering. We prove the Noble identities showing the equivalence of
each pair of block diagrams.

The Noble identity for interpolation can be depicted as in Figure 1.14:

Figure 1.14

For the left side of the diagram, we have

Y (z) = H
(
zL
)
V1 (z)

8This content is available online at <http://cnx.org/content/m10432/2.12/>.
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where V1 (z) = X
(
zL
)

Y (z) = H
(
zL
)
X
(
zL
)

while for the right side,
Y (z) = V2

(
zL
)

where V2 (z) = H (z)X (z)
Y (z) = H

(
zL
)
X
(
zL
)

Thus we have established the Noble identity for interpolation.
The Noble identity for decimation can be depicted as in Figure 1.15:

Figure 1.15

For the left side of the preceding diagram, we have

V1 (z) =
1
M

M−1∑
k=0

X
(
e(−j) 2π

M kz
1
M

)

Y (z) = H (z)V1 (z)

= H (z)
(

1
M

∑M−1
k=0 X

(
e(−j) 2π

M kz
1
M

)) (1.9)

while for the right side,

Y (z) =
1
M

M−1∑
k=0

Vz

(
e(−j) 2π

M kz
1
M

)
(1.10)

where V2 (z) = X (z)H
(
zM
)

Y (z) = 1
M

∑M−1
k=0 X

(
e(−j) 2π

M kz
1
M

)
H
(
e(−j) 2π

M kMz
M
M

)
= H (z) 1

M

∑M−1
k=0 X

(
e(−j) 2π

M kz
1
M

) (1.11)

Thus we have established the Noble identity for decimation. Note that the impulse response of H
(
zL
)
is

the L-upsampled impulse response of H (z).

1.1.9 Polyphase Interpolation9

1.1.9.1 Polyphase Interpolation Filter

Recall the standard interpolation procedure illustrated in Figure 1.16.

9This content is available online at <http://cnx.org/content/m10431/2.11/>.
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Figure 1.16

Note that this procedure is computationally ine�cient because the lowpass �lter operates on a sequence
that is mostly composed of zeros. Through the use of the Noble identities, it is possible to rearrange the
preceding block diagram so that operations on zero-valued samples are avoided.

In order to apply the Noble identity for interpolation, we must transform H (z) into its upsampled
polyphase components Hp

(
zL
)
, p = {0, . . . , L− 1}.

H (z) =
∑
nn h [n] z−n

=
∑
kk

∑L−1
p=0 h [kL+ p] z−(kL+p)

(1.12)

via k := bnLc, p := nmodL

H (z) =
L−1∑
p=0

∑
kk

hp [k] z−(kL)z−p (1.13)

via hp [k] := h [kL+ p]

H (z) =
L−1∑
p=0

Hp

(
zL
)
z−p (1.14)

Above, b·c denotes the �oor operator and ·modM the modulo-M operator. Note that the pth polyphase �lter
hp [k] is constructed by downsampling the "master �lter" h [n] at o�set p. Using the unsampled polyphase
components, the Figure 1.16 diagram can be redrawn as in Figure 1.17.
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Figure 1.17

Applying the Noble identity for interpolation to Figure 1.18 yields Figure 1.17. The ladder of upsamplers
and delays on the right below (Figure 1.17) accomplishes a form of parallel-to-serial conversion.
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Figure 1.18

1.1.10 Polyphase Decimation Filter10

1.1.10.1 Polyphase Decimation

Recall the standard decimation method in Figure 1.19.

Figure 1.19

Note that this procedure is computationally ine�cient because it discards the majority of the computed
�lter outputs. Through the use of the Noble identities, it is possible to rearrange Figure 1.19 so that �lter
outputs are not discarded.

10This content is available online at <http://cnx.org/content/m10433/2.12/>.
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In order to apply the Noble identity for decimation, we must transformH (z) into its upsampled polyphase
components Hp

(
zM
)
, p = {0, . . . ,M − 1}, de�ned previously in the context of polyphase interpolation

(Section 1.1.9).

H (z) =
∑
nn h [n] z−n

=
∑
kk

∑M−1
p=0 h [kM + p] z(−(kM))−p

(1.15)

via k := b nM c, p := nmodM

H (z) =
M−1∑
p=0

∑
k

hp [k] z−(kM)z−p (1.16)

via hp [k] := h [kM + p]

H (z) =
M−1∑
p=0

Hp

(
zM
)
z−p (1.17)

Using these unsampled polyphase components, the preceding block diagram can be redrawn as Figure 1.20.

Figure 1.20

Applying the Noble identity for decimation to Figure 1.20 yields Figure 1.21. The ladder of delays and
downsamplers on the left below accomplishes a form of serial-to-parallel conversion.
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Figure 1.21

1.1.11 Computational Savings of Polyphase Interpolation/Decimation11

1.1.11.1 Computational Savings of Polyphase Interpolation/Decimation

Assume that we design FIR LPF H (z) with N taps, requiring N multiplies per output. For standard
decimation by factor M , we have N multiplies per intermediate sample and M intermediate samples per
output, giving NM multiplies per output.

For polyphase decimation, we have N
M multiplies per branch andM branches, giving a total ofN multiplies

per output. The assumption of N
M multiplies per branch follows from the fact that h [n] is downsampled by

M to create each polyphase �lter. Thus, we conclude that the standard implementation requires M times
as many operations as its polyphase counterpart. (For decimation, we count multiples per output, rather
than per input, to avoid confusion, since only every M th input produces an output.)

From this result, it appears that the number of multiplications required by polyphase decimation is
independent of the decimation rate M . However, it should be remembered that the length N of the π

M -
lowpass FIR �lter H (z) will typically be proportional toM . This is suggested, e.g., by the Kaiser FIR-length
approximation formula

N ' −10log (δpδs)− 13
2.324∆ (ω)

where ∆ (ω) in the transition bandwidth in radians, and δp and δs are the passband and stopband ripple levels.
Recall that, to preserve a �xed signal bandwidth, the transition bandwidth ∆ (ω) will be linearly proportional

11This content is available online at <http://cnx.org/content/m11008/2.2/>.
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to the cuto� π
M , so that N will be linearly proportional to M . In summary, polyphase decimation by factor

M requires N multiplies per output, where N is the �lter length, and where N is linearly proportional to
M .

Using similar arguments for polyphase interpolation, we could �nd essentially the same result. Polyphase
interpolation by factor L requires N multiplies per input, where N is the �lter length, and where N is
linearly proportional to the interpolation factor L. (For interpolation we count multiplies per input, rather
than per output, to avoid confusion, since M outputs are generated in parallel.)

1.1.12 A Group-Delay Interpretation of Polyphase Filters12

Previously, polyphase interpolation (Section 1.1.9) and decimation (Section 1.1.10) were derived from the
Noble identities and motivated for reasons of computational e�ciency. Here we present a di�erent interpre-
tation of the (ideal) polyphase �lter.

Assume that H (z) is an ideal lowpass �lter with gain L, cuto� π
L , and constant group delay of d:

H
(
ejω
)

=


Le−(jdω) if ω ∈

[
− π
L ,

π
L

)
0 if ω ∈

[
−π,− π

L

)[
π
L , π

)
Recall that the polyphase �lters are de�ned as

hp [k] = h [kL+ p] , p ∈ {0, . . . , L− 1}

In other words, hp [k] is an advanced (by p samples) and downsampled (by factor L) version of h [n] (see
Figure 1.22).

Figure 1.22

The DTFT of the pth polyphase �lter impulse response is then

Hp (z) =
1
L

L−1∑
l=0

V
(
e(−j) 2π

L lz
1
L

)
(1.18)

where V (z) = H (z) zp

Hp (z) =
1
L

L−1∑
l=0

e(−j) 2π
L lpz

p
LH

(
e(−j) 2π

L lz
1
L

)
(1.19)

12This content is available online at <http://cnx.org/content/m10438/2.12/>.
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Hp

(
ejω
)

= 1
L

∑L−1
l=0 ej

ω−2πl
L pH

(
ej

ω−2πl
L

)
= 1

L

(
ej

ω
LpH

(
ej

ω
L

))
, |ω| ≤ π

= e(−j) d−pL ω , |ω| ≤ π

(1.20)

Thus, the ideal pth polyphase �lter has a constant magnitude response of one and a constant group delay
of d−pL samples. The implication is that if the input to the pth polyphase �lter is the unaliased T -sampled
representation x [n] = xc (nT ), then the output of the �lter would be the unaliased T -sampled representation

yp [n] = xc

((
n− d−p

L

)
T
)
(see Figure 1.23).

Figure 1.23

Figure 1.24 shows the role of polyphase interpolation �lters assume zero-delay (d = 0) processing. Essen-
tially, the pth �lter interpolates the waveform p

L -way between consecutive input samples. The L polyphase
outputs are then interleaved to create the output stream. Assuming that xc (t) is bandlimited to 1

2T Hz,
perfect polyphase �ltering yields a perfectly interpolated output. In practice, we use the casual FIR approx-
imations of the polyphase �lters hp [k] (which which correspond to some casual FIR approximation of the
master �lter h [n]).
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Figure 1.24

1.1.13 Polyphase Resampling with a Rational Factor13

1.1.13.1 Polyphase Resampling with a Rational Factor

Recall that resampling by rational rate L
M can be accomplished through the following three-stage process(see

Figure 1.25).

Figure 1.25

If we implemented the upsampler/LPF pair with a polyphase �lterbank, we would still waste compu-
tations due to eventual downsampling by M . Alternatively, if we implemented the LPF/downsampler pair

13This content is available online at <http://cnx.org/content/m10443/2.9/>.
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with a polyphase �lterbank, we would waste computations by feeding it the (mostly-zeros) upsampler output.
Thus, we need to examine this problem in more detail.

Assume for the moment that we implemented the upsampler/LPF pair with a polyphase �lterbank, giving
the architecture in Figure 1.26.

Figure 1.26

Keeping the "parallel-to-serial" interpretation of the upsampler/delay ladder in mind, the input sequence
to the decimator q [l] has the form as in Figure 1.27

Figure 1.27
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leading to the observation that

q [l] = v<l>L

[
b l
L
c
]

y [m] = q [mM ]

= v<mM>L

[
bmML c

]
=

∑
k h<mM>L [k]x

[
bmML c − k

] (1.21)

Thus, to calculate the resampled output at output indexm, we should calculate only the output of branch
number mMmodL at input index bmML c. No other branch outputs are calculated, so that no computations
are wasted. The resulting structure is depicted in Figure 1.28.

Figure 1.28

An equally-e�cient structure could be obtained if we implemented the LPF/downsampler using the
M -branch polyphase decimator which was fed with the proper sequence of input samples. However, this
structure is not as elegant: rather than computing the output of one particular polyphase branch per output
sample, we would need to add all branch outputs, but where each branch output was calculated using a
particular subset of polyphase taps.

1.1.14 Computational Savings of Polyphase Resampling14

1.1.14.1 Computational Savings of Polyphase Resampling

Recall the standard (non-polyphase) resampler in Figure 1.29.

14This content is available online at <http://cnx.org/content/m11009/2.1/>.
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Figure 1.29

For simplicity, assume that L > M . Since the length of an FIR �lter is inversely proportional to the
transition bandwidth (recalling Kaiser's formula), and the transition bandwidth is directionally proportional
to the cuto� frequency, we model the lowpass �lter length as N = αL, where α is a constant that determines
the �lter's (and thus the resampler's) performance (independent of L andM). To compute one output point,
we require M �lter outputs, each requiring N = αL multiplies, giving a total of αLM multiplies per output.

In the polyphase implementation, calculation of one output point requires the computation of only one
polyphase �lter output. With N = αL master �lter taps and L branches, the polyphase �lter length is α, so
that only α multiplies are required per output. Thus, the polyphase implementation saves a factor of LM
multiplies over the standard implementation!

1.1.15 CD to DAT Conversion15

1.1.15.1 Example: CD to DAT rate conversion

Digital audio signals stored on compact digital discs (CDs) are sampled at 44.1kHz, while those stored on
digital audio tapes (DATs) are sampled at 48kHz. Conversion from CD to DAT requires an exchange rate
of

Q =
48000
44100

=
160
147

Assuming that the audio signal is bandlimited to 20kHz, we design our master lowpass �lter with transition
bands [(

2k +
20

22.05

)
π

160
,

(
2 (k + 1)− 20

22.05

)
π

160

)
, k ∈ Z

Keeping the passband and stopband ripple levels below −96dB requires a �lter with a length N ' 10000,
implying that the standard polyphase resampler will require about NM = 1.5million multiplication per
output, or 70billion multiplications per second! If the equivalent polyphase implementation is used instead,
we require only N

L ' 62 multiplies per output, or 3million multiplications per second.

1.1.16 Polyphase Resampling with Arbitrary (Non-Rational or Time-Varying)
Rate16

Though we have derived a computationally e�cient polyphase resampler for rational factors Q = L
M , the

structure will not be practical to implement for large L, such as might occur when the desired resampling
factor Q is not well approximated by a ratio of two small integers. Furthermore, we may encounter applica-
tions in which Q is chosen on-the-�y, so that the number L of polyphase branches cannot be chosen a priori.
Fortunately, a slight modi�cation of our exisiting structure will allow us to handle both of these cases.

15This content is available online at <http://cnx.org/content/m11010/2.2/>.
16This content is available online at <http://cnx.org/content/m10456/2.9/>.
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Say that our goal is to produce the Q
T -rate samples xc

(
mQ
T

)
given the 1

T -rate samples xc (nT ), where we

assume that xc (t) is bandlimited to 1
2T and Q can be any positive real number. Consider, for a moment, the

outputs of polyphase �lters in an ideal zero-delay L-branch polyphase interpolation bank (as in Figure 1.30).

Figure 1.30

We know that, at time index n, the pth and (p+ 1)th �lter outputs equal

xc

((
n+

p

L

)
T
)

xc

((
n+

p+ 1
L

)
T

)
respectively. Because the highest frequency in xc (t) is limited to 1

2T , the waveform cannot not change
abruptly, and therefore cannot change signi�cantly over a very small time interval. In fact, when L is large,
the waveform is nearly linear in the time interval between t =

(
n+ p

L

)
T and t =

(
n+ p+1

L

)
T , so that, for

any α ∈ [0, 1),

xc

((
n+

p+ α

L

)
T

)
= xc

(
1
(
n+

p

L

)
T + α

(
n+

p+ 1
L

)
T

)

xc

((
n+

p+ α

L

)
T

)
' 1xc

((
n+

p

L

)
T
)

+ αxc

((
n+

p+ 1
L

)
T

)
This suggests that we can closely approximate xc (t) at any t ∈ R by linearly interpolating adjacent-branch
outputs of a polyphase �lterbank with a large enough L. The details are worked out below.

Assume an ideal L-branch polyphase �lterbank with d-delay master �lter and T -sampled input, giving

access to xc

((
n+ p−d

L

)
T
)
for n ∈ Z and p ∈ {0, . . . , L− 1}. By linearly interpolating branch outputs p

and p + 1 at time n, we are able to closely approximate xc

((
n+ p−d+α

L

)
T
)
for any α ∈ [0, 1). We would

like to approximate y [m] = xc

(
m T
Q − d

T
L

)
in this manner - note the inclusion of the master �lter delay. So,
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for a particular m, Q, d, and L, we would like to �nd n ∈ Z, p ∈ {0, . . . , L− 1}, and α ∈ [0, 1) such that(
n+

p− d+ α

L

)
T = m

T

Q
− dT

L
(1.22)

nL+ p+ α = mL
Q

= m
QL

=
(
bmQ c+ m

Qmod1
)
L

= bmQ cL+ bmQmod1Lc+ m
Qmod1Lmod1

= bmQ cL+ bmQmod1Lc+ mL
Q mod1

(1.23)

where bmQ cL ∈ Z, bmQmod1Lc ∈ {0, . . . , L− 1}, mLQ mod1 ∈ [0, 1).
Thus, we have found suitable n, p, and α. Making clear the dependence on output time index m, we

write
nm = bm

Q
c

pm =
m

Q
mod1L

αm =
mL

Q
mod1

and generate output y [m] ' xc
(
m T
Q − d

T
L

)
via

y [m] = 1
∑
kk

hpm [k]x [nm − k] + αm
∑
kk

hpm+1 [k]x [nm − k]

The arbitrary rate polyphase resampling structure is summarized in Figure 1.31.
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Figure 1.31

Note that our structure refers to polyphase �lters Hpm (z) and Hpm+1 (z) for pm ∈ {0, . . . , L− 1}. This
speci�es the standard polyphase bank {H0 (z) , . . . ,HL−1 (z)} plus the additional �lter HL (z). Ideally the
pth �lter has group delay d−p

L , so that HL (z) should advance the input one full sample relative to H0 (z),
i.e., HL (z) = zH0 (z). There are a number of ways to design/implement the additional �lter.

1. Design a master �lter of length LNp+ 1 (where Np is the polyphase �lter length), and then construct

hp [k] = h [kL+ p] , p ∈ {0, . . . , L}

Note that hL [k] = h0 [k + 1] for 0 ≤ k ≤ Np − 2.
2. Set HL (z) = H0 (z) and advance the input stream to the last �lter by one sample (relative to the other

�lters).

In certain applications the rate of resampling needs to be adjusted on-the-�y. The arbitrary rate resampler
easily facilitates this requirement by replacing Q with Qm in the de�nitions for nm, pm, and αm.

Finally, it should be mentioned that a more sophisticated interpolation could be used, e.g., Lagrange
interpolation involving more than two branch outputs. By making the interpolation more accurate, fewer
polyphase �lters would be necessary for the same overall performance, reducing the storage requirements for
polyphase �lter taps. On the other hand, combining the outputs of more branches requires more computations
per output point. Essentially, the di�erent schemes tradeo� between storage and computation.
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1.1.17 Multi-stage Interpolation and Decimation17

1.1.17.1 Multistage Decimation

In the single-stage interpolation structure illustrated in Figure 1.32, the required impulse response of H (z)
can be very long for large L.

Figure 1.32

Consider, for example, the case where L = 30 and the input signal has a bandwidth of ω0 = 0.9πradians.
If we desire passband ripple δp = 0.002 and stopband ripple δs = 0.001, then Kaiser's formula approximates
the required FIR �lter length to be

Nh '
−10log (δP δS)− 13

2.3∆ (ω)
' 900

choosing ∆ (ω) = 2π−2ω0
L as the width of the �rst transition band (i.e., ignoring the other transition bands

for this rough approximation). Thus, a polyphase implementation of this interpolation task would cost about
900 multiplies per input sample.

Consider now the two-stage implementation illustrated in Figure 1.33.

Figure 1.33

We claim that, when L is large and ω0 is near Nyquist, the two-stage scheme can accomplish the same
interpolation task with less computation.

Let's revisit the interpolation objective of our previous example. Assume that L1 = 2 and L2 = 15
so that L1L2 = L = 30. We then desire a pair {F (z) , G (z)} which results in the same performance as
H (z). As a means of choosing these �lters, we employ a Noble identity to reverse the order of �ltering and
upsampling (see Figure 1.34).

17This content is available online at <http://cnx.org/content/m10420/2.13/>.
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Figure 1.34

It is now clear that the composite �lter G
(
z15
)
F (z) should be designed to meet the same speci�cations

as H (z). Thus we adopt the following strategy:

1. Design G
(
z15
)
to remove unwanted images, keeping in mind that the DTFT G

(
ej15ω

)
is 2π

15 -periodic
in ω.

2. Design F (z) to remove the remaining images.

The �rst and second plots in Figure 1.35 illustrate example DTFTs for the desired signal x [n] and its L-
upsampled version v [l] , respectively. Our objective for interpolation, is to remove all but the shaded spectral
image shown in the second plot. The third plot (Figure 1.35) shows that, due to symmetry requirements
G
(
z15
)
will be able to remove only one image in the frequency range

[
0, 2π

15

)
. Due to its periodicity, however,

G
(
z15
)
also removes some of the other undesired images, namely those centered at π

15 + m 2π
15 for m ∈ Z.

F (z) is then used to remove the remaining undesired images, namely those centered at m 2π
15 for m ∈ Z such

that m is not a multiple of 15. Since it is possible that the passband ripples of F (z) and G
(
z15
)
could add

constructively, we specify δp = 0.001 for both F (z) and G (z), half the passband ripple speci�ed for H (z).
Assuming that the transition bands in F (z) have gain no greater than one, the stopband ripples will not be
ampli�ed and we can set δs = 0.001 for both F (z) and G (z), the same speci�cation as for H (z).
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Figure 1.35

The computational savings of the multi-stage structure result from the fact that the transition bands
in both F (z) and G (z) are much wider than the transition bands in H (z). From the block diagram
(Figure 1.35), we can infer that the transition band in G (z) is centered at ω = π

2 with width π−ω0 = 0.1πrad.
Likewise, the transition bands in F (z) have width 4π−2ω0

30 = 2.2
30 πrad. Plugging these speci�cations into the

Kaiser length approximation, we obtain
Ng ' 64

and
Nf ' 88

Already we see that it will be much easier, computationally, to design two �lters of lengths 64 and 88 than
it would be to design one 900-tap �lter.

As we now show, the computational savings also carry over to the operation of the two-stage structure.
As a point of reference, recall that a polyphase implementation of the one-stage interpolator would require
Nh ' 900 multiplications per input point. Using a cascade of two single-stage polyphase interpolators to
implement the two-stage scheme, we �nd that the �rst interpolator would require Ng ' 64 per input point
x [n], while the second would require Nf ' 88 multiplies per output of G (z). Since G (z) outputs two points
per input x [n], the two-stage structure would require a total of

' 64 + 2× 88 = 240

multiplies per input. Clearly this is a signi�cant savings over the 900 multiplies required by the one-stage
structure. Note that it was advantageous to choose the �rst upsampling ratio (L1) as small as possible, so
that the second stage of interpolation operates at a low rate.

Multi-stage decimation can be formulated in a very similar way. Using the same example quantities as
we did for the case of multi-stage interpolation, we have the block diagrams and �lter-design methodology
illustrated in Figure 1.36 and Figure 1.37.
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Figure 1.36

Figure 1.37
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Chapter 2

Filterbanks

2.1 Why Filterbanks?

2.1.1 Sub-Band Processing1

2.1.1.1 Why Filterbanks?

2.1.1.1.1 Sub-band Processing

There exist many applications in modern signal processing where it is advantageous to separate a signal into
di�erent frequency ranges called sub-bands. The spectrum might be partitioned in the uniform manner
illustrated in Figure 2.1, where the sub-band width ∆k = 2π

M is identical for each sub-band and the band
centers are uniformly spaced at intervals of 2π

M .

Figure 2.1

Alternatively, the sub-bands might have a logarithmic spacing like that shown in Figure 2.2.

1This content is available online at <http://cnx.org/content/m10423/2.14/>.

31
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Figure 2.2

For most of our discussion, we will focus on uniformly spaced sub-bands.
The separation into sub-band components is intended to make further processing more convenient. Some

of the most popular applications for sub-band decomposition are audio and video source coding (with the
goal of e�cient storage and/or transmission).

Figure 2.3 illustrates the use of sub-band processing in MPEG audio coding. There a psychoacoustic
model is used to decide how much quantization error can be tolerated in each sub-band while remaining
below the hearing threshold of a human listener. In the sub-bands that can tolerate more error, less bits
are used for coding. The quantized sub-band signals can then be decoded and recombined to reconstruct
(an approximate version of) the input signal. Such processing allows, on average, a 12-to-1 reduction in bit
rate while still maintaining "CD quality" audio. The psychoacoustic model takes into account the spectral
masking phenomenon of the human ear, which says that high energy in one spectral region will limit the
ear's ability to hear details in nearby spectral regions. Therefore, when the energy in one sub-band is high,
nearby sub-bands can be coded with less bits without degrading the perceived quality of the audio signal.
The MPEG standard speci�es 32-channels of sub-band �ltering. Some psychoacoustic models also take
into account "temporal masking" properties of the human ear, which say that a loud burst of sound will
temporarily overload the ear for short time durations, making it possible to hide quantization noise in the
time interval after a loud sound burst.

Figure 2.3

In typical applications, non-trivial signal processing takes place between the bank of analysis �lters and
the bank of synthesis �lters, as shown in Figure 2.4. We will focus, however, on �lterbank design rather than
on the processing that occurs between the �lterbanks.
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Figure 2.4

Our goals in �lter design are:

1. Good sub-band frequency separation (i.e., good "frequency selectivity").
2. Good reconstruction (i.e., y [n] ' x [n− d] for some integer delay d) when the sub-band processing is

lossless.

The �rst goal is driven by the assumption that the sub-band processing works best when it is given
access to cleanly separated sub-band signals, while the second goal is motivated by the idea that the sub-
band �ltering should not limit the reconstruction performance when the sub-band processing (e.g., the
coding/decoding) is lossless or nearly lossless.

2.1.2 Uniform Filterbanks2

2.1.2.1 Uniform Filterbanks

With M uniformly spaced sub-bands, the sub-band width is 2π
M radians, implying that the sub-band signal

can be downsampled by a factor M (but not more than M) without loss of information. This is referred
to as a "critically sampled" �lterbank. This maximal level of downsampling is advantageous when storing
or further processing the sub-band signals. With critical sampling, the total number of downsampled sub-
band output samples equals the total number of input samples. Assuming lossless sub-band processing, the
critically-sampled synthesis/analysis procedure is illustrated in Figure 2.5:

2This content is available online at <http://cnx.org/content/m10990/2.3/>.
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Figure 2.5

Recall that one of our goals in �lter design is to ensure that y [n] ' x [n− d] for some integer delay d. From
the block diagram above (Figure 2.5), one can see that imperfect analysis �ltering will contribute aliasing
errors to the sub-band signals. This aliasing distortion will degrade y [n] if it is not cancelled by the synthesis
�lterbank. Though ideal brick-wall �lters Hk (z) and Gk (z) could easily provide perfect reconstruction (i.e.,
y [n] = x [n− d]), they would be unimplementable due to their doubly-in�nite impulse responses. Thus, we
are interested in the design of causal FIR �lters that give near-perfect reconstruction or, if possible, perfect
reconstruction.

There are two principle approaches to the design of �lterbanks:

1. Classical: Approximate ideal brick wall �lters to ensure good sub-band isolation (i.e., frequency selec-
tivity) and accept (a hopefully small amount of) aliasing and thus reconstruction error.

2. Modern: Constrain the �lters to give perfect (or near-perfect) reconstruction and hope for good sub-
band isolation.

2.2 Classical Filterbanks

2.2.1 Uniform Modulated Filterbank3

A modulated �lterbank (Section 2.1.1) is composed of analysis branches which:

1. Modulate the input to center the desired sub-band at DC
2. Lowpass �lter the modulated signal to isolate the desired sub-band
3. Downsample the lowpass signal

The synthesis branches interpolate the sub-band signals by upsampling and lowpass �ltering, then modulate
each sub-band back to its original spectral location (see Figure 2.6).

3This content is available online at <http://cnx.org/content/m10929/2.6/>.
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Figure 2.6

In M -branch critically-sampled uniformly-modulated �lterbanks, the kth branch has a modulation fre-
quency of ± (ωk) = 2π

M kradians, a lowpass cuto� frequency of π
M radians, and a downsampling/upsampling

factor of M .
The most common way to implement this type of uniform modulated �lterbank is through the use of

polyphase �lterbanks and DFTs (Section 2.2.2).

2.2.2 Uniformally Modulated (DFT) Filterbank4

The uniform modulated �lterbank (Section 2.2.1) can be implemented using polyphase �lterbanks and DFTs,
resulting in huge computational savings. Figure 2.7 below illustrates the equivalent polyphase/DFT struc-
tures for analysis and synthesis. The impulse responses of the polyphase �lters Pl (z) and P l (z) can be
de�ned in the time domain as pl [m] = h [mM + l] and pl (m) = h [mM + l], where h [n] and h [n] denote the
impulse responses of the analysis and synthesis lowpass �lters, respectively.

4This content is available online at <http://cnx.org/content/m10424/2.13/>.
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Figure 2.7

Recall that the standard implementation performs modulation, �ltering, and downsampling, in that order.
The polyphase/DFT implementation reverses the order of these operations; it performs downsampling, then
�ltering, then modulation (if we interpret the DFT as a two-dimensional bank of "modulators"). We derive
the polyphase/DFT implementation below, starting with the standard implementation and exchanging the
order of modulation, �ltering, and downsampling.

2.2.2.1 Polyphase/DFT Implementation Derivation

We start by analyzing the kth �lterbank branch, analyzed in Figure 2.8:

Figure 2.8: kth �lterbank branch

The �rst step is to reverse the modulation and �ltering operations. To do this, we de�ne a "modulated
�lter" Hk (z):

vk [n] =
∑
i h [i]x [n− i] ej 2π

M k(n−i)

=
(∑

i h [i] e(−j) 2π
N kix [n− i]

)
ej

2π
M kn

= (
∑
i hk [i]x [n− i]) ej 2π

M kn

(2.1)
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The equation above indicated that x [n] is convolved with the modulated �lter and that the �lter output is
modulated. This is illustrated in Figure 2.9:

Figure 2.9

Notice that the only modulator outputs not discarded by the downsampler are those with time index
n = mM for m ∈ Z. For these outputs, the modulator has the value ej

2π
M kmM = 1, and thus it can be

ignored. The resulting system is portrayed by:

Figure 2.10

Next we would like to reverse the order of �ltering and downsampling. To apply the Noble identity, we
must decompose Hk (z) into a bank of upsampled polyphase �lters. The technique used to derive polyphase
decimation can be employed here:

Hk (z) =
∑∞
n=−∞ hk [n] z−n

=
∑M−1
l=0

∑∞
m=−∞ hk [mM + l] z−(mM+l)

(2.2)

Noting the fact that the lth polyphase �lter has impulse response:

hk [mM + l] = h [mM + l] e(−j) 2π
M (k(mM+l)) = h [mM + l] e(−j) 2π

M kl = pl [m] e(−j) 2π
M kl

where pl [m] is the lth polyphase �lter de�ned by the original (unmodulated) lowpass �lter H (z), we obtain

Hk (z) =
∑M−1
l=0

∑∞
m=−∞ pl [m] e(−j) 2π

M klz−(mM−l)

=
∑M−1
l=0 e(−j) 2π

M klz−l
∑∞
m=−∞ pl [m]

(
zM
)−m

=
∑M−1
l=0 e(−j) 2π

M klz−lPl
(
zM
) (2.3)

The kth �lterbank branch (now containing M polyphase branches) is in Figure 2.11:
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Figure 2.11: kth �lterbank branch containing M polyphase branches.

Because it is a linear operator, the downsampler can be moved through the adders and the (time-invariant)

scalings e(−j) 2π
M kl. Finally, the Noble identity is employed to exchange the �ltering and downsampling. The

kth �lterbank branch becomes:
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Figure 2.12

Observe that the polyphase outputs {vl [m] , vl [m] | l = {0, . . . ,M − 1}} are identical for each �lterbank

branch, while the scalings
{
e(−j) 2π

M kl | l = {0, . . . ,M − 1}
}
once. Using these outputs we can compute the

branch outputs via

yk [m] =
M−1∑
l=0

vl [m] e(−j) 2π
M kl (2.4)

From the previous equation it is clear that yk [m] corresponds to the kth DFT output given the M -point
input sequence {vl [m] | l = {0, . . . ,M − 1}}. Thus the M �lterbank branches can be computed in parallel
by taking an M -point DFT of the M polyphase outputs (see Figure 2.13).
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Figure 2.13

The polyphase/DFT synthesis bank can be derived in a similar manner.

2.2.3 Computational Savings of Polyphase/DFT Filterbanks5

This module will brie�y take a look a the computational savings of the polyphase/DFT modulated �lterbank
implementation. We will start by looking at our standard analysis bank and then move on to compare this
with our other implementation approaches.

Assume that the lowpass �lter in the standard analysis bank, H (z), has impulse response length N . To
calculate the sub-band output vector {yk [m] , yk [m] | k = {0, . . . ,M − 1}} using the standard structure, we
have

M
decimator outputs

vector
×M filter outputs

decimator outputs
× (N + 1)

multiplications
filter output

= M2 (N + 1)
multiplications

vector
(2.5)

where we have included one multiply for the modulator. The calculations above pertain to standard (i.e.,
not polyphase) decimation. If we implement the lowpass/downsampler in each �lterbank branch with a
polyphase decimator,

M
branch outputs

vector
× (N + 1)

multiplications
branch output

= M (N + 1)
multiplications

vector
(2.6)

To calculate the same output vector for the polyphase/DFT structure, we have approximately

1
DFT
vector

×
(
M

2
log2M

multiplications
DFT

×M polyphase outputs
DFT

× N

M

multiplications
polyphase output

)
(2.7)

5This content is available online at <http://cnx.org/content/m10930/2.3/>.
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=
(
N +

M

2
log2M

)
multiplications

vector

The table below gives some typical numbers. Recall that the �lter length N will be linearly proportional to
the decimation factor M , so that the ratio N

M determines the passband and stopband performance.

M = 32, N
M = 10 M = 128, N

M = 10

standard 328,704 20,987,904

standard with polyphase 10,272 163,968

polyphase/DFT 400 1,728

Table 2.1

2.2.4 Drawbacks of Classical Filterbank Designs6

To begin with, the reference to "classical" �lterbank designs, generally refers to the �lterbank types that
you should have seen up to now. These include the following types, that can be reviewed if necessary:

• Uniform Modulated Filterbanks (Section 2.2.1)
• Polyphase/DFT Implementation of Uniform Modulated Filterbanks (Section 2.2.2)

2.2.4.1 Drawbacks to Classical Implementation

The classical �lterbanks that we have considered so far (those listed above) give perfect reconstruction
performance only when the analysis and synthesis �lters are ideal. With non-ideal (i.e., implementable)
�lters, aliasing will result from the downsampling/upsampling operation and corrupt the output signal.
Since aliasing distortion is inherently non-linear, it may be very undesirable in certain applications. Thus,
long analysis/synthesis �lters might be required to force aliasing distortion down to tolerable levels. The
cost of long �lters is somewhat o�set by the e�cient polyphase implementation, though.

That said, clever �iter designs have been proposed which prevent aliasing in neighboring sub-
bands. These designs include the following references: Rothweiler[8], Crochiere and Rabiner[2], and
Vaidyanathan[9]. As neighboring-subband aliasing typically constitutes the bulk of aliasing distortion, these
designs give signi�cant performance gains. In fact, such �lter designs are used in MPEG high-performance
audio compression standards.

2.3 Modern Filterbanks

2.3.1 Aliasing-Cancellation Conditions of Filterbanks7

2.3.1.1 Introduction

It is possible to design combinations of analysis and synthesis �lters such that the aliasing from downsam-
pling/upsampling is completely cancelled. Below we derive aliasing-cancellation conditions for two-channel
�lterbanks. Though the results can be extended to M-channel �lterbanks in a rather straightforward manner,
the two-channel case o�ers a more lucid explanation of the principle ideas (see Figure 2.14).

6This content is available online at <http://cnx.org/content/m10931/2.4/>.
7This content is available online at <http://cnx.org/content/m10425/2.11/>.
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Figure 2.14

2.3.1.2 Aliasing Cancellation Conditions

The aliasing cancellation conditions follow directly from the input/output equations derived below. Let
i ∈ {0, 1} denote the �lterbank branch index. Then

Ui (z) =
1
2

1∑
p=0

Hi

(
z

1
2 e(−j)πp

)
X
(
z

1
2 e(−j)πp

)
(2.8)

Y (z) =
∑1
i=0Gi (z)Ui

(
z2
)

=
∑1
i=0Gi (z) 1

2

∑1
p=0Hi

(
ze(−j)πp)X (ze(−j)πp)

= 1
2

∑1
i=0Gi (z) (Hi (z)X (z) +Hi (−z)X (−z))

= 1
2

(
X (z) X (−z)

) H0 (z) H1 (z)

H0 (−z) H1 (−z)

 G0 (z)

G1 (z)


(2.9)

where H (z) =

 H0 (z) H1 (z)

H0 (−z) H1 (−z)

. H (z) is often called the aliasing component matrix. For

aliasing cancellation, we need to ensure that X (−z) does not contribute to the output Y (z). This requires
that (

H0 (−z) H1 (−z)
) G0 (z)

G1 (z)

 = H0 (−z)G0 (z) +H1 (−z)G1 (z) = 0

which is guaranteed by
G0 (z)
G1 (z)

= −H1 (−z)
H0 (−z)

(2.10)

or by the following pair of conditions for any rational C (z)

G0 (z) = C (z)H1 (−z)

G1 (z) = (−C (z))H0 (−z)
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Under these aliasing-cancellation conditions, we get the input/output relation

Y (z) =
1
2

(H0 (z)H1 (−z)−H1 (z)H0 (−z))C (z)X (z) (2.11)

where T (z) = 1
2 (H0 (z)H1 (−z)−H1 (z)H0 (−z))C (z) represents the system transfer function. We say

that "perfect reconstruction" results when y [n] = x [n− l] for some l ∈ N, or equivalently when T (z) = z−l.

note: The aliasing-cancellation conditions remove one degree of freedom from our �lterbank
design; originally, we had the choice of four transfer functions {H0 (z) , H1 (z) , G0 (z) , G1 (z)},
whereas now we can choose three: {H0 (z) , H1 (z) , C (z)}.

2.3.2 Two-Branch Quadvalue Mirror Filterbank (QMF)8

2.3.2.1 Quadrature Mirror Filterbanks

The quadrature mirror �lterbank (QMF) is an aliasing-cancellation �lterbank with the additional design
choices:

• H0 (z) : causal real-coe�cient FIR
• H1 (z) = H0 (−z)
• C (z) = 2

Combining the various design rules, it is easy to see that all �lters will be causal, real-coe�cient, and FIR.
The QMF choices yield the system transfer function

T (z) = H0
2 (z)−H1

2 (z)

= H0
2 (z)−H0

2 (−z)
(2.12)

The name "QMF" is appropriate for the following reason. Note that

|H1

(
ejω
)
| = |H0

(
e−(jω)

)
| = |H0

(
ej(ω−π)

)
| = |H0

(
ej(π−ω)

)
|

where the last step follows from the DTFT9 conjugate-symmetry of real-coe�cient �lters. This implies that
the magnitude responses |H0

(
ejω
)
| and |H1

(
ejω
)
| from a mirror-image pair, symmetric around ω = π

2 = 2π
4

(the "quadrature frequency"), as illustrated in Figure 2.15.

8This content is available online at <http://cnx.org/content/m10426/2.14/>.
9"Discrete-Time Fourier Transform" <http://cnx.org/content/m10461/latest/>
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Figure 2.15

The QMF design rules imply that all �lters in the bank are directly related to the "prototype" �lter
H0 (z), and thus we might suspect a polyphase implementation. In fact, one exists. Using the standard
polyphase decomposition of H0 (z), we have

H0 (z) = P0

(
z2
)

+ z−1P1

(
z2
)

(2.13)

so that
H1 (z) = H0 (−z) = P0

(
z2
)
− z−1P1

(
z2
)

G0 (z) = 2H1 (−z) = 2P0

(
z2
)

+ 2z−1P1

(
z2
)

G1 (z) = −2H0 (−z) = 2P0

(
z2
)

+ 2z−1P1

(
z2
)

Application of the Noble identity results in the polyphase structure in Figure 2.15:

Figure 2.16

The QMF choice C (z) = 2 implies that the synthesis �lters have twice the DC gain of the corresponding
analysis �lters. Recalling that decimation by 2 involves anti-alias lowpass �ltering with DC gain equal to one,
while interpolation by 2 involves anti-image lowpass �ltering with DC gain equal to 2, Figure 2.16 suggests
an explanation for the choice C (z) = 2.
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2.3.3 Perfect Reconstruction QMF10

2.3.3.1 Perfect Reconstruction QMF

The system transfer function for a QMF bank is

T (z) = H0
2 (z)−H1

2 (z)

= 4z−1P0

(
z2
)
P1

(
z2
) (2.14)

For perfect reconstruction, we need T (z) = z−l for some l ∈ N, which implies the equivalent conditions

4z−1P0

(
z2
)
P1

(
z2
)

= z−l

P0

(
z2
)
P1

(
z2
)

=
1
4
z−(l−1)

P0 (z)P1 (z) =
1
4
z−

l−1
2

For FIR polyphase �lters, this can only be satis�ed by

P0 (z) = β0z
−n0

P1 (z) = β1z
−n1

where we have n0 + n1 = l−1
2 and β0β1 = 1

4 .
In other words, the polyphase �lters are trivial, so that the prototype �lter H0 (z) has a two-tap response.

With only two taps, H0 (z) cannot be a very good lowpass �lter, meaning that the sub-band signals will not
be spectrally well-separated. From this we conclude that two-channel 11 perfect reconstruction QMF banks
exist but are not very useful.

2.3.4 Johnston's QMF Banks12

Two-channel perfect-reconstruction QMF banks (Section 2.3.2) are not very useful because the analysis �lters
have poor frequency selectivity. The selectivity characteristics can be improved, however, if we allow the
system response T

(
ejω
)
to have magnitude-response ripples while keeping its linear phase.

Say that H0 (z) is causal, linear-phase, and has impulse response13 length N . Then it is possible to write

H0

(
ejω
)
in terms of a real-valued zero-phase response

∼
H0

(
ejω
)
, so that

H0

(
ejω
)

= e(−j)ωN−1
2
∼
H0

(
ejω
)

(2.15)

T
(
ejω
)

= H0
2
(
ejω
)
−H0

2
(
ej(ω−π)

)
= e(−j)ω(N−1)

∼
H0

2 (
ejω
)
− e(−j)(ω−π)(N−1)

∼
H0

2 (
ej(ω−π)

)
= e(−j)ω(N−1)

(
∼
H0

2 (
ejω
)
− ejπ(N−1)

∼
H0

2 (
ej(ω−π)

)) (2.16)

Note that if N is odd, ejω(N−1) = 1,
T
(
ejω
)
|ω=π

2
= 0 (2.17)

10This content is available online at <http://cnx.org/content/m11002/2.2/>.
11It turns out that M -channel perfect reconstruction QMF banks have more useful responses for larger values of M .
12This content is available online at <http://cnx.org/content/m10932/2.4/>.
13"Continuous Time Impulse Function" <http://cnx.org/content/m10059/latest/>
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A null in the system response would be very undesirable, and so we restrict N to be an even number. In
that case,

T
(
ejω
)

= e(−j)ω(N−1)

(
∼
H0

2 (
ejω
)

+
∼
H0

2 (
ej(ω−π)

))
= e(−j)ω(N−1)

((
|H0

(
ejω
)
|
)2 +

(
|H0

(
ej(ω−π)

)
|
)2) (2.18)

note: The system response is linear phase, but will have amplitude distortion if
(
|H0

(
ejω
)
|
)2 +(

|H0

(
ej(ω−π)

)
|
)2

is not equal to a constant.

Johnston's idea was to assign a cost function that penalizes deviation from perfect reconstruction as well
as deviation from an ideal lowpass �lter with cuto� ω0. Speci�cally, real symmetric coe�cients h0 [n] are
chosen to minimize

J = λ

∫ π

ω0

(
|H0

(
ejω
)
|
)2
dω − 1

∫ ∞
0

1−
(
|H0

(
ejω
)
|
)2 − (|H0

(
ej(π−ω)

)
|
)2

dω (2.19)

where 0 < λ < 1 balances between the two con�icting objectives. Numerical optimization techniques can
be used to determine the coe�cients, and a number of popular coe�cient sets have been tabulated. (See
Crochiere and Rabiner[7], Johnston[5], and Ansari and Liu[1])

Example 2.1: "12B" Filter
As an example, consider the "12B" �lter from Johnston[5]:

h0 [0] = −0.006443977 = h0 [11]

h0 [1] = 0.02745539 = h0 [10]

h0 [2] = −0.00758164 = h0 [9]

h0 [3] = −0.0913825 = h0 [8]

h0 [4] = 0.09808522 = h0 [7]

h0 [5] = 0.4807962 = h0 [6]

which gives the following DTFT magnitudes (Figure 2.17).
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Figure 2.17: The top plot shows the analysis �lters and the bottom one shows the system response.

2.3.5 Perfect Reconstruction FIR Filter Banks14

2.3.5.1 FIR Perfect-Reconstruction Conditions

The QMF (Section 2.3.2) design choices prevented the design of a useful (i.e., frequency selective) perfect-
reconstruction (PR) FIR �lterbank. This motivates us to re-examine PR �lterbank design without the
overly-restrictive QMF conditions. However, we will still require causal FIR �lters with real coe�cients.

Recalling that the two-channel �lterbank (Section 2.3.1) (Figure 2.18),

14This content is available online at <http://cnx.org/content/m10412/2.14/>.
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Figure 2.18

has the input/output relation:

Y (z) =
1
2

(
X (z) X (−z)

) H0 (z) H1 (z)

H0 (−z) H1 (−z)

 G0 (z)

G1 (z)

 (2.20)

we see that the delay-l perfect reconstruction requires 2z−l

0

 =

 H0 (z) H1 (z)

H0 (−z) H1 (−z)

 G0 (z)

G1 (z)

 (2.21)

where

H (z) =

 H0 (z) H1 (z)

H0 (−z) H1 (−z)


or, equivalently, that  G0 (z)

G1 (z)

 = H−1 (z)

 2z−l

0


= 1

detH(z)

 H1 (−z) −H1 (z)

−H0 (−z) H0 (z)

 2z−l

0


= 2

detH(z)

 z−lH1 (−z)
−
(
z−lH0 (−z)

)


(2.22)

where
detH (z) = H0 (z)H1 (−z)−H0 (−z)H1 (z) (2.23)

For FIR G0 (z) and G1 (z), we require 15 that

detH (z) = cz−k (2.24)

for c ∈ R and k ∈ Z. Under this determinant condition, we �nd that G0 (z)

G1 (z)

 =
2z−(l−k)

c

 H1 (−z)
−H0 (−z)

 (2.25)

Assuming that H0 (z) and H1 (z) are causal with non-zero initial coe�cient, we choose k = l to keep G0 (z)
and G1 (z) causal and free of unnecessary delay.

15Since we cannot assume that FIR H0 (z) and H1 (z) share a common root.
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2.3.5.1.1 Summary of Two-Channel FIR-PR Conditions

Summarizing the two-channel FIR-PR conditions:

H0 (z) H1 (z) = causal real− coefficient FIR

detH (z) = cz−l , c ∈ R l ∈ Z

G0 (z) =
2
c
H1 (−z)

G1 (z) =
−2
c
H0 (−z)

2.3.6 Orthogonal Perfect Reconstruction FIR Filterbank16

2.3.6.1 Orthogonal PR Filterbanks

The FIR perfect-reconstruction (PR) (Section 2.3.5) conditions leave some freedom in the choice of H0 (z)
and H1 (z). Orthogonal PR �lterbanks are de�ned by causal real-coe�cient even-length-N analysis
�lters that satisfy the following two equations:

1 = H0 (z)H0

(
z−1
)

+H0 (−z)H0

(
−z−1

)
(2.26)

H1 (z) = (± (z))−(N−1)
H0

(
−z−1

)
(2.27)

To verify that these design choices satisfy the FIR-PR requirements for H0 (z) and H1 (z), we evaluate
detH (z) under the second condition above. This yields

detH (z) = ±
(
H0 (z)H1

(
z−1
)
−H0 (−z)H1 (z)

)
=

(
−z−(N−1)

) (
H0 (z)H0

(
z−1
)

+H0 (−z)H0

(
−z−1

))
= z−(N−1)

(2.28)

which corresponds to c = −1 and l = N − 1 in the FIR-PR determinant condition detH (z) = cz−l. The
remaining FIR-PR conditions then imply that the synthesis �lters are given by

G0 (z) = −2H1

(
z−1
)

= 2z−(N−1)H0

(
z−1
) (2.29)

G1 (z) = 2H0 (−z)
= 2z−(N−1)H1

(
z−1
) (2.30)

The orthogonal PR design rules imply that H0

(
ejω
)
is "power symmetric" and that

{
H0

(
ejω
)
, H1

(
ejω
)}

form a "power complementary" pair. To see the power symmetry, we rewrite the �rst design rule using
z = ejω and −1 = e±jπ, which gives

1 = H0

(
ejω
)
H0

(
e−(jω)

)
+H0

(
ej(ω−π)

)
H0

(
e(−j)(ω−π)

)
=

(
|H0

(
ejω
)
|
)2 +

(
|H0

(
ej(ω−π)

)
|
)2

=
(
|H0

(
ejω
)
|
)2 +

(
|H0

(
ej(π−ω)

)
|
)2 (2.31)

16This content is available online at <http://cnx.org/content/m10413/2.14/>.
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The last two steps leveraged the fact that the DTFT17 of a real-coe�cient �lter is conjugate-symmetric.
The power-symmetry property is illustrated in Figure 2.19:

Figure 2.19

Power complementarity follows from the second orthogonal PR design rule, which implies |H1

(
ejω
)
| =

|H0

(
ej(π−ω)

)
|. Plugging this into the previous equation, we �nd

1 =
(
|H0

(
ejω
)
|
)2

+
(
|H1

(
ejω
)
|
)2

(2.32)

The power-complimentary property is illustrated in Figure 2.20:

Figure 2.20

17"Discrete Time Fourier Transform (DTFT)" <http://cnx.org/content/m10108/latest/>
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2.3.7 Design of Orthogonal PR-FIR Filterbanks via Halfband Spectral
Factorization18

2.3.7.1 Design of Orthogonal PR-FIR Filterbanks via Halfband Spectral Factorization

Recall that analysis-�lter design for orthogonal PR-FIR �lterbanks reduces to the design of a real-coe�cient
causal FIR prototype �lter H0 (z) that satis�es the power-symmetry condition

(
|H0

(
ejω
)
|
)2

+
(
|H0

(
ej(π−ω)

)
|
)2

= 1 (2.33)

Power-symmetric �lters are closely related to "halfband" �lters. A zero-phase halfband �lter is a zero-phase
�lter F (z) with the property

F (z) + F (−z) = 1 (2.34)

When, in addition, F (z) has real-valued coe�cients, its DTFT is "amplitude-symmetric":

F
(
ejω
)

+ F
(
ej(π−ω)

)
= 1 (2.35)

The amplitude-symmetry property is illustrated in Figure 2.21:

Figure 2.21

If, in addition to being real-valued, 19 F
(
ejω
)
is non-negative, then F

(
ejω
)
constitutes a valid power

response. If we can �nd H0 (z) such that
(
|H0

(
ejω
)
|
)2 = F

(
ejω
)
, then this H0 (z) will satisfy the desired

power-symmetry property
(
|H0

(
ejω
)
|
)2 +

(
|H0

(
ej(π−ω)

)
|
)2

= 1.
First, realize F

(
ejω
)
is easily modi�ed to ensure non-negativity: construct q [n] = f [n] + εδ [n] for

su�ciently large ε, which will raise F
(
ejω
)
by ε uniformly over ω (see Figure 2.22).

18This content is available online at <http://cnx.org/content/m11005/2.2/>.
19Recall that zero-phase �lters have real-valued DTFTs.
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Figure 2.22

The resulting Q (z) is non-negative and satis�es the amplitude-symmetry condition Q
(
ejω
)

+
Q
(
ej(π−ω)

)
= 1 + 2ε. We will make up for the additional gain later. The procedure by which H0 (z)

can be calculated from the raised halfband Q (z), known as spectral factorization, is described next.

Since q [n] is conjugate-symmetric around the origin, the roots of Q (z) come in pairs
{
ai,

1
ai∗

}
. This

can be seen by writing Q (z) in the factored form below, which clearly corresponds to a polynomial with
coe�cients conjugate-symmetric around the 0th-order coe�cient.

Q (z) =
∑N−1
n=−(N−1) q [n] z−n

= A
∏N−1
i=1

(
1− aiz−1

)
(1− ai∗z)

(2.36)

where A ∈ R+. Note that the complex numbers
{
ai,

1
ai∗

}
are symmetric across the unit circle in the

z-plane20. Thus, for ever root of Q (z) inside the unit-circle, there exists a root outside of the unit circle (see
Figure 2.23).

Figure 2.23

Let us assume, without loss of generality, that |ai| < 1. If we form H0 (z) from the roots of Q (z) with

20"Understanding Pole/Zero Plots on the Z-Plane": Section The Z-Plane
<http://cnx.org/content/m10556/latest/#zplane>
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magnitude less than one:

H0 (z) =
√
A

N−1∏
i=1

1− aiz−1 (2.37)

then it is apparent that
(
|H0

(
ejω
)
|
)2 = Q

(
ejω
)
. This H0 (z) is the so-called minimum-phase spectral

factor of Q (z).
Actually, in order to make

(
|H0

(
ejω
)
|
)2 = Q

(
ejω
)
, we are not required to choose all roots inside the unit

circle; it is enough to choose one root from every unit-circle-symmetric pair. However, we do want to ensure
that H0 (z) has real-valued coe�cients. For this, we must ensure that roots come in conjugate-symmetric
pairs, i.e., pairs having symmetry with respect to the real axis in the complex plane (Figure 2.24).

Figure 2.24

Because Q (z) has real-valued coe�cients, we know that its roots satisfy this conjugate-symmetry prop-
erty. Then forming H0 (z) from the roots of Q (z) that are strictly inside (or strictly outside) the unit circle,
we ensure that H0 (z) has real-valued coe�cients.

Finally, we say a few words about the design of the halfband �lter F (z). The window design method is
one technique that could be used in this application. The window design method starts with an ideal lowpass
�lter, and windows its doubly-in�nite impulse response using a window function with �nite time-support.
The ideal real-valued zero-phase halfband �lter has impulse response (where n ∈ Z):

f [n] =
sin
(
π
2n
)

πn
(2.38)

which has the important property that all even-indexed coe�cients except f [0] equal zero. It can be seen
that this latter property is implied by the halfband de�nition F (z)+F

(
z−1
)

= 1 since, due to odd-coe�cient
cancellation, we �nd

1 = F (z) + F
(
z−1
)

= 2
∑∞
m=−∞ f [2m] z−(2m) ⇔ f (2m) = 1

2δ [m]
(2.39)

Note that windowing the ideal halfband does not alter the property f (2m) = 1
2δ [m], thus the window

design F (z) is guaranteed to be halfband feature. Furthermore, a real-valued window with origin-symmetry
preserves the real-valued zero-phase property of

{
f [n]

}
above. It turns out that many of the other popular

design methods (e.g., LS and equiripple) also produce halfband �lters when the cuto� is speci�ed at π
2

radians and all passband/stopband speci�cations are symmetric with respect to ω = π
2 .
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2.3.7.1.1 Design Procedure Summary

We now summarize the design procedure for a length-N analysis lowpass �lter for an orthogonal perfect-
reconstruction FIR �lterbank:

1. Design a zero-phase real-coe�cient halfband lowpass �lter F (z) =
∑N−1
n=−(N−1) f [n] z−n where N is a

positive even integer (via, e.g., window designs, LS, or equiripple).
2. Calculate ε, the maximum negative value of F

(
ejω
)
. (Recall that F

(
ejω
)
is real-valued for all ω

because it has a zero-phase response.) Then create "raised halfband" Q (z) via q [n] = f [n] + εδ [n],
ensuring that Q

(
ejω
)
≥ 0, forall ω.

3. Compute the roots of Q (z), which should come in unit-circle-symmetric pairs
{
ai,

1
ai∗

}
. Then collect

the roots with magnitude less than one into �lter
^
H0 (z).

4.
^
H0 (z) is the desired prototype �lter except for a scale factor. Recall that we desire(

|H0

(
ejω
)
|
)2

+
(
|H0

(
ej(π−ω)

)
|
)2

= 1

Using Parseval's Theorem21, we see that

{
^
h0 [n]

}
should be scaled to give {h0 [n]} for which∑N−1

n=0 h0
2 [n] = 1

2 .

2.3.8 Bi-Orthogonal Perfect Reconstruction FIR Filterbanks22

2.3.8.1 Bi-Orthogonal Filter Banks

Due to the minimum-phase spectral factorization, orthogonal PR-FIR �lterbanks (Section 2.3.6) will not have
linear-phase analysis and synthesis �lters. Non-linear phase may be undesirable for certain applications. "Bi-
orthogonal" designs are closely related to orthogonal designs, yet give linear-phase �lters. The analysis-�lter
design rules for the bi-orthogonal case are

• F (z) : zero-phase real-coe�cient halfband such that F (z) =
∑N−1
n=−(N−1) f [n] z−n, where N is even.

• z−(N−1)F (z) = H0 (z)H1 (−z)

It is straightforward to verify that these design choices satisfy the FIR perfect reconstruction condition
detH (z) = cz−l with c = 1 and l = N − 1:

detH (z) = H0 (z)H1 (−z)−H0 (−z)H1 (z)

= z−(N−1)F (z)− (−1)−(N−1)
z−(N−1)F (−z)

= z−(N−1) (F (z) + F (−z))
= z−(N−1)

(2.40)

Furthermore, note that z−(N−1)F (z) is causal with real coe�cients, so that both H0 (z) and H1 (z) can be
made causal with real coe�cients. (This was another PR-FIR requirement.) The choice c = 1 implies that
the synthesis �lters should obey

G0 (z) = 2H1 (−z)

G1 (z) = −2H0 (−z)
21"Plancharel and Parseval's Theorems": Section Parseval's Theorem: a di�erent approach

<http://cnx.org/content/m10769/latest/#parsec>
22This content is available online at <http://cnx.org/content/m10414/2.11/>.
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From the design choices above, we can see that bi-orthogonal analysis �lter design reduces to the factorization
of a causal halfband �lter z−(N−1)F (z) into H0 (z) and H1 (z) that have both real coe�cients and linear-
phase. Earlier we saw that linear-phase corresponds to root symmetry across the unit circle in the complex
plane, and that real-coe�cients correspond to complex-conjugate root symmetry. Simultaneous satisfaction
of these two properties can be accomplished by quadruples of roots. However, there are special cases in
which a root pair, or even a single root, can simultaneously satisfy these properties. Examples are illustrated
in Figure 2.25:

Figure 2.25

The design procedure for the analysis �lters of a bi-orthogonal perfect-reconstruction FIR �lterbank is
summarized below:

1. Design a zero-phase real-coe�cient �lter F (z) =
∑N−1
n=−(N−1) f [n] z−n where N is a positive even

integer (via, e.g., window designs, LS, or equiripple).
2. Compute the roots of F (z) and partition into a set of root groups {G0, G1, G2, . . . } that have both

complex-conjugate and unit-circle symmetries. Thus a root group may have one of the following
forms:

Gi =
{
ai, ai

∗,
1
ai
,

1
ai∗

}
Gi = {ai, ai∗} , |ai| = 1

Gi =
{
ai,

1
ai

}
, ai ∈ R

Gi = {ai} , ai = ± (1)

Choose 23 a subset of root groups and construct
^
H0 (z) from those roots. Then construct

^
H1 (−z)

from the roots in the remaining root groups. Finally, construct
^
H1 (z) from

^
H1 (−z) by reversing the

signs of odd-indexed coe�cients.

3.
^
H0 (z) and

^
H1 (z) are the desired analysis �lters up to a scaling. To take care of the scaling, �rst create

∼
H0 (z) = a

^
H0 (z) and

∼
H1 (z) = b

^
H1 (z) where a and b are selected so that

∑
n

∼
h0 [n] = 1 =

∑
n

∼
h1 [n].

23Note that
^
H0 (z) and

^
H1 (z) will be real-coe�cient linear-phase regardless of which groups are allocated to which �lter.

Their frequency selectivity, however, will be strongly in�uenced by group allocation. Thus, you many need to experiment with
di�erent allocations to �nd the best highpass/lowpass combination. Note also that the length of H0 (z) may di�er from the
length of H0 (z).
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Then create H0 (z) = c
∼
H0 (z) and H1 (z) = c

∼
H1 (z) where c is selected so that the property

z−(N−1)F (z) = H0 (z)H1 (−z)

is satis�ed at DC (i.e., z = ej0 = 1). In other words, �nd c so that
∑
n h0 [n]

∑
m h1 [n] (−1)m = 1.

2.3.9 Filterbanks with >2 Branches24

2.3.9.1 Filterbanks with >2 Branches

Thus far the previous discussion on �lterbanks has concentrated on "modern" �lterbanks with only two
branches. There are two standard ways by which the number of branches can be increased.

2.3.9.1.1 M-Band Filterbanks

The ideas used to construct two-branch PR-FIR �lterbanks (Section 2.3.5) can be directly extended to the
M -branch case. (See Vaidyanathan[10] and Mitra[6]) This yields, for example, a polynomial matrix H (z)
with M rows and M columns. For these M -band �lterbanks, the sub-bands will have uniform widths 2π

L
radians (in the ideal case) Figure 2.26.

Figure 2.26: M -band Filterbank

2.3.9.1.2 Multi-Level (Cascade) Filterbanks

The two-branch PR-FIR �lterbanks can be cascaded to yield PR-FIR �lterbanks whose sub-band widths
equal 2−kπ for non-negative integers k (in the ideal case). If the magnitude responses of the �lters are not
well behaved, however, the cascading will result in poor e�ective frequency-selectivity. Below (Figure 2.27)

24This content is available online at <http://cnx.org/content/m10415/2.13/>.
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we show a �lterbank in which the low-frequency sub-bands are narrower than the high-frequency sub-band.
Note that the number of input samples equals the total number of sub-band samples.

Figure 2.27: Multi-level (Cascaded) Filterbank

We shall see these structures in the context of the discrete wavelet transform.
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Chapter 3

Wavelets

3.1 Time Frequency Analysis and Continuous Wavelet Transform

3.1.1 Why Transforms?1

In the �eld of signal processing we frequently encounter the use of transforms. Transforms are named such
because they take a signal and transform it into another signal, hopefully one which is easier to process
or analyze than the original. Essentially, transforms are used to manipulate signals such that their most
important characteristics are made plainly evident. To isolate a signal's important characteristics, however,
one must employ a transform that is well matched to that signal. For example, the Fourier transform,
while well matched to certain classes of signal, does not e�ciently extract information about signals in other
classes. This latter fact motivates our development of the wavelet transform.

3.1.2 Limitations of Fourier Analysis2

Let's consider the Continuous-Time Fourier Transform (CTFT) pair:

X (Ω) =
∫ ∞
−∞

x (t) e−(jΩt)dt

x (t) =
1

2π

∫ ∞
−∞

X (Ω) ejΩtdΩ

The Fourier transform pair supplies us with our notion of "frequency." In other words, all of our intuitions
regarding the relationship between the time domain and the frequency domain can be traced to this particular
transform pair.

It will be useful to view the CTFT in terms of basis elements. The inverse CTFT equation above
says that the time-domain signal x (t) can be expressed as a weighted summation of basis elements
{bΩ (t) , bΩ (t) | −∞ < Ω <∞}, where bΩ (t) = ejΩt is the basis element corresponding to frequency Ω.
In other words, the basis elements are parameterized by the variable Ω that we call frequency. Finally,
X (Ω) speci�es the weighting coe�cient for bΩ (t). In the case of the CTFT, the number of basis elements is
uncountably in�nite, and thus we need an integral to express the summation.

The Fourier Series (FS) can be considered as a special sub-case of the CTFT that applies when the
time-domain signal is periodic. Recall that if x (t) is periodic with period T , then it can be expressed as a

1This content is available online at <http://cnx.org/content/m11001/2.1/>.
2This content is available online at <http://cnx.org/content/m11003/2.1/>.
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weighted summation of basis elements {bk (t)} |∞k=−∞, where bk (t) = ej
2π
T tk:

x (t) =
∞∑

k=−∞

X [k] ej
2π
T tk

X [k] =
1
T

∫ T
2

−T2
x (t) e−(j 2π

T tk)dt

Here the basis elements comes from a countably-in�nite set, parameterized by the frequency index k ∈ Z.
The coe�cients {X [k]} |∞k=−∞ specify the strength of the corresponding basis elements within signal x (t).

Though quite popular, Fourier analysis is not always the best tool to analyze a signal whose characteristics
vary with time. For example, consider a signal composed of a periodic component plus a sharp "glitch" at
time t0, illustrated in time- and frequency-domains, Figure 3.1.

Figure 3.1

Fourier analysis is successful in reducing the complicated-looking periodic component into a few simple
parameters: the frequencies {Ω1,Ω2} and their corresponding magnitudes/phases. The glitch component,
described compactly in terms of the time-domain location t0 and amplitude, however, is not described
e�ciently in the frequency domain since it produces a wide spread of frequency components. Thus, neither
time- nor frequency-domain representations alone give an e�cient description of the glitched periodic signal:
each representation distills only certain aspects of the signal.

As another example, consider the linear chirp x (t) = sin
(
Ωt2
)
illustrated in Figure 3.2.
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Figure 3.2

Though written using the sin (·) function, the chirp is not described by a single Fourier frequency. We
might try to be clever and write

sin
(
Ωt2
)

= sin (Ωt · t) = sin (Ω (t) · t)

where it now seems that signal has an instantaneous frequency Ω (t) = Ωt which grows linearly in time.
But here we must be cautious! Our newly-de�ned instantaneous frequency Ω (t) is not consistent with the
Fourier notion of frequency. Recall that the CTFT says that a signal can be constructed as a superposition of
�xed-frequency basis elements ejΩt with time support from −∞ to + (∞); these elements are evenly spread
out over all time, and so there is noting instantaneous about Fourier frequency! So, while instantaneous
frequency gives a compact description of the linear chirp, Fourier analysis is not capable of uncovering this
simple structure.

As a third example, consider a sinusoid of frequency Ω0 that is rectangularly windowed to extract only
one period (Figure 3.3).

Figure 3.3

Instantaneous-frequency arguments would claim that

x (t) = sin (Ω (t) · t) , Ω (t) =

 Ω0 if t ∈ window

0 if t /∈ window
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where Ω (t) takes on exactly two distinct "frequency" values. In contrast, Fourier theory says that rectangular
windowing induces a frequency-domain spreading by a sin(Ω)

Ω pro�le, resulting in a continuum of Fourier
frequency components. Here again we see that Fourier analysis does not e�ciently decompose signals whose
"instantaneous frequency" varies with time.

3.1.3 Time-Frequency Uncertainty Principle3

Recall that Fourier basis elements bΩ (t) = ejΩt exhibit poor time localization abilities - a consequence of
the fact that bΩ (t) is evenly spread over all t ∈ (−∞,∞). By time localization we mean the ability to
clearly identify signal events which manifest during a short time interval, such as the "glitch" described in
an earlier example.

At the opposite extreme, a basis composed of shifted Dirac deltas bτ (t) = ∆ (t− τ) would have excellent
time localization but terrible "frequency localization," since every Dirac basis element is evenly spread over
all Fourier frequencies Ω ∈ [−∞,∞]. This can be seen via |Bτ (Ω) | = |

∫∞
−∞ bτ (t) e−(jΩt)dt| = 1 ∀ (Ω),

regardless of τ . By frequency localization we mean the ability to clearly identify signal components
which are concentrated at particular Fourier frequencies, such as sinusoids.

These observations motivate the question: does there exist a basis that provides both excellent frequency
localization and excellent time localization? The answer is "not really": there is a fundamental tradeo�
between the time localization and frequency localization of any basis element. This idea is made concrete
below.

Let us consider an arbitrary waveform, or basis element, b (t). Its CTFT will be denoted by B (Ω). De�ne
the energy of the waveform to be E, so that (by Parseval's theorem)

E =
∫ ∞
−∞

(|b (t) |)2
dt =

1
2π

∫ ∞
−∞

(|B (Ω) |)2
dΩ

Next, de�ne the temporal and spectral centers 4 as

tc =
1
E

∫ ∞
−∞

t(|b (t) |)2
dt

Ωc =
1

2πE

∫ ∞
−∞

Ω(|B (Ω) |)2
dΩ

and the temporal and spectral widths 5 as

∆t =

√
1
E

∫ ∞
−∞

(t− tc)2(|b (t) |)2
dt

∆Ω =

√
1

2πE

∫ ∞
−∞

(Ω− Ωc)
2(|B (Ω) |)2

dΩ

If the waveform is well-localized in time, then b (t) will be concentrated at the point tc and ∆t will be small.
If the waveform is well-localized in frequency, then B (Ω) will be concentrated at the point Ωc and ∆Ω will be
small. If the waveform is well-localized in both time and frequency, then ∆t∆Ω will be small. The quantity
∆t∆Ω is known as the time-bandwidth product.

From the de�nitions above one can derive the fundamental properties below. When interpreting the
properties, it helps to think of the waveform b (t) as a prototype that can be used to generate an entire basis
set. For example, the Fourier basis {bΩ (t) , bΩ (t) | −∞ < Ω <∞} can be generated by frequency shifts of
b (t) = 1, while the Dirac basis {bτ (t) | −∞ < τ <∞} bτ (t) can be generated by time shifts of b (t) = δ (t)

3This content is available online at <http://cnx.org/content/m10416/2.18/>.
4It may be interesting to note that both 1

E
(|b (t) |)2 and 1

2πE
(|B (Ω) |)2 are non-negative and integrate to one, thereby

satisfying the requirements of probability density functions for random variables t and Ω. The temporal/spectral centers can
then be interpreted as the means (i.e., centers of mass) of t and Ω.

5The quantities ∆t
2 and ∆Ω

2 can be interpreted as the variances of t and Ω, respectively.
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1. ∆t and ∆Ω are invariant to time and frequency 6 shifts.

∆t (b (t)) = ∆t (b (t− t0)) , t0 ∈ R

∆Ω (B (Ω)) = ∆Ω (B (Ω− Ω0)) , Ω0 ∈ R

This implies that all basis elements constructed from time and/or frequency shifts of a prototype
waveform b (t) will inherit the temporal and spectral widths of b (t).

2. The time-bandwidth product ∆t∆Ω is invariant to time-scaling. 7

∆t (b (at)) =
1
|a|

∆t (b (t))

∆Ω (b (at)) = |a|∆Ω (b (t))

The above two equations imply

∆t∆Ω (b (at)) = ∆t∆Ω (b (t)) , a ∈ R

Observe that time-domain expansion (i.e., |a| < 1) increases the temporal width but decreases the
spectral width, while time-domain contraction (i.e., |a| > 1) does the opposite. This suggests that
time-scaling might be a useful tool for the design of a basis element with a particular tradeo� between
time and frequency resolution. On the other hand, scaling cannot simultaneously increase both time
and frequency resolution.

3. No waveform can have time-bandwidth product less than 1
2 .

∆t∆Ω ≥
1
2

This is known as the time-frequency uncertainty principle.
4. The Gaussian pulse g (t) achieves the minimum time-bandwidth product ∆t∆Ω = 1

2 .

g (t) =
1√
2π
e−( 1

2 t
2)

G (Ω) = e−( 1
2 Ω2)

Note that this waveform is neither bandlimited nor time-limited, but reasonable concentrated in both
domains (around the points tc = 0 and Ωc = 0).

Properties 1 and 2 can be easily veri�ed using the de�nitions above. Properties 3 and 4 follow from the
Cauchy-Schwarz inequality8.

Since the Gaussian pulse g (t) achieves the minimum time-bandwidth product, it makes for a theoretically
good prototype waveform. In other words, we might consider constructing a basis from time shifted, frequency
shifted, time scaled, or frequency scaled versions of g (t) to give a range of spectral/temporal centers and
spectral/temporal resolutions. Since the Gaussian pulse has doubly-in�nite time-support, though, other
windows are used in practice. Basis construction from a prototype waveform is the main concept behind
Short-Time Fourier Analysis (Section 3.1.4) and the continuous Wavelet transform (Section 3.1.5) discussed
later.

6Keep in mind the fact that b (t) and B (Ω) =
R∞
−∞ b (t) e−(jΩt)dt are alternate descriptions of the same waveform; we could

have written ∆Ω

`
b (t) ejΩ0t

´
in place of ∆Ω (B (Ω− Ω0)) above.

7The invariance property holds also for frequency scaling, as implied by the Fourier transform property b (at)⇔ 1
|a|B

“
Ω
a

”
.

8"Cauchy-Schwarz Inequality" <http://cnx.org/content/m10757/latest/>
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3.1.4 Short-time Fourier Transform9

We saw earlier that Fourier analysis is not well suited to describing local changes in "frequency content"
because the frequency components de�ned by the Fourier transform have in�nite (i.e., global) time support.
For example, if we have a signal with periodic components plus a glitch at time t0, we might want accurate
knowledge of both the periodic component frequencies and the glitch time (Figure 3.4).

Figure 3.4

The Short-Time Fourier Transform (STFT) provides a means of joint time-frequency analysis. The STFT
pair can be written

XSTFT (Ω, τ) =
∫ ∞
−∞

x (t)w (t− τ) e−(jΩt)dt

x (t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

XSTFT (Ω, τ)w (t− τ) ejΩtdΩdt

assuming real-valued w (t) for which
∫

(|w (t) |)2
dt = 1. The STFT can be interpreted as a "sliding window

CTFT": to calculate XSTFT (Ω, τ), slide the center of window w (t) to time τ , window the input signal, and
compute the CTFT of the result (Figure 3.5 ("Sliding Window CTFT")).

9This content is available online at <http://cnx.org/content/m10417/2.14/>.
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"Sliding Window CTFT"

ftomega(t−tau)

ft

omega(t−tau)

Figure 3.5

The idea is to isolate the signal in the vicinity of time τ , then perform a CTFT analysis in order to
estimate the "local" frequency content at time τ .

Essentially, the STFT uses the basis elements

bΩ,τ (t) = w (t− τ) ejΩt

over the range t ∈ (−∞,∞) and Ω ∈ (−∞,∞). This can be understood as time and frequency shifts of the
window function w (t). The STFT basis is often illustrated by a tiling of the time-frequency plane, where
each tile represents a particular basis element (Figure 3.6):
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deltaomega

t

omega
deltat

Figure 3.6

The height and width of a tile represent the spectral and temporal widths of the basis element, respec-
tively, and the position of a tile represents the spectral and temporal centers of the basis element. Note that,
while the tiling diagram (Figure 3.6) suggests that the STFT uses a discrete set of time/frequency shifts,
the STFT basis is really constructed from a continuum of time/frequency shifts.

Note that we can decrease spectral width ∆Ω at the cost of increased temporal width ∆t by stretching
basis waveforms in time, although the time-bandwidth product ∆t∆Ω (i.e., the area of each tile) will remain
constant (Figure 3.7).

deltat

alpha > 1

deltat

deltaomega deltaomega

Figure 3.7

Our observations can be summarized as follows:

• the time resolutions and frequency resolutions of every STFT basis element will equal those of the
window w (t). (All STFT tiles have the same shape.)

• the use of a wide window will give good frequency resolution but poor time resolution, while the use
of a narrow window will give good time resolution but poor frequency resolution. (When tiles are
stretched in one direction they shrink in the other.)

• The combined time-frequency resolution of the basis, proportional to 1
∆t∆Ω

, is determined not by

window width but by window shape. Of all shapes, the Gaussian 10 w (t) = 1√
2π
e−( 1

2 t
2) gives the

10The STFT using a Gaussian window is known as the Gabor Transform (1946).
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highest time-frequency resolution, although its in�nite time-support makes it impossible to implement.
(The Gaussian window results in tiles with minimum area.)

Finally, it is interesting to note that the STFT implies a particular de�nition of instantaneous frequency.
Consider the linear chirp x (t) = sin

(
Ω0t

2
)
. From casual observation, we might expect an instantaneous

frequency of Ω0τ at time τ since

sin
(
Ω0t

2
)

= sin (Ω0τt) , t = τ

The STFT, however, will indicate a time-τ instantaneous frequency of

d

dt

(
Ω0t

2
)
|t=τ = 2Ω0τ

Caution: The phase-derivative interpretation of instantaneous frequency only makes sense for
signals containing exactly one sinusoid, though! In summary, always remember that the traditional
notion of "frequency" applies only to the CTFT; we must be very careful when bending the notion
to include, e.g., "instantaneous frequency", as the results may be unexpected!

3.1.5 Continuous Wavelet Transform11

The STFT provided a means of (joint) time-frequency analysis with the property that spectral/temporal
widths (or resolutions) were the same for all basis elements. Let's now take a closer look at the implications
of uniform resolution.

Consider two signals composed of sinusoids with frequency 1 Hz and 1.001 Hz, respectively. It may be
di�cult to distinguish between these two signals in the presence of background noise unless many cycles are
observed, implying the need for a many-second observation. Now consider two signals with pure frequencies
of 1000 Hz and 1001 Hz-again, a 0.1% di�erence. Here it should be possible to distinguish the two signals
in an interval of much less than one second. In other words, good frequency resolution requires longer
observation times as frequency decreases. Thus, it might be more convenient to construct a basis whose
elements have larger temporal width at low frequencies.

The previous example motivates a multi-resolution time-frequency tiling of the form (Figure 3.8):

11This content is available online at <http://cnx.org/content/m10418/2.14/>.
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t

omega

a_small

a_large

Figure 3.8

The Continuous Wavelet Transform (CWT) accomplishes the above multi-resolution tiling by time-scaling
and time-shifting a prototype function ψ (t), often called the mother wavelet. The a-scaled and τ -shifted
basis elements is given by

ψa,τ (t) =
1√
|a|
ψ

(
t− τ
a

)
where

a τ ∈ R∫ ∞
−∞

ψ (t) dt = 0

Cψ =
∫ ∞
−∞

(|ψ (Ω) |)2

|Ω|
dΩ <∞

The conditions above imply that ψ (t) is bandpass and su�ciently smooth. Assuming that ‖ ψ (t) ‖= 1, the
de�nition above ensures that ‖ ψa,τ (t) ‖= 1 for all a and τ . The CWT is then de�ned by the transform
pair

XCWT (a, τ) =
∫ ∞
−∞

x (t)ψa,τ (t)∗dt

x (t) =
1
Cψ

∫ ∞
−∞

∫ ∞
−∞

XCWT (a, τ)ψa,τ (t)
a2

dτda

In basis terms, the CWT says that a waveform can be decomposed into a collection of shifted and stretched
versions of the mother wavelet ψ (t). As such, it is usually said that wavelets perform a "time-scale" analysis
rather than a time-frequency analysis.

The Morlet wavelet is a classic example of the CWT. It employs a windowed complex exponential as
the mother wavelet:

ψ (t) =
1√
2π
e−(jΩ0t)e−

t2
2

Ψ (Ω) = e−
(Ω−Ω0)2

2
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where it is typical to select Ω0 = π
√

2
log2 . (See illustration (Figure 3.9).) While this wavelet does not exactly

satisfy the conditions established earlier, since Ψ (0) ' 7× 10−7 6= 0, it can be corrected, though in practice
the correction is negligible and usually ignored.

Figure 3.9

While the CWT discussed above is an interesting theoretical and pedagogical tool, the discrete wavelet
transform (DWT) is much more practical. Before shifting our focus to the DWT, we take a step back and
review some of the basic concepts from the branch of mathematics known as Hilbert Space theory (Vector
Space (Section 3.2.2), Normed Vector Space (Section 3.2.3), Inner Product Space (Section 3.2.4), Hilbert
Space (Section 3.2.5), Projection Theorem12). These concepts will be essential in our development of the
DWT.

3.2 Hilbert Space Theory

3.2.1 Hilbert Space Theory13

Hilbert spaces provide the mathematical foundation for signal processing theory. In this section we attempt
to clearly de�ne some key Hilbert space concepts like vectors (Section 3.2.2), norms (Section 3.2.3), inner
products (Section 3.2.4), subspaces (Section 3.2.5), orthogonality (Section 3.2.5), orthonormal bases (Sec-
tion 3.2.5), and projections (Section 3.2.5). The intent is not to bury you in mathematics, but to familiarize
you with the terminology, provide intuition, and leave you with a "lookup table" for future reference.

3.2.2 Vector Space14

• A vector space consists of the following four elements:

12"Projection Theorem" <http://cnx.org/content/m10435/latest/>
13This content is available online at <http://cnx.org/content/m11007/2.1/>.
14This content is available online at <http://cnx.org/content/m10419/2.13/>.
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a. A set of vectors V ,
b. A �eld of scalars F (where, for our purposes, F is either R or C),
c. The operations of vector addition "+" (i.e., + : V × V → V )
d. The operation of scalar multiplication "·"(i.e., · : F× V → V )

for which the following properties hold. (Assume
−
x

−
y

−
z∈ V and α β ∈ F.)

Properties Examples

commutativity
−
x +

−
y=
−
y +

−
x

associativity

(
−
x +

−
y

)
+
−
z=
−
x +

(
−
y +

−
z

)
(αβ)

−
x= α

(
β
−
x
)

distributivity
α ·
(
−
x +

−
y

)
=
(
α· −x

)
+
(
α·
−
y

)
(α+ β)

−
x= α

−
x +β

−
x

additive identity ∃0, 0 ∈ V :
(−
x +0 =

−
x
)

,
−
x∈ V

additive inverse ∃−x−,
(
− −x

)
∈ V :

(−
x +− −x= 0

)
,
−
x∈ V

multiplicative identity 1· −x=
−
x ,

−
x∈ V

Table 3.1

Important examples of vector spaces include

Properties Examples

real N -vectors V = RN , F = R

complex N -vectors V = CN , F = C

sequences in "lp" V =
{
x [n] | ∃n ∈ Z :

(∑∞
n=−∞ (|x [n] |)p <∞

)}
, F = C

functions in "Lp" V =
{
f (t) |

∫∞
−∞ (|f (t) |)pdt <∞

}
, F = C

Table 3.2

where we have assumed the usual de�nitions of addition and multiplication. From now on, we will denote
the arbitrary vector space (V , F, +, ·) by the shorthand V and assume the usual selection of (F, +, ·). We
will also suppress the "·" in scalar multiplication, so that α · x becomes αx.

• A subspace of V is a subset M ⊂ V for which

a.

(
−
x +

−
y

)
∈M ,

−
x∈M

−
y∈M

b. α
−
x∈M ,

−
x∈M α ∈ F

note: Note that every subspace must contain 0, and that V is a subspace of itself.

• The span of set S ⊂ V is the subspace of V containing all linear combinations of vectors in S. When

S =
{−
x0, . . . ,

−
xN−1

}
,

span (S) :=

{
N−1∑
i=0

αixi | αi ∈ F

}
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• A subset of linearly-independent vectors
{−
x0, . . . ,

−
xN−1

}
⊂ V is called a basis for V when its span

equals V . In such a case, we say that V has dimension N . We say that V is in�nite-dimensional
15 if it contains an in�nite number of linearly independent vectors.

• V is a direct sum of two subspaces M and N , written V = M ⊕ N , i� every
−
x∈ V has a unique

representation
−
x=
−
m +

−
n for

−
m∈M and

−
n∈ N .

note: Note that this requires M ∩N = {0}

3.2.3 Normed Vector Space16

Now we equip a vector space V with a notion of "size".

• A norm is a function ( ‖ · ‖: V → R) such that the following properties hold ( ,
−
x∈ V

−
y∈ V and

, α ∈ F ):

a. ‖−x‖≥ 0 with equality i�
−
x= 0

b. ‖ α −x‖= |α|· ‖−x‖
c. ‖−x +

−
y‖≤‖−x‖ + ‖

−
y‖, (the triangle inequality).

In simple terms, the norm measures the size of a vector. Adding the norm operation to a vector space
yields a normed vector space. Important example include:

a. V = RN , ‖ (x0, . . . , xN−1)T ‖:=
√∑N−1

i=0 xi2 :=

√
−
x
T −
x

b. V = CN , ‖ (x0, . . . , xN−1)T ‖:=
√∑N−1

i=0 (|xi|)2 :=

√
−
x
H −
x

c. V = lp, ‖ {x [n]} ‖:=
(∑∞

n=−∞ (|x [n] |)p
) 1
p

d. V = Lp, ‖ f (t) ‖:=
(∫∞
−∞ (|f (t) |)pdt

) 1
p

3.2.4 Inner Product Space17

Next we equip a normed vector space V with a notion of "direction".

• An inner product is a function ( (< ·, · >: V × V ) → C) such that the following properties hold (

,
−
x∈ V

−
y∈ V −

z∈ V and , α ∈ F ):

a. <
−
x,
−
y>= <

(
−
y,
−
x

)
>
∗

b. <
−
x, α

−
y>= α <

(
−
x,
−
y

)
> ...implying that < α

−
x,
−
y>= α∗ <

(
−
x,
−
y

)
>

c. <
−
x,
−
y +

−
z>=<

−
x,
−
y> + <

−
x,
−
z>

d. <
−
x,
−
x>≥ 0 with equality i�

−
x= 0

In simple terms, the inner product measures the relative alignment between two vectors. Adding
an inner product operation to a vector space yields an inner product space. Important examples
include:

15The de�nition of an in�nite-dimensional basis would be complicated by issues relating to the convergence of in�nite series.
Hence we postpone discussion of in�nite-dimensional bases until the Hilbert Space (Section 3.2.5) section.

16This content is available online at <http://cnx.org/content/m10428/2.14/>.
17This content is available online at <http://cnx.org/content/m10430/2.13/>.
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a. V = RN , <−x,
−
y>:=

−
x
T −
y

b. V = CN , <−x,
−
y>:=

−
x
H −
y

c. V = l2, < {x [n]} , {y [n]} >:=
∑∞
n=−∞ x [n]∗y [n]

d. V = L2, < f (t) , g (t) >:=
∫∞
−∞ f (t)∗g (t) dt

The inner products above are the "usual" choices for those spaces.
The inner product naturally de�nes a norm:

‖−x‖:=
√
<
−
x,
−
x>

though not every norm can be de�ned from an inner product. 18 Thus, an inner product space can be
considered as a normed vector space with additional structure. Assume, from now on, that we adopt the
inner-product norm when given a choice.

• The Cauchy-Schwarz inequality says

| <−x,
−
y> | ≤‖−x‖‖

−
y‖

with equality i� ∃α ∈ F :
(
−
x= α

−
y

)
.

When <

(
−
x,
−
y

)
>∈ R, the inner product can be used to de�ne an "angle" between vectors:

cos (θ) =
<
−
x,
−
y>

‖−x‖‖
−
y‖

• Vectors
−
x and

−
y are said to be orthogonal, denoted as

−
x⊥
−
y , when <

−
x,
−
y>= 0. The Pythagorean

theorem says: (
‖−x +

−
y‖
)2

=
(
‖−x‖

)2

+
(
‖
−
y‖
)2

,
−
x⊥
−
y

Vectors
−
x and

−
y are said to be orthonormal when

−
x⊥
−
y and ‖−x‖=‖

−
y‖= 1.

• −
x⊥ S means

−
x⊥
−
y for all

−
y∈ S. S is an orthogonal set if

−
x⊥
−
y for all

−
x

−
y∈ S s.t.

−
x 6=
−
y . An

orthogonal set S is an orthonormal set if ‖−x‖= 1 for all
−
x∈ S. Some examples of orthonormal sets

are

a. R3 : S =




1

0

0

 ,


0

1

0




b. CN : Subsets of columns from unitary matrices
c. l2 : Subsets of shifted Kronecker delta functions S ⊂ {{δ [n− k]} | k ∈ Z}
d. L2 : S =

{
1√
T
f (t− nT ) | n ∈ Z

}
for unit pulse f (t) = u (t)− u (t− T ), unit step u (t)

where in each case we assume the usual inner product.

18An example for inner product space L2 would be any norm ‖
−
f ‖:= p

qR∞
−∞ (|f (t) |)pdt such that p > 2.
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3.2.5 Hilbert Spaces19

Now we consider inner product spaces with nice convergence properties that allow us to de�ne countably-
in�nite orthonormal bases.

• A Hilbert space is a complete inner product space. A complete 20 space is one where all Cauchy
sequences converge to some vector within the space. For sequence {xn} to be Cauchy, the distance
between its elements must eventually become arbitrarily small:

∃N ε :
(
‖ −xn −

−
xm ‖< ε , (n ≥ Nε) (m ≥ Nε)

)
, ε > 0

For a sequence {xn} to be convergent to x, the distance between its elements and
−
x must eventually

become arbitrarily small:

∃N ε :
(
‖ −xn − x ‖<

−
ε , n ≥ Nε

)
, ε > 0

Examples are listed below (assuming the usual inner products):

a. V = RN
b. V = CN
c. V = l2 (i.e., square summable sequences)
d. V = L2 (i.e., square integrable functions)

• We will always deal with separable Hilbert spaces, which are those that have a countable 21 orthonor-

mal (ON) basis. A countable orthonormal basis for V is a countable orthonormal set S =
{−
xk

}
such that every vector in V can be represented as a linear combination of elements in S:

∃α k :

(
−
y=

∑
k

αk
−
xk

)
,
−
y∈ V

Due to the orthonormality of S, the basis coe�cients are given by

αk =<
−
xk,
−
y>

We can see this via:

<
−
xk,
−
y>=<

−
xk, limit

n→∞

n∑
i=0

αi
−
xi >= limit

n→∞
<
−
xk,

n∑
i=0

αi
−
xi >= limit

n→∞

n∑
i=0

αi <
(−
xk,
−
xi

)
>= αk

where δ [k − i] =<
−
xk,
−
xi > (where the second equality invokes the continuity of the inner product).

In �nite n-dimensional spaces (e.g., Rn or Cn), any n-element ON set constitutes an ON basis. In
in�nite-dimensional spaces, we have the following equivalences:

a.
{−
x0,
−
x1,
−
x2, . . .

}
is an ON basis

b. If <
−
xi,
−
y>= 0 for all i, then

−
y= 0

c.

(
‖
−
y‖
)2

=
∑
i

(
| < −xi,

−
y> |

)2

,
−
y∈ V (Parseval's theorem)

19This content is available online at <http://cnx.org/content/m10434/2.11/>.
20The rational numbers provide an example of an incomplete set. We know that it is possible to construct a sequence of

rational numbers which approximate an irrational number arbitrarily closely. It is easy to see that such a sequence will be
Cauchy. However, the sequence will not converge to any rational number, and so the rationals cannot be complete.

21A countable set is a set with at most a countably-in�nite number of elements. Finite sets are countable, as are any sets
whose elements can be organized into an in�nite list. Continuums (e.g., intervals of R) are uncountably in�nite.
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d. Every
−
y∈ V is a limit of a sequence of vectors in span

({−
x0,
−
x1,
−
x2, . . .

})
Examples of countable ON bases for various Hilbert spaces include:

a. Rn:
{−
e0, . . . ,

−
eN−1

}
for
−
ei =

(
0 . . . 0 1 0 . . . 0

)T
with "1" in the ith position

b. Cn: same as Rn
c. l2: {{δi [n]} | i ∈ Z}, for {δi [n]} := {δ [n− i]} (all shifts of the Kronecker sequence)
d. L2: to be constructed using wavelets ...

• Say S is a subspace of Hilbert space V . The orthogonal complement of S in V, denoted S⊥, is

the subspace de�ned by the set
{−
x∈ V | −x⊥ S

}
. When S is closed, we can write V = S ⊕ S⊥

• The orthogonal projection of y onto S, where S is a closed subspace of V , is

ŷ =
∑
ii

<

(
−
xi,
−
y

)
>
−
xi

s.t.
{−
xi

}
is an ON basis for S. Orthogonal projection yields the best approximation of

−
y in S:

ŷ = argmin
−
x∈S
‖
−
y − −x‖

The approximation error
−
e:=

−
y −ŷ obeys the orthogonality principle:

−
e⊥ S

We illustrate this concept using V = R3 (Figure 3.10) but stress that the same geometrical interpreta-
tion applies to any Hilbert space.

Figure 3.10

A proof of the orthogonality principle is:

−
e⊥ S ⇔<−e,−xi >= 0
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<
−
y −ŷ,−xi >= 0

<
−
y,
−
xi > = < ŷ,

−
xi >

= <
∑
jj <

(
−
xj ,
−
y

)
>
−
xj ,
−
xi >

=
∑
jj <

(
−
xj ,
−
y

)
>
∗

<
(−
xj ,
−
xi

)
>

=
∑
jj <

(
−
y,
−
xj

)
> δi−j

= <
−
y,
−
xi >

(3.1)

3.3 Discrete Wavelet Transform

3.3.1 Discrete Wavelet Transform: Main Concepts22

3.3.1.1 Main Concepts

The discrete wavelet transform (DWT) is a representation of a signal x (t) ∈ L2 using an orthonormal ba-
sis consisting of a countably-in�nite set of wavelets. Denoting the wavelet basis as {ψk,n (t) | k ∈ Z n ∈ Z},
the DWT transform pair is

x (t) =
∞∑

k=−∞

∞∑
n=−∞

dk,nψk,n (t) (3.2)

dk,n = < ψk,n (t) , x (t) >

=
∫∞
−∞ ψk,n (t)∗x (t) dt

(3.3)

where {dk,n} are the wavelet coe�cients. Note the relationship to Fourier series and to the sampling
theorem: in both cases we can perfectly describe a continuous-time signal x (t) using a countably-in�nite
(i.e., discrete) set of coe�cients. Speci�cally, Fourier series enabled us to describe periodic signals using
Fourier coe�cients {X [k] | k ∈ Z}, while the sampling theorem enabled us to describe bandlimited signals
using signal samples {x [n] | n ∈ Z}. In both cases, signals within a limited class are represented using a
coe�cient set with a single countable index. The DWT can describe any signal in L2 using a coe�cient set
parameterized by two countable indices: {dk,n | k ∈ Z n ∈ Z}.

Wavelets are orthonormal functions in L2 obtained by shifting and stretching a mother wavelet,
ψ (t) ∈ L2. For example,

ψk,n (t) = 2−
k
2ψ
(
2−kt− n

)
, k n ∈ Z (3.4)

de�nes a family of wavelets {ψk,n (t) | k ∈ Z n ∈ Z} related by power-of-two stretches. As k increases, the
wavelet stretches by a factor of two; as n increases, the wavelet shifts right.

note: When ‖ ψ (t) ‖= 1, the normalization ensures that ‖ ψk,n (t) ‖= 1 for all k ∈ Z, n ∈ Z.

Power-of-two stretching is a convenient, though somewhat arbitrary, choice. In our treatment of the discrete
wavelet transform, however, we will focus on this choice. Even with power-of two stretches, there are various
possibilities for ψ (t), each giving a di�erent �avor of DWT.

Wavelets are constructed so that {ψk,n (t) | n ∈ Z} (i.e., the set of all shifted wavelets at �xed scale k),
describes a particular level of 'detail' in the signal. As k becomes smaller (i.e., closer to −∞), the wavelets

22This content is available online at <http://cnx.org/content/m10436/2.12/>.
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become more "�ne grained" and the level of detail increases. In this way, the DWT can give a multi-
resolution description of a signal, very useful in analyzing "real-world" signals. Essentially, the DWT gives
us a discrete multi-resolution description of a continuous-time signal in L2.

In the modules that follow, these DWT concepts will be developed "from scratch" using Hilbert space
principles. To aid the development, we make use of the so-called scaling function φ (t) ∈ L2, which will be
used to approximate the signal up to a particular level of detail. Like with wavelets, a family of scaling
functions can be constructed via shifts and power-of-two stretches

φk,n (t) = 2−
k
2 φ
(
2−kt− n

)
, k n ∈ Z (3.5)

given mother scaling function φ (t). The relationships between wavelets and scaling functions will be
elaborated upon later via theory (Section 3.3.5) and example (Section 3.3.2).

note: The inner-product expression for dk,n, (3.3) is written for the general complex-valued case.
In our treatment of the discrete wavelet transform, however, we will assume real-valued signals
and wavelets. For this reason, we omit the complex conjugations in the remainder of our DWT
discussions

3.3.2 The Haar System as an Example of DWT23

The Haar basis is perhaps the simplest example of a DWT basis, and we will frequently refer to it in our
DWT development. Keep in mind, however, that the Haar basis is only an example; there are many
other ways of constructing a DWT decomposition.

For the Haar case, the mother scaling function is de�ned by (3.6) and Figure 3.11.

φ (t) =

 1 if 0 ≤ t < 1

0 otherwise
(3.6)

Figure 3.11

From the mother scaling function, we de�ne a family of shifted and stretched scaling functions {φk,n (t)}
according to (3.7) and Figure 3.12

φk,n (t) = 2−
k
2 φ
(
2−kt− n

)
, k ∈ Z n ∈ Z

= 2−
k
2 φ
(

1
2k

(
t− n2k

)) (3.7)

23This content is available online at <http://cnx.org/content/m10437/2.10/>.
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Figure 3.12

which are illustrated in Figure 3.13 for various k and n. (3.7) makes clear the principle that incrementing n
by one shifts the pulse one place to the right. Observe from Figure 3.13 that {φk,n (t) | n ∈ Z} is orthonormal
for each k (i.e., along each row of �gures).

Figure 3.13
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3.3.3 A Hierarchy of Detail in the Haar System24

Given a mother scaling function φ (t) ∈ L2 � the choice of which will be discussed later � let us construct
scaling functions at "coarseness-level-k” and "shift-n" as follows:

φk,n (t) = 2−
k
2 φ
(
2−kt− n

)
.

Let us then use Vk to denote the subspace de�ned by linear combinations of scaling functions at the kth

level:
Vk = span ({φk,n (t) | n ∈ Z}) .

In the Haar system, for example, V0 and V1 consist of signals with the characteristics of x0 (t) and x1 (t)
illustrated in Figure 3.14.

Figure 3.14

We will be careful to choose a scaling function φ (t) which ensures that the following nesting property is
satis�ed:

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . .

coarse←− −→ detailed

In other words, any signal in Vk can be constructed as a linear combination of more detailed signals in
Vk−1 . (The Haar system gives proof that at least one such φ (t) exists.)

The nesting property can be depicted using the set-theoretic diagram, Figure 3.15, where V−1 is repre-
sented by the contents of the largest egg (which includes the smaller two eggs), V0 is represented by the
contents of the medium-sized egg (which includes the smallest egg), and V1 is represented by the contents
of the smallest egg.

24This content is available online at <http://cnx.org/content/m11012/2.3/>.
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Figure 3.15

Going further, we will assume that φ (t) is designed to yield the following three important properties:

1. {φk,n (t) | n ∈ Z} constitutes an orthonormal basis for Vk,
2. V∞ = {0} (contains no signals). 25

3. V−∞ = L2 (contains all signals).

Because {φk,n (t) | n ∈ Z} is an orthonormal basis, the best (in L2 norm) approximation of x (t) ∈ L2 at
coarseness-level-k is given by the orthogonal projection, Figure 3.16

xk (t) =
∞∑

n=−∞
ck,nφk,n (t) (3.8)

ck,n =< φk,n (t) , x (t) > (3.9)

25While at �rst glance it might seem that V∞ should contain non-zero constant signals (e.g., x (t) = a for a ∈ R), the only
constant signal in L2 , the space of square-integrable signals, is the zero signal.
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Figure 3.16

We will soon derive conditions on the scaling function φ (t) which ensure that the properties above are
satis�ed.

3.3.4 Haar Approximation at the kth Coarseness Level26

It is instructive to consider the approximation of signal x (t) ∈ L2 at coarseness-level-k of the Haar system.
For the Haar case, projection of x (t) ∈ L2 onto Vk is accomplished using the basis coe�cients

ck,n =
∫∞
−∞ φk,n (t)x (t) dt

=
∫ (n+1)2k

n2k
2−

k
2 x (t) dt

(3.10)

giving the approximation

xk (t) =
∑∞
n=−∞ ck,nφk,n (t)

=
∑∞
n=−∞

∫ (n+1)2k

n2k
2−

k
2 x (t) dtφk,n (t)

=
∑∞
n=−∞

1
2k

∫ (n+1)2k

n2k
x (t) dt

(
2
k
2 φk,n (t)

) (3.11)

where
1
2k

∫ (n+1)2k

n2k
x (t) dt = average value of x(t) in interval

2
k
2 φk,n (t) = height = 1

This corresponds to taking the average value of the signal in each interval of width 2k and approximating
the function by a constant over that interval (see Figure 3.17).

26This content is available online at <http://cnx.org/content/m11013/2.2/>.
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Figure 3.17

3.3.5 The Scaling Equation27

Consider the level-1 subspace and its orthonormal basis:

V1 = span ({φ1,n (t) | n ∈ Z}) (3.12)

φ1,n (t) =
1√
2
φ

(
1
2
t− n

)
(3.13)

Since V1 ⊂ V0 (i.e., V0 is more detailed than V1 ) and since φ1,0 (t) ∈ V0 , there must exist coe�cients
{h [n] | n ∈ Z} such that

φ1,0 (t) =
∞∑

n=−∞
h [n]φ0,n (t) (3.14)

⇔ 1√
2
φ

(
1
2
t

)
=

∞∑
n=−∞

h [n]φ (t− n) (3.15)

Scaling Equation

φ (t) =
√

2
∞∑

n=−∞
h [n]φ (2t− n) (3.16)

To be a valid scaling function, φ (t) must obey the scaling equation for some coe�cient set {h [n]}.

3.3.6 The Wavelet Scaling Equation28

The di�erence in detail between Vk and Vk−1 will be described using Wk , the orthogonal complement of
Vk in Vk−1:

Vk−1 = Vk ⊕Wk (3.17)

27This content is available online at <http://cnx.org/content/m10476/2.7/>.
28This content is available online at <http://cnx.org/content/m11014/2.2/>.
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At times it will be convenient to write Wk = V ⊥k . This concept is illustrated in the set-theoretic diagram,
Figure 3.18.

Figure 3.18

Suppose now that, for each k ∈ Z, we construct an orthonormal basis for Wk and denote it by
{ψk,n (t) | n ∈ Z}. It turns out that, because every Vk has a basis constructed from shifts and stretches

of a mother scaling function (i.e., φk,n (t) = 2−
k
2 φ
(
2−kt− n

)
, every Wk has a basis that can be constructed

from shifts and stretches of a "mother wavelet" ψ (t) ∈ L2:

ψk,n (t) = 2−
k
2ψ
(
2−kt− n

)
.

The Haar system will soon provide us with a concrete example .
Let's focus, for the moment, on the speci�c case k = 1. Since W1 ⊂ V0, there must exist {g [n] | n ∈ Z}

such that:

ψ1,0 (t) =
∞∑

n=−∞
g [n]φ0,n (t) (3.18)

⇔ 1√
2
ψ

(
1
2
t

)
=

∞∑
n=−∞

g [n]φ (t− n)

Wavelet Scaling Equation

ψ (t) =
√

2
∞∑

n=−∞
g [n]φ (2t− n) (3.19)

To be a valid scaling-function/wavelet pair, φ (t) and ψ (t) must obey the wavelet scaling equation for some
coe�cient set {g [n]}.

3.3.7 Conditions on h[n] and g[n]29

Here we derive su�cient conditions on the coe�cients used in the scaling equation and wavelet scaling
equation that ensure, for every k ∈ Z, that the sets {φk,n (t) | n ∈ Z} and {ψk,n (t) | n ∈ Z} have the or-
thonormality properties described in The Scaling Equation (Section 3.3.5) and The Wavelet Scaling Equation
(Section 3.3.6).

29This content is available online at <http://cnx.org/content/m11015/2.2/>.
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For {φk,n (t) | n ∈ Z} to be orthonormal at all k, we certainly need orthonormality when k = 1. This is
equivalent to

δ [m] = < φ1,0 (t) , φ1,m (t) >

= <
∑
n h [n]φ (t− n) ,

∑
` h [`]φ (t− `− 2m) >

=
∑
n h [n]

∑
` h [`] < (φ (t− n) , φ (t− `− 2m)) >

(3.20)

where δ [n− `+ 2m] =< φ (t− n) , φ (t− `− 2m) >

δ [m] =
∞∑

n=−∞
h [n]h [n− 2m] (3.21)

There is an interesting frequency-domain interpretation of the previous condition. If we de�ne

p [m] = h [m] ∗ h [−m]

=
∑
n h [n]h [n−m]

(3.22)

then we see that our condition is equivalent to p [2m] = δ [m]. In the z-domain, this yields the pair of
conditions

Power-Symmetry Property
P (z) = H (z)H

(
z−1
)

(3.23)

1 = 1/2
1∑
p=0

P
(
z1/2ej

2π
2 p
)

= 1/2P
(
z1/2

)
+ 1/2P

(
−z1/2

)
Putting these together,

2 = H
(
z1/2

)
H
(
z−1/2

)
+H

(
−z1/2

)
H
(
−z−1/2

)
(3.24)

⇔ 2 = H (z)H
(
z−1
)

+H (−z)H
(
−z−1

)
⇔ 2 =

(
|H
(
ejω
)
|
)2

+
(
|H
(
ej(π−ω)

)
|
)2

where the last property invokes the fact that h [n] ∈ R and that real-valued impulse responses yield conjugate-
symmetric DTFTs. Thus we �nd that h [n] are the impulse response coe�cients of a power-symmetric �lter.
Recall that this property was also shared by the analysis �lters in an orthogonal perfect-reconstruction FIR
�lterbank.

Given orthonormality at level k = 0, we have now derived a condition on h [n] which is necessary
and su�cient for orthonormality at level k = 1. Yet the same condition is necessary and su�cient for
orthonormality at level k = 2:

δ [m] = < φ2,0 (t) , φ2,m (t) >

= <
∑
n h [n]φ1,n (t) ,

∑
` h [`]φ1,`+2m (t) >

=
∑
n h [n]

∑
` h [`] < (φ1,n (t) , φ1,`+2m (t)) >

=
∑∞
n=−∞ h [n]h [n− 2m]

(3.25)

where δ [n− `+ 2m] =< φ1,n (t) , φ1,`+2m (t) >. Using induction, we conclude that the previous condition
will be necessary and su�cient for orthonormality of {φk,n (t) | n ∈ Z} for all k ∈ Z.
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To �nd conditions on {g [n]} ensuring that the set {ψk,n (t) | n ∈ Z} is orthonormal at every k, we can
repeat the steps above but with g [n] replacing h [n], ψk,n (t) replacing φk,n (t), and the wavelet-scaling
equation replacing the scaling equation. This yields

δ [m] =
∞∑

n=−∞
g [n] g [n− 2m] (3.26)

⇔ 2 = G (z)G
(
z−1
)

+G (−z)G
(
−z−1

)
Next derive a condition which guarantees that Wk ⊥ Vk, as required by our de�nition Wk = V ⊥k , for all
k ∈ Z. Note that, for any k ∈ Z, Wk ⊥ Vk is guaranteed by {ψk,n (t) | n ∈ Z} ⊥ {φk,n (t) | n ∈ Z} which is
equivalent to

0 = < ψk+1,0 (t) , φk+1,m (t) >

= <
∑
n g [n]φk,n (t) ,

∑
` h [`]φk,`+2m (t) >

=
∑
n g [n]

∑
` h [`] < (φk,n (t) , φk,`+2m (t)) >

=
∑
n g [n]h [n− 2m]

(3.27)

for all m where δ [n− `+ 2m] =< φk,n (t) , φk,`+2m (t) >. In other words, a 2-downsampled version of
g [n] ∗ h [−n] must consist only of zeros. This necessary and su�cient condition can be restated in the
frequency domain as

0 = 1/2
1∑
p=0

G
(
z1/2e−(j 2π

2 p)
)
H
(
z−1/2ej

2π
2 p
)

(3.28)

⇔ 0 = G
(
z1/2

)
H
(
z−1/2

)
+G

(
−z1/2

)
H
(
−z−1/2

)
⇔ 0 = G (z)H

(
z−1
)

+G (−z)H
(
−z−1

)
The choice

G (z) = ±
(
z−PH

(
(−z)−1

))
(3.29)

satis�es our condition, since

G (z)H
(
z−1
)

+G (−z)H
(
−z−1

)
= ±

(
z−PH

(
(−z)−1

)
H
(
z−1
))
∓ z−PH

(
z−1
)
H
(

(−z)−1
)

= 0

In the time domain, the condition on G (z) and H (z) can be expressed

g [n] = ± (−1nh [P − n]) . (3.30)

Recall that this property was satis�ed by the analysis �lters in an orthogonal perfect reconstruction FIR
�lterbank.

Note that the two conditions
G (z) = ±

(
z−PH

(
(−z)−1

))
2 = H (z)H

(
z−1
)

+H (−z)H
(
−z−1

)
are su�cient to ensure that both {φk,n (t) | n ∈ Z} and {ψk,n (t) | n ∈ Z} are orthonormal for all k and that
Wk ⊥ Vk for all k, since they satisfy the condition 2 = G (z)G

(
z−1
)

+G (−z)G
(
−z−1

)
automatically.
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3.3.8 Values of g[n] and h[n] for the Haar System30

The coe�cients {h [n]} were originally introduced at describe φ1,0 (t) in terms of the basis for V0:

φ1,0 (t) =
∑
n

h [n]φ0,n (t) .

From the previous equation we �nd that

< φ0,m (t) , φ1,0 (t) > = < φ0,m (t) ,
∑
n h [n]φ0,n (t) >

=
∑
n h [n] < (φ0,m (t) , φ0,n (t)) >

= h [m]

(3.31)

where δ [n−m] =< φ0,m (t) , φ0,n (t) >, which gives a way to calculate the coe�cients {h [m]} when we
know φk,n (t).

In the Haar case

h [m] =
∫∞
−∞ φ0,m (t)φ1,0 (t) dt

=
∫m+1

m
φ1,0 (t) dt

=

 1√
2

if m ∈ {0, 1}

0 otherwise

(3.32)

since φ1,0 (t) = 1√
2
in the interval [0, 2) and zero otherwise. Then choosing P = 1 in g [n] = −1nh (P − n),

we �nd that

g [n] =


1√
2

if 0

− 1√
2

if 1

0 otherwise

for the Haar system. From the wavelet scaling equation

ψ (t) =
√

2
∑
n

g [n]φ (2t− n) = φ (2t)− φ (2t− 1)

we can see that the Haar mother wavelet and scaling function look like in Figure 3.19:

Figure 3.19

30This content is available online at <http://cnx.org/content/m11016/2.2/>.
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It is now easy to see, in the Haar case, how integer shifts of the mother wavelet describe the di�erences
between signals in V−1 and V0 (Figure 3.20):

Figure 3.20

We expect this because V−1 = V0 ⊕W0.

3.3.9 Wavelets: A Countable Orthonormal Basis for the Space of Square-
Integrable Functions31

Recall that Vk = Wk+1 ⊕ Vk+1 and that Vk+1 = Wk+2 ⊕ Vk+2. Putting these together and extending the
idea yields

Vk = Wk+1 ⊕Wk+2 ⊕ Vk+2

= Wk+1 ⊕Wk+2 ⊕ · · · ⊕W` ⊕ V`
= Wk+1 ⊕Wk+2 ⊕Wk+3 ⊕ . . .
=

∞
⊕

i=k+1
(Wi)

(3.33)

If we take the limit as k → −∞, we �nd that

L2 = V−∞

=
∞
⊕

i=−∞
(Wi)

(3.34)

Moreover,
(W1 ⊥ V1) (Wk≥2 ⊂ V1)⇒ (W1 ⊥Wk≥2) (3.35)

31This content is available online at <http://cnx.org/content/m11017/2.2/>.
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(W2 ⊥ V2) (Wk≥3 ⊂ V2)⇒ (W2 ⊥Wk≥3) (3.36)

from which it follows that
Wk ⊥Wj 6=k (3.37)

or, in other words, all subspaces Wk are orthogonal to one another. Since the functions {ψk,n (t) | n ∈ Z}
form an orthonormal basis for Wk , the results above imply that

{ψk,n (t) | n k ∈ Z} constitutes an orthonormal basis forL2 (3.38)

This implies that, for any f (t) ∈ L2, we can write

f (t) =
∞∑

k=−∞

∞∑
m=−∞

dk [m]ψk,m (t) (3.39)

dk [m] =< ψk,m (t) , f (t) > (3.40)

This is the key idea behind the orthogonal wavelet system that we have been developing!

3.3.10 Filterbanks Interpretation of the Discrete Wavelet Transform32

Assume that we start with a signal x (t) ∈ L2. Denote the best approximation at the 0th level of coarseness
by x0 (t). (Recall that x0 (t) is the orthogonal projection of x (t) onto V0 .) Our goal, for the moment, is
to decompose x0 (t) into scaling coe�cients and wavelet coe�cients at higher levels. Since x0 (t) ∈ V0 and
V0 = V1 ⊕W1, there exist coe�cients {c0 [n]}, {c1 [n]}, and {d1 [n]} such that

x0 (t) =
∑
nn c0 [n]φ0,n (t)

=
∑
nn c1 [n]φ1,n [t] +

∑
nn d1 [n]ψ1,n [t]

(3.41)

Using the fact that {φ1,n (t) | n ∈ Z} is an orthonormal basis for V1 , in conjunction with the scaling
equation,

c1 [n] = < x0 (t) , φ1,n (t) >

= <
∑
mm c0 [m]φ0,m (t) , φ1,n (t) >

=
∑
mm c0 [m] < (φ0,m (t) , φ1,n (t)) >

=
∑
mm c0 [m] < (φ (t−m) ,

∑
`` h [`]φ (t− `− 2n)) >

=
∑
mm c0 [m]

∑
`` h [`] < (φ (t−m) , φ (t− `− 2n)) >

=
∑
mm c0 [m]h [m− 2n]

(3.42)

where δ [t− `− 2n] =< φ (t−m) , φ (t− `− 2n) >. The previous expression ((3.42)) indicates that {c1 [n]}
results from convolving {c0 [m]} with a time-reversed version of h [m] then downsampling by factor two
(Figure 3.21).

Figure 3.21

32This content is available online at <http://cnx.org/content/m10474/2.6/>.
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Using the fact that {ψ1,n (t) | n ∈ Z} is an orthonormal basis for W1 , in conjunction with the wavelet
scaling equation,

d1 [n] = < x0 (t) , ψ1,n (t) >

= <
∑
mm c0 [m]φ0,m (t) , ψ1,n (t) >

=
∑
mm c0 [m] < (φ0,m (t) , ψ1,n (t)) >

=
∑
mm c0 [m] < (φ (t−m) ,

∑
`` g [`]φ (t− `− 2n)) >

=
∑
mm c0 [m]

∑
`` g [`] < (φ (t−m) , φ (t− `− 2n)) >

=
∑
mm c0 [m] g [m− 2n]

(3.43)

where δ [t− `− 2n] =< φ (t−m) , φ (t− `− 2n) >.
The previous expression ((3.43)) indicates that {d1 [n]} results from convolving {c0 [m]} with a time-

reversed version of g [m] then downsampling by factor two (Figure 3.22).

Figure 3.22

Putting these two operations together, we arrive at what looks like the analysis portion of an FIR
�lterbank (Figure 3.23):

Figure 3.23

We can repeat this process at the next higher level. Since V1 = W2 ⊕ V2, there exist coe�cients {c2 [n]}
and {d2 [n]} such that

x1 (t) =
∑
nn c1 [n]φ1,n (t)

=
∑
nn d2 [n]ψ2,n (t) +

∑
nn c2 [n]φ2,n (t)

(3.44)
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Using the same steps as before we �nd that

c2 [n] =
∑
mm

c1 [m]h [m− 2n] (3.45)

d2 [n] =
∑
mm

c1 [m] g [m− 2n] (3.46)

which gives a cascaded analysis �lterbank (Figure 3.24):

Figure 3.24

If we use V0 = W1 ⊕W2 ⊕W3 ⊕ · · · ⊕Wk ⊕ Vk to repeat this process up to the kth level, we get the
iterated analysis �lterbank (Figure 3.25).
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Figure 3.25

As we might expect, signal reconstruction can be accomplished using cascaded two-channel synthesis
�lterbanks. Using the same assumptions as before, we have:

c0 [m] = < x0 (t) , φ0,m (t) >

= <
∑
nn c1 [n]φ1,n (t) +

∑
nn d1 [n]ψ1,n (t) , φ0,m (t) >

=
∑
nn c1 [n] < (φ1,n (t) , φ0,m (t)) > +

∑
nn d1 [n] < (ψ1,n (t) , φ0,m (t)) >

=
∑
nn c1 [n]h [m− 2n] +

∑
nn d1 [n] g [m− 2n]

(3.47)

where h [m− 2n] =< φ1,n (t) , φ0,m (t) >

and g [m− 2n] =< ψ1,n (t) , φ0,m (t) >

which can be implemented using the block diagram in Figure 3.26.

Figure 3.26
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The same procedure can be used to derive

c1 [m] =
∑
nn

c2 [n]h [m− 2n] +
∑
nn

d2 [n] g [m− 2n] (3.48)

from which we get the diagram in Figure 3.27.

Figure 3.27

To reconstruct from the kth level, we can use the iterated synthesis �lterbank (Figure 3.28).

Figure 3.28

The table (Table 3.3) makes a direct comparison between wavelets and the two-channel orthogonal PR-
FIR �lterbanks.
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Discrete Wavelet Transform 2-Channel Orthogonal PR-
FIR Filterbank

Analysis-LPF H
(
z−1
)

H0 (z)

Power Symmetry H (z)H
(
z−1
)

+
H (−z)H

(
−z−1

)
= 2

H0 (z)H0

(
z−1
)

+
H0 (−z)H0

(
−z−1

)
= 1

Analysis HPF G
(
z−1
)

H1 (z)

Spectral Reverse G (z) =
±
(
z−PH

(
−z−1

))
, P is odd

H1 (z) =
±
(
z−(N−1)H0

(
−z−1

))
, N is even

Synthesis LPF H (z) G0 (z) = 2z−(N−1)H0

(
z−1
)

Synthesis HPF G (z) G1 (z) = 2z−(N−1)H1

(
z−1
)

Table 3.3

From the table, we see that the discrete wavelet transform that we have been developing is identical to
two-channel orthogonal PR-FIR �lterbanks in all but a couple details.

1. Orthogonal PR-FIR �lterbanks employ synthesis �lters with twice the gain of the analysis �lters,
whereas in the DWT the gains are equal.

2. Orthogonal PR-FIR �lterbanks employ causal �lters of length N , whereas the DWT �lters are not
constrained to be causal.

For convenience, however, the wavelet �lters H (z) and G (z) are usually chosen to be causal. For both to
have even impulse response length N , we require that P = N − 1.

3.3.11 Initialization of the Wavelet Transform33

The �lterbanks developed in the module on the �lterbanks interpretation of the DWT (Section 3.3.10) start
with the signal representation {c0 [n] | n ∈ Z} and break the representation down into wavelet coe�cients
and scaling coe�cients at lower resolutions (i.e., higher levels k). The question remains: how do we get the
initial coe�cients {c0 [n]}?

From their de�nition, we see that the scaling coe�cients can be written using a convolution:

c0 [n] = < φ (t− n) , x (t) >

=
∫∞
−∞ φ (t− n)x (t) dt

= φ (−t) ∗ x (t) |t=n′

(3.49)

which suggests that the proper initialization of wavelet transform is accomplished by passing the continuous-
time input x (t) through an analog �lter with impulse response φ (−t) and sampling its output at integer
times (Figure 3.29).

33This content is available online at <http://cnx.org/content/m11018/2.2/>.
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Figure 3.29

Practically speaking, however, it is very di�cult to build an analog �lter with impulse response φ (−t)
for typical choices of scaling function.

The most often-used approximation is to set c0 [n] = x [n]. The sampling theorem implies that this

would be exact if φ (t) = sin(πt)
πt , though clearly this is not correct for general φ (t). Still, this technique is

somewhat justi�ed if we adopt the view that the principle advantage of the wavelet transform comes from
the multi-resolution capabilities implied by an iterated perfect-reconstruction �lterbank (with good �lters).

3.3.12 Regularity Conditions, Compact Support, and Daubechies' Wavelets34

Here we give a quick description of what is probably the most popular family of �lter coe�cients h [n] and
g [n] � those proposed by Daubechies.

Recall the iterated synthesis �lterbank. Applying the Noble identities, we can move the up-samplers
before the �lters, as illustrated in Figure 3.30.

34This content is available online at <http://cnx.org/content/m10495/2.8/>.
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Figure 3.30

The properties of the i-stage cascaded lowpass �lter

H(i) (z) =
i−1∏
k=0

H
(
z2k
)

, i ≥ 1 (3.50)

in the limit i → ∞ give an important characterization of the wavelet system. But how do we know that
limit
i→∞

H(i)
(
ejω
)
converges to a response in L2 ? In fact, there are some rather strict conditions on H

(
ejω
)

that must be satis�ed for this convergence to occur. Without such convergence, we might have a �nite-stage
perfect reconstruction �lterbank, but we will not have a countable wavelet basis for L2 . Below we present
some "regularity conditions" on H

(
ejω
)
that ensure convergence of the iterated synthesis lowpass �lter.

note: The convergence of the lowpass �lter implies convergence of all other �lters in the bank.

Let us denote the impulse response of H(i) (z) by h(i) [n]. Writing

H(i) (z) = H
(
z2i−1

)
H(i−1) (z)

in the time domain, we have

h(i) [n] =
∑
kk

h [k]h(i−1)
[
n− 2i−1k

]
Now de�ne the function

φ(i) (t) = 2
i
2

∑
nn

h(i) [n] I[n/2i,n+1/2i) (t)

where I[a,b) (t) denotes the indicator function over the interval [a, b):

I[a,b) (t) =

 1 if t ∈ [a, b)

0 if t /∈ [a, b)
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The de�nition of φ(i) (t) implies

h(i) [n] = 2−
i
2φ(i) (t) , t ∈

[
n

2i
,
n+ 1

2i

)
(3.51)

h(i−1)
[
n− 2i−1k

]
= 2−

i−1
2 φ(i−1) (2t− k) , t ∈

[
n

2i
,
n+ 1

2i

)
(3.52)

and plugging the two previous expressions into the equation for h(i) [n] yields

φ(i) (t) =
√

2
∑
kk

h [k]φ(i−1) [2t− k] . (3.53)

Thus, if φ(i) (t) converges pointwise to a continuous function, then it must satisfy the scaling equation, so
that limit

i→∞
φ(i) (t) = φ (t). Daubechies[3] showed that, for pointwise convergence of φ(i) (t) to a continuous

function in L2 , it is su�cient that H
(
ejω
)
can be factored as

H
(
ejω
)

=
√

2
(

1 + ejω

2

)P
R
(
ejω
)
, P ≥ 1 (3.54)

for R
(
ejω
)
such that

sup
ω

(
|R
(
ejω
)
|
)
< 2P−1 (3.55)

Here P denotes the number of zeros that H
(
ejω
)
has at ω = π. Such conditions are called regularity

conditions because they ensure the regularity, or smoothness of φ (t). In fact, if we make the previous
condition stronger:

sup
ω

(
|R
(
ejω
)
|
)
< 2P−1−` , ` ≥ 1 (3.56)

then limit
i→∞

φ(i) (t) = φ (t) for φ (t) that is `-times continuously di�erentiable.

There is an interesting and important by-product of the preceding analysis. If h [n] is a causal length-N
�lter, it can be shown that h(i) [n] is causal with length N i = 2i (N − 1) + 1. By construction, then, φ(i) [t]
will be zero outside the interval

[
0, 2i(N−1)+1

2i

)
. Assuming that the regularity conditions are satis�ed so

that limit
i→∞

φ(i) (t) = φ (t), it follows that φ (t) must be zero outside the interval [0, N − 1]. In this case

we say that φ (t) has compact support. Finally, the wavelet scaling equation implies that, when φ (t)
is compactly supported on [0, N − 1] and g [n] is length N , ψ (t) will also be compactly supported on the
interval [0, N − 1].

Daubechies constructed a family ofH (z) with impulse response lengths N ∈ {4, 6, 8, 10, . . . } which satisfy
the regularity conditions. Moreover, her �lters have the maximum possible number of zeros at ω = π, and
thus are maximally regular (i.e., they yield the smoothest possible φ (t) for a given support interval). It
turns out that these �lters are the maximally �at �lters derived by Herrmann[4] long before �lterbanks
and wavelets were in vogue. In Figure 3.31 and Figure 3.32 we show φ (t), Φ (Ω), ψ (t), and Ψ (Ω) for various
members of the Daubechies' wavelet system.

See Vetterli and Kovacivi¢[11] for a more complete discussion of these matters.
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(a)

(b)

Figure 3.31

(a)

(b)

Figure 3.32
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3.3.13 Computing the Scaling Function: The Cascade Algorithm35

Given coe�cients {h [n]} that satisfy the regularity conditions, we can iteratively calculate samples of φ (t)
on a �ne grid of points {t} using the cascade algorithm. Once we have obtained φ (t), the wavelet scaling
equation can be used to construct ψ (t).

In this discussion we assume that H (z) is causal with impulse response length N . Recall, from our
discussion of the regularity conditions (p. 94), that this implies φ (t) will have compact support on the
interval [0, N − 1]. The cascade algorithm is described below.

1. Consider the scaling function at integer times t = m ∈ {0, . . . , N − 1}:

φ (m) =
√

2
N−1∑
n=0

h (n)φ (2m− n)

Knowing that φ (t) = 0 for t /∈ [0, N − 1], the previous equation can be written using an NxN matrix.
In the case where N = 4, we have

φ (0)

φ (1)

φ (2)

φ (3)

 =
√

2


h [0] 0 0 0

h [2] h [1] h [0] 0

0 h [3] h [2] h [1]

0 0 0 h [3]




φ (0)

φ (1)

φ (2)

φ (3)

 (3.57)

where H =


h [0] 0 0 0

h [2] h [1] h [0] 0

0 h [3] h [2] h [1]

0 0 0 h [3]


The matrix H is structured as a row-decimated convolution matrix. From the matrix equation
above ((3.57)), we see that (φ (0) , φ (1) , φ (2) , φ (3))T must be (some scaled version of) the eigenvector

of H corresponding to eigenvalue
(√

2
)−1

. In general, the nonzero values of {φ (n) | n ∈ Z}, i.e.,
(φ (0) , φ (1) , . . . , φ (N − 1))T , can be calculated by appropriately scaling the eigenvector of the NxN

row-decimated convolution matrix H corresponding to the eigenvalue
(√

2
)−1

. It can be shown that

this eigenvector must be scaled so that
∑N−1
n=0 φ (n) = 1.

2. Given {φ (n) | n ∈ Z}, we can use the scaling equation to determine
{
φ
(
n
2

)
| n ∈ Z

}
:

φ
(m

2

)
=
√

2
N−1∑
n=0

h [n]φ (m− n) (3.58)

This produces the 2N − 1 non-zero samples {φ (0) , φ (1/2) , φ (1) , φ (3/2) , . . . , φ (N − 1)}.
3. Given

{
φ
(
n
2

)
| n ∈ Z

}
, the scaling equation can be used to �nd

{
φ
(
n
4

)
| n ∈ Z

}
:

φ
(
m
4

)
=
√

2
∑N−1
n=0 h [n]φ

(
m
2 − n

)
=
√

2
∑
pp even h

[
p
2

]
φ
(
m−p

2

)
=
√

2
∑
pp h↑2 [p]φ 1

2
[m− p]

(3.59)

where h↑2 [p] denotes the impulse response of H
(
z2
)
, i.e., a 2-upsampled version of h [n], and where

φ 1
2

[m] = φ
(
m
2

)
. Note that

{
φ
(
n
4

)
| n ∈ Z

}
is the result of convolving h↑2 [n] with

{
φ 1

2
[n]
}
.

35This content is available online at <http://cnx.org/content/m10486/2.6/>.
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4. Given
{
φ
(
n
4

)
| n ∈ Z

}
, another convolution yields

{
φ
(
n
8

)
| n ∈ Z

}
:

φ
(
m
8

)
=
√

2
∑N−1
n=0 h [n]φ

(
m
4 − n

)
=
√

2
∑
pp h↑4 [p]φ 1

4
[m− p]

(3.60)

where h↑4 [n] is a 4-upsampled version of h [n] and where φ 1
4

[m] = φ
(
m
4

)
.

5. At the `th stage,
{
φ
(
n
2`

)}
is calculated by convolving the result of the `− 1th stage with a 2`−1-

upsampled version of h [n]:

φ 1
2`

(m) =
√

2
∑
pp

h↑2`−1 [p]φ 1
2`−1

[m− p] (3.61)

For ` ' 10, this gives a very good approximation of φ (t). At this point, you could verify the key properties
of φ (t), such as orthonormality and the satisfaction of the scaling equation.

In Figure 3.33 we show steps 1 through 5 of the cascade algorithm, as well as step 10, using Daubechies'
db2 coe�cients (for which N = 4).
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Figure 3.33

3.3.14 Finite-Length Sequences and the DWT Matrix36

The wavelet transform, viewed from a �lterbank perspective, consists of iterated 2-channel analysis stages
like the one in Figure 3.34.

36This content is available online at <http://cnx.org/content/m10459/2.6/>.
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Figure 3.34

First consider a very long (i.e., practically in�nite-length) sequence {ck [m] | m ∈ Z}. For every pair of
input samples {ck [2n] , ck [2n− 1]} that enter the kth �lterbank stage, exactly one pair of output samples
{ck+1 [n] , dk+1 [n]} are generated. In other words, the number of output equals the number of input during
a �xed time interval. This property is convenient from a real-time processing perspective.

For a short sequence {ck [m] | m ∈ {0, . . . ,M − 1}}, however, linear convolution requires that we make
an assumption about the tails of our �nite-length sequence. One assumption could be

ck [m] = 0 , m ∈ {0, . . . ,M − 1} (3.62)

In this case, the linear convolution implies thatM nonzero inputs yield M+N
2 −1 outputs from each branch,

for a total of 2
(
M+N

2 − 1
)

= M + N − 2 > M outputs. Here we have assumed that both H
(
z−1
)
and

G
(
z−1
)
have impulse response lengths of N > 2, and that M and N are both even. The fact that each

�lterbank stage produces more outputs than inputs is very disadvantageous in many applications.
A more convenient assumption regarding the tails of {ck [m] | m ∈ {0, . . . ,M − 1}} is that the data

outside of the time window {0, . . . ,M − 1} is a cyclic extension of data inside the time window. In other
words, given a length-M sequence, the points outside the sequence are related to points inside the
sequences via

ck [m] = ck [m+M ] (3.63)

Recall that a linear convolution with an M -cyclic input is equivalent to a circular convolution with one
M -sample period of the input sequences. Furthermore, the output of this circular convolution is itself M -
cyclic, implying our 2-downsampled branch outputs are cyclic with period M

2 . Thus, given an M -length
input sequence, the total �lterbank output consists of exactly M values.

It is instructive to write the circular-convolution analysis �terbank operation in matrix form. In (3.64)
we give an example for �lter length N = 4, sequence length N = 8, and causal synthesis �lters H (z) and
G (z). 

ck+1 [0]

ck+1 [1]

ck+1 [2]

ck+1 [3]

dk+1 [0]

dk+1 [1]

dk+1 [2]

dk+1 [3]


=



h [0] h [1] h [2] h [3] 0 0 0 0

0 0 h [0] h [1] h [2] h [3] 0 0

0 0 0 0 h [0] h [1] h [2] h [3]

h [2] h [3] 0 0 0 0 h [0] h [1]

g [0] g [1] g [2] g [3] 0 0 0 0

0 0 g [0] g [1] g [2] g [3] 0 0

0 0 0 0 g [0] g [1] g [2] g [3]

g [2] g [3] 0 0 0 0 g [0] g [1]





ck [0]

ck [1]

ck [2]

ck [3]

ck [4]

ck [5]

ck [6]

ck [7]


(3.64)
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where

 ck+1

dk+1

 =



ck+1 [0]

ck+1 [1]

ck+1 [2]

ck+1 [3]

dk+1 [0]

dk+1 [1]

dk+1 [2]

dk+1 [3]



 HM

GM

 =



h [0] h [1] h [2] h [3] 0 0 0 0

0 0 h [0] h [1] h [2] h [3] 0 0

0 0 0 0 h [0] h [1] h [2] h [3]

h [2] h [3] 0 0 0 0 h [0] h [1]

g [0] g [1] g [2] g [3] 0 0 0 0

0 0 g [0] g [1] g [2] g [3] 0 0

0 0 0 0 g [0] g [1] g [2] g [3]

g [2] g [3] 0 0 0 0 g [0] g [1]



ck =



ck [0]

ck [1]

ck [2]

ck [3]

ck [4]

ck [5]

ck [6]

ck [7]


The matrices HM and GM have interesting properties. For example, the conditions

δ [m] =
∑
nn

h [n]h [n− 2m]

g [n] = −1nh [N − 1− n]

imply that  HM

GM

T  HM

GM

 =

 HM

GM

 HM

GM

T

= IM

where IM denotes the MxM identity matrix. Thus, it makes sense to de�ne the MxM DWT matrix as

TM =

 HM

GM

 (3.65)
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whose transpose constitutes the MxM inverse DWT matrix:

TM
−1 = TM

T (3.66)

Since the synthesis �lterbank (Figure 3.35)

Figure 3.35

gives perfect reconstruction, and since the cascade of matrix operations TM
TTM also corresponds to

perfect reconstruction, we expect that the matrix operation TM
T describes the action of the synthesis

�lterbank. This is readily con�rmed by writing the upsampled circular convolutions in matrix form:

ck [0]

ck [1]

ck [2]

ck [3]

ck [4]

ck [5]

ck [6]

ck [7]


=



h [0] 0 0 h [2] g [0] 0 0 g [2]

h [1] 0 0 h [3] g [1] 0 0 g [3]

h [2] h [0] 0 0 g [2] g [0] 0 0

h [3] h [1] 0 0 g [3] g [1] 0 0

0 h [2] h [0] 0 0 g [2] g [0] 0

0 h [3] h [1] 0 0 g [3] g [1] 0

0 0 h [2] h [0] 0 0 g [2] g [0]

0 0 h [3] h [1] 0 0 g [3] g [1]





ck+1 [0]

ck+1 [1]

ck+1 [2]

ck+1 [3]

dk+1 [0]

dk+1 [1]

dk+1 [2]

dk+1 [3]


(3.67)

where

 HM
T

GM
T

 = TM
T =



h [0] 0 0 h [2] g [0] 0 0 g [2]

h [1] 0 0 h [3] g [1] 0 0 g [3]

h [2] h [0] 0 0 g [2] g [0] 0 0

h [3] h [1] 0 0 g [3] g [1] 0 0

0 h [2] h [0] 0 0 g [2] g [0] 0

0 h [3] h [1] 0 0 g [3] g [1] 0

0 0 h [2] h [0] 0 0 g [2] g [0]

0 0 h [3] h [1] 0 0 g [3] g [1]


So far we have concentrated on one stage in the wavelet decomposition; a two-stage decomposition is illus-
trated in Figure 3.36.
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Figure 3.36

The two-stage analysis operation (assuming circular convolution) can be expressed in matrix form as
ck+2

dk+2

dk+1

 =

 TM
2

0

0 IM
2

 ck+1

dk+1


=

 TM
2

0

0 IM
2

( TM

)(
ck

) (3.68)

Similarly, a three-stage analysis could be implemented via
ck+3

dk+3

dk+2

dk+1

 =


TM

4
0 0

0 IM
4

0

0 0 IM
2


 TM

2
0

0 IM
2

( TM

)(
ck

)
(3.69)

It should now be evident how to extend this procedure to 3 stages. As noted earlier, the corresponding
synthesis operations are accomplished by transposing the matrix products used in the analysis.

3.3.15 DWT Implementation using FFTs37

Finally, we say a few words about DWT implementation. Here we focus on a single DWT stage and assume
circular convolution, yielding an MxM DWT matrix TM . In the general case, MxM matrix multiplication
requiresM2 multiplications. The DWTmatrices, however, have a circular-convolution structure which allows
us to implement them using signi�cantly less multiplies. Below we present some simple and reasonably
e�cient approaches for the implementation of TM and TM

T .
We treat the inverse DWT �rst. Recall that in the lowpass synthesis branch, we upsample the input

before circularly convolving with H (z). Denoting the upsampled coe�cient sequence by a [n], fast circular
convolution a [n] ∗ h [n] can be described as follows (using Matlab notation)

37This content is available online at <http://cnx.org/content/m10999/2.1/>.
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ifft( fft(a).*fft(h,length(a)) )

where we have assumed that length(a) ≥ length(h). 38 The highpass branch is handled similarly using
G (z), after which the two branch outputs are summed.

Next we treat the forward DWT. Recall that in the lowpass analysis branch, we circularly convolve the
input with H

(
z−1
)
and then downsample the result. The fast circular convolution a [n] ∗ h [−n] can be

implemented using

wshift('1', ifft(fft(a).*fft(flipud(h),length(a))), length(h)-1 )

where wshift accomplishes a circular shift of the ifft output that makes up for the unwanted delay of
length(h)-1 samples imposed by the flipud operation. The highpass branch is handled similarly but with
�lter G

(
z−1
)
. Finally, each branch is downsampled by factor two.

We note that the proposed approach is not totally e�cient because downsampling is performed after
circular convolution (and upsampling before circular convolution). Still, we have outlined this approach
because it is easy to understand and still results in major saving when M is large: it converts the O

(
M2
)

matrix multiply into an O (M log2M) operation.

3.3.16 DWT Applications - Choice of phi(t)39

Transforms are signal processing tools that are used to give a clear view of essential signal characteristics.
Fourier transforms are ideal for in�nite-duration signals that contain a relatively small number of sinusoids:
one can completely describe the signal using only a few coe�cients. Fourier transforms, however, are not
well-suited to signals of a non-sinusoidal nature (as discussed earlier in the context of time-frequency analysis
(Section 3.1.2)). The multi-resolution DWT is a more general transform that is well-suited to a larger class
of signals. For the DWT to give an e�cient description of the signal, however, we must choose a wavelet
ψ (t) from which the signal can be constructed (to a good approximation) using only a few stretched and
shifted copies.

We illustrate this concept in Figure 3.37 using two examples. On the left, we analyze a step-like
waveform, while on the right we analyze a chirp-like waveform. In both cases, we try DWTs based
on the Haar and Daubechies db10 wavelets and plot the log magnitudes of the transform coe�cients[
ck
T , dk

T , dk−1
T , dk−2

T , . . . , d1
T
]
.

38When implementing the multi-level transform, you must ensure that the data length does not become shorter than the
�lter length!

39This content is available online at <http://cnx.org/content/m11004/2.1/>.
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Figure 3.37

Observe that the Haar DWT yields an extremely e�cient representation of the step-waveform: only a
few of the transform coe�cients are nonzero. The db10 DWT does not give an e�cient representation: many
coe�cients are sizable. This makes sense because the Haar scaling function is well matched to the step-like
nature of the time-domain signal. In contrast, the Haar DWT does not give an e�cient representation of
the chirp-like waveform, while the db10 DWT does better. This makes sense because the sharp edges of the
Haar scaling function do not match the smooth chirp signal, while the smoothness of the db10 wavelet yields
a better match.

3.3.17 DWT Application - De-noising40

Say that the DWT for a particular choice of wavelet yields an e�cient representation of a particular signal
class. In other words, signals in the class are well-described using a few large transform coe�cients.

Now consider unstructured noise, which cannot be ei�ciently represented by any transform, including
the DWT. Due to the orthogonality of the DWT, such noise sequences make, on average, equal contributions
to all transform coe�cients. Any given noise sequence is expected to yield many small-valued transform
coe�cients.

Together, these two ideas suggest a means of de-noising a signal. Say that we perform a DWT on a
signal from our well-matched signal class that has been corrupted by additive noise. We expect that large
transform coe�cients are composed mostly of signal content, while small transform coe�cients should be

40This content is available online at <http://cnx.org/content/m11000/2.1/>.
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composed mostly of noise content. Hence, throwing away the transform coe�cients whose magnitude is less
than some small threshold should improve the signal-to-noise ratio. The de-noising procedure is illustrated
in Figure 3.38.

Figure 3.38

Now we give an example of denoising a step-like waveform using the Haar DWT. In Figure 3.39, the
top right subplot shows the noisy signal and the top left shows it DWT coe�cients. Note the presence
of a few large DWT coe�cients, expected to contain mostly signal components, as well as the presence of
many small-valued coe�cients, expected to contain noise. (The bottom left subplot shows the DWT for the
original signal before any noise was added, which con�rms that all signal energy is contained within a few
large coe�cients.) If we throw away all DWT coe�cients whose magnitude is less than 0.1, we are left with
only the large coe�cients (shown in the middle left plot) which correspond to the de-noised time-domain
signal shown in the middle right plot. The di�erence between the de-noised signal and the original noiseless
signal is shown in the bottom right. Non-zero error results from noise contributions to the large coe�cients;
there is no way of distinguishing these noise components from signal components.
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Figure 3.39
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spectral factorization, 52
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subspace, � 3.2.2(69), 70
symmetry, � 3.3.7(82)
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T time localization, 62
time-bandwidth product, 62, 63
time-frequency, � 3.1.3(62)
Time-frequency analysis, � 3.1.4(63),
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time-frequency uncertainty principle, 63
transforms, � 3.1.1(59), 59
triangle inequality, 71
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U uncertainty principle, � 3.1.3(62), � 3.1.5(67)
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uniform �lterbanks, � 2.1.2(33)
unitary matrix, � 3.3.14(99)
upsampler, � 1.1.1(1), � 1.1.3(3)
upsampling, � 1.1.1(1), 1, � 1.1.3(3), � 1.1.7(8),
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V vector, � 3.2.2(69)
vector space, 69

W wavelet, � 3.3.1(75), � 3.3.2(76), � 3.3.6(81),

� 3.3.7(82), � 3.3.10(87), � 3.3.13(96)
wavelet coe�cients, � 3.3.5(81)
wavelet scaling equation, � 3.3.5(81)
wavelet transform, � 3.3.11(92)
wavelets, 75, 75, � 3.3.9(86), � 3.3.14(99)
well-matched, 105
window design, 53

Z zero-order hold, � 1.1.3(3)
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