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Discrete Mathematics/Introduction 1

Discrete Mathematics/Introduction
Mathematics can help you solve many problems by training you to think well. This book will help you think well
about discrete problems: problems like chess, in which the moves you make are exact, problems where tools like
calculus fail because there's no continuity, problems that appear all the time in games, puzzles, and computer
science.
We hope you'll enjoy discovering discrete mathematics here, and we hope you'll find this a good reference for
quickly picking up the details you'll forget with time.
../Set theory/ >

Notice to contributors: If you wish to contribute images of any kind that contains labels, please use the Arial font, italic, at 16pts for consistency.

Discrete Mathematics/Set theory
Set Theory starts very simply: it examines whether an object belongs, or does not belong, to a set of objects which
has been described in some non-ambiguous way. From this simple beginning, an increasingly complex (and useful!)
series of ideas can be developed, which lead to notations and techniques with many varied applications.

Definition of a Set
The definition of a set sounds very vague at first. A set can be defined as a collection of things that are brought
together because they obey a certain rule.
These 'things' may be anything you like: numbers, people, shapes, cities, bits of text ..., literally anything.
The key fact about the 'rule' they all obey is that it must be well-defined. In other words, it enables us to say for sure
whether or not a given 'thing' belongs to the collection. If the 'things' we're talking about are English words, for
example, a well-defined rule might be:

'... has 5 or more letters'
A rule which is not well-defined (and therefore couldn't be used to define a set) might be:

'... is hard to spell'

Elements
A 'thing' that belongs to a given set is called an element of that set. For example:

Henry VIII is an element of the set of Kings of England

Notation
Curly brackets are used to stand for the phrase 'the set of ...'. These braces can be used in various ways. For
example:

We may list the elements of a set:

We may describe the elements of a set:

We may use an identifier (the letter for example) to represent a typical element, a symbol to stand for the
phrase 'such that', and then the rule or rules that the identifier must obey:

http://en.wikibooks.org/w/index.php?title=Calculus
http://en.wikibooks.org/w/index.php?title=../Set_theory/
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or

The last way of writing a set - called set comprehension notation - can be generalized as:

, where is a statement (technically a propositional function) about and the set is the
collection of all elements for which is true.

The symbol is used as follows:

means 'is an element of ...'. For example: 
means 'is not an element of ...'. For example: 

A set can be finite: 
... or infinite: 
(Note the use of the ellipsis to indicate that the sequence of numbers continues indefinitely.)
Sets will usually be denoted using upper case letters: , , ...
Elements will usually be denoted using lower case letters: , , ...

Some Special Sets

Universal Set
The set of all the 'things' currently under discussion is called the universal set (or sometimes, simply the universe). It
is denoted by U.
The universal set doesn’t contain everything in the whole universe. On the contrary, it restricts us to just those things
that are relevant at a particular time. For example, if in a given situation we’re talking about numeric values –
quantities, sizes, times, weights, or whatever – the universal set will be a suitable set of numbers (see below). In
another context, the universal set may be {alphabetic characters} or {all living people}, etc.

Empty set

The set containing no elements at all is called the null set, or empty set. It is denoted by a pair of empty braces: 
or by the symbol .
It may seem odd to define a set that contains no elements. Bear in mind, however, that one may be looking for
solutions to a problem where it isn't clear at the outset whether or not such solutions even exist. If it turns out that
there isn't a solution, then the set of solutions is empty.
For example:

If then .
If then .

Operations on the empty set

Operations performed on the empty set (as a set of things to be operated upon) can also be confusing. (Such
operations are nullary operations.) For example, the sum of the elements of the empty set is zero, but the product of
the elements of the empty set is one (see empty product). This may seem odd, since there are no elements of the
empty set, so how could it matter whether they are added or multiplied (since “they” do not exist)? Ultimately, the
results of these operations say more about the operation in question than about the empty set. For instance, notice
that zero is the identity element for addition, and one is the identity element for multiplication.
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Some special sets of numbers
Several sets are used so often, they are given special symbols.

The natural numbers

The 'counting' numbers (or whole numbers) starting at 1, are called the natural numbers. This set is sometimes
denoted by N. So N = {0, 1, 2, 3, ...}
Note that, when we write this set by hand, we can't write in bold type so we write an N in blackboard bold font: 

Integers

All whole numbers, positive, negative and zero form the set of integers. It is sometimes denoted by Z. So Z = {..., -3,
-2, -1, 0, 1, 2, 3, ...}
In blackboard bold, it looks like this: 

Real numbers

If we expand the set of integers to include all decimal numbers, we form the set of real numbers. The set of reals is
sometimes denoted by R.
A real number may have a finite number of digits after the decimal point (e.g. 3.625), or an infinite number of
decimal digits. In the case of an infinite number of digits, these digits may:

recur; e.g. 8.127127127...

... or they may not recur; e.g. 3.141592653...
In blackboard bold: 

Rational numbers

Those real numbers whose decimal digits are finite in number, or which recur, are called rational numbers. The set
of rationals is sometimes denoted by the letter Q.
A rational number can always be written as exact fraction p/q; where p and q are integers. If q equals 1, the fraction
is just the integer p. Note that q may NOT equal zero as the value is then undefined.

For example: 0.5, -17, 2/17, 82.01, 3.282828... are all rational numbers.
In blackboard bold: 

Irrational numbers

If a number can't be represented exactly by a fraction p/q, it is said to be irrational.

Examples include: √2, √3, π.

Set Theory Exercise 1
Click the link for Set Theory Excercise 1

Relationships between Sets
We’ll now look at various ways in which sets may be related to one another.

Equality
Two sets A and B are said to be equal if and only if they have exactly the same elements. In this case, we simply
write:

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Set_theory/Exercises%23Set_Theory_Exercise_1
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A = B
Note two further facts about equal sets:

The order in which elements are listed does not matter.

If an element is listed more than once, any repeat occurrences are ignored.
So, for example, the following sets are all equal:

{1, 2, 3} = {3, 2, 1} = {1, 1, 2, 3, 2, 2}
(You may wonder why one would ever come to write a set like {1, 1, 2, 3, 2, 2}. You may recall that when we
defined the empty set we noted that there may be no solutions to a particular problem - hence the need for an empty
set. Well, here we may be trying several different approaches to solving a problem, some of which in fact lead us to
the same solution. When we come to consider the distinct solutions, however, any such repetitions would be
ignored.)

Subsets
If all the elements of a set A are also elements of a set B, then we say that A is a subset of B, and we write:

A ⊆ B
For example:

If T = {2, 4, 6, 8, 10} and E = {even integers}, then T ⊆ E

If A = {alphanumeric characters} and P = {printable characters}, then A ⊆ P

If Q = {quadrilaterals} and F = {plane figures bounded by four straight lines}, then Q ⊆ F
Notice that A ⊆ B does not imply that B must necessarily contain extra elements that are not in A; the two sets could
be equal – as indeed Q and F are above. However, if, in addition, B does contain at least one element that isn’t in A,
then we say that A is a proper subset of B. In such a case we would write:

A ⊂ B
In the examples above:

E contains 12, 14, ... , so T ⊂ E
P contains $, ;, &, ..., so A ⊂ P

But Q and F are just different ways of saying the same thing, so Q = F
The use of ⊂ and ⊆ is clearly analogous to the use of < and ≤ when comparing two numbers.
Notice also that every set is a subset of the universal set, and the empty set is a subset of every set.
(You might be curious about this last statement: how can the empty set be a subset of anything, when it doesn’t
contain any elements? The point here is that for every set A, the empty set doesn’t contain any elements that aren't
in A. So ø ⊆ A for all sets A.)
Finally, note that if A ⊆ B and B ⊆ A then A and B must contain exactly the same elements, and are therefore equal.
In other words:

If A ⊆ B and B ⊆ A then A = B
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Disjoint
Two sets are said to be disjoint if they have no elements in common. For example:

If A = {even numbers} and B = {1, 3, 5, 11, 19}, then A and B are disjoint.

Venn Diagrams
A Venn diagram can be a useful way of illustrating relationships between sets.
In a Venn diagram:

The universal set is represented by a rectangle. Points inside the rectangle represent elements that are in the
universal set; points outside represent things not in the universal set. You can think of this rectangle, then, as a
'fence' keeping unwanted things out - and concentrating our attention on the things we're talking about.

Other sets are represented by loops, usually oval or circular in shape, drawn inside the rectangle. Again, points
inside a given loop represent elements in the set it represents; points outside represent things not in the set.

Venn diagrams: Fig. 2

Venn diagrams: Fig. 1

On the left, the sets A and B are
disjoint, because the loops don't
overlap.

On the right A is a subset of B, because
the loop representing set A is entirely
enclosed by loop B.

http://en.wikibooks.org/w/index.php?title=File%3AVennSubset02.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennDisjoint.jpg
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Venn diagrams: Worked Examples

Venn diagrams: Fig. 3

Example 1

Fig. 3 represents a Venn diagram
showing two sets A and B, in the
general case where nothing is known
about any relationships between the
sets.

Note that the rectangle representing the
universal set is divided into four
regions, labelled i, ii, iii and iv.

What can be said about the sets A and
B if it turns out that:

(a) region ii is empty?
(b) region iii is empty?

(a) If region ii is empty, then A
contains no elements that are not in B. So A is a subset of B, and the diagram should be re-drawn like Fig 2 above.

(b) If region iii is empty, then A and B have no elements in common and are therefore disjoint. The diagram should
then be re-drawn like Fig 1 above.
Example 2

(a) Draw a Venn diagram to represent three sets A, B and C, in the general case where nothing is known about
possible relationships between the sets.
(b) Into how many regions is the rectangle representing U divided now?
(c) Discuss the relationships between the sets A, B and C, when various combinations of these regions are
empty.

Venn diagrams: Fig. 4

(a) The diagram in Fig. 4 shows the
general case of three sets where
nothing is known about any possible
relationships between them.

(b) The rectangle representing U is
now divided into 8 regions, indicated
by the Roman numerals i to viii.

(c) Various combinations of empty
regions are possible. In each case, the
Venn diagram can be re-drawn so that
empty regions are no longer included.
For example:

If region ii is empty, the loop
representing A should be made
smaller, and moved inside B and C to eliminate region ii.

If regions ii, iii and iv are empty, make A and B smaller, and move them so that they are both inside C (thus
eliminating all three of these regions), but do so in such a way that they still overlap each other (thus retaining
region vi).

http://en.wikibooks.org/w/index.php?title=File%3AVennTwoSetsGeneralCase.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennThreeSetsGeneralCase.jpg
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If regions iii and vi are empty, 'pull apart' loops A and B to eliminate these regions, but keep each loop
overlapping loop C.

...and so on. Drawing Venn diagrams for each of the above examples is left as an exercise for the reader.
Example 3

The following sets are defined:
U = {1, 2, 3, …, 10}
A = {2, 3, 7, 8, 9}
B = {2, 8}
C = {4, 6, 7, 10}

Using the two-stage technique described below, draw a Venn diagram to represent these sets, marking all the
elements in the appropriate regions.
The technique is as follows:

Draw a 'general' 3-set Venn diagram, like the one in Example 2.

Go through the elements of the universal set one at a time, once only, entering each one into the appropriate
region of the diagram.

Re-draw the diagram, if necessary, moving loops inside one another or apart to eliminate any empty regions.
Don't begin by entering the elements of set A, then set B, then C – you'll risk missing elements out or including them
twice!
Solution

After drawing the three empty loops in a diagram looking like Fig. 4 (but without the Roman numerals!), go through
each of the ten elements in U - the numbers 1 to 10 - asking each one three questions; like this:

Venn diagrams: Fig. 5

First element: 1
Are you in A? No
Are you in B? No
Are you in C? No

A 'no' to all three questions means that
the number 1 is outside all three loops.
So write it in the appropriate region
(region number i in Fig. 4).

Second element: 2
Are you in A? Yes
Are you in B? Yes
Are you in C? No

Yes, yes, no: so the number 2 is inside
A and B but outside C. Goes in region iii then.

...and so on, with elements 3 to 10.
The resulting diagram looks like Fig. 5.

http://en.wikibooks.org/w/index.php?title=File%3AVennThreeSetsAllocatingElements01.jpg
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Venn diagrams: Fig. 6

The final stage is to examine the
diagram for empty regions - in this
case the regions we called iv, vi and vii
in Fig. 4 - and then re-draw the
diagram to eliminate these regions.
When we've done so, we shall clearly
see the relationships between the three
sets.

So we need to:

pull B and C apart, since they
don't have any elements in
common.

push B inside A since it doesn't
have any elements outside A.

The finished result is shown in Fig. 6.

The regions in a Venn Diagram and Truth Tables
Perhaps you've realized that adding an additional set to a Venn diagram doubles the number of regions into which
the rectangle representing the universal set is divided. This gives us a very simple pattern, as follows:

With one set loop, there will be just two regions: the inside of the loop and its outside.

With two set loops, there'll be four regions.

With three loops, there'll be eight regions.

...and so on.
It's not hard to see why this should be so. Each new loop we add to the diagram divides each existing region into
two, thus doubling the number of regions altogether.

In A? In B? In C?

Y Y Y

Y Y N

Y N Y

Y N N

N Y Y

N Y N

N N Y

N N N

But there's another way of looking at this, and it's this. In the solution to Example 3 above, we asked three questions
of each element: Are you in A? Are you in B? and Are you in C? Now there are obviously two possible answers to
each of these questions: yes and no. When we combine the answers to three questions like this, one after the other,
there are then 23 = 8 possible sets of answers altogether. Each of these eight possible combinations of answers
corresponds to a different region on the Venn diagram.

http://en.wikibooks.org/w/index.php?title=File%3AVennThreeSetsAllocatingElements02.jpg
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The complete set of answers resembles very closely a Truth Table - an important concept in Logic, which deals with
statements which may be true or false. The table on the right shows the eight possible combinations of answers for 3
sets A, B and C.
You'll find it helpful to study the patterns of Y's and N's in each column.

As you read down column C, the letter changes on every row: Y, N, Y, N, Y, N, Y, N

Reading down column B, the letters change on every other row: Y, Y, N, N, Y, Y, N, N

Reading down column A, the letters change every four rows: Y, Y, Y, Y, N, N, N, N

Set Theory Exercise 2
Click link for Set Theory Exercise 2.

Operations on Sets
Just as we can combine two numbers to form a third number, with operations like 'add', 'subtract', 'multiply' and
'divide', so we can combine two sets to form a third set in various ways. We'll begin by looking again at the Venn
diagram which shows two sets A and B in a general position, where we don't have any information about how they
may be related.

Venn diagrams: Fig. 7

In A? In B? Region

Y Y iii

Y N ii

N Y iv

N N i

The first two columns in the table on the right show the four sets of possible answers to the questions Are you in A?
and Are you in B? for two sets A and B; the Roman numerals in the third column show the corresponding region in
the Venn diagram in Fig. 7.

http://en.wikibooks.org/w/index.php?title=Discrete_mathematics/Logic%23Truth_Tables
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Set_theory/Exercises%23Set_Theory_Exercise_2
http://en.wikibooks.org/w/index.php?title=File%3AVennTwoSetsGeneralCase.jpg
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Intersection
Region iii, where the two loops overlap (the region corresponding to 'Y' followed by 'Y'), is called the intersection of
the sets A and B. It is denoted by A ∩ B. So we can define intersection as follows:

The intersection of two sets A and B, written A ∩ B, is the set of elements that are in A and in B.
(Note that in symbolic logic, a similar symbol, , is used to connect two logical propositions with the AND
operator.)
For example, if A = {1, 2, 3, 4} and B = {2, 4, 6, 8}, then A ∩ B = {2, 4}.
We can say, then, that we have combined two sets to form a third set using the operation of intersection.

Union
In a similar way we can define the union of two sets as follows:

The union of two sets A and B, written A ∪ B, is the set of elements that are in A or in B (or both).
The union, then, is represented by regions ii, iii and iv in Fig. 7.
(Again, in logic a similar symbol, , is used to connect two propositions with the OR operator.)

So, for example, {1, 2, 3, 4} ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 6, 8}.
You'll see, then, that in order to get into the intersection, an element must answer 'Yes' to both questions, whereas to
get into the union, either answer may be 'Yes'.
The ∪ symbol looks like the first letter of 'Union' and like a cup that will hold a lot of items. The ∩ symbol looks
like a spilled cup that won't hold a lot of items, or possibly the letter 'n', for i'n'tersection. Take care not to confuse
the two.

Difference

The difference of two sets A and B (also known as the set-theoretic difference of A and B, or the relative
complement of B in A) is the set of elements that are in A but not in B.

This is written A - B, or sometimes A \ B.

The elements in the difference, then, are the ones that answer 'Yes' to the first question Are you in A?, but 'No' to the
second Are you in B?. This combination of answers is on row 2 of the above table, and corresponds to region ii in
Fig.7.

For example, if A = {1, 2, 3, 4} and B = {2, 4, 6, 8}, then A - B = {1, 3}.

Complement
So far, we have considered operations in which two sets combine to form a third: binary operations. Now we look at
a unary operation - one that involves just one set.

The set of elements that are not in a set A is called the complement of A. It is written A′ (or sometimes AC, or
).

Clearly, this is the set of elements that answer 'No' to the question Are you in A?.

For example, if U = N and A = {odd numbers}, then A′ = {even numbers}.
Notice the spelling of the word complement: its literal meaning is 'a complementary item or items'; in other words,
'that which completes'. So if we already have the elements of A, the complement of A is the set that completes the
universal set.

http://en.wikibooks.org/w/index.php?title=Discrete_mathematics/Logic%23Compound_Propositions
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Summary

Intersection: things that are in A and in B Union: things that are in A or in B (or both)

Difference: things that are in A and not in B Symmetric Difference: things that are in A or in B but not both

Complement: things that are not in A

http://en.wikibooks.org/w/index.php?title=File%3AVennIntersection.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennUnion.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennDifference.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennSymmetricDifference.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennComplement.jpg
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Cardinality
Finally, in this section on Set Operations we look at an operation on a set that yields not another set, but an integer.

The cardinality of a finite set A, written | A | (sometimes #(A) or n(A)), is the number of (distinct) elements in
A. So, for example:
If A = {lower case letters of the alphabet}, | A | = 26.

Generalized set operations
If we want to denote the intersection or union of n sets, A1, A2, ..., An (where we may not know the value of n) then
the following generalized set notation may be useful:

A1 ∩ A2 ∩ ... ∩ An =  Ai
A1 ∪ A2 ∪ ... ∪ An =  Ai

In the symbol  Ai, then, i is a variable that takes values from 1 to n, to indicate the repeated intersection of all
the sets A1 to An.

Set Theory Exercise 3
Click link for Set Theory Exercise 3

Set Theory Page 2
Set Theory continues on Page 2.

Previous topic: ../Introduction/ | Contents:Discrete Mathematics | Next topic: ../Functions and relations/

Discrete Mathematics/Set theory/Page 2
This page is a continuation of Discrete_Mathematics/Set_theory. It may be omitted at a first reading.

Power Sets
The power set of a set A is the set of all its subsets (including, of course, itself and the empty set). It is denoted by
P(A).
Using set comprehension notation, P(A) can be defined as

P(A) = { Q | Q ⊆ A }
Example 4

Write down the power sets of A if:
(a) A = {1, 2, 3}
(b) A = {1, 2}
(c) A = {1}

(d) A = ø
Solution

(a) P(A) = { {1, 2, 3}, {2, 3}, {1, 3}, {1, 2}, {1}, {2}, {3}, ø }
(b) P(A) = { {1, 2}, {1}, {2}, ø }
(c) P(A) = { {1}, ø }

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Set_theory/Exercises%23Set_Theory_Exercise_3
http://en.wikibooks.org/w/index.php?title=../Set_theory/Page_2
http://en.wikibooks.org/w/index.php?title=../Introduction/
http://en.wikibooks.org/w/index.php?title=../Functions_and_relations/
http://en.wikibooks.org/w/index.php?title=../
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(d) P(A) = { ø }

Cardinality of a Power Set
Look at the cardinality of the four sets in Example 4, and the cardinality of their corresponding power sets. They are:

| A | | P(A) |

(a) 3 8

(b) 2 4

(c) 1 2

(d) 0 1

Clearly, there's a simple rule at work here: expressed as powers of 2, the cardinalities of the power sets are 23, 22, 21

and 20.
It looks as though we have found a rule that if | A | = k, then | P(A) | = 2k. But can we see why?
Well, the elements of the power set of A are all the possible subsets of A. Any one of these subsets can be formed in
the following way:

Choose any element of A. We may decide to include this in our subset, or we may omit it. There are therefore
2 ways of dealing with this first element of A.

Now choose a second element of A. As before, we may include it, or omit it from our subset: again a choice of
2 ways of dealing with this element.

...and so on through all k elements of A.
Now the fundamental principle of combinatorics tells us that if we can do each of k things in 2 ways, then the total
number of ways of doing them all, one after the other, is 2k.
Each one of these 2k combinations of decisions - including elements or omitting them - gives us a different subset of
A. There are therefore 2k different subsets altogether.
So if | A | = k, then | P(A) | = 2k.

The Foundational Rules of Set Theory
The laws listed below can be described as the Foundational Rules of Set Theory. We derive them by going back to
the definitions of intersection, union, universal set and empty set, and by considering whether a given element is in,
or not in, one or more sets.
The Idempotent Laws

As an example, we'll consider the ′I heard you the first time′ Laws – more correctly called the Idempotent Laws -
which say that:

A ∩ A = A and A ∪ A = A
This law might be familiar to you if you've studied logic. The above relationship is comparable to the tautology.
These look pretty obvious, don't they? A simple explanation for the intersection part of these laws goes something
like this:
The intersection of two sets A and B is defined as just those elements that are in A and in B. If we replace B by A in
this definition we get that the intersection of A and A is the set comprising just those elements that are in A and in A.
Obviously, we don't need to say this twice (I heard you the first time), so we can simply say that the intersection of A
and A is the set of elements in A. In other words:

A ∩ A = A

http://en.wikibooks.org/w/index.php?title=../%23Cardinality
http://en.wikibooks.org/w/index.php?title=../%23Intersection
http://en.wikibooks.org/w/index.php?title=../%23Union
http://en.wikibooks.org/w/index.php?title=../%23Universal_Set
http://en.wikibooks.org/w/index.php?title=../%23Null_set_%28empty_set%29
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We can derive the explanation for A ∪ A = A in a similar way.
De Morgan's Laws

There are two laws, called De Morgan's Laws, which tell us how to remove brackets, when there's a complement
symbol - ′ - outside. One of these laws looks like this:

(A ∪ B) ′ = A ′ ∩ B ′
(If you've done Exercise 3, question 4, you may have spotted this law already from the Venn Diagrams.)
Look closely at how this Law works. The complement symbol after the bracket affects all three symbols inside the
bracket when the brackets are removed:

A becomes A ′
B becomes B ′
and ∪ becomes ∩.

To prove this law, note first of all that when we defined a subset we said that if
A ⊆ B and B ⊆ A, then A = B

So we prove:
(i) (A ∪ B) ′ ⊆ A ′ ∩ B ′

and then the other way round:
(ii) A ′ ∩ B ′ ⊆ (A ∪ B) ′

The proof of (i) goes like this:
Let's pick an element at random x ∈ (A ∪ B) ′. We don't know anything about x; it could be a number, a function, or
indeed an elephant. All we do know about x, is that

x ∈ (A ∪ B) ′
So

x ∉ (A ∪ B)
because that's what complement means.
This means that x answers No to both questions Are you in A? and Are you in B? (otherwise it would be in the union
of A and B). Therefore

x ∉ A and x ∉ B
Applying complements again we get

x ∈ A ′ and x ∈ B ′
Finally, if something is in two sets, it must be in their intersection, so

x ∈ A ′ ∩ B ′
So, any element we pick at random from (A ∪ B) ′ is definitely in A ′ ∩ B ′. So by definition

(A ∪ B) ′ ⊆ A ′ ∩ B ′
The proof of (ii) is similar:
First, we pick an element at random from the first set, x ∈ A ′ ∩ B ′
Using what we know about intersections, that means

x ∈ A ′ and x ∈ B ′
So, using what we know about complements,

x ∉ A and x ∉ B
And if something is in neither A nor B, it can't be in their union, so

http://en.wikibooks.org/w/index.php?title=../Exercises%23Set_Theory_Exercise_3
http://en.wikibooks.org/w/index.php?title=../%23Subsets
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x ∉ A ∪ B
So, finally:

x ∈ (A ∪ B) ′
So:

A ′ ∩ B ′ ⊆ (A ∪ B) ′
We've now proved (i) and (ii), and therefore:

(A ∪ B) ′ = A ′ ∩ B ′
This gives you a taste for what's behind these laws. So here they all are.

The Laws of Sets
Commutative Laws

A ∩ B = B ∩ A
A ∪ B = B ∪ A

Associative Laws

(A ∩ B) ∩ C = A ∩ (B ∩ C)
(A ∪ B) ∪ C = A ∪ (B ∪ C)

Distributive Laws

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Idempotent Laws

A ∩ A = A
A ∪ A = A

Identity Laws

A ∪ ø = A
A ∩ U = A
A ∪ U = U

A ∩ ø = ø
Involution Law

(A ′) ′ = A
Complement Laws

A ∪ A = 'U

A ∩ A' = ø
U ′ = ø
ø ′ = U

De Morgan’s Laws

(A ∩ B) ′ = A ′ ∪ B ′
(A ∪ B) ′ = A ′ ∩ B ′
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Duality and Boolean Algebra
You may notice that the above Laws of Sets occur in pairs: if in any given law, you exchange ∪ for ∩ and vice versa
(and, if necessary, swap U and ø) you get another of the laws. The 'partner laws' in each pair are called duals, each
law being the dual of the other.

For example, each of De Morgan's Laws is the dual of the other.

The first complement law, A ∪ A ′ = U, is the dual of the second: A ∩ A ′ = ø.

... and so on.
This is called the Principle of Duality. In practical terms, it means that you only need to remember half of this table!
This set of laws constitutes the axioms of a Boolean Algebra. See Boolean Algebra [1] for more.

Proofs using the Laws of Sets
We may use these laws - and only these laws - to determine whether other statements about the relationships
between sets are true or false. Venn diagrams may be helpful in suggesting such relationships, but only a proof based
on these laws will be accepted by mathematicians as rigorous.
Example 5

Using the Laws of Sets, prove that the set (A ∪ B) ∩ (A ′ ∩ B) ′ is simply the same as the set A itself. State carefully
which Law you are using at each stage.
Before we begin the proof, a few do's and don't’s:

Do start with the single expression (A ∪ B) ∩ (A ′ ∩ B) ′, and aim
to change it into simply A.

Don’t begin by writing down the whole equation (A ∪ B) ∩ (A ′ ∩ B) ′ = A –
that’s what we must end up with.

Do change just one part of the expression at a time, using just one
of the set laws at a time.

Don't miss steps out, and change two things at once.

Do keep the equals signs underneath one another. Don't allow your work to become untidy and poorly laid out.

Do state which law you have used at each stage. Don't take even the simplest step for granted.

Solution

Law Used

(A ∪ B) ∩ (A ′ ∩ B) ′ = (A ∪ B) ∩ ((A ′) ′ ∪ B ′) De Morgan’s

= (A ∪ B) ∩ (A ∪ B ′) Involution

= A ∪ (B ∩ B ′) Distributive

= A ∪ ø Complement

= A Identity

We have now proved that (A ∪ B) ∩ (A ′ ∩ B) ′ = A whatever the sets A and B contain. A statement like this – one
that is true for all values of A and B – is sometimes called an identity.
Hints on Proofs

There are no foolproof methods with these proofs – practice is the best guide. But here are a few general hints.

Start with the more complicated side of the equation, aiming to simplify it into the other side.

Look for places where the Distributive Law will result in a simplification (like factorising in 'ordinary' algebra
- see the third line in Example 5 above).

You’ll probably use De Morgan’s Law to get rid of a ' symbol from outside a bracket.

http://en.wikipedia.org/wiki/Boolean_algebra
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Sometimes you may need to 'complicate' an expression before you can simplify it, as the next example shows.
Example 6

Use the Laws of Sets to prove that A ∪ (A ∩ B) = A.
Looks easy, doesn’t it? But you can go round in circles with this one. (Try it first before reading the solution below,
if you like.) The key is to 'complicate' it a bit first, by writing the first A as A ∩ U (using one of the Identity Laws).
Solution

Law Used

A ∪ (A ∩ B) = (A ∩ U) ∪ (A ∩ B) Identity

= A ∩ (U ∪ B) Distributive

= A ∩ (B ∪ U) Commutative

= A ∩ U Identity

= A Identity

Set Theory Exercise 4
Click link for Set Theory Exercise 4.

Cartesian Products

Ordered pairs
To introduce this topic, we look first at a couple of examples that use the principle of combinatorics that we noted
earlier (see Cardinality); namely, that if an event R can occur in r ways and a second event S can then occur in s
ways, then the total number of ways that the two events, R followed by S, can occur is r × s. This is sometimes called
the r-s Principle.
Example 7

MENU

Main Course

Poached Halibut

Roast Lamb

Vegetable Curry

Lasagne

Dessert

Fresh Fruit Salad

Apple Pie

Gateau

How many different meals – Main Course followed by Dessert - can be chosen from the above menu?
Solution

Since we may choose the main course in four ways, and then the dessert in three ways to form a different
combination each time, the answer, using the r-s Principle, is that there are 4 × 3 = 12 different meals.
Example 8

http://en.wikibooks.org/w/index.php?title=../Exercises%23Set_Theory_Exercise_4
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You're getting ready to go out. You have 5 different (clean!) pairs of underpants and two pairs of jeans to choose
from. In how many ways can you choose to put on a pair of pants and some jeans?
Solution

Using the r-s Principle, there are 5 × 2 = 10 ways in which the two can be chosen, one after the other.
In each of the two situations above, we have examples of ordered pairs. As the name says, an ordered pair is simply
a pair of 'things' arranged in a certain order. Often the order in which the things are chosen is arbitrary – we simply
have to decide on a convention, and then stick to it; sometimes the order really only works one way round.
In the case of the meals, most people choose to eat their main course first, and then dessert. In the clothes we wear,
we put on our underpants before our jeans. You are perfectly free to fly in the face of convention and have your
dessert before the main course - or to wear your underwear on top of your trousers - but you'll end up with different
sets of ordered pairs if you do. And, of course, you'll usually have a lot of explaining to do!
The two 'things' that make up an ordered pair are written in round brackets, and separated by a comma; like this:

(Lasagne, Gateau)
You will have met ordered pairs before if you've done coordinate geometry. For example, (2, 3) represents the point
2 units along the x-axis and 3 units up the y-axis. Here again, there's a convention at work in the order of the
numbers: we use alphabetical order and put the x-coordinate before the y-coordinate. (Again, you could choose to do
your coordinate geometry the other way round, and put y before x, but once again, you'd have a lot of explaining to
do!)
Using set notation, then, we could describe the situation in Example 7 like this:

M = {main courses}, D = {desserts}, C = {complete meals}.
Then C could be written as:

C = { (m, d) | m ∈ M and d ∈ D }.
C is called the set product or Cartesian product of M and D, and we write:

C = M × D
(read 'C equals M cross D')
Suppose that the menu in Example 7 is expanded to include a starter, which is either soup or fruit juice. How many
complete meals can be chosen now?
Well, we can extend the r-s Principle to include this third choice, and get 2 × 4 × 3 = 24 possible meals.
If S = {soup, fruit juice}, then we can write:

C = S × M × D
An element of this set is an ordered triple: (starter, main course, dessert). Notice, then, that the order in which the
individual items occur in the triple is the same as the order of the sets from which they are chosen: S × M × D does
not give us the same set of ordered triples as M × D × S.
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Ordered n-tuples
In general, if we have n sets: A1, A2, ..., An, then their Cartesian product is defined by:

A1 × A2 × ... × An = { (a1, a2, ..., an) | a1 ∈ A1, a2 ∈ A2, ..., an ∈ An) }
and (a1, a2, ..., an) is called an ordered n-tuple.
Notation

A1 × A2 × ... × An is sometimes written:

 Ai

The Cartesian Plane

The Cartesian Plane: Fig. 8

You probably know already the way in
which a point in a plane may be
represented by an ordered pair. The
diagram in Fig. 8 illustrates a
Cartesian Plane, showing the point
represented by the ordered pair (5, 2).

The lines are called axes: the x-axis
and the y-axis. The point where they
meet is called the origin. The point (5,
2) is then located as follows: start at
the origin; move 5 units in the
direction of the x-axis, and then 2 units
in the direction of the y-axis.

Using set notation:

If X = {numbers on the x-axis} and Y =
{numbers on the y-axis}, then:

(5, 2) ∈ X × Y
and, indeed, if X = {all real numbers}, and Y = {all real numbers} then X × Y as a whole represents all the points in
the x-y plane.

(This is why you will sometimes see the x-y plane referred to as R2, where R = {real numbers}.)
Example 9

It is believed that, if A, B, P and Q are sets where B ⊂ A and Q ⊂ P, then:
B × Q ⊂ A × P

Use a carefully shaded and labelled Cartesian diagram to investigate this proposition.
Solution

Bearing in mind what we said above about the ordered pairs in X × Y corresponding to points in the x-y plane, if we
want to represent a Cartesian product like A × P on a diagram, we shall need to represent the individual sets A and P
as sets of points on the x- and y- axes respectively.
The region representing the Cartesian product A × P is then represented by the points whose x- and y-coordinates lie
within these sets A and P. Like this:

http://en.wikibooks.org/w/index.php?title=File%3ACartesianPlane.jpg
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The Cartesian Plane: Fig. 9a

The same can also be said about B and
Q: B must lie on the x-axis, and Q on
the y-axis.

In addition, since B ⊂ A, then we must
represent B as a set chosen from within
the elements of A. Similarly, since Q ⊂
P, the elements of Q must lie within
the elements of P.

When we add these components on to
the diagram it looks like this:

The Cartesian Plane: Fig. 9b

Finally, when we represent the set B ×
Q as a rectangle whose limits are
determined by the limits of B and Q, it
is clear that this rectangle will lie
within the rectangle representing A ×
P:

http://en.wikibooks.org/w/index.php?title=File%3ACartesianPlaneExample9a.jpg
http://en.wikibooks.org/w/index.php?title=File%3ACartesianPlaneExample9b.jpg
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The Cartesian Plane: Fig. 9c

So, the proposition B × Q ⊂ A × P
appears to be true.

Set Theory Exercise 5

Click link for Set Theory Exercise 5.

Previous topic:../../Introduction|Contents:Discrete Mathematics|Next topic:../../Functions and relations
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Discrete Mathematics/Functions and relations
This article examines the concepts of the function and the relation.
A relation is any association between elements of one set, called the domain or (less formally) the set of inputs, and
another set, called the range or set of outputs. Some people mistakenly refer to the range as the codomain, but as we
will see, that really means the set of all possible outputs—even values that the relation does not actually use.
For example, if the domain is a set Fruits = {apples, oranges, bananas} and the codomain is a set Flavors =
{sweetness, tartness, bitterness}, the flavors of these fruits form a relation: we might say that apples are related to (or
associated with) both sweetness and tartness, while oranges are related to tartness only and bananas to sweetness
only. (We might disagree somewhat, but that is irrelevant to the topic of this book.) Notice that "bitterness", although
it is one of the possible Flavors (codomain), is not really used for any of these relationships; so it is not part of the
range {sweetness, tartness}.
Another way of looking at this is to say that a relation is a subset of ordered pairs drawn from the set of all possible
ordered pairs (of elements of two other sets, which we normally refer to as the Cartesian product of those sets).
Formally, R is a relation if

R ⊆ {(x, y) | x ∈ X, y ∈ Y}
for the domain X and codomain Y.
Using the example above, we can write the relation in set notation: {(apples, sweetness), (apples, tartness), (oranges,
tartness), (bananas, sweetness)}.

http://en.wikibooks.org/w/index.php?title=File%3ACartesianPlaneExample9c.jpg
http://en.wikibooks.org/w/index.php?title=../Exercises%23Set_Theory_Exercise_5
http://en.wikibooks.org/w/index.php?title=../../Introduction
http://en.wikibooks.org/w/index.php?title=../../Functions_and_relations
http://en.wikipedia.org/wiki/Boolean_algebra
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One important kind of relation is the function. A function is a relation that has exactly one output for every possible
input in the domain. (Unlike the codomain, the domain does not necessarily have to include all possible objects of a
given type. In fact, we sometimes intentionally use a restricted domain in order to satisfy some desirable property.)
For example, the relation that we discussed above (flavors of fruits) is not a function, because it has two possible
outputs for the input "apples": sweetness and tartness.
The main reason for not allowing multiple outputs with the same input is that it lets us apply the same function to
different forms of the same thing without changing their equivalence. That is, if x = y, and f is a function with x (or
y) in its domain, then f(x) = f(y). For example, z - 3 = 5 implies that z = 8 because f(x) = x + 3 is a function defined
for all numbers x.
The converse, that f(x) = f(y) implies x = y, is not always true. When it is, f is called a one-to-one or invertible
function.

Relations
In the above section dealing with functions and their properties, we noted the important property that all functions
must have, namely that if a function does map a value from its domain to its co-domain, it must map this value to
only one value in the co-domain.
Writing in set notation, if a is some fixed value:

|{f(x)|x=a}| ∈ {0, 1}
The literal reading of this statement is: the cardinality (number of elements) of the set of all values f(x), such that
x=a for some fixed value a, is an element of the set {0, 1}. In other words, the number of outputs that a function f
may have at any fixed input a is either zero (in which case it is undefined at that input) or one (in which case the
output is unique).
However, when we consider the relation, we relax this constriction, and so a relation may map one value to more
than one other value. In general, a relation is any subset of the Cartesian product of its domain and co-domain.
All functions, then, can be considered as relations also.

Notations
When we have the property that one value is related to another, we call this relation a binary relation and we write it
as

x R y
where R is the relation.
For arrow diagrams and set notations, remember for relations we do not have the restriction that functions do and we
can draw an arrow to represent the mappings, and for a set diagram, we need only write all the ordered pairs that the
relation does take: again, by example

f = {(0,0),(1,1),(1,-1),(2,2),(2,-2)}
is a relation and not a function, since both 1 and 2 are mapped to two values, 1 and -1, and 2 and -2 respectively)
example let A=2,3,5;B=4,6,9 then A*B=(2,4),(2,6),(2,9),(3,4),(3,6),(3,9),(5,4),(5,6),(5,9) Define a relation
R=(2,4),(2,6),(3,6),(3,9)
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Some simple examples
Let us examine some simple relations.
Say f is defined by

{(0,0),(1,1),(2,2),(3,3),(1,2),(2,3),(3,1),(2,1),(3,2),(1,3)}
This is a relation (not a function) since we can observe that 1 maps to 2 and 3, for instance.
Less-than, "<", is a relation also. Many numbers can be less than some other fixed number, so it cannot be a function.

Properties
When we are looking at relations, we can observe some special properties different relations can have.

Reflexive

A relation is reflexive if, we observe that for all values a:
a R a

In other words, all values are related to themselves.
The relation of equality, "=" is reflexive. Observe that for, say, all numbers a (the domain is R):

a = a
so "=" is reflexive.
In a reflexive relation, we have arrows for all values in the domain pointing back to themselves:

Note that ≤ is also reflexive (a ≤ a for any a in R). On the other hand, the relation < is not (a < a is false for any a in
R).

Symmetric

A relation is symmetric if, we observe that for all values a and b:
a R b implies b R a

The relation of equality again is symmetric. If x=y, we can also write that y=x also.
In a symmetric relation, for each arrow we have also an opposite arrow, i.e. there is either no arrow between x and y,
or an arrow points from x to y and an arrow back from y to x:

Neither ≤ nor < is symmetric (2 ≤ 3 and 2 < 3 but not 3 ≤ 2 nor 3 < 2 is true).

http://en.wikibooks.org/w/index.php?title=File:Arrow_diagram_reflexive.png
http://en.wikibooks.org/w/index.php?title=File:Arrow_diagram_symmetric.png
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Transitive

A relation is transitive if for all values a, b, c:
a R b and b R c implies a R c

The relation greater-than ">" is transitive. If x > y, and y > z, then it is true that x > z. This becomes clearer when we
write down what is happening into words. x is greater than y and y is greater than z. So x is greater than both y and z.
The relation is-not-equal "≠" is not transitive. If x ≠ y and y ≠ z then we might have x = z or x ≠ z (for example 1 ≠ 2
and 2 ≠ 3 and 1 ≠ 3 but 0 ≠ 1 and 1 ≠ 0 and 0 = 0).
In the arrow diagram, every arrow between two values a and b, and b and c, has an arrow going straight from a to c.

Antisymmetric

A relation is antisymmetric if we observe that for all values a and b:
a R b and b R a implies that a=b

Notice that antisymmetric is not the same as "not symmetric."

Take the relation greater than equals to, "≥" If x ≥ y, and y ≥ x, then y must be equal to x. a relation is
anti-symmetric if and only if a∈A, (a,a)∈R

Trichotomy

A relation satisfies trichotomy if we observe that for all values a and b it holds true that: aRb or bRa

The relation is-greater-or-equal satisfies since, given 2 real numbers a and b, it is true that whether a ≥ b or b ≥ a
(both if a = b).

Problem set

Given the above information, determine which relations are reflexive, transitive, symmetric, or antisymmetric on the
following - there may be more than one characteristic. (Answers follow.) x R y if
1.1. x = y
2. x < y
3. x2 = y2

4. x ≤ y

Answers

1.1. Symmetric, Reflexive, Transitive and Antisymmetric
2.2. Transitive
3. Symmetric, Reflexive, Transitive and Antisymmetric (x2 = y2 is just a special case of equality, so all properties

that apply to x = y also apply to this case)
4.4. Reflexive, Transitive and Antisymmetric (and satisfying Trichotomy)

http://en.wikibooks.org/w/index.php?title=File:Arrow_diagram_transitive.png


Discrete Mathematics/Functions and relations 25

Equivalence relations
We have seen that certain common relations such as "=", and congruence (which we will deal with in the next
section) obey some of these rules above. The relations we will deal with are very important in discrete mathematics,
and are known as equivalence relations. They essentially assert some kind of equality notion, or equivalence, hence
the name.

Characteristics of equivalence relations

For a relation R to be an equivalence relation, it must have the following properties, viz. R must be:
•• symmetric
•• transitive
•• reflexive
(A helpful mnemonic, S-T-R)
In the previous problem set you have shown equality, "=", to be reflexive, symmetric, and transitive. So "=" is an
equivalence relation.
We denote an equivalence relation, in general, by .

Example proof

Say we are asked to prove that "=" is an equivalence relation. We then proceed to prove each property above in turn
(Often, the proof of transitivity is the hardest).

Reflexive

Clearly, it is true that a = a for all values a. So = is reflexive.

Symmetric

If a = b, it is also true that b = a. So = is symmetric

Transitive

If a = b and b = c, this says that a is the same as b which in turn is the same as c. So a is then the same as c, so a = c,
and thus = is transitive.
Thus = is an equivalence relation.

any relation R on set A is said to be a transitive relation.

(a,b),(b,c)belongs to(a,c)belongs to R,where a,b,c belongs to a.

Partitions and equivalence classes

It is true that when we are dealing with relations, we may find that many values are related to one fixed value.
For example, when we look at the quality of congruence, which is that given some number a, a number congruent to
a is one that has the same remainder or modulus when divided by some number n, as a, which we write

a ≡ b (mod n)
and is the same as writing

b = a+kn for some integer k.
(We will look into congruences in further detail later, but a simple examination or understanding of this idea will be
interesting in its application to equivalence relations)
For example, 2 ≡ 0 (mod 2), since the remainder on dividing 2 by 2 is in fact 0, as is the remainder on dividing 0 by
2.
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We can show that congruence is an equivalence relation (This is left as an exercise, below Hint use the equivalent
form of congruence as described above).
However, what is more interesting is that we can group all numbers that are equivalent to each other.
With the relation congruence modulo 2 (which is using n=2, as above), or more formally:

x ~ y if and only if x ≡ y (mod 2)
we can group all numbers that are equivalent to each other. Observe:

This first equation above tells us all the even numbers are equivalent to each other under ~, and all the odd numbers
under ~.
We can write this in set notation. However, we have a special notation. We write:

[0]={0,2,4,...}
[1]={1,3,5,...}

and we call these two sets equivalence classes.
All elements in an equivalence class by definition are equivalent to each other, and thus note that we do not need to
include [2], since 2 ~ 0.
We call the act of doing this 'grouping' with respect to some equivalence relation partitioning (or further and
explicitly partitioning a set S into equivalence classes under a relation ~). Above, we have partitioned Z into
equivalence classes [0] and [1], under the relation of congruence modulo 2.

Problem set

Given the above, answer the following questions on equivalence relations (Answers follow to even numbered
questions)
1.1. Prove that congruence is an equivalence relation as before (See hint above).
2. Partition {x | 1 ≤ x ≤ 9} into equivalence classes under the equivalence relation

Answers

2. [0]={6}, [1]={1,7}, [2]={2,8}, [3]={3,9}, [4]={4}, [5]={5}

Partial orders
We also see that "≥" and "≤" obey some of the rules above. Are these special kinds of relations too, like equivalence
relations? Yes, in fact, these relations are specific examples of another special kind of relation which we will
describe in this section: the partial order.
As the name suggests, this relation gives some kind of ordering to numbers.
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Characteristics of partial orders

For a relation R to be a partial order, it must have the following three properties, viz R must be:
•• reflexive
•• antisymmetric
•• transitive
(A helpful mnemonic, R-A-T)
We denote a partial order, in general, by .

Example proof

Say we are asked to prove that "≤" is a partial order. We then proceed to prove each property above in turn (Often,
the proof of transitivity is the hardest).

Reflexive

Clearly, it is true that a ≤ a for all values a. So ≤ is reflexive.

Antisymmetric

If a ≤ b, and b ≤ a, then a must be equal to b. So ≤ is antisymmetric

Transitive

If a ≤ b and b ≤ c, this says that a is less than b and c. So a is less than c, so a ≤ c, and thus ≤ is transitive.
Thus ≤ is a partial order.

Problem set

Given the above on partial orders, answer the following questions
1.1. Prove that divisibility, |, is a partial order (a | b means that a is a factor of b, i.e., on dividing b by a, no remainder

results).
2. Prove the following set is a partial order: (a, b) (c, d) implies ab≤cd for a,b,c,d integers ranging from 0 to 5.

Answers

2. Simple proof; Formalization of the proof is an optional exercise.
Reflexivity: (a, b) (a, b) since ab=ab.
Antisymmetric: (a, b) (c, d) and (c, d) (a, b) since ab≤cd and cd≤ab imply ab=cd.
Transitive: (a, b) (c, d) and (c, d) (e, f) implies (a, b) (e, f) since ab≤cd≤ef and thus ab≤ef

Posets

A partial order imparts some kind of "ordering" amongst elements of a set. For example, we only know that 2 ≥ 1
because of the partial ordering ≥.
We call a set A, ordered under a general partial ordering , a partially ordered set, or simply just poset, and write
it (A, ).

Terminology

There is some specific terminology that will help us understand and visualize the partial orders.
When we have a partial order , such that a  b, we write to say that a but a ≠ b. We say in this instance
that a precedes b, or a is a predecessor of b.
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If (A, ) is a poset, we say that a is an immediate predecessor of b (or a immediately precedes b) if there is no x in
A such that a  x  b.
If we have the same poset, and we also have a and b in A, then we say a and b are comparable if a  b and b  a.
Otherwise they are incomparable.

Hasse diagrams

Hasse diagrams are special diagrams that enable us to visualize the structure of a partial ordering. They use some of
the concepts in the previous section to draw the diagram.
A Hasse diagram of the poset (A, ) is constructed by
•• placing elements of A as points
• if a and b ∈ A, and a is an immediate predecessor of b, we draw a line from a to b
• if a  b, put the point for a lower than the point for b
• not drawing loops from a to a (this is assumed in a partial order because of reflexivity)

Operations on Relations
There are some useful operations one can perform on relations, which allow to express some of the above mentioned
properties more briefly.

Inversion

Let R be a relation, then its inversion, R-1 is defined by
R-1 := {(a,b) | (b,a) in R}.

Concatenation

Let R be a relation between the sets A and B, S be a relation between B and C. We can concatenate these relations by
defining
R • S := {(a,c) | (a,b) in R and (b,c) in S for some b out of B}

Diagonal of a Set

Let A be a set, then we define the diagonal (D) of A by
D(A) := {(a,a) | a in A}

Shorter Notations

Using above definitions, one can say (lets assume R is a relation between A and B):
R is transitive if and only if R • R is a subset of R.
R is reflexive if and only if D(A) is a subset of R.
R is symmetric if R-1 is a subset of R.
R is antisymmetric if and only if the intersection of R and R-1 is D(A).
R is asymmetric if and only if the intersection of D(A) and R is empty.
R is a function if and only if R-1 • R is a subset of D(B).
In this case it is a function A → B. Let's assume R meets the condition of being a function, then
R is injective if R • R-1 if a subset of D(A).
R is surjective if {b | (a,b) in R} = B.
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Functions
A function is a relationship between two sets of numbers. We may think of this as a mapping; a function maps a
number in one set to a number in another set. Notice that a function maps values to one and only one value. Two
values in one set could map to one value, but one value must never map to two values: that would be a relation, not
a function.

For example, if we write (define) a function as:

then we say:
'f of x equals x squared'

and we have

and so on.
This function f maps numbers to their squares.

Range, image, codomain
If D is a set, we can say

which forms a new set, called the range of f. D is called the domain of f, and represents all values that f takes.
In general, the range of f is usually a subset of a larger set. This set is known as the codomain of a function. For
example, with the function f(x)=cos x, the range of f is [-1,1], but the codomain is the set of real numbers.

Notations
When we have a function f, with domain D and range R, we write:

If we say that, for instance, x is mapped to x2, we also can add

Notice that we can have a function that maps a point (x,y) to a real number, or some other function of two variables
-- we have a set of ordered pairs as the domain. Recall from set theory that this is defined by the Cartesian product -
if we wish to represent a set of all real-valued ordered pairs we can take the Cartesian product of the real numbers
with itself to obtain

http://en.wikibooks.org/w/index.php?title=File:Allowed_mapping_for_a_function.png
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.
When we have a set of n-tuples as part of the domain, we say that the function is n-ary (for numbers n=1,2 we say
unary, and binary respectively).

Other function notation
Functions can be written as above, but we can also write them in two other ways. One way is to use an arrow
diagram to represent the mappings between each element. We write the elements from the domain on one side, and
the elements from the range on the other, and we draw arrows to show that an element from the domain is mapped to
the range.
For example, for the function f(x)=x3, the arrow diagram for the domain {1,2,3} would be:

Another way is to use set notation. If f(x)=y, we can write the function in terms of its mappings. This idea is best to
show in an example.
Let us take the domain D={1,2,3}, and f(x)=x2. Then, the range of f will be R={f(1),f(2),f(3)}={1,4,9}. Taking the
Cartesian product of D and R we obtain F={(1,1),(2,4),(3,9)}.
So using set notation, a function can be expressed as the Cartesian product of its domain and range.

f(x)

This function is called f, and it takes a variable x. We substitute some value for x to get the second value, which is
what the function maps x to.
This is incomplete and a draft, additional information is to be added

Previous topic: ../Functions and relations/ | Contents:Discrete Mathematics | Next topic: ../Number theory/
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Discrete Mathematics/Number theory
Number theory is a large encompassing subject in its own right. Here we will examine the key concepts of number
theory.

Introduction
Unlike real analysis and calculus which deals with the dense set of real numbers, number theory examines
mathematics in discrete sets, such as N or Z. If you are unsure about sets, you may wish to revisit ../Set theory/.
Number Theory, the study of the integers, is one of the oldest and richest branches of mathematics. Its basic concepts
are those of divisibility, prime numbers, and integer solutions to equations -- all very simple to understand, but
immediately giving rise to some of the best known theorems and biggest unsolved problems in mathematics. The
Theory of Numbers is also a very interdisciplinary subject. Ideas from combinatorics (the study of counting),
algebra, and complex analysis all find their way in, and eventually become essential for understanding parts of
number theory. Indeed, the greatest open problem in all mathematics, the Riemann Hypothesis, is deeply tied into
Complex Analysis. But never fear, just start right into Elementary Number Theory, one of the warmest invitations to
pure mathematics, and one of the most surprising areas of applied mathematics!

Divisibility
Note that in R, Q, and C, we can divide freely, except by zero. This property is often known as closure -- the
quotient of two rationals is again a rational, etc.. However, if we move to performing mathematics purely in a set
such as Z, we come into difficulty. This is because, in the integers, the result of a division of two integers might not
be another integer. For example, we can of course divide 6 by 2 to get 3, but we cannot divide 6 by 5, because the
fraction 6/5 is not in the set of integers.

However we can introduce a new relation where division is defined. We call this relation divisibility, and if is an

integer, we say:
• divides 
• is a factor of 
• is a multiple of 
• is divisible by 

Formally, if there exists an integer such that then we say that  divides and write . If does
not divide then we write :
Proposition. The following are basic consequences of this definition. Let a, b, and c be integers:
•• (a) If a|b then a|(bc).
•• (b) If a|b and b|c, then a|c.
• (c) If a|b and a|c, then for any integers x and y, a|(xb+yc) -- in other words a divides any linear combination of its

multiples.
•• (d) If both a|b and b|a, then a = b or a = -b.
•• (e) If c is not 0, then a|b is equivalent to ca|cb.

http://en.wikibooks.org/w/index.php?title=../Set_theory/
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Quotient and divisor theorem
For any integer n and any k > 0, there is a unique q and r such that:

n = qk + r (with 0 ≤ r < k)
We call q the quotient, r the remainder, and k the divisor.
It is probably easier to recognize this as division by the algebraic re-arrangement:

n/k = q + r/k (0 ≤ r/k < 1)

Modular arithmetic
What can we say about the numbers that divide another? Pick the number 8 for example. What is the remainder on
dividing 1 by 8? Using the division theorem above

0 = 8*0 + 0
1 = 8*0 + 1
2 = 8*0 + 2
:
8 = 8*1 + 0
9 = 8*1 + 1
10 = 8 * 1 + 2
:
and so on

We have a notation for the remainders, and can write the above equations as
0 mod 8 = 0
1 mod 8 = 1
2 mod 8 = 2
3 mod 8 = 3
4 mod 8 = 4
5 mod 8 = 5
6 mod 8 = 6
7 mod 8 = 7
8 mod 8 = 0
9 mod 8 = 1
10 mod 8 = 2
:

We can also write
1 ≡ 1 (mod 8)
2 ≡ 2 (mod 8)
3 ≡ 3 (mod 8)
4 ≡ 4 (mod 8)
5 ≡ 5 (mod 8)
6 ≡ 6 (mod 8)
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7 ≡ 7 (mod 8)
8 ≡ 0 (mod 8)
9 ≡ 1 (mod 8)
10 ≡ 2 (mod 8)
:

These notations are all short for
a = 8k+r for some integer k.

So x ≡ 1 (mod 8), for example, is the same as saying
x = 8k+1

Observe that the remainder here, in comparing it with the division algorithm is 1. x ≡ 1 (mod 8) asks what numbers
have the remainder 1 on division by 8? Clearly the solutions are x=8×0+1, 8×1+1,... = 1, 9, ...
Often the entire set of remainders on dividing by n - which we say modulo n - are interesting to look at. We write this
set Zn. Note that this set is finite. The remainder on dividing 9 by 8 is 1 - the same as dividing 1 by 8. So in a sense 9
is really "the same as" 1. In fact, the relation "≡"

x ≡ y iff x mod n = y mod n.
is an equivalence relation. We call this relation congruence. Note that the equivalence classes defined by congruence
are precisely the elements of Zn.
We can find some number a modulo n (or we say a congruent to n) by finding its decomposition using the division
algorithm.
Addition, subtraction, and multiplication work in Zn - for example 3 + 6 (mod 8) = 9 (mod 8) = 1 (mod 8). The
numbers do look strange but they follow many normal properties such as commutativity and associativity.
If we have a number greater than n we often reduce it modulo n first - again using the division algorithm. For
example if we want to find 11+3 mod 8, its often easier to calculate 3 + 3 (mod 8) rather than reducing 14 mod 8. A
trick that's often used is that, say, if we have 6 + 7 (mod 8) we can use negative numbers instead so the problem
becomes -2 + -1 = -3 = 5 (mod 8).
We often use the second notation when we want to look at equations involving numbers modulo some n. For
example, we may want to find a number x such that

3x ≡ 5 (mod 8)
We can find solutions by trial substitution (going through all the numbers 0 through 7), but what if the moduli are
very large? We will look at a more systematic solution later.
Note: we often say that we are working in Zn and use equals signs throughout. Familiarize yourself with the three
ways of writing modular equations and expressions.

Number Bases
Converting between various number bases is one of the most tedious processes in mathematics.
The numbers that are generally used in transactions are all in base-10. This means that there are 10 digits that are
used to describe a number. These ten digits are {0,1,2,3,4,5,6,7,8,9}.
Similarly, base-4 has 4 digits {0,1,2,3} and base-2 has two digits {0,1}. Base two is sometimes referred to as Binary.
There are also bases greater than 10. For these bases, it is customary to use letters to represent digits greater than 10.
An example is Base-16 (Hexadecimal). The digits used in this base are {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.
In order to convert between number bases, it is critical that one knows how to divide numbers and find remainders.

http://en.wikibooks.org/w/index.php?title=Mathematics
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To convert from decimal to another base one must simply start dividing by the value of the other base, then dividing
the result of the first division and overlooking the remainder, and so on until the base is larger than the result (so the
result of the division would be a zero). Then the number in the desired base is the remainders read from end to start.
The following shows how to convert a number (105) which is in base-10 into base-2.

Operation Remainder

105 / 2 = 52 1

52 / 2 = 26 0

26 / 2 = 13 0

13 / 2 = 6 1

6 / 2 = 3 0

3 / 2 = 1 1

1 / 2 = 0 1

Answer : 1101001
After finishing this process, the remainders are taken and placed in a row (from bottom to top) after the final quotient
(1101001, in this example) is shown as the base-2 equivalent of the number 105.
To sum up the process, simply take the original number in base 10, and divide that number repeatedly, keeping track
of the remainders, until the quotient becomes less than the numerical value of the base.
This works when converting any number from base-10 to any base. If there are any letters in the base digits, then use
the letters to replace any remainder greater than 9. For example, writing 11(of base-10) in base 14.

Operation Remainder

11 / 14 = 0 B (=11)

Answer: B
As 11 is a single remainder, it is written as a single digit. Following the pattern {10=A, 11=B, 12=C...35=Z}, write it
as B. If you were to write "11" as the answer, it would be wrong, as "11" Base-14 is equal to 15 in base-10!
In order to convert from a number in any base back to base ten, the following process should be used:
Take the number 3210 (in base-10). In the units place (100), there is a 0. In the tens place (101), there is a 1. In the
hundreds place (102), there is a 2. In the thousands place (103), there is a 3.
The formula to find the value of the above number is:
3×103 + 2×102 + 1×101 + 0×100 = 3000 + 200 + 10 + 0 = 3210.
The process is similar when converting from any base to base-10. For example, take the number 3452 (in base-6). In
the units place (60), there is a 2. In the sixths place (61) there is a 5. In the thirty-sixths place (62), there is a 4. In the
216th place (63), there is a 3.
The formula to find the value of the above number (in base-10) is:
3×63 + 4×62 + 5×61 + 2×60 = 648 + 144 + 30 + 2 = 824.
The value of 3452 (base-6) is 824 in base-10.
A more efficient algorithm is to add the left-most digit and multiply by the base, and repeat with the next digit and so
on.
((3 * 6 + 4) * 6 + 5) * 6 + 2 = 824
The processes to convert between number bases may seem difficult at first, but become easy if one practices often.
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Prime numbers
Prime numbers are the building blocks of the integers. A prime number is a positive integer greater than one that has
only two divisors: 1, and the number itself. For example, 17 is prime because the only positive integers that divide
evenly into it are 1 and 17. The number 6 is not a prime since more than two divsors 1, 2, 3, 6 divide 6. Also, note
that 1 is not a prime since 1 has only one divisor.

Some prime numbers
The prime numbers as a sequence begin

2, 3, 5, 7, 11, 13, 17, 19, 23, ...

Euclid's Proof that There are Infinitely Many Primes
The Greek mathematician Euclid gave the following elegant proof that there are an infinite number of primes. It
relies on the fact that all non-prime numbers --- composites --- have a unique factorization into primes.
Euclid's proof works by contradiction: we will assume that there are a finite number of primes, and show that we can
derive a logically contradictory fact.
So here we go. First, we assume that that there are a finite number of primes:

p1, p2, ... , pn
Now consider the number M defined as follows:

M = 1 + p1 * p2 * ... * pn
There are two important --- and ultimately contradictory --- facts about the number M:
1. It cannot be prime because pn is the biggest prime (by our initial assumption), and M is clearly bigger than pn.

Thus, there must be some prime p that divides M.
2. It is not divisible by any of the numbers p1, p2, ..., pn. Consider what would happen if you tried to divide M by

any of the primes in the list p1, p2, ... , pn. From the definition of M, you can tell that you would end up with a
remainder of 1. That means that p --- the prime that divides M --- must be bigger than any of p1, ..., pn.

Thus, we have shown that M is divisible by a prime p that is not on the finite list of all prime. And so there must be
an infinite number of primes.
These two facts imply that M must be divisible by a prime number bigger than pn. Thus, there cannot be a biggest
prime.
Note that this proof does not provide us with a direct way to generate arbitrarily large primes, although it always
generates a number which is divisible by a new prime. Suppose we know only one prime: 2. So, our list of primes is
simply p1=2. Then, in the notation of the proof, M=1+2=3. We note that M is prime, so we add 3 to the list. Now, M
= 1 +2 *3 = 7. Again, 7 is prime. So we add it to the list. Now, M = 1+2*3*7 = 43: again prime. Continuing in this
way one more time, we calculate M = 1+2*3*7*43 = 1807 =13*139. So we see that M is not prime.
Viewed another way: note that while 1+2, 1+2*3, 1+2*3*5, 1+2*3*5*7, and 1+2*3*5*7*11 are prime,
1+2*3*5*7*11*13=30031=59*509 is not.

http://en.wikipedia.org/wiki/Euclid
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Testing for primality
There are a number of simple and sophisticated primality tests. We will consider some simple tests here. In
upper-level courses we will consider some faster and more sophisticated methods to test whether a number is prime.

Inspection

The most immediate and simple test to eliminate a number n as a prime is to inspect the units digit or the last digit of
a number.
If the number n ends in an even number 0, 2, 4, 6, 8 we can show that number n cannot be a prime. For example,
take n = 87536 = 8753(10) + 6. Since 10 is divisible by 2 and 6 is divisible by 2 then 87536 must be divisible by 2.
In general, any even number can be expressed in the form n = a*10 + b, where b = 0, 2, 4, 6, 8. Since 10 is divisible
by 2 and b is divisible by 2 then n = a*10 + b is divisible by 2. Consequently, any number n which ends in an even
number such as 7777732 or 8896 is divisible by 2 so n is not a prime.
In a similar type of argument, if a number n ends in a 5 we can show the number n cannot be a prime. If the last digit
of n, call it b, is a 5 we can express n in the form n = a*10 + b, where b = 5. Since 10 is divisible by 5 and b = 5 is
divisible by 5 then n = a*10 + b is divisible by 5. Hence, any number n which ends in a 5 such as 93475 is divisible
by 5 so n is not a prime.
Thus, if a number greater than 5 is a prime it must end with either a 1, 3, 7, or 9. Note that this does not mean all
numbers that end in a 1, 3, 7, or 9 are primes. For example, while the numbers 11, 23, 37, 59 are primes, the numbers
21 = 3*7, 33 = 3*11, 27 = 3*9, 39 = 3*13 are not primes. Consequently, if a number ends in a 1, 3, 7, or 9 we have
to test further.

Trial Division Method

To test if a number n that ends in a 1, 3, 7, or 9 is prime, we could simply try the smallest prime number and try to
divide it in n. If that doesn't divide, we would take the next largest prime number and try again etc. Certainly, if we
took all primes numbers in this manner that were less than n and we could not divide n then we would be justified in
saying n is prime. However, it can be shown that you don't have to take all primes smaller than n to test if n is prime.
We can stop earlier by using the Trial Division Method.

The justification of the Trial Division Method is if a number n has no divisors less than or equal to then n must
be a prime. We can show this by contradiction. Let us assume n has no divisors less than or equal to . If n is
not a prime, there must be two numbers a and b such that . In particular, by our assumption 
and . But then . Since a number can not be greater than itself the number n
must be a prime.
Trial Division Method is a method of primality testing that involves taking a number n and then sequentially
dividing it by primes up to .

For example, is 113 prime? is approximately 10.63... We only need to test whether 2, 3, 5, 7 divide 113
cleanly (leave no remainder, i.e., the quotient is an integer).

113/2 is not an integer since the last digit is not even.
113/3 (=37.666...) is not an integer.
113/5 is not an integer since the last digit does not end in a 0 or 5.
113/7 (=16.142857...) is not an integer.

So we need not look at any more primes such as 11, 13, 17 etc. less than 113 to test, since 2, 3, 5, 7 does not divide
113 cleanly, 113 is prime.
Notice that after rejecting 2 and 3 as a divisor, we next considered the next prime number 5 and not the next number
4. We know not to consider 4 because we know 2 does not divide 113. If 2 cannot divide 113 then certainly 4 cannot
because if 4 divided 113 and since 2 divides 4 then 2 would divide 113. So we only use the next cheapest available
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prime to test not the next consecutive number.
If we test 91 we get,

91/2 is not an integer since that last digit is not even.
91/3= (30.333) is not an integer.
91/5= is not an integer since the last digit does not end in a 0 or 5.
91/7=13 is an integer

So we know since 7 divides 91, 91 is not a prime.
Trial division is normally only used for relatively small numbers due to its inefficiency. However this technique has
the two advantages that firstly once we have tested a number we know for sure that it is prime and secondly if a
number is not prime it also gives us the number's factors.
To obtain a few small primes, it may be best to use the Sieve of Eratosthenes than to test each number sequentially
using trial division. The Sieve of Eratosthenes method is basically a process of finding primes by elimination. We
start by taking a list of consecutive numbers say 1 to 100. Cross out the number 1 because the number is not prime.
Take the next least uncrossed off number which is 2 and circle it. Now cross out all multiples of 2 on the list. Next
take the next least uncircled number which is 3. Circle the number 3 and cross out all multiples of 3. The next least
uncircled number should be 5 since 4 is a multiple of 2 and should have been crossed off. Circle the number 5 and
cross out all multiples of 5. The next least uncircled number should be a 7 since 6 is a multiple of 2. Circle the 7 and
mark off all multiples of 7. Now the next uncrossed off number should be 11 since 8,9,10 is a multiple of 2, 3, and 2.
If we continue in this manner what is left is the circled numbers which are primes. But notice we can actually stop
now and circle all the unmarked numbers after crossing off multiples of 7 because of the result that since

any number less than 100 which is not prime must be divisible by 2, 3, 5, or 7.

The Fundamental Theorem of Arithmetic
The Fundamental Theorem of Arithmetic is an important theorem relating to the factorization of numbers. The
theorem basically states that every positive integer can be written as the product of prime numbers in a unique way
(ignoring reordering the product of prime numbers).
In particular, The Fundamental Theorem of Arithmetic means any number such as 1,943,032,663 is either a prime
or can be factored into a product of primes. If a number such as 1,943,032,663 can be factored into primes such as
11×13×17×19×23×31×59 it is futile to try to find another different combination of prime numbers that will also give
you the same number.
To make the theorem work even for the number 1, we think of 1 as being the product of zero prime numbers.
More formally,

For all n∈N

n=p1p2p3...
where the pi are all prime numbers, and can be repeated.

Here are some examples.
4 = 2 × 2 = 22

12 = 2 × 2 × 3 = 22 × 3
11 = 11.

A proof of the Fundamental Theorem of Arithmetic will be given after Bezout's identity has been established.

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
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LCM and GCD
Two characteristics we can determine between two numbers based on their factorizations are the lowest common
multiple, the LCM and greatest common divisor, the GCD (also greatest common factor, GCF)

LCM
The lowest common multiple, or the least common multiple, for two numbers a and b is the smallest number
designated by LCM(a,b) that is divisible by both the number a and the number b. We can find LCM(a,b) by finding
the prime factorization of a and b and choosing the maximum power for each prime factor.

In another words, if the number a factors to , and the number b factors to , then
LCM(a,b) = where for i = 1 to n.
An example, let us see the process on how we find lowest common multiple for 5500 and 450 which happens to be
49500. First, we find the prime factorization for 5500 and 450 which is

5500=22 53 11
450=2 3 2 52

Notice the different primes we came up for both the number 5500 and the number 450 are 2, 3, 5, and 11. Now let us
express 5500 and 450 completely in a product of these primes raised to the appropriate power.

5500=22 53 11 = 22 30 53 111

450=2 32 52 = 21 32 52 110

The LCM(5500,450) is going to be in the form 2? 3? 5? 11?. All we now have to do is find what the powers of each individual
prime will be.
So now we compare the power of each prime for 5500 and 450. Let us consider the powers of the first prime 2. In
the number 5500, the prime 2 is raised to the second power and in the number 450, prime 2 is raised to the first
power. Since the maximum between 2 and 1 for the power of the prime 2 is 2, we use 2 for the power of the prime 2.
Now let us consider the powers of the prime 3. In the number 5500, the prime 3 is raised to the zero power and in the
number 450 the prime 3 is raised to the second power. Since the maximum between 0 and 2 for the power of the
prime 3 is 2, we use 2 for the power of the prime 3.
Similarly, let us consider the powers of the next prime 5. In the number 5500, the prime 5 is raised to the third power
and in the number 450 the prime 5 is raised to the second power. Since the maximum between 3 and 2 for the power
of the prime 5 is 3, we use 3 for the power of the prime 5.
Finally, let us consider the powers of the prime 11, the last prime on our list. In the number 5500, the prime 11 is
raised to the first power and in the number 450 the prime 11 is raised to the zero power. Since the maximum between
1 and 0 for the power of the prime 11 is 1, we use 1 for the power of the last prime 11.
Consequently, the product of our results is LCM(5500,450)=22 32 53 111 = 49500.

GCD
The greatest common divisor for two numbers a and b is the biggest number designated by GCD(a,b) that divides
both the number a and the number b. In a similar process to finding LCM(a,b), we can find GCD(a,b) by finding the
prime factorization of a and b but choosing the minimum power for each prime factor instead.

In other words, if the number a factors to , and the number b factors to , then
GCD(a,b) = where for i = 1 to n.
An example, let us see the process on how we find the greatest common divisor for 5500 and 450 which happens to
be 50. First, we find the prime factorization for 5500 and 450 which is

5500=22 53 11
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450=2 3 2 52

Notice the different primes we came up for both the number 5500 and the number 450 are 2, 3, 5, and 11. Now let us
express 5500 and 450 completely in a product of these primes raised to the appropriate power.

5500=22 53 11 = 22 30 53 111

450=2 32 52 = 21 32 52 110

The GCD(5500,450) is going to be in the form 2? 3? 5? 11?. All we now have to do is find what the powers of each individual
prime will be.
So now we compare the power of each prime for 5500 and 450. Let us consider the powers of the first prime 2. In
the number 5500, the prime 2 is raised to the second power and in the number 450, prime 2 is raised to the first
power. Since the minimum between 2 and 1 for the power of the prime 2 is 2, we use 1 for the power of the prime 2.
Now let us consider the powers of the prime 3. In the number 5500, the prime 3 is raised to the zero power and in the
number 450 the prime 3 is raised to the second power. Since the minimum between 0 and 2 for the power of the
prime 3 is 0, we use 0 for the power of the prime 3.
Similarly, let us consider the powers of the next prime 5. In the number 5500, the prime 5 is raised to the third power
and in the number 450 the prime 5 is raised to the second power. Since the minimum between 3 and 2 for the power
of the prime 5 is 2, we use 2 for the power of the prime 5.
Finally, let us consider the powers of the prime 11, the last prime on our list. In the number 5500, the prime 11 is
raised to the first power and in the number 450 the prime 11 is raised to the zero power. Since the minimum between
1 and 0 for the power of the prime 11 is 0, we use 0 for the power of the last prime 11.
Consequently, the product of our results is GCD(5500,450)=21 30 52 110 = 50.

Properties

• gcd(a,b)=gcd(b,a)
• gcd(a,b) = gcd(b,q), where q is the remainder of a divided by b
• gcd(a/d, b/d)=1, where d is gcd(a,b)

The Euclidean algorithm
The Euclidean algorithm is such that we can find the gcd of two numbers without finding the factorization*. The
Euclidean algorithm consists of only addition and multiplication, and uses the above properties of gcd as its basis.
* Factorization is a "hard" process, that is, to factor a number takes a long time depending on the length of the
number. This is why later, when you need to find the gcd of a pair of numbers, you will most likely never factorize
the numbers and use the properties of the primes but will use the Euclidean algorithm instead.

An example
We will see how this works by calculating gcd(44,458)
First, divide 458 by 44 and obtain the remainder:

458 = 44 × 10 + 18
Now suppose that a number is a common divisor of 458 and 44. Then it must also be a divisor of 18. To see this,
rearrange the above equation to:

458 - 44×10 =18
When this equation is divided by a common divisor of 44 and 458, an integer is obtained on the left, and so must also
be obtained on the right. This, by definition, means that the number is also a divisor of 18. By the same reasoning,
any common divisor of 18 and 44 is also a divisor of 458. Since all of the common divisors of 458 and 44 are equal
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to common divisors of 44 and 18, then in particular the greatest common divisors are equal. So we have
gcd(458,44)=gcd(44,18)
The next step in the algorithm is to divide 44 by 18 and find the remainder.

44 = 18 × k + r
44 = 18 × 2 + 8

Repeat this process; keep dividing the previous divisor by the previous remainder:
18 = 8 × 2 + 2
8 = 2 × 4 + 0

Our gcd is the last remainder before the zero, in this case, 2. This is because the reasoning that proved
gcd(458,44)=gcd(44,18) applies at every step, so gcd(458,44)=gcd(44,18)=gcd(18,8)=gcd(8,2)=gcd(2,0)=2.

The Matrix Method
We can construct a matrix that provides an alternative method for calculating the greatest common divisor. In its
general form, the matrix is

Recall that one way to write the gcd of two numbers is as an integral linear combination. If we are finding the gcd,
for example, we could represent it as as + bt, where a and b are the two numbers we are comparing, and s and t are
integers. We also know that b = aq + r where r is the remainder upon division of b by a. After we subtract row 2
from row 1, we get

If r_2 is nonzero, we must continue the process; this time, subtracting row 1 from row 2. We continue this process
until one of the r's has been reduced as far as possible. We now have our gcd. The numbers that are in that row,
where the 1 and the 0 used to be, represent t and s, respectively.
Let us now look at a computational example.

We see that it would be trivial at this point to go any further; we would just end up with row-2 containing a zero
where a used to be. So we look at row-1 and remember that the 1 represents our remainder, 1(=t) multiplies b and
-14(=s) multiplies a such that

This can be checked by the Euclidean algorithm that gcd(7,99)=1.

The extended Euclidean algorithm
What happens if we try and reverse the process of the Euclidean algorithm by substituting back? Back-substitution is
rather tedious and prone to error, so here is a faster method.
Draw up a table with four columns, label these from left to right q, r, u, v. For convenience label a column i
representing the step we're currently up to. Place a and b with the greater of these on top in the column r, and place
1s and 0s accordingly:
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Now iterate downwards by taking the quotient of b/a and putting it in the next space in the q column, then of b-aq in
the r column.
To update u and v, take

ui = ui-2-ui-1qi
vi = vi-2-vi-1qi

Indeed, you are looking for u and v such that au + bv = gcd (a,b). At some point, gcd (a,b) is in fact the remainder at
the ith stage, so you might as well compute ui and vi such that aui + bvi = ri, at EACH stage.
Deriving the recurrences found above results from these three equations (the second equation is Euclid's algorithm's
basic property, the other two are constraints we set to attain our desired goal):

aui-1 + bvi-1 = ri-1
ri-2 = qiri-1 + ri
aui + bvi = ri

The trick is to then appropriately express ri-2.
Stop writing when you obtain a 0 in the r column.
Finding then, gcd(450,44) (this is the same as gcd(44,450) )

The bold number is the gcd. Observe (9)×450+(-92)×44=2 Clearly these u and v are very special. What can we say
about the general case?

Bezout's identity
In the above case we have 9×450+(-92)×44=gcd(450,44). So the greatest common divisor of 450 and 44 can be
written as a linear combination of 450 and 44 with integer coefficients. This turns out to be true of any pair of
integers. This result is known as "Bezout's Identity" and can be stated as follows:

For any pair of nonzero integers, a and b, there exists integers u and v such that
au+bv=gcd(a,b)

Proof

If a and b are any pair of integers, not both 0, then clearly there exist integers u and v such that au+bv is
positive (just match the signs of u and v to those of a and b, respectivly, for instance), and for all integer u and
v, au+bv is also an integer (because the integers are closed under addition and multiplication). So there is a
non-empty set of positive integers consisting of numbers of the form au+bv; call it S. Since S is a non-empty
set of positive integers, it must have a smallest element (this is the so called Well-ordering principle). Call this
number d. The claim is that . Since d belongs to S, then
(1) 
for suitable u and v. Let n be any positive common divisor of a and b. Since n divides the right side of (1), it
also divides d. So for some integer . So any common divisor of a and b is less than or equal
to d. Therefore, if d is a common divisor of a and b, it is the greatest one. It only remains to show that d is in
fact a common divisor.

http://en.wikipedia.org/wiki/Well-ordering_principle
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To prove this, it will be shown that any element of S is divisible by d. This will prove that d is a common
divisor of a and b because a and b are both elements of S (because a = 1×a + 0×b andb = 0×a + 1×b). Let t be
any element of S. Then, by the division algorithm

for some . If r is not 0, then it is in S. This is because d and t are in S, so

But, since and d is the least element of S, this is impossible. The only other possibility is that r=0.
Therefore any element, t, of S is divisible by d. Since this includes both a and b, d is a common divisor.
Combining this with the previous result establishes Bezout's Identity.

The numbers u and v can either be obtained using the tabular methods or backsubstitution in the Euclidean
Algorithm.

Proof of the Fundamental Theorem of Arithmetic
One use of Bezout's identity is in a proof of the Fundamental Theorem of Arithmetic. Before this is proven, two
other results are needed: Lemma 1: If a prime number, p, divides a product of two integers, , then it must divide
a or b (or both).

Proof: If p divides both a and b, there is nothing to prove. Assume p does not divide a. If it can be proven
under that assumption that p does divide b, the lemma will be proven.
Since p does not divide a, then gcd(a,p)=1 (because the only divisors of p are 1 and p, but p is not a common
divisor). Therefore, by Bezout's Identity, there exist integers u and v such that

Multiply this equation by b to obtain:

p divides both terms on the right hand side and, therefore, divides the left hand side. Hence, p divides b, as was
to be shown.

Lemma 2: If a prime number, p, divides a product of integers, , then it must divide at least one of the
factors.

Proof: The proof is by induction on n, the number of factors. The statement is true for n=2, by Lemma 1.
Assume the statement is true for n=k and consider a product of k+1 factors. If p divides more than one of the
factors, once again there is nothing to prove. Assume that p does not divide any of the factors .
It will be shown that p must divide . Since the statement is true for n=k, then since p does not divide any
of the factors in , it must not divive the product (by Contrapositive). Let . Then

. The conclusion then follows by Lemma 1.
Fundamental Theorem of Arithmetic:Any positive integer, n, can be expressed as a product of primes. This
product is unique up to the order in which the terms appear.

Proof: The proof of the first part of the theorem is by induction on n. If n=1, it is the product of 0 primes.
Assume all positive integers less than n can be expressed as a product of primes. If n is prime, then it is the
product of 1 prime. Assume n is not prime or 1. Then ,for some positive integers a and b both less
than n. Since a and b are both less than n, they can be written as a product of primes by the induciton
hypothesis. Combining these products gives n as a product of primes as required.
Now to prove the second part. Assume there are two prime factorizations of n,

http://en.wikipedia.org/wiki/mathematical_induction
http://en.wikipedia.org/wiki/Contrapositive
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divides the left side and so must also divide the right side. By Lemma 2, this means that must divide
one of the . But these are all prime, so the only way can divide is if for some i. Canceling

from both sides of the equation forms another equation of the same form. So it can likewise be proven that
for some other i, and so on until all the factors on the left are exhausted. After this, there must not be

any factors remaining on the right side since it must equal 1. This proves that any two prime factorizations
consist of the same prime factors, as was to be shown.

Solving linear modular equations - back to Bezout
Bezout's identity above provides us with the key to solving equations in the form

ax ≡ b (mod m)

Coprime case - gcd(a, m) is 1
Consider the case where

ax ≡ b (mod m)
but with gcd(a, m)=1
Because of Bezout's identity

1 = au+mv

When we calculate u, this number is special.
Say if we have the equation

4x=11 (mod 21)
4 and 21 are coprime since gcd(4,21)=1. Now 1=4*16+(-3)*(21). Our u in this case is 16. Observe now that
4*16=64. 64 (mod 21) = 1. This number u is very special - it is known as the multiplicative inverse. It is the number
u on multiplication by a gives 1 mod m. Bezout's identity on calculating gcd(a, m) will always give you the
multiplicative inverse of a modulo m. The multiplicative inverse of a is often written a-1 but note that this does not
mean 1/a since we have seen in the first sections that we can not always divide in the integers.
Note that in Zp there is one number without a multiplicative inverse - 0. It may be useful to exclude 0 when
considering modular arithmetic, so instead of having to say Zp\{0} all the time, we merely write Zp

*.
Now since we have the magic multiplicative inverse, our problem becomes relatively easy to solve. 4-1=16 in Z21
and now, on multiplying throughout by 16

x = 11 × 16 (mod 21)
(since 4×16=1 because 16 is 4's multiplicative inverse mod 21). 11×16=176 and using a calculator or using the
division theorem we obtain

x = 8 (mod 21)
which is our solution! Verify - 8×4 = 32 = 11 (mod 21).
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The general case
Consider the general case where

ax ≡ b (mod m)
with no restrictions on a, b and m.
Firstly we calculate

gcd
gcd(a, m) again to obtain d. Now d is a divisor since the d in gcd means greatest common divisor. So we can now
divide a and m - but what about b? Since we have calculated the gcd of a and m but not b we have no guarantees
that d will divide b. This then becomes a condition that the equation has no solution.
Now we have reduced the problem to the previous coprime case because gcd(a/d, m/d)=1 with d as above. However
we do not have 1 solution any more - this is true because we have reduced the solution to being x = c (mod m/d) and
we must bring the solution back mod m. This will be come clearer in the examples.
Let's work through some examples.
Example 1. Solve 4x ≡ 3 (mod 20). Firstly, gcd(4, 20) = 4. 4 does not divide 3 and we have no solution.
Example 2. Solve 9x ≡ 6 (mod 15). gcd(9, 15) = 3 and 3 does divide 6 and we have 3 solutions.
Now, divide through by 3 to obtain

3x ≡ 2 (mod 5)
gcd(3, 5) = 1 = 3 × 2 + -1 × 5 So the inverse of 3 mod 5 is 2. Now we obtain the solution

x ≡ 4 (mod 5)
Now in Z15 we must obtain the two extra solutions 9 and 14 mod 15 - 9 mod 5 = 4 and 14 mod 5 = 4.
Generally we can say that if we have the solution to the reduced equation x, the general solution is x+(m/d)k for
k={0, 1, .., d-1}.
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Discrete Mathematics/Graph theory
A graph is a mathematical way of representing the concept of a "network".

Introduction
A network has points, connected by lines. In a graph, we have special names for these. We call these points vertices
(sometimes also called nodes), and the lines, edges.
Here is an example graph. The edges are red, the vertices, black.

In the graph, are vertices, and are edges.

Definitions of graph
There are several roughly equivalent definitions of a graph. Most commonly, a graph is defined as an ordered
pair , where is called the graph's vertex-set and

is called the graph's edge-set. Given a graph , we often denote
the vertex--set by and the edge--set by . To visualize a graph as described above, we draw dots
corresponding to vertices . Then, for all we draw a line between the dots
corresponding to vertices if and only if there exists an edge . Note that the placement of the
dots is generally unimportant; many different pictures can represent the same graph.Alternately, using the graph above as a guide, we can define a graph as an ordered triple :
•• a set of vertices, commonly called V
•• a set of edges, commonly called E
• a relation that maps to each edge a set of endpoints, known as the

edge-endpoint relation. We say an edge is incident to a vertex iff .
In the above example,
• V={v1, v2, v3, v4}
• E={e1, e2, e3, e4, e5}
• f such that e1 maps to {v1, v2}, e2 maps to {v1, v3}, e3 maps to {v1, v4}, e4 maps to {v2, v4}, and e5 maps to {v3,

v4}.

If is not injective — that is, if such that  — then we say that is a
multigraph and we call any such edges  multiple edges. Further, we call edges such that

 loops. Graphs without multiple edges or loops are known as simple graphs.
Graphs can, conceivably, be infinite as well, and thus we place no bounds on the sets V and E. We will not look at
infinite graphs here.

http://en.wikibooks.org/w/index.php?title=File:Discrete_Mathematics_Example_Graph.png
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Directions, Weights, and Flows

We define a directed graph as a graph such that maps into the set of ordered pairs rather
than into the family of two-element sets . We can think of an edge such that

as 'pointing' from to . As such we would say that is the tail of edge and that is the
head. This is one of the vagaries of graph theory notation, though. We could just as easily think of as the head and

as the tail. To represent a directed graph, we can draw a picture as described and shown above, but place arrows
on every edge corresponding to its direction.
In general, a weight on a graph is some function .
A flow is a directed graph paired with a weight function such that the weight "going into"
any vertex is the same amount as the weight "going out" of that vertex. To make this more formal, define sets
•
•

Then, formally stated, our requirement on the weight function is 

Special Graphs

The complete graph on 6 vertices

Some graphs occur frequently enough in graph theory that they deserve
special mention. One such graphs is the complete graph on n vertices,
often denoted by Kn. This graph consists of n vertices, with each vertex
connected to every other vertex, and every pair of vertices joined by
exactly one edge. Another such graph is the cycle graph on n vertices,
for n at least 3. This graph is denoted Cn and defined by V := {1,2,..,n}
and E := . Even easier is the null graph on n vertices, denoted Nn; it
has n vertices and no edges! Note that N1 = K1 and C3 = K3.

Some Terms

Two vertices are said to be adjacent if there is an edge joining them.
The word incident has two meanings:

• An edge e is said to be incident to a vertex v if v is an endpoint of e.
•• Two edges are also incident to each other if both are incident to the same vertex.
Two graphs G and H are said to be isomorphic if there is a one-to-one function from (or, if you prefer, one-to-one
correspondence between) the vertex set of G to the vertex set of H such that two vertices in G are adjacent if and
only if their images in H are adjacent. (Technically, the multiplicity of the edges must also be preserved, but our
definition suffices for simple graphs.)

http://en.wikibooks.org/w/index.php?title=File%3ACompletegraphon6vertices.png
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Subgraphs
A subgraph is a concept akin to the subset. A subgraph has a subset of the vertex set V, a subset of the edge set E,
and each edge's endpoints in the larger graph has the same edges in the subgraph. A

A subgraph of is generated by the vertices { } if the edge set of consists of all edges in
the edge set of that joins the vertices in { }.
A path is a sequence of edges such that ei is adjacent to ei+1 for all i from 1 to N-1. Two vertices
are said to be connected if there is a path connecting them.

Trees and Bipartite Graphs
A tree is a graph that is (i) connected, and (ii) has no cycles. Equivalently, a tree is a connected graph with exactly

edges, where there are nodes in the tree.
A Bipartite graph is a graph whose nodes can be partitioned into two disjoint sets U and W such that every edge in
the graph is incident to one node in U and one node in W. A tree is a bipartite graph.
A complete bipartite graph is a bipartite graph in which each node in U is connected to every node in W; a complete
bipartite graph in which U has vertices and V has vertices is denoted .
Adjacent,Incident,End Vertices
Self loops,Parallel edges,Degree of Vertex
Pendant Vertex : Vertex Degree one "Pendant Vertex" Isolated Vertex : Vertex Degree zero "Isolated Vertex"

Hamiltonian and Eulerian Paths
Hamiltonian Cycles: A Hamiltonian Cycle received its name from Sir William Hamilton who first studied the
travelling salesman problem. A Hamiltonian cycle is a path that visits every vertex once and only once i.e. it is a
walk, in which no edge is repeated (a trail) and therefore a trail in which no vertex is repeated (a path). Note also it is
a cycle, the last vertex is joined to the first.
A graph is said to be Eulerian if it is possible to traverse each edge once and only once, i.e. it has no odd vertices or
it has an even number of odd vertices (semi-Eulerian). This has implications for the Königsberg problem. It may be
easier to imagine this as if it is possible to trace the edges of a graph with a pencil without lifting the pencil off the
paper or going over any lines.

Planar Graphs
A planar graph is an undirected graph that can be drawn on the plane or on a sphere in such a way that no two edges
cross, where an edge is drawn as a continuous curve (it need not be a straight line) from u to v.
Kuratowski proved a remarkable fact about planar graphs: A graph is planar if and only if it does not contain a
subgraph homeomorphic to or to . (Two graphs are said to be homeomorphic if we can shrink some
components of each into single nodes and end up with identical graphs. Informally, this means that non-planar-ness
is caused by only two things -- namely, having the structure of or within the graph).
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Coloring Graphs
A graph is said to be planner if it can be drawn on a plane in such way that no edges cross one anather except of
course of vertices
Each term, the Schedules Office in some university must assign a time slot for each final exam. This is not easy,
because some students are taking several classes with finals, and a student can take only one test during a particular
time slot. The Schedules Office wants to avoid all conflicts, but to make the exam period as short as possible.
We can recast this scheduling problem as a question about coloring the vertices of a graph. Create a vertex for each
course with a final exam. Put an edge between two vertices if some student is taking both courses. For example, the
scheduling graph might look like this: Next, identify each time slot with a color. For example, Monday morning is
red, Monday afternoon is blue, Tuesday morning is green, etc.
Assigning an exam to a time slot is now equivalent to coloring the corresponding vertex. The main constraint is that
adjacent vertices must get different colors; otherwise, some student has two exams at the same time. Furthermore, in
order to keep the exam period short, we should try to color all the vertices using as few different colors as possible.
For our example graph, three colors suffice: red, green, blue.
The coloring corresponds to giving one final on Monday morning (red), two Monday afternoon (blue), and two
Tuesday morning (green)...

K Coloring
Many other resource allocation problems boil down to coloring some graph. In general, a graph G is kcolorable if
each vertex can be assigned one of k colors so that adjacent vertices get different colors. The smallest sufficient
number of colors is called the chromatic number of G. The chromatic number of a graph is generally difficult to
compute, but the following theorem provides an upper bound:
Theorem 1. A graph with maximum degree at most k is (k + 1)colorable.

Proof. We use induction on the number of vertices in the graph, which we denote by n. Let P(n) be the proposition
that an nvertex graph with maximum degree at most k is (k + 1)colorable. A 1 vertex graph has maximum degree 0
and is 1colorable, so P(1) is true.
Now assume that P(n) is true, and let G be an (n + 1)vertex graph with maximum degree at most k. Remove a vertex
v, leaving an nvertex graph G . The maximum degree of G is at most k, and so G is (k + 1)colorable by our
assumption P(n). Now add back vertex v. We can assign v a color different from all adjacent vertices, since v has
degree at most k and k + 1 colors are available. Therefore, G is (k + 1)colorable. The theorem follows by induction.

Weighted Graphs
A weighted graph associates a label (weight) with every edge in the graph. Weights are usually real numbers, and
often represent a "cost" associated with the edge, either in terms of the entity that is being modeled, or an
optimization problem that is being solved.
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Discrete Mathematics/Recursion
In this section we will look at certain mathematical processes which deal with the fundamental property of recursion
at its core.

What is recursion?
Recursion, simply put, is the process of describing an action in terms of itself. This may seem a bit strange to
understand, but once it "clicks" it can be an extremely powerful way of expressing certain ideas.
Let's look at some examples to make things clearer.

Exponents
When we calculate an exponent, say x3, we multiply x by itself three times. If we have x5, we multiply x by itself five
times.
However, if we want a recursive definition of exponents, we need to define the action of taking exponents in terms
of itself. So we note that x4 for example, is the same as x3 × x. But what is x3? x3 is the same as x2 × x. We can
continue in this fashion up to x0=1. What can we say in general then? Recursively,

xn = x × (xn-1)
with the fact that

x0=1
We need the second fact because the definitions fail to make sense if we continue with negative exponents, and we
would continue indefinitely!

Recursive definitions
In general, to create a recursive definition of some concept, we need to do two things and two things only:
• create a definition in terms of itself, changing it somehow (for example, we change xn to be x × xn-1)
• create a non-recursive definition as a "base" (in the above example, our "base" is x0=1)
These two cases are known as the stepping case (or recursive case), and the stopping case (or base case).

Recurrence relations
In mathematics, we can create recursive functions, which depend on its previous values to create new ones. We often
call these recurrence relations.
For example, we can have the function :f(x)=2f(x-1), with f(1)=1 If we calculate some of f's values, we get

1, 2, 4, 8, 16, ...
However, this sequence of numbers should look familiar to you! These values are the same as the function 2x, with x
= 0, 1, and so on.
What we have done is found a non-recursive function with the same values as the recursive function. We call this
solving the recurrence relation.
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Linear recurrence relations
We will look especially at a certain kind of recurrence relation, known as linear.
Here is an example of a linear recurrence relation:

f(x)=3f(x-1)+12f(x-2), with f(0)=1 and f(1)=1
Instead of writing f(x), we often use the notation an to represent a(n), but these notations are completely
interchangeable.
Note that a linear recurrence relation should always have stopping cases, otherwise we would not be able to calculate
f(2), for example, since what would f(1) be if we did not define it? These stopping cases when we talk about linear
recurrence relations are known as initial conditions.
In general, a linear recurrence relation is in the form

an=A1an-1 + A2an-2 + ... + Ajan-j
with f(t1)=u1, f(t2)=u2, ..., f(tj)=uj as initial conditions.

The number j is important, and it is known as the order of the linear recurrence relation. Note we always need at
least j initial conditions for the recurrence relation to make sense.
Recall in the previous section we saw that we can find a nonrecursive function (a solution) that will take on the same
values as the recurrence relation itself. Let's see how we can solve some linear recurrence relations - we can do so in
a very systematic way, but we need to establish a few theorems first.

Solving linear recurrence relations

Sum of solutions

This theorem says that:
If f(n) and g(n) are both solutions to a linear recurrence relation an=Aan-1+Ban-2, their sum is a solution also.

This is true, since if we rearrange the recurrence to have an-Aan-1-Ban-2=0 And we know that f(n) and g(n) are
solutions, so we have, on substituting into the recurrence

f(n)-Af(n-1)-Bf(n-2)=0
g(n)-Ag(n-1)-Bg(n-2)=0

If we substitute the sum f(n)+g(n) into the recurrence, we obtain
(f(n)+g(n))-A(f(n-1)+g(n-1))-B((f(n-2)+g(n-2))=0

On expanding out, we have
f(n)-Af(n-1)-Bf(n-2)+g(n)-Ag(n-1)-Bg(n-2)

But using the two facts we established first, this is the same as
0+0=0

So f(n)+g(n) is indeed a solution to the recurrence.
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General solution

The next theorem states that:
Say we have a second-order linear recurrence relation, an-Aan-1-Ban-2=0, with supplied initial conditions.

Then αrn is a solution to the recurrence, where r is a solution of the quadratic equation
x2-Ax-B=0

which we call the characteristic equation.
We guess (it doesn't matter why, accept it for now) that αrn may be a solution. We can prove that this is a solution IF
(and only if) it solves the characteristic equation ;
We substitute αrn (r not zero) into the recurrence to get

αrn-Aαrn-1-Bαrn-2=0
then factor out by αrn-2, the term farthest on the right

αrn-2(r2-Ar-B)=0
and we know that r isn't zero, so rn-2 can never be zero. So r2-Ar-B must be zero, and so αrn, with r a solution of
r2-Ar-B=0, will indeed be a solution of the linear recurrence. Please note that we can easily generalize this fact to
higher order linear recurrence relations.
Where did this come from? Why does it work (beyond a rote proof)? Here's a more intuitive (but less
mathematically rigorous) explanation.
Solving the characteristic equation finds a function that satisfies the linear recurrence relation, and conveniently
doesn't require the summation of all n terms to find the nth one.
We want : a function F(n) such that F(n) = A * F(n-1) + B * F(n-2)
We solve : x2 = A* x + B, and call the solution(s) r. There can be more than one value of r, like in the example
below!
We get : a function F(n) = rn that satisfies F(n) = A * F(n-1) + B * F(n-2)
Let's check: Does rn = A*rn-1 + B*rn-2 ? Divide both sides by rn-2 and you get r2 = A*r + B, which must be true
because r is a solution to x2 = A* x + B
Why does a*rn also satisfy the recurrence relation? If F(n)is a solution to the recurrence relation, so is F(n)+ F(n),
based on the "Sum of Solutions" theorem above. One can then take that sum, 2*F(n), and add another F(n) to get
3*F(n), and it will still satisfy the recurrence (and so on...). Thus any whole number multiple of F(n), such as a*F(n)
will satisfy the recurrence relation (a can also be any fraction and probably any real number at all, but I'm too lazy to
adapt the current explanation). Because rn satisfies the recurrence, so does a*rn.
Because we have a second order recurrence, the general solution is the sum of two solutions, corresponding to the
two roots of the characteristic equation. Say these are r and s. The the general solution is C(rn)+D(sn) where C,D are
some constants. We find them using the two (there must be two so that we can find C and D) starting values of the
relation. Substituting these into the general solution will give two equtions which we can (hopefully) solve.

Example

Let's work through an example to see how we can use the above theorems to solve linear recurrence relations.
Examine the function a(n) given here

a(n)=a(n-1)+2a(n-2)
The characteristic equation of this recurrence relation is

r2-r-2 = 0 from above, as A=1 and B=2
i.e. (r-2)(r+1)=0 which has roots 2, -1.
So the general solution is C(2n)+D(-1)n.
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To find C and D for this specific case, we need two starting values, let's say a(1) = 0 and a(2) = 2. These give a
system of two equations
0 = C(21)+D(-1)1

2 = C(22)+D(-1)2

Solving these two equations yields: C = 1/3 , D = 2/3, so the solution is 1/3*(2n)+2/3*(-1)n.

Discrete Mathematics/Axiomatic set theory
See also: Topology/Set Theory

Discrete Mathematics/Zermelo-Frankel Axioms
Zermelo–Fraenkel set theory, with the axiom of choice, commonly abbreviated ZFC, is the standard form of
axiomatic set theory and as such is the most common foundation of mathematics.
ZFC consists of a single primitive notion, that of set, and a single assumption, namely that all mathematical objects
are sets. There is a single primitive binary relation, set membership; that set a is a member of set b is written 
(usually read "a is an element of b" or "a is in b"). The axioms of ZFC govern how sets behave and interact.

The axioms
1. Axiom of extensionality: Two sets are equal (are the same set) if they have the same elements.

The converse of this axiom follows from the substitution property of equality. If the background logic does not
include equality "=", x=y may be defined as abbreviating ∀z[z∈x↔z∈y] ∧ ∀z[x∈z↔y∈z], in which case this axiom
can be reformulated as  — if x and y have the same
elements, then they belong to the same sets.
2. Axiom of regularity (also called the Axiom of foundation): Every non-empty set x contains a member y such that
x and y are disjoint sets.

3. Axiom schema of specification (also called the axiom schema of separation or of restricted comprehension): If z
is a set, and is any property which may characterize the elements x of z, then there is a subset y of z containing
those x in z which satisfy the property. More formally:

The axiom of specification can be used to prove the existence of the empty set, denoted , once the existence of at
least one set is established (see above). A common way to do this is to use an instance of specification for a property
which all sets do not have. For example, if w is a set which already exists, the empty set can be constructed as

.
If the background logic includes equality, it is also possible to define the empty set as

.
Thus the axiom of the empty set is implied by the nine axioms presented here. The axiom of extensionality implies
the empty set is unique, if it exists. It is common to make a definitional extension that adds the symbol to the
language of ZFC.
4. Axiom of pairing: If x and y are sets, then there exists a set which contains x and y as elements.

http://en.wikibooks.org/w/index.php?title=Topology/Set_Theory
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5. Axiom of union: For any set there is a set A containing every set that is a member of some member of 

6. Axiom schema of collection: This axiom states that if the domain of a function f is a set, and f(x) is a set for any x
in that domain, then the range of f is a subclass of a set, subject to a restriction needed to avoid paradoxes.

7. Axiom of infinity: Let abbreviate , where is some set. Then there exists a set X such that the
empty set is a member of X and, whenever a set y is a member of X, then is also a member of X.

More colloquially, there exists a set X having infinitely many members.

8. Axiom of power set: Let abbreviate For any set x, there is a set y which is a
superset of the power set of x. The power set of x is the class whose members are every possible subset of x.

Alternative forms of axioms 1–8 are often encountered. Some ZF axiomatizations include an axiom asserting that the
empty set exists. The axioms of pairing, union, replacement, and power set are often stated so that the members of
the set x whose existence is being asserted, are just those sets which the axiom asserts x must contain.
9. Well-ordering theorem: For any set X, there is a binary relation R which well-orders X. This means R is a linear
order on X such that every nonempty subset of X has a member which is minimal under R.

Given axioms 1-8, there are many statements provably equivalent to axiom 9, the best known of which is the axiom
of choice (AC), which goes as follows. Let X be a set whose members are all non-empty. Then there exists a function
f, called a "choice function," whose domain is X, and whose range is a set, called the "choice set," each member of
which is a single member of each member of X. Since the existence of a choice function when X is a finite set is
easily proved from axioms 1-8, AC only matters for certain infinite sets. AC is characterized as nonconstructive
because it asserts the existence of a choice set but says nothing about how the choice set is to be "constructed." Much
research has sought to characterize the definability (or lack thereof) of certain sets whose existence AC asserts.
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Discrete Mathematics/Number representations
You are already familiar with writing a number down, and having it mean a certain combination of tens, hundreds,
and so on. This is one form of number representation, but there are others. We will look at number bases and
continued fractions.

Number bases
You are already familiar with base-10 number representation. For example, the number 2818 is the same as

2×103+8×102+1×101+8×100

We can replace the number 10 here with any number and we obtain a different number. In general, we can represent
an integer n in a base b by the following:

akbk+ak-1bk-1+...+a0b0

where the ai are all less than b.
We write a number base b as (akak-1...a0)b.
For example, if we have the numeral 243 in base 6, we write it (243)6. When we are in base 10 we simply write the
number: for example the numeral 155 in base 10 is simply written 155.
However, given a number in a base b, how can we convert it to our natural base 10 system? Likewise, how can we
convert a number from our base 10 system to base b?
The first is relatively easy, the other more difficult.

Converting base b to base 10
We simply use the definition of a base-b number to convert a base-b number to base 10 - that is we simply multiply
out.
For example

(919)12=9×122+121+9=1317.

Converting base 10 to base b
This task however is slightly more difficult, and there are several ways of performing this task.
One method is to write each step using the division algorithm from the ../Number theory/ section. For example, if we
wish to convert 1317 to base 12:

1317 = 12 × 109 + 9
109 = 12 × 9 + 1
9 = 12 × 0 + 9

So in base 12, (919)12=1317.

http://en.wikibooks.org/w/index.php?title=../Number_theory/
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Real numbers
We've just seen how we can convert integers from base to base, but how do we work with converting real numbers?
Recall in base 10 we write a number such as 11.341 as

1×101+1×100+3×10-1+4×10-2+1×10-3

and so we can extend our definition above of a base-b number to be
akbk+ak-1bk-1+...+a0b0+a-1b-1+...
where the ai are all less than b, and the sum could terminate or go on indefinitely.
Again, how are we to convert these numbers from base to base? We can convert the integral part, but what about the
fractional part (the part less than 1)?

Converting fractional n to base-b
Say we wish to convert .341 in base 10 to base 6.
We write a table, using the following rules

i      c
i
                   γ

i
                6γ

i
0      0                   .341                2.046

1      2                   .046                0.276

2      0                   .276                1.656

3      1                   .656                3.936

4      3                   .936                5.616

5      5                   .616                3.696

6      3                   .696                4.176

7      4                   .176                1.056

8      1                   .056                0.336

9      0                   .336                2.016

It looks like this expansion will go on forever! We need to calculate for further values of i to see whether we hit a
repeat value of γi to see whether we get a repetition.
So we have the approximation that .341 is near to (.20135341)6. (Calculate this using the definition. How close is
our approximation?)
If we obtain a base-b representation for example, that looks something like (.18191819181918191819...)b we call the
representation periodic. We often write this as

We use this same procedure to convert a fractional number to base-b by replacing the 6 above with b.
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Converting fractional n to base 10
We have a nifty trick we can use to convert a fractional n in base-b to base 10 provided the representation repeats.
Let us look at an example:

Consider . Now then

And now

which is

Then

And finally

On converting (3145)7 to base 10, we obtain the following

Continued fractions
In a sense, the base-b representation is nice, but it has a few shortcomings in respect to accuracy. We cannot reliably
represent the number using base-b representation. This is where the continued fraction representation comes in
handy, which has some nice properties regarding quadratic irrationals.
A continued fraction is a number in the form

Since this notation is clearly rather cumbersome, we abbreviate the above to

Again we ask ourselves how can we convert from and to this number representation? Again converting from is
simpler than converting to.

Converting from continued fraction representation
We simply use our definition of the continued fraction to convert from a continued fraction. This may look difficult,
but in fact is quite simple depending on which end one starts with. Let's look at an example
Consider

Now, we work from right to left. We first have the fraction

The next digit 2 tells us to perform
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and then take the reciprocal to get

Now the next digit 1 tells us to perform

and then to take the reciprocal to get

Now we must add q0 which is always greater than 1 and we get the result:

Converting to continued fraction representation
Again, we draw up a table.
Consider the fraction 12/22, and use the following rules in the table

θi=θi-1-qi-1

i   θ
i
      θ

i
-1     q

i
0   12/22   .       0

1   12/22   22/12   1

2   5/6     6/5     1

3   1/5     5/1     5

(stop since next row will be full of 0s)
So now the continued fraction for 12/22 is [0; 1, 1, 5].

Converting a periodic continued fraction to quadratic irrational
Firstly, we make note of a nice property of periodic continued fractions (where the sequence of qi repeat), that

every periodic continued fraction is a number in the form

For example, consider the continued fraction

Now

which we can rewrite as

Now we can simplify to obtain
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which is a quadratic equation and can be solved to obtain

.

Note that we can always roll up the continued fraction into the form (aα+b)/(cα+d)=α, which demonstrates the point
that every quadratic irrational has a repeating continued fraction representation

Convergents
Say we have a continued fraction [q0; q1, ... ] which represents a number n. Let us examine the following series of
fractions [q0], [q0; q1], [q0; q1, q2] and so on. Each element of the series is known as a convergent. It turns out that
the series of convergents provide the best rational approximations to n.
These can be calculated from the continued fraction representation, but also from the calculation table. Let us take

.
Continue as before, but place an extra -1 row, and set u-1=1, v-1=0. Iterate with the rules

and the sequence repeats and the continued fraction is [2; 2, 4, 2, 4, ... ]. We can continue the process to generate
more convergents - the convergents are 2, 5/2, 22/9, 49/20, ...
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Discrete Mathematics/Modular arithmetic
We have already considered moduli and modular arithmetic back in ../Number theory/, however in this section we
will take a more in depth view of modular arithmetic.
For revision, you should review the material in number theory if you choose.

Simultaneous equations
When we speak of simultaneous equations with relation to modular arithmetic, we are talking about simultaneous
solutions to sets of equations in the form

x ≡ a1 (mod m1)
:
:
x ≡ ak (mod mk)

There are two principal methods we will consider, successive substitution and the Chinese remainder theorem.

Successive substitution
The method of successive substitution is that where we use the definition of the modulus to rewrite these
simultaneous equations, and then successively make substitutions.
It will probably be best to motivate the idea with an example.
Example: Solve 3x ≡ 10 (mod 19), and x ≡ 19 (mod 21) using successive substitution.
First:

3x ≡ 10 (mod 19)
Find the inverse of 3 in Z19; 3-1=-6, then

x ≡ -60 (mod 19)
x ≡ 16 (mod 19)
x = 16 + 19j ∃ j∈Z (*)

Substitute in the second equation
(16+19j) ≡ 19 (mod 21)
19j ≡ 3 (mod 21)

Find the inverse of 19 in Z21; 19-1=10
j = 30 (mod 21)
j = 9 (mod 21)

Writing in the equivalent form
j = 9 + 21k ∃ k∈Z

Substituting back j in (*)
x = 16 + 19(9+21k)
x = 187+399k

Writing back in the first form
x ≡ 187 (mod 399)

which is our solution.

http://en.wikibooks.org/w/index.php?title=../Number_theory/
http://en.wikibooks.org/w/index.php?title=../Number_theory
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Chinese remainder theorem
The Chinese remainder theorem is a method for solving simultaneous linear congruences when the moduli are
coprime.
Given the equations

x ≡ a1 (mod m1)
:
:
x ≡ ak (mod mk)

multiply the moduli together, i.e. N=m1m2...mk, then write n1=N/m1, ..., nk=N/mk.
We then set yi be the inverse of ni mod mi for all i, so yini=1 mod mi.
Our solution will be

x ≡ a1y1n1+...+akyknk (mod N)
To see why this works consider what values x mod mk takes. The term akyknk mod mk becomes equal to ak as yknk=1
mod mk, and all the terms ajyjnj mod mk become equal to zero as when mk is a factor of nj.
The Chinese Remainder Theorem is of immense practical use, as if we wish to solve an equation mod M for some
large M, we can instead solve it mod p for every prime factor of M and use CRT to obtain a solution mod M.

Powers and roots
This section deals with looking powers of numbers modulo some modulus. We look at efficient ways of calculating

ab (mod m)
If we tried to calculate this normally - by calculating ab and then taking the modulus - it would take an exorbitant
amount of time. However some of the theory behind modular arithmetic allows us a few shortcuts.
We will look at some of these and the theory involved with them.

Fermat's (little) Theorem
Fermat's theorem allows us to see where ab (mod m) is 1. This has an application in disproving primality.
It states

If p is prime, and gcd(a,p)=1, then, in Zp
ap-1=1.

So, for example, 1310=1 in Z11.

Primitive elements
If in Zn, can we write some elements as powers of an element? This is conceivably possible.
Let's look at Z3.

20=1
21=2
22=1

The elements {1,2} constitute in fact :Z3
*.

Generally, we have
If p prime, then there is an element g∈Zp

* such that every element of Zp
* is a power of g.
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Orders
We can express this idea in a different way, using the concept of the order. We denote the order of a ∈ Zn

* by the
smallest integer k written On(a) such that

ak=1 in Zn.
For example, On(-1)=2 for all n except 2, since

(-1)2=1
except when n = 2, since in that field -1 = 1 and thus has order 1.
Note if gcd(a,n)≠1, that is, a ∉ Zn

*, the order is not defined.

Properties of orders

The orders obey some properties, the first of which was originally proven by Lagrange:
If p prime, gcd(a,p)=1,
• Op(a) divides p-1
• a is primitive iff Op(a)=p-1

Orders and finding primitive elements
Given these facts above, we can find primitive elements in Zp for p > 2 fairly easily.
Using the above facts, we only need to check a(p-1)/pi=xi in Zp for all i, where the pi are the prime factors of p-1. If
any of the xi are 1, a is not a primitive element, if none are, it is.
Example: Find a primitive element of Z11.
Try 2. p-1 = 10 = 2 . 5 Check:

210/2=25=10
210/5=22=4

Neither is 1, so we can say that 2 is a primitive element in Z11.

Problem set

Given the above, answer the following. (Answers follow to even-numbered questions)
1. Is 4 primitive in Z13?
2. Is 5 primitive in Z23?
3. Find a primitive element of Z5.
4. Find a primitive element of Z19.

Answers

2. Yes: In Z23, (23-1)=2*11, and 522/11=2, 522/2=22 and then 522=1. No lesser base gives this.
4. 2. Check: (19-1) has distinct prime factors 2 and 3. In Z19, 218/2≠1 and 218/3≠1 but 218=1 so 2 is primitive.

Euler's totient function
Euler's totient function is a special function that allows us to generalize Fermat's little theorem above.
It is defined as

φ(n) = |Zn
*|

=|{a∈Z|1 ≤ a ≤ n and gcd(a,n) = 1}|
that is the number of elements that have inverses in Zn
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Some results

We have the following results leading on from previous definitions.
1. φ(p) = p - 1
2. φ(pk) = pk-pk-1

3. φ(mn)=φ(m)φ(n) for gcd(m,n)=1
4.4. For any integer n, the sum of the totient values of each of its divisors equals n.

In other symbols: .

Proof of 2.: There are pk elements in Zpk. The non-invertible elements in Zpk are the multiples of p and there are pk-1

of them: p, 2p, 3p, ..., (pk-1-1)p, pk. Removing the non-invertible elements from the invertible ones leaves pk-pk-1

left. ∎
Corollary to 1, 2 and 3: If n has distinct prime factors (i.e. not counting powers) pi for i=1,...,r we have

For example:
16=24, so φ(16)=(16)(1-1/2)=16/2=8
φ(11)=(11)(1-1/11)=(11)(10/11)=10

(confirm from before 11 prime so φ(11)=11-1=10).
Proof of 3.: We can prove this equality using a special case of the Chinese Remainder Theorem, where the CRT is
now just a system of 2 congruences, namely:

x == a1 (mod m)
x == a2 (mod n)

(remember that the CRT is applicable here because m and n are assumed coprime in the equality).
Note that a1 can take on m values (from 0 to m-1), and a2 can take on n values (from 0 to n-1). Also note that, for
each and everyone of the m*n (a1, a2) tuples, there is a unique solution x that is strictly smaller than m*n. Moreover,
for each x strictly smaller than m*n, there is a unique tuple (a1, a2) verifying the congruence system (these two
assertions are a component of the Chinese Remainder Theorem: a solution to the congruence system is unique
modulo m*n).
With this bijective uniqueness property in mind, the proof is simple. Go through each x, from 0 to m*n-1, and show
that if x is a totient of m*n (i.e., gcd (x,m*n) = 1), then a1 is a totient of m and a2 is a totient of n. Furthermore, you
must also show that if a1 and a2 are totients of m and n respectively, then it follows that x must be a totient of m*n.
If gcd (x,m*n) = 1, then according to Bezout's identity, there exist X and Y integers such that x*X + m*n*Y = 1.
Furthermore, we have:

x = a1 + k*m
x = a2 + q*n

Therefore, a1*X + m*(k + n*Y) = 1,
should this be a

1
*X + m*(k*X + n*Y) = 1 ??

so gcd (a1,m) = 1, and therefore a1 is a totient of m. Proceed similarly to prove that a2 is a totient of n.
Proving the other direction is very similar in that it requires some simple replacement algebra.
So what have we shown? In the above we have shown that for every totient x of m*n, there is a unique tuple of
totients of m on the one hand and n on the other hand. Furthermore, that for each tuple of totients of m on the one
hand and n on the other hand, there is a unique totient of m*n. Therefore, phi(m*n) = phi(m)*phi(n).
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Proof of 4.: Let Q(g) be the set of all integers between 1 and n inclusive, such that gcd(x,n) = g. Q(g) is nonempty if
and only if g divides n. If g doesn't divide n, then good luck finding an x such that g is the greatest common
DIVISOR of x and n. Secondly, if x belongs to Q(g) for a given g, then it can't belong to another Q(...), since, if n is
fixed, then gcd(x,n) is unique, by definition of the GREATEST common divisor. Thirdly, for all x between 1 and n
inclusive, there exists a g such that gcd (x,n) = g (in the "worst" case, it's 1). Put together, these three properties
imply that the union of all the Q(g) sets (for each g a divisor of n), which are pairwise mutually exclusive, is the set
{1,2,3,...,n}. And therefore, the sum of the cardinalities of each Q(g) equals n.
Now we show that |Q(g)| = φ(n/g).
One direction: Let x be an arbitrary member of Q(g) for some g. Therefore, we have that gcd (x,n) = g => gcd (x/g,
n/g) = 1 => x/g belongs to the set of numbers coprime to n/g (whose cardinality of course is φ(n/g)). For diff\ erent
x's, the two values x1/g and x2/g are distinct. So for each x in Q(g), there is a correspondingly unique x/g in the set of
numbers coprime to n/g.
Other direction: Let x be an arbitrary member of the set of numbers coprime to n/g. This implies gcd (x,n/g) = 1 =>
gcd (xg,n) = g => xg belongs to Q(g). For different x's, the two values x1g and x2g are distinct. So for each x in the
set of numbers coprime to n/g, there is a correspondingly unique xg in Q(g).
Therefore, |Q(g)| = φ(n/g).

Euler's theorem
We can now generalize Fermat's theorem to extend past just Zn.
Euler's theorem says:

If a ∈ Zn
*, in Zn

*,
aφ(n)=1

equivalently if gcd(a,n)=1,
aφ(n)≡1 (mod n)

Example: Find 3216 in Z14. We need to calculate firstly φ(14)=φ(7)φ(2)=(7-1)(2-1)=6. Then write the exponent as:
216 = 6 × 36 So: 3216=(36)36

But Euler's theorem tells us 36=1 in Z14 (i.e., mod 14) since 3φ(14)=1 in Z14 as above. So we have: 3216=136=1.

Calculating large powers efficiently
When Euler's or Fermat's theorem fails us in the calculation of a high power, there is a way to decompose an
exponent down so calculation is still easy.
Let us work through an example as motivation.
Example. 528 in Z4.
First write 28 in base 2 = (11100)2 = 24+23+22 = 16 + 8 + 4
Now 528 = 516+8+4 = 516 58 54 Now rewrite these powers of 2 as repeated exponents:

(((52)2)2)2 × ((52)2)2 × (52)2

When you calculate each exponent, reduce mod 4 each time.
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Problem set

Given the above, calculate the following powers. (Answers follow to even-numbered questions)
1. 312 (mod 13)
2. 242 (mod 43)
3. 6168 (mod 30)
4. 2252 (mod 19)
5. 261 (mod 22)
6. 813 (mod 5)
7. 1110 (mod 11) (Tricky!)

Answers

2. Since gcd(2,43)=1 and the exponent is one less than the modulus, use Fermat's theorem - the answer is 1
4. Observe that φ(19)=18 and 18|252. 252/18=14. Decompose the exponent then as 218×14=(218)14=1.
6. Use fast exponentiation by squaring: the answer is 3

Discrete Mathematics/Polynomials
In this section we look at the polynomial in some commutative ring with identity. What is interesting is that
studying polynomials over some commutative ring with identity acts very much like numbers; the same rules often
are obeyed by both.

Definitions
A polynomial over some commutative ring with identity R is an expression in the form

and n ∈ N, and x is some indeterminate (not a variable).

Terminology
Given the first nonzero term in the polynomial, i.e. the term anxn above:
• an is called the leading coefficient

• Given 7x3+2x+5 , 7 is the leading coefficient
• the polynomial has degree n

• 7x3+2x+5 , 3 is the degree
• if an=1 the polynomial is termed monic

• 7x3+2x+5 is not monic, whereas x4 and x5-3x+2 are monic.
In the above, if ai=0 for all i, the polynomial is the zero polynomial.
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Properties
Let R[x] be the set of all polynomials of all degrees. Clearly R is closed under addition and multiplication (although
in a non-straightforward way), and thus we have that R[x] is itself a commutative ring with identity.
Assume now R is a field F; we do this so we can define some useful actions on polynomials

Division algorithm
Firstly recall the division algorithm for numbers, that each number can be decomposed into the form

n = qk+r

where q is the quotient and r the remainder and r<n.
Now, since we have that F is a field, we can do something similar with the polynomials over F, F[x].
If f(x), g(x) ∈ F[x], with g(x) nonzero:

f(x) = q(x)g(x)+r(x)
Again, q(x) is known as the quotient polynomial and r(x) the remainder polynomial. Furthermore, we have the
degree of r(x) ≤ degree of f(x)
We perform divisions by polynomial long division. For brevity we omit the xk terms. Here's an example. We divide
x3+x+2 by x-1. First write:

Note we place a 0 in any polynomial not present. Now x3/x = x2, so we place a 1 in the second column to get

Multiply x2 throughout the divisor x-1 to get x3-x2, which is (1 -1), so write this below like the following:

Now subtract (1 0) and (1 -1), drop the third 1 to get:

Now repeat, but divide by x2 now (since we have subtracted and gotten (1 1) - x2 + x), and continue in the same
fashion, to get:

So the quotient is x2+x+2, and the remainder is 4.

http://en.wikibooks.org/w/index.php?title=Famous_Theorems_of_Mathematics/Number_Theory/Basic_Results_%28Divisibility%29
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Euclidean algorithm
Now we have a working division algorithm for polynomials, the Euclidean algorithm, and hence the gcd of two
polynomials can readily be found.

Examples

Let's use a similar example above: what is gcd(x3+x+2, x-1)? We've shown already above that x3+x+2=(x2+x+2)(x-1)
+ 4
Proceeding in the normal fashion in the Euclidean algorithm

x3+x+2=(x2+x+2)(x-1) + 4
gcd(x3+x+2, x-1) = gcd(x-1,4)

and the greatest common divisor of any monomial and an integer is clearly 1, so x3+x+2 and x-1 are coprime.
For a second example, consider gcd(x2-1,x2+2x+1)

x2+2x+1=(x2-1)*1+2x+2
x2-1=(2x+2)*x/2+ -(x+1)
2x+2=-(x+1)*(-2)+0

Since factors of -1 make no difference, gcd(x2-1,x2+2x+1) is -(x+1)

Irreducibles
We've seen that x3+x+2 and x-1 are coprime; they have no factors in common. So, are we able to determine "prime"
polynomials? Indeed we can - depending on the field that the polynomial lies in. We call these irreducibles instead
of primes.

Example

Take p(x)=x3 + x2 + 2 over Z3. Now we can factor this polynomial if it has a root - from the factor theorem (which
also holds for polynomials over any commutative ring with identity) p(k)=0 means k is a root. So, let's look at the
following: Since we're in Z3, we luckily only need to check three values p(0)=2 p(1)=1 p(2)=2 So we have p(x)
having no roots - it is irreducible ("prime").
Now observe an interesting fact. Take the exact same polynomial but instead over Z2. The polynomial then is
equivalent to

x3+x2+0
and thus has root p(0)=0 and thus is reducible but over Z2
So the reducibility of the polynomial depends on the field it is in.

Showing irreducibility
The general procedure to show a polynomial is irreducible is:
•• observe its degree
•• identify possible factorizations
•• eliminate these factorizations
effectively a proof by cases.
For example, consider the polynomial q(x)=x4+x+2 in Z3. To prove it is irreducible, observe that q(x) could be
factorized in the following ways:
1.1. linear, irreducible cubic
2.2. linear, linear, irreducible quadratic
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3.3. linear, linear, linear, linear
4.4. irreducible quadratic, irreducible quadratic
So we can prove 1, 2, 3 by showing it has no linear factors. 4 is a little more difficult. Let us proceed to show it has
no linear factors: Observe

q(0)=2
q(1)=1
q(2)=2

So q has no linear factors. Now, we need to show that q is not the product of two irreducible quadratics.
In Z3, we have the quadratics

{x2,x2+1,x2+x,x2+x+1,x2+x+2,x2+2,x2+2x,x2+2x+1,x2+2x+2}
We can identify the irreducible quadratics easily by inspection. We then obtain

{x2+1, x2+x+2, x2+2x+2}
If we can show that neither of these polynomials divide q(x)=x4+x+2, we have shown q(x) is irreducible.
Let us try x2+1 first.

We have a remainder, so x2+1 doesn't divide q. On dividing the other polynomials, we all get a remainder. (Verify
this for yourself as practice).
So q(x) is irreducible in Z3.

Modular arithmetic and polynomials
Since we have a working polynomial division and factor theorem, and that polynomials appear to mimic the
behaviour of the integers - can we reasonably define some sort of modular arithmetic with polynomials?
We can indeed. If we have a field Zp[x] and we wish to find all the remainders (remember, these remainders are
polynomials) on dividing by some polynomial m(x), we can do so by polynomial long division.
If m(x) is irreducible, then the set of remainders as above forms a field.
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Discrete Mathematics/Finite fields
Recall from the previous section that we considered the case where F[x]/<m(''x'')> analogous to modular arithmetic
but with polynomials, and that when we are looking at numbers modulo n, we have a field iff Zn is a field if n is
prime.
Can we say something similar about F[x]/<m(''x'')>? Indeed, if m(x) is irreducible then F[x]/<m(''x'')> is a field.
This section deals with these kinds of fields, known as a finite field.

Definitions
We have the object F[x]/<m(''x'')> where this is the set of polynomials in F[x] are divided by the polynomial m(x).
Of the elements in F[x]/<m(''x'')> we can easily define addition, subtraction, multiplication, division and so on
normally but with a reduction modulo m(x) to get the desired remainder.
We have that F[x]/<m(''x'')> is a commutative ring with identity, and if m(x) is irreducible then F[x]/<m(''x'')> is a
field.
If m(x) has degree n, then

F[x]/<m(''x'')>={an-1xn-1+an-2xn-2+...+a0x0|ai∈F}
If F is Zp (so p is prime) then |F[x]/<m(''x'')>|=pn

Properties
Now remember with complex numbers C, we have "invented" the symbol i to stand for the root of the solution
x2+1=0. In fact, we have C=R[x]/<x2+1>.
When we have a general finite field, we can do this also. We write this often as F[x]/<m(''x'')>=F(α) where α is "the
root of" m(x) - we define α to be the root of m(x).
F(α) in fact is the smallest field which contains F and α.

Finite field theorems
We have a number of theorems associated with finite fields.
1. If F is a finite field, |F|=q, then q=pk for some k 1 and p prime.
2. There then is a monic irreducible polynomial m(x) with degree k such that F=Zp[x]/<m(''x'')>=Zp(α) with α a root

of m(x) over Zp
3. There is an element γ∈F such that the order (the least element n such that γn=1) of γ is q-1, so γ is primitive in F,

and we can generate elements of F (not zero) from powers of γ, i.e. F={0, γ0=1, γ1, ..., γq-2, γq-1=1}
4. F is a vector space with dimension k over Zp. It has basis {1, α, α2,...,αn-1} where n is the degree of m(x), so we

have F={an-1αn-1+...+a0α0|ai∈F}
5. If a∈F, a+...+a p times (pa) is 0.
6. If m2(x) is any other irreducible polynomial of degree k over Zp then F is isomorphic (meaning basically equal to,

except for a change in symbols) to Zp/<m2(x)> - so all ways of writing this field are basically the same. So there
is essentially one field of size q=pk and we denote it GF(pk) (GF meaning Galois Field).

http://en.wikibooks.org/w/index.php?title=Algebra/Vector_space
http://en.wikipedia.org/wiki/Evariste_Galois
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Some examples
Let's look at a few examples that go through these ideas.

The complex numbers
Complex numbers, briefly, are numbers in the form

where i is the solution to the equation x2+1=0
These numbers in fact form a field, however it is not a finite field.
Take m(x)=x2+1, with the field F being R. Then we can form the complex numbers as F/<m(''x'')>. Now F/<m(''x'')>
= { a+bx | a, b ∈ R} because the remainders must be of degree less than m(x) - which is 2.
So then (a+bx)(c+dx)=ac+bdx2+(ad+bc)x.
But remember that we are working in F/<m(''x'')>. So x2 modulo x2+1, can be written as (x2+1)-1=-1, and
substituting -1 above yields a rather familiar expression.
If we let the symbol i to be the "root of x2+1", then i2+1=0 and i2=-1. The rest of the field axioms follow from here.
We can then say the complex numbers C=R/<x2+1>=R(i).

The Zp case
We can still do this for some field in general. Let's take Z3 for example, and pick m(x)=x2+x+2. m(x) is irreducible -
m(0)=2, m(1)=4=1, m(2)=4+2+2=8=2.
So Z3/<x2+x+2> is a finite field. Assume α is a root of m(x). Then Z3(α) = { a+bα|a, b ∈ Z3}. Since Z3/<x2+x+2> is
finite, we can list out all its elements. We have the constant terms, then the α terms, then the α+constant terms, and
so on. We have {0, 1, 2, α, α+1, α+2, 2α, 2α+1, 2α+2}.
Now we have α2+α+2=0, then

α2=-α-2
α2=2α-2=2α+1

(Recall the coefficients are in Z3! We are working in Z3/<m(''x'')>)
We can verify multiplication works mod m(x) - for example

(1+2α)(2+α) = 2 + α+4α+2α2

Reducing coefficients normally mod 3 we get
(1+2α)(2+α) = 2 + 2α + 2α2

Now using the formula above for α2

(1+2α)(2+α)
= 2 + 2α + 2(2α+1)
= 2 + 2α+4α+2
= 2 + 6α+2
= 2 + 2 = 4 = 1

Verify for yourself that multiplication and other operations work too.

http://en.wikibooks.org/w/index.php?title=Algebra/Complex_Numbers
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Primitive elements
Recall from ../Modular arithmetic/ that the order of a number a modulo n, in a field, is the least power such that
ak-1=1 in Zn, with k the size of this field. Since the order is defined over a field, this leads us to consider whether we
have primitive elements in F[x]/<m(''x'')> - which we do. If we have F(α), just like in Zn, α is primitive iff the order
of α is q-1 where q is the number of elements in F[x]/<m(''x'')>.
Let's take Z2/<x2+x+1>. Is α (root of x2+x+1) primitive?
First, if α is a root of x2+x+1,

α2+α+1=0
α2=-α-1=α+1

Now, let us calculate powers of α
1, α
α2=α+1
α3=α(α2)=α(α+1)=α2+α=(α+1)+α=1

Recall that the size of this field is 4 (the n in Zn, in this case, 2, raised to the power of the degree of the polynomial,
in this case 2). Now we have α3=α4-1=1, and α is primitive.
We generally want to look at powers of α in F(α), to see whether they are primitive, since we already know about
the orders of the constants in F(α) - which we've looked at in ../Modular arithmetic/.

Discrete Mathematics/Arithmetic Functions
An arithmetic function is a function from the set of positive integers to the set of complex numbers. Examples of
important arithmetic functions include:
The Euler totient function, φ(n) defined to be the number of positive integers less than and relatively prime to n

The Mobius function, 

The Von Mangoldt function, 

and

Many of these functions are multiplicative that is they satisfy a(m)a(n)=a(mn) when m and n are relatively prime. A
function that satisfies a(m)a(n)=a(mn) even when m & n are not relatively prime is called completely multiplicative.
To define a multiplicative function, a(n), it suffices to only give its values when n is the power of a prime; For a
completely multiplicative function, giving its values when n is prime uniquely defines the function.
Given 2 arithmetic functions their Dirichlet convolution is defined by

http://en.wikibooks.org/w/index.php?title=../Modular_arithmetic/
http://en.wikibooks.org/w/index.php?title=../Modular_arithmetic/
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where the sum is taken over the divisors, d, of n. It is easy to show that

,
that is the function e(n) is the identity under Dirichlet convolution. Another basic fact is that Dirichlet convolution is
commutative and associative.
It is also straightfoward to show that multiplicative functions form a group under Dirichlet convolution, or in other
words, the following properties hold in addition to the fact that e(n) is the identity, and its associativity:
•• for any multiplicative function a there is a multiplicative function b such that (a * b) = e
and
•• the Dirichlet convolution of 2 multiplicative functions is also multiplicative.
The most important fact about the Von Mangoldt function is that

.

The Mobius function's significance comes from the fact that

,

and thus if then .

Discrete Mathematics/Analytic Number Theory
Analytic Number Theory is the application of Analysis to Number Theoretic Problems. A quick overview of some
portions of Analytic Number theory follow.

Zeta function
The zeta function defined by

for real values of s > 1, plays a central role in the theory. It is straightfoward to show it converges absolutely when s
> 1. It satisfies the Euler product formula,

where the product is over all prime numbers. To see this note that multiplying the series definition by 1-2-s and
rearranging terms(which is justified since the series converges absolutely) eliminates the even terms, i.e.

Likewise after multiplying by 1-3-s all remaining terms with n divisible by 3 are eliminated. After repeating this
process for all primes it follows that

since 1 is the only number not divisible by a prime and thus only the n=1 term is left. Solving for ζ(s) immediately
gives the Euler product formula.
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Dirichlet series
The series for the zeta function is a special case of a Dirichlet series, that is a series of the form

Many important arithmetic functions, a(n), have the properties that a(1)=1 and a(m)a(n)=a(mn) when m & n are
relatively prime. Such functions are called multiplicative and their associated Dirichlet series may be expressed as an
Euler product by

,

as can be shown in a manner similar to the proof for the zeta function. A completely multiplicative function is one
where a(m)a(n)=a(mn) even if m & n are not relatively prime. For a completely multiplicative function, the Euler
product simplifies to

.

The product of two Dirichlet series is given by the formula

where (a * b)(n) represents the Dirichlet convolution of a & b, which is defined by

Some important Dirichlet series include:

and

Big-Oh notation
Many problems involve functions that are incredibly difficult to work with exactly, but where the rate of growth of
the function, rather than its exact values, is of primary concern. Because of this a notation (often called "Big-Oh
notation") was invented.
"f(x)=O(g(x))" is used to denote that for a sufficiently large number x0 there exists a number C such that for all x>x0

"f(x) = g(x) + O(h(x))" is used to denote that f(x)-g(x)=O(h(x))



Discrete Mathematics/Analytic Number Theory 73

Dirichlet's Theorem
One of the first results proven with analytic number theory was Dirichlet's Theorem which states that for any 2
relatively prime integers a & b, there are infinitely many values of k for which ak+b is a prime number. The proof
involves complex-valued functions of the set of integers called Dirichlet characters defined by the properties that
χ(n) depends only on its residue class modulo a, χ(n) is completely multiplicative, and χ(n) = 0 iff a and n are not
relatively prime. The principal character χ0 is defined to be 1 when a & n are relatively prime and 0 otherwise. It is
easy to show that χ0 is a character. It can be shown that the number of characters is equal to φ(a). It can also be
shown that the sum of the values of χ(n) over all characters χ is equal to φ(a) if and 0
otherwise. The Dirichlet series corresponding to a character is called a Dirichlet L-series and is traditionally denoted
by L(s,χ). It is simple to show that L(1,χ0) diverges. Through a complicated argument it is shown that L(1,χ)
converges and is nonzero if χ is nonprincipal. The function

must diverge since L(1,χ0)/χ(b) diverges and the other terms all converge. Since all terms of the sum on the left are
finite its divergence implies there are an infinite number of terms of this sum and thus infinitely many primes of the
form ak+b.

Riemann zeta function & xi function
The zeta function introduced above(the Euler zeta function) converges for all values of s such that Re(s)>1. The
Riemann zeta function is defined as the analytic continuation of the Euler zeta function, and is defined for all
complex values of s except s=1. Where both functions exist, the Euler and Riemann zeta functions are equal by
definition. It can be shown that if the xi function is defined by

then ξ(s)=ξ(1-s). This is the symmetric form of the famous functional equation for the Riemann zeta function, and
provides a convenient way of computing the Riemann zeta function when Re(s)<1.
The series definition of Euler's zeta function shows that ζ(s) has no zeroes for Re(s)>1. It can also be shown that the
zeta function has no zeroes with Re(s)=1. The functional equation shows that for integer values of n, ζ(-2n)=0, and
any other zeroes lie in the so-called critical strip, 0<Re(s)<1. The well-known Riemann Hypothesis states that all
nontrivial zeros(i.e. those not of the form s=-2n), have Re(s)=1/2. It is easy to show that the zeroes of the xi function
are exactly the nontrivial zeroes of the zeta function.

Hadamard product formula
The Hadamard product formula states that functions with certain properties(in particular the xi function) are close
enough to a polynomial that they may be represented in terms of a product over the zeroes. For the xi function the
Hadamard product formula states that

for certain values of A and B, where the product is over the zeroes of ξ(s). This formula is one of the main reasons
the zeroes of the xi function, and thus the zeta function, are of considerable importance.
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Distribution of squarefree numbers
Let S(x) denote the number of squarefree numbers less than or equal to x. To evaluate this function we begin by
counting all integers less than or equal to x. Then we subtract those that are divisible by 4, those divisible by 9, those
divisible by 25, and so on. We then have removed numbers with 2 repeated prime factors twice those with 3 repeated
prime factors 3 times and so on. To remedy the repetition of the numbers with 2 repeated prime factors we add on
the number of integers less than or equal to x divisible by 36, those divisble by 100, those divisible by 225 and so on.
We have now reincluded those with 3 repeated prime factors so we uncount them. Continuing this process gives

In addition to information about how common squarefree numbers are this estimate gives information on how they
are distributed. For example to show that there are infinitely many pairs of consecutive squarefree numbers(i.e. that
differ by 1) assume there are only finitely many such pairs. Then there is some x0 such that all such pairs lie below
x0. Then for n > x0 n and n+1 cannot be squarefree, and thus at most half the integers above x0 are squarefree, or
more precisely,

but since this contradicts the estimate obtained earlier, thus there are infinitely many pairs of consecutive

squarefree numbers.
The estimate also shows that for large enough x, there is at least one squarefree number between x^3 and (x+1)^3.
To see this not that the number of squarefree numbers in that range is

which is at least one for sufficiently large x.
To do: Add mention of prime number theorem and sieve methods, as well as Dirichlet inversion
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Abstract Algebra/Group Theory
This book is on abstract algebra (abstract algebraic systems), an advanced set of topics related to algebra, including
groups, rings, ideals, fields, and more. Readers of this book are expected to have read and understand the information
presented in the Algebra, and Linear Algebra books.

Contents
This book is part of a series on Algebra:

Basic Algebra
Algebra
Intermediate Algebra
Linear Algebra
Abstract Algebra
Intro to Rings and Algebras
1.1. Introduction

1.1. Sets
2.2. Equivalence relations and congruence classes
3.3. Functions
4.4. Binary Operations
5.5. Linear Algebra
6.6. Number Theory

2.2. Group Theory
1.1. Reasons to Write or Read This
2.2. Groups
3.3. Subgroups
4.4. Cyclic groups
5.5. Permutation groups
6.6. Homomorphism
7.7. Normal subgroups and Quotient groups
8.8. Free groups
9.9. Group actions on sets
10.10. The Sylow Theorems
11.11. Group tables

3.3. Rings
1.1. Rings
2.2. Ring Homomorphisms
3.3. Ideals
4.4. Integral domains
5.5. Fraction Fields
6.6. Polynomial Rings

4.4. Fields
1.1. Fields
2.2. Factorization
3.3. Splitting Fields and Algebraic Closues
4.4. Separability, Normal Extensions

http://en.wikibooks.org/w/index.php?title=Algebra
http://en.wikibooks.org/w/index.php?title=Algebra
http://en.wikibooks.org/w/index.php?title=Linear_Algebra
http://en.wikibooks.org/w/index.php?title=Basic_Algebra
http://en.wikibooks.org/w/index.php?title=Algebra
http://en.wikibooks.org/w/index.php?title=Intermediate_Algebra
http://en.wikibooks.org/w/index.php?title=Linear_Algebra
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra
http://en.wikibooks.org/w/index.php?title=Introduction_to_Rings_and_Algebras
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Sets
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Equivalence_relations_and_congruence_classes
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Functions
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Binary_Operations
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Linear_Algebra
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Number_Theory
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/Reasons_to_Write_or_Read_This
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/Group
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/Subgroup
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/Cyclic_groups
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/Permutation_groups
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/Homomorphism
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/Normal_subgroups_and_Quotient_groups
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/Free_groups_and_Products
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/Group_actions_on_sets
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_Theory/The_Sylow_Theorems
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Group_tables
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Rings
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Ring_Homomorphisms
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Ideals
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Integral_domains
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Fraction_Fields
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Polynomial_Rings
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Fields
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Factorization
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Splitting_Fields_and_Algebraic_Closues
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Group_Theory/Separability%2C_Normal_Extensions


Abstract Algebra/Group Theory 76
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Abstract Algebra/Lattice theory
A lattice is a poset such that each pair of elements has a unique least upper bound and a unique greatest lower
bound.

Abstract Algebra/Matroids
A matroid is an algebraic construct that is related to the notion of independence.
Matroids are an abstraction of several combinatorial objects, among them graphs and matrices. The word matroid
was coined by Whitney in 1935 in his landmark paper "On the abstract properties of linear dependence". In defining
a matroid Whitney tried to capture the fundamental properties of dependence that are common to graphs and
matrices. Almost simultaneously, Birkhoff showed that a matroid can be interpreted as a geometric lattice. Maclane
showed that matroids have a geometric representation in terms of points, lines, planes, dimension 3 spaces etc. Often
the term combinatorial geometry is used instead of simple matroids. However, combinatorial geometry has another
meaning in mathematical literature. Rank 3 combinatorial geometries are frequently called linear spaces. Matroids
are a unifying concept in which some problems in graph theory, design theory, coding theory, and combinatorial
optimization become simpler to understand.

Abstract Algebra/Category theory
Category theory is the study of categories, which are collections of objects and morphisms (or arrows), or from one
object to another. See Category Theory for additional information.

Definitions & Notations
A category consists of a class G of objects and for every pair of objects A, B in G a class Hom(A, B) of things called
morphisms or arrows from A to B. This may be thought of as a directed graph where G are the points and Hom(A, B)
are the directed lines between them.
For every three objects A, B and C in G there is a map o called composition:
o : Hom(A, B) × Hom(B, C) → Hom(A, C)

We write f o g for the composition of f and g
Composition is associative, i.e. for and A, B, C, D in G, for any f in Hom(A, B), g in Hom(B, C), h in Hom(C, D),
(f o g) o h = f o (g o h)

For every object A in the category there is a special map iA in Hom(A, A) which we call the identity of A. This has the
properties:
for any object B in G, any g in Hom(A, B), iA o g = g

for any object B in G, any h in Hom(B, A), h o iA= h

[Note if jA is another identity for A, the axioms imply that
jA = jA o iA= iA,
so the identity for each object is unique.]

http://en.wikibooks.org/w/index.php?title=Category_Theory
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Some examples of categories
• , the category whose objects are sets, and whose morphisms are maps between the sets.
• The category whose objects are open subsets of and whose morphisms are continuous (differentiable,

smooth) maps between them.
•• The category whose objects are smooth (differentiable,topological) manifolds, and morphisms are smooth

(differentiable,continuous) maps.
• , the category whose objects are vector spaces over a field (for example, the real or complex

numbers), with morphisms linear maps.
• , the category of groups, and homomorphisms between them.
In all the examples I have given thus far, the objects have been sets with the morphisms given by set maps between
them. This is not always the case. There are some categories where this is not possible, and others where the
category doesn't naturally appear in this way. For example:
• Let be any category. Then its opposite category is a category with the same objects, and all the arrows

reversed. More formally, a morphism in from an object to is a morphism from to in .
• Let be any group. Then we can define a category with a single object, with morphisms from that object to

itself given by elements of with composition given by multiplication in .

Abstract Algebra/Hypercomplex numbers
Hypercomplex numbers are numbers that use the square root of -1 to create more than 1 extra dimension.
The most basic Hypercomplex number is the one used most often in vector mathematics, the Quaternion, which
consists of 4 dimensions. Higher dimensions are diagrammed by adding more roots to negative 1 in a predefined
relationship.

Quaternions
A Quaternion consists of four dimensions, one real and the other 3 imaginary. The imaginary dimensions are
represented as i, j and k. Each imaginary dimension is a square root of -1 and thus it is not on the normal number
line. In practice, the i, j and k are all orthogonal to each other and to the real numbers. As such, they only intersect at
the origin (0,0i, 0j, 0k).
The basic form of a quaternion is:

•
where a, b, c and d are real number coefficients.
For a quaternion the relationship between i, j and k is defined in this simple rule:

•
From this follows:

• , 
• , 
• , 
As you may have noticed, multiplication is not commutative in hyperdimensional mathematics.
They can also be represented as a 1 by 4 matrix in the form

real i j k
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1 1 1 1

...

...
The quaternion is a 4 dimensional number, but it can be used to diagram three dimensional vectors and can be used
to turn them without the use of calculus.
see also: Wikipedia's Article on Quaternion [1]

Octonion
8-dimensional. See: Wikipedia's Article on Octonion [2]

Sedenions
16-dimensional. See: Wikipedia's Article on Sedenion [3]

References
[1] http:/ / en. wikipedia. org/ wiki/ Quaternion
[2] http:/ / en. wikipedia. org/ wiki/ Octonion
[3] http:/ / en. wikipedia. org/ wiki/ Sedenion

Abstract Algebra/Rings

Introduction to Rings
Rings are algebraic structures designed to model and abstract the structure of the integers ( ), so that we can
duplicate some of the processes in which integers are used, but in a more general setting. It will be helpful if you
have familiarity with the concepts and theorems for groups, because we'll be using many of the same ideas and
theorems.
Definition: A ring is a set with two binary operations and that satisfies the following properties:

For all 

1. is an abelian group:
1. ( is closed under )
2. ( is associative)
3. ( contains an additive identity)
4. ( contains additive inverses)
5. ( is commutative)

2. is a semigroup:
1. ( is closed under )
2. ( is associative)

3. is distributive over :

1.
2.

We'll often use juxtaposition in place of , i.e., for .

http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Sedenion
http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Sedenion
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Examples
1. The set of integers under standard addition and multiplication.
2. The set of even integers under standard addition and multiplication.
3. The sets , , and are also rings under standard addition and multiplication.
4. The set of 2x2 square matrices with real coefficients under standard addition and multiplication.
5. The set of functions on with pointwise addition and multiplication.
6. More generally, if is a ring, the set is also a ring.
7. The set with function composition for multiplication is not a ring since the statement

is not true in general.
8. The set of integrable functions on the real numbers, , is a ring under pointwise addition and multiplication

given by convolution:

This ring is important to the study of linear systems and differential equations.

1. The set with the only possible binary operations is called the trivial ring or the zero ring. As we will see, all
singleton sets are isomorphic to when given operations. A ring which contains more than one element is
called a non-zero ring.

2. The set of Gaussian integers with standard addition and multiplication.
3. Let R be a ring, and let R[X] denote all the polynomials with

coefficients in R. Then R[x] is a ring under standard addition and multiplication. If and

, then where . Polynomial multiplication is also

called discrete convolution.
Theorem: Let be a ring, and let . Then the following are true:
1. If , then .
2. The equation has a unique solution.
3.
4.
5.
6.
Proof: (1), (2), and (3) all strictly concern addition, and are all previous results from being a group. The
other three parts all concern both addition and multiplication (since 0 and - are additive concepts), so as a proof
strategy we expect to use the distributive law in some way to link the two operations. For (4), observe that 0a + 0a =
(0 + 0)a = 0a. But then by (1), a=0. For (5), Note that (-a)b + ab = (-a + a)b = 0b = 0. For (6) note that (-a)(-b) + -(ab)
= (-a)(-b) + (-a)b = -a(-b + b) = -a0 = 0.

Types of Rings
Definition: Note that a ring does not necessarily have the property of commutative multiplication. When it does, the
ring is called a commutative ring.
Definition: Also, a ring does not necessarily have a multiplicative identity. A nonzero element of a ring that is an
identity under multiplication is sometimes called unity and is denoted 1. Rings that contain a multiplicative identity
are called rings with unity.
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Examples
1. is a commutative ring with 1.

2. is a non-commutative ring with .

3. is a commutative ring without 1.
4. As a more complicated example, with convolution is also a commutative ring without 1.
Exercise: Prove that in any ring with 1, the multiplicative identity is unique.
Exercise: As noted earlier, there is a single trivial or zero ring. Show that a ring with unity is the trivial ring if
and only if .

Definition: Let be a ring with . An element is a unit and is invertible if there is an element 
such that . The set of all units is denoted by .
Exercise: Prove that is a group under multiplication.
Definition: An non-zero element is a zero-divisor when there exists a nonzero such that rs = 0.
Exercise: Show that a zero-divisor is not a unit.

Definition: A commutative ring with a and no zero-divisors is called an integral domain.
Integral domains are modeled after , which is where they get their name. They are often very nice rings to work
in due to the following theorem:

Theorem (Cancellation Law for Integral Domains): Let be an integral domain, and let be nonzero.
Then if and only if .
Proof: Evidently if . To see the other direction, we rearrange the equality as . But
then . Since is nonzero, and contains no zero divisors, it must be the case that ,
which is to say that .
Definition: A ring with a is a division ring or skew field if all non-zero elements are units i. e. under
multiplication, it forms a group with its nonzero elements.
Definition: A field is a commutative division ring. Alternatively, a field is a ring where is an abelian
group. As another alternative, a field is an integral domain where all non-zero elements are invertible.
As stated before, integral domains are easy to work with because they are so close to being fields. In fact, the next
theorem shows just how close the two are:
Theorem: Let be a finite integral domain. Then is a field.

Proof: Let be nonzero and let . Clearly is a subset of . From the cancellation
law, we can see that (since if two elements and are equal, then ). But then . So
then there must be some such that . So is a unit.
Of course proving that a set with two operations satisfy all of the ring axioms can be tedious. So, just as we did for
groups, we note that if we're considering a subset of something that's already a ring, then our job is easier.
Definition: A subring of a ring is a subset of that is also a ring (under the same two operations as for 
). We denote " is a subring of " by .
Theorem: Let be a subset of a ring . Then iff:
1. is nonempty
2. is closed under 
3. , 
4. is closed under 
Examples:

1. .
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2. The trivial ring is a subring of every ring.
3. The set of Gaussian integers is a subring of the complex numbers .
4. Let be a ring, and consider the set of polynomials, . Then the set of constant polynomials

is a subring of . Note that the elements of and the constant polynomials in 
are not the same objects. However, we can see how we might regard as a subring of anyway. We will
make this idea more precise when we study homomorphisms in the next section.

Discrete Mathematics/Combinatory logic
Two of the basic principles of combinatory logic in discrete mathematics are the Sum principle and the
Multiplication principle.
The sum principle holds true in a given partitioned set X where partition Xi intersected with Xj is the empty set
unless i is equal to j. The principle states that in such a partitioned set, the sum of the elements of each partition is
equal to the number of elements in the set X.

Discrete Mathematics/Finite state automata
Formally, a Deterministc Finite Automaton is a 5-tuple where:
Q is the set of all states.

is the alphabet being considered.
is the set of transitions, including exactly one transition per element of the alphabet per state.
is the single starting state.

F is the set of all accepting states.

Similarly, the formal definition of a Nondeterministic Finite Automaton is a 5-tuple where:
Q is the set of all states.

is the alphabet being considered.
is the set of transitions, with epsilon transitions and any number of transitions for any particular input on every

state.
is the single starting state.

F is the set of all accepting states.
Note that for both a NFA and a DFA, is not a set of states. Rather, it is a single state, as neither can begin at more
than one state. However, a NFA can achieve similar function by adding a new starting state and epsilon-transitioning
to all desired starting states.
The difference between a DFA and an NFA being the delta-transitions are allowed to contain
epsilon-jumps(transitions on no input), unions of transitions on the same input, and no transition for any elements in
the alphabet.

For any NFA , there exists a DFA such that 
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Discrete Mathematics/Selected problems
The problems in the texts you have seen are for you to ensure that you understand the concepts and ideas explored.
They are not intended to be very difficult, but understandably they are not very challenging.
Questions here are intended for you to further use the ideas you have learnt to answer some more difficult questions.
Some questions are relatively straightforward, some of these questions depend on different sections of this discrete
mathematics text, some of these questions are meant to be examination-style questions.
Do not be discouraged by the increase in difficulty - hints are sometimes available, and you will be able to increase
your problem solving skills!

Set theory questions
These questions depend on your knowledge of ../Set theory/.
1. We have the sets A={0, 1, 3, 4, 5, 7}, B = {2, 4, 5, 8, 9}, C = {1, 4, 9, 11, 21}. Write the elements of the set

Check your solution: [1]
2. Using the set identities, simplify 
3. (Hint provided) Prove the set is not a subset of 
4. (Hint provided) Prove the set is not a subset of 

References
[1] http:/ / de. geocities. com/ hasslerkun/ SolutionCheckerEN. html?hv=96562c918a& no=1

Discrete Mathematics/Axiom of choice
Axiom of choice:

If is a surjective map, then there exists a map such that is the identity (trivial)
map.
Lemma: Every set can be well-ordered.

http://en.wikibooks.org/w/index.php?title=../Set_theory/
http://de.geocities.com/hasslerkun/SolutionCheckerEN.html?hv=96562c918a&no=1
http://de.geocities.com/hasslerkun/SolutionCheckerEN.html?hv=96562c918a&no=1
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Discrete Mathematics/Naive set theory
When we talk of set theory, we generally talk about collections of certain mathematical objects. In this sense, a set
can be likened to a bag, holding a finite (or conceivably infinite) amount of things. Sets can be sets of sets as well
(bags with bags in them). However, a set cannot contain duplicates -- a set can contain only one copy of a particular
item.
When we look at sets of certain types of numbers, for example, the natural numbers, or the rational numbers, for
instance, we may want to speak only of these sets. These collections of numbers are, of course, very important, so we
write special symbols to signify them.
We write sets in curly brackets -- { and }. We write all of the elements, or what the set contains, in the brackets,
separated by commas. We generally denote sets using capital letters.
For example, we write the set containing the number 0 and the number 1 as {0,1}. If we wish to give it a name, we
can say B={0,1}.

Special sets
The aforementioned collections of numbers, the naturals, rationals, etc. are notated as the following:
• the natural numbers are written 

{0,1,2,...}
• the integers are written 

{0,1,-1,2,-2,...}
• the rational numbers are written 

{0,1,1/2,1/3,...,2,2/3,2/4,...}
• the real numbers are written 

{0, , , ,...}
Here we will generally write these in standard face bold instead of the doublestruck bold you see above. So we write
here N instead of (NB following Wikipedia conventions).

Notations
We can write some special relations involving sets using some symbols.

Containment relations
To say that an element is in a set, for example, 3 is in the set {1,2,3}, we write:

We can also express this relationship in another way: we say that 3 is a member of the set {1,2,3}. Also, we can say
the set {1,2,3} contains 3, but this usage is not recommended as it is also used to refer to subsets (see following).
We can say that two sets are equal if they contain exactly the same elements. For example, the sets {2,3,1} and
{3,1,2} both contain the numbers 1, 2 and 3. We write:

We write the set with no elements as , or {}. Here, we use the notation {} for the empty set (NB following
Wikipedia conventions).
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The concept of the subset
A very important concept in set theory and other mathematical areas is the concept of the subset.
Say we have two sets A={0,1,2,3,4,5,6,7,8,9}, and B={0,1,2,3,4,5}. Now, B contains some elements of A, but not
all. We express this relationship between the sets A and B by saying B is a subset of A. We write this

If B is a subset of A, but A is not a subset of B, B is said to be a proper subset of A. We write this

Note that if , then 

Intersections and unions
There are two notable and fundamental special operations on sets, the intersection and the union. These are
somewhat analogous to multiplication and addition.

Intersection

The intersection of two sets A and B are the elements common to both sets. For example, if A={1,3,5,7,9} and
B={0,1,3}, their intersection, written is the set {1,3}.
If the intersection of any two sets are empty, we say these sets are disjoint.

Unions

The union of two sets A and B are the all elements in both sets. For example if A={1,3,5,7,9} and B={0,2,4,6,8}.
We say the union, written is the set {0,1,2,3,4,5,6,7,8,9}.

Set comprehensions
When we write a set, we can do so by writing all the elements in that set as above. However if we wish to write an
infinite set, then writing out the elements can be too unwieldy. We can solve this problem by writing sets in set
comprehension notation. We do this by writing these sets including a rule and by a relationship to an index set, say I.
That is;

where rule can be something like x2, or x=3x.
For example, this set forms the set of all even numbers:

This set forms the set of all solutions to the general quadratic:
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Universal sets and complements

Universal sets

When we do work with sets, it is useful to think of a larger set in which to work with. For example, if we are talking
about sets {-1,0,1} and {-3,-1,1,3}, we may want to work in Z in this circumstance. When we talk about working in
such a larger set, such as Z in that instance, we say that Z is a universal set, and we take all sets to be subsets of this
universal set.
We write the universal set to be , however it may be simpler to denote this as E.

Complements

Given a set A in a larger universal set E, we define the complement of A to be all elements in E that are not in A,
that is the complement of A is:

We write the complement as A' or Ac. In this document we will use A'.

Problem set
Based on the above information, write the answers to the following questions (Answers follow to even numbered
questions)

1. Is ?
2. Is ?

3. Is ?
4.4. True or false? If false, give an example of an element in the first set which is not in the second.

1.
2.

5.5. True or false? If false, give an example of an element in the first set which is not in the second.
1.
2.

6. Is ?
7. Is ?
8. Write the 5 elements of

9. Write the elements of

10. Find a universal set such that these sets are subsets thereof:

11. Given , find A' given 

Answers

2. No, the square root of 2 is irrational, not a rational number
4.1. Yes
4.2. No
6. Yes.
8. 5 elements could be {3,5,7,9,11}.
10. 
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Further ideas
These mentioned concepts are not the only ones we can give to set theory. Key ideas that are not necessarily given
much detail in this elementary course in set theory but later in abstract algebra and other fields, so it is important to
take a grasp on these ideas now.
These may be skipped.

Power set
The power set, denoted P(S), is the set of all subsets of S. NB: The empty set is a subset of all sets.
For example, P({0,1})=

Cardinality
The cardinality of a set, denoted |S| is the amount of elements a set has. So |{a,b,c,d}|=4, and so on. The cardinality
of a set need not be finite: some sets have infinite cardinality.

The cardinality of the power set

If P(S)=T, then |T|=2|S|.

Problem set

Based on the above information, write the answers to the following questions. (Answers follow to even numbered
questions)
1.1. |{1,2,3,4,5,6,7,8,9,0}|
2.2. |P({1,2,3})|
3.3. P({0,1,2})
4.4. P({1})

Answers

2. 23=8
4.

Set identities
When we spoke of the two fundamental operators on sets before, that of the union and the intersection, we have a set
of rules which we can use to simplify expressions involving sets. For example, given:

how can we simplify this?
Several of the following set identities are similar to those in standard mathematics
This is incomplete and a draft, additional information is to be added
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Discrete Mathematics/Sieve of Eratosthenes
The Sieve of Eratosthenes is a method for find prime numbers that is attributed to the ancient Greek mathematician
Eratosthenes. The idea is to begin by listing all the natural numbers bigger than 2.

and beginning with 2 we go to the first number that as not been crossed off and cross every multiple of that number
that is later on in the list.
So in the case of 2, no numbers have been crossed so we start by removing every second number after 2. Our list
would then look like

And we keep applying our rule. Here our next number not crossed out will be 3, we cross out every third number
after 3. That will be 6, 9, 12,… and our list the becomes

And so on. At the end only the prime numbers will be left.
In this case we have already found all of the primes less than 25. This is because composite numbers must always
have a prime factor less than their square root. If this were not the case for some integer we could write

. Since we are assuming is composite we know there are at least two prime factors
and . If both of which are greater than , then . This would contradict

that . So for us, since we have crossed out every number with a factor smaller than 5 we
have crossed out every composite number less than .

Discrete Mathematics
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.

Contents
•• Introduction

Introductory discrete mathematics
•• Set theory
•• Functions and relations
•• Number theory
•• Logic
•• Enumeration
•• Graph theory
•• Recursion

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Logic
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Enumeration
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Upper-level discrete mathematics

Upper-level set theory

•• Axiomatic set theory
•• Zermelo-Frankel Axioms
•• Toposes

Upper-level number theory

•• Number representations
•• Modular arithmetic
•• Polynomials
•• Finite fields
•• Arithmetic Functions
•• Analytic Number Theory

Upper-level logic

•• Godel's incompleteness theorem
•• Second order logic

Abstract algebra

Abstract algebraic systems

•• Groups
•• Lattice theory
•• Matroids
•• Boolean algebra
•• Category theory

Algebra over other number systems

•• Hypercomplex numbers
•• Rings, fields and modules

Others
•• Combinatory logic
•• Languages and grammars

Automata
•• Finite state automata
•• Pushdown automata
•• Turing machines
•• Cellular automata

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Toposes
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Godel%27s_incompleteness_theorem
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Second_order_logic
http://en.wikibooks.org/w/index.php?title=Abstract_Algebra/Boolean_algebra
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Languages_and_grammars
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Pushdown_automata
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Turing_machines
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Cellular_automata
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