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Introduction to Digital Signal Processing1

Information, Signals and Systems

Signal processing concerns primarily with signals and systems that operate on signals to extract useful
information. In this course our concept of a �signal� will be very broad, encompassing virtually any data
that can be represented as an organized �collection� of data.

Example

• A continuous function f (t)
• A sequence of discrete data points f [n]
• A multi-dimensional array of data
• Audio, images, video, voltage of antenna
• Stock prices, potassium concentration in a neuron

Our concept of a �system� will be a black box that takes a signal as input and provides another signal as
output.

Example

• Analog-to-digital converters (ADCs)
• Filters
• Decimators/Interpolators
• Matched �lters
• Face recognition systems

In this course we will approach signal processing from the point of view that signals are vectors living in an
appropriate vector space, and systems are operators that map signal from one vector space to another. This
allows us to use a common mathematical framework to talk about how to:

• represent signals
• measure similarity/distance between signals
• transform signals from one representation to another
• understand the operation of linear systems on the signals

Since the �cus of this course in on digital signal processing, this will also allow us to use tools from linear
algebra to facilitate this understanding.

Digital Signal Processing

DSP is often presented as an alternative to analog signal processing, i.e., instead of a purely analog sys-
tem as in Figure 1, we can build a digital implementation of an analog system as in Figure 2. This can

1This content is available online at <http://cnx.org/content/m33588/1.2/>.
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be advantageous since high-precision analog components are expensive (even compared to the cost of an
ADC/DAC).

Figure 1: An analog system.

Figure 2: A digital implementation of an analog system.

However, the success of DSP derives to a much greater extent from the facts that:

1. Discrete-valued signals can be more robust to noise, as illustrated in Figure 3. In Figure 3(a), noise
may be impossible to eliminate, but in Figure 3(b) noise can be eliminated entirely by exploiting the
discrete structure of the signal.

2. Once we have a digital, discrete-time signal, we can store it in memory and perform highly complex
processing.
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(a)

(b)

Figure 3: (a) An analog signal corrupted with noise; (b) A discrete-valued signal corrupted with noise.

In this course we will consider signal processing systems beyond simple LTI �lters. Themes of the course
include:

• Signals as vectors, vector space geometry
• Signal representations and bases
• Linear systems analysis and linear algebra
• �Optimality� in signal processing (e.g., optimal �lter design)
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Chapter 1

Signal Representation and

Approximation in Vector Spaces

1.1 Metric Spaces1

We will view signals as elements of certain mathematical spaces. The spaces have a common structure, so it
will be useful to think of them in the abstract.

1.1.1 Metric Spaces

De�nition 1
A set is a (possibly in�nite) collection of distinct objects.

Example 1.1

• The empty set: ∅ = {} (plays a role akin to zero)
• Binary numbers: {0, 1}
• Natural numbers: N = {1, 2, 3, ...}
• Integers: Z = {...,−2,−1, 0, 1, 2, ...} (Z is short for �Zahlen�, German for �numbers�)
• Rational numbers: Q (Q for �quotient�)
• Real numbers: R
• Complex numbers: C

In this course we will assume familiarity with a number of common set operations. In particular, for the sets
A = {0, 1}, B = {1}, C = {2}, we have the operations of:

Union: A ∪B = {0, 1}, B ∪ C = {1, 2}
Intersection: A ∩B = {1}, B ∩ C = ∅
Exclusion: A \B = {0}
Complement: Ac = U \A, Ac = {2}
Cartesian Product: A2 = A×A = {(0, 0) , (0, 1) , (1, 0) , (1, 1)}

In order to be useful a set must typically satisfy some additional structure. We begin by de�ning a notion
of distance.
De�nition 2
A metric space is a set M together with a metric (distance function) d : M ×M → R such that for all
x, y, z ∈M

1This content is available online at <http://cnx.org/content/m33568/1.3/>.
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M1. d (x, y) = d (y, x) (symmetry)
M2. d (x, y) ≥ 0 (non-negative)
M3. d (x, y) = 0 i� x = y (positive semi-de�nite)
M4. d (x, z) ≤ d (x, y) + d (y, z) (triangle inequality).

Example 1.2

Trivial metric: (M is arbitrary) d (x, y) = {
0 if x = y,

1 if x 6= y.

Standard metric: (M = R) d (x, y) = |x− y|
Euclidean (`2) metric: (M = RN ) d (x, y) =

√∑N
i=1 |xi − yi|

2

`1 metric: (M = RN ) d (x, y) =
∑N
i=1 |xi − yi|

`p metric, 1 ≤ p <∞: (M = RN ) d (x, y) =
(∑N

i=1 |xi − yi|
p
)1/p

`∞ metric: (M = RN ) d (x, y) = max
i=1,...,N

|xi − yi|

Lp metric: (M = real (or complex) valued functions de�ned on [a, b]) dp (x, y) =(∫ b
a
|x (t)− y (t) |pdt

)1/p

1.2 Completeness2

Distance functions allow us to talk concretely about limits and convergence of sequences.
De�nition 1
Let (M,d (x, y)) be a metric space and {xi}∞i=1 be a sequence of elements inM . We say that {xi}∞i=1converges

to x∗ if and only if for every ε > 0 there is an N such that d (xi, x∗) < ε for all i > N . In this case we say
that x∗ is the limit of {xi}∞i=1.

Figure 1.1: A sequence of points {xi} converging to x∗.

De�nition 2
A sequence {xi}∞i=1 is said to be a Cauchy sequence if for any ε > 0 there is an N such that d (xi, xj) < ε
for every i, j > N .

It can be shown that any convergent sequence is a Cauchy sequence. However, it is possible for a Cauchy
sequence to not be convergent!

2This content is available online at <http://cnx.org/content/m33586/1.2/>.
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Example 1.3
Suppose thatM = (0, 2), i.e., the open interval from 0 to 2 on the real line, and let d (x, y) = |x−y|.
Consider the sequence de�ned by xi = 1

i . {xi} is Cauchy since for any ε we can set N such that
1
N < ε

2 , so that |xi − xj | ≤ |xi|+ |xj | < ε
2 + ε

2 = ε. However, xi → 0, but 0 /∈M , i.e., the sequence
converges to something that lives outside of our space.

Example 1.4
Suppose that M = C [−1, 1] (the set of continuous functions de�ned on [−1, 1]) and let d2 denote
the L2 metric. Consider the sequence of functions de�ned by

fi (t) = {
0 if t ≤ − 1

i

it
2 + 1

2 if − 1
i < t < 1

i

1 if t ≥ 1
i .

(1.1)

Figure 1.2

For j > i we have that

d2 (fi, fj) =
(j − i)2

6j3i
. (1.2)

This goes to 0 for j, i su�ciently large. Thus, the sequence {fi}∞i=1 is Cauchy, but it converges to a
discontinuous function, and thus it is not convergent in M .
De�nition 3
A metric space (M,d (x, y)) is complete if every Cauchy sequence in M is convergent in M .

Example 1.5
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• M = [0, 1] , d (x, y) = |x− y| is complete.
• (C [−1, 1] , d2) is not complete, but one can check that (C [−1, 1] , d∞) is complete. (This

space works because using d∞, the above example is no longer Cauchy.)
• Q is not complete, but R is.

1.3 Vector Spaces3

Metric spaces impose no requirements on the structure of the set M . We will now consider more structured
M , beginning by generalizing the familiar concept of a vector.
De�nition 1
Let K be a �eld of scalars, i.e., K = R or C. Let V be a set of vectors equipped with two binary operations:

1. vector addition: + : V × V → V
2. scalar multiplication: · : K × V → V

We say that V is a vector space (or linear space) over K if

VS1: V forms a group under addition, i.e.,

• (x+ y) + z = x+ (y + z) (associativity)
• x+ y = y + x (commutativity)
• ∃ 0 ∈ V such that ∀ x ∈ V , x+ 0 = 0 + x = x
• ∀x ∈ V , ∃ y such that x+ y = 0

VS2: For any α, β ∈ K and x, y ∈ V
• α (βx) = (αβ)x (compatibility)
• (α+ β) (x+ y) = αx+ αy + βx+ βy (distributivity)
• ∃1 ∈ K such that 1x = x

Example 1.6

• RN over R (not RN over C)
• CN over C or CN over R
• Set of polynomials of degree N with rational coe�cients over Q
• The set of all in�nitely-long sequences of real numbers over R
• GF (2)N : {0, 1}N over {0, 1} with mod 2 arithmetic (Galois �eld)
• C [a, b] over R

1.4 Normed Vector Spaces4

While vector spaces have additional structure compared to a metric space, a general vector space has no
notion of �length� or �distance.�
De�nition 1
Let V be a vector space over K. A norm is a function ‖ · ‖ : V → R such that

N1. ‖x‖ ≥ 0∀x ∈ V
N2. ‖x‖ = 0 i� x = 0

3This content is available online at <http://cnx.org/content/m33583/1.2/>.
4This content is available online at <http://cnx.org/content/m33561/1.2/>.
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N3. ‖αx‖ = |α|‖x‖∀x ∈ V , α ∈ K
N4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖∀x, y ∈ V

A vector space together with a norm is called a normed vector space (or normed linear space).

Example 1.7

• V = RN : ‖x‖2 =
√∑N

i=1 |xi|
2

Figure 1.3

• V = RN : ‖x‖1 =
∑N
i=1 |xi| (�Taxicab�/�Manhattan� norm)
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Figure 1.4

• V = RN : ‖x‖∞ = max
i=1,...,N

|xi|

Figure 1.5
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• V = Lp [a, b], p ∈ [1,∞): ‖x (t) ‖p =
(∫ b

a
|x (t) |pdt

)1/p

(The notation Lp [a, b] denotes the set
of all functions de�ned on the interval [a, b] such that this norm exists, i.e., ‖ x (t) ‖p <∞.)

Note that any normed vector space is a metric space with induced metric d (x, y) = ‖x − y‖. (This follows
since ‖x− y‖ = ‖x− z+ z− y‖ ∈ ‖x− z‖+‖y− z‖.) While a normed vector space �feels like� a metric space,
it is important to remember that it actually satis�es a great deal of additional structure.

Technical Note: In a normed vector space we must have (from N2) that x = y if ‖x− y‖ = 0. This can
lead to a curious phenomenon when dealing with continuous-time functions. For example, in L2 ([a, b]), we
can consider a pair of functions like x (t) and y (t) illustrated below. These functions di�er only at a single
point, and thus ‖ x (t)− y (t) ‖2 = 0 (since a single point cannot contribute anything to the value of the
integral.) Thus, in order for our norm to be consistent with the axioms of a norm, we must say that x = y
whenever x (t) and y (t) di�er only on a set of measure zero. To reiterate x = y[U+21CE]x (t) = y (t)∀t ∈
[a, b], i.e., when we treat functions as vectors, we will not interpret x = y as pointwise equality, but rather
as equality almost everywhere.
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(a)

(b)

Figure 1.6

1.5 Inner Product Spaces5

Where normed vector spaces incorporate the concept of length into a vector space, inner product spaces
incorporate the concept of angle.
De�nition 1
Let V be a vector space over K. An inner product is a function < ·, · >: V × V → K such that for all
x, y, z ∈ V, α ∈ K

5This content is available online at <http://cnx.org/content/m33556/1.2/>.
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IP1. < x, y >= < y, x >
IP2. < αx, y >= α < x, y >
IP3. < x+ y, z >=< x, z > + < y, z >
IP4. < x, x >≥ 0 with equality i� x = 0.

A vector space together with an inner product is called an inner product space.

Example 1.8

• V = CN , < x, y >:=
∑N
i=1 xiyi = y∗x

• V = C [a, b], < x, y >:=
∫ b
a
x (t) y (t)dt

Note that a valid inner product space induces a normed vector space with norm ‖x‖ =
√
< x, x >. (Proof

relies on Cauchy-Schwartz inequality.) In RN or CN , the standard inner product induces the `2-norm. We
summarize the relationships between the various spaces introduced over the last few lectures in Figure 1.7.

Figure 1.7: Venn diagram illustrating the relationship between vector and metric spaces.

1.6 Properties of Inner Products6

Inner products and their induced norms have some very useful properties:

Cauchy-Schwartz Inequality: | < x, y > | ≤ ‖x‖‖y‖ with equality i� ∃ α ∈ C such that y = αx

Pythagorean Theorem: < x, y >= 0⇒ ‖x+ y‖2 = ‖x− y‖2 = ‖x‖2 + ‖y‖2

Parallelogram Law: ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

Polarization Identity: Re [< x, y >] = ‖x+y‖2−‖x−y‖2
4

In R2 and R3, we are very familiar with the geometric notion of an angle between two vectors. For example,
if x, y ∈ R2, then from the law of cosines, < x, y >= ‖x‖‖y‖cosθ. This relationship depends only on norms
and inner products, so it can easily be extended to any inner product space.

6This content is available online at <http://cnx.org/content/m33573/1.2/>.
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Figure 1.8

De�nition 1
The angleθ between two vectors x, y in an inner product space is de�ned by cosθ = <x,y>

‖x‖‖y‖
De�nition 2
Vectors x, y in an inner product space are said to be orthogonal if < x, y >= 0.

1.7 Complete Vector Spaces7

De�nition1
A complete normed vector space is called a Banach space.

Example 1.9

• ·C [a, b] with L∞ norm, i.e., ‖f‖∞ = ess sup
t∈[a,b]

|f (t) | is a Banach space.

• Lp [a, b] = {f :‖ f ‖p <∞} for p ∈ [1,∞] and −∞ ≤ a < b ≤ ∞ is a Banach space.
• `p (N) = {sequences x :‖ x ‖p <∞} for p ∈ [1,∞] is a Banach space.

• Any �nite-dimensional normed vector space is Banach, e.g., RN or CN with any norm.
• C [a, b] with Lp norm for p <∞ is not Banach.

De�nition 2
A complete inner product space is called a Hilbert space.

Example 1.10

• L2 [a, b] is a Hilbert space.
• `2 (N) is a Hilbert space.
• Any �nite-dimensional inner product space is a Hilbert space.

Note that every Hilbert space is Banach, but the converse is not true. Hilbert spaces will be extremely
important in this course.

1.8 Hilbert Spaces in Signal Processing8

What makes Hilbert spaces so useful in signal processing? In modern signal processing, we often represent a
signal as a point in high-dimensional space. Hilbert spaces are spaces in which our geometry intuition from
R3 is most trustworthy. As an example, we will consider the approximation problem.

7This content is available online at <http://cnx.org/content/m33548/1.2/>.
8This content is available online at <http://cnx.org/content/m34036/1.2/>.
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De�nition 1.
A subset W of a vector space V is convex if for all x, y ∈W and λ ∈ (0, 1), λx+ (1− λ) y ∈W .

Theorem 1.1: The Fundamental Theorem of Approximation
Let A be a nonempty, closed (complete), convex set in a Hilbert space H. For any x ∈ H there

is a unique point in A that is closest to x, i.e., x has a unique �best approximation� in A.

Figure 1.9: The best approximation to x in convex set A.

Note that in non-Hilbert spaces, this may not be true! The proof is rather technical. See Young Chapter 3
or Moon and Stirling Chapter 2. Also known as the �closest point property�, this is very useful in compression
and denoising.

1.9 Linear Combinations of Vectors9

Suppose we have a set of vectors v1, v2, ..., vN that lie in a vector space V . Given scalars α1, α2, ..., αN ,
observe that the linear combination

α1v1 + α2v2 + ...+ αNvN (1.3)

is also a vector in V .
De�nition 1
Let M ⊂ V be a set of vectors in V . The span of M , written span (M), is the set of all linear combinations
of the vectors in M .

Example 1.11: V = R3

v1 =


1

1

0

 , v2 =


0

1

0

 . (1.4)

9This content is available online at <http://cnx.org/content/m34030/1.2/>.
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span ({v1, v2}) = the x1x2-plane, i.e., for any x1, x2 we can write x1 = α1 and x2 = α1 + α2 for some
α1, α2 ∈ R.

Figure 1.10: Illustration of the set of all linear combinations of v1 and v2, i.e., the x1x2-plane.

Example 1.12
V = {f : f (t) is periodic with period 2π}, M = {ejkt}Bk=−B

span (M) = periodic, bandlimited (to B) functions, i.e., f (t) such that f (t) =
∑B

k=−B
cKe

jkt for

some c−B , c−B+1, ..., c0, c1, ..., cB ∈ C.

1.10 Vector Subspaces10

De�ntition 1
A (non-empty) subset W of V is called a supspace of V if for any x, y ∈W , span ({x, y}) ⊆W .

Note that this de�nition easily implies that:

• 0 ∈W
• W is itself a vector space

Example 1.13: Which of these are subspaces?

• [No]

10This content is available online at <http://cnx.org/content/m34073/1.2/>.
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• [Yes]
• V = R5, W = {x : x4 = 0, x5 = 0} [Yes]
• V = R5, W = {x : x4 = 1, x5 = 1} [No]
• V = C [0, 1], W ={polynomials of degree N} [Yes]
• V = C [0, 1], W = {f : f is bandlimited to B} [Yes]
• V = RN , W = {x : x hasnomorethan5nonzerocomponents, i.e., ‖x‖0 ≤ 5} [No]

1.11 Signal Approximation in a Hilbert Space11

We will now revisit �The Fundamental Theorem of Approximation� for the extremely important case where
our set A is a subspace. Speci�cally, suppose that H is a Hilbert space, and let A be a (closed) subspace of

H. From before, we have that for any x ∈ H there is a unique
^
x∈ A such that

^
x is the closest point in A to

x. When A is also a subspace, we also have:

Theorem 1.2: The Orthogonality Principle
^
x∈ A is the minimizer of ‖x− ^

x ‖ if any only if
^
x −x ⊥ A i.e., <

^
x −x, y >= 0 for all y ∈ A.

Proof:

(a) Suppose that
^
x −x ⊥ A. Then for any y ∈ A with y 6=^

x,‖y − x‖2 = ‖y− ^
x +

^
x −x‖

2

. Note

that y− ^
x∈ A, but ^x −x ⊥ A, so that < y− ^

x,
^
x −x >= 0, and we can apply Pythagoras to

obtain ‖y − x‖2 = ‖y− ^
x ‖

2

+ ‖ ^x −x‖. Since y 6=^
x, we thus have that ‖y − x‖2 > ‖ ^x −x‖

2

.

Thus
^
x must be the closest point in A to x.

11This content is available online at <http://cnx.org/content/m34068/1.2/>.
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Figure 1.11: Illustration of the orthogonality principle.

(b) Suppose that
^
x minimizes ‖x− ^

x ‖. Suppose for the sake of a contradiction that ∃y ∈ A such

that ‖y‖ = 1 and < x− ^
x, y >= δ 6= 0.

Let z =
^
x +δy.

‖x− z‖2 = ‖x− ^
x −δy‖

2

=< x− ^
x, x− ^

x> − < x− ^
x, δy > − < δy, x− ^

x> + < δy, δy >

= ‖x− ^
x ‖

2

− δδ − δδ + δδ

= ‖x− ^
x ‖

2

− |δ|2.

(1.5)

Thus ‖x− z‖ ≤ ‖x− ^
x ‖, contradicting the assumption that

^
x minimizes ‖x− ^

x ‖.
This result suggests a that a possible method for �nding the best approximation to a signal x from a

vector space V is to simply look for a vector
^
x such that

^
x −x ⊥ V . In the coming lectures we will show

how to do this, but it will require a brief review of some concepts from linear algebra.

1.12 Linear Operators12

De�nition 1
A transformation (mapping) L : X → Y from a vector space X to a vector space Y (with the same scalar
�eld K) is a linear transformation if:

1. L (αx) = αL (x)∀x ∈ X, α ∈ K
2. L (x1 + x2) = L (x1) + L (x2)∀x1, x2 ∈ X.

12This content is available online at <http://cnx.org/content/m34058/1.2/>.
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We call such transformations linear operators.

Example 1.14

• X = RN , Y = RML : RN → RM is an M ×N matrix

• Fourier transform: F (x (t)) =
∞∫
−∞

x (t) e−jwtdtF : L2 (R)→ L2 (R)

Let L : X → Y be an operator (linear or otherwise). The range spaceR (L) is

R (L) = {L (x) ∈ Y : x ∈ X}. (1.6)

The null spaceN (L), also known as �kernel�, is

N (L) = {x ∈ X : L (x) = 0}. (1.7)

If L is linear, then both R (L) and N (L) are subspaces.

1.13 Projections13

De�nition 1
A linear transformation P : X → X is called a projection if P (x) = x∀x ∈ R (P ), i.e, P (P (x)) = P (x)∀x ∈
X.

Example 1.15
P : R3 → R3, P (x1, x2, x3) = (x1, x2, 0)

Figure 1.12

De�nition 2
If P is a projection operator on an inner product space V , we say that P is an orthogonal projection if
R (P ) ⊥ N (P ) , i.e., < x, y >= 0∀x ∈ R (P ) , y ∈ N (P ) .

If P is an orthogonal projection, then for any x ∈ V we can write:

x = Px+ (I − P )x (1.8)

where Px ∈ R (P ) and (I − P )x ∈ N (P ) (since P (I − P )x = Px− P (Px) = Px− Px = 0.)

13This content is available online at <http://cnx.org/content/m34064/1.2/>.
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Now we see that the solution to our �best approximation in a linear subspace� problem is an orthogonal
projection: we wish to �nd a P such that R (P ) = A.

(a) (b)

Figure 1.13

The question is now, how can we design such a projection operator?

1.14 Linear Independence14

De�nition 1
A set of vectors {vj}Nj=1 is said to be linearly dependent is there exists a set of scalars α1, ..., αN (not all 0)
such that

N∑
j=1

αjvj = 0. (1.9)

Likewise if
∑N
j=1 αjvj = 0 only when αj = 0∀j, then {vj}Nj=1 is said to be linearly independent.

Example 1.16: V = R3

v1 =


2

1

0

 , v2 =


1

1

0

 , v3 =


1

2

0

 . (1.10)

Find α1, α2, α3 such that α1v1 + α2v2 + α3v3 = 0. [α1 = 1, α2 = −3, α3 = 1.] Note that any two vectors are
linearly independent.

Note that if a set of vectors {vj}Nj=1 are linearly dependent then we can remove vectors from the set
without changing the span of the set.

14This content is available online at <http://cnx.org/content/m34042/1.2/>.
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1.15 Bases15

De�nition 1
A basis of a vector space V is a set of vectors B such that

• span (B) = V .
• B is linearly independent.

The second condition ensures that all bases of V will have the same size. In fact, the dimension of a
vector space V is de�ned as the number of elements required in a basis for V . (Could easily be in in�nite.)

Example 1.17

• RN with B the �standard basis� for RN

{b1, b2, ..., bN} = {


1

0
...

0

 ,


0

1
...

0

 , ...,


0

0
...

1

} (1.11)

Note that this easily extends to `p (Z).
• RN with any set of N linearly independent vectors
• V = {polynomialsofdegreeatmost p}B = {1, t, t2, ..., tp} (Note that the dimension of V is

p+ 1)
• V = {f (t) : f (t) isperiodicwithperiod T}B = {ejkt}∞k=−∞ (Fourier series, in�nite dimen-

sional)

1.16 Orthogonal Bases16

De�nition 1
A collection of vectors B in an inner product space V is called an orthogonal basis if

1. span (B) = V
2. vi ⊥ vj (i.e., < vi, vj >= 0) ∀ i 6= j

If, in addition, the vectors are normalized under the induced norm, i.e., ‖ vi ‖= 1 ∀ i , then we call V an
orthonormal basis (or �orthobasis�). If V is in�nite dimensional, we need to be a bit more careful with 1.
Speci�cally, we really only need the closure of span (B) to equal V . In this case any x ∈ V can be written as

x =
∞∑
i=1

civi (1.12)

for some sequence of coe�cients {ci}∞i=1.
(This last point is a technical one since the span is typically de�ned as the set of linear combinations of

a �nite number of vectors. See Young Ch 3 and 4 for the details. This won't a�ect too much so we will gloss
over the details.)

Example 1.18

15This content is available online at <http://cnx.org/content/m34017/1.2/>.
16This content is available online at <http://cnx.org/content/m34067/1.2/>.
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• V = R2, standard basis

v1 =

 1

0

 v2 =

 0

1

 (1.13)

Example 1.19

• Suppose V = { piecewise constant functions on
[
0, 1

4

)
,
[

1
4 ,

1
2

)
,
[

1
2 ,

3
4

)
,
[

3
4 , 1
]
}. An example of

such a function is illustrated below.

Figure 1.14

Consider the set
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(a)

(b)

(c)

(d)

Figure 1.15

The vectors {v1, v2, v3, v4} form an orthobasis for V .
• Suppose V = L2 [−π, π]. B = { 1√

2π
ejkt}∞k=−∞, i.e, the Fourier series basis vectors, form an
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orthobasis for V . To verify the orthogonality of the vectors, note that:

< 1√
2π
ejkt, 1√

2π
ejkt > = 1

2π

∫ π
−π e

j(k1−k2)t

= 1
2π

ej(k1−k2)t

j(k1−k2)

∣∣∣π
−π

= 1
2π ·

−1+1
j(k1−k2) = 0 (k1 6= k2)

(1.14)

See Young for proof that the closure of B is L2 [−π, π], i.e., the fact that anyf ∈ L2 [−π, π]
has a Fourier series representation.

1.17 Computing the Best Approximation17

Recall that if P is an orthogonal projection onto a subspace A, we can write any x as

x = Px+ (I − P )x (1.15)

where Px ∈ A and (I − P )x ⊥ A. We now turn to how to actually �nd P .
We begin with the �nite-dimensional case, assuming that {v1, ..., vN} is a basis for A. If (I − P )x ⊥ A

then we have that for any x

< (I − P )x, vj >= 0 for j = 1, ..., N (1.16)

We also note that since Px ∈ A, we can write Px =
∑N
k=1 ckvk. Thus we obtain

< x−
N∑
k=1

ckvk, vj >= 0 for j = 1, ..., N (1.17)

from which we obtain

< x, vj >=
N∑
k=1

ck < vk, vj > for j = 1, ..., N (1.18)

We know x and v1, ..., vN . Our goal is to �nd c1, ..., cN . Note that a procedure for calculating c1, ..., ck for
any given x is equivalent to one that computes Px.

To �nd c1, ..., cN , observe that (1.18) represents a set of N equations with N unknowns.
< v1, v1 > < v2, v1 > · · · < vN , v1 >

< v1, v2 > < v2, v2 > < vN , v2 >
...

. . .
...

< v1, vN > < v2, vN > · · · < vN , vN >




c1

c2
...

cN

 =


< x, v1 >

< x, v2 >
...

< x, vN >

 (1.19)

More compactly, we want to �nd a vector c ∈ CN such that Gc = b where

b =


< x, v1 >

< x, v2 >
...

< x, vN >

 (1.20)

17This content is available online at <http://cnx.org/content/m34021/1.2/>.
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note:

• G is called the �Grammian� or �Gram matrix� of {vj}
• One can show since v1, ..., vN are linearly independent that G is positive de�nite, and hence
inevitable.
• Also note that by construction, G is conjugate symmetric, or �Hermitian�, i.e., G = GH , where
H denotes the conjugate transpose of G.

Thus, since G−1 exists, we can write c = G−1b to calculate c.
As a special case, suppose now that {vj} is an orthobasis for A? What is G? It is just the identity matrix

I! Computing c just got much easier, since now c = b. Plugging this c back into out formula for Px we
obtain

Px =
N∑
k=1

< x, vk > vk (1.21)

Just to verify, note that P is indeed a projection matrix:

P (Px) =
∑N

k=1

<
∑N

j=1

< x, vj > vj , vk > vk

=
∑N

k=1

∑N

j=1

< x, vj >< vj , vk > vk

=
∑N

j=1

< x, vj > vj = Px.

(1.22)

Example Suppose f ∈ L2 ([0, 4]) is given by

Example 1.20
Suppose f ∈ L2 ([0, 4]) is given by

f (t) = {
t if t ∈

[
0, 1

2

]
1− t if t ∈

[
1
2 , 1
]
.

(1.23)

Figure 1.16

Let A = { piecewise constant functions on
[
0, 1

4

)
,
[

1
4 ,

1
2

)
,
[

1
2 ,

3
4

)
,
[

3
4 , 1
]
}. Our goal is to �nd the

closest (in L2) function in A to f (t). Using v1, ..., v4 from before, we can calculate c1 = 1
4 , c2 = 0,

c3 = −
√

2
16 , c4 =

√
2

16 . Thus, we have that

^
f (t) =

1
4
v1 −

√
2

16
v3 +

√
2

16
v4. (1.24)
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Figure 1.17

1.18 Matrix Representation of the Approximation Problem18

Suppose our inner product space V = RM or CM with the standard inner product (which induces the
`2-norm).

Re-examining what we have just derived, we can write our approximation
^
x= Px = V c, where V is an

M ×N matrix given by

V =


...

...
...

v1 v2 · · · vN
...

...
...

 (1.25)

and c is an N × 1 vector given by 
c1

c2
...

cN

 . (1.26)

Given x ∈ RM (or CM ), our search for the closest approximation can be written as

min
c
‖x− Vc‖2 (1.27)

or as

min
c,e
‖e‖22 subjectto x = V c+ e (1.28)

Using V , we can replace G = V HV and b = V Hx. Thus, our solution can be written as

c =
(
V HV

)−1
V Hx, (1.29)

18This content is available online at <http://cnx.org/content/m34050/1.2/>.
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which yields the formula

^
x= V

(
V HV

)−1
V Hx. (1.30)

The matrix V † =
(
V HV

)−1
V H is known as the �pseudo-inverse.� Why the name �pseudo-inverse�? Observe

that

V †V =
(
V HV

)−1
V HV = I. (1.31)

Note that
^
x= V V †x. We can verify that V V † is a projection matrix since

V V †V V † = V
(
V HV

)−1
V HV

(
V HV

)−1
V H

= V
(
V HV

)−1
V H

= V V †

(1.32)

Thus, given a set of N linearly independent vectors in RM or CM (N < M), we can use the pseudo-inverse
to project any vector onto the subspace de�ned by those vectors. This can be useful any time we have a
problem of the form:

x = V c+ e (1.33)

where x denotes a set of known �observations�, V is a set of known �expansion vectors�, c are the unknown
coe�cients, and e represents an unknown �noise� vector. In this case, the least-squares estimate is given by

c = V †x,
^
x= V V †x. (1.34)

1.19 Orthobasis Expansions19

Suppose that the {vj}Nj=1 are a �nite-dimensional orthobasis. In this case we have

^
x=

N∑
j=1

< x, vj > vj . (1.35)

But what if x ∈ span ({vj}) = V already? Then we simply have

x =
N∑
j=1

< x, vj > vj (1.36)

for all x ∈ V . This is often called the �reproducing formula�. In in�nite dimensions, if V has an orthobasis
{vj}∞j=1 and x ∈ V has

∞∑
j=1

|< x, vj >|2 <∞ (1.37)

then we can write

x =
∞∑
j=1

< x, vj > vj . (1.38)

19This content is available online at <http://cnx.org/content/m34055/1.2/>.
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In other words, x is perfectly captured by the list of numbers < x, v1 >,< x, v2 >, ...
Sound familiar?

Example 1.21

• V = Cn, {vk} is the standard basis.

xk =< x, vk > vk. (1.39)

• V = L2 [−π, π], vk (t) = 1√
2π
ejkt For any f ∈ V we have

f (t) =
∞∑

k=−∞

cxvx (1.40)

where

ck =< f, vk >=
1√
2π

∫ π

−π
f (t) e−jktdt. (1.41)

The general lesson is that we can recreate a vector x in an inner product space from the coe�cients {<
x, vk >}. We can think of {< x, vk >} as �transform coe�cients.�

1.20 Parseval's and Plancherel's Theorems20

When dealing with transform coe�cients, we will see that our notions of distance and angle carry over to
the coe�cient space.

Let x, y ∈ V and suppose that {vk}k∈Γ is an orthobasis. (Γ denotes the index set, which could be �nite
or in�nite.) Then x =

∑
k∈Γαkvk and y =

∑
k∈Γβkvk, and

< x, y >V =
∑
k∈Γ

αkβk. (1.42)

So

< x, y >V = < α, β >`2 (1.43)

This is Plancherel's theorem. Parseval's theorem follows since < x, x >V = < α,α >`2 which implies that
‖x‖2V = ‖x‖2`2 . Thus, an orthobasis makes every inner product space equivalent to `2!

1.21 Error of the Best Approximation in an Orthobasis21

As an application of Parseval's Theorem, say {vk}∞k=1 is an orthobasis for an inner product space of V .
Let A be the subspace spanned by the �rst 10 elements of {vk}, i.e., A = span ({v1, ..., v10})

1. Given x ∈ v, what is the closest point inA (call it
^
x) to x? We have seen that it is

^
x=

∑10
k=1 < x, vk > vk

2. How good of an approximation is
^
x to x? Measured with ‖ · ‖V :

‖ x− ^
x‖2V = ‖

∑
k>10 < x, vk > vk‖2V

=
∑
k>10 | < x, vk > |2

(1.44)

20This content is available online at <http://cnx.org/content/m34062/1.2/>.
21This content is available online at <http://cnx.org/content/m34038/1.3/>.
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Since we also have that ‖ x ‖2V =
∑∞
k=1 | < x, vk > |2, the approximation

^
x will be �good� if the �rst 10

transform coe�cients contain �most� of the total energy. Constructing these types of approximations is
exactly what is done in image compression.

1.22 Approximation in `_p Norms22

So far, our approximation problem has been posed in an inner product space, and we have thus measured
our approximation error using norms that are induced by an inner product such as the L2/`2 norms (or
weighted L2/`2 norms). Sometimes this is a natural choice � it can be interpreted as the �energy� in the
error and arises often in the case of signals corrupted by Gaussian noise. However, more often than not, it
is used simply because it is easy to deal with.

In some cases we might be interested in approximating with respect to other norms � in particular we
will consider approximation with respect to `p-norms for p 6= 0. First, we introduce the concept of a �unit
ball�. Any norm gives us rise to a unit ball, i.e., {x : ‖x‖ = 1}. Some important examples of unit balls for
the `p norms in R2 are depicted below.

(a) (b) (c)

Figure 1.18

We now consider an example of approximating a point in R2 with a point in a 1-D subspace while
measuring error using the `p norm for p = 1, 2,∞.

Example 1.22
Suppose V = R2,

A = span

 2

−1

 , and x =

 2

1

 . (1.45)

We will want to �nd
^
x∈ A that minimizes ‖x− ^

x ‖p. Since
^
x∈ A, we can write

^
x=

 2α

−α

 (1.46)

22This content is available online at <http://cnx.org/content/m34019/1.3/>.
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and thus

e = x− ^
x=

 2− 2α

1 + α

 . (1.47)

While we can solve for α ∈ R to minimize ‖e‖p directly in some cases, a geometric interpretation
is also useful. In each case, on can imagine growing an `p ball centered on x until the ball intersects

with A. This will be the point
^
x∈ A. that is closest to x in the `p norm. We �rst illustrate this for

the `2 norm below:

Figure 1.19

In order to calculate
^
x we can apply the orthogonality principle. Since < e, [2 1]T >= 0 we

obtain a solution de�ned by α = 3
5 .

We now observe that in the case of the `∞ norm the picture changes somewhat. The closest
point in `∞ is illustrated below:



31

Figure 1.20

Note that the error is no longer orthogonal to the subspace A. In this case we can still calculate
^
x from the observation that the two terms in the error should be equal, which yields α = 1

3 .
The situation is even more di�erent for the case of the `1 norm, which is illustrated below:

Figure 1.21

We now observe that
^
x corresponds to α = 1. Note that in this case the error term is [0 2]T .

This punctuates a general trend: for large values of p, the `p norm tends to spread error evenly
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across all terms, while for small values of p the error is more highly concentrated.

When is it useful to approximate in `p or Lp norms for p 6= 0?

Example 1.23

Filter Design: In some cases we will want the best �t to a speci�ed frequency response in an L∞
sense rather than the L2 sense. This minimizes the maximum error rather than total energy
in the error. In the �gure below we illustrate a desired frequency response. If the L∞ norm
of the error is small, then we are guaranteed that the approximation to our desired frequency
response will lie within the illustrated bounds.

Figure 1.22

Geometry representation: In compressing 3D geometry, can be useful to bound the L∞ error
to ensure that basic shapes of narrow features (like poles, power lines, etc.) are preserved.

Sparsity: In the case where the error is known to be sparse (i.e., zero on most indices) it can be
useful to measure the error in the `1 norm.



Chapter 2

Representation and Analysis of Systems

2.1 Linear Systems1

In this course we will focus much of our attention on linear systems. When our input and output signals are
vectors, then the system is a linear operator.

Suppose that L : X → Y is a linear operator from a vector space X to a vector space Y . If X and Y are
normed vector spaces, then we can also de�ne a norm on L. Speci�cally, we can let

‖L‖L(X,Y ) = max
x∈X

‖Lx‖Y
‖x‖X

= max
x∈X:‖x‖X=1

‖Lx‖Y
(2.1)

An operator for which ‖L‖L(X,Y ) <∞ is called a bounded operator.

Example 2.1
BIBO (bounded-input, bounded-output) stable systems are systems for which

‖x‖∞ < A[U+27F9]‖Lx‖∞ < B. (2.2)

Such a system satis�es ‖L‖∞ < B
A .

One can show that ‖ · ‖L(X,Y ) satis�es the requirements of a valid norm. In fact L (X,Y ) =
{ bounded linear operators from X to Y } is itself a normed vector space! If Y is a Banach space, then
so is L (X,Y )!

Bounded linear operators are common in DSP�they are �safe� in that �normal� inputs are guaranteed
to not make your system explode.

Are there any common systems that are unbounded? Not in �nite dimensions, but in in�nite dimensions
there are plenty of examples!

Example 2.2
Consider L2 [−π, π]. For any k, fk (t) = 1√

2π
e−jkt is an element of L2 [−π, π] with ‖fk (t) ‖2 = 1.

Consider the system D = d
dt , and note that

d

dt
fk (t) =

−jk√
2π
e−jkt[U+27F9]‖Dfk (t) ‖2 = |k| . (2.3)

Since fk (t) ∈ L2 [−π, π] for all k, we can set k to be as large as we want, so D cannot be bounded.

A very important class of linear operators are those for which X = Y . In this case we have the following
important de�nition.

1This content is available online at <http://cnx.org/content/m34053/1.2/>.
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De�nition 1
Suppose that L = X → X is a linear operator. An eigenvector is a vector x for which Lx = αx for some
α ∈ K (i.e. α ∈ R or α ∈ C). In this case, α is called the corresponding eigenvalue.

Eigenvalues and eigenvectors tell you a lot about a system (more on this later!). While they can sometimes
be tricky to calculate (unless you know the eig command in Matlab), we will see that as engineers we can
usually get away with the time-honored method of �guess and check�.

2.2 Discrete-Time Systems2

We begin with the simplest of discrete-time systems, where X = CN and Y = CM . In this case a linear
operator is just an M ×N matrix. We can generalize this concept by letting M and N go to ∞, in which
case we can think of a linear operator L : `2 (Z)→ `2 (Z) as an in�nite matrix.

Example 2.3
Consider the shift operator ∆k : `2 (Z) → `2 (Z) that takes a sequence and shifts it by k. As an
example, ∆1 can be viewed as the in�nite matrix given by

...

...

...

y−1

y0

y1

...

...



=



. . . · · · 0

. . .
. . .

...

. . .
. . .

. . .

0 1 0

0 1 0

0 1 0
...

. . .
. . .

. . .

0 · · ·
. . .

. . .
. . .





...

...

...

x−1

x0

x1

...

...



(2.4)

Note that ‖∆k‖`2 = 1 (for any k and p) since the delay doesn't change the norm of x. The delay
operator is also an example of a linear shift-invariant (LSI) system.

De�nition 1
An operator L : `2 (Z) → `2 (Z) is called shift-invariant if L (∆k (x)) = ∆k (L (x)) for all x ∈ `2 (Z) and for
any k ∈ Z.

Observe that ∆k1 (∆k2 (x)) = ∆k1+k2 (x) so that ∆k itself is an LSI operator.
Lets take a closer look at the structure of an LSI system by viewing it as an in�nite matrix. In this case

we write y = Hx to denote 

...

y−1

y0

y1

...


=



...
...

...

| | |
· · · h−1 h0 h1 · · ·

| | |
...

...
...





...

x−1

x0

x1

...


(2.5)

2This content is available online at <http://cnx.org/content/m34041/1.2/>.
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Suppose we want to �gure out the column of H corresponding to h0. What input x could help us determine
h0? Consider the vector

x =



...

0

1

0
...


, (2.6)

i.e., x = δ [n]. For this input y = Hx = h0. What about h1? ∆1 (x) = δ [n− 1] would yield h1. In general
∆k (x) = δ [n− k] tell us the column hk. But, if H is LSI, then

hk = H (∆k (δ [n]))

= ∆k (H (δ [n]))

= ∆k

(
h0
) (2.7)

This means that each column is just a shifted version of h0, which is usually called the impulse response.
Now just to keep notation clean, let h = h0 denote the impulse response. Can we get a simple formula

for the output y in terms of h and x? Observe that we can write

...

y−1

y0

y1

...


=



...
...

...

h0 h−1 h−2

· · · h1 h0 h−1 · · ·
h2 h1 h0

...
...

...





...

x−1

x0

x1

...


(2.8)

Each column is just shifted down one. (Each successive row is also shifted right one.) Looking at y−1, y0

and y1, we can rewrite this formula as
y [−1]

y [0]

y [1]

 = · · ·+ x [−1]


h [0]

h [1]

h [2]

+ x [0]


h [−1]

h [0]

h [1]

+ x [1]


h [−2]

h [−1]

h [0]

+ · · · (2.9)

From this we can observe the general pattern

y [n] = · · ·+ x [−1]h [n+ 1] + x [0]h [n+ 0] + x [1]h [n− 1] + · · · (2.10)

or more concisely

y [n] =
∞∑

k=−∞

x [k]h [n− k] . (2.11)

Does this look familiar? It is simply the formula for the discrete-time convolution of x and h, i.e.,

y = x ∗ h. (2.12)
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2.3 Eigenvectors of LSI Systems3

Suppose that h is the impulse response of an LSI system. Consider an input x [n] = zn where z is a complex
number. What is the output of the system? Recall that x ∗ h = h ∗ x. In this case, it is easier to use the
formula:

y [n] =
∑∞
k=−∞

h [k]x [n− k]

=
∑∞
k=−∞

h [k] zn−k

= zn
∑∞
k=−∞

h [k] z−k

= x [n]H (z)

(2.13)

where

H (z) =
∞∑

k=−∞

h [k] z−k. (2.14)

In the event that H (z) converges, we see that y [n] is just a re-scaled version of x [n]. Thus, x [n] is an
eigenvector of the system H, right? Not exactly, but almost... technically, since zn /∈ `2 (Z) it isn't really an
eigenvector. However, most DSP texts ignore this subtlety. The intuition provided by thinking of zn as an
eigenvector is worth the slight abuse of terminology.

Next time we will analyze the function H (z) in greater detail. H (z) is called the z-transform of h, and
provides an extremely useful characterization of a discrete-time system.

2.4 The z-Transform4

2.4.1 The z-transform

We introduced the z-transform before as

H (z) =
∞∑

k=−∞

h [k] z−k (2.15)

where z is a complex number. When H (z) exists (the sum converges), it can be interpreted as the �response�
of an LSI system with impulse response h [n] to the input of zn. The z-transform is useful mostly due to its
ability to simplify system analysis via the following result.
Theorem
If y = h ∗ x, then Y (z) = H (z)X (z).
Proof
First observe that

∞∑
n=−∞ y [n] z−n =

∞∑
n=−∞

( ∞∑
k=−∞ x [k]h [n− k]

)
z−n

=
∞∑
k=−∞ x [k]

( ∞∑
n=−∞ h [n− k] z−n

) (2.16)

3This content is available online at <http://cnx.org/content/m34026/1.2/>.
4This content is available online at <http://cnx.org/content/m34821/1.2/>.
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Let m = n− k, and note that z−n = z−m · z−k. Thus we have

∞∑
n=−∞ y [n] z−n =

∞∑
k=−∞ x [k]

( ∞∑
n=−∞ h [m] z−m

)
z−k

=
∞∑
k=−∞ x [k]H (z) z−k

= H (z)
( ∞∑

k=−∞ x [k] z−k
)

= H (z)X (z)

(2.17)

This yields the �transfer function�

H (z) =
Y (z)
X (z)

. (2.18)

2.5 The Discrete-Time Fourier Transform5

2.5.1 The discrete-time Fourier transform

The (non-normalized) DTFT is simply a special case of the z-transform for the case |z| = 1, i.e., z = ejω for
some value ω ∈ [−π, π]

X
(
ejω
)

=
∞∑

n=−∞
x [n] e−jωn. (2.19)

The picture you should have in mind is the complex plane. The z-transform is de�ned on the whole plane,
and the DTFT is simply the value of the z-transform on the unit circle, as illustrated below.

5This content is available online at <http://cnx.org/content/m34819/1.2/>.
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Figure 2.1

This picture should make it clear why the DTFT is de�ned only for ω ∈ [−π, π] (or why it is periodic).
Using the normalization above, we also have the inverse DTFT formula:

x [n] =
1

2π

∫ π

−π
X
(
ejω
)
ejωndω. (2.20)

2.6 z-Transform Examples6

2.6.1 z-transform examples

Example 2.4
Consider the z-transform given by H (z) = z, as illustrated below.

6This content is available online at <http://cnx.org/content/m34823/1.2/>.
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Figure 2.2

The corresponding DTFT has magnitude and phase given below.

Figure 2.3
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Figure 2.4

What could the system H be doing? It is a perfect all-pass, linear-phase system. But what does
this mean?

Suppose h [n] = δ [n− n0]. Then

H (z) =
∞∑
n=−∞ h [n] z−n

=
∞∑
n=−∞ δ [n− n0] z−n

= z−n0 .

(2.21)

Thus, H (z) = z−n0 is the z-transform of a system that simply delays the input by n0. H (z) = z−1

is the z-transform of a unit-delay.

Example 2.5
Now consider x [n] = αnu [n]
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Figure 2.5

X (z) =
∞∑
n=−∞ x [n] z−n =

∞∑
n=0 α

nz−n

=
∞∑
n=0

(
α
z

)n
= 1

1−αz
(if |α/z| < 1) (Geometric Series)

= z
z−α

(2.22)

What if
∣∣a
z

∣∣ ≥ 1? Then
∞∑
n=0

(
α
n

)n
does not converge! Therefore, whenever we compute a z-

transform, we must also specify the set of z's for which the z-transform exists. This is called the
region of convergence (ROC). In the above example, the ROC={z : |z| > |α|}.
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Figure 2.6

Example 2.6
What about the �evil twin� x [n] = −αnu [−1− n]?

X (z) =
∞∑
n=−∞ −αnu [−1− n] z−n =

−1∑
n=−∞ −αnz−n

= −
−1∑
n=−∞

(
z
α

)−n
= −

∞∑
n=1

(
z
α

)n
= 1−

∞∑
n=0

(
z
α

)n (converges if |z/α| < 1)

= 1− 1
1− z

α
= α−z−α

α−z = z
z−α

(2.23)

We get the exact same result but with ROC={z : |z| < |α|}.

2.7 z-Transform Analysis of Discrete-Time Filters7

2.7.1 z-transform analysis of discrete-time �lters

The z-transform might seem slightly ugly. We have to worry about the region of convergence, and we
haven't even talked about how to invert it yet (it isn't pretty). However, in the end it is worth it because
it is extremely useful in analyzing digital �lters with feedback. For example, consider the system illustrated
below

7This content is available online at <http://cnx.org/content/m34822/1.2/>.
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Figure 2.7

We can analyze this system via the equations

v [n] = b0x [n] + b1x [n− 1] + b2x [n− 2] (2.24)

and

y [n] = v [n] + a1y [n− 1] + a2y [n− 2] . (2.25)

More generally,

v [n] =
N∑
k=0

bkx [n− k] (2.26)

and

y [n] =
M∑
k=1

aky [n− k] + v [n] (2.27)

or equivalently

N∑
k=0

bkx [n− k] = y [n]−
M∑
k=1

aky [n− k] . (2.28)

In general, many LSI systems satisfy linear di�erence equations of the form:

M∑
k=0

aky [n− k] =
N∑
k=0

bkx [n− k] . (2.29)

What does the z-transform of this relationship look like?

Z{
M∑
k=0 aky [n− k]} = Z{

M∑
k=0 bkx [n− k]}

M∑
k=0 akZ{y [n− k]} =

N∑
k=0 bkZ{x [n− k]}.

(2.30)
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Note that

Z{y [n− k]} =
∞∑
n=−∞ y [n− k] z−n

=
∞∑
m=−∞ y [m] z−m · z−k

= Y (z) z−k.

(2.31)

Thus the relationship above reduces to

M∑
k=0 akY (z) z−k =

N∑
k=0 bkX (z) z−k

Y (z)
(

M∑
k=0 akz

−k
)

= X (z)
(

N∑
k=0 bkz

−k
)

Y (z)
X(z) =

„
NP
k=0bkz

−k
«

„
MP
k=0akz

−k
«

(2.32)

Hence, given a system like the one above, we can pretty much immediately write down the system's transfer
function, and we end up with a rational function, i.e., a ratio of two polynomials in z. Similarly, given
a rational function, it is easy to realize this function in a simple hardware architecture. We will focus
exclusively on such rational functions in this course.

2.8 Poles and Zeros8

2.8.1 Poles and zeros

Suppose that X (z) is a rational function, i.e.,

X (z) =
P (z)
Q (z)

(2.33)

where P (z) and Q (z) are both polynomials in z. The roots of P (z) and Q (z) are very important.

De�nition 2.1: zero
A zero of X (z) is a value of z for which X (z) = 0 (or P (z) = 0). A pole of X (z) is a value of z
for which X (z) =∞ (or Q (z) = 0).
For �nite values of z, poles are the roots of Q (z), but poles can also occur at z =∞. We denote poles in

a z-plane plot by �×� we denote zeros by �◦�. Note that the ROC clearly cannot contain any poles since by
de�nition the ROC only contains z for which the z-transform converges, and it does not converge at poles.

Example 2.7
Consider

x1 [n] = αnu [n]
Z

[U+27F7] X1 (z) =
z

z − α
, |z| > |α| (2.34)

and

x2 [n] = −αnu [−1− n]
Z

[U+27F7] X2 (z) =
z

z − α
, |z| < |α| (2.35)

8This content is available online at <http://cnx.org/content/m34817/1.2/>.
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Figure 2.8

Note that the poles and zeros of X1 (z) and X2 (z) are identical, but with opposite ROCs. Note
also that neither ROC contains the point α.

Example 2.8
Consider

x3 [n] =
(

1
2

)n
u [n] +

(
−1

3

)n
u [n] . (2.36)
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Figure 2.9

We can compute the z-transform of x3 [n] by simply adding the z-transforms of the two di�erent
terms in the sum, which are given by(

1
2

)n
u [n]

Z

[U+27F7]
z

z − 1
2

ROC: |z| > 1
2

(2.37)

and (
−1

3

)n
u [n]

Z

[U+27F7]
z

z + 1
3

ROC: |z| > 1
3
. (2.38)

The poles and zeros for these z-transforms are illustrated below.
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Figure 2.10

Figure 2.11
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X3 (z) is given by

X3 (z) = z
z− 1

2
+ z

z+ 1
3

=
z(z+ 1

3 )+z(z− 1
2 )

(z+ 1
3 )(z− 1

2 )

=
z(2z− 1

6 )
(z+ 1

3 )(z− 1
2 ) ROC: |z| > 1

2

(2.39)

Figure 2.12

Note that the poles do not change, but the zeros do, as illustrated above.

Example 2.9
Now consider the �nite-length sequence

x4 [n] = {
αn 0 ≤ n ≤ N − 1

0 otherwise.
(2.40)
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Figure 2.13

The z-transform for this sequence is

X4 (z) =
N−1∑
n=0 x4 [n] z−n =

N−1∑
n=0 α

nz−n

=
1−(αz )N

1−αz
= zN−αN

zN−1(z−α)
ROC: z 6= 0

(2.41)

We can immediately see that the zeros of X4 (z) occur when zN = αN . Recalling the �Nth roots
of unity�, we see that the zeros are given by

zk = αej
2π
N k, k = 0, 1, ..., N − 1. (2.42)

At �rst glance, it might appear that there are N − 1 poles at zero and 1 pole at α, but the pole at
α is cancelled by the zero (z0) at α. Thus, X4 (z) actually has only N − 1 poles at zero and N − 1
zeros around a circle of radius α as illustrated below.
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Figure 2.14

So, provided that |α| < ∞, the ROC is the entire z-plane except for the origin. This actually
holds for all �nite-length sequences.

2.9 Stability, Causality, and the z-Transform9

2.9.1 Stability, causality, and the z-transform

In going from

N∑
k=0

aky [n− k] =
m∑
k=0

bkx [n− k] (2.43)

to

H (z) =
Y (z)
X (z)

(2.44)

we did not specify an ROC. If we factor H (z), we can plot the poles and zeros in the z-plane as below.

9This content is available online at <http://cnx.org/content/m34818/1.2/>.
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Figure 2.15

Several ROCs may be possible. Each ROC corresponds to a di�erent impulse response, so which one
should we choose? In general, there is no �right� choice, however, there are some choices that make sense in
practice.

In particular, if h [n] is causal, i.e., if h [n] = 0, n < 0, then the ROC extends outward from the outermost

pole. This can be seen in the examples up to this point. Moreover, recall that a system is BIBO stable if
the impulse response h ∈ `1 (Z). In this case,

|H (z)| =
∣∣∑∞

n=−∞ h [n] z−n
∣∣

≤
∑∞
n=−∞ |h [n]| |z−n|

(2.45)

Consider the unit circle z = ejω. In this case we have |z−n| = |e−jωn| = 1, so that

∣∣H (ejω)∣∣ ≤ ∞∑
n=−∞

|h [n]| <∞ (2.46)

for all ω. Thus, if a system is BIBO stable, the ROC of H (z) must include the unit circle. In general, any
ROC containing the unit circle will be BIBO stable.

This leads to a key question � are stability and causality always compatible? The answer is no. For
example, consider

H (z) =
z2

(z − 2)
(
z + 1

2

) =
4
5z

z − 2
+

1
5z

z + 1
2

(2.47)

and its various ROC's and corresponding inverses. If the ROC contains the unit-circle (so that the corre-
sponding system is stable) and is not to contain any poles, then it must extend inward towards the origin, and
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hence it cannot be causal. Alternatively, if the ROC is to extend outward, it will not contain the unit-circle
so that the corresponding system will not be BIBO stable.

2.10 Inverse Systems10

2.10.1 Inverse systems

Many signal processing problems can be interpreted as trying to undo the action of some system. For
example, echo cancellation, channel obvolution, etc. The problem is illustrated below.

Figure 2.16

If our goal is to design a system HI that reverses the action of H, then we clearly need H (z)HI (z) = 1.
In the case where

H (z) =
P (z)
Q (z)

(2.48)

then this can be achieved via

HI (z) =
Q (z)
P (z)

. (2.49)

Thus, the zeros of H (z) become poles of HI (z), and the poles of H (z) become zeros of HI (z). Recall that
H (z) being stable and causal implies that all poles are inside the unit circle. If we want H (z) to have a
stable, causal inverse HI (z), then we must have all zeros inside the unit circle, (since they become the poles
of HI (z).) Combining these, H (z) is stable and causal with a stable and causal inverse if and only if all
poles and zeros of H (z) are inside the unit circle. This type of system is called a minimum phase system.

2.11 Inverse z-Transform11

2.11.1 Inverse z-transform

Up to this point, we have ignored how to actually invert a z-transform to �nd x [n] from X (z). Doing so is
very di�erent from inverting a DTFT. We will consider three main techniques:

1. Inspection (look it up in a table)
2. Partial fraction expansion
3. Power series expansion

One can also use contour integration combined with the Cauchy Residue Theorem. See Oppenheim and
Schafer for details.

10This content is available online at <http://cnx.org/content/m34814/1.2/>.
11This content is available online at <http://cnx.org/content/m34815/1.2/>.
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2.11.1.1 Inspection

Basically, become familiar with the z-transform pairs listed in tables, and �reverse engineer�

Example 2.10
Suppose that

X (z) =
z

z − a
, |z| > |a|. (2.50)

By now you should be able to recognize that x [n] = anu [n].

2.11.1.2 Partial fraction expansion

If X (z) is rational, break it up into a sum of elementary forms, each of which can be inverted by inspection.

Example 2.11
Suppose that

X (z) =
1 + 2z−1 + z−2

1− 3
2z
−1 + 1

2z
−2
, |z| > 1. (2.51)

By computing a partial fraction expansion we can decompose X (z) into

X (z) =
8

1− z−1
− 9

1− 1
2z
−1

+ 2, (2.52)

where each term in the sum can be inverted by inspection.

2.11.1.3 Power Series Expansion

Recall that

X (z) =
∑∞
n=−∞ x [n] z−n

= ...x [−2] z2 + x [−1] z + x [0] + x [1] z−1 + x [2] z−2 + ....
(2.53)

If we know the coe�cients for the Laurent series expansion of X (z), then these coe�cients give us the
inverse z-transform.

Example 2.12
Suppose

X (z) = z2
(
1− 1

2z
−1
) (

1 + z−1
) (

1− z−1
)

= z2 − 1
2z − 1 + 1

2z
−1

(2.54)

Then

x [n] = δ [n+ 2]− 1
2
δ [n+ 1]− δ [n] +

1
2
δ [n− 1] . (2.55)

Example 2.13
Suppose

X (z) = log
(
1 + az−1

)
, |z| > |a| (2.56)
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where log denotes the complex logarithm. Recalling the Laurent series expansion

log (1 + x) =
∞∑
n=1

(−1)n+1
xn

n
(2.57)

we can write

X (z) =
∞∑
n=1

(−1)n+1
an

n
z−n. (2.58)

Thus we can infer that

x [n] = {
(−1)n+1an

n n ≥ 1

0 n ≤ 0.
(2.59)

2.12 Fourier Representations12

2.12.1 Fourier Representations

Throughout the course we have been alluding to various Fourier representations. We �rst recall the appro-
priate transforms:

Fourier Series (CTFS): x (t): continuous-time, �nite/periodic on [−π, π]

X [k] =
1√
2π

∫ π

−π
x (t) e−jktdt (2.60)

x (t) =
1√
2π

∞∑
k=−∞

X [k] ejkt (2.61)

Discrete-Time Fourier Transform (DTFT): x [n]: in�nite, discrete-time

X
(
ejω
)

=
1√
2π

∞∑
n=−∞

x [n] e−jωn (2.62)

x [n] =
1√
2π

∫ π

−π
X
(
ejω
)
ejωndω (2.63)

Discrete Fourier Transform (DFT): x [n]: �nite, discrete-time

X [k] =
1√
N

N−1∑
n=0

x [n] e−j
2π
N kn (2.64)

x [n] =
1√
N

N−1∑
k=0

X [k] ej
2π
N kn (2.65)

12This content is available online at <http://cnx.org/content/m34811/1.2/>.
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Continuous-Time Fourier Transform (CTFT): x (t): in�nite, continuous-time

X (Ω) =
1√
2π

∫ ∞
−∞

x (t) e−jΩtdt (2.66)

x (t) =
1√
2π

∫ ∞
−∞

X (Ω) ejΩtdΩ (2.67)

We will think of Fourier representations in two complimentary senses:

1. �Eigenbasis� representations: Each Fourier transform pair is very naturally related to an appro-
priate class of LTI systems. In some cases we can think of a Fourier transform as a change of basis.

2. Unitary operators: While we often use Fourier transforms to analyze certain operators, we can also
think of a Fourier transform as itself being an operator.

Figure 2.17

2.13 Normalized DTFT as an Operator13

2.13.1 Normalized DTFT as an operator

Note that by taking the DTFT of a sequence we get a function de�ned on [−π, π]. In vector space notation
we can view the DTFT as an operator (transformation). In this context it is useful to consider the normalized

13This content is available online at <http://cnx.org/content/m34816/1.2/>.
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DTFT

F (x) := X
(
ejω
)

=
1√
2π

∞∑
n=−∞

x [n] e−jωn. (2.68)

One can show that the summation converges for any x ∈ `2 (π), and yields a function X
(
ejω
)
∈ L2 [−π, π].

Thus,

F : `2 (Z)→ L2 [−π, π] (2.69)

can be viewed as a linear operator!
Note: It is not at all obvious that F can be de�ned for all x ∈ `2 (Z). To show this, one can �rst argue

that if x ∈ `1 (Z), then ∣∣X (ejω)∣∣ ≤
∣∣∣ 1√

2π

∑∞
n=−∞ x [n] e−jωn

∣∣∣
≤ 1√

2π

∑∞
n=−∞ |x [n]|

∣∣e−jwn∣∣
= 1√

2π

∑∞
n=−∞ |x [n]| <∞

(2.70)

For an x ∈ `2 (Z)\`1 (Z), one must show that it is always possible to construct a sequence xk ∈ `2 (Z)∩`1 (Z)
such that

lim
k→∞

‖ xk − x ‖2 = 0. (2.71)

This means {xk} is a Cauchy sequence, so that since `2 (Z) is a Hilbert space, the limit exists (and is x).
In this case

X
(
ejω
)

= lim
k→∞

Xk

(
ejω
)
. (2.72)

So for any x ∈ `2 (Z), we can de�ne F (x) = X
(
ejω
)
, where X

(
ejω
)
∈ L2 [−π, π].

Can we always get the original x back? Yes, the DTFT is invertible

F−1 (X) =
1√
2π

∫ π

−π
X
(
ejω
)
· ejωndω (2.73)

To verify that F−1 (F (x)) = x, observe that

1√
2π

∫ π
−π

(
1√
2π

∑∞
k=−∞ x [k] e−jωk

)
ejωndω = 1

2π

∑∞
k=−∞ x [k]

∫ π
−π e

−jω(k−n)dω

= 1
2π

∑∞
k=−∞ x [k] · 2πδ [n− k]

= x [n]

(2.74)

One can also show that for any X ∈ L2 [−π, π], F
(
F−1 (X)

)
= X.

Operators that satisfy this property are called unitary operators or unitary transformations. Unitary
operators are nice! In fact, if A = X → Y is a unitary operator between two Hilbert spaces, then one can
show that

< x1, x2 >=< Ax1, Ax2 > ∀ x1, x2 ∈ X, (2.75)

i.e., unitary operators obey Plancherel's and Parseval's theorems!
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2.14 Fourier Transforms as Unitary Operators14

2.14.1 Fourier transforms as unitary operators

We have just seen that the DTFT can be viewed as a unitary operator between `2 (Z) and L2 [−π, π]. One
can repeat this process for each Fourier transform pair. In fact due to the symmetry between the DTFT
and the CTFS, we have already established this for CTFS, i.e.,

CTFS: L2 [−π, π]→ `2 (Z) (2.76)

is a unitary operator. Similarly, we have

CTFS: L2 (R)→ L2 (R) (2.77)

is a unitary operator as well. The proof of this fact closely mirrors the proof for the DTFT. Finally, we also
have

DFT: CN → CN . (2.78)

This operator is also unitary, which can be easily veri�ed by showing that the DFT matrix is actually a
unitary matrix: UHU = UUH = I.

Note that this discussion only applies to �nite-energy (`2/L2) signals. Whenever we talk about in�nite-
energy functions (things like the unit step, delta functions, the all-constant signal) having a Fourier transform,
we need to be very careful about whether we are talking about a truly convergent Fourier representation or
whether we are merely using an engineering �trick� or convention.

2.15 The DTFT as an �Eigenbasis� 15

2.15.1 The DTFT as an �Eigenbasis�

We saw Parseval/Plancherel in the context of orthonormal basis expansions. This begs the question, do F
and F−1 just take signals and compute their representation in another basis?

Let's look at F−1 : L2 [−π, π]→ `2 (Z) �rst:

F−1
(
X
(
ejw
))

=
1√
2π

∫ π

−π
X
(
ejω
)
ejωndω. (2.79)

Recall that X
(
ejω
)
is really just a function of ω, so if we replace ω with t, we get

F−1 (X (t)) =
1√
2π

∫ π

−π
X (t) ejtndt. (2.80)

Does this seem familiar? If X (t) is a periodic function de�ned on [−π, π], then F−1 (X (t)) is just computing
(up to a reversal of the indicies) the continuous-time Fourier series of X (t)!

We said before that the Fourier series is a representation in an orthobasis, the sequence of coe�cients
that we get are just the weights of the di�erent basis elements. Thus we have → x [n] = FF−1 (X (t)) and

X (t) =
∞∑

n=−∞
x [n]

(
e−jtn√

2π

)
. (2.81)

14This content is available online at <http://cnx.org/content/m34812/1.2/>.
15This content is available online at <http://cnx.org/content/m34820/1.2/>.
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What about F? In this case we are taking an x ∈ `2 (Z) and mapping it to an X ∈ L2 [−π, π]. X represents
an in�nite set of numbers, and when we weight the functions ejωn by X (ω) and sum them all up, we get
back the original signal

x [n] =
∫ π

−π
X (ω)

(
ejωn√

2π

)
dω. (2.82)

Unfortunately,
∣∣∣∣∣∣ ejωn√

2π

∣∣∣∣∣∣ =∞ (6= 1) so technically, we can't really think of this as a change of basis.

However, as a unitary transformation, F has everything we would ever want in a basis and more: We
can represent any x ∈ `2 (Z) using {ejωn}ω∈[−π,π], and since it is unitary, we have Parseval and Plancherel

Theorems as well. On top of that, we already showed that the set of vectors {ejωn}ω∈[−π,π] are eigenvectors
of LSI systems � if this really were a basis, it would be called an eigenbasis.

Eigenbases are useful because once we represent a signal using an eigenbasis, to compute the output of
a system we just need to know what it does to its eigenvectors (i.e., its eigenvalues). For an LSI system,
H
(
ejω
)
represents a set of eigenvalues that provide a complete characterization of the system.

2.16 Eigenbases and LSI Systems16

Why is an eigenbasis so useful? It allows us to greatly simplify the computation of the output for a given
input. For example, suppose that X is a vector space and that L : X → X is a linear operator with
eigenvectors {vk}k∈Γ. If {vk}k∈Γ form a basis for X, then for any x ∈ X we can write x =

∑
k∈Γckvk. In

this case we have that

y = Lx

= L
(∑

k∈Γ ckvk
)

=
∑
k∈Γ ckL (vk)

=
∑
k∈Γ ckλkvk

(2.83)

In the case of a DT, LSI system H, we have that 1√
2π
e−jωn is an eigenvector of H and for any x [n] we can

write

x [n] =
∫ π

−π
X
(
ejω
)(e−jωn√

2π

)
dω. (2.84)

From the same line of reasoning as above, we have that

y [n] = H (x [n])

=
∫ π
−πX

(
ejω
)
H
(
e−jωn√

2π

)
dω

=
∫ π
−πX

(
ejω
)
H
(
ejω
)
·
(
e−jωn√

2π

)
dω

=
∫ π
−π Y

(
ejω
)
·
(
e−jωn√

2π

)
dω

(2.85)

Whenever we have an eigenbasis, we can represent our operator as simply a diagonal operator when the
input and output vectors are represented in the eigenbasis. The fact that convolution in time is equivalent to
multiplication in the Fourier domain is just one instance of this phenomenon. Moreover, while we have been
focusing primarily on the DTFT, it should now be clear that each Fourier representation forms an eigenbasis
for a speci�c class of operators, each of which de�nes a particular kind of convolution.

DTFT: discrete-time convolution (in�nite)

16This content is available online at <http://cnx.org/content/m34810/1.2/>.
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CTFT: continuous-time convolution (in�nite)

(f ∗ g) (t) =
∫ ∞
−∞

f (τ) g (t− τ) dτ (2.86)

DFT: discrete-time circular convolution

(x~ y) [n] =
N−1∑
k=0

x [k] yN [n− k] (2.87)

CTFS: continuous-time circular convolution

(f ~ g) (t) =
∫ τ

0

f (t) gT (b− τ) dτ (2.88)

This is the main reason why we have to care about circular convolution. It is something that one would
almost never want to do � but if you multiply two DFTs together you are doing it implicitly, so be careful

and remember what it is doing.



60 GLOSSARY

Glossary

Z zero

A zero of X (z) is a value of z for which X (z) = 0 (or P (z) = 0). A pole of X (z) is a value of z
for which X (z) =∞ (or Q (z) = 0).



INDEX 61

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A Angle, � 1.6(13)

B Banach Spaces, � 1.7(14)

C Cauchy sequences, � 1.2(6)
Cauchy-Schwartz Inequality, � 1.6(13)
Completeness, � 1.2(6), � 1.7(14)
Convergence, � 1.2(6)

D Digital Signal Processing, � (1)

H Hilbert Spaces, � 1.7(14), � 1.8(14)

I Inner Product Spaces, � 1.5(12)
Inner products, � 1.6(13)

L Limits, � 1.2(6)

M Metric spaces, � 1.1(5)

N Normed vector spaces, � 1.4(8)

O Orthogonality, � 1.6(13)

P Parallelogram Law, � 1.6(13)
Polarization Identity, � 1.6(13)
Pythagorean Theorem, � 1.6(13)

S Sets, � 1.1(5)
signal processing, � 1.8(14)

V Vector Spaces, � (1), � 1.3(8), � 1.7(14)

Z z-transform, � 2.4(36), � 2.8(44)
zero, 44



62 ATTRIBUTIONS

Attributions

Collection: Digital Signal Processing
Edited by: Mark A. Davenport
URL: http://cnx.org/content/col11172/1.4/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction to Digital Signal Processing"
By: Mark A. Davenport
URL: http://cnx.org/content/m33588/1.2/
Pages: 1-3
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Metric Spaces"
By: Mark A. Davenport
URL: http://cnx.org/content/m33568/1.3/
Pages: 5-6
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Completeness"
By: Mark A. Davenport
URL: http://cnx.org/content/m33586/1.2/
Pages: 6-8
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Vector Spaces"
By: Mark A. Davenport
URL: http://cnx.org/content/m33583/1.2/
Page: 8
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Normed Vector Spaces"
By: Mark A. Davenport
URL: http://cnx.org/content/m33561/1.2/
Pages: 8-12
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Inner Product Spaces"
By: Mark A. Davenport
URL: http://cnx.org/content/m33556/1.2/
Pages: 12-13
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/



ATTRIBUTIONS 63

Module: "Properties of Inner Products"
By: Mark A. Davenport
URL: http://cnx.org/content/m33573/1.2/
Pages: 13-14
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Complete Vector Spaces"
By: Mark A. Davenport
URL: http://cnx.org/content/m33548/1.2/
Page: 14
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Hilbert Spaces in Signal Processing"
By: Mark A. Davenport
URL: http://cnx.org/content/m34036/1.2/
Pages: 14-15
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Linear Combinations of Vectors"
By: Mark A. Davenport
URL: http://cnx.org/content/m34030/1.2/
Pages: 15-16
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Vector Subspaces"
By: Mark A. Davenport
URL: http://cnx.org/content/m34073/1.2/
Pages: 16-17
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Signal Approximation in a Hilbert Space"
By: Mark A. Davenport
URL: http://cnx.org/content/m34068/1.2/
Pages: 17-18
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Linear Operators"
By: Mark A. Davenport
URL: http://cnx.org/content/m34058/1.2/
Pages: 18-19
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Projections"
By: Mark A. Davenport
URL: http://cnx.org/content/m34064/1.2/
Pages: 19-20
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/



64 ATTRIBUTIONS

Module: "Linear Independence"
By: Mark A. Davenport
URL: http://cnx.org/content/m34042/1.2/
Page: 20
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Bases"
By: Mark A. Davenport
URL: http://cnx.org/content/m34017/1.2/
Page: 21
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Orthogonal Bases"
By: Mark A. Davenport
URL: http://cnx.org/content/m34067/1.2/
Pages: 21-24
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Computing the Best Approximation"
By: Mark A. Davenport
URL: http://cnx.org/content/m34021/1.2/
Pages: 24-26
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Matrix Representation of the Approximation Problem"
By: Mark A. Davenport
URL: http://cnx.org/content/m34050/1.2/
Pages: 26-27
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Orthobasis Expansions"
By: Mark A. Davenport
URL: http://cnx.org/content/m34055/1.2/
Pages: 27-28
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Parseval's and Plancherel's Theorems"
By: Mark A. Davenport
URL: http://cnx.org/content/m34062/1.2/
Page: 28
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Error of the Best Approximation in an Orthobasis"
By: Mark A. Davenport
URL: http://cnx.org/content/m34038/1.3/
Pages: 28-29
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/



ATTRIBUTIONS 65

Module: "Approximation in `_p Norms"
By: Mark A. Davenport
URL: http://cnx.org/content/m34019/1.3/
Pages: 29-32
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Linear Systems"
By: Mark A. Davenport
URL: http://cnx.org/content/m34053/1.2/
Pages: 33-34
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Discrete-time Systems"
Used here as: "Discrete-Time Systems"
By: Mark A. Davenport
URL: http://cnx.org/content/m34041/1.2/
Pages: 34-35
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Eigenvectors of LSI Systems"
By: Mark A. Davenport
URL: http://cnx.org/content/m34026/1.2/
Page: 36
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "The z-Transform"
By: Mark A. Davenport
URL: http://cnx.org/content/m34821/1.2/
Pages: 36-37
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Discrete-Time Fourier Transform"
By: Mark A. Davenport
URL: http://cnx.org/content/m34819/1.2/
Pages: 37-38
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "z-Transform Examples"
By: Mark A. Davenport
URL: http://cnx.org/content/m34823/1.2/
Pages: 38-42
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/



66 ATTRIBUTIONS

Module: "z-Transform Analysis of Discrete-Time Filters"
By: Mark A. Davenport
URL: http://cnx.org/content/m34822/1.2/
Pages: 42-44
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Poles and Zeros"
By: Mark A. Davenport
URL: http://cnx.org/content/m34817/1.2/
Pages: 44-50
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Stability, Causality, and the z-Transform"
By: Mark A. Davenport
URL: http://cnx.org/content/m34818/1.2/
Pages: 50-52
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Inverse Systems"
By: Mark A. Davenport
URL: http://cnx.org/content/m34814/1.2/
Page: 52
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Inverse z-Transform"
By: Mark A. Davenport
URL: http://cnx.org/content/m34815/1.2/
Pages: 52-54
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Fourier Representations"
By: Mark A. Davenport
URL: http://cnx.org/content/m34811/1.2/
Pages: 54-55
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Normalized DTFT as an Operator"
By: Mark A. Davenport
URL: http://cnx.org/content/m34816/1.2/
Pages: 55-56
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Fourier Transforms as Unitary Operators"
By: Mark A. Davenport
URL: http://cnx.org/content/m34812/1.2/
Page: 57
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/



ATTRIBUTIONS 67

Module: "The DTFT as an �Eigenbasis�"
By: Mark A. Davenport
URL: http://cnx.org/content/m34820/1.2/
Pages: 57-58
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/

Module: "Eigenbases and LSI Systems"
By: Mark A. Davenport
URL: http://cnx.org/content/m34810/1.2/
Pages: 58-59
Copyright: Mark A. Davenport
License: http://creativecommons.org/licenses/by/3.0/



Digital Signal Processing
This course provides an overview of discrete-time signal processing from a vector space perspective. Topics
will include sampling, �lter design, multirate signal processing and �lterbanks, Fourier and wavelet analysis,
subspace methods, and a variety of topics relating to inverse problems and "least-squares signal processing�.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.


