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Preface: Digital Signal

Processing and Digital

Filter Design1

Digital signal processing (DSP) has existed as long as quantitative calcu-
lations have been systematically applied to data in Science, Social Science,
and Technology. The set of activities started out as a collection of ideas
and techniques in very di�erent applications. Around 1965, when the fast
Fourier transform (FFT) was rediscovered, DSP was extracted from its
applications and became a single academic and professional discipline to
be developed as far as possible.

One of the earliest books on DSP was by Gold and Rader [125], written
in 1968, although there had been earlier books on sampled data control
and time series analysis, and chapters in books on computer applications.
In the late 60's and early 70's there was an explosion of activity in both
the theory and application of DSP. As the area was beginning to mature,
two very important books on DSP were published in 1975, one by Oppen-
heim and Schafer [225] and the other by Rabiner and Gold [284]. These
three books dominated the early courses in universities and self study in
industry.

The early applications of DSP were in the defense, oil, and medical
industries. They were the ones who needed and could a�ord the expensive
but higher quality processing that digital techniques o�ered over analog
signal processing. However, as the theory developed more e�cient algo-
rithms, as computers became more powerful and cheaper, and �nally, as
DSP chips became commodity items (e.g. the Texas Instruments TMS-
320 series) DSP moved into a variety of commercial applications and the
current digitization of communications began. The applications are now

1This content is available online at <http://cnx.org/content/m16880/1.1/>.
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2

everywhere. They are tele-communications, seismic signal processing,
radar and sonar signal processing, speech and music signal processing, im-
age and picture processing, entertainment signal processing, �nancial data
signal processing, medical signal processing, nondestructive testing, fac-
tory �oor monitoring, simulation, visualization, virtual reality, robotics,
and control. DSP chips are found in virtually all cell phones, digital cam-
eras, high-end stereo systems, MP3 players, DVD players, cars, toys, the
�Segway", and many other digital systems.

In a modern curriculum, DSP has moved from a specialized graduate
course down to a general undergraduate course, and, in some cases, to the
introductory freshman or sophomore EE course [198]. An exciting project
is experimenting with teaching DSP in high schools and in colleges to non-
technical majors [237].

Our reason for writing this book and adding to the already long list
of DSP books is to cover the new results in digital �lter design that have
become available in the last 10 to 20 years and to make these results avail-
able on line in Connexions as well as print. Digital �lters are important
parts of a large number of systems and processes. In many cases, the use
of modern optimal design methods allows the use of a less expensive DSP
chip for a particular application or obtaining higher performance with
existing hardware. The book should be useful in an introductory course
if the students have had a course on discrete-time systems. It can be used
in a second DSP course on �lter design or used for self-study or reference
in industry.

We �rst cover the optimal design of Finite Impulse Response (FIR)
�lters using a least squared error, a maximally �at, and a Chebyshev cri-
terion. A feature of the book is covering �nite impulse response (FIR)
�lter design before in�nite impulse response (IIR) �lter design. This re-
�ects modern practice and new �lter design algorithms. The FIR �lter
design chapter contains new methods on constrained optimization, mixed
optimization criteria, and modi�cations to the basic Parks-McClellan al-
gorithm that are very useful. Design programs are given in MatLab and
FORTRAN.

A brief chapter on structures and implementation presents block pro-
cessing for both FIR and IIR �lters, distributed arithmetic structures
for multiplierless implementation, and multirate systems for �lter banks
and wavelets. This is presented as a generalization to sampling and to
periodically time-varying systems. The bifrequency map gives a clearer
explanation of aliasing and how to control it.

The basic notes that were developed into this book have evolved over
35 years of teaching and conducting research in DSP at Rice, Erlangen,
and MIT. They contain the results of research on �lters and algorithms
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done at those universities and other universities and industries around
the world. The book tries to give not only the di�erent methods and
approaches, but also reasons and intuition for choosing one method over
another. It should be interesting to both the university student and the
industrial practitioner.

We want to acknowledge with gratitude the long time support of
Texas Instruments, Inc., the National Science Foundation, National In-
struments, Inc. and the MathWorks, Inc. as well as the support of the
Max�eld and Oshman families. We also want to thank our long-time
colleagues Tom Parks, Hans Schuessler, Jim McClellan, Al Oppenheim,
Sanjit Mitra, Ivan Selesnick, Doug Jones, Don Johnson, Leland Jackson,
Rich Baraniuk, and our graduate students over 30 years from whom we
have learned much and with whom we have argued often, particularly,
Selesnick, Gopinath, Soewito, and Vargas. We also owe much to the
IEEE Signal Processing Society and to Rice University for environments
to learn, teach, create, and collaborate. Much of the results in DSP was
supported directly or indirectly by the NSF, most recently NSF grant
EEC-0538934 in the Partnerships for Innovation program working with
National Instruments, Inc.

We particularly thank Texas Instruments and Prentice Hall for return-
ing the copyrights to me so that part of the material in DFT/FFT and
Convolution Algorithms[58], Design of Digital Filters[245], and
�E�cient Fourier Transform and Convolution Algorithms" in Advanced
Topics in Signal Processing[44] could be included here under the Cre-
ative Commons Attribution copyright. I also appreciate IEEE policy that
allows parts of my papers to be included here.

A rather long list of references is included to point to more background,
to more advanced theory, and to applications. A book of Matlab DSP
exercises that could be used with this book has been published through
Prentice Hall [56], [199]. Some Matlab programs are included to aid in
understanding the design algorithms and to actually design �lters. Lab-
View from National Instruments is a very useful tool to both learn with
and use in application. All of the material in these notes is being put into
�Connexions" [22] which is a modern web-based open-content information
system www.cnx.org. Further information is available on our web site at
www.dsp.rice.edu with links to other related work. We thank Richard
Baraniuk, Don Johnson, Ray Wagner, Daniel Williamson, and Marcia
Horton for their help.

This version of the book is a draft and will continue to evolve under
Connexions. A companion FFT book is being written and is also avail-
able in Connexions and print form. All of these two books are in the
repository of Connexions and, therefore, available to anyone free to use,
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reuse, modify, etc. as long as attribution is given.
C. Sidney Burrus
Houston, Texas
2008/06/10 10:23:04
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Chapter 1

Signals and Signal

Processing Systems

1.1 Continuous-Time Signals1

Signals occur in a wide range of physical phenomenon. They might be
human speech, blood pressure variations with time, seismic waves, radar
and sonar signals, pictures or images, stress and strain signals in a building
structure, stock market prices, a city's population, or temperature across a
plate. These signals are often modeled or represented by a real or complex
valued mathematical function of one or more variables. For example,
speech is modeled by a function representing air pressure varying with
time. The function is acting as a mathematical analogy to the speech
signal and, therefore, is called an analog signal. For these signals, the
independent variable is time and it changes continuously so that the term
continuous-time signal is also used. In our discussion, we talk of the
mathematical function as the signal even though it is really a model or
representation of the physical signal.

The description of signals in terms of their sinusoidal frequency con-
tent has proven to be one of the most powerful tools of continuous and
discrete-time signal description, analysis, and processing. For that rea-
son, we will start the discussion of signals with a development of Fourier
transform methods. We will �rst review the continuous-time methods of
the Fourier series (FS), the Fourier transform or integral (FT), and the
Laplace transform (LT). Next the discrete-time methods will be developed
in more detail with the discrete Fourier transform (DFT) applied to �nite

1This content is available online at <http://cnx.org/content/m16920/1.1/>.
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PROCESSING SYSTEMS

length signals followed by the discrete-time Fourier transform (DTFT) for
in�nitely long signals and ending with the Z-transform which allows the
powerful tools of complex variable theory to be applied.

More recently, a new tool has been developed for the analysis of sig-
nals. Wavelets and wavelet transforms [150], [63], [92], [380], [347] are
another more �exible expansion system that also can describe continuous
and discrete-time, �nite or in�nite duration signals. We will very brie�y
introduce the ideas behind wavelet-based signal analysis.

1.1.1 The Fourier Series

The problem of expanding a �nite length signal in a trigonometric series
was posed and studied in the late 1700's by renowned mathematicians
such as Bernoulli, d'Alembert, Euler, Lagrange, and Gauss. Indeed, what
we now call the Fourier series and the formulas for the coe�cients were
used by Euler in 1780. However, it was the presentation in 1807 and
the paper in 1822 by Fourier stating that an arbitrary function could
be represented by a series of sines and cosines that brought the problem
to everyone's attention and started serious theoretical investigations and
practical applications that continue to this day [147], [69], [165], [164],
[116], [223]. The theoretical work has been at the center of analysis and
the practical applications have been of major signi�cance in virtually ev-
ery �eld of quantitative science and technology. For these reasons and
others, the Fourier series is worth our serious attention in a study of
signal processing.

1.1.1.1 De�nition of the Fourier Series

We assume that the signal x (t) to be analyzed is well described by a real
or complex valued function of a real variable t de�ned over a �nite interval
{0 ≤ t ≤ T}. The trigonometric series expansion of x (t) is given by

x (t) =
a (0)

2
+
∞∑
k=1

a (k) cos
(

2π
T
kt

)
+ b (k) sin

(
2π
T
kt

)
. (1.1)

where xk (t) = cos (2πkt/T ) and yk (t) = sin (2πkt/T ) are the basis func-
tions for the expansion. The energy or power in an electrical, mechanical,
etc. system is a function of the square of voltage, current, velocity, pres-
sure, etc. For this reason, the natural setting for a representation of
signals is the Hilbert space of L2 [0, T ]. This modern formulation of the
problem is developed in [104], [165]. The sinusoidal basis functions in the
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trigonometric expansion form a complete orthogonal set in L2 [0, T ]. The
orthogonality is easily seen from inner products

(
cos
(

2π
T
kt
)
, cos

(
2π
T
`t
))

=∫ T
0

(
cos
(

2π
T
kt
)
cos
(

2π
T
`t
))

dt = δ (k − `)
(1.2)

and(
cos

(
2π
T
kt

)
, sin

(
2π
T
`t

))
=
∫ T

0

(
cos

(
2π
T
kt

)
sin

(
2π
T
`t

))
dt = 0

(1.3)
where δ (t) is the Kronecker delta function with δ (0) = 1 and δ (k 6= 0) =
0. Because of this, the kth coe�cients in the series can be found by taking
the inner product of x (t) with the kth basis functions. This gives for the
coe�cients

a (k) =
2
T

∫ T

0

x (t) cos
(

2π
T
kt

)
dt (1.4)

and

b (k) =
2
T

∫ T

0

x (t) sin
(

2π
T
kt

)
dt (1.5)

where T is the time interval of interest or the period of a periodic signal.
Because of the orthogonality of the basis functions, a �nite Fourier series
formed by truncating the in�nite series is an optimal least squared error
approximation to x (t). If the �nite series is de�ned by

^
x (t) =

a (0)
2

+
N∑
k=1

a (k) cos
(

2π
T
kt

)
+ b (k) sin

(
2π
T
kt

)
, (1.6)

the squared error is

ε =
1
T

∫ T

0

|x (t)− ^
x (t) |

2

dt (1.7)

which is minimized over all a (k) and b (k) by ((1.4)) and ((1.5)). This is
an extraordinarily important property.

It follows that if x (t) ∈ L2 [0, T ], then the series converges to x (t) in
the sense that ε → 0 as N → ∞[104], [165]. The question of point-wise
convergence is more di�cult. A su�cient condition that is adequate for
most application states: If f (x) is bounded, is piece-wise continuous, and
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has no more than a �nite number of maxima over an interval, the Fourier
series converges point-wise to f (x) at all points of continuity and to the
arithmetic mean at points of discontinuities. If f (x) is continuous, the
series converges uniformly at all points [165], [147], [69].

A useful condition [104], [165] states that if x (t) and its derivatives
through the qth derivative are de�ned and have bounded variation, the
Fourier coe�cients a (k) and b (k) asymptotically drop o� at least as fast
as 1

kq+1 as k →∞. This ties global rates of convergence of the coe�cients
to local smoothness conditions of the function.

The form of the Fourier series using both sines and cosines makes
determination of the peak value or of the location of a particular frequency
term di�cult. A di�erent form that explicitly gives the peak value of the
sinusoid of that frequency and the location or phase shift of that sinusoid
is given by

x (t) =
d (0)

2
+
∞∑
k=1

d (k) cos
(

2π
T
kt+ θ (k)

)
(1.8)

and, using Euler's relation and the usual electrical engineering notation
of j =

√
−1,

ejx = cos (x) + jsin (x) , (1.9)

the complex exponential form is obtained as

x (t) =
∞∑

k=−∞

c (k) ej
2π
T kt (1.10)

where

c (k) = a (k) + j b (k) . (1.11)

The coe�cient equation is

c (k) =
1
T

∫ T

0

x (t) e−j
2π
T ktdt (1.12)

The coe�cients in these three forms are related by

|d|2 = |c|2 = a2 + b2 (1.13)

and

θ = arg{c} = tan−1

(
b

a

)
(1.14)
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It is easier to evaluate a signal in terms of c (k) or d (k) and θ (k) than
in terms of a (k) and b (k). The �rst two are polar representation of a
complex value and the last is rectangular. The exponential form is easier
to work with mathematically.

Although the function to be expanded is de�ned only over a speci�c
�nite region, the series converges to a function that is de�ned over the real
line and is periodic. It is equal to the original function over the region
of de�nition and is a periodic extension outside of the region. Indeed,
one could arti�cially extend the given function at the outset and then the
expansion would converge everywhere.

1.1.1.2 A Geometric View

It can be very helpful to develop a geometric view of the Fourier series
where x (t) is considered to be a vector and the basis functions are the
coordinate or basis vectors. The coe�cients become the projections of
x (t) on the coordinates. The ideas of a measure of distance, size, and
orthogonality are important and the de�nition of error is easy to picture.
This is done in [104], [165], [390] using Hilbert space methods.

1.1.1.3 Properties of the Fourier Series

The properties of the Fourier series are important in applying it to signal
analysis and to interpreting it. The main properties are given here using
the notation that the Fourier series of a real valued function x (t) over
{0 ≤ t ≤ T} is given by F{x (t)} = c (k) and x̃ (t) denotes the periodic
extensions of x (t).

1. Linear: F{x + y} = F{x} + F{y} Idea of superposition. Also
scalability: F{ax} = aF{x}

2. Extensions of x (t): x̃ (t) = x̃ (t+ T )x̃ (t) is periodic.
3. Even and Odd Parts: x (t) = u (t) + jv (t) and C (k) = A (k) +
jB (k) = |C (k) | ejθ(k)

u v A B |C| θ

even 0 even 0 even 0

odd 0 0 odd even 0

0 even 0 even even π/2

0 odd odd 0 even π/2

Table 1.1
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4. Convolution: If continuous cyclic convolution is de�ned by

y (t) = h (t) ◦ x (t) =
∫ T

0

h̃ (t− τ) x̃ (τ) dτ (1.15)

then F{h (t) ◦ x (t)} = F{h (t)}F{x (t)}
5. Multiplication: If discrete convolution is de�ned by

e (n) = d (n) ∗ c (n) =
∞∑

m=−∞
d (m) c (n−m) (1.16)

then F{h (t) x (t)} = F{h (t)} ∗ F{x (t)} This property is the
inverse of property 4 and vice versa.

6. Parseval: 1
T

∫ T
0
|x (t) |2dt =

∑∞
k=−∞ |C (k) |2 This property says

the energy calculated in the time domain is the same as that calcu-
lated in the frequency (or Fourier) domain.

7. Shift: F{x̃ (t− t0)} = C (k) e−j2πt0k/T A shift in the time domain
results in a linear phase shift in the frequency domain.

8. Modulate: F{x (t) ej2πKt/T } = C (k −K) Modulation in the time
domain results in a shift in the frequency domain. This property is
the inverse of property 7.

9. Orthogonality of basis functions:∫ T

0

e−j2πmt/T ej2πnt/T dt = T δ (n−m) = {
T if n = m

0 if n 6= m.

(1.17)
Orthogonality allows the calculation of coe�cients using inner prod-
ucts in ((1.4)) and ((1.5)). It also allows Parseval's Theorem in prop-
erty 6. A relaxed version of orthogonality is called �tight frames"
and is important in over-speci�ed systems, especially in wavelets.

1.1.1.4 Examples

• An example of the Fourier series is the expansion of a square wave
signal with period 2π. The expansion is

x (t) =
4
π

[
sin (t) +

1
3
sin (3t) +

1
5
sin (5t) · · ·

]
. (1.18)

Because x (t) is odd, there are no cosine terms (all a (k) = 0) and,
because of its symmetries, there are no even harmonics (even k terms
are zero). The function is well de�ned and bounded; its derivative
is not, therefore, the coe�cients drop o� as 1

k .
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• A second example is a triangle wave of period 2π. This is a contin-
uous function where the square wave was not. The expansion of the
triangle wave is

x (t) =
4
π

[
sin (t)− 1

32
sin (3t) +

1
52
sin (5t) + · · ·

]
. (1.19)

Here the coe�cients drop o� as 1
k2 since the function and its �rst

derivative exist and are bounded.

Note the derivative of a triangle wave is a square wave. Examine the
series coe�cients to see this. There are many books and web sites on the
Fourier series that give insight through examples and demos.

1.1.1.5 Theorems on the Fourier Series

Four of the most important theorems in the theory of Fourier analysis
are the inversion theorem, the convolution theorem, the di�erentiation
theorem, and Parseval's theorem [71].

• The inversion theorem is the truth of the transform pair given in
((1.1)), ((1.4)), and((1.5))..

• The convolution theorem is property 4.
• The di�erentiation theorem says that the transform of the derivative

of a function is jω times the transform of the function.
• Parseval's theorem is given in property 6.

All of these are based on the orthogonality of the basis function of the
Fourier series and integral and all require knowledge of the convergence
of the sums and integrals. The practical and theoretical use of Fourier
analysis is greatly expanded if use is made of distributions or generalized
functions (e.g. Dirac delta functions, δ (t)) [239], [32]. Because energy is
an important measure of a function in signal processing applications, the
Hilbert space of L2 functions is a proper setting for the basic theory and
a geometric view can be especially useful [104], [71].

The following theorems and results concern the existence and conver-
gence of the Fourier series and the discrete-time Fourier transform [226].
Details, discussions and proofs can be found in the cited references.

• If f (x) has bounded variation in the interval (−π, π), the Fourier
series corresponding to f (x) converges to the value f (x) at any
point within the interval, at which the function is continuous; it
converges to the value 1

2 [f (x+ 0) + f (x− 0)] at any such point at
which the function is discontinuous. At the points π,−π it converges
to the value 1

2 [f (−π + 0) + f (π − 0)]. [147]
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• If f (x) is of bounded variation in (−π, π), the Fourier series con-
verges to f (x), uniformly in any interval (a, b) in which f (x) is
continuous, the continuity at a and b being on both sides. [147]

• If f (x) is of bounded variation in (−π, π), the Fourier series con-
verges to 1

2 [f (x+ 0) + f (x− 0)], bounded throughout the interval
(−π, π). [147]

• If f (x) is bounded and if it is continuous in its domain at every
point, with the exception of a �nite number of points at which it may
have ordinary discontinuities, and if the domain may be divided into
a �nite number of parts, such that in any one of them the function is
monotone; or, in other words, the function has only a �nite number
of maxima and minima in its domain, the Fourier series of f (x) con-
verges to f (x) at points of continuity and to 1

2 [f (x+ 0) + f (x− 0)]
at points of discontinuity. [147], [69]

• If f (x) is such that, when the arbitrarily small neighborhoods of
a �nite number of points in whose neighborhood |f (x) | has no
upper bound have been excluded, f (x) becomes a function with
bounded variation, then the Fourier series converges to the value
1
2 [f (x+ 0) + f (x− 0)], at every point in (−π, π), except the points
of in�nite discontinuity of the function, provided the improper in-
tegral

∫ π
−π f (x) dx exist, and is absolutely convergent. [147]

• If f is of bounded variation, the Fourier series of f converges at every
point x to the value [f (x+ 0) + f (x− 0)] /2. If f is, in addition,
continuous at every point of an interval I = (a, b), its Fourier series
is uniformly convergent in I. [397]

• If a (k) and b (k) are absolutely summable, the Fourier series con-
verges uniformly to f (x) which is continuous. [226]

• If a (k) and b (k) are square summable, the Fourier series converges
to f (x) where it is continuous, but not necessarily uniformly. [226]

• Suppose that f (x) is periodic, of period X, is de�ned and bounded
on [0, X] and that at least one of the following four conditions is
satis�ed: (i) f is piecewise monotonic on [0, X], (ii) f has a �nite
number of maxima and minima on [0, X] and a �nite number of
discontinuities on [0, X], (iii) f is of bounded variation on [0, X], (iv)
f is piecewise smooth on [0, X]: then it will follow that the Fourier
series coe�cients may be de�ned through the de�ning integral, using
proper Riemann integrals, and that the Fourier series converges to
f (x) at a.a.x, to f (x) at each point of continuity of f , and to the
value 1

2 [f (x−) + f (x+)] at all x. [71]
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• For any 1 ≤ p <∞ and any f ∈ Cp
(
S1
)
, the partial sums

Sn = Sn (f) =
∑
|k|≤n

^
f (k) ek (1.20)

converge to f , uniformly as n→∞; in fact, ||Sn−f ||∞ is bounded
by a constant multiple of n−p+1/2. [104]

The Fourier series expansion results in transforming a periodic, continuous
time function, x̃ (t), to two discrete indexed frequency functions, a (k) and
b (k) that are not periodic.

1.1.2 The Fourier Transform

Many practical problems in signal analysis involve either in�nitely long
or very long signals where the Fourier series is not appropriate. For these
cases, the Fourier transform (FT) and its inverse (IFT) have been de-
veloped. This transform has been used with great success in virtually
all quantitative areas of science and technology where the concept of fre-
quency is important. While the Fourier series was used before Fourier
worked on it, the Fourier transform seems to be his original idea. It can
be derived as an extension of the Fourier series by letting the length or
period T increase to in�nity or the Fourier transform can be indepen-
dently de�ned and then the Fourier series shown to be a special case of
it. The latter approach is the more general of the two, but the former is
more intuitive [239], [32].

1.1.2.1 De�nition of the Fourier Transform

The Fourier transform (FT) of a real-valued (or complex) function of the
real-variable t is de�ned by

X (ω) =
∫ ∞
−∞

x (t) e−jωt dt (1.21)

giving a complex valued function of the real variable ω representing
frequency. The inverse Fourier transform (IFT) is given by

x (t) =
1

2π

∫ ∞
−∞

X (ω) ejωt dω. (1.22)

Because of the in�nite limits on both integrals, the question of conver-
gence is important. There are useful practical signals that do not have
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Fourier transforms if only classical functions are allowed because of prob-
lems with convergence. The use of delta functions (distributions) in both
the time and frequency domains allows a much larger class of signals to
be represented [239].

1.1.2.2 Properties of the Fourier Transform

The properties of the Fourier transform are somewhat parallel to those of
the Fourier series and are important in applying it to signal analysis and
interpreting it. The main properties are given here using the notation
that the FT of a real valued function x (t) over all time t is given by
F{x} = X (ω).

1. Linear: F{x+ y} = F{x}+ F{y}
2. Even and Oddness: if x (t) = u (t) + jv (t) and X (ω) = A (ω) +
jB (ω) then

u v A B |X| θ

even 0 even 0 even 0

odd 0 0 odd even 0

0 even 0 even even π/2

0 odd odd 0 even π/2

Table 1.2

3. Convolution: If continuous convolution is de�ned by:

y (t) = h (t) ∗ x (t) =
∫∞
−∞ h (t− τ)x (τ) dτ =∫∞

−∞ h (λ)x (t− λ) dλ

(1.23)

then F{h (t) ∗ x (t)} = F{h (t)}F{x (t)}
4. Multiplication: F{h (t)x (t)} = 1

2πF{h (t)} ∗ F{x (t)}
5. Parseval:

∫∞
−∞ |x (t) |2dt = 1

2π

∫∞
−∞ |X (ω) |2dω

6. Shift: F{x (t− T )} = X (ω) e−jωT

7. Modulate: F{x (t) ej2πKt} = X (ω − 2πK)
8. Derivative: F{dxdt } = jωX (ω)
9. Stretch: F{x (at)} = 1

|a|X (ω/a)
10. Orthogonality:

∫∞
−∞ e−jω1tejω2t = 2πδ (ω1 − ω2)
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1.1.2.3 Examples of the Fourier Transform

Deriving a few basic transforms and using the properties allows a large
class of signals to be easily studied. Examples of modulation, sampling,
and others will be given.

• If x (t) = δ (t) then X (ω) = 1
• If x (t) = 1 then X (ω) = 2πδ (ω)
• If x (t) is an in�nite sequence of delta functions spaced T apart,

x (t) =
∑∞
n=−∞ δ (t− nT ), its transform is also an in�nite sequence

of delta functions of weight 2π/T spaced 2π/T apart, X (ω) =
2π
∑∞
k=−∞ δ (ω − 2πk/T ).

• Other interesting and illustrative examples can be found in [239],
[32].

Note the Fourier transform takes a function of continuous time into a
function of continuous frequency, neither function being periodic. If �dis-
tribution" or �delta functions" are allowed, the Fourier transform of a
periodic function will be a in�nitely long string of delta functions with
weights that are the Fourier series coe�cients.

1.1.3 The Laplace Transform

The Laplace transform can be thought of as a generalization of the Fourier
transform in order to include a larger class of functions, to allow the use of
complex variable theory, to solve initial value di�erential equations, and
to give a tool for input-output description of linear systems. Its use in
system and signal analysis became popular in the 1950's and remains as
the central tool for much of continuous time system theory. The question
of convergence becomes still more complicated and depends on complex
values of s used in the inverse transform which must be in a �region of
convergence" (ROC).

1.1.3.1 De�nition of the Laplace Transform

The de�nition of the Laplace transform (LT) of a real valued function
de�ned over all positive time t is

F (s) =
∫ ∞
−∞

f (t) e−st dt (1.24)

and the inverse transform (ILT) is given by the complex contour integral

f (t) =
1

2πj

∫ c+j∞

c−j∞
F (s) est ds (1.25)
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where s = σ + jω is a complex variable and the path of integration for
the ILT must be in the region of the s plane where the Laplace transform
integral converges. This de�nition is often called the bilateral Laplace
transform to distinguish it from the unilateral transform (ULT) which
is de�ned with zero as the lower limit of the forward transform integral
((1.24)). Unless stated otherwise, we will be using the bilateral transform.

Notice that the Laplace transform becomes the Fourier transform on
the imaginary axis, for s = jω. If the ROC includes the jω axis, the
Fourier transform exists but if it does not, only the Laplace transform of
the function exists.

There is a considerable literature on the Laplace transform and its use
in continuous-time system theory. We will develop most of these ideas for
the discrete-time system in terms of the z-transform later in this chapter
and will only brie�y consider only the more important properties here.

The unilateral Laplace transform cannot be used if useful parts of the
signal exists for negative time. It does not reduce to the Fourier transform
for signals that exist for negative time, but if the negative time part of a
signal can be neglected, the unilateral transform will converge for a much
larger class of function that the bilateral transform will. It also makes the
solution of linear, constant coe�cient di�erential equations with initial
conditions much easier.

1.1.3.2 Properties of the Laplace Transform

Many of the properties of the Laplace transform are similar to those for
Fourier transform [32], [239], however, the basis functions for the Laplace
transform are not orthogonal. Some of the more important ones are:

1. Linear: L{x+ y} = L{x}+ L{y}
2. Convolution: If y (t) = h (t) ∗ x (t) =

∫
h (t− τ) x (τ) dτ then

L{h (t) ∗ x (t)} = L{h (t)}L{x (t)}
3. Derivative: L{dxdt } = sL{x (t)}
4. Derivative (ULT): L{dxdt } = sL{x (t)} − x (0)
5. Integral: L{

∫
x (t) dt} = 1

sL{x (t)}
6. Shift: L{x (t− T )} = C (k) e−Ts

7. Modulate: L{x (t) ejω0t} = X (s− jω0)

Examples can be found in [239], [32] and are similar to those of the z-
transform presented later in these notes. Indeed, note the parallals and
di�erences in the Fourier series, Fourier transform, and Z-transform.



17

1.2 Discrete-Time Signals2

Although the discrete-time signal x (n) could be any ordered sequence
of numbers, they are usually samples of a continuous-time signal. In
this case, the real or imaginary valued mathematical function x (n) of the
integer n is not used as an analogy of a physical signal, but as some repre-
sentation of it (such as samples). In some cases, the term digital signal is
used interchangeably with discrete-time signal, or the label digital signal
may be use if the function is not real valued but takes values consistent
with some hardware system.

Indeed, our very use of the term �discrete-time" indicates the prob-
able origin of the signals when, in fact, the independent variable could
be length or any other variable or simply an ordering index. The term
�digital" indicates the signal is probably going to be created, processed, or
stored using digital hardware. As in the continuous-time case, the Fourier
transform will again be our primary tool [227], [240], [33].

Notation has been an important element in mathematics. In some
cases, discrete-time signals are best denoted as a sequence of values, in
other cases, a vector is created with elements which are the sequence
values. In still other cases, a polynomial is formed with the sequence
values as coe�cients for a complex variable. The vector formulation allows
the use of linear algebra and the polynomial formulation allows the use
of complex variable theory.

1.2.1 The Discrete Fourier Transform

The description of signals in terms of their sinusoidal frequency content
has proven to be as powerful and informative for discrete-time signals as it
has for continuous-time signals. It is also probably the most powerful com-
putational tool we will use. We now develop the basic discrete-time meth-
ods starting with the discrete Fourier transform (DFT) applied to �nite
length signals, followed by the discrete-time Fourier transform (DTFT)
for in�nitely long signals, and ending with the z-transform which uses the
powerful tools of complex variable theory.

1.2.1.1 De�nition of the DFT

It is assumed that the signal x (n) to be analyzed is a sequence of N real
or complex values which are a function of the integer variable n. The
DFT of x (n), also called the spectrum of x (n), is a length N sequence of

2This content is available online at <http://cnx.org/content/m16881/1.1/>.
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complex numbers denoted C (k) and de�ned by

C (k) =
N−1∑
n=0

x (n) e−j
2π
N nk (1.26)

using the usual engineering notation: j =
√
−1. The inverse transform

(IDFT) which retrieves x (n) from C (k) is given by

x (n) =
1
N

N−1∑
k=0

C (k) ej
2π
N nk (1.27)

which is easily veri�ed by substitution into (1). Indeed, this veri�cation
will require using the orthogonality of the basis function of the DFT which
is

N−1∑
k=0

e−j
2π
N mkej

2π
N nk = {

N if n = m

0 if n 6= m.
(1.28)

The exponential basis functions, e−j
2π
N k, for k ∈ {0, N − 1}, are the N

values of the Nth roots of unity (the N zeros of the polynomial (s− 1)N ).
This property is what connects the DFT to convolution and allows e�cient
algorithms for calculation to be developed [59]. They are used so often
that the following notation is de�ned by

WN = e−j
2π
N (1.29)

with the subscript being omitted if the sequence length is obvious from
context. Using this notation, the DFT becomes

C (k) =
N−1∑
n=0

x (n) Wnk
N (1.30)

One should notice that with the �nite summation of the DFT, there is
no question of convergence or of the ability to interchange the order of
summation. No �delta functions� are needed and the N transform values
can be calculated exactly (within the accuracy of the computer or calcu-
lator used) from the N signal values with a �nite number of arithmetic
operations.

1.2.1.2 Matrix Formulation of the DFT

There are several advantages to using a matrix formulation of the DFT.
This is given by writing ((1.26)) or ((1.30)) in matrix operator form as
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C0

C1

C2

.

.

.

CN−1


=



W 0 W 0 W 0 · · · W 0

W 0 W 1 W 2

W 0 W 2 W 4

.

.

.
.
.
.

W 0 · · · W (N−1)(N−1)





x0

x1

x2

.

.

.

xN−1


(1.31)

or

C = Fx. (1.32)

The orthogonality of the basis function in ((1.26)) shows up in this matrix
formulation by the columns of F being orthogonal to each other as are
the rows. This means that FTF = kI, where k is a scalar constant, and,
therefore, FT = kF−1. This is called a unitary operator.

The de�nition of the DFT in ((1.26)) emphasizes the fact that each of
the N DFT values are the sum of N products. The matrix formulation
in ((1.31)) has two interpretations. Each k-th DFT term is the inner
product of two vectors, k-th row of F and x; or, the DFT vector, C is a
weighted sum of the N columns of F with weights being the elements of
the signal vector x. A third view of the DFT is the operator view which
is simply the single matrix equation ((1.32)).

It is instructive at this point to write a computer program to calculate
the DFT of a signal. In Matlab [217], there is a pre-programmed function
to calculate the DFT, but that hides the scalar operations. One should
program the transform in the scalar interpretive language of Matlab or
some other lower level language such as FORTRAN, C, BASIC, Pas-
cal, etc. This will illustrate how many multiplications and additions and
trigonometric evaluations are required and how much memory is needed.
Do not use a complex data type which also hides arithmetic, but use
Euler's relations

ejx = cos (x) + jsin (x) (1.33)

to explicitly calculate the real and imaginary part of C (k).
If Matlab is available, �rst program the DFT using only scalar opera-

tions. It will require two nested loops and will run rather slowly because
the execution of loops is interpreted. Next, program it using vector inner
products to calculate each C (k) which will require only one loop and will
run faster. Finally, program it using a single matrix multiplication requir-
ing no loops and running much faster. Check the memory requirements
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of the three approaches.
The DFT and IDFT are a completely well-de�ned, legitimate trans-

form pair with a sound theoretical basis that do not need to be derived
from or interpreted as an approximation to the continuous-time Fourier
series or integral. The discrete-time and continuous-time transforms and
other tools are related and have parallel properties, but neither depends
on the other.

The notation used here is consistent with most of the literature and
with the standards given in [83]. The independent index variable n of
the signal x (n) is an integer, but it is usually interpreted as time or,
occasionally, as distance. The independent index variable k of the DFT
C (k) is also an integer, but it is generally considered as frequency. The
DFT is called the spectrum of the signal and the magnitude of the complex
valued DFT is called the magnitude of that spectrum and the angle or
argument is called the phase.

1.2.1.3 Extensions of

Although the �nite length signal x (n) is de�ned only over the interval
{0 ≤ n ≤ (N − 1)}, the IDFT of C (k) can be evaluated outside this
interval to give well de�ned values. Indeed, this process gives the periodic
property 4. There are two ways of formulating this phenomenon. One
is to periodically extend x (n) to −∞ and +∞ and work with this new
signal. A second more general way is evaluate all indices n and k modulo
N . Rather than considering the periodic extension of x (n) on the line
of integers, the �nite length line is formed into a circle or a line around
a cylinder so that after counting to N − 1, the next number is zero, not
a periodic replication of it. The periodic extension is easier to visualize
initially and is more commonly used for the de�nition of the DFT, but the
evaluation of the indices by residue reduction modulo N is a more general
de�nition and can be better utilized to develop e�cient algorithms for
calculating the DFT [59].

Since the indices are evaluated only over the basic interval, any val-
ues could be assigned x (n) outside that interval. The periodic extension
is the choice most consistent with the other properties of the transform,
however, it could be assigned to zero [227]. An interesting possibility is
to arti�cially create a length 2N sequence by appending x (−n) to the
end of x (n). This would remove the discontinuities of periodic extensions
of this new length 2N signal and perhaps give a more accurate measure
of the frequency content of the signal with no artifacts caused by �end
e�ects". Indeed, this modi�cation of the DFT gives what is called the
discrete cosine transform (DCT) [107]. We will assume the implicit peri-
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odic extensions to x (n) with no special notation unless this characteristic
is important, then we will use the notation x̃ (n).

1.2.1.4 Convolution

Convolution is an important operation in signal processing that is in
some ways more complicated in discrete-time signal processing than in
continuous-time signal processing and in other ways easier. The basic
input-output relation for a discrete-time system is given by so-called lin-
ear or non-cyclic convolution de�ned and denoted by

y (n) =
∞∑

m=−∞
h (m) x (n−m) = h (n) ∗ x (n) (1.34)

where x (n) is the perhaps in�nitely long input discrete-time signal, h (n)
is the perhaps in�nitely long impulse response of the system, and y (n) is
the output. The DFT is, however, intimately related to cyclic convolution,
not non-cyclic convolution. Cyclic convolution is de�ned and denoted by

ỹ (n) =
N−1∑
m=0

h̃ (m) x̃ (n−m) = h (n) ◦ x (n) (1.35)

where either all of the indices or independent integer variables are eval-
uated modulo N or all of the signals are periodically extended outside
their length N domains.

This cyclic (sometimes called circular) convolution can be expressed as
a matrix operation by converting the signal h (n) into a matrix operator
as

H =



h0 hL−1 hL−2 · · · h1

h1 h0 hL−1

h2 h1 h0

...
...

hL−1 · · · h0


, (1.36)

The cyclic convolution can then be written in matrix notation as

Y = HX (1.37)

where X and Y are column matrices or vectors of the input and output
values respectively.
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Because non-cyclic convolution is often what you want to do and cyclic
convolution is what is related to the powerful DFT, we want to develop
a way of doing non-cyclic convolution by doing cyclic convolution.

The convolution of a length N sequence with a length M sequence
yields a length N +M − 1 output sequence. The calculation of non-cyclic
convolution by using cyclic convolution requires modifying the signals by
appending zeros to them. This will be developed later.

1.2.1.5 Properties of the DFT

The properties of the DFT are extremely important in applying it to
signal analysis and to interpreting it. The main properties are given here
using the notation that the DFT of a length-N complex sequence x (n) is
F{x (n)} = C (k).

1. Linear Operator: F{x (n) + y (n)} = F{x (n)}+ F{y (n)}
2. Unitary Operator: F−1 = 1

NFT

3. Periodic Spectrum: C (k) = C (k +N)
4. Periodic Extensions of x (n): x (n) = x (n+N)
5. Properties of Even and Odd Parts: x (n) = u (n) + jv (n) and
C (k) = A (k) + jB (k)

u v A B |C| θ

even 0 even 0 even 0

odd 0 0 odd even π/2

0 even 0 even even π/2

0 odd odd 0 even 0

Table 1.3

6. Cyclic Convolution: F{h (n) ◦ x (n)} = F{h (n)}F{x (n)}
7. Multiplication: F{h (n)x (n)} = F{h (n)} ◦ F{x (n)}
8. Parseval:

∑N−1
n=0 |x (n) |2 = 1

N

∑N−1
k=0 |C (k) |2

9. Shift: F{x (n−M)} = C (k) e−j2πMk/N

10. Modulate: F{x (n) ej2πKn/N} = C (k −K)
11. Down Sample or Decimate: F{x (Kn)} = 1

K

∑K−1
m=0 C (k + Lm)

where N = LK
12. Up Sample or Stretch: If xs (2n) = x (n) for integer n and zero

otherwise, then F{xs (n)} = C (k), for k = 0, 1, 2, ..., 2N − 1
13. N Roots of Unity:

(
W k
N

)N = 1 for k = 0, 1, 2, ..., N − 1
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14. Orthogonality:

N−1∑
k=0

e−j2πmk/Nej2πnk/N = {
N if n = m

0 if n 6= m.
(1.38)

15. Diagonalization of Convolution: If cyclic convolution is expressed as
a matrix operation by y = Hx with H given by ((1.36)), the DFT
operator diagonalizes the convolution operator H, or FTHF = Hd

where Hd is a diagonal matrix with the N values of the DFT of
h (n) on the diagonal. This is a matrix statement of Property 6.
Note the columns of F are the N eigenvectors of H, independent of
the values of h (n).

One can show that any �kernel" of a transform that would support cyclic,
length-N convolution must be the N roots of unity. This says the DFT
is the only transform over the complex number �eld that will support
convolution. However, if one considers various �nite �elds or rings, an
interesting transform, called the Number Theoretic Transform, can be
de�ned and used because the roots of unity are simply two raised to a
powers which is a simple word shift for certain binary number represen-
tations [10], [12].

1.2.1.6 Examples of the DFT

It is very important to develop insight and intuition into the DFT or spec-
tral characteristics of various standard signals. A few DFT's of standard
signals together with the above properties will give a fairly large set of
results. They will also aid in quickly obtaining the DFT of new signals.
The discrete-time impulse δ (n) is de�ned by

δ (n) = {
1 when n = 0

0 otherwise
(1.39)

The discrete-time pulse uM (n) is de�ned by

uM (n) = {
1 when n = 0, 1, · · · ,M − 1

0 otherwise
(1.40)

Several examples are:

• DFT{δ (n)} = 1, The DFT of an impulse is a constant.
• DFT{1} = Nδ (k), The DFT of a constant is an impulse.
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•
DFT{ej2πKn/N} = Nδ (k −K) (1.41)

•

DFT{cos (2πMn/N) =
N

2
[δ (k −M) + δ (k +M)] (1.42)

•
DFT{uM (n)} =

sin
(
π
NMk

)
sin
(
π
N k
) (1.43)

These examples together with the properties can generate a still larger
set of interesting and enlightening examples. Matlab can be used to ex-
periment with these results and to gain insight and intuition.

1.2.2 The Discrete-Time Fourier Transform

In addition to �nite length signals, there are many practical problems
where we must be able to analyze and process essentially in�nitely long
sequences. For continuous-time signals, the Fourier series is used for �nite
length signals and the Fourier transform or integral is used for in�nitely
long signals. For discrete-time signals, we have the DFT for �nite length
signals and we now present the discrete-time Fourier transform (DTFT)
for in�nitely long signals or signals that are longer than we want to specify
[227]. The DTFT can be developed as an extension of the DFT as N goes
to in�nity or the DTFT can be independently de�ned and then the DFT
shown to be a special case of it. We will do the latter.

1.2.2.1 De�nition of the DTFT

The DTFT of a possibly in�nitely long real (or complex) valued sequence
f (n) is de�ned to be

F (ω) =
∞∑
−∞

f (n) e−jωn (1.44)

and its inverse denoted IDTFT is given by

f (n) =
1

2π

∫ π

−π
F (ω) ejωn dω. (1.45)

Veri�cation by substitution is more di�cult than for the DFT. Here con-
vergence and the interchange of order of the sum and integral are serious
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questions and have been the topics of research over many years. Dis-
cussions of the Fourier transform and series for engineering applications
can be found in [240], [33]. It is necessary to allow distributions or delta
functions to be used to gain the full bene�t of the Fourier transform.

Note that the de�nition of the DTFT and IDTFT are the same as the
de�nition of the IFS and FS respectively. Since the DTFT is a contin-
uous periodic function of ω, its Fourier series is a discrete set of values
which turn out to be the original signal. This duality can be helpful
in developing properties and gaining insight into various problems. The
conditions on a function to determine if it can be expanded in a FS are
exactly the conditions on a desired frequency response or spectrum that
will determine if a signal exists to realize or approximate it.

1.2.2.2 Properties

The properties of the DTFT are similar to those for the DFT and are
important in the analysis and interpretation of long signals. The main
properties are given here using the notation that the DTFT of a complex
sequence x (n) is F{x (n)} = X (ω).

1. Linear Operator: F{x+ y} = F{x}+ F{y}
2. Periodic Spectrum: X (ω) = X (ω + 2π)
3. Properties of Even and Odd Parts: x (n) = u (n) + jv (n) and
X (ω) = A (ω) + jB (ω)

u v A B |X| θ

even 0 even 0 even 0

odd 0 0 odd even 0

0 even 0 even even π/2

0 odd odd 0 even π/2

Table 1.4

4. Convolution: If non-cyclic or linear convolution is de�ned by:

y (n) = h (n) ∗ x (n) =∑∞
m=−∞ h (n−m)x (m) =

∑∞
k=−∞ h (k)x (n− k)

(1.46)

then F{h (n) ∗ x (n)} = F{h (n)}F{x (n)}
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5. Multiplication: If cyclic convolution is de�ned by:

Y (ω) = H (ω) ◦X (ω) =
∫ T

0

H̃ (ω − Ω) X̃ (Ω) dΩ (1.47)

F{h (n)x (n)} =
1

2π
F{h (n)} ◦ F{x (n)} (1.48)

6. Parseval:
∑∞
n=−∞ |x (n) |2 = 1

2π

∫ π
−π |X (ω) |2dω

7. Shift: F{x (n−M)} = X (ω) e−jωM

8. Modulate: F{x (n) ejω0n} = X (ω − ω0)
9. Sample: F{x (Kn)} = 1

K

∑K−1
m=0 X (ω + Lm) where N = LK

10. Stretch: F{xs (n)} = X (ω), for −Kπ ≤ ω ≤ Kπ where
xs (Kn) = x (n) for integer n and zero otherwise.

11. Orthogonality:
∑∞
n=−∞ e−jω1ne−jω2n = 2πδ (ω1 − ω2)

1.2.2.3 Evaluation of the DTFT by the DFT

If the DTFT of a �nite sequence is taken, the result is a continuous
function of ω. If the DFT of the same sequence is taken, the results are
N evenly spaced samples of the DTFT. In other words, the DTFT of a
�nite signal can be evaluated at N points with the DFT.

X (ω) = DTFT{x (n)} =
∞∑

n=−∞
x (n) e−jωn (1.49)

and because of the �nite length

X (ω) =
N−1∑
n=0

x (n) e−jωn. (1.50)

If we evaluate ω at N equally space points, this becomes

X

(
2π
N
k

)
=

N−1∑
n=0

x (n) e−j
2π
N kn (1.51)

which is the DFT of x (n). By adding zeros to the end of x (n) and taking
a longer DFT, any density of points can be evaluated. This is useful in
interpolation and in plotting the spectrum of a �nite length signal. This
is discussed further in Chapter4 .
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There is an interesting variation of the Parseval's theorem for the
DTFT of a �nite length-N signal. If x (n) 6= 0 for 0 ≥ n ≥ N − 1, and if
L ≥ N , then

N−1∑
n=0

|x (n) |2 =
1
L

L−1∑
k=0

|X (2πk/L) |2 =
1
π

∫ π

0

|X (ω) |2 dω. (1.52)

The second term in ((1.52)) says the Riemann sum is equal to its limit
in this case.

1.2.2.4 Examples of DTFT

As was true for the DFT, insight and intuition is developed by understand-
ing the properties and a few examples of the DTFT. Several examples are
given below and more can be found in the literature [227], [240], [33].
Remember that while in the case of the DFT signals were de�ned on the
region {0 ≤ n ≤ (N − 1)} and values outside that region were periodic ex-
tensions, here the signals are de�ned over all integers and are not periodic
unless explicitly stated. The spectrum is periodic with period 2π.

• DTFT{δ (n)} = 1 for all frequencies.
•

DTFT{1} = 2πδ (ω) (1.53)

•
DTFT{ejω0n} = 2πδ (ω − ω0) (1.54)

•
DTFT{cos (ω0n)} = π [δ (ω − ω0) + δ (ω + ω0)] (1.55)

•
DTFT{uM (n)} =

sin (ωMk/2)
sin (ωk/2)

(1.56)

1.2.3 The Z-Transform

The z-transform is an extension of the DTFT in a way that is analogous
to the Laplace transform for continuous-time signals being an extension
of the Fourier transform. It allows the use of complex variable theory and
is particularly useful in analyzing and describing systems. The question
of convergence becomes still more complicated and depends on values of z
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used in the inverse transform which must be in the �region of convergence"
(ROC).

1.2.3.1 De�nition of the Z-Transform

The z-transform (ZT) is de�ned as a polynomial in the complex variable
z with the discrete-time signal values as its coe�cients [118], [285], [227].
It is given by

F (z) =
∞∑

n=−∞
f (n) z−n (1.57)

and the inverse transform (IZT) is

f (n) =
1

2πj

∮
ROC

F (z) zn−1dz. (1.58)

The inverse transform can be derived by using the residue theorem [79],
[240] from complex variable theory to �nd f (0) from z−1F (z), f (1) from
F (z), f (2) from zF (z), and in general, f (n) from zn−1F (z). Veri�ca-
tion by substitution is more di�cult than for the DFT or DTFT. Here
convergence and the interchange of order of the sum and integral is a seri-
ous question that involves values of the complex variable z. The complex
contour integral in ((1.58)) must be taken in the ROC of the z plane.

A unilateral z-transform is sometimes needed where the de�nition
((1.58)) uses a lower limit on the transform summation of zero. This
allow the transformation to converge for some functions where the regu-
lar bilateral transform does not, it provides a straightforward way to solve
initial condition di�erence equation problems, and it simpli�es the ques-
tion of �nding the ROC. The bilateral z-transform is used more for signal
analysis and the unilateral transform is used more for system descrip-
tion and analysis. Unless stated otherwise, we will be using the bilateral
z-transform.

1.2.3.2 Properties

The properties of the ZT are similar to those for the DTFT and DFT and
are important in the analysis and interpretation of long signals and in the
analysis and description of discrete-time systems. The main properties
are given here using the notation that the ZT of a complex sequence x (n)
is Z{x (n)} = X (z).

1. Linear Operator: Z{x+ y} = Z{x}+ Z{y}
2. Relationship of ZT to DTFT: Z{x}|z=ejω = DT FT {x}
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3. Periodic Spectrum: X
(
ejω
)

= X
(
ejω+2π

)
4. Properties of Even and Odd Parts: x (n) = u (n) + jv (n) and
X
(
ejω
)

= A
(
ejω
)

+ jB
(
ejω
)

u v A B

even 0 even 0

odd 0 0 odd

0 even 0 even

0 odd odd 0

(1.59)

5. Convolution: If discrete non-cyclic convolution is de�ned by

y (n) = h (n) ∗ x (n) =∑∞
m=−∞ h (n−m)x (m) =

∑∞
k=−∞ h (k)x (n− k)

(1.60)

then Z{h (n) ∗ x (n)} = Z{h (n)}Z{x (n)}
6. Shift: Z{x (n+M)} = zMX (z)
7. Shift (unilateral): Z{x (n+m)} = zmX (z) − zmx (0) −
zm−1x (1)− · · · − zx (m− 1)

8. Shift (unilateral): Z{x (n−m)} = z−mX (z) − z−m+1x (−1) −
· · · − x (−m)

9. Modulate: Z{x (n) an} = X (z/a)
10. Time mult.: Z{nmx (n)} = (−z)m dmX(z)

dzm

11. Evaluation: The ZT can be evaluated on the unit circle in the z-
plane by taking the DTFT of x (n) and if the signal is �nite in
length, this can be evaluated at sample points by the DFT.

1.2.3.3 Examples of the Z-Transform

A few examples together with the above properties will enable one to
solve and understand a wide variety of problems. These use the unit step
function to remove the negative time part of the signal. This function is
de�ned as

u (n) = {
1 if n ≥ 0

0 if n < 0
(1.61)

and several bilateral z-transforms are given by
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• Z{δ (n)} = 1 for all z.
• Z{u (n)} = z

z−1 for |z| > 1.
• Z{u (n) an} = z

z−a for |z| > |a|.

Notice that these are similar to but not the same as a term of a partial
fraction expansion.

1.2.3.4 Inversion of the Z-Transform

The z-transform can be inverted in three ways. The �rst two have similar
procedures with Laplace transformations and the third has no counter
part.

• The z-transform can be inverted by the de�ned contour integral in
the ROC of the complex z plane. This integral can be evaluated
using the residue theorem [79], [240].

• The z-transform can be inverted by expanding 1
zF (z) in a partial

fraction expansion followed by use of tables for the �rst or second
order terms.

• The third method is not analytical but numerical. If F (z) = P (z)
Q(z) ,

f (n) can be obtained as the coe�cients of long division.

For example

z

z − a
= 1 + a z−1 + a2z−2 + · · · (1.62)

which is u (n) an as used in the examples above.
We must understand the role of the ROC in the convergence and

inversion of the z-transform. We must also see the di�erence between the
one-sided and two-sided transform.

1.2.3.5 Solution of Di�erence Equations using the Z-Transform

The z-transform can be used to convert a di�erence equation into an alge-
braic equation in the same manner that the Laplace converts a di�erential
equation in to an algebraic equation. The one-sided transform is particu-
larly well suited for solving initial condition problems. The two unilateral
shift properties explicitly use the initial values of the unknown variable.

A di�erence equation DE contains the unknown function x (n) and
shifted versions of it such as x (n− 1) or x (n+ 3). The solution of the
equation is the determination of x (t). A linear DE has only simple linear
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combinations of x (n) and its shifts. An example of a linear second order
DE is

a x (n) + b x (n− 1) + c x (n− 2) = f (n) (1.63)

A time invariant or index invariant DE requires the coe�cients not be
a function of n and the linearity requires that they not be a function of
x (n). Therefore, the coe�cients are constants.

This equation can be analyzed using classical methods completely
analogous to those used with di�erential equations. A solution of the
form x (n) = Kλn is substituted into the homogeneous di�erence equa-
tion resulting in a second order characteristic equation whose two roots
give a solution of the form xh (n) = K1λ

n
1 +K2λ

n
2 . A particular solution

of a form determined by f (n) is found by the method of undetermined
coe�cients, convolution or some other means. The total solution is the
particular solution plus the solution of the homogeneous equation and the
three unknown constants Ki are determined from three initial conditions
on x (n).

It is possible to solve this di�erence equation using z-transforms in a
similar way to the solving of a di�erential equation by use of the Laplace
transform. The z-transform converts the di�erence equation into an alge-
braic equation. Taking the ZT of both sides of the DE gives

aX (z) + b [z−1X (z) + x (−1)] +
c [z−2X (z) + z−1x (−1) + x (−2)] = Y (z)

(1.64)

solving for X (z) gives

X (z) =
z2 [Y (z)− b x (−1)− x (−2)]− z c x (−1)

a z2 + b z + c
(1.65)

and inversion of this transform gives the solution x (n). Notice that two
initial values were required to give a unique solution just as the classical
method needed two values.

These are very general methods. To solve an nth order DE requires
only factoring an nth order polynomial and performing a partial fraction
expansion, jobs that computers are well suited to. There are problems
that crop up if the denominator polynomial has repeated roots or if the
transform of y (n) has a root that is the same as the homogeneous equa-
tion, but those can be handled with slight modi�cations giving solutions
with terms of the from nλn just as similar problems gave solutions for
di�erential equations of the form t est.
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The original DE could be rewritten in a di�erent form by shifting the
index to give

a x (n+ 2) + b x (n+ 1) + c x (n) = f (n+ 2) (1.66)

which can be solved using the second form of the unilateral z-transform
shift property.

1.2.3.6 Region of Convergence for the Z-Transform

Since the inversion integral must be taken in the ROC of the transform,
it is necessary to understand how this region is determined and what it
means even if the inversion is done by partial fraction expansion or long
division. Since all signals created by linear constant coe�cient di�erence
equations are sums of geometric sequences (or samples of exponentials),
an analysis of these cases will cover most practical situations. Consider a
geometric sequence starting at zero.

f (n) = u (n) an (1.67)

with a z-transform

F (z) = 1 + a z−1 + a2 z−2 + a3 z−3 + · · ·+ aMz−M . (1.68)

Multiplying by a z−1 gives

a z−1F (z) = a z−1 + a2z−2 + a3z−3 + a4z−4 + · · ·+
aM+1z−M−1

(1.69)

and subtracting from (2.32) gives(
1− a z−1

)
F (z) = 1− aM+1z−M−1 (1.70)

Solving for F (z) results in

F (z) =
1− aM+1z−M−1

1− a z−1
=

z − a
(
a
z

)M
z − a

(1.71)

The limit of this sum as M →∞ is

F (z) =
z

z − a
(1.72)

for |z| > |a|. This not only establishes the z-transform of f (n) but gives
the region in the z plane where the sum converges.
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If a similar set of operations is performed on the sequence that exists
for negative n

f (n) = u (−n− 1) an = {
an n < 0

0 n ≥ 0
(1.73)

the result is

F (z) = − z

z − a
(1.74)

for |z| < |a|. Here we have exactly the same z-transform for a di�erent
sequence f (n) but with a di�erent ROC. The pole in F (z) divides the
z-plane into two regions that give two di�erent f (n). This is a general
result that can be applied to a general rational F (z) with several poles
and zeros. The z-plane will be divided into concentric annular regions
separated by the poles. The contour integral is evaluated in one of these
regions and the poles inside the contour give the part of the solution
existing for negative n with the poles outside the contour giving the part
of the solution existing for positive n.

Notice that any �nite length signal has a z-transform that converges
for all z. The ROC is the entire z-plane except perhaps zero and/or
in�nity.

1.2.3.7 Relation of the Z-Transform to the DTFT and the DFT

The FS coe�cients are weights on the delta functions in a FT of the
periodically extended signal. The FT is the LT evaluated on the imaginary
axis: s = jω.

The DFT values are samples of the DTFT of a �nite length signal.
The DTFT is the z-transform evaluated on the unit circle in the z plane.

F (z) =
∞∑

n=−∞
x (n) z−n = ZT {x (n)} (1.75)

F
(
ejω
)

=
∞∑

n=−∞
x (n) e−jωn = DT FT {x (n)} (1.76)

and if x (n) is of length N

F
(
ej

2π
N k
)

=
N−1∑
n=0

x (n) e−j
2π
N kn = DFT {x (n)} (1.77)
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It is important to be able to relate the time-domain signal x (n), its
spectrumX (ω), and its z-transform represented by the pole-zero locations
on the z plane.

1.2.4 Relationships Among Fourier Transforms

The DFT takes a periodic discrete-time signal into a periodic discrete-
frequency representation.

The DTFT takes a discrete-time signal into a periodic continuous-
frequency representation.

The FS takes a periodic continuous-time signal into a discrete-
frequency representation.

The FT takes a continuous-time signal into a continuous-frequency
representation.

The LT takes a continuous-time signal into a function of a continuous
complex variable.

The ZT takes a discrete-time signal into a function of a continuous
complex variable.

1.2.5 Wavelet-Based Signal Analysis

There are wavelet systems and transforms analogous to the DFT, Fourier
series, discrete-time Fourier transform, and the Fourier integral. We will
start with the discrete wavelet transform (DWT) which is analogous to
the Fourier series and probably should be called the wavelet series [64].
Wavelet analysis can be a form of time-frequency analysis which locates
energy or events in time and frequency (or scale) simultaneously. It is
somewhat similar to what is called a short-time Fourier transform or a
Gabor transform or a windowed Fourier transform.

The history of wavelets and wavelet based signal processing is fairly
recent. Its roots in signal expansion go back to early geophysical and
image processing methods and in DSP to �lter bank theory and subband
coding. The current high interest probably started in the late 1980's
with the work of Mallat, Daubechies, and others. Since then, the amount
of research, publication, and application has exploded. Two excellent
descriptions of the history of wavelet research and development are by
Hubbard [151] and by Daubechies [96] and a projection into the future by
Sweldens [352] and Burrus [62].
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1.2.5.1 The Basic Wavelet Theory

The ideas and foundations of the basic dyadic, multiresolution wavelet
systems are now pretty well developed, understood, and available [64],
[93], [381], [348]. The �rst basic requirement is that a set of expansion
functions (usually a basis) are generated from a single �mother� function
by translation and scaling. For the discrete wavelet expansion system,
this is

φj,k (t) = φ
(
2jt− k

)
(1.78)

where j, k are integer indices for the series expansion of the form

f (t) =
∑
j,k

cj,k φj,k (t) . (1.79)

The coe�cients cj,k are called the discrete wavelet transform of the signal
f (t). This use of translation and scale to create an expansion system is
the foundation of all so-called �rst generation wavelets [352].

The system is somewhat similar to the Fourier series described in ()
with frequencies being related by powers of two rather than an integer
multiple and the translation by k giving only the two results of cosine
and sine for the Fourier series.

The second almost universal requirement is that the wavelet sys-
tem generates a multiresolution analysis (MRA). This means that a low
resolution function (low scale j) can be expanded in terms of the same
function at a higher resolution (higher j). This is stated by requiring that
the generator of a MRA wavelet system, called a scaling function φ (t),
satis�es

φ (t) =
∑
n

h (n) φ (2t− n) . (1.80)

This equation, called the re�nement equation or theMRA equation
or basic recursion equation, is similar to a di�erential equation in that
its solution is what de�nes the basic scaling function and wavelet [91], [64].

The current state of the art is that most of the necessary and su�cient
conditions on the coe�cients h (n) are known for the existence, unique-
ness, orthogonality, and other properties of φ (t). Some of the theory
parallels Fourier theory and some does not.

A third important feature of a MRA wavelet system is a discrete
wavelet transform (DWT) can be calculated by a digital �lter bank using
what is now called Mallat's algorithm. Indeed, this connection with digital
signal processing (DSP) has been a rich source of ideas and methods. With
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this �lter bank, one can calculate the DWT of a length-N digital signal
with order N operations. This means the number of multiplications and
additions grows only linearly with the length of the signal. This compares
with Nlog (N) for an FFT and N2 for most methods and worse than that
for some others.

These basic ideas came from the work of Meyer, Daubechies, Mallat,
and others but for a time looked like a solution looking for a problem.
Then a second phase of research showed there are many problems to
which the wavelet is an excellent solution. In particular, the results of
Donoho, Johnstone, Coifman, Beylkin, and others opened another set of
doors.

1.2.5.2 Generalization of the Basic Wavelet System

After (in some cases during) much of the development of the above basic
ideas, a number of generalizations [64] were made. They are listed below:

1. A larger integer scale factor than M = 2 can be used to give a more
general M-band re�nement equation [335]

φ (t) =
∑
n

h (n) φ (Mt− n) (1.81)

than the �dyadic" or octave based equation ((1.80)). This also gives
more than two channels in the accompanying �lter bank. It allows a
uniform frequency resolution rather than the resulting logarithmic
one for M = 2.

2. The wavelet system called awavelet packet is generated by �iterat-
ing" the wavelet branches of the �lter bank to give a �ner resolution
to the wavelet decomposition. This was suggested by Coifman and
it too allows a mixture of uniform and logarithmic frequency res-
olution. It also allows a relatively simple adaptive system to be
developed which has an automatically adjustable frequency resolu-
tion based on the properties of the signal.

3. The usual requirement of translation orthogonality of the scal-
ing function and wavelets can be relaxed to give what is called a
biorthogonal system[81]. If the expansion basis is not orthogo-
nal, a dual basis can be created that will allow the usual expansion
and coe�cient calculations to be made. The main disadvantage is
the loss of a Parseval's theorem which maintains energy partition-
ing. Nevertheless, the greater �exibility of the biorthogonal system
allows superior performance in many compression and denoising ap-
plications.
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4. The basic re�nement equation ((1.80)) gives the scaling function in
terms of a compressed version of itself (self-similar). If we allow two
(or more) scaling functions, each being a weighted sum of a compress
version of both, a more general set of basis functions results. This
can be viewed as a vector of scaling functions with the coe�cients
being a matrix now. Once again, this generalization allows more
�exibility in the characteristics of the individual scaling functions
and their related multi-wavelets. These are called multi-wavelet
systems and are still being developed.

5. One of the very few disadvantages of the discrete wavelet transform
is the fact it is not shift invariant. In other words, if you shift a
signal in time, its wavelet transform not only shifts, it changes char-
acter! For many applications in denoising and compression, this is
not desirable although it may be tolerable. The DWT can be made
shift-invariant by calculating the DWT of a signal for all possible
shifts and adding (or averaging) the results. That turns out to be
equivalent to removing all of the down-samplers in the associated
�lter bank (an undecimated �lter bank), which is also equivalent
to building an overdetermined or redundant DWT from a tradi-
tional wavelet basis. This overcomplete system is similar to a �tight
frame" and maintains most of the features of an orthogonal basis
yet is shift invariant. It does, however, require Nlog (N) operations.

6. Wavelet systems are easily modi�ed to being an adaptive system
where the basis adjusts itself to the properties of the signal or the
signal class. This is often done by starting with a large collection
or library of expansion systems and bases. A subset is adaptively
selected based on the e�ciency of the representation using a process
sometimes called pursuit. In other words, a set is chosen that will
result in the smallest number of signi�cant expansion coe�cients.
Clearly, this is signal dependent, which is both its strength and its
limitation. It is nonlinear.

7. One of the most powerful structures yet suggested for using wavelets
for signal processing is to �rst take the DWT, then do a point-wise
linear or nonlinear processing of the DWT, �nally followed by an
inverse DWT. Simply setting some of the wavelet domain expansion
terms to zero results in linear wavelet domain �ltering, similar to
what would happen if the same were done with Fourier transforms.
Donoho [102], [103] and others have shown by using some form of
nonlinear thresholding of the DWT, one can achieve near optimal
denoising or compression of a signal. The concentrating or localizing
character of the DWT allows this nonlinear thresholding to be very
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e�ective.

The present state of activity in wavelet research and application shows
great promise based on the above generalizations and extensions of the
basic theory and structure [62]. We now have conferences, workshops,
articles, newsletters, books, and email groups that are moving the state
of the art forward. More details, examples, and software are given in [64],
[348], [209].

markbothBibliographyBibliography tocchapterBibliography

1.3 Discrete-Time Systems3

In the context of discussing signal processing, the most general de�nition
of a system is similar to that of a function. A system is a device, formula,
rule, or some process that assigns an output signal from some given class
to each possible input signal chosen from some allowed class. From this
de�nition one can pose three interesting and practical problems.

1. Analysis: If the input signal and the system are given, �nd the
output signal.

2. Control: If the system and the output signal are given, �nd the
input signal.

3. Synthesis: If the input signal and output signal are given, �nd the
system.

The de�nition of input and output signal can be quite diverse. They could
be scalars, vectors, functions, functionals, or other objects.

All three of these problems are important, but analysis is probably the
most basic and its study usually precedes that of the other two. Analysis
usually results in a unique solution. Control is often unique but there are
some problems where several inputs would give the same output. Synthe-
sis is seldom unique. There are usually many possible systems that will
give the same output for a given input.

In order to develop tools for analysis, control, and design of discrete-
time systems, speci�c de�nitions, restrictions, and classi�cations must be
made. It is the explicit statement of what a system is, not what it isn't,
that allows a descriptive theory and design methods to be developed.

1.3.1 Classi�cations

The basic classi�cations of signal processing systems are de�ned and listed
here. We will restrict ourselves to discrete-time systems that have ordered

3This content is available online at <http://cnx.org/content/m16883/1.1/>.
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sequences of real or complex numbers as inputs and outputs and will de-
note the input sequence by x (n) and the output sequence by y (n) and
show the process of the system by x (n)→ y (n). Although the indepen-
dent variable n could represent any physical variable, our most common
usages causes us to generically call it time but the results obtained cer-
tainly are not restricted to this interpretation.

1. Linear . A system is classi�ed as linear if two conditions are true.

• If x (n)→ y (n) then a x (n)→ a y (n) for all a. This property
is called homogeneity or scaling.

• If x1 (n) → y1 (n) and x2 (n) → y2 (n), then
(x1 (n) + x2 (n)) → (y1 (n) + y2 (n)) for all x1 and x2.
This property is called superposition or additivity.

If a system does not satisfy both of these conditions for all inputs,
it is classi�ed as nonlinear. For most practical systems, one of these
conditions implies the other. Note that a linear system must give a
zero output for a zero input.

2. Time Invariant , also called index invariant or shift invariant. A
system is classi�ed as time invariant if x (n+ k) → y (n+ k) for
any integer k. This states that the system responds the same way
regardless of when the input is applied. In most cases, the system
itself is not a function of time.

3. Stable . A system is called bounded-input bounded-output stable
if for all bounded inputs, the corresponding outputs are bounded.
This means that the output must remain bounded even for inputs
arti�cially constructed to maximize a particular system's output.

4. Causal . A system is classi�ed as causal if the output of a system
does not precede the input. For linear systems this means that
the impulse response of a system is zero for time before the input.
This concept implies the interpretation of n as time even though
it may not be. A system is semi-causal if after a �nite shift in
time, the impulse response is zero for negative time. If the impulse
response is nonzero for n → −∞, the system is absolutely non-
causal. Delays are simple to realize in discrete-time systems and
semi-causal systems can often be made realizable if a time delay
can be tolerated.

5. Real-Time . A discrete-time system can operate in �real-time" if an
output value in the output sequence can be calculated by the system
before the next input arrives. If this is not possible, the input and
output must be stored in blocks and the system operates in �batch"
mode. In batch mode, each output value can depend on all of the
input values and the concept of causality does not apply.
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These de�nitions will allow a powerful class of analysis and design meth-
ods to be developed and we start with convolution.

1.3.2 Convolution

The most basic and powerful operation for linear discrete-time system
analysis, control, and design is discrete-time convolution. We �rst de-
�ne the discrete-time unit impulse, also known as the Kronecker delta
function, as

δ (n) = {
1 for n = 0

0 otherwise.
(1.82)

If a system is linear and time-invariant, and δ (n) → h (n), the out-
put y (n) can be calculated from its input x (n) by the operation called
convolution denoted and de�ned by

y (n) = h (n) ∗ x (n) =
∞∑

m=−∞
h (n−m)x (m) (1.83)

It is informative to methodically develop this equation from the basic
properties of a linear system.

1.3.2.1 Derivation of the Convolution Sum

We �rst de�ne a complete set of orthogonal basis functions by δ (n−m)
for m = 0, 1, 2, · · · ,∞. The input x (n) is broken down into a set of
inputs by taking an inner product of the input with each of the ba-
sis functions. This produces a set of input components, each of which
is a single impulse weighted by a single value of the input sequence
(x (n) , δ (n−m)) = x (m) δ (n−m). Using the time invariant property
of the system, δ (n−m)→ h (n−m) and using the scaling property of a
linear system, this gives an output of x (m) δ (n−M)→ x (m)h (n−m).
We now calculate the output due to x (n) by adding outputs due to each
of the resolved inputs using the superposition property of linear systems.
This is illustrated by the following diagram:
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x (n) = {

x (n) δ (n) = x (0) δ (n) → x (0)h (n)

x (n) δ (n− 1) = x (1) δ (n− 1) → x (1)h (n− 1)

x (n) δ (n− 2) = x (2) δ (n− 2) → x (2)h (n− 2)
.
.
.

.

.

.

x (n) δ (n−m) = x (m) δ (n−m) → x (m)h (n−m)

} =

y (n)

(1.84)

or

y (n) =
∞∑

m=−∞
x (m) h (n−m) (1.85)

and changing variables gives

y (n) =
∞∑

m=−∞
h (n−m) x (m) (1.86)

If the system is linear but time varying, we denote the response to an
impulse at n = m by δ (n−m)→ h (n,m). In other words, each impulse
response may be di�erent depending on when the impulse is applied. From
the development above, it is easy to see where the time-invariant property
was used and to derive a convolution equation for a time-varying system
as

y (n) = h (n,m) ∗ x (n) =
∞∑

m=−∞
h (n,m)x (m) . (1.87)

Unfortunately, relaxing the linear constraint destroys the basic structure
of the convolution sum and does not result in anything of this form that
is useful.

By a change of variables, one can easily show that the convolution
sum can also be written

y (n) = h (n) ∗ x (n) =
∞∑

m=−∞
h (m)x (n−m) . (1.88)

If the system is causal, h (n) = 0 for n < 0 and the upper limit on the
summation in (2.2) becomes m = n. If the input signal is causal, the
lower limit on the summation becomes zero. The form of the convolution
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sum for a linear, time-invariant, causal discrete-time system with a causal
input is

y (n) = h (n) ∗ x (n) =
n∑

m=0

h (n−m)x (m) (1.89)

or, showing the operations commute

y (n) = h (n) ∗ x (n) =
n∑

m=0

h (m)x (n−m) . (1.90)

Convolution is used analytically to analyze linear systems and it can also
be used to calculate the output of a system by only knowing its impulse
response. This is a very powerful tool because it does not require any
detailed knowledge of the system itself. It only uses one experimentally
obtainable response. However, this summation cannot only be used to an-
alyze or calculate the response of a given system, it can be an implemen-
tation of the system. This summation can be implemented in hardware
or programmed on a computer and become the signal processor.

1.3.2.2 The Matrix Formulation of Convolution

Some of the properties and characteristics of convolution and of the sys-
tems it represents can be better described by a matrix formulation than
by the summation notation. The �rst L values of the discrete-time con-
volution de�ned above can be written as a matrix operator on a vector of
inputs to give a vector of the output values.

y0

y1

y2

...

yL−1


=



h0 0 0 · · · 0

h1 h0 0

h2 h1 h0

...
...

hL−1 · · · h0





x0

x1

x2

...

xL−1


(1.91)

If the input sequence x is of length N and the operator signal h is of
length M , the output is of length L = N + M − 1. This is shown for
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N = 4 and M = 3 by the rectangular matrix operation

y0

y1

y2

y3

y4

y5


=



h0 0 0 0

h1 h0 0 0

h2 h1 h0 0

0 h2 h1 h0

0 0 h2 h1

0 0 0 h2




x0

x1

x2

x3

 (1.92)

It is clear that if the system is causal (h (n) = 0 for n < 0), theH matrix is
lower triangular. It is also easy to see that the system being time-invariant
is equivalent to the matrix being Toeplitz [82]. This formulation makes it
obvious that if a certain output were desired from a length 4 input, only
4 of the 6 values could be speci�ed and the other 2 would be controlled
by them.

Although the formulation of constructing the matrix from the impulse
response of the system and having it operate on the input vector seems
most natural, the matrix could have been formulated from the input and
the vector would have been the impulse response. Indeed, this might the
appropriate formulation if one were specifying the input and output and
designing the system.

The basic convolution de�ned in ((1.83)), derived in ((1.84)), and given
in matrix form in ((1.91)) relates the input to the output for linear sys-
tems. This is the form of convolution that is related to multiplication of
the DTFT and z-transform of signals. However, it is cyclic convolution
that is fundamentally related to the DFT and that will be e�ciently cal-
culated by the fast Fourier transform (FFT) developed in Part III of these
notes. Matrix formulation of length-L cyclic convolution is given by

y0

y1

y2

...

yL−1


=



h0 hL−1 hL−2 · · · h1

h1 h0 hL−1 h2

h2 h1 h0 h3

...
...

hL−1 · · · h0





x0

x1

x2

...

xL−1


(1.93)

This matrix description makes it clear that the matrix operator is always
square and the three signals, x (n), h (n), and y (n), are necessarily of the
same length.
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There are several useful conclusions that can be drawn from linear
algebra [82]. The eigenvalues of the non-cyclic are all the same since
the eigenvalues of a lower triangular matrix are simply the values on the
diagonal.

Although it is less obvious, the eigenvalues of the cyclic convolution
matrix are the N values of the DFT of h (n) and the eigenvectors are
the basis functions of the DFT which are the column vectors of the DFT
matrix. The eigenvectors are completely controlled by the structure of
H being a cyclic convolution matrix and are not at all a function of the
values of h (n). The DFT matrix equation from (3.10) is given by

X = Fx and Y = Fy (1.94)

where X is the length-N vector of the DFT values, H is the matrix
operator for the DFT, and x is the length-N vector of the signal x (n)
values. The same is true for the comparable terms in y.

The matrix form of the length-N cyclic convolution in (3.10) is written

y = Hx (1.95)

Taking the DFT both sides and using the IDFT on x gives

Fy = Y = FHx = FHF−1X (1.96)

If we de�ne the diagonal matrix Hd as an L by L matrix with the values
of the DFT of h (n) on its diagonal, the convolution property of the DFT
becomes

Y = HdX (1.97)

This implies

Hd = FHF−1 and H = F−1HdF (1.98)

which is the basis of the earlier statement that the eigenvalues of the cyclic
convolution matrix are the values of the DFT of h (n) and the eigenvectors
are the orthogonal columns of F. The DFT matrix diagonalizes the cyclic
convolution matrix. This is probably the most concise statement of the
relation of the DFT to convolution and to linear systems.

An important practical question is how one calculates the non-cyclic
convolution needed by system analysis using the cyclic convolution of the
DFT. The answer is easy to see using the matrix description of H. The
length of the output of non-cyclic convolution is N + M − 1. If N − 1
zeros are appended to the end of h (n) and M − 1 zeros are appended to
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the end of x (n), the cyclic convolution of these two augmented signals
will produce exactly the same N +M −1 values as non-cyclic convolution
would. This is illustrated for the example considered before.

y0

y1

y2

y3

y4

y5


=



h0 0 0 0 h2 h1

h1 h0 0 0 0 h2

h2 h1 h0 0 0 0

0 h2 h1 h0 0 0

0 0 h2 h1 h0 0

0 0 0 h2 h1 h0





x0

x1

x2

x3

0

0


(1.99)

Just enough zeros were appended so that the nonzero terms in the upper
right-hand corner of H are multiplied by the zeros in the lower part of
x and, therefore, do not contribute to y. This does require convolving
longer signals but the output is exactly what we want and we calculated
it with the DFT-compatible cyclic convolution. Note that more zeros
could have been appended to h and x and the �rst N + M − 1 terms of
the output would have been the same only more calculations would have
been necessary. This is sometimes done in order to use forms of the FFT
that require that the length be a power of two.

If fewer zeros or none had been appended to h and x, the nonzero
terms in the upper right-hand corner of H, which are the �tail" of h (n),
would have added the values that would have been at the end of the non-
cyclic output of y (n) to the values at the beginning. This is a natural
part of cyclic convolution but is destructive if non-cyclic convolution is
desired and is called aliasing or folding for obvious reasons. Aliasing
is a phenomenon that occurs in several arenas of DSP and the matrix
formulation makes it easy to understand.

1.3.3 The Z-Transform Transfer Function

Although the time-domain convolution is the most basic relationship of
the input to the output for linear systems, the z-transform is a close
second in importance. It gives di�erent insight and a di�erent set of tools
for analysis and design of linear time-invariant discrete-time systems.

If our system in linear and time-invariant, we have seen that its output
is given by convolution.

y (n) =
∞∑

m=−∞
h (n−m)x (m) (1.100)
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Assuming that h (n) is such that the summation converges properly, we
can calculate the output to an input that we already know has a special
relation with discrete-time transforms. Let x (n) = zn which gives

y (n) =
∞∑

m=−∞
h (n−m) zm (1.101)

With the change of variables of k = n−m, we have

y (n) =
∞∑

k=−∞

h (k) zn−k =

[ ∞∑
k=−∞

h (k) z−k
]
zn (1.102)

or

y (n) = H (z) zn (1.103)

We have the remarkable result that for an input of x (n) = zn, we get
an output of exactly the same form but multiplied by a constant that
depends on z and this constant is the z-transform of the impulse response
of the system. In other words, if the system is thought of as a matrix
or operator, zn is analogous to an eigenvector of the system and H (z) is
analogous to the corresponding eigenvalue.

We also know from the properties of the z-transform that convolution
in the n domain corresponds to multiplication in the z domain. This
means that the z-transforms of x (n) and y (n) are related by the simple
equation

Y (z) = H (z)X (z) (1.104)

The z-transform decomposes x (n) into its various components along
zn which passing through the system simply multiplies that value time
H (z) and the inverse z-transform recombines the components to give the
output. This explains why the z-transform is such a powerful operation
in linear discrete-time system theory. Its kernel is the eigenvector of these
systems.

The z-transform of the impulse response of a system is called its trans-
fer function (it transfers the input to the output) and multiplying it times
the z-transform of the input gives the z-transform of the output for any
system and signal where there is a common region of convergence for the
transforms.
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1.3.4 Frequency Response of Discrete-Time Systems

The frequency response of a Discrete-Time system is something experi-
mentally measurable and something that is a complete description of a
linear, time-invariant system in the same way that the impulse response
is. The frequency response of a linear, time-invariant system is de�ned
as the magnitude and phase of the sinusoidal output of the system with
a sinusoidal input. More precisely, if

x (n) = cos (ωn) (1.105)

and the output of the system is expressed as

y (n) = M (ω) cos (ωn+ φ (ω)) + T (n) (1.106)

where T (n) contains no components at ω, thenM (ω) is called the magni-
tude frequency response and φ (ω) is called the phase frequency response.
If the system is causal, linear, time-invariant, and stable, T (n) will ap-
proach zero as n → ∞ and the only output will be the pure sinusoid at
the same frequency as the input. This is because a sinusoid is a special
case of zn and, therefore, an eigenvector.

If z is a complex variable of the special form

z = ejω (1.107)

then using Euler's relation of ejx = cos (x) + jsin (x), one has

x (n) = ejωn = cos (ωn) + jsin (ωn) (1.108)

and therefore, the sinusoidal input of (3.22) is simply the real part of zn

for a particular value of z, and, therefore, the output being sinusoidal is
no surprise.

1.3.5 Fundamental Theorem of Linear, Time-Invariant

Systems

The fundamental theorem of calculus states that an integral de�ned as an
inverse derivative and one de�ned as an area under a curve are the same.
The fundamental theorem of algebra states that a polynomial given as
a sum of weighted powers of the independent variable and as a product
of �rst factors of the zeros are the same. The fundamental theorem of
arithmetic states that an integer expressed as a sum of weighted units,
tens, hundreds, etc. or as the product of its prime factors is the same.

These fundamental theorems all state equivalences of di�erent ways of
expressing or calculating something. The fundamental theorem of linear,



48
CHAPTER 1. SIGNALS AND SIGNAL

PROCESSING SYSTEMS

time-invariant systems states calculating the output of a system can be
done with the impulse response by convolution or with the frequency
response (or z-transform) with transforms. Stated another way, it says
the frequency response can be found from directly calculating the output
from a sinusoidal input or by evaluating the z-transform on the unit circle.

Z{h (n)}|z=ejω = A (ω) ejΘ(ω) (1.109)

1.3.6 Pole-Zero Plots

1.3.6.1 Relation of PZ Plots, FR Plots, Impulse R

1.3.7 State Variable Formulation

1.3.7.1 Di�erence Equations

1.3.7.2 Flow Graph Representation

1.3.8 Standard Structures

1.3.8.1 FIR and IIR Structures

1.3.9 Quantization E�ects

1.3.10 Multidimensional Systems

1.4 Sampling, Up�Sampling, Down�Sampling,
and Multi�Rate4

A very important and fundamental operation in discrete-time signal pro-
cessing is that of sampling. Discrete-time signals are often obtained from
continuous-time signal by simple sampling. This is mathematically mod-
eled as the evaluation of a function of a real variable at discrete values of
time [243]. Physically, it is a more complicated and varied process which
might be modeled as convolution of the sampled signal by a narrow pulse
or an inner product with a basis function or, perhaps, by some nonlinear
process.

The sampling of continuous-time signals is reviewed in the recent
books by Marks [192] which is a bit casual with mathematical details,
but gives a good overview and list of references. He gives a more ad-
vanced treatment in [193]. Some of these references are [221], [326], [184],

4This content is available online at <http://cnx.org/content/m16886/1.1/>.
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[162], [156], [243], [242]. These will discuss the usual sampling theorem
but also interpretations and extensions such as sampling the value and
one derivative at each point, or of non uniform sampling.

Multirate discrete-time systems use sampling and sub sampling for a
variety of reasons [86], [367]. A very general de�nition of sampling might
be any mapping of a signal into a sequence of numbers. It might be the
process of calculating coe�cients of an expansion using inner products.
A powerful tool is the use of periodically time varying theory, particu-
larly the bifrequency map, block formulation, commutators, �lter banks,
and multidimensional formulations. One current interest follows from the
study of wavelet basis functions. What kind of sampling theory can be de-
veloped for signals described in terms of wavelets? Some of the literature
can be found in [55], [131], [208], [94], [65].

Another relatively new framework is the idea of tight frames [94],
[391], [65]. Here signals are expanded in terms of an over determined set
of expansion functions or vectors. If these expansions are what is called
a tight frame, the mathematics of calculating the expansion coe�cients
with inner products works just as if the expansion functions were an
orthonormal basis set. The redundancy of tight frames o�ers interesting
possibilities. One example of a tight frame is an over sampled band limited
function expansion.

1.4.1 Fourier Techniques

We �rst start with the most basic sampling ideas based on various forms
of Fourier transforms [241], [34], [391].

The Spectrum of a Continuous-Time Signal and the Fourier Transform
Although in many cases digital signal processing views the signal as

simple sequence of numbers, here we are going to pose the problem as
originating with a function of continuous time. The fundamental tool is
the classical Fourier transform de�ned by

F (ω) =
∫
f (t) e−jωt dt (1.110)

and its inverse

f (t) =
1

2π

∫
F (ω) ejωt dω. (1.111)

where j =
√
−1. The Fourier transform of a signal is called its spectrum

and it is complex valued with a magnitude and phase.
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If the signal is periodic with period f (t) = f (t+ P ), the Fourier
transform does not exist as a function (it may as a distribution) therefore
the spectrum is de�ned as the set of Fourier series coe�cients

C (k) =
1
P

∫ P

0

f (t) e−j2πkt/P dt (1.112)

with the expansion having the form

f (t) =
∑
k

C (k) ej2πkt/P . (1.113)

The functions gk (t) = ej2πkt/P form an orthogonal basis for periodic
functions and ((1.112)) is the inner product C (k) =< f (t) , gk (t) >.

For the non-periodic case in ((1.110)) the spectrum is a function of
continuous frequency and for the periodic case in ((1.112)), the spectrum
is a number sequence (a function of discrete frequency).

The Spectrum of a Sampled Signal and the DTFT
The discrete-time Fourier transform (DTFT) as de�ned in terms sam-

ples of a continuous function is

Fd (ω) =
∑
n

f (Tn) e−jωTn (1.114)

and its inverse

f (Tn) =
T

2π

∫ π/T

−π/T
Fd (ω) ejωTn dω (1.115)

can be derived by noting that Fd (ω) is periodic with period P = 2π/T
and, therefore, it can be expanded in a Fourier series with ((1.115)) re-
sulting from calculating the series coe�cients using ((1.112)).

The spectrum of a discrete-time signal is de�ned as the DTFT of the
samples of a continuous-time signal given in ((1.114)). Samples of the
signal are given by the inverse DTFT in ((1.115)) but they can also be
obtained by directly sampling f (t) in ((1.111)) giving

f (Tn) =
1

2π

∫ ∞
−∞

F (ω) ejωTn dω (1.116)

which can be rewritten as an in�nite sum of �nite integrals in the form

f (Tn) =
1

2π

∑
`

∫ 2π/T

0

F (ω + 2π`/T ) ej(ω+2π`/T )Tn dω (1.117)
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=
1

2π

∫ 2π/T

0

[∑
`

F (ω + 2π`/T )

]
ej(ω+2π`/T )Tn dω (1.118)

where Fp (ω) is a periodic function made up of shifted versions of F (ω)
(aliased) de�ned in ((1.119)) Because ((1.118)) and ((1.115)) are equal
for all Tn and because the limits can be shifted by π/T without changing
the equality, the integrands are equal and we have

Fd (ω) =
1
T

∑
`

F (ω + 2π`/T ) =
1
T
Fp (ω) . (1.119)

where Fp (ω) is a periodic function made up of shifted versions of F (ω)
as in ((1.118)). The spectrum of the samples of f (t) is an aliased version
of the spectrum of f (t) itself. The closer together the samples are taken,
the further apart the centers of the aliased spectra are.

This result is very important in determining the frequency domain
e�ects of sampling. It shows what the sampling rate should be and it is
the basis for deriving the sampling theorem.

Samples of the Spectrum of a Sampled Signal and the DFT
Samples of the spectrum can be calculated from a �nite number of

samples of the original continuous-time signal using the DFT. If we let
the length of the DFT beN and separation of the samples in the frequency
domain be ∆ and de�ne the periodic functions

Fp (ω) =
∑
`

F (ω +N∆`) (1.120)

and

fp (t) =
∑
m

f (t+NTm) (1.121)

then from ((1.171)) and ((1.119)) samples of the DTFT of f (Tn) are

Fp (∆k) = T
∑
n

f (Tn) e−jT∆nk (1.122)

= T
∑
m

N−1∑
n=0

f (Tn+ TNm) e−j∆(Tn+TNm)k (1.123)

= T

N−1∑
n=0

[∑
m

f (Tn+ TNm)

]
e−j∆(Tn+TNm)k, (1.124)
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therefore,

Fp (∆k) = DFT {fp (Tn)} (1.125)

if ∆TN = 2π. This formula gives a method for approximately calculating
values of the Fourier transform of a function by taking the DFT (usually
with the FFT) of samples of the function. This formula can easily be
veri�ed by forming the Riemann sum to approximate the integrals in
((1.110)) or ((1.111)).

Samples of the DTFT of a Sequence
If the signal is discrete in origin and is not a sampled function of a

continuous variable, the DTFT is de�ned with T = 1 as

H (ω) =
∑
n

h (n) e−jωn (1.126)

with an inverse

h (n) =
1

2π

∫ π

−π
H (ω) ejωn dω. (1.127)

If we want to calculate H (ω), we must sample it and that is written as

H (∆k) =
∑
n

h (n) e−j∆kn (1.128)

which after breaking the sum into an in�nite sum of length-N sums as
was done in ((1.124)) becomes

H (∆k) =
∑
m

N−1∑
n=0

h (n+Nm) e−j∆kn (1.129)

if ∆ = 2π/N . This allows us to calculate samples of the DTFT by taking
the DFT of samples of a periodized h (n).

H (∆k) = DFT {hp (n)}. (1.130)

This a combination of the results in ((1.119)) and in ((1.125)).
Fourier Series Coe�cients from the DFT
If the signal to be analyzed is periodic, the Fourier integral in ((1.110))

does not converge to a function (it may to a distribution). This function is
usually expanded in a Fourier series to de�ne its spectrum or a frequency
description. We will sample this function and show how to approximately
calculate the Fourier series coe�cients using the DFT of the samples.
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Consider a periodic signal f̃ (t) = f̃ (t+ P ) with N samples taken
every T seconds to give T̃ n (t) for integer n such that NT = P . The
Fourier series expansion of f̃ (t) is

f̃ (t) =
∞∑

k=−∞

C (k) e2πkt/P (1.131)

with the coe�cients given in ((1.112)). Samples of this are

f̃ (Tn) =
∞∑

k=−∞

C (k) e2πkTn/P =
∞∑

k=−∞

C (k) e2πkn/N (1.132)

which is broken into a sum of sums as

f̃ (Tn) =
∑∞

`−∞
∑N−1

k=0 C (k +N`) e2π(k+N`)n/N =∑N−1
k=0

[∑∞
`−∞C (k +N`)

]
e2πkn/N .

(1.133)

But the inverse DFT is of the form

f̃ (Tn) =
1
N

N−1∑
k=0

F (k) ej2πnk/N (1.134)

therefore,

DFT {f̃ (Tn)} = N
∑
`

C (k +N`) = N Cp (k) . (1.135)

and we have our result of the relation of the Fourier coe�cients to the
DFT of a sampled periodic signal. Once again aliasing is a result of
sampling.

Shannon's Sampling Theorem
Given a signal modeled as a real (sometimes complex) valued function

of a real variable (usually time here), we de�ne a bandlimited function as
any function whose Fourier transform or spectrum is zero outside of some
�nite domain

|F (ω) | = 0 for |ω| > W (1.136)

for some W <∞. The sampling theorem states that if f (t) is sampled

fs (n) = f (Tn) (1.137)
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such that T < 2π/W , then f (t) can be exactly reconstructed (interpo-
lated) from its samples fs (n) using

f (t) =
∞∑

n=−∞
fs (n)

[
sin (πt/T − πn)
πt/T − πn

]
. (1.138)

This is more compactly written by de�ning the sinc function as

sinc (x) =
sin (x)
x

(1.139)

which gives the sampling formula () the form

f (t) =
∑
n

fs (n) sinc (πt/T − πn) . (1.140)

The derivation of () or () can be done a number of ways. One of the
quickest uses in�nite sequences of delta functions and will be developed
later in these notes. We will use a more direct method now to better see
the assumptions and restrictions.

We �rst note that if f (t) is bandlimited and if T < 2π/W then there
is no overlap or aliasing in Fp (ω). In other words, we can write ((1.111))
as

f (t) =
1

2π

∫ ∞
−∞

F (ω) ejωt dω =
1

2π

∫ π/T

−π/T
Fp (ω) ejωt dω (1.141)

but

Fp (ω) =
∑
`

F (ω + 2π`/T ) = T
∑
n

f (Tn) e−jωTn (1.142)

therefore,

f (t) =
1

2π

∫ π/T

−π/T

[
T
∑
n

f (Tn) e−jωTn
]
ejωt dω (1.143)

=
T

2π

∑
n

f (Tn)
∫ π/T

−π/T
ej(t−Tn)ω dω (1.144)

=
∑
n

f (Tn)
sin
(
π
T t− πn

)
π
T t− πn

(1.145)

which is the sampling theorem. An alternate derivation uses a rectangle
function and its Fourier transform, the sinc function, together with con-
volution and multiplication. A still shorter derivation uses strings of delta
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function with convolutions and multiplications. This is discussed later in
these notes.

There are several things to notice about this very important result.
First, note that although f (t) is de�ned for all t from only its samples,
it does require an in�nite number of them to exactly calculate f (t). Also
note that this sum can be thought of as an expansion of f (t) in terms of
an orthogonal set of basis function which are the sinc functions. One can
show that the coe�cients in this expansion of f (t) calculated by an inner
product are simply samples of f (t). In other words, the sinc functions
span the space of bandlimited functions with a very simple calculation of
the expansion coe�cients. One can ask the question of what happens if
a signal is �under sampled". What happens if the reconstruction formula
in () is used when there is aliasing and () is not true. We will not pursue
that just now. In any case, there are many variations and generalizations
of this result that are quite interesting and useful.

1.4.2 Calculation of the Fourier Transform and Fourier

Series using the FFT

Most theoretical and mathematical analysis of signals and systems use the
Fourier series, Fourier transform, Laplace transform, discrete-time Fourier
transform (DTFT), or the z-transform, however, when we want to actually
evaluate transforms, we calculate values at sample frequencies. In other
words, we use the discrete Fourier transform (DFT) and, for e�ciency,
usually evaluate it with the FFT algorithm. An important question is how
can we calculate or approximately calculate these symbolic formula-based
transforms with our practical �nite numerical tool. It would certainly
seem that if we wanted the Fourier transform of a signal or function, we
could sample the function, take its DFT with the FFT, and have some
approximation to samples of the desired Fourier transform. We saw in the
previous section that it is, in fact, possible provided some care is taken.

Summary
For the signal that is a function of a continuous variable we have

FT: f (t) → F (ω)

DTFT: f (Tn) → 1
T Fp (ω) = 1

T

∑
`F (ω + 2π`/T )

DFT: fp (Tn) → 1
T Fp (∆k) for ∆TN = 2π

Table 1.5

For the signal that is a function of a discrete variable we have
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DTFT: h (n) → H (ω)

DFT: hp (n) → H (∆k) for ∆N = 2π

Table 1.6

For the periodic signal of a continuous variable we have

FS: g̃ (t) → C (k)

DFT: g̃ (Tn) → N Cp (k) for TN = P

Table 1.7

For the sampled bandlimited signal we have

Sinc: f (t) → f (Tn)

f (t) =
∑
nf (Tn) sinc (2πt/T − πn)

if F (ω) = 0 for |ω| > 2π/T

Table 1.8

These formulas summarize much of the relations of the Fourier trans-
forms of sampled signals and how they might be approximately calculate
with the FFT. We next turn to the use of distributions and strings of
delta functions as tool to study sampling.

1.4.3 Sampling Functions � the Shah Function

Th preceding discussions used traditional Fourier techniques to develop
sampling tools. If distributions or delta functions are allowed, the Fourier
transform will exist for a much larger class of signals. One should take
care when using distributions as if they were functions but it is a very
powerful extension.

There are several functions which have equally spaced sequences of
impulses that can be used as tools in deriving a sampling formula. These
are called �pitch fork" functions, picket fence functions, comb functions
and shah functions. We start �rst with a �nite length sequence to be used
with the DFT. We de�ne

[U+2A3F]M (n) =
L−1∑
m=0

δ (n−Mm) (1.146)
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where N = LM .

DFT{[U+2A3F]M (n)} =∑N−1
n=0

[∑L−1
m=0 δ (n−Mm)

]
e−j2πnk/N

(1.147)

=
L−1∑
m=0

[
N−1∑
n=0

δ (n−Mm) e−j2πnk/N
]

(1.148)

=
L−1∑
m=0

e−j2πMmk/N =
L−1∑
m=0

e−j2πmk/L (1.149)

= {L<k>L=0
0 otherwise (1.150)

= L

M−1∑
l=0

δ (k − Ll) = L?L (k) (1.151)

For the DTFT we have a similar derivation:

DTFT{[U+2A3F]M (n)} =∑∞
n=−∞

[∑L−1
m=0 δ (n−Mm)

]
e−jωn

(1.152)

=
L−1∑
m=0

[ ∞∑
n=−∞

δ (n−Mm) e−jωn
]

(1.153)

=
L−1∑
m=0

e−jωMm (1.154)

= { 0 otherwise
Lω=k2π/M (1.155)

=
M−1∑
l=0

δ (ω − 2πl/Ml) = K?2π/M (ω) (1.156)

where K is constant.
An alternate derivation for the DTFT uses the inverse DTFT.
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IDTFT{[U+2A3F]2π/M (ω)} =
1

2π

∫ π
−π [U+2A3F]2π/M (ω) ejωn dω

(1.157)

=
1

2π

∫ π

−π

∑
l

δ (ω − 2πl/M) ejωn dω (1.158)

=
1

2π

∑
l

∫ π

−π
δ (ω − 2πl/M) ejωn dω (1.159)

=
1

2π

M−1∑
l=0

e2πln/M = {M/2πn=M
0 otherwise (1.160)

=
(
M

2π

)
?2π/M (ω) (1.161)

Therefore,

?M (n)→
(

2π
M

)
?2π/T (ω) (1.162)

For regular Fourier transform, we have a string of impulse functions in
both the time and frequency. This we see from:

FT{[U+2A3F]T (t)} =
∫∞
−∞
∑

n δ (t− nT ) e−jωt dt =∑
n

∫
δ (t− nT ) e−jωt dt

(1.163)

=
∑
n

e−jωnT = {∞ω=2π/T
0 otherwise (1.164)

=
2π
T

?2π/T (ω) (1.165)

The multiplicative constant is found from knowing the result for a single
delta function.

These �shah functions" will be useful in sampling signals in both the
continuous time and discrete time cases.

1.4.4 Up�Sampling, Signal Stretching, and Interpola-

tion

In several situations we would like to increase the data rate of a signal or,
to increase its length if it has �nite length. This may be part of a multi
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rate system or part of an interpolation process. Consider the process of
inserting M − 1 zeros between each sample of a discrete time signal.

y (n) = {x(n/M)<n>M=0(orn=kM)
0 otherwise (1.166)

For the �nite length sequence case we calculate the DFT of the stretched
or up�sampled sequence by

Cs (k) =
MN−1∑
n=0

y (n) Wnk
MN (1.167)

Cs (k) =
MN−1∑
n=0

x (n/M) [U+2A3F]M (n) Wnk
MN (1.168)

where the length is now NM and k = 0, 1, · · · , NM − 1. Changing the
index variable n = Mm gives:

Cs (k) =
N−1∑
m=0

x (m) Wmk
N = C (k) . (1.169)

which says the DFT of the stretched sequence is exactly the same as the
DFT of the original sequence but over M periods, each of length N .

For up�sampling an in�nitely long sequence, we calculate the DTFT
of the modi�ed sequence in () as

Cs (ω) =
∑∞

n=−∞ x (n/M) [U+2A3F]M (n) e−jωn =∑
m x (m) e−jωMm

(1.170)

= C (Mω) (1.171)

where C (ω) is the DTFT of x (n). Here again the transforms of the up�
sampled signal is the same as the original signal except over M periods.
This shows up here as Cs (ω) being a compressed version of M periods of
C (ω).

The z-transform of an up�sampled sequence is simply derived by:

Y (z) =
∑∞

n=−∞ y (n) z−n =∑
n x (n/M) [U+2A3F]M (n) z−n =

∑
m x (m) z−Mm

(1.172)

= X
(
zM
)

(1.173)
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which is consistent with a complex version of the DTFT in ((1.171)).
Notice that in all of these cases, there is no loss of information or

invertibility. In other words, there is no aliasing.

1.4.5 Down�Sampling, Subsampling, or Decimation

In this section we consider the sampling problem where, unless there
is su�cient redundancy, there will be a loss of information caused by
removing data in the time domain and aliasing in the frequency domain.

The sampling process or the down sampling process creates a new
shorter or compressed signal by keeping every M th sample of the original
sequence. This process is best seen as done in two steps. The �rst is to
mask o� the terms to be removed by setting M − 1 terms to zero in each
length-M block (multiply x (n) by [U+2A3F]M (n)), then that sequence
is compressed or shortened by removing the M − 1 zeroed terms.

We will now calculate the length L = N/M DFT of a sequence that
was obtained by sampling everyM terms of an original length-N sequence
x (n). We will use the orthogonal properties of the basis vectors of the
DFT which says:

M−1∑
n=0

e−j2πnl/M = {M if n is an integer multiple ofM
0 otherwise. (1.174)

We now calculate the DFT of the down-sampled signal.

Cd (k) =
L−1∑
m=0

x (Mm)Wmk
L (1.175)

where N = LM and k = 0, 1, ...,L− 1. This is done by masking x (n) .

Cd (k) =
N−1∑
n=0

x (n)xM (n)Wnk
L (1.176)

=
N−1∑
n=0

x (n)

[
1
M

M−1∑
l=0

e−j2πnl/M

]
e−j2πnk/N (1.177)

=
1
M

M−1∑
l=0

N−1∑
n=0

x (n) ej2π(k+Ll)n/N (1.178)

=
1
M

M−1∑
l=0

C (k + Ll) (1.179)
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The compression or removal of the masked terms is achieved in the fre-
quency domain by using k = 0, 1, ...,L− 1 This is a length-L DFT of
the samples of x (n). Unless C (k) is su�ciently bandlimited, this causes
aliasing and x (n) is not unrecoverable.

It is instructive to consider an alternative derivation of the above re-
sult. In this case we use the IDFT given by

x (n) =
1
N

N−1∑
k=0

C (k) W−nkN . (1.180)

The sampled signal gives

y (n) = x (Mn) =
1
N

N−1∑
k=0

C (k) W−Mnk
N . (1.181)

for n = 0, 1, · · · , L− 1. This sum can be broken down by

y (n) =
1
N

L−1∑
k=0

M−1∑
l=0

C (k + Ll) W−Mn(k+Ll)
N . (1.182)

=
1
N

L−1∑
k=0

[
M−1∑
l=0

C (k + Ll)

]
W−Mnk
N . (1.183)

From the term in the brackets, we have

Cs (k) =
M−1∑
l=0

C (k + Ll) (1.184)

as was obtained in ((1.179)).
Now consider still another derivation using shah functions. Let

xs (n) = [U+2A3F]M (n) x (n) (1.185)

From the convolution property of the DFT we have

Cs (k) = L [U+2A3F]L (k) ∗ C (k) (1.186)

therefore

Cs (k) =
M−1∑
l=0

C (k + Ll) (1.187)

which again is the same as in ((1.179)).
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We now turn to the down sampling of an in�nitely long signal which
will require use of the DTFT of the signals.

Cs (ω) =
∞∑

m=−∞
x (Mm) e−jωMm (1.188)

=
∑
n

x (n) [U+2A3F]M (n) e−jωn (1.189)

=
∑
n

x (n)

[
1
M

M−1∑
l=0

e−j2πnl/M

]
e−jωn (1.190)

=
1
M

M−1∑
l=0

∑
n

x (n) e−j(ω−2πl/M)n (1.191)

=
1
M

M−1∑
l=0

C (ω − 2πl/M) (1.192)

which shows the aliasing caused by the masking (sampling without com-
pression). We now give the e�ects of compressing xs (n) which is a simple
scaling of ω. This is the inverse of the stretching results in ((1.171)).

Cs (ω) =
1
M

M−1∑
l=0

C (ω/M − 2πl/M) . (1.193)

In order to see how the various properties of the DFT can be used,
consider an alternate derivation which uses the IDTFT.

x (n) =
1

2π

∫ π

−π
C (ω) ejωn dω (1.194)

which for the down�sampled signal becomes

x (Mn) =
1

2π

∫ π

−π
C (ω) ejωMn dω (1.195)

The integral broken into the sum ofM sections using a change of variables
of ω = (ω1 + 2πl) /M giving

x (Mn) = 1
2π

∑M−1
l=0

∫ π
−π C (ω1/M + 2πl/M) ej(ω1/M+2πl/M)Mn dω1(1.196)

which shows the transform to be the same as given in ().
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Still another approach which uses the shah function can be given by

xs (n) = [U+2A3F]M (n) x (n) (1.197)

which has as a DTFT

Cs (ω) =
(

2π
M

)
[U+2A3F]2π/M (ω) ∗ C (ω) (1.198)

=
2π
M

M−1∑
l=0

C (ω + 2πl/M) (1.199)

which after compressing becomes

Cs =
2π
M

M−1∑
l=0

C (ω/M + 2πl/M) (1.200)

which is same as ().
Now we consider the e�ects of down�sampling on the z-transform of

a signal.

X (z) =
∞∑

n=−∞
x (n) z−n (1.201)

Applying this to the sampled signal gives

Xs (z) =
∑
n

x (Mn) z−Mn =
∑
n

x (n) [U+2A3F]M (n) z−n (1.202)

=
∑
n

x (n)
M−1∑
l=0

ej2πnl/M z−n (1.203)

=
M−1∑
l=0

∑
n

x (n) {ej2πl/M z}
−n

(1.204)

=
M−1∑
l=0

X
(
e−j2πl/M z

)
(1.205)

which becomes after compressing

=
M−1∑
l=0

X
(
e−j2πl/M z1/M

)
. (1.206)
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This concludes our investigations of the e�ects of down�sampling a
discrete�time signal and we discover much the same aliasing properties
as in sampling a continuous�time signal. We also saw some of the math-
ematical steps used in the development.

1.4.6 More Later

We will later develop relations of sampling to multirate systems, periodi-
cally time varying systems, and block processing. This should be a very
e�ective formulation for teaching as well as research on these topics.



Chapter 2

Finite Impulse Response

Digital Filters and Their

Design

2.1 FIR Digital Filters1

There are two types of linear, time-invariant digital �lters. We will in-
vestigate digital �lters with a �nite-duration impulse response (FIR)
in this section and those with an in�nite-duration impulse response
(IIR) in another document. FIR �lters have characteristics that make
them useful in many applications [230], [212].

1. FIR �lters can achieve an exactly linear phase frequency response
2. FIR �lters cannot be unstable.
3. FIR �lters are generally less sensitive to coe�cient round-o� and

�nite-precision arithmetic than IIR �lters.
4. FIR �lters design methods are generally linear.
5. FIR �lters can be e�ciently realized on general or special-purpose

hardware.

However, frequency responses that need a rapid transition between bands
and do not require linear phase are often more e�ciently realized with
IIR �lters.

It is the purpose of this section to examine and evaluate these char-
acteristics which are important in the design of the four basic types of

1This content is available online at <http://cnx.org/content/m16889/1.1/>.

65



66
CHAPTER 2. FINITE IMPULSE RESPONSE

DIGITAL FILTERS AND THEIR DESIGN

linear-phase FIR �lters.
Because of the usual methods of implementation, the Finite Impulse

Response (FIR) �lter is also called a nonrecursive �lter or a convolution
�lter. From the time-domain view of this operation, the FIR �lter is
sometimes called a moving-average or running-average �lter. All of
these names represent useful interpretations that are discussed in this
section; however, the name, FIR, is most commonly seen in �lter-design
literature and is used in these notes.

The duration or sequence length of the impulse response of these �lters
is by de�nition �nite; therefore, the output can be written as a �nite
convolution sum by

y (n) =
N−1∑
m=0

h (m)x (n−m) (2.1)

where n and m are integers, perhaps representing samples in time, and
where x (n) is the input sequence, y (n) the output sequence, and h (n)
is the length-N impulse response of the �lter. With a change of index
variables, this can also be written as

y (n) =
n−N+1∑
m=n

h (n−m)x (m) . (2.2)

If the FIR �lter is interpreted as an extension of a moving sum or as
a weighted moving average, some of its properties can easily be seen. If
one has a sequence of numbers, e.g., prices from the daily stock market
for a particular stock, and would like to remove the erratic variations in
order to discover longer term trends, each number could be replaced by
the average of itself and the preceding three numbers, i.e., the variations
within a four-day period would be �averaged out" while the longer-term
variations would remain. To illustrate how this happens, consider an
arti�cial signal x (n) containing a linear term, K1n, and an undesired
oscillating term added to it, such that

x (n) = K1n+K2cos (πn) (2.3)

If a length-2 averaging �lter is used with

h (n) = {
1/2 for n = 0, 1

0 otherwise
(2.4)

it can be veri�ed that, after two outputs, the output y (n) is exactly
the linear term x (n) with a delay of one half sample interval and no
oscillation.
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This example illustrates the basic FIR �lter-design problem: deter-
mine N, the number of terms for h (n), and the values of h (n) for achieving
a desired e�ect on the signal. The reader should examine simple examples
to obtain an intuitive idea of the FIR �lter as a moving average; however,
this simple time-domain interpretation will not su�ce for complicated
problems where the concept of frequency becomes more valuable.

2.1.1 Frequency-Domain Description of FIR Filters

The output of a length-N FIR �lter can be calculated from the input using
convolution.

y (n) =
N−1∑
k=0

h (k) x (n− k) (2.5)

and the transfer function of an FIR �lter is given by the z-transform of
the �nite length impulse response h (n) as

H (z) =
N−1∑
n=0

h (n) z−n. (2.6)

The frequency response of a �lter, is found by setting z = ejω, which is
the same as the discrete-time Fourier transform (DTFT) of h (n), which
gives

H (ω) =
N−1∑
n=0

h (n) e−jωn (2.7)

with ω being frequency in radians per second. Strictly speaking, the
exponent should be −jωTn where T is the time interval between the
integer steps of n (the sampling interval). But to simplify notation, it
will be assumed that T = 1 until later in the notes where the relation
between n and time is more important. Also to simplify notation, H (ω)
is used to represent the frequency response rather that H

(
ejω
)
. It should

always be clear from the context whether H is a function of z or ω.
This frequency-response function is complex-valued and consists of a

magnitude and a phase. Even though the impulse response is a function
of the discrete variable n, the frequency response is a function of the
continuous-frequency variable ω and is periodic with period 2π. This
periodicity is easily shown by

H (w + 2π) =
∑N−1
n=0 h (n) e−j(w+2π)n

=
∑N−1
n=0 h (n) e−jωne−j2πn = H (ω)

(2.8)
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with frequency denoted by ω in radians per second or by f in Hz (hertz
or cycles per second). These are related by

ω = 2πf (2.9)

An example of a length-5 �lter might be

h (n) = 2, 3, 4, 3, 2 (2.10)

with a frequency-response plot shown over the base frequency band (0 <
ω < π or 0 < f < 1 in Figure 2.1. To illustrate the periodic nature of the
total frequency response, Figure 2.2 shows the response over a wider set
of frequencies.

Figure 2.1: Frequency Response of Example Filter
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Figure 2.2: Frequency Response of Example Filter over a wide
band of frequencies

The Discrete Fourier Transform (DFT) can be used to evaluate the
frequency response at certain frequencies. The DFT [60] of the length-N
impulse response h (n) is de�ned as

C (k) =
N−1∑
n=0

h (n) e−j2πnk/N k = 0, 1, ..., N − 1 (2.11)

which, when compared to ((2.7)), gives

C (k) = H (ωk) = H (2πk/N) k = 0, 1, ..., N − 1 (2.12)

for ωk = 2πk/N .
This states that the DFT of h (n) gives N samples of the frequency-

response function H (ω). This sampling at N points may not give enough
detail, and, therefore, more samples are needed. Any number of equally
spaced samples can be found with the DFT by simply appending L−N
zeros to h (n) and taking an L-length DFT. This is often useful when an
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accurate picture of all of H (ω) is required. Indeed, when the number
of appended zeros goes to in�nity, the DFT becomes the discrete-time
Fourier transform of h (n).

The fact that the DFT of h (n) is a set of N samples of the frequency
response suggests a method of designing FIR �lters in which the inverse
DFT of N samples of a desired frequency response gives the �lter coe�-
cients h (n). That approach is called frequency sampling and is developed
in another section.

2.1.2 Linear-Phase FIR Filters

A particular property of FIR �lters that has proven to be very powerful
is that a linear phase shift for the frequency response is possible. This is
especially important to time domain details of a signal. The spectrum of
a signal contains the individual frequency domain components separated
in frequency. The process of �ltering usually involves passing some of
these components and rejecting others. This is done by multiplying the
desired ones by one and the undesired ones by zero. When they are
recombined, it is important that the components have the same time
domain alignment as they originally did. That is exactly what linear
phase insures. A phase response that is linear with frequency keeps all of
the frequency components properly registered with each other. That is
especially important in seismic, radar, and sonar signal analysis as well
as for many medical signals where the relative time locations of events
contains the information of interest.

To develop the theory for linear phase FIR �lters, a careful de�nition
of phase shift is necessary. If the real and imaginary parts of H (ω) are
given by

H (ω) = R (ω) + jI (ω) (2.13)

where j =
√
−1 and the magnitude is de�ned by

|H (ω) | =
√
R2 + I2 (2.14)

and the phase by

Φ (ω) = arctan (I/R) (2.15)

which gives

H (ω) = |H (ω) |ejΦ(ω) (2.16)

in terms of the magnitude and phase. Using the real and imaginary
parts is using a rectangular coordinate system and using the magnitude
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and phase is using a polar coordinate system. Often, the polar system is
easier to interpret.

Mathematical problems arise from using |H (ω) | and Φ (ω), because
|H (ω) | is not analytic and Φ (ω) not continuous. This problem is solved
by introducing an amplitude function A (ω) that is real valued and may
be positive or negative. The frequency response is written as

H (ω) = A (ω) ejΘ(ω) (2.17)

where A (ω) is called the amplitude in order to distinguish it from the
magnitude |H (ω) |, and Θ (ω) is the continuous version of Φ (ω). A (ω) is
a real, analytic function that is related to the magnitude by

A (ω) = ± |H (ω) | (2.18)

or

|A (ω) | = |H (ω) | (2.19)

With this de�nition, A (ω) can be made analytic and Θ (ω) continuous.
These are much easier to work with than |H (ω) | and Φ (ω). The re-
lationship of A (ω) and |H (ω) |, and of Θ (ω) and Φ (ω) are shown in
Figure 2.3.
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Figure 2.3: Magnitude and Amplitude Frequency Responses and
Corresponding Phase Frequency Response of Example Filter

To develop the characteristics and properties of linear-phase �lters,
assume a general linear plus constant form for the phase function as

Θ (ω) = K1 +K2ω (2.20)

This gives the frequency response function of a length-N FIR �lter as

H (ω) =
∑N−1
n=0 h (n) e−jωn

= e−jωM
∑N−1
n=0 h (n) ejω(M−n)

(2.21)

and

H (ω) = e−jωM
[
h0e

jωM + h1e
jω(M−1) + · · · + hN−1e

jω(M−N+1)
]

(2.22)

(2.22) can be put in the form of

H (ω) = A (ω) ej(K1+K2ω) (2.23)
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if M (not necessarily an integer) is de�ned by

M =
N − 1

2
(2.24)

or equivalently,

M = N −M − 1 (2.25)

(2.22) then becomes

H (ω) = e−jωM [(h0 + hN−1) cos (ωM) + j (h0 − hN−1) sin (ωM) + (h1 + hN−2) cos (ω (M − 1)) + j (h1 − hN−2) sin (w (M − 1)) + · · · ](2.26)

There are two possibilities for putting this in the form of ((2.23)) where
A (ω) is real: K1 = 0 or K1 = π/2. The �rst case requires a special even
symmetry in h (n) of the form

h (n) = h (N − n− 1) (2.27)

which gives

H (ω) = A (ω) e−jMω (2.28)

where A (ω) is the amplitude, a real-valued function of ω and e−jMω

gives the linear phase with M being the group delay. For the case where
N is odd, using ((2.26)), ((2.27)), and ((2.28)), we have

A (ω) =
M−1∑
n=0

2h (n) cosω (M − n) + h (M) (2.29)

or with a change of variables,

A (ω) =
M∑
n=1

2h (M − n) cos (ωn) + h (M) (2.30)

which becomes

A (ω) =
M∑
n=1

2
^
h (n) cos (ωn) + h (M) (2.31)

where
^
h (n) = h (M − n) is a shifted h (n). These formulas can be made

simpler by de�ning new coe�cients so that ((2.29)) becomes

A (ω) =
M∑
n=0

a (n) cos (ω (M − n)) (2.32)
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where

a (n) = {
2h(n)

h(M)
0

for0≤n≤M−1

for n = M
otherwise

(2.33)

and (2.31) becomes

A (ω) =
M∑
n=0

a (n) cos (ωn) (2.34)

with

a (n) = {
h(M)

2h(M+n)
0

forn=0

for0 ≤ n ≤M − 1
otherwise

(2.35)

Notice from ((2.34)) for N odd, A (ω) is an even function around ω = 0
and ω = π, and is periodic with period 2π.

For the case where N is even,

A (ω) =
N/2−1∑
n=0

2h (n) cosω (M − n) (2.36)

or with a change of variables,

A (ω) =
N/2∑
n=1

2h (N/2− n) cosω (n− 1/2) (2.37)

These formulas can also be made simpler by de�ning new coe�cients so
that ((2.36)) becomes

A (ω) =
N/2−1∑
n=0

a (n) cos (ω (M − n)) (2.38)

where

a (n) = {2h(n)for0≤n≤N/2−1
0 otherwise (2.39)

and ((2.37)) becomes

A (ω) =
N/2∑
n=1

a (n) cos (ω (n− 1/2)) (2.40)

with

a (n) = {2h(N/2−n) for 1≤n≤N/2
0 otherwise (2.41)
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Notice from (2.40) for N even, A (ω) is an even function around ω = 0, an
odd function around ω = π, and is periodic with period 4π. This requires
A (π) = 0.

For the case in ((2.23)) where K1 = π/2, an odd symmetry is required
of the form

h (n) = − h (N − n− 1) (2.42)

which, for N odd, gives

H (ω) = jA (ω) ejMω (2.43)

with

A (ω) =
M−1∑
n=0

2h (n) sinω (M − n) (2.44)

and for N even

A (ω) =
N/2−1∑
n=0

2h (n) sinω (M − n) (2.45)

To calculate the frequency or amplitude response numerically, one must
consider samples of the continuous frequency response function above. L
samples of the general complex frequency response H (ω) in (2.21) are
calculated from

H (ωk) =
N−1∑
n=0

h (n) e−jωkn. (2.46)

for k = 0, 1, 2, · · · , L− 1. This can be written with matrix notation as

H = F h (2.47)

where H is an L by 1 vector of the samples of the complex frequency
response, F is the L by N matrix of complex exponentials from ((2.46)),
and h is the N by 1 vector of real �lter coe�cients.

These equations are possibly redundant for equally spaced samples
since A (ω) is an even function and, if the phase response is linear, h (n)
is symmetric. These redundancies are removed by sampling ((2.32)) over
0 ≤ ωk ≤ π and by using a de�ned in ((2.33)) rather than h. This can be
written

A = C a (2.48)
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where A is an L by 1 vector of the samples of the real valued amplitude
frequency response, C is the L by M real matrix of cosines from ((2.32)),
and a is the M by 1 vector of �lter coe�cients related to the impulse
response by ((2.33)). A similar set of equations can be written from
((2.44)) for N odd or from ((2.45)) for N even.

This formulation becomes a �lter design method by giving the samples
of a desired amplitude response as Ad (k) and solving ((2.48)) for the �lter
coe�cients a (n). If the number of independent frequency samples is equal
to the number of independent �lter coe�cients and if C is not singular,
this is the frequency sampling �lter design method and the frequency
response of the designed �lter will interpolate the speci�ed samples. If
the number of frequency samples L is larger than the number of �lter
coe�cients N , ((2.48)) may be solved approximately by minimizing the
norm ‖ A (ω)−Ad (ω) ‖.

2.1.2.1 The Discrete Time Fourier Transform with Normaliza-
tion

The discrete time Fourier transform of the impulse response of a digital
�lter is its frequency response, therefore, it is an important tool. When the
symmetry conditions of linear phase are incorporated into the DTFT, it
becomes similar to the discrete cosine or sine transform (DCT or DST).
It also has an arbitrary normalization possible for the odd length that
needs to be understood.

The discrete time Fourier transform (DTFT) is de�ned in ((2.7))
which, with the conditions of an odd length-N symmetrical signal, be-
comes

A (ω) =
M∑
n=1

a (n) cos (ωn) +K a (0) (2.49)

where M = (N − 1) /2. Its inverse as

a (n) =
2
π

∫ π

0

A (ω) cos (ωn) dω (2.50)

for n = 1, 2, · · · ,M and

a (0) =
1
Kπ

∫ π

0

A (ω) dω (2.51)

where K is a parameter of normalization for the a (0) term with 0 <
K < ∞. If K = 1, the expansion equation ((2.49)) is one summation
and doesn't have to have the separate term for a (0). If K = 1/2, the



77

equation for the coe�cients ((2.50)) will also calculate the a (0) term and
the separate equation ((2.51)) is not needed. If K = 1/

√
2, a symmetry

results which simpli�es equations later in the notes.

2.1.3 Four Types of Linear-Phase FIR Filters

From the previous discussion, it is seen that there are four possible types
of FIR �lters [1] that lead to the linear phase of ((2.20)). These are
summarized in Table 2.1.

Type 1. The impulse response has an odd
length and is even symmetric

about its midpoint of n = M =
(N − 1) /2 which requires

h (n) = h (N − n− 1) and gives
((2.29)) and ((2.30)).

Type 2. The impulse response has an even
length and is even symmetric

aboutM , butM is not an integer.
Therefore, there is no

h (n) at the point of symme-
try, but it satis�es ((2.36)) and
((2.37)).

Type 3. The impulse response has an odd
length as for Type 1 and has

the odd symmetry of ((2.42)), giv-
ing an imaginary multiplier

for the linear-phase form in
((2.43)) with amplitude ((2.44)).

continued on next page
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Type 4. The impulse response has an even
length as for Type 2 and the

odd symmetry of Type 3 in
((2.42)) and ((2.43)) with ampli-
tude ((2.45)).

Table 2.1: The Four Types of Linear Phase FIR Filters

Examples of the four types of linear-phase FIR �lters with the sym-
metries for odd and even length are shown in Figure 2.4. Note that for
N odd and h (n) odd symmetric, h (M) = 0.
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Figure 2.4: Example of Impulse Responses for the Four Types of
Linear Phase FIR Filters

For the analysis or design of linear-phase FIR �lters, it is necessary
to know the characteristics of A (ω). The most important characteristics
are shown in Table 2.2.
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0.0pt7.11317pt12.80374pt
TYPE 1.

Odd length, even
symmetric h (n)

A (ω) is even about
ω = 0

A (ω) = A (−ω)

A (ω) is even about
ω = π

A (π + ω) =
A (π − ω)

A (ω) is periodic with
period = 2π

A (ω + 2π) = A (ω)

0.0pt7.11317pt12.80374pt
TYPE 2.

Even length, even
symmetric h (n)

A (ω) is even about
ω = 0

A (ω) = A (−ω)

A (ω) is odd about
ω = π

A (π + ω) =
−A (π − ω)

A (ω) is periodic with
period 4π

A (ω + 4π) = A (ω)

0.0pt7.11317pt12.80374pt
TYPE 3.

Odd length, odd sym-
metric h (n)

A (ω) is odd about
ω = 0

A (ω) = −A (−ω)

A (ω) is odd about
ω = π

A (π + ω) =
−A (π − ω)

A (ω) is periodic with
period = 2π

A (ω + 2π) = A (ω)

continued on next page
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0.0pt7.11317pt12.80374pt
TYPE 4.

Even length, odd
symmetric h (n)

A (ω) is odd about
ω = 0

A (ω) = −A (−ω)

A (ω) is even about
ω = π

A (π + ω) =
A (π − ω)

A (ω) is periodic with
period = 4π

A (ω + 4π) = A (ω)

Table 2.2: Characteristics of A (ω) for Linear Phase

Examples of the amplitude function for odd and even length linear-
phase �lter A (ω) are shown in Figure 2.5.
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Figure 2.5: Example of Amplitude Responses for the Four Types
of Linear Phase FIR Filters

These characteristics reveal several inherent features that are ex-
tremely important to �lter design. For Types 3 and 4, A (0) = 0 for
any choice of �lter coe�cients h (n). This would not be desirable for a
lowpass �lter. Types 2 and 3 always have A (π) = 0 which is not desirable
for a highpass �lter. In addition to the linear-phase characteristic that
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represents a time shift, Types 3 and 4 give a constant 90-degree phase
shift, desirable for a di�erentiator or Hilbert transformer. The �rst step
in the design of a linear-phase FIR �lter is the choice of the type most
compatible with the speci�cations.

It is possible to uses the formulas to express the frequency response of
a general complex or non-linear phase FIR �lter by taking the even and
odd parts of h (n) and calculating a real and imaginary �amplitude" that
would be added to give the actual frequency response.

2.1.3.1 Calculation of FIR Filter Frequency Response

As shown earlier, L equally spaced samples of H (ω) are easily calculated
for L > N by appending L −N zeros to h (n) for a length-L DFT. This
appears as

H (2πk/L) = DFT {h (n)} for k = 0, 1, · · · , L− 1 (2.52)

This direct method of calculation is a straightforward and �exible ap-
proach. Only the samples of H (ω) that are of interest need to be calcu-
lated. In fact, even nonuniform spacing of the frequency samples can be
achieved by sampling the DTFT de�ned in ((2.7)). The direct use of the
DFT can be ine�cient, and for linear-phase �lters, it is A (ω), not H (ω),
that is the most informative. In addition to the direct application of the
DFT, special formulas are developed in () for evaluating samples of A (ω)
that exploit the fact that h (n) is real and has certain symmetries. For
long �lters, even these formulas are too ine�cient, so the DFT is used,
but implemented by a Fast Fourier Transform (FFT) algorithm.

In the special case of Type 1 �lters with L equally spaced sample
points, the samples of the frequency response are of the form

Ak = A (2πk/L) =
M−1∑
n=0

2h (n) cos (2π (M − n) k/L) + h (M) (2.53)

For Type 2 �lters,

Ak = A (2πk/L) =
N/2−1∑
n=0

2h (n) cos (2π (M − n) k/L) (2.54)

For Type 3 �lters,

Ak = A (2πk/L) =
M−1∑
n=0

2h (n) sin (2π (M − n) k/L) (2.55)
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For Type 4 �lters,

Ak = A (2πk/L) =
N−1∑
n=0

2h (n) sin (2π (M − n) k/L) (2.56)

Although this section has primarily concentrated on linear-phase �lters
by taking their symmetries into account, the method of taking the DFT
of h (n) to obtain samples of the frequency response of an FIR �lter also
holds for general arbitrary linear phase �lters.

2.1.4 Zero Locations for Linear-Phase FIR Filters

A qualitative understanding of the �lter characteristics can be obtained
from an examination of the location of the N − 1 zeros of an FIR �lter's
transfer function. This transfer function is given by the z-transform of
the length-N impulse response

H (z) =
N−1∑
n=0

h (n) z−n (2.57)

which can be rewritten as

H (z) = z−N+1
(
h0z

N−1 + h1z
N−2 + ...+ hN−1

)
(2.58)

or as

H (z) = z−N+1D (z) (2.59)

where D (z) is an N − 1 order polynomial that is multiplied by an N − 1
order pole located at the origin of the complex z-plane. D (z) is de�ned
in order to have a simple polynomial in positive powers of z.

The fact that h(n) is real valued requires the zeros to all be real or
occur in complex conjugate pairs. If the FIR �lter is linear phase, there
are further restrictions on the possible zero locations. From ((2.27)), it is
seen that linear phase implies a symmetry in the impulse response and,
therefore, in the coe�cients of the polynomial D (z) in ((2.59)). Let the
complex zero z1 be expressed in polar form by

z1 = r1e
jx (2.60)

where r1 is the radial distance of z1 from the origin in the complex
z-plane, and x is the angle from the real axis as shown in Figure 2.6.
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Figure 2.6: Example of Impulse Responses for the Four Types of
Linear Phase FIR Filters

Using the de�nition of H (z) and D (z) in ((2.57)) and ((2.58)) and
the linear-phase even symmetry requirement of

h (n) = h (N − 1− n) (2.61)

gives

H (1/z) = D (z) (2.62)

which implies that if z1 is a zero of H (z), then 1/z1 is also a zero of
H (z). In other words, if

H (z1) = 0, then H (1/z1) = 0. (2.63)

This means that if a zero exists at a radius of r1, then one also exists
at a radius of 1/r1, thus giving a special type of symmetry of the zeros
about the unit circle. Another possibility is that the zero lies on the unit
circle with r1 = 1/r1 = 1.
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There are four essentially di�erent cases [246] of even symmetric �lters
that have the lowest possible order. All higher order symmetric �lters have
transfer functions that can be factored into products of these lowest order
transfer functions. These are illustrated by four basic �lters of lowest
order that satisfy these conditions: one length-2, two length-3, and one
length-5.

The only length-2 even-symmetric linear-phase FIR �lter has the form

D (z) = (z + 1)K (2.64)

which, for any constant K, has a single zero at z1 = −1.
The even symmetric length-3 �lter has a form

D (z) =
(
z2 + az + 1

)
K (2.65)

There are two possible cases. For |a| > 2, two real zeros can satisfy
((2.63)) with z1 = r and 1/r. This gives

D (z) =
(
z2 + (r + 1/r) z + 1

)
K (2.66)

The other length-3 case for |a| < 2 has two complex conjugate zeros on
the unit circle and is of the form

D (z) =
(
z2 + (2cosx) z + 1

)
K (2.67)

The special case for a = 2 is not of lowest order. It can be factored into
((2.64)) squared. Any length-4 even-symmetric �lter can be factored into
products of terms of the form of ((2.64)) and ((2.65)).

The fourth case is of an even-symmetric length-5 �lter of the form

D (z) = z4 + az3 + bz2 + az + 1 (2.68)

For a2 < 4 (b− 2) and b > 2, the zeros are neither real nor on the unit
circle; therefore, they must have complex conjugates and have images
about the unit circle. The form of the transfer function is

D (z) = {z4 + [(2 (r2 + 1) /r) cosx] z3 +
[r2 + 1/r2 + 4cos2x] z2 +[(2 (r2 + 1) /r) cosx] z+1}K

(2.69)

If one of the zeros of a length-5 �lter is on the real axis or on the unit
circle, D (z) can be factored into a product of lower order terms of the
forms in ((2.64)), ((2.66)), and ((2.67)) and, therefore, is not of lowest
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order. The odd symmetric �lters of ((2.42)) are described by the above
factors plus the basic length-2 �lter described by

D (z) = (z − 1)K (2.70)

The zero locations for the four basic cases of Type 1 and 2 FIR �lters are
shown in Figure 2.7. The locations for the Type 3 and 4 odd-symmetric
cases of ((2.42)) are the same, plus the zero at one from ((2.69)).
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Figure 2.7: Zero Locations for the Basic Linear-Phase FIR Filter
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From this analysis, it can be concluded that all linear-phase FIR �l-
ters have zeros either on the unit circle or in the reciprocal symmetry
of ((2.66)) or ((2.69)) about the unit circle, and their transfer functions
can always be factored into products of terms with these four basic forms.
This factored form can be used in implementing a �lter by cascading short
�lters to realize a long �lter. Knowledge of the locations of the transfer
function zeros helps in developing �lter design and analysis programs. No-
tice how these zero locations are consistent with the amplitude responses
illustrated in Table 2.2 and Figure 2.5.

2.1.4.1 Section Summary

In this section the basic characteristics of the FIR �lter have been de-
rived. For the linear-phase case, the frequency response can be calculated
very easily. The e�ects of the linear phase can be separated so that the
amplitude can be approximated as a real-valued function. This is a very
useful property for �lter design. It was shown that there are four basic
types of linear-phase FIR �lters, each with characteristics that are also
important for design. The frequency response can be calculated by ap-
plication of the DFT to the �lter coe�cients or, for greater resolution, to
the N �lter coe�cients with zeros added to increase the length. A very
e�cient calculation of the DFT uses the Fast Fourier Transform (FFT).
The frequency response can also be calculated by special formulas that
include the e�ects of linear phase.

Because of the linear-phase requirements, the zeros of the transfer
function must lie on the unit circle in the z plane or occur in reciprocal
pairs around the unit circle. This gives insight into the e�ects of the zero
locations on the frequency response and can be used in the implementation
of the �lter.

The FIR �lter is very attractive from several points of view. It alone
can achieve exactly linear phase. It is easily designed using methods
that are linear. The �lter cannot be unstable. The implementation or
realization in hardware or on a computer is basically the calculation of
an inner product, which can be accomplished very e�ciently. On the
negative side, the FIR �lter may require a rather long length to achieve
certain frequency responses. This means a large number of arithmetic
operations per output value and a large number of coe�cients that have
to be stored. The linear-phase characteristic makes the time delay of the
�lter equal to half its length, which may be large.

How the FIR �lter is implemented and whether it is chosen over al-
ternatives depends strongly on the hardware or computer to be used. If
an array processor is used, an FFT implementation [3] would probably
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be selected. If a �xed point TMS320 signal processor is used, a direct
calculation of the inner product is probably best. If a �oating point DSP
or microprocessor with �oating-point arithmetic is used, an IIR �lter may
be chosen over the FIR, or the implementation of the FIR might take into
account the symmetries of the �lter coe�cients to reduce arithmetic. To
make these choices, the characteristics developed in this chapter, together
with the results developed later in these notes, must be considered.

2.1.5 FIR Digital Filter Design

A central characteristic of engineering is design. Basic to DSP is the
design of digital �lters. In many cases, the speci�cations of a design is
given in the frequency domain and the evaluation of the design is often
done in the frequency domain. A typical sequence of steps in design might
be:

1. From an application, choose a desired ideal response, typically de-
scribed in the frequency domain.

2. From the available hardware and software, choose an allowed class
of �lters (e.g. a length-N FIR digital �lter).

3. From the application, set a measure or criterion of �goodness" for
the response of an allowed �lter compared to the desired response.

4. Develop a method to �nd (or directly generate) the best member
of the allowed class of linear phase FIR �lters as measured by the
criterion of goodness.

This approach is often used iteratively. After the best �lter is designed
and evaluated, the desired response and/or the allowed class and/or the
measure of quality might be changed; then the �lter would be redesigned
and reevaluated.

The ideal response of a lowpass �lter is given in Figure 2.8.
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Figure 2.8a is the basic lowpass response that exactly passes frequen-
cies from zero up to a certain frequency, then rejects (multiplies those
frequency components by zero)the frequencies above that. Figure 2.8b
introduces a �transitionband" between the pass and stopband to make
the design easier and more e�cient. Figure 2.8c introducess a transition-
band which is not used in the approximation of the actual to the ideal
responses. Each of these ideal responses (or other similar ones) will �t a
particular application best.

2.2 FIR Filter Design by Frequency Sampling
or Interpolation2

Since samples of the frequency response of an FIR �lter can be calculated
by taking the DFT of the impulse response h (n), one could propose a �lter
design method consisting of taking the inverse DFT of samples of a desired
frequency response. This can indeed be done and is called frequency
sampling design. The resulting �lter has a frequency response that
exactly interpolates the given samples, but there is no explicit control of
the behavior between the samples [247], [333].

Three methods for frequency sampling design are:

1. Take the inverse DFT (perhaps using the FFT) of equally spaced
samples of the desired frequency response. Care must be taken to
use the correct phase response to obtain a real valued causal h (n)
with reasonable behavior between sample response. This method
works for general nonlinear phase design as well as for linear phase.

2. Derive formulas for the inverse DFT which take the symmetries,
phase, and causality into account. It is interesting to notice these
analysis and design formulas turn out to be the discrete cosine and
sine transforms and their inverses.

3. Solve the set of simultaneous linear equations that result from cal-
culating the sampled frequency response from the impulse response.
This method allows unevenly spaced samples of the desired fre-
quency response but the resulting equations may be ill conditioned.

2This content is available online at <http://cnx.org/content/m16891/1.2/>.
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2.2.1 Frequency Sampling Filter Design by Inverse

DFT

The most direct frequency sampling design method is to simply take the
inverse DFT of equally spaced samples of the desired complex frequency
response Hd (ωk). This is done by

h (n) =
1
N

N−1∑
k=0

Hd

(
2π
N
k

)
ej2πnk/N (2.71)

where care must be taken to insure that the real and imaginary parts (or
magnitude and phase) of Hd (ωk) satisfy the symmetry conditions that
give a real, causal h (n). This method will allow a general complex H (ω)
as well as a linear phase. In most cases, it is easier to specify proper and
consistent samples if it is the magnitude and phase that are set rather
than the real and imaginary parts. For example, it is important that the
desired phase be consistent with the speci�ed length being even or odd
as is given in Equation 28 from FIR Digital Filters (2.28) and Equation
24 from FIR Digital Filters (2.24).

Since the frequency sampling design method will always produce a
�lter with a frequency response that interpolates the speci�ed samples,
the results of inappropriate phase speci�cations will show up as undesired
behavior between the samples.

2.2.2 Frequency Sampling Filter Design by Formulas

When equally spaced samples of the desired frequency response are used,
it is possible to derive formulas for the inverse DFT and, therefore, for
the �lter coe�cients. This is because of the orthogonal basis function of
the DFT. These formulas can incorporate the various constraints of a real
h (n) and/or linear phase and eliminate the problems of inconsistency in
specifying H (ωk).

To develop explicit formulas for frequency-sampling design of linear-
phase FIR �lters, a direct use of the inverse DFT is most straightforward.
When H (ω) has linear phase, (2.71) may be simpli�ed using the formulas
for the four types of linear-phase FIR �lters.

2.2.2.1 Type 1. Odd Sampling

Samples of the frequency response Equation 29 from FIR Digital Filters
(2.29) for the �lter where N is odd, L = N , and M = (N − 1) /2, and
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where there is a frequency sample at ω = 0 is given as

Ak =
M−1∑
n=0

2h (n) cos (2π (M − n) k/N) + h (M) . (2.72)

Using the amplitude function A (ω), de�ned in Equation 28 from FIR
Digital Filters (2.28), of the form (2.72) and the IDFT (2.71) gives for the
impulse response

h (n) =
1
N

N−1∑
k=0

e−j2πMk/NAke
j2πnk/N (2.73)

or

h (n) =
1
N

N−1∑
k=0

Ake
j2π(n−M)k/N . (2.74)

Because h (n) is real, Ak = AN−k and (2.74) becomes

h (n) =
1
N

[
A0 +

M−1∑
k=1

2Akcos (2π (n−M) k/N)

]
. (2.75)

Only M + 1 of the h (n) need be calculated because of the symmetries in
Equation 27 from FIR Digital Filters (2.27).

This formula calculates the impulse response values h (n) from the
desired frequency samples Ak and requires M2 operations rather than
N2. An interesting observation is that not only are (2.72) and (2.75)
a pair of analysis and design formulas, they are also a transform pair.
Indeed, they are of the same form as a discrete cosine transform (DCT).

2.2.2.2 Type 2. Odd Sampling

A similar development applied to the cases for even N from Equation 36
from FIR Digital Filters (2.36) gives the amplitude frequency response
samples as

Ak =
N/2−1∑
n=0

2h (n) cos (2π (M − n) k/N) (2.76)

with the design formula of

h (n) =
1
N

A0 +
N/2−1∑
k=1

2Akcos (2π (n−M) k/N)

 (2.77)
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which is of the same form as (2.75), except that the upper limit on the
summation recognizes N as even and AN/2 equals zero.

2.2.2.3 Even Sampling

The schemes just described use frequency samples at

ω = 2πk/N, k = 0, 1, 2, ..., N − 1 (2.78)

which are N equally-spaced samples starting at ω = 0. Another possible
pattern for frequency sampling that allows design formulas has no sample
at ω = 0, but uses N equally-spaced samples located at

ω = (2k + 1)π/N, k = 0, 1, 2, ..., N − 1 (2.79)

This form of frequency sampling is more di�cult to relate to the DFT
than the sampling of (2.78), but it can be done by stretching Ak and
taking a 2N-length DFT [247].

2.2.2.4 Type 1. Even Sampling

The two cases for odd and even lengths and the two for samples at zero
and not at zero frequency give a total of four cases for the frequency-
sampling design method applied to linear- phase FIR �lters of Types 1
and 2, as de�ned in the section Linear-Phase FIR Filters (Section 2.1.2:
Linear-Phase FIR Filters). For the case of an odd length and no zero
sample, the analysis and design formulas are derived in a way analogous
to (2.72) and (2.77) to give

Ak =
M−1∑
n=0

2h (n) cos (2π (M − n) (k + 1/2) /N) + h (M) (2.80)

The design formula becomes

h (n) = 1
N

[
M−1∑
k=0

2Akcos (2π (n−M) (k + 1/2) /N) + AMcosπ (n−M)

]
(2.81)
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2.2.2.5 Type 2. Even Sampling

The fourth case, for an even length and no zero frequency sample, gives
the analysis formula

Ak =
N/2−1∑
n=0

2h (n) cos (2π (M − n) (k + 1/2) /N) (2.82)

and the design formula

h (n) =
1
N

N/2−1∑
k=0

2Akcos (2π (n−M) (k + 1/2) /N)

 (2.83)

These formulas in (2.75), (2.77), (2.81), and (2.83) allow a very straight-
forward design of the four frequency-sampling cases. They and their anal-
ysis companions in (2.72), (2.76), (2.80), and (2.82) also are the four forms
of discrete cosine and inverse-cosine transforms. Matlab programs which
implement these four designs are given in the appendix.

2.2.2.6 Type 3. Odd Sampling

The design of even-symmetric linear-phase FIR �lters of Types 1 and 2
in the section Linear-Phase FIR Filters (Section 2.1.2: Linear-Phase FIR
Filters) have been developed here. A similar development for the odd-
symmetric �lters, Types 3 and 4, can easily be performed with the results
closely related to the discrete sine transform. The Type 3 analysis and
design results using the frequency sampling scheme of (2.78) are

Ak =
M−1∑
b=0

2h (n) sin (2π (M − n) k/N) (2.84)

and

h (n) =
1
N

[
M∑
k=1

2Aksin (2π (M − n) k/N)

]
(2.85)

2.2.2.7 Type 4. Odd Sampling

For Type 4 they are

Ak =
N/2−1∑
n=0

2h (n) sin (2π (M − n) k/N) (2.86)
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and

h (n) = 1
N

[
N/2−1∑
k=1

2Aksin (2π (M − n) k/N) + AN/2sin (π (M − n))

]
.(2.87)

2.2.2.8 Type 3. Even Sampling

Using the frequency sampling scheme of (2.79), the Type 3 equations
become

Ak =
M−1∑
n=0

2h (n) sin (2π (M − n) (k + 1/2) /N) (2.88)

and

h (n) =
1
N

[
M−1∑
k=0

2Aksin (2π (M − n) (k + 1/2) /N)

]
(2.89)

2.2.2.9 Type 4. Even Sampling

For Type 4 they are

Ak =
N/2−1∑
n=0

2h (n) sin (2π (M − n) (k + 1/2) /N) (2.90)

and

h (n) =
1
N

N/2−1∑
k=0

2Aksin (2π (M − n) (k + 1/2) /N)

 . (2.91)

These Type 3 and 4 formulas are useful in the design of di�erentiators
and Hilbert transformers [1,2,9,31] directly and as the base of the discrete
least-squared-error methods in the section Discrete Frequency Samples of
Error (Section 2.3.1: Discrete Frequency Samples of Error).
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2.2.3 Frequency Sampling Design of FIR Filters by So-

lution of Simultaneous Equations

A direct way of designing FIR �lters from samples of a desired amplitude
simply takes the sampled de�nition of the frequency response Equation
29 from FIR Digital Filters (2.29) as

A (ωk) =
M−1∑
n=0

2h (n) cosωk (M − n) + h (M) (2.92)

or the reduced form from Equation 37 from FIR Digital Filters (2.37) as

A (ωk) =
M∑
n=0

a (n) cos (ωk (M − n)) (2.93)

where

a (n) = {
2h (n) for 0 ≤ n ≤M − 1

h (M) for n = M

0 otherwise

(2.94)

for k = 0, 1, 2, ...,M and solves the M + 1 simultaneous equations for a (n)
or equivalently, h (n). Indeed, this approach can be taken with general
non-linear phase design from

Indeed, this approach can be taken with general non-linear phase de-
sign from

H (ωk) =
N−1∑
n=0

h (n) ejωkn (2.95)

for k = 0, 1, 2, · · · , N − 1 which gives N equations with N unknowns.
This design by solving simultaneous equations allows non-equally

spaced samples of the desired response. The disadvantage comes from
the numerical calculations taking considerable time and being subject to
inaccuracies if the equations are ill-conditioned.

The frequency sampling design method is interesting but is seldom
used for direct design of �lters. It is sometimes used as an interpolating
method in other design procedures to �nd h (n) from calculated A (ωk).
It is also used as a basis for a least squares design method discussed in
the next section.
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2.2.4 Examples of Frequency Sampling FIR Filter De-

sign

To show some of the characteristics of FIR �lters designed by frequency
sampling, we will design a Type 1., length-15 FIR low pass �lter. Desired
amplitude response was one in the pass band and zero in the stop band.
The cuto� frequency was set at approximately f = 0.35 normalized. Using
the formulas (2.75), (2.77), (2.81), and (2.83), we got impulse responses
h (n), which are use to generate the results shown in Figures Figure 2.9
and Figure 2.10.

The Type 1, length-15 �lter impulse response is:

h1 = −0.5 0 1.1099 0 −
1.6039 0 4.494 7 4.494 0 −
1.6039 0 1.1099 0 − 0.5

(2.96)

The amplitude frequency response and zero locations are shown in
Figure 2.9a
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Figure 2.9: Frequency Responses and Zero Locations of Length-
15 and 16 FIR Filters Designed by Frequency Sampling

We see a good lowpass �lter frequency response with the actual am-
plitude interpolating the desired values at 8 equally spaced points. Notice
there is considerable overshoot near the cuto� frequency. This is charac-
teristic of frequency sampling designs and is a sort of �Gibbs phenomenon"
but is even worse than that in a Fourier series expansion of a discontinu-
ity. This Gibbs phenomenon could be reduced by using unequally spaced
samples and designing by solving simultaneous equations. Imagine sam-
pling in the pass and stop bands of Figure 8c from FIR Digital Filters
(Figure 2.8) but not in the transitionband. The other responses and zero
locations show the results of di�erent interpolation locations and lengths.
Note the zero at -1 for the even �lters.

Examples of longer �lters and of highpass and bandpass frequency
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sampling designs are shown in Figure 2.10. Note the di�erence of even
and odd distributions of samples with with or without an interpolation
point at zero frequency. Note the results of di�erent ideal �lters and
Type 1 or 2. Also note the relationship of the amplitude response and
zero locations.
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Figure 2.10: Frequency Response and Zero Locations of FIR Fil-
ters Designed by Frequency Sampling
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2.3 Least Squared Error Design of FIR Filters3

Because the integral of the square of a signal is a measure of its energy,
there is some physical reason for minimizing the integral of the squared
error [137], [1]. Also, because of Parseval's theorem, a least squares ap-
proximation in the frequency domain is a least squares approximation in
the time domain. However, minimizing the worst case squared error
induces a minimum Chebyshev error problem in some formulations [385].

2.3.1 Discrete Frequency Samples of Error

If we approximate the integral squared error by the sum of the squared
error as given by

q = 1
L

L−1∑
k=0

(A (ωk)−Ad (ωk))2 = 1
L

L−1∑
k=0

e(ωk)2

≈
∫ π

0
(A (ω)−Ad (ω))2

dω =
∫ π

0
e(ω)2

dω

(2.97)

where the approximation error as a function of frequency is de�ned by
e (ω) = A (ω)−Ad (ω) with A (ω) being the amplitude response of the �lter
and Ad (ω) being the desired amplitude response or the ideal response.
The matrix statement for the error vector becomes

ε = A−Ad = Ca−Ad (2.98)

where C is the matrix of cosines from Equation ? from Finite-Duration
Impulse Response Digital Filters (2.48), a is the vector of half of the
�lter coe�cients from Equation ? from Finite-Duration Impulse Response
Digital Filters (2.48), and Ad is the vector of samples of the ideal desired
amplitude response. The number of samples of the amplitude response
is L which should be �ve to twenty times the length of the �lter to give
a good approximation of the integral in most cases. The error to be
minimized is

q = εTε (2.99)

except for a scale factor of 1
L .

This could also be posed for the general phase problem by usingH (ωk)
rather than A (ωk) and h (n), the actual impulse response, rather than
a (n), a nomralized half of the impulse response.

3This content is available online at <http://cnx.org/content/m16892/1.2/>.
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2.3.1.1 Truncated frequency sampling design using the inverse
FFT or IDCT

The design problem is posed by de�ning an error measure q as a sum
of the squared di�erences between the actual and the desired frequency
response over a set of L frequency samples. This error function is de�ned
as

q =
1
L

L−1∑
k=0

|H (ωk)−Hd (ωk) |2 (2.100)

where Hd (ωk) are the L samples of the desired response. This prob-
lem is easier to formulate and solve if the frequency samples are equally
spaced as in Equation ? from FIR Filter Design by Frequency Sampling
or Interpolation (2.78) which gives

ωk = 2πk/L (2.101)

and the problem is restricted to linear-phase �lters where the real-valued
amplitude A (ω) can be approximated rather than the complex frequency
response H (ω). For approximations to a complex response, see "Complex
L 2 and Minimum Phase Approximation" (Section 2.3.6: Complex and
Minimum Phase Approximation).

Linear phase and equally spaced samples cause (2.100) to become

q =
1
L

L−1∑
k=0

|A (2πk/L)−Ad (2πk/L) |2 (2.102)

or with a simpler notation

q =
1
L

L−1∑
k=0

|Ak −Adk|2 (2.103)

A very powerful property of the Fourier transform allows a straightfor-
ward design of least-squared-error FIR �lters. Parseval's Theorem, which
is based on the orthogonality of the DFT, states that the error de�ned by
(2.103) in the frequency domain can also be calculated in the time domain
by

q =
L−1∑
n=0

|h (n)− hd (n) |2 (2.104)

where hd (n) is the length-L symmetric FIR �lter that has the L fre-
quency response amplitude samples Adk. This may be calculated by the
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frequency sampling method of using the special formulas such as Equation
? from FIR Filter Design by Frequency Sampling or Interpolation (2.75)
for length L or the inverse DFT. The �lter to be designed has a length-N
symmetric impulse response h (n) with L frequency response samples Ak.

Because the �lter h (n) is of length-N and symmetric, the error equa-
tion (2.104) can be split into two sums

q =
M∑

n=−M
|
^
h (n)−

^
hd(n) |2 + 2

(L−1)/2∑
n=M+1

|
^
hd (n) |

2

(2.105)

where
^
h (n) and

^
hd (n) are the inverse DTFTs of Ak and Adk respectively,

which means they are the h (n) and hd (n) shifted to be symmetic about
n = 0. This requires the number of frequency samples L must be odd.

Equation (2.105) clearly shows that to minimize q, the N values of
h (n) are chosen to be equal to the equivalent N values of hd (n) making
the �rst sum equal zero. In other words, h (n) is obtained by symmet-
rically truncating hd (n). The residual error is then given by the second
summation above. An examination of the residual error as a function of
N may aid in the choice of the �lter length N .

For the Type 1 linear-phase FIR �lter (described in ) which has an odd
length N and an even-symmetric impulse response, the L equally spaced
samples of the frequency response from Equation ? from Fir Digital Filters
(2.29) gives

Ak =
M−1∑
n=0

2h (n) cos (2π (M − n) k/L) + h (M) (2.106)

for k = 0, 1, 2, ...., L−1, whereM = (N − 1) /2. This formula was derived
as a special case of the DFT applied to the Type 1 real, even-symmetric
FIR �lter coe�cients to calculate the sampled amplitude of the frequency
response (perhaps better posed using a (n)). It was noted in that it is
also a cosine transform and it can be shown that this transformation is
orthogonal over the independent values of Ak, just as the DFT is.

The desired ideal amplitude gives the ideal impulse response hd (n)
from by

hd (n) =
1
N

[
Ad0 +

M−1∑
k=1

2Adkcos (2π (n−M) k/N)

]
. (2.107)

for n = 0, 1, · · · , L− 1. This is used in (2.105), and is the ideal impulse
response that is truncated and shifted to give a causal, symmetric h (n).
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Use of the alternative equally-spaced sampling in Equation ? from
FIR Filter Design by Frequency Sampling or Interpolation (2.79), which
has no sample at zero frequency, requires hd (n) be calculated from Equa-
tion ? from FIR Filter Design by Frequency Sampling or Interpolation
(2.81) and Equation ? from FIR Filter Design by Frequency Sampling
or Interpolation (2.83). The Type 2 �lters with even N are developed in
a similar way and use the design formulas Equation ? from FIR Digital
Filters (2.36) and Equation ? from FIR Digital Filters (2.37). These
methods are summarized by:

The �lter design procedure for an odd-length Type 1 �lter
is to �rst design an odd-length-L FIR �lter by the frequency
sampling method from Equation ? from FIR Filter Design
by Frequency Sampling or Interpolation (2.75) or Equation ?
from FIR Filter Design by Frequency Sampling or Interpola-
tion (2.81) or the IDFT, then to symmetrically truncate it to
the desired odd-length N and shift it to make h (n) causal. To
design an even-length Type 2 �lter , start with an even-length-
L frequency-sampling design from Equation ? from FIR Fil-
ter Design by Frequency Sampling or Interpolation (2.77) or
Equation ? from FIR Filter Design by Frequency Sampling or
Interpolation (2.83) or the IDFT and symmetrically truncate
and shift. The resulting length-N FIR �lters are optimal LS-
error approximations to the desired frequency response over
the L frequency samples.

This approach can also be applied to the general arbitrary phase FIR
�lter design problem.

2.3.1.2 Weighted, Unevenly Sampled Discrete Least Squared Er-
ror Filter Design by Solving Simultaneous Equations

It is sometimes desirable to formulate the least squared error design prob-
lem using unequally-spaced frequency samples and/or a weighting func-
tion on the error. This is not possible using the IDFT or derived formulas
above and requires a di�erent approach to the solution.

Samples of the amplitude response derived for N odd in Equation ?
from FIR Filter Design by Frequency Sampling or Interpolation (2.72)
are given by

A (ωk) =
M∑
n=1

2h (M − n) cos (ωkn) + h (M) (2.108)
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for k = 0, 1, · · · , L − 1. This relates the L frequency samples A (ωk) to
the M+1 independent values of the symmetric length-N impulse response
h(n). In the design problem where the Ak are given and the values for
h(n) are to be found, this represents L equations with M+1 unknowns.
Because of the symmetries of A (ω) shown in , only half of the L values
of Ak are independent; however, in some cases, to have proper weights on
all L samples, all must be calculated.

(2.108) sampled at L arbitrary frequencies can be written as a matrix
equation

Ca = A (2.109)

where a is an M + 1 length vector with elements which are the �rst half
of h (n). C is an L by (M + 1) matrix of the cosine terms from (2.108),
and A is a length-L vector of the frequency samples A (ωk).

If the formula for the calculation of L values of the frequency response
of a length-N FIR �lter in (2.106) is used to de�ne an error vector of
di�erences as de�ned in (2.99) and the result is written in the matrix
formulation of Equation ? from FIR Filter Design by Frequency Sampling
or Interpolation (2.48), the error becomes

Ca = A = Ad + e (2.110)

or

Ca−Ad = e (2.111)

where e is a vector of di�erences between the actual and desired samples
of the frequency response. The error measure de�ned in (2.100) becomes
the quadratic form

q = eTe (2.112)

For L > N , equation (2.109) is over determined and cannot, in general,
be solved for a. The �lter design error measure is the norm of e, as given
in (2.112). This error measure is minimized by making e orthogonal to
the columns of C in (2.111). Multiplying both sides of (2.110) by the
transpose of C gives

CTCa = CTAd + CTe (2.113)

In order for q to be minimum, e must be orthogonal to the columns of
C and, therefore, CTe must be zero. Hence, the optimal a must satisfy
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the �normal equations" [189], [343], [175] which are

CTCa = CTAd (2.114)

and which can be rewritten in terms of the pseudo-inverse [189], [175] as

a =
[
CTC

]−1
CTAd (2.115)

If L = N , this becomes the regular frequency-sampling problem and can
be solved with zero error. For the case of interest in this section, where
L > N , there are still only M + 1 equations to be solved. For L > > N ,
equation (2.106) may be ill-conditioned, and (2.115) should not be used to
solve them. Special methods will be necessary to avoid serious numerical
problems [175].

If a weighted error function is desired, (2.100) is modi�ed to give

q =
1
L

L−1∑
k=0

Wk|A (ωk)−Ad (ωk) |2 (2.116)

The normal equations of (2.114) become

CTWCa = CTWAd (2.117)

where W is a positive-de�nite matrix of the weights. If zero weights are
desired, the e�ect is be achieved by removing those frequencies from the
set of L frequencies, not by using a zero value weight which would violate
the vector-space conditions of a well-posed minimization problem.

Although developed here for the linear-phase �lter, (2.117) is a very
general design approach for the FIR �lter that allows arbitrary phase, as
well as uneven frequency sampling and a weighting function in the error
de�nition. For the arbitrary phase case, a complex F is obtained from
sampling Equation ? from FIR Digital Filters (2.28) and the full h (n) is
used. For the special case of the equally-spaced frequency samples and
linear- phase �lter with unity weighting, the solution of (2.114) or (2.117)
is the same as given by the frequency sampling design formulas.

One of the important uses of the unequally spaced frequency samples
is to create a transition band between the pass and stopbands where there
are no samples. This �don't care" band does not contribute to the error
measure q and allows better approximation to occur over the pass and
stopbands.

Of the many ways to solve (2.114) or (2.117), one of the easiest and
most reliable is the use of Matlab , which has a special command to solve
this least-mean-squared error problem. Equation (2.115) should not be
solved directly. For large L, it is ill-conditioned and a direct solution will
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probably have large errors. Matlab uses special algorithms to minimize
these numerical errors.

This approach was applied to the same problems that were solved by
frequency sampling in the previous section. For N = L, the same results
are obtained, thus verifying the theoretical prediction. As L becomes
larger compared to N , more control is exerted over the behavior between
the original sample points. As L becomes large compared to N , the
solution approaches the same results as obtained where the error is de�ned
as a continuous function of frequency and the integral of the squared
error is minimized. Although the solution of the normal equations is a
powerful and �exible technique, it can be slow, have numerical problems,
and require large amounts of computer memory.

2.3.1.3 Examples of Discrete Least Squared Error Filter Design

Here we will give examples of several least squared error designs of FIR
�lters.
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Figure 2.11: Frequency Response of Length-15 FIR Filter De-
signed by Least Squared Error

As for the frequency sampling design, we see a good lowpass �lter
frequency response with the actual amplitude interpolating the desired
values at di�erent points from the frequency sampling example in Fig-
ure 2.11 even though the length and band edge are the same. Notice there
is less over shoot but more ripple near f = 0. The Gibbs phenomenon is
the same as for the Fourier series.

If a transition band is introduces in the ideal amplitude response be-
tween f = 0.4 and f = 0.6 with a straight line, the overshoot is reduced
signi�cantly but with a slightly slower transition from the pass to stop
band. This is illustrated in Figure 2.12.
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Figure 2.12: Frequency Response of Length-15 FIR Filter with a
Transition Band Designed by Least Squared Error

2.3.2 Continuous Frequency De�nition of Error

Because the energy of a signal is the integral of the sum of the squares
of the Fourier transform magnitude and because speci�cations are usu-
ally given in the frequency domain, a very reasonable error measure to
minimize is the integral squared error given by

q =
1
π

∫ π

0

|Ad (ω)−A (ω) |2 dω (2.118)

where Ad (ω) is the desired ideal amplitude response, A (ω) =∑
na (n) cos (ω (M −N)n) is the achieved amplitude response with the

length h (n) related to h (n) by Equation ? from FIR Digital Filters (2.29).
This integral squared error is approximated by the discrete squared error
de�ned in (2.118) for L > > N which in some cases is much easier to
minimize. However for some very useful cases, formulas can be found for
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h (n) that minimize (2.118) and that is what we will be considering in
this section.

2.3.2.1 The Unweighted Least Integral Squared Error Approxi-
mation

If the error measure is the unweighted integral squared error de�ned in
(2.118), Parseval's theorem gives the equivalent time-domain formulation
for the error to be

q =
∞∑

n=−∞
|hd(n)− h (n) |2 =

1
π

∫ π

0

|Ad (ω)−A (ω) |2 dω. (2.119)

In general, this ideal response is in�nite in duration and, therefore, cannot
be realized exactly by an actual FIR �lter.

As was done in the case of the discrete error measure, we break the
in�nite sum in (2.119) into two parts, one of which depends on h (n) and
the other does not.

q =
M∑

n=−M
|hd(n)− h (n) |2 + 2

∞∑
n=M+1

|hd (n) |2 (2.120)

Again, we see that the minimum q is achieved by using h (n) = hd (n) for
−M ≤ n ≤M . In other words, the in�nitely long hd (n) is symmetrically
truncated to give the optimal least integral squared error approximation.
The problem then becomes one of �nding the hd (n) to truncate.

Here the integral de�nition of approximation error is used. This is
usually what we really want, but in some cases the integrals can not be
carried out and the sampled method above must be used.

2.3.2.1.1 Ideal Constant Gain Passband Lowpass Filter

Here we assume the simplest ideal lowpass single band FIR �lter to have
unity passband gain for 0 < ω < ω0 and zero stopband gain for ω0 < ω <
π similar to those in a and Figure 2.11. This gives

Ad (ω) = {1 0<ω<ω0
0 ω0<ω<π

(2.121)

as the ideal desired amplitude response. The ideal shifted �lter coe�-
cients are the inverse DTFT from Equation ? from Chebyshev or Equal
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Ripple Error Approximation Filters (2.168) of this amplitude which for
N odd are given by

^
hd (n) =

1
π

∫ π

0

Ad (ω) cos (ωn) dω (2.122)

=
1
π

∫ ω0

0

cos (ωn) dω =
(ω0

π

) sin (ω0n)
ω0n

(2.123)

which is sometimes called a �sinc" function. Note
^
hd (n) is generally

in�nite in length. This is now symmetrically truncated and shifted by
M = (N − 1) /2 to give the optimal, causal length-N FIR �lter coe�cients
as

h (n) =
(ω0

π

) sin (ω0 (n−M))
ω0 (n−M)

for 0 ≤ n ≤ N − 1 (2.124)

and h (n) = 0 otherwise. The corresponding derivation for an even
length starts with the inverse DTFT in Equation ? from Constrained
Approximation and Mixed Criteria (2.174) for a shifted even length �lter
is

^
hd =

1
π

∫ π

0

Ad (ω) cos (ω (n+ 1/2)) dω =
(ω0

π

) sin (ω0 (n+ 1/2))
ω0 (n+ 1/2)

(2.125)
which when truncated and shifted by N/2 gives the same formula as for
the odd length design in (2.124) but one should note thatM = (N − 1) /2
is not an integer for an even N .

2.3.2.1.2 Ideal Linearly Increasing Gain Passband Lowpass Filter

We now derive the design formula for a �lter with an ideal amplitude
response that is a linearly increasing function in the passband rather than
a constant as was assumed above. This ideal amplitude response is given
by and illustrated in Figure 2.13 For N odd, the ideal in�nitely long
shifted �lter coe�cients are the inverse DTFT of this amplitude given by

Ad (ω) = {
1
πω 0<ω<ω0
0 ω0<ω<π

(2.126)

and illustrated in Figure 7.3 For N odd, the ideal in�nitely and shifted
�lter coe�cients are the inverse DTFT of this amplitude given by

^
hd (n) =

1
π

∫ ω0

0

(ω
π

)
cos (ωn) dω =

cos (ω0n)− 1
π2n2

+
ω0sin (ω0n)

π2n
(2.127)
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with the indeterminate
^
hd (0) = ω2

0
2π2 . This is now truncated and shifted

by M = (N − 1) /2 to give the optimal, causal length-N FIR �lter coef-
�cients as

h (n) =
cos (ω0 (n−M))− 1

π2(n−M)2 +
ω0sin (ω0 (n−M))

π2 (n−M)
for 0 ≤ n ≤ N −1

(2.128)
and h (n) = 0 otherwise. The corresponding derivation for an even length
starts with the inverse DTFT for a shifted even length �lter in Equation
? from Chebyshev or Equal Ripple Error Approximation Filters (2.168)
and after shifting by N/2 gives the same result as (2.128).
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Figure 2.13: Ideal Frequency Response of an FIR Filter with
Increasing Gain in the Passband and Lowpass Cuto�
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2.3.2.1.3 Ideal Di�erentiator plus Lowpass Filter

Fortunately the inverse DTFT for an ideal di�erentiator combined with
a lowpass �lter can also be analytically evaluated. The ideal amplitude
response is the same as (2.126) and Figure 2.13 but, since this case has an
odd symmetric impulse response, the inverse DTFT uses sine functions
which for odd N gives

^
hd (n) =

1
π

∫ ω0

0

(
1
π
ω

)
sin (ωn) dω =

sin (ω0n)
π2n2

−ω0cos (ω0n)
π2n

(2.129)

with the indeterminate
^
hd (0) = 0. This is now truncated and shifted by

M = (N − 1) /2 to give the optimal, causal length-N FIR �lter coe�cients
as

h (n) =
sin (ω0 (n−M))
π2(n−M)2 − ω0cos (ω0 (n−M))

π2 (n−M)
for 0 ≤ n ≤ N − 1

(2.130)
and h (n) = 0 otherwise. Again the corresponding derivation for an
even length gives the same result as in (2.130). Note this very general
single formula includes as special cases the odd and even length full band
(ω0 = π) di�erentiator given in [248]. Also note that for a full band
di�erentiator, an even length is much preferred because of the zero at
ω = π for an odd length. However, for the di�erentiator with a lowpass
�lter, the zero aids in the lowpass �ltering and, therefore, might be an
advantage.

2.3.2.1.4 Hilbert Transformer

The inverse DTFT for an ideal Hilbert transform [228] combined with
a lowpass �lter can also be analytically evaluated. The ideal amplitude
response is the same as (2.121) but with a constant phase shift of ϕ = π/2.
Since this case has an odd symmetric impulse response, the inverse DTFT
uses sine functions which for odd N which gives

^
hd (n) =

1
π

∫ ω0

0

sin (ωn) dω =
1− cos (ω0n)

πn
(2.131)

with the indeterminate
^
hd (0) = 0. This is now truncated and shifted by

M = (N − 1) /2 to give the optimal, causal length-N FIR �lter coe�cients
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as

h (n) =
1− cos (ω0 (n−M))

π (n−M)
0 ≤ n ≤ N − 1 (2.132)

and h (n) = 0 otherwise. Again the corresponding derivation for an even
length gives the same result as in (2.132). The ideal amplitude response
is shown in Figure 2.14.
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Figure 2.14: Ideal Frequency Response of an FIR Hilbert Tran-
sorm in the Passband and Lowpass Cuto�

2.3.2.2 Spline Transition Band Design

All of the four lowpass �lters described above exhibit the Gibbs phe-
nomenon when truncated to a �nite length. To remove this e�ect and
to give a more explicit speci�cation of the pass and stopband edges, a
transition band is inserted between the pass and stopband. A transition
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function can be placed in this band to make the total desired amplitude
response a continuous function.

If we use a pth order spline as the transition function, the e�ect of
adding this transition band to the basic lowpass �lter ideal amplitude
given in (2.121) is to multiply the ideal impulse response in (2.123) by a
the P th power of a sinc function to give

^
hd (n) =

sin (ω0n)
πn

(
sin (∆n/p)

∆n/p

)p
(2.133)

where ω0 = (ωs + ωp) /2 is the average band edge and ∆ = (ωs − ωp) /2
is half the transition band width in radians per second normalized for one
sample per second sampling rate [311], [248], [61]. The spline produces
a transition function which consists of p segments of pth order polyno-
mials connected together so that p − 1 derivatives are continuous at the
junctions.
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Figure 2.15: Ideal Lowpass Filter Amplitude with Order-p Spline
Transition Function
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The optimal value of the exponent p is chosen as p = 0.624 (fs − fp)N
(for a unity sampling rate) which minimizes the approximation error [61].
Each of the four ideal lowpass �lters derived in the previous can have a
transition band added simply by multiplying their impulse response by
the sinc weighting function as illustrated in (2.133). Figure 2.15 shows
an ideal unity gain �lter amplitude response with examples of �rst, sec-
ond, and tenth order spline transition functions. Figure 2.16 shows the
ideal responses of the linear gain �lter with fourth order spline transition
function.
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Figure 2.16: Ideal Increasing Amplitude Filter with Spline Tran-
sition Function

2.3.2.3 The Optimal Multiband Least Squared Error Design
Method

The optimal multiband design method consists of two somewhat inde-
pendent parts. The �rst is the design of an optimal least squares lowpass
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�lter with a transition band as described above or as calculated by an
inverse FFT. The second part builds an optimal multiband �lter from a
combination of these optimal lowpass �lters and is the main point of this
[46].

The unweighted least squared error linear phase FIR �lter design prob-
lem is to �nd the �lter coe�cients that minimize the error de�ned by

q =
∫ π

0

|A (ω)−Ad (ω) |2 dω (2.134)

where A (ω) is the amplitude frequency response of the actual �lter and
Ad (ω) is the desired ideal amplitude response. This is done by truncating
the inverse discrete time Fourier transform of Ad (ω). The di�culty is the
analytical evaluation of the integral in the inverse transform [248]. If a
spline transition function is used, an analytical formula can be derived for
the �lter that minimizes (2.134). The details of this result can be found
in [61], [46].

The in�nitely long �lters designed from the inverse discrete time
Fourier transform of the ideal response have a frequency response which
is the same as the ideal and, therefore, has no error. An ideal desired am-
plitude response can be formulated as the sum of simpler ideal lowpass
�lters, di�erentiators or Hilbert transformers together with their spline
transition functions by

Ad (ω) =
∑
k

Kk Adk (ω) . (2.135)

where Adk (ω) is the desired lowpass response with a transition band in
the kth band such as given in (2.121) or (2.126) and the Kk are chosen
to build the desired Ad (ω). These Adk are the forms considered in the
previous section along with any others that have analytical inverse DTFTs
such as polynomials. Because of the linearity of the Fourier transform,
a multiband ideal response can be constructed by simply adding and
subtracting the impulse response of appropriate ideal lowpass �lters.

^
hd (n) =

∑
k

Kk IDTFT{Adk (ω)} (2.136)

^
hd (n) =

∑
k

Kk

^
hdk (n) (2.137)

Because of the orthogonality of the basis functions of the Fourier trans-

form, the truncated sequence of the in�nitely long impulse response
^
hd (n)
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will give an optimal approximation to Ad (ω) in a least squares sense. This
argument allows no error weighting or �don't care" transition bands or tra-
ditional windowing methods. It does, however, allow the optimized spline
transition functions [61], [46].

Using these facts, an optimal multiband �lter can be built up by suc-
cessively adding and subtracting the impulse responses of optimal lowpass
�lters as done in (2.136). For example a bandpass �lter that approximates
zero for 0 < ω < ω1, has a spline transition band for ω1 < ω < ω2, approx-
imates one (or some other constant) for ω2 < ω < ω3, has an independent
second transition band for ω3 < ω < ω4, and �nally approximates zero
for ω4 < ω < π can be designed by �rst designing a simple lowpass �lter
with transition band ω3 < ω < ω4 and then subtracting from its impulse
response the impulse of a second lowpass �lter designed with a transition
band ω1 < ω < ω2. A �lter with two or more passbands can be designed
by adding the impulse responses of two or more single passband �lters.

Indeed, a completely general design method can be formulated by al-
ternately adding and subtracting lowpass �lters starting with the highest
frequency transition band and moving sequentially down to the lowest. If
the ideal frequency response is not zero at ω = π, then one starts with
a constant frequency response (an impulse in the time domain) and sub-
tracts a lowpass �lter (remember the length must be odd for this case).
By scaling each lowpass �lter, di�erent gains are obtained in each band.

Care must be taken that the constructed spline transition function
properly �t the bands on both sides. This will not automatically happen
if there are two adjacent bands with di�erent slopes connected by one
transitions function which are simply added together. It will automati-
cally happen if each passband is separated by a stopband or if adjacent
bands have the same slopes.

2.3.2.4 A Matlab Filter Design Program

A Matlab [218] program named �r3.m is given in the appendix of this
book that will design optimal �lters using the method described in the
previous section. This particular program requires constant but arbitrary
passband gains and uses a format for speci�cations similar to remez() in
Matlab. It constructs the multiband �lter from (2.137) by adding and
subtracting optimal lowpass �lters designed from the formula in (2.133)
and calculated in the second program named �r3lp.m .

The main program is given an even length vector f containing the
normalized pass and stopband edges, including f = 0 and f = 1. It
is also given an even length vector m containing the ideal response at
each frequency in f . Because the lowpass �lter has a constant passband,
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the ideal response of the multiband �lter will have constant passbands.
This means m will consist of adjacent terms that are equal. An example
Matlab function call is given in the next section.

The simple program listed in the appendix will design �lters with
constant gains in multiple passbands. From its construction it is easy to
see how adding the use of the linear gain lowpass �lter to the unity gain
passband lowpass �lter would allow designing optimal �lters with linear
gains in the passbands. By adding all four basic lowpass designs a calling
program could be written that would automatically design one �lter with
a combination of all four characteristics. If the real and imaginary parts
of a desired complex frequency response can be given in terms of the basic
�lters, nonlinear phase �lters can be designed also.

The programs are written to be consistent with Matlab's convention
of normalizing for two samples per second sampling rate. The equations
most of this book, however, are normalized for one sample per second.

2.3.2.5 Design Examples

To show the results of using this new design approach, two examples of
multiband �lter design are presented here. The �rst is a �lter with a
stopband from ω = 0 to ω = 0.2, a transition band from ω = 0.2 to
ω = 0.25, a passband with gain equal to 0.7 from ω = 0.25 to ω = 0.5, a
transition band from ω = 0.5 to ω = 0.55, a passband with gain equal to
0.5 from ω = 0.55 to ω = 0.7, a transition band from ω = 0.7 to ω = 0.73,
a stopband from ω = 0.73 to ω = 0.85, a transition band from ω = 0.85
to ω = 0.9, and a passband with gain equal one from ω = 0.9 to ω = 1.
This is called with the Matlab program by

~

h~~=~fir3(51,[0~.2~.25~.5~.55~.7~.73~.85~.9~1],[0~0~.7~.7.5~.5~0~0~1~1])

and the amplitude response plot shown in Figure 2.17a. The response for
length of N = 101 is shown in Figures Figure 2.17b and in Figure 2.17c
the zero locations are given.

As an example of how versatile this approach can be, a length-101
linear phase multiband FIR �lter was designed with di�erent types of �l-
tering being done in di�erent bands. The signal with frequencies in the
band from 0 < f < 0.2 is di�erentiated, in the band from 0.23 < f < 0.4
is rejected, in 0.43 < f < 0.6 is Hilbert transformed, in 0.63 < f < 0.8 is
rejected, and 0.83 < f < 1.0 is highpass �ltered. In the transition bands
between each of these processing bands, there is an optimal spline tran-
sition function. The amplitude response is shown in Figure 7d. This is a
truly versatile multiband design technique with the only major limitation
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being that weighting is not possible. However, that limitation is removed
in the next secession.
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Figure 2.17: Frequency Response and Zero Locations of FIR Fil-
ters Designed by Least Squared Error

2.3.3 Weighted Least Integral Squares FIR Filter De-

sign

If the FIR �lter design problem is posed as a weighted integral squared
error approximation problem, a simple analytical design formula as in
(2.124) or (2.136) is not possible (Recall that it is possible to easily in-
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troduce weights in the discrete approximation problem (2.117)). In this
section we consider a multiband generalization [46] of an approach which
is a mixture of analytical formulas and numerical solution of Toeplitz plus
Hankel matrices which have been presented in [113], [363], [61].

The most general de�nition of the linear phase weighted least squares
FIR �lter design problem [113], [111], [14] de�nes the error measure as in
Equation ? from Constrained Approximation and Mixed Criteria (2.179)
by

q =
1
π

∫
Ω

W (ω) |Ad (ω)−A (ω) |2dω. (2.138)

where Ω is the set of frequencies that contribute to the error.
We set up the conditions for minimizing the error in (2.138) for odd

N by using the same approach used in [61] which substitutes

A (ω) =
M∑
n=0

a (n) cos (ωn) (2.139)

from Equation ? from FIR Digital Filters (2.34) into (2.138), di�erenti-
ates q in respect to each a (m), and then sets it equal to zero to give

1
π

∫
Ω

W (ω) Ad (ω) cos (ωm) dω =
M∑
n=0

a (n)
2
π

∫
Ω

W (ω) cos (ωn) cos (ωm) dω

(2.140)
where we can obtain the h (n) from the a (n) by the scaling and shifting
in Equation ? from FIR Digital Filters. We denote this in matrix form
by

Aw = Cw a (2.141)

with the elements of the M + 1 by M + 1 matrix Cw as

cw (m,n) =
2
π

∫
Ω

W (ω) cos (ωn) cos (ωm) dω (2.142)

and theM+1 by 1 vector of intermediate values aw is given by an inverse
DTFT of the weighted ideal amplitude response in

Aw (n) =
1
π

∫
Ω

W (ω) Ad (ω) cos (ωn) dω for 1 ≤ n ≤ N − 1

(2.143)



121

and

Aw (0) =
1

2π

∫
Ω

W (ω) Ad (ω) dω. (2.144)

Solving (2.141) for the optimal a which minimizes the integral weighted
squared error (2.138) is formally done by

a = C−1
w Aw (2.145)

and more accurately done by special numerical algorithms. The case for
even N is easily derived by using to derive (2.140). The actual length-N
�lter coe�cients h (n) are then found from a (n) using Equation ? from
FIR Digital Filters (2.40). Note that if the weighting is unity across the
pass, transition, and stop bands, Cw is the identity matrix. Cw gives the
e�ects of the weighting.

A similar formula was derived by Fleischer [113], Tufts, Rorabacher
and Mosier [363], by Schüssler [310], by Oetken, Parks, and Schüssler
[222], and by Burrus, Soewito, and Gopinath [61], [46] in addressing sim-
ilar problems.

If the integrals in (2.142) and (2.143) can be analytically evaluated,
the solution of the weighted squared error approximation is obtained by
solving M + 1 equations. Fortunately these equations can be analytically
evaluated for several interesting cases as was done for the unweighted
case. The even length-N case is derived in a similar way using Equation ?
from FIR Digital Filters (2.40) and Equation ? from FIR Digital Filters
(2.41). An alternate formulation could modify the �rst column.

In most practical situations where speci�cations are set in the fre-
quency domain, these �lters are described in terms of frequency bands.
We have already seen the idea of single pass, stop, and transition bands.
We now allow multiple pass and stopbands separated by multiple transi-
tion bands. In order to obtain analytical solutions of (2.142) and (2.143)
and to be consistent with usual practice, we restrict ourselves to constant
weights over each separately de�ned frequency band. The error in (2.138)
now becomes

q =
1
π

∑
k

[
Wk

∫ ωk+1

ωk

|Adk (ω)−A (ω) |2 dω
]
. (2.146)

where the weights are constant over each band and are given byW (ω) =
Wk in the kth band de�ned by ωk < ω < ωk+1. The desired amplitude
Adk (ω) is likewise de�ned in the kth band and is hopefully simple enough
to allow analytical evaluation of the formula (2.122) for the ideal impulse
response.
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The form of (2.146) causes (2.142) to become

cw (m,n) =
2
π

∑
k

[
Wk

∫ ωk+1

ωk

cos (ωn) cos (ωm) dω
]
. (2.147)

which has an analytical solution as given by

cw (m,n) = 1
π

∑
k

Wk

[
sin(n−m)ωk+1−sin(n−m)ωk

(n−m)
+ sin(n+m)ωk+1−sin(n+m)ωk

(n+m)

]
(2.148)

which for F band edges has terms that are indeterminate for n = m 6=
0 with values

cw (n, n) = 1
π
{
F−2∑
k=1

Wk

[
(ωk+1 − ωk) + sin(2nωk+1)−sin(2nωk)

2n

]
+

WF−1π}

(2.149)

and for n = m = 0 as

cw (0, 0) =
1
π
{
F−2∑
k=1

Wk2 (ωk+1 − ωk) +WF−12π} (2.150)

Since the matrix elements are functions of (n−m) and (n+m), C is
the sum of a Toeplitz and a Hankel matrix. This matrix can always
be calculated and it simply depends on the set of band edges ωk and
the band weights Wk but not on the ideal amplitude response Ad (ω).
The case for even N is similar but uses Equation ? from Constrained
Approximation and Mixed Criteria (2.177) rather than Equation ? from
Constrained Approximation and Mixed Criteria (2.176) with (2.138) to
derive an appropriate form of (2.148).

If there are F distinct band edges ωk, the �rst and last are ω1 = 0
and ωF = π. This means part of the �rst term in the sum of (2.148) is
always zero and part of the last is zero except when n = m = 0 where it
is π. Using these facts allows (2.148) to be written

cw (m,n) =
1
π

F−2∑
k=1

(Wk −Wk+1)
[
sin (n−m)ωk+1

n−m
+
sin (n+m)ωk+1

n+m

]
(2.151)
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which, together with appropriately modi�ed (2.149) and (2.150), are good
forms for programming. The Matlab program in the appendix contains
the details.

Applying the form of (2.146) to (2.143) gives

aw (n) =
1
π

∑
k

[
Wk

∫ ωk+1

ωk

Adk (ω) cos (ωn) dω
]
. (2.152)

These integrals have been evaluated for the four basic �lter types - con-
stant gain passband lowpass �lter, linear gain passband lowpass �lter, dif-
ferentiator plus lowpass �lter, and Hilbert transformer plus lowpass �lter
- giving simple design formulas in (2.124), (2.128), (2.130), and (2.132).

Each basic �lter type plus the e�ects of a transition band can be
calculated and combined according to (2.133). An example low pass �lter
with a weight of W1 in the passband and W2 in the transition band is

given for odd N gives for the intermediate coe�cients
^
hw (n) from (2.143)

are

aw (n) = W1

[
sin(ω2n)−sin(ω1n)

πn

]
+

W2

[
sin(ω0n)

πn

(
sin(∆n/p)

∆n/p

)p
− sin(ω1n)

πn

] (2.153)

A similar expression can be derived for even N using Equation ? from
Constrained Approximation and Mixed Criteria (2.177).

This means the left hand vector in (2.141) can be calculated as a
weighted sum of inverse DTFTs such as in (2.128) if the ideal desired
amplitude can be constructed from the four basic types in , each with
optimal transition bands.

If one or more of the integrals in (2.152) has no analytical solution,
aw (n) can be calculated numerically using a truncated weighted sum of
inverse DFTs of a dense sampling of Adk (ω) or made up of the passbands
calculated from inverse DFTs and the transition bands added by multiply-
ing appropriately by sinc functions since constructing an optimal spline
transition function to be sampled would not be easy.

This gives a very powerful design method that allows multi band
weighted least squares design of FIR �lters. The calculation of the matrix
Cw in (2.141) is always possible using (2.148). Because using a true �don't
care" transition band with a weight of zero might causes ill conditioning
of (2.141) for (fs − fp)N > 12 as discussed in [61], one can add a spline
transition function in Ad (ω) to the de�nition in (2.121) as done in (2.153)
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and [61]. A very small weight used in the transition bands together with
a spline transition function will improve the conditioning of (2.141) with
minor degradation of the optimality. This point needs further evaluation.

By using an inverse FFT perhaps plus a sinc induced transition func-
tion to calculate the components of (2.152), this method can be used to
design arbitrary shaped passbands. It can also be used for complex ap-
proximation by applying it to the real and imaginary parts of the desired
Hd (ω) separately and using the full, nonsymmetric h (n).

The form of the simultaneous equations (2.141) that must be solved
to design a �lter by this method is interesting. If the weights in all pass,
stop, and transition bands are unity, the Cw matrix is the identity matrix

and
^
hw contains the �lter coe�cients. As the weights become less and

less uniform or equal, the Cw matrix becomes poorer conditioned. If the
weights for the transition bands are zero, it is the smallest eigenvalues
of Cw that control the actual amplitude response A (ω) in the transition
bands. This explains why numerical errors in solving (2.141) show up pri-
marily in the transition bands. It also suggests this e�ect can be reduced
by allowing a small weight in the transition bands. Indeed, one can design
long �lters by using spline transition functions with a small weight which
then allows di�erent pass and stopband weights.

2.3.3.1 Matlab Programs

A Matlab program for designing multiband FIR �lters using the weighted
least squares approximation described in (2.151) and (2.152) above is in-
cluded in the Appendix. The program assumes passbands and stopbands
that alternate with transition bands. The passbands are assumed to have
constant gain for simplicity but that could be generalized with the results

from . The �rst for loop constructs the
^
hw (n) in (2.143) by sequentially

designing weighted bandpass �lters and a separately weighted transition
band similar to the example in (2.153). These are added together in this
loop to give the vector hw in (2.141). The second for loop constructs
the C matrix in (2.141) using the formula (2.151). Care must be taken
to correctly calculate the indeterminate values of sinc(0) and to properly
include the e�ects of ωF = π.

When one uses zero weights in the transition bands, the C matrix
becomes ill conditioned when the product of the �lter length N and the
sum of the transition band widths in Hertz is much above 12. This is an
approximate rule which is somewhat a�ected by di�erent passband and
stopband weights, but it gives an indication of when numerical problems
will occur. To reduce this problem, the program includes optimal spline
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transition functions so that a small weight can be used to improve the
conditioning of C with minimal e�ect on the optimality of the approxi-
mation.

2.3.3.2 Examples

To illustrate the e�ects of using a weighted least squared error design
criterion, a simple length-21 linear phase lowpass FIR �lter was designed,
with unity weighting in the pass and stop bands and zero weighting in
the transition band. The frequency response is shown in a. The same
�lter is designed with a weight of 100 in the passband and the response
is shown in b and the case for a weight of 100 in the stopband is shown
in c. It is instructive to design many example �lters and observe the
e�ects of di�erent weights, use of spline vs zero weight transition bands,
and the e�ects of the transition band width on the pass and stopband
performance.
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Figure 2.18: Frequency Response of Length-21 FIR Filter De-
signed by Weighted Least Squared Error

The same speci�cations that were used in the design using optimal
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spline transition functions of Figure 2.17a is used in the design here with
unity weights in the stop and passbands and zero weights in the transi-
tion bands. The result is fairly similar to the spline function design and
is shown in Figure 2.19a for N = 51. For lengths above around 131,
numerical errors resulted in erratic performance in the transition bands.
Indeed for this case, the use of the spline method would probably be su-
perior. The advantage of the weighted least squares method is illustrated
in Figure 2.19b where the same speci�cations are used but with a weight
of 100 in the �rst passband, in Figure 2.19c where a weight of 100 is used
in the second passband, and in Figure 2.19d where a weight of 100 is used
in the third passband. This use of weights is impossible using the spline
method or any windowing method.
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2.3.4 Section Conclusions

This section has derived the four basic ideal lowpass �lters: the constant
gain passband lowpass �lter, the linearly increasing gain passband lowpass
�lter, the di�erentiator with a lowpass �lter, and the Hilbert transformer
with a lowpass �lter. It is shown that each of these can be modi�ed to
allow a spline transition function by a simple weighting function.

Because of using an L2 approximation error criterion and because of
the orthogonality of the basis functions of the Fourier transform, it is
shown that an optimal multiband �lter can be built from the linear com-
bination of these optimal building blocks. This new �lter design method
has the �exibility of the Parks-McClellan algorithm but the simplicity
of the windowing methods. It is extremely fast and has no numerical
problems. Unlike the windowing methods, the new method allows ex-
plicit independent control of multiple transition band edges and gives an
optimal design. Its only limitation is not allowing error weighting.

We then derived a second method that likewise allowed multiple pass,
stop, and transition bands with arbitrary band edges, but also allowed
independent weighting of each frequency band. There are two limitations
on this method. For long �lters with wide transition bands with zero
weights and where N (fp − fs) > 12, the equations that must be solved
are ill conditioned. This can be partially addressed using optimal spline
functions with small weights in the transition bands. The second problem
is that solving a large number of simultaneous equations can be slow and
require considerable memory. These problems might be addressed by
using special Toeplitz or Toeplitz plus Hankel algorithms [204] or some
iterative method.

When should these methods be used? The second method which min-
imizes the weighted integral squared error should be used anytime the
original problem dictates a squared error criterion and the product of the
length and transition band width is less than twelve, N (fp − fs) < 12.
These conditions are often met because the squared error is a measure of
the signal or noise energy and one seldom wants a long �lter and a wide
transition band. Even though this method requires solution of a set of
simultaneous equations and is, therefore, slower than the spline transition
function method, it executes in a few seconds on a PC or workstation and
allows independent weighting of di�erent frequency bands.

The �rst method which uses spline functions in the ideal response
transition bands will design essentially arbitrarily long �lters very quickly
but it will not allow any error weighting. Although arti�cial transition
functions are used in the ideal response, the optimized spline functions
are very close to the response actually obtained by the second method
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with zero weighting in the transition band. This means the optimal ap-
proximation to the ideal response with spline functions transition bands is
close to that obtained using the second numerical method. Comparisons
of these e�ects for a single band can be found in [61]. If a Chebyshev
approximation is desired, the Parks-McClellan method should be used
although it too has numerical problems for long �lters with wide transi-
tion bands. If di�erent error measures are wanted in di�erent bands, the
iterative reweighted least squares (IRLS) algorithm [52] should be used.
Recent research suggest that for many practical signal speci�cations, a
mixture of Chebyshev and least squares is appropriate with no explicit
transition bands [323].

If the equations that must be solved to obtain the optimal �lter co-
e�cients are ill-conditioned, an orthogonalization procedure can be used
to improve the conditioning [224].

2.3.5 Characteristics of Optimal Filters

Gibbs phenomenon, transition band, pole-zero plots, etc.

2.3.6 Complex and Minimum Phase Approximation

Here we talk about which methods also solve the complex approximation
problem. We talk about the minimum phase �lter.

2.4 Chebyshev or Equal Ripple Error Approx-
imation Filters4

If one poses the FIR �lter design problem by requiring the maximum
error over certain bands of frequencies be minimized, we call the result-
ing �lter a Chebyshev �lter or an equal ripple �lter. The fact that the
minimization of the Chebyshev or L∞ error results in an equal ripple
error comes from the alternation theorem. This very powerful theorem
allows one to minimize the Chebyshev error by directly constructing an
equal ripple approximation with the proper number of ripples. That is the
basis of several very e�ective algorithms, including the Remez exchange
algorithm.

There are several ways one could pose the Chebyshev FIR �lter de-
sign problem. For a simple length-N linear phase, lowpass �lter with a
transition band, if one considers the length N, the passband ripple δp, the
stopband ripple δs, and the transition bandwidth ∆ = ωs − ωp, then one

4This content is available online at <http://cnx.org/content/m16895/1.2/>.
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can �x or constrain any three of them and minimize the fourth. Or, as
Parks and McClellan do, �x the band edges, ωp and ωs, and the ratio of
δp and δs and minimize one of them.

The Chebyshev error measure is often used for approximation in digital
�lter design. This is particularly true when the signals and/or noise are
narrow band or single frequency or when one wants to minimize worst
case possibilities. Theoretical justi�cation for its use has been given by
Weisburn, Parks, and Shenoy [386]. For FIR �lter design, the Parks-
McClellan formulation of the �lter design problem and application of the
Remez exchange algorithm is most commonly used [249], [259]. It is a
particularly interesting and powerful method that should be studied and
understood to be fully utilized.

Linear programming was used earlier [364], [140], [294] but dropped
out of favor when the Parks-McClellan algorithm was introduced. It is
now becoming more popular again because of more powerful computers,
better algorithms [345], [20], and linear programming's ability to allow a
variety of constraints [338].

Still another approach to achieving a Chebyshev approximation is to
minimize the pth power of the error using a large value of p or to use
an iterative scheme that solves a weighted least squared error with the
weights at each stage determined by the error of the previous stage [53].
Still another design method that produces an equal ripple error approxi-
mation uses a constrained least squared error criterion [324], [322] which
results in a Chebyshev solution if tight constraints are imposed.

The early work by Herrmann and Schüssler [142], [145] and the algo-
rithm by Hofstetter, Oppenheim, and Siegel [148], [149] posed and solved
a similar problem but they had only approximate control of ωo (or ωp
or ωs) and always achieved the �extra ripple" design. Given the proper
speci�cations, the Parks-McClellan algorithm could design any �lter that
the Hofstetter-Oppenheim-Siegel algorithm could, but the opposite is not
true. This seems to be one of the reasons the Hofstetter-Oppenheim-Siegel
algorithm is not commonly used.

2.4.1 The Linear Phase FIR Filter Chebyshev Approx-

imation Problem

The Chebyshev error is de�ned as the maximum di�erence between the
actual and desired response over a band or several bands of frequencies.
This is

ε = max
ω∈Ω
|A (ω)−Ad (ω) | (2.154)
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where Ω is the union of the bands of frequencies that the approximation
is over [75], [99]. The approximation problem in �lter design is to choose
the �lter coe�cients to minimize ε.

One way to minimize ε is to set up the frequency response in four
equations for the four types of linear phase FIR �lters as done in Equation
? from FIR Digital Filters (2.34), Equation ? from FIR Digital Filters
(2.40), and the corresponding sine expressions. An alternative approach
[249] uses the fact that all four can be obtained from the odd-length,
even-symmetry type 1 and uses only Equation ? from FIR Digital Filters
(2.34). From one of these frequency response representations together
with powerful Alternation Theorem several optimization schemes can
be developed.

If the amplitude response for odd L is expressed as a sum of R cosine
terms

A (ω) =
R−1∑
n=0

a (n) cos (ωn) (2.155)

or for even L

A (ω) =
R∑
n=1

a (n) cos (ω (n− 1/2)) (2.156)

with R = M +1 = L+1
2 for odd length-L and R = L/2 for even length-L,

as derived in Equation ? from FIR Digital Filters (2.34) and Equation ?
FIR Digital Filters (2.40), then
Theorem 1
If A (ω) is the linear combination of R cosine functions given in (2.155)
or (2.156), the necessary and su�cient conditions for A (ω) to be the
least Chebyshev error approximation to Ad (ω) over ω ∈ Ω are: The error
function, ε (ω) = A (ω)−Ad (ω) have at leastR+ 1 extremal frequencies
in Ω. The extremal frequencies are ordered points ω1 < ω2 < · · · <
ωR+1 such that ε (ωk) = −ε (ωk+1) and maxω∈Ω|ε (ω) | = |ε (ωk) | for
k = 1, 2, · · · , R+ 1.

The alternation theorem [249], [277] states that the minimum Cheby-
shev error has at least R+ 1 extremal frequencies. This is stated mathe-
matically by

A (ωk) = Ad (ωk) + (−1)kδ (2.157)

for k = 0, 1, 2, · · · , R, where the ωk are the ordered extremal frequencies
where the equal ripple error has maximum value. In other words, the
optimal solution to the linear phase FIR �lter design problem will have
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an equal ripple error function with a required number of ripples. How all
of these characteristics relate can be rather complicated and good designs
require experience [144]. When applied to other approximation problems,
care must be taken to ensure the approximating functions satisfy the
�Haar conditions" or other restrictions [75], [259], [99], [277].

2.4.2 Chebyshev Approximation by Linear Program-

ming

It is possible to pose the Chebyshev approximation problem in �lter design
as a linear programming optimization problem [294], [366], [337], [182].
The error de�nition in (2.154) can be written as an inequality by

Ad (ω)− δ ≤ A (ω) ≤ Ad (ω) + δ (2.158)

where the scalar δ is minimized.
The inequalities in (2.158) can be written as

A ≤ Ad + δ (2.159)

−A ≤ −Ad + δ (2.160)

or

A− δ ≤ Ad (2.161)

−A− δ ≤ −Ad (2.162)

which can be combined into one matrix inequality using Equation ? from
FIR Digital Filters (2.48) by C −1

−C −1

 a

δ

 ≤
 Ad

−Ad

 . (2.163)

If δ is minimized, the optimal Chebyshev approximation is achieved. This
is done by minimizing

ε =
[

0 0 · · · 1
] a

δ

 (2.164)

which, together with the inequality of (2.163), is in the form of the dual
problem in linear programming [90], [191], [344].
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This can be solved using the lp() command from the Optimization
Toolbox with Matlab [134], the Meteor software system [338], CPlex [29],
or Karmarkar's algorithm [20], [166]. The Matlab lp command is imple-
mented in an m-�le using a form of quadratic programming algorithm
that is not well suited to our �lter design problem. Meteor is a linear
programming system using the simplex algorithm written in Pascal by
Ken Steiglitz especially for �lter design. It has been compiled on a va-
riety of computers and e�ciently designs �lters over 100 in length. The
Karmarkar program written by Lang is a relatively short m-�le that is
not particularly fast but is robust and can design �lters on the order of
length-100. CPlex is a proprietary program that can be used alone or
called from Fortran programs and is particularly robust and fast.

A Matlab program that applies its linear programming function lp.m
to (2.163),(2.164) for linear phase FIR �lter design is given by:

% lpdesign.m Design an FIR filter from L, f1, f2, and LF using LP.

% L is filter length, f1 and f2 are pass and stopband edges, LF is

% the number of freq samples. L is odd. Uses lp.m

% csb 5/22/91

L1 = fix(LF*f1/(.5-f2+f1)); L2 = LF - L1; %No. freq samples in PB, SB

Ad = [ones(L1,1); zeros(L2,1)]; %Samples of ideal response

f = [[0:L1-1]*f1/(L1-1), ([0:L2-1]*(.5-f2)/(L2-1) + f2)]'; %Freq samples

M = (L-1)/2;

C = cos(2*pi*(f*[0:M])); %Freq response matrix

CC = [C, -ones(LF,1); -C, -ones(LF,1)]; %LP matrix

AD = [Ad; -Ad];

c = [zeros(M+1,1);1]; %Cost function

x0 = [zeros(M+1,1);max(AD)+1]; %Starting values

x = lp(c,CC,AD,[],[],x0); %Call the LP

d = x(M+2); %delta or deviation

a = x(1:M+1); %Half impulse resp.

h = [a(M+1:-1:2);2*a(1);a(2:M+1)]./2; %Impulse response

This program has numerical problems for �lters longer than 10 or 20 and
is fairly slow. The lp() function uses an algorithm that seems not well
suited to the equations required by �lter design. It would be nice to
have Meteor written in Matlab, both to show how the Simplex algorithm
works, and to have an e�cient LP �lter design system in Matlab. The
above program has been tested using Karmarkar's algorithm [20], [299],
[345] as implemented in Matlab by Lang [166]. It proved to be robust
and reliable for lengths up to 100 or more. It was faster than the Matlab
function but slower than Meteor or CPlex. Its use should be further
investigated.
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Direct use of quadratic programming and other optimization algo-
rithms seem promising [108], [172], [265], [271], [267], [269], [274], [375],
[373], [388]

2.4.3 Chebyshev Approximations using the Exchange

Algorithms

A very e�cient algorithm which uses the results of the alternation theorem
is called the Remez exchange algorithm. Remez [296], [75], [277]
showed that, under rather general conditions, an algorithm that takes a
starting estimate of the location of the extremal frequencies and exchanges
them with a new set calculated at each iteration will converge to the
optimal Chebyshev approximation. The e�ciency of this algorithm comes
from �nding the optimal solution by directly constructing a function that
satis�es the alternation theorem rather than minimizing the Chebyshev
error as done by the linear programming technique. The Remez exchange
algorithm has proven to be well suited to the design of linear phase FIR
�lters [196], [244], [146].

A particularly useful FIR �lter design implementation of the Remez
exchange is called the Parks-McClellan algorithm and is described in [259],
[293], [286], [249]. It has been implemented in Fortran in [260], [286], [84],
[249] and in Matlab in a program at the end of this material. The Matlab
program is particularly helpful in understanding how the algorithm works,
however, because it does not use any special tricks, it is limited to lengths
of 60 or so. Extensions and details can be found in [197], [31], [105], [330],
[155], [135], [136], [312], [317], [313], [19]. This is a robust, e�cient al-
gorithm that signi�cantly changed DSP when Parks and McClellan �rst
described it in 1972 and has undergone important improvements. Exam-
ples are illustrated in [286], [229].

2.4.3.1 The Basic Parks-McClellan Formulation and Algorithm

Parks and McClellan formulated the basic Chebyshev FIR �lter design
problem by specifying the desired amplitude response A (ω) and the tran-
sition band edges, then minimizing the weighted Chebyshev error over
the pass and stop bands. For the basic lowpass �lter illustrated in Fig-
ure 2.20, the pass band edge ωp and the stop band edge ωs are speci�ed,
the maximum passband error is related to the maximum stop band error
by δp = K δs and they are minimized.
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Figure 2.20: Amplitude Response of a Length-15 Optimal Cheby-
shev Filter

Notice that if there is no transition band, i.e. ωp = ωs, that δp +
δs = 1 and no minimization is possible. While not the case for a least
squares approximation, a transition band is necessary for the Chebyshev
approximation problem to be well-posed. The e�ects of a small transition
band are large pass and stopband ripple as illustrated in Figure 2.22b.

The alternation theorem states that the optimal approximation for
this problem will have an error function with R+ 1 extremal points with
alternating signs. The theorem also states that there exists R+1 frequen-
cies such that, if the Chebyshev error at those frequencies are equal and
alternate in sign, it will be minimized over the pass band and stop band.
Note that there are nine extremal points in the length-15 example shown
in Figure 2.20, counting those at the band edges in addition to those that
are interior to the pass and stopbands. For this case, R = (L+ 1) /2
which agree with the example.

Parks and McClellan applied the Remez exchange algorithm [259] to
this �lter design problem by writing R + 1 equations using Equation ?
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from FIR Digital Filters (2.34) and Equation ? from Design of IIR Fil-
ters by Frequency Transformations (3.1) evaluated at the R+ 1 extremal
frequencies with R unknown cosine parameters a (n) and the unknown
ripple value, δ. In matrix form this becomes



Ad (ω0)

Ad (ω1)

Ad (ω2)

Ad (ω3)
.
.
.

Ad (ωR)


=



cos (ω00) cos (ω01) · · · cos (ω0 (R− 1)) 1

cos (ω10) cos (ω11) · · · cos (ω1 (R− 1)) −1

cos (ω20) cos (ω21) · · · cos (ω2 (R− 1)) 1

cos (ω30) cos (ω31) · · · cos (ω3 (R− 1)) −1
.
.
.

.

.

.

cos (ωR0) cos (ωR1) · · · cos (ωRM) ±1





a (0)

a (1)

a (2)
.
.
.

a (R− 1)

δ


.(2.165)

These equations are solved for a (n) and δ using an initial guess as to
the location of the extremal frequencies ωi. This design is optimal but
only over the guessed frequencies, and we want optimality over all of the
pass and stopbands. Therefore, the amplitude response of the �lter is
calculated over a dense set of frequency samples using Equation ? from
FIR Digital Filters (2.34) and a new set of estimates of the extremal
frequencies is found from the local minima and maxima and these are
used to replace the initial guesses (they are exchanged). This process is
iteratively performed until the guaranteed convergence is achieved and
the optimal �lter is designed.

The detailed steps of the Parks-McClellan algorithm are:

1. Specify the ideal amplitude, Ad (ω), the stop and pass band edges,
ωp and ωs, the error weight K where δp = K δs, and the length L.

2. Choose R+ 1 initial guesses for the extremal frequencies, ωi, in the
bands of approximation, Ω. This is often done uniformly over the
pass and stop bands, including ω = 0, ωp, ωs, and π.

3. Calculate the cosine matrix at the current ωi and solve (2.165) for
a (n) and δ which are optimal over these current extremal frequen-
cies, ωi.

4. Using the a (n) or the equivalent h (n) from step 3, evaluate A (ω)
over a dense set of frequencies. This amplitude response will inter-
polate A (ωi) = Ad (ωi)± δ at the extremal frequencies.

5. Find R + 1 new extremal frequencies where the error has a local
maximum or minimum and has alternating sign. This includes the
band edges.
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6. If the largest error is the same as δ found in step 3, then convergence
has occured and the optimal �lter has been designed, otherwise,
exchange the old extremal frequencies ωi used in step 2 and return
to step 3 for the next iteration.

7. This iterative algorithm is guaranteed to converge to the unique
optimal solution using almost any starting points in step 2.

This iterative procedure is called a multiple exchange algorithm because
all of the extremal frequencies are up-dated each iteration. If only the
frequency of the largest error is up-dated each iteration, it is called a
single exchange algorithm which also converges but much more slowly.
Some modi�cation of the Parks-McClellan method or the Remez exchange
algorithm will not converge as a multiple exchange, but will as a single
exchange.

The Alternation theorem states that there will be a minimum of R+1
extremal frequencies, even for multiband designs with arbitrary Ad (ω).
If Ad (ω) is piece-wise constant with T transition bands, one can derive
the maximum possible number of extremal frequencies and it is R+ 2T .
This comes from the maximum number of maxima and minima that a
function of the form (2.155) or (2.156) can have plus two at the edges
of each transition band. For a simple lowpass �lter with one passband,
one transition band, and one stopband, there will be a minimum of R+ 1
extremal frequencies and a maximum of R+ 2. For a bandpass �lter, the
maximum is R + 4. If a design has more than the minimum number of
extremal frequencies, it is called an extra ripple design. If it has the
maximum number, it is called a maximum ripple design.

It is interesting to note that at each iteration, the approximation is
optimal over that set of extremal frequencies and δ increased over the
previous iteration. At convergence, δ has increased to the maximum error
over Ω and that is the minimum Chebyshev error.

At each iteration, the exchange of a proper set of extremal frequencies
with alternating signs of the errors is always possible. One can show
there will never be too few and if there are too many, one uses those
corresponding to the largest errors.

In step 4 it is suggested that the amplitude response A (ω) be calcu-
lated over a dense grid in the pass and stopbands and in step 5 the local
extremes are found by searching over this dense grid. There are more
accurate methods that use bisection methods and/or Newton's method
to �nd the extremal points.

In step 2 it is suggested that the simultaneous equation of (2.165) be
solved. Parks and McClellan [260] use a more e�cient and numerically
robust method of evaluating δ using a form of Cramer's rule. With that
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δ, an interpolation method can be used to �nd a (n). This is faster and
allows longer �lters to be designed than with the linear algebra based
approach described here.

For the low pass �lter, this formulation always has an extremal fre-
quency at both pass and stop band edges, ωp and ωs, and at ω = 0 and/or
at ω = π. The extra ripple �lter has R+ 2 extremal frequencies including
both zero and pi. If this algorithm is started with an incorrect number of
extremal frequencies in the stop or pass band, the iterations will correct
this. It is interesting and informative to plot the frequency response of
the �lters designed at each iteration of this algorithm and observe how
the correction takes place.

The Parks-McClellan algorithm starts with �xed pass and stop band
edges then minimizes a weighted form of the pass and stop band error
ripple. In some cases it may be more appropriate to �x one of the ripples
and minimize the other or to �x both ripples and minimize the transition
band width. Indeed Schüssler, Hofstetter, Tufts, and others [145], [142],
[148], [149] formulated some of these ideas before Parks and McClellan
developed their algorithm. The DSP group at Rice has developed some
modi�cations to these methods and they are presented below.

2.4.3.2 Examples of the Parks-McClellan Algorithm

Here we look at several examples of �lters designed by the Parks-
McClellan algorithm. The examples here are length-15 with that shown
in Figure 2.21a having a passband 0 < f < 0.3, a transition band
0.3 < f < 0.5, and a stopband 0.5 < f < 1. The number of cosine
terms in the frequency response formula is R = 8, therefore, the alterna-
tion theorem says we must have at least R+1 extremal points. There are
four in the passband, counting the one at zero frequency, the minimum,
the maximum, and the minimum at the bandedge. There are �ve in the
stopband, counting the ones at the bandedge and at f = 1. So, the num-
ber is nine which is at least R + 1. However, in Figure 2.21c, there are
ten extremal points but that is also at least 9, so it also is optimal. For a
low pass �lter, the maximum number of extremal points is R+2 and that
is what this �lter has. This special case is called the �maximum ripple"
case.
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Figure 2.21: Amplitude Response of Length-15 Optimal Cheby-
shev Filters

It is possible to have ripples that do not touch the maximum value
and, therefore, are not considered extremal points. That is illustrated in
Figure 2.22a. The e�ects of a narrow transitionband are illustrated in
Figure 2.22c. Note the zero locations for these �lters and how they relate
to the amplitude response.
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Figure 2.22: Amplitude Response of Length-15 Optimal Cheby-
shev Filters

To illustrate some of the unexpected behavior that optimal �lter de-
signs can have, consider the bandpass �lter amplitude response shown in
Figure 2.23. Here we have a length-31 Chebyshev bandpass �lter with
a stopband 0 < f < 0.2, a transition band 0.2 < f < 0.25, a passband
0.25 < f < 0.5, another transitionband 0.5 < f < 0.68, and a stopband
0.68 < f < 1. The asymmetric transition bands cause large response in
the transition band around f = 0.6. However, this �lter is optimal since
the deviation occurs in part of the frequency band that is not included
in the optimization criterion. If you think you don't care what happens
in the transition bands, you may change your mind with this kind of
behavior.
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Figure 2.23: Amplitude Response of Length-31 Optimal Cheby-
shev Bandpass Filter

2.4.3.3 The Modi�ed Parks-McClellan Algorithm

If one wants to �x the pass band ripple and minimize the stop band ripple
[317], equation (2.165) is changed so that the pass band ripple is added
to the appropriate top part of the vector Ad of the desired response and
the unknown stop band is kept in the lower part of the last column of the
cosine matrix C.
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Ad (ω0)

Ad (ω1)
.
.
.

Ad (ωp)

Ad (ωs)
.
.
.

Ad (ωR)


+



δp

−δp
.
.
.

±δp
0
.
.
.

0


=



cos (ω00) cos (ω01) · · · cos (ω0 (R− 1)) 0

cos (ω10) cos (ω11) · · · cos (ω1 (R− 1)) 0
.
.
.

.

.

.

cos (ωp0) cos (ωp1) · · · cos (ωp (R− 1)) 0

cos (ωs0) cos (ωs1) · · · cos (ωs (R− 1)) 1
.
.
.

.

.

.

cos (ωR0) cos (ωR1) · · · cos (ωR (R− 1)) ±1





a (0)

a (1)

a (2)
.
.
.

a (R− 1)

δs


.

(2.166)

Iteration of this equation will keep the pass band ripple δp �xed and
minimize the stop band ripple δs. A problem with convergence occurs if
one of the δ's becomes negative during the iterations. A modi�cation to
the basic exchange has been developed to give reliable convergence [317].

2.4.3.4 The Hofstetter, Oppenheim, and Siegel Algorithm

This algorithm [148], [149], [317] came into existence in order to design
the �lters posed by Herrmann and Schüssler [145], [142] where both the
pass and stop band ripple sizes, δp and δs, are �xed and the location of
the transition band is not directly controlled. This problem results in a
maximum ripple design which, for the lowpass �lter, requires extremal
frequencies at both ω = 0 and ω = π but does not use either pass or stop
band frequencies ωp or ωs. This results in R extremal frequencies giving
R equations to �nd the R values of a (n).
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Ad (ω0)

Ad (ω1)
.
.
.

Ad (ωp−1)

Ad (ωs+1)
.
.
.

Ad (ωR−1)


+



δp

−δp
.
.
.

±δp
δs
.
.
.

±δs


=



cos (ω00) cos (ω01) · · · cos (ω0 (R− 1))

cos (ω10) cos (ω11) · · · cos (ω1 (R− 1))
.
.
.

.

.

.

cos (ωp−10) cos (ωp−11) · · · cos (ωp−1 (R− 1))

cos (ωs+10) cos (ωs+11) · · · cos (ωs+1 (R− 1))
.
.
.

.

.

.

cos (ωR−10) cos (ωR−11) · · · cos (ωR−1 (R− 1))





a (0)

a (1)

a (2)
.
.
.

a (R− 1)


.

(2.167)

This algorithm is iterated as a multiple exchange, keeping the number
of ripples in the pass and stop band constant, to give an optimal extra
ripple �lter. The location and width of the transition band is controlled
only by the choice of how the number of initial ripples are divided between
the pass and stop band. The �nal �lter may not have the transition
located where you want it. Indeed, no solution may exist with the desired
location of the transition band.

The designs produced by the HOS algorithm are always maximum
ripple but this comes with a loss of accurate control over the location of
the transition band. The algorithm is not, strictly speaking, an optimiza-
tion algorithm. It is an interpolation algorithm. The Chebyshev error
is not minimized, the designed amplitude interpolates the speci�ed error
ripples. However, although not directly minimized, the transition band
width of these designs seems to be minimized [293], [261], [286]. Extra
or maximum ripple designs seem to be e�cient in using all the zeros to
produce small ripple size and narrow transition bands, however, the loss
of accurate control over the location of the transition bands becomes even
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more problematic with multiple transition band designs. Perhaps some
compromise methods can be devised that use some of the e�ciency of
the maximum ripple approximations with some of the control of other
methods. The next two design methods are of that type.

2.4.3.5 The Shpak and Antoniou Algorithm

Shpak and Antoniou [330] propose decoupling the size of the pass and
stopband ripple sizes in order to have control over the pass and stop
band edges and have an extra ripple design. The Parks-McClellan design
has the ripple sizes related with a �xed weight δp = K δs, the modi�ed
Parks-McClellan design �xes one ripple size and minimizes the other, the
Ho�stetter, Oppenheim, and Siegel design �xes both ripple sizes but can-
not set the transition band edges. The Shpak-Antoniou design �xes the
transition band edges and gives a maximum ripple design with minimum
ripple but the relationship of the pass and stopband ripple is uncontrolled.

This method has two ripple sizes, δp and δs, appended to the a (n)
vector similar to the single δ used in (2.165) or (2.166). This allows
controlling an additional extremal frequency and results in an extra rip-
ple approximation. This can become somewhat complicated for multiple
transition bands but seems very �exible [19].

2.4.3.6 The New Equal Ripple Design Formulation and Ex-
change Algorithm

Because the arguments in the Weisburn, Parks, and Shenoy paper [386]
require the assumption of no signal or noise energy in the transition band,
it is now more obvious that a narrow transition band is very desirable.
For this reason it may be better to �x the pass and stop band peak error,
δp and δs and the transition band center frequency ωo then minimize the
transition band width rather than �xing the pass and stop band edges,
ωp and ωs, then minimizing δp and δs. Two methods have been recently
developed to address this point of view. The �rst is a new exchange
algorithm that is in some ways a combination of the Parks-McClellan and
Hofstetter-Oppenheim-Segiel algorithms [296] and the second is a limiting
case for a constrained least squares method based on Lagrange multipliers
[45], [319], [324], [322] using tight constraints.

For problems where the signal and noise spectra are such that a spe-
ci�c frequency ωo that separates the desired passband from the desired
stopband can be speci�ed but speci�c separate transition band edges,
ωp < ωs, cannot, we formulate [317] a design method where the pass and
stop band ripple sizes, δp and δs are speci�ed along with the separation
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frequency, ωo. The algorithm described below will interpolate the speci-
�ed ripple sizes exactly (as the HOS algorithm does) but will allow exact
control over the location of ωo by not requiring maximum ripple. Al-
though not set up to be an optimization procedure, it seems to minimize
the transition band width. This formulation suits problems where there is
no obvious transition band (�don't care band") having no signal or noise
energy to be passed or rejected.

The optimal Chebyshev �lter designed with this new algorithm is gen-
erally not extra ripple and, therefore, will have an extremal frequency at
ω = 0 or ω = π as the Parks-McClellan formulation does. Because we are
trying to minimizing the transition band width, we do not specify both
the edges, ωp and ωs, but only one of them or, perhaps, the center of
the transition band, ωo. This results in R equations which are used to
�nd the R coe�cients a (n). The equations are formulated by adding the
alternating peak pass and stop band ripples to the Ad in (2.165) and not
having the special last column of C nor the unknown δ appended to a as
was done by Parks and McClellan in (2.165). The resulting equation to
be iterated in our new exchange algorithm has the form
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Ad (ω0)

Ad (ω1)
.
.
.

Ad (ωo)

Ad (ωs+1)
.
.
.

Ad (ωR−1)


+



δp

−δp
.
.
.

0

δs
.
.
.

±δs


=



cos (ω00) cos (ω01) · · · cos (ω0 (R− 1))

cos (ω10) cos (ω11) · · · cos (ω1 (R− 1))
.
.
.

.

.

.

cos (ωo) cos (ωo1) · · · cos (ωo (R− 1))

cos (ωs+10) cos (ωs+11) · · · cos (ωs+1 (R− 1))
.
.
.

.

.

.

cos (ωR−10) cos (ωR−11) · · · cos (ωR−1 (R− 1))





a (0)

a (1)

a (2)
.
.
.

a ((R− 1))


.

(2.168)

The exchange algorithm is done as by Parks and McClellan �nding
new extremal frequencies at each iteration, but with �xed ripple sizes in
both pass and stop bands. This new algorithm reduces the transition
band width as done by the Hofstetter, Oppenheim, and Siegel method
but with the transition band location controlled and without requiring
the extra ripple solution. Note that any transition band frequency could
be �xed. It could be Ad (ωo) = 1/2 to �x the half-power point. It could
be Ad (ωp) = 1−δp to �x the pass band edge. Or it could be Ad (ωs) = δs
to �x the stop band edge.

Extending this formulation and algorithm to the multiple transition
band case complicates the problem as the solution may not be unique or
may have anomalous behavior in one of the transition bands. Details of
the solution to this problem are given in [317].
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2.4.3.7 Estimations of , the Length of Optimal Chebyshev FIR
Filters

All of the design methods discussed so far have assumed that N ,the length
of the �lter, is given as part of the seci�cations. In many cases, perhaps
even most, N is a parameter that we would like to minimize. Often
speci�cations are to meet certain pass and stopband ripple speci�cations
with given pass and stopband edges and with the shortest possible �lter.
None of our methods will do that. Indeed, it is not clear how to do that
kind of optimization other than by some sort of search. In other words,
design a set of �lters of di�erent lengths and choose the one that meet
the speci�cations with minimum length.

Fortunately, emperical formulas have been derived that give a good
estimate of the relationship of the length of an optimal Chebyshev FIR
�lter for given pass and stopband ripple and transition band edges [286],
[293]. Kaiser's formula is

N =
−20log10

(√
δpδs

)
− 13

14.6 (fs − fp)
+ 1 (2.169)

and it is fairly accurate for average �lter speci�cations (neither wide nor
narrow bands).

2.4.3.8 Examples of Optimal Chebyshev Filters

In order to better understand the nature of an optimal Chebyshev and
to see the power of the Parks-McClellan algorithm, we present the design
of a length-21 linear phase FIR bandpass �lter. To see the e�ects of the
design speci�cations, we will �x the two pass band edges and the upper
stop band edge, then look at the e�ects of varying the lower stop band
edge. The Matlab program that generated the designs is:

% ChebyPlot9.m generates Chebyshev figures.

% Change in opt frequency response as band edge is changed, csb 1/26/07

N = 20;

M = [0 0 1 1 0 0];

W = [7.5 10 7.5];

ff = [0:512]/512; k=0;

%for fk = .10:.02:.34

% k = k+1;

clf;

for k = 1:6

fk = .1 + .02*(k-1);
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F = [0 fk .35 .8 .85 1];

b = firpm(N,F,M,W);

%clf;

axis([0 1 0 1.2]);

AA = abs(fft(b,1024)); AA = AA(1:513);

dd = max(AA(1:50));

ddd = dd*(W(1)/W(2));

subplot(3,2,k); plot(ff,AA,'r'); hold;

plot([0 F(2) F(2) F(5) F(5) 1],[dd dd 0 0 dd dd],'b');

plot([0 F(3) F(3) F(4) F(4) 1],[0 0 1-ddd 1-ddd 0 0],'b');

plot([0 F(3) F(3) F(4) F(4) 1],[0 0 1+ddd 1+ddd 0 0],'b');

title('L-21 Chebyshev Filter, f_s = 0.1');

ylabel('Magnitude |H(\omega)|');
pause;

end; hold off;

The results are shown in Figures Figure 2.24 and Figure 2.25.



149

0 0.5 1
0

0.5

1

L−21 Chebyshev Filter, f
s
 = 0.1

M
ag

ni
tu

de
 |H

(ω
)|

0 0.5 1
0

0.5

1

L−21 Chebyshev Filter, f
s
 = 0.12

0 0.5 1
0

0.5

1

L−21 Chebyshev Filter, f
s
 = 0.14

M
ag

ni
tu

de
 |H

(ω
)|

0 0.5 1
0

0.5

1

L−21 Chebyshev Filter, f
s
 = 0.16

0 0.5 1
0

0.5

1

L−21 Chebyshev Filter, f
s
 = 0.18

M
ag

ni
tu

de
 |H

(ω
)|

Normalized Frequency: f 0 0.5 1
0

0.5

1

1.5

L−21 Chebyshev Filter, f
s
 = 0.2

Normalized Frequency: f

Figure 2.24: Amplitude Response of Length-21 Optimal Cheby-
shev Bandpass Filter with various Stop Band Edges
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Figure 2.25: Amplitude Response of Length-21 Optimal Cheby-
shev Bandpass Filter with various Stop Band Edges

Note the large transmission peaks in the transition band of Figures
Figure 2.24a, b, and c that result from the two transition bands being
very di�erent in width. As the lower transition band narrows, this peak
grows smaller and eventually disappears in Figure 2.24f. Note that there
are two extremal points in the lower stop band of Figure 2.24b and seven
in the pass band, while there are three in the lower stop band of Figures
Figure 2.24c and d and six in the pass band. But, there are always
twelve total (thirteen for a case between Figures Figure 2.24b and c).
In Figure 2.25d, there are only �ve extremal points in the pass band
but twelve total. The same �lter is optimal for the conditions given in
Figures Figure 2.25a, b, and c. Much can be learned about optimal �lters



151

by running experiments in Matlab. Remember, all of these are optimal
for the speci�cations given.

2.4.4 Chebyshev Approximation using Approximation

It is possible to approximate the e�ects of Chebyshev approximation by
minimizing the pth power of the error. For large p this is close to the results
of a true Chebyshev approximation. This is a variation on a method
called Lawson's method. This approach is described in [48], [50], [53]
using the iterative reweighted least squared (IRLS) error method and
looks attractive in that it can use di�erent p in di�erent frequency bands.
This would allow, for example, a least squared error approximation in the
passband and a Chebyshev approximation in the stopband. The IRLS
method can also be used for complex Chebyshev approximations [358].

2.4.5 Characteristics of Optimal Chebyshev Filters

Examples of expected and unexpected results of optimality. Rabiner's
work will be used here. The non-unique designs for certain multiband
designs will be illustrated.

2.4.6 Complex Chebyshev Approximation

Algorithms that directly use the alternation theorem, such as the standard
Remez multiple exchange algorithm, are di�cult to apply to the complex
approximation or 2-D approximation problem because the concept of �al-
ternation" is di�cult to de�ne and the number of ripples in an optimal
solution is more di�cult to determine [379], [350], [349], [30], [178], [181],
[353]. Work has been done on the complex approximation problem at Rice
by Parks and Chen [73] and by Burrus, Barreto, and Selesnick [53], [25],
at Erlangen by Schuessler, Preuss, Schulist, and Lang [279], [281], [304],
[306], [309], [308], at MIT by Alkhairy et al [16], [17], at USC by Tseng
and Gri�ths [358], [360], at Georgia Tech by Karam and McClellan [158],
at Cornell by Burnside and Parks [38], and by Potchinkov and Reemt-
sen at Cottbus [267], [269], [274], [276], [273]. The work done by Adams
which uses an implementation of a constrained quadratic programming
algorithm might be useful here [4], [8]. Lang has extended and further
developed this constrained approach [167], [169], [171] and Selesnick is
applying it to IIR �lter design [321]. Tseng gives a good summary of
complex approximation in [360].
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2.4.7 Conclusions and Discussions of Chebyshev De-

sign

By adding the Chebyshev �lter design methods described above to the
Parks-McClellan algorithm, one has a rather complete set of approaches
to equal ripple �lter designs that allows a wide variety of speci�cations.
The new exchange algorithm which minimizes the transition band width
while allowing the speci�cation of the center or either edge of the tran-
sition band edge may �t many design environments better than the tra-
ditional Parks-McClellan. An alternative approach which speci�es the
pass and stop band peak error yet has no zero weighted transition band
will be presented in [319], [324]. Matlab programs are available for
the Parks-McClellan algorithm, the modi�ed Parks-McClellan algorithm,
the Hofstetter-Oppenheim-Siegel algorithm, the new minimum transition
band design algorithm, and the constrained least squares algorithm. They
are written with a common format and notation to easily see how they
are programmed and how they are related. This book generally presents
the lowpass case. The bandpass and multi-band cases use the same ideas
but are a bit more complicated and are discussed in more detail in the
references.

2.5 Taylor Series, Maximally Flat, and Zero
Moment Design Criteria5

The third major approximation criterion uses some measure of the
smoothness or �atness of the frequency response. Work has been done
by Herrmann [143], P. P. Vaidyanathan, and Selesnick and Burrus [315],
[316], [314], [318]. This approach is related to how polynomial signals are
processed and may be related to zero moments in wavelet systems.

2.6 Constrained Approximation and Mixed
Criteria6

2.6.1 Trade-o� of Error Measures and Design Speci�-

cations

In many �lter design problems, more than one criterion is important. For
example, both L2 and L∞ may be of interest in one �lter. Often one is

5This content is available online at <http://cnx.org/content/m16894/1.1/>.
6This content is available online at <http://cnx.org/content/m16923/1.2/>.
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posed as a constraint and the other as an optimized variable. Indeed,
because L2 approximation minimizes the error energy and because Parse-
val's theorem states that an optimal L2 frequency domain approximation
is also an optimal L2 time domain approximation, an L∞ constrained
minimum L2 error approximation seems a good practical approach. To
see how this might have advantages, it is informative to examine the re-
lationship of the L2 error to the L∞ error as the constraint is varied from
tight to loose [325], [5] in Figure 2.26. From this one can see just how
sensitive one error is to the other and how the traditional designs are
extremes on this diagram.
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Figure 2.26: The Squared Error vs. the Chebyshev Error for the
Constrained Least Squared Error FIR Filter

Another trade-o� is the error in a Chebyshev design as a function of
the transition band location. There are certain locations of transition
band or band edges that give much lower ripple size than others. Rabiner
has examined that relation [287], [262].
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2.6.2 Constrained Least Squares Design

There are problems where the peak error or Chebyshev error is important.
This can be minimized directly using the Remez exchange algorithm but,
in many cases, is better controlled by use of a peak error constraint on the
basic least squared error formulation of the problem [5], [3], [325], [9]. An
e�cient algorithm for minimizing the constrained least squared error uses
Lagrange multipliers [202], [201] and the Kuhn-Tucker conditions [325],
[320].

Similar to the Chebyshev design problem, there are two formulations
of the problem: one where there is a well de�ned transition band separat-
ing the desired signal spectrum (passband) from the noise or interfering
signal spectrum (stopband) and the second where there is a well de�ned
frequency that separates the pass and stopband but no well de�ned tran-
sition band.

The �rst case would include situations with signals residing in speci�ed
bands separated by �guard bands" such as commercial radio and TV trans-
missions. It also includes cases where due to multirate sampling, certain
well de�ned bands are aliased into other well de�ned bands. The Parks-
McClellan and Shpak-Antoniou Chebyshev designs address this case for
the Chebyshev error. Adams' method [5], [6], [7], [3], [351], [9] described
below applies to the constrained least squares design with a speci�ed
transition band.

The second case would include signals with known spectral support
with additive white or broad-band noise. In these cases there is no obvious
transition band or �don't care" band. The Ho�stetter-Oppenheim-Siegel
and the method of address this case for a Chebyshev design. The method
in section below applies to the constrained least squares design [325] with-
out a speci�ed transition band.

2.6.2.1 The Lagrangian

To pose the constrained least squared error optimization problem, we use
a Lagrange multiplier formulation. First de�ne the Lagrangian as

L = P
∫ π

0
(A (ω)− Ad (ω))2 dω +∑

i µi (A (ωi)− [Ad (ωi)± T (ωi)])
(2.170)

where the µi are the necessary number of Langrange multipliers and
P is a scale factor that can be chosen for simplicity later. The �rst term
in (2.170) is the integral squared error of the frequency response to be
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minimized and the second term will be zero when the equality constraints
are satis�ed at the frequencies, ωi. The function T (ω) is the constraint
function in that A (ω) must satisfy

Ad (ω) + T (ω) ≥ A (ω) ≥ Ad (ω)− T (ω) . (2.171)

Necessary conditions for the minimization of the integral squared error
are that the derivative of the Lagrangian with respect to the �lter param-
eters a (n) de�ned in and to the Lagrange multipliers µi be zero [346].

The derivatives of the Lagrangian with respect to a (n) are

dL
d a (n)

= P

∫ π

0

2 (A (ω)−Ad (ω))
dA

da
dω +

∑
i

µi
dA

da

∣∣∣∣∣
ωi

(2.172)

where from we have for n = 1, 2, · · · ,M

dA (ω)
d a (n)

= cos (ωn) (2.173)

and for n = 0

dA (ω)
d a (0)

= K. (2.174)

For n = 1, 2, · · · ,M this gives

dL
d a (n)

= 2P
[∫

A (ω) cos (ωn) dω −
∫
Ad (ω) cos (ωn) dω

]
+
∑
i

µi cos (ωin)

(2.175)
and for n = 0 gives

dL
d a (0)

= 2P K
[∫

A (ω) dω −
∫
Ad (ω) dω

]
+
∑
i

µiK. (2.176)

Using for n = 1, 2, · · · ,M , we have

dL
d a (n)

= π P [a (n)− ad (n)] +
∑
i

µi cos (ωin) = 0 (2.177)

and for n = 0

dL
d a (0)

= 2π P K2 [a (0)− ad (0)] +K
∑
i

µi = 0. (2.178)
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Choosing P = 1/π gives

a (n) = ad (n)−
∑
i

µi cos (ωin) (2.179)

and

a (0) = ad (0)− 1
2K

∑
i

µi (2.180)

Writing (2.179) and (2.180) in matrix form gives

a = ad −Hµ. (2.181)

where H is a matrix with elements

h (n, i) = cos (ωin) (2.182)

except for the �rst row which is

h (0, i) =
1

2K
(2.183)

because of the normalization of the a (0) term. The ad (n) are the cosine
coe�cients for the unconstrained approximation to the ideal �lter which
result from truncating the inverse DTFT of Ad (ω).

The derivative of the Lagrangian in (2.170) with respect to the La-
grange multipliers µi, when set to zero, gives

A (ωi) = Ad (ωi)± T (ωi) = Ac (ωi) (2.184)

which is simply a statement of the equality constraints.
In terms of the �lter's cosine coe�cients a (n), from , this can be

written

Ac (ωi) =
∑
n

a (n) cos (ωin) +K a (0) (2.185)

and as matrices

Ac = Ga (2.186)

where Ac is the vector of frequency response values which are the desired
response plus or minus the constraints evaluated at the frequencies in the
constraint set. The frequency response must interpolate these values. The
matrix G is

g (i, n) = cos (ωin) (2.187)
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except for the �rst column which is

g (i, 0) = K. (2.188)

Notice that if K = 1/
√

2, the �rst rows and columns are such that we
have GT = H.

The two equations (2.181) and (2.186) that must be satis�ed can be
written as a single matrix equation of the form

[IHG0] [aµ] = [adAc] (2.189)

or, if K = 1/
√

2, as [
IGTG0

]
[aµ] = [adAc] (2.190)

which have as solutions

µ = (GH)−1 (Gad −Ac)

a = ad −Hµ
(2.191)

The �lter corresponding to the cosine coe�cients a (n) minimize the L2

error norm subject the equality conditions in (2.186).
Notice that the term in (2.191) of the form Gad is the frequency

response of the optimal unconstrained �lter evaluated at the constraint
set frequencies. Equation (2.191) could, therefore, be written

µ = (GH)−1 (Au −Ac) (2.192)

2.6.2.2 The Constrained Weighted Least Squares Design of FIR
Filters

Combining the weighted least squared error formulation with the con-
strained least squared error gives the general formulation of this class of
problems.

We now modify the Lagrangian in (2.170) to allow a weighted squared
error giving

L =
1
π

∫ π

0

W (ω) (A (ω)−Ad (ω))2
dω+

∑
i

µi (A (ωi)−Ad (ωi)± T (ωi))

(2.193)
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with a corresponding derivative of

dL
d a (n)

=
2
π

∫ W (ω) (A (ω)−Ad (ω))
dA

da
dω +

∑
i

µi
dA

da

∣∣∣∣∣
ωi

(2.194)

The integral cannot be carried out analytically for a general weighting
function, but if the weight function is constant over each subband, can be
written

dL
d a(n)

= 2
π

∑
k

∫ ωk+1

ωk

(
Wk

(∑M
m=1 a (m) cos (ωm) +K a (0)− Ad (ω)

))
cos (ωn) dω+∑

i µi
dA
da

∣∣
ωi

(2.195)

which after rearranging is

=
M∑
m=1

[
2
π

∑
k

Wk

∫ ωk+1

ωk

(cos (ωm) cos (ωn)) dω

]
a (m) (2.196)

− 2
π

∑
k

Wk

∫ ωk+1

ωk

Ad (ω) cos (ωn) dω +
∑
i

µicos (ωin) = 0 (2.197)

where the integral in the �rst term can now be done analytically. In
matrix notation is

Ra− adw + Hµ = 0 (2.198)

This is a similar form to that in the multiband paper where the matrix
R gives the e�ects of weighting with elements

r (n,m) =
2
π

∑
k

Wk

∫ ωk+1

ωk

(cos (ωm) cos (ωn)) dω (2.199)

except for the �rst row which should be divided by 2K because of the
normalizing of the a (0) term in and (2.183) and the �rst column which
should be multiplied by K because of and (2.188). The matrix R is a
sum of a Toeplitz matrix and a Hankel matrix and this fact might be
used to advantage and adw is the vector of modi�ed �lter parameters
with elements

adw (n) =
2
π

∑
Wk

∫ ωk+1

ωk

Ad (ω) cos (ωn) dω (2.200)
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and the matrix H is the same as used in (2.181) and de�ned in (2.182).
Equations and (2.186) can be written together as a matrix equation

[RHG0] [aµ] = [adwAc] (2.201)

The solutions to and (2.186) or to (2.201) are

µ =
(
GR−1H

)−1 (
GR−1adw −Ac

)
(2.202)

a = R−1 (adw −Hµ) (2.203)

which are ideally suited to a language like Matlab and are implemented
in the programs at the end of this book.

Since the solution of Rau = adw is the optimal unconstrained
weighted least squares �lter, we can write (2.202) and (2.203) in the form

µ = (GR−1H)
−1

(Gau −Ac) =

(GR−1H)
−1

(Au −Ac) a = au −R−1Hµ

(2.204)

a = au −R−1Hµ (2.205)

2.6.2.3 The Exchange Algorithms

This Lagrange multiplier formulation together with applying the Kuhn-
Tucker conditions are used in an iterative multiple exchange algorithm
similar to the Remez exchange algorithm to give the complete design
method.

One version of this exchange algorithm applies to the problem posed
by Adams with speci�ed pass and stopband edges and with zero error
weighting in the transition band. This problem has the structure of a
quadratic programming problem and could be solved using general QP
methods but the multiple exchange algorithm suggested here is probably
faster.

The second version of this exchange algorithm applies to the problem
where there is no explicitly speci�ed transition band. This problem is not
strictly a quadratic programming problem and our exchange algorithm
has no proof of convergence (the HOS algorithm also has no proof of
convergence). However, in practice, this program has proven to be robust
and converges for a wide variety of lengths, constraints, weights, and band
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edges. The performance is completely independent of the normalizing
parameter K. Notice that the inversion of the R matrix is done once and
does not have to be done each iteration. The details of the program are
included in the �lter design paper and in the Matlab program at the end
of this book.

At mentioned earlier, this design problem might be addressed by gen-
eral constrained quadratic programming methods [109], [173], [266], [272],
[268], [270], [275], [376], [374], [389].

2.6.2.4 Examples and Observations on CLS Designs

Here we show that the CLS FIR �lter design approach is probably the best
general FIR �lter design method. For example, a length-31 linear phase
lowpass FIR �lter is designed for a band edge of 0.3 and the constraint
that the response in the stop cannot be greater than 0.03 is illustrated in
Figure 2.27.
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This �lter was designed using the Matlab command: '�rcls1()' func-
tion.

2.6.3 Approximation and the Iterative Reweighted

Least Squares Method

We now consider the general Lp approximation which contains the least
squares L2 and the Chebyshev L∞ cases. This approach is described in
[49], [51], [54] using the iterative reweighted least squared (IRLS) alorithm
and looks attractive in that it can use di�erent p in di�erent frequency
bands. This would allow, for example, a least squared error approximation
in the passband and a Chebyshev approximation in the stopband. The
IRLS method can also be used for complex Chebyshev approximations
[359] and constrained L2 approximatin.

2.6.3.1 Iterative Reweighted Least Squares Filter Design Meth-
ods

There are cases where it is desirable to design an FIR �lter that will
minimize the Lp error norm. The error is de�ned by

q =
∫

Ω

|A (ω)−Ad (ω) |p dω (2.206)

but we usually work with Q2. For large p, the results are essentially the
same as the Chebyshev �lter and this gives a continuum of design between
L2 and L∞. It also allows the very interesting important possibility of
allowing p (ω) to be a function of frequency. This means one could have
di�erent error criteria in di�erent frequency bands. It can be modi�ed to
give the same e�ects as a constraint. This approach is discussed in [54].
It can be applied to complex approximation and to two-dimensional �lter
design [49], [26].

The least squared error and the minimum Chebyshev error criteria
are the two most commonly used linear-phase FIR �lter design methods
[250]. There are many situations where better total performance would be
obtained with a mixture of these two error measures or some compromise
design that would give a trade-o� between the two. We show how to
design a �lter with an L2 approximation in the passband and a Chebyshev
approximation in the stopband. We also show that by formulating the Lp
problem we can solve the constrained L2 approximation problem [5].

This section �rst explores the minimization of the pth power of the
error as a general approximation method and then shows how this allows
L2 and L∞ approximations to be used simultaneous in di�erent frequency
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bands of one �lter and how the method can be used to impose constraints
on the frequency response. There are no analytical methods to �nd this
approximation, therefore, an iterative method is used over samples of the
error in the frequency domain. The methods developed here [49], [51]
are based on what is called an iterative reweighted least squared
(IRLS) error algorithm [303], [300], [68] and they can solve certain FIR
�lter design problems that neither the Remez exchange algorithm nor
analytical L2 methods can.

The idea of using an IRLS algorithm to achieve a Chebyshev or L∞
approximation seems to have been �rst developed by Lawson [174] and
extended to Lp by Rice and Usow [298], [297]. The basic IRLS method
for Lp was given by Karlovitz [159] and extended by Chalmers, et. al.
[70], Bani and Chalmers [21], and Watson [384]. Independently, Fletcher,
Grant and Hebden [114] developed a similar form of IRLS but based on
Newton's method and Kahng [157] did likewise as an extension of Law-
son's algorithm. Others analyzed and extended this work [106], [205],
[68], [384]. Special analysis has been made for 1 ≤ p < 2 by [365], [383],
[300], [180], [205], [303], [392] and for p = ∞ by [114], [21], [300], [194],
[15], [183]. Relations to the Remez exchange algorithm [76], [278] were
suggested by [21], to homotopy [331] by [342], and to Karmarkar's linear
programming algorithm [346] by [300], [340]. Applications of Lawson's
algorithm to complex Chebyshev approximation in FIR �lter design have
been made in [112], [78], [97], [359] and to 2-D �lter design in [77]. Ref-
erence [361] indicates further results may be forthcoming. Application to
array design can be found in [362] and to statistics in [68].

This paper uni�es and extends the IRLS techniques and applies them
to the design of FIR digital �lters. It develops a framework that relates all
of the above referenced work and shows them to be variations of a basic
IRLS method modi�ed so as to control convergence. In particular, we
generalize the work of Rice and Usow on Lawson's algorithm and explain
why its asymptotic convergence is slow.

The main contribution here is a new robust IRLS method [49], [51]
that combines an improved convergence acceleration scheme and a New-
ton based method. This gives a very e�cient and versatile �lter design
algorithm that performs signi�cantly better than the Rice-Usow-Lawson
algorithm or any of the other IRLS schemes. Both the initial and asymp-
totic convergence behavior of the new algorithm is examined and the rea-
son for occasional slow convergence of this and all other IRLS methods is
discovered.

We then show that the new IRLS method allows the use of p as a
function of frequency to achieve di�erent error criteria in the pass and
stopbands of a �lter. Therefore, this algorithm can be applied to solve
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the constrained Lp approximation problem. Initial results of applications
to the complex and two-dimensional �lter design problem are presented.

Although the traditional IRLS methods were sometimes slower than
competing approaches, the results of this paper and the availability of fast
modern desktop computers make them practical now and allow exploita-
tion of their greater �exibility and generality.

2.6.3.1.1 Minimum Squared Error Approximations

Various approximation methods can be developed by considering di�erent
de�nitions of norm or error measure. Commonly used de�nitions are L1,
L2, and Chebyshev or L∞. Using the L2 norm, gives the scalar error to
minimize

q =
L−1∑
k=0

|A (ωk)−Ad (ωk) |2 (2.207)

or in matrix notation using (2.207), the error or residual vector is de�ned
by

q = Ca−Ad (2.208)

giving the scalar error of (2.207) as

q = εTε. (2.209)

This can be minimized by solution of the normal equations [176], [123],
[346]

CT Ca = CT Ad. (2.210)

The weighted squared error de�ned by

q =
L−1∑
k=0

w2
k |A (ωk)−Ad (ωk) |2. (2.211)

or, in matrix notation using (2.208) and (2.209) causes (2.211) to become

q = εT WT W ε (2.212)

which can be minimized by solving

WCa = WAd (2.213)
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with the normal equations

CT WT WCa = CT WT WAd (2.214)

where W is an L by L diagonal matrix with the weights wk from (2.211)
along the diagonal. A more general formulation of the approximation
simply requires WTW to be positive de�nite. Some authors de�ne the
weighted error in (2.211) using wk rather than w2

k. We use the latter to
be consistent with the least squared error algorithms in Matlab [219].

Solving (2.214) is a direct method of designing an FIR �lter using a
weighted least squared error approximation. To minimize the sum of the
squared error and get approximately the same result as minimizing the
integral of the squared error, one must choose L to be 3 to 10 or more
times the length L of the �lter being designed.

2.6.3.1.2 Iterative Algorithms to Minimize the Error

There is no simple direct method for �nding the optimal approximation
for any error power other than two. However, if the weighting coe�cients
wk as elements of W in (2.214) could be set equal to the elements in
|A−Ad|, minimizing (2.211) would minimize the fourth power of |A−Ad|.
This cannot be done in one step because we need the solution to �nd the
weights! We can, however, pose an iterative algorithm which will �rst
solve the problem in (2.210) with no weights, then calculate the error
vector ε from (2.208) which will then be used to calculate the weights in
(2.214). At each stage of the iteration, the weights are updated from the
previous error and the problem solved again. This process of successive
approximations is called the iterative reweighted least squared error
algorithm (IRLS).

The basic IRLS equations can also be derived by simply taking the
gradient of the p-error with respect to the �lter coe�cients h or a and
setting it equal to zero [114], [157]. These equations form the basis for
the iterative algorithm.

If the algorithm is a contraction mapping [190], the successive approx-
imations will converge and the limit is the solution of the minimum L4

approximation problem. If a general problem can be posed [302], [119],
[238] as the solution of an equation in the form

x = f (x) , (2.215)

a successive approximation algorithm can be proposed which iteratively
calculates x using

xm+1 = f (xm) (2.216)
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starting with some x0. The function f (·) maps xm into xm+1 and, if
limm→∞xm = x0 where x0 = f (x0), x0 is the �xed point of the

mapping and a solution to (2.215). The trick is to �nd a mapping that
solves the desired problem, converges, and converges fast.

By setting the weights in (2.211) equal to

w (k) = |A (ωk)−Ad (ωk) |(p−2)/2, (2.217)

the �xed point of a convergent algorithm minimizes

q =
L−1∑
k=0

|A (ωk)−Ad (ωk) |p. (2.218)

It has been shown [298] that weights always exist such that minimizing
(2.211) also minimizes (2.218). The problem is to �nd those weights
e�ciently.

2.6.3.1.3 Basic Iterative Reweighted Least Squares

The basic IRLS algorithm is started by initializing the weight matrix
de�ned in (2.211) and (2.212) for unit weights with W0 = I. Using these
weights to start, the mth iteration solves (2.214) for the �lter coe�cients
with

am =
[
CTWT

mWmC
]−1

CTWT
mWmAd (2.219)

This is a formal statement of the operation. In practice one should not
invert a matrix, one should use a sophisticated numerical method [100] to
solve the overdetermined equations in (2.207) The error or residual vector
(2.208) for the mth iteration is found by

εm = Cam −Ad (2.220)

A new weighting vector is created from this error vector using (2.217) by

wm+1 = |εm|(p−2)/2
(2.221)

whose elements are the diagonal elements of the new weight matrix

Wm+1 = diag [wm+1] . (2.222)

Using this weight matrix, we solve for the next vector of �lter coe�cients
by going back to (2.219) and this de�nes the basic iterative process of the
IRLS algorithm.
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It can easily be shown that the a that minimizes (2.218) is a �xed point
of this iterative map. Unfortunately, applied directly, this basic IRLS
algorithm does not converge and/or it has numerical problems for most
practical cases [68]. There are three aspects that must be addressed. First,
the IRLS algorithm must theoretically converge. Second, the solution
of (2.219) must be numerically stable. Finally, even if the algorithm
converges and is numerically stable, it must converge fast enough to be
practical.

Both theory and experience indicate there are di�erent convergence
problems connected with several di�erent ranges and values of p. In the
range 2 ≤ p < 3, virtually all methods converge [114], [68], [205]. In
the range 3 ≤ p < ∞, the algorithm diverges and the various methods
discussed in this paper must be used. As p becomes large compared to 2,
the weights carry a larger contribution to the total minimization than the
underlying least squared error minimization, the improvement at each it-
eration becomes smaller, and the likelihood of divergence becomes larger.
For p = ∞ we can use to advantage the fact that the optimal approxi-
mation solution to (2.218) is unique but the weights in (2.211) that give
that solution are not. In other words, di�erent matrices W give the same
solution to (2.219) but will have di�erent convergence properties. This
allows certain alteration to the weights to improve convergence without
harming the optimality of the results [183]. In the range 1 < p < 2, both
convergence and numerical problems exist as, in contrast to p > 2, the
IRLS iterations are undoing what the underlying least squares is doing.
In particular, the weights near frequencies with small errors become very
large. Indeed, if the error happens to be zero, the weight becomes in�nite
because of the negative exponent in (2.221). For p = 1 the solution to the
optimization problem is not even unique. The various algorithms that are
presented below are based on schemes to address these problems.

2.6.3.2 The Karlovitz Method

In order to achieve convergence, a second order update is used which
only partially changes the �lter coe�cients am in (2.219) each iteration.
This is done by �rst calculating the unweighted L2 approximation �lter
coe�cients using as

a0 =
[
CT C

]−1
CT Ad. (2.223)

The error or residual vector for the mth iteration is found as by

εm = C am −Ad (2.224)
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and the new weighting vector is created from this error vector using
(2.217) by

wm+1 = |εm|(p−2)/2
(2.225)

whose elements are the diagonal elements of the new weight matrix

Wm+1 = diag [wm+1] . (2.226)

This weight matrix is then used to calculate a temporary �lter coe�cient
vector by

^
am+1 =

[
CTWT

m+1Wm+1C
]−1

CTWT
m+1Wm+1Ad. (2.227)

The vector of �lter coe�cients that is actually used is only partially
updated using a form of adjustable step size in the following second order
linearly weighted sum

am+1 = λ
^
am+1 + (1− λ) am (2.228)

Using this �lter coe�cient vector, we solve for the next error vector by
going back to (2.224) and this de�nes Karlovitz's IRLS algorithm [159].

In this algorithm, λ is a convergence parameter that takes values 0 <
λ ≤ 1. Karlovitz showed that for the proper λ, the IRLS algorithm using
(2.227) always converges to the globally optimal Lp approximation for p
an even integer in the range 4 ≤ p <∞. At each iteration the Lp error has
to be minimized over λ which requires a line search. In other words, the
full Karlovitz method requires a multi-dimensional weighted least squares
minimization and a one-dimensional pth power error minimization at each
iteration. Extensions of Karlovitz's work [384] show the one-dimensional
minimization is not necessary but practice shows the number of required
iterations increases considerably and robustness in lost.

Fletcher et al. [114] and later Kahng [157] independently derive the
same second order iterative algorithm by applying Newton's method.
That approach gives a formula for λ as a function of p and is discussed
later in this paper. Although the iteration count for convergence of the
Karlovitz method is good, indeed, perhaps the best of all, the minimiza-
tion of λ at each iteration causes the algorithm to be very slow in execu-
tion.

2.6.3.3 Newton's Methods

Both the new method in section 4.3 and Lawson's method use a second
order updating of the weights to obtain convergence of the basic IRLS
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algorithm. Fletcher et al. [114] and Kahng [157] use a linear summation
for the updating similar in form to (2.228) but apply it to the �lter co-
e�cients in the manner of Karlovitz rather than the weights as Lawson
did. Indeed, using our development of Karlovitz's method in , we see that
Kahng's method and Fletcher, Grant, and Hebden's method are simply
a particular choice of λ as a function of p in Karlovitz's method. They
derive

λ =
1

p− 1
(2.229)

by using Newton's method to minimize ε in (2.218) to give for (2.228)

am =
(
^
am + (p− 2) am−1

)
/ (p− 1) . (2.230)

This de�nes Kahng's method which he says always converges [238]. He
also notes that the summation methods in section 4.2, 4.3 and 4.5 do
not have the possible restarting problem that Lawson's method theoreti-
cally does. Because Kahng's algorithm is a form of Newton's method, its
asymptotic convergence is very good but the initial convergence is poor
and very sensitive to starting values.

2.6.3.3.1 A New Robust IRLS Method

A modi�cation and generalization of an acceleration method suggested
independently by Ekblom [106] and by Kahng [157] is developed here and
combined with the Newton's method of Fletcher, Grant, and Hebden and
of Kahng to give a robust, fast, and accurate IRLS algorithm [49], [51].
It overcomes the poor initial performance of the Newton's methods and
the poor �nal performance of the RUL algorithms.

Rather than starting the iterations of the IRLS algorithms with the
actual desired value of p, after the initial L2 approximation, the new
algorithm starts with p = K ∗ 2 where K is a parameter between one
and approximately two, chosen for the particular problem speci�cations.
After the �rst iteration, the value of p is increased to p = K2 ∗ 2. It is
increased by a factor of K at each iteration until it reaches the actual
desired value. This keeps the value of p being approximated just ahead
of the value achieved. This is similar to a homotopy where we vary the
value of p from 2 to its �nal value. A small value of K gives very reliable
convergence because the approximation is achieved at each iteration but
requires a large number of iterations for p to reach its �nal value. A large
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value of K gives faster convergence for most �lter speci�cations but fails
for some. The rule that is used to choose pm at the mth iteration is

pm = min (p,K pm−1) . (2.231)

Each iteration of our new variable p method is implemented by the basic
algorithm described as Karlovitz's method but using the Newton's method
based value of λ from Fletcher or Kahng in (2.229). Both Ekblom and
Kahng only used K = 2 which is too large in almost all cases.

We also tried the generalized acceleration scheme with the basic
Karlovitz method and the RUL algorithm. Although it improved the ini-
tial performance of the Karlovitz method, the slowness of each iteration
still made this method unattractive. Use with the RUL algorithm gave
only a minor improvement of initial performance and no improvement of
the poor �nal convergence.

Our new algorithm uses three distinct concepts:

• The basic IRLS which is a straight forward algorithm with linear
convergence [68] when it converges.

• The second order or Newton's modi�cation which increases the num-
ber of cases where initial convergence occurs and gives quadratic
asymptotic convergence [114], [157].

• The controlled increasing of p from one iteration to the next is a
modi�cation which gives excellent initial convergence and allows
adaptation for �di�cult" cases.

The best total algorithm, therefore, combines the increasing of p given in
(2.231) the updating the �lter coe�cients using (2.228), and the Newton's
choice of λ in (2.229). By slowly increasing p, the error surface slowly
changes from the parabolic shape of L2 which Newton's method is based
on, to the more complicated surface of Lp. The question is how fast to
change and, from experience with many examples, we have learned that
this depends on the �lter design speci�cations.

A Matlab program that implements this basic IRLS algorithm is given
in the appendix of this paper. It uses an updating of A (ωk) in the fre-
quency domain rather than of a (n) in the time domain to allow modi�ca-
tions necessary for using di�erent p in di�erent bands as will be developed
later in this paper.

An example design for a length L = 31, passband edge fp = 0.4,
stopband edge fs = 0.44, and p = 2 the program does not have to iterate
and give the response in Figure 2.28.
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Figure 2.28: Response of an Iterative Reweighted Least Squares
Design with p = 2

For the same speci�cations except p = 4 we get Figure 2.29
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Figure 2.29: Response of an IRLS Design with p = 4

and for p = 100 we get Figure 2.30
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Figure 2.30: Response of an IRLS Design with p = 100

2.6.3.3.2 Di�erent Error Criteria in Di�erent Bands

Probably the most important use of the Lp approximation problem posed
here is its use for designing �lters with di�erent error criteria in di�erent
frequency bands. This is possible because the IRLS algorithm allows an
error power that is a function of frequency p (ω) which can allow an L2

measure in the passband and a Chebyshev error measure in the stopband
or any other form. This is important if an L2 approximation is needed
in the passband because Parseval's theorem shows that the time domain
properties of the �ltered signal will be well preserved but, because of
unknown properties of the noise or interference, the stopband attenuation
must be less than some speci�ed valued.

The new algorithm described in "A New Robust IRLS Method" (Sec-
tion 2.6.3.3.1: A New Robust IRLS Method) was modi�ed so that the
iterative updating is done to A (ω) rather than to a (n). Because the
Fourier transform is linear, the updating of (2.228) can also be achieved
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by

Am+1 (ω) = λ
^
Am+1 (ω) + (1− λ)Am (ω) . (2.232)

The Matlab program listed in the appendix uses this form. This type
of updating in the frequency domain allows di�erent p to be used in
di�erent bands of A (ω) and di�erent update parameters λ to be used
in the appropriate bands. In addition, it allows a di�erent constant K
weighting to be used for the di�erent bands. The error for this problem
is changed from (2.207) to be

q =
k0∑
k=0

|A (ωk)−Ad (ωk) |2 +K

L−1∑
k=k0+1

|A (ωk)−Ad (ωk) |p (2.233)

Figure 2.31 shows the frequency response of a �lter designed with a
passband p = 2, a stopband p = 4, and a stopband weight of K = 1.
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Figure 2.31: Response of an IRLS Design with p = 2 in the
Stopband and p = 4 in the Stopband



174
CHAPTER 2. FINITE IMPULSE RESPONSE

DIGITAL FILTERS AND THEIR DESIGN

Figure 2.32 gives the frequency response for the same speci�cations but
with p = 100 and Figure 2.33 adds a constant weight to the stopband.
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Figure 2.32: Response of an IRLS Design with p = 2 in the
Stopband and p = 100 in the Stopband
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Figure 2.33: Response of an IRLS Design with p = 2 in the
Stopband and p = 100 plus a weight in the Stopband

2.6.3.3.3 The Constrained Approximation

In some design situations, neither a pure L2 nor a L∞ or Chebyshev
approximation is appropriate. If one evaluates both the squared error
and the Chebyshev error of a particular �lter, it is easily seen that for an
optimal least squares solution, a considerable reduction of the Chebyshev
error can be obtained by allowing a small increase in the squared error.
For the optimal Chebyshev solution the opposite is true. A considerable
reduction of the squared error can be obtained by allowing a small increase
in the Chebyshev error. This suggests a better �lter might be obtained by
some combination of L2 and L∞ approximation. This problem is stated
and addressed by Adams [5] and by Lang [168], [170].

We have applied the IRLS method to the constrained least squares
problem by adding an error based weighting function to unity in the
stopband only in the frequency range where the response in the previous
iteration exceeds the constraint. The frequency response of an example
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is the that was illustrated in as obtained using the CLS algorithm. The
IRLS approach to this problem is currently being evaluated and compared
to the approach used by Adams. The initial results are encouraging.

2.6.3.3.4 Application to the Complex Approximation and the
2D Filter Design Problem

Although described above in terms of a one dimensional linear phase FIR
�lter, the method can just as easily be applied to the complex approxima-
tion problem and to the multidimensional �lter design problem. We have
obtained encouraging initial results from applications of our new IRLS
algorithm to the optimal design of FIR �lters with a nonlinear phase re-
sponse. By using a large p we are able to design essentially Chebyshev
�lters where the Remez algorithm is di�cult to apply reliably.

Our new IRLS design algorithm was applied to the two examples con-
sidered by Chen and Parks [74] and by Schulist [305], [307] and Preuss
[282], [280]. One is a lowpass �lter and the other a bandpass �lter, both
approximating a constant group delay over their passbands. Examination
of magnitude frequency response plots, imaginary vs. real part plots, and
group delay frequency response plots for the �lters designed by the IRLS
method showed close agreement with published results [26]. The use of an
Lp approximation may give more desirable results than a true Chebyshev
approximation. Our results on the complex approximation problem are
preliminary and we are doing further investigations on convergence prop-
erties of the algorithm and on the characteristics of Lp approximations in
this context.

Application of the new IRLS method to the design of 2D FIR �lters
has also given encouraging results. Here again, it is di�cult to apply the
Remez exchange algorithm directly to the multi-dimensional approxima-
tion problem. Application of the IRLS to this problem is currently being
investigated.

We designed 5× 5, 7× 7, 9× 9, 41× 41, and 71× 71 �lters to speci�-
cations used in [185], [138], [77], [13]. Our preliminary observations from
these examples indicate the new IRLS method is faster and/or gives lower
Chebyshev errors than any of the other methods [27]. Values of K in the
1.1 to 1.2 range were required for convergence. As for the complex approx-
imation problem, further research is being done on convergence properties
of the algorithm and on the characteristics of Lp approximations in this
context.
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2.6.3.3.5 Section Conclusions

We have proposed applying the iterative reweighted least squared error
approach to the FIR digital �lter design problem. We have shown how
a large number of existing methods can be cast as variations on one ba-
sic successive approximation algorithm called Iterative Reweighted Least
Squares. From this formulation we were able to understand the conver-
gence characteristics of all of them and see why Lawson's method has
experimentally been found to have slow convergence.

We have created a new IRLS algorithm by combining an improved
acceleration scheme with Fletcher's and Kahng's Newton type methods
to give a very good design method with good initial and �nal convergence
properties. It is a signi�cant improvement over the Rice-Usow-Lawson
method.

The main contribution of the paper was showing how to use these
algorithms with di�erent p in di�erent frequency bands to give a �lter with
di�erent pass and stopband characteristics, how to solve the constrained
Lp problem, and how the approach is used in complex approximation and
in 2D �lter design.

2.6.4 Minimum Phase Design

Here we design optimal approximations that can be �lifted" to give a pos-
itive function that when viewed as a magnitude squared, can be factored
to give a minimum phase optimal design. However, the factoring can be
a problem for long �lters.

2.6.5 Window Function Design of FIR Filters

One should not use Hamming, Hanning, Blackman, or Bartlet windows
for the design of FIR �lters. They are appropriate for segmenting long
data strings into shorter blocks to minimize the e�ects of blocking, but
they do not design �lters with any control over the transition band and
do not design �lters that are optimal in any meaningful sense.

The Kaiser window does have the ability to control the transition band.
It also gives a fairly good approximation to a least squares approximation
modi�ed to reduce the Gibbs e�ect. However, the design is also not
optimal in any meaningful sense and does not allow individual control of
the widths of multiple transition bands. The spline transition function
method gives the same control as the Kaiser window but does have a
criterion of optimality and does allow independent control over individual
transition bands. No window method allows any separate weighting of
the error in di�erent bands.
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Chapter 3

In�nite Impulse Response

Digital Filters and Their

Design

3.1 Properties of IIR Filters1

Digital �lters with an In�nite-duration Impulse Response (IIR) have char-
acteristics that make them useful in many applications. This section de-
velops and discusses the properties and characteristics of these �lters[251].

Because of the feedback necessary in an implementation, the In�nite
Impulse Response (IIR) �lter is also called a recursive �lter or, some-
times, an autoregressive moving-average �lter (ARMA). In contrast to
the FIR �lter with a polynomial transfer function, the IIR �lter has a
rational transfer function. The transfer function being a ratio of polyno-
mials means it has �nite poles as well as zeros, and the frequency-domain
design problem becomes a rational-function approximation problem in
contrast to the polynomial approximation for the FIR �lter[295]. This
gives considerably more �exibility and power, but brings with it certain
problems in both design and implementation[251], [231], [213].

The de�ning relationship between the input and output variables for
the IIR �lter is given by

y (n) =
N∑
k=1

a (k) y (n− k) +
M∑
m=0

b (m)x (n−m) . (3.1)

1This content is available online at <http://cnx.org/content/m16898/1.1/>.
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The second summation in ((3.1)) is exactly the same moving average of
the present plus past M values of the input that occurs in the de�nition
of the FIR �lter. The di�erence arises from the �rst summation, which is
a weighted sum of the previous N output values. This is the feedback or
recursive part which causes the response to an impulse input theoretically
to endure forever. The calculation of each output term y(n) from ((3.1))
requires N + M + 1 multiplications and N + M additions. There are
other algorithms or structures for calculating y (n) that may require more
or less arithmetic.

In addition to the number of calculations required to calculate each
output term being a measure of e�ciency, the amount of storage for coe�-
cients and intermediate calculations is important. DSP chips are designed
to e�ciently implement calculations such as ((3.1)) by having a single cy-
cle operation that multiplies a variable by a constant and accumulates
it. In parallel with that operation, it is simultaneously calculating the
address of the next variable.

Just as in the case of the FIR �lter, the output of an IIR �lter can
also be calculated by convolution.

y (n) =
∞∑
k=0

h (k)x (n− k) (3.2)

In this case, the duration of the impulse response h (n) is in�nite and,
therefore, the number of terms in ((3.2)) is in�nite. The N + M + 1
operations required in ((3.1)) are clearly preferable to the in�nite number
required by ((3.2)). This gives a hint as to why the IIR �lter is very
e�cient. The details will become clear as the characteristics of the IIR
�lter are developed in this section.

3.1.1 Frequency-Domain Formulation of IIR Filters

The transfer function of a �lter is de�ned as the ratio Y (z) /X (z), where
Y (z) and X (z) are the z-transforms of the output y (n) and input x (n),
respectively. It is also the z-transform of the impulse response. Using the
de�nition of the z-transform in (), the transfer function of the IIR �lter
de�ned in ((3.1)) is

H (z) =
∞∑
n=0

h (n) z−n (3.3)

This transfer function is also the ratio of the z-transforms of the a (n)



181

and b (n) terms.

H (z) =
∑M
n=0 b (n) z−n∑N
n=0 a (n) z−n

=
B (z)
A (z)

(3.4)

The frequency response of the �lter is found by setting z = ejω, which
gives ((3.1)) the form

H (ω) =
∞∑
n=0

h (n) e−jωn (3.5)

It should be recalled that this form assumes a sampling rate of T = 1. To
simplify notation, H (ω) is used to denote the frequency response rather
than H

(
ejω ).

This frequency-response function is complex-valued and consists of a
magnitude and phase. Even though the impulse response is a function
of the discrete variable n, the frequency response is a function of the
continuous-frequency variable ω and is periodic with period 2π.

Unlike the FIR �lter case, exactly linear phase is impossible for the
IIR �lter. It has been shown that linear phase is equivalent to symmetry
of the impulse response. This is clearly impossible for the IIR �lter with
an impulse response that is zero for n < 0 and nonzero for n going to
in�nity.

The FIR linear-phase �lter allowed removing the phase from the design
process. The resulting problem was a real-valued approximation problem
requiring the solution of linear equations. The IIR �lter design problem
is more complicated. Linear phase is not possible, and the equations
to be solved are generally nonlinear. The most common technique is to
approximate the magnitude of the transfer function and let the phase
take care of itself. If the phase is important, it becomes part of the
approximation problem, which then is often di�cult to solve.

3.1.2 Calculation of the IIR Filter Frequency Response

As shown in another module, L equally spaced samples of H (ω) can
be approximately calculated by taking an L-length DFT of h (n) given
in ((3.5)). However, unlike for the FIR �lter, this requires that the in-
�nitely long impulse response be truncated to at least length-L. A more
satisfactory alternative is to use the DFT to evaluate the numerator and
denominator of ((3.4)) separately rather than to approximately evaluate
((3.5)). This is accomplished by appending L−N zeros to the a (n) and
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L−M zeros to the b (n) from ((3.1)), and taking length-L DFTs of both
to give

H (2πk/L) =
DFT {b (n)}
DFT {a (n)}

(3.6)

where the division is a term-wise division of each of the L values of
the DFTs as a function of k. This direct method of calculation is a
straightforward and �exible technique that does not involve truncation of
h (n) and the resulting error. Even nonuniform spacing of the frequency
samples can be achieved by altering the DFT as was suggested for the
FIR �lter. Because IIR �lters are generally lower in order than FIR
�lters, direct use of the DFT is usually e�cient enough and use of the
FFT is not necessary. Since the a (n) and b (n) do not generally have
the symmetries of the FIR h (n), the DFTs cannot be made real and,
therefore, the shifting and stretching techniques of other modules are not
applicable.

As an example, the frequency-response plot of a third-order elliptic-
function lowpass �lter with a transfer function of

H (z) =
0.1335z3 + 0.056z2 + 0.056z + 0.1335
z3 − 1.507z2 + 1.2646z − 0.3786

(3.7)

is given in Figure 3.1a. The details for designing this �lter are discussed
in elsewhere. A similar performance for the magnitude response would
require a length of 18 for a linear-phase FIR �lter.
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Third-Order IIR Filter
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3.1.3 Pole-Zero Locations for IIR Filters

The possible locations of the zeros of the transfer function of an FIR
linear-phase �lter were analyzed elsewhere. For the IIR �lter, there are
poles as well as zeros. For most applications, the coe�cients a (n) and
b (n) are real and, therefore, the poles and zeros occur in complex con-
jugate pairs or are real. A �lter is stable if for any bounded input, the
output is bounded. This implies the poles of the transfer function must
be strictly inside the unit circle of the complex z plane. Indeed, the pos-
sibility of an unstable �lter is a serious problem in IIR �lter design, which
does not exist for FIR �lters. An important characteristic of any design
procedure is the guarantee of stable designs, and an important ability in
the analysis of a given �lter is the determination of stability. For a linear
�lter analysis, this involves the zeros of the denominator polynomial of
((3.4)). The location of the zeros of the numerator, which are the zeros of
H (z), are important to the performance of the �lter, but have no e�ect
on stability.

If both the poles and zeros of a transfer function are all inside or on
the unit circle of the z-plane, the �lter is called minimum phase. The
e�ects of a pole or zero at a radius of r from the origin of the z-plane
on the magnitude of the transfer function are exactly the same as one
at the same angle but at a radius of 1/r. However, the e�ect on the
phase characteristics is di�erent. Since only stable �lters are generally
used in practice, all the poles must be inside the unit circle. For a given
magnitude response, there are two possible locations for each zero that is
not on the unit circle. The location that is inside gives the least phase
shift, hence the name �minimum- phase" �lter.

The locations of the poles and zeros of the example in ((3.7)) are given
in Figure 3.1b.

Since evaluating the frequency response of a transfer function is the
same as evaluating H (z) around the unit circle in the z-plane, a com-
parison of the frequency-response plot in Figure 3.1a and the pole-zero
locations in Figure 3.1b gives insight into the e�ects of pole and zero loca-
tion on the frequency response. In the case where it is desirable to reject
certain bands of frequencies, zeros of the transfer function will be located
on the unit circle at locations corresponding to those frequencies.

By having both poles and zeros to describe an IIR �lter, much more
can be done than in the FIR �lter case where only zeros exist. Indeed,
an FIR �lter is a special case of an IIR �lter with a zero-order denomi-
nator. This generality and �exibility does not come without a price. The
poles are more di�cult to realize than the zeros, and the design is more
complicated.
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3.1.4 Summary

This section has given the basic de�nition of the IIR or recursive digital
�lter and shown it to a generalization of the FIR �lter described in the
previous chapters. The feedback terms in the IIR �lter cause the trans-
fer function to be a rational function with poles as well as zeros. This
feedback and the resulting poles of the transfer function give a more ver-
satile �lter requiring fewer coe�cients to be stored and less arithmetic.
Unfortunately, it also destroys the possibility of linear phase and intro-
duces the possibility of instability and greater sensitivity to the e�ects of
quantization. The design methods, which are more complicated than for
the FIR �lter, are discussed in another section, and the implementation,
which also is more complicated, is discussed in still another section.

3.2 Design of In�nite Impulse Response (IIR)
Filters by Frequency Transformations2

The design of a digital �lter is usually speci�ed in terms of the charac-
teristics of the signals to be passed through the �lter. In many cases, the
signals are described in terms of their frequency content. For example,
even though it cannot be predicted just what a person may say, it can be
predicted that the speech will have frequency content between 300 and
4000 Hz. Therefore, a �lter can be designed to pass speech without know-
ing what the speech is. This is true of many signals and of many types of
noise or interference. For these reasons among others, speci�cations for
�lters are generally given in terms of the frequency response of the �lter.

The basic IIR �lter design process is similar to that for the FIR prob-
lem:

1. Choose a desired response, usually in the frequency domain;
2. Choose an allowed class of �lters, in this case, the Nth-order IIR

�lters;
3. Establish a measure of distance between the desired response and

the actual response of a member of the allowed class; and
4. Develop a method to �nd the best allowed �lter as measured by

being closest to the desired response.

This section develops several practical methods for IIR �lter design. A
very important set of methods is based on converting Butterworth, Cheby-
shev I and II, and elliptic-function analog �lter designs to digital �lter

2This content is available online at <http://cnx.org/content/m16909/1.2/>.
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designs by both the impulse- invariant method and the bilinear trans-
formation. The characteristics of these four approximations are based
on combinations of a Taylor's series and a Chebyshev approximation in
the pass and stopbands. Many results from this chapter can be used for
analog �lter design as well as for digital design.

Extensions of the frequency-sampling and least-squared-error design
for the FIR �lter are developed for the IIR �lter. Several direct itera-
tive numerical methods for optimal approximation are described in this
chapter. Prony's method and direct numerical methods are presented for
designing IIR �lters according to time-domain speci�cations.

The discussion of the four classical lowpass �lter design methods is
arranged so that each method has a section on properties and a section
on design procedures. There are also design programs in the appendix.
An experienced person can simply use the design programs. A less expe-
rienced designer should read the design procedure material, and a person
who wants to understand the theory in order to modify the programs,
develop new programs, or better understand the given ones, should study
the properties section and consult the references.

3.2.1 Rational Function Approximation

The mathematical problem inherent in the frequency-domain �lter design
problem is the approximation of a desired complex frequency-response
function Hd (z) by a rational transfer function H (z) with an Mth-degree
numerator and an Nth-degree denominator for values of the complex vari-
able z along the unit circle of z = ejω. This approximation is achieved by
minimizing an error measure between H (ω) and Hd (ω).

For the digital �lter design problem, the mathematics are complicated
by the approximation being de�ned on the unit circle. In terms of z,
frequency is a polar coordinate variable. It is often much easier and
clearer to formulate the problem such that frequency is a rectangular
coordinate variable, in the way it naturally occurs for analog �lters using
the Laplace complex variable s. A particular change of complex variable
that converts the polar coordinate variable to a rectangular coordinate
variable is the bilinear transformation[252], [288], [232], [214].

z = −s+ 1
s− 1

(3.8)

The details of the bilinear and alternative transformations are covered
elsewhere. For the purposes of this section, it is su�cient to observe[252],
[232] that the frequency response of a �lter in terms of the new variable
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is found by evaluating H (s) along the imaginary axis, i.e., for s = jω.
This is exactly how the frequency response of analog �lters is obtained.

There are two reasons that the approximation process is often formu-
lated in terms of the square of the magnitude of the transfer function,
rather than the real and/or imaginary parts of the complex transfer func-
tion or the magnitude of the transfer function. The �rst reason is that
the squared-magnitude frequency- response function is an analytic, real-
valued function of a real variable, and this considerably simpli�es the
problem of �nding a �best" solution. The second reason is that e�ects of
the signal or interference are often stated in terms of the energy or power
that is proportional to the square of the magnitude of the signal or noise.

In order to move back and forth between the transfer function F (s)
and the squared-magnitude frequency response |F (jω) |2, an intermediate
function is de�ned. The analytic complex-valued function of the complex
variable s is de�ned by

FF (s) = F (s)F (−s) (3.9)

which is related to the squared magnitude by

FF (s) |s=jω = |F (jω) |2 (3.10)

If

F (jω) = R (ω) + jI (ω) (3.11)

then

|F (jω) |2 = R(ω)2 + I(ω)2
(3.12)

= (R (ω) + jI (ω)) (R (ω)− jI (ω)) (3.13)

= F (s)F (−s) |s=jω (3.14)

In this context, the approximation is arrived at in terms of F (jω), and
the result is an analytic function FF (s) with a factor F (s), which is
the desired �lter transfer function in terms of the rectangular variable
s. A comparable function can be de�ned in terms of the digital transfer
function using the polar variable z by de�ning

HH (z) = H (z)H (1/z) (3.15)

which gives the magnitude-squared frequency response when evaluated
around the unit circle, i.e., z = ejω.
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The next section develops four useful approximations using the
continuous-time Laplace transform formulation in s. These will be trans-
formed into digital transfer functions by techniques covered in another
module. They can also be used directly for analog �lter design.

3.2.2 Classical Analog Lowpass Filter Approximations

Four basic �lter approximations are considered to be standard. They are
often developed and presented in terms of a normalized lowpass �lter that
can be modi�ed to give other versions such as highpass or bandpass �l-
ters. These four forms use Taylor's series approximations and Chebyshev
approximations in various combinations[288], [354], [126], [369]. It is in-
teresting to note that none of these are de�ned in terms of a mean-squared
error measure. Although it would be an interesting error criterion, the
reason is that there is no closed-form solution to the LS-error approxima-
tion problem which is nonlinear for the IIR �lter.

This section develops the four classical approximations in terms of the
Laplace transform variable s. They can be used as prototype �lters to be
converted into digital �lters or used directly for analog �lter design.

The desired lowpass �lter frequency response is similar to the case for
the FIR �lter. Here it is expressed in terms of the magnitude squared of
the transfer function, which is a function of s = jω and is illustrated in
Figures and .

The Butterworth �lter uses a Taylor's series approximation to the
ideal at both ω = 0 and ω =∞. The Chebyshev �lter uses a Chebyshev
(min-max) approximation across the passband and a Taylor's series at
ω =∞. The Inverse or Type-II Chebyshev �lter uses a Taylor's series ap-
proximation at ω = 0 and a Chebyshev across the stopband. The elliptic-
function �lter uses a Chebyshev approximation across both the pass and
stopbands. The squared- magnitude frequency response for these approx-
imations to the ideal is given in Figure 3.2, and the design is developed
in the following sections.
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Figure 3.2: Frequency Responses of the Four Classical Lowpass
IIR Filter Approximations

3.3 Butterworth Filter Properties3

This section develops the properties of the Butterworth �lter which has as
its basic concept a Taylor's series approximation to the desired frequency
response. The measure of the approximation is the number of terms in
the Taylor's series expansion of the actual frequency response that can be
made equal to those of the desired frequency response. The optimal or
best solution will have the maximum number of terms equal. The Taylor's
series is a power series expansion of a function in the form of

F (ω) = K0 +K1ω +K2ω
2 +K3ω

3 + · · · (3.16)

3This content is available online at <http://cnx.org/content/m16903/1.1/>.
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where

K0 = F (0) , K1 =
dF (ω)
dω

|ω=0, K2 = (1/2)
d2F (ω)
dω2

|
ω=0

, etc.,

(3.17)
with the coe�cients of the Taylor's series being proportional to the vari-
ous order derivatives of F (ω) evaluated at ω = 0. A basic characteristic of
this approach is that the approximation is all performed at one point, i.e.,
at one frequency. The ability of this approach to give good results over a
range of frequencies depends on the analytic properties of the response.

The general form for the squared-magnitude response is an even func-
tion of ω and, therefore, is a function of ω2 expressed as

FF (jω) =
d0 + d2ω

2 + d4ω
4 + ...+ d2Mω

2M

c0 + c2ω2 + c4ω4 + ...c2Nω2N
(3.18)

In order to obtain a solution that is a lowpass �lter, the Taylor's series
expansion is performed around ω = 0, requiring that FF (0) = 1 and that
FF (j∞) = 0, (i.e., d0 = c0, N > M , and c2N 6= 0). This is written as

FF (jω) = 1 + E (ω) (3.19)

Combining ((3.18)) and ((3.19)) gives

d0 + d2ω
2 + · · ·+ d2Mw = c0 + c2w+ · · ·+ c2Nω

2N +
E (ω) [c0 + c2ω + · · · ]

(3.20)

The best Taylor's approximation requires that FF (jω) and the de-
sired ideal response have as many terms as possible equal in their Taylor's
series expansion at a given frequency. For a lowpass �lter, the expansion
is around ω = 0, and this requires E (ω) have as few low-order ω terms
as possible. This is achieved by setting

c0 = d0, c2 = d2, · · · c2M = d2M , · · · c2M+2 =
0, c2N−2 = 0, c2N 6= 0

(3.21)

Because the ideal response in the passband is a constant, the Taylor's
series approximation is often called �maximally �at".

Equation ((3.21)) states that the numerator of the transfer function
may be chosen arbitrarily. Then by setting the denominator coe�cients
of FF(s) equal to the numerator coe�cients plus one higher-order term,
an optimal Taylor's series approximation is achieved [253].
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Since the numerator is arbitrary, its coe�cients can be chosen for a
Taylor's approximation to zero at ω =∞. This is accomplished by setting
d0 = 1 and all other d's equal zero. The resulting magnitude-squared
function is[253]

FF (jω) =
1

1 + c2Nω2N
(3.22)

The value of the constant c2N determines at which value of ω the transi-
tion of passband to stopband occurs. For this development, it is normal-
ized to c2N = 1, which causes the transition to occur at ω = 1. This gives
the simple form for what is called the Butterworth �lter

FF (jω) =
1

1 + ω2N
(3.23)

This approximation is sometimes called �maximally �at" at both ω = 0
and ω =∞, since it is simultaneously a Taylor's series approximation to
unity at ω = 0 and to zero at ω =∞. A graph of the resulting frequency
response function is shown in Figure 3.3 for several N .
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The characteristics of the normalized Butterworth �lter frequency re-
sponse are:

• Very close to the ideal near ω = 0 and ω =∞,
• Very smooth at all frequencies with a monotonic decrease from ω =

0 to ∞, and
• Largest di�erence between the ideal and actual responses near the

transition at ω = 1 where |F (j1) |2 = 1/2.

Although not part of the approximation addressed, the phase curve is also
very smooth.

An important feature of the Butterworth �lter is the closed- form
formula for the solution, F (s). From (), the expression for FF (s) may
be determined as

F (s)F (−s) =
1

1 + (−s2)N
(3.24)

This function has 2N poles evenly spaced around a unit radius circle and
2N zeros at in�nity. The determination of F (s) is very simple. In order
to have a stable �lter, F (s) is selected to have the N left-hand plane poles
and N zeros at in�nity; F (−s) will necessarily have the right-hand plane
poles and the other N zeros at in�nity. The location of these poles on the
complex s plane for N = 1, 2, 3, and 4 is shown in Figure 3.4.
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Because of the geometry of the pole positions, simple formulas are
easy to derive for the pole locations. If the real and imaginary parts of
the pole location are denoted as

s = u+ jw (3.25)

the locations of the N poles are given by

uk = −cos (kπ/2N) (3.26)

ωk = sin (kπ/2N) (3.27)

for N values of k where

k = ±1,±3,±5, ...,± (N − 1) for N even (3.28)

k = 0,±2,±4, ...,± (N − 1) for N odd (3.29)
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Because the coe�cients of the numerator and denominator polynomials of
F (s) are real, the roots occur in complex conjugate pairs. The conjugate
pairs in ((3.26),(3.27)) can be combined to be the roots of second-order
polynomials so that for N even, F (s) has the partially factored form of

F (s) =
∏
k

1
s2 + 2cos (kπ/2N) s+ 1

(3.30)

for k = 1, 3, 5, ..., N − 1. For N odd, F (s) has a single real pole and,
therefore, the form

F (s) =
1

s+ 1

∏
k

1
s2 + 2cos (kπ/2N) s+ 1

(3.31)

for k = 2, 4, 6, · · · , N − 1
This is a convenient form for the cascade and parallel realizations

discussed in elsewhere.
A single formula for the pole locations for both even and odd N is

uk = −sin ((2k + 1)π/2N) (3.32)

ωk = cos ((2k + 1)π/2N) (3.33)

for N values of k where k = 0, 1, 2, ..., N − 1
One of the important features of the Butterworth �lter design formulas

is that the pole locations are found by independent calculations which do
not depend on each other or on factoring a polynomial. A FORTRAN
program which calculates these values is given in the appendix as Program
8. Mathworks has a powerful command for designing analog and digital
Butterworth �lters.

The classical form of the Butterworth �lter given in ((3.23)) is dis-
cussed in many books [289], [233], [355], [370], [253]. The less well-known
form given in ((3.21)) also has many useful applications [253]. If the fre-
quency location of unwanted signals is known, the zeros of the transfer
function given by the numerator can be set to best reject them. It is then
possible to choose the pole locations so as to have a passband as �at as
the classical Butterworth �lter by using ((3.21)). Unfortunately, there are
no formulas for the pole locations; therefore, the denominator polynomial
must be factored.

Summary
This section has derived design procedures and formulas for a class

of �lter transfer functions that approximate the ideal desired frequency
response by a Taylor's series. If the approximation is made at ω = 0 and
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ω =∞, the resulting �lter is called a Butterworth �lter and the response
is called maximally-�at at zero and in�nity. This �lter has a very smooth
frequency response and, although not explicitly designed for, has a smooth
phase response. Simple formulas for the pole locations were derived and
are implemented in the design program in the appendix of this book.

3.3.1 Butterworth Filter Design Procedures

This section considers the process of going from given speci�cations to
use of the approximation results derived in the previous section. The
Butterworth �lter is the simplest of the four classical �lters in that all the
approximation e�ort is placed at two frequencies: ω = 0 and ω =∞. The
transition from passband to stopband occurs at a normalized frequency
of ω = 1. Assuming that this transition frequency or bandedge can later
be scaled to any desired frequency, the only parameter to be chosen in
the design process is the order N .

The �lter speci�cations that are consistent with what is optimized in
the Butterworth �lter are the degree of ��atness" at ω = 0 (DC) and
at ω = ∞. The higher the order, the �atter the frequency response at
these two points. Because of the analytic nature of rational functions,
the �atter the response is at ω = 0 and ω = ∞, the closer it stays to
the desired response throughout the whole passband and stopband. An
indirect consequence of the �lter order is the slope of the response at
the transition between pass and stopband. The slope of the squared-
magnitude frequency response at ω = 1 is

s = FF ' (j1) = −N/2 (3.34)

The e�ects of the increased �atness and increased transition slope of the
frequency response as N increases are illustrated in .

In some cases speci�cations state the response must stay above or
below a certain value over a given frequency band. Although this type
of speci�cation is more compatible with a Chebyshev error optimization,
it is possible to design a Butterworth �lter to meet the requirements. If
the magnitude of the frequency response of the �lter over the passband of
0 < ω < ωP must remain between unity and G, where ωp < 1 and G < 1,
the required order is found by the smallest integer N satisfying

N ≥
log
(

(1/G)2 − 1
)

1log (ωp)
(3.35)

This is illustrated in Figure 3.5 where |F | must remain above 0.9 for ω
up to 0.9, i.e., G = 0.9 and ωp = 0.9. These requirements require an order
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of at least N = 7.
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Figure 3.5: Passband Speci�cations for Designing a Butterworth
Filter

If stopband performance is stated in the form of requiring that the
response stay below a certain value for frequency above a certain value,
i.e., |F | < G for ω > ωs, the order is determined by the same formula
((3.35)) with ωp replaced by ωs.

Note |F (j1) | = 1/
√

(2) which is called the �half power" frequency

because |F (j1) |2 = 1/2. This frequency is normalized to one for the
theory but can be scaled to any value for applications.

Example. Design of a Butterworth Lowpass IIR Filter
To illustrate the calculations, a lowpass Butterworth �lter is designed.

It is desired that the frequency response stay above 0.8 for frequencies up
to 0.9. The formula ((3.35)) for determining the order gives a value of
2.73; therefore, the order is three. The analytic function corresponding
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to the squared-magnitude frequency response in ((3.24)) is

|F (jω) |2 =
1

1 + ω6
(3.36)

The transfer function corresponding to the left-half-plane poles of F'(s)
are calculated from ((3.26)) to give

F (s) =
1

(s+ 1) (s+ 0.5 + j0.866) (s+ 0.5− j0.866)
(3.37)

F (s) =
1

(s+ 1) (s2 + s+ 1)
(3.38)

F (s) =
1

s3 + 2s2 + 2s+ 1
(3.39)

The frequency response is obtained by setting s = jω which has a plot
illustrated in Figure 3.3 for N = 3. The pole locations are the same as
shown in Figure 3.4c.

3.4 Chebyshev Filter Properties4

3.4.1 Chebyshev Filter Properties

The Butterworth �lter does not give a su�ciently good approximation
across the complete passband in many cases. The Taylor's series approx-
imation is often not suited to the way speci�cations are given for �lters.
An alternate error measure is the maximum of the absolute value of the
di�erence between the actual �lter response and the ideal. This is consid-
ered over the total passband. This is the Chebyshev error measure and
was de�ned and applied to the FIR �lter design problem. For the IIR
�lter, the Chebyshev error is minimized over the passband and a Taylor's
series approximation at ω =∞ is used to determine the stopband perfor-
mance. This mixture of methods in the IIR case is called the Chebyshev
�lter, and simple design formulas result, just as for the Butterworth �lter.

The design of Chebyshev �lters is particularly interesting, because
the results of a very elegant theory insure that constructing a frequency-
response function with the proper form of equal ripple in the error will
result in a minimum Chebyshev error without explicitly minimizing any-
thing. This allows a straightforward set of design formulas to be derived
which can be viewed as a generalization of the Butterworth formulas [254],
[371].

4This content is available online at <http://cnx.org/content/m16906/1.1/>.
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The form for the magnitude squared of the frequency-response func-
tion for the Chebyshev �lter is

|F (jω) |2 =
1

1 + ε2CN (ω)2 (3.40)

where CN (ω) is an Nth-order Chebyshev polynomial and ε is a parameter
that controls the ripple size. This polynomial in ω has very special char-
acteristics that result in the optimality of the response function ((3.40)).

3.4.1.1 CHEBYSHEV POLYNOMIALS

The Chebyshev polynomial is a powerful function in approximation the-
ory. Although the function is a polynomial, it is best de�ned and devel-
oped in terms of trigonometric functions by[254], [290], [127], [371].

CN (ω) = cos
(
Ncos−1 (ω)

)
(3.41)

where CN (ω) is an Nth-order, real-valued function of the real variable ω.
The development is made clearer by introducing an intermediate complex
variable φ.

CN (ω) = cos (Nφ) (3.42)

where

ω = cos (φ) (3.43)

Although this de�nition of CN (ω) may not at �rst appear to result in a
polynomial, the following recursive relation derived from ((3.43)) shows
that it is a polynomial.

CN+1 (ω) = 2ωCN (ω)− CN−1 (ω) (3.44)

From ((3.41)), it is clear that C0 = 1 and C1 = ω, and from ((3.44)), it
follows that

C2 = 2ω2 − 1 (3.45)

C3 = 4ω3 − 3ω (3.46)

C4 = 8ω4 − 8ω2 + 1 (3.47)

etc.
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Other relations useful for developing these polynomials are

C2
N (ω) = (C2N (ω) + 1) /2 (3.48)

CMN (ω) = CM (CN (ω)) (3.49)

where M and N are coprime.
These are remarkable functions [371]. They oscillate between +1 and

-1 for −1 < ω < 1 and go monotonically to +/- in�nity outside that
domain. AllN of their zeros are real and fall in the domain of −1 < ω < 1,
i.e., CN is an equal ripple approximation to zero over the range of ω from
-1 to +1. In addition, the values for ω where CN reaches its local maxima
and minima and is zero are easily calculated from ((3.42)) and ((3.43)).
For −1 < ω < 1, a plot of CN (ω) can be made using the concept of
Lissajous �gures. Example plots for C0, C1, C2, C3, and C4 are shown in
Figure 3.6.
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The �lter frequency-response function for N = 5 is given in Figure 3.7
showing the passband ripple in terms of the parameter ε.
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Figure 3.7: Fifth Order Chebyshev Filter Frequency Response

The approximation parameters must be clearly understood. The pass-
band ripple is de�ned to be the di�erence between the maximum and the
minumum of |F | over the passband frequencies of 0 < ω < 1. There
can be confusion over this point as two de�nitions appear in the litera-
ture. Most digital [254], [290], [234], [215] and analog [371] �lter design
books use the de�nition just stated. Approximation literature, especially
concerning FIR �lters, use one half this value which is a measure of the
maximum error, ||F | − |Fd||, where |Fd| is the center line in the passband
of Figure 3.7, which |F | oscillates around.

The Chebyshev theory states that the maximum error over that band
is minimum and that this optimal approximation function has equal ripple
over the pass band. It is easy to see that e in ((3.40)) determines the ripple
in the passband and the order N determines the rate that the response
goes to zero as ω goes to in�nity.
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Pole Locations
A method for �nding the pole locations for the Chebyshev �lter trans-

fer function is next developed. The details of this section can be skipped
and the results in ((3.61),(3.63)) used if desired.

From ((3.40)), it is seen that the poles of FF (s) occur when

1 + ε2C2
N (s/j) = 0 (3.50)

or

CN = ±j
ε

(3.51)

From ((3.43)), de�ne φ = cos−1 (ω) with real and imaginary parts given
by

φ = cos−1 (ω) = u+ jv (3.52)

This gives,

CN = cos (Nφ) = cos (Nu) cosh (Nν) −
jsin (Nu) sinh (Nν) = ± j

ε

(3.53)

which implies the real part of CN is zero. This requires

cos (Nu) cosh (Nν) = 0 (3.54)

which implies

cos (Nu) = 0 (3.55)

which in turn implies that u takes on values of

u = uk = (2k + 1)π/2N, k = 0, 1, ...N − 1 (3.56)

For these values of u, sin (nu) = ±1, we have

sinh (Nν) = 1/ε (3.57)

which requires ν to take on a value of

ν = ν0 =
(
sinh−1 (1/ε)

)
/N (3.58)

Using s = jω gives

s = jω = jcos (φ) = jcos (u+ jν) = jcos ((2k + 1)π/2N + jν0) (3.59)
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which gives the location of the N poles in the s plane as

sk = σk + jωk (3.60)

where

σk = −sinh (ν0) cos (kπ/2N) (3.61)

ωk = cosh (ν0) sin (kπ/2N) (3.62)

for N values of k where

k = ±1,±3,±5, · · · ,± (N − 1) for N even (3.63)

k = 0,±2,±4, · · · ,± (N − 1) for N odd (3.64)

A partially factored form for F(s) can be derived using the same approach
as for the Butterworth �lter. For N even, the form is

F (s) =
∏
k

1
s2 − 2σks+ (σ2

k + ω2
k)

(3.65)

for k = 1, 3, 5, · · · , N − 1. For N odd, F (s) has a single real pole and,
therefore, the form

F (s) =
1

sinh (ν0)
F (s) =

∏
k

1
s2 − 2σks+ (σ2

k + ω2
k)

(3.66)

for k = 2, 4, 6, ..., N − 1 This is a convenient form for the cascade and
parallel realizations.

A single formula for both even and odd N is

σ = −sinh (ν0) sin ((2k + 1)π/2N) (3.67)

ωk = cosh (ν0) cos ((2k + 1)π/2N) (3.68)

for N values of k where k = 0, 1, 2, · · · , N − 1
Note the similarity to the pole locations for the Butterworth �lter.

Cross multiplying, squaring, and adding the terms in ((3.67),(3.68)) gives(
σk

sinh (ν0)

)2

+
(

ωk
cosh (ν0)

)2

= 1 (3.69)
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This is the equation for an ellipse and shows that the poles of a Chebyshev
�lter lie on an ellipse similar to the way the poles of a Butterworth �lter
lie on a circle[254], [290], [234], [356], [127], [371].

Summary
This section has developed the classical Chebyshev �lter approxima-

tion which minimizes the maximum error over the passband and uses a
Taylor's series approximation at in�nity. This results in the error being
equal ripple in the passband. The transfer function was developed in
terms of the Chebyshev polynomial and explicit formulas were derived
for the location of the transfer function poles. These can be expressed
as a modi�cation of the pole locations for the Butterworth �lter and are
implemented in the appendix.

It is possible to develop a theory for Chebyshev passband approxi-
mation and arbitrary zero location similar to the Taylor's series result in
().

3.4.1.2 Chebyshev Filter Design Procedures

The Chebyshev �lter has a passband optimized to minimize the maxi-
mum error over the complete passband frequency range, and a stopband
controlled by the frequency response being maximally �at at ω = ∞.
The passband ripple and the �lter order are the two parameters to be
determined by the speci�cations.

The form for the speci�cations that is most consistent with the Cheby-
shev �lter formulation is a maximum allowed error in the passband and
a desired degree of ��atness" at ω = ∞. The slope of the response near
the transition from pass to stopband at ω = 1 becomes steeper as both
the order increases and the allowed passband error ripple increases. The
dropo� is more rapid than for the Butterworth �lter[371].

As stated earlier, the design parameters must be clearly understood
to obtain a desired result. The passband ripple is de�ned to be the di�er-
ence between the maximum and the minimum of |F | over the passband
frequencies of 0 < ω < 1. There can be confusion over this point as two
de�nitions appear in the literature. Most digital [254], [290], [234] and
analog [371] �lter design books use the de�nition just stated. Approxima-
tion literature, especially concerning FIR �lters, use half this value which
is a measure of the maximum error, ||F | − |Fd||, where |Fd| is the center
line in the passband around which |F | oscillates. The following formulas
relate the passband ripple δ, the passband ripple a in positive dB, and
the transfer function parameter ε.

a = 10log
(
1 + ε2

)
= −20log (1− δ) , (3.70)
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ε =

√
2δ − δ2

1− 2δ + δ2
=
√

10a/10 − 1, (3.71)

δ = 1− 10−a/20 = 1− 1√
1 + ε2

(3.72)

In some cases, stopband performance is not given in terms of degree
of �atness at ω = ∞, but in terms of a maximum allowed magnitude
G in the stopband above a certain frequency ωs, i.e., G > |F | > 0 for
1 < ωs < ω < ∞. For a given ε, this will determine the order as the
smallest positive integer satisfying

N ≥
cosh−1

(√
1−G2

εG2

)
cosh−1 (ωs)

(3.73)

The design of a Chebyshev �lter involves the following steps:

• The maximum-allowed passband variation must be in the form of δ
or a. From this, the parameter ε is calculated using ((3.71)).

• The order N is determined by the desired �atness at ω = ∞ or a
maximum-allowed response for frequencies above ωs using ((3.73)).

• ν0 is calculated from ε and n using ((3.58)), and the scale factors
sinh (ν0) and cosh (ν0) are then determined.

• The pole locations are calculated from ((3.61)) or ((3.68)). This can
be done by scaling the poles of a Butterworth prototype �lter.

• These pole locations are combined in ((3.66)) and ((3.67)) to give
the �nal �lter transfer function.

This process is easily programmed for computer aided design as illustrated
in Program 8 in the appendix.

If the design procedure uses ((3.73)) to determine the order and the
right-hand side of the equation is not exactly an integer, it is possible to
improve on the speci�cations. Direct use of the order with ε from ((3.71))
gives a stopband gain at ωs that is less than G, or the same design can be
viewed as giving the maximum-allowed gain G at a lower frequency than
ωs. An alternate approach is to solve ((3.73)) for a new value of ε, then
cause ((3.73)) to be an equation with the speci�ed ωs and G. This gives
a �lter that exactly meets the stopband speci�cations and gives a smaller
passband ripple than originally requested. A similar set of alternatives
exists for the elliptic-function �lter.

Example 7-2. The Design of a Chebyshev Lowpass Filter.
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The design speci�cations require a maximum passband ripple of δ =
0.1 or a = 0.91515 dB, and can allow no greater response than G = 0.2
for frequencies above ωs = 1.6 radians per second.

Given δ = 0.1 or a = 0.91515, equation ((3.71)) implies

ε = 0.484322 (3.74)

Given G = 0.2 and ωs = 1.6, equation ((3.73)) implies an order of N = 3.
From ε and N , ν0 is 0.49074 from ((3.58)) and

sinh (ν0) = 0.510675 (3.75)

cosh (ν0) = 1.122849 (3.76)

These multipliers are used to scale the root locations of the example
third-order Butterworth �lter to give

F (s) =
1

(s+ 0.51067) (s+ 0.25534 + j0.97242) (s+ 0.25534− j0.97242)
(3.77)

F (s) =
1

(s+ 0.51067) (s2 + 0.510675s+ 1.010789)
(3.78)

F (s) =
1

s3 + 102135s2 + 1.271579s+ 0.516185
(3.79)

The frequency response is shown in Figure 3.8
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Figure 3.8: Example Design of a Third Order Chebyshev Filter
Frequency Response

3.4.2 Inverse-Chebyshev Filter Properties

A second form of the mixture of a Chebyshev approximation and a Tay-
lor's series approximation is called the Inverse Chebyshev �lter or the
Chebyshev II �lter. This error measure uses a Taylor's series for the
passband just as for the Butterworth �lter and minimizes the maximum
error over the total stopband. It reverses the types of approximation used
in the preceding section. A �fth-order example is illustrated in c and
Figure 3.9c.

Rather than developing the approximation directly, it is easier to mod-
ify the results from the regular Chebyshev �lter. First, the frequency vari-
able ω in the regular Chebyshev �lter, described in ((3.40)), is replaced by
1/ω, which interchanges the characteristics at ω equals zero and in�nity
and does not change the performance at ω equals unity. This converts a
Chebyshev lowpass �lter into a Chebyshev highpass �lter as illustrated in
Figure 3.9 moving from the �rst to second frequency response.
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This highpass characteristic is subtracted from unity to give the de-
sired lowpass inverse-Chebyshev frequency response illustrated in Fig-
ure 3.9c. The resulting magnitude-squared frequency- response function
is given by

FF (jω) =
ε2C2

N (1/ω)
1 + ε2C2

N (1/ω)
(3.80)

Zero Locations
The zeros of the Chebyshev polynomial CN (ω) are easily found by

CN (ω) = 0⇒ Ncos−1 (ω) = (2k + 1)π/2 (3.81)

which requires

ωk = cos ((2k + 1)π/2N) (3.82)

for k = 0, 1, · · ·N − 1, or

ωk = sin (kπ/2N) (3.83)

for k = 0,±2,±4, ...,± (N − 1) : N odd
k = ±1,±3,±5, ...,± (N − 1) : N even
The zeros of the inverse-Chebyshev �lter transfer function are derived

from ((3.80)) and ((3.82)) to give

ωzk = 1/ (cos ((2k + 1)π/2N)) (3.84)



207

The zero locations are not a function of ε, i.e., they are independent of
the stopband ripple.

Pole Locations
The pole locations are the reciprocal of those for the regular Chebyshev

�lter. If the poles for the inverse �lter are denoted by

s'k = σ'k + jω'
k (3.85)

the locations are

σ'k =
σk

σ2
k + ω2

k

(3.86)

ω'
k =

ωk
σ2
k + ω2

k

(3.87)

Although this gives a straightforward formula for calculating the location
of the poles and zeros of the inverse- Chebyshev �lter, they do not lie on
a simple geometric curve as did those for the Butterworth and Chebyshev
�lters. Note that the conditions for a Taylor's series approximation with
preset zero locations are satis�ed.

A partially factored form for the Butterworth �lter and for the Cheby-
shev �lter can be written for the inverse-Chebyshev �lter using the zero
locations from ((3.84)) and the pole locations from the regular Chebyshev
�lter. For N even, this becomes

F (s) =
∏
k

(
s2 + ω2

zk

)∏
k (s2 − 2 (σk/ (σ2

k + ω2
k)) s+ 1/ (σ2

k + ω2
k) (3.88)

for k = 1, 3, 5, · · · , N−1. For N odd, F(s) has a single pole, and therefore,
is of the form

F (s) =
∏
k

(
s2 + ω2

zk

)
(s+ 1/sinh (ν0))

∏
k (s2 − 2 (σk/ (σ2

k + ω2
k)) s+ 1/ (σ2

k + ω2
k) (3.89)

for k = 2, 4, 6, · · · , N − 1
Because of the relationships between the locations of the poles of the

Butterworth, Chebyshev, and inverse-Chebyshev �lters, it is easy to write
a design program with many common calculations. That is illustrated in
the program in the appendix.

3.4.2.1 Inverse-Chebyshev Filter Design Procedures

The natural form for the speci�cations of an inverse-Chebyshev �lter is in
terms of the �atness of the response at ω to determine the passband, and
a maximum allowable response in the stopband. The �lter order and the
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stopband ripple are the parameters to be determined by the speci�cations.
The rate of dropo� near the transition from pass to stopband is similar
to the regular Chebyshev �lter. Because practical speci�cations often
allow more passband ripple than stopband ripple, the regular Chebyshev
�lter will usually have a sharper dropo� than the inverse-Chebyshev �lter.
Under those conditions, the inverse-Chebyshev �lter will have a smoother
phase response and less time-domain echo e�ects.

The stopband ripple d is simply de�ned as the maximum value that
|F (jω) | assumes in the stopband, which is the set of frequencies 1 <
ω <∞. An alternative speci�cation is the minimum-allowed attenuation
over stopband expressed in dB as b. The following formulas relate the
stopband ripple δ, the stopband attenuation b in positive dB, and the
transfer function parameter ε in ((3.80))

ε =
δ√

1− δ2
(3.90)

δ =
ε√

1 + ε2
(3.91)

b = −10log
(
ε2/
(
1 + ε2

))
= −20log (d) (3.92)

In some cases passband performance is not given in terms of degree
of �atness at ω = 0, but in terms of a minimum-allowed magnitude G
in the passband up to a certain frequency ωp, i.e., 1 > |F | > G for
0 < ω < ωp < 1. For a given ε, this requirement will determine the order
as the smallest positive integer satisfying

N >
cosh−1

(
G/
(
ε
√

1−G2
))

cosh−1 (1/ωp)
(3.93)

The design of an inverse-Chebyshev �lter is summarized in the following
steps:

1. The maximum-allowed stopband response must be given in the form
of δ or b. From this, the parameter ε is calculated using ((3.90)).

2. The order N is determined from the desired �atness at ω = 0, or
from a minimum allowed response for frequencies up to ωp using
((3.93)).

3. ν0 and sinh (ν0) and cosh (ν0) are calculated just as for the regular
Chebyshev �lter.

4. The pole locations for the prototype Chebyshev �lter are calculated
from ((3.85)) and ((3.87)) and then "inverted" according to ((3.80))
to give the inverse- Chebyshev �lter pole locations.
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5. The pole locations are combined in ((3.80)) to give the �nal �lter
transfer function denominator.

6. The zero locations are calculated from ((3.84)) and combined with
the pole locations to give the total transfer function ((3.88)) or
((3.89)).

Example Design of an Inverse-Chebyshev Filter
A third-order inverse-Chebyshev lowpass �lter is desired with a

maximum-allowed stopband ripple of d = 0.1 or b = 20 dB. This cor-
responds to an ε of 0.100504 and, together with N = 3, results in a
ν0 = 0.99774. The scale factors are sinh = 1.171717 and cosh = 1.540429.
The prototype Chebyshev �lter transfer function is

F (s) =
1

(s+ 1.1717) (s2 + 1.1717s+ 2.0404)
(3.94)

The zeros are calculated from ((3.84)), and the poles of the prototype
are inverted to give, from ((3.89)), the desired inverse- Chebyshev �lter
transfer function of

F (s) =
s2 + 4/3

(s+ 0.85345) (s2 + 0.57425s+ 0.490095)
(3.95)

3.5 Elliptic-Function Filter Properties5

3.5.1 Elliptic-Function Filter Properties

In this section, a design procedure is developed that uses a Chebyshev
error criterion in both the passband and the stopband. This is the fourth
possible combination of Chebyshev and Taylor's series approximations
in the passband and stopband. The resulting �lter is called an elliptic-
function �lter, because elliptic functions are normally used to calculate
the pole and zero locations. It is also sometimes called a Cauer �lter or a
rational Chebyshev �lter, and it has equal ripple approximation error in
both pass and stopbands [255], [235], [216], [372].

The error criteria of the elliptic-function �lter are particularly well
suited to the way speci�cations for �lters are often given. For that rea-
son, use of the elliptic-function �lter design usually gives the lowest order
�lter of the four classical �lter design methods for a given set of speci�-
cations. Unfortunately, the design of this �lter is the most complicated

5This content is available online at <http://cnx.org/content/m16925/1.1/>.



210
CHAPTER 3. INFINITE IMPULSE

RESPONSE DIGITAL FILTERS AND THEIR
DESIGN

of the four. However, because of the e�ciency of this class of �lters, it
is worthwhile gaining some understanding of the mathematics behind the
design procedure.

This section sketches an outline of the theory of elliptic- function �l-
ter design. The details and properties of the elliptic functions themselves
should simply be accepted, and attention put on understanding the over-
all picture. A more complete development is available in [255], [128].
Straightforward design of elliptic-function �lters can be accomplished by
skipping this section and going directly to Program 8 in the appendix or
by using Matlab. However, it is important to understand the basics of
the underlying theory to use the packaged design programs intelligently.

Because both the passband and stopband approximations are over the
entire bands, a transition band between the two must be de�ned. Using
a normalized passband edge, the bands are de�ned by

0 < ω < 1 passband (3.96)

1 < ω < ωs transition band (3.97)

ωs < ω <∞ stopband (3.98)

This is illustrated in Figure .
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The characteristics of the elliptic function �lter are best described in
terms of the four parameters that specify the frequency response:

1. The maximum variation or ripple in the passband δ1,
2. The width of the transition band (ωs − 1),
3. The maximum response or ripple in the stopband δ2, and
4. The order of the �lter N .

The result of the design is that for any three of the parameters given, the
fourth is minimum. This is a very �exible and powerful description of a
�lter frequency response.

The form of the frequency-response function is a generalization of that
for the Chebyshev �lter

FF (jω) = |F (jω) |2 =
1

1 + ε2G2 (ω)
(3.99)
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where

FF (s) = F (s)F (−s) (3.100)

with F (s) being the prototype analog �lter transfer function similar to
that for the Chebyshev �lter. G (ω) is a rational function that approxi-
mates zero in the passband and in�nity in the stopband. The de�nition
of this function is a generalization of the de�nition of the Chebyshev
polynomial.

3.5.1.1 Elliptic Functions

In order to develop analytical expressions for equal-ripple rational func-
tions, an interesting class of transcendental functions, called the Jacobian
elliptic functions, is outlined. These functions can be viewed as a general-
ization of the normal trigonometric and hyperbolic functions. The elliptic
integral of the �rst kind [2] is de�ned as

u (φ, k) =
∫ φ

0

dy√
1− k2sin2 (y)

(3.101)

The trigonometric sine of the inverse of this function is de�ned as the
Jacobian elliptic sine of u with modulus k, and is denoted

sn (u, k) = sin (φ (u, k)) (3.102)

A special evaluation of ((3.101)) is known as the complete elliptic integral
K = u (π/2, k). It can be shown [2] that sn (u) and most of the other
elliptic functions are periodic with periods 4K if u is real. Because of
this, K is also called the �quarter period". A plot of sn (u, k) for several
values of the modulus k is shown in Figure 3.11.
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For k=0, sn (u, 0) = sin (u). As k approaches 1, the sn (u, k) looks like
a "fat" sine function. For k = 1, sn (u, 1) = tanh (u) and is not periodic
(period becomes in�nite).

The quarter period or complete elliptic integral K is a function of the
modulus k and is illustrated in Figure 3.12.
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For a modulus of zero, the quarter period is K = π/2 and it does not
increase much until k nears unity. It then increases rapidly and goes to
in�nity as k goes to unity.

Another parameter that is used is the complementary modulus k' de-
�ned by

k2 + k'2 = 1 (3.103)

where both k and k' are assumed real and between 0 and 1. The complete
elliptic integral of the complementary modulus is denoted K '.

In addition to the elliptic sine, other elliptic functions that are rather
obvious generalizations are

cn (u, k) = cos (φ (u, k)) (3.104)

sc (u, k) = tan (φ (u, k)) (3.105)
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cs (u, k) = ctn (φ (u, k)) (3.106)

nc (u, k) = sec (φ (u, k)) (3.107)

ns (u, k) = csc (φ (u, k)) (3.108)

There are six other elliptic functions that have no trigonometric coun-
terparts [2]. One that is needed is

dn (u, k) =
√

1− k2sn2 (u, k) (3.109)

Many interesting properties of the elliptic functions exist [2]. They obey
a large set of identities such as

sn2 (u, k) + cn2 (u, k) = 1 (3.110)

They have derivatives that are elliptic functions. For example,

d sn

du
= cn dn (3.111)

The elliptic functions are the solutions of a set of nonlinear di�erential
equations of the form

x'' + ax± bx3 = 0 (3.112)

Some of the most important properties for the elliptic functions are as
functions of a complex variable. For a purely imaginary argument

sn (jv, k) = jsc
(
v, k'

)
(3.113)

cn (jv, k) = nc
(
v, k'

)
(3.114)

This indicates that the elliptic functions, in contrast to the circular and
hyperbolic trigonometric functions, are periodic in both the real and the
imaginary part of the argument with periods related to K and K ', respec-
tively. They are the only class of functions that are �doubly periodic".

One particular value that the sn function takes on that is important
in creating a rational function is

sn
(
K + jK ', k

)
= 1/k (3.115)
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3.5.1.2 The Chebyshev Rational Function

The rational function G (ω) needed in ((3.99)) is sometimes called a
Chebyshev rational function because of its equal-ripple properties. It
can be de�ned in terms of two elliptic functions with moduli k and k1 by

G (ω) = sn
(
n sn−1 (ω, k) , k1

)
(3.116)

In terms of the intermediate complex variable φ, G (ω) and ω become

G (ω) = sn (nφ, k1) (3.117)

ω = sn (φ, k) (3.118)

It can be shown [128] that G (ω) is a real-valued rational function if
the parameters k, k1, and n take on special values. Note the similarity
of the de�nition of G (ω) to the de�nition of the Chebyshev polynomial
CN (ω). In this case, however, n is not necessarily an integer and is not
the order of the �lter. Requiring that G (ω) be a rational function requires
an alignment of the imaginary periods [128] of the two elliptic functions
in ((3.117),(3.118)). It also requires alignment of an integer multiple of
the real periods. The integer multiplier is denoted by N and is the order
of the resulting �lter [128]. These two requirements are stated by the
following very important relations:

nK ' = K '
1 alignment of imaginary periods (3.119)

nK = NK1 alignment of a multiple of the real periods (3.120)

which, on removing the parameter n, become

K1

K
N =

K '
1

K '
(3.121)

or

N =
KK '

1

K 'K1
(3.122)

These relationships are central to the design of elliptic- function �lters.
N is an odd integer which is the order of the �lter. For N = 5, the
resulting rational function is shown in Figure 3.13.
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This function is the basis of the approximation necessary for the op-
timal �lter frequency response. It approximates zero over the frequency
range −1 < ω < 1 by an equal-ripple oscillation between ±1. It also
approximates in�nity over the range 1/k < |ω| <∞ by a reciprocal oscil-
lation that keeps |F (ω) | > 1/k1. The zero approximation is normalized
in both the frequency range and the F (ω) values to unity. The in�nity
approximation has its frequency range set by the choice of the modulus
k, and the minimum value of |F (ω) | is set by the choice of the second
modulus k1.

If k and k1 are determined from the �lter speci�cations, they in turn
determine the complementary moduli k' and k'1, which altogether deter-
mine the four values of the complete elliptic integral K needed to deter-
mine the order N in ((3.122)). In general, this sequence of events will not
result in an integer. In practice, however, the next larger integer is used,
and either k or k1 (or perhaps both) is altered to satisfy ((3.122)).

In addition to the two-band equal-ripple characteristics, G (ω) has
another interesting and valuable property. The pole and zero locations
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have a reciprocal relationship that can be expressed by

G (ω)G (ωs/ω) = 1/k1 (3.123)

where

ωs = 1/k (3.124)

This states that if the zeros of G (ω) are located at ωzi, the poles are
located at

ωpi = 1/ (kωzi) (3.125)

If the zeros are known, the poles are known, and vice versa. A similar
relation exists between the points of zero derivatives in the 0 to 1 region
and those in the 1/k to in�nity region.

The zeros of G (ω) are found from ((3.117)) by requiring

G (ω) = sn [nφ, k1] = 0 (3.126)

which implies
nφ = 2K1i for i = 0, 1, ...
From (3.116), this gives
ωzi = sn [2K1i/n, k] , i = 0, 1, ...
This can be reformulated using ((3.120)) so that n and K1 are not

needed. For N odd, the zero locations are
ωzi = sn [2K1i/N, k] , i = 0, 1, ...
The pole locations are found from these zero locations using ((3.125)).

The locations of the zero-derivative points are given by

ωdi = sn [K (2i+ 1) /N, k] (3.127)

in the 0 to 1 region, and the corresponding points in the 1/k to in�nity
region are found from ((3.125)).

The above relations assume N to be an odd integer. A modi�cation
for N even is necessary. For proper alignment of the real periods, the
original de�nition of G (ω) is changed to

G (ω) = sn [φ+K1, k1] (3.128)

which gives for the zero locations with N even

ωzi = sn [(2i+ 1)K1/n, k] (3.129)
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The even and odd N cases can be combined to give

ωzi = ±sn (iK/N, k) (3.130)

for

i = 0, 2, 4, ..., N − 1 for N odd (3.131)

i = 1, 3, 5, ..., N − 1 for N even (3.132)

with the poles determined from ((3.125)).
Note that it is possible to determine G (ω) from k and N without ex-

plicitly using k1 or n. Values for k1 and n are implied by the requirements
of ((3.124)) or ((3.123)).

Zero Locations
The locations of the zeros of the �lter transfer function F (ω) are easily

found since they are the same as the poles of G (ω), given in ((3.130)).

ωzi =
±1

k sn (iK/N, k)
(3.133)

for

i = 0, 2, 4, ..., N − 1 N odd (3.134)

i = 1, 3, 5, ..., N − 1 N even (3.135)

These zeros are purely imaginary and lie on the ω axis.
Pole Locations
The pole locations are somewhat more complicated to �nd. An ap-

proach similar to that used for the Chebyshev �lter is used here. FF (s)
becomes in�nite when

1 + ε2G2 = 0 (3.136)

or

G = ±j (1/ε) (3.137)

Using ((3.117)) and the periodicity of sn (u,k) , this implies

G = sn (nφ+ 2K1i, k1) = ±j1/ε (3.138)

or

φ =
(
−2K1i+ sn−1 (j1/e, k1)

)
/n (3.139)
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De�ne ν0 to be the second term in ((3.139)) by

jν0 =
(
sn−1 (j1/e, k1)

)
/n (3.140)

which is similar to the equation for the Chebyshev case. Using properties
of sn of an imaginary variable and ((3.121)), ν0 becomes

ν0 = (K/NK1) sc−1
(
1/ε, k'

)
(3.141)

The poles are now found from ((3.117),(3.118)), ((3.139)), and ((3.141))
to be

spi = j sn (Ki/N + jν0, k) (3.142)

This equation can be more clearly written by using the summation for-
mula [2] for the elliptic sine function to give

spi =
cn dn sn' cn' + jsn dn'

1− dn2sn'2
(3.143)

where

sn = sn (Ki/N, k) , cn = cn (Ki/N, k) , dn =
dn (Ki/N, k)

(3.144)

sn' = sn
(
ν0, k

'
)
, cn' = cn

(
ν0, k

'
)
, dn' = dn

(
ν0, k

'
)

(3.145)

for

i = 0, 2, 4, .... N odd (3.146)

i = 1, 3, 5, .... N even (3.147)

The theory of Jacobian elliptic functions can be found in [2] and its
application to �lter design in [255], [128], [372]. The best techniques
for calculating the elliptic functions seem to use the arithmetic-geometric
mean; e�cient algorithms are presented in [37]. A design program is
given in [255] and a versitile FORTRAN program that is easily related to
the theory in this chapter is given as Program 8 in the appendix of this
book. Matlab has a powerful elliptic function �lter design command as
well as accurate algorithms for evaluating the Jacobian elliptic functions
and integrals.

An alternative to the use of elliptic functions for �nding the transfer
function F (s) pole locations is to obtain the zeros from ((3.133)), then �nd
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G (ω) using the reciprocal relation of the poles and zeros ((3.125)). F (s)
is constructed from G (ω) and ε from ((3.99)), and the poles are found
using a root-�nding algorithm. Another possibility is to �nd the zeros
from ((3.133)) and the poles from the methods for �nding a Chebyshev
passband from arbitrary zeros. These approaches avoid calculating ν0

by ((3.141)) or determining k from K/K ', as is described in [37]. The
e�cient algorithms for evaluating the elliptic functions and the common
use of powerful computers make these alternatives less attractive now.

Summary
In this section the basic properties of the Jacobian elliptic functions

have been outlined and the necessary conditions given for an equal-ripple
rational function to be de�ned in terms of them. This rational function
was then used to construct a �lter transfer function with equal-ripple
properties. Formulas were derived to calculate the pole and zero locations
for the �lter transfer functions and to relate design speci�cations to the
functions. These formulas require the evaluation of elliptic functions and
are implemented in Program 8 in the appendix.

3.5.1.3 Elliptic-Function Filter Design Procedures

The equal-ripple rational function G (ω) is used to describe an optimal
frequency-response function F (jω) and to design the corresponding �lter.
The squared-magnitude frequency-response function is

|F (jω) |2 =
1

1 + ε2G(ω)2 (3.148)

with G (ω) de�ned by Jacobian Elliptic functions, and ε being a parame-
ter that controls the passband ripple. The plot of this function for N = 3
illustrates the relation to the various speci�cation parameters.

From "Elliptic-Function Filter Properties" (Section 3.5.1: Elliptic-
Function Filter Properties), it is seen that the passband ripple is measured
by δ1, the stopband ripple by δ2, and the normalized transition band by
ωs. The previous section showed that

ωs = 1/k (3.149)

which means that the width of the transition band determines k. It
should be remembered that this development has assumed a passband
edge normalized to unity. For the unnormalized case, the passband edge
is ωp and the stopband edge becomes

ωs =
ωp
k

(3.150)
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The stopband performance is described in terms of the ripple δ2 nor-
malized to a maximum passband response of unity, or in terms of the
attenuation b in the stopband expressed in positive dB assuming a maxi-
mum passband response of zero dB. The stopband ripple and attenuation
are determined from ((3.148)) and "Elliptic-Function Filter Properties"
(Section 3.5.1: Elliptic-Function Filter Properties) to be

δ2
2 = 10−b/10 =

1
1 + ε2/k2

1

(3.151)

This can be rearranged to give k1 in terms of the stopband ripple or
attenuation.

k2
1 =

ε2

1/δ2
2 − 1

=
ε2

10b/10 − 1
(3.152)

The order N of the �lter depends on k and k1, as shown in ((3.122)).
Equations ((3.150)), ((3.152)), and ((3.122)) determine the relation of
the frequency-response speci�cations and the elliptic-function parame-
ters. The location of the transfer function poles and zeros must then be
determined.

Because of the required relationships of ((3.122)) and the fact that
the order N must be an integer, the passband ripple, stopband ripple,
and transition band cannot be independently set. Several straightforward
procedures can be used that will always meet two of the speci�cations and
exceed the third.

The �rst design step is generally the determination of the order N
from the desired passband ripple δ1, the stopband ripple δ2, and the
transition band controlled by ωs. The following formulas determine the
moduli k and k1 from the passband ripple δ1 or its dB equavilent a, and
the stopband ripple δ2 or its dB attenuation equivalent b:

ε =

√
2δ1 − δ2

1

1− 2δ1 − δ2
1

=
√

10a/10 − 1 (3.153)

k1 =
ε√

1/δ2
2 − 1

=
ε√

10b/10 − 1
(3.154)

k'1 =
√

1− k2
1 (3.155)

k = ωp/ωs k' =
√

1− k2 (3.156)
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The order N is the smallest integer satisfying

N ≥ KK '
1

K 'K1
(3.157)

This integer order N will not in general exactly satisfy ((3.122)), i.e., will
not satisfy ((3.122)) with equality. Either k or k1 must to recalculated
to satisfy ((3.122)) and ((3.157)). The various possibilities for this are
developed below.

3.5.1.4 Methods for Meeting Speci�cations

3.5.1.4.1 Fixed Order, Passband Ripple, and Transition Band

Given N from ((3.157)) and the speci�cations δ1, ωp, and ωs, the parame-
ters ε and k are found from ((3.154)) and (refcc50). From k, the complete
elliptic integrals K and K' are calculated [37]. From ((3.122)), the ratio
K/K ' determines the ratio K '

1/K1. Using numerical methods from [2],
k1 is calculated. This gives the desired δ1, ωp, and ωs and minimizes the
stopband ripple δ2 (or maximizes the stopband attenuation b).

Using these parameters, the zeros are calculated from (refcc31) and
the poles from (refcc39). Note the zero locations do not depend on ε or
k1, but only on N and ωs. This makes the tradeo� between stop and
passband occur in (refcc48) and only a�ects the calculation of nu0 in
(refcc38)

This approach which minimizes the stopband ripple is used in the IIR
�lter design program in the appendix of this book.

3.5.1.4.2 Fixed Order, Stopband Rejection, and Transition Band

Given N from ((3.157)) and the speci�cations δ2, ωp, and ωs, the param-
eter k is found from (refcc50). From k, the complete elliptic integrals K
and K' are calculated [37]. From ((3.122)), the ratio K/K' determines the
ratio K '

1/K1 . Using numerical methods from [2], k1 is calculated. From
k1 and δ2, ε and δ1 are found from

ε = k1

√
1/δ2

2 − 1 (3.158)

and

δ1 = 1− 1√
1 + ε2

(3.159)

This set of parameters gives the desired ωp, ωs, and stopband ripple and
minimizes the passband ripple. The zero and pole locations are found as
above.
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3.5.1.4.3 Fixed Order, Stopband, and Passband Ripple

Given N from ((3.157)) and the speci�cations δ1, δ2, and either ωp or ωs,
the parameters ε and k1 are found from ((3.154)) and (refcc48). From
k1, the complete elliptic integrals K1 and K '

1 are calculated [37]. From
((3.122)), the ratio K1/K

'
1 determines the ratio K '/K. Using numerical

methods from [2], k is calculated. This gives the desired passband and
stopband ripple and minimizes the transition-band width. The pole and
zero locations are found as above.

3.5.1.4.4 An Approximation

In many �lter design programs, after the order N is found from ((3.157)),
the design proceeds using the original e, k, and k1, even though they do
not satisfy ((3.122)). The resulting design has the desired transition band,
but both pass and stopband ripple are smaller than speci�ed. This avoids
the calculation of the modulus k or k1 from a ratio of complete elliptic
integrals as was necessary in all three cases above, but produces results
that are di�cult to exactly predict.

Example 7-4. Design of a Third-Order Elliptic-Function Filter
A lowpass elliptic-function �lter is desired with a maximum passband

ripple of δ1 = 0.1 or a = 0.91515 dB, a maximum stopband ripple of
δ2 = 0.1 or b = 20 dB rejection, and a normalized stopband edge of
ωs = 1.3 radians per second. The �rst step is to determine the order of
the �lter.

From ωs, the modulus k is calculated and then the complimentary
modulus using the relations in (refcc50). Special numerical algorithms il-
lustrated in Program 8 are then used to �nd the complete elliptic integrals
K and K '[37].

k = 1/1.3 = 0.769231, k' =
√

1− k2 = 0.638971 (3.160)

K = 1.940714, K ' = 1.783308 (3.161)

From δ1, ε is calculated using ((3.154)), and from ε and δ2, k1 is calculated
from (refcc48). k'1, K1, and K

'
1 are then calculated.

ε = 0.4843221 as for the Chebyshev example. (3.162)

k1 = 0.0486762, k'1 = 0.9988146 (3.163)

K1 = 1.571727, K '
1 = 4.4108715 (3.164)



225

The order is obtained from ((3.122)) by calculating

K K '

K ' K1
= 3.0541 (3.165)

This is close enough to 3 to set N = 3. Rather than recalculate k and k1,
the already calculated values are used as discussed in the design method
D in this section. The zeros are found from (refcc31) using only N and k
from above.

ωz =
±1

k sn (2K/N, k)
= ±1.430207 (3.166)

To �nd the pole locations requires the calculation of ν0 from (refcc38)
which is somewhat complicated. It is carried out using the algorithms in
Program 8 in the appendix.

ν0 =
K

N K1
sc−1

(
1/ε, k'1

)
= 0.6059485 (3.167)

From this value of ν0, and k and N above, the elliptic functions in
(refcc40) are calculated to give

sn' = .557986, cn' = 0.829850, dn' = 0.934281 (3.168)

which, for the single real pole corresponding to i = 0 in (refcc39), gives

sp = 0.672393 (3.169)

For the complex conjugate pair of poles corresponding to i = 2, the other
elliptic functions in (refcc40) are

sn = 0.908959, cn = 0.416886, dn = 0.714927 (3.170)

which gives from (refcc39) for the poles

sp = 0.164126± j1.009942 (3.171)

The complete transfer function is

F (s) =
s2 + 2.045492

(s+ 0.672393) (s2 + 0.328252s+ 1.046920)
(3.172)

This design should be compared to the Chebyshev and inverse- Cheby-
shev designs.



226
CHAPTER 3. INFINITE IMPULSE

RESPONSE DIGITAL FILTERS AND THEIR
DESIGN

3.6 Optimality of the Four Classical Filter
Designs6

It is important in designing �lters to choose the particular type that is
appropriate. Since in all cases, the �lters are optimal, it is necessary to
understand in what sense they are optimal.

The classical Butterworth �lter is optimal in the sense that it is the
best Taylor's series approximation to the ideal lowpass �lter magnitude
at both ω = 0 and ω =∞.

The Chebyshev �lter gives the smallest maximum magnitude error
over the entire passband of any �lter that is also a Taylor's series approx-
imation at ω =∞ to the ideal magnitude characteristic.

The Inverse-Chebyshev �lter is a Taylor's series approximation to the
ideal magnitude response at ω = 0 and minimizes the maximum error in
the approximation to zero over the stopband. This can also be stated as
maximizing the minimum rejection of the �lter over the stopband.

The elliptic-function �lter (Cauer �lter) considers the four parameters
of the �lter: the passband ripple, the transition-band width, the stopband
ripple, and the order of the �lter. For given values of any three of the
four, the fourth is minimized.

It should be remembered that all four of these �lter designs are mag-
nitude approximations and do not address the phase frequency response
or the time-domain characteristics. For most designs, the Butterworth
�lter has the smoothest phase curve, followed by the inverse-Chebyshev,
then the Chebyshev, and �nally the elliptic-function �lter having the least
smooth phase response.

Recall that in addition to the four �lters described in this section, the
more general Taylor's series method allows an arbitrary zero locations to
be speci�ed but retains the optimal character at ω = 0. A design similar to
this can be obtained by replacing ω by 1/ω, which allows setting |F (w) |2
equal unity at arbitrary frequencies in the passband and having a Taylor's
series approximation to zero at ω =∞[256].

These basic normalized lowpass �lters can have the passband edge
moved from unity to any desired value by a simple change of frequency
variable, ω replaced with kω. They can be converted to highpass �lters or
bandpass or band reject �lters by various changes such as ω with k/ω or ω
with aω+ b/ω. In all of these cases the optimality is maintained, because
the basic lowpass approximation is to a piecewise constant ideal. An
approximation to a nonpiecewise constant ideal, such as a di�erentiator,
may not be optimal after a frequency change of variables .

6This content is available online at <http://cnx.org/content/m16910/1.1/>.
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In some cases, especially where time-domain characteristics are impor-
tant, ripples in the frequency response cause irregularities, such as echoes
in the time response. For that reason, the Butterworth and Chebyshev
II �lters are more desirable than their frequency response alone might
indicate. A �fth approximation has been developed [256] that is similar
to the Butterworth. It does not require a Taylor's series approximation at
ω = 0, but only requires that the response monotonically decrease in the
passband, thus giving a narrower transition region than the Butterworth,
but without the ripples of the Cheybshev.

3.7 Frequency Transformations7

In addition to the lowpass frequency response, other basic ideal responses
are often needed in practice. The ideal highpass �lter rejects signals with
frequencies below a certain value and passes those with frequencies above
that value. The ideal bandpass �lter passes only a band of frequencies,
and the ideal band reject �lter completely rejects a band of frequencies.
These ideal frequency responses are illustrated in Figure 3.14.

7This content is available online at <http://cnx.org/content/m16913/1.1/>.
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Figure 3.14: The Basic Four Ideal Frequency Responses

This section presents a method for designing the three new �lters by
using a frequency transformation on the basic lowpass design. When used
on the four classical IIR approximations (e.g. Butterworth, Chebyshev,
inverse-Chebyshev, and Elliptic Function), the optimality is preserved.
This procedure is used in the FREQXFM() subroutine of Program 8 in
the appendix.

3.7.1 Change the Bandedge

The classical �lters have all been developed for a bandedge of ω0 = 1.
That is where the Butterworth �lter has a magnitude squared of one half:
|F | = 0.5 or the Chebyshev �lter has its passband edge or the Inverse
Chebyshev has its stopband edge or the Elliptic �lter has its passband
edge. To scale the bandedge, simply replace s by Ks or: s → Ks where
K is reciprocal of the new desired bandedge. What happened to the
prototype �lter at ω = 1 will now happen at ω = 1/K. It is simply a
linear scaling of the ω axis. This change can be done before the conversions
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below or after.

3.7.2 The Highpass Filter

The frequency response illustrated in Figure 3.14b can be obtained from
that in Figure 3.14a by replacing the complex frequency variable s in the
transfer function by 1/s. This change of variable maps zero frequency to
in�nity, maps unity into unity, and maps in�nity to zero. It turns the
complex s plane inside out and leaves the unit circle alone.

In the design procedure, the desired bandedge ω0 for the highpass �l-
ter is mapped by 1/ω0 to give the bandedge for the prototype lowpass
�lter. This lowpass �lter is next designed by one of the optimal proce-
dures already covered and then converted to a highpass transfer function
by replacing s by 1/s. If an elliptic-function �lter approximation is used,
both the passband edge ωp and the stopbandedge ωs are transformed. Be-
cause most optimal lowpass design procedures give the designed transfer
function in factored form from explicit formulas for the poles and zeros,
the transformation can be performed on each pole and zero to give the
highpass transfer function in factored form.

3.7.3 The Bandpass Filter

In order to convert the lowpass �lter of Figure 3.14a into that of Fig-
ure 3.14c, a more complicated frequency transformation is required. In
order to reduce confusion, the complex frequency variable for the proto-
type analog �lter transfer function will be denoted by p and that for the
transformed analog �lter by s. The transformation is given by

p =
s2 + ω2

0

s
(3.173)

This change of variables doubles the order of the �lter, maps the origin
of the s-plane to both plus and minus jω0, and maps minus and plus
in�nity to zero and in�nity. The entire ω axis of the prototype response
is mapped between zero and plus in�nity on the transformed responses.
It is also mapped onto the left-half axis between minus in�nity and zero.
This is illustrated in Figure 3.15.
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Figure 3.15: Lowpass to Bandpass Transformation

Figure 7-22. Lowpass to Bandpass Frequency Transformation
In order that the transformation give −ωp =

(
ω2

2 − ω2
0

)
/ω2 and ωp =(

ω2
3 − ω2

0

)
/ω3, the �center" frequency ω0 must be

ω0 =
√
ω2ω3 (3.174)

However, because −ωs =
(
ω2

1 − ω2
0

)
/ω1 and ωs =

(
ω2

4 − ω2
0

)
/ω4, the

center frequency must also be

ω0 =
√
ω1ω4 (3.175)

This means that only three of the four bandedge frequencies ω1, ω2, ω3,
and ω4 can be independently speci�ed. Normally, ω0 is determined by ω2

and ω3 which then speci�es the prototype passband edge by

ωp =
ω2

3 − ω2
0

ω3
(3.176)
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and, using the same ω0, the stopband edge is set by either ω1 or ω4,
whichever gives the smaller ωs.

ωs =
ω2

4 − ω2
0

ω4
or

ω2
0 − ω2

1

ω1
(3.177)

The �nally designed bandpass �lter will meet both passband edges and
one transition band width, but the other will be narrower than origi-
nally speci�ed. This is not a problem with the Butterworth or either of
the Chebyshev approximation because they only have passband edges or
stopband edges, but not both. The elliptic-function has both.

After the bandedges for the prototype lowpass �lter ωp and/or ωs
are calculated, the �lter is designed by one of the optimal approximation
methods discussed in this section or any other means. Because most
of these methods give the pole and zero locations directly, they can be
individually transformed to give the bandpass �lter transfer function in
factored form. This is accomplished by solving s2 − ps + ω2

0 from the
original transformation to give for the root locations

s =
p±

√
p2 − 4ω2

0

2
(3.178)

This gives two transformed roots for each prototype root which doubles
the order as expected.

The roots that result from transforming the real pole of an odd- or-
der prototype cause some complication in programming this procedure.
Program 8 should be studied to understand how this is carried out.

3.7.4 The Band-Reject Filter

To design a �lter that will reject a band of frequencies, a frequency trans-
formation of the form

p =
s

s2 + ω2
0

(3.179)

is used on the prototype lowpass �lter. This transforms the origin of the
p-plane into both the origin and in�nity of the s-plane. It maps in�nity
in the p-plane into jω0 in the s-plane.

Similar to the bandpass case, the transformation must give −ωp =
ω4/

(
ω2

0 − ω2
4

)
and ωp = ω1/

(
ω2

0 − ω2
1

)
. A similar relation of ωs to ω2

and ω3 requires that the center frequency ω0 must be

ω0 =
√
ω1ω4 =

√
ω2ω3 (3.180)
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As before, only three of the four bandedge frequencies can be indepen-
dently speci�ed. Normally, ω0 is determined by ω1 and ω4 which then
speci�es the prototype passband edge by

ωp =
ω1

ω2
0 − ω2

1

(3.181)

and, using the same ω0, the stopband edge is set by either ω2 or ω3,
whichever gives the smaller ωs.

ωs =
ω2

ω2
0 − ω2

2

or
ω3

ω2
4 − ω2

0

(3.182)

The �nally designed bandpass �lter will meet both passband edges and
one transition-band width, but the other will be narrower than originally
speci�ed. This does not occur with the Butterworth or either Chebyshev
approximation, only with the elliptic-function.

After the bandedges for the prototype lowpass �lter ωp and/or ωs are
calculated, the �lter is designed. The poles and zeros of this �lter are
individually transformed to give the bandreject �lter transfer function in
factored form. This is carried out by solving s2 − (1/p) s+ ω2

0 to give for
the root locations

s =
1/p±

√
(1/p)2 − 4ω2

0

2
(3.183)

A more complicated set of transformations could be developed by using
a general map of s = f (s) with a higher order. Several pass or stopbands
could be speci�ed, but the calculations become fairly complicated.

Although this method of transformation is a powerful and simple way
for designing bandpass and bandreject �lters, it does impose certain re-
strictions. A Chebyshev bandpass �lter will be equal-ripple in the pass-
band and maximally �at at both zero and in�nity, but the transformation
forces the degree of �atness at zero and in�nity to be equal. The elliptic-
function bandpass �lter will bave the same number of ripples in both
stopbands even if they are of very di�erent widths. These restrictions are
usually considered mild when compared with the complexity of alternative
design methods.
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3.8 Conversion of Analog to Digital Transfer
Functions8

For mathematical convenience, the four classical IIR �lter transfer func-
tions were developed in terms of the Laplace transform rather than the
z-transform. The prototype Laplace-transform transfer functions are
descriptions of analog �lters. In this section they are converted to z-
transform transfer functions for implementation as IIR digital �lters.

There have been several di�erent methods of converting analog sys-
tems to digital described over the history of digital �lters. Two have
proven to be useful for most applications. The �rst is called the impulse-
invariant method and results in a digital �lter with an impulse response
exactly equal to samples of the prototype analog �lter. The second
method uses a frequency mapping to convert the analog �lter to a digital
�lter. It has the desirable property of preserving the optimality of the
four classical approximations developed in the last section. This section
will develop the theory and design formulas to implement both of these
conversion approaches.

3.8.1 The Impulse-Invariant Method

Although the transfer functions in Section 7.2 were designed with criteria
in the frequency domain, the impulse-invariant method will convert them
into digital transfer functions using a time-domain constraint [291], [236],
[357]. The digital �lter designed by the impulse-invariant method is re-
quired to have an impulse response that is exactly equal to equally spaced
samples of the impulse response of the prototype analog �lter. If the ana-
log �lter has a transfer function F (s) with an impulse response f (t), the
impulse response of the digital �lter h (n) is required to match the samples
of f (t). For samples at T second intervals, the impulse response is

h (n) = F (T ) |t=Tn = F (Tn) (3.184)

The transfer function of the digital �lter is the z-transform of the impulse
response of the �lter, which is given by

H (z) =
∞∑
n=0

h (n) z−n (3.185)

8This content is available online at <http://cnx.org/content/m16908/1.1/>.
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The transfer function of the prototype analog �lter is always a rational
function written as

F (s) =
B (s)
A (s)

(3.186)

where B (s) is the numerator polynomial with roots that are the zeros of
F (s), and A (s) is the denominator with roots that are the poles of F (s).
If F (s) is expanded in terms of partial fractions, it can be written as

F (s) =
N∑
i=1

Ki

s+ si
(3.187)

The impulse response of this �lter is the inverse-Laplace transform of
((3.187)), which is

f (t) =
N∑
i=1

K esit (3.188)

Sampling this impulse response every T seconds gives

f (nT ) =
N∑
i=1

Ki e
−sinT =

N∑
i=1

Ki

(
e−siT

)n
(3.189)

The basic requirement of ((3.184)) gives

H (z) =
∞∑
n=0

[
N∑
i=1

Ki

(
e−sIT

)n]
(3.190)

H (z) =
N∑
i=1

Kiz

z − esIT
(3.191)

which is clearly a rational function of z and is the transfer function of
the digital �lter, which has samples of the prototype analog �lter as its
impulse response.

This method has its requirements set in the time domain, but the
frequency response is important. In most cases, the prototype analog �lter
is one of the classical types, which is optimal in the frequency domain. If
the frequency response of the analog �lter is denoted by F (jω) and the
frequency response of the digital �lter designed by the impulse- invariant
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method is H (ω), it can be shown in a development similar to that used
for the sampling theorem

H (ω) = (1/T )
∞∑

k=−∞

F (j (ω − 2πk/T )) (3.192)

The frequency response of the digital �lter is a periodically repeated
version of the frequency response of the analog �lter. This results in an
overlapping of the analog response, thus not preserving optimality in the
same sense the analog prototype was optimal. It is a similar phenomenon
to the aliasing that occurs when sampling a continuous-time signal to
obtain a digital signal in A-to-D conversion. If F (jω) is an analog lowpass
�lter that goes to zero as ω goes to in�nity, the e�ects of the folding can
be made small by high sampling rates (small T).

The impulse-invariant design method can be summarized in the fol-
lowing steps:

1. Design a prototype analog �lter with transfer function F (jω).
2. Make a partial fraction expansion of F (jω) to obtain the N values

for Ki and si.
3. Form the digital transfer function H (z) from ((3.191)) to give the

desired design.

The characteristics of the designed �lter are the following:

• It has N poles, the same as the analog �lter.
• It is stable if the analog �lter was stable. This is seen from the

change of variables in the denominator of (6.70) which maps the
left-half s-plane inside the unit circle in the z-plane.

• The frequency response is a folded version of the analog �lter, and
the optimal properties of the analog �lter are not preserved.

• The cascade of two impulse-invariant designed �lters are not
impulse-invariant with the cascade of the two analog prototypes.
In other words, the �lter must be designed in one step.

This method is sometimes used to design digital �lters, but because the
relation of the analog and digital system is speci�ed in the time domain,
it is more useful in designing a digital simulation of an analog system.
Unfortunately, the properties of this class of �lters depend on the input.
If a �lter is designed so that its impulse response is the sampled impulse
response of the analog �lter, its step response will not be the sampled
step response of the analog �lter.

A step-invariant �lter can be designed by �rst multiplying the analog
�lter transfer function F (s) by 1/s, which is the Laplace transform of
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a step function. This product is then expanded in partial fraction just
as F (s) was in ((3.187)) and the same substitution made as in ((3.191))
giving a z-transform. After the z-transform of a step is removed, the
digital �lter has the step-invariant property. This idea can be extended
to other input functions, but the impulse-invariant version is the most
common. Another modi�cation to the impulse-invariant method is known
as the matched z transform covered in [291], but it is less useful.

There can be a problem with the classical impulse-invariant method
when the number of �nite zeros is too large. This is addressed in [153],
[200].

An example of a Butterworth lowpass �lter used to design a digital
�lter by the impulse-invariant method can be shown. Note that the fre-
quency response does not go to zero at the highest frequency of w = p. It
can be made as small as desired by increasing the sampling rate, but this
is more expensive to implement. Because the frequency response of the
prototype analog �lter for an inverse-Chebyshev or elliptic-function �lter
does not necessarily go to zero as w goes to in�nity, the e�ects of folding
on the digital frequency response are poor. No amount of sampling rate
increase will change this. The same problem exists for a highpass �lter.
This shows the care that must be exercised in using the impulse-invariant
design method.

3.8.2 The Bilinear Transformation

A second method for converting an analog prototype �lter into a desired
digital �lter is the bilinear transformation. This method is entirely a
frequency-domain method, and as a result, some of the optimal proper-
ties of the analog �lter are preserved. As was the case with the impulse-
invariant method, the time interval is not normalized to one, but is ex-
plicitly denoted by the sampling interval T with units of seconds. The
bilinear transformation is a change of variables (a mapping) that is linear
in both the numerator and denominator [291], [236], [129], [257]. The
usual form is

s =
2
T

z − 1
z + 1

(3.193)

The z-transform transfer function of the digital �lter H (z) is obtained
from the Laplace transform transfer function F (s) of the prototype �lter
by substituting for s the bilinear form of ((3.193)).

H (z) = F

(
2 (z − 1)
T (z + 1)

)
(3.194)
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This operation can be reversed by solving ((3.193)) for z and substituting
this into H (z) to obtain F (s). This reverse operation is also bilinear of
the form

z =
2/T + s

2/T − s
(3.195)

To consider the frequency response, the Laplace variable s is evaluated
on the imaginary axis and the z-transform variable z is evaluated on the
unit circle. This is achieved by

s = ju and z = ejωT (3.196)

which gives the relation of the analog frequency variable u to the digital
frequency variable ω from ((3.196)) and ((3.193)) to be

u = (2/T ) tan ((ωT ) /2) (3.197)

The bilinear transform maps the in�nite imaginary axis in the-s plane
onto the unit circle in the z-plane. It maps the in�nite interval of −∞ <
u < ∞ of the analog frequency axis on to the �nite interval of −π/2 <
ω < π/2 of the digital frequency axis. This is illustrated in Figure 3.16.
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Figure 3.16: The Frequency Map of the Bilinear Transform

There is no folding or aliasing of the prototype frequency response,
but there is a compression of the frequency axis, which becomes extreme
at high frequencies. This is shown in Figure 3.17 from the relation of
((3.197)).
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Figure 3.17: The Frequency Mapping of the Bilinear Transform

Near zero frequency, the relation of u and ω is essentially linear. The
compression increases as the digital frequency w nears π/2. This nonlin-
ear compression is called frequency warping. The conversion of F (s) to
H (z) with the bilinear transformation does not change the values of the
frequency response, but it changes the frequencies where the values occur.

In the design of a digital �lter, the e�ects of the frequency warping
must be taken into account. The prototype �lter frequency scale must
be prewarped so that after the bilinear transform, the critical frequencies
are in the correct places. This prewarping or scaling of the prototype
frequency scale is done by replacing s with Ks. Because the bilinear
transform is also a change of variables, both can be performed in one step
if that is desirable.

If the critical frequency for the prototype �lter is uo and the desired
critical frequency for the digital �lter is ωo, the two frequency responses
are related by

F (ju0) = H (ω0) = F ∗ (3.198)
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The prewarping scaling is given by

u0 =
2
T
tan

(
ω0T

2

)
(3.199)

Combining the prewarping scale and the bilinear transformation give

u0 =
2K
T
tan

(
ω0T

2

)
(3.200)

Solving for K and combining with ((3.193)) give

s =
u0

tan (ω0T/2)
z − 1
z + 1

(3.201)

All of the optimal �lters developed in Section 7.2 and most other proto-
type �lters are designed with a normalized critical frequency of u0 = 1.
Recall that ω0 is in radians per second. Most speci�cations are given in
terms of frequency f in Hertz (cycles per second) which is related to ω or
u by

ω = 2πf (3.202)

Care must be taken with the elliptic-function �lter where there are two
critical frequencies that determine the transition region. Both frequencies
must be prewarped.

The characteristics of the bilinear transform are the following:

• The order of the digital �lter is the same as the prototype �lter.
• The left-half s-plane is mapped into the unit circle on the z-plane.

This means stability is preserved.
• Optimal approximations to piecewise constant prototype �lters,

such as the four cases in Section 7.2, transform into optimal dig-
ital �lters.

• The cascade of sections designed by the bilinear transform is the
same as obtained by transforming the total system.

The bilinear transform is probably the most used method of converting
a prototype Laplace transform transfer function into a digital transfer
function. It is the one used in most popular �lter design programs [85],
because of characteristic 3 above that states optimality is preserved. The
maximally �at prototype is transformed into a maximally �at digital �lter.
This property only holds for approximations to piecewise constant ideal
frequency responses, because the frequency warping does not change the
shape of a constant. If the prototype is an optimal approximation to a



241

di�erentiator or to a linear-phase characteristic, the bilinear transform will
destroy the optimality. Those approximations have to be made directly
in the digital frequency domain.

Example. The Bilinear Transformation
To illustrate the bilinear transformation, the third-order Butterworth

lowpass �lter designed in the Example is converted into a digital �lter.
The prototype �lter transfer function is

F (s) =
1

(s+ 1) (s2 + s+ 1)
(3.203)

The prototype analog �lter has a passband edge at u0 = 1. A data rate of
1000 samples per second corresponding to T = 0.001 seconds is assumed.
If the desired digital passband edge is f0 = 200 Hz, then ω0 = (2π) (200)
radians per second, and the total prewarped bilinear transformation from
((3.201)) is

s = 1.376382
z − 1
z + 1

(3.204)

The digital transfer function in ((3.203)) becomes

H (z) =
0.09853116(z + 1)3

(z − 0.158384) (z2 − 0.418856z + 0.355447)
(3.205)

Note the locations of the poles and zeros in the z-plane. Zeros at in�nity
in the s-plane always map into the z = -1 point. The example illustrate a
third-order elliptic-function �lter designed using the bilinear transform.

3.8.3 Frequency Transformations

For the design of highpass, bandpass, and band reject �lters, a particu-
larly powerful combination consists of using the frequency transformations
described in Section elsewhere together with the bilinear transformation.
When using this combination, some care must be taken in scaling the
speci�cations properly. This is illustrated by considering the steps in the
design of a bandpass �lter:

1. First, the lower and upper digital bandedge frequencies are speci�ed
as ω1 and or ω1, ω2, ω3, and ω4 if an elliptic-function approximation
is used.

2. These frequencies are prewarped using ((3.199)) to give theband
edges of the prototype bandpass analog �lter.
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3. These frequencies are converted into a single band- edge ωp or ωs for
the Butterworth and Chebyshev and into ωp and ωs for the elliptic-
function approximation of the prototype lowpass �lter by using ()
and ().

4. The lowpass �lter is designed for this ωp and/or ωs by using one
of the four approximations in Sections 7.2.1 through 7.2.8 or some
other method.

5. This lowpass analog �lter is converted into a bandpass analog �lter
with the frequency transformation ().

6. The bandpass analog �lter is then transformed into the desired
bandpass digital �lter using the bilinear transformation ((3.193)).

This is the procedure used in the design Program 8 in the appendix.
When designing a bandpass elliptic-function �lter, four frequencies

must be speci�ed: the lower stopband edge, the lower passband edge, the
upper passband edge, and the upper stopband edge. All four must be
prewarped to the equivalent analog values. A problem occurs when the
two transition bands of the bandpass �lter are converted into the single
transition band of the lowpass prototype �lter. In general they will be
inconsistant; therefore, the narrower of the two transition bands should be
used to specify the lowpass �lter. The same problem occurs in designing
a bandreject elliptic-function �lter. Program 8 in the appendix should be
studied to understand how this is carried out.

An alternative to the process of converting a lowpass analog into a
bandpass analog �lter which is then converted into a digital �lter, is to
�rst convert the prototype lowpass analog �lter into a lowpass digital �lter
and then make the conversion into a bandpass �lter. If the prototype
digital �lter transfer function is Hp (z) and the frequency transformation
is f (z), the desired transformed digital �lter is described by

H (z) = Hp (f (z)) (3.206)

Since the frequency response of both H (z) and Hp (z) is obtained by
evaluating them on the unit circle in the-z plane, f (z) should map the
unit circle onto the unit circle (|z| = 1 => |f (z) | = 1). Both H (z) and
Hp (z) should be stable; therefore, f (z) should map the interior of the
unit circle into the interior of the unit circle (|z| < 1 => |f (z) | < 1). If
f (z) were viewed as a �lter, it would be an �all-pass" �lter with a unity
magnitude frequency response of the form

f (z) =
p (z)

znp (1/z)
=
anz

n + an−1z
n−1 + · · ·+ a0

a0zn + a1zn−1 + · · ·+ an
(3.207)
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The prototype digital lowpass �lter is usually designed with bandedges
at ±π/2. Determining the frequency transformation then becomes the
problem of solving the n+ 1 equations

f
(
ejωi

)
= e±jπ/2 = (−1)ij (3.208)

for the unknown ak where i = 0, 1, 2, · · ·n and the ωi are the bandedges
of the desired transformed frequency response put in ascending order.
The resulting simultaneous equations have a special structure that allow
a recursive solution. Details of this approach can be found in [257].

This is an extremely general approach that allows multiple passbands
of arbitrary width. If elliptic-function approximations are used, only one
of the transition bandwidths can be independently speci�ed. If more
than one passband or rejectband is desired, f(z) will be higher order than
second order and, therefore, the transformed transfer function H (f (z))
will have to be factored using a root �nder.

To illustrate the results of using transform methods to design �lters,
three examples are given which are designed with Program 8 from the
appendix.

Example. Design of an Chebyshev Highpass Filter
The speci�cations are given for a highpass Chebyshev frequency re-

sponse with a passband edge at fp = 0.3 Hertz with a sampling rate of
one sample per second. The order is set at N = 5 and the passband ripple
at 0.91515 dB. The transfer function is

H (z) =
(z − 1)

(
z2 − 2z + 1

) (
z2 − 2z + 1

)
(z + 0.64334) (z2 + 0.97495z + 0.55567) (z2 + 0.57327z + 0.83827)

(3.209)
The frequency response plot is given in Figure 3.18.
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Figure 3.18: Fifth Order Digital Chebyshev Highpass Filter

Example. Design of an Elliptic-Function Bandpass Filter
This �lter requires a bandpass frequency response with an elliptic-

function approximation. The maximum passpand ripple is one dB, the
minimum stopband attenuation is 30 dB, the lower stopband edge f1 =
0.19, the lower passband edge f2 = 0.2, the upper passband edge f3 = 0.3,
and the upper stopband edge f4 = 0.31 Hertz with a sampling rate of one
sample per second. The design program calculated a required prototype
order of N = 6 and, therefore, a total order of 10. The frequency response
plot is shown in Figure 3.19.
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Figure 3.19: Tenth Order Digital Elliptic Bandpass Filter

Example. Design of an Inverse-Chebyshev Bandreject Filter
The speci�cations are given for a bandreject Inverse- Chebyshev fre-

quency response with bandedges at fs = 0.1 and 0.2 Hertz with a sampling
rate of one sample per second. The order is set at N = 11 and the mini-
mum stopband attenuation at 30 dB. The frequency response plot is given
in Figure 3.20.
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Figure 3.20: Twenty second Order Digital Inverse Chebyshev
Band Reject Filter

3.8.3.1 Summary

This section has described the two most popular and useful methods for
transforming a prototype analog �lter into a digital �lter. The analog fre-
quency variable is used because a literature on analog �lter design exists,
but more importantly, many approximation theories are more straightfor-
ward in terms of the Laplace-transform variable than the z-transform vari-
able. The impulse-invariant method is particularly valuable when time-
domain characteristics are important. The bilinear-transform method is
the most common when frequency-domain performance is the main inter-
est. Use of the BLT warps the frequency scale and, therefore, the digital
band edges must be prewarped to obtain the necessary band edges for
the analog �lter design. Formulas that transform the analog prototype
�lters into the desired digital �lters and for prewarping speci�cations were
derived.

The use of frequency transformations to convert lowpass �lters into
highpass, bandpass, and bandreject �lters was discussed as a particularly
useful combination with the bilinear transformation. These are imple-
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mented in Program 8 and design examples from this program were shown.
There are cases where no analytic results are possible or where the

desired frequency response is not piecewise constant and transformation
methods are not appropriate. Direct methods for these cases are devel-
oped in other sections.

3.9 Direct Frequency Domain IIR Filter De-
sign Methods9

The preceding design methods have been based on designing an analog
prototype �lter and then converting it to a digital �lter. This approach is
appropriate for the class of approximations where analytical solutions are
possible, but not for many others. In the remaining part of this chapter,
methods will be developed that directly design the desired digital �lter.
Most approaches are extensions of methods used for FIR �lters, but they
are more complicated for the IIR case where rational approximation is
being performed rather than polynomial approximation.

In this section a frequency-sampling design method is developed such
that the frequency response of the IIR �lter will pass through the given
samples of a desired response. Since an IIR �lter cannot have linear phase,
the sampled response must contain both magnitude and phase. The ex-
tension of the frequency- sampling method to a LS-error approximation is
not as simple as for the FIR �lter. The method presented in this section
uses a criterion based on the equation error rather than the more common
error between the actual and desired frequency response[28]. Neverthe-
less, it is a useful noniterative design method. Finally, a general discussion
of iterative design methods for LS-frequency response error is given.

3.9.1 Frequency-Sampling Design of IIR Filters

The method for calculating samples of the frequency response of an IIR
�lter presented in the section on Properties of IIR Filters can be reversed
to design a �lter much the same way it was for the FIR �lter using fre-
quency sampling. The z-transform transfer function for an IIR �lter is
given by

H (z) =
B (z)
A (z)

=
b0 + b1z

−1 + · · ·+ bMz
−M

1 + a1z−1 + · · ·+ aNz−N
. (3.210)

9This content is available online at <http://cnx.org/content/m16902/1.1/>.
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The frequency response of the �lter is given by setting z = e−jω. Using
the notation

H (ω) = H (z) |z=e−jω . (3.211)

Equally-spaced samples of the frequency response are chosen so that
the number of samples is equal to the number of unknown coe�cients in
((3.210)). These L+ 1 = M +N + 1 samples of this frequency response
are given by

Hk = H (ωk) = H

(
2πk
L+ 1

)
(3.212)

and can be calculated from the length-(L+ 1)) DFTs of the numerator
and denominator.

Hk =
DFT {bn}
DFT {an}

=
Bk
Ak

(3.213)

where the indicated division is term-by-term division for each value of k.
Multiplication of both sides of ((3.213)) by Ak gives

Bk = HkAk (3.214)

If the length-(L+ 1) inverse DFT of Hk is denoted by the length- (L+ 1)
sequence hn, equation ((3.214)) becomes cyclic convolution which can be
expressed in matrix form by

b0

b1
...

bM

0
...

0


=



h0 hL hL−1 · · · h1

h1 h0 hL

h2 h1 h0

...
...

hL · · · h0





1

a1

...

aN

0
...

0


(3.215)

Note that the hn in ((3.215)) are not the impulse response values of the
�lter as used in the FIR case. A more compact matrix notation of is b

0

 =
[

H
] a

0

 (3.216)
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where H is (L+ 1) by (L+ 1), b is length-(M + 1), and a is length-
(N + 1). Because the lower L − N terms of the right-hand vector of
((3.215)) are zero, the H matrix can be reduced by deleting the right-
most L−N columns to give H0 which causes ((3.216)) to become b

0

 =
[

H0

] [
a
]

(3.217)

Because the �rst element of a is unity, it is partitioned to remove the unity
term and the remaining length-N vector is denoted a∗. The simultaneous
equations represented by ((3.217)) are uncoupled by further partitioning
of the H matrix as shown in b

0

 =

 H1

h1 H2

 1

a∗

 (3.218)

where H1 is (M + 1) by (N + 1), h1 is length-(L−M), and H2 is
(L−M) by N . The lower (L−M) equations are written

0 = h1 + H2a∗ (3.219)

or

h1 = −H2a∗ (3.220)

which must be solved for a∗. The upper M + 1 equations of (10) are
written

b = H1a (3.221)

which allows the calculation of b.
If L = N + M , H2 is square. If H2 is nonsingular, ((3.220)) can be

solved exactly for the denominator coe�cients in a∗, which are augmented
by the unity term to give a. From ((3.221)), the numerator coe�cients
in b are found. If H2 is singular [177], and there are multiple solutions, a
lower order problem can be posed. If there are no solutions, the approxi-
mation methods must be used.

Note that any order numerator and denominator can be prescribed. If
the �lter is in fact an FIR �lter, a is unity and a∗ does not exist. Under
these conditions, ((3.221)) states that bn = hn, which is one of the cases of
FIR frequency sampling covered [258]. Also note that there is no control
over the stability of the �lter designed by this method.

ummary
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In this section, an interpolation design method was developed and an-
alyzed. Use of the DFT converted the frequency- domain speci�cations to
the time domain. A matrix partitioning allowed uncoupling the solution
for the numerator from the solution of the denominator coe�cients. The
use of the DFT prevents the possibility of unequally spaced frequency
samples as was possible for FIR �lter design. The solution of simultane-
ous equations would allow unequal spacing which is not as troublesome
as with the FIR �lter because IIR �lters are usually of lower order.

The frequency-sampling design of IIR �lters is somewhat more compli-
cated than for FIR �lters because of the requirement that H2 be nonsin-
gular. As for the FIR �lter, the samples of the desired frequency response
must satisfy the conditions to insure that hn are real. The power of this
method is its ability to interpolate arbitrary magnitude and phase speci-
�cation. In contrast to most direct IIR design methods, this method does
not require any iterative optimization with the accompanying convergence
problems.

As with the FIR version, because this design approach is an interpo-
lation method rather than an approximation method, the results may be
poor between the interpolation points. This usually happens when the
desired frequency-response samples are not consistent with what an IIR
�lter can achieve. One solution to this problem is the same as for the FIR
case [258], the use of more frequency samples than the number of �lter
coe�cients and the de�nition of an approximation error function that can
be minimized. There is no simple restriction that will guarantee stable
�lters. If the frequency-response samples are consistent with an unstable
�lter, that is what will be designed.

3.9.2 Discrete Least-Squared Equation-Error IIR Fil-

ter Design

In order to obtain better practical �lter designs, the interpolation scheme
of the previous section is extended to give an approximation design
method [258]. It should be noted at the outset that the method de-
veloped in this section minimizes an equation-error measure and not the
usual frequency-response error measure.

The number of frequency samples speci�ed, L+ 1, will be made larger
than the number of �lter coe�cients, M + N + 1. This means that H2

is rectangular and, therefore, ((3.220)) cannot in general be satis�ed. To
formulate an approximation problem, a length-(L+ 1) error vector ε is
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introduced in ((3.217)) and ((3.218)) to give b

0

 =
[

H0

] [
a
]

+ [ε] (3.222)

Equation ((3.220)) becomes

h1 − ε = −H2a∗ (3.223)

where now H2 is rectangular with (L−M) > N . Using the same meth-
ods as used to derive ((3.220)), the error ε is minimized in a least-squared
error sense by the solution of the normal equations [177]

HT
2 h1 = −HT

2 H2a∗ (3.224)

If the equations are not singular, the solution is

a∗ = −
[
HT

2 H2

]−1
HT

2 h1. (3.225)

If the normal equations are singular, the pseudo-inverse [177], can be
used to obtain a minimum norm or reduced order solution.

The numerator coe�cients are found by the same techniques as before
in ((3.221))

b = H1a (3.226)

which results in the upper M + 1 terms in ε being zero and the total
squared equation error being minimum.

As is true for LS-error design of FIR �lters, ((3.224)) is often numer-
ically ill-conditioned and ((3.225)) should not be used to solve for a∗.
Special algorithms such as those used by Matlab and LINPACK [220],
[101] should be employed.

The error ε de�ned in ((3.222)) can better be understood by consid-
ering the frequency-domain formulation. Taking the DFT of ((3.222))
gives

Bk = HkAk + ε (3.227)

where ε is the error in trying to satisfy ((3.217)) when the equations
are over-speci�ed. This can be reformulated in terms of E , the di�erence
between the frequency response samples of the designed �lter and the
desired response samples, by dividing ((3.217)) by Ak to give

Ek =
Bk
Ak
−Hk =

εk
Ak

(3.228)
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E is the error in the solution of the approximation problem, and ε is the
error in the equations de�ning the problem. The usual statement of a
frequency-domain approximation problem is in terms of minimizing some
measure of E , but that results in solving nonlinear equations. The design
procedure developed in this section minimizes the squared error ε, thus
only requiring the solution of linear equations. There is an important re-
lation between these problems. Equation ((3.228)) shows that minimizing
ε is the same as minimizing E weighted by A. However, A is unknown
until after the problem is solved.

Although this is posed as a frequency-domain design method, the
method of solution for both the interpolation problem and the LS
equation-error problem is the same as the time-domain Prony's method,
discussed in Section 7.5 of reference [258].

Numerous modi�cations and extensions can be made to this method.
If the desired frequency response is close to what can be achieved by
an IIR �lter, this method will give a design approximately the same as
that of a true least-squared solution-error method. It can be shown that
ε = 0 ↔ E = 0. In some cases, improved results can be obtained by
estimating Ak and using that as a weight on ε to approximate minimizing
E . There are iterative methods based on solving ((3.225)) and ((3.226)) to
obtain values for Ak. These values are used as weights on ε to solve for a
new set of Ak used as a new set of weights to solve again for Ak[258][334].
We found this approach to converge slowly, but a recent paper using the
log-magnitude [161] was more successful. Other approaches are given in
[301], [327], [154]. The solution of ((3.225)) and ((3.226)) is sometimes
used to obtain starting values for other iterative optimization algorithms
that need good starting values for convergence.

An interesting iterative design algorithm that can design to approxi-
mate complex or magnitude frequency responses has be recently proposed
by Jackson [154]. A di�erent approach to the same problem was posed
by Soewito [334], [378].

To illustrate this design method a sixth-order lowpass �lter was de-
signed with 41 frequency samples to approximate. The magnitude of those
less than 0.2 Hz is one and of those greater than 0.2 is zero. The phase
was experimentally adjusted to result in a good magnitude response. The
design was performed with Program 9 in the appendix of [258] and the
frequency response is shown in Figure 7-33 of [258]. Matlab programs
have recently been written which are smaller and easier to understand
than those in FORTRAN.

ummary
In this section an LS-error approximation method was posed to design

IIR �lters. By using an equation-error rather than a solution-error crite-
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rion, a problem resulted that required only the solution of simultaneous
linear equations.

Like the FIR �lter version, the IIR frequency sampling design method
and the LS equation-error extension can be used for complex approxima-
tion and, therefore, can design with both magnitude and phase speci�ca-
tions.

If the desired frequency-response samples are close to what an IIR
�lter of the speci�ed order can achieve, this method will produce a �lter
very close to what a true least-squared error method would. However,
when the speci�cations are not consistent with what can be achieved and
the approximating error is large, the results can be very poor and in some
cases, unstable. It is particularly di�cult to set realistic phase response
speci�cations. With this method, it is even more important to have a
design environment that will allow easy trial-and-error procedure.

Newly published works which will be discussed here are [161], [160],
[341], [120], [263], [195], [163]. Other references can be found in [258],
[161], [89], [334], [378], [67]. The Matlab command invfreqz() which is
an inverse to the freqz() command gives a similar or, perhaps, the same
result as the method described in this note but uses a di�erent formulation
[179], [332].

3.9.2.1 more

Practical problems occur in the design of a �lter to separate signals ac-
cording to their energy. Because the energy content of a signal is the
integral or sum of the square of the signal, a mean-squared-error measure
is natural. Unfortunately, for the IIR �lter design problem, the optimiza-
tion procedure is nonlinear. This was pointed out in the last section where
the equation error was used in order to have a linear problem.

Because of the nonlinear nature of the least-squared-error minimiza-
tion, the method of solution becomes dependent on the desired frequency
response, and therefore, there is no single method for design. The mean-
squared error for magnitude approximation is de�ned as

q (x) =
L∑
i=0

|H (ωi) | − |Hd (ωi) |2 (3.229)

where x is a vector of �lter parameters chosen to minimize q, and the
error is sampled at L+1 frequencies ωi. Steiglitz [258] chose the parameter
vector x to be the coe�cients of a cascade structure in order to best �t
an iterative optimization scheme. He applied a standard optimization
algorithm, the Fletcher-Powell method, to the minimization of ((3.228)).
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Other methods which are more directly related to a squared-error measure
can also be used.

Practical di�culties exist in solving this approximation problem. In
some cases, local minima are found rather than the global minimum.
In other cases, convergence of the minimization algorithm is slow or does
not occur at all. Numerical problems can result from ill-conditioned equa-
tions, and there is no guarantee that the designed �lter will be stable.

An important factor is the choice of a desired frequency- response
function Hd (ω) that does not result in the optimum approximation hav-
ing a large error. This often means not having an abrupt discontinuity
between the passband and stopband.

Another factor is the starting of the iterative optimization algorithm
with a set of coe�cients in x that is close to the optimum. This can be
accomplished by using the frequency sampling method to give a design
that can be used to start a least-squares algorithm. Because the error
de�ned in ((3.228)) is in terms of magnitudes, an unstable design can be
converted to a stable one by moving the unstable pole at a radius of r
in the z-plane to a radius of 1/r. This does not change the magnitude
frequency response and does stabilize the e�ect of that pole [258].

A generalization of the idea of a squared-error measure is de�ned by
raising the error to the p power where p is a positive integer. This error
is de�ned by

q (x) =
L∑
i=0

|H (ω)−Hd (ω) |p (3.230)

Deczky [98] developed this approach and used the Fletcher-Powell
method to minimize ((3.230)). He also applied this method to the ap-
proximation of a desired group-delay function. An important character-
istic of this formulation is that the solution approaches the Chebyshev or
mini-max solution as p becomes large. Initial work shows the method of
iteratively reweighted least squared error (IRLS) as was applied to the
FIR �lter design in can also be used for Lp and constrained least squared
error optimal design of IIR �lters [377].

3.9.3 The Chebyshev Error Criterion for IIR Filter De-

sign

The error measure that often best meets �lter design speci�cations is the
maximum error in the frequency response that occurs over a band. The
�lter design problem becomes the problem of minimizing the maximum
error (the min-max problem).
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Among several approaches to this error minimization, one is by Deczky
which minimizes the p-power error of ((3.230)) for large p. Generally,
p = 10 or greater approximates a Chebyshev result [258]. Another is by
Dolan and Kaiser which uses a penalty-function approach.

Linear programming can be applied to this error measure by linearizing
the equations in much the same way as in ((3.224)) [292]. In contrast to
the FIR case, this can be a practical design method because the order of
practical IIR �lters is generally much lower than for FIR �lters. A scheme
called di�erential correction has also proven to be e�ective.

Although the rational approximation problem is nonlinear, an appli-
cation of the Remes exchange algorithm can be implemented [258]. Since
the zeros of the numerator of the transfer function mainly control the stop-
band characteristics of a �lter, and the zeros of the denominator mainly
control the passband, the e�ects of the two are somewhat uncoupled. An
application of the Remes exchange algorithm, alternating between the
numerator and denominator, gives an e�ective method for designing IIR
�lters with a Chebyshev error criterion. If the order of the numerator and
denominator are the same and the desired �lter is an ideal lowpass �lter,
the Remes exchange should give the same result as the elliptic function
�lter. However, this approach allows any order numerator or denominator
to be set and any shape passband to be approximated. There are cases
where a lower-order denominator than numerator results in a �lter with
fewer required muliplications than an elliptic-function �lter [258].

3.9.4 Prony's Method for Time-Domain Design of IIR

Filters

The problem of designing an IIR digital �lter with a prescribed time-
domain response is addressed in this section. Most formulations of time-
domain design of IIR �lters result in nonlinear equations for the same
reasons as for frequency-domain design. Prony, in 1790, derived a special
formulation for the analysis of elastic properties of gases, which resulted in
linear equations. A more general form of Prony's method can be applied
to the IIR �lter design by use of a matrix description [57], [258].

The transfer function of an IIR �lter is given by

H (z) =
B (z)
A (z)

=
b0 + b1z

−1 + · · ·+ bMz
−M

1 + a1z−1 + · · ·+ aNz−N
= h0 + h1z

−1 + h2z
−2 + · · ·

(3.231)



256
CHAPTER 3. INFINITE IMPULSE

RESPONSE DIGITAL FILTERS AND THEIR
DESIGN

and the impulse response h (n) is related to H (z) by the z transform.

H (z) =
∞∑
n=0

h (n) z−n (3.232)

Equation ((3.232)) can be written

B (z) = H (z) A (z) (3.233)

which is the z-transform version of convolution. This convolution can
be written as a matrix multiplication. Using the �rst K+1 terms of the
impulse response, this is written

b0

b1
...

bM

0
...

0


=



h0 0 0 · · · 0

h1 h0 0

h2 h1 h0

...
...

hL · · · h0





1

a1

...

aN

0
...

0


(3.234)

In order to uncouple the calculations of the an and the bn, the matrices
are partitioned to give b

0

 =

 H1

h1 H2

 1

a∗

 (3.235)

where b is the vector of the M + 1 numerator coe�cients of ((3.231)), a∗

is the vector of the N denominator coe�cients (ao = 1), h1 is the vector
of the last (K −M) terms of the impulse response, H1 is the M + 1 by
N+1 partition of ((3.234)), and H2 is the (K −M) by N remaining part.
The lower K −M equations are written

0 = h1 + H2a∗ (3.236)

or

h1 = −H2a∗ (3.237)
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which must be solved for a∗. The upper M + 1 equations of ((3.235)) are
written

b = H1a (3.238)

which allows the calculation of b.
If L = N + M , then H2 is square. If H2 is nonsingular, ((3.237))

can be solved exactly for the denominator coe�cients in a∗, which are
augmented by the unity term to give a. From ((3.238)), the numerator
coe�cients in b are found. If H2 is singular [177], and there are multiple
solutions, a lower order problem can be posed. If there are no solutions,
the methods of the next section must be used.

Note that any order numerator and denominator can be prescribed. If
the �lter is in fact an FIR �lter, a is unity and a∗ does not exist. Under
these conditions, ((3.238)) states that bn = hn, which is one of the cases
of FIR frequency sampling covered in Section 3.1 of [258]. Also note that
there is no control over the stability of the �lter designed by this method.

Although Prony's method, applied to the time-domain design problem
here, is similar to the solution of the frequency-sampling IIR design prob-
lem, there are important di�erences. The inverse DFT is used to obtain
the matrix in the frequency domain problem, which is cyclic convolution.
Equation ((3.234)) is noncyclic convolution and the K + 1 terms of h (n),
used to form H, result from a truncation of the in�nitely long sequence.

3.9.4.1 An Approximate Solution or the Least Equation Error
Problem

In order to obtain better practical �lter designs, the interpolation scheme
of the previous section is extended to give an approximation design
method [258]. It should be noted at the outset that the method de-
veloped in this section minimizes an equation-error measure and not the
usual frequency-response error measure.

The number of samples speci�ed, L + 1, will be made larger than
the number of �lter coe�cients, M + N + 1. This means that H2 is
rectangular and, therefore, () cannot in general be satis�ed. To formulate
an approximation problem, a length-(L+ 1) error vector ε is introduced
in () and () to give  b

0

 =
[

H0

] [
a
]

+ [ε] (3.239)
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Equation ((3.237)) becomes

h1 − ε = −H2a∗ (3.240)

where now H2 is rectangular with (L−M) > N . Using the same meth-
ods as used to derive ((3.237)), the error ε is minimized in a least-squared
error sense by the solution of the normal equations [177]

HT
2 h1 = −HT

2 H2a∗ (3.241)

If the equations are not singular, the solution is

a∗ = −
[
HT

2 H2

]−1
HT

2 h1. (3.242)

If the normal equations are singular, the pseudo-inverse [177], can be
used to obtain a minimum norm or reduced order solution.

The numerator coe�cients are found by the same techniques as before
in ((3.238))

b = H1a (3.243)

which results in the upper M + 1 terms in ε being zero and the total
squared equation error being minimum.

As is true for LS-error design of FIR �lters, ((3.241)) is often numer-
ically ill-conditioned and ((3.242)) should not be used to solve for a∗.
Special algorithms such as those used by Matlab and LINPACK [220],
[101] should be employed.

Various modi�cations can be made to the form of Prony's method
presented. After the denominator is found by minimizing the equation
error, the numerator can be found by minimizing the solution error. It is
possible to mix the exact and approximate methods. The details can be
found in [258], [35], [36].

Several modi�cations to Prony's method have been made to use it
to minimize the solution error. Most of these iteratively minimize a
weighted-equation error with Prony's method and update the weights
from the previous determination of a[110], [336].

If an LS-error, time-domain approximation is the desired result, a
minimization technique can be applied directly to the solution error. The
most successful method seems to be the Gauss- Newton algorithm with
a step-size control. This combined with Prony's method to �nd starting
parameters is an e�ective design tool.



Chapter 4

Digital Filter Structures

and Implementation

4.1 Block, Multi-rate, Multi-dimensional Pro-
cessing and Distributed Arithmetic1

4.1.1 Introduction

The partitioning of long or in�nite strings of data into shorter sections or
blocks has been used to allow application of the FFT to realize on-going
or continuous convolution [339], [139]. These notes develop the idea of
block processing and shows that it is a generalization of the overlap-add
and overlap-save methods [339], [130]. They further generalize the idea
to a multidimensional formulation of convolution [11], [42]. Moving in
the opposite direction, it is shown that, rather than partitioning a string
of scalars into blocks and then into blocks of blocks, one can partition a
scalar number into blocks of bits and then include the operation of mul-
tiplication in the signal processing formulation. This is called distributed
arithmetic [41] and, since it describes operations at the bit level, is com-
pletely general. These notes try to present a coherent development of
these ideas.

4.1.2 Block Signal Processing

In this section the usual convolution and recursion that implements FIR
and IIR discrete-time �lters are reformulated in terms of vectors and

1This content is available online at <http://cnx.org/content/m16914/1.1/>.
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matrices. Because the same data is partitioned and grouped in a variety
of ways, it is important to have a consistent notation in order to be clear.
The nth element of a data sequence is expressed h (n) or, in some cases
to simplify, hn. A block or �nite length column vector is denoted hn
with n indicating the nth block or section of a longer vector. A matrix,
square or rectangular, is indicated by an upper case letter such as H with
a subscript if appropriate.

4.1.2.1 Block Convolution

The operation of a �nite impulse response (FIR) �lter is described by a
�nite convolution as

y (n) =
L−1∑
k=0

h (k) x (n− k) (4.1)

where x (n) is causal, h (n) is causal and of length L, and the time index
n goes from zero to in�nity or some large value. With a change of index
variables this becomes

y (n) =
n∑
k=0

h (n− k) x (k) (4.2)

which can be expressed as a matrix operation by
y0

y1

y2

...

 =


h0 0 0 · · · 0

h1 h0 0

h2 h1 h0

...
...




x0

x1

x2

...

 . (4.3)

The H matrix of impulse response values is partitioned into N by N
square sub matrices and the X and Y vectors are partitioned into length-
N blocks or sections. This is illustrated for N = 3 by
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H0 =


h0 0 0

h1 h0 0

h2 h1 h0

 H1 =


h3 h2 h1

h4 h3 h2

h5 h4 h3

 etc.

(4.4)

x0 =


x0

x1

x2

 x1 =


x3

x4

x5

 y
0

=


y0

y1

y2

 etc.

(4.5)

Substituting these de�nitions into ((4.3)) gives
y

0

y
1

y
2
...

 =


H0 0 0 · · · 0

H1 H0 0

H2 H1 H0

...
...




x0

x1

x2

...

 (4.6)

The general expression for the nth output block is

y
n

=
n∑
k=0

Hn−k xk (4.7)

which is a vector or block convolution. Since the matrix-vector multi-
plication within the block convolution is itself a convolution, ((4.8)) is
a sort of convolution of convolutions and the �nite length matrix-vector
multiplication can be carried out using the FFT or other fast convolution
methods.
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The equation for one output block can be written as the product

y
2

= [H2H1H0]


x0

x1

x2

 (4.8)

and the e�ects of one input block can be written
H0

H1

H2

x1 =


y

0

y
1

y
2

 . (4.9)

These are generalize statements of overlap save and overlap add [339],
[130]. The block length can be longer, shorter, or equal to the �lter length.

4.1.2.2 Block Recursion

Although less well-known, IIR �lters can be implemented with block pro-
cessing [124], [72], [382], [39], [40]. The block form of an IIR �lter is
developed in much the same way as for the block convolution implementa-
tion of the FIR �lter. The general constant coe�cient di�erence equation
which describes an IIR �lter with recursive coe�cients al, convolution
coe�cients bk, input signal x (n), and output signal y (n) is given by

y (n) =
N−1∑
l=1

al yn−l +
M−1∑
k=0

bk xn−k (4.10)

using both functional notation and subscripts, depending on which is
easier and clearer. The impulse response h (n) is

h (n) =
N−1∑
l=1

al h (n− l) +
M−1∑
k=0

bk δ (n− k) (4.11)
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which can be written in matrix operator form

1 0 0 · · · 0

a1 1 0

a2 a1 1

a3 a2 a1

0 a3 a2

...
...





h0

h1

h2

h3

h4

...


=



b0

b1

b2

b3

0
...


(4.12)

In terms of N by N submatrices and length-N blocks, this becomes
A0 0 0 · · · 0

A1 A0 0

0 A1 A0

...
...




h0

h1

h2

...

 =


b0

b1

0
...

 (4.13)

From this formulation, a block recursive equation can be written that
will generate the impulse response block by block.

A0 hn +A1 hn−1 = 0 for n ≥ 2 (4.14)

hn = −A−1
0 A1 hn−1 = K hn−1 for n ≥ 2 (4.15)

with initial conditions given by

h1 = −A−1
0 A1A

−1
0 b0 +A−1

0 b1 (4.16)

This can also be written to generate the square partitions of the impulse
response matrix by

Hn = KHn−1 for n ≥ 2 (4.17)

with initial conditions given by

H1 = KA−1
0 B0 +A−1

0 B1 (4.18)

ane K = −A−1
0 A1. This recursively generates square submatrices of H

similar to those de�ned in ((4.4)) and ((4.6)) and shows the basic structure
of the dynamic system.
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Next, we develop the recursive formulation for a general input as de-
scribed by the scalar di�erence equation ((4.11)) and in matrix operator
form by



1 0 0 · · · 0

a1 1 0

a2 a1 1

a3 a2 a1

0 a3 a2

.

.

.
.
.
.





y0

y1

y2

y3

y4

.

.

.


=



b0 0 0 · · · 0

b1 b0 0

b2 b1 b0

0 b2 b1

0 0 b2

.

.

.
.
.
.





x0

x1

x2

x3

x4

.

.

.



(4.19)

which, after substituting the de�nitions of the sub matrices and as-
suming the block length is larger than the order of the numerator or
denominator, becomes
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A0 0 0 · · · 0

A1 A0 0

0 A1 A0

.

.

.
.
.
.




y

0

y
1

y
2
.
.
.

 =


B0 0 0 · · · 0

B1 B0 0

0 B1 B0

.

.

.
.
.
.




x0

x1

x2

.

.

.

 .

(4.20)

From the partitioned rows of ((4.21)), one can write the block recursive
relation

A0 yn+1
+A1 yn = B0 xn+1 +B1 xn (4.21)

Solving for y
n+1

gives

y
n+1

= −A−1
0 A1 yn +A−1

0 B0 xn+1 +A−1
0 B1 xn (4.22)

y
n+1

= K y
n

+H0 xn+1 + H̃1 xn (4.23)

which is a �rst order vector di�erence equation [39], [40]. This is the
fundamental block recursive algorithm that implements the original scalar
di�erence equation in ((4.11)). It has several important characteristics.

1. The block recursive formulation is similar to a state variable equa-
tion but the states are blocks or sections of the output [40], [186],
[395], [396].

2. The eigenvalues of K are the poles of the original scalar problem
raised to the N power plus others that are zero. The longer the
block length, the �more stable" the �lter is, i.e. the further the
poles are from the unit circle [39], [40], [395], [23], [24].

3. If the block length were shorter than the denominator, the vector
di�erence equation would be higher than �rst order. There would be
a non zero A2. If the block length were shorter than the numerator,
there would be a non zero B2 and a higher order block convolution
operation. If the block length were one, the order of the vector
equation would be the same as the scalar equation. They would be
the same equation.
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4. The actual arithmetic that goes into the calculation of the output
is partly recursive and partly convolution. The longer the block,
the more the output is calculated by convolution and, the more
arithmetic is required.

5. It is possible to remove the zero eigenvalues in K by making K
rectangular or square and N by N This results in a form even more
similar to a state variable formulation [203], [40]. This is brie�y
discussed below in section 2.3.

6. There are several ways of using the FFT in the calculation of the var-
ious matrix products in ((4.22)) and in ((4.24)) and ((4.25)). Each
has some arithmetic advantage for various forms and orders of the
original equation. It is also possible to implement some of the oper-
ations using rectangular transforms, number theoretic transforms,
distributed arithmetic, or other e�cient convolution algorithms [40],
[395], [47], [43], [394], [264].

7. By choosing the block length equal to the period, a periodically time
varying �lter can be made block time invariant. In other words, all
the time varying characteristics are moved to the �nite matrix mul-
tiplies which leave the time invariant properties at the block level.
This allows use of z-transform and other time-invariant methods to
be used for stability analysis and frequency response analysis [206],
[207]. It also turns out to be related to �lter banks and multi-rate
�lters [188], [187], [87].

4.1.2.3 Block State Formulation

It is possible to reduce the size of the matrix operators in the block re-
cursive description ((4.23)) to give a form even more like a state variable
equation [203], [40], [396]. If K in ((4.23)) has several zero eigenvalues,
it should be possible to reduce the size of K until it has full rank. That
was done in [40] and the result is

zn = K1 zn−1 +K2 xn (4.24)

y
n

= H1 zn−1 +H0 xn (4.25)

where H0 is the same N by N convolution matrix, N1 is a rectangular
L by N partition of the convolution matrix H, K1 is a square N by N
matrix of full rank, and K2 is a rectangular N by L matrix.

This is now a minimal state equation whose input and output are
blocks of the original input and output. Some of the matrix multiplica-
tions can be carried out using the FFT or other techniques.
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4.1.2.4 Block Implementations of Digital Filters

The advantage of the block convolution and recursion implementations
is a possible improvement in arithmetic e�ciency by using the FFT or
other fast convolution methods for some of the multiplications in ((4.7))
or ((4.22)) [210], [211]. There is the reduction of quantization e�ects
due to an e�ective decrease in the magnitude of the eigenvalues and the
possibility of easier parallel implementation for IIR �lters. The disadvan-
tages are a delay of at least one block length and an increased memory
requirement.

These methods could also be used in the various �ltering methods for
evaluating the DFT. This the chirp z-transform, Rader's method, and
Goertzel's algorithm.

4.1.2.5 Multidimensional Formulation

This process of partitioning the data vectors and the operator matrices
can be continued by partitioning ((4.7)) and ((4.21)) and creating blocks
of blocks to give a higher dimensional structure. One should use index
mapping ideas rather than partitioned matrices for this approach [11],
[42].

4.1.3 Periodically Time-Varying Discrete-Time Sys-

tems

Most time-varying systems are periodically time-varying and this allows
special results to be obtained. If the block length is set equal to the period
of the time variations, the resulting block equations are time invariant
and all to the time varying characteristics are contained in the matrix
multiplications. This allows some of the tools of time invariant systems
to be used on periodically time-varying systems.

The PTV system is analyzed in [393], [87], [80], [206], the �lter analysis
and design problem, which includes the decimation�interpolation struc-
ture, is addressed in [117], [207], [188], and the bandwidth compression
problem in [187]. These structures can take the form of �lter banks [368].

4.1.4 Multirate Filters, Filter Banks, and Wavelets

Another area that is related to periodically time varying systems and to
block processing is �lter banks [368], [133]. Recently the area of perfect
reconstruction �lter banks has been further developed and shown to be
closely related to wavelet based signal analysis [87], [95], [132], [368], [66].
The �lter bank structure has several forms with the polyphase and lattice
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being particularly interesting. Further work on multirate �lters can be
found in [152], [88], [18], [141], [283], [115].

An idea that has some elements of multirate �lters, perfect reconstruc-
tion, and distributed arithmetic is given in [121], [122]. Parks has noted
that design of multirate �lters has some elements in common with com-
plex approximation and of 2-D �lter design [328], [329] and is looking at
using Tang's method for these designs.

4.1.5 Distributed Arithmetic

Rather than grouping the individual scalar data values in a discrete-time
signal into blocks, the scalar values can be partitioned into groups of
bits. Because multiplication of integers, multiplication of polynomials,
and discrete-time convolution are the same operations, the bit-level de-
scription of multiplication can be mixed with the convolution of the sig-
nal processing. The resulting structure is called distributed arithmetic
[41], [387]. It can be used to create an e�cient table look-up scheme to
implement an FIR or IIR �lter using no multiplications by fetching previ-
ously calculated partial products which are stored in a table. Distributed
arithmetic, block processing, and multi-dimensional formulations can be
combined into an integrated powerful description to implement digital �l-
ters and processors. There may be a new form of distributed arithmetic
using the ideas in [121], [122].
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Digital Signal Processing and Digital Filter Design (Draft)
This book starts with a very brief development of signals and systems. It
then develops the characteristics and the design of �nite impulse response
(FIR) digital �lters. That is followed by developing the characteristics
and the design of in�nite impulse response (IIR) digital Filters.
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