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Chapter 1

ELEC 302: State Space Systems
Overview1

1.1 "The Mars Global Surveyor"

"Mars Global Surveyor"

Figure 1.1

1This content is available online at <http://cnx.org/content/m2100/2.9/>.
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2 CHAPTER 1. ELEC 302: STATE SPACE SYSTEMS OVERVIEW

The Mars Global Surveyor, built by Lockheed Martin and launched by NASA, orbits our nearest planetary
neighbor on a mission to map the surface of Mars and catalogue scienti�c data . The Surveyor spacecraft
left Cape Canaveral, Florida aboard a Delta-7925 rocket, and then spent 300 days traveling approximately
750 million kilometers to reach Mars in September of 1997. After the Mars Global Surveyor reached Mars,
it used its main rocket engine to lower itself into an elliptical orbit around the planet. The spacecraft then
spent the next one and a half years reducing its orbit by using the friction between itself and the atmosphere
of Mars to slow down and thus lose 55,000 km of altitude. In March of 1999, the Surveyor spacecraft began
its mapping of the Martian surface. The motion of this spacecraft is managed by a propulsion system that
consists of a main engine and 8 "attitude-control" thrusters. How do these propulsion devices work together
to safely control the movement of the Surveyor spacecraft? In the initial phases of this spacecraft's design,
engineers probably asked themselves the following questions to better understand this problem:

• How do we guarantee that the satellite stays in its orbit and doesn't wonder o� into space?
• How do we characterize the relationship between the available thrust controls and the position of the

spacecraft?
• Can we use the knowledge of the satellite's thruster/position relationship to understand how to e�-

ciently control its movement?
• By observing the satellite's movement, can we better understand of how the dynamics (memory) of

the system change with respect to the current and past thruster use?
• Finally, after understanding the dynamics of the system, can we do something to modify them so that

the response of the satellite has more desirable properties?

In this course, we will develop ways to answer these questions. In the beginning, we will take a look at
linear dynamical systems and determine how to describe their dynamics with a concept known as state. In
order to examine these dynamics and see how they form relationships between the inputs and outputs of
a system, di�erential equations and their frequency-domain counterparts will be studied. After setting this
foundation, the course material will then focus on concepts found in linear algebra. As many systems have
multiple inputs and outputs, it makes sense to use matrices and the tools of linear algebra to deal with the
computations involved in describing them.

Once these tools are covered, we can use them along with our knowledge of dynamical systems to analyze
the issues mentioned in the example above; speci�cally, we will examine system stability, controllability,
observability, and feedback. With stability, we can see whether the output of a system will remain bounded
or whether it will "blow up". This is obviously very useful when thinking about the spacecraft above. As
the name implies, controllability of a system tells us whether or not we can control the output of the system
without access to the dynamics of the system (i.e. when we can only modify the inputs to the system). The
third idea, observability, gives us a method of monitoring the output of a system to determine its state. At
the end of the course, we'll see how feedback can use this information about a system's state to alter the
system's dynamics in such a way as to improve its properties and response.

To learn more about the Mars Global Surveyor, visit http://mars.jpl.nasa.gov/mgs/overvu/slides/00.html2

. The above image of the MGS was found at http://mars.jpl.nasa.gov/mgs/images/highres.html3

2http://mars.jpl.nasa.gov/mgs/overvu/slides/00.html
3http://mars.jpl.nasa.gov/mgs/images/highres.html



Chapter 2

Matrix Inversion1

Say that we have the following matrix and that we want to �nd its determinant.

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 (2.1)

Calculating the determinant of a matrix is a recursive process. Basically, we start by choosing any one row
or column. The determinant will then be found with respect to this row or column. What this means is that
we will �nd a sum of the products of this row or column's values and sub-determinants formed by blocking
out the row and column of the particular value.

Why is this choice of row or column left to us instead of always being de�ned as, say, the �rst row? The
reason is that by choosing this row or column wisely, we can sometimes reduce the amount of work we do.
For example, if a certain row or column contains a few zeros, choosing it as the row/column that we take
the determinant with respect to would be a smart move. As the values of this chosen row or column will be
multiplied by sub-determinants of the matrix in question, a value of 0 in one of these products would mean
that we have one less matrix whose determinant we need to calculate.

In the case of the matrix above, we'll compute the determinant with respect to the �rst column. The
�nal equation for the determinant is:

detA = a1,1−11+1detA11 + a2,1−12+1detA12 + · · ·+ an,1−1n+1detA1n (2.2)

Here, Aij means the matrix formed by eliminating the i-th column and the j-th row of A.
Let's just look at the �rst term in �nal equation for determinant (2.2). It is basically the �rst element

of A's �rst column times the determinant of the matrix formed by the elimination of the �rst row and �rst
column of A. There is also a (−1)r+c term included. This serves to make the signs of all of the terms in the
determinant equation �uctuate back and forth. The next term is the same, except that we have moved on
to the second element in the �rst column of A. As this element holds a position in the second row and �rst
column of A, the sub-determinant in this term is obtained by hiding the second row and �rst column of A.

In a generic 3 x 3 example, we would �nd the following solution for the determinant:

1This content is available online at <http://cnx.org/content/m2118/2.10/>.

3



4 CHAPTER 2. MATRIX INVERSION

det


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 = a1,1det

(
a2,2 a2,3

a3,2 a3,3

)
− a2,1det

(
a1,2 a1,3

a3,2 a3,3

)
+

a3,1det

(
a1,2 a1,3

a2,2 a2,3

)
(2.3)

To �nd the determinants of the 2 x 2 sub-determinants, we could again apply the rule of the �nal equation
for determinant (2.2), keeping in mind that the determinant of a scalar value is simply that scalar value.
However, it is easier to remember the following solution

det

 a b

c d

 = ad− bc (2.4)

Example 2.1
To clarify, take the following example of �nding the determinant of a numeric 3 x 3 matrix.

A =


1 −1 2

3 1 1

−2 −2 0

 (2.5)

First we need to choose a row or column to take the determinant with respect to. We notice that
the element in the third row and third column is a zero. Knowing that choosing a row or column
that contains a zero will reduce our workload, we will choose the third column. Then, by applying
�nal equation for determinant (2.2), we get

detA = 2×−14det

 3 1

−2 −2

+ 1×−15det

 1 −1

−2 −2

+ 0 (2.6)



Chapter 3

Controllability1

What do we mean by the term controllability? Simply put, we want to know if we can control the state of
a system when we only have access to the inputs (i.e. when we can not directly modify the system's state).
If we can "steer" a system to a certain state by controlling its inputs, we can then ask ourselves if there is a
way to �nd the most e�cient method of making this transformation.

3.1 Developing the Concept of a Controllable Space

Say we have the following system:
x′ = Ax (t) +Bu (t) (3.1)

Example RLC Circuit

Figure 3.1

1This content is available online at <http://cnx.org/content/m2120/2.13/>.
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6 CHAPTER 3. CONTROLLABILITY

x =

 x1

x2

 In this case, an example controllability question could seek to know if there exists an input

u such that: x (1ms) =

 10V

1A


Instead of deriving the general solution for what is called a system's controllable space, Xcontr, we will

simply state it and then give a justi�cation for it.
Formally, Xcontr is the set of all controllable states. We will de�ne it in terms of a quantity known as

the controllability matrix, C (A,B):

C (A,B) =
(
B AB A2B . . . An−1B

)
(3.2)

The controllable space can then be found by taking the image of this matrix.

Xcontr = im (C (A,B)) (3.3)

To justify this expression, we begin with the formal matrix equation for a system's state and substitute
in the in�nite series de�nition of the matrix exponential. We can then extract the A and B matrices into a
larger matrix multiplication.

x =
∫
eA(t−τ)Bu (τ) dτ

=
∫ (

I +A (t− τ) + A2

2 (t− τ)2 + . . .
)
Bu (τ) dτ

= B
∫
u (τ) dτ +AB

∫
t−τ
1! u (τ) dτ +A2B

∫ (t−τ)2
2! u (τ) dτ + . . .

=
(
B AB A2B . . . An−1B

)


∫
u (τ) dτ∫

(t− τ)u (τ) dτ
...∫ (t−τ)n

n! u (τ) dτ


(3.4)

As the second term in the multiplication is dependent on u, it can be thought of as a free variable.
Therefore, the set of possible values for x is dependent on the image of �rst term, which can be seen to be
the controllability matrix as de�ned above.

Continuing the example circuit started above, we can get a better feel for what controllability means.
Here are the state equations:

x1
′ =

−1
R1C

x1 +
1

R1C
u

x2
′ = −

(
R2

L
x2

)
+

1
L
u

Pulling the A and B matrices out of these equations, we can compute the controllability matrix C (A,B) =(
A AB

)
. Note that as it is only a second order system, the controllability matrix is only two-dimensional.

C (A,B) =

 1
R1C

−1
(R1C)2

1
L −R2

L2


Immediately, we can understand some things about the system by looking at the rank of the C matrix.

Let's look at the determinant: detC = 1
LR1C

(
−R2

L + 1
R1C

)
If the determinant of the controllability matrix is

non-zero, then Xcontr = im (C) = R2; the system is completely controllable. For this to happen we'd need to
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ensure that R2
L 6=

1
R1C

. However, if this inequality is not satis�ed and the determinant of the controllability

matrix is 0, then we know that it is not full rank. If it is not full rank, then Xcontr will not span the entire
space and the system is not completely controllable. The physical e�ect here is resonance in the circuit.
This reduces our controllability matrix to only one dimension (the two columns are linearly dependent).

Xcontr = span

 1
R1C

1
L


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Chapter 4

The Concept of State1

In order to characterize the memory of a dynamical system, we use a concept known as state.

note: A system's state is de�ned as the minimal set of variables evaluated at t = t0 needed to
determine the future evolution of the system for t > t0, given the excitation u (t) for t > t0

.

Example 4.1
We are given the following di�erential equation describing a system. Note that u (t) = 0.

d1y (t)
dt1

+ y (t) = 0 (4.1)

Using the Laplace transform techniques described in the module on Linear Systems with Constant
Coe�cients (Chapter 9), we can �nd a solution for y (t):

y (t) = y (t0) et0−t (4.2)

As we need the information contained in y (t0) for this solution, y (t) de�nes the state.

Example 4.2
The di�erential equation describing an unforced system is:

d2y (t)
dt2

+ 3
d1y (t)
dt1

+ 2y (t) = 0 (4.3)

Finding the q (s) function, we have

q (s) = s2 + 3s+ 2 (4.4)

The roots of this function are λ1 = −1 and λ2 = −2. These values are used in the solution to the
di�erential equation as the exponents of the exponential functions:

y (t) = c1e
−t + c2e

−2t (4.5)

where c1 and c2 are constants. To determine the values of these constants we would need two
equations (with two equations and two unknowns, we can �nd the unknowns). If we knew y (0)

1This content is available online at <http://cnx.org/content/m2104/2.9/>.
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10 CHAPTER 4. THE CONCEPT OF STATE

and d
dty (0) we could �nd two equations, and we could then solve for y (t). Therefore the system's

state, x (t), is

x (t) =

 y (t)
d1y(t)
dt1

 (4.6)

In fact, the state can also be de�ned as any two non-trivial (i.e. independent) linear combinations
of y (t) and d

dty (t) .

note: Basically, a system's state summarizes its entire past. It describes the memory-
side of dynamical systems.



Chapter 5

Controllability and Observability
Grammians1

5.1 Controllability Grammian

The �nite controllability grammian at time t <∞ is de�ned as follows.

P (t) =
∫ t

0

eAτBB∗eA
∗τdτ (5.1)

This grammian has two important properties. First, P (t) = P ∗ (t) ≥ 0. Secondly, the columns of P (t)
span the controllable space, i.e. im (P (t)) = im (C (A,B)) It can be shown that the state de�ned by A and
B is controllable if, and only if, P (t) is positive de�nite for some t > 0.

Using the controllability grammian, we can determine how to most e�ciently take a system from the

zero state to a certain state
−−−
x . Given that

−−−
x is in the controllable space, there exists ξ such that

−−−
x = P

(
−−−
T

)
ξ (5.2)

for some
−−−
T > 0. In this case, the minimum energy input required to move the system from zero to

−−−
x

is
−−−
u = B∗e

A∗
„
−−−
T −t

«
−−−
ξ If the controllability matrix is invertible, we can use the relation equation

between ξ and certain state (5.2) to put
−−−
u in terms of

−−−
x :

−−−
u = B∗e

A∗
„
−−−
T −t

«
P−1

(
−−−
T

)
−−−
x (5.3)

In general, this minimal energy is exactly equal to
−−−
ξ
∗
P

(
−−−
T

)
−−−
ξ . If the system is controllable,

then this formula becomes

Energy
(−−−
u
)

=
−−−
x
∗
P−1

(
−−−
T

)
−−−
x (5.4)

If you don't want to start at the zero state, the formulas above can still be applied for taking a system at
state x1 to a state x2. This holds even if x1 and x2 are not controllable; in this case, all that is necessary
is for x2 − x1 to be in the controllable space. (This makes sense if you think of x1 as being the zero state
and x2 as being the general state we are trying to reach; it is the exact analog of the previous case. Using
x1 and x2 is just like using 0 and x with an appropriate o�set.)

1This content is available online at <http://cnx.org/content/m2122/2.7/>.
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12 CHAPTER 5. CONTROLLABILITY AND OBSERVABILITY GRAMMIANS

5.2 Observability Grammian

The �nite observability grammian at time t <∞ is de�ned as

Q (t) =
∫ t

0

eA
∗τC∗CeAτdτ (5.5)

Parallel to the �nite controllability grammian, the kernel of �nite observability grammian is equal to the
kernel of the observability matrix. (This relationship holds for positive time only.) ker (Q (t)) = ker (O (C,A))

Using this grammian, we can �nd an expression for the energy of the output y at time T caused by the
system's initial state x:

Energy (y) = x∗Q (T )x (5.6)

5.3 In�nite Grammians

Consider a continuous-time linear system de�ned, as per normal, by the matrices A, B, C, andD. Assuming
that this system is stable (i.e. all of its eigenvalues have negative real parts), both the controllability and
observability grammians are de�ned for t =∞.

P =
∫ ∞

0

eAτBB∗eA
∗τdτ (5.7)

Q =
∫ ∞

0

eA
∗τC∗CeAτdτ (5.8)

These are called the in�nite controllability and in�nite observability grammians, respectively. These gram-
mians satisfy the linear matrix equations known as the Lyapunov equations.

AP + PA∗ +BB∗ = 0 (5.9)

A∗Q+QA+ C∗C = 0 (5.10)

In the case of in�nite grammians, the equations for minimal energy state transfer and observation energy
drop their dependence on time. Assuming stability and complete controllability, the minimal energy required
to transfer from zero to state xc is

xc
∗P−1xc (5.11)

Similarly, the largest observation energy produced by the state xo is obtained for an in�nite observation
interval and is equal to:

xo
∗Qxo (5.12)



Chapter 6

Observability1

Observability is the tool we use to investigate the internal workings of a system. It lets us use what we know
about the input u (t) and the output y (t) to observe the state of the system x (t).

To understand this concept let's start o� with the basic state-space equations describing a system:
x′ = Ax+Bu y = Cx+Du If we plug the general solution of the state variable, x (t), into the equation for
y (t), we'd �nd the following familiar time-domain equation:

y (t) = CeAtx (0) +
∫ t

0

CeA(t−τ)Bu (τ) dτ +Du (t) (6.1)

Without loss of generality, we can assume zero input; this will signi�cantly clarify the following discussion.
This assumption can be easily justi�ed. Based on our initial assumption above, the last two terms on the
right-hand side of time-domain equation (6.1) are known (because we know u (t)). We could simply replace
these two terms with some function of t. We'll group them together into the variable y0 (t). By moving y0 (t)
to the left-hand side, we see that we can again group y (t) − y0 (t) into another replacement function of t,
_
y (t). This result has the same e�ect as assuming zero input.

_
y (t) = y (t) − y0 (t) = CeAtx (0) Given the

discussion in the above paragraph, we can now start our examination of observability based on the following
formula:

y (t) = CeAtx (0) (6.2)

The idea behind observability is to �nd the state of the system based upon its output. We will accomplish
this by �rst �nding the initial conditions of the state based upon the system's output. The state equation
solution can then use this information to determine the state variable x (t).

base formula (6.2) seems to tell us that as long as we known enough about y (t) we should be able to
�nd x (0). The �rst question to answer is how much is enough? Since the initial condition of the state x (0)
is actually a vector of n elements, we have n unknowns and therefore need n equations to solve the set.
Remember that we have complete knowledge of the output y (t). So, to generate these n equations, we can
simply take n−1 derivatives of base formula (6.2). Taking these derivatives is relatively straightforward. On
the right-hand side, the derivative operator will only act on the matrix exponential term. Each derivative of
it will produce a multiplicative term of A. Then, as we're dealing with these derivatives of y (t) at t = 0, all
of the exponential terms will go to unity (eA0 = 1).

y (0) = Cx (0)

d

dt
y (0) = CAx (0)

1This content is available online at <http://cnx.org/content/m2121/2.9/>.

13



14 CHAPTER 6. OBSERVABILITY

d2

dt2
y (0) = CA2x (0)

...

dn−1

dtn−1
y (0) = CAn−1x (0)

This can be re-expressed in matrix notation.

y (0)
d1y(0)
dt1

d2y(0)
dt2

...
dn−1y(0)
dtn−1


=



C

CA

CA2

...

CAn−1


x (0)

The �rst term on the right-hand side is known as the observability matrix, σ (C,A):

σ (C,A) =



C

CA

CA2

...

CAn−1


(6.3)

We call the system completely observable if the rank of the observability matrix equals n. This
guarantees that we'll have enough independent equations to solve for the n components of the state x (t).

Whereas for controllability we talked about the system's controllable space, for observability we will talk
about a system's unobservable space, Xunobs. The unobservable space is found by taking the kernel of the
observability matrix. This makes sense because when you multiply a vector in the kernel of the observability
matrix by the observability matrix, the result will be 0. The problem is that when we get a zero result for
y (t), we cannot say with certainty whether the zero result was caused by x (t) itself being zero or by x (t)
being a vector in the nullspace. As we cannot give a de�nite answer in this case, all of these vectors are said
to be unobservable.

One cool thing to note is that the observability and controllability matrices are intimately related:

σ (C,A)T = C
(
AT , CT

)
(6.4)



Chapter 7

Diagonalizability1

A diagonal matrix is one whose elements not on the diagonal are equal to 0. The following matrix is one
example. 

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d


A matrix A is diagonalizable if there exists a matrix V ∈ Rn×n, detV 6= 0 such that V AV −1 = Λ is

diagonal. In such a case, the diagonal entries of Λ are the eigenvalues of A.
Let's take an eigenvalue decomposition example to work backwards to this result.
Assume that the matrix A has eigenvectors v and w and the respective eigenvalues λv and λw:

Av = λvv

Aw = λww

We can combine these two equations into an equation of matrices:

A
(
v w

)
=
(
v w

) λv 0

0 λv


To simplify this equation, we can replace the eigenvector matrix with V and the eigenvalue matrix with

Λ.
AV = V Λ

Now, by multiplying both sides of the equation by V −1, we see the diagonalizability equation discussed
above.

A = V ΛV −1 (7.1)

When is such a diagonalization possible? The condition is that the algebraic multiplicity equal the geometric
multiplicity for each eigenvalue, αi = γi. This makes sense; basically, we are saying that there are as many
eigenvectors as there are eigenvalues. If it were not like this, then the V matrices would not be square, and
therefore could not be inverted as is required by the diagonalizability equation (7.1). Remember that the
eigenspace associated with a certain eigenvalue λ is given by ker (A− λI).

1This content is available online at <http://cnx.org/content/m2117/2.13/>.
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16 CHAPTER 7. DIAGONALIZABILITY

This concept of diagonalizability will come in handy in di�erent linear algebra manipulations later. We
can however, see a time-saving application of it now. If the matrix A is diagonalizable, and we know its
eigenvalues λi, then we can immediately �nd the eigenvalues of A2:

A2 =
(
V ΛV −1

) (
V ΛV −1

)
= V Λ2V −1

The eigenvalues of A2 are simply the eigenvalues of A, squared.



Chapter 8

Laplace Example1

Example 8.1

RLC circuit

Figure 8.1: RLC circuit

y
(
0−
)

= −1 (8.1)

d

dt
y
(
0−
)

= 2 (8.2)

d2

dt2
y
(
0−
)

= −4 (8.3)

Find the step response for the system above, when u (t) is the input and y (t) is the output (i.e.
�nd y (t) for u (t) = step (t)).

Y (s) = AdmittanceU (s) (8.4)

1This content is available online at <http://cnx.org/content/m2109/2.12/>.
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Admittance = 1− Impedance

= 1 + 1− s+ 1− s+ 1− 1 + 2− s
= 2s3 + 3s2 + 4s+ 2− s3 + 2s2 + s+ 2

(8.5)

Y (s) =
(
2s3 + 3s2 + 4s+ 2− s3 + 2s2 + s+ 2

)
U (s) (8.6)

With our previous de�nition of q (d− d (t)) y (t) = p (d− d (t))u (t) we can de�ne the Laplace
domain equivalents of q and p as:

q (s) = s3 + 2s2 + s+ 2 (8.7)

p (s) = 2s3 + 3s2 + 4s+ 2 (8.8)

When we multiply q (s) times Y (s), we have to remember to include terms relating to the initial
conditions of y (t). We normally think of the Laplace transform of d

dty (t) as sY (s). However, in
reality, the general transform is as follows:

L
[
dny (t)
dtn

]
= snY (s)− sn−1y

(
0−
)
− sn−2 d

1y (0−)
dt1

− · · · − sd
n−2y (0−)
dtn−2

− dn−1

dtn−1
y
(
0−
)

(8.9)

Therefore, using the initial conditions stated above, we can �nd the Laplace transforms of the �rst
three derivatives of y (t).

L
[
d3y (t)
dt3

]
= s3Y (s) + s2 − 2s+ 4 (8.10)

L
[
d2y (t)
dt2

]
= s2Y (s) + s− 2 (8.11)

L
[
d1y (t)
dt1

]
= sY (s) + 1 (8.12)

We can now get a complete s-domain equation relating the output to the input by taking the
Laplace transform of q (d− d (t)) y (t) = p (d− d (t))u (t). The transform of the right-hand side of
this equation is simple as the initial conditions of y (t) do not come into play here. The result is
just the product of p (s) and the transform of the step function (1− s).

The left-hand side is somewhat more complicated because we have to make certain that the
initial conditions are accounted for. To accomplish this, we take a linear combination of Laplace
transform of the third derivative of y(t) (8.10), Laplace transform of the second derivative of y(t)
(8.11), and Laplace transform of the �rst derivative of y(t) (8.12) according to the polynomial q (s).
That is to say, we use the coe�cients of the s terms in q (s) to determine how to combine these
three equations. We take 1 of Laplace transform of the third derivative of y(t) (8.10) plus 2 of
Laplace transform of the second derivative of y(t) (8.11) plus 1 of Laplace transform of the �rst
derivative of y(t) (8.12) plus 2.

When we sum these components, collect the Y (s) terms, and set it equal to the right-hand side,
we have: (

s3 + 2s2 + s+ 2
)
Y (s) + s2 + 1 =

(
2s3 + 3s2 + 4s+ 2

)
(1− s) (8.13)

Rearranging, we can �nd the solution to Y (s):

Y (s) =
(
2s3 + 3s2 + 4s+ 2− s3 + 2s2 + s+ 2

)
(1− s)−

(
s2 + 1− s3 + 2s2 + s+ 2

)
(8.14)
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This solution can be looked at in two parts. The �rst term on the right-hand side is the particular
(or forced) solution. You can see how it depends on p (s) and u (s). The second term is the
homogeneous (or natural) solution. The numerator of this term describes how the initial conditions
of the system a�ect the solution (recall that s2+1 was the part of the result of the linear combination
of Laplace transform of the third derivative of y(t) (8.10), Laplace transform of the second derivative
of y(t) (8.11), Laplace transform of the �rst derivative of y(t) (8.12)). The denominator of the second
term is the q (s) polynomial; it serves to describe the system in general.
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Chapter 9

Linear Systems with Constant
Coe�cients1

9.1 Analyzing Linear Constant Coe�cient Systems

Constant coe�cient linear systems describe LTI systems and form the beginnings of the study of state-space
systems. In general, an n-th order system such as this can be described by the following di�erential equation,
where u and y represent the input and output variables, respectively:

dny (t)
dtn

+αn−1
dn−1y (t)
dtn−1

+ · · ·+α1
d1y (t)
dt1

+α0y (t) = βm
dmu (t)
dtm

+βm−1
dm−1u (t)
dtm−1

+ · · ·+β1
d1u (t)
dt1

+β0u (t)

(9.1)
This is a linear di�erential equation with real-valued constant coe�cients αi and βj . We can represent this
equation with a much more compact notation by thinking of the di�erential operator as a variable s, where
the degree of the derivative corresponds to the power of s. We will de�ne q (s) and p (s) as n-th and m-th
order polynomials in s.

q (s) = sn + αn−1s
n−1 + · · ·+ α1s+ α0 (9.2)

p (s) = βms
m + βm−1s

m−1 + · · ·+ β1s+ β0 (9.3)

If we go ahead and say that q (s) and p (s) will take the di�erential operator as arguments, we can rewrite
(9.1) as

q

(
d

d (t)

)
y (t) = p

(
d

d (t)

)
u (t) (9.4)

Looking at di�erential equations in terms of polynomials such as q (s) and p (s) right away reminds us
the Laplace transform. Using the Laplace transform can often simplify the calculations involved in system
analysis.

Example 9.1
By using Laplace domain tools to examine the RLC circuit seen before, the di�erential equation
describing the behavior of this system is easy to deduce.

1This content is available online at <http://cnx.org/content/m2103/2.11/>.
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RLC circuit: 2nd order (Impedances Labeled)

Figure 9.1: The resistor and inductor in series are combined in the impedance Z1 (s), and the resistor
and capacitor in parallel form the impedance Z2 (s).

Y (s)
U (s)

=
Z2 (s)

Z1 (s) + Z2 (s)
(9.5)

where

Z1 (s) = 1 +
s

2
(9.6)

and

Z2 (s) =
1

1
2 + s

3

(9.7)

This yields

Y (s) =
6

s2 + 7
2s+ 9

U (s) (9.8)

By multiplying both sides by the denominator of the fraction and taking the inverse Laplace
transform, the �nal di�erential equation describing the system is determined:

d2y (t)
dt2

+
7
2
d1y (t)
dt1

+ 9y (t) = 6u (t) (9.9)

The results from this example encourage us to apply Laplace techniques to earlier equations in this section.
By taking the Laplace transform of (9.4), we �nd that the transfer function of this system is simply the ratio
of the two polynomials p (s) and q (s).

9.1.1 Non-zero Initial Conditions

By saying above that the Laplace transform of d
dty (t) is sY (s) we are assuming that the system has zero

initial conditions . Taking a more general approach, a factor to characterize the initial conditions must be
included:

L
[
dy (t)
dt

]
= sY (s)− y

(
0−
)

(9.10)
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Note: 0− here means the instant immediately preceding time t = 0; it represents the time right before
we start paying attention to the system. Also, some readers may be worried that by using y (0−) in this
equation, we are mixing frequency domain and time domain variables here. However, as y (0−) is simply a
constant, there is no time domain component involved.

Example 9.2
Let's look at an example to see how these non-zero initial conditions come into play. A �rst order
system is described by the following di�erential equation:

d1y (t)
dt1

+ α0y (t) = u (t) (9.11)

When we take the Laplace transform of the derivative of y (t), we must remember to include a
term that represents the initial values of the system output.

sY (s)− y
(
0−
)

+ α0Y (s) = U (s) (9.12)

By combining the Y (s) terms we get

(s+ α0)Y (s)− y
(
0−
)

= U (s) (9.13)

If we say that q (s) = s + α0 and p (s) = 1, and de�ne r (s) as y (0−), we can rearrange terms to
get an expression relating Y (s) to U (s) that takes the initial conditions into account:

Y (s) =
p (s)
q (s)

U (s) +
r (s)
q (s)

(9.14)

What we have here is the Laplace domain solution to a di�erential equation describing a dynamical
system. There are two terms in this solution: one that relies on the input and one that does not.
These parts correspond to the particular and homogeneous solutions, respectively. Taking the
inverse Laplace transform, we can write (14) as:

y (t) = ypart (t) + yhomo (t) (9.15)

Here, ypart (t) corresponds to p(s)
q(s)U (s) and yhomo (t) corresponds to r(s)

q(s) . This makes a lot of sense.

The particular solution (forced response) depends on a combination of q (s), which describes how
the system behaves independently, and p (s)U (s), which describes how the system reacts to the
input U . The homogeneous solution (natural response) depends on a combination of q (s) and r (s),
the latter of which contains information about the initial conditions of the system.

Example 9.3
Let's say that we know the homogeneous solution, y (t), to a di�erential equation describing a
system.

y (t) = et (9.16)

Goal: Using this solution, we want to try and �gure out the system's q
(

d
d(t)

)
function given zero

initial conditions.
Solution:
From above, we know that for a homogeneous solution

y (t) =
r
(

d
d(t)

)
q
(

d
d(t)

) (9.17)
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We can clear the denominator by moving the q
(

d
d(t)

)
to the left-hand side. And since we have

zero initial conditions, r
(

d
d(t)

)
goes to 0:

q

(
d

d (t)

)
y (t) = 0 (9.18)

The solution can quickly be determined by inspection because we know that the derivative of et

is et. Therefore a solution of q
(

d
d(t)

)
= d

d(t) − 1 would work. However, a more systematic approach

will be necessary for more di�cult situations. We will investigate this approach here.
Again, we will do our work in the Laplace domain. By equating the Laplace transform of our

homogeneous solution with the ratio of r (s) and q (s) as discussed above, we have:

Y (s) = 1
s−1

= r(s)
q(s)

(9.19)

Directly, we can see the solution for q (s): by simply setting the denominators equal to each other,

q (s) = s− 1. This, of course, is the Laplace transform of the solution of q
(

d
d(t)

)
that we found by

inspection above.

Example 9.4
Now that we have the basics down, we'll look at a more complicated example. We are given

y (t) = Aeat +Btebt (9.20)

Goal: We would like to �nd the di�erential equation whose homogeneous solution is y (t).
Solution:
Again, we take the Laplace transform of y (t), and then combine the two resultant fractions into

one ratio of polynomials:

Y (s) = A
s−a + B

(s−b)2

= A(s−b)2+B(s−a)
(s−a)(s−b)2

= r(s)
q(s)

(9.21)

Next, we equate the denominators of the last two fractions to �nd q (s):

q (s) = (s− a) (s− b)2

= s3 − (2b+ a) s2 +
(
b2 + 2ab

)
s− ab2

(9.22)

Recalling the start of this module, multiplying q (s) by Y (s) and taking the inverse Laplace
transform will yield the di�erential equation whose homogeneous solution is y (t):

d3

dt3
y (t)− (2b+ a)

d2y (t)
dt2

+
(
b2 + 2ab

) d1y (t)
dt1

− ab2y (t) = 0 (9.23)



Chapter 10

Dynamical Systems1

10.1 "What is a dynamical system?"

When we talk about systems in the most general sense, we are talking about anything that takes in a certain
number of inputs and produces a certain number of outputs based on those inputs.

Generalized System

Figure 10.1: Generalized System

In the �gure above, the u (t) inputs could be the jets on a satellite and the y (t) outputs could be the
gyros describing the "bearing" of the satellite.

There are two basic divisions of systems: static and dynamic. In a static system, the current outputs are
based solely on the instantaneous values of the current inputs. An example of a static system is a resistor
hooked up to a current source:

1This content is available online at <http://cnx.org/content/m2101/2.10/>.
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Resistor connected to a current source

Figure 10.2: Resistor connected to a current source

V (t) = Ri (t) (10.1)

At any given moment, the voltage across the resistor (the output) depends only on the value of the current
running through it (the input). The current at any time t is simply multiplied by the constant value
describing the resistance R to give the voltage V . Now, let's see what happens if we replace the resistor with
a capacitor.

Simple capacitor connected to a current source

Figure 10.3: Simple capacitor connected to a current source

I (t) = C
dv (t)
dt

(10.2)

Solving for the voltage in the current voltage relationship above, we have:

v (t)− v (t0) =
1
C

∫ t

t0

i (t) dt (10.3)
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So in the case of the capacitor, the output voltage depends on the history of the current �owing through it.
In a sense, this system has memory. When a system depends on the present and past input, it is said to be
a dynamical system.

10.2 "Describing dynamical systems"

As seen in voltage-current relationship of a capacitor, di�erential equations have memory and can thus be
used to describe dynamical systems. Take the following RLC circuit as an example:

RLC circuit: 2nd order

Figure 10.4: RLC circuit: 2nd order

In circuits (as well as in other applications), memory elements can be thought of as energy storage
elements. In this circuit diagram, there are two energy-storing components: the capacitor and the inductor.
Since there are two memory elements, it makes sense that the di�erential equation describing this system is
second order.

d2y (t)
dt2

+
7
2
d1y (t)
dt1

+ 9y (t) = 6u (t) (10.4)

In the most general case of describing a system with di�erential equations, higher order derivatives of
output variables can be described as functions of lower order derivatives of the output variables and some
derivatives of the input variables. Note that by saying "function" we make no assumptions about linearity
or time-invariance.

By simply rearranging the equation for the RLC circuit above, we can show that that system is in fact
covered by this general relationship.

Of course, dynamical systems are not limited to electrical circuits. Any system whose output depends
on current and past inputs is a valid dynamical system. Take for example, the following scenario of relating
a satellite's position to its inputs thrusters.

10.2.1 "Planar Orbit Satellite"

Example 10.1
Using a simple model of a satellite, we can say that its position is controlled by a radial thruster
ur, which contributes to its vertical motion, and a tangential thruster uθ which contributes to its
motion tangential to its orbit. To simplify the analysis, let's assume that the satellite circles the
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earth in a planar orbit, and that its position is described by the distance r from the satellite to the
center of the Earth and the angle θ as shown in the �gure.

Simple planar orbit satellite example

Figure 10.5: Simple planar orbit satellite example

Using the laws of motion, the following set of di�erential equations can be deduced:

d2

dt2
r (t)− d1r (t)

dt1
θ2 = ur −

k

r2
(10.5)

2
d1r (t)
dt1

d1θ (t)
dt1

+ r
d1θ (t)
dt1

= uθ (10.6)



Chapter 11

Cayley-Hamilton Theorem1

The Cayley-Hamilton Theorem states that every matrix satis�es its own characteristic polynomial. Given
the following de�nition of the characteristic polynomial of A,

xA (λ) = det (λI −A) (11.1)

this theorem says that xA (A) = 0. Looking at an expanded form of this de�nition, let us say that

xA (λ) = λn + αn−1λ
n−1 + · · ·+ α1λ+ α0

Cayley-Hamilton tells us that we can insert the matrix A in place of the eigenvalue variable λ and that
the result of this sum will be 0:

An + αn−1A
n−1 + · · ·+ α1A+ α0I = 0

One important conclusion to be drawn from this theorem is the fact that a matrix taken to a
certain power can always be expressed in terms of sums of lower powers of that matrix.

An = −αn−1A
n−1 − · · · − α1A− α0I (11.2)

Example 11.1
Take the following matrix and its characteristic polynomial.

A =

 2 1

1 1


xA (λ) = λ2 − 3λ+ 1

Plugging A into the characteristic polynomial, we can �nd an expression for A2 in terms of A and
the identity matrix:

A2 − 3A+ I = 0

equation of characteristic polynomial

A2 = 3A− I (11.3)

1This content is available online at <http://cnx.org/content/m2119/2.13/>.
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To compute A2, we could actually perform the matrix multiplication, as below:

A2 =

 2 1

1 1

 2 1

1 1

 =

 5 3

3 2


Or taking equation of characteristic polynomial (11.3: equation of characteristic polynomial) to
heart, we can compute (with fewer operations) by scaling the elements of A by 3 and then sub-
tracting 1 from the elements on the diagonal.

A2 =

 6 3

3 3

− I =

 5 3

3 2





Chapter 12

Eigenvalue Decomposition1

When we apply a matrix to a vector (i.e. multiply them together), the vector is transformed. An interesting
question to ask ourselves is whether there are any particular combinations of such a matrix and vector whose
result is a new vector that is proportional to the original vector. In math terminology, this question can be
posed as follows: if we have a matrix A: Rn → Rn, does there exist a vector x ∈ Rn and a scalar λ ∈ C such
that Ax = λx? If so, then the complexity of Ax is reduced. It no longer must be thought of as a matrix
multiplication; instead, applying A to x has the simple e�ect of linearly scaling x by some scalar factor λ.

In this situation, where Ax = λx, λ is known as an eigenvalue and x is its associated eigenvector. For a
certain matrix, each one of its eigenvectors is associated with a particular (though not necessarily unique)
eigenvalue. The word "eigen" is German and means "same"; this is appropriate because the vector x after
the matrix multiplication is the same as the original vector x, except for the scaling factor. The following
two examples give actual possible values for the matrices, vectors, and values discussed in general terms
above.  1 −1

−1 1

 1

1

 = 0

 1

1

 (12.1)

Here,

 1

1

 is the eigenvector and 0 is its associated eigenvalue. 2 1

1 2

 1

1

 = 3

 1

1

 (12.2)

In this second example,

 1

1

 is again the eigenvector but the eigenvalue is now 3.

Now we'd like to develop a method of �nding the eigenvalues and eigenvectors of a matrix. We start with
what is basically the de�ning equation behind this whole idea:

Ax = λx (12.3)

Next, we move the λx term to the left-hand side and factor:

(A− λI)x = 0 (12.4)

Here's the important rule to remember: there exists x 6= 0 satisfying the equation if and only if
det (A− λI) = 0. So, to �nd the eigenvalues, we need to solve this determinant equation.

1This content is available online at <http://cnx.org/content/m2116/2.9/>.
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Example 12.1
Given the matrix A, solve for λ in det (A− λI) = 0.

A =

 2 1

1 2

 (12.5)

det (A− λI) = det

 2− λ 1

1 2− λ


= (λ− 2)2 − 1

= λ2 − 4λ+ 3

= 0

(12.6)

λ = {3, 1} (12.7)

After �nding the eigenvalues, we need to �nd the associated eigenvectors. Looking at the de�ning equation
(12.4), we see that the eigenvector x is annihilated by the matrix A − λI. So to solve for the eigenvectors,
we simply �nd the kernel (nullspace) of A− λI using the two eigenvalues we just calculated. If we did this

for the example above, we'd �nd that the eigenvector associated with λ = 3 is

 1

1

 and the eigenvector

associated with λ = 1 is

 1

−1

.
You may be wondering why eigenvalue decomposition is useful. It seems at �rst glance that it is only

helpful in determining the e�ect a matrix has on a certain small subset of possible vectors (the eigenvectors).
However, the bene�ts become clear when you think about how many other vectors can be looked at from an
eigenvalue perspective by decomposing them into components along the available eigenvectors. For instance,

in the above example, let's say we wanted to apply A to the vector

 2

0

. Instead of doing the matrix

multiply (admittedly not too di�cult in this case), the vector

 2

0

 could be split into components in the

direction of the eigenvalues:  2

0

 =

 1

1

+

 1

−1

 (12.8)

Now, each of these components could be scaled by the appropriate eigenvalue and then added back together
to form the net result.

12.1 Multiplicity

Once we have determined the eigenvalues of a particular matrix, we can start to discuss them in terms
of their multiplicity. There are two types of eigenvalue multiplicity: algebraic multiplicity and geometric
multiplicity.
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De�nition 12.1: Algebraic Multiplicity
The number of repetitions of a certain eigenvalue. If, for a certain matrix, λ = {3, 3, 4}, then the
algebraic multiplicity of 3 would be 2 (as it appears twice) and the algebraic multiplicity of 4 would
be 1 (as it appears once). This type of multiplicity is normally represented by the Greek letter α,
where α (λi) represents the algebraic multiplicity of λi.

De�nition 12.2: Geometric Multiplicity
A particular eigenvalue's geometric multiplicity is de�ned as the dimension of the nullspace of λI−A.
This type of multiplicity is normally represented by the Greek letter γ, where γ (λi) represents the
geometric multiplicity of λi.

12.2 Helpful Facts

Here are some helpful facts about certain special cases of matrices.

12.2.1 Rank

A matrix A is full rank if detA 6= 0. However, if λ = 0 then det (λI −A) = 0. This tells us that detA = 0.
Therefore, if a matrix has at least one eigenvalue equal to 0, then it cannot have full rank. Speci�cally, for
an n-dimensional square matrix:

• When one eigenvalue equals 0, rank (A) = n− 1
• When multiple eigenvalues equal 0 rank (A) = n − γ (0). This property holds even if there are other

non-zero eigenvalues

12.2.2 Symmetric Matrices

A symmetric matrix is one whose transpose is equal to itself (A = AT ). These matrices (represented by A
below) have the following properties:

1. Its eigenvalues are real.
2. Its eigenvectors are orthogonal.
3. They are always diagonalizable.
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Chapter 13

Generating Sets and Bases1

Given {x1, . . . , xk} ∈ R, we can de�ne a linear space (vector space) X as

X = span ({x1, . . . , xk})
=

{∑k
i=1 αixi | αi ∈ R

} (13.1)

In this case, {x1, . . . , xk} form what is known as a generating set for the space X. That is to say that
any vector in X can be generated by a linear combination of the vectors {x1, . . . , xk}.

If {x1, . . . , xk} happen to be linearly independent, then they also form a basis for the space X. When
{x1, . . . , xk} de�ne a basis for X, k is the dimension of X. A basis is a special subset of a generating set.
Every generating set includes a set of basis vectors.

Example 13.1
The following three vectors form a generating set for the linear space R2.

x1 =

 1

1

, x2 =

 1

0

, x3 =

 2

1


It is obvious that these three vectors can be combined to form any other two dimensional vector;

in fact, we don't need this many vectors to completely de�ne the space. As these vectors are not
linearly independent, we can eliminate one of them. Seeing that x3 is equal to x1 + x2, we can get
rid of it and say that our basis for R2 is formed by x1 and x2.

1This content is available online at <http://cnx.org/content/m2114/2.9/>.
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Chapter 14

Matrix Exponential1

Since systems are often represented in terms of matrices and solutions of system equations often make use
of the exponential, it makes sense to try and understand how these two concepts can be combined. In many
previous applications, we've seen terms like eat come in handy for talking about system behavior. Here, a
was always a scalar quantity. However, what would happen if the scalar a was replaced by a matrix A? The
result would be what is known as the matrix exponential.

14.1 De�nition

Recall the de�nition of the scalar exponential:

eat = 1 + a
t

1!
+ a2 t

2

2!
+ a3 t

3

3!
+ . . . (14.1)

The de�nition of the matrix exponential is almost identical:

eAt = In +A
t

1!
+A2 t

2

2!
+A3 t

3

3!
+ . . . (14.2)

Where A is n x n and In is the n x n identity matrix. While it is nice to see the resemblance between
these two de�nitions, applying this in�nite series does not turn out to be very e�cient in practice. However,
it can be useful in certain special cases.

Example 14.1

Compute eAt where A =

 0 1

−1 0

. We can start by taking powers of A so that we can use the

formal de�nition.

A =

 0 1

−1 0

 (14.3)

1This content is available online at <http://cnx.org/content/m2112/2.10/>.
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A2 =

 0 1

−1 0

 0 1

−1 0


=

 −1 0

0 −1


= −I

(14.4)

A3 = A2A

= −A
(14.5)

A4 = A2A2

= I
(14.6)

A5 = AA2

= A
(14.7)

A6 = A2A4

= −I
(14.8)

And so the pattern goes, giving:
A4(n−1)+1 = A (14.9)

A4(n−1)+2 = −I (14.10)

A4(n−1)+3 = −A (14.11)

A4(n−1)+4 = I (14.12)

If we �ll in the terms in the de�nition of eat, we'll get the following matrix:

eAt =

 1− t2

2! + t4

4! − . . . t− t3

3! + t5

5! − . . .
−t+ t3

3! −
t5

5! + . . . 1− t2

2! + t4

4! − . . .

 (14.13)

We notice that the sums in this matrix look familiar-in fact, they are the Taylor Series expansions
of the sinusoids. Therefore, the solution further reduces to:

eAt =

 cos (t) sin (t)

−sin (t) cos (t)

 (14.14)
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14.2 General Method

The example above illustrates how the use of the true de�nition to simplify matrix exponentials might only
be easily applied in cases with inherent repetition. There is a more general method involving the Laplace
Transform. In particular,

L
[
eAt
]

= (sI −A)−1
(14.15)

We can verify that this is true by inserting the formal de�nition of the matrix exponential:

L
[
eAt
]

= L
[
I +A t

1! +A2 t2

2! + . . .
]

= 1
sI + 1

s2A+ 1
s3A

2 + . . .

= (sI −A)−1

(14.16)

The jump between the third and fourth equations here may be a bit hard to believe, but this equality
reduces to I = I when both sides are multiplied by sI−A. Taking an inverse Laplace of each side of Laplace
Transform of the equation (14.15) we �nd an expression for the matrix exponential:

eAt = L−1
(

(sI −A)−1
)

(14.17)

Example 14.2
We can do the same example as before, this time using the Laplace-based method.

A =

 0 1

−1 0

 (14.18)

(sI −A)−1 =

 s −1

1 s

−1

= 1
s2+1

 s 1

−11 s


=

 s
s2+1

1
s2+1

−1
s2+1

s
s2+1


(14.19)

Taking the inverse laplace of this gives us

eAt =

 cos (t) sin (t)

−sin (t) cos (t)

 (14.20)

14.3 Properties of the Matrix Exponential

In the scalar case, a product of exponentials eaeb reduces to a single exponential whose power is the sum of
the individual exponents' powers, ea+b. However, in the case of the matrix exponential, this is not true. If
A and B are matrices,

eAeB 6= eA+B (14.21)
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unless A and B are commutative (i.e. AB = BA)
The derivative operates on the matrix exponential the same as it does on the scalar exponential.

d
dt

(
eAt
)

= 0 +A+A2 t
1! +A3 t2

2! + . . .

= A
(
I +A t

1! +A2 t2

2! + . . .
)

= AeAt

(14.22)



Chapter 15

Laplace Properties and Transforms1

15.1 Laplace Properties

L [f (t)] = F (s)

=
∫∞
0−
f (t) e−(st)dt

(15.1)

Property Time-domain Frequency-domain

Linearity af1 (t) + bf2 (t) aF1 (t) + bF2 (t)

Shifting in s-domain es0tf (t) F (s− s0)

Time Scaling (a > 0) f (at) (1− a)F (s− a)

Convolution (causal functions) f1 (t) ∗ f2 (t) F1 (s)F2 (s)

Di�erentiation in Time d
dtf (t) sF (s)− f (0−)

Di�erentiation in Freq. − (tf (t)) d
dsF (s)

Integration in Time
∫ t
0−
f (τ) dτ (1− s)F (s)

Figure 15.1

15.2 Unilateral Laplace Transforms

Note: I (t) is a step function.

1This content is available online at <http://cnx.org/content/m2110/2.9/>.
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Time-domain Frequency-domain

δ (t) 1

I (t) 1
s

tI (t) 1
s2

tnI (t) n!
sn+1

eatI (t) 1
s−a

teatI (t) 1
(s−a)2

cos (at) I (t) s
s2+a2

sin (at) I (t) a
s2+a2

Figure 15.2



Chapter 16

Laplace Domain Solutions to State and
Output Equations1

As always, it is useful to look at the solutions to the state and output equations from a Laplace domain
perspective. We start with the general forms of the state and output equations.

x′ (t) = Ax+Bu (16.1)

y = Cx+Du (16.2)

Let's take a look at the state equation. In the time-domain version of this analysis, we had to use a
combination of derivatives and integrals to �nd the solution x (t). Making an analogy to Laplace-domain
equations, we know that derivatives and integrals in time equate to multiplies and divides in frequency. So,
we suspect that �nding the Laplace-domain solution X (s) might be signi�cantly easier. We will start by
taking the Laplace transform of the state equation.

L [x′ (t) = Ax+Bu] (16.3)

sX (s)− x (0) = AX (s) +BU (s) (16.4)

If we collect the X (s) terms on the left-hand side, we can come up with

(sI −A)X (s) = x (0) +BU (s) (16.5)

We see immediately that we the solution for X (s) is staring us in the face. All we have to do is get the
sI − A to the other side. Remembering that this term is actually a matrix, we know we can't just divide
through by it; instead, we left-multiply both sides of the equation with the inverse of this term. This yields

X (s) = (sI −A)−1
x (0) + (sI −A)−1

BU (s) (16.6)

If we take the time-domain solution for x (t) found before, we can take its Laplace transform and arrive at
this same result.

L
[
x (t) = eAtx (0) +

∫ t

0

eA(t−τ)Bu (τ) dτ
]

= X (s) (16.7)

You can see how this equation would transform into X(s) result equation. We know that the Laplace

transform of the matrix exponential is (sI −A)−1
. The �rst term is simply this quantity times the scalar

1This content is available online at <http://cnx.org/content/m2108/2.8/>.
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EQUATIONS

x (0). Since the integral term has the form of a convolution, the Laplace-domain equivalent is simple a
multiplication.

Finding the Laplace-domain output equation solution is just as easy. Again, we start by taking the
Laplace transform of the output equation. This gives us

Y (s) = CX (s) +DU (s) (16.8)

You might be thinking that this is the end result: we have an expression for Y (s). However, we must
remember that we want these solutions to be in terms of known quantities. Namely, these quantities are the
initial conditions and the inputs. So what we need to get rid of is the X (s) term. Fortunately, we just found
an expression for X (s) in terms of the initial conditions and the inputs. Plugging in that equation into the
output equation solution, we get

Y (s) = C
(

(sI −A)−1
x (0) + (sI −A)−1

BU (s)
)

+DU (s) (16.9)

When we multiply the C through and collect the U (s) terms, we get a �nal expression for the output
equation solution:

Y (s) = C
(

(sI −A)−1
x (0)

)
+
(
C(sI −A)−1

B +D
)
U (s) (16.10)

It is interesting to note that the two addends in this equation represent the free response (the initial condition
term) and the forced response (the input term) of the system.



Chapter 17

Time Domain State and Output
Equations1

note: x and u are functions of time, and the notation d
dt (x) implies d

dtx (t).

Given the state equations and output equations

d

dt
x (t) = Ax+Bu (17.1)

y = Cx+Du (17.2)

we would like to be able to �nd solutions for x and y in terms of the initial state of the system and the
system's input. To �nd such solutions, we begin with an examination of a scalar (n = 1, m = 1) state
equation:

d

dt
x (t) = ax+ bu (17.3)

If we looked at a special case of this equation, one where the input u was 0, we'd have d
dtx (t) = ax. We've

seen this many times before; to solve this, we need a function whose derivative is directly proportional to
itself. This function is the exponential function. Therefore, in solving the more general case presented by
the state equation (17.3), we expect that the exponential function will also come into play.

Starting with the state equation (17.3), we can collect like terms, multiply through by e−(at), and rewrite
the left-hand side of the derivative equation (17.4) in terms of the derivative. (We take this last step after
noticing that the left-hand side of the derivation equation (17.4) looks like the derivative product rule has
already been applied to it.)

e−(at) d
1x (t)
dt1

− ae−(at)x (t) = be−(at)u (t) (17.4)

d

dt

(
e−(at)x (t)

)
= e−(at)bu (t) (17.5)

Since we are searching for x (t) instead of its derivative, we will integrate both sides from t0 to t.∫ t

t0

d1e−(at)x (t)
dt1

dt =
∫ t

t0

e−(at)bu (t) dt (17.6)

1This content is available online at <http://cnx.org/content/m2107/2.9/>.
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In the left-hand side of this equation, the integral and the derivative counteract each other and we are left
with the di�erence of the function e−(at)x (t) evaluated at the upper and lower integration limits. To avoid
confusion, the variable of integration will be changed from t (which is now a constant limit in the integral)
to τ .

e−(at)x (t)− e−(at0)x (t0) =
∫ t

t0

e−(aτ)bu (τ) dτ (17.7)

We now move the x (t0) term to the other side and divide through by e−(at). This leaves us with a solution
for the state variable x (t) in the scalar case:

x (t) = ea(t−t0)x (t0) +
∫ t

t0

ea(t−τ)bu (τ) dτ (17.8)

What happens if we let t0 go to −∞? The �rst term on the right-hand side will go to zero since x (−∞) = 0.
Then, if we say that h (t) = eatb, the second term can be rewritten as∫ t

−∞
h (t− τ)u (τ) dτ (17.9)

This is the convolution equation h ∗ u.
For the scalar case, the solution to the output equation y (t) has the same basic form as the solution to

the state equation:

y (t) = cea(t−t0)x (t0) +
∫ t

t0

cea(t−τ)bu (τ) dτ + d (u (t)) (17.10)

Again, we can see the convolution in the second term.
The general matrix forms of the solutions for the state and output equations follow the same pattern.

The only di�erences are that we use the matrix exponential instead of the scalar exponential, and that we
use the matrices A, B, C, and D instead of the scalars a, b, c, and d.

x (t) = eAtx (0) +
∫ t

0

eA(t−τ)Bu (τ) dτ (17.11)

y (t) = CeAtx (0) +
∫ t

0

CeA(t−τ)Bu (τ) dτ +Du (t) (17.12)

The convolution term is easy to see in the solution for x (t). However, it takes a little regrouping to �nd it
in the solution for y (t). If we pull the D matrix into the integral (by multiplying it by the impulse function,
δ, we once again have the integral of a function of t− τ being multiplied by the input (convolution).

y (t) = CeAtx (0) +
∫ t

0

(
CeA(t−τ)B +Dδ (t− τ)

)
u (τ) dτ (17.13)



Chapter 18

Matrix Inversion1

Let's say we have the square n x n matrix A composed of real numbers. By "square", we mean it has the
same number of rows as columns.

A =


a1,1 . . . a1,n

...
. . .

...

an,1 . . . an,n

 (18.1)

The subscripts of the real numbers in this matrix denote the row and column numbers, respectively (i.e.
a1,2 holds the position at the intersection of the �rst row and the second column).

We will denote the inverse of this matrix as A−1. A matrix inverse has the property that when it is
multiplied by the original matrix (on the left or on the right), the result will be the identity matrix.

AA−1 = A−1A

= I
(18.2)

To compute the inverse of A, two steps are required. Both involve taking determinants ( detA) of
matrices. The �rst step is to �nd the adjoint ( AH) of the matrix A. It is computed as follows:

AH =


α1,1 . . . α1,n

...
. . .

...

αn,1 . . . αn,n

 (18.3)

αi,j = −1i+jdetAij (18.4)

where Aij is the (n− 1) x (n− 1) matrix obtained from A by eliminating its i-th column and j-th row.
Note that we are not eliminating the i-th row and j-th column as you might expect.

To �nish the process of determining the inverse, simply divide the adjoint by the determinant of the
original matrix A .

A−1 =
1

detA
AH (18.5)

1This content is available online at <http://cnx.org/content/m2113/2.10/>.
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Example 18.1

A =

 a b

c d

 (18.6)

Find the inverse of the above matrix.
The �rst step is to compute the terms in the adjoint matrix:

α1,1 = −12d (18.7)

α1,2 = −13b (18.8)

α2,1 = −13c (18.9)

α2,2 = −14a (18.10)

Therefore,

AH =

 d −b
−c a

 (18.11)

We then compute the determinant to be ad− bc. Dividing through by this quantity yields the
inverse of A:

A−1 =
1

ad− bc

 d −b
−c a

 (18.12)



Chapter 19

Matrix Representation of Systems1

19.1 State Equations

Knowing that a system's state describes its dynamics, or memory, it is also useful to examine how the state
of a system evolves over time. A system's state will vary based on the current values of the state as well as
the inputs to the system:

d1y (t)
dt1

+ y (t) = 0 (19.1)

Looking at an example will help to see why calculating the time-varying behavior of the state is important.

Example 19.1
A system is described by the following di�erential equation:

d2y (t)
dt2

+ 3
d2y (t)
dt2

+ 2y (t) = 0 (19.2)

The state of this system is

x (t) =

 x1 (t)

x2 (t)


=

 y (t)
d1y(t)
dt1

 (19.3)

The state x (t) (a vector) is composed of two state variables x1 (t) and x2 (t). We would like to
be able to talk about the time-varying state in terms of these state variables. That is, we'd like an
expression where d

dtx (t) can be written in terms of x1 (t) and x2 (t). From state equation (19.3)

above, we see that d
dtx1 (t) simply equals d

dty (t). In the same equation we also notice that d
dty (t)

equals d
dtx2 (t). Therefore, the derivative of the �rst state variable exactly equals the second state

variable.

d
dtx1 (t) = d

dty (t)

= x2 (t)
(19.4)

We can follow the same process for x2 (t). Again from state equation (19.3), we see that the �rst
derivative of x2 (t) equals the second derivative of y (t). At this stage, we can bring in information

1This content is available online at <http://cnx.org/content/m2106/2.11/>.
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from the system's di�erential equation. That equation (the �rst one in this example) also contains
the second derivative of y (t). If we solve for it we get

d2

dt2
y (t) = −3

d1y (t)
dt1

− 2y (t) + u (t) (19.5)

We already know that d
dty (t) equals x2 (t) and that y (t) equals x1 (t). Putting all of this together,

we can get an expression for d
dtx2 (t) in terms of the state variables and the input variable.

d
dtx2 (t) = d2

dt2 y (t)

= −3d
1y(t)
dt1 − 2y (t) + u (t)

= −3x2 (t)− 2x1 (t) + u (t)

(19.6)

The important thing to notice here is that by looking at the time-varying behavior of the state, we
have been able to reduce the complexity of the problem. Instead of one second-order di�erential
equation we now have two �rst-order di�erential equations.

Think about a case where we might have 5, 10, or even 20 state variables. In such an instance,
it would be di�cult to work with so many equations. For this reason (and in order to have a more
compact notation), we represent these state variable equations in terms of matrices. The set of
equations above can be written as:

d

dt

 x1 (t)

x2 (t)

 =

 0 1

−2 −3

 x1 (t)

x2 (t)

+

 0

1

u (t) (19.7)

By letting x (t) =

 x1 (t)

x2 (t)

, A =

 0 1

−2 −3

, B =

 0

1

, we can rewrite this equation as:

d

dt
x (t) = Ax (t) +Bu (t) (19.8)

This is called a state equation.

State equations are always �rst-order di�erential equations. All of the dynamics and memory of the system
are characterized in the state equations. In general, in a system with n state variables and m inputs, A is n
x n, x (t) is n x 1, B is n x m, and u (t) is m x 1.

State Equation Matrices

Figure 19.1: State Equation Matrices



51

19.2 Output Equations

Now that we've seen how to examine a system with respect to its state equations, we can move on to
equations de�ning the relationships between the outputs of the system and the state and input variables.
The outputs of a system can be written as sums of linear combinations of state variables and input variables.
If in the example above the output y (t) depended only on the �rst state variable, we could write y (t) in
matrix form:

y (t) = x1 (t)

=
(

1 0
) x1 (t)

x2 (t)

 (19.9)

More generally, we can express the output (or outputs) as:

y (t) = Ax (t) +Du (t) (19.10)

In a system with m inputs, n state variables, and p outputs, y (t) is p x 1, C is p x n, x (t) is n x 1, D is p x
m, and u (t) is n x 1. Output equations are only algebraic equations; there are no di�erential equations and
therefore, there is no memory component.

If we assume that m = p = 1 and D = 0, we can elininate x (t) in a combination of the state equations
and output equations to get the input/output relation q (d− d (t)) y (t) = p (d− d (t))u (t). Here the degree
of q equals the degree of p.

Example 19.2
Let's develop state and output equations for the following circuit diagram:

Example Circuit 1

Figure 19.2: Example Circuit 1

There are two energy-storage elements in this diagram: the inductor and the capacitor. As we
know that energy-storage elements give systems memory, it makes sense that the state variables
should be the current iL �owing through the inductor and the voltage vC across the capacitor. By
using Kircho�'s laws around the left and center loops, respectively, we can �nd the following two
equations:

u = iL − 1
diL
dt

+ vC (19.11)

iL = vC − 2− 1
dvC
dt

(19.12)
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These equations can easily be rearranged to have the derivatives on the left-hand side equaling
linear combinations of state variables and inputs on the right. These are the state equations. The
�gure also quickly tells us that the output y is equal to the voltage across the capacitor, vC .

We can now rewrite the state and output equations in matrix form: diL
dt

dvC

dt

 =

 −2 −2

3 −3− 2

 iL

vC

+

 2

0

 (19.13)

y =
(

0 1
) iL

vC

+
(

0
)
u (19.14)

19.3 Compact System Notation

We now introduce one more simple way to simplify the representation of systems. Basically, to better use
the tools of linear algebra, we will put all four of the matrices from the state and output equations (i.e., A,
B, C, and D) into one large partitioned matrix:

Compact System Matrix Notation

Figure 19.3: Compacty System Matrix Notation

Example 19.3
In this example we'll �nd the state and output equations for the following circuit, as well as
represent the system using the compact notation described above.
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Example Circuit 2

Figure 19.4: Example Circuit 2

Here, u and y are the input and output currents, respectively. x1 and x2 are the state variables.
Using Kircho�'s laws and the i-v relation of a capacitor, we can �nd the following three equations:

u = y + x1 (19.15)

x1 = A
dx2

dt
(19.16)

Ry = L
[
dx1

dt

]
+ x2 (19.17)

Through simple rearranging and substitution of the terms, we �nd the state and output equations:

State equations:

d

dt
(x1) = −1x2 −R (u− x1) (19.18)

d

dt
(x2) = (1−A)x1 (19.19)

Output equation:

y = −x1 + u (19.20)

This equations can be more compactly written as:

 A B

A D

 =


 (−R)− L −1− L

1−A 0

  R− L
0

(
1 0

) (
0
)

 (19.21)
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Example 19.4
The simple oscillator is de�ned by the following di�erential equation:

d2y

dt2
+ y = u (19.22)

The states are x1 = y (which is also the output equation) and x2 = d
dt (y). These can be rewritten

in state equation form as:

d

dt
(x1) = x2 (19.23)

d

dt
(x2) = −x1 + u (19.24)

The compact matrix notation is:

 A B

A D

 =


 0 1

−1 0

  0

1

(
1 0

) (
0
)
 (19.25)
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De�ning the State for an n-th Order
Di�erential Equation1

Consider the n-th order linear di�erential equation:

q (s) y (t) = p (s)u (t) (20.1)

where s = d
d(t) and where

q (s) = sn + αn−1s
n−1 + · · ·+ α1s+ α0 (20.2)

p (s) = βn−1s
n−1 + · · ·+ β1s+ β0 (20.3)

One way to de�ne state variables is by introducing the auxiliary variable w which satis�es the di�erential
equation:

q (s)w (t) = u (t) (20.4)

The state variables can then be chosen as derivatives of w . Furthermore the output is related to this
auxiliary variable as follows:

y (t) = p (s)w (t) (20.5)

The proof in the next three equations shows that the introduction of this variable w does not change the
system in any way. The �rst equation uses a simple substition based on the di�erential equation (20.4). Then
the order of p (s) and q (s) are interchanged. Lastly, y is substituted in place of p (s)w (t) (using output
equation (20.5)). The result is the original equation describing our system.

p (s) q (s)w (t) = p (s)u (t) (20.6)

q (s) p (s)w (t) = p (s)u (t) (20.7)

q (s) y (t) = p (s)u (t) (20.8)

1This content is available online at <http://cnx.org/content/m2105/2.11/>.
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DIFFERENTIAL EQUATION

Using this auxillary variable, we can directly write the A, B and C matrices. A is the companion-form
matrix; its last row (except for a 0 in the �rst position) contains the alpha coe�cients from the q (s):

A =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0
. . . . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 1

−α0 −α1 −α2 −α3 . . . −αn−1


(20.9)

The B vector has zeros except for the n-th row which is a 1.

B =


0

0
...

1

 (20.10)

C can be expressed as

C =



β0

β1

β2

...

βn−1


(20.11)

When all of these conditions are met, the state is

x =



w

sw

s2w
...

sn−1w


(20.12)

In conclusion, if the degree of p is less than that of q, we can obtain a state-space representation by inserting
the coe�ccients of p and q in the matrices A, B and C as shown above.



Chapter 21

Partial Fraction Expansion1

Splitting up a ratio of large polynomials into a sum of ratios of small polynomials can be a useful tool,
especially for many problems involving Laplace-like transforms. This technique is known as partial fraction
expansion. Here's an example of one ratio being split into a sum of three simpler ratios:

8x2 + 3x− 21
x3 − 7x− 6

=
1

x+ 2
+

3
x− 3

+
4

x+ 1
(21.1)

There are several methods for expanding a rational function via partial fractions. These include the
method of clearing fractions, the Heaviside "cover-up" method, and di�erent combinations of these two.
For many cases, the Heaviside "cover-up" method is the easiest, and is therefore the method that we will
introduce here. For a more complete discussion, see Signal Processing and Linear Systems by B.P. Lathi,
Berkeley-Cambridge Press, 1998, pp-24-33. Some of the material below is based upon this book.

21.1 Heaviside "Cover-Up" Method

21.1.1 No Repeated Roots

Let's say we have a proper function G (x) = N(x)
D(x) (by proper we mean that the degree m of the numerator

N (x) is less than the degree p of denominator D (x) ). In this section we assume that there are no repeated
roots of the polynomial D (x).

The �rst step is to factor the denominator D (x):

G (x) =
N (x)

(x− a1) (x− a2) . . . (x− ap)
(21.2)

where a1 . . . ap are the roots of D (x). We can then rewrite G (x) as a sum of partial fractions:

G (x) =
α1

x− a1
+

α2

x− a2
+ · · ·+ αp

x− ap
(21.3)

where a1 . . . ap are constants. Now, to complete the process, we must determine the values of these α
coe�cients. Let's look at how to �nd α1. If we multiply both sides of the equation of G(x) as a sum of
partial fractions (21.3) by x− a1 and then let x = a1, all of the terms on the right-hand side will go to zero
except for α1. Therefore, we'll be left over with:

α1 = (x− a1)G (x) |x=a1
(21.4)

1This content is available online at <http://cnx.org/content/m2111/2.14/>.
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We can easily generalize this to a solution for any one of the unknown coe�cients:

αr = (x− ar)G (x) |x=ar
(21.5)

This method is called the "cover-up" method because multiplying both sides by x−ar can be thought of
as simply using one's �nger to cover up this term in the denominator of G (x). With a �nger over the term
that would be canceled by the multiplication, you can plug in the value x = ar and �nd the solution for αr.

Example 21.1
In this example, we'll work through the partial fraction expansion of the ratio of polynomials
introduced above. Before doing a partial fraction expansion, you must make sure that the ratio
you are expanding is proper. If it is not, you should do long division to turn it into the sum of a
proper fraction and a polynomial. Once this is done, the �rst step is to factor the denominator of
the function:

8x2 + 3x− 21
x3 − 7x− 6

=
8x2 + 3x− 21

(x+ 2) (x− 3) (x+ 1)
(21.6)

Now, we set this factored function equal to a sum of smaller fractions, each of which has one of
the factored terms for a denominator.

8x2 + 3x− 21
(x+ 2) (x− 3) (x+ 1)

=
α1

x+ 2
+

α2

x− 3
+

α3

x+ 1
(21.7)

To �nd the alpha terms, we just cover up the corresponding denominator terms in G (x) and
plug in the root associated with the alpha:

α1 = (x+ 2)G (x) |x=−2

= 8x2+3x−21
(x−3)(x+1) |x=−2

= 1

(21.8)

α2 = (x− 3)G (x) |x=3

= 8x2+3x−21
(x+2)(x+1) |x=3

= 3

(21.9)

α3 = (x+ 3)G (x) |x=−1

= 8x2+3x−21
(x+2)(x−3) |x=−1

= 4

(21.10)

We now have our completed partial fraction expansion:

8x2 + 3x− 21
(x+ 2) (x− 3) (x+ 1)

=
1

x+ 2
+

3
x− 3

+
4

x+ 1
(21.11)
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21.1.2 Repeated Roots

When the function G (x) has a repeated root in its denominator, as in

G (x) =
N (x)

(x− b)r (x− a1) (x− a2) . . . (x− aj)
(21.12)

Somewhat more special care must be taken to �nd the partial fraction expansion. The non-repeated
terms are expanded as before, but for the repeated root, an extra fraction is added for each instance of the
repeated root:

G (x) =
β0

(x− b)r
+

β1

(x− b)r−1 + · · ·+ βr−1

x− b
+

α1

x− a1
+

α2

x− a2
+ · · ·+ αj

x− aj
(21.13)

All of the alpha constants can be found using the non-repeated roots method above. Finding the beta
coe�cients (which are due to the repeated root) has the same Heaviside feel to it, except that this time we
will add a twist by using the derivative to eliminate some unwanted terms.

Starting o� directly with the cover-up method, we can �nd β0. By multiplying both sides by (x− b)r,
we'll get:

(x− b)rG (x) = β0 +β1 (x− b) + · · ·+βr−1(x− b)r−1 +α1
(x− b)r

x− a1
+α2

(x− b)r

x− a2
+ · · ·+αj

(x− b)r

x− aj
(21.14)

Now that we have "covered up" the (x− b)r term in the denominator of G (x), we plug in x = b to each
side; this cancels every term on the right-hand side except for β0, leaving the formula

β0 = (x− b)rG (x) |x=b (21.15)

To �nd the other values of the beta coe�cients, we can take advantage of the derivative. By taking the
derivative of the equation after cover-up (21.14) (with respect to x the right-hand side becomes β1 plus terms
containing an x− b in the numerator. Again, plugging in x = b eliminates everything on the right-hand side
except for β1, leaving us with a formula for β1:

β1 =
d(x− b)rG (x)

dx
|x=b (21.16)

Generalizing over this pattern, we can continue to take derivatives to �nd the other beta terms. The
solution for all beta terms is

βk =
1
k!
dk(x− b)rG (x)

dxk
|x=b (21.17)

note: To check if you've done the partial fraction expansion correctly, just add all of the partial
fractions together to see if their sum equals the original ratio of polynomials.

21.2 Finding Partial Fractions in Matlab

Matlab can be a useful tool in �nding partial fraction expansions when the ratios become too unwieldy to
expand by hand. It can handle symbolic variables. For example, if you type syms s, s will be treated as a
symbolic variable. You can then use it as such when you make function assignments.

If you've done this and have then made a function, say H (s), which is a ratio of two polynomials in the
symbolic variable s, there are two ways to get the partial fraction expansion of it. A trick way is to say
diff(int(H)). When you use these functions together, Matlab gives back H expanded into partial fractions.
There's also a more formal way to do it using the residue command. Type help residue in Matlab for
details.
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Chapter 22

Linear Time Invariant Systems1

22.1 Introduction

Linearity and time invariance are two system properties that greatly simplify the study of systems that exhibit
them. In our study of signals and systems, we will be especially interested in systems that demonstrate both
of these properties, which together allow the use of some of the most powerful tools of signal processing.

22.2 Linear Time Invariant Systems

22.2.1 Linear Systems

If a system is linear, this means that when an input to a given system is scaled by a value, the output of the
system is scaled by the same amount.

Linear Scaling

(a) (b)

Figure 22.1

In Figure 22.1(a) above, an input x to the linear system L gives the output y. If x is scaled by a value
α and passed through this same system, as in Figure 22.1(b), the output will also be scaled by α.

A linear system also obeys the principle of superposition. This means that if two inputs are added
together and passed through a linear system, the output will be the sum of the individual inputs' outputs.

1This content is available online at <http://cnx.org/content/m2102/2.24/>.
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(a) (b)

Figure 22.2

Superposition Principle

Figure 22.3: If Figure 22.2 is true, then the principle of superposition says that Figure 22.3 (Superpo-
sition Principle) is true as well. This holds for linear systems.

That is, if Figure 22.2 is true, then Figure 22.3 (Superposition Principle) is also true for a linear system.
The scaling property mentioned above still holds in conjunction with the superposition principle. Therefore,
if the inputs x and y are scaled by factors α and β, respectively, then the sum of these scaled inputs will
give the sum of the individual scaled outputs:

(a) (b)

Figure 22.4
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Superposition Principle with Linear Scaling

Figure 22.5: Given Figure 22.4 for a linear system, Figure 22.5 (Superposition Principle with Linear
Scaling) holds as well.

Example 22.1
Consider the system H1 in which

H1 (f (t)) = tf (t) (22.1)

for all signals f . Given any two signals f, g and scalars a, b

H1 (af (t) + bg (t)) = t (af (t) + bg (t)) = atf (t) + btg (t) = aH1 (f (t)) + bH1 (g (t)) (22.2)

for all real t. Thus, H1 is a linear system.

Example 22.2
Consider the system H2 in which

H2 (f (t)) = (f (t))2 (22.3)

for all signals f . Because

H2 (2t) = 4t2 6= 2t2 = 2H2 (t) (22.4)

for nonzero t, H2 is not a linear system.

22.2.2 Time Invariant Systems

A time-invariant system has the property that a certain input will always give the same output (up to
timing), without regard to when the input was applied to the system.
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Time-Invariant Systems

(a) (b)

Figure 22.6: Figure 22.6(a) shows an input at time t while Figure 22.6(b) shows the same input
t0 seconds later. In a time-invariant system both outputs would be identical except that the one in
Figure 22.6(b) would be delayed by t0.

In this �gure, x (t) and x (t− t0) are passed through the system TI. Because the system TI is time-
invariant, the inputs x (t) and x (t− t0) produce the same output. The only di�erence is that the output
due to x (t− t0) is shifted by a time t0.

Whether a system is time-invariant or time-varying can be seen in the di�erential equation (or di�erence
equation) describing it. Time-invariant systems are modeled with constant coe�cient equations.
A constant coe�cient di�erential (or di�erence) equation means that the parameters of the system are not
changing over time and an input now will give the same result as the same input later.

Example 22.3
Consider the system H1 in which

H1 (f (t)) = tf (t) (22.5)

for all signals f . Because

ST (H1 (f (t))) = ST (tf (t)) = (t− T ) f (t− T ) 6= tf (t− T ) = H1 (f (t− T )) = H1 (ST (f (t))) (22.6)

for nonzero T , H1 is not a time invariant system.

Example 22.4
Consider the system H2 in which

H2 (f (t)) = (f (t))2 (22.7)

for all signals f . For all real T and signals f ,

ST (H2 (f (t))) = ST

(
f(t)2

)
= (f (t− T ))2 = H2 (f (t− T )) = H2 (ST (f (t))) (22.8)

for all real t. Thus, H2 is a time invariant system.

22.2.3 Linear Time Invariant Systems

Certain systems are both linear and time-invariant, and are thus referred to as LTI systems.
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Linear Time-Invariant Systems

(a) (b)

Figure 22.7: This is a combination of the two cases above. Since the input to Figure 22.7(b) is a scaled,
time-shifted version of the input in Figure 22.7(a), so is the output.

As LTI systems are a subset of linear systems, they obey the principle of superposition. In the �gure
below, we see the e�ect of applying time-invariance to the superposition de�nition in the linear systems
section above.

(a) (b)

Figure 22.8

Superposition in Linear Time-Invariant Systems

Figure 22.9: The principle of superposition applied to LTI systems

22.2.3.1 LTI Systems in Series

If two or more LTI systems are in series with each other, their order can be interchanged without a�ecting
the overall output of the system. Systems in series are also called cascaded systems.
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Cascaded LTI Systems

(a)

(b)

Figure 22.10: The order of cascaded LTI systems can be interchanged without changing the overall
e�ect.

22.2.3.2 LTI Systems in Parallel

If two or more LTI systems are in parallel with one another, an equivalent system is one that is de�ned as
the sum of these individual systems.

Parallel LTI Systems

(a) (b)

Figure 22.11: Parallel systems can be condensed into the sum of systems.



67

Example 22.5
Consider the system H3 in which

H3 (f (t)) = 2f (t) (22.9)

for all signals f . Given any two signals f, g and scalars a, b

H3 (af (t) + bg (t)) = 2 (af (t) + bg (t)) = a2f (t) + b2g (t) = aH3 (f (t)) + bH3 (g (t)) (22.10)

for all real t. Thus, H3 is a linear system. For all real T and signals f ,

ST (H3 (f (t))) = ST (2f (t)) = 2f (t− T ) = H3 (f (t− T )) = H3 (ST (f (t))) (22.11)

for all real t. Thus, H3 is a time invariant system. Therefore, H3 is a linear time invariant system.

Example 22.6
As has been previously shown, each of the following systems are not linear or not time invariant.

H1 (f (t)) = tf (t) (22.12)

H2 (f (t)) = (f (t))2 (22.13)

Thus, they are not linear time invariant systems.

22.3 Linear Time Invariant Demonstration

Figure 22.12: Interact(when online) with the Mathematica CDF above demonstrating Linear Time
Invariant systems. To download, right click and save �le as .cdf.

22.4 LTI Systems Summary

Two very important and useful properties of systems have just been described in detail. The �rst of these,
linearity, allows us the knowledge that a sum of input signals produces an output signal that is the summed
original output signals and that a scaled input signal produces an output signal scaled from the original
output signal. The second of these, time invariance, ensures that time shifts commute with application of
the system. In other words, the output signal for a time shifted input is the same as the output signal for the
original input signal, except for an identical shift in time. Systems that demonstrate both linearity and time
invariance, which are given the acronym LTI systems, are particularly simple to study as these properties
allow us to leverage some of the most powerful tools in signal processing.
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Chapter 23

I/O and I/S/O Relationships in Time
and Frequency1

23.1 I/O and I/S/O representation of SISO linear systems

I/O I/S/O

variables:
(u, y)

variables: (u, x, y)

dq
dt y (t) =
dp
dt u (t) , n =
deg (q) ≥
deg (p)

d
dtx (t) = Ax (t) +Bu (t) , y (t) = Cx (t) +Du (t)

u (t) , y (t) ∈
R

x (t) ∈ Rn,

 A B

C D

 ∈ Rn+1×n+1

Impulse Response
dq
dth (t) = dp

dt δ (t) h (t) = Dδ (t) + CeAtB, t ≥ 0

H (s) = L [h (t)] = p(s)
q(s) H (s) = D + C(sI −A)−1

B

Poles - characteristic roots - eigenfrequencies

λi, q (λi) = 0, I = 1, . . . , n det (λiI −A) = 0

Zeros

H (zi) = 0⇔ p (zi) , 1, . . . , n det

 ziI −A −B

−C −D

 = 0

Matrix exponential(
eAt =

∑∞
k=0

tk

k!A
k
)
⇒
(
d
dt

(
eAt
)

= AeAt = eAtA
)

L
[
eAt
]

= (sI −A)−1

1This content is available online at <http://cnx.org/content/m10511/2.5/>.
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FREQUENCY

BIBO stability

y = (h, u), requirement

∃∀ u : u : ((‖ u ‖∞ <∞)⇒ ((u)∞ <∞))

⇔ (h)1 =
∫∞
0
|h (t) |dt <∞

⇔ < (λi) < 0⇔ poles ∈ LHP

Solution in the time domain

y (t) = yzi (t) + yzs (t) x (t) = xzi (t) + xzs (t)

y (t) =
∑n
I=1 cie

λit +
∫ t
0−
h (t− τ)u (τ) dτ x (t) = eAtx (0−) +

∫ t
0−
eA(t−τ)Bu (τ) dτ

y (t) = CeAtx (0−) +∫ t
0−

(
Dδ (t− τ) + CeA(t−τ)B

)
u (τ) dτ, h (·) =

Dδ (t− τ) + CeA(t−τ)B

y (t) = CeAtx (0−) +
∫ t
0−
h (t− τ)u (τ) dτ

Laplace Transform: Solution in the frequency domain

Y (s) = r(s)
q(s) +H (s)U (s) X (s) = (sI −A)−1

x (0−) + (sI −A)−1
BU (s)

Y (s) = C(sI −A)−1
x (0−) +(

D + C(sI −A)−1
B
)
U (s) , H (s) = D +

C(sI −A)−1
B

Table 23.1

23.2 De�nition of state from I/O description

Let H (s) = D +
−
p(s)
q(s) , deg

(
−
p

)
< deg (q). De�ne w so that dq

dtw (t) = u (t),
(
y (t) = d

−
p
dt w +Du (t)

)
⇒(

xT =
(
w w1 . . . wn−1

)
∈ Rn

)
, n : degree of q (s).

23.3 Various Responses

De�nition 23.1: Zero-input or free response
response due to initial conditions alone.

De�nition 23.2: Zero-state or forced response
response due to input (forcing function) alone (zero initial condition).

De�nition 23.3: Homogeneous solution
general form of free-response (arbitrary initial conditions).

De�nition 23.4: Particular solution
forced response.

De�nition 23.5: Steady-state response
response obtained for large balues of time T →∞.

De�nition 23.6: Transient response
full response minus steady minus state response.
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Glossary

A Algebraic Multiplicity

The number of repetitions of a certain eigenvalue. If, for a certain matrix, λ = {3, 3, 4}, then the
algebraic multiplicity of 3 would be 2 (as it appears twice) and the algebraic multiplicity of 4
would be 1 (as it appears once). This type of multiplicity is normally represented by the Greek
letter α, where α (λi) represents the algebraic multiplicity of λi.

G Geometric Multiplicity

A particular eigenvalue's geometric multiplicity is de�ned as the dimension of the nullspace of
λI −A. This type of multiplicity is normally represented by the Greek letter γ, where γ (λi)
represents the geometric multiplicity of λi.

H Homogeneous solution

general form of free-response (arbitrary initial conditions).

P Particular solution

forced response.

S Steady-state response

response obtained for large balues of time T →∞.

T Transient response

full response minus steady minus state response.

Z Zero-input or free response

response due to initial conditions alone.

Zero-state or forced response

response due to input (forcing function) alone (zero initial condition).
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