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Overview of Digital Filter Design1

Advantages of FIR �lters

1. Straight forward conceptually and simple to implement
2. Can be implemented with fast convolution
3. Always stable
4. Relatively insensitive to quantization
5. Can have linear phase (same time delay of all frequencies)

Advantages of IIR �lters

1. Better for approximating analog systems
2. For a given magnitude response speci�cation, IIR �lters often require much less computation than an

equivalent FIR, particularly for narrow transition bands

Both FIR and IIR �lters are very important in applications.

Generic Filter Design Procedure

1. Choose a desired response, based on application requirements
2. Choose a �lter class
3. Choose a quality measure
4. Solve for the �lter in class 2 optimizing criterion in 3

Perspective on FIR �ltering

Most of the time, people do L∞ optimal design, using the Parks-McClellan algorithm (Section 1.4). This
is probably the second most important technique in "classical" signal processing (after the Cooley-Tukey
(radix-22) FFT).

Most of the time, FIR �lters are designed to have linear phase. The most important advantage of FIR
�lters over IIR �lters is that they can have exactly linear phase. There are advanced design techniques for
minimum-phase �lters, constrained L2 optimal designs, etc. (see chapter 8 of text). However, if only the
magnitude of the response is important, IIR �lers usually require much fewer operations and are typically
used, so the bulk of FIR �lter design work has concentrated on linear phase designs.

1This content is available online at <http://cnx.org/content/m12776/1.2/>.
2"Decimation-in-time (DIT) Radix-2 FFT" <http://cnx.org/content/m12016/latest/>
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Chapter 1

FIR Filter Design

1.1 Linear Phase Filters1

In general, for −π ≤ ω ≤ π
H (ω) = |H (ω) |e−(iθ(ω))

Strictly speaking, we say H (ω) is linear phase if

H (ω) = |H (ω) |e−(iωK)e−(iθ0)

Why is this important? A linear phase response gives the same time delay for ALL frequencies!
(Remember the shift theorem.) This is very desirable in many applications, particularly when the appearance
of the time-domain waveform is of interest, such as in an oscilloscope. (see Figure 1.1)

1This content is available online at <http://cnx.org/content/m12802/1.2/>.
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4 CHAPTER 1. FIR FILTER DESIGN

Figure 1.1

1.1.1 Restrictions on h(n) to get linear phase

H (ω) =
∑M−1

h=0 h (n) e−(iωn) = h (0) + h (1) e−(iω) + h (2) e−(i2ω) + · · · +

h (M − 1) e−(iω(M−1)) = e−(iω
M−1

2 )
(
h (0) eiω

M−1
2 + · · ·+ h (M − 1) e−(iω

M−1
2 )
)

=

e−(iω
M−1

2 ) ((h (0) + h (M − 1)) cos
(
M−1

2
ω
)

+ (h (1) + h (M − 2)) cos
(
M−3

2
ω
)

+ · · ·+ i
(
h (0) sin

(
M−1

2
ω
)

+ . . .
))

(1.1)

For linear phase, we require the right side of (1.1) to be e−(iθ0)(real,positive function of ω). For θ0 = 0,
we thus require

h (0) + h (M − 1) = real number

h (0)− h (M − 1) = pure imaginary number

h (1) + h (M − 2) = pure real number

h (1)− h (M − 2) = pure imaginary number
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...

Thus h (k) = h∗ (M − 1− k) is a necessary condition for the right side of (1.1) to be real valued, for θ0 = 0.
For θ0 = π

2 , or e
−(iθ0) = −i, we require

h (0) + h (M − 1) = pure imaginary

h (0)− h (M − 1) = pure real number

...

⇒ h (k) = − (h∗ (M − 1− k))

Usually, one is interested in �lters with real-valued coe�cients, or see Figure 1.2 and Figure 1.3.

Figure 1.2: θ0 = 0 (Symmetric Filters). h (k) = h (M − 1− k).

Figure 1.3: θ0 = π
2
(Anti-Symmetric Filters). h (k) = −h (M − 1− k).
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Filter design techniques are usually slightly di�erent for each of these four di�erent �lter types. We will
study the most common case, symmetric-odd length, in detail, and often leave the others for homework
or tests or for when one encounters them in practice. Even-symmetric �lters are often used; the anti-
symmetric �lters are rarely used in practice, except for special classes of �lters, like di�erentiators or Hilbert
transformers, in which the desired response is anti-symmetric.

So far, we have satis�ed the condition that H (ω) = A (ω) e−(iθ0)e−(iωM−1
2 ) where A (ω) is real-valued.

However, we have not assured that A (ω) is non-negative. In general, this makes the design techniques
much more di�cult, so most FIR �lter design methods actually design �lters with Generalized Linear

Phase: H (ω) = A (ω) e−(iωM−1
2 ), where A (ω) is real-valued, but possible negative. A (ω) is called the

amplitude of the frequency response.

note: A (ω) usually goes negative only in the stopband, and the stopband phase response is
generally unimportant.

note: |H (ω) | = ± (A (ω)) = A (ω) e−(iπ 1
2 (1−sign(A(ω)))) where sign (x) =

 1 if x > 0

−1 if x < 0

Example 1.1
Lowpass Filter

Desired |H(ω)|

Figure 1.4

Desired ∠H(ω)

Figure 1.5: The slope of each line is −M−1
2

.
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Actual |H(ω)|

Figure 1.6: A (ω) goes negative.

Actual ∠H(ω)

Figure 1.7: 2π phase jumps due to periodicity of phase. π phase jumps due to sign change in A (ω).

Time-delay introduces generalized linear phase.

note: For odd-length FIR �lters, a linear-phase design procedure is equivalent to a zero-phase
design procedure followed by an M−1

2 -sample delay of the impulse response2. For even-length �lters,
the delay is non-integer, and the linear phase must be incorporated directly in the desired response!

1.2 Window Design Method3

The truncate-and-delay design procedure is the simplest and most obvious FIR design procedure.

Exercise 1.1 (Solution on p. 19.)

Is it any Good?

2"Impulse Response of a Linear System" <http://cnx.org/content/m12041/latest/>
3This content is available online at <http://cnx.org/content/m12790/1.2/>.
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1.2.1 L2 optimization criterion

�nd ∀n, 0 ≤ n ≤ M − 1 : (h [n]), maximizing the energy di�erence between the desired response and the
actual response: i.e., �nd

minhn

{
hn,
∫ π

−π
(|Hd (ω)−H (ω) |)2dω

}
by Parseval's relationship4

minhn

{
hn,
∫ π
−π (|Hd (ω)−H (ω) |)2dω

}
= 2π

∑∞
n=−∞ (|hd [n]− h [n] |)2 =

2π
(∑−1

n=−∞ (|hd [n]− h [n] |)2 +
∑M−1

n=0 (|hd [n]− h [n] |)2 +
∑∞

n=M (|hd [n]− h [n] |)2
) (1.2)

Since ∀n, n < 0n ≥M : (h [n]) this becomes

minhn

{
hn,
∫ π
−π (|Hd (ω)−H (ω) |)2dω

}
=

∑−1
h=−∞ (|hd [n] |)2 +∑M−1

n=0 (|h [n]− hd [n] |)2 +
∑∞

n=M (|hd [n] |)2

note: h [n] has no in�uence on the �rst and last sums.

The best we can do is let

h [n] =

 hd [n] if 0 ≤ n ≤M − 1

0 if else

Thus h [n] = hd [n]w [n],

w [n] =

 1 if 0 ≤ n (M − 1)

0 if else

is optimal in a least-total-sqaured-error ( L2, or energy) sense!

Exercise 1.2 (Solution on p. 19.)

Why, then, is this design often considered undersirable?

For desired spectra with discontinuities, the least-square designs are poor in a minimax (worst-case, or L∞)
error sense.

1.2.2 Window Design Method

Apply a more gradual truncation to reduce "ringing" (Gibb's Phenomenon5)

∀n 0 ≤ n ≤ M− 1 hn = h d nwn : (n 0 ≤ n ≤ M− 1 hn = h d nwn)

note: H (ω) = Hd (ω) ∗W (ω)

The window design procedure (except for the boxcar window) is ad-hoc and not optimal in any usual sense.
However, it is very simple, so it is sometimes used for "quick-and-dirty" designs of if the error criterion is
itself heurisitic.

4"Parseval's Theorem" <http://cnx.org/content/m0047/latest/>
5"Gibbs's Phenomena" <http://cnx.org/content/m10092/latest/>
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1.3 Frequency Sampling Design Method for FIR �lters6

Given a desired frequency response, the frequency sampling design method designs a �lter with a frequency
response exactly equal to the desired response at a particular set of frequencies ωk.

Procedure

∀k, k = [o, 1, . . . , N − 1] :

(
Hd (ωk) =

M−1∑
n=0

h (n) e−(iωkn)

)
(1.3)

note: Desired Response must incluce linear phase shift (if linear phase is desired)

Exercise 1.3 (Solution on p. 19.)

What is Hd (ω) for an ideal lowpass �lter, coto� at ωc?

note: This set of linear equations can be written in matrix form

Hd (ωk) =
M−1∑
n=0

h (n) e−(iωkn) (1.4)


Hd (ω0)

Hd (ω1)
...

Hd (ωN−1)

 =


e−(iω00) e−(iω01) . . . e−(iω0(M−1))

e−(iω10) e−(iω11) . . . e−(iω1(M−1))

...
...

...
...

e−(iωM−10) e−(iωM−11) . . . e−(iωM−1(M−1))




h (0)

h (1)
...

h (M − 1)

 (1.5)

or
Hd = Wh

So

h = W−1Hd (1.6)

note: W is a square matrix for N = M , and invertible as long as ωi 6= ωj + 2πl, i 6= j

1.3.1 Important Special Case

What if the frequencies are equally spaced between 0 and 2π, i.e. ωk = 2πk
M + α

Then

Hd (ωk) =
M−1∑
n=0

h (n) e−(i 2πknM )e−(iαn) =
M−1∑
n=0

(
h (n) e−(iαn)

)
e−(i 2πknM ) = DFT!

so

h (n) e−(iαn) =
1
M

M−1∑
k=0

Hd (ωk) ei
2πnk
M

or

h [n] =
eiαn

M

M−1∑
k=0

Hd [ωk] ei
2πnk
M = eiαnIDFT [Hd [ωk]]

6This content is available online at <http://cnx.org/content/m12789/1.2/>.
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1.3.2 Important Special Case #2

h [n] symmetric, linear phase, and has real coe�cients. Since h [n] = h [M − n], there are only M
2 degrees of

freedom, and only M
2 linear equations are required.

H [ωk] =
∑M−1
n=0 h [n] e−(iωkn)

=


∑M

2 −1
n=0 h [n]

(
e−(iωkn) + e−(iωk(M−n−1))

)
if M even∑M− 3

2
n=0 h [n]

(
e−(iωkn) + e−(iωk(M−n−1))

) (
h
[
M−1

2

]
e−(iωk M−1

2 )
)

if M odd

=

 e−(iωk M−1
2 )2

∑M
2 −1
n=0 h [n] cos

(
ωk
(
M−1

2 − n
))

if M even

e−(iωk M−1
2 )2

∑M− 3
2

n=0 h [n] cos
(
ωk
(
M−1

2 − n
))

+ h
[
M−1

2

]
if M odd

(1.7)

Removing linear phase from both sides yields

A (ωk) =

 2
∑M

2 −1
n=0 h [n] cos

(
ωk
(
M−1

2 − n
))

if M even

2
∑M− 3

2
n=0 h [n] cos

(
ωk
(
M−1

2 − n
))

+ h
[
M−1

2

]
if M odd

Due to symmetry of response for real coe�cients, only M
2 ωk on ω ∈ [0, π) need be speci�ed, with the

frequencies −ωk thereby being implicitly de�ned also. Thus we have M
2 real-valued simultaneous linear

equations to solve for h [n].

1.3.2.1 Special Case 2a

h [n] symmetric, odd length, linear phase, real coe�cients, and ωk equally spaced: ∀k, 0 ≤ k ≤ M − 1 :(
ωk = nπk

M

)
h [n] = IDFT [Hd (ωk)]

= 1
M

∑M−1
k=0 A (ωk) e−(i 2πkM )M−1

2 ei
2πnk
M

= 1
M

∑M−1
k=0 A (k) ei(

2πk
M (n−M−1

2 ))
(1.8)

To yield real coe�cients, A (ω) mus be symmetric

(A (ω) = A (−ω))⇒ (A [k] = A [M − k])

h [n] = 1
M

(
A (0) +

∑M−1
2

k=1 A [k]
(
ei

2πk
M (n−M−1

2 ) + e−(i2πk(n−M−1
2 ))

))
= 1

M

(
A (0) + 2

∑M−1
2

k=1 A [k] cos
(

2πk
M

(
n− M−1

2

)))
= 1

M

(
A (0) + 2

∑M−1
2

k=1 A [k] (−1)kcos
(

2πk
M

(
n+ 1

2

))) (1.9)

Simlar equations exist for even lengths, anti-symmetric, and α = 1
2 �lter forms.

1.3.3 Comments on frequency-sampled design

This method is simple conceptually and very e�cient for equally spaced samples, since h [n] can be computed
using the IDFT.

H (ω) for a frequency sampled design goes exactly through the sample points, but it may be very far
o� from the desired response for ω 6= ωk. This is the main problem with frequency sampled design.

Possible solution to this problem: specify more frequency samples than degrees of freedom, and minimize
the total error in the frequency response at all of these samples.
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1.3.4 Extended frequency sample design

For the samples H (ωk) where 0 ≤ k ≤ M − 1 and N > M , �nd h [n], where 0 ≤ n ≤ M − 1 minimizing
‖ Hd (ωk)−H (ωk) ‖

For ‖ l ‖∞ norm, this becomes a linear programming problem (standard packages availble!)
Here we will consider the ‖ l ‖2 norm.

To minimize the ‖ l ‖2 norm; that is,
∑N−1
n=0 |Hd (ωk)−H (ωk) |, we have an overdetermined set of linear

equations: 
e−(iω00) . . . e−(iω0(M−1))

...
...

...

e−(iωN−10) . . . e−(iωN−1(M−1))

h =


Hd (ω0)

Hd (ω1)
...

Hd (ωN−1)


or

Wh = Hd

The minimum error norm solution is well known to be h =
(
WW

)−1
WHd;

(
WW

)−1
W is well known as

the pseudo-inverse matrix.

note: Extended frequency sampled design discourages radical behavior of the frequency response
between samples for su�ciently closely spaced samples. However, the actual frequency response
may no longer pass exactly through any of the Hd (ωk).

1.4 Parks-McClellan FIR Filter Design7

The approximation tolerances for a �lter are very often given in terms of the maximum, or worst-case,
deviation within frequency bands. For example, we might wish a lowpass �lter in a (16-bit) CD player to
have no more than 1

2 -bit deviation in the pass and stop bands.

H (ω) =

 1− 1
217 ≤ |H (ω) | ≤ 1 + 1

217 if |ω| ≤ ωp
1

217 ≥ |H (ω) | if ωs ≤ |ω| ≤ π

The Parks-McClellan �lter design method e�ciently designs linear-phase FIR �lters that are optimal in
terms of worst-case (minimax) error. Typically, we would like to have the shortest-length �lter achieving
these speci�cations. Figure Figure 1.8 illustrates the amplitude frequency response of such a �lter.

7This content is available online at <http://cnx.org/content/m12799/1.3/>.
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Figure 1.8: The black boxes on the left and right are the passbands, the black boxes in the middle
represent the stop band, and the space between the boxes are the transition bands. Note that overshoots
may be allowed in the transition bands.

Exercise 1.4 (Solution on p. 19.)

Must there be a transition band?

1.4.1 Formal Statement of the L-∞ (Minimax) Design Problem

For a given �lter length (M) and type (odd length, symmetric, linear phase, for example), and a relative
error weighting function W (ω), �nd the �lter coe�cients minimizing the maximum error

argmin
h
argmax

ω∈F
|E (ω) | = argmin

h
‖ E (ω) ‖∞

where
E (ω) = W (ω) (Hd (ω)−H (ω))

and F is a compact subset of ω ∈ [0, π] (i.e., all ω in the passbands and stop bands).

note: Typically, we would often rather specify ‖ E (ω) ‖∞ ≤ δ and minimize over M and h;
however, the design techniques minimize δ for a given M . One then repeats the design procedure
for di�erent M until the minimum M satisfying the requirements is found.
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We will discuss in detail the design only of odd-length symmetric linear-phase FIR �lters. Even-length
and anti-symmetric linear phase FIR �lters are essentially the same except for a slightly di�erent implicit
weighting function. For arbitrary phase, exactly optimal design procedures have only recently been developed
(1990).

1.4.2 Outline of L-∞ Filter Design

The Parks-McClellan method adopts an indirect method for �nding the minimax-optimal �lter coe�cients.

1. Using results from Approximation Theory, simple conditions for determining whether a given �lter is
L∞ (minimax) optimal are found.

2. An iterative method for �nding a �lter which satis�es these conditions (and which is thus optimal) is
developed.

That is, the L∞ �lter design problem is actually solved indirectly.

1.4.3 Conditions for L-∞ Optimality of a Linear-phase FIR Filter

All conditions are based on Chebyshev's "Alternation Theorem," a mathematical fact from polynomial
approximation theory.

1.4.3.1 Alternation Theorem

Let F be a compact subset on the real axis x, and let P (x) be and Lth-order polynomial

P (x) =
L∑
k=0

akx
k

Also, let D (x) be a desired function of x that is continuous on F , andW (x) a positive, continuous weighting
function on F . De�ne the error E (x) on F as

E (x) = W (x) (D (x)− P (x))

and
‖ E (x) ‖∞ = argmax

x∈F
|E (x) |

A necessary and su�cient condition that P (x) is the unique Lth-order polynomial minimizing ‖ E (x) ‖∞ is
that E (x) exhibits at least L+2 "alternations;" that is, there must exist at least L+2 values of x, xk ∈ F ,
k = [0, 1, . . . , L+ 1], such that x0 < x1 < · · · < xL+2 and such that E (xk) = −E (xk+1) = ± (‖ E ‖∞)

Exercise 1.5 (Solution on p. 19.)

What does this have to do with linear-phase �lter design?

1.4.4 Optimality Conditions for Even-length Symmetric Linear-phase Filters

For M even,

A (ω) =
L∑
n=0

h (L− n) cos
(
ω

(
n+

1
2

))
where L = M

2 − 1 Using the trigonometric identity cos (α+ β) = cos (α− β) + 2cos (α) cos (β) to pull out
the ω

2 term and then using the other trig identities (p. 19), it can be shown that A (ω) can be written as

A (ω) = cos
(ω

2

) L∑
k=0

αkcosk (ω)
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Again, this is a polynomial in x = cos (ω), except for a weighting function out in front.

E (ω) = W (ω) (Ad (ω)−A (ω))

= W (ω)
(
Ad (ω)− cos

(
ω
2

)
P (ω)

)
= W (ω) cos

(
ω
2

)( Ad(ω)

cos(ω2 ) − P (ω)
) (1.10)

which implies
E (x) = W ' (x)

(
A'

d (x)− P (x)
)

(1.11)

where

W ' (x) = W
(
(cos (x))−1

)
cos
(

1
2
(cos (x))−1

)
and

A'

d (x) =
Ad

(
(cos (x))−1

)
cos
(

1
2 (cos (x))−1

)
Again, this is a polynomial approximation problem, so the alternation theorem holds. If E (ω) has at least
L+ 2 = M

2 + 1 alternations, the even-length symmetric �lter is optimal in an L∞ sense.
The prototypical �lter design problem:

W =

 1 if |ω| ≤ ωp
δs
δp

if |ωs| ≤ |ω|

See Figure 1.9.
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Figure 1.9

1.4.5 L-∞ Optimal Lowpass Filter Design Lemma

1. The maximum possible number of alternations for a lowpass �lter is L + 3: The proof is that the

extrema of a polynomial occur only where the derivative is zero: ∂P (x)
∂x = 0. Since P ′ (x) is an

(L− 1)th-order polynomial, it can have at most L − 1 zeros. However, the mapping x = cos (ω)
implies that ∂A(ω)

∂ω = 0 at ω = 0 and ω = π, for two more possible alternation points. Finally, the
band edges can also be alternations, for a total of L− 1 + 2 + 2 = L+ 3 possible alternations.

2. There must be an alternation at either ω = 0 or ω = π.
3. Alternations must occur at ωp and ωs. See Figure 1.9.
4. The �lter must be equiripple except at possibly ω = 0 or ω = π. Again see Figure 1.9.

note: The alternation theorem doesn't directly suggest a method for computing the optimal �lter.
It simply tells us how to recognize that a �lter is optimal, or isn't optimal. What we need is an
intelligent way of guessing the optimal �lter coe�cients.
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In matrix form, these L+ 2 simultaneous equations become

1 cos (ω0) cos (2ω0) ... cos (Lω0) 1
W (ω0)

1 cos (ω1) cos (2ω1) ... cos (Lω1) −1
W (ω1)

...
...

. . . ...
...

...
...

...
...

. . .
...

...
...

...
... ...

. . .
...

1 cos (ωL+1) cos (2ωL+1) ... cos (LωL+1)
±(1)

W (ωL+1)





h (L)

h (L− 1)
...

h (1)

h (0)

δ


=



Ad (ω0)

Ad (ω1)
...
...
...

Ad (ωL+1)


or

W

 h

δ

 = Ad

So, for the given set of L+2 extremal frequencies, we can solve for h and δ via (h, δ)T = W−1Ad. Using the
FFT, we can compute A (ω) of h (n), on a dense set of frequencies. If the old ωk are, in fact the extremal
locations of A (ω), then the alternation theorem is satis�ed and h (n) is optimal. If not, repeat the process
with the new extremal locations.

1.4.6 Computational Cost

O
(
L3
)
for the matrix inverse and N log2N for the FFT (N ≥ 32L, typically), per iteration!

This method is expensive computationally due to the matrix inverse.
A more e�cient variation of this method was developed by Parks and McClellan (1972), and is based on

the Remez exchange algorithm. To understand the Remez exchange algorithm, we �rst need to understand
Lagrange Interpoloation.

Now A (ω) is an Lth-order polynomial in x = cos (ω), so Lagrange interpolation can be used to exactly
compute A (ω) from L+ 1 samples of A (ωk), k = [0, 1, 2, ..., L].

Thus, given a set of extremal frequencies and knowing δ, samples of the amplitude response A (ω) can
be computed directly from the

A (ωk) =
(−1)k(1)

W (ωk)
δ +Ad (ωk) (1.12)

without solving for the �lter coe�cients!
This leads to computational savings!
Note that (1.12) is a set of L+ 2 simultaneous equations, which can be solved for δ to obtain (Rabiner,

1975)

δ =
∑L+1
k=0 γkAd (ωk)∑L+1
k=0

(−1)k(1)γk
W (ωk)

(1.13)

where

γk =
L+1∏

i=i6=k,0

1
cos (ωk)− cos (ωi)

The result is the Parks-McClellan FIR �lter design method, which is simply an application of the Remez
exchange algorithm to the �lter design problem. See Figure 1.10.
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Figure 1.10: The initial guess of extremal frequencies is usually equally spaced in the band. Computing
δ costs O

`
L2

´
. Using Lagrange interpolation costs O (16LL) ' O

`
16L2

´
. Computing h (n) costs O

`
L3

´
,

but it is only done once!
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The cost per iteration is O
(
16L2

)
, as opposed to O

(
L3
)
; much more e�cient for large L. Can also

interpolate to DFT sample frequencies, take inverse FFT to get corresponding �lter coe�cients, and zeropad
and take longer FFT to e�ciently interpolate.

1.5 Lagrange Interpolation8

Lagrange's interpolation method is a simple and clever way of �nding the unique Lth-order polynomial that
exactly passes through L + 1 distinct samples of a signal. Once the polynomial is known, its value can
easily be interpolated at any point using the polynomial equation. Lagrange interpolation is useful in many
applications, including Parks-McClellan FIR Filter Design (Section 1.4).

1.5.1 Lagrange interpolation formula

Given an Lth-order polynomial

P (x) = a0 + a1x+ ...+ aLx
L =

L∑
k=0

akx
k

and L+1 values of P (xk) at di�erent xk, k ∈ {0, 1, ..., L}, xi 6= xj , i 6= j, the polynomial can be written as

P (x) =
L∑
k=0

P (xk)
(x− x1) (x− x2) ... (x− xk−1) (x− xk+1) ... (x− xL)

(xk − x1) (xk − x2) ... (xk − xk−1) (xk − xk+1) ... (xk − xL)

The value of this polynomial at other x can be computed via substitution into this formula, or by expanding
this formula to determine the polynomial coe�cients ak in standard form.

1.5.2 Proof

Note that for each term in the Lagrange interpolation formula above,

L∏
i=0,,i6=k

x− xi
xk − xi

=

 1 if x = xk

0 if (x = xj) ∧ (j 6= k)

and that it is an Lth-order polynomial in x. The Lagrange interpolation formula is thus exactly equal to
P (xk) at all xk, and as a sum of Lth-order polynomials is itself an Lth-order polynomial.

It can be shown that the Vandermonde matrix9

1 x0 x0
2 ... x0

L

1 x1 x1
2 ... x1

L

1 x2 x2
2 ... x2

L

...
...

...
. . .

...

1 xL xL
2 ... xL

L





a0

a1

a2

...

aL


=



P (x0)

P (x1)

P (x2)
...

P (xL)


has a non-zero determinant and is thus invertible, so the Lth-order polynomial passing through all L + 1
sample points xj is unique. Thus the Lagrange polynomial expressions, as an Lth-order polynomial passing
through the L+ 1 sample points, must be the unique P (x).

8This content is available online at <http://cnx.org/content/m12812/1.2/>.
9http://en.wikipedia.org/wiki/Vandermonde_matrix
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Solutions to Exercises in Chapter 1

Solution to Exercise 1.1 (p. 7)
Yes; in fact it's optimal! (in a certain sense)
Solution to Exercise 1.2 (p. 8): Gibbs Phenomenon

(a) (b)

Figure 1.11: (a) A (ω), small M (b) A (ω), large M

Solution to Exercise 1.3 (p. 9) e−(iωM−1
2 ) if − ωc ≤ ω ≤ ωc

0 if (−π ≤ ω < −ωc) ∨ (ωc < ω ≤ π)
Solution to Exercise 1.4 (p. 12)
Yes, when the desired response is discontinuous. Since the frequency response of a �nite-length �lter must
be continuous, without a transition band the worst-case error could be no less than half the discontinuity.
Solution to Exercise 1.5 (p. 13)
It's the same problem! To show that, consider an odd-length, symmetric linear phase �lter.

H (ω) =
∑M−1
n=0 h (n) e−(iωn)

= e−(iωM−1
2 )

(
h
(
M−1

2

)
+ 2

∑L
n=1 h

(
M−1

2 − n
)
cos (ωn)

) (1.14)

A (ω) = h (L) + 2
L∑
n=1

h (L− n) cos (ωn) (1.15)

Where L
.= M−1

2 .
Using trigonometric identities (such as cos (nα) = 2cos ((n− 1)α) cos (α)−cos ((n− 2)α)), we can rewrite

A (ω) as

A (ω) = h (L) + 2
L∑
n=1

h (L− n) cos (ωn) =
L∑
k=0

αkcosk (ω)

where the αk are related to the h (n) by a linear transformation. Now, let x = cos (ω). This is a one-to-one
mapping from x ∈ [−1, 1] onto ω ∈ [0, π]. Thus A (ω) is an Lth-order polynomial in x = cos (ω)!

note: The alternation theorem holds for the L∞ �lter design problem, too!

Therefore, to determine whether or not a length-M , odd-length, symmetric linear-phase �lter is optimal in
an L∞ sense, simply count the alternations in E (ω) = W (ω) (Ad (ω)−A (ω)) in the pass and stop bands.
If there are L+ 2 = M+3

2 or more alternations, h (n), 0 ≤ n ≤M − 1 is the optimal �lter!
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Chapter 2

IIR Filter Design

2.1 Overview of IIR Filter Design1

2.1.1 IIR Filter

y (n) = −
M−1∑
k=1

aky (n− k) +
M−1∑
k=0

bkx (n− k)

H (z) =
b0 + b1z

−1 + b2z
−2 + ...+ bMz

−M

1 + a1z−1 + a2z−2 + ...+ aMz−M

2.1.2 IIR Filter Design Problem

Choose {ai}, {bi} to best approximate some desired |Hd (w) | or, (occasionally), Hd (w).
As before, di�erent design techniques will be developed for di�erent approximation criteria.

2.1.3 Outline of IIR Filter Design Material

• Bilinear Transform - Maps ‖ L ‖∞ optimal (and other) analog �lter designs to ‖ L ‖∞ optimal
digital IIR �lter designs.

• Prony's Method - Quasi-‖ L ‖2 optimal method for time-domain �tting of a desired impulse response
(ad hoc).

• Lp Optimal Design - ‖ L ‖p optimal �lter design (1 < p < ∞) using non-linear optimization tech-
niques.

2.1.4 Comments on IIR Filter Design Methods

The bilinear transform method is used to design "typical" ‖ L ‖∞ magnitude optimal �lters. The ‖ L ‖p
optimization procedures are used to design �lters for which classical analog prototype solutions don't ex-
ist. The program by Deczky (DSP Programs Book, IEEE Press) is widely used. Prony/Linear Prediction
techniques are used often to obtain initial guesses, and are almost exclusively used in data modeling, system
identi�cation, and most applications involving the �tting of real data (for example, the impulse response of
an unknown �lter).

1This content is available online at <http://cnx.org/content/m12758/1.2/>.
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2.2 Prototype Analog Filter Design2

2.2.1 Analog Filter Design

Laplace transform:

H (s) =
∫ ∞
−∞

ha (t) e−(st)dt

Note that the continuous-time Fourier transform3 is H (iλ) (the Laplace transform evaluated on the imagi-
nary axis).

Since the early 1900's, there has been a lot of research on designing analog �lters of the form

H (s) =
b0 + b1s+ b2s

2 + ...+ bMs
M

1 + a1s+ a2s2 + ...+ aMsM

A causal IIR �lter cannot have linear phase (no possible symmetry point), and design work for analog �lters
has concentrated on designing �lters with equiriplle (‖ L ‖∞) magnitude responses. These design problems
have been solved. We will not concern ourselves here with the design of the analog prototype �lters, only
with how these designs are mapped to discrete-time while preserving optimality.

An analog �lter with real coe�cients must have a magnitude response of the form

(|H (λ) |)2 = B
(
λ2
)

H (iλ)H (iλ) = b0+b1iλ+b2(iλ)2+b3(iλ)3+...

1+a1iλ+a2(iλ)2+...
H (iλ)

=
b0−b2λ2+b4λ

4+...+iλ(b1−b3λ2+b5λ
4+...)

1−a2λ2+a4λ4+...+iλ(a1−a3λ2+a5λ4+...)
b0−b2λ2+b4λ4+...+iλ(b1−b3λ2+b5λ4+...)
1−a2λ2+a4λ4+...+iλ(a1−a3λ2+a5λ4+...)

= (b0−b2λ2+b4λ
4+...)2

+λ2(b1−b3λ2+b5λ
4+...)2

(1−a2λ2+a4λ4+...)2+λ2(a1−a3λ2+a5λ4+...)2

= B
(
λ2
)

(2.1)

Let s = iλ, note that the poles and zeros of B
(
−s2

)
are symmetric around both the real and imaginary

axes: that is, a pole at p1 implies poles at p1, p1, −p1, and −p1, as seen in Figure 2.1 (s-plane).

2This content is available online at <http://cnx.org/content/m12763/1.2/>.
3"Continuous Time Fourier Transform (CTFT)" <http://cnx.org/content/m10098/latest/>
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s-plane

Figure 2.1

Recall that an analog �lter is stable and causal if all the poles are in the left half-plane, LHP, and is
minimum phase if all zeros and poles are in the LHP.

s = iλ: B
(
λ2
)

= B
(
−s2

)
= H (s)H (−s) = H (iλ)H (− (iλ)) = H (iλ)H (iλ) we can factor B

(
−s2

)
into H (s)H (−s), where H (s) has the left half plane poles and zeros, and H (−s) has the RHP poles and
zeros.

(|H (s) |)2 = H (s)H (−s) for s = iλ, so H (s) has the magnitude response B
(
λ2
)
. The trick to analog

�lter design is to design a good B
(
λ2
)
, then factor this to obtain a �lter with that magnitude response.

The traditional analog �lter designs all take the form B
(
λ2
)

= (|H (λ) |)2 = 1
1+F (λ2) , where F is a

rational function in λ2.

Example 2.1

B
(
λ2
)

=
2 + λ2

1 + λ4

B
(
−s2

)
=

2− s2

1 + s4
=

(√
2− s

) (√
2 + s

)
(s+ α) (s− α) (s+ α) (s− α)

where α = 1+i√
2
.

note: Roots of 1 + sN are N points equally spaced around the unit circle (Figure 2.2).
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Figure 2.2

Take H (s) = LHP factors:

H (s) =
√

2 + s

(s+ α) (s+ α)
=

√
2 + s

s2 +
√

2s+ 1

2.2.2 Traditional Filter Designs

2.2.2.1 Butterworth

B
(
λ2
)

=
1

1 + λ2M

note: Remember this for homework and rest problems!

"Maximally smooth" at λ = 0 and λ =∞ (maximum possible number of zero derivatives). Figure 2.3.

B
(
λ2
)

= (|H (λ) |)2
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Figure 2.3

2.2.2.2 Chebyshev

B
(
λ2
)

=
1

1 + ε2CM
2 (λ)

where CM
2 (λ) is an M th order Chebyshev polynomial. Figure 2.4.
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(a)

(b)

Figure 2.4

2.2.2.3 Inverse Chebyshev

Figure 2.5.
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Figure 2.5

2.2.2.4 Elliptic Function Filter (Cauer Filter)

B
(
λ2
)

=
1

1 + ε2JM
2 (λ)

where JM is the "Jacobi Elliptic Function." Figure 2.6.

Figure 2.6

The Cauer �lter is ‖ L ‖∞ optimum in the sense that for a given M , δp, δs, and λp, the transition
bandwidth is smallest.
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That is, it is ‖ L ‖∞ optimal.

2.3 IIR Digital Filter Design via the Bilinear Transform4

A bilinear transform maps an analog �lter Ha (s) to a discrete-time �lter H (z) of the same order.
If only we could somehow map these optimal analog �lter designs to the digital world while preserving the

magnitude response characteristics, we could make use of the already-existing body of knowledge concerning
optimal analog �lter design.

2.3.1 Bilinear Transformation

The Bilinear Transform is a nonlinear C → C mapping that maps a function of the complex variable s to
a function of a complex variable z. This map has the property that the LHP in s (< (s) < 0) maps to the
interior of the unit circle in z, and the iλ = s axis maps to the unit circle eiω in z.

Bilinear transform:

s = α
z − 1
z + 1

H (z) = Ha

(
s = α

z − 1
z + 1

)
note: iλ = α e

iω−1
eiω+1 = α

(eiω−1)(e−(iω)+1)
(eiω+1)(e−(iω)+1) = 2isin(ω)

2+2cos(ω) = iαtan
(
ω
2

)
, so λ ≡ αtan

(
ω
2

)
, ω ≡

2arctan
(
λ
α

)
. Figure 2.7.

4This content is available online at <http://cnx.org/content/m12757/1.2/>.
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Figure 2.7

The magnitude response doesn't change in the mapping from λ to ω, it is simply warped nonlinearly
according to H (ω) = Ha

(
αtan

(
ω
2

))
, Figure 2.8.
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(a)

(b)

Figure 2.8: The �rst image implies the second one.

note: This mapping preserves ‖ L ‖∞ errors in (warped) frequency bands. Thus optimal Cauer
(‖ L ‖∞) �lters in the analog realm can be mapped to ‖ L ‖∞ optimal discrete-time IIR �lters
using the bilinear transform! This is how IIR �lters with ‖ L ‖∞ optimal magnitude responses are
designed.

note: The parameter α provides one degree of freedom which can be used to map a single λ0 to
any desired ω0:

λ0 = αtan
(ω0

2

)
or

α =
λ0

tan
(
ω0
2

)
This can be used, for example, to map the pass-band edge of a lowpass analog prototype �lter to
any desired pass-band edge in ω. Often, analog prototype �lters will be designed with λ = 1 as a
band edge, and α will be used to locate the band edge in ω. Thus an M th order optimal lowpass
analog �lter prototype can be used to design any M th order discrete-time lowpass IIR �lter with
the same ripple speci�cations.

2.3.2 Prewarping

Given speci�cations on the frequency response of an IIR �lter to be designed, map these to speci�cations in
the analog frequency domain which are equivalent. Then a satisfactory analog prototype can be designed
which, when transformed to discrete-time using the bilinear transformation, will meet the speci�cations.
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Example 2.2
The goal is to design a high-pass �lter, ωs = ωs, ωp = ωp, δs = δs, δp = δp; pick up some α = α0.
In Figure 2.9 the δi remain the same and the band edges are mapped by λi = α0tan

(
ωi
2

)
.

(a)

(b)

Figure 2.9: Where λs = α0tan
`
ωs
2

´
and λp = α0tan

`ωp
2

´
.

2.4 Impulse-Invariant Design5

Pre-classical, adhoc-but-easy method of converting an analog prototype �lter to a digital IIR �lter. Does
not preserve any optimality.

Impulse invariance means that digital �lter impulse response exactly equals samples of the analog proto-
type impulse response:

∀n : (h (n) = ha (nT ))

How is this done?
The impulse response of a causal, stable analog �lter is simply a sum of decaying exponentials:

Ha (s) =
b0 + b1s+ b2s

2 + ...+ bps
p

1 + a1s+ a2s2 + ...+ apsp
=

A1

s− s1
+

A2

s− s2
+ ...+

Ap
s− sp

which implies
ha (t) =

(
A1e

s1t +A2e
s2t + ...+Ape

spt
)
u (t)

5This content is available online at <http://cnx.org/content/m12760/1.2/>.
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For impulse invariance, we desire

h (n) = ha (nT ) =
(
A1e

s1nT +A2e
s2nT + ...+Ape

spnT
)
u (n)

Since

Ake
(skT )nu (n) ≡ Akz

z − eskT
where |z| > |eskT |, and

H (z) =
p∑
k=1

Ak
z

z − eskT

where |z| > maxk
{
k, |eskT |

}
.

This technique is used occasionally in digital simulations of analog �lters.

Exercise 2.1 (Solution on p. 38.)

What is the main problem/drawback with this design technique?

2.5 Digital-to-Digital Frequency Transformations6

Given a prototype digital �lter design, transformations similar to the bilinear transform can also be devel-
oped.

Requirements on such a mapping z−1 = g
(
z−1
)
:

1. points inside the unit circle stay inside the unit circle (condition to preserve stability)
2. unit circle is mapped to itself (preserves frequency response)

This condition (list, item 2, p. 32) implies that e−(iω1) = g
(
e−(iω)

)
= |g (ω) |ei∠(g(ω)) requires that

|g
(
e−(iω)

)
| = 1 on the unit circle!

Thus we require an all-pass transformation:

g
(
z−1
)

=
p∏
k=1

z−1 − αk
1− αkz−1

where |αK | < 1, which is required to satisfy this condition (list, item 1, p. 32).

Example 2.3: Lowpass-to-Lowpass

z1
−1 =

z−1 − a
1− az−1

which maps original �lter with a cuto� at ωc to a new �lter with cuto� ω′c,

a =
sin
(

1
2 (ωc − ω′c)

)
sin
(

1
2 (ωc + ω′c)

)
Example 2.4: Lowpass-to-Highpass

z1
−1 =

z−1 + a

1 + az−1

which maps original �lter with a cuto� at ωc to a frequency reversed �lter with cuto� ω′c,

a =
cos
(

1
2 (ωc − ω′c)

)
cos
(

1
2 (ωc + ω′c)

)
(Interesting and occasionally useful!)

6This content is available online at <http://cnx.org/content/m12759/1.2/>.
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2.6 Prony's Method7

Prony's Method is a quasi-least-squares time-domain IIR �lter design method.
First, assume H (z) is an "all-pole" system:

H (z) =
b0

1 +
∑M
k=1 akz

−k
(2.2)

and

h (n) = −
M∑
k=1

akh (n− k) + b0δ (n)

where h (n) = 0, n < 0 for a causal system.

note: For h = 0, h (0) = b0.

Let's attempt to �t a desired impulse response (let it be causal, although one can extend this technique
when it isn't) hd (n).

A true least-squares solution would attempt to minimize

ε2 =
∞∑
n=0

(|hd (n)− h (n) |)2

where H (z) takes the form in (2.2). This is a di�cult non-linear optimization problem which is known to
be plagued by local minima in the error surface. So instead of solving this di�cult non-linear problem, we
solve the deterministic linear prediction problem, which is related to, but not the same as, the true
least-squares optimization.

The deterministic linear prediction problem is a linear least-squares optimization, which is easy to solve,
but it minimizes the prediction error, not the (|desired− actual|)2 response error.

Notice that for n > 0, with the all-pole �lter

h (n) = −
M∑
k=1

akh (n− k) (2.3)

the right hand side of this equation (2.3) is a linear predictor of h (n) in terms of the M previous samples
of h (n).

For the desired reponse hd (n), one can choose the recursive �lter coe�cients ak to minimize the squared
prediction error

εp
2 =

∞∑
n=1

(
|hd (n) +

M∑
k=1

akhd (n− k) |

)2

where, in practice, the ∞ is replaced by an N .
In matrix form, that's

hd (0) 0 ... 0

hd (1) hd (0) ... 0
...

...
. . .

...

hd (N − 1) hd (N − 2) ... hd (N −M)




a1

a2

...

aM

 ' −


hd (1)

hd (2)
...

hd (N)


or

Hda ' −hd
7This content is available online at <http://cnx.org/content/m12762/1.2/>.
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The optimal solution is

alp = −
((
Hd

HHd

)−1
Hd

Hhd

)
Now suppose H (z) is an M th-order IIR (ARMA) system,

H (z) =
∑M
k=0 bkz

−k

1 +
∑M
k=1 akz

−k

or

h (n) = −
∑M
k=1 akh (n− k) +

∑M
k=0 bkδ (n− k)

=

 −
∑M
k=1 akh (n− k) + bn if 0 ≤ n ≤M

−
∑M
k=1 akh (n− k) if n > M

(2.4)

For n > M , this is just like the all-pole case, so we can solve for the best predictor coe�cients as before:
hd (M) hd (M − 1) ... hd (1)

hd (M + 1) hd (M) ... hd (2)
...

...
. . .

...

hd (N − 1) hd (N − 2) ... hd (N −M)




a1

a2

...

aM

 '


hd (M + 1)

hd (M + 2)
...

hd (N)


or

Hd a ' hd
and

aopt =
((

Hd

)H
Hd

)−1

Hd
H
hd

Having determined the a's, we can use them in (2.4) to obtain the bn's:

bn =
M∑
k=1

akhd (n− k)

where hd (n− k) = 0 for n− k < 0.

For N = 2M , Hd is square, and we can solve exactly for the ak's with no error. The bk's are also chosen
such that there is no error in the �rst M + 1 samples of h (n). Thus for N = 2M , the �rst 2M + 1 points of
h (n) exactly equal hd (n). This is called Prony's Method. Baron de Prony invented this in 1795.

For N > 2M , hd (n) = h (n) for 0 ≤ n ≤ M , the prediction error is minimized for M + 1 < n ≤ N , and
whatever for n ≥ N + 1. This is called the Extended Prony Method.

One might prefer a method which tries to minimize an overall error with the numerator coe�cients,
rather than just using them to exactly �t hd (0) to hd (M).

2.6.1 Shank's Method

1. Assume an all-pole model and �t hd (n) by minimizing the prediction error 1 ≤ n ≤ N .
2. Compute v (n), the impulse response of this all-pole �lter.
3. Design an all-zero (MA, FIR) �lter which �ts v (n) ∗ hz (n) ' hd (n) optimally in a least-squares sense

(Figure 2.10).



35

Figure 2.10: Here, h (n) ' hd (n).

The �nal IIR �lter is the cascade of the all-pole and all-zero �lter.
This (list, item 3, p. 34) is is solved by

minb k

b k,
N∑
n=0

(
|hd (n)−

M∑
k=0

bkv (n− k) |

)2


or in matrix form

v (0) 0 0 ... 0

v (1) v (0) 0 ... 0

v (2) v (1) v (0) ... 0
...

...
...

. . .
...

v (N) v (N − 1) v (N − 2) ... v (N −M)





b0

b1

b2
...

bM


'



hd (0)

hd (1)

hd (2)
...

hd (N)


Which has solution:

bopt =
(
V HV

)−1
V Hh

Notice that none of these methods solve the true least-squares problem:

mina,b

{
a, , , b,

∞∑
n=0

(|hd (n)− h (n) |)2
}

which is a di�cult non-linear optimization problem. The true least-squares problem can be written as:

minα,β

α, , , β,
∞∑
n=0

(
|hd (n)−

M∑
i=1

αie
βin|

)2


since the impulse response of an IIR �lter is a sum of exponentials, and non-linear optimization is then used
to solve for the αi and βi.
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2.7 Linear Prediction8

Recall that for the all-pole design problem, we had the overdetermined set of linear equations:
hd (0) 0 ... 0

hd (1) hd (0) ... 0
...

...
. . .

...

hd (N − 1) hd (N − 2) ... hd (N −M)




a1

a2

...

aM

 ' −


hd (1)

hd (2)
...

hd (N)


with solution a =

(
Hd

HHd

)−1
Hd

Hhd
Let's look more closely at Hd

HHd = R. rij is related to the correlation of hd with itself:

rij =
N−max{i,j}∑

k=0

hd (k)hd (k + |i− j|)

Note also that:

Hd
Hhd =



rd (1)

rd (2)

rd (3)
...

rd (M)


where

rd (i) =
N−i∑
n=0

hd (n)hd (n+ i)

so this takes the form aopt = −
(
RHrd

)
, or Ra = −r, where R is M ×M , a is M × 1, and r is also M × 1.

Except for the changing endpoints of the sum, rij ' r (i− j) = r (j − i). If we tweak the problem slightly
to make rij = r (i− j), we get:

r (0) r (1) r (2) ... r (M − 1)

r (1) r (0) r (1) ...
...

r (2) r (1) r (0) ...
...

...
...

...
. . .

...

r (M − 1) ... ... ... r (0)





a1

a2

a3

...

aM


= −



r (1)

r (2)

r (3)
...

r (M)


The matrix R is Toeplitz (diagonal elements equal), and a can be solved for with O

(
M2
)
computations

using Levinson's recursion.

2.7.1 Statistical Linear Prediction

Used very often for forecasting (e.g. stock market).
Given a time-series y (n), assumed to be produced by an auto-regressive (AR) (all-pole) system:

y (n) = −
M∑
k=1

aky (n− k) + u (n)

8This content is available online at <http://cnx.org/content/m12761/1.2/>.
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where u (n) is a white Gaussian noise sequence which is stationary and has zero mean.
To determine the model parameters {ak} minimizing the variance of the prediction error, we seek

mina k

{
a k, E

[(
y (n) +

∑M
k=1 aky (n− k)

)2
]}

= mina k

{
a k, E

[
y2 (n) + 2

∑M
k=1 aky (n) y (n− k) +

∑M
k=1 aky (n− k)

∑M
l=1 aly (n− l)

]}
=

mina k

{
a k, E [y2 (n)] + 2

∑M
k=1 akE [y (n) y (n− k)] +

∑M
k=1

∑M
l=1 akalE [y (n− k) y (n− l)]

}(2.5)

note: The mean of y (n) is zero.

ε2 = r (0) + 2
(
r (1) r (2) r (3) ... r (M)

)


a1

a2

a3

.

.

.

aM


+

(
a1 a2 a3 ... aM

)


r (0) r (1) r (2) ... r (M − 1)

r (1) r (0) r (1) ...
.

.

.

r (2) r (1) r (0) ...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r (M − 1) ... ... ... r (0)



(2.6)

∂ε2

∂a
= 2r + 2Ra (2.7)

Setting (2.7) equal to zero yields: Ra = −r These are called the Yule-Walker equations. In practice, given
samples of a sequence y (n), we estimate r (n) as

r (n) =
1
N

N−n∑
k=0

y (n) y (n+ k) ' E [y (k) y (n+ k)]

which is extremely similar to the deterministic least-squares technique.
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Solutions to Exercises in Chapter 2

Solution to Exercise 2.1 (p. 32)
Since it samples the non-bandlimited impulse response of the analog prototype �lter, the frequency response
aliases. This distorts the original analog frequency and destroys any optimal frequency properties in the
resulting digital �lter.
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