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Chapter 2

Chapter 2

2.1 Review of Probability Theory1

The focus of this course is on digital communication, which involves transmission of information, in its
most general sense, from source to destination using digital technology. Engineering such a system requires
modeling both the information and the transmission media. Interestingly, modeling both digital or analog
information and many physical media requires a probabilistic setting. In this chapter and in the next one we
will review the theory of probability, model random signals, and characterize their behavior as they traverse
through deterministic systems disturbed by noise and interference. In order to develop practical models for
random phenomena we start with carrying out a random experiment. We then introduce de�nitions, rules,
and axioms for modeling within the context of the experiment. The outcome of a random experiment is
denoted by ω. The sample space Ω is the set of all possible outcomes of a random experiment. Such outcomes
could be an abstract description in words. A scienti�c experiment should indeed be repeatable where each
outcome could naturally have an associated probability of occurrence. This is de�ned formally as the ratio
of the number of times the outcome occurs to the total number of times the experiment is repeated.

2.1.1 Random Variables

A random variable is the assignment of a real number to each outcome of a random experiment.

Figure 2.1

Example 2.1
Roll a dice. Outcomes {ω1, ω2, ω3, ω4, ω5, ω6}

1This content is available online at <http://cnx.org/content/m10224/2.16/>.
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ωi = i dots on the face of the dice.
X (ωi) = i

2.1.2 Distributions

Probability assignments on intervals a < X ≤ b
De�nition 2.1: Cumulative distribution
The cumulative distribution function of a random variable X is a function F X (R 7→ R ) such that

F X (b ) = Pr [X ≤ b]
= Pr [{ω ∈ Ω | X (ω) ≤ b}]

(2.1)

Figure 2.2

De�nition 2.2: Continuous Random Variable
A random variable X is continuous if the cumulative distribution function can be written in an
integral form, or

F X (b ) =
∫ b

−∞
f X (x ) dx (2.2)

and f X (x ) is the probability density function (pdf) (e.g., F X (x ) is di�erentiable and f X (x ) =
d
dx (F X (x )))
De�nition 2.3: Discrete Random Variable
A random variable X is discrete if it only takes at most countably many points (i.e., F X ( · ) is
piecewise constant). The probability mass function (pmf) is de�ned as

p X (xk ) = Pr [X = xk]

= F X (xk )− limit
x(x→xk) · (x<xk)

F X (x )
(2.3)

Two random variables de�ned on an experiment have joint distribution

F X,,,Y (a, b ) = Pr [X ≤ a, Y ≤ b]
= Pr [{ω ∈ Ω | (X (ω) ≤ a) · (Y (ω) ≤ b)}]

(2.4)
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Figure 2.3

Joint pdf can be obtained if they are jointly continuous

F X,,,Y (a, b ) =
∫ b

−∞

∫ a

−∞
f X,Y (x, y ) dxdy (2.5)

(e.g., f X,Y (x, y ) = ∂2F X,,,Y (x,y )
∂x∂y )

Joint pmf if they are jointly discrete

p X,Y (xk, yl ) = Pr [X = xk, Y = yl] (2.6)

Conditional density function

fY |X (y|x) =
f X,Y (x, y )
f X (x )

(2.7)

for all x with f X (x ) > 0 otherwise conditional density is not de�ned for those values of x with f X (x ) = 0
Two random variables are independent if

f X,Y (x, y ) = f X (x ) f Y (y ) (2.8)

for all x ∈ R and y ∈ R. For discrete random variables,

p X,Y (xk, yl ) = p X (xk ) p Y (yl ) (2.9)

for all k and l.

2.1.3 Moments

Statistical quantities to represent some of the characteristics of a random variable.

−
g (X) = E [g (X)]

=


∫∞
−∞ g (x) f X (x ) dx if continuous∑
k g (xk) p X (xk ) if discrete

(2.10)
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• Mean

µX =
−
X (2.11)

• Second moment

E
[
X2
]

=
−
X2 (2.12)

• Variance

Var (X) = σ (X)2

=
−

(X − µX)2

=
−
X2 −µX2

(2.13)

• Characteristic function

ΦX (u) =
−

ejuX (2.14)

for u ∈ R, where j =
√
−1

• Correlation between two random variables

RXY =
−

XY ∗

=


∫∞
−∞

∫∞
−∞ xy∗f X,Y (x, y ) dxdy if X and Y are jointly continuous∑

k

∑
l xky

∗
l p X,Y (xk, yl ) if X and Y are jointly discrete

(2.15)

• Covariance

CXY = Cov (X,Y )

=
−

(X − µX) (Y − µY )∗

= RXY − µXµ∗Y

(2.16)

• Correlation coe�cient

ρXY =
Cov (X,Y )
σXσY

(2.17)

De�nition 2.4: Uncorrelated random variables
Two random variables X and Y are uncorrelated if ρXY = 0.
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Chapter 3

3.1 Introduction to Stochastic Processes1

3.1.1 De�nitions, distributions, and stationarity

De�nition 3.1: Stochastic Process
Given a sample space, a stochastic process is an indexed collection of random variables de�ned for
each ω ∈ Ω.

Xt (ω) , t ∈ R (3.1)

Example 3.1
Received signal at an antenna as in Figure 3.1.

Figure 3.1

1This content is available online at <http://cnx.org/content/m10235/2.15/>.
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For a given t, Xt (ω) is a random variable with a distribution

First-order distribution

FXt (b) = Pr [Xt ≤ b]
= Pr [{ω ∈ Ω | Xt (ω) ≤ b}]

(3.2)

De�nition 3.2: First-order stationary process
If FXt (b) is not a function of time then Xt is called a �rst-order stationary process.

Second-order distribution

FXt1 ,Xt2 (b1, b2) = Pr [Xt1 ≤ b1, Xt2 ≤ b2] (3.3)

for all t1 ∈ R, t2 ∈ R, b1 ∈ R, b2 ∈ R
Nth-order distribution

FXt1 ,Xt2 ,...,XtN (b1, b2, . . . , bN ) = Pr [Xt1 ≤ b1, . . . , XtN ≤ bN ] (3.4)

Nth-order stationary : A random process is stationary of order N if

FXt1 ,Xt2 ,...,XtN (b1, b2, . . . , bN ) = FXt1+T ,Xt2+T ,...,XtN+T (b1, b2, . . . , bN ) (3.5)

Strictly stationary : A process is strictly stationary if it is Nth order stationary for all N .

Example 3.2
Xt = cos (2πf0t+ Θ (ω)) where f0 is the deterministic carrier frequency and Θ (ω) : Ω → R
is a random variable de�ned over [−π, π] and is assumed to be a uniform random variable; i.e.,

fΘ (θ) =

 1
2π if θ ∈ [−π, π]

0 otherwise

FXt (b) = Pr [Xt ≤ b]
= Pr [cos (2πf0t+ Θ) ≤ b]

(3.6)

FXt (b) = Pr [−π ≤ 2πf0t+ Θ ≤ −arccos (b)] + Pr [arccos (b) ≤ 2πf0t+ Θ ≤ π] (3.7)

FXt (b) =
∫ (−arccos(b))−2πf0t

(−π)−2πf0t
1

2πdθ +
∫ π−2πf0t

arccos(b)−2πf0t
1

2πdθ

= (2π − 2arccos (b)) 1
2π

(3.8)

fXt (x) = d
dx

(
1− 1

πarccos (x)
)

=

 1
π
√

1−x2 if |x| ≤ 1

0 otherwise

(3.9)

This process is stationary of order 1.
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Figure 3.2

The second order stationarity can be determined by �rst considering conditional densities and
the joint density. Recall that

Xt = cos (2πf0t+ Θ) (3.10)

Then the relevant step is to �nd

Pr [Xt2 ≤ b2 | Xt1 = x1] (3.11)

Note that
(Xt1 = x1 = cos (2πf0t+ Θ))⇒ (Θ = arccos (x1)− 2πf0t) (3.12)

Xt2 = cos (2πf0t2 + arccos (x1)− 2πf0t1)

= cos (2πf0 (t2 − t1) + arccos (x1))
(3.13)

Figure 3.3
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FXt2 ,Xt1 (b2, b1) =
∫ b1

−∞
fXt1 (x1)Pr [Xt2 ≤ b2 | Xt1 = x1] dx 1 (3.14)

Note that this is only a function of t2 − t1.
Example 3.3
Every T seconds, a fair coin is tossed. If heads, then Xt = 1 for nT ≤ t < (n+ 1)T . If tails, then
Xt = −1 for nT ≤ t < (n+ 1)T .

Figure 3.4

pXt (x) =

 1
2 if x = 1
1
2 if x = −1

(3.15)

for all t ∈ R. Xt is stationary of order 1.
Second order probability mass function

pXt1Xt2 (x1, x2) = pXt2 |Xt1 (x2|x1) pXt1 (x1) (3.16)

The conditional pmf

pXt2 |Xt1 (x2|x1) =

 0 if x2 6= x1

1 if x2 = x1

(3.17)

when nT ≤ t1 < (n+ 1)T and nT ≤ t2 < (n+ 1)T for some n.

pXt2 |Xt1 (x2|x1) = pXt2 (x2) (3.18)

for all x1 and for all x2 when nT ≤ t1 < (n+ 1)T and mT ≤ t2 < (m+ 1)T with n 6= m

pXt2Xt1
(x2, x1) =


0 if x2 6= x1for nT ≤ t1, t2 < (n+ 1)T

pXt1
(x1) if x2 = x1for nT ≤ t1, t2 < (n+ 1)T

pXt1
(x1) pXt2

(x2) if n 6= mfor (nT ≤ t1 < (n+ 1)T ) · (mT ≤ t2 < (m+ 1)T )

(3.19)
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3.2 Second-order Description2

3.2.1 Second-order description

Practical and incomplete statistics

De�nition 3.3: Mean
The mean function of a random process Xt is de�ned as the expected value of Xt for all t's.

µXt = E [Xt]

=


∫∞
−∞ xf Xt (x ) dx if continuous∑∞
k=−∞ xkp Xt (xk ) if discrete

(3.20)

De�nition 3.4: Autocorrelation
The autocorrelation function of the random process Xt is de�ned as

RX (t2, t1) = E [Xt2Xt1
∗]

=


∫∞
−∞

∫∞
−∞ x2x1

∗f Xt2 ,Xt1 (x2, x1 ) dx 1dx 2 if continuous∑∞
k=−∞

∑∞
l=−∞ xlxk

∗p Xt2 ,Xt1 (xl, xk ) if discrete

(3.21)

Rule 3.1:
If Xt is second-order stationary, then RX (t2, t1) only depends on t2 − t1.
Proof:

RX (t2, t1) = E [Xt2Xt1
∗]

=
∫∞
−∞

∫∞
−∞ x2x1

∗f Xt2 ,Xt1 (x2, x1 ) dx 2dx 1
(3.22)

RX (t2, t1) =
∫∞
−∞

∫∞
−∞ x2x1

∗f Xt2−t1 ,X0 (x2, x1 ) dx 2dx 1

= RX (t2 − t1, 0)
(3.23)

If RX (t2, t1) depends on t2 − t1 only, then we will represent the autocorrelation with only one variable
τ = t2 − t1

RX (τ) = RX (t2 − t1)

= RX (t2, t1)
(3.24)

Properties

1. RX (0) ≥ 0
2. RX (τ) = RX (−τ)∗

3. |RX (τ) | ≤ RX (0)

2This content is available online at <http://cnx.org/content/m10236/2.13/>.
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Example 3.4
Xt = cos (2πf0t+ Θ (ω)) and Θ is uniformly distributed between 0 and 2π. The mean function

µX (t) = E [Xt]

= E [cos (2πf0t+ Θ)]

=
∫ 2π

0
cos (2πf0t+ θ) 1

2πdθ

= 0

(3.25)

The autocorrelation function

RX (t+ τ, t) = E [Xt+τXt
∗]

= E [cos (2πf0 (t+ τ) + Θ) cos (2πf0t+ Θ)]

= 1/2E [cos (2πf0τ)] + 1/2E [cos (2πf0 (2t+ τ) + 2Θ)]

= 1/2cos (2πf0τ) + 1/2
∫ 2π

0
cos (2πf0 (2t+ τ) + 2θ) 1

2πdθ

= 1/2cos (2πf0τ)

(3.26)

Not a function of t since the second term in the right hand side of the equality in (3.26) is zero.

Example 3.5
Toss a fair coin every T seconds. Since Xt is a discrete valued random process, the statistical
characteristics can be captured by the pmf and the mean function is written as

µX (t) = E [Xt]

= 1/2×−1 + 1/2× 1

= 0

(3.27)

RX (t2, t1) =
∑
kk

∑
ll xkxlp Xt2 ,Xt1 (xk, xl )

= 1× 1× 1/2− 1×−1× 1/2

= 1

(3.28)

when nT ≤ t1 < (n+ 1)T and nT ≤ t2 < (n+ 1)T

RX (t2, t1) = 1× 1× 1/4− 1×−1× 1/4− 1× 1× 1/4 + 1×−1× 1/4

= 0
(3.29)

when nT ≤ t1 < (n+ 1)T and mT ≤ t2 < (m+ 1)T with n 6= m

RX (t2, t1) =

 1 if (nT ≤ t1 < (n+ 1)T ) · (nT ≤ t2 < (n+ 1)T )

0 otherwise
(3.30)

A function of t1 and t2.

De�nition 3.5: Wide Sense Stationary
A process is said to be wide sense stationary if µX is constant and RX (t2, t1) is only a function of
t2 − t1.
Rule 3.2:
If Xt is strictly stationary, then it is wide sense stationary. The converse is not necessarily true.
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De�nition 3.6: Autocovariance
Autocovariance of a random process is de�ned as

CX (t2, t1) = E
[
(Xt2 − µX (t2)) (Xt1 − µX (t1))∗

]
= RX (t2, t1)− µX (t2)µX (t1)∗

(3.31)

The variance of Xt is Var (Xt) = CX (t, t)
Two processes de�ned on one experiment (Figure 3.5).

Figure 3.5

De�nition 3.7: Crosscorrelation
The crosscorrelation function of a pair of random processes is de�ned as

RXY (t2, t1) = E [Xt2Yt1
∗]

=
∫∞
−∞

∫∞
−∞ xyf Xt2 ,Yt1 (x, y ) dxdy

(3.32)

CXY (t2, t1) = RXY (t2, t1)− µX (t2)µY (t1)∗ (3.33)

De�nition 3.8: Jointly Wide Sense Stationary
The random processes Xt and Yt are said to be jointly wide sense stationary if RXY (t2, t1) is a
function of t2 − t1 only and µX (t) and µY (t) are constant.

3.3 Linear Filtering3

Integration

Z (ω) =
∫ b

a

Xt (ω) dt (3.34)

Linear Processing

Yt =
∫ ∞
−∞

h (t, τ)Xτdτ (3.35)

Di�erentiation

Xt
′ =

d

dt
(Xt) (3.36)

3This content is available online at <http://cnx.org/content/m10237/2.10/>.
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Properties

1.
−
Z=

−∫ b
a
Xt (ω) dt=

∫ b
a
µX (t) dt

2.
−
Z2=

−∫ b
a
Xt2dt 2

∫ b
a
Xt1
∗dt 1=

∫ b
a

∫ b
a
RX (t2, t1) dt 1dt 2

Figure 3.6

µY (t) =
−∫∞

−∞ h (t, τ)Xτdτ

=
∫∞
−∞ h (t, τ)µX (τ) dτ

(3.37)

If Xt is wide sense stationary and the linear system is time invariant

µY (t) =
∫∞
−∞ h (t− τ)µXdτ

= µX
∫∞
−∞ h (t′) dt′

= µY

(3.38)

RY X (t2, t1) =
−

Yt2Xt1
∗

=
−∫∞

−∞ h (t2 − τ)XτdτXt1
∗

=
∫∞
−∞ h (t2 − τ)RX (τ − t1) dτ

(3.39)

RY X (t2, t1) =
∫∞
−∞ h (t2 − t1 − τ ′)RX (τ ′) dτ ′

= h ∗RX (t2 − t1)
(3.40)

where τ ′ = τ − t1.

RY (t2, t1) =
−

Yt2Yt1
∗

=
−

Yt2
∫∞
−∞ h (t1, τ)Xτ

∗dτ

=
∫∞
−∞ h (t1, τ)RY X (t2, τ) dτ

=
∫∞
−∞ h (t1 − τ)RY X (t2 − τ) dτ

(3.41)
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RY (t2, t1) =
∫∞
−∞ h (τ ′ − (t2 − t1))RY X (τ ′) dτ ′

= RY (t2 − t1)

=
∼
h ∗RY X (t2, t1)

(3.42)

where τ ′ = t2 − τ and
∼
h (τ) = h (−τ) for all τ ∈ R. Yt is WSS if Xt is WSS and the linear system is

time-invariant.

Figure 3.7

Example 3.6
Xt is a wide sense stationary process with µX = 0, and RX (τ) = N0

2 δ (τ). Consider the random
process going through a �lter with impulse response h (t) = e−(at)u (t). The output process is
denoted by Yt. µY (t) = 0 for all t.

RY (τ) = N0
2

∫∞
−∞ h (α)h (α− τ) dα

= N0
2
e−(a|τ|)

2a

(3.43)

Xt is called a white process. Yt is a Markov process.

De�nition 3.9: Power Spectral Density
The power spectral density function of a wide sense stationary (WSS) process Xt is de�ned to be
the Fourier transform of the autocorrelation function of Xt.

SX (f) =
∫ ∞
−∞

RX (τ) e−(j2πfτ)dτ (3.44)

if Xt is WSS with autocorrelation function RX (τ).

Properties

1. SX (f) = SX (−f) since RX is even and real.
2. Var (Xt) = RX (0) =

∫∞
−∞ SX (f) df

3. SX (f) is real and nonnegative SX (f) ≥ 0 for all f .

If Yt =
∫∞
−∞ h (t− τ)Xτdτ then

SY (f) = F (RY (τ))

= F
(
h∗
∼
h ∗RX (τ)

)
= H (f)

∼
H (f)SX (f)

= (|H (f) |)2
SX (f)

(3.45)
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since
∼
H (f) =

∫∞
−∞

∼
h (t) e−(j2πft)dt = H (f)∗

Example 3.7
Xt is a white process and h (t) = e−(at)u (t).

H (f) =
1

a+ j2πf
(3.46)

SY (f) =
N0
2

a2 + 4π2f2
(3.47)

3.4 Gaussian Processes4

3.4.1 Gaussian Random Processes

De�nition 3.10: Gaussian process
A process with mean µX (t) and covariance function CX (t2, t1) is said to be a Gaussian process

if any X = (Xt1 , Xt2 , . . . , XtN )T formed by any sampling of the process is a Gaussian random
vector, that is,

fX (x) =
1

(2π)
N
2 (detΣX)

1
2
e−( 1

2 (x−µX)TΣX
−1(x−µX)) (3.48)

for all x ∈ Rn where

µX =


µX (t1)

...

µX (tN )


and

ΣX =


CX (t1, t1) . . . CX (t1, tN )

...
. . .

CX (tN , t1) . . . CX (tN , tN )


. The complete statistical properties of Xt can be obtained from the second-order statistics.

Properties

1. If a Gaussian process is WSS, then it is strictly stationary.
2. If two Gaussian processes are uncorrelated, then they are also statistically independent.
3. Any linear processing of a Gaussian process results in a Gaussian process.

Example 3.8
X and Y are Gaussian and zero mean and independent. Z = X + Y is also Gaussian.

φX (u) =
−

ejuX

= e
−
“
u2
2 σ

2
X

” (3.49)

4This content is available online at <http://cnx.org/content/m10238/2.7/>.
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for all u ∈ R

φZ (u) =
−

eju(X+Y )

= e
−
“
u2
2 σ

2
X

”
e
−
“
u2
2 σ

2
Y

”
= e

−
“
u2
2 (σ2

X+σ2
Y )
” (3.50)

therefore Z is also Gaussian.
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Chapter 4

Chapter 4

4.1 Data Transmission and Reception1

We will develop the idea of data transmission by �rst considering simple channels. In additional modules,
we will consider more practical channels; baseband channels with bandwidth constraints and passband
channels.

Simple additive white Gaussian channels

Figure 4.1: Xt carries data, Nt is a white Gaussian random process.

The concept of using di�erent types of modulation for transmission of data is introduced in the module
Signalling (Section 4.2). The problem of demodulation and detection of signals is discussed in Demodulation
and Detection (Section 4.4).

4.2 Signalling2

Example 4.1
Data symbols are "1" or "0" and data rate is 1

T Hertz.

1This content is available online at <http://cnx.org/content/m10115/2.9/>.
2This content is available online at <http://cnx.org/content/m10116/2.11/>.

19



20 CHAPTER 4. CHAPTER 4

Pulse amplitude modulation (PAM)

Figure 4.2

Pulse position modulation

Figure 4.3

Example 4.2: Example
Data symbols are "1" or "0" and the data rate is 2

T Hertz.
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Figure 4.4

This strategy is an alternative to PAM with half the period, T2 .
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Figure 4.5

Relevant measures are energy of modulated signals

Em =
∫ T

0

sm
2 (t) dt , m ∈ {1, 2, . . . ,M} (4.1)

and how di�erent they are in terms of inner products.

< sm, sn >=
∫ T

0

sm (t) sn (t)∗dt (4.2)

for m ∈ {1, 2, . . . ,M} and n ∈ {1, 2, . . . ,M}.
De�nition 4.1: antipodal
Signals s1 (t) and s2 (t) are antipodal if s2 (t) = −s1 (t) , t ∈ [0, T ]
De�nition 4.2: orthogonal
Signals s1 (t), s2 (t),. . ., sM (t) are orthogonal if < sm, sn >= 0 for m 6= n.

De�nition 4.3: biorthogonal
Signals s1 (t), s2 (t),. . ., sM (t) are biorthogonal if s1 (t),. . ., sM

2
(t) are orthogonal and sm (t) =

−sM
2 +m (t) for some m ∈

{
1, 2, . . . , M2

}
.
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It is quite intuitive to expect that the smaller (the more negative) the inner products, < sm, sn > for all
m 6= n, the better the signal set.

De�nition 4.4: Simplex signals
Let {s1 (t) , s2 (t) , . . . , sM (t)} be a set of orthogonal signals with equal energy. The signals s̃1 (t),. . .,
˜sM (t) are simplex signals if

s̃m (t) = sm (t)− 1
M

M∑
k=1

sk (t) (4.3)

If the energy of orthogonal signals is denoted by

Es =
∫ T

0

sm
2 (t) dt , m ∈ {1, 2, ...,M} (4.4)

then the energy of simplex signals

Es̃ =
(

1− 1
M

)
Es (4.5)

and

< s̃m, s̃n >=
−1

M − 1
Es̃ , m 6= n (4.6)

It is conjectured that among all possible M -ary signals with equal energy, the simplex signal set results
in the smallest probability of error when used to transmit information through an additive white Gaussian
noise channel.

The geometric representation of signals (Section 4.3) can provide a compact description of signals and
can simplify performance analysis of communication systems using the signals.

Once signals have been modulated, the receiver must detect and demodulate (Section 4.4) the signals
despite interference and noise and decide which of the set of possible transmitted signals was sent.

4.3 Geometric Representation of Modulation Signals3

Geometric representation of signals can provide a compact characterization of signals and can simplify
analysis of their performance as modulation signals.

Orthonormal bases are essential in geometry. Let {s1 (t) , s2 (t) , . . . , sM (t)} be a set of signals.
De�ne ψ1 (t) = s1(t)√

E1
where E1 =

∫ T
0
s1

2 (t) dt.

De�ne s21 =< s2, ψ1 >=
∫ T

0
s2 (t)ψ1 (t)∗dt and ψ2 (t) = 1r

^
E2

(s2 (t)− s21ψ1) where
^
E2=∫ T

0
(s2 (t)− s21ψ1 (t))2

dt
In general

ψk (t) =
1√
^
Ek

sk (t)−
k−1∑
j=1

skjψj (t)

 (4.7)

where
^
Ek=

∫ T
0

(
sk (t)−

∑k−1
j=1 skjψj (t)

)2

dt.

The process continues until all of the M signals are exhausted. The results are N orthogonal signals
with unit energy, {ψ1 (t) , ψ2 (t) , . . . , ψN (t)} where N ≤ M . If the signals {s1 (t) , . . . , sM (t)} are linearly
independent, then N = M .

3This content is available online at <http://cnx.org/content/m10035/2.13/>.
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The M signals can be represented as

sm (t) =
N∑
n=1

smnψn (t) (4.8)

with m ∈ {1, 2, . . . ,M} where smn =< sm, ψn > and Em =
∑N
n=1 smn

2. The signals can be represented by

sm =


sm1

sm2

...

smN


Example 4.3

Figure 4.6

ψ1 (t) =
s1 (t)√
A2T

(4.9)

s11 = A
√
T (4.10)

s21 = −
(
A
√
T
)

(4.11)

ψ2 (t) = (s2 (t)− s21ψ1 (t)) 1r
^
E2

=
(
−A+ A

√
T√
T

)
1r
^
E2

= 0

(4.12)
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Figure 4.7

Dimension of the signal set is 1 with E1 = s11
2 and E2 = s21

2.

Example 4.4

Figure 4.8

ψm (t) = sm(t)√
Es

where Es =
∫ T

0
sm

2 (t) dt = A2T
4

s1 =


√
Es

0

0

0

, s2 =


0
√
Es

0

0

, s3 =


0

0
√
Es

0

, and s4 =


0

0

0
√
Es



dmn = |sm − sn| =

√√√√ N∑
j=1

(smj − snj)
2 =

√
2Es (4.13)

is the Euclidean distance between signals.

Example 4.5
Set of 4 equal energy biorthogonal signals. s1 (t) = s (t), s2 (t) = s⊥ (t), s3 (t) = −s (t), s4 (t) =
−s⊥ (t).

The orthonormal basis ψ1 (t) = s(t)√
Es
, ψ2 (t) = s⊥(t)√

Es
where Es =

∫ T
0
sm

2 (t) dt

s1 =

 √Es
0

, s2 =

 0
√
Es

, s3 =

 −√Es
0

, s4 =

 0

−
√
Es

. The four signals can
be geometrically represented using the 4-vector of projection coe�cients s1, s2, s3, and s4 as a set
of constellation points.



26 CHAPTER 4. CHAPTER 4

Signal constellation

Figure 4.9

d21 = |s2 − s1|
=
√

2Es
(4.14)

d12 = d23

= d34

= d14

(4.15)

d13 = |s1 − s3|
= 2

√
Es

(4.16)

d13 = d24 (4.17)

Minimum distance dmin =
√

2Es

4.4 Demodulation and Detection4

Consider the problem where signal set, {s1, s2, . . . , sM}, for t ∈ [0, T ] is used to transmit log2M bits. The
modulated signal Xt could be {s1, s2, . . . , sM} during the interval 0 ≤ t ≤ T .

4This content is available online at <http://cnx.org/content/m10054/2.14/>.
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Figure 4.10: rt = Xt + Nt = sm (t) + Nt for 0 ≤ t ≤ T for some m ∈ {1, 2, . . . , M}.

Recall sm (t) =
∑N
n=1 smnψn (t) for m ∈ {1, 2, . . . ,M} the signals are decomposed into a set of orthonor-

mal signals, perfectly.
Noise process can also be decomposed

Nt =
N∑
n=1

ηnψn (t) + Ñt (4.18)

where ηn =
∫ T

0
Ntψn (t) dt is the projection onto the nth basis signal, Ñt is the left over noise.

The problem of demodulation and detection is to observe rt for 0 ≤ t ≤ T and decide which one of
the M signals were transmitted. Demodulation is covered here (Section 4.5). A discussion about detection
can be found here (Section 4.6).

4.5 Demodulation5

4.5.1 Demodulation

Convert the continuous time received signal into a vector without loss of information (or performance).

rt = sm (t) +Nt (4.19)

rt =
N∑
n=1

smnψn (t) +
N∑
n=1

ηnψn (t) + Ñt (4.20)

rt =
N∑
n=1

(smn + ηn)ψn (t) + Ñt (4.21)

rt =
N∑
n=1

rnψn (t) + Ñt (4.22)

Proposition 4.1:
The noise projection coe�cients ηn's are zero mean, Gaussian random variables and are mutually
independent if Nt is a white Gaussian process.
Proof:

µη (n) = E [ηn]

= E
[∫ T

0
Ntψn (t) dt

] (4.23)

5This content is available online at <http://cnx.org/content/m10141/2.13/>.
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µη (n) =
∫ T

0
E [Nt]ψn (t) dt

= 0
(4.24)

E [ηkηn∗] = E
[∫ T

0
Ntψk (t) dt

∫ T
0
Nt′
∗ψk (t′)∗dt ′

]
=

∫ T
0

∫ T
0

(NtNt′)
∗
ψk (t)ψn (t′) dtdt ′

(4.25)

E [ηkηn∗] =
∫ T

0

∫ T

0

RN (t− t′)ψk (t)ψn∗dtdt ′ (4.26)

E [ηkηn∗] =
N0

2

∫ T

0

∫ T

0

δ (t− t′)ψk (t)ψn (t′)∗dtdt ′ (4.27)

E [ηkηn∗] = N0
2

∫ T
0
ψk (t)ψn (t)∗dt

= N0
2 δkn

=

 N0
2 if k = n

0 if k 6= n

(4.28)

ηk 's are uncorrelated and since they are Gaussian they are also independent. Therefore, ηk '
Gaussian

(
0, N0

2

)
and Rη (k, n) = N0

2 δkn

Proposition 4.2:
The rn's, the projection of the received signal rt onto the orthonormal bases ψn (t)'s, are indepen-
dent from the residual noise process Ñt.

The residual noise Ñt is irrelevant to the decision process on rt.
Proof:
Recall rn = smn + ηn, given sm (t) was transmitted. Therefore,

µr (n) = E [smn + ηn]

= smn
(4.29)

Var (rn) = Var (ηn)

= N0
2

(4.30)

The correlation between rn and Ñt

E
[
Ñtrn

∗
]

= E

[(
Nt −

N∑
k=1

ηkψk (t)

)
(smn + ηn)∗

]
(4.31)

E
[
Ñtrn

∗
]

= E

[
Nt −

N∑
k=1

ηkψk (t)

]
smn + E [ηkηn∗]−

N∑
k=1

E [ηkηn∗]ψk (t) (4.32)

E
[
Ñtrn

∗
]

= E

[
Nt

∫ T

0

Nt′
∗ψn (t′)∗dt ′

]
−

N∑
k=1

N0

2
δknψk (t) (4.33)

E
[
Ñtrn

∗
]

=
∫ T

0

N0

2
δ (t− t′)ψn (t′) dt ′ − N0

2
ψn (t) (4.34)
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E
[
Ñtrn

∗
]

= N0
2 ψn (t)− N0

2 ψn (t)

= 0
(4.35)

Since both Ñt and rn are Gaussian then Ñt and rn are also independent.

The conjecture is to ignore Ñt and extract information from


r1

r2

. . .

rN

. Knowing the vector r

we can reconstruct the relevant part of random process rt for 0 ≤ t ≤ T

rt = sm (t) +Nt

=
∑N
n=1 rnψn (t) + Ñt

(4.36)

Figure 4.11
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Figure 4.12

Once the received signal has been converted to a vector, the correct transmitted signal must be detected
based upon observations of the input vector. Detection is covered elsewhere (Section 4.6).

4.6 Detection by Correlation6

Demodulation and Detection

Figure 4.13

6This content is available online at <http://cnx.org/content/m10091/2.15/>.
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4.6.1 Detection

Decide which sm (t) from the set of {s1 (t) , . . . , sm (t)} signals was transmitted based on observing r =
r1

r2

...

rN

, the vector composed of demodulated (Section 4.5) received signal, that is, the vector of projection

of the received signal onto the N bases.

^
m= arg max

1≤m≤M
Pr [sm (t) was transmitted | r was observed] (4.37)

Note that

Pr [sm | r] , Pr [sm (t)was transmitted | r was observed] =
fr|smPr [sm]

fr
(4.38)

If Pr [sm was transmitted] = 1
M , that is information symbols are equally likely to be transmitted, then

arg max
1≤m≤M

Pr [sm | r] = arg max
1≤m≤M

fr|sm (4.39)

Since r (t) = sm (t)+Nt for 0 ≤ t ≤ T and for some m = {1, 2, . . . ,M} then r = sm+η where η =


η1

η2

...

ηN


and ηn's are Gaussian and independent.

fr|sm =
1(

2πN0
2

)N
2
e

−
PN
n=1 (rn−sm,n)2

2
N0
2 , rn ∈ R (4.40)

^
m = arg max

1≤m≤M
fr|sm

= arg max
1≤m≤M

ln
(
fr|sm

)
= arg max

1≤m≤M

(
−
(
N
2 ln (πN0)

))
− 1

N0

∑N
n=1 (rn − sm,n)2

= arg min
1≤m≤M

∑N
n=1 (rn − sm,n)2

(4.41)

where D (r, sm) is the l2 distance between vectors r and sm de�ned as D (r, sm) ,
∑N
n=1 (rn − sm,n)2

^
m = arg min

1≤m≤M
D (r, sm)

= arg min
1≤m≤M

(‖ r ‖)2 − 2 < (r, sm) > +(‖ sm ‖)2
(4.42)

where ‖ r ‖ is the l2 norm of vector r de�ned as ‖ r ‖,
√∑N

n=1 (rn)2

^
m= arg max

1≤m≤M
2 < (r, sm) > −(‖ sm ‖)2

(4.43)

This type of receiver system is known as a correlation (or correlator-type) receiver. Examples of the use
of such a system are found here (Section 4.7). Another type of receiver involves linear, time-invariant �lters
and is known as a matched �lter (Section 4.8) receiver. An analysis of the performance of a correlator-type
receiver using antipodal and orthogonal binary signals can be found in Performance Analysis (Section 4.11).
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4.7 Examples of Correlation Detection7

The implementation and theory of correlator-type receivers can be found in Detection (Section 4.6).

Example 4.6

Figure 4.14

^
m= 2 since D (r, s1) > D (r, s2) or (‖ s1 ‖)2 = (‖ s2 ‖)2

and < r, s2 >>< r, s1 >.

Figure 4.15

Example 4.7
Data symbols "0" or "1" with equal probability. Modulator s1 (t) = s (t) for 0 ≤ t ≤ T and
s2 (t) = −s (t) for 0 ≤ t ≤ T .

7This content is available online at <http://cnx.org/content/m10149/2.10/>.
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Figure 4.16

ψ1 (t) = s(t)√
A2T

, s11 = A
√
T , and s21 = −

(
A
√
T
)

rt = sm (t) +Nt , m = {1, 2} (4.44)

Figure 4.17

r1 = A
√
T + η1 (4.45)

or
r1 = −

(
A
√
T
)

+ η1 (4.46)

η1 is Gaussian with zero mean and variance N0
2 .

Figure 4.18
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^
m= argmax

{
A
√
Tr1,−

(
A
√
Tr1

)}
, since A

√
T > 0 and Pr [s1] = Pr [s1] then the MAP

decision rule decides.
s1 (t) was transmitted if r1 ≥ 0
s2 (t) was transmitted if r1 < 0
An alternate demodulator:

(rt = sm (t) +Nt)⇒ (r = sm + η) (4.47)

4.8 Matched Filters8

Signal to Noise Ratio (SNR) at the output of the demodulator is a measure of the quality of the demod-
ulator.

SNR =
signal energy
noise energy

(4.48)

In the correlator described earlier, Es = (|sm|)2
and σηn

2 = N0
2 . Is it possible to design a demodulator

based on linear time-invariant �lters with maximum signal-to-noise ratio?

Figure 4.19

If sm (t) is the transmitted signal, then the output of the kth �lter is given as

yk (t) =
∫∞
−∞ rτhk (t− τ) dτ

=
∫∞
−∞ (sm (τ) +Nτ )hk (t− τ) dτ

=
∫∞
−∞ sm (τ)hk (t− τ) dτ +

∫∞
−∞Nτhk (t− τ) dτ

(4.49)

8This content is available online at <http://cnx.org/content/m10101/2.14/>.
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Sampling the output at time T yields

yk (T ) =
∫ ∞
−∞

sm (τ)hk (T − τ) dτ +
∫ ∞
−∞

Nτhk (T − τ) dτ (4.50)

The noise contribution:

νk =
∫ ∞
−∞

Nτhk (T − τ) dτ (4.51)

The expected value of the noise component is

E [νk] = E
[∫∞
−∞Nτhk (T − τ) dτ

]
= 0

(4.52)

The variance of the noise component is the second moment since the mean is zero and is given as

σ (νk)2 = E
[
νk

2
]

= E
[∫∞
−∞Nτhk (T − τ) dτ

∫∞
−∞Nτ '

∗hk
(
T − τ '

)∗
dτ '

] (4.53)

E
[
νk

2
]

=
∫∞
−∞

∫∞
−∞

N0
2 δ
(
τ − τ '

)
hk (T − τ)hk

(
T − τ '

)∗
dτdτ '

= N0
2

∫∞
−∞ (|hk (T − τ) |)2

dτ
(4.54)

Signal Energy can be written as (∫ ∞
−∞

sm (τ)hk (T − τ) dτ
)2

(4.55)

and the signal-to-noise ratio (SNR) as

SNR =

(∫∞
−∞ sm (τ)hk (T − τ) dτ

)2

N0
2

∫∞
−∞ (|hk (T − τ) |)2

dτ
(4.56)

The signal-to-noise ratio, can be maximized considering the well-known Cauchy-Schwarz Inequality(∫ ∞
−∞

g1 (x) g2 (x)∗dx
)2

≤
∫ ∞
−∞

(|g1 (x) |)2
dx

∫ ∞
−∞

(|g2 (x) |)2
dx (4.57)

with equality when g1 (x) = αg2 (x). Applying the inequality directly yields an upper bound on SNR(∫∞
−∞ sm (τ)hk (T − τ) dτ

)2

N0
2

∫∞
−∞ (|hk (T − τ) |)2

dτ
≤ 2
N0

∫ ∞
−∞

(|sm (τ) |)2
dτ (4.58)

with equality hopt
k (T − τ) = αsm (τ)∗ . Therefore, the �lter to examine signal m should be

Matched Filter
τhopt

m (τ) = sm (T − τ)∗ (4.59)

The constant factor is not relevant when one considers the signal to noise ratio. The maximum SNR is
unchanged when both the numerator and denominator are scaled.

2
N0

∫ ∞
−∞

(|sm (τ) |)2
dτ =

2Es
N0

(4.60)

Examples involving matched �lter receivers can be found here (Section 4.9). An analysis in the frequency
domain is contained in Matched Filters in the Frequency Domain (Section 4.10).

Another type of receiver system is the correlation (Section 4.6) receiver. A performance analysis of both
matched �lters and correlator-type receivers can be found in Performance Analysis (Section 4.11).
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4.9 Examples with Matched Filters9

The theory and rationale behind matched �lter receivers can be found in Matched Filters (Section 4.8).

Example 4.8

Figure 4.20

s1 (t) = t for 0 ≤ t ≤ T
s2 (t) = −t for 0 ≤ t ≤ T
h1 (t) = T − t for 0 ≤ t ≤ T
h2 (t) = −T + t for 0 ≤ t ≤ T

Figure 4.21

s̃1 (t) =
∫ ∞
−∞

s1 (τ)h1 (t− τ) dτ , 0 ≤ t ≤ 2T (4.61)

s̃1 (t) =
∫ t

0
τ (T − t+ τ) dτ

= 1
2 (T − t) τ2|t0 + 1

3τ
3|t0

= t2

2

(
T − t

3

) (4.62)

9This content is available online at <http://cnx.org/content/m10150/2.10/>.
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s̃1 (T ) =
T 3

3
(4.63)

Compared to the correlator-type demodulation

ψ1 (t) =
s1 (t)√
Es

(4.64)

s11 =
∫ T

0

s1 (τ)ψ1 (τ) dτ (4.65)

∫ t
0
s1 (τ)ψ1 (τ) dτ = 1√

Es

∫ t
0
ττdτ

= 1√
Es

1
3 t

3
(4.66)

Figure 4.22

Example 4.9
Assume binary data is transmitted at the rate of 1

T Hertz.
0⇒ (b = 1)⇒ (s1 (t) = s (t)) for 0 ≤ t ≤ T
1⇒ (b = −1)⇒ (s2 (t) = −s (t)) for 0 ≤ t ≤ T

Xt =
P∑

i=−P
bis (t− iT ) (4.67)
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Figure 4.23

4.10 Matched Filters in the Frequency Domain10

4.10.1

The time domain analysis and implementation of matched �lters can be found in Matched Filters (Sec-
tion 4.8).

A frequency domain interpretation of matched �lters is very useful

SNR =

(∫∞
−∞ sm (τ)hm (T − τ) dτ

)2

N0
2

∫∞
−∞ (|hm (T − τ) |)2

dτ
(4.68)

10This content is available online at <http://cnx.org/content/m10151/2.11/>.
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For the m-th �lter, hm can be expressed as

s̃m (T ) =
∫∞
−∞ sm (τ)hm (T − τ) dτ

= F−1 (Hm (f)Sm (f))

=
∫∞
−∞Hm (f)Sm (f) ej2πfT df

(4.69)

where the second equality is because
∼
sm is the �lter output with input Sm and �lter Hm and we can now

de�ne
^
Hm (f) = Hm (f)∗e−(j2πfT ) , then

s̃m (T ) =< Sm (f) ,
^
Hm (f) > (4.70)

The denominator ∫ ∞
−∞

(|hm (T − τ) |)2
dτ =

∫ ∞
−∞

(|hm (τ) |)2
dτ (4.71)

hm ∗ hm (0) =
∫∞
−∞ (|Hm (f) |)2

df

= < Hm (f) , Hm (f) >
(4.72)

hm ∗ hm (0) =
∫∞
−∞Hm (f) ej2πfTHm (f)∗e−(j2πfT )df

= <
^
Hm (f) ,

^
Hm (f) >

(4.73)

Therefore,

SNR =

(
< Sm (f) ,

^
Hm (f) >

)2

N0
2 <

(
^
Hm (f) ,

^
Hm (f)

)
>

≤ 2
N0

< (Sm (f) , Sm (f)) > (4.74)

with equality when
^
Hm (f) = αSm (f) (4.75)

or

Matched Filter in the frequency domain

Hm (f) = Sm (f)∗e−(j2πfT ) (4.76)

Matched Filter

Figure 4.24
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s̃m (t) = F−1
(
sm (f) sm (f)∗

)
=

∫∞
−∞ (|sm (f) |)2

ej2πftdf

=
∫∞
−∞ (|sm (f) |)2cos (2πft) df

(4.77)

where F−1 is the inverse Fourier Transform operator.

4.11 Performance Analysis11

In this section we will evaluate the probability of error of both correlator type receivers and matched �lter
receivers. We will only present the analysis for transmission of binary symbols. In the process we will
demonstrate that both of these receivers have identical bit-error probabilities.

4.11.1 Antipodal Signals

rt = sm (t) +Nt for 0 ≤ t ≤ T with m = 1 and m = 2 and s1 (t) = −s2 (t)
An analysis of the performance of correlation receivers with antipodal binary signals can be found here

(Section 4.12). A similar analysis for matched �lter receivers can be found here (Section 4.14).

4.11.2 Orthogonal Signals

rt = sm (t) +Nt for 0 ≤ t ≤ T with m = 1 and m = 2 and < s1, s2 >= 0
An analysis of the performance of correlation receivers with orthogonal binary signals can be found here

(Section 4.13). A similar analysis for matched �lter receivers can be found here (Section 4.15).
It can be shown in general that correlation and matched �lter receivers perform with the same symbol

error probability if the detection criteria is the same for both receivers.

4.12 Performance Analysis of Antipodal Binary signals with

Correlation12

Figure 4.25

11This content is available online at <http://cnx.org/content/m10106/2.10/>.
12This content is available online at <http://cnx.org/content/m10152/2.11/>.
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The bit-error probability for a correlation receiver with an antipodal signal set (Figure 4.25) can be found
as follows:

Pe = Pr [m̂ 6= m]

= Pr
[
b̂ 6= b

]
= π0Pr [r1 < γ|m=1] + π1Pr [r1 ≥ γ|m=2]

= π0

∫ γ
−∞ f r1,s1(t) (r ) dr + π1

∫∞
γ
f r1,s2(t) (r ) dr

(4.78)

if π0 = π1 = 1/2, then the optimum threshold is γ = 0.

f r1|s1(t) (r ) = N

(√
Es,

N0

2

)
(4.79)

f r1|s2(t) (r ) = N

(
−
√
Es,

N0

2

)
(4.80)

If the two symbols are equally likely to be transmitted then π0 = π1 = 1/2 and if the threshold is set to
zero, then

Pe = 1/2
∫ 0

−∞

1√
2πN0

2

e−
(|r−

√
Es|)2

N0 dr + 1/2
∫ ∞

0

1√
2πN0

2

e−
(|r+

√
Es|)2

N0 dr (4.81)

Pe = 1/2
∫ −q 2Es

N0

−∞

1√
2π
e
−(|r′|)2

2 dr ′+ 1/2
∫ ∞q

2Es
N0

1√
2π
e
−
„
|r
′′
|
«2

2 dr ′′ (4.82)

with r′ = r−
√
Esq
N0
2

and r
′′

= r+
√
Esq
N0
2

Pe = 1
2Q
(√

2Es
N0

)
+ 1

2Q
(√

2Es
N0

)
= Q

(√
2Es
N0

) (4.83)

where Q (b) =
∫∞
b

1√
2π
e
−x2

2 dx.

Note that

Figure 4.26

Pe = Q

(
d12√
2N0

)
(4.84)

where d12 = 2
√
Es = (‖ s1 − s2 ‖)2

is the Euclidean distance between the two constellation points (Fig-
ure 4.26).

This is exactly the same bit-error probability as for the matched �lter case.
A similar bit-error analysis for matched �lters can be found here (Section 4.14). For the bit-error analysis

for correlation receivers with an orthogonal signal set, refer here (Section 4.13).
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4.13 Performance Analysis of Binary Orthogonal Signals with

Correlation13

Orthogonal signals with equally likely bits, rt = sm (t)+Nt for 0 ≤ t ≤ T , m = 1, m = 2, and < s1, s2 >= 0.

4.13.1 Correlation (correlator-type) receiver

rt ⇒
(
r = (r1, r2)T = sm + η

)
(see Figure 4.27)

Figure 4.27

Decide s1 (t) was transmitted if r1 ≥ r2.

Pe = Pr [m̂ 6= m]

= Pr
[
b̂ 6= b

] (4.85)

Pe = 1/2Pr [r ∈ R2 | s1 (t) transmitted] + 1/2Pr [r ∈ R1 | s2 (t) transmitted] =
1/2

∫
R2

∫
f r,s1(t) (r ) dr 1dr 2 + 1/2

∫
R1

∫
f r,s2(t) (r ) dr 1dr 2 =

1/2
∫
R2

∫
1q

2π
N0
2

e
−(|r1−

√
Es|)2

N0
1√
πN0

e
−(|r2|)

2

N0 dr 1dr 2+1/2
∫
R1

∫
1q

2π
N0
2

e
−(|r1|)

2

N0
1√
πN0

e
−(|r2−

√
Es|)2

N0 dr 1dr 2

(4.86)

Alternatively, if s1 (t) is transmitted we decide on the wrong signal if r2 > r1 or η2 > η1 +
√
Es or when

η2 − η1 >
√
Es.

Pe = 1/2
∫∞√

Es
1√

2πN0
e
−η′2
2N0 dη ′+ 1/2Pr [r1 ≥ r2 | s2 (t) transmitted]

= Q
(√

Es
N0

) (4.87)

13This content is available online at <http://cnx.org/content/m10154/2.11/>.
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Note that the distance between s1 and s2 is d12 =
√

2Es. The average bit error probability Pe = Q
(

d12√
2N0

)
as we had for the antipodal case (Section 4.12). Note also that the bit-error probability is the same as for
the matched �lter (Section 4.15) receiver.

4.14 Performance Analysis of Binary Antipodal Signals with

Matched Filters14

4.14.1 Matched Filter receiver

Recall rt = sm (t) +Nt where m = 1 or m = 2 and s1 (t) = −s2 (t) (see Figure 4.28).

Figure 4.28

Y1 (T ) = Es + ν1 (4.88)

Y2 (T ) = −Es + ν2 (4.89)

since s1 (t) = −s2 (t) then ν1 is N
(
0, N0

2 Es
)
. Furthermore ν2 = −ν1. Given ν1 then ν2 is deterministic

and equals −ν1. Then Y2 (T ) = −Y1 (T ) if s1 (t) is transmitted.
If s2 (T ) is transmitted

Y1 (T ) = −Es + ν1 (4.90)

Y2 (T ) = Es + ν2 (4.91)

ν1 is N
(
0, N0

2 Es
)
and ν2 = −ν1.

The receiver can be simpli�ed to (see Figure 4.29)

14This content is available online at <http://cnx.org/content/m10153/2.11/>.
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Figure 4.29

If s1 (t) is transmitted Y1 (T ) = Es + ν1.
If s2 (t) is transmitted Y1 (T ) = −Es + ν1.

Pe = 1/2Pr [Y1 (T ) < 0 | s1 (t)] + 1/2Pr [Y1 (T ) ≥ 0 | s2 (t)]

= 1/2
∫ 0

−∞
1q

2π
N0
2 Es

e
−(|y−Es|)2

N0Es dy + 1/2
∫∞

0
1q

2π
N0
2 Es

e
−(|y+Es|)2

N0Es dy

= Q

(
Esq
N0
2 Es

)
= Q

(√
2Es
N0

)
(4.92)

This is the exact bit-error rate of a correlation receiver (Section 4.12). For a bit-error analysis for orthogonal
signals using a matched �lter receiver, refer here (Section 4.15).

4.15 Performance Analysis of Orthogonal Binary Signals with

Matched Filters15

rt ⇒

Y =

 Y1 (T )

Y2 (T )

 (4.93)

If s1 (t) is transmitted

Y1 (T ) =
∫∞
−∞ s1 (τ)hopt

1 (T − τ) dτ + ν1 (T )

=
∫∞
−∞ s1 (τ) s∗1 (τ) dτ + ν1 (T )

= Es + ν1 (T )

(4.94)

Y2 (T ) =
∫∞
−∞ s1 (τ) s∗2 (τ) dτ + ν2 (T )

= ν2 (T )
(4.95)

If s2 (t) is transmitted, Y1 (T ) = ν1 (T ) and Y2 (T ) = Es + ν2 (T ).

15This content is available online at <http://cnx.org/content/m10155/2.9/>.
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Figure 4.30

H0

Y =

 Es

0

+

 ν1

ν2

 (4.96)

H1

Y =

 0

Es

+

 ν1

ν2

 (4.97)

where ν1 and ν2 are independent are Gaussian with zero mean and variance N0
2 Es. The analysis is identical

to the correlator example (Section 4.13).

Pe = Q

(√
Es
N0

)
(4.98)

Note that the maximum likelihood detector decides based on comparing Y1 and Y2. If Y1 ≥ Y2 then
s1 was sent; otherwise s2 was transmitted. For a similar analysis for binary antipodal signals, refer here
(Section 4.14). See Figure 4.31 or Figure 4.32.
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Figure 4.31

Figure 4.32



Chapter 5

Chapter 5

5.1 Digital Transmission over Baseband Channels1

Until this point, we have considered data transmissions over simple additive Gaussian channels that are not
time or band limited. In this module we will consider channels that do have bandwidth constraints, and are
limited to frequency range around zero (DC). The channel is best modi�ed as g (t) is the impulse response
of the baseband channel.

Consider modulated signals xt = sm (t) for 0 ≤ t ≤ T for some m ∈ {1, 2, . . . ,M} . The channel output
is then

rt =
∫∞
−∞ xτg (t− τ) dτ +Nt

=
∫∞
−∞ Sm (τ) g (t− τ) dτ +Nt

(5.1)

The signal contribution in the frequency domain is

S̃m (f) = Sm (f)G (f) (5.2)

The optimum matched �lter should match to the �ltered signal:

Hopt
m (f) = Sm (f)∗G (f)∗e(−j)2πft (5.3)

This �lter is indeed optimum (i.e., it maximizes signal-to-noise ratio); however, it requires knowledge of
the channel impulse response. The signal energy is changed to

Es̃ =
∫ ∞
−∞

(
|S̃m (f) |

)2

df (5.4)

The band limited nature of the channel and the stream of time limited modulated signal create aliasing
which is referred to as intersymbol interference. We will investigate ISI for a general PAM signaling.

5.2 Pulse Amplitude Modulation Through Bandlimited Channel2

Consider a PAM system b−10,. . ., b−1, b0 b1,. . .
This implies

xt =
∞∑

n=−∞
ans (t− nT ) , an ∈ {M levels of amplitude} (5.5)

1This content is available online at <http://cnx.org/content/m10056/2.12/>.
2This content is available online at <http://cnx.org/content/m10094/2.7/>.
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The received signal is

rt =
∫∞
−∞

∑∞
n=−∞ ans (t− (τ − nT )) g (τ) dτ +Nt

=
∑∞
n=−∞ an

∫∞
−∞ s (t− (τ − nT )) g (τ) dτ +Nt

=
∑∞
n=−∞ ans̃ (t− nT ) +Nt

(5.6)

Since the signals span a one-dimensional space, one �lter matched to s̃ (t) = s∗g (t) is su�cient.
The matched �lter's impulse response is

hopt (t) = s∗g (T − t) (5.7)

The matched �lter output is

y (t) =
∫∞
−∞

∑∞
n=−∞ ans̃ (t− (τ − nT ))hopt (τ) dτ + ν (t)

=
∑∞
n=−∞ an

∫∞
−∞ s̃ (t− (τ − nT ))hopt (τ) dτ + ν (t)

=
∑∞
n=−∞ anu (t− nT ) + ν (t)

(5.8)

The decision on the kth symbol is obtained by sampling the MF output at kT :

y (kT ) =
∞∑

n=−∞
anu (kT − nT ) + ν (kT ) (5.9)

The kth symbol is of interest:

y (kT ) = aku (0) +
∞∑

n=−∞
anu (kT − nT ) + ν (kT ) (5.10)

where n 6= k.
Since the channel is bandlimited, it provides memory for the transmission system. The e�ect of old

symbols (possibly even future signals) lingers and a�ects the performance of the receiver. The e�ect of
ISI can be eliminated or controlled by proper design of modulation signals or precoding �lters at the
transmitter, or by equalizers or sequence detectors at the receiver.

5.3 Precoding and Bandlimited Signals3

5.3.1 Precoding

The data symbols are manipulated such that

yk (kT ) = aku (0) + ISI + ν (kT ) (5.11)

5.3.2 Design of Bandlimited Modulation Signals

Recall that modulation signals are

Xt =
∞∑

n=−∞
ans (t− nT ) (5.12)

3This content is available online at <http://cnx.org/content/m10118/2.6/>.
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We can design s (t) such that

u (nT ) =

 large if n = 0

zero or small if n 6= 0
(5.13)

where y (kT ) = aku (0) +
∑∞
n=−∞ anu (kT − nT ) + ν (kT ) (ISI is the sum term, and once again, n 6= k .)

Also, y (nT ) = s∗g∗hopt (nT ) The signal s (t) can be designed to have reduced ISI.

5.3.3 Design Equalizers at the Receiver

Linear equalizers or decision feedback equalizers reduce ISI in the statistic yt

5.3.4 Maximum Likelihood Sequence Detection

y (kT ) =
∞∑

n=−∞
an (kT − nT ) + ν (k (T )) (5.14)

By observing y (T ) , y (2T ) , . . . the date symbols are observed frequently. Therefore, ISI can be viewed as
diversity to increase performance.
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Chapter 6

Chapter 6

6.1 Carrier Phase Modulation1

6.1.1 Phase Shift Keying (PSK)

Information is impressed on the phase of the carrier. As data changes from symbol period to symbol period,
the phase shifts.

sm (t) = APT (t) cos
(

2πfct+
2π (m− 1)

M

)
, m ∈ {1, 2, . . . ,M} (6.1)

Example 6.1
Binary s1 (t) or s2 (t)

6.1.2 Representing the Signals

An orthonormal basis to represent the signals is

ψ1 (t) =
1√
Es
APT (t) cos (2πfct) (6.2)

ψ2 (t) =
−1√
Es
APT (t) sin (2πfct) (6.3)

The signal

Sm (t) = APT (t) cos
(

2πfct+
2π (m− 1)

M

)
(6.4)

Sm (t) = Acos
(

2π (m− 1)
M

)
PT (t) cos (2πfct)−Asin

(
2π (m− 1)

M

)
PT (t) sin (2πfct) (6.5)

The signal energy

Es =
∫∞
−∞A2PT

2 (t) cos2
(

2πfct+ 2π(m−1)
M

)
dt

=
∫ T

0
A2
(

1
2 + 1

2cos
(

4πfct+ 4π(m−1)
M

))
dt

(6.6)

1This content is available online at <http://cnx.org/content/m10128/2.10/>.
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Es =
A2T

2
+

1
2
A2

∫ T

0

cos
(

4πfct+
4π (m− 1)

M

)
dt ' A2T

2
(6.7)

(Note that in the above equation, the integral in the last step before the aproximation is very small.)
Therefore,

ψ1 (t) =

√
2
T
PT (t) cos (2πfct) (6.8)

ψ2 (t) =

(
−
√

2
T

)
PT (t) sin (2πfct) (6.9)

In general,

sm (t) = APT (t) cos
(

2πfct+
2π (m− 1)

M

)
, m ∈ {1, 2, . . . ,M} (6.10)

and ψ1 (t)

ψ1 (t) =

√
2
T
PT (t) cos (2πfct) (6.11)

ψ2 (t) =

√
2
T
PT (t) sin (2πfct) (6.12)

sm =

 √Escos
(

2π(m−1)
M

)
√
Essin

(
2π(m−1)

M

)  (6.13)

6.1.3 Demodulation and Detection

rt = sm (t) +Nt, for somem ∈ {1, 2, . . . ,M} (6.14)

We must note that due to phase o�set of the oscillator at the transmitter, phase jitter or phase changes
occur because of propagation delay.

rt = APT (t) cos
(

2πfct+
2π (m− 1)

M
+ φ

)
+Nt (6.15)

For binary PSK, the modulation is antipodal, and the optimum receiver in AWGN has average bit-error
probability

Pe = Q

(√
2(Es)
N0

)
= Q

(
A
√

T
N0

) (6.16)

The receiver where
rt = ± (APT (t) cos (2πfct+ φ)) +Nt (6.17)

The statistics

r1 =
∫ T

0
rtαcos

(
2πfct+

^
φ

)
dt

= ±

(∫ T
0
αAcos (2πfct+ φ) cos

(
2πfct+

^
φ

)
dt

)
+
∫ T

0
αcos

(
2πfct+

^
φ

)
Ntdt

(6.18)
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r1 = ±

(
αA

2

∫ T

0

cos

(
4πfct+ φ+

^
φ

)
+ cos

(
φ−

^
φ

)
dt

)
+ η1 (6.19)

r1 = ±

(
αA

2
T cos

(
φ−

^
φ

))
+
∫ T

0

±

(
αA

2
cos

(
4πfct+ φ+

^
φ

))
dt+η1±

(
αAT

2
cos

(
φ−

^
φ

))
+η1 (6.20)

where η1 = α
∫ T

0
Ntcos

(
ωct+

^
φ

)
dt is zero mean Gaussian with variance ' α2N0T

4 .

Therefore,

−
Pe = Q

 2αAT2 cos

0@φ−^φ
1A

2

q
α2N0T

4


= Q

(
cos

(
φ−

^
φ

)
A
√

T
N0

) (6.21)

which is not a function of α and depends strongly on phase accuracy.

Pe = Q

(
cos

(
φ−

^
φ

)√
2Es
N0

)
(6.22)

The above result implies that the amplitude of the local oscillator in the correlator structure does not play
a role in the performance of the correlation receiver. However, the accuracy of the phase does indeed play a
major role. This point can be seen in the following example:

Example 6.2

xt′ = −1iAcos (− (2πfct′) + 2πfcτ) (6.23)

xt = −1iAcos (2πfct− (2πfcτ ′ − 2πfcτ + θ′)) (6.24)

Local oscillator should match to phase θ.

6.2 Di�erential Phase Shift Keying2

The phase lock loop provides estimates of the phase of the incoming modulated signal. A phase ambiguity
of exactly π is a common occurance in many phase lock loop (PLL) implementations.

Therefore it is possible that,
^
θ= θ + π without the knowledge of the receiver. Even if there is no noise,

if b = 1 then
^
b= 0 and if b = 0 then

^
b= 1.

In the presence of noise, an incorrect decision due to noise may results in a correct �nal desicion (in
binary case, when there is π phase ambiguity with the probability:

Pe = 1−Q

(√
2Es
N0

)
(6.25)

2This content is available online at <http://cnx.org/content/m10156/2.7/>.
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Consider a stream of bits an ∈ {0, 1} and BPSK modulated signal∑
n

−1anAPT (t− nT ) cos (2πfct+ θ) (6.26)

In di�erential PSK, the transmitted bits are �rst encoded bn = an ⊕ bn−1 with initial symbol (e.g. b0)
chosen without loss of generality to be either 0 or 1.

Transmitted DPSK signals ∑
n

−1bnAPT (t− nT ) cos (2πfct+ θ) (6.27)

The decoder can be constructed as

bn−1 ⊕ bn = bn−1 ⊕ an ⊕ bn−1

= 0⊕ an
= an

(6.28)

If two consecutive bits are detected correctly, if
^
bn = bn and

^
bn−1 = bn−1 then

^
an =

^
bn ⊕

^
bn−1

= bn ⊕ bn−1

= an ⊕ bn−1 ⊕ bn−1

= an

(6.29)

if
^
bn = bn ⊕ 1 and

^
bn−1 = bn−1 ⊕ 1. That is, two consecutive bits are detected incorrectly. Then,

^
an =

^
bn ⊕

^
bn−1

= bn ⊕ 1⊕ bn−1 ⊕ 1

= bn ⊕ bn−1 ⊕ 1⊕ 1

= bn ⊕ bn−1 ⊕ 0

= bn ⊕ bn−1

= an

(6.30)

If
^
bn = bn ⊕ 1 and

^
bn−1 = bn−1, that is, one of two consecutive bits is detected in error. In this case there

will be an error and the probability of that error for DPSK is

P e = Pr

[
^
an 6= an

]
= Pr

[
^
bn = bn,

^
bn−1 6= bn−1

]
+ Pr

[
^
bn 6= bn,

^
bn−1 = bn−1

]
= 2Q

(√
2Es
N0

) [
1−Q

(√
2Es
N0

)]
' 2Q

(√
2Es
N0

) (6.31)

This approximation holds if Q is small.
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6.3 Carrier Frequency Modulation3

6.3.1 Frequency Shift Keying (FSK)

The data is impressed upon the carrier frequency. Therefore, the M di�erent signals are

sm (t) = APT (t) cos (2πfct+ 2π (m− 1) ∆ (f) t+ θm) (6.32)

for m ∈ {1, 2, . . . ,M}
The M di�erent signals have M di�erent carrier frequencies with possibly di�erent phase angles since

the generators of these carrier signals may be di�erent. The carriers are

f1 = fc (6.33)

f2 = fc + ∆ (f)

fM = fc −M∆ (f)

Thus, the M signals may be designed to be orthogonal to each other.

< sm, sn >=
∫ T

0
A2cos (2πfct+ 2π (m− 1) ∆ (f) t+ θm) cos (2πfct+ 2π (n− 1) ∆ (f) t+ θn) dt =

A2

2

∫ T
0

cos (4πfct+ 2π (n+m− 2) ∆ (f) t+ θm + θn) dt +
A2

2

∫ T
0

cos (2π (m− n) ∆ (f) t+ θm − θn) dt = A2

2
sin(4πfcT+2π(n+m−2)∆(f)T+θm+θn)−sin(θm+θn)

4πfc+2π(n+m−2)∆(f)
+

A2

2

(
sin(2π(m−n)∆(f)T+θm−θn)

2π(m−n)∆(f)
− sin(θm−θn)

2π(m−n)∆(f)

)
(6.34)

If 2fcT +(n+m− 2) ∆ (f)T is an integer, and if (m− n) ∆ (f)T is also an integer, then < Sm, Sn >= 0
if ∆ (f)T is an integer, then < sm, sn >' 0 when fc is much larger than 1

T .
In case , θm = 0

< sm, sn >'
A2T

2
sinc (2 (m− n) ∆ (f)T ) (6.35)

Therefore, the frequency spacing could be as small as ∆ (f) = 1
2T since sinc (x) = 0 if x = ± (1) or ± (2).

If the signals are designed to be orthogonal then the average probability of error for binary FSK with
optimum receiver is

[U+2010]

P e = Q

(√
Es
N0

)
(6.36)

in AWGN.
Note that sinc (x) takes its minimum value not at x = ± (1) but at ± (1.4) and the minimum value is

−0.216. Therefore if ∆ (f) = 0.7
T then

[U+2010]

P e = Q

(√
1.216Es
N0

)
(6.37)

which is a gain of 10× log1.216 ' 0.85dθ over orthogonal FSK.

3This content is available online at <http://cnx.org/content/m10163/2.10/>.
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Chapter 7

Chapter 7

7.1 Information Theory and Coding1

In the previous chapters, we considered the problem of digital transmission over di�erent channels. Infor-
mation sources are not often digital, and in fact, many sources are analog. Although many channels are also
analog, it is still more e�cient to convert analog sources into digital data and transmit over analog channels
using digital transmission techniques. There are two reasons why digital transmission could be more e�cient
and more reliable than analog transmission:

1. Analog sources could be compressed to digital form e�ciently.
2. Digital data can be transmitted over noisy channels reliably.

There are several key questions that need to be addressed:

1. How can one model information?
2. How can one quantify information?
3. If information can be measured, does its information quantity relate to how much it can be compressed?
4. Is it possible to determine if a particular channel can handle transmission of a source with a particular

information quantity?

Figure 7.1

Example 7.1
The information content of the following sentences: "Hello, hello, hello." and "There is an exam
today." are not the same. Clearly the second one carries more information. The �rst one can be
compressed to "Hello" without much loss of information.

In other modules, we will quantify information and �nd e�cient representation of information (Entropy (Sec-
tion 7.2)). We will also quantify how much (Section 7.5) information can be transmitted through channels,
reliably. Channel coding (Section 7.9) can be used to reduce information rate and increase reliability.

1This content is available online at <http://cnx.org/content/m10162/2.10/>.

57



58 CHAPTER 7. CHAPTER 7

7.2 Entropy2

Information sources take very di�erent forms. Since the information is not known to the destination, it is
then best modeled as a random process, discrete-time or continuous time.

Here are a few examples:

• Digital data source (e.g., a text) can be modeled as a discrete-time and discrete valued random process
X1, X2, . . ., where Xi ∈ {A,B,C,D,E, . . . } with a particular pX1 (x), pX2 (x), . . ., and a speci�c
pX1X2 , pX2X3 , . . ., and pX1X2X3 , pX2X3X4 , . . ., etc.

• Video signals can be modeled as a continuous time random process. The power spectral density is
bandlimited to around 5 MHz (the value depends on the standards used to raster the frames of image).

• Audio signals can be modeled as a continuous-time random process. It has been demonstrated that
the power spectral density of speech signals is bandlimited between 300 Hz and 3400 Hz. For example,
the speech signal can be modeled as a Gaussian process with the shown (Figure 7.2) power spectral
density over a small observation period.

Figure 7.2

These analog information signals are bandlimited. Therefore, if sampled faster than the Nyquist rate,
they can be reconstructed from their sample values.

Example 7.2
A speech signal with bandwidth of 3100 Hz can be sampled at the rate of 6.2 kHz. If the samples
are quantized with a 8 level quantizer then the speech signal can be represented with a binary
sequence with the rate of

6.2× 103log28 = 18600 bits
sample

samples
sec

= 18.6kbits
sec

(7.1)

2This content is available online at <http://cnx.org/content/m10164/2.16/>.
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Figure 7.3

The sampled real values can be quantized to create a discrete-time discrete-valued random
process. Since any bandlimited analog information signal can be converted to a sequence of discrete
random variables, we will continue the discussion only for discrete random variables.

Example 7.3
The random variable x takes the value of 0 with probability 0.9 and the value of 1 with probability
0.1. The statement that x = 1 carries more information than the statement that x = 0. The reason
is that x is expected to be 0, therefore, knowing that x = 1 is more surprising news!! An intuitive
de�nition of information measure should be larger when the probability is small.

Example 7.4
The information content in the statement about the temperature and pollution level on July 15th
in Chicago should be the sum of the information that July 15th in Chicago was hot and highly
polluted since pollution and temperature could be independent.

I (hot,high) = I (hot) + I (high) (7.2)

An intuitive and meaningful measure of information should have the following properties:

1. Self information should decrease with increasing probability.
2. Self information of two independent events should be their sum.
3. Self information should be a continuous function of the probability.

The only function satisfying the above conditions is the -log of the probability.

De�nition 7.1: Entropy
1. The entropy (average self information) of a discrete random variable X is a function of its
probability mass function and is de�ned as

H (X) = −
N∑
i=1

p X (xi ) logp X (xi ) (7.3)

where N is the number of possible values of X and p X (xi ) = Pr [X = xi]. If log is base 2 then
the unit of entropy is bits. Entropy is a measure of uncertainty in a random variable and a measure
of information it can reveal.
2. A more basic explanation of entropy is provided in another module3.

Example 7.5
If a source produces binary information {0, 1} with probabilities p and 1− p. The entropy of the
source is

H (X) = (− (plog2p))− (1− p) log2 (1− p) (7.4)

3"Entropy" <http://cnx.org/content/m0070/latest/>
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If p = 0 then H (X) = 0, if p = 1 then H (X) = 0, if p = 1/2 then H (X) = 1 bits. The source has
its largest entropy if p = 1/2 and the source provides no new information if p = 0 or p = 1.

Figure 7.4

Example 7.6
An analog source is modeled as a continuous-time random process with power spectral density
bandlimited to the band between 0 and 4000 Hz. The signal is sampled at the Nyquist rate. The
sequence of random variables, as a result of sampling, are assumed to be independent. The samples
are quantized to 5 levels {−2,−1, 0, 1, 2}. The probability of the samples taking the quantized
values are

{
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
16

}
, respectively. The entropy of the random variables are

H (X) =
(
−
(

1
2 log2

1
2

))
− 1

4 log2
1
4 −

1
8 log2

1
8 −

1
16 log2

1
16 −

1
16 log2

1
16

= 1
2 log22 + 1

4 log24 + 1
8 log28 + 1

16 log216 + 1
16 log216

= 1
2 + 1

2 + 3
8 + 4

8

= 15
8

bits
sample

(7.5)

There are 8000 samples per second. Therefore, the source produces 8000 × 15
8 = 15000bits

sec of
information.

De�nition 7.2: Joint Entropy
The joint entropy of two discrete random variables (X, Y ) is de�ned by

H (X,Y ) = −
∑
ii

∑
jj

p X,Y (xi, yj ) logp X,Y (xi, yj ) (7.6)

The joint entropy for a random vector X = (X1, X2, . . . , Xn)T is de�ned as

H (X) = −
∑
x 1x1

∑
x 2x2

· · ·
∑

x nxn

p X (x1, x2, . . . , xn ) logp X (x1, x2, . . . , xn ) (7.7)

De�nition 7.3: Conditional Entropy
The conditional entropy of the random variable X given the random variable Y is de�ned by

H (X|Y ) = −
∑
ii

∑
jj

p X,Y (xi, yj ) logpX|Y (xi|yj) (7.8)
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It is easy to show that

H (X) = H (X1) +H (X2|X1) + · · ·+H (Xn|X1X2 . . . Xn−1) (7.9)

and

H (X,Y ) = H (Y ) +H (X|Y )

= H (X) +H (Y |X)
(7.10)

If X1, X2, . . ., Xn are mutually independent it is easy to show that

H (X) =
n∑
i=1

H (Xi) (7.11)

De�nition 7.4: Entropy Rate
The entropy rate of a stationary discrete-time random process is de�ned by

H = limit
n→∞

H (Xn|X1X2 . . . Xn) (7.12)

The limit exists and is equal to

H = limit
n→∞

1
n
H (X1, X2, . . . , Xn) (7.13)

The entropy rate is a measure of the uncertainty of information content per output symbol of the
source.

Entropy is closely tied to source coding (Section 7.3). The extent to which a source can be compressed
is related to its entropy. In 1948, Claude E. Shannon introduced a theorem which related the entropy to the
number of bits per second required to represent a source without much loss.

7.3 Source Coding4

As mentioned earlier, how much a source can be compressed should be related to its entropy (Section 7.2).
In 1948, Claude E. Shannon introduced three theorems and developed very rigorous mathematics for digital
communications. In one of the three theorems, Shannon relates entropy to the minimum number of bits per
second required to represent a source without much loss (or distortion).

Consider a source that is modeled by a discrete-time and discrete-valued random process X1, X2, . . .,
Xn, . . . where xi ∈ {a1, a2, . . . , aN} and de�ne pXi (xi = aj) = pj for j = 1, 2, . . . , N , where it is assumed
that X1, X2,. . . Xn are mutually independent and identically distributed.

Consider a sequence of length n

X =


X1

X2

...

Xn

 (7.14)

The symbol a1 can occur with probability p1. Therefore, in a sequence of length n, on the average, a1 will
appear np1 times with high probabilities if n is very large.

Therefore,
P (X = x) = pX1 (x1) pX2 (x2) . . . pXn (xn) (7.15)

4This content is available online at <http://cnx.org/content/m10175/2.10/>.
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P (X = x) ' p1
np1p2

np2 . . . pN
npN =

N∏
i=1

pi
npi (7.16)

where pi = P (Xj = ai) for all j and for all i.
A typical sequence X may look like

X =



a2

...

a1

aN

a2

a5

...

a1

...

aN

a6



(7.17)

where ai appears npi times with large probability. This is referred to as a typical sequence. The probability
of X being a typical sequence is

P (X = x) '
∏N
i=1 pi

npi =
∏N
i=1

(
2log2pi

)npi
=

∏N
i=1 2npilog2pi

= 2n
PN
i=1 pilog2pi

= 2−(nH(X))

(7.18)

where H (X) is the entropy of the random variables X1, X2,. . ., Xn.
For large n, almost all the output sequences of length n of the source are equally probably with

probability ' 2−(nH(X)). These are typical sequences. The probability of nontypical sequences are neg-
ligible. There are Nn di�erent sequences of length n with alphabet of size N . The probability of typical
sequences is almost 1.

# of typical seq.∑
k=1

2−(nH(X)) = 1 (7.19)
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Figure 7.5

Example 7.7
Consider a source with alphabet {A,B,C,D} with probabilities { 1

2 ,
1
4 ,

1
8 ,

1
8}. Assume X1, X2,. . .,

X8 is an independent and identically distributed sequence with Xi ∈ {A,B,C,D} with the above
probabilities.

H (X) =
(
−
(

1
2 log2

1
2

))
− 1

4 log2
1
4 −

1
8 log2

1
8 −

1
8 log2

1
8

= 1
2 + 2

4 + 3
8 + 3

8

= 4+4+6
8

= 14
8

(7.20)

The number of typical sequences of length 8

28× 14
8 = 214 (7.21)

The number of nontypical sequences 48 − 214 = 216 − 214 = 214 (4− 1) = 3× 214

Examples of typical sequences include those with A appearing 8 × 1
2 = 4 times, B appearing

8× 1
4 = 2 times, etc. {A,D,B,B,A,A,C,A}, {A,A,A,A,C,D,B,B} and much more.
Examples of nontypical sequences of length 8: {D,D,B,C,C,A,B,D}, {C,C,C,C,C,B,C,C} and

much more. Indeed, these de�nitions and arguments are valid when n is very large. The probability
of a source output to be in the set of typical sequences is 1 when n → ∞. The probability of a
source output to be in the set of nontypical sequences approaches 0 as n→∞.

The essence of source coding or data compression is that as n→∞, nontypical sequences never appear as
the output of the source. Therefore, one only needs to be able to represent typical sequences as binary codes
and ignore nontypical sequences. Since there are only 2nH(X) typical sequences of length n, it takes nH (X)
bits to represent them on the average. On the average it takes H (X) bits per source output to represent a
simple source that produces independent and identically distributed outputs.

Theorem 7.1: Shannon's Source-Coding
A source that produced independent and identically distributed random variables with entropy H
can be encoded with arbitrarily small error probability at any rate R in bits per source output if
R ≥ H. Conversely, if R < H, the error probability will be bounded away from zero, independent
of the complexity of coder and decoder.
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The source coding theorem proves existence of source coding techniques that achieve rates close to the
entropy but does not provide any algorithms or ways to construct such codes.

If the source is not i.i.d. (independent and identically distributed), but it is stationary with mem-
ory, then a similar theorem applies with the entropy H (X) replaced with the entropy rate H =
limit
n→∞

H (Xn|X1X2 . . . Xn−1)
In the case of a source with memory, the more the source produces outputs the more one knows about

the source and the more one can compress.

Example 7.8
The English language has 26 letters, with space it becomes an alphabet of size 27. If modeled as
a memoryless source (no dependency between letters in a word) then the entropy is H (X) = 4.03
bits/letter.

If the dependency between letters in a text is captured in a model the entropy rate can be
derived to be H = 1.3 bits/letter. Note that a non-information theoretic representation of a text
may require 5 bits/letter since 25 is the closest power of 2 to 27. Shannon's results indicate that
there may be a compression algorithm with the rate of 1.3 bits/letter.

Although Shannon's results are not constructive, there are a number of source coding algorithms for discrete
time discrete valued sources that come close to Shannon's bound. One such algorithm is the Hu�man source
coding algorithm (Section 7.4). Another is the Lempel and Ziv algorithm.

Hu�man codes and Lempel and Ziv apply to compression problems where the source produces discrete
time and discrete valued outputs. For cases where the source is analog there are powerful compression
algorithms that specify all the steps from sampling, quantizations, and binary representation. These are
referred to as waveform coders. JPEG, MPEG, vocoders are a few examples for image, video, and voice,
respectively.

7.4 Hu�man Coding5

One particular source coding (Section 7.3) algorithm is the Hu�man encoding algorithm. It is a source
coding algorithm which approaches, and sometimes achieves, Shannon's bound for source compression. A
brief discussion of the algorithm is also given in another module6.

7.4.1 Hu�man encoding algorithm

1. Sort source outputs in decreasing order of their probabilities
2. Merge the two least-probable outputs into a single output whose probability is the sum of the corre-

sponding probabilities.
3. If the number of remaining outputs is more than 2, then go to step 1.
4. Arbitrarily assign 0 and 1 as codewords for the two remaining outputs.
5. If an output is the result of the merger of two outputs in a preceding step, append the current codeword

with a 0 and a 1 to obtain the codeword the the preceding outputs and repeat step 5. If no output is
preceded by another output in a preceding step, then stop.

Example 7.9
X ∈ {A,B,C,D} with probabilities { 1

2 ,
1
4 ,

1
8 ,

1
8}

5This content is available online at <http://cnx.org/content/m10176/2.10/>.
6"Compression and the Hu�man Code" <http://cnx.org/content/m0092/latest/>
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Figure 7.6

Average length = 1
21 + 1

42 + 1
83 + 1

83 = 14
8 . As you may recall, the entropy of the source was

also H (X) = 14
8 . In this case, the Hu�man code achieves the lower bound of 14

8
bits

output .

In general, we can de�ne average code length as

−
`=

∑
x∈X

p X (x ) ` (x) (7.22)

where X is the set of possible values of x.
It is not very hard to show that

H (X) ≥
−
`> H (X) + 1 (7.23)

For compressing single source output at a time, Hu�man codes provide nearly optimum code lengths.
The drawbacks of Hu�man coding

1. Codes are variable length.
2. The algorithm requires the knowledge of the probabilities, p X (x ) for all x ∈ X.

Another powerful source coder that does not have the above shortcomings is Lempel and Ziv.

7.5 Channel Capacity7

In the previous section, we discussed information sources and quanti�ed information. We also discussed how
to represent (and compress) information sources in binary symbols in an e�cient manner. In this section,
we consider channels and will �nd out how much information can be sent through the channel reliably.

We will �rst consider simple channels where the input is a discrete random variable and the output is
also a discrete random variable. These discrete channels could represent analog channels with modulation
and demodulation and detection.

7This content is available online at <http://cnx.org/content/m10173/2.8/>.
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Figure 7.7

Let us denote the input sequence to the channel as

X =


X1

X2

...

Xn

 (7.24)

where Xi ∈ X a discrete symbol set or input alphabet.
The channel output

Y =



Y1

Y2

Y3

...

Yn


(7.25)

where Yi ∈ Y a discrete symbol set or output alphabet.
The statistical properties of a channel are determined if one �nds pY|X (y|x) for all y ∈ Y n and for all

x ∈ Xn
. A discrete channel is called a discrete memoryless channel if

pY|X (y|x) =
n∏
i=1

pYi|Xi (yi|xi) (7.26)

for all y ∈ Y n and for all x ∈ Xn
.

Example 7.10
A binary symmetric channel (BSC) is a discrete memoryless channel with binary input and binary
output and pY |X (y = 0|x = 1) = pY |X (y = 1|x = 0). As an example, a white Gaussian channel

with antipodal signaling and matched �lter receiver has probability of error of Q
(√

2Es
N0

)
. Since

the error is symmetric with respect to the transmitted bit, then

pY |X (0|1) = pY |X (1|0)

= Q
(√

2Es
N0

)
= ε

(7.27)
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Figure 7.8

It is interesting to note that every time a BSC is used one bit is sent across the channel with probability
of error of ε. The question is how much information or how many bits can be sent per channel use, reli-
ably. Before we consider the above question a few de�nitions are essential. These are discussed in mutual
information (Section 7.6).

7.6 Mutual Information8

Recall that

H (X,Y ) = −
∑
xx

∑
yy

p X,Y (x, y ) logp X,Y (x, y ) (7.28)

H (Y ) +H (X|Y ) = H (X) +H (Y |X) (7.29)

De�nition 7.5: Mutual Information
The mutual information between two discrete random variables is denoted by I (X;Y ) and de�ned
as

I (X;Y ) = H (X)−H (X|Y ) (7.30)

Mutual information is a useful concept to measure the amount of information shared between input
and output of noisy channels.

In our previous discussions it became clear that when the channel is noisy there may not be reliable
communications. Therefore, the limiting factor could very well be reliability when one considers noisy
channels. Claude E. Shannon in 1948 changed this paradigm and stated a theorem that presents the rate
(speed of communication) as the limiting factor as opposed to reliability.

Example 7.11
Consider a discrete memoryless channel with four possible inputs and outputs.

8This content is available online at <http://cnx.org/content/m10178/2.9/>.
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Figure 7.9

Every time the channel is used, one of the four symbols will be transmitted. Therefore, 2 bits are
sent per channel use. The system, however, is very unreliable. For example, if "a" is received, the
receiver can not determine, reliably, if "a" was transmitted or "d". However, if the transmitter and
receiver agree to only use symbols "a" and "c" and never use "b" and "d", then the transmission
will always be reliable, but 1 bit is sent per channel use. Therefore, the rate of transmission was
the limiting factor and not reliability.

This is the essence of Shannon's noisy channel coding theorem, i.e., using only those inputs whose corre-
sponding outputs are disjoint (e.g., far apart). The concept is appealing, but does not seem possible with
binary channels since the input is either zero or one. It may work if one considers a vector of binary inputs
referred to as the extension channel.

X input vector =


X1

X2

...

Xn

 ∈ X
n

= {0, 1}n

Y output vector =


Y1

Y2

...

Yn

 ∈ Y
n

= {0, 1}n
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Figure 7.10

This module provides a description of the basic information necessary to understand Shannon's Noisy
Channel Coding Theorem (Section 7.8). However, for additional information on typical sequences, please
refer to Typical Sequences (Section 7.7).

7.7 Typical Sequences9

If the binary symmetric channel has crossover probability ε then if x is transmitted then by the Law of Large
Numbers the output y is di�erent from x in nε places if n is very large.

dH (x, y) ' nε (7.31)

The number of sequences of length n that are di�erent from x of length n at nε is n

nε

 =
n!

(nε)! (n− nε)!
(7.32)

Example 7.12
x = (0, 0, 0)T and ε = 1

3 and nε = 3× 1
3 . The number of output sequences di�erent from x by one

element: 3!
1!2! = 3×2×1

1×2 = 3 given by (1, 0, 1)T , (0, 1, 1)T , and (0, 0, 0)T .
Using Stirling's approximation

n! ' nne−n
√

2πn (7.33)

we can approximate  n

nε

 ' 2n((−(εlog2ε))−(1−ε)log2(1−ε)) = 2nHb(ε) (7.34)

where Hb (ε) ≡ (− (εlog2ε)) − (1− ε) log2 (1− ε) is the entropy of a binary memoryless source. For any x
there are 2nHb(ε) highly probable outputs that correspond to this input.

Consider the output vector Y as a very long random vector with entropy nH (Y ). As discussed earlier
(Example 7.1), the number of typical sequences (or highly probably) is roughly 2nH(Y ). Therefore, 2n is the
total number of binary sequences, 2nH(Y ) is the number of typical sequences, and 2nHb(ε) is the number of
elements in a group of possible outputs for one input vector. The maximum number of input sequences that
produce nonoverlapping output sequences

M = 2nH(Y )

2nHb(ε)

= 2n(H(Y )−Hb(ε))
(7.35)

9This content is available online at <http://cnx.org/content/m10179/2.10/>.
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Figure 7.11

The number of distinguishable input sequences of length n is

2n(H(Y )−Hb(ε)) (7.36)

The number of information bits that can be sent across the channel reliably per n channel uses
n (H (Y )−Hb (ε)) The maximum reliable transmission rate per channel use

R = log2M
n

= n(H(Y )−Hb(ε))
n

= H (Y )−Hb (ε)

(7.37)

The maximum rate can be increased by increasing H (Y ). Note that Hb (ε) is only a function of the crossover
probability and can not be minimized any further.

The entropy of the channel output is the entropy of a binary random variable. If the input is chosen to
be uniformly distributed with pX (0) = pX (1) = 1

2 .
Then

pY (0) = 1pX (0) + εpX (1)

= 1
2

(7.38)

and

pY (1) = 1pX (1) + εpX (0)

= 1
2

(7.39)

Then, H (Y ) takes its maximum value of 1. Resulting in a maximum rate R = 1 −Hb (ε) when pX (0) =
pX (1) = 1

2 . This result says that ordinarily one bit is transmitted across a BSC with reliability 1 − ε. If
one needs to have probability of error to reach zero then one should reduce transmission of information to
1−Hb (ε) and add redundancy.
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Recall that for Binary Symmetric Channels (BSC)

H (Y |X) = px (0)H (Y |X = 0) + px (1)H (Y |X = 1)

= px (0) (− ((1− ε) log2 (1− ε)− εlog2ε)) + px (1) (− ((1− ε) log2 (1− ε)− εlog2ε))

= (− ((1− ε) log2 (1− ε)))− εlog2ε

= Hb (ε)

(7.40)

Therefore, the maximum rate indeed was

R = H (Y )−H (Y |X)

= I (X;Y )
(7.41)

Example 7.13
The maximum reliable rate for a BSC is 1 −Hb (ε). The rate is 1 when ε = 0 or ε = 1. The rate
is 0 when ε = 1

2

Figure 7.12

This module provides background information necessary for an understanding of Shannon's Noisy Chan-
nel Coding Theorem (Section 7.8). It is also closely related to material presented in Mutual Information
(Section 7.6).

7.8 Shannon's Noisy Channel Coding Theorem10

It is highly recommended that the information presented in Mutual Information (Section 7.6) and in Typical
Sequences (Section 7.7) be reviewed before proceeding with this document. An introductory module on the
theorem is available at Noisy Channel Theorems 11.

Theorem 7.2: Shannon's Noisy Channel Coding
The capacity of a discrete-memoryless channel is given by

C = maxp X x {I (X;Y ) | pX (x)} (7.42)

where I (X;Y ) is the mutual information between the channel input X and the output Y . If the
transmission rate R is less than C, then for any ε > 0 there exists a code with block length n large

10This content is available online at <http://cnx.org/content/m10180/2.10/>.
11"Noisy Channel Coding Theorem" <http://cnx.org/content/m0073/latest/>
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enough whose error probability is less than ε. If R > C, the error probability of any code with any
block length is bounded away from zero.

Example 7.14
If we have a binary symmetric channel with cross over probability 0.1, then the capacity C ' 0.5
bits per transmission. Therefore, it is possible to send 0.4 bits per channel through the channel
reliably. This means that we can take 400 information bits and map them into a code of length
1000 bits. Then the whole code can be transmitted over the channels. One hundred of those bits
may be detected incorrectly but the 400 information bits may be decoded correctly.

Before we consider continuous-time additive white Gaussian channels, let's concentrate on discrete-time
Gaussian channels

Yi = Xi + ηi (7.43)

where the Xi's are information bearing random variables and ηi is a Gaussian random variable with variance
σ2
η. The input Xi's are constrained to have power less than P

1
n

n∑
i=1

Xi
2 ≤ P (7.44)

Consider an output block of size n
Y = X + η (7.45)

For large n, by the Law of Large Numbers,

1
n

n∑
i=1

ηi
2 =

1
n

n∑
i=1

(|yi − xi|)2 ≤ ση2 (7.46)

This indicates that with large probability as n approaches in�nity, Y will be located in an n-dimensional
sphere of radius

√
nση2 centered about X since (|y − x|)2 ≤ nση2

On the other hand since Xi's are power constrained and ηi and Xi's are independent

1
n

n∑
i=1

yi
2 ≤ P + ση

2 (7.47)

|Y | ≤ n
(
P + ση

2
)

(7.48)

This mean Y is in a sphere of radius
√
n (P + ση2) centered around the origin.

How many X's can we transmit to have nonoverlapping Y spheres in the output domain? The question
is how many spheres of radius

√
nση2 �t in a sphere of radius

√
n (P + ση2).

M =

“√
n(ση2+P )

”n“√
nση2

”n
=

(
1 + P

ση2

)n
2

(7.49)
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Figure 7.13

Exercise 7.1 (Solution on p. 78.)

How many bits of information can one send in n uses of the channel?

The capacity of a discrete-time Gaussian channel C = 1
2 log2

(
1 + P

ση2

)
bits per channel use.

When the channel is a continuous-time, bandlimited, additive white Gaussian with noise power spectral
density N0

2 and input power constraint P and bandwidth W . The system can be sampled at the Nyquist
rate to provide power per sample P and noise power

ση
2 =

∫W
−W

N0
2 df

= WN0

(7.50)

The channel capacity 1
2 log2

(
1 + P

N0W

)
bits per transmission. Since the sampling rate is 2W , then

C =
2W
2

log2

(
1 +

P

N0W

)
bits/trans. x trans./sec (7.51)

C = W log2

(
1 +

P

N0W

)
bits
sec

(7.52)

Example 7.15
The capacity of the voice band of a telephone channel can be determined using the Gaussian model.
The bandwidth is 3000 Hz and the signal to noise ratio is often 30 dB. Therefore,

C = 3000log2 (1 + 1000) ' 30000
bits
sec

(7.53)

One should not expect to design modems faster than 30 Kbs using this model of telephone channels.
It is also interesting to note that since the signal to noise ratio is large, we are expecting to transmit
10 bits/second/Hertz across telephone channels.

7.9 Channel Coding12

Channel coding is a viable method to reduce information rate through the channel and increase reliability.
This goal is achieved by adding redundancy to the information symbol vector resulting in a longer coded

12This content is available online at <http://cnx.org/content/m10174/2.11/>.
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vector of symbols that are distinguishable at the output of the channel. Another brief explanation of channel
coding is o�ered in Channel Coding and the Repetition Code13. We consider only two classes of codes, block
codes (Section 7.9.1: Block codes) and convolutional codes (Section 7.10).

7.9.1 Block codes

The information sequence is divided into blocks of length k. Each block is mapped into channel inputs of
length n. The mapping is independent from previous blocks, that is, there is no memory from one block to
another.

Example 7.16
k = 2 and n = 5

00→ 00000 (7.54)

01→ 10100 (7.55)

10→ 01111 (7.56)

11→ 11011 (7.57)

information sequence ⇒ codeword (channel input)

A binary block code is completely de�ned by 2k binary sequences of length n called codewords.

C = {c1, c2, . . . , c2k} (7.58)

ci ∈ {0, 1}n (7.59)

There are three key questions,

1. How can one �nd "good" codewords?
2. How can one systematically map information sequences into codewords?
3. How can one systematically �nd the corresponding information sequences from a codeword, i.e., how

can we decode?

These can be done if we concentrate on linear codes and utilize �nite �eld algebra.
A block code is linear if ci ∈ C and cj ∈ C implies ci ⊕ cj ∈ C where ⊕ is an elementwise modulo 2

addition.
Hamming distance is a useful measure of codeword properties

dH (ci, cj) = #of places that they are di�erent (7.60)

Denote the codeword for information sequence e1 =



1

0

0

0
...

0

0


by g1 and e2 =



0

1

0

0
...

0

0


by g2,. . ., and ek =

13"Repetition Codes" <http://cnx.org/content/m0071/latest/>
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

0

0

0

0
...

0

1


by gk. Then any information sequence can be expressed as

u =


u1

...

uk


=

∑k
i=1 uiei

(7.61)

and the corresponding codeword could be

c =
k∑
i=1

uigi (7.62)

Therefore
c = uG (7.63)

with c = {0, 1}n and u ∈ {0, 1}k where G =


g1

g2

...

gk

, a kxn matrix and all operations are modulo 2.

Example 7.17
In Example 7.16 with

00→ 00000 (7.64)

01→ 10100 (7.65)

10→ 01111 (7.66)

11→ 11011 (7.67)

g1 = (0, 1, 1, 1, 1)T and g2 = (1, 0, 1, 0, 0)T and G =

 0 1 1 1 1

1 0 1 0 0


Additional information about coding e�ciency and error are provided in Block Channel Coding14.

Examples of good linear codes include Hamming codes, BCH codes, Reed-Solomon codes, and many
more. The rate of these codes is de�ned as k

n and these codes have di�erent error correction and error
detection properties.

14"Block Channel Coding" <http://cnx.org/content/m0094/latest/>
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7.10 Convolutional Codes15

Convolutional codes are one type of code used for channel coding (Section 7.9). Another type of code used
is block coding (Section 7.9.1: Block codes).

7.10.1 Convolutional codes

In convolutional codes, each block of k bits is mapped into a block of n bits but these n bits are not only
determined by the present k information bits but also by the previous information bits. This dependence
can be captured by a �nite state machine.

Example 7.18
A rate 1

2 convolutional coder k = 1, n = 2 with memory length 2 and constraint length 3.

Figure 7.14

Since the length of the shift register is 2, there are 4 di�erent rates. The behavior of the
convolutional coder can be captured by a 4 state machine. States: 00, 01, 10, 11,

For example, arrival of information bit 0 transitions from state 10 to state 01.
The encoding and the decoding process can be realized in trellis structure.

15This content is available online at <http://cnx.org/content/m10181/2.7/>.
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Figure 7.15

If the input sequence is

1 1 0 0

the output sequence would be

11 10 10 11

The transmitted codeword is then 11 10 10 11. If there is one error on the channel 11 00 10 11

Figure 7.16

Starting from state 00 the Hamming distance between the possible paths and the received
sequence is measured. At the end, the path with minimum distance to the received sequence is
chosen as the correct trellis path. The information sequence will then be determined.

Convolutional coding lends itself to very e�cient trellis based encoding and decoding. They are very
practical and powerful codes.
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Solutions to Exercises in Chapter 7

Solution to Exercise 7.1 (p. 73)

log2

(
1 +

P

ση2

)n
2

(7.68)
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Chapter 9

Homework 1 of Elec 4301

Elec 430 homework set 1. Rice University Department of Electrical and Computer Engineering.

Exercise 9.1
The current I in a semiconductor diode is related to the voltage V by the relation I = eV − 1. If
V is a random variable with density function fV (x) = 1

2e
−|x| for −∞ < x < ∞, �nd f I (y ); the

density function of I.

Exercise 9.2

9.1

Show that if AB = {} then Pr [A] ≤ Pr [Bc]

9.2

Show that for any A, B, C we have Pr [A ∪B ∪ C] = Pr [A] + Pr [B] + Pr [C] − Pr [A ∩B] −
Pr [A ∩ C]− Pr [B ∩ C] + Pr [A ∩B ∩ C]

9.3

Show that if A and B are independent the Pr [A ∩Bc] = Pr [A]Pr [Bc] which means A and Bc are
also independent.

Exercise 9.3
Suppose X is a discrete random variable taking values {0, 1, 2, . . . , n} with the following probability

mass function p X (k ) =

 n!
k!(n−k)!θ

k(1− θ)n−k if k = {0, 1, 2, . . . , n}
0 otherwise

with parameter θ ∈ [0, 1]

9.1

Find the characteristic function of X.

1This content is available online at <http://cnx.org/content/m10370/2.6/>.
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9.2

Find
−
X and σ2

X

note: See problems 3.14 and 3.15 in Proakis and Salehi

Exercise 9.4
Consider outcomes of a fair dice Ω = {ω1, ω2, ω3, ω4, ω5, ω6}. De�ne events A =
{ω, ω | an even number appears} and B = {ω, ω | a number less than 5 appears}. Are these
events disjoint? Are they independent? (Show your work!)

Exercise 9.5
This is problem 3.5 in Proakis and Salehi.

An information source produces 0 and 1 with probabilities 0.3 and 0.7, respectively. The output
of the source is transmitted via a channel that has a probability of error (turning a 1 into a 0 or a
0 into a 1) equal to 0.2.

9.1

What is the probability that at the output a 1 is observed?

9.2

What is the probability that a 1 was the output of the source if at the output of the channel a 1 is
observed?

Exercise 9.6
Suppose X and Y are each Gaussian random variables with means µX and µY and variances σ2

X

and σ2
Y . Assume that they are also independent. Show that Z = X +Y is also Gaussian. Find the

mean and variance of Z.



Chapter 10

Homework 2 of Elec 4301

Elec 430 homework set 2. Rice University Department of Electrical and Computer Engineering.

10.1 Problem 1

Suppose A and B are two Gaussian random variables each zero mean with
−
A2< ∞ and

−
B2< ∞. The

correlation between them is denoted by
−
AB. De�ne the random process Xt = A+Bt and Yt = B +At.

• a) Find the mean, autocorrelation, and crosscorrelation functions of Xt and Yt.
• b) Find the 1st order density of Xt, fXt (x)
• c) Find the conditional density of Xt2 given Xt1 , fXt2 |Xt1 (x2|x1). Assume t2 > t1

note: see Proakis and Salehi problem 3.28

• d) Is Xt wide sense stationary?

10.2 Problem 2

Show that if Xt is second-order stationary, then it is also �rst-order stationary.

10.3 Problem 3

Let a stochastic process Xt be de�ned by Xt = cos (Ωt+ Θ) where Ω and Θ are statistically independent
random variables. Θ is uniformaly distributed over [−π, π] and Ω has an unknown density fΩ (ω).

• a) Compute the expected value of Xt.
• b) Find an expression for the correlation function of Xt.
• c) Is Xt wide sense stationary? Show your reasoning.
• d) Find the �rst-order density function fXt (x).

1This content is available online at <http://cnx.org/content/m10374/2.4/>.
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Chapter 11

Homework 5 of Elec 4301

11.1 Problem 1

Consider a ternary communication system where the source produces three possible symbols: 0, 1, 2.
a) Assign three modulation signals s1 (t), s2 (t), and s3 (t) de�ned on t ∈ [0, T ] to these symbols, 0, 1,

and 2, respectively. Make sure that these signals are not orthogonal and assume that the symbols have an
equal probability of being generated.

b) Consider an orthonormal basis ψ1 (t), ψ2 (t), ..., ψN (t) to represent these three signals. Obviously N
could be either 1, 2, or 3.

Figure 11.1

1This content is available online at <http://cnx.org/content/m10450/2.5/>.
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Now consider two di�erent receivers to decide which one of the symbols were transmitted when rt =
sm (t) +Nt is received where m = {1, 2, 3} and Nt is a zero mean white Gaussian process with SN (f) = N0

2
for all f . What is fr|sm(t) and what is fY|sm(t)?

Figure 11.2

Find the probability that
^
m6= m for both receivers. Pe = Pr

[
^
m 6= m

]
.

11.2 Problem 2

Proakis and Salehi problems 7.18, 7.26, and 7.32

11.3 Problem 3

Suppose our modulation signals are s1 (t) and s2 (t) where s1 (t) = e−t
2
for all t and s2 (t) = −s1 (t). The

channel noise is AWGN with zero mean and spectral height N0
2 . The signals are transmitted equally likely.
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Figure 11.3

Find the impulse response of the optimum �lter. Find the signal component of the output of the matched

�lter at t = T where s1 (t) is transmitted; i.e., u1 (t). Find the probability of error Pr

[
^
m 6= m

]
.

In this part, assume that the power spectral density of the noise is not �at and in fact is

SN (f) =
1

(2πf)2 + α2
(11.1)

for all f , where α is real and positive. Can you show that the optimum �lter in this case is a cascade of two
�lters, one to whiten the noise and one to match to the signal at the output of the whitening �lter?

Figure 11.4

c) Find an expression for the probability of error.
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Chapter 12

Homework 3 of Elec 4301

Exercise 12.1
Suppose that a white Gaussian noise Xt is input to a linear system with transfer function given
by

H (f) =

 1 if |f | ≤ 2

0 if |f | > 2
(12.1)

Suppose further that the input process is zero mean and has spectral height N0
2 = 5. Let Yt denote

the resulting output process.

1. Find the power spectral density of Yt. Find the autocorrelation of Yt (i.e., RY (τ)).
2. Form a discrete-time process (that is a sequence of random variables) by sampling Yt at time

instants T seconds apart. Find a value for T such that these samples are uncorrelated. Are
these samples also independent?

3. What is the variance of each sample of the output process?

Figure 12.1

Exercise 12.2
Suppose that Xt is a zero mean white Gaussian process with spectral height N0

2 = 5. Denote Yt
as the output of an integrator when the input is Yt.

1This content is available online at <http://cnx.org/content/m10375/2.8/>.
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Figure 12.2

1. Find the mean function of Yt. Find the autocorrelation function of Yt, RY (t+ τ, t)
2. Let Zk be a sequence of random variables that have been obtained by sampling Yt at every
T seconds and dumping the samples, that is

Zk =
∫ kT

(k−1)T

Xτdτ (12.2)

Find the autocorrelation of the discrete-time processes Zk's, that is, RZ (k +m, k) =
E (Zk+mZk)

3. Is Zk a wide sense stationary process?

Exercise 12.3
Proakis and Salehi, problem 3.63, parts 1, 3, and 4

Exercise 12.4
Proakis and Salehi, problem 3.54

Exercise 12.5
Proakis and Salehi, problem 3.62



Chapter 13

Exercises on Systems and Density1

Exercise 13.1
Consider the following system

Figure 13.1

Assume that Nτ is a white Gaussian process with zero mean and spectral height N0
2 .

If b is "0" then Xτ = ApT (τ) and if b is "1" then Xτ = (−A) pT (τ) where pT (τ) = 1 if 0 ≤ τ ≤ T
0 otherwise

. Suppose Pr [b = 1] = Pr [b = 0] = 1/2.

1. Find the probability density function ZT when bit "0" is transmitted and also when bit "1" is
transmitted. Refer to these two densities as f ZT ,H0 (z ) and f ZT ,H1 (z ), where H0 denotes
the hypothesis that bit "0" is transmitted and H1 denotes the hypothesis that bit "1" is
transmitted.

2. Consider the ratio of the above two densities; i.e.,

Λ (z) =
f ZT ,H0 (z )
f ZT ,H1 (z )

(13.1)

and its natural log ln (Λ (z)). A reasonable scheme to decide which bit was actually transmit-
ted is to compare ln (Λ (z)) to a �xed threshold γ. (Λ (z) is often referred to as the likelihood

1This content is available online at <http://cnx.org/content/m10449/2.6/>.
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function and ln (Λ (z)) as the log likelihood function). Given threshold γ is used to decide
^
b= 0

when ln (Λ (z)) ≥ γ then �nd Pr

[
^
b 6= b

]
(note that we will say

^
b= 1 when ln (Λ (z)) < γ).

3. Find a γ that minimizes Pr

[
^
b 6= b

]
.

Exercise 13.2
Proakis and Salehi, problems 7.7, 7.17, and 7.19

Exercise 13.3
Proakis and Salehi, problem 7.20, 7.28, and 7.23
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Homework 61

Homework set 6 of ELEC 430, Rice University, Department of Electrical and Computer Engineering

14.1 Problem 1

Consider the following modulation system

s0 (t) = APT (t)− 1 (14.1)

and
s1 (t) = (− (APT (t)))− 1 (14.2)

for 0 ≤ t ≤ T where PT (t) =

 1 if 0 ≤ t ≤ T
0 otherwise

Figure 14.1

1This content is available online at <http://cnx.org/content/m10451/2.3/>.
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The channel is ideal with Gaussian noise which is µN (t) = 1 for all t, wide sense stationary with
RN (τ) = b2e−|τ | for all τ ∈ R. Consider the following receiver structure

rt = sm (t) +Nt
(a)

(b)

Figure 14.2

• a) Find the optimum value of the threshold for the system (e.g., γ that minimizes the Pe). Assume
that π0 = π1

• b) Find the error probability when this threshold is used.

14.2 Problem 2

Consider a PAM system where symbols a1, a2, a3, a4 are transmitted where an ∈ {2A,A,−A,− (2A)}. The
transmitted signal is

Xt =
4∑

n=1

ans (t− nT ) (14.3)

where s (t) is a rectangular pulse of duration T and height of 1. Assume that we have a channel with
impulse response g (t) which is a rectangular pulse of duration T and height 1, with white Gaussian noise
with SN (f) = N0

2 for all f .

• a) Draw a typical sample path (realization) of Xt and of the received signal rt (do not forget to add a
bit of noise!)

• b) Assume that the receiver knows g (t). Design a matched �lter for this transmission system.
• c) Draw a typical sample path of Yt, the output of the matched �lter (do not forget to add a bit of

noise!)
• d) Find an expression (or draw) u (nT ) where u (t) = s ∗ g ∗ hopt (t).

14.3 Problem 3

Proakis and Salehi, problem 7.35
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14.4 Problem 4

Proakis and Salehi, problem 7.39
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Chapter 15

Homework 71

Exercise 15.1
Consider an On-O� Keying system where s1 (t) = Acos (2πfct+ θ) for 0 ≤ t ≤ T and s2 (t) = 0
for 0 ≤ t ≤ T . The channel is ideal AWGN with zero mean and spectral height N0

2 .

1. Assume θ is known at the receiver. What is the average probability of bit-error using an
optimum receiver?

2. Assume that we estimate the receiver phase to be
^
θ and that

^
θ 6= θ. Analyze the performance

of the matched �lter with the wrong phase, that is, examine Pe as a function of the phase
error.

3. When does noncoherent become preferable? (You can �nd an expression for the Pe of non-
coherent receivers for OOK in your textbook.) That is, how big should the phase error be
before you would switch to noncoherent?

Exercise 15.2
Proakis and Salehi, Problems 9.4 and 9.14

Exercise 15.3
A coherent phase-shift keyed system operating over an AWGN channel with two sided power
spectral density N0

2 uses s0 (t) = ApT (t) cos (ωct+ θ0) and s1 (t) = ApT (t) cos (ωct+ θ1) where
|θi| ≤ π

3 , i ∈ {0, 1} , are constants and that fcT = integer with ωc = 2πfc.

1. Suppose θ0 and θ1 are known constants and that the optimum receiver uses �lters matched
to s0 (t) and s1 (t). What are the values of Pe0 and Pe1?

2. Suppose θ0 and θ1 are unknown constants and that the receiver �lters are matched to
^
s0 (t) = ApT (t) cos (ωct) and

^
s1 (t) = ApT (t) cos (ωct+ π) and the threshold is zero.

note: Use a correlation receiver structure.

What are Pe0 and Pe1 now? What are the minimum values of Pe0 and Pe1 (as a function of
θ0 and θ1)?

1This content is available online at <http://cnx.org/content/m10452/2.3/>.
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Chapter 16

Homework 81

Exercise 16.1
Proakis and Salehi, Problems 9.15 and 9.16

Exercise 16.2
Proakis and Salehi, Problem 9.21

Exercise 16.3
Proakis and Salehi, Problems 4.1, 4.2, and 4.3

Exercise 16.4
Proakis and Salehi, Problems 4.5 and 4.6

1This content is available online at <http://cnx.org/content/m10453/2.3/>.
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Chapter 17

Homework 91

Exercise 17.1
Proakis and Salehi, Problems 4.22 and 4.28

Exercise 17.2
Proakis and Salehi, Problems 4.21 and 4.25

Exercise 17.3
Proakis and Salehi, Problems 10.1 and 10.6

Exercise 17.4
Proakis and Salehi, Problems 10.8 and 10.9

Exercise 17.5
For this problem of the homework, please either make up a problem relevant to chapters 6 or 7
of the notes or �nd one from your text book or other books on Digital Communication, state the
problem clearly and carefully and then solve.

note: If you would like to choose one from your textbook, please reserve your problem on the
white board in my o�ce. (You may not pick a problem that has already been reserved.)

Please write the problem and its solution on separate pieces of paper so that I can easily reproduce
and distribute them to others in the class.

1This content is available online at <http://cnx.org/content/m10455/2.3/>.
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Glossary

A antipodal

Signals s1 (t) and s2 (t) are antipodal if s2 (t) = −s1 (t) , t ∈ [0, T ]

Autocorrelation

The autocorrelation function of the random process Xt is de�ned as

RX (t2, t1) = E [Xt2Xt1
∗]

=


∫∞
−∞

∫∞
−∞ x2x1

∗f Xt2 ,Xt1 (x2, x1 ) dx 1dx 2 if continuous∑∞
k=−∞

∑∞
l=−∞ xlxk

∗p Xt2 ,Xt1 (xl, xk ) if discrete

(3.21)

Autocovariance

Autocovariance of a random process is de�ned as

CX (t2, t1) = E
[
(Xt2 − µX (t2)) (Xt1 − µX (t1))∗

]
= RX (t2, t1)− µX (t2)µX (t1)∗

(3.31)

B biorthogonal

Signals s1 (t), s2 (t),. . ., sM (t) are biorthogonal if s1 (t),. . ., sM
2

(t) are orthogonal and
sm (t) = −sM

2 +m (t) for some m ∈
{

1, 2, . . . , M2
}
.

C Conditional Entropy

The conditional entropy of the random variable X given the random variable Y is de�ned by

H (X|Y ) = −
∑
ii

∑
jj

p X,Y (xi, yj ) logpX|Y (xi|yj) (7.8)

Continuous Random Variable

A random variable X is continuous if the cumulative distribution function can be written in an
integral form, or

F X (b ) =
∫ b

−∞
f X (x ) dx (2.2)

and f X (x ) is the probability density function (pdf) (e.g., F X (x ) is di�erentiable and
f X (x ) = d

dx (F X (x )))

Crosscorrelation

The crosscorrelation function of a pair of random processes is de�ned as

RXY (t2, t1) = E [Xt2Yt1
∗]

=
∫∞
−∞

∫∞
−∞ xyf Xt2 ,Yt1 (x, y ) dxdy

(3.32)

CXY (t2, t1) = RXY (t2, t1)− µX (t2)µY (t1)∗ (3.33)
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Cumulative distribution

The cumulative distribution function of a random variable X is a function F X (R 7→ R ) such
that

F X (b ) = Pr [X ≤ b]
= Pr [{ω ∈ Ω | X (ω) ≤ b}]

(2.1)

D Discrete Random Variable

A random variable X is discrete if it only takes at most countably many points (i.e., F X ( · ) is
piecewise constant). The probability mass function (pmf) is de�ned as

p X (xk ) = Pr [X = xk]

= F X (xk )− limit
x(x→xk) · (x<xk)

F X (x )
(2.3)

E Entropy Rate

The entropy rate of a stationary discrete-time random process is de�ned by

H = limit
n→∞

H (Xn|X1X2 . . . Xn) (7.12)

The limit exists and is equal to

H = limit
n→∞

1
n
H (X1, X2, . . . , Xn) (7.13)

The entropy rate is a measure of the uncertainty of information content per output symbol of
the source.

Entropy

1. The entropy (average self information) of a discrete random variable X is a function of its
probability mass function and is de�ned as

H (X) = −
N∑
i=1

p X (xi ) logp X (xi ) (7.3)

where N is the number of possible values of X and p X (xi ) = Pr [X = xi]. If log is base 2
then the unit of entropy is bits. Entropy is a measure of uncertainty in a random variable and a
measure of information it can reveal.

2. A more basic explanation of entropy is provided in another module2.

F First-order stationary process

If FXt (b) is not a function of time then Xt is called a �rst-order stationary process.

G Gaussian process

A process with mean µX (t) and covariance function CX (t2, t1) is said to be a Gaussian process

if any X = (Xt1 , Xt2 , . . . , XtN )T formed by any sampling of the process is a Gaussian random
vector, that is,

fX (x) =
1

(2π)
N
2 (detΣX)

1
2
e−( 1

2 (x−µX)TΣX
−1(x−µX)) (3.48)

2"Entropy" <http://cnx.org/content/m0070/latest/>
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for all x ∈ Rn where

µX =


µX (t1)

...

µX (tN )


and

ΣX =


CX (t1, t1) . . . CX (t1, tN )

...
. . .

CX (tN , t1) . . . CX (tN , tN )


. The complete statistical properties of Xt can be obtained from the second-order statistics.

J Joint Entropy

The joint entropy of two discrete random variables (X, Y ) is de�ned by

H (X,Y ) = −
∑
ii

∑
jj

p X,Y (xi, yj ) logp X,Y (xi, yj ) (7.6)

Jointly Wide Sense Stationary

The random processes Xt and Yt are said to be jointly wide sense stationary if RXY (t2, t1) is a
function of t2 − t1 only and µX (t) and µY (t) are constant.

M Mean

The mean function of a random process Xt is de�ned as the expected value of Xt for all t's.

µXt = E [Xt]

=


∫∞
−∞ xf Xt (x ) dx if continuous∑∞
k=−∞ xkp Xt (xk ) if discrete

(3.20)

Mutual Information

The mutual information between two discrete random variables is denoted by I (X;Y ) and
de�ned as

I (X;Y ) = H (X)−H (X|Y ) (7.30)

Mutual information is a useful concept to measure the amount of information shared between
input and output of noisy channels.

O orthogonal

Signals s1 (t), s2 (t),. . ., sM (t) are orthogonal if < sm, sn >= 0 for m 6= n.

P Power Spectral Density

The power spectral density function of a wide sense stationary (WSS) process Xt is de�ned to be
the Fourier transform of the autocorrelation function of Xt.

SX (f) =
∫ ∞
−∞

RX (τ) e−(j2πfτ)dτ (3.44)

if Xt is WSS with autocorrelation function RX (τ).
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S Simplex signals

Let {s1 (t) , s2 (t) , . . . , sM (t)} be a set of orthogonal signals with equal energy. The signals
s̃1 (t),. . ., ˜sM (t) are simplex signals if

s̃m (t) = sm (t)− 1
M

M∑
k=1

sk (t) (4.3)

Stochastic Process

Given a sample space, a stochastic process is an indexed collection of random variables de�ned
for each ω ∈ Ω.

Xt (ω) , t ∈ R (3.1)

U Uncorrelated random variables

Two random variables X and Y are uncorrelated if ρXY = 0.

WWide Sense Stationary

A process is said to be wide sense stationary if µX is constant and RX (t2, t1) is only a function
of t2 − t1.
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SNR, � 4.8(34), � 4.9(36), � 4.10(38)
source coding, � 7.1(57), � 7.3(61), � 7.4(64)
stationary, � 3.1(7)
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T time-invariant, � 4.8(34), � 4.9(36), � 4.10(38)
transmission, � 7.5(65)
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U Uncorrelated random variables, 6
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wide sense stationary, � 3.2(11), 12
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