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(1.1)

Chapter 1. Quantization

1.1. Quantization
*

• Given a continuous-time and continuous-amplitude signal x(t), processing and storage by modern digital hardware requires discretization in both time and amplitude, as accomplished by 

an analog-to-digital converter (ADC).

• We will typically work with discrete-time quantities x(n) (indexed by “time” variable n) which we assume were sampled ideally and without aliasing.

• Here we discuss various ways of discretizing the amplitude of x(n)so that it may be represented by a finite set of numbers. This is generally a lossy operation, and so we analyze the 

performance of various quantization schemes and design quantizers that are optimal under certain assumptions. A good reference for much of this material is the textbook by Jayant and 

Noll.

1.2. Memoryless Scalar Quantization
*

• Memoryless scalar quantization of continuous-amplitude variable xis the mapping of x to output yk when x lies within interval

The xk are called decision thresholds, and the number of quantization levels is L. The quantization operation is written y = Q(x).

• When , quantizer is called midtread, else midrise.

• Quantization error defined q:=x – Q(x)
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(1.2)

(1.3)

Figure 1.1. 

(a) Uniform and (b) non-uniform quantization Q(x) and quantization error q(x)

• If x is a r.v. with pdf px( · ) and likewise for q, then quantization error variance is

• A special quantizer is the uniform quantizer:
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(1.4)

(1.5)

(1.6)

• Uniform Quantizer Performance for large L: For bounded input , uniform quantization with x2 = – xmax + Δ and xL = xmax – Δ, and withy1 = x2 – Δ / 2 and yk = xk + Δ / 2 (for 

k > 1), the quantization error is well approximated by a uniform distribution for large L:

Why?

• As , px(x) is constant over Xkfor any k. Since q = x– yk|x ∈ Xk
, it follows that will have uniform distribution for any k.

• With and with xk and yk as specified, q ∈ ( – Δ / 2,Δ / 2] for all x(see Figure 1.2). Hence, for any k,

Figure 1.2. 

Quantization error for bounded input and midpoint yk

In this case, from Equation 1.2 (upper equation),
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(1.7)

(1.8)

(1.9)

If we use R bits to represent each discrete output y and choose L = 2R, then

and

Recall that the expression above is only valid for σx
2

small enough to ensure . For larger σx
2
, the quantizer overloads and the SNR decreases rapidly.

Example 1.1. SNR for Uniform Quantization of Uniformly-Distributed Input

For uniformly distributed x, can show , so that SNR = 6.02R.

Example 1.2. SNR for Uniform Quantization of Sinusoidal Input)

For a sinusoidal x, can show , so that SNR = 6.02R + 1.76. (Interesting since sine waves are often used as test signals).

Example 1.3. SNR for Uniform Quantization of Gaussian Input

Though not truly bounded, Gaussian x might be considered as approximately bounded if we choose xmax = 4σx and ignore residual clipping. In this case SNR = 6.02R – 7.27.

1.3. MSE-Optimal Memoryless Scalar Quantization
*

• Though uniform quantization is convenient for implementation and analysis, non-uniform quantization yeilds lower σq
2

whenpx(•) is non-uniformly distributed. By decreasing |q(x)| for 

frequently occuring x (at the expense of increasing |q(x)| for infrequently occuring x), the average error power can be reduced.

• Lloyd-Max Quantizer: MSE-optimal thresholds and outputs can be determined given an input distribution px(•),and the result is the Lloyd-Max quantizer. Necessary conditions 

on and are
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(1.10)

(1.11)

Using equation 2 from Memoryless Scalar Quantization (third equation), ∂ / ∂b∫a
bf(x)dx = f(b),∂ / ∂a∫a

bf(x)dx = – f(a), and above,

It can be shown that above are sufficient for global MMSE when ∂2logpx(x) / ∂x2 ≤ 0, which holds for uniform, Gaussian, and Laplace pdfs, but not Gamma.Note:

• optimum decision thresholds are halfway between neighboring output values,

• optimum output values are centroids of the pdf within the appropriate interval, i.e., are given by the conditional means

Iterative Procedure to Find :

1. Choose .

2. For , given and , solve Equation 1.10 (lower equation) for , given and , solve Equation 1.10 (upper equation) for .end;

3. Compare to yL calculated from Equation 1.10 (lower equation) based on and xL + 1 = ∞. Adjust accordingly, and go to step 1.

• Lloyd-Max Performance for large L: As with the uniform quantizer, can analyze quantization error performance for large L. Here, we assume that

• the pdf px(x) is constant over x ∈ Xk for k ∈ {1,⋯,L},

• the pdf px(x) is symmetric about x = 0,

• the input is bounded, i.e., for some (potentially large) xmax.

So with assumption
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(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

and definition

we can write

and thus, from equation 2 from Memoryless Scalar Quantization(lower equation), σq
2 becomes

For MSE-optimal , know

which is expected since the centroid of a flat pdf over Xkis simply the midpoint of Xk. Plugging yk
⋆ into Equation 1.15,

Note that for uniform quantization (Δk = Δ), the expression above reduces to the one derived earlier.Now we minimize σq
2 w.r.t. . The trick here is to define

For px(x) constant over Xk and yk ∈ Xk,
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(1.20)

(1.21)

(1.22)

(1.23)

we have the following constrained optimization problem:

This may be solved using Lagrange multipliers.

Optimization via Lagrange Multipliers

Consider the problem of minimizing N-dimensional real-valued cost function J(x), where , subject to real-valued equality constraintsfm(x) = am, m = 1,⋯,M. 

This may be converted into an unconstrained optimization of dimension known as Lagrange multipliers. The uncontrained 

cost function is

and necessary conditions for its minimization are

The typical procedure used to solve for optimal x is the following:

1. Equations for xn, n = 1,⋯,N, in terms of are obtained from Equation 1.22 (upper equation).

2. These N equations are used in Equation 1.22(lower equation) to solve for the M optimal λm.

3. The optimal are plugged back into the Nequations for xn, yielding optimal .

Necessary conditions are
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(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

which can be combined to solve for λ:

Plugging λ back into the expression for αℓ, we find

Using the definition of αℓ, the optimal decision spacing is

and the minimum quantization error variance is

An interesting observation is that , theℓth interval's optimal contribution to σq
2, is constant over ℓ.

1.4. Entropy Coding
*

• Binary Scalar Encoding: Previously we have focused on the memoryless scalar quantizer y = Q(x), where y takes a value from a set of L reconstruction levels. By coding each quantizer 

output in binary format, we transmit (store) the information at a rate (cost) of

If, for example, L = 8, then we transmit at 3 bits/sample. Say we can tolerate a bit more quantization error, e.g., as results from L = 5. We hope that this reduction in fidelity reduces our 

transmission requirements, but with this simple binary encoding scheme we still require R = 3 bits/sample!

• Idea—Block Coding: Let's assign a symbol to each block of 3 consecutive quantizer outputs. We need a symbol alphabet of size ≥ 53 = 125, which is adequately represented by a 7-bit 

word (27 = 128). Transmitting these words requires only 7 / 3 = 2.33 bits/sample!
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• Idea—Variable Length Coding: Assume some of the quantizer outputs occur more frequently than others. Could we come up with an alphabet consisting of short words for representing 

frequent outputs and longer words for infrequent outputs that would have a lower average transmission rate?

Example 1.4. Variable Length Coding)

Consider the quantizer with L = 4 and output probabilities indicated in Table 1.1. Straightforward 2-bit encoding requires average bit rate of 2 bits/sample, while the variable length 

code in Table 1.1 gives average bits/sample.

output Pk code

y1 0.60 0

y2 0.25 01

y3 0.10 011

y4 0.05 111

Table 1.1. 

• (Just enough information about) Entropy:

Exercise 1.4.1.

Given an arbitrarily complex coding scheme, what is the minimum bits/sample required to transmit (store) the sequence{y(n)}?

Answer

When random process {y(n)} is i.i.d., the minimum average bit rate is where Hy is the entropy of random variable y(n) in bits: and ϵ is an arbitrarily 

small positive constant (see textbooks by Berger and by Cover & Thomas).

Notes:

• Entropy obeys0 ≤ Hy ≤ log2L. The left inequality occurs when Pk = 1 for some k, while the right inequality occurs when Pk = 1 / L for every k.

• The term entropy refers to the average information of a single random variable, while the term entropy rate refers to a sequence of random variables, i.e., a random process.

• When {y(n)} is not independent (the focus of later sections), a different expression for Rmin applies.
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• Though the minimum rate is well specified, the construction of a coding scheme which always achieves this rate is not.

Example 1.5. Entropy of Variable Length Code

Recalling the setup of Example 1.4, we find that Hy = – (0 . 6 log2 0 . 6 + 0 . 25 log2 0 . 25 + 0 . 1 log2 0 . 1 + 0 . 05 log2 0 . 05) = 1.49 bits. Assuming i.i.d. {y(n)}, we have Rmin = 1.49

bits/sample. Compare to the variable length code on the right which gaveR = 1.55 bits/sample.

output Pk code

y1 0.60 0

y2 0.25 01

y3 0.10 011

y4 0.05 111

Table 1.2. 

• Huffman Encoding: Given quantizer outputs yk or fixed-length blocks of outputs , the Huffman procedure constructs variable length codes that are optimal in certain respects 

(see Cover & Thomas). For example, when the probabilities of are powers of 1/2 (and {y(n)} is i.i.d.), the entropy rate of a Huffman encoded output attains Rmin.

Huffman Procedure (Binary Case)

1. Arrange ouput probabilities Pk in decreasing order and consider them as leaf nodes of a tree.

2. While there exists more than one node:

• Merge the two nodes with smallest probability to form a new node whose probability equals the sum of the two merged nodes.

• Arbitrarily assign 1 and 0 to the two branches of the merging pair.

3. The code assigned to each output is obtained by reading the branch bits sequentially from root note to leaf node.
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Figure 1.3. 

Example 1.6. Huffman Encoder Attaining Rmin

In Huffman Procedure (Binary Case), a Huffman code was constructed for the output probabilities listed below. Here 

Hy = – (0 . 5 log2 0 . 5 + 0 . 25 log2 0 . 25 + 2 · 0 . 125 log2 0 . 125) = 1.75 bits, so that Rmin = 1.75 bits/sample (with the i.i.d. assumption). Since the average bit rate for the Huffman code 

is also bits/sample, Huffman encoding attains Rmin for this output distribution.

output Pk code

y1 0.5 0

y2 0.25 01

y3 0.125 011
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y4 0.125 111

Table 1.3. 

1.5. Quantizer Design for Entropy Coded Sytems
*

• Say that we are designing a system with a memoryless quantizer followed by an entropy coder, and our goal is to minimize the average transmission rate for a given σq
2

(or vice versa). 

Is it optimal to cascade a σq
2
-minimizing (Lloyd-Max) quantizer with a rate-minimizing code? In other words, what is the optimal memoryless quantizer if the quantized outputs are to be 

entropy coded?

• A Compander Formulation: To determine the optimal quantizer,

1. consider a companding system: a memoryless nonlinearityc(x) followed by uniform quantizer,

2. find c(x) minimizing entropy Hy for a fixed error variance σq
2
.
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(1.29)

(1.30)

Figure 1.4. 

Compander curve: nonuniform input regions mapped to uniform output regions (for subsequent uniform quantization)

• First we must express σq
2

and Hy in terms of c(x).Figure 1.4 suggests that, for large L, the slopec ' (x) : = dc(x) / dx obeys

so that we may write
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(1.31)

(1.32)

Assuming large L, the σq
2
-approximationequation 9 from MSE-Optimal Memoryless Scalar Quantization (lower equation) can be transformed as follows.

Similarly,
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(1.33)

(1.34)

• Entropy-Minimizing Quantizer: Our goal is to choose c(x) which minimizes the entropy rate Hysubject to fixed error variance σq
2
. We employ a Lagrange technique again, minimizing the 

cost under the constraint that the quantity equals a constant C. This yields the unconstrained cost function

with scalar λ, and the unconstrained optimization problem becomes

The following technique is common in variational calculus (see, e.g., Optimal Systems Control by Sage & White). Say a ⋆ (x) minimizes a (scalar) cost J(a ( x )). Then for any (well-

behaved) variation η(x) from this optimala ⋆ (x), we must have
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(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

where ϵ is a scalar. Applying this principle to our optimization problem, we search forc ' (x) such that

From Equation 1.33 we find (using log2a = log2e · logea)

and to allow for any η(x) we require

Applying the boundary conditions,

Thus, for large-L, the quantizer that minimizes entropy rate Hy for a given quantization error variance σq
2is the uniform quantizer.Plugging c(x) = x into Equation 1.32, the rightmost 

integral disappears and we have

and using the large-L uniform quantizer error variance approximationequation 6 from Memoryless Scalar Quantization,
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(1.42)

(1.43)

(1.44)

It is interesting to compare this result to the information-theoretic minimal average rate for transmission of a continuous-amplitude memoryless source x of differential entropy hx at 

average distortionσq
2
(see Jayant & Noll or Berger):

Comparing the previous two equations, we find that (for a continous-amplitude memoryless source) uniform quantization prior to entropy coding requires

more than the theoretically optimum transmission scheme, regardless of the distribution of x. Thus, 0.255 bits/sample (or ∼ 1.5 dB using the 6.02R relationship) is the price paid for 

memoryless quantization.

1.6. Adaptive Quantization
*

• Previously have considered the case of stationary source processes, though in reality the source signal may be highly non-stationary. For example, the variance, pdf, and/or mean may 

vary significantly with time.

• Here we concentrate on the problem of adapting uniform quantizer stepsize Δ to a signal with unknown variance. This is accomplished by estimating the input variance and 

setting the quantizer stepsize appropriately:

Here φx is a constant that depends on the distribution of the input signal x whose function is to prevent input values greater than σx(n) from being clipped by the quantizer (see 

Figure 1.5); comparing to non-adaptive step size relation Δ = 2xmax / L, we see that .
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Figure 1.5. 

Adaptive quantization stepsize 

• As long as the reconstruction levels are the same at encoder and decoder, the actual values chosen for quantizer design are arbitrary. Assuming integer values as in Figure 1.5, the 

quantization rule becomes
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(1.45)

(1.46)

• AQF and AQB:Figure 1.6 shows two structures for stepsize adaptation: (a) adaptive quantization with forward estimation (AQF) and (b) adaptive quantization with backward estimation

(AQB). The advantage of AQF is that variance estimation may be accomplished more accurately, as it is operates directly on the source as opposed to a quantized (noisy) version of the 

source. The advantage of AQB is that the variance estimates do not need to be transmitted as side information for decoding. In fact, practical AQF encoders transmit variance estimates 

only occasionally, e.g., once per block.

Figure 1.6. 

(a) AQF and (b) AQB

• Block Variance Estimation: When operating on finite blocks of data, the structures inFigure 1.6 perform variance estimation as follows:

N is termed the learning period and its choice may significantly impact quantizer SNR performance: choosing N too large prevents the quantizer from adapting to the local statistics of 

the input, while choosing N too small results in overly noisy AQB variance estimates and excessive AQF side information.Figure 1.7 demonstrates these two schemes for two choices of 

N.
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Figure 1.7. 
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(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

Block AQF and AQB estimates of σx(n) superimposed on |x(n)| for N = 128,32. SNR acheived: (a) 22.6 dB, (b) 28.8 dB, (c) 21.2 dB, and (d) 28.8 dB.

• Recursive Variance Estimation: The recursive method of estimating variance is as follows

where α is a forgetting factor in the range 0 < α < 1and typically near to 1. This leads to an exponential data window, as can be seen below. Plugging the expression for into 

that for ,

Then plugging into the above,

Continuing this process N times, we arrive at

Taking the limit as N→ ∞, α < 1 ensures that
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Figure 1.8. 
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Exponential AQF and AQB estimates of σx(n) superimposed on |x(n)| for λ = 0.9,0.99. (a) 20.5 dB, (b) 28.0 dB, (c) 22.2 dB, (d) 24.1 dB.
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(2.1)

Chapter 2. DPCM

2.1. Pulse Code Modulation
*

• PCM is the “standard” sampling method taught in introductory DSP courses. The input signal is

1. filtered to prevent aliasing,

2. discretized in time by a sampler, and

3. quantized in amplitude by a quantizer

before transmission (or storage). Finally, the received samples are interpolated in time and amplitude to reconstruct an approximation of the input signal. Note that transmission may employ the use of 

additional encoding and decoding, as with entropy codes. PCM is the most widespread and well-understood digital coding system for reasons of simplicity, though not efficiency (as we shall see).

Figure 2.1. 

Standard PCM system

2.2. Differential Pulse Code Modulation
*

• Many information signals, including audio, exhibit significant redundancy between successive samples. In these situations, it is advantageous to transmit only the difference between predicted and true 

versions of the signal: with a “good” predictions, the quantizer input will have variance less than the original signal, allowing a quantizer with smaller decision regions and hence higher SNR. (See 

Figure 2.4 for an example of such a structure.)

• Linear Prediction:There are various methods of prediction, but we focus on forward linear prediction of order N, illustrated by Figure 2.2and described by the following equation, where is a linear 

estimate of x(n) based on N previous versions of x(n):
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(2.2)

(2.3)

(2.4)

It will be convenient to collect the prediction coefficientsinto the vector .

Figure 2.2. 

Linear Prediction

• Lossless Predictive Encoding:Consider first the system in Figure 2.3. 

Figure 2.3. 

Lossless Predictive Data Transmission System 

The system equations are 

In the z-domain (i.e., and ), 

We call this transmission system lossless because, from above, 
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(2.5)

(2.6)

Without quantization, however, the prediction error e(n) takes on a continuous range of values, and so this scheme is not applicable to digital transmission. 

• Quantized Predictive Encoding:Quantizing the prediction error in Figure 2.3, we get the system of Figure 2.4. 

Figure 2.4. 

Quantized Predictive Coding System 

Here the equations are 

In the z-domain we find that 

Thus the reconstructed output is corrupted by a filtered version of the quantization error where the filter (1 – H ( z )) – 1 is expected to amplify the quantization error; recall thatY(z) = E(z)(1 – H ( z )) – 1

where the goal of prediction was to make σe
2 < σy

2. This problem results from the fact that the quantization noise appears at the decoder's predictor input but not at the encoder's predictor input. But 

we can avoid this... 

• DPCM:Including quantization in the encoder's prediction loop, we obtain the system in Figure 2.5, known as differential pulse code modulation . 
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(2.7)

(2.8)

(2.9)

Figure 2.5. 

A Typical Differential PCM System 

System equations are 

In the z-domain we find that 

so that 

Thus, the reconstructed output is corrupted only by the quantization error. Another significant advantage to placing the quantizer inside the prediction loop is realized if the predictor made self-

adaptive (in the same spirit as the adaptive quantizers we studied). As illustrated in Figure 2.6, adaptation of the prediction coefficients can take place simulateously at the encoder and decoder with 

no transmission of side-information (e.g. h(n))! This is a consequence of the fact that both algorithms have access to identical signals.
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(2.10)

(2.11)

(2.12)

(2.13)

Figure 2.6. 

Adaptive DPCM System

2.3. Performance of DPCM
*

• As we noted earlier, the DPCM performance gain is a consequence of variance reduction obtained through prediction. Here we derive the optimal predictor coefficients, prediction error variance, and 

bit rate for the system in figure 4 from Differential Pulse Code Modulation. This system is easier to analyze than DPCM systems with quantizer in loop (e.g., figure 5 from Differential Pulse 

Code Modulation) and it is said that the difference in prediction-error behavior is negligible when R > 2(see page 267 of Jayant & Noll).

• Optimal Prediction Coefficients:First we find coefficients h minimizing prediction error variance: 

Throughout, we assume that x(n) is a zero-mean stationary random process with autocorrelation 

rx ( k ) : = E { x ( n ) x ( n– k ) } = rx ( – k ) . 

A necessary condition for optimality is the following: 

where we have used equation 1 from Differential Pulse Code Modulation. We can rewrite this as a system of linear equations: 
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(2.14)

(2.15)

(2.16)

(2.17)

which yields an expression for the optimal prediction coefficients: 

• Error for Length-N Predictor:The definition and Equation 2.14 can be used to show that the minimum prediction error variance is

• Error for Infinite-Length Predictor:We now characterize σe
2 |min ,N as N → ∞. Note that 

Using Cramer's rule, 

Cramer's Rule

Given matrix equation Ay = b, where , where | · | denotes determinant.
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(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

A result from the theory of Toeplitz determinants (see Jayant & Noll) gives the final answer: 

where is the power spectral density of the WSS random process x(n): 

(Note that, because rx(n) is conjugate symmetric for stationary x(n), will always be non-negative and real.) 

• ARMA Source Model:If the random process x(n) can be modelled as a general linear process , i.e., white noise v(n) driving a causal LTI system B(z): 

then it can be shown that 

Thus the MSE-optimal prediction error variance equals that of the driving noise v(n) when N = ∞. 

• Prediction Error Whiteness:We can also demonstrate that the MSE-optimal prediction error is white when N = ∞. This is a simple fact of the orthogonality principle seen earlier: 

The prediction error has autocorrelation 

• AR Source Model:When the input can be modelled as an autoregressive (AR) process of order N: 

then MSE-optimal results (i.e., σe
2 = σe

2|min and whitening) may be obtained with a forward predictor of order N. Specifically, the prediction coefficients hi can be chosen as hi = ai and so the prediction 

error E(z) becomes 
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(2.26)

(2.27)

(2.28)

(2.29)

• Efficiency Gain over PCM:Prediction reduces the variance at the quantizer input without changing the variance of the reconstructed signal. 

• By keeping the number of quantization levels fixed, could reduce quantization step width and obtain lower quantization error than PCM at the same bit rate. 

• By keeping the decision levels fixed, could reduce the number of quantization levels and obtain a lower bit rate than PCM at the same quantization error level. 

Assuming that x(n) and e(n) are distributed similarly, use of the same style of quantizer on DPCM vs. PCM systems yields 

2.4. Analysis of DPCM using Rate-Distortion Theory
*

• The rate-distortion functionR(D) specifies the minimum average rate R required to transmit the source process at a mean distortion ofD, while the distortion-rate functionD(R) specifies the minimum 

mean distortion D resulting from transmission of the source at average rate R. These bounds are theoretical in the sense that coding techniques which attain these minimum rates or distortions are in 

general unknown and thought to be infinitely complex as well as require infinite memory. Still, these bounds form a reference against which any specific coding system can be compared. For a 

continuous-amplitude white (i.e., “memoryless”) Gaussian source x(n) (see Berger and Jayant & Noll),

The sources we are interested in, however, are non-white. It turns out that when distortion D is “small,” non-white Gaussianx(n) have the following distortion-rate function: (see page 644 of Jayant & 

Noll)

Note the ratio of geometric to arithmetic PSD means, called thespectral flatness measure. Thus optimal coding of x(n) yields

To summarize, Equation 2.29 (lower equation) gives the best possible SNR for any arbitrarily-complex coding system that transmits/stores information at an average rate of R bits/sample.

• Let's compare the SNR-versus-rate performance acheivable by DPCM to the optimal given by Equation 2.29 (lower equation). The structure we consider is shown in Figure 2.7, where quantized DPCM 

outputs are coded into binary bits using an entropy coder. Assuming that is white (which is a good assumption for well-designed predictors), optimal entropy coding/decoding is able to 

transmit and recover at bits/sample without any distortion. is the entropy of , for which we derived the following expression assuming large-L uniform quantizer:
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(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

Since in DPCM, can be rewritten:

If e(n) is Gaussian, it can be shown that the differential entropyhe takes on the value

so that

Using and rearranging the previous expression, we find

With the optimal infinite length predictor, σe
2

equalsσe
2|min given by equation 10 from Performance of DPCM. Plugging equation 10 from Performance of DPCM into the previous expression 

and writing the result in terms of the spectral flatness measure,

Translating into SNR, we obtain

To summarize, a DPCM system using a MSE-optimal infinite-length predictor and optimal entropy coding of could operate at an average of R bits/sample with the SNR in Equation 2.36 (lower 

equation).
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Figure 2.7. 

Entropy-Encoded DPCM System.

• Comparing Equation 2.29 (lower equation) and Equation 2.36 (lower equation), we see that DPCM incurs a 1.5 dB penalty in SNR when compared to the optimal. From our previous discussion on 

optimal quantization, we recognize that this 1.5 dB penalty comes from the fact that the quantizer in the DPCM system is memoryless. (Note that the DPCM quantizer must be memoryless since the 

predictor input must not be delayed.)

• Though we have identified a 1.5 dB DPCM penalty with respect to optimal, a key point to keep in mind is that the design of near-optimal coders for non-white signals is extremely difficult. When the 

signal statistics are rapidly changing, such a design task becomes nearly impossible. Though still non-trivial to design, near-optimal entropy coders forwhite signals exist and are widely used in practice. 

Thus, DPCM can be thought of as a way of pre-processing a colored signal that makes near-optimal coding possible. From this viewpoint, 1.5 dB might not be considered a high price to pay.
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(3.1)

(3.2)

Chapter 3. Transform Coding

3.1. Transform Coding: Background and Motivation
*

• In transform coding (TC), blocks of N input samples are transformed to N transform coefficients which are then quantized and transmitted. At the decoder, an inverse 

transform is applied to the quantized coefficients, yielding a reconstruction of the original waveform. By designing individual quantizers in accordance with the statistics 

of their inputs, it is possible to allocate bits in a more optimal manner, e.g., encoding the “more important” coefficients at a higher bit rate.

Figure 3.1. 

N × N Transform Coder/Decoder with Scalar Quantization

• Orthogonal Transforms: From our perspective, an “transform” will be any real-valued linear operation taking N input samples to N output samples, or transform 

coefficients. This operation can always be written in matrix form

where x(m) and y(m) are vectors representing N × 1 blocks of input/output elements:
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(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Intuition comes from considering the transform's basis defined by the rows of the matrix

since the coefficient yk = tk
tx can be thought of as the result of a“comparison” between the kth basis vector and the input x. These comparisons are defined by the 

inner product which has a geometrical interpretation involving the angle θk between vectors tk and x.

When the vectors are mutually orthogonal, i.e.,tk
ttℓ = 0 for k ≠ ℓ, the transform coefficients represent separate, unrelated features of the input. This property is 

convenient if the transform coefficients are independently quantized, as is typical in TC schemes.

Example 3.1.  Transform Coder

Say that stationary zero-mean Gaussian source x(m) has autocorrelation rx(0) = 1, rx(1) = ρ, and rx(k) = 0 for k > 1. For a bit rate of R bits per sample, uniformly-

quantized PCM implies a mean-squared reconstruction error of

For transform coding, say we choose linear transform

Setting and y(m) = Tx(m), we find that the transformed coefficients have variance
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(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

and using uniformly-quantized PCM on each coefficient we get mean-squared reconstruction errors

We use the same quantizer performance factor γx as before since linear operations preserve Gaussianity. For orthogonal matrices T, i.e., T – 1
= Tt, we can show 

that the mean-squared reconstruction error σr
2equals the mean-squared quantization error:

Since our matrix is indeed orthogonal, we have mean-squared reconstruction error
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(3.13)

at bit rate of R0 + R1 bits per two samples. Comparing TC to PCM at equal bit rates (i.e. R0 + R1 = 2R),

Figure 3.2 shows that (i) allocating a higher bit rate to the quantizer with stronger input signal can reduce the average reconstruction error relative to PCM, and (ii) 

the gain over PCM is higher when the input signal exhibits stronger correlation ρ.Also note that when R0 = R1 = R, there is no gain over PCM—a verification of the 

fact that σr
2 = σq

2 when T is orthogonal.

Figure 3.2. 

Ratio of TC to PCM mean-squared reconstruction errors versus bit rate R0 for two values of ρ.
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(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

3.2. Optimal Bit Allocation
*

• Motivating Question: Assuming that T is an orthogonal matrix, what is the MSE-optimal bitrate allocation strategy assuming independent uniform quantization of 

the transform outputs? In other words, what minimize average reconstruction error for fixed average rate ?

• Say that the kth element of the transformed output vectory(n) has variance . With uniform quantization, example 1 from Background and Motivation

showed that thekth quantizer error power is

where Rk is the bit rate allocated to the kth quantizer output and where γyk depends on the distribution of yk. From this point on we make the simplifying assumption 

that γyk is independent of k. As shown in example 1 from Background and Motivation, orthogonal matrices imply that the mean squared reconstruction error 

equals the mean squared quantization error, so that

Thus we have the constrained optimization problem

Using the Lagrange technique, we first set

Since , the zero derivative implies

Hence
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(3.20)

(3.21)

(3.22)

so that

Rewriting Equation 3.18 and plugging in the expression above,

• The optimal bitrate allocation expression Equation 3.21 (lower equation) is meaningful only when Rℓ ≥ 0, and practical only for integer numbers of quantization levels 

2
– 2Rℓ (or practical values of Rℓ for a particular coding scheme). Practical strategies typically

• set Rℓ = 0 to when Equation 3.21 (lower equation) suggests that the optimalRℓ is negative,

• round positive Rℓ to practical values, and

• iteratively re-optimize using these rules until all Rℓ have practical values.

• Plugging Equation 3.21 (lower equation) into Equation 3.14, we find that optimal bit allocation implies

which means that, with optimal bit allocation, each coefficient contributes equally to reconstruction error. (Recall a similar property of the Lloyd-Max quantizer.)
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(3.23)

(3.24)

(3.25)

3.3. Gain over PCM
*

• With an orthogonal transform and the optimal bit allocationequation 8 from Optimal Bit Allocation (lower equation), the total reconstruction error equals

We can compare to uniformly quantized PCM, whereσr
2|
PCM

= γxσx
22 – 2R. Since an orthogonal transform implies

we have the following gain over PCM:

Note that the gain is proportional to the ratio between arithmetic and geometric means of the transform coefficient variances. (Note similarities to the spectral flatness 

measure.) The factor γy / γx accounts for changes in distribution which affect uniform-quantizer efficiency. For example, if T caused uniformly distributed x to become 

Gaussian distributed yk, γy / γx would contribute a 7 dB loss in TC-to-PCM performance. If, on the other hand, x was Gaussian, then yk would also be Gaussian and 

γy / γx = 1.

3.4. The Optimal Orthogonal Transform
*

• Ignoring the effect of transform choice on uniform-quantizer efficiency γy, Gain Over PCM suggests that TC reconstruction error can be minimized by choosing the 

orthogonal transform Tthat minimizes the product of coefficient variances. (Recall that orthogonal transforms preserve the arithmetic average of coefficient variances.)

Eigen-Analysis of Autocorrelation Matrices

Say that R is the N × N autocorrelation matrix of a real-valued, wide-sense stationary, discrete time stochastic process. The following properties are often useful:

1. R is symmetric and Toeplitz. (A symmetric matrix obeysR = Rt, while a Toeplitz matrix has equal elements on all diagonals.)
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(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

2. R is positive semidefinite or PSD. (PSD means thatxtRx ≥ 0 for any real-valued x.)

3. R has an eigen-decomposition

R = VΛVt,

where V is an orthogonal matrix (VtV = I) whose columns are eigenvectors of R:

and Λ is a diagonal matrix whose elements are the eigenvalues of R:

4. The eigenvectors of R are real-valued and non-negative.

5. The product of the eigenvectors equals the determinant ( ) and the sum of the eigenvalues equals the trace ( ).

• The KLT: Using the outer product,

Using [A]k,k to denote the kth diagonal element of a matrix A, matrix theory implies
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(3.31)

(3.32)

thus minimization of ∏kσ
2
yk would occur if equality could be established above. Say that the eigen-decomposition of the autocorrelation matrix of x(n), which we now 

denote by Rx, is

for orthogonal eigenvector matrix Vx and diagonal eigenvalue matrix Λx. Then choosing , otherwise known as the Karhunen-Loeve transform (KLT), results in 

the desired property:

To summarize:

1. the orthogonal transformation matrix T minimizing reconstruction error variance has rows equal to the eigenvectors of the input's autocorrelation matrix,

2. the variances of the optimal-transform outputs are equal to the eigenvalues of the input autocorrelation matrix, and

3. the optimal-transform outputs are uncorrelated. (Why? Note the zero-valued off-diagonal elements of .)

• Note that the presence of mutually uncorrelated transform coefficients supports our approach of quantizing each transform output independently of the others.

Example 3.2.  KLT Coder

Recall Example 1 from "Background and Motivation" with Gaussian input having The eigenvalues of Rx can be determined from the characteristic 

equation |Rx– λI| = 0:

Page 9 of 26Chapter 3. Transform Coding

26/04/2012file:///C:/cd3wd_master/master/students/cnx_maths_monday_pm_/col11121_1.2_An%20Introduction%20to%20Source-Coding%20Qua...



(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

The eigenvector v0 corresponding to eigenvalueλ0 = 1 + ρ solves Rxv0 = λ0v0. Using the notation and ,

Similarly, Rxv1 = λ1v1 yields

For orthonormality,

Thus the KLT is given by . Using the KLT and optimal bit allocation, the error reduction relative to PCM is

since γy = γx for Gaussian x(n). This value equals 0.6 when ρ = 0.8, and 0.98 when ρ = 0.2(compare to Figure 2 from "Background and Motivation").

3.5. Performance*

Asymptotic Performance Analysis
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(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

• For an N × N transform coder, Equation 1 from "Gain over PCM" presented an expression for the reconstruction error varianceσr
2|TC written in terms of the 

quantizer input variances . Noting the N-dependence on σr
2|TC inEquation 1 from "Gain over PCM" and rewriting it as σr

2|TC,N, a reasonable question might be: 

What is σr
2|TC,Nas ?

• When using the KLT, we know that σ2
yk = λk whereλk denotes the kth eigenvalue of Rx. If we plug these σ2

yk into Equation 1 from "Gain over PCM", we get

Writing and using the Toeplitz Distribution Theorem (see Grenander & Szego) 

with f( · ) = ln( · ), we find that

where SFMx denotes the spectral flatness measure of x(n), redefined below for convenience:

Thus, with optimal transform and optimal bit allocation, asymptotic gain over uniformly quantized PCM is

• Recall that, for the optimal DPCM system,
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(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

where we assumed that the signal applied to DPCM quantizer is distributed similarly to the signal applied to PCM quantizer and where σe
2|min denotes the prediction 

error variance resulting from use of the optimal infinite-length linear predictor:

Making this latter assumption for the transform coder (implyingγy = γx) and plugging in σe
2|min yields the following asymptotic result:

In other words, transform coding with infinite-dimensional optimal transformation and optimal bit allocation performs equivalently to DPCM with infinite-length optimal 

linear prediction.

Finite-Dimensional Analysis: Comparison to DPCM

• The fact that optimal transform coding performs as well as DPCM in the limiting case does not tell us the relative performance of these methods at practical levels of 

implementation, e.g., when transform dimension and predictor length are equal and ≪ ∞. Below we compare the reconstruction error variances of TC and DPCM when 

the transform dimension equals the predictor length. Recalling that

and

where RN denotes the N × N autocorrelation matrix of x(n), we find

Recursively applying the equations above, we find
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(3.51)

(3.52)

(3.53)

(3.54)

which means that we can write

If in the previously derived TC reconstruction error variance expression

we assume that γy = γx and apply the eigenvalue property∏ℓλℓ = |RN|, the TC gain over PCM becomes

The strict inequality follows from the fact that GDPCM,k is monotonically increasing with k. To summarize, DPCM with optimal length-N prediction performs better than TC 

with optimal transformation and optimal bit allocation for any finite value of N. There is an intuitive explanation for this: the propagation of memory in the DPCM 

prediction loop makes the effective memory of DPCM greater than N, while in TC the effective memory is exactly N.

3.6. Sub-Optimum Orthogonal Transforms
*

• Goal: Recall that the goal of the optimal orthogonal transform was to minimize the ratio of geometric to arithmetic output variances:
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(3.55)

(3.56)

(3.57)

The ratio Equation 3.54 attains its maximum value ( = 1) when σ2
yk are equal for all kand takes on much smaller values when the difference between the σ2

yk

(sometimes called the dynamic range of ) is large.

• Problem with KLT: The KLT, i.e., the orthogonal transform minimizing Equation 3.54, is a function of the input signal statistics. Specifically, the KLT equals the 

eigenvector matrix of the input autocorrelation matrix. Unfortunately, realistic signals are non-stationary, requiring continual KLT redesign if optimality is to be 

preserved, and eigenvector computation is computationally intensive, especially for large N. Thus, the question becomes: Are there fixed orthogonal transforms that do 

a good job of minimizing the ratio Equation 3.54for “typical” input signals? As we will see, the answer is yes...

• DFT Intuitions: For the sake of intuition, lets first consider choosing T as an orthogonal DFT matrix. In this case, the coefficient variances would be samples of 

the power would be determined by the relative input power in different frequency bands. Recalling that asymptotic TC 

(N→ ∞) performance is determined by SFMx, which has the same geometric-to-arithmetic-average structure as Equation 3.54:

we might intuit that the DFT is optimal as N→ ∞. The asymptotic optimality of the DFT can, in fact, be proven (see Jayant & Noll). Of course, we don't have much 

reason to expect that the DFT would be optimal for finite transform dimension N. Still, for many signals, it performs well. (See Figure 3.3.)

• Other Transforms: The most commonly used orthogonal transform in speech, image, audio, and video coding is the discrete cosine transform (DCT). The excellent 

performance of the DCT follows from the fact that it is especially suited to “lowpass” signals, a feature shared by most signals in the previously mentioned applications. 

Note that there are plenty of signals for which the DCT performs poorly—it just so happens that such signals are not frequently encountered in speech, image, audio, 

or video. We will describe the DCT and provide intuition regarding it's good“lowpass” performance shortly. Like the DFT, the DCT has fast algorithms which make it 

extremely practical from an implementation standpoint. Another reasonably popular orthogonal transform, requiring even less in the way of computation, is the 

discrete Hadamard transform (DHT), also described below.Figure 3.3 compares DFT, DCT, DHT, and KLT for various transform lengths N along with asymptotic TC 

performance.Figure 3.3(a) shows gain over PCM when using a lowpass autoregressive (AR) source {x(n)} generated from white Gaussian noise {v(n)} via:

while Figure 3.3(b) shows the gain for highpass{x(n)}:

See Figure 3.4 for the power spectra of these two processes.
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Figure 3.3. 

GTC,N for various transforms and various N on an AR(1) lowpass (left) and highpass (right) sources.
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(3.58)

(3.59)

Figure 3.4. 

Power spectra of AR(1) sources used in the transform matrix comparisons of Figure 3.3.

• The DHT: The DHT is defined below for power-of-two N:

Note that HN is orthogonal
[1]

, i.e., HNHN
t

= I. As an example

Figure 3.5 illustrates DHT basis vectors for the case N = 8. The primary advantage of the DHT is that its implementation can be accomplished very efficiently.Figure 3.3

suggests that the DHT performs nearly as well as the KLT for N = 2 and 4, but its performance falls well short of optimal for larger N.
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(3.60)

Figure 3.5. 

DHT basis vectors.

• The DFT: The normalized[2] DFT from to is defined below along with its inverse.

The normalized DFT can be represented by a symmetric unitary
[3]

matrix WN:
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(3.61)

(3.62)

(3.63)

(3.64)

By unitary, we mean that WNWN
* t = I, where( · ) * denotes complex conjugation. Note that a unitary matrix is the complex-valued equivalent of an orthogonal matrix. In 

practice, the N × N DFT is implemented using the fast Fourier transform (FFT), which requires complex multiply/adds when N is a power of two.

• The Real-Valued DFT: Since we assume real-valued xn, complex-valued DFT outputsyk might seem problematic since transmitting both real and imaginary components 

would decrease our transmission efficiency. For a real-valued DFT input, however, the DFT outputs exhibit conjugate symmetry which allows us to represent the N

complex valued outputs with only N real-valued numbers. More precisely, real-valued DFT input implies that DFT output has the property

which implies

A good method by which to select non-redundant components of the DFT output is:

1. Compute complex-valued using the standard DFT.

2. Construct real-valued from as follows:

The method above is convenient because (i) it preserves the frequency ordering of the DFT and (ii) it preserves the norm of the DFT output vector, i.e., ∥ y ' ∥ = ∥ y ∥ . 

Using the conjugate symmetry property of DFT outputs, we can write the transformation from from as a matrix operation UN:
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(3.65)

(3.66)

The normalization feature guarantees that U
N

is unitary (which is easily checked by inspection). Then U
N
W

N
, the product of two unitary matrices, is also unitary. Since 

UNWN is actually real-valued (since it takes any real-valued x to a real-valued y') it should be referred to as orthogonal rather than unitary. Henceforth we rename 

UNWN the real-valued DFT matrixWN
r

It is easily checked that the basis vectors of W
N

rare sampled sines and cosines at the uniformly spaced frequencies . Figure 3.6 gives an 

illustration of the real-valued DFT basis vectors for the case N = 8.
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(3.67)

(3.68)

Figure 3.6. 

Real-valued DFT basis vectors.

Example 3.3. [DFT and Real-valued DFT for N = 4]
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(3.69)

(3.70)

Recall that when N is a power of 2, an N-dimensional complex-valued FFT requires complex multiply/adds. When the input is real, however, an N-

dimensional FFT may be computed using ≈ Nlog2N real multiply/adds (see Sorensen & Jones & Heideman & Burrus TASSP 87).

• The DCT: The DCT is defined below along with its inverse

The DCT can be represented by an orthogonal matrixCN:

See Figure 3.7 for an illustration of DCT basis vectors when N = 8.
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(3.71)

(3.72)

Figure 3.7. 

DCT basis vectors.

• A Fast DCT: There are a number of fast algorithms to compute the DCT. The method presented below is based on the FFT and leads to intuition concerning the good 

“lowpass” performance of the DCT.

1. Create a 2N-length mirrored version of N-length (see Figure 3.8(c)):

2. Compute , the 2N-point DFT of :
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(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

3. Compute , the N-point DCT outputs, from :

Assuming a real-valued input, the scheme outlined above can be implemented using

where we are assuming use of the real-FFT described previously.

• DCT vs. DFT Performance for Lowpass Signals:Figure 3.3 suggests that DCT and DFT performance both equal KLT performance asymptotically, i.e., as transform 

dimensionN→ ∞. Indeed, this can be proven (see Jayant & Noll). A more practical question is: How do DCT and DFT performances compare for finite N? To answer 

this question, we will investigate the effects of input data block length on the DCT and DFT. To start, consider the DFT of an N-length input block :

It can be seen that the DFT outputs are samples of the discrete-time Fourier transform (DTFT) at frequencies :

Now lets consider a periodic extension of which repeats this N-length sequence a total of L times:

Above, 〈n〉
N

denotes “ ” and L is assumed even (see Figure 3.8(a)-(b)). Here is the interesting point: the DTFT of the NL-length periodic extension equals the 

DTFT of the original N-length data block when sampled at the frequencies !
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This implies that the overall spectral shape of X ' (ω) will be inherited by the DFT outputs . So what is the overall shape of X ' (ω)?Say that is a 

lowpass process. Being lowpass, we expect the time-domain sequence to look relatively “smooth.”If the starting and ending points of the N-block, are different, 

however, the periodic extension will exhibit time-domain discontinuities (see Figure 3.8(b)) that are uncharacteristic of the process . These discontinuities 

imply that X ' (ω) will contain high-frequency content not present in the power spectrum of the lowpass input process. Based on our previous findings, if artificial high-

frequency content exists at , it must also exist at . In conclusion, the periodic extension provides an intuitive explanation of why short-block 

DFT analysis of lowpass signals often seems corrupted by “artificial” high-frequency content. So why is this important? Recall that transform performance is 

proportional to the dynamic range of transform output variances. If the DFT outputs corresponding to otherwise low spectral energy are artificially increased due to 

short-window effects, the dynamic range of will decrease, and DFT performance will fall short of optimal.
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Figure 3.8. 

Illustration of periodic extensions inherent to DFT and DCT: (a) N-length DFT input block, (b) periodic extension inherent to DFT, (c) equivalent 2N-length DFT-input-block for DCT, (d) 

periodic extension inherent to DCT.

Now lets consider the DCT. From derivation of the fast algorithm, we know that the N DCT output magnitudes from length-N input are equal to the 

first N DFT output magnitudes from length-2N input —a mirrored version of . (See Figure 3.8(c).) Due to the mirroring effect, the periodic extension 

of will not have the discontinuities present in the periodic extension of , and so a 2N-point DFT analysis of will not have “artificial” high frequency 

enhancement. Assuming that the process from which was extracted is lowpass, the DCT outputs will exhibit large dynamic range, and an improvement over DFT 

coding performance is expected. This is confirmed by Figure 3.3(a).

[1] 
Caution: outputs of the Matlab command hadamard must be scaled by to produce orthogonal DHT matrices!

[2] Due to the norm-preserving scale factor , the DFT definitions above differ from those given in most digital signal processing textbooks.
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[3] 
Outputs of the Matlab command dftmtx must be scaled by to produce unitary DFT matrices.
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Chapter 4. Subband Coding

4.1. Introduction and Motivation
*

• Sub-band coding is a popular compression tool used in, for example, MPEG-style audio coding schemes (see Figure 4.1).

Figure 4.1. 

Simplified MPEG-style audio coding system.

• Figure 4.2 illustrates a generic subband coder. In short, the input signal is passed through a parallel bank of analysis filters and the outputs are “downsampled”by a factor of N. 

Downsampling-by-N is a process which passes every Nth sample and ignores the rest, effectively decreasing the data rate by factor N. The downsampled outputs are quantized (using a 

potentially different number of bits per branch—as in transform coding) for storage or transmission. Downsampling ensures that the number of data samples to store is not any larger than 

the number of data samples entering the coder; in Figure 4.2, N sub-band outputs are generated for every Nsystem inputs.
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Figure 4.2. 

Sub-band coder/decoder with scalar quantization.

• Relationship to Transform Coding:  Conceptually, sub-band coding (SC) is very similar to transform coding (TC). Like TC, SC analyzes a block of input data and produces a set of linearly 

transformed outputs, now called “subband outputs.” Like TC, these transformed outputs are independently quantized in a way that yields coding gain over straightforward PCM. And like TC, 

it is possible to derive an optimal bit allocation which minimizes reconstruction error variance for a specified average bit rate. In fact, an N-band SC system with length-N filters is equivalent 

to a TC system with N × N transformation matrix T: the decimated convolution operation which defines the ithanalysis branch of Figure 4.2 is identical to an inner product between an N-

length input block and ti
t, the ithrow of T. (See Figure 4.3.)
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(4.1)

Figure 4.3. 

Equivalence between (a) N-band sub-band coding with length-N filters and (b) N × N transform coding (shown for N = 4). Note: impulse response coefficients correspond to filter Hi(z).

So what kind of frequency responses characterize the most-commonly used transformation matrices? Lets look at the DFT first. For the ith row, we have

Figure 4.4 plots these magnitude responses. Note that the ith DFT row acts as a bandpass filter with center frequency 2πi / N and stopband attenuation of ≈ 6 dB.Figure 4.5 plots the 

magnitude responses of DCT filters, where we see that they have even less stopband attenuation.
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Figure 4.4. 

Magnitude responses of DFT basis vectors for N = 8.
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Figure 4.5. 

Magnitude responses of DCT basis vectors for N = 8.

• Psycho-acoustic Motivations:  We have seen that N-band SC with length-N filters is equivalent to N × N transform coding. But is transform coding the best technique to use in high quality 

audio coders? It turns out that the key to preserving sonic quality under high levels of compression is to shape the reconstruction error so that the ear will not hear it. When we talk about 

psychoacoustics later in the course, we'll see that the properties of noise tolerated by the ear/brain are most easily described in the frequency domain. Hence, bitrate allocation based on 

psychoacoustic models is most conveniently performed when SC outputs represent signal components in isolated frequency bands. In other words, instead of allocating fewer bits to sub-

band outputs having a smaller effect on reconstruction error variance, we will allocate fewer bits to sub-band outputs having a smaller contribution to perceived reconstruction error. We 

have seen that length-N DFT and DCT filters give a 2π / Nbandwidth with no better than 6 dB of stopband attenuation. The SC filters required for high-quality audio coding require much 

better stopband performance, say > 90 dB. It turns out that filters with passband width 2π / N, narrow transition bands, and descent stopband attenuation require impulse response lengths 

≫ N. In N-band SC there is no constraint on filter length, unlikeN-band TC. This is the advantage of SC over TC when it comes to audio coding
[4]

.

• To summarize, the key differences between transform and sub-band coding are the following.

1. SC outputs measure relative signal strength in different frequency bands, while TC outputs might not have a strict bandpass correspondence.

2. The TC input window length is equal to the number of TC outputs, while the SC input window length is usually much greater than number of SC outputs (16 × greater in MPEG).
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(4.2)

(4.3)

(4.4)

• At first glance SC implementation complexity is a valid concern. Recall that in TC, fast N × N transforms such as the DCT and DFT could be performed using ∼ Nlog2N multiply/adds! Must we 

give up this computational efficiency for better frequency resolution? Fortunately the answer is no; clever SC implementations are built around fast DFT or DCT transforms and are very 

efficient as a result. Fast sub-band coding, in fact, lies at the heart of MPEG audio compression (see ISO/IEC 13818-3).

4.2. Fundamentals of Multirate Signal Processing
*

The presence of upsamplers and downsamplers in the diagram of Figure 2 from "Introduction and Motivation"implies that a basic knowledge of multirate signal processing is 

indispensible to an understanding of sub-band analysis/synthesis. This section provides the required background.

• Modulation:

Figure 4.6. 

Modulation using ejωon

Figure 4.6 illustrates modulation using a complex exponential of frequency ωo. In the time domain,

In the z-domain,

We can evaluate the result of modulation in the frequency domain by substituting z = ejω.This yields

Note that represents a shift of X(ω)up by ωo radians, as in Figure 4.7.
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(4.5)

Figure 4.7. 

Frequency-domain effect of modulation by ejωon.

• Upsampling:

Figure 4.8. 

Upsampling by N.

Figure 4.8 illustrates upsampling by factor N. In words, upsampling means the insertion of zeros between every sample of the input process. Formally, upsampling can be expressed in 

the time domain as

In the z-domain, upsampling causes
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(4.6)

(4.7)

and in the frequency domain,

As shown in Figure 4.9, upsampling shrinksX(ω) by a factor of N along the ω axis.

Figure 4.9. 

Frequency-domain effects of upsampling by .

• Downsampling:
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(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Figure 4.10. 

Downsampling by N.

Figure 4.10 illustrates downsampling by factor N. In words, the process of downsampling keeps every Nth sample and discards the rest. Formally, downsampling can be written as

In the z domain,

where

The neat trick

(which is not difficult to prove) allows us to rewrite in terms of x(n):

Translating to the frequency domain,
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As shown in Figure 4.11, downsampling expands each 2π-periodic repetition of X(ω) by a factor of N along the ω axis. Note the spectral overlap due to downsampling, called “aliasing.”

Figure 4.11. 

Frequency-domain effects of downsampling by .

• Downsample-Upsample Cascade:

Page 10 of 37Chapter 4. Subband Coding

26/04/2012file:///C:/cd3wd_master/master/students/cnx_maths_monday_pm_/col11121_1.2_An%20Introduction%20to%20Source-Coding%20Qua...



(4.14)

(4.15)

(4.16)

Figure 4.12. 

N-Downsampler followed by N-upsampler.

Downsampling followed by upsampling (of equal factor N) is illustrated by Figure 4.12. This structure is useful in understanding analysis/synthesis filterbanks that lie at the heart of sub-

band coding schemes. This operation is equivalent to zeroing all but the mNth samples in the input sequence, i.e.,

Using trick Equation 4.11,

which implies

The downsampler-upsampler cascade causes the appearance of 2π / N-periodic copies of the baseband spectrum of X(ω).As illustrated in Figure 4.13, aliasing may result.
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Figure 4.13. 

Frequency-domain effects of downsampler-upsampler cascade for N = 2.

4.3. Uniformly-Modulated Filterbanks
*

• Perfect Reconstruction Filterbanks: Recall that in our study of transform coding, we restricted our attention to orthogonal transformation matrices. Orthogonal matrices had the property 

that, in the absence of quantization error, the reconstruction error was zero. For sub-band coding, “perfect reconstruction” (PR) filterbanks (FBs) are analogous to orthogonal matrices. 

Specifically, a PR-FB is defined as an analysis/synthesis structure which gives zero reconstruction error when synthesis stage is fed exact (unquantized) copies of analysis outputs. Initially 

we consider the design of ideal sub-band analysis and synthesis FBs and later the design of practical FBs. For the purpose of FB design we ignore the effects of quantization error. Our 

rational is as follows: the absence of quantization error corresponds to the high bit-rate scenario, in which case we desire that the filtering operations inherent to sub-band coding introduce 

little or no error of their own. Removing the quantizers from Figure 2 from "Introduction and Motivation", we obtain the analysis/synthesis FBs in Figure 4.14.
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Figure 4.14. 

N-band analysis and synthesis filterbanks.

• Uniform Modulation: The most conceptually straightforward FB is known as the“uniformly modulated” FB. Uniform modulation means that all branches isolate signal components in non-

overlapping frequency bands of equal width 2π / N. We will assume that the ith branch has its frequency band centered at ωi = 2iπ / N. (See Figure 4.15.)
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Figure 4.15. 

Frequency bands for the uniformly-modulated filterbank (N = 4).

• Analysis FB: The ith frequency range may be isolated by modulating the input spectrum down by ωi and lowpass filtering the result. (See the first two stages of the analysis bank in 

Figure 4.17.) The ideal lowpass filter has linear phase and magnitude response that is unity for ω ∈ ( – π / N,π / N) and zero elsewhere. (See Figure 4.16.)

Figure 4.16. 

Ideal (dashed) and typical (solid) prototype-filter magnitude responses for the uniformly modulated filterbank.
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(4.17)

With ideal lowpass filtering, the resulting signals have (double-sided) bandwidths that are N times smaller than the sampling rate. Nyquist's sampling theorem (see Oppenheim & Schafer) 

says that it is possible to sample signals with this bandwidth at 1 / N times the filter output rate without loss of information. This sample rate change can implemented via downsampling-by

-N, resulting in the analysis FB of Figure 4.17. Note that the downsampling operation does not induce aliasing when the analysis filter is the ideal lowpass filter described above.

• Synthesis FB: To reconstruct the input signal x(n), the synthesis FB must restore the downsampled signals to their original sampling rate, re-modulate them to their original spectral 

locations, and combine them. Upsampling is the first stage of sampling-rate restoration. Recall from Equation 18 from "Fundamentals of Multirate Signal Processing" (and Figure 8 

from "Fundamentals of Multirate Signal Processing") that a downsampler-upsampler cascade creates additional uniformly-spaced spectral copies of the original baseband 

spectrum. Thus, to remove the unwanted spectral images, an “anti-imaging” lowpass filter is applied to each upsampler's output. Ideally, this lowpass filter is linear phase with magnitude 

response that is unity for ω ∈ ( – π / N,π / N) and zero elsewhere; the same specifications given for the ideal analysis filter. (See Figure 4.16.) As shown in Figure 4.17, re-modulation is 

accomplished by shifting the ith branch up by ωi. When the analysis and synthesis filters share a common phase response, the re-modulator outputs can be combined coherently by a simple 

summation. Under all of these ideal conditions, the output signal u(n) is a potentially delayed (but otherwise perfect) copy of the input signalx(n):

Figure 4.17. 

N-band modulated analysis/synthesis filterbanks.

• Effect of Non-Ideal Filtering: In practice, the analysis and synthesis filters will not have ideal lowpass responses, and thus the reconstructed output u(n) will not necessarily equal a delayed 

version of the input x(n). These shortcomings typically result from filter implementations based on a finite number of design parameters. (See Figure 4.16 for a typical lowpass filter 

magnitude response.) It should be noted that, under certain conditions, it is possible to design sets of analysis filters and synthesis filters with finite parameterizations which 

give the“perfect reconstruction” (PR) property (see Vaidyanathan). Though such filters guarantee PR, they do not act as ideal bandpass filters and thus do not accomplish perfect frequency 
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(4.18)

analysis. (Consider the length-N DFT and DCT filter responses: by the orthogonal matrix argument, these are perfectly reconstructing, but from Figure 4 from "Introduction and 

Motivation" and Figure 5 from "Introduction and Motivation", they are far from perfect bandpass filters!) Due to their limited frequency-selectivity, none of the currently-known PR 

filterbanks are appropriate for high-quality audio applications. As a result, we focus on the design of filterbanks with

1. near-perfect reconstruction and

2. good frequency selectivity.

As we will see, it is possible to design practical filters with excellent frequency selectivity and responses so close to PR that the smallest quantization errors swamp out errors caused by non

-PR filtering.

• Polyphase/DFT Implementation: When H(z) and K(z) are length-M FIR filters, the unique elements in Figure 4.17 are the N uniform-modulation coefficients and 

the 2M the lowpass filter coefficients and . It might not be surprising that each half of the uniformly-modulated FB has an implementation that requires only one N-dimensional DFT 

andM multiplies to process an N-block of input samples.Figure 4.18 illustrates one such implementation, where the “polyphase” filters and are related to the “prototype”

filters H(z) and K(z) through the impulse response relations:

The term “polyphase” comes about because the magnitude responses of well-designed and are nearly flat, while the slopes of the phase response of these filters differ 

by small amounts. The equivalence of Figure 4.17 and Figure 4.18 will be established in the homework.

Figure 4.18. 

Polyphase/DFT implementation of N-band uniformly modulated analysis/synthesis filterbanks.
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(4.19)

(4.20)

Recognize that the filter computations in Figure 4.18 occur on downsampled (i.e., low-rate) data, in contrast to those inFigure 4.17. To put it another way, all but one of every N filter 

outputs inFigure 4.17 are thrown away by the downsampler, whereas none of the filter outputs in Figure 4.18 are thrown away. This reduces the number of required filter computations by 

a factor of N. Additional computational reduction occurs when the DFT is implemented by a fast transform. Below we give a concrete example.

Example 4.1. Computational Savings of Polyphase/FFT Implementation)

Lets take a look at how many multiplications we save by using the polyphase/DFT analysis filterbank in Figure 4.18instead of the standard modulated filterbank in Figure 4.17. Here we 

assume that N is a power of 2 (see Sorensen, Jones, Heideman & Burrus TASSP 87), so that the DFT can be implemented with a radix-2 FFT. With the standard structure in Figure 4.17, 

modulation requires 2N real multiplies, and filtering of the complex-valued modulator outputs requires 2 × N × M additional real multiplies, for each input point x(n). This gives a total of

In the polyphase/FFT structure of Figure 4.18, it is more convenient to count the number of multiplies required for each block of N inputs since each new N-block produces one new 

sample at every filter input and one new N-vector at the DFT input. Since the polyphase filters are each length-M / N, filtering the block requires N × M / N = M real multiplies. Though 

the standard radix-2 N-dimensional complex-valued FFT uses complex multiplies, a real-valued N-dimensional FFT can be accomplished in Nlog2N real multiplies when N is a 

power of 2. This gives a total of

Say we have N = 32 frequency bands and the prototype filter is length M = 512 (which turn out to be the values used in the MPEG sub-band filter). Then using the formulas above, the 

standard implementation requires multiplies per input, while the polyphase/DFT implementation requires only !

4.4. MPEG Layers 1-3: Cosine-Modulated Filterbanks
*

• Though the uniformly modulated filterbank in Figure 4 from "Uniformly-Modulated Filterbanks"was shown to have the fast implementation in Figure 5 from "Uniformly-

Modulated Filterbanks", the sub-band outputs are complex-valued for real-valued input, hence inconvenient (at first glance
[5]

) for sub-band coding of real-valued data. In this section we 

propose a closely related filterbank with the following properties.

1. Real-valued sub-band outputs (assuming real-valued inputs),

2. Near-perfect reconstruction,

3. Polyphase/fast-transform implementation.

This turns out to be the filterbank specified in the MPEG-1 and 2 (layers 1-3) audio compression standards (see IS0/IEC 13818-3).

Filter Design
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(4.21)

• Real-valued Sub-band Outputs: Recall the generic filterbank structure of Figure 1 from "Uniformly-Modulated Filterbanks". For the sub-band outputs to be real-valued (for real-

valued input), we require that the impulse responses of and are real-valued. We can insure this by allocating the N (symmetric) frequency band pairs shown in Figure 4.19.

The positive and negative halves of each band pair are centered at radians.

Figure 4.19. 

Frequency band pairs for the polyphase quadrature filterbank (N = 4).

We can consider each filter Hi(z) as some combination of symmetric positive-frequency and negative-frequency components

Hi(z) = aiFi(z) + biGi(z)

as shown in Figure 4.20.

Figure 4.20. 

Positive- and negative-frequency decomposition of Hi(ω). Note Ki(ω) will have a similar, if not identical, frequency response.
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(4.22)

(4.23)

When bi = ai
* and the pairs are modulated versions of the same prototype filter H(z), we can show that Hi(z) must be real-valued:

• Aliasing Cancellation: Recall again the generic filterbank in Figure 1 from "Uniformly-Modulated Filterbanks". Here we determine conditions on real-valued and which 

lead to near-perfect reconstruction. It will be insightful to derive an expression for the input to the ithreconstruction filter, . The downsample-upsample-cascade equation Equation 

14 from "Fundamentals of Multirate Signal Processing" (fourth equation) implies that

Thus the input to the ith reconstruction filter is corrupted by unwanted spectral images, and the reconstruction filter's job is the removal of these images. The reconstruction filterKi(z) will 

have a bandpass frequency response similar (or identical) to that of Hi(z) illustrated in Figure 4.20. Due to the practical design considerations, neither Ki(z) norHi(z) will be perfect bandpass 

filters, but we will assume that the only significant out-of-band energy passed by these filters will occur in the frequency range just outside of their passbands. (Note the limited “spillover”

in Figure 4.20.) Under these assumptions, the only undesired images in Yi(ω) that will not be completely attenuated by Ki(ω) are the images adjacent to Fi(ω) and Gi(ω).Which indices p in 

Equation 4.23 (third equation) are responsible for theseadjacent images?Equation 4.23 (third equation) implies that index p = ℓ shifts the frequency response up by 2πℓ / N radians. Since 

the passband centers of Fi(z) and Gi(z) are (2i + 1)π / N radians apart, the passband of will reside directly to the left of the passband of Fi(z) when p = i. Similarly, the passband 
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(4.24)

of will reside directly to the right of the passband of Fi(z) when p = i + 1. See Figure 4.21 for an illustration. Using will reside 

directly to the right of the passband of Gi(z) when p = – i and directly to the left when p = – (i + 1). The only exceptions to this rule occur when i = 0, in which case the images to the right of 

Gi(z) and to the left of Fi(z) are desired, and when i = N – 1, in which case the images to the left ofGi(z) and to the right of Fi(z) are desired.

Figure 4.21. 

Spectral images of Yi(ω) not completely attenuated by Ki(ω).

Based on the arguments above, we can write , the output of the ith reconstruction filter, as follows:

The previous equation shows that Ui(z) is corrupted by the portions of the undesired images not completely removed by the reconstruction filter Ki(z). In the filterbank context, this 

undesired behavior is referred to as aliasing. But notice that aliasing contributions to the signal U(z) = ∑iUi(z)will vanish if the inner aliasing components in Ui(z) cancel the outer aliasing 

components in Ui – 1(z). This happens when
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(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

which occurs under satisfaction of the two conditions below.

We assume from this point on that the real-valued filters and are constructed using modulated versions of a lowpass prototype filter H(z). (This assumption is required for 

the existence of a polyphase filterbank implementation.)

Then condition Equation 4.26 (upper equation) becomes

Lets take a closer look at the products in the previous equation. As illustrated in Figure 4.22, these products equal zero when 1 ≤ i ≤ N / 2 since their 

passbands do not overlap. Setting these products to zero in Equation 4.28 (bottom equation) yields the condition

which can also be shown to satisfy Equation 4.26 (bottom equation).
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(4.30)

(4.31)

(4.32)

Figure 4.22. 

Illustration of vanishing terms in Equation 4.28 (lower equation).

Next we concern ourselves with the requirements on a0 and c0. Assuming Equation 4.29 is satisfied, we know that inner aliasing in Ui(z) cancels outer aliasing in Ui – 1(z) for 1 ≤ i ≤ N – 1. 

Hence, from Equation 4.24 (fourth equation) and Equation 4.27 (lower equation),

Noting that the passbands of and do not overlap for1 ≤ i ≤ N – 2, we have

The first two terms in Equation 4.31 (third equation) represent aliasing components that prevent flat overall response at ω = 0 and ω = π, respectively. These aliasing terms vanish when
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(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

What remains is

• Phase Distortion: Perfect reconstruction requires that the analysis/synthesis system has no phase distortion. To guarantee the absence of phase distortion, we require that the composite 

system

has a linear phase response. (Recall that a linear phase response is equivalent to a pure delay in the time domain.) This linear-phase constraint will provide the final condition used to 

specify the constants and . We start by examining the impulse response of Q(z). Using a technique analogous to Equation 4.22 (fifth equation), we can write

Above, we have used the property that multiplication in the z-domain implies convolution in the time domain. For Q(z) to be linear phase, it's impulse response must be symmetric. Let us 

assume that the prototype filter H(z) is linear phase, so that is symmetric. Thus ∑khmhn – k is symmetric about n = M – 1, and thus for linear phase Q(z), we require that the quantity

is symmetric about n = M – 1, i.e.,

for n = 0,⋯,M – 1. Using trigonometric identities, it can be shown that the condition above is equivalent to

which is satisfied when
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(4.40)

(4.41)

(4.42)

(4.43)

Restricting |ai| = |ci| = 1, the previous equation requires that

It can be easily verified that the following and satisfy conditions Equation 4.29, Equation 4.32, andEquation 4.40:

Plugging these into the expression for Hi(z) we find that

Repeating this procedure for Ki(z) yields

At this point we make a few comments on the design of the lowpass prototype H(z). The perfect H(z) would be an ideal linear-phase lowpass filter with cutoff at ω = π / 2N, as illustrated in 

Figure 4.23. Such a filter would perfectly separate the subbands as well as yield flat composite magnitude response, as per Equation 4.34. Unfortunately, however, this perfect filter is not 

realizable with a finite number of filter coefficients. So, what we really want is a finite-length FIR filter having good frequency selectivity, nearly-flat composite response, and linear phase.

The length-512 prototype filter specified in the MPEG standards is such a filter, as evidenced by the responses in Figure 4.24. Unfortunately, the standards do not describe how this filter 

was designed, and a thorough discussion of multirate filter design is outside the scope of this course. For more on prototype filter design, we point the interested reader to page 358 of 

Vaidyanathan or Crochiere & Rabiner. 
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Figure 4.23. 

Ideal (dashed) and typical (solid) prototype-filter magnitude responses for the cosine-modulated filterbank. Note bandwidth relative to ???.

Figure 4.24. 

Magnitude response of |H(ω)| of MPEG prototype filter and the resulting composite response |Q(ω)|, where N = 32 and M = 16N = 512.
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(4.44)

(4.45)

(4.46)

To conclude, Equation 4.42 (fourth equation) and Equation 4.43 give impulse response expressions for a set of real-valued filters that comprise a near-perfectly reconstructing filterbank 

(under suitable selection of ). This is commonly referred to
[6]

as a “cosine-modulated filterbank” because all filters are based on cosine modulations of a real-valued linear-phase lowpass 

prototype H(z). The near-perfect reconstruction property follows from the frequency-domain cancellation of adjacent-spectrum aliasing and the lack of phase distortion. It should be noted 

that our derivation of the cosine modulated filterbank is similar to that in Rothweiler ICASSP 83 except for the treatments of phase distortion. See Chapter 8 of Vaidyanathan for a more 

comprehensive view of cosine-modulated filterbanks.

• Polyphase Implementations: Recall the uniformly modulated filterbank inFigure 4 from "Uniformly-Modulated Filterbanks", whose combined modulator-filter coefficients can be 

constructed using products of the terms and .Figure 5 from "Uniformly-Modulated Filterbanks" shows a computationally-efficient polyphase/DFT implementation of the 

analysis filter which requires only M multiplies and one N-dimensional DFT computation for calculation of N subband outputs. We might wonder: Is there a similar polyphase/fast-transform

implementation of the cosine-modulated filterbank derived in this section? From Equation 4.42 (fourth equation), we see that the impulse responses of are products of the terms 

and for n = 0,⋯,M – 1. Note that the inverse-DCT matrix Cn
t
can be specified via components with form similar to the cosine term in Equation 4.42 (fourth 

equation):

Thus it may not be surprising that there exist polyphase/DCT implementations of the cosine-modulated filterbank. Indeed, one such implementation is specified in the MPEG-2 audio

compression standard (see ISO/IEC 13818-3). This particular implementation is the focus of the next section.

MPEG Filterbank Implementation

• Since MPEG audio compression standards are so well-known and widespread, a detailed look at the MPEG filterbank implementation is warranted. The cosine-modulated, or polyphase-

quadrature filterbank described in the previous section is used in MPEG Layers 1-3. (The MPEG hierarchy will be described in a later chapter.) This section discusses the specific 

implementation suggested by the MPEG-2 standard (see ISO/IEC 13818-3).

• The MPEG standard specifies 512 prototype filter coefficients, the first of which is zero. To adapt the MPEG filter to our cosine-modulated-filterbank framework, we append a zero-valued 

513
th

coefficient so that the resulting MPEG prototype filter becomes symmetric and hence linear phase. Since the standard specifies N = 32 frequency bands, we have

Plugging this value of M into the filter expressionsEquation 4.42 (fourth equation) and Equation 4.43, the 2π-periodicity of the cosine implies that they may be rewritten as follows.
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(4.47)

(4.48)

(4.49)

(4.50)

• Encoding: Here we derive the encoder filterbank implementation suggested in the MPEG-2 standard (see ISO/IEC 13818-3). Using xi(n) to denote the output of the ith analysis filter, we 

have

The relationship between xi(n) and its downsampled version si(m) is given by

si(m) = xi(mN),

so that the downsampled analysis output si(m) can be written as

Using the substitution n = kN + ℓ for ,

Figure 4.25 illustrates this process.
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Figure 4.25. 

MPEG encoder filterbank implementation suggested in ISO/IEC 13818-3.
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(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

• Decoding: Here we derive the dencoder filterbank implementation suggested in the MPEG-2 standard (see ISO/IEC 13818-3). Using yi(n) to denote the output of the ith upsampler,

The input to the upsampler si(m) is related to the output yi(n) by

so that

Lets write n = mN + ℓ for andk = pN + q for . Then due to the restricted ranges of ℓ and q,

Using these substitutions in the previous equation for ui(n),

Summing ui(mN + ℓ) over i to create u(mN + ℓ),

If we define

(note the range of !) then we can rewrite
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(4.59)

Figure 4.26 illustrates the construction of u(mN + ℓ) using the notation
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Figure 4.26. 
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MPEG decoder filterbank implementation suggested in ISO/IEC 13818-3.
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(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

• DCT Implementation of Cosine Matrixing: As seen in Figure 4.25 and Figure 4.26, the filterbank implementations suggested by the MPEG standard require a cosine matrix operation that, if 

implemented using straightforward arithmetic, requires 32 × 64 = 2048 multiply/adds at both the encoder and decoder. Note, however, that the cosine transformations in Figure 4.25and 

Figure 4.26 do bear a great deal of similarity to the DCT:

which we know has a fast algorithm: Lee's 32 × 32 fast-DCT, for example, requires only 80 multiplications and 209 additions (see B.G.Lee TASSP Dec 84). So how do we implement the 

matrix operation using the fast-DCT? A technique has been described clearly in Konstantinides SPL 1994, the results of which are summarized below. At the encoder, the matrix operation 

can be written

where is created from{x(m),⋯,x(m – 16N + 1)} by windowing, shifting, and adding. (See Figure 4.25.) We can write

where, for N = 32, is the following manipulation of :

Compare Equation 4.62 to the inverse DCT in Equation 4.60 (lower equation). At the decoder, the matrix operation can be written

where are windowed, shifted, and added to compute {u(m)}. (See Figure 4.26.) It is shown in Konstantinides SPL 1994 that, for N = 32, can be calculated by 

first computing :

and rearranging the outputs according to
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Compare Equation 4.65 to the DCT in Equation 4.60 (upper equation).

4.5. MP3 and AAC: MDCT Processing
*

MDCT Filterbanks

• Hybrid Filter Banks: In more advanced audio coders such as MPEG “Layer-3” or MPEG“Advanced Audio Coding” (the details of which will be discussed later), the 32-band polyphase 

quadrature filterbank (PQF) is thought to not give adequate frequency resolution, and so an additional stage of frequency division is cascaded onto the output of the PQF. This additional 

frequency division is accomplished using the so-called “Modified DCT” (MDCT) filterbank. (See Figure 4.27.)

Figure 4.27. 

Hybrid filterbank scheme used in MPEG Layer-3 (where N = 32 and Q switches bewteen 6 and 18) and MPEG AAC (where N = 4 and Q switches between 128 and 1024).

• Lapped Transforms: The MDCT is a so-called “lapped transform.”At the encoder, blocks of length 2Q which overlap by Q samples are windowed and transformed, generating Q subband 

samples each. At the decoder, the Q subband samples are inverse-transformed and windowed. The windowed output samples are overlapped with and added to the previous Q windowed 

outputs to form the output stream.Figure 4.28 gives an intuitive view of the coding/decoding operation, while Figure 4.29 and Figure 4.30 specify the specific coder/decoder 

implementations used in the MPEG schemes.
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Figure 4.28. 

A lapped transform.

Figure 4.29. 

MDCT filterbank: encoder implementation.
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(4.67)

(4.68)

Figure 4.30. 

MDCT filterbank: decoder implementation.

• Perfect Reconstruction: Based on the cancellation of time-domain aliasing components, Princen, Johnson, & Bradley show (in ICASSP 87 and TASSP 86 papers) that the MDCT acheives 

perfect-reconstruction when window is chosen so that overlapped squared copies sum to one, i.e.,

The “sine” window

is one example of a window satisfying this requirement, and it turns out to be the one used in MPEG Layer-3.

• Frequency Resolution: With a window length that is only twice the number of transform outputs, we cannot expect very good frequency selectivity. But, it turns out that this is not a 

problem. In MPEG Layer-3, sine-window MDCTs appear at the outputs of a 32-band PQF where frequency selectivity is not a critical issue due to the limited frequency resolution of the 
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human ear. In MPEG AAC, a 4-band PQF in conjunction with an optimized MDCT window function gives frequency selectivity just above that which current psychoacoustic models deem 

necessary (see M. Bosi et al., "ISO/IEC MPEG-2 Advanced Audio Coding" in JAES Oct 1997).

• Window Switching: Larger values of Q lead to increased frequency resolution but decreased time resolution. Time resolution is linked to the following: error due to the quantization of one 

MDCT output is spread out over ≈ 2QN time-domain output samples. For signals of a transient nature, choosing QN too high leads to audible “pre-echoes.”For less transient signals, on the 

other hand, the same value of QNmight not be perceptible (and the increased frequency resolution might be very beneficial). Hence, most advanced coding schemes have a provision to 

switch between different time/frequency resolutions depending on local signal behavior. In MPEG Layer-3, for example, Q switches between 6 and 18. This is accomplished using a sine 

window of length 36, a sine window of length 12, and intermediate windows which are used to switch between the long and short windows while retaining the perfect reconstruction 

property.Figure 4.31 shows an example window sequence.

Figure 4.31. 

Example MDCT window sequence for MPEG Layer-3.

[4] 
A similar conclusion resulted from our comparison of DPCM and TC of equal dimension N; it was reasoned that the longer “effective” input length of DPCM with N-length prediction filtering 

gave performance improvement relative to TC.

[5] 
In the structure in Figure 4 from "Uniformly-Modulated Filterbanks", it would be reasonable to replace the standard DFT with a real-valued DFT (defined in the notes on transform 

coding), requiring ≈ Nlog2N real-multiplies when N is a power of 2. Though it is not clear to the author why such a structure was not adopted in the MPEG standards, the cosine modulated 

filterbank derived in this section has equivalent performance and, with its polyphase/DCT implementation, equivalent implementation cost.

[6] 
The MPEG standards refer to this filterbank as a “polyphase quadrature” filterbank (PQF), the name given to the technique by an early technical paper: Rothweiler ICASSP 83
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