
Continuous Time Linear Systems
Laboratory (EE 235)

Collection Editor:
University Of Washington Dept. of Electrical Engineering

Continuous Time Linear Systems
Laboratory (EE 235)

Collection Editor:
University Of Washington Dept. of Electrical Engineering

Authors:
University Of Washington Dept. of Electrical Engineering

UW EE235 TA UW EE235 TA

Online:
< http://cnx.org/content/col10374/1.8/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by University Of Washington Dept. of Electri-

cal Engineering. It is licensed under the Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: September 28, 2007

PDF generated: February 4, 2011

For copyright and attribution information for the modules contained in this collection, see p. 32.

Table of Contents

1 Lab 1
1.1 Introduction to MATLAB and Scripts . 1

2 Lab 2
2.1 Functions in MATLAB and the Groove Station . 7
2.2 Sound resources . 10

3 Lab 3
3.1 Convolution . 11

4 Lab 4
4.1 Fourier Series and Gibbs Phenomenon . 15

5 Lab 5
5.1 Filtering Periodic Signals . 21

6 Lab 6
6.1 Investigation of Aliasing E�ects . 27

Index . 31
Attributions . 32

iv

Chapter 1

Lab 1

1.1 Introduction to MATLAB and Scripts1

1.1.1 Introduction

The goal of this lab is to provide exercises that will help you get started learning MATLAB. You will learn
about the help function, vectors, complex numbers, simple math operations, and 2-D plots. You may �nd
it useful to try some of the built-in demos in Matlab. Type demo to see the choices. In particular, look at
the demo on "Basic matrix operations" (under "Mathematics") and on "2-D" plots (under "Graphics"). We
will also look at script �les in MATLAB, which we will refer to as M-�les and have the �le extension *.m.

1.1.2 Getting Started

Start MATLAB by clicking on it in the start menu. Once MATLAB is running you will see a screen similar
to Figure 1. The command window, (A), is where you can enter commands. The current working directory,
(B), displays the directory that MATLAB will look �rst for any commands. For example, if you made a
new MATLAB function called myfunc.m, then this will need to be placed in the current working directory.
You can change the working directory by typing it in the box, clicking the "..." button to browse to a
folder, or typing cd [directory name] (i.e. cd 'H:\ee235\lab0\'), which is similar to the DOS/Linux cd
command).

note: MATLAB supports tab completion. This means that you can type part of a command and
then press tab and it will �ll in the rest of the command automatically.

The workspace displays information about all the variables currently active and is shown in (C). The �les
in the current directory can also be displayed in (C) by clicking on the tab labeled Current Directory. A
history of your commands is shown in (D). If you �nd that you do not need some of these windows open you
can close them by clicking on the small x in that section of the window.

1This content is available online at <http://cnx.org/content/m13554/1.18/>.

1

2 CHAPTER 1. LAB 1

The MATLAB GUI

Figure 1.1: (a) Command window, (b) working directory, (c) workspace, (d) command history.

note: There are a number of di�erent ways to use MATLAB on Linux. Typing matlab at the
command prompt will run MATLAB in X-Windows (warning, MATLAB in X-Windows can be slow
when connecting o� campus). To run MATLAB without X-Windows type matlab -nodisplay.
You can also run MATLAB using the current terminal for commands and use X-Windows for
everything else (like �gures) by typing matlab -nodesktop.

1.1.3 MATLAB Commands

MATLAB works with matrices and therefore treats all variables as a matrix. To enter the matrix

x =

 3 1 5

6 4 1


type the command x = [3 1 5; 6 4 1]. We can represent an array with a vector, which is a special case
of a matrix. A vector can be entered in by typing y = [1 2 3]. Now try entering z = [1 2 3]'. Is the
output what you expect?

1. Familiarize yourself with the help command. Typing help gives you a list of all help topics. Typing
help <topicname> gives help on a speci�c MATLAB function. For example, use help plot to learn
about the plot command.

Rule 1.1: More useful commands

• whos lists all variables
• clear clears all variables

2. Perform the following operations in MATLAB:

3

a. Generate the following column vectors as MATLAB variables: x =

 2

4

 and y =

 3

1


b. Using the computer, issue the following MATLAB commands

x * y'

x' * y

x .* y

Be sure you understand the di�erences between each of these and you know what the ', *, and
.* operators do.

c. Convince yourself that the answer makes sense by checking the matrix dimension and computing
each result by hand.

Rule 1.2: Plot and Subplot
The Matlab command plot allows you to graphically display vector data (in our case here,
the two signals). For example, if you had the variables t for time, and y for the signal,
typing the command plot(t, y); will display a plot of t vs. y. See help plot for more
information.
Annotating your plots is very IMPORTANT! Here are a few annotation commands.

3. • title('Here is a title'); - Adds the text "Here is a title" to the top of the plot.
• xlabel('Control Voltage (mV)'); - Adds text to the X-axis.
• ylabel('Current (mA)'); - Adds text to the Y-axis.
• grid on; - Adds a grid to the plot.

In order to display multiple plots in one window you must use the subplot command. This
command takes three arguments, subplot(m, n, p). The �rst two breaks the window into
a m by n matrix of smaller plot windows. The third argument, p, selects which plot is active.
For example, if we have three signals x, y, and z, that we want to plot against time, t, then
we can use the subplot command to produce a single window with three plots stacked on top
of each other.

subplot(3,1,1);

plot(t,x);

subplot(3,1,2);

plot(t,y);

subplot(3,1,3);

plot(t,z);

See help subplot and help plot for much more information.

Create and plot a signal x0 (t) = te−|t| over the time range [-10,10] using the following MATLAB
commands:

t = -10:0.1:10;

xo = t .* exp(-abs(t));

plot(t, xo); grid;

The �rst command de�nes an array with time values having an 0.1 increment. The ";" is used to
suppress printout of the arrays (which are large), and the "grid" command makes the plot easier to
read. Now create the signals:

xe (t) = |t|e−|t| (1.1)

4 CHAPTER 1. LAB 1

x (t) = 0.5 ∗ [x0 (t) + xe (t)] (1.2)

Plot all signals together using 3 plots stacked on top of each other with the subplot command.

subplot(3,1,1);

plot(t,xo);

subplot(3,1,2);

plot(t,xe);

subplot(3,1,3);

plot(t,x);

Note that xo (t) and xe (t) are the odd and even components, respectively, of x (t) = te−tu (t)
4. Complex Numbers: One of the strengths of MATLAB is that most of its commands work with

complex numbers. Perform the following computations in MATLAB.

a. MATLAB recognizes i as an imaginary number. Try entering sqrt(-1) into MATLAB, does the
result make sense?

b. MATLAB uses the letter i instead of j by default. Electrical Engineers prefer using j however,
and MATLAB will recognize that as well. Try entering i+j, does this make sense.

note: If you are using complex numbers in your code, it's a good idea to avoid using
i and j as variables to prevent confusion.

c. De�ne z1 = 1 + j . Find the magnitude, phase, real and imaginary parts of z (using abs(),
angle(), real(), imag(), respectively). Is the phase in radians or degrees?

d. Find the magnitude of z1 + z2 where z2 = 2e
jπ
3

e. Compute the value of jj . Is the result what you expect?

5. Complex Functions: MATLAB also handles complex time functions in the same way (again,
implemented as vectors) . Create a signal x1 (t) = tejt over the range [-10,10], as in part 3. Next plot
the real and imaginary parts of the signal in two plots, one over the other using the subplot command.
Notice that one plot is odd and one is even. Try proving to your self analytically that this is what you
would expect.

6. Playing and Plotting a Sound Load the built-in data named "handel" and play it:

load handel;

plot(linspace(0,9,73113),y);

sound(y);

note: You can use the clear command in MATLAB to clear all of the varibles

1.1.4 Script Files

Scripts are m-files �les that contain a sequence of commands that are executed exactly as if they were
manually typed into the MATLAB console. Script �les are useful for writing things in MATLAB that you
want to save and run later. You can enter all the commands into a script �le that you can run at a later
time, and have the ability to go back and edit it later.

You need to use a text editor to create script �les, e.g. Notepad on the PC's (pico, emacs, or vi on
Linux machines). MATLAB also has an internal editor that you can start by clicking on a .m �le within
MATLAB's �le browser. All are easy to learn and will produce text �les that MATLAB can read.

5

Click here2 to download the dampedCosine.m script and be sure to save it with that name to follow the
instructions here exactly. It is very important that script �lenames end in .m. Be sure that MATLAB's
working directory is set to the location of where you saved the script �le. Type dampedCosine at the
MATLAB prompt. Look at the m-�le in a text editor and verify that you get the plot predicted in the
comment �eld of the script.

note: The % character marks the rest of the line as a comment.

Exercise 1.1
Scripts
Now we are going to edit the dampedCosine.m �le to create our own script �le. At the top of the
�le, you will see the following commands

diary 'your_name_Lab1.txt'

disp('NAME: your name')

disp('SECTION:your section')

1. Edit the dampedCosine.m (download from link above) script and enter your name and section
where indicated. Save this new version of the script as yourName_dampedCosine.m

2. Edit the script to create a second signal where the cosine with twice the period (which gives
half the frequency) of the �rst.

3. Add to the script the commands to plot these together with the �rst signal on top and the
second on the bottom. In other words, you should have a single �gure with two di�erent
plots, one on top and one on bottom. You will need to use subplot and plot. Save this plot
as yourName_dampedCosine.fig.

4. Show the TA your dampedCosine plot. What is the period of the cosine?

Exercise 1.2
Complex exponentials
Download and run compexp.m3 , which includes a 3-D plot of a complex exponential, y (t) , as
well as 2-D magnitude/phase and real/imaginary plots. You need 2 2-D plots to have the same
information as the 3-D plot. How would you change the script to make the oscillation frequency
lower by half? How would you change the script to make the decay faster? Show the TA your
plots.

2http://cnx.org/content/m13554/latest/dampedCosine.m
3http://cnx.org/content/m13554/latest/compexp.m

6 CHAPTER 1. LAB 1

Chapter 2

Lab 2

2.1 Functions in MATLAB and the Groove Station1

2.1.1 Introduction

In this lab, you will learn about MATLAB function �les, which we will refer to as m-�les and have the �le
extension *.m, the same as script �les. You will create a number of functions for manipulating sound signals
to create a groove (a short song).

The di�erence between a function and a script is that functions can return values and take parameters,
while scripts are simply a collection of commands. Unlike script �les, any variables created in the function
are not available after the function has run, that is, the variables are active inside the scope of the function,
and the variables cannot be accessed out-of-scope. The MATLAB on-line help system has a nice write-up
about functions and how to handle various things like returning more than one value, checking the number
of arguments, etc. To learn more, type the following commands and read the online help:

� help function

� help script

You need to use a text editor to create function �les. MATLAB has an internal editor that you can start by
clicking "File" and then "New" "m-�le". You can also use other editors such as Notepad on the PC's, and
pico, emacs, or vi on Unix machines.

note: Remember that in order to run custom scripts or functions, the MATLAB working directory
needs to be set to the location of those �les.

2.1.2 Sound in MATLAB

Download the sound samples from the sound resources (Section 2.2) page and save them to your working
directory. Use wavread to load .wav �les, and use load to load .mat �les. Plot each one in turn, and try to
guess what it will sound like (the name might help).

On a computer, sounds are represented digitally, which means that only samples of the signal at �xed
time intervals are stored. We'll learn more about this later. For now you just need to know that the time
interval Ts (or equivalently the sampling rate Fs=1/Ts) is something you need to keep track of for playing
sounds.

1This content is available online at <http://cnx.org/content/m13555/1.25/>.

7

8 CHAPTER 2. LAB 2

Now play each sound. The goal is to learn how the time domain signal sounds. Use the sound command
to play a sound signal. You must specify the playback sample rate (Fs), which will be the same as the sample
rate of the sound samples on the web site (they are 8000 Hz). For example, if you wanted to play a sound
called bell and its sample rate was 8000 Hz, then you would enter the following command,

� Fs=8000;

� sound(bell, Fs);

If you use a di�erent value for Fs, you will e�ectively be doing time scaling.
When working with sound in MATLAB, it is important to remember that the values of the audio signals

are in the range [-1, 1]. Keep this in mind when you are writing your functions. Your functions should
expect inputs with values in the range [-1, 1] and anything out of that range will be clipped when you play
the sound.

2.1.3 Function Files

Before we can create our groove, we need to make functions that will allow us to modify the sound signals
in various ways. After all, wouldn't it be boring to make a groove out of the same note over and over again?
Let's create some functions that will let us time scale, reverse, delay, fade, and repeat a sound, and mix two
sounds together.

There are many functions built into MATLAB. One that will be useful here is fliplr, which is a one
step way of time reversing a signal. Try this with the bell sound.

Another function that we created for you is timescale.m2 , which you can use to speed up or slow down
a signal. Download it and give it a try. Notice that it also changes the pitch of a sound � why?

Download the function fade.m3 , make sure you save it as fade.m. Start MATLAB, and go to the
directory where you saved the function. You can see and change your current directory at the top of the
MATLAB screen. Enter "help fade" at the MATLAB prompt. If you did everything correctly, you should
see the help text (in the .m �le) in response to help fade. Notice that we've now added a new command to
MATLAB that can be used as if it were a built-in function.

Enter the following commands at the MATLAB prompt:

� time = 0:.01:1;

� y = cos(time .* pi .* 25);

� plot(time, fade(y));

You can see in the plot that fade does indeed fade-out the cosine wave. You can use this function on audio
signals as well.

Exercise 2.1 Fader

1. Modify the fade function so that you can adjust the slope of the ramp which will a�ect the
level of the fade. Use the variable level (which is already in the parameter list for you in
the function) to represent the strength of the fade as a decimal fraction. The function should
make sure that the value is between 0 and 1.

2. Like in the code example above, plot your function with the cosine wave to see its e�ect.
Throughout this lab you may �nd it helpful to plot functions (use the plot command).

3. Demonstrate to the TA that your fade function works.

Exercise 2.2 Repeater

2http://cnx.org/content/m13555/latest/timescale.m
3http://cnx.org/content/m13555/latest/fade.m

9

1. Create a function that repeats a sound N times. Use a for loop for this. Inside the for loop
you will need to concatenate sound signals. For example, if you have two vectors x and y,
you can concatenate them like this:

� x = [1 4 2 2 3];

� y = [5 8 3 9 0];

� x = [x y];

The �rst line of your function might look like this:

function [out] = repeat(in, N)

2. Demonstrate your repeater using an N speci�ed by the TA.
3. Optional: Add an argument that let's you insert silence in between each repetition.

Exercise 2.3 Delay (Shift)

1. Create a function to time-delay a signal. Because we are working with digital data, you can
do this by simply adding zeros (zero pad) in the front. The inputs to the function should
be the signal and the amount of time-delay. The number of zeros to add will depend on the
time-delay and the sample rate. The sound signals from the resource page have a sample rate
of 8,000 Hz, but it is good coding style not to assume this and to still have the sample rate
(Fs) be an input to the function in case you wanted to change it later.

2. Demonstrate to the TA that your delay function works by plotting the original and delayed
signal together with the subplot command.

Exercise 2.4 Mixer

1. Create a function that adds two sound vectors together; your function should be able to
handle inputs that are not the same size. The output values cannot be outside of the range
[-1, 1], so you will have to re-scale them. One option is to re-scale the summed sound if it
goes out of this range. You may want to look at the source code to the soundsc function for
a way to do this. What happens if you let the sounds go out of this range and you try to play
them with the sound command?

note: You can view the source code to most MATLAB functions by using the command
type function_name.

2. Demonstrate to the TA that your mixer function works by playing a mix of two sounds.

2.1.4 Groove Station

In order to create a groove, you're going to need some instruments. The groove will be made up of some
sound samples modi�ed in any way you want and concatenated together to make one long sound vector. Use
only the sound samples from the sound resources (Section 2.2) page.

Exercise 2.5 Make Your Groove

1. Create a script (not a function) to build your groove. You can use any combination of the
above functions, or even create additional functions if you want. Use concatenation to combine
the sounds together to make your groove. When you are �nished save your groove with the
wavwrite command (Remember to specify the sample rate (Fs), which for the sounds on the
resource page is 8000 Hz).

10 CHAPTER 2. LAB 2

2. Your groove should be between 10 and 30 seconds long.
3. Plot your newly created groove signal.
4. Demonstrate your groove to the TA. Explain how you created it.

2.2 Sound resources4

2.2.1 Sound Resources

Sound �les in MATLAB and WAV format at 8000 Hz.

• blueslick.mat5

• doit.mat6

• fall.mat7

• shake.mat8

• tag.mat9

• rainstick.mat10

• bassdrum.wav11

• bleeep.wav12

• hatclosed.wav13

• snare.wav14

The University of Washington department of Electrical Engineering thanks Matt Swihart for the trumpet
recordings and Tigh Bradley for the drum samples.

Sound �les in MATLAB and WAV format at 44100 Hz.

• castanets44m.wav15 (modi�ed from Prof. Sheila Hemami, Cornell University)

2.2.2 Additional Sound Resources

2.2.2.1 Sound �les for Fourier Series and Gibbs Phenomenon lab

• trumpet.mat16 11025 Hz (UW EE thanks trumpeter Ed Castro for this clip)

2.2.2.2 Sound �les for Filtering Periodic Signals lab

• mixed.wav17 8000 Hz

4This content is available online at <http://cnx.org/content/m13854/1.7/>.
5http://cnx.org/content/m13854/latest/blueslick.mat
6http://cnx.org/content/m13854/latest/doit.mat
7http://cnx.org/content/m13854/latest/fall.mat
8http://cnx.org/content/m13854/latest/shake.mat
9http://cnx.org/content/m13854/latest/tag.mat

10http://cnx.org/content/m13854/latest/rainstick.mat
11http://cnx.org/content/m13854/latest/bassdrum.wav
12http://cnx.org/content/m13854/latest/bleeep.wav
13http://cnx.org/content/m13854/latest/hatclosed.wav
14http://cnx.org/content/m13854/latest/snare.wav
15http://cnx.org/content/m13854/latest/castanets44m.wav
16http://cnx.org/content/m13854/latest/trumpet.mat
17http://cnx.org/content/m13854/latest/mixed.wav

Chapter 3

Lab 3

3.1 Convolution1

3.1.1 Introduction

In this lab, we will explore convolution and how it can be used with signals such as audio.
Since we are working on a computer, we are working with �nite-length, discrete-time versions of signals.

It is important to note that convolution in continuous-time systems cannot be exactly replicated in a discrete-
time system, but using MATLAB's conv function for convolution, we can explore the basic e�ects and gain
insight into what is going on. (You can learn more about discrete-time convolution in the UW EE 341 class.)

When you are explicitly working with discrete-time signals, you would plot them with stem. However,
since we want to think of these as continuous time, we'll still use the plot command. An artifact that you
may notice is that discontinuities (as in a step function) are not instantaneous � they have a small slope in
the plot. In addition, you need to represent impulses with the height in discrete time equal to the area in
continuous time.

When you want to play or plot the discrete-time signal, you need to specify the time increment Ts
between samples. As you found in the previous lab, when playing a sound you specify Fs=1/Ts. (Fs is set
for you when you load a sound.) When plotting, you need to de�ne a time vector, e.g. t=[0:Ts:end] where
end=(length-1)*Ts.

3.1.2 Some Useful MATLAB Commands

• whos, list all variables and their sizes.
• clear, clears all variables.
• zeros, creates a vector (or matrix) of zeros.
• ones, creates a vector (or matrix) of ones.
• conv, convolves two signals.
• soundsc, plays an audio signal, normalizing if the values are greater than +/-1. Requires the sampling

rate.

3.1.3 Convolution

MATLAB has a function called conv(x,h) that you can use to convolve two discrete-time functions x(n)
and h(n). It assumes that the time steps are the same in both cases. The input signals must be �nite
length, and the result of the convolution has a length that is the sum of the lengths of the two signals you
are convolving (actually L1+L2-1).

1This content is available online at <http://cnx.org/content/m14109/1.6/>.

11

12 CHAPTER 3. LAB 3

1. Recall that a linear time-invariant system is completely described by its impulse function. In MATLAB,
the impulse response must be discrete. For example, consider the system with impulse response

h = [1 zeros(1,20) .5 zeros(1,10)];

Plot the impulse response using the plot command.
2. Consider an input to the system,

x = [0 1:10 ones(1,5)*5 zeros(1,40)];

Plot the input with the plot command.
3. Use the command conv to convolve x and h like this,

y = conv(x, h);

Use subplot to show the impulse response, input, and output of the convolution. Note that you need
to add zeros to the end of x and h (to make them the same length as y) or de�ne a time vector for
each signal in order to make the timing comparable in the di�erent subplots.

4. Every non-zero coe�cient of the impulse response h, acts as an echo. When you convolve the input
x and impulse response h, you add up all the time-shifted and scaled echoes. Try making the second
coe�cient negative. How does this change the �nal result?

Exercise 3.1Convolution and Echo

1. Create a new script for this problem. Download the trumpet jazz lick "fall" here2 , and then
load it into MATLAB using load('fall') and plot it. Use whos to see that the variables
fall and Fs are created for you. (The sampling rate (Fs) for this signal should be 8000 Hz.)

2. Use the following commands to convolve the following impulse response h, with the trumpet
sound.

Fs = 8000 % for this example

h = [1 zeros(1,10000) .25 zeros(1,1000)];

y = conv(fall, h);

plot(y)

soundsc(y, Fs)

3. What if the second echo (in h) is a negative coe�cient? When you play it, it should not sound
di�erent since your ear is not sensitive to that sort of modi�cation (simple phase change).

4. Now let's build a system that delays the echo for a quarter second by inserting Fs/4 zeros
before the second impulse:

h = [1 zeros(1, round(Fs/4)) 0.25 zeros(1,1000)];

Pass the fall input signal through the system to get the output y:

y = conv(h, fall);

2http://cnx.org/content/m14109/latest/fall.mat

13

How do the input and output signals compare in the above step? (Look and listen). Ex-
periment with di�erent numbers of zeros, and try repeating this with some of the built-in
MATLAB sounds.

note: Some built-in sounds in MATLAB are chirp, gong, handel, laughter, splat, and
train. Load them with the load command and the sound data will be loaded into the variable
y and the sampling rate in Fs.

5. Show the TA your script �le. You should be able to run it and have it generate any plots and
sounds.

note: You can use the pause command to pause MATLAB until a key is pressed to prevent
it from playing all your sounds at once.

Exercise 3.2Convolution and Smoothing

1. Build a box impulse response:

h2=[ones(1,50)/50 zeros(1,20)];

Create a new signal y2 by convolving "fall" with h2

2. How does the output sound di�erent from the input signal?
3. Visually, a di�erence is that the input signal fall looks like it's centered around value 0, and

the system output y2 looks like it's more positive. Let's look more closely. Find the average
value of the signal fall (use sum(fall)/length(fall)), and you should see that in fact the
fall signal isn't really centered around 0.

4. Next, to see what this system does to the input signal, zoom in on part of the signal:

subplot(2,1,1), plot(6400:6500, fall(6400:6500))

subplot(2,1,2), plot(6400:6500, y2(6400:6500))

The convolved signal should look a little smoother to you. This is because this impulse
response applies a low-pass �lter to the signal. We'll learn more about �lters a bit later, but
basically the idea is that the original signal is made up of sounds at many di�erent frequencies,
and the lower frequencies pass through the system, but the higher frequencies are attenuated.
This a�ects how it sounds as well as how it looks.

Exercise 3.3 Box Function

1. Create a new function called unitstep.m in MATLAB. The function should take two param-
eters, a time vector that speci�es the �nite range of the signal and a time shift value.

note: Calling unitstep([time],ts) should be equivalent to u(t + ts)

2. Use the unitstep function to create a box-shaped time signal. Write a new function called
boxt.m that creates a box with speci�ed start and end times t1 and t2. In other words, your
function should take three inputs: scalars t1 and t2, and a time vector t, and should output
a vector of the same size as t, which contains the values of u(t-t1)-u(t-t2) evaluated at
each point in t.

3. Create a script �le called boxtscript.m that uses the function to create a box that starts
at time t = -1 and ends at time t = 1, where the signal lasts from time t = -3 to t = 3.
Generate three di�erent versions of this box using three di�erent time granularities, where the
�nest granularity has very sharp edges similar to the ideal box and the coarsest granularity
has a step size of 0.5.

14 CHAPTER 3. LAB 3

note: The di�erent versions should all have the same time span; the di�erence in the plots
should only be at the edges of the box because of artifacts in continuous plotting of a discrete-
time signal.

4. Plot all three versions in one �gure using subplot and save it as boxtscript.tif.
5. Time: If u is a vector of length n with time span tu = t1:del:t2, and v is a vector of

length m with time span tv = t3:del:t4, and both have the same time step del, then
the result of conv(u,v) will be a vector of length n + m - 1 with a time span tc =

(t1+t3):del:(t2+t4).
6. Using the box function that you wrote in step 2 with a su�ciently �ne grained step size (for

example, del = 0.01), create box signals from (0,4) and (-1,1), with time span of (-5,10).
Find and plot the result of the convolution of the two boxes and save it as convplot.tif.
Use the above discussion of Time to create the appropriate time vector in your plot. Verify
that the timing of signal rising and falling matches what you expect in theory.

7. Amplitude: In the resulting plot from the previous step, you should notice that the amplitude
is much higher than the max of 2 that you would expect from analytically computing the
convolution. This is because it is thinking that the length of the box is n rather n del, which
impacts the area computation in convolution. To get the correct height, you need to scale
by del. Scale and plot the resulting function, and verify that the height is now 2. Save the
�gure as scaled.tif

8. Triangle: Design the impulse response for a system h and a system input x such that you get
a perfectly symmetric triangle of length 100 as the system output y. Use subplot to plot x,
h, and y, and save the plot as tri.tif.

9. Be able to demonstrate your code, show your plots, and play sounds.

Chapter 4

Lab 4

4.1 Fourier Series and Gibbs Phenomenon1

4.1.1 Introduction

In this lab, we will look at the Fourier series representation of periodic signals using MATLAB. In particular,
we will study the truncated Fourier series reconstruction of a periodic function.

4.1.2 Some Useful MATLAB Commands

• abs, compute the complex magnitude.
• angle, compute the phase angle.
• clear, clears all variables.
• help <command>, online help.
• whos, list all variables and their sizes.

4.1.3 Signal Synthesis

We will see in exercise 3 that we can approximate a square wave with the Fourier series, but �rst let us
approximate something more interesting, say a musical instrument? Many instruments produce very periodic
waveforms.

Exercise 4.1 Synthesizer

1. Create a script �le called sigsynth.m to put your code in for this problem.
2. Download the trumpet sound sample trumpet.mat from the Sound Resources (Section 2.2)

page. The sample rate, Fs, of the trumpet is 11,025 Hz. Play this sound with the sound

command (remember to include the correct sample rate).
3. Plot only a small section of the trumpet sound to show three or so periods (try 100 samples

or so). Does it looks the same at any time in the sound?
4. View the frequency spectrum of this sound by entering the following commands,

Fs = 11025; % our sample rate is 11025 Hz

Y = fft(trumpet, 512); % take the fft of trumpet

Ymag = abs(Y); % take the mag of Y

f = Fs * (0:256)/512; % get a meaningful axis

plot(f, Ymag(1:257)); % plot Ymag (only half the points are needed)

1This content is available online at <http://cnx.org/content/m13599/1.21/>.

15

16 CHAPTER 4. LAB 4

xlabel('Frequency (Hz)')

ylabel('Magnitude')

You should now see a series of peaks (these are the harmonics of the instrument).
5. We will synthesize the instrument using only the peak information. You can use the "data

cursor" tool in MATLAB's �gure window to easily read graph data. Write down the frequency
and its strength (magnitude) for �ve to ten of the strongest peaks.

6. Create a function called addcosines.m that takes in three vectors: time vector t, frequency
vector freq, and magnitude vector mag. Have your new function use a for-loop to add together
cosines, one for each frequency/magnitude pair in the freq and mag vectors. Remember to
normalize your output vector after you add up all the cosines (the output should be between
-1 and 1), like in the Functions in MATLAB and the Groove Station (Section 2.1) lab. Use
the data you collected from the frequency plot of the trumpet sound with your new function
to sum cosines at the noted frequencies.

7. Here are some hints for the above. Use a for-loop to create a cosine at each frequency in the freq
vector. Your cosine function should look something like this, mag(i)*cos(2*pi*freq(i)*t);.
Remember your time vector will have the form 0:1/Fs:time_in_seconds.

note: The command soundsc will normalize the input before it plays the sound.

For example, if you had two harmonics, one at 100 Hz with magnitude 1 and another at 150
Hz with magnitude 2, then your vectors will be,

t = 0:1/Fs:1; % one second time vector at 11025 Hz

freq = [100 150];

mag = [1 2];

8. Play trumpet and your new synthesized sound. Do they sound the same? Use subplot to plot
a small section of your new synthesized sound along with the trumpet sound, does it look the
same? Save your plot as synthwaves.tif.

9. Try synthesizing the sound with fewer frequencies, then try more frequencies. How does this
a�ect the sound of our synthesized trumpet?

10. You will need to show the TA the following �les:

sigsynth.m

addcosines.m

synthwaves.tif

Exercise 4.2
That funny phase
You probably noticed in the last problem that even though the wave forms looked fairly di�erent,
the sound was similar. Let's look into this a bit deeper with a simpler sound.

1. Create a script �le called phasefun.m to put your code in for this problem.
2. Pick two harmonic frequencies and generate a signal from two cosines at these frequencies

added together and call it sig1. Use Fs = 8000 (remember that you can reproduce only
frequencies that are less than Fs/2).

3. Now generate a second signal called sig2 exactly the same as the �rst one, except time delay
the second cosine by a half cycle (half of its period).

17

4. Use subplot to show a few periods of both signals, do they look di�erent? Save the plot as
phasesigs.tif. What did the time delay do to the phase?

5. Play each signal with soundsc, do they sound di�erent?
6. Redo sig2 with a few di�erent delays and compare the sound to the �rst signal.
7. Create a sig3 that is one cosine at some frequency. Now add sig3 with a timed delayed

version of itself and call it sig4. Use a quarter cycle delay.
8. Use subplot and plot a few periods of sig3 and sig4. Play them with soundsc, do they

sound di�erent to you?
9. What is suggested about our hearing capabilities from this experiment?
10. You will need to show the TA the following �les:

phasefun.m

phasesigs.tif

4.1.4 Truncated Fourier Series

In this section, we'll reconstruct the periodic function x(t), shown in Figure 1, by synthesizing a periodic
signal from a variable number of Fourier Series coe�cients, and observe similarities and di�erences in the
synthesized signal.

Figure 4.1: Periodic Signal

Exercise 4.3 Gibbs phenomena

1. Create a script �le called gibbs.m to put your code in for this problem.
2. Click here2 to download the MATLAB function Ck.m. Take a look at the contents of the

function. This function takes one argument k , and creates the k th Fourier series coe�cient
for the squarewave above:

Ck = {
0 if k = 0, k even

1
jkπ

[
cos
(

2kπ
3

)
− cos

(
kπ
3

)]
if k odd

(4.1)

2http://cnx.org/content/m13599/latest/Ck.m

18 CHAPTER 4. LAB 4

Ck (1) = −1
jπ = 0 + j0.3183 . Plot the magnitude and phase of the coe�cients Ck for

k ∈ {−10,−9, . . . , 9, 10} . The magnitude and phase should be plotted separately using the
subplot command, with the magnitude plotted in the top half of the window and the phase in
the bottom half. Place frequency w on the x axis. Use the MATLAB command stem instead
of plot to emphasize that the coe�cients are a function of integer-valued (not continuous) k
. Label your plots.

3. Save the graph as Coeff.tif.
4. Write whatever script/function �les you need to implement the calculation of the signal x (t)

with a truncated Fourier series:

x (t) =
∑Kmax
k=−Kmax

Cke
jkω0t

=
∑Kmax
k=0 2|Ck|cos (kω0t+ ∠Ck)

(4.2)

for a given Kmax

note: You can avoid numerical problems and ensure a real answer if you use the cosine
form. For this example, w0 = 1.

5. Produce plots of x (t) for t ∈ [−5, 5] for each of the following cases: Kmax = 5; 15; and 30.
For all the plots, use as your time values the MATLAB vector t=-5:.01:5. Stack the three
plots in a single �gure using the subplot command and include your name in the title of the
�gure. Save the �gure as FourTrunc.tif

6. Add clear comments describing what the �les do. You will need to show the TA the following
�les:

gibbs.m

Coeff.tif

FourTrunc.tif

As you add more cosines you'll note that you do get closer to the square wave (in terms of squared error), but
that at the edges there is some undershoot and overshoot that becomes shorter in time, but the magnitude of
the undershoot and overshoot stay large. This persistent undershoot and overshoot at edges is called Gibbs
Phenomenon.

In general, this kind of "ringing" occurs at discontinuities if you try to synthesize a sharp edge out of
too few low frequencies. Or, if you start with a real signal and �lter out its higher frequencies, it is "as
if" you had synthesized the signal from low frequencies. Thus, low-pass �ltering (a �lter that only passes
low-frequencies) will also cause this kind of ringing.

For example, when compressing an audio signal, higher frequencies are usually removed (that is, the
audio signal is low-pass �ltered). Then, if there is an impulse edge or "attack" in the music, ringing will
occur. However, the ringing (called "pre-echo" in audio) can be heard only before the attack, because the
attack masks the ringing that comes after it (this masking e�ect happens in your head). High-quality MP3
systems put a lot of e�ort into detecting attacks and processing the signals to avoid pre-echo.

4.1.5 What to Show the TA

Show the TA ALL m-�les that you created or edited and the �les below.

gibbs.m

Coeff.tif

FourTrunc.tif

sigsynth.m

19

addcosines.m

synthwaves.tif

phasefun.m

phasesigs.tif

any wav files created

4.1.6 Fun Links

An applet here3 provides a great interface for listening to sinusoids and their harmonics. There are some
well-known auditory illusions associated with the perception of pitch here4 .

3http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=33
4http://physics.mtsu.edu/∼wmr/julianna.html

20 CHAPTER 4. LAB 4

Chapter 5

Lab 5

5.1 Filtering Periodic Signals1

5.1.1 Introduction

In this lab, we will look at the e�ect of �ltering signals using a frequency domain implementation of an LTI
system, i.e., multiplying the Fourier transform of the input signal with the frequency response of the system.
In particular, we will �lter sound signals, and investigate both low-pass and high-pass �lters. Recall that a
low-pass �lter �lters out high frequencies, allowing only the low frequencies to pass through. A high-pass
�lter does the opposite.

5.1.2 MATLAB Commands and Resources

• help <command>, online help for a command.
• fft, Fast Fourier Transform.
• ifft, Inverse Fourier Transform.
• sound, plays sound unscaled (clips input to [-1,1]).
• soundsc, plays sound scaled (scales input to [-1,1]).
• wavread, reads in WAV �le. The sampling rate of the WAV �le can also be retrieved, for example, [x,

Fs] = wavread('filename.wav'), where x is the sound vector and Fs is the sampling rate.

All of the sounds for this lab can be downloaded from the Sound Resources (Section 2.2) page.

5.1.3 Transforming Signals to the Frequency Domain and Back

When working in MATLAB, the continuous-time Fourier transform cannot be done by the computer exactly,
but a digital approximation is done instead. The approximation uses the discrete Fourier transform (more
on that in EE 341). There are a couple important di�erences between the discrete Fourier transforms on the
computer and the continuous Fourier transforms you are working with in class: �nite frequency range and
discrete frequency samples. The frequency range is related to the sampling frequency of the signal. In the
example below, where we �nd the Fourier transform of the "fall" signal, the sampling frequency is Fs=8000,
so the frequency range is [-4000,4000] Hz (or 2*pi times that for w in radians). The frequency resolution
depends on the length of the signal (which is also the length of the frequency representation).

The MATLAB command for �nding the Fourier transform of a signal is fft (for Fast Fourier Transform
(FFT)). In this class, we only need the default version.

1This content is available online at <http://cnx.org/content/m14481/1.9/>.

21

22 CHAPTER 5. LAB 5

� load fall %load in the signal

� x = fall;

� X = fft(x);

The fft command in MATLAB returns an uncentered result. To view the frequency content in the same
way as we are used to seeing it in class, you need to plot only the �rst half of the result (positive frequencies
only) OR use the MATLAB command fftshift which toggles between centered and uncentered versions of
the frequency domain. The code below will allow you to view the frequency content both ways.

� N = length(x);

� pfreq = [0:N/2]*Fs/N; % index of positive frequencies in fft

� Xpos=X(1:N/2+1); % subset of fft values at positive frequencies

� plot(pfreq,abs(Xpos)); % plot magnitude of fft at positive frequencies

� figure;

� freq = [-(N/2-1):N/2]*Fs/N; % index of positive AND negative freqs

� plot(freq,abs(fftshift(X))); % fftshift actually SWAPS halves of X here. See help.

% Convince yourself of why it does this to match up with freq!

Note that we are using abs in the plot to view the magnitude since the Fourier transform of the signal is
complex valued. (Type X(2) to see this. Note that X(1) is the DC term, so this will be real valued.)

Try looking at the frequency content of a few other signals. Note that the fall signal happens to have an
even length, so N/2 is an integer. If the length is odd, you may have indexing problems, so it is easiest to
just omit the last sample, as in x=x(1:length(x)-1);.

After you make modi�cations of a signal in the frequency domain, you typically want to get back to the
time domain. The MATLAB command ifft will accomplish this task.

� xnew = real(ifft(X));

You need the real command because the inverse Fourier transform returns a vector that is complex-valued,
since some changes that you make in the frequence domain could result in that. If your changes maintain
complex symmetry in the frequency domain, then the imaginary components should be zero (or very close),
but you still need to get rid of them if you want to use the sound command to listen to your signal.

5.1.4 Low-pass Filtering

An ideal low-pass �lter eliminates high frequency components entirely, as in:

Hideal
L (ω) = {

1 |ω| ≤ B
0 |ω| > B

}

A real low-pass �lter typically has low but non-zero values for |HL (ω) | at high frequencies, and a gradual
(rather than an immediate) drop in magnitude as frequency increases. The simplest (and least e�ective)
low-pass �lter is given by (e.g. using an RC circuit):

HL (ω) =
α

α+ jω
, α = cuto� frequency.

This low-pass �lter can be implemented in MATLAB using what we know about the Fourier transform.
Remember that multiplication in the Frequency domain equals convolution in the time domain. If our signal

23

and �lter are both in the frequency domain, we can simply multiply them to produce the result of the
system.

y (t) = x (t) ∗ h (t)

Y (ω) = X (ω)H (ω)

Below is an example of using MATLAB to perform low-pass �ltering on the input signal x with the FFT
and the �lter de�nition above.

The cuto� of the low-pass �lter is de�ned by the constant a. The low-pass �lter equation above de�nes
the �lter H in the frequency domain. Because the de�nition assumes the �lter is centered around w = 0, the
vector w is de�ned as such.

� load fall %load in the signal

� x = fall;

� X = fft(x); % get the Fourier transform (uncentered)

� N = length(X);

� a = 100*2*pi;

� w = (-N/2+1:(N/2))*Fs/N*2*pi; % centered frequency vector (rad/s)

� H = a ./ (a + i*w); % generate centered sampling of H

� plot(w/(2*pi),abs(H)) % w converted back to Hz for plotting

The plot will show the form of the frequency response of a system that we are used to looking at, but we
need to shift it to match the form that the fft gave us for x.

� Hshift = fftshift(H); % uncentered version of H

� Y = X .* Hshift'; % filter the signal

note: If you are having problems multiplying vectors together, make sure that the vectors are the
exact same size. Also, even if two vectors are the same length, they may not be the same size. For
example, a row vector and column vector of the same length cannot be multiplied element-wise
unless one of the vectors is transposed. The ' operator transposes vectors/matrices in MATLAB.

Now that we have the output of the system in the frequency domain, it must be transformed back to the
time domain using the inverse FFT. Play the original and modi�ed sound to see if you can hear a di�erence.
Remember to use the sampling frequency Fs.

� y = real(ifft(Y));

� sound(x, Fs) % original sound

� sound(y, Fs) % low-pass-filtered sound

The �lter reduced the signal amplitude, which you can hear when you use the sound command but not
with the soundsc which does automatic scaling. Replay the sounds with the soundsc and see what other
di�erences there are in the �ltered vs. original signals. What changes could you make to the �lter to make
a greater di�erence?

note: Sometimes, you may want to amplify the signal so that it has the same height as the
original, e.g., for plotting purposes.

24 CHAPTER 5. LAB 5

� y = y * (max(abs(x))/max(abs(y)))

Exercise 5.1
Low-pass Filtering with Sound
Use wavread to load the sound castanets44m.wav. Perform low-pass �ltering with the �lter de�ned
above, starting with a = 500*2*pi, but also try di�erent values.

Play the original and the low-passed version of the sound. Plot their frequency content (Fourier
transforms) as well.

Exercise 5.2 OPTIONAL: Low-pass Filtering

1. Create an impulse train as the input signal x(t) using the following MATLAB command,

� x = repmat([zeros(1, 99) 1], 1, 5);

2. Use the low-pass �lter de�ned earlier to low-pass the impulse train. Choose a cuto� of 20.
3. Plot the two signals x(t) and y(t) separately using the subplot command. These should be

plotted versus the time vector. Label the axes and title each graph appropriately.
4. Look at the plots. Can you explain what is happening to the spike train?

5.1.5 High-pass Filtering

An ideal high-pass �lter eliminates low frequency components entirely, as in:

Hideal
H (ω) = {

0 |ω| < B

1 |ω| ≥ B
}

A real high-pass �lter typically has low but non-zero values for |HL (ω) | at low frequencies, and a gradual
(rather than an immediate) rise in magnitude as frequency increases. The simplest (and least e�ective)
high-pass �lter is given by (e.g. using an RC circuit):

HH (ω) = 1−HL (ω) = 1− α

α+ jω
, α = cuto� frequency.

This �lter can be implemented in the same way as the low pass �lter above.

Exercise 5.3
High-pass Filtering with Sound
The high-pass �lter can be implemented in MATLAB much the same way as the low-pass �lter.
Perform high-pass �ltering with the �lter de�ned above on the sound castanets44m.wav. Start with
a = 2000*2*pi, but also try di�erent values.

Play the original and the high-passed version of the sound. The �ltered signal may be to be
scaled so that both have the same range on the Y-axis. Plot their frequency responses as well.

25

5.1.6 Sound Separation

Exercise 5.4 Sound Filtering

• Kick'n Retro 235 Inc. recorded a session of a trumpet and drum kit together for their new
release. The boss doesn't like the bass drum in the background and wants it out. Unfortu-
nately, there was a malfunction in the mixing board and instead of having two separate tracks
for the drums and the trumpet, the sounds mixed together in one track. In order to get this
release out on time you will have to use some �ltering to eliminate the bass drum from the
sound. There is not enough time to bring the drummer and trumpet player back in the studio
to rerecord the track.

• Click here to download the mixed.wav sound2 (Fs = 8000 Hz). The mixed sound is created
from bassdrum.wav, hatclosed.wav, and shake.mat.

• Try to do something easy but approximate �rst, and then, if you have more time, see how clean
you can get the sound. You may �nd it helpful to look at the Fourier domain representation
of the sounds, but you may not use the individual sounds in your solution.

• Now try to eliminate the trumpet sound, leaving only the drums left in the sound.
• Hint: use high-pass and low-pass �ltering.
• Another hint: If you want a more powerful �lter, you can try using multiple a/(a+jw) terms

in series. Each extra term raises the order of the �lter by one and higher order �lters have a
faster drop-o� outside of their passing region.

Exercise 5.5 BONUS PROBLEM: Sound Filtering

• Imagine you recorded a trumpet and rainstick together, so that you have the signal, mixedsig
= shake + 10*rainstick.

• It turns out the producer thinks the rainstick is too new-age and wants it out of the recording.
Pretend you do not have the original signals shake or rainstick. Can you take the signal
mixedsig and process it to get (approximately) only the trumpet sound (shake) out? Try to
do something easy but approximate �rst, and then if you have more time, see how good a
reproduction of shake you can get. You may �nd it helpful to look at Fourier domain of the
sounds, but you may not use rainstick.mat or shake.mat in your solution.

2See the �le at <http://cnx.org/content/m14481/latest/mixed.wav>

26 CHAPTER 5. LAB 5

Chapter 6

Lab 6

6.1 Investigation of Aliasing E�ects1

6.1.1 Introduction

Aliasing literally means "by a di�erent name" and is used to explain the e�ect of under-sampling a continuous
signal, which causes frequencies to show up as di�erent frequencies. This aliased signal is the signal at a
di�erent frequency. This is usually seen as higher frequencies being aliased to lower frequencies. For a 1d
signal in time, the aliased frequency components sound lower in pitch. In 2d space, such as images, this can
be observed as parallel lines in pinstripe shirts aliasing into large wavy lines. For 2d signals that vary in
time, an example of aliasing would be viewing propellers on a plane that seem to be turning slow when they
are actually moving at very high speeds.

note: The Nyquist sampling rate is twice the highest frequency of the signal. This is the minimum
rate needed to prevent aliasing.

6.1.2 Signals and Aliasing

In Figure 1 a 500Hz cosine signal is shown in red, and an under-sampled version of the signal in blue.

Figure 6.1: Aliased Signal

Exercise 6.1
To see the e�ects of aliasing on a 1kHz cosine signal create an over-sampled, under-sampled, and
critically-sampled version of the signal.

1This content is available online at <http://cnx.org/content/m13687/1.8/>.

27

28 CHAPTER 6. LAB 6

1. Plot a cosine at 1kHz showing at least twenty periods. Use a step size (sampling period) of
1/10kHz. This will be our over-sampled signal. Try playing this signal with soundsc. How
many samples are needed to make the sound last 2 seconds if the step size is 1/10kHz?

2. Plot the critically-sampled version by applying what you know about Nyquist. Make sure the
plot contains at least twenty periods and that you sample at a non-zero point. Listen to this
signal with soundsc, does it sound the same?

3. Plot the under-sampled version. Make sure the plot contains at least twenty periods. Listen
to this signal with soundsc, how does it sound now?

4. Plot all three signals stacked on top of each other using subplot. Note that the plot command
uses straight line interpolation, so your plots will not look smooth like Figure 1 (which actually
uses a much �ner sampling period an knowledge of the aliased frequency to generate the
smooth undersampled result).

6.1.3 Temporal Aliasing

Have you ever seen an old western movie and noticed that the wagon wheels appear to turn backwards even
though the coach is moving forward? This phenomenon is sometimes referred to as the wagon-wheel e�ect,
but is really an e�ect of temporal aliasing. You can see the same e�ect easily on anything with a spoked
wheel, such as wheels on a stage coach and airplane propellers.

Wagon-wheels, stage coaches, horses, and airplane propellers?? What's this have to do with signal
processing? Actually, quite a lot, not the wagon-wheels directly, but how the images of the wagon-wheels
are captured. The video you watch from a movie or tv show is actually sampled in time (hence temporal).
Typically a movie is captured at 24 frames per second (FPS).

Exercise 6.2
Now it's your turn to be the cinematographer. For this problem you will take an image of a
wagon-wheel and "capture" a MATLAB movie at di�erent frame rates of the wheel rotating. After
the movie is made, you will be able to play it back, and if everything worked, be able to see the
wheel spin.

A movie of a rotating wheel is a signal in time, and at each instant in time, instead of just
one point (like a normal x(t) signal), you have a whole image de�ned. Thus, if you have an image
of an arrow rotating, Figure 2, where the image rotates ten times per second, then the period
is 1/10 second, because every 1/10 second the image (signal) is at the same value again. Thus
image(t+n/10) = image(t) for all integers n.

Figure 6.2: Frames of rotating arrow.

If an image rotates at 10 Hz (10 rotations per second), then what is the Nyquist sampling rate
so that you can reconstruct the temporal signal? Recall that the signal will be critically sampled
when using a sampling rate that is twice the highest frequency in the signal (20 Hz, in this case).
Anything above that will be over-sampled, and fewer samples/second will be under-sampled.

29

Check your understanding: standard �lm is captured at 24 frames per second. What's the
highest frequency of motion that can be reconstructed without aliasing?

Create three movies to show the wheel being over-sampled (appears to be rotating clockwise),
under-sampled (appears to be rotating counter-clockwise), and critically-sampled (appears station-
ary). In each case rotate the wheel at the same rate and only change the frame rate in the movie2avi
command (keep the FPS under 30).

Write a Matlab function named wheel.m to create a movie showing the spokes image (down-
load it here2) rotate clockwise at a constant speed. The function should take parameters to
change the frame rate and the speed of the rotation. Save the movies as wheel-oversample.avi,
wheel-undersample.avi, and wheel-critsample.avi. Label the plot with the frame rate used
for each of the movies and the degrees per frame. Here some tips below to help you get started.

• You will need to use the following Matlab commands: imread, imshow, imrotate, getframe,
and movie2avi.

note: Passing a negative angle in the imrotate command rotates clockwise, and a positive
angle rotates counterclockwise.

Another useful command you can use to help formatting labels for the �gure is sprintf. For
more information use the help system in Matlab.

• Use myImageRotated = imrotate(myImage, theta, 'bilinear', 'crop') for the rotate
command.

• One way to do this is rotate the image by a number of degrees for each frame. The angle
can be split into two variables; degPerFrame will be our speed and theta will be the actual
number of degrees to rotate for the rotate command. Remember to change degPerFrame to
re�ect the same speed when changing the frame rate. Now we can setup a for loop something
like this,

for i = 1:FPS*TIME

% rotate the image

% display the image

% label the plot showing the FPS and speed of the wheel

pause(0.01) % allows time for the plot to draw

myMovie(i) = getframe(gcf); % Capture the frame

theta = theta + degPerFrame; % Calculate the angle for next frame

end

% save the avi file

• Can you use degPerFrame to relate to degrees per second? Given some frame rate, how many
degrees pass each frame to make a rotation of 360◦ take 1 second? At a given frame rate, can
you calculate the number of frames are needed to last a given amount of time, say 3 seconds?.

• Once your for loop is done, you will need to save the movie as an avi to watch it. Use the
movie2avi function to save the movie. Why can't we just watch the wheel as it is drawing
in the for loop?

Now try the same problem with a di�erent picture of your choice. Can you get it to appear to move
backwards? Save the movie as myMovie.avi.

Show the TA the following �les:

2http://cnx.org/content/m13687/latest/spokes.tif

30 CHAPTER 6. LAB 6

wheel.m

wheel-oversample.avi

wheel-undersample.avi

wheel-critsample.avi

myMovie.avi

INDEX 31

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A Aliasing, � 6.1(27)
Atlas, � 1.1(1), � 2.1(7), � 3.1(11), � 4.1(15),
� 6.1(27)

C Convolution, � 3.1(11)

E EE235, � 1.1(1), � 2.1(7), � 3.1(11), � 4.1(15),
� 6.1(27)

F Fourier, � 4.1(15)
Fundamental, � 4.1(15)

G Gupta, � 1.1(1), � 2.1(7), � 3.1(11), � 4.1(15),
� 6.1(27)

M MATLAB, � 1.1(1), � 2.1(7), � 3.1(11),
� 4.1(15), � 6.1(27)

O Ostendorf, � 3.1(11)

W Washington, � 1.1(1), � 2.1(7), � 3.1(11),
� 4.1(15), � 6.1(27)

32 ATTRIBUTIONS

Attributions

Collection: Continuous Time Linear Systems Laboratory (EE 235)
Edited by: University Of Washington Dept. of Electrical Engineering
URL: http://cnx.org/content/col10374/1.8/
License: http://creativecommons.org/licenses/by/2.0/

Module: "Introduction to MATLAB and Scripts"
By: University Of Washington Dept. of Electrical Engineering
URL: http://cnx.org/content/m13554/1.18/
Pages: 1-5
Copyright: University Of Washington Dept. of Electrical Engineering
License: http://creativecommons.org/licenses/by/2.0/

Module: "Functions in MATLAB and the Groove Station"
By: University Of Washington Dept. of Electrical Engineering
URL: http://cnx.org/content/m13555/1.25/
Pages: 7-10
Copyright: University Of Washington Dept. of Electrical Engineering
License: http://creativecommons.org/licenses/by/2.0/

Module: "Sound resources"
By: UW EE235 TA UW EE235 TA
URL: http://cnx.org/content/m13854/1.7/
Page: 10
Copyright: UW EE235 TA UW EE235 TA
License: http://creativecommons.org/licenses/by/2.0/

Module: "Convolution"
By: UW EE235 TA UW EE235 TA
URL: http://cnx.org/content/m14109/1.6/
Pages: 11-14
Copyright: UW EE235 TA UW EE235 TA
License: http://creativecommons.org/licenses/by/2.0/

Module: "Fourier Series and Gibbs Phenomenon"
By: University Of Washington Dept. of Electrical Engineering
URL: http://cnx.org/content/m13599/1.21/
Pages: 15-19
Copyright: University Of Washington Dept. of Electrical Engineering
License: http://creativecommons.org/licenses/by/2.0/

Module: "Filtering Periodic Signals"
By: UW EE235 TA UW EE235 TA
URL: http://cnx.org/content/m14481/1.9/
Pages: 21-25
Copyright: UW EE235 TA UW EE235 TA
License: http://creativecommons.org/licenses/by/2.0/

ATTRIBUTIONS 33

Module: "Investigation of Aliasing E�ects"
By: University Of Washington Dept. of Electrical Engineering
URL: http://cnx.org/content/m13687/1.8/
Pages: 27-30
Copyright: University Of Washington Dept. of Electrical Engineering
License: http://creativecommons.org/licenses/by/2.0/

Continuous Time Linear Systems Laboratory (EE 235)
Introduction to continuous time signal analysis. Basic signals including impulses, pulses, and unit steps.
Periodic signals. Convolution of signals. Fourier series and transforms in discrete and continuous time.
Computer laboratory. This development of these labs was supported by the National Science Foundation
under Grant No. DUE-0511635. Any opinions, conclusions or recommendations expressed in this material
are those of the authors and do not necessarily re�ect the views of the National Science Foundation.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

