
Communications Source and Channel
Coding with examples

By:
Peter Grant

Communications Source and Channel
Coding with examples

By:
Peter Grant

Online:
< http://cnx.org/content/col10601/1.3/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Peter Grant. It is licensed under the

Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: May 7, 2009

PDF generated: February 5, 2011

For copyright and attribution information for the modules contained in this collection, see p. 43.

Table of Contents

1 Hu�man source coder . 1
2 Block FECC coding . 7
3 Block code performance . 13
4 Convolutional FECC Encoder . 25
5 Viterbi Decoder . 31
6 Turbo Coding . 37
Index . 42
Attributions . 43

iv

Chapter 1

Hu�man source coder1

1.1 Source coding

Hu�man coding deploys variable length coding and then allocates the longer codewords to less frequently
occurring symbols and shorter codewords to more regularly occurring symbols. By using this technique
it can minimize the overall transmission rate as the regularly occurring symbols are allocated the shorter
codewords.

1.1.1 Simple source coding

Symbol Probability

A 0.10

B 0.18

C 0.40

D 0.05

E 0.06

F 0.10

G 0.07

H 0.04

Table 1.1: 8-symbol signal to be encoded

We have to start with knowledge of the probabilities of occurrence of all the symbols in the alphabet.
The table above shows an example of an 8-symbol alphabet, A. . .H, with the associated probabilities for
each of the eight individual symbols.

1This content is available online at <http://cnx.org/content/m18172/1.4/>.

1

2 CHAPTER 1. HUFFMAN SOURCE CODER

Figure 1.1: Source encoder entropy calculation

Figure 1.1 shows that the entropy of this source data is 2.5524 bits/symbol.

Symbol Code

A 000

B 001

C 010

D 011

E 100

F 101

G 110

H 111

Table 1.2: Simple �xed length (3-bit) encoder

This shows the application of very simple coding where, as there are 8 symbols, we adopt a 3-bit code.
Figure 1.1 shows that the entropy of such a source is 2.5524 bit/symbol and, with the �xed 3 bit/symbol

3

length allocated codewords, the e�ciency of this simple coder would be only 2.5524/3.0 = 85.08%, which is
a rather poor result.

1.1.2 Hu�man coding

This is a variable length coding technique which involves two processes, reduction and splitting.

1.1.2.1 Reduction

We start by listing the symbols in descending order of probability, with the most probable symbol, C, at
the top and the least probable symbol, H, at the foot, see left hand side of Figure 1.2. Next we reduce the
two least probable symbols into a single symbol which has the combined probability of these two symbols
summed together. Thus symbols H and D are combined into a single (i.e. reduced) symbol with probability
0.04 + 0.05 = 0.09.

Now the symbols have to be reordered again in descending order of probability. As the probability of
the new H+D combined symbol (0.09) is no longer the smallest value it then moves up the reordered list as
shown in the second left column in Figure 1.2.

This process is progressively repeated as shown in Figure 1.2 until all symbols are combined into a single
symbol whose probability must equal 1.00.

Figure 1.2: Hu�man coder reduction process

4 CHAPTER 1. HUFFMAN SOURCE CODER

1.1.2.2 Splitting

The variable length codewords for each transmitted symbol are now derived by working backwards (from
the right) through the tree structure created in Figure 1.2, by assigning a 0 to the upper branch of each
combining operation and a 1 to the lower branch.

The �nal �combined symbol� of probability 1.00 is thus split into two parts of probability 0.60 with
assigned digit of 0 and another part with probability 0.40 with assigned digit of 1. This latter part with
probability 0.40 and assigned digit of 1 actually represents symbol C, Figure 1.3.

The �combined symbol� with probability 0.60 (and allocated �rst digit of 0) is now split into two further
parts with probability 0.37 with an additional or second assigned digit of 0 (i.e. its code is now 00) and
another part with the remaining probability 0.23 where the additional assigned digit is 1 and associated code
will now be 01.

Figure 1.3: Hu�man coder splitting process to generate the variable length codewords and allocate
these depending on symbol probabilities.

This process is repeated by adding each new digit after the splitting operation to the right of the previous
one. Note how this allocates short codes to the more probable symbols and longer codes to the less probable
symbols, which are transmitted less often.

5

Symbol Code

A 011

B 001

C 1

D 00010

E 0101

F 0000

G 0100

H 00011

Table 1.3: Hu�mann coded variable length symbols

1.1.3 Code e�ciency

Figure 1.3 summarises the codewords now allocated to each of the transmitted symbols A. . .H and also
calculates the average length of this source coder as 2.61 bits/symbol. Note the considerable reduction from
the �xed length of 3 in the simple 3-bit coder in earlier table.

6 CHAPTER 1. HUFFMAN SOURCE CODER

Figure 1.4: Summary of allocated codewords for each symbol, A ...H, and calculation of average length
of transmitted codeword.

Now recall from Figure 1.1 that the entropy of the source data was 2.5524 bits/symbol and the simple
�xed length 3-bit code in the earlier table, with a length of 3.00 which gave an e�ciency of only 85.08%.

The e�ciency of the Hu�man coded data with its variable length codewords is therefore 2.5524/2.62 =
97.7% which is a much more acceptable result.

If the symbol probabilities all have values 1/(2n) which are integer powers of 2 then Hu�mann coding
will result in 100% e�ciency.

note: This module has been created from lecture notes originated by P M Grant and D
G M Cruickshank which are published in I A Glover and P M Grant, "Digital Communi-
cations", Pearson Education, 2009, ISBN 978-0-273-71830-7. Powerpoint slides plus end of
chapter problem examples/solutions are available for instructor use via password access at
http://www.see.ed.ac.uk/∼pmg/DIGICOMMS/

Chapter 2

Block FECC coding1

2.1 Block FECC coding

2.1.1 Forward error correcting coding (FECC)

Block codes are one example of the forward error correcting coding (FECC) technique where we encode
the signal by adding additional bits or digits of redundant data so that the decoder is then able to correct
most of the errors which are introduced by transmission through a noisy channel. FECC was invented for
deep space probes where the extremely long transmission propagation path loss results in received data with
particularly low signal to noise ratio as the modest transmitter power is limited by the solar panel outputs.

As we are adding additional bits to generate each codeword this is a systematic encoder as the information
data bits are included directly within the codewords. The additional bits required for the transmission of the
redundant information increases the data rate which will consume more bandwidth if we wish to maintain
the same throughput, but, if we seek to obtain low error rates, then this trade-o� is usually acceptable.

1This content is available online at <http://cnx.org/content/m18174/1.3/>.

7

8 CHAPTER 2. BLOCK FECC CODING

Figure 2.1: Error probability against received noise level for FECC and uncoded data transmissions

Figure 2.1 shows the typical error rate performance for uncoded data compared with FECC data. It
plots the bit error probability, Pb , against

Eb

N0
. Eb

N0
is the measure of the energy per bit to the noise power

spectral density ratio and is the normally used signal to noise ratio ratio measure on these error rate plots.
FECC is used widely in compact discs (CD), computer storage and data transmission, all manor of radio

links, data modems, video, TV and cellphone transmissions, space communications etc. Note in Figure 2.1
the ability of FECC to achieve a much lower error rate than for the uncoded data transmissions at low bit
error probability, Pb .

2.1.2 ASCII coding

In some computer communication systems, information is sent as 7-bit ASCII codes with a parity check bit
added on the end. Using even parity the 7-bit all zero ASCII code 0000000 expands into 00000000 while
0000001 codes to 00000011. This (and all other cases) thus has a binary digit di�erence or Hamming Distance
of 2. Figure 2.2 shows that we can use this to detect 1 (or an odd number of) errors.

9

Figure 2.2: ASCII code example where received codeword has single error in the 5th bit position

The block length is then n = 8 and the number of information bits k = 7. This generally assists with
error detection but is is insu�ciently robust or redundant to achieve an error correction capability as the
coding rate is only 7/8.

The minimum distance in binary digits between any two codewords is known as the minimum Hamming
Distance, Dmin , which is 2 for the case of odd or even parity check in ASCII data transmission. We can
then calculate the error detecting and correcting power of a code from the minimum distance in bits between
error free blocks or codewords, see error correction capability module.

Although we shall look exclusively at coding schemes for binary systems, error correcting and detecting
coding is not con�ned to binary digits. For example the ISBN numbers used on books have a checksum
appended to them and these are calculated via modulo 11 arithmetic.

2.1.3 Block code construction

Block codes collect or arrange incoming information carrying data into groups of k binary digits and add
coding (i.e. parity) bits to increase the coded block length up to n bits, where n>k.

10 CHAPTER 2. BLOCK FECC CODING

Figure 2.3: Block coder with k information digits and appended parity check bits

The coding rate R is simply the ratio of data or information carrying bits to the overall block length,
k/n. The number of parity check (redundant) bits is therefore n � k, . This block code is usually described
as a (n, k) code.

2.1.4 Block code example

Suppose we want to code k = 4 information bits into a n = 7 bit codeword, giving a coding rate of 4/7.
Code design is performed by using �nite �eld algebra to achieve linear codes. We can achieve this (7, 4)
block code using 3 input exclusive or (EX - OR) gates to form the three even parity check bits, P1, P2 and
P3 , from the 4 information carrying bits, I1...I4, as shown in Figure 2.4.

11

Figure 2.4: Logic gate representation for (n, k) block coder where k = 4 information bits and n = 7
encoded block length (i.e. (7, 4) coder)

This circuitry can be represented by the logic gates in Figure 2.4 or written either as a set of parity check
equations or the corrresponding parity check matrix H, as in Figure 2.5.

12 CHAPTER 2. BLOCK FECC CODING

Figure 2.5: Parity check bit computation and corresponding H matrix representation for (7, 4) block
encoder

Remember here that the �cross-in-the-circle� symbol indicates a bitwise exclusive-or (EX � OR) operation.
This H matrix can also be used to directly generate codewords from the information bits via a closely related
G matrix.

This is an example of a systematic code, where the data is included directly within the codeword.
Convolutional FECC, see later module, is an example of a non-systematic coder where we do not explicitly
include the information carrying data within the transmissions, although the transmitted coded data is
derived from the information data.

note: This module has been created from lecture notes originated by P M Grant and D
G M Cruickshank which are published in I A Glover and P M Grant, "Digital Communi-
cations", Pearson Education, 2009, ISBN 978-0-273-71830-7. Powerpoint slides plus end of
chapter problem examples/solutions are available for instructor use via password access at
http://www.see.ed.ac.uk/∼pmg/DIGICOMMS/

Chapter 3

Block code performance1

3.1 Block code error correction capability

3.1.1 Hamming distance

Consider two distinct �ve digit codewords C1 = 00000 and C2 = 00011. These have a binary digit di�erence
(or Hamming distance) of 2 in the last two digits. The minimum distance in binary digits between any two
codewords is known as the minimum Hamming distance, Dmin

For block codes the minimum Hamming distance or the smallest di�erence between the digits for any two
codewords in the complete code set, Dmin , is the property which controls the error correction performance.
We can thus calculate the error detecting and correcting power of a code from the minimum distance in bits
between the codewords.

Thus for a code with a minimum distance Dmin = 3 then this code can be used to correct:

1This content is available online at <http://cnx.org/content/m18175/1.7/>.

13

14 CHAPTER 3. BLOCK CODE PERFORMANCE

Figure 3.1: Relationship between Dmin and error detection OR correction capability (but not both
simultaneously)

Note in the earlier example of two �ve digit codewords C1 = 00000 and C2 = 00011 which had a Hamming
distance of 2 there is only one codeword (e.g. A = 00001 or B = 00010) which lies inbetween these two
codewords. Now if there was an error result (e.g. A = 00001) we cannot tell whether it came from C1 or C2
so we can thus only used this to detect that an error has occurred.

If the two �ve digit codewords had been C1 = 00000 and C2 = 00111, which have a Hamming distance
of 3, there are then two words which lie inbetween these codewords (e.g. A = 00001 and B = 00011) and
these can thus be used EITHER to detect two errors without any correction capability OR if detection is
not required they can used to correct a single error (e.g. C1 = 00000 distorted into A = 00001 or C2 =
00111 distorted into B = 00011), Figure 3.1.

When performing the correction operation we require to insert the decision boundary as shown in Example
1 below. If in this example we had wished to perform detection only as shown in the lower part of Figure 3.1
then we would ignore whether the received code A = 00001 resulted from a single error from a C1 transmission
or a double error from a C2 code transmission and only identify it as a detected error.

Example 1 � error correction
C1 = 00000
A = 00001
�����
B = 00011

15

C2 = 00111
This explains further the detailed operation of the equations in Figure 3.1 where detection only operation

does not require the decision boundary to aid identi�cation of the origination of the error.

3.1.2 Block error probability and correction capability

If we have an error correcting code which can correct R' errors, than the probability of a codeword not being
correctable is the probability of having more than R' errors in n digits. The probability of having more than
R' errors is given in Figure 3.2. We can this calculate this probability by summing all the induvidual error
probabilities up to and including R' errors in the block.

Figure 3.2: Correction of more than R' errors in an n digit block

The probability of j errors occurring in an n digit codeword is given in Figure 3.3. Pe is the probability
of error in a single binary digit and n is the block length. Figure 3.3 also shows how to calculate the nCj
term representing all the possible number of ways or error positions that j errors can occur within a block
of length n binary digits.

16 CHAPTER 3. BLOCK CODE PERFORMANCE

Figure 3.3: Probability of j errors occurring an an n-digit codeword

Example 2: If we have an error correcting code which can correct 3 errors within a block length n of 10,
what is the probability that the code cannot correct a received block if the per digit error probability is Pe

= 0.01?
Solution: The code cannot correct the received block if there are more than 3 errors. Thus:
P > 3 errors = 1 - P(0 errors) - P(1 error) - P(2 errors) - P(3 errors).
Figure 3.4 shows the component parts of this calculation.

17

Figure 3.4: Calculation of zero, 1, 2 and 3 errors in a 10-digit codeword with a per-digit Pe of 0.01

Thus the probability that the code cannot correct a received block is then:
1 - 0.9043821 - 0.0913517 - 0.0041523 - 0.0001118 = 0.0000021.
This illustrates that the very low overall error remaining after correction of three errors is much less than

the original probability of error in a single bit, Pe = 0.01. Note also the need for high precision arithmetic
(it may be an eight digit calculator is not good enough to calculate the answer to more than 1 signi�cant
�gure). Note also in Figure 3.4 the much lower probability of t + 1 errors occuring, compared to t errors,
as is implied in FECC.

3.1.3 Group codes

Group codes are a special kind of block codes. They comprise a set of codewords, C1 . . . CN, which contain
the all zeros codeword (e.g. 00000) and exhibit a special property called closure. This property means that
if any two valid codewords are subject to a bit wise EX � OR operation then they will produce another valid
codeword in the set.

The closure property means that to �nd the minimum Hamming distance, see below, all that is required
is to compare all the remaining codewords in the set with the all zeros codeword instead of comparing all
the possible pairs of codewords.

The saving gets bigger the longer the codeword. For example a code set with 100 codewords will require
100 comparisons for a Group code design, compared with 100+99+98+. . .+2+1, for a non-group code!

18 CHAPTER 3. BLOCK CODE PERFORMANCE

In Group codes the Dmin calculation is further simpli�ed into calculating the minimum codeword weight
or minimum number of 1 digits in a codeword in the set.

3.1.4 Nearest neighbour decoding

Nearest neighbour decoding assumes that the codeword nearest in Hamming distance to the received word
is what was transmitted, as shown in Example 1 above. This inherently contains the assumption that the
probability of a small number of t errors is greater than the probability of the larger number of t+1 errors,
i.e that Pe is small.

A nearest neighbour decoding table for a (n, k) = (5, 2) i.e. a 5-digit group code is shown in Figure 3.5.
Recall that for an n = 5 bit codeword there are 25 = 32 unique patterns generated by all the possible
combinations of the 5 digits.

Figure 3.5: Nearest neighbour decoding table for 5 bit code with 4 codewords implying 2 information
bits

Figure 3.5 starts by forming a table with the 4 codewords across the top row. All the single error
patterns, which each only di�er by one bit from each of the transmitted codewords, can be readily and
uniquely assigned back to an error free codeword. Thus the next 5 rows represent these single errors in
position 1 through 5 in each of the 4 codewords. Now we have a table up to this point with a total of 4 x 6
= 24 unique entries. Therefore this code is capable of correcting all these single errors.

19

There are also eight remaining codes or table entries as 32 - 24 = 8 and these represent double error
patterns which, as can be seen, lie an equal Hamming distance from at least 2 of the initial 4 codewords
in the top row. Note for example errors in the �rst two digits of the 00000 codeword result in us receiving
11000. However data bit pattern is identi�ed here in Figure 3.5 as a single error from codeword 11100 as we
assume that 1 error is a much more likely occurence than two errors!

These represent some of the double error patterns, which can thus be detected here, but they cannnot
be corrected as all the possible double error patterns do not have a unique representation in Figure 3.5.

3.1.5 Soft decision decoding

Nearest neighbour decoding can also be done on a soft decision basis, with real non-binary numbers from
the receiver. The nearest Euclidean distance (nearest to these 5 codewords in terms of a 5-D geometry) is
then used and this gives a considerable performance increase over the hard decision decoding described here.

3.1.6 Hamming bound

This de�nes mathematically the error correcting performance of a block coder. The upper bound on the
performance of block codes is given by the Hamming bound, some times called the sphere packing bound.
If we are trying to create a code to correct t errors with a block length of n with k information digits, then
Figure 3.6 shows the Hamming bound equation.

20 CHAPTER 3. BLOCK CODE PERFORMANCE

Figure 3.6: Hamming bound calculation for (n, k) block code to establish number of terms which can
be included in the denominator and hence arrive at the codes error correcting power t

Here the denominator terms, which are represented by the binomial coe�cients, represent the number of
possible patterns or positions in which 1, 2, ..., t errors can occur in an n-bit codeword.

Note the relationship between the decoding table in Figure 3.5 and the Hamming Bound equation in
Figure 3.6. The 2k = 4 left hand entry represents the number of transmitted codewords or columns in the
table. The numerator 2n = 32 represents the total possible number of unique entries in the table. The
demoninator represents the number of rows which can be accommodated within the table. Here the �rst
denominator term (1) represents the �rst row (i.e. the transmitted codewords) and the second term (n) the
5 single error patterns. Subsequent terms then represent all the possible double, triple error patterns, etc.
The denominator has to be sized or restricted to t to ensure the inequality and this gives or de�nes the error
correction capability as t.

If the equation in Figure 3.6 is satis�ed then the design of suck an (n, k) code is possible with the error
correcting power of t. If the equation is not satis�ed, then we must be less ambitious by reducing t or k (for
the same block length n) or increasing n (while maintaining t and k).

Example 2
Comment on the ability of a (5, 2) code to correct 1 error and the possibility of a (5, 2) code to correct

2 errors?
Solution
For single error: k = 2, n = 5 and t = 1, leads to the case summarized in Figure 3.7.

21

Figure 3.7: Calculation to assess whether (5, 2) block code can correct t = 1 error - Answer yes

which is true so such a code design is possible.
However if we try to design a (5, 2) code to correct 2 errors we have k = 2, n = 5 and t = 2, which is

summarized in Figure 3.8.

22 CHAPTER 3. BLOCK CODE PERFORMANCE

Figure 3.8: Calculation to assess whether (5, 2) block code can correct t = 2 errors - Answer no

This result is false or cannot be satis�ed and thus this short code cannot be designed with a t = 2 error
correcting power or capability.

This provides further mathematical derivation for the error correcting performance limits of the nearest
neighbour decoding table shown previously in Figure 3.5 where we could correct all single error patterns but
we could not correct all the possible double error patterns.

A full decoding table is not required to be created as, through checking the Hamming bound, one can
identify the required block size and number of parity check bits which are required for a given error correction
capability in a block or group coder design.

Figure 3.9 shows the performance of various BLOCK codes, all of rate ½, whose performance progressively
improves as the block length increases from 7 to 511, even for the same coding rate of ½.

The power of these forward error correcting codes (FECC) is quanti�ed as the coding gain, i.e. the
reduction in the required Eb

N0
ratio or energy required to transmit each bit divided by the spectral noise

density, for a given bit error ratio or error probability.
For example in Figure 3.9 the (31, 16) code has a coding gain over the uncoded case of around 1.8 dB at

a Pb of 10−5 .

23

Figure 3.9: Error performance of 1/2 rate block coders with di�ering block lengths

note: This module has been created from lecture notes originated by P M Grant and D
G M Cruickshank which are published in I A Glover and P M Grant, "Digital Communi-
cations", Pearson Education, 2009, ISBN 978-0-273-71830-7. Powerpoint slides plus end of
chapter problem examples/solutions are available for instructor use via password access at
http://www.see.ed.ac.uk/∼pmg/DIGICOMMS/

24 CHAPTER 3. BLOCK CODE PERFORMANCE

Chapter 4

Convolutional FECC Encoder1

4.1 FECC � ½ Rate Convolutional Encoder Example

4.1.1 Convolutional coding

Convolutional codes are another type of forward error correcting coder (FECC) which are quite distinct from
block codes. They are simpler to implement for longer codes than block coders and soft decision decoding
can be employed easily at the decoder.

Convolutional codes are non-systematic (i.e. the transmitted data bits do not appear directly in the
output encoded data stream) and are generated by passing a data sequence through a transversal or �nite
impulse response (FIR) �lter. The coder output can be regarded as the convolution of the input sequence
with the impulse response of the coder, hence their name: convolutional codes.

4.1.2 Convolutional encoder

A simple example is shown in Figure 4.1. Here the encoder shift register starts with zeros at all three stored
locations (i.e. 0, 0, 0). The input data sequence to be encoded is 1, 1, 0, 1 in this example. The shift register
contents thus become, after each data bit arrives and propagates into the shift register: 100, 110, 011, 101.
As there are two outputs for overy input bit the above encoder is rate ½.

The �rst output is obtained after arrival of a new data bit into the shift register when the switch is in
the upper position, the second with the switch in the lower position. Thus, in this example, the switch will
generate, through the exclusive OR gates, from the four input data bits: 1, 1, 0, 1, the corresponding four
output digit pairs: 11, 10, 11, 01

1This content is available online at <http://cnx.org/content/m18176/1.3/>.

25

26 CHAPTER 4. CONVOLUTIONAL FECC ENCODER

Figure 4.1: ½ rate convolutional encoder

This particular encoder has 3 stages in �the �lter� and therefore we say that the constraint length n = 3.
The very latest encoders available commercially typically have constraint lengths up to n = 9.

We can consider the coder outputs from the exclusive OR gates as being generated by two polynomials:

P1(x) = 1 + x2 (4.1)

P2(x) = 1 + x (4.2)

These are often expressed in octal notation, in our example:

P1 = 5o(101) (4.3)

P2 = 6o(110) (4.4)

This encoder may also be regarded as a state machine. The next state is determined by the next input bit
or value combined with the previous two input bits or values which were stored in the shift register, (i.e. the
previous state).

27

4.1.3 Tree state diagram

We can regard this as a Mealy state machine with four states corresponding to all the possible combinations
of the �rst two stages in the shift register.

The tree diagram for this state machine is now shown in Figure 4.2, again starting from the all zeros
state or condition. The encoder starts in state A holding two zeros (00) within the �rst two stages of the
shift register. (We ignore the �nal stored digit as it is lost when a new data bit propagates into the shift
register.) If the next input bit is a zero (0) we follow the upper path to state B where the stored data is
updated to 00. If the next input bit is a one (1) we follow the lower path to progress to the corresponding
state C where the stored data is now 10.

The convention is to enter the updated new stored state values below the state letter (B/C). Now returning
to Figure 4.1 and the exclusive OR gate connections one can derive the output data bits generated within
the encoder. For state B these are 00 and for state C these are 11. These outputs are entered alongside
the state in Figure 4.2. States B/C correspond to the arrival of the �rst new data bit to be encoded, while
D/E/F/G correspond to the second data bit and H/I/J/K/h/i/j/k the third data bit.

Figure 4.2: Encoded data tree diagram for the encoder of Figure 1

The tree diagram in Figure 4.2 tends to suggest that there are eight states in the last layer of the tree and
that this will continue to grow. However some states in the last layer (i.e. the stored data in the encoder)
are equivalent as indicated by the same letter on the tree (for example H and h).

These pairs of states may be assumed to be equivalent because they have the same internal state for the

28 CHAPTER 4. CONVOLUTIONAL FECC ENCODER

�rst two stages of the shift register and therefore will behave exactly the same way to the receipt of a new
(0 or 1) input data bit.

4.1.4 Trellis state diagram

Thus the tree can be folded into a trellis, as shown in , which is derived from the tree diagram of Figure 4.2
and Figure 4.1 encoder. As the constraint length is n = 3 we have 2(3−1) = 4 unique states: 00, 01, 10, 11
in Figure 4.2. In Figure 4.3 the states are shown as 00x to denote the third bit, x, which is lost or discarded
following the arrival of a new data bit.

Figure 4.3: Trellis Diagram corresponding to the Tree Diagram of Figure 2

Note in Figure 4.3 the horozontal arrangement of states A, B, D, H and L. The same applies to states
C, E, I and M etc. The horizontal direction corresponds to time (the whole diagram in Figure 4.3 now
corresponds to encoding 4 input data bits). Here we have dropped the state information from Figure 4.2 as
the same states are all represented at the same horizontal level in Figure 4.3. The vertical direction here
corresponds to the stored state values a, b, c, d in the encoder shift register.

States along the time axis are thus equivalent, for example H is equivalent to L and C is equivalent to
E etc. In fact all the states in a horizontal line are equivalent. Thus we can identify only four states in this
coder: a, b, c and d and the related shift register stored values 00, 10, 01, 11 are shown in the left hand side
of Figure 4.3.

29

From any point, e.g. E, if the next input bit is a zero (0) we follow the upper path to state J where the
stored data is updated to 01 and the output will be 01. If the next input bit is a one (1) we follow the lower
path from E to progress to the next state K where the stored data is now 11 and the output will be 10 as
indicated alongside the trellis path.

4.1.5 Transition state diagram

We can draw, if desired, the trellis diagram of Figure 4.3 in Figure 4.4 as a state diagram containing only
these states with all the corresponding new data bits to be encoded and the corresponding two output bits
generated per new input data bit (e.g. 1(10))

Figure 4.4: State diagram corresponding to the encoder trellis diagram of Figure 3

note: This module has been created from lecture notes originated by P M Grant and D
G M Cruickshank which are published in I A Glover and P M Grant, "Digital Communi-
cations", Pearson Education, 2009, ISBN 978-0-273-71830-7. Powerpoint slides plus end of
chapter problem examples/solutions are available for instructor use via password access at
http://www.see.ed.ac.uk/∼pmg/DIGICOMMS/

30 CHAPTER 4. CONVOLUTIONAL FECC ENCODER

Chapter 5

Viterbi Decoder1

5.1 Viterbi convolutional decoder

A convolutional code is not decoded in short blocks as in a block code. However, to simplify decoding,
messages are arti�cially broken down into very long blocks by periodically �ushing the encoder with a string
of zeros, as in the example discussed here.

For illustration only this example here uses an unrealistically short block length of 5 data bits with the
last two �xed at 0 to �ush the encoder (remember that this is very ine�cient and, in practice, practical
block lengths are very much longer, typically 1,000 to 10,000 bits in length).

Convolutional codes are always decoded using the Viterbi algorithm as this simpli�es the decoding op-
eration. The algorithm is based on the nearest neighbour decoding scheme and, like the other algorithms
we have looked at, it relies on the assumption that the probability of t errors is much greater than the
probability of t+1 errors and it thus selects or chooses and retains only the paths which have fewer errors.

The decoding process is based on the previous decoding trellis. We will use the previous ½ rate encoder
example and assume that the received message is: 10 10 00 10 10, representing a total of �ve (unknown)
transmitted data bits each encoded into �ve bit pairs, i.e. total of ten encoded data bits. We further assume
in this simpli�ed example that the last 2 bits of the 5 data inputs were �ushing zeros to reset the encoder
and decoder.

Starting (after �ushing) with the �rst received bit in position A in the encoder, we know that if a 1 had
been input, (lower path) from the encoder �gure the output should have been 11 as we moved to state C. If
a 0 was input (upper path) we should have received 00 and moved to state B, see upper part of Figure 5.1.

What was actually received was 10, a Hamming distance of 1 from both these possibilities, so we draw
that in the lower part of Figure 5.1 onto the �rst stage of our decoding trellis.

1This content is available online at <http://cnx.org/content/m18177/1.3/>.

31

32 CHAPTER 5. VITERBI DECODER

Figure 5.1: First stage of trellis after decoding �rst two received data bits

Instead of reporting the expected outputs we next annotate the lower part of Figure 5.1 with the separate
distances between the received data and the trellis encoder on each path. We then add the cumulative
Hamming distance to the states (B, C) in square brackets above the states B and C

Now consider the second pair of received data bits. Consider �rst state B. As before, we should have
received 00 for a 0 input and 11 for a 1 input, see left hand side of Figure 5.2. What we actually received
was 10, which is a Hamming distance of 1 from both possibilities so the right hand part of Figure 5.2 is
annotated with the individual and cumulative distances to states D and E.

Then consider state C. For a 0 input, (upper part) we should have received 01, but what was actually
received was 10, a Hamming distance of 2. For a 1 input (lower path) we should have received 10 and this is
exactly what was received, corresponding to a Hamming distance of 0! Again the right part of Figure 5.2 is
annotated with the individual distances on the paths and the new cumulative or summed distances to states
F and G.

33

Figure 5.2: First and second stage of the decoding trellis after receiving second pair of data bits

We continue to build our decoding trellis until it is complete after receipt of all ten data bits, as shown
in Figure 5.3.

If we have two paths to a state, as in the later states: H, I , J, K, L, M, N, P, we write the smaller (more
likely) Hamming distance in square brackets above the state and discard the larger distance (as this is much
less likely to represent the correct path). In our example, we assumed the last two bits were 0, so we must
expect to �nish back in state P, which is the same as the starting state A.

We �nally need to �nd the path from state A to P which gives the lowest overall Hamming distance. We
then retrace the path and remember that the upper path from a state represented a 0 transmitted and the
lower path represented a 1 transmitted.

34 CHAPTER 5. VITERBI DECODER

Figure 5.3: Full decoding trellis after receipt of all ten data bits

The reverse decoded data for this example is indicated by the dashed line in Figure 5.3.
Leaving states A, C, G and K always in the lower of the two possible paths implies that a data bit 1 has

been received at these states and therefore this translates to 1, 1, 1 as the �rst three encoded data bits.
The last two bits don't matter in this case as we have assumed they are 0, 0 and we can remove from

the docoding trellis all the states that don't support or contribute to this solution.
Note that �nishing a block with n-1 zero input data bits is not compulsory. If you make a decision after

a delay of approximately �ve times the constraint length n, this makes little di�erence in code performance
but does limit the memory consumed by the process to a more sensible amount.

Figure 5.4 shows the performance of various BLOCK codes, all of rate ½, whose performance improves as
the block length increases, even for the same coding rate of ½.

The power of these forward error correcting codes (FECC) is quanti�ed as the coding gain, i.e. the
reduction in the required Eb

N0
ratio or energy required to transmit each bit divided by the spectral noise

density, for a given bit error ratio or error probability.
For example in Figure 5.4 the (31, 16) code has a coding gain over the uncoded case of around 1.8 dB at

a Pb of 10−5 .

35

Figure 5.4: Error performance of 1/2 rate block coders with di�ering block lengths

Figure 5.5 shows for comparison with the block codes of Figure 5.4 the performance of convolutional
coders. The convolutional code initially provides very good performance at modest constraint length. A
short constraint length of n = v = 3 is already superior to the 511 block length code of Figure 5.4. The
additional attraction of the convolutional coder is its further improvement with the increase in constraint
length up to n = 7 or 9, as shown in Figure 5.5.

Unfortunately the coding and decoding process gets more complicated with larger block/constraint length.
As shown here convolutional codes with Viterbi decoding are generally more powerful than block codes,
especially for very low error rates, hence their wider use. Single chip constraint length 9 (512 state) encoder
and decoders are now widely available as commercial products from many semiconductor vendors.

36 CHAPTER 5. VITERBI DECODER

Figure 5.5: Error rate performance of convolutional decoders with di�ering constraint lengths

warning: This module has been created from lecture notes originated by P M Grant and
D G M Cruickshank which are published in I A Glover and P M Grant, "Digital Com-
munications", Pearson Education, 2009, ISBN 978-0-273-71830-7. Powerpoint slides plus end
of chapter problem examples/solutions are available for instructor use via password access at
http://www.see.ed.ac.uk/∼pmg/DIGICOMMS/

Chapter 6

Turbo Coding1

6.1 Turbo encoding and decoding

6.1.1 Introduction

A paper was published by Claude Berrou and coauthors at the ICC conference in 1993 that rocked or shook
the �eld of forward error correction coding (FECC). This described a method of creating much more powerful
block error correcting coding with only the minimum amount of e�ort. Its main features were two recursive
convolutional encoders (RCE) interconnected via an interleaver. The data is fed into the �rst encoder directly
and into the second encoder after interleaving or reordereing of the input data.

6.1.2 Turbo encoding

The important features are the use of two recursive convolutional encoders and the design of the interleaver
which gives a block code with the block size equal to the interleaver size, Figure 6.1. Random interleavers
tend to work better than row and column interleavers. Note that recursive convolutional encoders were
known about well before their use in turbo codes, but the di�culties in driving them into a known state
made them less popular than the non-recursive convolutional encoders described in the previous module.

The name turbo decoder came from the turbo charger in an automobile where the exhaust gasses are
used to drive a compressor in a feedback loop to increase the input of fuel and hence the vehicles ultimate
performance.

1This content is available online at <http://cnx.org/content/m18178/1.3/>.

37

38 CHAPTER 6. TURBO CODING

Figure 6.1: Turbo encoder with recursive encoding loops

The desired output rate was initially achieved by puncturing (ignoring every second output) from each
of the encoders.

6.1.3 Turbo decoding

Turbo decoding is iterative. The decoding is also soft, the values that �ow around the whole decoder are
real values and not binary representations (with the exception of the hard decisions taken at the end of the
number of iterations you are prepared to perform). They are usually log likelihood ratios (LLRs), the log of
the probability that a particular bit was a logic 1 divided by the probability the same bit was a logic 0.

Decoding is accomplished by �rst demultiplexing the incoming data stream into d, y1 , y2. d and y1 go
into the decoder for the �rst code, Figure 6.2. This gives an estimate of the extrinsic information from the
�rst decoder which is interleaved and past on to the second decoder. The second decoder thus has three
inputs, the extrinsic information from the �rst decoder, the interleaved data d, and the received values for
y2. It produces its extrinsic information and this is deinterleaved and passed back to the �rst encoder. This
process is then repeated or iterated as required until the �nal solution is obtained from the second decoder
interleaver.

39

Figure 6.2: Turbo decoder

The decoders themselves generally use soft output Viterbi algorithm (SOVA) to decode the received data.
However the preferred turbo decoding method is to use the maximum a-priori (MAP) algorithm but this is
too mathematical to discuss here!

40 CHAPTER 6. TURBO CODING

Figure 6.3: Probability of error for turbo decoders with variable number of iterations

6.1.4 Coder performance

Figure 6.3 shows these ½ rate decoders operating at much lower Eb

N0
or SNR values than the convolutional

Viterbi decoders of the previous section and, further, as the number of iterations increases to beyond 15,
then the performance comes very very close to the theoretical Shannon bound.

This is the attraction that has excited the FECC community, who were unable to achieve this low
error rate before 1993! Now that iterative decoding has been introduced for turbo decoders it is also being
re-applied in low delay parity check (LDPC) decoders with equal enthusiasm and success.

41

Figure 6.4

Figure 6.4 includes a turbo decoding example (which as an animated power point slide) will show the black
dot noise induced errors being corrected on each subsequent iteration with the black dots being progressively
reduced in the upper cartoon.

note: This module has been created from lecture notes originated by P M Grant and D
G M Cruickshank which are published in I A Glover and P M Grant, "Digital Communi-
cations", Pearson Education, 2009, ISBN 978-0-273-71830-7. Powerpoint slides plus end of
chapter problem examples/solutions are available for instructor use via password access at
http://www.see.ed.ac.uk/∼pmg/DIGICOMMS/

42 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

B Block codes, � 3(13)
Block coding, � 2(7)

C Convolutional code, � 5(31)
Convolutional coder, � 4(25)

F FECC, � 5(31), � 6(37)
Forward Error Correcting Coder, � 4(25)

H Hamming bound, � 3(13)

hu�man coder, � 1(1)

N Nearest neighbour decoding, � 3(13)

P Parity check matrix, � 2(7)

S source coding, � 1(1)

T Turbo Decoders, � 6(37)

V Viterbi decoding, � 5(31)

ATTRIBUTIONS 43

Attributions

Collection: Communications Source and Channel Coding with examples

Edited by: Peter Grant
URL: http://cnx.org/content/col10601/1.3/
License: http://creativecommons.org/licenses/by/2.0/

Module: "Hu�man source coder"
By: Peter Grant
URL: http://cnx.org/content/m18172/1.4/
Pages: 1-6
Copyright: Peter Grant
License: http://creativecommons.org/licenses/by/2.0/

Module: "Block FECC coding"
By: Peter Grant
URL: http://cnx.org/content/m18174/1.3/
Pages: 7-12
Copyright: Peter Grant
License: http://creativecommons.org/licenses/by/2.0/

Module: "Block code performance"
By: Peter Grant
URL: http://cnx.org/content/m18175/1.7/
Pages: 13-23
Copyright: Peter Grant
License: http://creativecommons.org/licenses/by/2.0/

Module: "Convolutional FECC Encoder"
By: Peter Grant
URL: http://cnx.org/content/m18176/1.3/
Pages: 25-29
Copyright: Peter Grant
License: http://creativecommons.org/licenses/by/2.0/

Module: "Viterbi Decoder"
By: Peter Grant
URL: http://cnx.org/content/m18177/1.3/
Pages: 31-36
Copyright: Peter Grant
License: http://creativecommons.org/licenses/by/2.0/

Module: "Turbo Coding"
By: Peter Grant
URL: http://cnx.org/content/m18178/1.3/
Pages: 37-41
Copyright: Peter Grant
License: http://creativecommons.org/licenses/by/2.0/

Communications Source and Channel Coding with examples

Hu�man variable length source coder is �rst described then systematic channel coding block coder design
is introduced for forward error correction coding (FECC). Nearest neighbour decoding and the Hamming
bound is used to de�ne the performance of these block coders. Finally the nonsystematic convolutional
coder, Viterbi decoder and turbo recursive coder designs are introduced with examples of the operation of
these coders.

About Connexions

Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

