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Chapter 1

Transmission Lines

1.1 Distributed Parameters1

Having learned something about how we generate signals with bipolar and field
effect transistors, we now turn our attention to the problem of getting those sig-
nals from one place to the next. Ever since Samuel Morse (and the founder of
my alma mater, Ezra Cornell) demonstrated the first working telegraph, engi-
neers and scientists have been working on the problem of describing and predict-
ing how electrical signals behave as they travel down specific structures called
transmission lines.

Any electrical structure which carries a signal from one point to another can
be considered a transmission line. Be it a long-haul coaxial cable used in the
Internet, a twisted pair in a building as part of a local-area network, a cable con-
necting a PC to a printer, a bus layout on a motherboard, or a metallization layer
on a integrated circuit, the fundamental behavior of all of these structures are de-
scribed by the same basic equations. As computer switching speeds run into the
100s of MHz, into the GHz range, considerations of transmission line behavior
are ever more critical, and become a more dominant force in the performance
limitations of any system.

For our initial purposes, we will introduce a "generic" transmission line Fig-
ure 1.1 ("Generic" Transmission Line), which will incorporate most (but not
all) features of real transmission lines. We will then make some rather broad
simplifications, which, while rendering our results less applicable to real-life
situations, nevertheless greatly simplify the solutions, and lead us to insights
that we can indeed apply to a broad range of situations.

1This content is available online at <http://cnx.org/content/m11373/1.1/>.
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2 CHAPTER 1. TRANSMISSION LINES

"Generic" Transmission Line

Figure 1.1

The generic line consists of two conductors. We will suppose a potential
difference V (x) exists between the two conductors, and that a current I (x) flows
down one conductor, and returns via the other. For the time being, we will let
the transmission line be "semi-infinite", which means we have access to the line
at some point x, but the line then extends out in the x direction to infinity. (Such
lines are a bit difficult to handle in the lab!)

In order to be able to describe how V (x) and I (x) behave on this line, we
have to make some kind of model of the electrical characteristics of the line
itself. We can not just make up any model we want however; we have to base
the model on physical realities.

Let’s start out by just considering one of the conductors and the physical ef-
fects of current flowing though that conductor. We know from freshman physics
that a current flowing in a wire gives rise to a magnetic field, H (Figure 1.2
(Build Up of Magnetic Field)). Multiply H by µ and you get B, the magnetic
flux density, and then integrate B over a plane parallel to the wires and you get
Φ, the magnetic flux "linking" the circuit. This is shown in Figure 1.3 (Find the
Flux Linkage) for at least part of the surface. The definition of L, the inductance
of a circuit element, is just

L≡ Φ

I
(1.1)

where Φ is the flux linking the circuit element, and I is the current flowing
through it. Our only problem in finding Φ is that the longer a section of wire we
take, the more Φ we have for the same I. Thus, we will introduce the concept of
a distributed parameter.

Definition 1.1: distributed parameter
A distributed parameter is a parameter which is spread throughout a
structure and is not confined to a lumped element such as a coil of
wire.
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Example
For instance, we will hereby define L as the distributed inductance

for the transmission line. It has units of Henrys/meter. If we have
a length of transmission line x0 meters long, and if that line has a
distributed inductance of L H/m, then the inductance L of that length
of line is just L = Lx0.

Build Up of Magnetic Field

Figure 1.2

Likewise, if we have two conductors separated by some distance, and if there
is a potential difference V between the conductors, then there must be some
charge±(Q) on the two conductors which gives rise to that potential difference.
We can imagine a linear charge distribution on the transmission line, ρ (C/m),
where we have ρ Coulombs/m on one conductor, and −ρ Coulombs/m on the
other conductor. For a line of length x0, we would have Q = ±(ρx0) on each
section of wire. Whenever you have two charged conductors with a voltage
difference between them, you can describe the ratio of the charge to the voltage
as a capacitance. The two conductors would have a capacitance

C = Q
V

= ρx0
V

(1.2)

and a distributed capacitance C (F/m) which is just ρ

V . A length of line x0 long
would have a capacitance C = Cx0 Farads associated with it Figure 1.4 (Line
Capacitance).
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Find the Flux Linkage

Figure 1.3

Line Capacitance

Figure 1.4

Thus, we see that the transmission line has both a distributed inductance L
and a distributed capacitance C which are tied up with each other. There is really
no way in which we can separate one from the other. In other words, we can not
have only the capacitance, or only the inductance, there will always be some of
each associated with each section of line now matter how small or how big we
make it.

We are now ready to build our model. What we want to do is to come up with
some arrangement of inductors and capacitors which will represent electrically,
the properties of the distributed capacitance and inductance we discussed above.
As a length of line gets longer, its capacitance increases, so we had better put
the distributed capacitances in parallel with one another, since that is the way
capacitors add up. Also, as the line gets longer, its total inductance increases,
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so we had better put the distributed inductances in series with one another, for
that is the way inductances add up. Figure 1.5 (Distributed Parameter Model)
is a representation of the distributed inductance and capacitance of the generic
transmission line.

Distributed Parameter Model

Figure 1.5

We break the line up into sections ∆(x) long, each one with an inductance
L∆(x) and a capacitance C∆(x). If we halve ∆(x), we would halve the induc-
tance and capacitance of each section, but we’d have twice as many of them per
unit length. Duh! The point is no matter how fine we make C∆(x), we still have
Ls and Cs arranged like we see in Figure 1.5 (Distributed Parameter Model),
with the two kinds of components intermixed.

We could make a more realistic model and realize that all real wires have
series resistance associated with them and that whatever we use to keep the
two conductors separated will have some leakage conductance associated it. To
account for this we would introduce a series resistance R (ohms/unit length) and
a series conductance G (ohms/unit length). One section of our line model then
looks like Figure 1.6 (Complete Distributed Model).
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Complete Distributed Model

Figure 1.6

Although this is a more realistic model, it leads to much more complicated
math. We will start out anyway, ignoring the series resistance R and the shunt
conductance G. This "approximation" turns out to be pretty good as long as
either the line is not too long, or the frequencies of the signals we are sending
down the line do not get too high. Without the series resistance or parallel
conductance we have what is called an ideal lossless transmission line.

1.2 Transmission Line Examples2

As an example, and also because it even has some practical importance, let’s
look at one kind of transmission line. It is called a stripline and it looks like
Figure 1.7 (A Stripline). It consists of a flat conductor, located between two
ground planes. It is supported by an insulating dielectric with dielectric constant
ε . This is kind of like the situation you would find on a multi-level PC board,
where perhaps the bus lines would be running on an inner layer with ground
planes above and below them.

2This content is available online at <http://cnx.org/content/m1046/2.10/>.
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A Stripline

Figure 1.7

Between the center conductor and the ground plane, there will be some ca-
pacitance, C. If we can assume that the electric field is more or less confined
to the regions between the strip conductor and the ground plane (which occurs
when the ratio of W

B is not too small) then for either capacitor (assuming unit
length into the picture) we will get a value

C =
εW

B
2

(1.3)

since the value of a capacitor is just the dielectric constant times the area of the
plates, divided by the spacing of the plates.

Looking quickly at Figure 1.7 (A Stripline) you might think the two capac-
itors are in series, but you would be wrong! Note that each capacitor has one
lead connected to the center conductor and the other lead connected to ground,
and so the two capacitors are in fact, in parallel, and hence their capacitances
add. Thus, for the capacitance per unit length for this line, we can write:

C =
4εW

B
(1.4)

It can be shown (although we won’t do it here) that for any transmission line
where the electric and magnetic fields are perpendicular to one another (called
TEM or transverse electromagnetic) the speed of propagation of the wave
down the line is just

vp = c√
ε

ε0

= 3×108 m
s√

εr

(1.5)
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Where εr is called the relative dielectric constant for the material. Well, we
also know that

vp =
1√
LC

(1.6)

From which we can write

L = 1
vp2C

= B
vp24εW

(1.7)

We can now insert this value for L into the expression for Z0, the impedance of
the line.

Z0 =
√

L
C

=

√
B

vp24εW
4εW

B

= B
4εWvp

= B
4εW c√

εr

(1.8)

And so, we have derived an equation for the impedance Z0 of the line in terms
of the dimensions W and B, the dielectric constant of the insulating material,
ε , and c, the speed of light. How good is this expression, and in particular
how good is our assumption that the electric field is all confined to the region
under the conductor? Not so great actually Figure 1.8 (Exact and Approximate
Impedance For a Stripline).
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Exact and Approximate Impedance For a Stripline

Figure 1.8: Exact and approximate Z0 for a stripline

Figure 1.8 (Exact and Approximate Impedance For a Stripline) shows the
results from using (1.8) and a more exact calculation, which takes into account
the fringing fields. As you can see we have to get the ratio W

B up to about 4 or
so before the two match. But at least we get the right behavior and we’re not
totally out of the ball park.

1.3 Telegrapher’s Equations3

Let’s look at just one little section of the line, and define some voltages and
currents Figure 1.9 (Applying Kirchoff’s Laws).

3This content is available online at <http://cnx.org/content/m11374/1.1/>.
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Applying Kirchoff’s Laws

Figure 1.9

For the section of line ∆(x) long, the voltage at its input is just V (x, t) and
the voltage at the output is V (x+∆(x) , t). Likewise, we have a current I (x, t)
entering the section, and another current I (x+∆(x) , t) leaving the section of
line. Note that both the voltage and the current are functions of time as well as
position.

The voltage drop across the inductor is just:

VL = L∆(x)
∂ I (x, t)

∂ t
(1.9)

Likewise, the current flowing down through the capacitor is

IC = C∆(x)
∂V (x+∆(x) , t)

∂ t
(1.10)

Now we do a KVL4 around the outside of the section of line and we get

V (x, t)−VL−V (x+∆(x) , t) = 0 (1.11)

Substituting (1.9) for VL and taking it over to the RHS we have

V (x, t)−V (x+∆(x) , t) = L∆(x)
∂ I (x, t)

∂ t
(1.12)

Let’s multiply by -1, and bring the ∆(x) over to the left hand side.

V (x+∆(x) , t)−V (x, t)
∆(x)

=−
(

L
∂ I (x, t)

∂ t

)
(1.13)

4"Electric Circuits and Interconnection Laws": Section Kirchhoff’s Voltage Law (KVL)
<http://cnx.org/content/m0014/latest/#voltage>
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We take the limit as ∆(x)→ 0 and the LHS becomes a derivative:

∂V (x, t)
∂x

=−
(

L
∂ I (x, t)

∂ t

)
(1.14)

Now we can do a KCL5 at the node where the inductor and capacitor come
together.

I (x, t)−C∆(x)
∂ I (x+∆(x) , t)

∂ t
−V (x+∆(x) , t) = 0 (1.15)

And upon rearrangement:

I (x+∆(x) , t)− I (x, t)
∆(x)

=−
(

C
∂V (x+∆(x) , t)

∂ t

)
(1.16)

Now when we let ∆(x)→ 0, the left hand side again becomes a derivative, and
on the right hand side, V (x+∆(x) , t)→V (x, t), so we have:

∂ I (x, t)
∂x

=−
(

C
∂V (x, t)

∂ t

)
(1.17)

(1.14) and (1.17) are so important we will write them out again together:

∂V (x, t)
∂x

=−
(

L
∂ I (x, t)

∂ t

)
(1.18)

∂ I (x, t)
∂x

=−
(

C
∂V (x, t)

∂ t

)
(1.19)

These are called the telegrapher’s equations and they are all we really need to
derive how electrical signals behave as they move along on transmission lines.
Note what they say. The first one says that at some point x along the line, the
incremental voltage drop that we experience as we move down the line is just
the distributed inductance L times the time derivative of the current flowing in
the line at that point. The second equation simply tells us that the loss of current
as we go down the line is proportional to the distributed capacitance C times the
time rate of change of the voltage on the line. As you should be easily aware,
what we have here are a pair of coupled linear differential equations in time
and position for V (x, t) and I (x, t)

5"Kirchhoff’s Laws": Section Kirchhoff’s Current Law
<http://cnx.org/content/m0015/latest/#current>
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1.4 Telegrapher’s Equation in Real Lines6

So far, the transmission lines we have looked at have been "ideal". That is they
have been lossless and dispersionless. Lest you leave the course with a false
idea of how things really work, we should go back to our model and try to get
things adjusted just a bit.

As you can probably imagine, a real transmission line is going to have some
series resistance, associated with the real losses in the copper wire. There may
also be some shunt conductance, if the insulating material holding the two con-
ductors has some leakage current. We will need to include these effects along
with the distributed inductance and capacitance which we have already talked
about. Fixing up the model accordingly, we now draw a section of line ∆(x)
long as shown in Figure 1.10 (Real Line Diagram). Taking the same voltage
loop and current sum that we did back in the discussion of transmission lines7,
we come up with the following version of the telegrapher’s equations.

∂V (x, t)
∂x

= (−R) I (x, t)−L
∂ I (x, t)

∂ t
(1.20)

and
∂ I (x, t)

∂x
=−

(
GV (x, t)+C

∂V (x, t)
∂ t

)
(1.21)

Real Line Diagram

Figure 1.10: A model for a line with losses.

Clearly, we would like to simplify things if we can. Let’s again make a si-
nusoidal time excitation assumption, and let I (x, t) and V (x, t) become phasors.
Since the time variation is now represented by a simple e jωL the time derivatives
become just jω . We have

∂V (x)
∂x

=−((R+ jωL) I (x)) (1.22)

6This content is available online at <http://cnx.org/content/m10095/2.4/>.
7"Distributed Parameters" <http://cnx.org/content/m1043/latest/>
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and
∂ I (x)

∂x
=−((G+ jωC)V (x)) (1.23)

The way to get a solution is, of course, just like we have always done. Take
the derivative with respect to x of (1.22)

∂ 2V (x)
∂x2 =−

(
(R+ jωL)

∂ I (x)
∂x

)
(1.24)

and then plug in (1.23)

∂ 2V (x)
∂x2 = (R+ jωL)(G+ jωC)V (x) (1.25)

The obvious solution to this (See how easy this gets after you’ve done it once
or twice) is

V (x) = V0e±(γx) (1.26)

with
γ =

√
(R+ jωL)(G+ jωC) (1.27)

This number, γ is called the complex propagation constant. Obviously, in
general, it will have both a real and an imaginary part:

γ = α + jβ (1.28)

and we have
V (x) = V0e±((α+ jβ )x) (1.29)

Let’s choose the minus sign in the exponent, and write the two terms as a prod-
uct.

V (x) = V0e−(αx)e−( jβx) (1.30)

We see we have something similar to what we had before, but with just a minor
difference. The e−( jβx) term is the propagating term which tells us how the
phase angle of the phasor changes as we move along the line, and acts just like
the β term we had before. Thus

β =
2π

λ
(1.31)

and
νp =

ω

β
(1.32)
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The α is called the attenuation coefficient, and obviously, the e−(αx) term
in (1.30) causes the amplitude of the wave to decrease as it moves down the line.
Figure 1.11 (Wave Decay) is a sketch of what a wave would look like if it is both
propagating down the transmission line and also being attenuated. In a distance
1
α

the amplitude of the propagating wave has fallen to e−1 of the value it had
when it started.

Wave Decay

Figure 1.11: Sketch of a decaying wave on a transmission line.

Let’s take the minus sign solution in (1.26) and substitute back into (1.22)

∂ V (x)
∂x = −

(
γV0e−(γx)

)
= −((R+ jωL) I (x))

(1.33)

From which we get

I (x) = γ

R+ jωLV0e−(γx)

=
√

(R+ jωL)(G+ jωC)
R+ jωL V (x)

=
√

G+ jωC
R+ jωL V (x)

(1.34)

Thus we can say
V (x) = Z0I (x) (1.35)

where
Z0 =

√
R+ jωL
G+ jωC

= R0 + jX0

(1.36)

In general, in order to find α , β , R0 , and X0 , we would have to find the
square root given in (1.27) and (1.36) for specific values of R, L, G, and C. On
the other hand, we could maybe come up with some reasonable approximations
which might suffice for cases of real interest. Obviously, if a line is very lossy,
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we would not be very interested in using it, and so except in some very spe-
cial cases where an extremely lossy line is unavoidable (usually having to do
with signals at very high frequencies) we might see if we can find a low loss
approximation.

1.5 A/C Line Behavior8

If we are going to try to use phasors on a transmission line, then we have to
allow for spatial variation as well. This is simple to do, if we just let the phasor
be a function of x, so we have

∼
V (x). How the phasor varies in x is one of the

things we now have to find out.
Let’s start with the Telegrapher’s Equations again.

∂V (x, t)
∂x

= (−L)
∂ I (x, t)

∂x
(1.37)

∂ I (x, t)
∂x

= (−C)
∂V (x, t)

∂x
(1.38)

For V (x, t) we can now substitute
∼
V (x)e jωt and for I (x, t) we plug in

∼
I (x)e jωt .

So we get:
∂

(∼
V (x)e jωt

)
∂x

=−∂ e jωt

∂ t
(1.39)

and
∂

(∼
I (x)e jωt

)
∂x

=−∂ e jωt

∂ t
(1.40)

We take the derivative with respect to time, which brings down a jω and then
we cancel the e jωt from both sides of each equation:

∂
∼
V (x)
∂x

=−
(

jωL
∼
I (x)

)
(1.41)

and
∂
∼
I (x)
∂x

=−
(

jωC
∼
V (x)

)
(1.42)

Viola! In one simple motion, we have completely eliminated the time variable,
t, from our equations! It is not really gone, of course, for once we figure out
what

∼
V (x) is, we have to multiply it by e jωt and then take the real part before

8This content is available online at <http://cnx.org/content/m11382/1.2/>.
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we can extract once again, the actual V (x, t) that we want. Nonetheless, insofar
as the telegrapher’s equations are concerned, t has disappeared from the radar
screen.

To solve these we do just as we did with the transient problem. We take a

derivative with respect to x of (1.41), which gives us a ∂
∼
I (x)
∂x on the right hand

side, for which we can substitute (1.42), which leaves us with

∂ 2 ∼V (x)
∂x2 =−

∼
V (x) (1.43)

(- times - is +, but j j = −1 and so we have a - in front of the ω2). We then
re-write (1.43) as

∂ 2 ∼V (x)
∂x2 +ω

2LC
∼
V (x) = 0 (1.44)

The simplest solution to this equation is

∼
V (x) = V0e±( jω

√
LCx) (1.45)

from which we can then get the actual voltage signal

V (x, t) =
∼
V (x)e jωt

= V0e j(ωt±ω
√

LCx) (1.46)

Note that we could factor out an e jω
√

LC, from the exponent, which, since it is
just a constant, we could include in V0 (and call it V ’

0 , switch the order of x and
t, and write (1.46) as

V (x, t) = V ’
0e j

(
x± 1√

LC
t
)

(1.47)

which looks a lot like the "general" f (x± vt) solution we were talking about
earlier9!

The number ω
√

LC is special. It is usually represented with a Greek letter
β and is called the propagation coefficient. Thus we have

V (x, t) = V0e j(ωt±βx) (1.48)

As previously, a point on the wave of constant phase requires that the argu-
ment inside the parenthesis remains constant. Thus if V (x1, t1) is going to equal
V (x2, t2) (i.e. what was at point x1 at t1 is now at x2 at time t2 it must be that

ωt1±βx1 = ωt2±βx2 (1.49)

9"Transmission Line Equation", (6) <http://cnx.org/content/m11375/latest/#eqn6>
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or

x2− x1

t2− t1
=

∆(x)
∆(t)

=±
(

ω

β

)
=±

(
ω

ω
√

LC

)
=±

(
1√
LC

)
≡ vp (1.50)

Which one again, defines the phase velocity of the wave. Other relationships
to keep in mind are

β =
2π

λ
(1.51)

λ = vp
f

=
ω

β
ω
2π

= 2π

β

(1.52)

The first comes from the fact that the wave varies in x as e jβx. Thus when
x = γ , the wavelength, βγ just increases by 2π , to get the phasor to go through
one full rotation. Note also, as before, the choice of the minus sign in the ± in
(1.48) represents a wave going in the x direction, while the choice of the + sign
will give a wave going in the −x direction. Clearly, by starting out taking the
x-derivative of the equation for I (x, t) we would end up with

I (x, t) = I0e j(ωt±βx) (1.53)

Let’s consider the two phasors then, and define the voltage phasor associated
with the positive going voltage wave as

∼
V plus (x) = V +e−( jβx) (1.54)

and the negative voltage phasor as

∼
V minus (x) = V−e jβx (1.55)

We should keep in mind that both V + and V− can be, and probably are, complex
numbers. (From now on we will drop the little ∼ over the variables because its
very tedious to get it to show up with this word processor. You will just have
to keep in mind that any variable we do not explicitly put inside absolute value
markers (i.e. |V +|) is going to be, in general, a complex number). We will,
of course, have similar expressions for the positive and negative going current
waves.

Let’s consider the positive going current and voltage waves, and plug them
into (1.41).

∂

(
V +e−( jβx)

)
∂x

=−
(

jωLI+e−( jβx)
)

(1.56)
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The x-derivative brings down a −( jβ ), the e−( jβx)’s cancel, and we have

V + =
jωL
jβ

I+ (1.57)

But, since β = ω
√

LC we have

V + =

√
L
C

I+ ≡ Z0I+ (1.58)

as we had before.
So, what has changed? Not much from the case of transients on a line. We

will now assume we have a steady state problem. This means we turned on
the generator a long time ago. We assume that it has been connected to the
line long enough so that all transient behavior has died away, and that voltages
and currents are not changing any more (except oscillating at frequency ω , of
course).

If the line is semi-infinite (or matched with a load equal to Z0) Figure 1.12
(A Wave On a Semi-Infinite Line) then it is pretty obvious that

V + =
Z0

Z0 +Zg
Vg (1.59)

where Zg is the source impedance, and Vg is the source voltage phasor.

A Wave On a Semi-Infinite Line

Figure 1.12

1.6 Terminated Lines10

If all we did was launch signals down semi-infinite transmission lines, we would
not get very much useful work done. We really need to have a finite length line,

10This content is available online at <http://cnx.org/content/m11378/1.2/>.
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and put something at the end...like a termination. So let’s take a look at a
terminated transmission line Figure 1.13 (At the Load End of the Line).

At the Load End of the Line

Figure 1.13

The line has characteristic impedance Z0 and we assume that it is terminated
with a load resistor RL. If we have connected a source to the other end of the
line, then we will have launched a voltage wave V +

1 and a current wave I+
1 down

the line. If the line is L long, then it will take a time τ = L
vp

, where vp = 1√
LC

,
for the signal to get to the end of the line.

What happens when the signal gets to the load? We can assume some voltage
VL will appear across the load resistor, and hence a current IL will flow through
it. The most logical thing to assume would be that VL = V +

1 . But, we quickly
run into a contradiction. If VL = V +

1 , then

IL = VL
RL

= V+
1

RL

(1.60)

But Kirchoff says the sum of the currents into the output terminal must equal
zero, thus I+

1 must equal IL. This then says

I+
1 = V+

1
Z0

= IL

= V+
1

RL

(1.61)
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which can only be true if ZL = Z0, which while possible, will not be the case in
general.

What are we to do? We have an obvious contradiction. The telegrapher’s
equations permit two solutions to the transmission line problem: a signal going
in the x direction, V +

1 , and a signal going in the−x direction, V−1 . The only way
out of our problem is to assume that when the V +

1 signal gets to the load, a new
signal, going in the −x direction, is created, which then heads back towards the
load. So, let’s put in a V−1 and I−1 Figure 1.14 (Reflected Waves are Generated).

Reflected Waves are Generated

Figure 1.14

Now there is a little problem with signs here that we have to deal with. We
can either draw I−1 so that it points in the −x direction, and say

I−1 =
V−1
Z0

(1.62)

or we can draw I−1 going in the x direction, and say

I−1 =−
V−1
Z0

(1.63)

Since most of the time, it is better if we define all currents going in the same
direction, and since this equation11 says that V− and I− are related by −Z0 the
latter choice seems to be the better one.

11"Transmission Line Equation", (20) <http://cnx.org/content/m11375/latest/#eqn20>
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Going by that convention then, we equate voltage on either side of the ter-
mination

V +
1 +V−1 = VL (1.64)

and we sum currents into the output terminal

I+
1 + I−1 = IL (1.65)

or
V +

1
Z0
−

V−1
Z0

=
VL

RL

This makes
VL =

RL

Z0

(
V +

1 −V−1
)

(1.66)

which we can substitute into (1.64) to get:

V +
1 +V−1 =

RL

Z0

(
V +

1 −V−1
)

(1.67)

or

V +
1

(
1− RL

Z0

)
= V−1

((
−RL

Z0

)
−1
)

and this can be solved for V−1 as

V−1 =
RL−Z0

RL +Z0
V +

1 ≡ ΓvLV +
1 (1.68)

where ΓvL is called the load voltage reflection coefficient.
We could also have solved for I+

1 in terms of I−1 and we would have found:

I−1 =
Z0−RL

Z0 +RL
V +

1 ≡ ΓILV +
1 (1.69)

where ΓIL is the load current reflection coefficient. Note that ΓIL =−ΓvL
Let’s take a break from equation manipulating, and think about what we have

here. First of all, although the result we have obtained is very important, the
method we used to get there was even more so. What did we do? We postulated
a voltage and current on the line, and then took a look to see if that solution
resulted in a reasonable result. In this case it did not. We were in gross violation
of Kirchoff Laws! We rescued ourselves by taking the only possible escape
route: we added an additional voltage and current to the solution. Since V−

and I− are related to each other in a different manner than V + and I+ (by −Z0
rather than Z0), this gave us an additional degree of freedom so that we could
simultaneously satisfy both the transmission line I-V relationships as well as the
load I-V relationship.
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Let’s take a look at ΓvL for a minute. Over what range can it vary? A glance
at (1.68) shows that it depends on the range of RL. If we exclude the possibility
of negative resistance (a reasonable exclusion) then 0 ≤ RL ≤ ∞. As RL varies
over this range, the voltage reflection coefficient goes from−1≤ΓvL≤ 1. When
RL is lessthan Z0, the reflection coefficient is negative. When RL is greaterthan
Z0, the reflection coefficient is positive. When RL = Z0 the reflection coefficient
is zero, and the line is said to be matched. In a matched transmission line,
a signal traveling down it is completely absorbed by the load, and nothing is
reflected from it. In this case we can have the incident voltage and current
signals just equal load voltage and currents without the need to add reflected
waves. For an unmatched transmission line, a signal incident on the load is
(partially) reflected, and a new signal starts moving back down the line towards
the source. An example of a transmission line is a buss in a computer. What
would be the implications of unmatched terminations on various connections
between the buss and the computer circuitry?

Two special cases of terminated transmission lines that are of interest are
RL = 0 (a shorted line) and RL = ∞ (an open line). For RL = 0, ΓvL = −1 and
so a signal with the same amplitude but opposite sign as the incident wave, is
reflected back down the line. For RL = ∞, a signal with the same amplitude and
sign gets reflected back down the line. It is easy to remember which is which,
and also to make sure you have the right order in the equation for the reflection
coefficient, when you keep in mind that the voltage across the load is the sum of
V +

1 and V−1 . If the line is terminated with a short circuit, VL must equal 0. Since

V−1 = ΓvLV +
1 (1.70)

and
ΓvL =

RL−Z0

RL +Z0

From these equations we can see that with RL = 0 (a short), ΓvL does indeed−1,
and so V−1 =−V +

1 and hence VL = V +
1 +V−1 = 0 as it should.

Now, let’s go back to our terminated transmission line. What is going to
happen to V−1 after it leaves the load? It obviously travels back down the line
towards the generator. What happens when it gets back there? Time to look at
Figure 1.15 (Back at the Generator).
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Back at the Generator

Figure 1.15

At the generator end of the line we can not leave out V +
1 , as it is still here,

so long as the source remains connected. Once it is launched, it stays on the
line forever. We just have to add in the new V−1 . What happens now, if we test
Kirchoff’s voltage law here at the generator end?

VS− ISRS−V +
1 −V−1 = 0 (1.71)

Substituting IS = I+
1 + I−1 and then using the impedance relationship between

the current and the voltages we get:

VS−
RS

Z0

(
V +

1 −V−1
)
−V +

1 −V−1 = 0 (1.72)

Note that again, we used V+
1

Z0
for I+

1 and −V−1
Z0

for I−1 .
We know

V +
1 =

Z0

Z0 +RS
VS (1.73)

which if we substitute into (1.72) and re-arrange a little bit we get

VS

(
1− RS

Z0 +RS
− Z0

Z0 +RS

)
+

RS

Z0
V−1 −V−1 = 0 (1.74)

The stuff inside the big parentheses sums to zero (as in fact it should, this is
just the solution to the initial V +

1 generation problem) and we are left with the
uncomfortable conclusion that V−1 must be zero! What are we going to do?
We will just have to add another wave V +

2 to the solution! (Figure 1.16 (Yet
Another Wave is Formed))
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Yet Another Wave is Formed

Figure 1.16

Now we have two ways to proceed from here. The first would be the dumb
way, and try to solve this whole problem. But then we could also be smart and
note that all of the equations we have relating voltages and currents in this prob-
lem are linear equations and hence we can use the principle of superposition
Figure 1.17 (Using Superposition).

Using Superposition

Figure 1.17

Thus, the top sketch in Figure 1.17 (Using Superposition) can be broken
into the two circuits (a) and (b) at the bottom of the figure. Then, everything
is trivial. We have already solved (a) - that was just our initial V +

1 launching
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problem. Part (b) is just a reflection problem again, with a wave of V−1 incident
on a load of value RS through a transmission line with characteristic impedance
Z0. The reflected wave in this instance is V +

2 , which is why we had to use
numbered subscripts in the first place.

If you do not believe using superposition is valid, you can try doing the
problem over again, but it should be pretty obvious that we can write

V +
2 =

RS−Z0

RS +Z0
V−1 ≡ ΓvSV−1 (1.75)

with
ΓvS =

RS−Z0

RS +Z0
(1.76)
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Chapter 2

Filters

2.1 Practical Filters1

An ideal filter2 simply removes all unwanted frequencies, preserving the re-
maining frequencies exactly. This would resemble some sort of a finite rectangle
function in frequency. However, a simple, finite rectangle function in frequency
is an infinite sinc function in time. This is a problem. A sinc function is an
infinite length signal in both the positive and negative directions, making it im-
possible to create in the real-world. This leads us to as what would happen if we
just made this sinc function causal by "chopping it off" somewhere. What we
find when we do this is that the frequency domain representation is no longer a
perfect rectangle: it now does not fall off immediately and shows some wiggling
where it was flat before.

1This content is available online at <http://cnx.org/content/m10126/2.6/>.
2"Ideal Filters" <http://cnx.org/content/m10103/latest/>

27



28 CHAPTER 2. FILTERS

(a) (b)

Figure 2.1: (a) A truncated sinc function in time... (b) ... leads to a
smooth, wiggly, "rectangle" in frequency.

2.1.1 The Bands
An ideal filter has two types of bands: the stop band defines the region of
frequencies that are eliminated by the filter, while the pass band defines the
region of frequencies that the filter allows through. Practical filters add one
more, the transition band. This is the area where the filter is moving between
the stop band and pass band.

2.1.2 Filter Design Specifications
In our look at filter design specifications, we will use the example of a lowpass
filter. The extension to the other kinds of filters should be fairly straightforward.
Figure 2.2 shows the parameters for a lowpass filter in the frequency domain.

Figure 2.2
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From this image, the passband is the region from −ωp to ωp, the transition
bands are the regions from −ωs to −ωp and from ωp to ωs while the stop band
is the region less than −ωs or greater than ωs.

In the figure above, ep and es represent the acceptable tolerance (or error)
around the desired level that the passband and stopband respectively may vary.
The behavior within the transition band is not specified, allowing anything to
occur there, as long as the width is within specifications.

Example 2.1
This example will look at a moving average system.

(a) (b)

Figure 2.3: (a) Time domain representation of the moving average. (b)
The frequency domain representation of the moving average system is a

sinc function. H ( jω) = e−( jω T
2 ) sin(ω

T
2 )

ω
T
2

Some notes about this system:

• It is lowpass
• It has linear phase with jumps of π radians when the sinc func-

tion changes sign
• The duration of the filter is inversely proportional to its band-

width
• This filter is finite impulse response (FIR)
• It cannot be built with passive R, L, C circuits
• We do not have independent control over all four design speci-

fications

We are going to design a moving average filter with the following
design specs: ωp = 100π , es = 0.1, ep = 0.1
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Figure 2.4

With this specification, we are allowing ωs to be a dependant vari-
able (since we need one). We can now find the equation for this mov-
ing average system.

We begin with

|H ( jω) |= 1.1
sin
(
ω

T
2

)
ω

T
2

(2.1)

We will now solve for T with

|H ( j100π) | = 1.1 sin(50(π,T ))
50πT

= 0.9
(2.2)

For these specs, T ' 0.007. This means that |H ( jω) | does not stay
below es = 0.1 until ωs ' 771π .
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Figure 2.5: A graphical look at the transfer function of this lowpass filter
with the passband and stopband noted.

It is very clear from this representation that the transition band is
huge ( 671π). This is a very bad filter, especially when you consider
that it cannot be implemented with passive circuitry. Fortunately bet-
ter filters (e.g. Butterworth (Section 2.2), Chebyshev (Section 2.3) and
Elliptical3) do exist.

2.1.3 Beyond Lowpass Filter Design
In the discussion of the different filters (Butterworth, Chebyshev and Elliptical)
is common to see explanations based on lowpass filters. This explanation is very
nice when first learning about them, because it is sufficient to understand the fun-
damentals of each of them. It is acceptable, because there exist fairly straight-
forward techniques to convert these lowpass filters into highpass, bandpass or
bandstop filters. These techniques are the lowpass to highpass transformation,
lowpass to bandpass transformation and lowpass to bandstop transformation.

2.2 Butterworth Filters4

The Butterworth filter is a filter that can be constructed out of passive R, L, C
circuits. The magnitude of the transfer function for this filter is

3"Elliptic Filters" <http://cnx.org/content/m10105/latest/>
4This content is available online at <http://cnx.org/content/m10127/2.10/>.
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Magnitude of Butterworth Filter Transfer Function

|H ( jω) |= 1√
1+
(

ω

ωc

)2n
(2.3)

where n is the order of the filter and ωc is the cutoff frequency. The cutoff
frequency is the frequency where the magnitude experiences a 3 dB dropoff
(where |H ( jω) |= 1√

2
).

Figure 2.6: Three different orders of lowpass Butterworth analog filters:
n = {1,4,10}. As n increases, the filter more closely approximates an ideal
brickwall lowpass response.

The important aspects of Figure 2.6 are that it does not ripple in the passband
or stopband as other filters tend to, and that the larger n, the sharper the cutoff
(the smaller the transition band (Section 2.1)).

This transfer function is often seen in its normalized form of
Magnitude of Normalized Transfer Function for Lowpass Butterworth Fil-
ter

|H ( jω) |= 1√
1+ω2n

(2.4)

Butterworth filters give transfer functions (H ( jω) and H (s)) that are ratio-
nal functions. They also have only poles5, resulting in a transfer function of the
form

1
(s− s1)(s− s2) · · ·(s− sn)

(2.5)

5"Poles and Zeros" <http://cnx.org/content/m10112/latest/>
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and a pole-zero plot of

Figure 2.7: Poles of a 10th-order ( n = 5 ) lowpass Butterworth filter.

Note that the poles lie along a circle in the s-plane.

2.2.1 Designing a Butterworth Filter
Designing a Butterworth filter is a trivial task. Since we know that the filter
contains only poles, we know that we can write it as

H (s) =
1

sn +an−1sn−1 + · · ·+a1s+1
(2.6)

From this, we may look up the ai from a table (like the one below) for any
desired n. We can also find them in Matlab by using the buttap command.
The real challenge of designing a Butterworth filter comes with figuring out the
optimal characteristics for the given application.
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n a1 a2 a3 a4 a5 a6 a7 a8 a9

2 1.414214

3 2.0000002.000000

4 2.6131263.4142142.613126

5 3.2360685.2360685.2360683.236068

6 3.8637037.4641029.1416207.4641023.863703

7 4.49395910.09783514.59179414.59179410.0978354.493959

8 5.12583113.13707121.84615125.68835621.84615113.1370715.125831

9 5.75877016.58171931.16343741.98638641.98638631.16343716.5817195.758770

10 6.39245320.43172942.80206164.88239674.23342964.88239642.80206120.4317296.392453

Table 2.1

Exercise 2.1 (Solution on p. 37.)
Design a Butterworth filter with a passband gain between 1 and 0.891
(-1 dB gain) for 0 < ω < 10 and a stopband not to exceed 0.0316 (-30
dB gain) for ω ≥ 20.

2.3 Chebyshev Filters6

This module will cover Chebyshev filters with an assumed understanding of
Butterworth filters (Section 2.2). This module will also examine the lowpass ex-
ample of these filters, leaving conversion to other types of filters for the Lowpass
to Highpass Transformation, Lowpass to Bandpass Transformation and Lowpass
to Bandstop Transformation modules.

Like Butterworth filters, Chebyshev filters contain only poles. However,
while the poles of the Butterworth filter lie on a circle in the s-plane, those of
the Chebyshev filter lie on an ellipse.

6This content is available online at <http://cnx.org/content/m10104/2.10/>.
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Figure 2.8: A pole-zero plot of a lowpass Chebyshev filter The poles are
equally spaced around an ellipse in the left half of the complex plane.

The result of this repositioning of poles is a "rippling effect" in the passband
of the magnitude of the transfer function. Since each local maximum in this
rippling reaches the same value and each local minimum reaches the same value,
this rippling is described as equal ripple. It is important to notice that there is
no rippling in the stopband and to be aware that this transition band will be
narrower than a comparable Butterworth filter.
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Figure 2.9: A sketch of the magnitude of a lowpass Chebyshev filter.
Notice that the "equal rippling" in the passband and not in the stopband.

The magnitude of the transfer function of a Chebyshev filter takes the form

|H ( jω) |= 1√
1+ ε2Cn

2 (ω)
(2.7)

where the polynomial, Cn (ω) = cos(narccos(ω)) is known as the Chebyshev
polynomial.

The design of Chebyshev filters is generally done the same way Butterworth
filters are (with tables and Matlab). The most relevant Matlab command is
cheb1ap, but there are others.
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Solutions to Exercises in Chapter 2
Solution to Exercise 2.1 (p. 34)
The first step is to determine n. To do this, we must solve for n using the

passband and stopband criteria. We begin by finding the equation for the gain in
the passband in dB,

^
Gp = 20log|H ( jω) |

= −10log
(

1+
(

ωp
ωc

)2n
) (2.8)

and for the stopband in dB,

^
Gs = 20log|H ( jω) |

= −10log
(

1+
(

ωs
ωc

)2n
) (2.9)

these equations can also take the form(
ωx

ωc

)2n

= 10
−Ĝx

10 −1 (2.10)

In this form, we may divide the passband equation by the stopband equation to
get rid of the ωc. From there, we can solve for n to get

n =

log 10
−Ĝs
10 −1

10
−Ĝp

10 −1

2log ωs
ωp

(2.11)

By plugging in, we find n = 5.9569. However, since n must be an integer, we
round this up to n = 6

The next step is to find ωc. We can do this by substituting n = 6 into
the equations for the passband and stopband and solving for ωc. This yields
ωc = 11.1919 for the passband equation and ωc = 11.2478 for the stopband
equation. The difference in these solutions is a result of n needing to be an in-
teger. If we choose the solution from the passband equation, the passband will
meet its requirements exactly, and the stopband will surpass its requirements.
If we choose the solution from the stopband equation instead, the stopband re-
quirements will be met exactly, while we will exceed the passband requirements.
Therefore, we may choose either value or any value in between. For this exam-
ple, we will choose ωc = 11.2478.
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Now, we can find the normalized transfer function. Since we know this to
be a sixth-order Butterworth, we can determine from the table that

H (s)=
1

s6 +3.863703s5 +7.464102s4 +9.141620s3 +7.464102s2 +3.863703s+1
(2.12)

Finally, we can determine the final transfer function.

H (s)= 1
( s

11.2478)
6
+3.863703( s

11.2478)
5
+7.464102( s

11.2478)
4
+9.141620( s

11.2478)
3
+7.464102( s

11.2478)
2
+3.863703 s

11.2478 +1
(2.13)

Rather than multiplying this out and factoring, we will leave it in this form
for readability, since the numbers can get quite large otherwise.
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Glossary

D distributed parameter
A distributed parameter is a parameter which is spread throughout a
structure and is not confined to a lumped element such as a coil of
wire.

Example: For instance, we will hereby define L as the distributed
inductance for the transmission line. It has units of Henrys/meter.
If we have a length of transmission line x0 meters long, and if that
line has a distributed inductance of L H/m, then the inductance L of
that length of line is just L = Lx0.
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terminated transmission lines,
§ 1.6(18)
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the complex propagation
constant, 13
transition band, § 2.1(27), 28
transmission line, § 1.1(1),
§ 1.2(6)

transmission lines, 1, § 1.3(9)
transverse electromagnetic, 7

V voltage reflection coefficient,
§ 1.6(18), 21
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