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Chapter 1

Introduction1

This technical note describes the FDM-TDM transmultiplexer, a class of digital signal processing algorithms
used to construct a bank of digital �lters. Such a �lter bank can be used to separate the spectrally disjoint
portions of an input signal. The need for such a �lter bank arises frequently in practical applications and
the growing capability of digital signal processing (DSP) devices makes the digital transmux approach ever
more attractive compared to`alternate system designs.

This technical note begins by motivating the use of a digital �lter bank for signal selection and processing
applications. The section "Derivation of the equations for a Basic FDM-TDM Transmux" (Chapter 3)
describes in analytical detail two classic, but distinct, ways of deriving the equations for an FDM-TDM
transmultiplexer. Use of the resulting design equations is illustrated in the section "Example: Using an
FDM-TDM Transmux to Demodulate R.35 Telegraphy Signals " (Chapter 4). There it is explained how the
algorithms are used to form the basis for a very e�cient demodulator for frequency-shift-keyed (FSK) voice
frequency telegraphy (VFT) signals.

The transmultiplexer rarely appears alone in signal sorting and processing applications and therefore it
must be designed in coordination with other parts of the system. An important example of this is digital
tuning of the input signal, an operation that frequently precedes the transmultiplexing operation. The section
"The Impact of Digital Tuning on the Overall design of an FDM-TDM Transmux" (Chapter 5) examines
the design interactions between these two functions and describes several examples of how these tradeo�s
have been made in actual equipment.

Appendices are included that provide additional analytical details and a discussion of the issues associated
with designing �lter pulse responses for transmultiplexers.

note: This document was originally written in 1989, a time when advancing semiconductor tech-
nology was �rst making it economically practical to use digital signal processing (DSP) concepts to
build useful products. Because it was written so long ago, the reader will �nd the technology used in
the examples to be overtaken by modern DSP products and devices. That noted, the mathematics
captured here and the systems engineering trade-o�s presented are still accurate and relevant for
modern applications and implementations.

1This content is available online at <http://cnx.org/content/m31543/1.4/>.
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Chapter 2

What is an FDM-TDM

Transmultiplexer1

2.1 Frequency-Division Multiplexing

A common technique for sending many separate signals through the same physical medium is to use di�erent
portions of the available frequency spectrum for each one. Using spectral separation to permit the simultane-
ous transmission of signals from multiple users is generically called frequency division multiplexing (FDM).
An example of this transmission technique is so-called FSK VFT. The spectrum of such a signal, along with
its formal frequency allocations, is shown in Figure 2.1. In this case, designated the R.35 Recommendation
by the ITU-T, each of the individual telegraphy signals is frequency-shift-keyed at a rate of 50, 60, or 75
bits/second and occupies one of 24 nonoverlapping spectral allocations within the 300 to 3400 Hz voice band.
In the case of R.35, the mark and space frequencies are 60 Hz apart and the carrier, or center frequency, are
120 Hz apart.

The FSK VFT example will be returned to shortly. It should be noted �rst however that FDM techniques
are widely used in telecommunications. An important example is multichannel FDM telephony in which many
voice signals are bandlimited to about 3100 Hz each, single-sideband upconverted with carriers of di�erent
frequencies, and then summed. The resulting composite signal has spectrally disjoint channels at regular
intervals of 3 or 4 kHz2. Even new �ber optic transmission systems are using FDM techniques, calling it
instead wavelength division multiplexing (WDM).

1This content is available online at <http://cnx.org/content/m31548/1.2/>.
2Four kilohertz spacing is by far the most common
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4 CHAPTER 2. WHAT IS AN FDM-TDM TRANSMULTIPLEXER

Figure 2.1: Canal Allocations for a Multichannel Voice Frequency Telegraph (VFT) Signal Conforming
to CCITT Recommendation R.35 and a Typical Signal Spectrum

2.2 Use of a Filter Bank

Suppose now that we desired to separate the 24 individual telegraphy signals in an R.35 waveform so that
each could be demodulated. A reasonable approach would be to build a bank of 24 �lters to separate the
individual FSK signals. A bank of 24 FSK demodulators would process the outputs of the �lter bank. Note
that in this case the �lters need to be regularly spaced at intervals of 120 Hz and that each requires about
the same bandwidth (about 90 Hz).

Suppose further that we desire to perform the demodulation digitally. This suggests the block diagram
shown in Figure 2.2. The input FDM signal is applied to a bank of �lters. Each �lter has a bandpass
characteristic centered on one of the 24 FSK canals. The �ltered signals are then downconverted to a center
frequency at or near DC and then digitized at a common rate high enough to satisfy the Nyquist sampling
theorem for every FSK signal. We then choose to time division multiplex (TDM) the sampled FSK signals.
This multiplexing allows all 24 signals to be placed on the same digital bus and perhaps to be processed by
the same time-sharing digital demodulator.
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Figure 2.2: General Schematic of an FDM-TDM Transmultiplexer Composed of a Filter Bank and a
TDM Multiplexer

Looking again at Figure 2.2 we see that the processing can be viewed as falling into �ve segments:

1. The �lter bank
2. The downconversion
3. The sampling
4. The commutation of samples to produce a TDM bus carrying all signals
5. The demodulator, or more generally, the users of the individual sampled signals

While our objective was to separate the individual signals and to digitize them in preparation for possible
processing, we observe at this point that steps 1 through 4 have the e�ect of converting the input FDM
signal, in which each component signal is separated by frequency, into a TDM output signal, in which
each component signal is available in its separate timeslot. This operation of converting from one form of
multiplexing to another is termed transmultiplexing. The structure from FDM input to TDM output is
therefore called an FDM-to-TDM transmultiplexer, or even more simply, an FDM-TDM transmux.

To this point no mention has been made of how the �lter bank and downconversion process might be
implemented. It could (and has) been done using analog �lters and separate downconverters, each using its
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own local oscillator and mixer. This technical note describes algorithms that permit the same functions to
be performed digitally. The conceptual distinction is shown in Figure 2.3. The top portion of Figure 2.3
mimics the structure shown in Figure 2.2. The �ltering and downconversion are performed discretely and
then each output is digitized and commutated. The bottom portion of Figure 2.3 shows the objective in the
development of a digital FDM-to-TDM transmultiplexer. In this case, the input FDM signal is digitized.
All band-pass �ltering and downconversion is performed digitally. The downconverted outputs are then read
out sequentially to produce the desired TDM output.

Figure 2.3: Fundamental Description of a Digital FDM-to-TDM Transmultiplexer

2.3 Processing Methods

We return to the example of demodulating the various FSK signals present in an R.35 VFT composite
signal. Suppose that we use a transmultiplexer to separate the 24 FSK signals, or canals, as they are called,
and place them on a TDM bus. Twenty-four demodulators or one time-shared demodulator convert the
FSK signals into binary form. Thus the problem is neatly solved. In fact, the actual problem is slightly
more complicated. In fact, only a small percentage of the 24 canals in a practical R.35 system are typically
transmitting data at any given time. Most are in the steady mark or steady space condition. As a result,
most of the 24 demodulators are unused at any given time. Is this concept of demultiplexing all of the canals
the most e�cient?

There are two basic and commonly used schemes for handling occasionally active FDM signals. Both are
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illustrated in Figure 2.4. The top scheme uses tunable �lters and some common mechanism for detecting
activity. Once activity is detected, a resource manager of some sort directs one of the tuners to the signal's
frequency. The tuner output is then processed appropriately. In the case of FSK VFT, for example, the
processor would be an FSK demodulator. The lower scheme is the one discussed earlier - all signals are
demultiplexed and all processing, both activity detection and demodulation in the case of the VFT signals,
is performed by using sampled waveform data taken from the TDM bus. In fact, systems have been built both
ways, the choice depending on such factors as how the detector subsystem can be built, how many channels
there are, how many signals might be active simultaneously, and the relative costs of implementation. The
advent of the FDM-TDM transmultiplexer has shifted the balance toward the latter approach, particularly
in applications where the activity factors are high or where several steps of processing are required, each of
which needs independent and simultaneous access to the frequency channels.
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Figure 2.4: Two Methods of Processing Occasionally Active FDM Signals



Chapter 3

Derivation of the equations for a Basic

FDM-TDM Transmux1

Two intuitively reasonable approaches to developing the equations for the FDM-TDM transmultiplexer
are presented in this section. The �rst emulates Figure 3.1. We �rst develop the equations for a digital
counterpart of the analog tuners used in the �lter bank and then observe that signi�cant computational
improvements can be obtained when the tuning frequencies are linked together in a simple way. The second
subsection starts from a di�erent point, that of using the discrete Fourier transform as a spectral channelizer.
We ultimately �nd out that these two approaches yield essentially the same analytical results.

Figure 3.1: Using a digital Tuner to Extract One FDM Channel

3.1 The Transmux as a Bank of Single Channel Digital Tuners

3.1.1 Fundamental equations for a Single-Channel Digital Tuner

The input FDM signal is assumed to be the continuous-time waveform xc (t). The analog-to-digital converter
shown in Figure 3.1 samples this waveform at the uniform rate of fs samples per second, producing the
discrete-time sequence x (k), where x (k) ≡ xc (t = kT ), the integer k is the time index, and T is the sampling

1This content is available online at <http://cnx.org/content/m32670/1.2/>.
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interval given by T = 1
fs
. The spectrum of this sequence is shifted down in frequency by multiplying it by a

complex exponential of the form e−j2πf0kT , where f0 is the desired amount of the frequency downconversion.
The product of x (k) and this exponential is then �ltered in discrete time by using the pulse response h (k).
The duration of the pulse response h (k) is assumed to be �nite and in particular of length no greater than
L, an integer. The �lter output y (k) is then decimated by a factor of M, yielding the sequence y (r), where
the integer r is the decimated time index.

These processing steps are shown in graphical form in Figure 3.2. Both sides of the two-sided spectrum
of the sampled input signal are seen in Figure 3.2(a). For the moment, the input signal is assumed to be
real-valued and therefore the spectrum is symmetrical around 0 Hz 2. A channel of interest in this spectrum
has been shaded and its center frequency is noted to be f0. Multiplying the input signal by e−j2πf0kT has
the e�ect of shifting the spectrum to the left (assuming 0 ≤ f0 ≤ fs

2 ) and centering the desired channel at
0 Hz. The downconverted signal is now complex-valued, and therefore spectral symmetry around 0 Hz is
neither required nor expected. The transfer function of the lowpass �lter appears in Figure 3.2(c). The �lter
pulse response h (k) is chosen to attain the desired spectral characteristics. In particular, the �lter needs to
pass the channel of interest without degradation and suppress all others su�ciently. How to design such a
pulse response is discussed in Appendix A. In general, the quality of the �lter grows with the value of the
parameter L. The �lter shown here is symmetrical around 0 Hz and its pulse response h (k) can therefore be
real-valued. This is not required however.

After the application of the shifted signal ρ (k) to the �lter, the spectrum shown in Figure 3.2(d) results.
The desired channel is isolated from all others. It is sampled, however, at a rate far faster than required
by the Nyquist sampling theorem. The �lter output is then decimated by the factor M, resulting in the
spectrum shown in Figure 3.2(e). The channel's bandwidth is the same as before but now its percentage
bandwidth, that is, its bandwidth compared to its �nal sampling rate, is much higher. In a good digital
tuner the percentage bandwidth after decimation usually ranges between 0.5 and 0.9, where unity is the
theoretical limit imposed by the sampling theorem.

In principle, the parameters fs (and hence T), f0, L, and M can be chosen arbitrarily. In fact, signi�cant
simplications to the implementation of the tuner occur if they are carefully chosen. To do this we must �rst
develop a general equation for the decimated tuner output y (r).

2Even though real-valued inputs are assumed here, all of the ensuing analysis applies to complex-valued signals as well.
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Figure 3.2: Spectral Description of Each Step in the Digital Tuning of a Single Channel

The undecimated �lter output y (k) can be written as the convolutional sum of ρ (k) and the �lter pulse
response h (k):

y (k) =
L−1∑
l=0

h (l) ρ (k − l) . (3.1)

Substituting the expression for ρ (k) yields

y (k) =
L−1∑
l=0

h (l)x (k − l) e−j2πf0T (k−l). (3.2)
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Separating the two terms in the exponential produces the next expression:

y (k) = e−j2πf0Tk ·
L−1∑
l=0

h (l)x (k − l) ej2πf0Tl. (3.3)

Decimation by the factor M is introduced by evaluating y (k) only at the values of k where k = rM . We
denote the decimated output as y (r), given by

y (r) ≡ y (k = rM) = e−j2πj0TrM ·
L−1∑
l=0

h (l)x (rM − l) ej2πf0Tl (3.4)

3.1.2 Choosing Various System Parameters to Simplify the General Equation for
the Tuner Output

Equation 4 holds for arbitrary choice of L, M, f0, and fs. To obtain the equations for the basic FDM-TDM
transmultiplexer, we must �rst simplify the general equation for the output of the digital tuner. We do this
by making the three key assumptions:

1. We assume that the sampling rate fs and the tuning frequency f0 are integer multiples of the same
frequency step ∆f . In the case of FDM multichannel telephone systems for example, ∆f is typically
4 kHz. We de�ne the integer parameters N and n with the expressions fs ≡ N ·∆f and f0 ≡ n ·∆f .

2. We next assume that the pulse response duration L is an integer multiple of the factor N de�ned above.
We de�ne the positive integer parameter Q where L ≡ Q ·N . This is a nonrestrictive assumption since
Q can be chosen large enough to make it true for any value of L. If QN exceeds the minimum required
value of L, then h (k) can be made arti�cially longer by padding it with zero values. The factor Q
turns out to be an important design parameter. The parameters Q and N are determined separately
and the resulting value of L follows from their choice.

3. We also assume that the decimation factor M is chosen to be closely related to the parameter N.
Typical values are M = N and M = N

2

We can now examine the e�ects of these assumptions. First, the relationship between fs, f0, and ∆f allows
y (r) to be written as

yn (r) = e−j2π
nrM
N ·

L−1∑
l=0

h (l)x (rM − l) ej2π nlN . (3.5)

We subscript the decimated output y (r) by the parameter n to indicate that it depends on the tuning
frequency f0 = n ·∆f .

The second assumption, the de�nition of the parameter Q, permits the single sum to be split into a
nested double sum. To do this, de�ne the new integer indices q and p by the expressions

l ≡ qN + p, where 0 ≤ q ≤ Q− 1 and 0 ≤ p ≤ N − 1. (3.6)

Examination of (3.6) shows that the pulse response running index l has a unique value in the range from 0
to L− 1 for each permissible value of p and q. This permits the single convolutional sum over the index l to
be replaced (for reasons to be shown) with a double sum over the indices p and q. In particular,

yn (r) = e−j2π
nrM
N ·

∑L−1
l=0 h (l)x (rM − l) ej2π nlN

= e−j2π
nrM
N ·

∑N−1
p=0

∑Q−1
q=0 h (qN + p)x (rM − qN − p) ej2π

n(qN+p)
N

= e−j2π
nrM
N ·

∑N−1
p=0

∑Q−1
q=0 h (qN + p)x (rM − qN − p) ej2π

nqN
N ej2π

np
N

= e−j2π
nrM
N ·

∑N−1
p=0 ej2π

np
N

[∑Q−1
q=0 h (qN + p)x (rM − qN − p)

]
.

(3.7)
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The �rst portion of the exponential term in the sum vanishes since its argument is always an integer
multiple of 2π. Moving the terms of the summation in the last step is possible since the remaining term of
the exponential does not depend on the running index q. It is useful to give a short name to the terms in
brackets in the last equation. Noting that it is a function of the decimated time index r and the running
index p, we de�ne the variable v (r, p) by the expression

v (r, p) ≡
Q−1∑
q=0

h (qN + p) · x (rM − qN − p) . (3.8)

Notice that v (r, p) is a function of the input data x (k), the �lter pulse response h (l), and the system
parameters Q, M, and N, but it is not a function of the selected conversion frequency f0, represented in the
equation for yn (r) by the integer n.

Substituting v (r, p) into the equation for the decimated output yn (r) of the tuner tuned to frequency
f0 = n ·∆f yields

yn (r) = e−j2π
nrM
N ·

N−1∑
p=0

ej2π
np
N v (r, p) (3.9)

Notice that the frequency dependency of the tuner shows up only in the exponential terms.
Before discussing this result in detail it remains to examine the e�ects of the third assumption. To do

this, de�ne the decimation factor M by the expression M ≡ N
K , where K = 1, 2, or 4. Look �rst at the

exponential terms preceding the sum. It can now be written as

e−j2π
nrM
N = e−j2π

nr
K

=
[
e−j

2π
K

]nr
=

[
−j 4

K

]nr
.

(3.10)

With K de�ned this way, the most general expression for yn (r) is

yn (r) =
[
−j 4

K

]nr
·
N−1∑
p=0

ej2π
np
N v (r, p) , where (3.11)

v (r, p) =
Q−1∑
q=0

h (qN + p) · x
(
rN

K
− qN − p

)
. (3.12)

It can be veri�ed that for K = 1, 2, or 4, the factor multiplying the sum is at most a negation or a swapping
from imaginary to real or vice versa. Thus no actual multiplication is needed. By far the cleanest case is the
one in which the other system parameters (for example, N, Q, and h (k)) are selected so that the decimation
factor M exactly equals N , or equivalently that K = 1. In this case, the exponential preceding the sum
collapses to unity, yielding what will be termed in this technical note as the basic FDM-TDM transmux
equation3:

yn (r) =
N−1∑
p=0

ej2π
np
N v (r, p) , where (3.13)

v (r, p) =
Q−1∑
q=0

h (qN + p) · x ((r − q)N − p) . (3.14)

3Because of the K = 1 assumption, this equation is the simplest of all those seen to this point and will be referred to as the
basic equation. Many applications require M to be chosen di�erently however (see Section 4 for example) and in these cases
equation 12 should be used.
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3.1.3 Interpretation of the Basic Tuner equation in Terms of the Discrete Fourier
Transform

Examination of (3.14) shows that each sample of the tuner output, when tuned to frequency f0 = n∆f ,
is the N-point inverse discrete Fourier transform (DFT) of the preprocessed data {v (r, p)}, evaluated at
frequency index n. The signal �ow described by the equation is shown in Figure 3.3. The sampled input
data x (k) passes into a digital tapped delay line of length QN at the sampling rate fs. Every M-th sample,
the complete contents of the delay line, all QN samples, are used to compute {v (r, p)}. Thus the v (r, p)
are computed at the decimated rate fs

M . Each of the N elements of v (r, p) is computed by weighting Q of
the delayed input samples by the appropriate coe�cient from the pulse response vector h (k) and summing
them together. Notice that at each decimated sampling interval all of the delayed data and all of the pulse
response coe�cients are used to compute the v (r, p). Notice also that since QN is usually much greater
than M, each input sample is used in the production of the {v (r, p)} over several consecutive values of the
decimated sampling index r.

The computation of the {v (r, p)} has several names in the literature. In some cases, it is referred to
simply as the preprocessor or weighting processor. From the DFT-based �lter bank interpretation of the
transmultiplexer, in which the �lter pulse function h (k) is viewed as a spectral window function, the operation
is called windowing and folding. Some of the �rst researchers in the area [3] termed it polyphase �ltering.
Even though the reasons for this name are fairly obscure, it is commonly used.

Figure 3.3: Signal Flow to the Output of the Single-Channel Digital Tuner

Once the input data has been preprocessed, windowed and folded, or polyphase �ltered, as you will, the
resulting N values of v (r, p) are Fourier-transformed to produce yn (r). Notice that all of this computation
must be repeated for each value of r.
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It will be useful later to know how much computation is required to implement this simpli�ed tuner.
Assume for this calculation that the input data x (k) is complex-valued and that the pulse response h (k)
is real-valued. If so, then 2QN multiply-add operations are needed for each computation of the {v (r, p)}
and 4N multiply-adds (approximately) are needed for the computation of the single point of the DFT, all of
this at the decimated sampling rate of fsM . A conventional tuner using a real-valued, L-point pulse response

and complex input data requires 4fs multiply-adds for the mixer and 2fsL
M multiply-adds for the �ltering.

Comparing the two shows that the �ltering/weighting is exactly the same for the two, while the tuning vs.
DFT comparison depends on the relative values ofM and N. Using the example of the basic transmux, where
N = M , we �nd that the two are equal. When M < N , the simpli�ed equations actually require slightly
more computation. Why then do we go to this trouble?

3.1.4 Generalization to the FFT-Based Digital Transmultiplexer

What if we desire to tune a second channel, say one that has a center frequency of fl = m ·∆f ? Following
through the derivation done before, we �nd that ym (r) is given by the same equations except that n is
replaced with m. Examining the situation more closely we notice that the {v (r, p)} need not be recomputed
to obtain the second tuner output. In fact, the only operation required to obtain the second tuner output
is to recompute the inverse DFT, but this time evaluated for the index m instead of n. The conventional
tuning approach must be completely repeated to obtain the output for another channel. It is usually the case
that the computation of the {v (r, p)} is much larger than the computation required for the DFT. The fact
that it need not be repeated quickly makes the preprocessor/DFT scheme signi�cantly more e�cient than
the conventional digital tuner approach as the number of channels to be tuned grows. If we use the number
of multiply-adds as an indication of computational complexity, and if we denote the number of channels to
be tuned by the integer C, we can quantify this comparison by noting that

Gconverntional = C

[
4fs +

2fsQN
M

]
multiply − adds (3.15)

are needed for C conventional decimated digital tuners while

GDFT =
2fsQN
M

+
4CfsN
M

multiply − adds (3.16)

are needed for the preprocessor/DFT method.
The goal outlined in the section "What is an FDM-TDM Transmultiplexer" (Chapter 2) was to de-

multiplex all of the channels carried in the input FDM signal. If the input sampling rate is not chosen
extravagantly, then the number of channels should be somewhat less than N

2 if the input signal is real-
valued, and somewhat less than N if the signal is complex-valued. To obtain the worst-case situation, we
assume that it is complex-valued and that C = N . In this case, the total multiply-add computation is given
by

GDFT (N channels) =
2fsQN
M

+
4fsN2

M
. (3.17)

Even though this value is less than that required by the direct tuning method, the quadratic dependence
on the number of channels N makes this method expensive for situations where a large number of channels
must be dealt with.

Solution to this problem comes in the form of the fast Fourier transform (FFT), a class of algorithms
that can be used to e�ciently compute all of the points of a DFT if N the size of the DFT, meets certain
conditions. In particular, if N is a so-called highly composite number that is, it is the product of small
positive integers, then various symmetries can be exploited to dramatically reduce the computation needed
to compute the desired C tuner outputs.
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In practice the size of the DFT, N, is typically chosen to equal 2R or 4
R
2 , where R is some positive

integer, resulting in what is known as the radix-2 or radix-4 FFT, respectively4.
For discussion here we will assume the use of a radix-2 FFT (even though it is well known that the radix-4

algorithm is somewhat more computationally e�cient). With this assumption we �nd that the number of
multiply-adds needed to compute all N possible tuner outputs, is given by

Gradix−2 FFT (N channels) =
2fsN
M

[Q+ log2N ] . (3.18)

Comparison of this equation with (3.16) shows that the FFT-based method always requires less computation
than direct DFT computation of all N tuners and requires less than the direct DFT computation of C tuners
when C exceeds log2N . For example, suppose that: N = 64 for a particular problem. If more than log264 = 6
tuners are required, then the FFT is more e�cient. If C is more on the order of 50, as it probably would
be, then FFT-based computation of the DFT is about eight times more e�cient than direct computation of
the DFT and even more e�cient compared to conventional computation of the tuner outputs. A graphical
example is shown in Figure 3.4.

The generic FFT-based transmultiplexer consists of a preprocessor, which blocks, weights, and sums the
input data to produce the N values of v (r, p), and an FFT, which e�ciently computes the DFT for every
value of n. This structure is shown in Figure 3.5. The input data is sampled (or provided by a preceding
digital subsystem), preprocessed, and DFTed using the FFT algorithm. The FFT output bins are read out
sequentially, thus producing the time division multiplexed (TDM) form promised originally.

The computational e�ciency of the transmultiplexer can therefore be traced to two key items:

1. Separation of the tuning computation into two segments, one of which (the {v (r, p)}) need be computed
only once

2. The use of the FFT algorithm to compute the inverse DFT

The �rst accrues from strategic choices of the sampling and tuning frequencies, while the second depends on
N being chosen to be a highly composite integer.

4An important exception to this is the so-called prime-factor transform in which N is the product of small, prime factors
(e.g., 2, 3, 5 , 7, 11, etc).



17

Figure 3.4: The Number of Multiply-Adds Needed to Compute C Tuner Outputs for a Particular Set
of System Parameters

Figure 3.5: The Basic FDM-to-TDM Digital Transmultiplexer
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3.2 The Transmux as a DFT-based Filter Bank

We have just developed an FDM-TDM transmultiplexer by �rst writing the equations for a single, decimated
digital tuner. The equations for a bank of tuners come from then assuming that (1) they all use the same
�lter pulse response and (2) their center frequencies are all integer multiples of some basic frequency step.
In this section, we develop an alternate view, which happens to yield the same equations. It produces a
di�erent set of insights, however, making its presentation worthwhile.

3.2.1 Using the DFT as a Filter Bank

Instead of building a bank of tuners and then constraining their tuning frequencies to be regularly spaced,
suppose we start with a structure known to provide equally-spaced spectral measurements and then manip-
ulate it to obtain the desired performance.

Consider the structure shown in Figure 3.6. The sampled input signal x (k) enters a tapped delay line of
length N. At every sampling instant, all N current and delayed samples are weighted by constant coe�cients
w (i) (where w (i) scales x (k − i), for i between 0 and N −1), and then applied to an inverse discrete Fourier
transform5. The complete N-point DFT is computed for every value of k and produces N outputs. The
output sample stream from the m-th bin of the DFT is denoted as Xm (k).

Figure 3.6: Processing Weighted, Delayed Signals with Discrete Fourier Transform

Since DFTs are often associated with spectrum analysis, it may seem counterintuitive to consider the
output bins as time samples. It is strictly legal from an analytical point of view, however, since the DFT is
merely an N-input, N-output, memoryless, linear transformation. Even so, the relationship of this scheme
and digital spectrum analysis will be commented upon later. We continue by �rst examining the path from

5Whether or not it is implemented with an FFT is irrelevant at this point. Also, we happen to use the inverse DFT to
produce a result consistent with that found in the proceeding subsction, but the forward DFT could also be used.
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the input to a speci�c output bin, the m-th one, say. For every input sample x (k) there is an output sample
Xm (k). By inspection we can write an equation relating the input and chosen output:

Xm (k) =
N−1∑
p=0

x (k − p)w (p) ej2π
mp
N (3.19)

the m-th bin of an N-point DFT of the weighted, delayed data. We can look at this equation another way
by de�ning wm (p) by the expression

wm (p) ≡ w (p) · ej2π
np
N (3.20)

and observing that (3.19) can be written as

Xm (k) =
N−1∑
p=0

x (k − p) · wm (p) . (3.21)

From this equation it is clear Xm (k) is the output of the FIR digital �lter that has x (k) as its input and
wm (p) as its pulse response. Since the pulse response does not depend on the time index k, the �ltering is
linear and shift-invariant. For such a �lter we can compute its transfer function, using the expression

Wm (ω) =
N−1∑
p=0

wm (p) · e−jωpT , −π
T
≤ ω ≤ π

T
. (3.22)

Suppose that we �rst choose the simple case with uniform weighting, that is, w (p) = 1 for 0 ≤ p ≤ N − 1
and, therefore, wm (p) = ej2π

mp
N . In this case, Wm (w) is given by

Wm (ω) = e−j
πm
N · e−j

(N−1)ωT
2 ·

sinNωT2

sin
(
πm
N −

ωT
2

) (3.23)

The magnitude of this transfer function is plotted in Figure 3.7. From this plot we can conclude that the
pulse response wm (p) has what might be generally considered to be the frequency response of a bandpass
�lter. The �lter is centered on bin m and its bandwidth is nominally fs

N . While it might be characterized as
a bandpass �lter, we also note that the passband is quite rounded and the stopband rejection is relatively
poor. The �rst sidelobes are only 13 dB lower than the peak of the passband response.

We've now shown that the path from the input to the m-th bin can be described as a �nite impulse
response (FIR) �ltering operation and that the transfer function of that �ltering operation has a fairly sloppy
bandpass characteristic, at least when the data weighting is uniform. What happens for other values of m
then? The answer is "the same thing." For each value of m between 0 and N−1, the pulse response wm (p) is
computed, leading to the transfer function Wm (ω). An overlay of these bandpass responses is shown in the
lower portion of Figure 3.7. From this we can conclude that the block diagram shown in Figure 3.6 describes
a single-input, N-output bank of �lters. The �lter center frequencies are spaced uniformly in increments of
fs
N Hz. All N outputs are sampled in time as frequently as the input. When the weighting function w (p) is
uniform, then the bandpass �lters have the form of (3.23), shown in Figure 3.7.
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Figure 3.7: Transfer Functions of the Paths from the Data Input x (k) to the DFT Outputs Xm (k)

3.2.2 The Implications of Attaining the Desired Bandpass Characteristic

We've just shown that the DFT of delayed versions of the input sequence x (k) has the general properties
of a bank of regularly-spaced bandpass �lters. Two considerations leave us short of our goals. The �rst is
that the shape of the transfer function for each bandpass �lter is not good enough for most applications and
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must be improved. The second is that of reducing the amount of computation required. We address the �rst
one in this section, and temporarily defer the computation issue.

Figure 3.8 shows two transfer functions. The one pointed to from the left is exactly the same as that
shown in Figure 3.7 and de�ned in (3.23). The one pointed to from the right is representative of the type
needed for demultiplexing FDM multichannel telephone signals. It o�ers essentially �at response for most
of the passband, has very sharp transition bands, and suppresses all energy outside of the transition bands
by 55 dB or more. While other applications may require di�erent transfer functions, as a rule they will be
much more stringent than unweighted transfer function shown in Figure 3.8.

Figure 3.8: Comparison of the Unweighted Transfer Function Wm (ω) and a typical Desired Charac-
teristic

How then do we attain di�erent transfer function characteristics? In fact, we use some of the remaining
degrees of freedom, the weighting function w (p). By allowing w (p) to be non-uniform we can now alter the
shape of the transfer function of each bandpass �lter. By using well-known FIR �lter design techniques (see
An Introduction to the FDM-TDMDigital Transmultiplexer: Appendix A (Chapter 8)) it is possible to attain
virtually any shape. It is not, however, possible to always attain the desired shape and the desired bandwidth
while keeping the duration of the pulse response constant. In fact, as discussed in An Introduction to the
FDM-TDM Digital Transmultiplexer: Appendix A (Chapter 8), for a constant bandwidth, the pulse response
duration must grow as the transition bandwidth is forced to be smaller and as the stopband suppression in
increased. The chain of events described in Figure 3.9 then unfolds.

Shown across the top of Figure 3.9 is a stylized version of that seen in the bottom portion of Figure 3.7.
The uniform weight shown on the top right leads to the bandpass �lter shapes shown on the left. Note that
the �lters are separated in frequency by fs

N Hz.
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Figure 3.9: E�ects of Changing Data Weighting and DFT Size

Now suppose we employ non-uniform weighting to improve the shape of the bandpass �lters. As discussed
in Appendix A, such non-uniform weighting can be used to attain the desired transfer function shape, but
virtually always at the expense of the bandpass �lter's bandwidth. In fact, to obtain the desired characteristic
shown in Figure 3.8, with its �at passband, sharp skirts, and high-attenuation stopband, the minimum
passband bandwidth is more than a factor of ten larger than the unweighted response. Thus the use of a
non-uniform weighting, as shown on the right of Figure 3.7(b), results in the situation shown on the left side.
There are still N bandpass �lters, and their center frequencies are still separated by integer multiples fs

N Hz,
but each �lter has been widened considerably, leading to a high degree of overlap.

The �rst problem to deal with is not the overlap, but rather the fact that the individual bandpass �lters
are far wider than the original goal of about fs

N Hz. This is dealt with by returning to Figure 3.6 and
simply letting the delay line length, the number of weighting coe�cients, and the DFT order grow until the
�lters are su�ciently narrowband to meet our objectives. Again using the example of the desired frequency
response seen in Figure 3.8, the dimensions must grow by more than a factor of ten.
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While the resulting dimensions can take on rather arbitrary values (above some minimum value) we'll
assume here that the new size N' is an integer multiple of N. In particular, we assume that the delay line,
and the weighting and DFT with it, are extended to the length N' where:

N ' = Q ·N, (3.24)

where Q is a positive integer. We further assume that Q is chosen to be large enough that a weighting
function of length N' can be designed to produce not only the desired shape but also a bandwidth of about fsN
Hz. The resulting situation is shown in Figure 3.9(c). The weighting function is now longer than before (by
a factor of Q). On the left we see that there are now N' �lters in the �lter bank. Each one of them now has
the desired nominal bandwidth of fsN Hz, but their center frequencies are now separated by δf = fs

N '
= fs

NQ

Hz instead of fsN Hz. The overlap seen just above still exists but now there is a factor of Q more �lters, a
factor of Q narrower, and a factor of Q more closely spaced. Thus the positive e�ect of expanding the delay
line dimension to QN is that the resulting �lter bank includes the desired bandpass �lters, both in bandpass
characteristics and center frequencies. The negative aspects include the fact that the amount of weighting
and DFT computation have gone up by a factor of Q and that there are now (Q− 1)·N super�uous bandpass
�lters.

Suppose now that we choose to compute only every Q-th point of the DFT. The delay line is still QN
samples long, there are still QN coe�cients in the weighting function, and the DFT still has order QN , but
we'll choose to only compute those output bins Xm (k) where m is an integer multiple of Q. This results in
the situation shown in Figure 3.9(d). The same QN-point weighting function is used as immediately above.
This case, with N �lters of nominal bandwidth fs

N Hz and spaced fs
N Hz apart, was our objective. To achieve

it, however, required expanding the dimensions of the preceding operations quite considerably.
We now develop some equations that describe the steps just traversed. Starting with (3.19) we replace

N with N ' = QN , obtaining an expression for the time sequence seen at the m-th DFT bin.

Xm (k) =
QN−1∑
p=0

x (k − p)ω (p) ej2π
mp
QN . (3.25)

Suppose, as discussed above, that we eliminate the �lter overlapping by evaluating only every Q-th DFT
bin. Thus we compute Xm (k) only for those values of m that are integer multiples of Q. Speci�cally, if n is
assumed to be an integer, then we only compute Xm (k) for values of m given by m = Qn. This is leads to

Xm (k) = XQn (k) ≡ Xn (k) =
QN−1∑
p=0

x (k − p)w (p) ej2π
np
N . (3.26)

Since we have achieved the goal of constructing spectrally concentrated bandpass �lters (albeit at the cost
of expanding the size of all steps preceding the �nal DFT computation), we can now consider decimating the
�lter outputs. Since the �lter bandwidths are nominally fs

N Hz, decimation by up to N is possible without
violating the sampling theorem. Suppose we decimate by the factor M, where 0 < M ≤ N . This means
evaluating the integer time index k only at integer multiples ofM. If we allow the integer to be the decimated
time index, the decimated version of the n-th DFT bin output is

Xn (k = rM) = Xn (r) =
QN−1∑
p=0

x (rM − p)w (p) ej2π
np
N . (3.27)

At this point we can start making comparisons. (3.3) closely resembles (3.26) and (3.4) closely resembles
(3.27). In fact, if we use the de�nition of v (r, p) developed earlier, then (3.27) becomes

Xn (r) =
N−1∑
p=0

v (r, p) · ej2π
np
N (3.28)



24
CHAPTER 3. DERIVATION OF THE EQUATIONS FOR A BASIC

FDM-TDM TRANSMUX

which di�ers from the equation for yn (r) developed in (3.9) only in the absence of a residual carrier term.
If, for example, we want to compute yn (r), we can do it by selecting the right DFT output bin (n in this
case) and multiplying it by the residual carrier term, if any. Thus for all practical purposes, the bank of

tuners viewpoint and the DFT-based �lter bank viewpoint yield the same structure and same results.

3.2.3 The E�ect of Bin Decimation on an FFT

More insight into the relationship between the DFT-based �lter bank and the basic FDM-to-TDM transmul-
tiplexer shown in Figure 3.5 can be gained by considering the common situation where an FFT is used to
compute the DFT. In the preceding section, it was shown that the DFT �lter implicitly uses a QN-point DFT
but in fact only N output bins are computed. Consider now the FFT �ow graph shown in Figure 3.10(a).
The input is QN (8, in this case) weighted input samples x (p) and the output is QN bins. Suppose now
that all we want is the odd numbered output bins. Careful examination of the �ow graph shows that more
than just the output points can be deleted. Look at x (0), for example. It is computed using numbers
from the previous stage which are only used to compute undesired outputs. Thus these intermediate terms
need not be computed either. This process can continue until the point where the intermediate points are
needed. To see how this works, examine Figure 3.10(b). Removing all unneeded nodes reveals something
very interesting. The FFT processing naturally breaks into two sections. The second section, the QN-point
FFT pruned of all unneeded nodes, is recognized to have the �ow graph of an N-point FFT. In fact, if the
bin decimation is not o�set from bin 0, then the twiddle factors are exactly those of an N-point FFT as
well. The section preceding the N-point FFT can be written as N Q-point sums of weighted, delayed input
data samples. These sums can be recognized as the {v (r, p)}. Thus by pruning out the unneeded nodes in a
QN-point FFT taken over the weighted input data, the computation of the �lter bank gracefully separates
into the cascade of a preprocessor that computes the {v (r, p)} and an N-point FFT. The resulting block
diagram is exactly the same as that shown in Figure 3.5.
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Figure 3.10: Pruning a Decimation-in-Time (DIT) Fast Fourier Transform (FFT)
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3.2.4 Relationship of the Filter Bank Approach to Digital Spectrum Analysis

A matter of confusion to many engineers is that the �lter bank scheme seems to produce time samples from
FFT bins. This confusion has its root in the fact that the DFT, and hence the FFT, are usually discussed
in the context of digital spectrum analysis and are typically spoken of as methods of converting from the
time domain to the frequency domain. How then can a DFT-based �lter bank produce time samples from
spectral bins? In fact, the right perspective is the opposite one.

Consider again Figure 3.6 from the viewpoint of digital spectrum analysis. A simple FFT-based spectrum
analyzer accepts N samples of the input sequence, weights or windows the data, transforms it by using an
N-point FFT, and then estimates the power spectral density by computing the magnitude square of the bin
outputs. Comparing these steps to Figure 3.6, we see that they are identical except for two things: (1) the
magnitude squaring operation at the bin outputs and (2) the fact that in spectrum analysis the window
and transform operation is rarely done for every input sample. (Typically it is done every N-th sample
[called 1:1 overlapping ] or even less frequently.) These facts suggest that DFT/FFT-based digital spectrum
analysis is derived from the �lter bank concept rather than the other way around. The �lter bank shown
in Figure 3.6 uses a transform computed over a record of weighted, delayed input data to split the input
signal's energy into N spectral bands. The degree to which this separation is completed depends on the
choice of windowing or weighting function and on the length of the transform. If the function is chosen
properly, the windowing operation and the DFT/FFT computation can be computed less frequently, that is,
decimation can be introduced. In this context, the simple FFT-based spectrum analyzer can be recognized
to perform an instantaneous power measurement at the output of each of the �lters in the bank. The quality
of the analyzer depends on the window function chosen and the DFT/FFT order N (as they a�ect the
passband shape), the rate at which the �lter outputs are computed (given by the decimation factor M), and
the number of instantaneous power measurements averaged to obtain the spectral estimate. Thus we can
conclude that the digital spectrum analyzer approximates the true power spectrum by measuring the power
seen in each of the bandpass �lter outputs produced by the DFT-based �lter bank.

An interesting sidelight is that the most common name for the transmultiplexer preprocessor stems from
the �lter bank's relationship with digital spectrum analysis. Look again at Figure 3.10. The input to the
QN-point FFT is QN weighted and delayed input samples. From the bank-of-tuners viewpoint we know
that the weighting function w (k) is just the tuner pulse response h (k) needed to bandlimit the tuned signal
properly. In the context of spectrum analysis, however, this function is called a data window. They are in fact
identical and the tuner viewpoint provides the analytical basis on which to design the needed window. We've
already observed that after pruning the FFT, the QN-point transform separates into two sections. The �rst
section folds together Q windowed samples at a time to generate the N-point input to the FFT. From this
viewpoint, it is commonly referred to as the window-and-fold section of the FDM-to-TDM transmultiplexer.

3.3 Stylized FORTRAN Implementation of a Basic FDM-TDM
Transmux

Table 1 shows a stylized example of a software implementation of an FDM-TDM transmultiplexer. Some
details of the initialization steps have been blurred for the sake of simplicity and the parameters user are
certainly not those appropriate to all applications, but the code should serve as an accurate guide to the
amount of computation needed and its organization.
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SUBROUTINE TMUX(INPUT_ARRAY, INPUT_POINTER, OUTPUT_VECTOR)

C

C SUBROUTINE TMUX - IMPLEMENTS A BASIC FDM-TO-TDM TRANSMUX.

C A NEW VECTOR OF CHANNELIZED CHANNEL OUTPUTS, CALLED

C "OUTPUT_VECTOR" IS PRODUCED EACH TIME THE SUBROUTINE IS CALLED,

C UNLESS THE DATA IN "INPUT_ARRAY" IS EXPENDED.

C

PARAMETER N = 64 !NUMBER OF CHANNELS AND/OR BINS

PARAMETER Q = 3 !WEIGHTING FUNCTION EXPANSION FACTOR

PARAMETER M = N !DECIMATION FACTOR

C THIS CHOICE OF M YIELDS BASIC TRANSMUX

C

INTEGER M, N, Q, INPUT_POINTER, J, K, INDEX

COMPLEX INPUT_ARRAY(1), OUTPUT_VECTORS(N), VRP(N)

REAL WEIGHTING(N*Q)

C

DATA WEIGHTING/ * QN values of the weighting function h(k) */

C

C ****************** MOVE TIME POINTER **************************

C

INPUT_POINTER = INPUT_POINTER + M

C

C ****************** COMPUTE v(r,p) *****************************

C

DO 10 J=1,N

10 VRP(J) = CMPLX(0.,0.) !ZERO THE VECTOR VRP

C

DO 30 J=1,N

DO 20 K=1 Q

INDEX = (K-1)*N+J-1 !COMPUTE OFFSET IN DATA AND WEIGHTING

VRP(J) = VRP(J) + INPUT_ARRAY(INPUT_POINTER -INDEX) *

1 WEIGHTING(INDEX+1)

20 CONTINUE

30 CONTINUE

C

C ****************** COMPUTE VECTOR OF OUTPUTS ******************

C ****************** USING INVERSE FFT ROUTINE ******************

C

CALL IFFT(VRP,OUTPUT_VECTOR,N)

C

C ****************** REMOVE RESIDUAL CARRIER TERM ***************

C

C ------------ IF M NOT EQUAL TO N, REMOVE CARRIER HERE

C

C ********************* NORMAL RETURN ***************************

C

RETURN

C

END

Listing 3.1: Stylized FORTRAN Example of an FDM-TDM Transmultiplexer
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Chapter 4

Example: Using an FDM-TDM

Transmux to Demodulate R.35

Telgraphy Signals1

Suppose that our design objective is to build a digital processor capable of demodulating all of the FSK canals
found in the R.35 signal shown in Figure 1 from "An Introduction to the FDM-TDMDigital Transmultiplexer:
Introduction" (Figure 2.1). Suppose further that we choose to build the demodulator for each FSK signal
along the lines of the one shown2 in Figure 4.1(a). Both are used in practice. This type of FSK demodulator
uses two �lters: one centered at the mark frequency fmk and another the space frequency fsp. The powers
or amplitudes of the two �lter outputs are compared to determine whether the signal instantaneously falls
mostly in the vicinity of the mark or is closer to the space. The bit synchronizer logic monitors the transitions
between mark and space (and vice versa), using the information to determine the right instants to sample
the thresholded di�erence waveform and produce binary decisions.

Figure 4.1 shows the block diagram of the demodulating process when extended to handle all 24 FSK
canals in an R.35 signal. Initially it appears to only be 24 parallel demodulators. On closer inspection
however, it may be recognized that the center frequencies of all the �lters di�er by integer multiples of a
single frequency increment ∆f . This suggests the use of a digital �lter bank to compute all ofthe required
bandpass �lters. We now proceed to see how the system design for this �lter bank is done.

The system design of the transmultiplexer/�lter bank is speci�ed by a small set of parameters. We
determine these parameters as follows:

• ∆f : Inspection of the frequency allocations for the R.35 signal shows that all possible mark and space
frequencies are separated by integer multiples of 60 Hz. Thus it is natural to set ∆f = 60 Hz.

• fs and N : With ∆f determined, the choice of N, the DFT dimension, and the choice of the input
sampling rate fs, are locked together. We bound N from below, by noting that at least 48 �lters are
needed, two for each FSK canal. In principle, the value of N can be chosen to be any number higher
than 48. If the use of the FFT is contemplated then N is usually chosen to the �rst power of 2 or 4
higher than the minimum value3. Assuming the use of either a radix-2 or radix-4 FFT, plus the use of
complex-valued input data, the prudent value of N is 64. This immediately leads to a complex-valued
input sampling rate of N · ∆f = 3840 Hz. If the input were real-valued instead, then the chosen
sampling rate would be twice that, or 7680 Hz.

1This content is available online at <http://cnx.org/content/m32638/1.3/>.
2Note that this demodulator design is slightly di�erent than the one discussed in the section "What is an FDM-TDM

Transmultiplexer".
3introduces some additional considerations in the design of digital systems in which the transmultiplexer is only a part.
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Figure 4.1: A Basic Two-Filter FSK Demodulator and its Filter Bank Extension

• L and Q: Wth N determined, we �nd that L and Q are locked together and that they are a function
of the exact �lter design used to select the pulse response (or, equivalently, the window function) used
to determine the shape of the bandpass �lters. The issues to be considered in the design of the pulse
response are discussed in "An Introduction to the FDM-TDM Digital Transmultiplexer: Appendix A"
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(Chapter 8). Without reiterating them here, we observe that following those rules yields a minimum
pulse response duration L of about 174. For this application we extend the �lter pulse duration to 192,
allowing Q to equal exactly 3.

• M : With the input sampling rate set, the decimation factor M determines the output sampling rate at
each of the �lter outputs. Thus fout, the output sampling rate, equals 3840

M Hz. The required output
rate depends on the types of signals present and the types of processing to be done to them. In the
case of demodulating asynchronous FSK signals, experience has shown that the output sampling rate
needs to exceed the highest FSK baud rate expected by a factor of four or more. The highest baud
rate allowed by the CCITT for an R.35 canal is 75 Hz4. Thus the output sampling rate fout must
exceed 300 Hz. By choosing M = 12, we obtain an output sampling rate of fout = 320 Hz.

A demodulator using these parameters is shown in Figure 4.2. When developed in 1985 it was termed the
�lter bank card and was used to simultaneously demodulate 24 voice grade channels, each containing 24
R.35 FSK canals. Thus 24 · 24 · 2 = 1152 �lters were needed to isolate the mark and space energy of all
FSK canals. When demodulating R.35 signals, each �lter produces outputs at a rate of 320 per second. The
input sampled waveforms are tuned and �ltered by a preceding tuner to spectrally align the �lter bank's
bins with the mark and space frequencies of the R.35 signal.

Arrows in Figure 4.2 point to the key computational elements on the �lter bank card. One multiplier-
accumulator device handled the window-and-fold, or preprocessing, function for all 24 voice channel inputs.
The second computed the needed FFTs. When processing R.35 signals in all 24 channels, 320 · 24 = 76800
FFTs of dimension N = 64 were performed per second. The third arrow points to a �oating-point processor
used to measure the instantaneous power at the bandpass �lter outputs and threshold their di�erences to
produce binary decisions.

In passing, we note that this design exploits the fact that the FSK demodulator only requires knowledge
of the magnitude of each �lter output. Recalling the general transmux equation given in Equation 9 from
"Derivation of the equations for a Basic FDM-TDM Transmux" (3.9) and substituting the appropriate values
of N,Q, and M produces the equation:

yn (r) = e−j2π
12·nr

64 ·
63∑
p=0

ej2π
np
64 v (r, p) . (4.1)

The exponential preceding the sum has unity magnitude and therefore does not a�ect |yn (r) |.. It is therefore
not necessary to compute the product of the exponential and the sum. The magnitude measurement is given
by

|yn (r) | = |
63∑
p=0

ej2π
np
64 v (r, p) |. (4.2)

4The other rates are 50 and 60 Hz.
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Figure 4.2: Photograph of the Filter Bank Card Designed in 1985 to Demodulate FSK VFT Signals
- M = 12, Q = 3, N = 64, ∆f = 60 Hz. A modern implementation would require a fraction of the
resources of a single �eld-programmable gate array (FPGA)

This same �lter bank card is also capable of demodulating FSK signals conforming to the R.37 and
R.38A ITU-T recommendations. The R.37 signal, for example, uses 12 canals instead of 24, and each of
them operates at twice the rate and with twice the mark-space frequency separation of the R.35 signal.
Repeating the system design just performed yields the following:

• ∆f = 120 Hz
• N = 32 and fs = 3840 Hz
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• L = 96 and Q = 3
• fout = 640 Hz

Note that Q and fs remain the same as for R.35, and that ∆f and fout double because of the increased
mark-space separation and allowable baud rates, while L and N are halved. The impact of processing this
additional signal can be assessed by using the formula for the number of multiply-adds required, speci�cally

Gtransmux =
2QNfs
M

+
2Nfs
M

· log2N. (4.3)

It can be veri�ed that the number of multiply-adds needed to perform the window-and-fold function for the
�lter bank is exactly the same as is needed for the R.35 signal, since the ratio N

M holds constant. Moreover,
the amount of computation needed for the radix-2 FFT is 5

6 of that needed for R.35, the ratio between log232
and log264. Thus a �lter bank with the computational horsepower to handle R.35 can also handle R.37. The
R.38A standard represents another factor of two in frequency separations and allowable baud rates. Once
again it can be veri�ed that the window-and-fold computation is the same and the FFT computation is
smaller yet. Thus a properly designed �lter bank processor capable of handling the R.35 standard can also
handle R.37 and R.38A as well. A subtle di�erence is that the input signal must be tuned slightly di�erently
for the three di�erent standards.
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Chapter 5

The Impact of Digital Tuning on the

Overall design of an FDM-TDM

Transmux1

5.1 Problem Statement

So far we have presumed that the FDM input signal to the transmux has been magically provided and
that it has been sampled at the proper rate. In fact, the signal available to the processor might not be in
the desired form and signal processing may be required to convert it appropriately. As we shall see, the
computation required for this can be signi�cant in itself. As a result, these signal conditioning steps must
be taken into account in the optimal design of the whole system. In this section, we focus on the use of
digital tuners for this signal conditioning and examine the tradeo�s between the parameters of a tuner and
the transmultiplexer that follows it.

5.2 Total Computational Requirements

There are a few practical applications in which the input signal is complex-valued, sampled at the desired
rate, and spectrally registered with the �lters produced by the transmux-based �lter bank. More typically,
however, applications involve real-valued input signals, the signal is not aligned with the �lters in the bank,
or the signal of interest must be extracted from a wideband signal. It is common in these cases to use
a digital tuner to select the portion of the spectral band in which the transmux will operate. This tuner
will usually have a block diagram exactly like that seen in Figure 1 from "Derivation of the equations for
a Basic FDM-TDM Transmux" (Figure 3.1). The incoming sampled signal is quadrature downconverted,
�ltered using an FIR linear phase �lter, and then decimated2. The decimated tuner output is applied to the
preprocessor portion of the transmultiplexer. For the analysis here we assume that the input is real-valued
(from an A/D converter, for example), that the tuner input sampling rate is given by fin, that the pulse
response duration of the tuner's �lter is given by Lt and that its decimation factor is Mt. The spectral band
over which the tuner o�ers rated passband performance and adjacent signal rejection is denoted by Bt. The
combined block diagram of the tuner and FDM-TDM transmultiplexer is shown in , along with the key
variables needed to determine the joint optimal design.

1This content is available online at <http://cnx.org/content/m32668/1.2/>.
2We assume one-step decimation in this analysis. An important exception to this approach is described in Section 5.4.3.

35
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Figure 5.1: Key Variables in the Size Optimization of a Digital Tuner and Transmultiplexer

We obtain an equation for the total number of multiply-adds required by adding the transmux expression
found in Equation 18 from "Derivation of the equations for a Basic FDM-TDM Transmux" (3.18) with the
computation requirements of the preceding tuner. This produces the following:

Gtotal = Gtuner + Gtransmux (5.1)

= 2fin{1 +
Lt
Mt
}+

2fsN
M

· {Q+ log2N}. (5.2)

By inspection we see that fin
Mt

= fs and that fout = fs
M = fin

MtM
.

We observe that the bandwidth of the signal exiting the tuner, denoted Bt, must be less than fs, the
transmux input rate, in order to satisfy the Nyquist sampling theorem. Their ratio is a key element in the
computational tradeo� between the tuner and the transmux. With Bt �xed, an increase in fs increases the
computation needed for the transmux while decreasing that needed for the tuner. We make this explicit by
developing a formula for the tuner's pulse response duration Lt. Again assuming one-step decimation and
appealing to the design formulas discussed in [1], Lt is closely approximated by

Lt =
αtfin
∆ft

, (5.3)

where αt is determined by the degree of stopband rejection desired3 and ∆ft is the tuner's transition band.
In this case, the transition band can be no greater than the di�erence between Bt and fs. If we assume the
use of this limiting value, Lt is given by

Lt =
αtfin

fin
Mt
−Bt

(5.4)

3Speci�cally, at = 0.22 + 0.0366 · SBR, where SBR is the minimum stopband rejection in decibels. A typical value for SBR
is 60 dB, yielding an αt of 2.42.
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Substituting this expression and expressing all sampling rates in terms of the input rate fin produces an
equation for the total number of multiply-adds required.

Gtotal = 2fin · {1 + αtfin
fin−MtBt

}+ 2finN
MMt

{Q+ log2N}
= 2fin · {1 + αt

1−
“
MtBt
fin

” + N
MMt

{Q+ log2N}}
(5.5)

Another useful form of this equation makes the functional dependence on fs more explicit. We do this by
using the expressions

N ≡ fs
∆f

, Mt ≡
fin
fs
, and K ≡ N

M
(5.6)

and the assumption that a radix-2 FFT is employed to compute the DFT. With these, the expression for
the total number of multiply-adds can be written as

Gtotal = 2fin +
2αtfin
1− Bt

fs

+ 2fsK · {Q+ log2
fs
∆f
} (5.7)

5.3 Parameter Optimization

Given expressions such as those shown in (5.5) and (5.7) it is possible to accurately estimate the total amount
of multiply-add computation needed for a tuner/transmux processor. It is also possible to perform tradeo�s
between the various parameters in order to optimize the resulting design. While this can in principle be
done with any of the design parameters, we demonstrate in this section the computational implications of
varying the parameter fs, the input sampling rate to the transmultiplexer. In practice, this usually turns out
to be one of the designer's most important parameter choices.

Figure 5.2 shows the computational requirements for a hypothetical transmultiplexer. In this case, the
input sampling rate fin is assumed to be 6.4 MHz. The tuner must select an FDM telephone supergroup
from the input signal and demultiplex all 60 voice channels in the supergroup. The tuner's bandwidth Bt

must therefore be greater than or equal to 240 kHz and fs must exceed that. For the telephone demultiplexing
application, the channel spacing ∆f is usually 4 kHz and the over-sampling factorK is typically chosen to be
unity. Figure 5.2 shows �ve curves, one for each segment of the computation and one for the composite. The
number of multiply-adds required by the input mixer is constant, since the input sampling rate fin is �xed.
The computation required by the tuner's �lter falls as fs rises from 240 kHz and tends toward the input
Nyquist frequency of 3.2 MHz. The cause of this can be ascertained by examining (5.4). As fs decreases
toward Bt, the transition band decreases, Lt increases hyperbolically, and the amount of computation needed
for the tuner's �lter grows without bound.
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Figure 5.2: Tradeo� between the Design Parameter fs and Total Computation in a Hypothetical
Supergroup Transmultiplexer

The next two curves describe the e�ect of fs on the two components of the transmultiplexer. For a
given value of Q, the computation required by the preprocessor is strictly proportional to fs. The FFT's
computation rises slightly faster than proportionally since the number of FFT bins grows as fs does. The
sum of these constituent curves represents the total amount of multiply-add computation needed. Note that
it has a broad minimum. It rises precipitously as fs decreases toward Bt and more slowly as fs increases
toward its other limit fin

2 .
The value of fs which leads to the minimum amount of computation is a complicated and nonlinear

function of virtually all of the design parameters. While an exact closed form equation for this minimum
point is not attainable, it is possible to develop a useful approximation. We now proceed to do that.

We have made various assumptions about fs along the way, the most important being that it is an integer
multiple (and usually a power-of-two multiple) of the �lter bank's channel separation ∆f . For this analysis,
however, we temporarily release that constraint and treat it as a continuous variable. To �nd its optimal
value we can then evaluate the �rst derivative of Gtotal with respect to fs and then �nd the value of fs which
makes the �rst derivative equal to zero. We �rst �nd that the derivative is given by

dGtotal

dfs
=
−2αtfin, Bt
(fs −Bt)2 + 2K (Q+ 1) + 2K · log2

fs
∆f

. (5.8)

Setting the derivative to zero leads to an implicit, nonlinear expression. While it can be solved numerically,
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a practically valid assumption allows a closed form solution. We �rst de�ne the variable γ, given

γ =
K{(Q+ 1) + {log2

[
fs
∆f

]
}}

αt
. (5.9)

With this de�nition we can write the equation determining the optimum point as

finBt

(fs −Bt)2 = γ. (5.10)

For convenience, we also de�ne the factor ρ, a function of the tuner bandwidth reduction ratio, by ρ = fin
Bt

.
Using this de�nition, (5.10) can be compactly, but deceptively, written as

(fs)optimum = Bt

(
1 +

√
ρ

γ

)
. (5.11)

This expression is deceptive since it proves to be implicit. The term γ depends on fs, keeping (5.11) from
being easily solved exactly. However, the equation proves to be useful anyway. Examination of the de�nition
of γ shows that it depends on the logarithm of fs and, in fact, is often quite insensitive to the actual choice
of fs. Once a general range of fs has been determined, a nominal value of γ can in turn be found and plugged
into (5.11) to �nd a value of fs very close to the unconstrained optimum.

We can use the hypothetical supergroup tuner/transmux to demonstrate this procedure. Suppose we
guess the optimum value of fs to be 480 kHz, twice the required tuner bandwidth Bt of 240 kHz. Plugging
this into the expression for γ yields 10.4 and using that in (5.11) indicates that the optimum value for fs
should be about 625 kHz. Figure 5.2 shows the curve to be quite �at in the vicinity of the optimum point,
allowing the actual value of fs to be chosen consistently with some of the constraints so far ignored in this
analysis. In particular, we desire fs to be a power of two or four times the channel spacing of 4 kHz in this
case. Thus a reasonable choice for fs in this case is 512 kHz.

We can observe some general trends a�ecting the optimal choice of fs. It grows higher as the tuner input
sampling rate fin does, re�ecting the associated growth in tuner computation. It tends to decrease with
growth in Q, K, and N, all of which imply more computation in the transmultiplexer. We note also that this
formula depends strongly on the assumption of one-step decimation in the tuner. If a multistage tuner is
used, the balance will be di�erent. A rule of thumb can be developed by using (5.11). Over a broad range
of practical examples,the optimal ratio between fs and Bt attains values between 1.3 and 2.3 for one-stage

decimation. When this ratio (that is, 1 +
√

ρ
γ ) exceeds 2.5 or so, the tuner computation overwhelms that of

the transmux and alternative designs for the tuner should be examined. Multistage decimation is only one
possible alternative. [1]

One implication of fs being signi�cantly larger than Bt is that many of the channels or �lters in the
transmux-based �lter bank are not useful. To visualize this, consider Figure 5.3. Figure 5.3(a) shows the
power transfer function of the tuner �lter before its output is decimated to the rate fs. The passband of
the �lter is Bt Hz wide, the transition band on each side of the passband is ∆ft Hz wide, and the stopband
extends from Bt

2 + ∆ft Hz to the Nyquist folding frequency fin
2 . Figure 5.3(b) shows the power transfer

fumction of the decimated �lter. In this case, we assume that the transition band ∆ft is slightly less than
fs − Bt. With this choice, some energy passed by the tuner through the transition bands folds back into
the output, but none falls in the passband. Figure 5.3(c) shows the channels of the transmux-based �lter
bank overlaying the tuner's power transfer function. The channels falling within the passband are clean,
that is, the tuner's passband ripple and stopband rejection apply there, but the channels falling in the
transition band are subject to several degradations (for example, gain slope and out-of-band signal aliasing)
and are therefore not useful in most cases. Thus even though the transmultiplexer breaks the fs Hz band
at the output of the tuner into N channels, only C of them, where C = Bt

∆f = N ·Bt
fs

, are typically used for
downstream processing.
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5.4 Hardware Examples of Tuner/Transmux Tradeo�s

This company has built a number of digital transmultiplexers for various applications and all of them
employ some form of digital tuner. The next three sections present a few of these designs with the intent of
demonstrating how the overall system design decisions were made.

5.4.1 A Single-Card Supergroup Tuner/Transmux

As a part of an IR&D program, the company developed an FDM supergroup transmultiplexer during 1985.
Its basic requirements were to accept an FDM supergroup (that is, 60 voice grade channels spaced at regular
intervals of 4 kHz over a band of 240 kHz) located at any of several possible spectral bands. These bands
include 2-242 kHz, 12-252 kHz, 60-300 kHz, 312-552 kHz, and 564-804 kHz. Another key goal was excellent
technical performance. To achieve this, the transmultiplexer portion was designed to use 16-bit arithmetic
and key design parameters of fs = 4 kHz, K = 1, and Q = 16.

Since a supergroup only occupies 240 kHz, a convenient choice of fs would be 256 kHz. This value
exceeds 240 kHz and makes N equal 64, an integer power of two and four. This value proves not to be
globally optimum, however, as we will see after examining the tuner's requirements.
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Figure 5.3: The Impact of the Tuner's Transition Bandwidth on the Number of Useful Filterbank
Outputs

The highest input frequency of interest to the tuner is 804 kHz. The sampling rate must therefore exceed
this value by two or more. The actual rate chosen was 2.048 kHz. This was based on several considerations:

• It satis�es the Nyquist sampling theorem and includes some allowance for the imperfections of analog
antialias �ltering.

• It is a power-of-two integer multiple of ∆f = 4 kHz.
• It was the highest sampling rate attainable with �nancially acceptable 12-bit A/D converters of the
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era. Twelve-bit digitization was desired to maximize the unit's noise power ratio (NPR) and dynamic
range.

By inspection it would appear that the proper value of log2

(
fs
∆f

)
= log2N is 8, 9, or 10. Assuming a nominal

value of 9, we can use (5.11) to accurately estimate the optimum value of fs. Performing this calculation
yields 437 kHz. In the actual design, this value was rounded up to 512 kHz, the next-higher power-of-two
integer multiple of 4 kHz. The choice of fs = 512 kHz in turn means that the tuner decimation Mt must
equal 4 and the tuner's pulse response duration Lt must equal at least 20.

The resulting tuner/transmultiplexer, shown in Figure 5.4 and described in [8], was built on a single
circuit card. The 12-bit A/D module was mounted separately in the chassis. One multiplier chip operating
at 4.096 megamultiplies/sec performed the tuner's quadrature downconversion. Two multiplier-accumulators
(MACs) �ltered and decimated the downconverted signal, preserving the center 248 kHz. Two more MACs
perform the window-and-fold preprocessing for the transmultiplexer while a single MAC is used to compute
the radix-2 FFT. Seven stages are used to compute the 128-point FFT and an additional one is used to
perform sideband inversion on those voice channels designated by the user. This transmultiplexer also
happens to use the so-called o�set-bin DFT instead of the usual DFT. The motivation for this and the
method for implementing it are discussed in O�set Bin Operation from "An Introduction to the FDM-TDM
Digital Transmultiplexer: Appendix B" (Section 9.2: O�set Bin Operation).

5.4.2 Design of the FSK VFT Telegraphy Demodulator

The section "Example: Using an FDM-TDM Transmux to Demodulate R.35 Telgraphy Signals" (Chapter 4)
discussed the use of an FDM-to-TDM transmultiplexer as an integral part of a demodulator capable of
handling all 24 FSK signals present in an FDM voice frequency telegraphy (VFT) system. The analysis
developed in that section showed that, in absence of other system-level factors, the best input sampling rate
to the transmux-based �lter bank was 3840 Hz, 64 times the 60 Hz fundamental tone spacing in the R.35
standard. In this section, we re-examine that choice in terms of the tuner required to provide the VFT signal
to the transmultiplexer.

To pass all 24 FSK components of an R.35 VFT signal, the tuner must have a passband Bt of slightly
more than 2880 Hz. The system must be able to accept real-valued digital samples from a commercial PCM
link. These are provided at a rate of 8000 samples/sec4. From the section "Example: Using an FDM-TDM
Transmux to Demodulate R.35 Telegraphy Signals" (Chapter 4) we recall that the other key parameters in
the �lter bank's design are: Q = 3, M = 12 (assuming the input rate is 3840 Hz), K = 16

3 , and N = 64.
Using the values in (5.11), and assuming a nominal value of 2.5 for αt, yields 3920 Hz as the optimal value
of fs. This is very close to the best choice without taking the tuner into account. We therefore �x on 3840
Hz as the overall best choice.

4This demodulator was also capable of digitizing real-valued analog inputs at a rate of 16 kHz.
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Figure 5.4: Photograph of a Supergroup Tuner and Transmultiplexer [8], circa 1985- M = 32, Q = 16,
N = 128, ∆f = 4 kHz
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The next problem encountered, however, is that the choice of fin as 8000 Hz and fs as 3840 Hz means
that the tuner's decimation factor Mt is not an integer. In particular, with these sampling rate choices, Mt is
given by 25

12 . As a result, a simple one-step decimating tuner of the type shown in Figure 1 from "Derivation
of the equations for a Basic FDM-TDM Transmux" (Figure 3.1) cannot be used directly.

The solution to this problem comes with the use of digital interpolation and decimation techniques. These
are described in [1] and we refer to it here as digital resampling, the process of creating new digital samples
at the desired rate from a sequence sampled at a di�erent rate. The block diagram of this process is shown
in the top portion of Figure 5.5. The incoming real-valued signal is �rst quadrature downconverted to move
the band of interest into the passband of the digital lowpass �lter and to register the �lter bank's �lters with
the mark and space frequencies of the VFT signal. Conceptually, the downconverted quadrature signal is
then zero-�lled5 by a factor of 12, lowpass �ltered, and then decimated by a factor of 25. The zero-�lling
arti�cially increases the sampling rate to 96 kHz, creating 11 extra images of the input signal in the process.
The lowpass �lter removes these images and bandlimits the zero-�lled signal to just the 2880 Hz band of
interest. The decimation leads to an output rate of 96000

25 = 3840 Hz, exactly the desired value. In fact, the
signal is never physically zero-�lled. Pointers in the hardware keep track of where the non-zero data points
lie and use that information to avoid doing unnecessary multiplication.

The bottom portion of Figure 5.5 shows a circuit card assembly built to perform the downconversion and
resampling processes for 24 input voice channels. An multiplier chip was used for the downconversion of
all 24 channels and a pair of MACs performs the �ltering needed to resample all 24 inputs. Programmable
ROMs were used to generate the sequencing signals needed for the resampler. The extra MAC and ALU
visible on the card are used to spectrum-analyze all 24 input channels with 60 Hz resolution at about 40 times
a second. This spectral data is D/A-converted and provided to an oscilloscope for use by the equipment's
operator.

Note that even though resampling is being performed, the equations used to choose the optimum value
of fs are still valid. The fundamental reason for this is that the �lter segment of the tuner is still of the FIR
variety and that one-step decimation is still employed. As a result, the average computation for the tuner
remains as predicted by (5.5).

We might note in passing that the resampler used here is termed a synchronous resampler since the ratio
of the number of input samples to output samples is rigidly �xed. It is also possible to employ a so-called
asynchronous resampler to produce the desired samples. This is usually done when the input sampling rate
varies slightly over time and it is desired to have the output rate locked to some frequency standard. The
control of such resamplers is more complicated than the synchronous variety but the amount of computation
needed for the downconversion and �ltering is essentially the same.

5The zero-�lling factor is 6 for input signals sampled at 16 kHz.
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Figure 5.5: The Use of a Resampling Tuner to Provide the Inputs to FSK VFT Demodulator "Filter
Bank" Card
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5.4.3 ASIC-based Implementation of FDM Group Tuning and Transmultiplexing

A number of apparently ino�ensive assumptions were made in the development of the tradeo� formulas used
in the previous examples. One was that one-step (also called single stage) decimation is used in the tuner's
�ltering and the other is that the number of multiplications and additions forms good basis for comparing
the complexity of various designs. This example demonstrates some counterexamples along the way to the
description of a system that represents the current state of the art (circa 1990) in tuner and transmultiplexer
design.

Suppose that our goal is to accept a full 2700-channel FDM telephone baseband, select an FDM group
with a tuner, and then demultiplex the constituent 12 voice grade channels with a transmultiplexer. In the
now-familiar way, we develop the certain speci�cations for the transmultiplexer and tuner separately and
then jointly optimize the shared parameters.

• Transmultiplexer: To achieve the desired channel shaping, we select Q to be 16. To minimize the
amount of computation, we set K to unity. The window/tuner pulse response chosen provides an
adjacent channel rejection of better than 55 dB and an NPR of about 55 dB.

• Tuner: A 2700-channel baseband extends up to 12388 kHz. Leaving a transition band for an analog
antialias �lter and looking for a power of two times 4 kHz leads to the selection of 32768 kHz as fin,
the baseband digitization rate. The tuner output bandwidth Bt must be at least 48 kHz to pass an
FDM group. Owing the high tuner decimation required, we assume that αt must be on the order of 3.

We now turn to (5.11) to determine the optimum value of fs, and with it, Mt, Lt, and N. Plugging in to
this equation yields an optimal fs of about 490 kHz, more than ten times greater than the FDM group's
bandwidth. In analyzing this result, we �nd that the amount of computation needed by a single-step FIR
decimating tuner is so high that it dominates that needed by the transmultiplexer. Clearly another approach
is needed.

In response to this problem, the company developed a pair of custom application-speci�c ICs (ASICs) for
selecting FDM groups from digitized basebands and another chip for transmultiplexing four FDM groups.
The block diagram is essentially the same as that shown in Figure 1 from "Derivation of the equations for
a Basic FDM-TDM Transmux" except that a multistage decimating �lter is used. In all, nine �lter stages
are employed. Each bandlimits the incoming signal su�ciently that a decimation by two is possible. The
�rst few stages, the ones that must operate at very high rates, use pulse responses so simple (for example,
h (k) = [1, 2, 1]) that only shifting and addition are needed. The e�ect of nine divisions by 2 is the reduction
of the sampling rate fs to 64 kHz. The 48-kHz-wide FDM group is thus represented at the output of the
tuner chips as complex-valued samples at a rate of 64 kHz.

The transmultiplexer ASIC accepted four FDM groups, each quadrature-sampled at 64 kHz, and de-
multiplexes all 48 voice grade channels. A block diagram of a single path through the device is shown in
Figure 5.6. The window-and-fold circuit was implemented by using onboard weighting coe�cients and serial
multipliers. The partial sums were stored in o�-chip RAM. The output of the window-and-fold circuit was
then transformed using a 16-point DFT. The complex-valued bin outputs, produced at a 4 kHz rate, were
sent out over a serial interface.
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Figure 5.6: Block Diagram of a Quad Group Transmux ASIC

Several of the design choices made with these chips are di�erent that those seen earlier in the technical
note. The �rst, seen in the tuner chips, is the use of multistage decimation. As [1] shows, this can almost
always reduce the total amount of multiply-add computation needed for the tuner, at a certain cost in design
simplicity. The other issue, evident in the design of both the tuner and the transmultiplexer, is that memory
and control are at least as costly commodities in an ASIC design as are multiplications and additions. A
vivid example is that the transmux ASIC used direct computation of the DFT rather than using an FFT.
Even though the amount of multiplication is on the order of four times as much using the DFT, the overall
DFT design used less silicon than the equivalent FFT.
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CHAPTER 5. THE IMPACT OF DIGITAL TUNING ON THE OVERALL

DESIGN OF AN FDM-TDM TRANSMUX



Chapter 6

General Design Principles1

There is a very large number of considerations that a�ect the selection of the best method of frequency-
division demultiplexing signals in a particular application. As a result, it is virtually impossible to provide a
simple cookbook methodology that always produces the best design. Even so, it is useful to systematically
describe the design issues and choices evaluated so far in this technical note. Such a description, condensed
into a design �owchart, is discussed in this section. Comparison of it with the design examples provided
in the section "Example: Using an FDM-TDM Transmux to Demodulate R.35 Telegraphy Signals" (Chap-
ter 4) and the section "The Impact of Digital Tuning on the Overall design of an FDM-TDM Transmux"
(Chapter 5) shows excellent agreement. But while it is intended to be helpful, it must be used with care
since relatively small di�erences in the application-dependent assumptions can in�uence the resulting choices
quite considerably.

The decision �owchart presented in Figure 6.1 assumes that the generalized demultiplexer has the block
diagram shown in Figure 6.2. The system acceptsNin digitized FDM signals, all sampled at fin Hz. These are
made available to Nt digital tuners. All of these tuners are of the same design, employ the same decimation
factor Mp and produce output samples at the same rate of fs Hz. The tuner outputs are transmultiplexed,
sending their output channel samples to a bus, which up to Nu user processes have access to. Since each
transmux is fed by a tuner, there are Nt transmuxes, each parameterized by Q,N , and M.

On the one hand, this architecture is not perfectly general, since parameters such as �lter bandwidths
are assumed to be identical, but it is representative of a very complex transmultiplexer-based system. On
the other hand, it can be simpli�ed considerably, by allowing Nin or Nt to be unity for instance, and still be
reasonably described by the �owchart.

1This content is available online at <http://cnx.org/content/m32640/1.2/>.
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Figure 6.1: Flowchart for Determining the Applicability of Transmultiplexing to a Frequency-Division
Demultiplexing Problem
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Figure 6.2: Generic Block Diagram of an FDM Demultiplexer Requiring Digital Input Switching,
Tuning, and Demultiplexing

The �owchart is shown in Figure 6.1. While perhaps self-explanatory, some commentary is provided for
the faint-hearted.

• The �rst step is to determine whether an FDM-TDM transmultiplexer is really needed for the appli-
cation. Generalizing wildly, a transmultiplexer is the right choice if three conditions are met:

a. It is desired to simultaneously demultiplex a reasonably large (for example, 10 or more) number
of contiguous channels from an FDM signal

b. They are regularly spaced in frequency
c. The same �lter can be used for all of them without harm to the signals

If these conditions aren't met, then altemative schemes, such as separate tuners for the desired channels,
should be considered.

• Once it is determined that a transmultiplexer is needed, the next question is whether some form of
digital tuner is needed to precede it. As a rule, no tuner is needed if:

a. It is desired to demultiplex all of the channels seen in the full bandwidth of the input
b. The input signal is sampled at a suitable rate

If resampling is needed, or if only a subband of the input signal's bandwidth is to be dechannelized,
then a tuner is called for. Usually the use of a digital tuner leads to the use of a transmultiplexer that
accepts complex-valued data while the absence of a tuner implies the use of a transmux that accepts
real-valued data.

• The last major question is whether the outputs of the transmultiplexer should be real- or complex-
valued. This usually depends completely on the processes using the transmultiplexer outputs. In some
cases, such as commercial telephony (see the example in Appendix C), the outputs are desired to
be in real-valued form so that they can be switched or formatted for TDM/PCM transmission. In
other applications, however, particularly those that involve signal processing (for example, spectrum
analysis), the use of complex-valued outputs is desired.

• With these fundamental system-level questions answered, the preliminary design of the transmultiplexer
itself can begin. Based on the channel spacing, the desired �lter frequency response, and the nature of
the follow-on processing, such parameters as ∆f,B,Q, and fout can be determined by using the rules
presented in the section "Derivation of the equations for a Basic FDM-TDM Transmux" (Chapter 3).
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• If no tuners are needed, then the design of the transmux can be completed by determiningM,N,L, and
the pulse response h (k). If tuners are needed, then the tradeo�s between the tuner and transmultiplexer
design must be performed in order to know enough to �nish the design of the transmux itself. The �rst
step in this tradeo� is to determine the number of tuners Nt and their bandwidths Bt. The second
step, given Bt, is the tradeo� identi�ed in Section 5, which leads to the choice of the transmux input
sampling rate fs, and hence Lt and Mt.

Of these two steps, the �rst is often the more di�cult since the optimization may be based on non-
mathematical considerations. An example of this is the case in which a large number of contiguous FDM
channels need to be demultiplexed from an even larger input band. Should there be a few tuners of large
bandwidth or more with narrower bandwidth? A purely mathematical optimization using an objective func-
tion such as the number of multiply-adds will conclude that the former is better, while a user might prefer
the selectivity (for example, cherry picking) a�orded by a multitude of narrower tuners.



Chapter 7

Conclusion1

The FDM-TDM digital transmultiplexer has become an important building block in a variety of signal
processors. The main goal of this technical note is to explain how the equations for it are derived and to
provide some information about how its parameters are chosen in practical application.

In addition to ful�lling this role, additional information has been included about the design tradeo�s
that must occur between the transmultiplexer and the processing steps preceding and succeeding it. In
particular, we focused on the computational tradeo�s between the transmultiplexer and the digital tuner
which frequently precedes it.

Several appendices are attached that describe variations of the basic FDM-TDM transmux, such as the
o�set-bin transmux, and related design issues, such as some of the considerations involved in the design of
the weighting function h (k).

A �nal warning is in order. This technical note focuses on a fairly narrow topic, that is, radix-2 and
radix-4 FFT-based, single-stage, FIR FDM-TDM transmultiplexers. While this subclass of transmultiplexers
is widely used, it is by no means the only one. The referenced paper by Schuermann and Göckler [6] presents
a broad overview of FDM-TDM and TDM- FDM transmultiplexers and should be consulted by the serious
engineer or student.

1This content is available online at <http://cnx.org/content/m32642/1.2/>.
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Chapter 8

Appendix A1

The section Derivation of the equations for a Basic FDM-TDM Transmux (Chapter 3) showed the FDM-
TDM transmultiplexer can be viewed as an e�cient implementation of a bank of digital tuners, and that
the data-weighting function h (k) is just the pulse response of the FIR lowpass �lter used in these equivalent
tuners. We therefore approach the design of h (k) by designing the proper tuner pulse response.

The perfect �lter pulse response would pass the signal of interest with no gain or phase distortion,
would completely suppress all other FDM channels, and would require little computation. These are not
all simultaneously achievable, of course, and the design of the actual �lter is a compromise between these
issues. It is further complicated by the fact that software packages are not generally available to perform
some of the types of optimization needed to design these �lters. We proceed �rst by examining how an
optimal equal-ripple linear phase FIR �lter performs.

8.1 Use of Optimal, Linear Phase, Equal-Ripple Design Techniques

The �lter design problem at hand can be understood by examining Figure 8.1. The perfect �lter, shown in
Figure 8.1(a), passes the channel of interest with unity gain and zero phase shift across its bandwidth of B
Hz, centered at DC, and completely attenuates energy at all other frequencies between −fs2 and fs

2 .
In fact, it is not necessary to suppress all out-of-band energy to protect the signal of interest. The

principal reason for this �ltering is to suppress the out-of-band components that alias into the band of
interest when the output of the tuner (that is, transmultiplexer) is decimated by the factor M. These bands
are shown in Figure 8.1(b) for the general case in which M 6= N , while Figure 8.1(c) shows the important
special case of the basic FDM-TDM transmux in which N = M . In the latter case, the FDM channels not
of interest alias directly onto the signal of interest while, in the former, the channels not of interest may be
spread around the band more.

As alluded to earlier, practical FIR �lters of �nite duration cannot pass the signal interest perfectly and
suppress all other energy completely. The response shown in Figure 8.1(d) is the generalized response of a
good practical approximation, the response provided by an optimal FIR linear-phase, equal-ripple �lter of
the sort designed by the Parks-McClellan software package. These �lters provide �at di�erential group delay
and allow the designer to optimally trade between passband ripple, stopband suppression, and transition
band as a function of the �lter order L. A description of this general �lter design methodology can be found
in [7].

1This content is available online at <http://cnx.org/content/m32646/1.2/>.
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Figure 8.1: Frequency Responses of Perfect and Realizable Tuner Filters

Superimposing Figure 8.1(c) with the optimal response shown in Figure 1 of [7] to produce Figure 8.2
shows that we must specify the channel bandwidth B, the transition bandwidth δf , the input sampling rate
fs, the degree of passband ripple tolerable, denoted PBR and the minimum tolerable stopband attenuation
in dB, denoted SBR. A multi-term empirical formula can be found in [4] which determines the �lter L
quite accurately for a given set of design parameters. Reference [7] simpli�es the Rabiner and Gold formula
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considerably to produce the design equation

L =
αfs
δf

(8.1)

where L, fs, and δf are as just de�ned, and α is given by

α = 0.22 + 0.0366 · SBR (8.2)

The validity of these simpli�ed formulas depends on a number of assumptions, detailed in [7], but all of
them are su�ciently satis�ed in this case to permit accuracy in the estimation of L within 5% or so.

Examination of Figure 8.2 shows that δf , the �lter transition band, can be no larger than ∆f − B, the
di�erence between the channel spacing and the bandwidth of each channel. Recalling also that N ·∆f = fs,
we �nd that

L = Nα
∆f
δf

= Nα{ 1
1− B

∆f

}. (8.3)

Thus, to �rst order, the pulse response duration of the required �lter is proportional to the number of
channels N and is hyperbolic in the percentage bandwidth, the ratio of the channel bandwidth B to the
channel spacing ∆f . The e�ect of the proportionality to α will be examined shortly.

Figure 8.2: Overlay of the Required Tuner Filter with the Generalized Response of an Optimal Linear
Phase Equal-Ripple FIR Filter

8.2 Relationship to the Design Parameter Q

The development presented in the section Derivation of the equations for a Basic FDM-TDM Transmux
(Chapter 3) de�ned the integer variable Q as the ratio of L and N. It was pointed out there without proof
that in fact Q was an important design parameter, not just the artifact of two others. This can now be seen
by combining the relationship L ≡ QN with (8.3) to produce an expression for Q:

Q = α{∆f
δf
} = α{ 1

1− B
∆f

} (8.4)

Since N depends strictly on the number of channels into which the input band is divided, Q contains all of
the information about the impact of the desired �lter characteristics.
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8.3 Continuation of the Telegraphy Demodulation Example

Consider again the example of demodulating R.35 FDM FSK VFT canals discussed in the section Example:
Using an FDM-TDM Transmux to Demodulate R.35 Telegraphy Signals (Chapter 4). In that section, we
determined that the following parameters would be appropriate: fs = 3840 Hz, N = 64, and ∆f = 60
Hz. To determine Q, and hence the rate of computation needed for the data weighting segment of the
transmultiplexer, we need to specify B and SBR, the degree of stopband suppression required.

Generally speaking, the �lters in an FSK demodulator need to have unity gain at the mark or space
frequency and zero gain at the space or mark frequency, respectively. A computer simulation used to verify
the design of the demodulator showed that suppression of 50 dB was more than enough to provide the needed
performance. At �rst glance it might appear that the transition band δf can be allowed to equal the tone
spacing ∆f = 60 Hz, making the percentage bandwidth equal to zero. Actual FSK VFT systems, however,
sometimes experience bulk frequency shifts of several Hertz. In order to maintain full performance in the
presence of such frequency o�sets, the tuner �lters need to be designed with a passband bandwidth of 15
Hz or so. Using SBR = 50 dB in (8.2), we �nd with (8.4) that the required value of Q for this application
is about 2.71. The actual value chosen for this application was 3, producing a pulse response duration of
L = QN = 192, with the remaining degrees of freedom in the �lter design used to widen the �lter still more,
allowing for even more frequency o�set.

8.4 Implications of the Filter Design on Signal-to-Noise Ratio and
Noise Power Ratio

The pulse response h (k) chosen for the transmultiplexer determines many of the transmux's key technical
performance parameters, including:

• passband bandwidth, gain, and gain ripple
• passband di�erential group delay (constrained to zero by using an FIR linear phase design approach)
• adjacent channel rejection (also known as intelligible crosstalk)
• channel signal-to-noise ratio (SNR) (also known as unintelligible crosstalk and noise power ratio (NPR),

a name based on one method of measurement)

We focus here on the last two. At �rst it might seem that these two are equivalent, but in fact the second
is usually the more demanding of the two. This may be demonstrated by re-examining Figure 8.1(a). An
adjacent channel rejection speci�cation of 55 dB, say, means that no signal appearing anywhere in the input
bandwidth of fs Hz can appear in the band of interest at any level higher than 55 dB below the signal of
interest. If the signal of interest and the one not of interest have the same power levels, then this speci�cation
implies that the �lter pulse response should suppress the signal not of interest by at least 55 dB before it
is potentially aliased into the band of interest. Thus the adjacent channel rejection speci�cation treats
each interferer separately and forces each of them to be suppressed to a level below intelligibility. Typical
speci�cations for voice channel demultiplexers, for example, are 55 dB of suppression for any signal more
than 300 Hz above or below the channel of interest.

The last speci�cation limits the total noise that enters the band of interest from other channels. These
channels are assumed to be statistically independent, implying that whatever energy that aliases into the
band of interest from each of the channels is uncorrelated with the others, that their powers add, and that
none of them is individually intelligible.

The channel SNR can be quanti�ed by using the expression

SNR =

∫ πB
−πB |H (ω)|2Pc (ω) dω∑C−1

n=0,n6=c
∫ 2πn∆f+πB

2πn∆f−πB |H (ω)|2Pn (ω) dω
(8.5)
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where B is the bandwidth of the channel of interest, C is the number of channels with signals present, c is
the index of the band of current interest, H (ω) is the frequency response of the pulse response h (k), and
Pn (a) is the power spectrum of the n-th signal.

If we assume that all C channels have the same average power P, that the power gain of the �lter is unity
for the channel of interest, and that all other channels are suppressed by exactly S dB, then (8.5) simpli�es
to

SNR = S − 10 · log10 (C − 1) in dB (8.6)

The implications of (8.6) can be seen with an example. Suppose that the application at hand requires the
demultiplexing of 60 FDM voice channels, that the adjacent channel rejection is speci�ed to be 60 dB, and
that the unintelligible crosstalk or SNR speci�cation is 55 dB. Evaluation of (8.2) shows that α, on which
Q and L depend, needs to be about 2.42 to suppress any single component by 60 dB. (8.6), however, shows
that to satisfy the unintelligible noise speci�cation, all channels not of interest need to be suppressed by an
extra 10 · log1059 = 17.8 dB2. To meet this speci�cation, the pulse response needs to suppress the other input
channels by 55 + 17.8 = 72.8 dB, with the associated growth in α from 2.42 to 2.88 and some additional
design concern in hardware using �nite word length arithmetic.

Combining (8.3), (8.2), and (8.6), we �nd that L is given by

L = Nα (C)
∆f
δf

= Nα (C) { 1
1− ∆f

B

} (8.7)

where α (C) is given by

α (C) = 0.22 + 0.0366 (SNRr) + 0.366 log10 (C − 1) (8.8)

and SNRr is the required SNR performance in dB. Note that when C is a large fraction of N, which is
usually the case, the pulse response duration L actually grows faster than proportionally to the number of
bins N.

A warning is in order here. While accurate in principle and generally accurate numerically, this section
presents a simpli�ed view of the �lter optimization problem and the implications of each of the technical
requirements. Each actual application requires a careful evaluation of the speci�cations appropriate to it
and the impact to each of the transmultiplexer's design parameters. In addition, note that we used (8.6)
to reach some of these conclusions when, in fact, (8.5) is really the right one to use. To illustrate how this
might a�ect the resulting design, observe that (8.6) implicitly assumes a pulse response of the type shown
in Figure 8.2, which suppresses all channels not of interest about equally. Consider then the frequency
responses shown in Figure 8.3. The �rst is a standard Parks-McClellan design in which the stopband ripple
objective is the same over the whole stopband. The second two are alternative designs that use similar or less
amounts of computation. The one shown in Figure 8.3(b) slowly increases the stopband suppression with
higher frequency, essentially removing those channels from the SNR calculation. Another scheme, shown in
Figure 8.3(c), obtains added suppression in the bands known to alias into the band of interest by releasing
control in the bands that will not alias in. In passing, it should be noted that the Parks-McClellan software
package can be modi�ed to perform both of these �lter designs. To summarize, the equations presented in
this section serve as a good guide to the selection of the pulse response h (k) and its duration L, but skillful
use of (8.5) and the full design formulas for FIR linear phase �lters can reduce L and the implied required
real-time computation level by 10 to 40%.

2For a 960-channel transmultiplexer this extra suppression goes up to 29.8 dB
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Figure 8.3: Filter Design Alternatives to Reduce the Required Filter Order

8.5 Example of a Voice Channel Demultiplexer

Several of the examples presented in The Impact of Digital Tuning on the Overall design of an FDM-TDM
Transmux (Chapter 5) concern the use of FDM-TDM transmultiplexers to demultiplex the voice channels
found in an FDM telephone baseband. In this section, we examine brie�y an example of the design of such
a transmultiplexer. For the purpose of this example, we focus on the design of the pulse responses for the
group transmultiplexer VLSI chip shown in Figure 6 from The Impact of Digital Tuning on the Overall
design of an FDM-TDM Transmux (Figure 5.6).

Repeating from The Impact of Digital Tuning on the Overall design of an FDM-TDM Transmux (Chap-
ter 5), the general design parameters for the group transmultiplexer are: fs = 64 kHz, N = 16, ∆f = 4 kHz,
C = 12, and the 3-dB bandwidth B = 3700 Hz. We desire the passband to be as �at as possible, that the
adjacent channel rejection meet or exceed 55 dB at 300 Hz into adjacent channels, and that the SNR and
NPR meet or exceed 52 dB. We also strongly desire that Q equal 16, since such a power-of-two value would
simplify the design of the hardware.

We do a �rst cut by evaluating δf to be 450 Hz, the di�erence between the edge of the equal-ripple
passband and the point 300 Hz into the adjacent channel. Suppose that we optimistically assume that only
55 dB of suppression is needed in the stopband. Using these values, plus the fact that fs = 64 kHz, in (8.1)
yields L = 318, which implies a value of Q = 19.85. This is close to, but exceeds, a nice power of two, that
is, 16. By working the �lter design problem carefully it is possible to design pulse responses that do meet
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the requirements. Two of these are shown in Figure 8.4. One has a wide passband, at the expense of greater
passband ripple, while the other trades bandwidth for ripple performance. The �lter that was developed for
this purpose used integral ROM to hold these pulse responses and allowed the user to control which is to be
employed at a given time.

8.6 Other Criteria for Filter Design

The focus of this section has been on the design of the transmultiplexer pulse response when viewed as a
single tuner. In fact, most are designed this way. There are other applications however, that require that
other considerations enter the design process. An example is the interference canceller discussed in A Pair of
Examples from An Introduction to the FDM-TDM Digital Transmultiplexer: Appendix C (Section 10.4: A
Pair of Examples). In this case, the �lter pulse response is designed to bandlimit, as before, but in addition,
constraints are introduced that have the e�ect of guaranteeing good broadband behavior as well.
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Figure 8.4: Frequency Response of FIR Filter Designed for a Voice Channel Transmultiplexer
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Appendix B1

9.1 Production of Real-valued Outputs

It is frequently the case that the best system-wide choice is the use of a transmultiplexer producing complex-
valued outputs even though some of the system outputs need to be real-valued. An example of this is
when a transmultiplexer is used to supply all transmuxed signals to an analyzer of some sort, plus a few
selected signals for a downstream processor or transmission system. If the analysis processing is best done
with complex-valued data (and it often is), then the best system-level choice is often to use a complex-
output transmux and then to convert the relatively few system outputs to a real-valued representation. This
appendix describes how this can be done.

Producing a real-valued signal from a complex-valued one is as simple as taking its real part, but for this
to be valid, the complex-valued signal must be sampled frequently enough. In actual practice, this condition
is not usually met and it is necessary to increase the complex-valued signal's sampling rate by a factor of
two before extracting the real part. Another complication is that the user may desire to choose the spectral
orientation of the resulting real-valued signal.

Figure 9.1 shows the spectral implications of the steps usually taken to interpolate the complex-valued
signal, specify its sideband orientation, and produce a real-valued representation.

Figure 9.1(a) shows the assumed spectrum of the complex-valued input signal z (r). The signal z (r) is
assumed to be the output of a complex-valued FDM-TDM transmultiplexer. It is sampled at the rate f and
is spectrally oriented so that an increasing input frequency results in a higher output frequency. We'll term
this upper sideband. Note that the bandwidth of z (r) is less than f.

We now upconvert z (r) by f
2 Hz by multiplying it by (−1)r. This is shown in Figure 9.1(b). The signal

is now centered around f
2 instead of 0 Hz. The sampling rate is doubled by zero-�lling z (r), that is, z (k)

is created by setting z (k = 2r) = z (r) (−l)r for even values of k and z (k) = 0 for odd values of k. The
spectral e�ects of this zero-�lling are shown in Figure 9.1(c). The sampling rate is now 2f and two upper
sideband images of the original signal are present, one centered at f

2 and the other at − f2 .
The next step is to bandpass �lter the desired image. Two �lter transfer functions are shown in Fig-

ure 9.1(d). We focus �rst on the one drawn with the solid line for now. When the zero-�lled input signal
Z (k) is convolved with the �lter having this response, the higher of the two images is preserved and the
lower one suppressed. This is shown in Figure 9.1(e).

1This content is available online at <http://cnx.org/content/m32672/1.2/>.
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Figure 9.1: Spectral Implication of Each Step of the Sample-Rate Doubling Used to Produce Real-
Valued Outputs
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Obviously, the use of a �lter with transmission characteristics shown in the dashed lines in Figure 9.1(d)
would have the e�ect of selecting the other image, the one shown in dashed lines in Figure 9.1(e).

As a result of the �ltering, only one image remains and which image it is depends on the bandpass
�lter chosen. The last step is the production of the real-valued output by simply taking the real part of
the complex-valued signal that appears at the �lter's output. Since real-valued signals must have spectral
symmetry about the origin, this extraction of the real part has the e�ect of producing an another image
of the input, only this one has the opposite sideband orientation. If the upper image is selected by the
bandpass �lter, then spectrum of the output signal is as shown in Figure 9.1(f). We term this as upper
sideband since the positive frequency image has the same orientation as the original complex-valued input
signal. Choosing the lower image with the bandpass �lter has the e�ect of producing the spectral relationship
shown in Figure 9.1(g), the so-called lower sideband or inverted case.

To summarize, we produce the real-valued signal by

1. Upconverting by f
2

2. Zero-�lling by a factor of 2
3. Bandpass �ltering one of the two images created by the zero-�lling
4. Taking the real part of the complex �lter output

The sideband orientation of the output is determined by which image is selected by the �lter. We now
develop the equations that describe these processing steps.

We de�ne the bandpass �lter output to be y (k), given by

y (k) =
L−1∑
l=0

z (k − l)h (l) jls (9.1)

where the zero-�lled input z (k) is as earlier de�ned. We recognize h (l) jls as the pulse response of the
bandpass �lter and L as its duration2. The factor s has the value of 1 or -1 to determine which of the two
bandpass �lters is desired, and, with it, which output sideband orientation is selected. The pulse response
is written in this curious fashion to emphasize that h (l) is the real-valued pulse response of a lowpass �lter.
It is converted into the pulse response of a bandpass �lter centered at ± f2 by multiplying it point by point

by a sampled complex-valued sinusoid of frequency f
2 , if s = 1, or − f2 , if s = −1, that is, jls.

With no loss of generality we assume that L is an integer factor of two. Suppose now that k is even. If
so, k = 2r and

y (k = 2r) =
∑L

2 −1
u=0 (r − u) (−1)r−uh (2u) j2us

= (−1)r
∑L

2 −1
u=0 z (r − u)h (2u) .

(9.2)

Now suppose that k is odd. If so, then it can be represented as k = 2r+ 1 and the expression for the output
becomes

y (k = 2r + 1) =
∑L

2 −1
u=0 z (r − u) (−1)r−uh (2u+ 1) j(2u+1)s

= (−1)r
∑L

2 −1
u=0 z (r − u)h (2u+ 1) js.

(9.3)

Using the assumption that the �lter pulse response function h (k) is real-valued, then y (k), the desired

2We use the generic notation h (k) and L as the pulse response and its duration just as we did in Section 3, although they
are distinct. They are not completely independent, however, since the design of this �lter is usually impacted by the design of
the transmultiplexer weighting function.
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real-valued output, is given

y (k) = Re{y (k)}
=

∑L
2 −1
u=0 Re{z (r − u)}h (2u) , kmod 4 = 0,

= −s
∑L

2 −1
u=0 Im{z (r − u)}h (2u+ 1) , kmod 4 = 1,

= −
∑L

2 −1
u=0 Re{z (r − u)}h (2u) , kmod 4 = 2,

= s
∑L

2 −2
u=0 Im{z (r − u)}h (2u+ 1) , kmod 4 = 3.

(9.4)

This set of equations can be written in a shorthand form by using vector notation. To do this we de�ne Xk,
Yk, He, and Ho by the expressions

Xk=2r =
[
Re [z (r)]Re [z (r − 1)] ...Re

[
z
(
r − L

2 + 1
)]]

,

Yk=2r+1 =
[
Im [z (r)] Im [z (r − 1)] ... Im

[
z
(
r − L

2 + 1
)]]

,

He = [h (0)h (2)h (4) ...h (L− 2)]t, and

H0 = [h (1)h (3)h (5) ...h (L− 1)]t,

(9.5)

where the superscript t indicates the transpose of a vector. Using these de�nitions, the real-valued output
y (k) can be written compactly as

y (k) = XkHe, kmod 4 = 0,

y (k + 1) = −s Yk+1H0, kmod 4 = 1,

y (k + 2) = − Xk+2He, kmod 4 = 2,

y (k + 3) = s Yk+3H0, kmod 4 = 3.

(9.6)

Note that if FIR �lters are employed, each output requires L
2 multiply-adds. Thus the production of each

real-valued output signal uses fL multiply-adds per second.
Now consider the case in which the signal of interest is supplied by an o�set-bin transmultiplexer. If so,

the initial multiplication by (−1)r is not needed. The e�ect of this can be seen by re-examining the equation
for y (k) when k is even.

y (k = 2r) =
∑L

2 −1
u=0 z (r − u)h (2u) j2su

=
∑L

2 −1
u=0 z (r − u)h (2u) (−1)u

=
∑L

2 −1
u=0 z (r − u)h (2u)

(9.7)

where h (2u) is de�ned by the equation h (2u) = h (2u) (−1)u, 0 ≤ u ≤ L
2 − 1.

Suppose that we similarly de�ne h (2u+ 1) by the expression h (2u+ 1) = h (2u+ 1) (−1)u, and then He

and H0 as in (9.5)(fourth line). If we do this, we �nd that the expression for y (k) becomes simpler yet:

y (k : k even) = XkHe, and

y (k : k odd) = −sYkH0

(9.8)

A block diagram of the processing needed to implement these equations appears in Figure 9.2.
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Figure 9.2: Block Diagram of the Processing Required to Produce Real-Valued Outputs with Complete
Sideband Control for an O�set-Bin Input

9.2 O�set Bin Operation

The analysis presented to this point assumes that the tuning frequencies are integer multiples of some
fundamental step size ∆f . This implies that the 0 − th bin or channel is centered at 0 Hz. While this is
true in some applications, there are others in which the bin or channel centers are o�set in frequency by ∆f

2
An example is shown in Figure 9.3. For this example, we suppose that an FDM group of twelve channels is
digitally tuned and �ltered, that is, it is quadrature downconverted so as to center the group at 0 Hz. ASICs
such as those discussed in the section The Impact of Digital Tuning on the Overall design of an FDM-TDM
Transmux (Chapter 5) can perform this function. Figure 9.3 shows the group centered at DC, which places
channels 1-6 below DC and channels 7-12 above. The channels are still separated by 4 kHz but their center
frequencies are o�set from DC by 2 kHz.

There are several solutions to this problem, the most obvious being to o�-tune the tuner by 2 kHz. As this
appendix will show, however, the FDM-TDM transmultiplexer equations can be easily modi�ed to introduce
the desired o�sets.
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Figure 9.3: Use of an O�set-Bin Channel Bank to Separate the Channels in an FDM Group

To produce the desired set of equations, we have to repeat some of the formulation developed in Section
3. Frequency steps of ∆f are still employed. The fundamental di�erence is that each tuner frequency is not
an integer multiple of ∆f but rather is a half-integer multiple, for example, ω = 2π

(
n+ 1

2

)
∆f , where n is

an integer. The e�ects of this substitution can be seen by joining the analysis in the section Derivation of
the equations for a Basic FDM-TDM Transmux (Chapter 3) at (3.5) from Derivation of the equations for a
Basic FDM-TDM Transmux. Substituting this new expression for the tuning frequency yields

yn (r) = e−j2π
(n+ 1

2 )rM
N ·

L−1∑
l=0

h (l)x (rM − l) ej2π
(n+ 1

2 )l
N (9.9)

As before, we subscript the decimate output y (r) by the parameter n but in this case it indicates that the
tuning frequency is given by f0 =

(
n+ 1

2

)
·∆f .

As before, we de�ne the integer indices q and p by the expressions

l ≡ qN + p, where 0 ≤ q ≤ Q− 1 and 0 ≤ p ≤ N − 1 (9.10)

yielding

yn (r) = e−j2π
(n+1

2)rM

N ·
∑L−1

l=0 h (l) x (rM − l) ej2π
(n+1

2)l

N = e−j2π
nrM

N e−jπ
rM
N ·∑N−1

p=0

∑Q−1
q=0 h (qN + p) x (rM − qN − p) ej2π

(n+1
2)(qN+p)

N = e−j2π
nrM

N e−jπ
rM
N ·∑N−1

p=0

∑Q−1
q=0 h (qN + p) x (rM − qN − p) ej2π

(n+1
2)qN

N ej2π
(n+1

2)p

N =

e−j2π
nrM

N e−jπ
rM
N ·
∑N−1

p=0

∑Q−1
q=0 h (qN + p) x (rM − qN − p) (−1)q · ej2π

(n+1
2)p

N =

e−j2π
nrM

N e−jπ
rM
N ·

∑N−1
p=0 ej2π

(n+1
2)p

N

[∑Q−1
q=0 h (qN + p) x (rM − qN − p) (−1)q

]

(9.11)

Suppose we now de�ne the variable v (r, p) by the expression

v (r, p) ≡
Q−1∑
q=0

h (qN + p) · x (rM − qN − p) (9.12)
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and the pulse response h (qN + p) by the expression

h(qN + p) = (−1)q · h (qN + p) (9.13)

Substituting v (r, p) into the equation for the decimated output yn (r) of the tuner tuned to frequency
f0 =

(
n+ 1

2

)
·∆f yields

yn (r) = e−j2π
nr
K e−jπ

r
K ·

N−1∑
p=0

ej2π
(n+ 1

2 )p
N v (r, p) (9.14)

In the section Derivation of the equations for a Basic FDM-TDM Transmux (Chapter 3), we de�ned the basic
FDM-TDM transmultiplexer as the special case of general transmultiplexer in which we set the decimation
factor M to equal the number of channels N. This implies directly that K = 1. This assumption leads to
the corresponding basic transmux equations for the o�set-bin case:

yn (r) = (−1)r
N−1∑
p=0

ej2π
(n+ 1

2 )p
N v (r, p) = IDFTo{v (r, p)} where (9.15)

v (r, p) ≡
Q−1∑
q=0

h (qN + p) (−1)qx ((r − q)N − p) (9.16)

and IDFTo{.} indicates the o�set-bin inverse DFT.
While not immediately obvious, it can be shown that the o�set-bin DFT can be computed with an FFT-

like algorithm. A listing of one is shown in the following code. It results from a simple modi�cation (that
is, the initialization of U) in the FFT routine appearing on page 367 of [5].
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FORTRAN Subroutine for an N-Point O�set-Bin FFT (Modi�ed from DIT FFT)

SUBROUTINE OFFSET-FFT (X, N, M)

C OFFSET_FFT - computes the half-bin offset version of an N-point

C decimation-in-frequency (DIF) FFT. The array X is complex-valued

C and must have length N = 2**M.

C The subroutine is entered with data in X and

C exits with the DFT stored there.

C

COMPLEX X(1), U, W, T

NV2 = N/2

NM1 = N-1

J = 1

C

DO 7 I=1,NM1

T = X(J)

X(J) = X(I)

X(I) = T

5 K = NV2

6 IF (K .GE. J) GO TO 7

J = J - K

K = K/2

GO TO 6

7 J = J + K

C

PI = 3.14159265358979

C

DO 20 L=1,M

LE = 2**L

LE1 = LE/2

U = CMPLX(COS(PI/FLOAT(LE)),SIN(PI/FLOAT(LE)))

W = CMPLX(COS(PI/FLOAT(LE1)),SIN(PI/FLOAT(LE1)))

C

DO 20 J=1, LE1

DO 10 I=J,N,LE

IP=I+LE

T = X(IP)*U

X(IP) = X(I) - T

10 X(I) = X(I) + T

20 U = U*W

C

RETURN

END

Figure 9.4

When an o�set-bin transmux is performed, it is common not to premultiply by (−1)r as shown in
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(9.15). This has the e�ect of frequency-converting the output signal by fout
2 = fs

2M . When M = N (hence
K = 1), the spectral e�ect of this is as shown in Figure 9.1(a) and (b). Instead of producing a complex
signal centered at DC, not premultiplying by (−1)r centers the signal at fout

2 In addition to obviating the
need for a multiplication, this has the e�ect of moving the signal away from DC. This tends to improve
signal quality since many �nite-word length e�ects arising from hardware implementations (for example,
truncation) produce spurious signals at DC.

9.3 Operation with Real-Valued Inputs

There are practical applications of FDM-TDM transmultiplexers in which the designer wants to extract all
channels from a real-valued input. Such a signal can be applied directly to an FFT-based transmux of the
variety described in the section Derivation of the equations for a Basic FDM-TDM Transmux (Chapter 3)
but, since such a transmux is designed for use with complex-valued data, it might appear that unneeded
computation is being performed. That is in fact the case. This section shows how the real-valued nature of
the input can be exploited to reduce the required computation by slightly less than a factor of two.

Assume for this discussion that the input signal x (k) is real-valued and sampled at a rate of fs = 2N∆f ,
where ∆f , as before, is the frequency spacing between channels, and N is the maximum number of unique
channels. The Nyquist theorem requires that fs be twice N∆f since the input is real-valued. Half of the
2N channels present in the real-valued input are sideband reversed images of the other N channels. Thus
we work to �nd an expression for those N unique channels. Using the basic equation for the FDM-TDM
transmux (see equation 14 from Derivation of the equations for a Basic FDM-TDM Transmux (3.14)), the
n-th output is given by

yn (r) =
2N−1∑
p=0

ej2π
np
2N v (r, p) (9.17)

where v (r, p) is given by

v (r, p) =
Q−1∑
q=0

h (2qN + p)x (2N (r − q) − p) , 0 ≤ p ≤ 2N − 1. (9.18)

Since both the input x (k) and the pulse response h (k) are real-valued, so is v (r, p). Thus the DFT in (9.17)
is taken over real-valued data. We now pursue a two-step approach to exploiting the reality of the data.

The �rst step is to decompose the 2N -point DFT into the sum of two N-point DFTs. This is exactly
the same operation as is used to start the development of the decimation-in-time (DIT) FFT. Doing this
produces the expression

yn (r) =
∑2N−1
l=0 v (r, l)Wnl

2N

=
∑N−1
i=0 v (r, 2i)W 2in

2N +
∑N−1
i=0 v (r, 2i+ 1)W (2i+1)n

2N

=
∑N−1
i=0 v (r, 2i)W in

N +Wn
2N

∑N−1
i=0 v (r, 2i+ 1)W in

N

(9.19)

where WL is de�ned by the expression WL = ej
2π
L . The n-th output is now described by the sum of two

N-point DFT taken over real-valued data.
The second step is to use well-known relationships [5] concerning the spectral symmetries of purely real

and purely imaginary data. The former has Hermitian symmetry3 while the latter is anti-Hermitian. We
exploit this by constructing a new N-point complex sequence z (i) , 0 ≤ i ≤ N − 1 for each sample instant r
according to the rule

z (i) = v (r, 2i) + jv (r, 2i+ 1) , 0 ≤ i ≤ N − 1. (9.20)

3A sequence has Hermitian symmetry if the real parts are symmetrical about the midpoint of the sequence while the
imaginary parts are antisymmetrical.
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This corresponds to packing the 2N points of v (r, p) into the real and imaginary parts of an N-point
complex-value sequence. Suppose now that we evaluate the DFT of the sequence z (i), yielding Zn. We can
break Zn into the portions, say Zn = Rn + jIn, where Rn is the real part of the transform and In is the
imaginary part. The transforms of v (r, 2i) , 0 ≤ i ≤ N −1, and v (r, 2i+ 1) , 0 ≤ i ≤ N −1, are determined
by using these Hermitian symmetry properties. In particular, it can be shown that

IDFTN{v (r, 2i)} =
Rn +RN−n

2
+ j

In − IN−n
2

(9.21)

and

IDFTN{v (r, 2i+ 1)} =
In + IN−n

2
− j Rn −RN−n

2
(9.22)

Note that only one N-point DFT plus one additional stage of sums and di�erences was required to produce
both transforms. We can then evaluate (9.19) to obtain

Re [yn (r)] =
Rn +RN−n

2
+
In + IN−n

2
cos{2πn

2N
} − Rn −RN−n

2
sin{2πn

2N
} (9.23)

and

Im [yn (r)] =
In − IN−n

2
− In + IN−n

2
sin{2πn

2N
} − Rn −RN−n

2
cos{2πn

2N
} (9.24)

Observe that this computation is essentially the same as one stage of a radix-2, 2N -point IFFT. Each desired
output yn (r) is a bin value of this FFT.

These steps can be summarized follows:

• Compute the v (r, p) according to (9.18)
• Form the N-point complex-valued sequence z (i) according to (9.20)
• Perform the N-point DFT (using an FFT, usually) to obtain Zn
• Use (9.22) to obtain the transforms of the two real-valued sequences
• Use (9.23) and (9.24) to evaluate (9.19)

A computational audit of this procedure shows that it requires essentially two more radix-2 stages following
the DFT. The �rst involves only sums and di�erences while the second, involving the twiddle factors used
in a 2N -point FFT, requires actual multiplication. A comparison between the multiply-add computation
needed for an N-channel FDM-TDM transmultiplexer that accepts complex-valued data at fs Hz and one
that uses the techniques described here and accepts real-valued data at a rate of 2 fs Hz shows that the only
di�erence is these last two stages. If the transform size is large and/or Q is large, then the computation
associated with these two stages may prove negligible, and will almost always be less than that required for a
fullband digital tuner. Thus this approach is usually the best if virtually all of the channels in a real-valued
signal need to be demultiplexed.

Two other notes in passing:

• The pulse response h (k) used for weighting the input data must have a duration of 2NQ points for the
real-valued case, versus NQ for the complex-valued case.

• The analysis used for real-valued inputs can be combined with that used for obtaining an o�set-bin
transmultiplexer of the type discussed in Appendix B.2 to obtain an o�set-bin design that accepts
real-valued data.
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Appendix C1

10.1 Structure and Spectral Description

The focus of this technical note is on the decomposition of an FDM signal into its constituent narrowband
components. As we have seen, the use of the right assumptions allows digital implementation of this operation
to be done very e�ciently with an FDM-to-TDM transmultiplexer. In practice, there are applications in
which it is desirable to perform the converse operation - combine multiple narrowband signals into an FDM
composite. As might be expected, if suitable simplifying assumptions are made, some of the same e�ciencies
that lead to the FDM-to-TDM transmultiplexer allow the formulation of a TDM-to-FDM transmultiplexer.
This appendix demonstrates how this is done. For simplicity, the architecture shown here uses complex-
valued input signals and produces a complex-valued output signal.

The block diagram of a digitally implemented frequency-division multiplexer is shown in Figure 10.1.
Each input signal, denoted xn (r), is complex-valued and sampled at a rate of fs

M . It is zero-�lled by the
factor M to produce the sequence xn (k) and then lowpass-�ltered to produce the interpolated sequence
ρn (k). This interpolated sequence is then upconverted by ωn and then added with other similarly processed
inputs to produce the FDM output y (k).

Figure 10.1: Analytical View of a TDM-FDM Transmultiplexer

The spectral implications of these steps are shown in Figure 10.2. We start by assuming that the
narrowband input signal's spectrum is as shown in Figure 10.2(a). The zero-�lling process creates M − 1

1This content is available online at <http://cnx.org/content/m32675/1.2/>.
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additional images of the input spectrum and expands the sampling rate to fs Hz. A properly designed
lowpass �lter removes the images created by the zero-�lling, leaving only the original image centered at DC,
shown in Figure 10.2(d). Multiplication by ejωnkT translates the signal so that it is centered at ωn Hz. If
the other translation frequencies are chosen so that the other upconverted input signals do not overlap, then
the situation shown in Figure 10.2(f) results, that is, the separate input narrowband signals all appear in
the single composite output y (k), but in disjoint spectral bands.
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Figure 10.2: Spectral Implications of Passing a Signal Through a TDM-to-FDM Transmultiplexer



76 CHAPTER 10. APPENDIX C

10.2 Mathematical description of equations

We now develop a set that describes the block diagram shown in Figure 10.1. The zero-�lled input xn (k) is
given by

x} (k) = {
xn (r) , k = rM, p = 0,

0, k 6= rM, p 6= 0,
(10.1)

that is, xn (k) equals xn (r) when k = Mr but equals 0 otherwise. If we write k as k ≡ rM + p, with p

ranging from 0 to M − 1, then we see that xn (k) equals zero unless p = 0.
The next step is the lowpass �ltering of the zero-�lled sequence. Denote the pulse response of this �lter,

as usual, by h (`), where ` runs from 0 to L − 1, and L is the pulse response duration. With no loss of
generality we can assume that L is an integer multiple of M, the interpolation factor, and therefore that
there exists some positive integer Q that satis�es the equation L ≡ QM . This in turn allows `, the running
index of the pulse response, to be written as ` = qM + v, where the integer q runs from 0 to Q− 1 and the
integer v runs from 0 to M − 1.

The output of the lowpass interpolation �lter ρn (k) is given by the expression

pn (k) =
L−1∑
`=0

xn (k − `)h (`) =
Q−1∑
q=0

M−1∑
ν=0

xn (k − qM − ν)h (qM + ν) (10.2)

Substituting the decomposition of k as rM + p yields

pn (k) =
Q−1∑
q=0

M−1∑
ν=0

xn ((r − q)M + (p− ν))h (qM + ν) (10.3)

Note that xn (k) has the sifting property, that is, it is non-zero only when p−v = 0, because of its zero-�lling.
Using this, we can write ρ (k) ≡ ρ (r, p) as

ρn (k) ≡ ρn (r, p) =
Q−1∑
q=0

xn (r − q)h (qM + p) (10.4)

Note the close relationship of this expression to the ones developed for v (r, p) in previous sections. It is a
weighted combination of the input data and, so far, does not depend on the frequency to which the signal
will be upconverted.

Now we produce the multiplexer output by upconverting each interpolated input, indexed by n, to its
desired center frequency ωn and then summing them. This sum is given by

y (k) =
N−1∑
n=0

ρn (k) ejωnkT (10.5)

where N is the number of components to be multiplexed.
If we substitute the expression of ρn (k) = ρn (r, p) into (10.5), decompose k in the exponential's argument

into r and p, and reverse the order of summation, we obtain a general expression for a digital frequency-
division multiplexer:

y (k) =
∑N−1
n=0 e

jωnrMT · ejωnpT {
∑Q−1
q=0 xn (r − q)h (qM + p)}

=
∑Q−1
q=0 h (qM + p) {

∑N−1
n=0 e

jωnrMT ejωnpTxn (r − q)}
(10.6)

This equation assumes that all of the N constituent input signals are sampled at the same rate and that
the same lowpass interpolating �lter is used for each. The upconversion frequencies (the {ωn}) are arbitrary,
however.
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Suppose now that we choose the upconversion frequencies to be regularly spaced in the spectrum between
− fs2 and fs

2 . Mathematically, we do this by assuming that ωn is given by

ωn = 2π
n

NT
, for 0 ≤ n ≤ N − 1 (10.7)

We also de�ne K by the familiar ratio N
M = K. With these assumptions, the expression for y (k) = y (r, p)

further reduces to

y (k) =
Q−1∑
q=0

h (qM + p) {
N−1∑
n=0

ej2π
np
N

[
e2πj nrN xn (r − q)

]
}, (10.8)

the general form of the DFT-based TDM-to-FDM transmultiplexer.
An important special case of the general equation is the one in which the interpolation factor M is chosen

to equal the potential number of upconversion carriers N. In this case, K = 1. For this case to be practical,
the bandwidth of the input processes {xn (r)} must all be less than fs

N Hz and the pulse response h (k) must
be properly designed. When it is true, (10.8) reduces to

y (k) =
Q−1∑
q=0

h (qM + p) {
N−1∑
n=0

ej2π
np
N xn (r − q)}. (10.9)

The sum inside the braces can be recognized as the N-point inverse discrete Fourier transform of all N
inputs xn (r) at time r. To make this clear, we de�ne Dp (t) by the expression

Dp (t) =
N−1∑
n=0

e2πj npN xn (t) (10.10)

for integer time index t. With this de�nition, the equation for the basic TDM-to-FDM transmultiplexer
becomes

y (k = rM + p) ≡ y (r, p) =
Q−1∑
q=0

h (qN + p)Dp (r − q) (10.11)

Thus each sample of the FDM output y (k) is a weighted combination of the current and Q− 1 past DFTs
of the N channel inputs.

A block diagram of the processor implied by (10.11) is shown in Figure 10.3. At each input sampling
instant r, all N inputs to the transmultiplexer are Fourier transformed and the resulting N-point DFT stored
in a bu�er. The transmultiplexer output for each interpolated time instant k = rN + p is computed with a
dot product of the Q points of the pulse response h (qN + p), for 0 ≤ q ≤ Q− 1, and the stored DFT points
Dp (r − q), for q over the same range. Thus 2Q real multiplies are needed for each output, assuming that
h (k) is real-valued, and therefore 2Qfs multiply-adds/sec are needed for this weighting operation.
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Figure 10.3: Block Diagram of the Computational Steps Needed for a Basic TDM-FDM Transmulti-
plexer

10.3 Relationship between the Basic TDM-FDM and FDM-TDM
Transmultiplexers

We immediately observe that this computation is exactly that required to demultiplex all N channels in a
basic FDM-to-TDM transmux. In fact, the FDM-TDM and TDM-FDM transmultiplexers are mathematical
duals of each other and virtually any manipulation feasible with one has its analog in the other. They are not
precisely the same, however. An example is the de�nition of Q and Q. The former depends on fs and N, the
number of channels, while the latter depends on fs and M, the interpolation factor. For the basic transmux
equations N = M and the two are identical, but the fundamental relationship is duality, not equality.

Practically, however, many things are the same. The computation rate has already been shown to be the
same (when the pulse response durations are the same) and the block diagrams are reversed forms of each
other. A few other practical observations can be made:

• Picking M is tantamount to choosing fs.
• Making M = N is equivalent to making the channel tuning frequencies equal to the centers of the

images created by the zero-�lling.
• The pulse response h (`) controls how much of xn (r) leaks into other FDM channels. The design of

h (`) is a compromise between the degree of acceptable passband amplitude distortion, the degree to
which the images of the input signal must be suppressed, and the �lter order L, which proportionally
in�uences the computation needed for the transmultiplexer.

10.4 A Pair of Examples

What is an FDM-TDM Transmultiplexer (Chapter 2) describes several general uses for the FDM-TDM
transmultiplexer and The Impact of Digital Tuning on the Overall design of an FDM-TDM Transmux
(Chapter 5) examined several case histories of such transmultiplexers when used to solve practical problems.
Such depth is not appropriate here, but it useful to see ways in which the TDM-FDM transmultiplexer is
used.

Figure 10.4(a) shows a commercial telephone switching application. Several FDM signals enter the system
and are demultiplexed by using FDM-TDM transmultiplexers. The demultiplexed channels are presented in
a TDM form to the digital switch that reorganizes the voice channel samples in the TDM stream based on
the customer's dialled number. The output TDM data is then converted back to FDM form by using TDM-
to-FDM transmultiplexers. While it may seem curious to convert to TDM form to perform the switching, it
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is commonly done owing to the low cost of digital switching, the high cost of direct switching (for example,
translating) of FDM channels, and the large number of existing analog transmission systems [circa the 1980s].

Figure 10.4: Two Applications of TDM-FDM Transmultiplexers

Figure 10.4(b) shows another example of a TDM-to-FDM transmultiplexer, this one also paired with
a FDM-TDM transmultiplexer. The objective of this architecture is to form an easily controlled, high-
resolution digital FIR �lter. The input signal is decomposed into Nunique bins centered at multiples of fsN
Hz, where fs is the input sampling rate. The output of each bin is scaled by its own gain wn and then applied
to a TDM-FDM transmultiplexer, whose output is the �lter output. If the weighting functions for the two
transmultiplexers, hf (`) and ht (`), respectively, are chosen so that each equivalent tuner has bandwidth of

about fs
N , then it can be seen that this structure resembles a graphic equalizer of the type used in stereo

equipment. If all gains {wn} are equal to unity, then the input signal is decomposed and then recomposed
without signi�cant change. If energy at a speci�c frequency needs to be removed from the output, then
all weights except the one corresponding to the bin with the o�ending energy are set to unity while that
one is lowered, potentially to zero. The concept carries forward to the design of �lters with rather general
amplitude and phase responses with the proper choice of the weights. The pulse response of the structure
has duration of about Lf + Lt = (Qf +Qt)N , depending on how hf and ht are selected, and the �lter has
N degrees of freedom.

Why is this �lter structure attractive if it o�ers the user fewer degrees of freedom in pulse response
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selection than the e�ective length of the �lter pulse response? The answer comes in its ease of control. A
single change in a single coe�cient of a conventional transversal FIR �lter changes the frequency response
of the �lter at all frequencies. Conversely, with the transmultiplexer/channel bank approach, the change of
one coe�cient a�ects only a spectral band known a priori to the user.

This type of behavior makes it well suited to use in adaptive digital �lters, and particularly in those
whose purpose is to remove concentrated interfering signals from the signal of actual interest to the user.
An FDM-TDM/TDM-FDM transmultiplexer pair used to build such an adaptive �lter is described in [2].
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