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Chapter 1

Preface to "A Wavelet tour of Signal

Processing"1

note: Additional �gures, numerical and programming tools as well as exercises for this book may
be found at http://www.wavelet-tour.com/ 2 .

1.1 Preface to the Sparse Edition

I can not help but �nd striking resemblances between scienti�c communities and schools of �sh. We interact
in conferences and through articles, we move together while a global trajectory emerges from individual
contributions. Some of us like to be at the center of the school, others prefer to wander around, and few
swim in multiple directions in front. To avoid dying by starvation in a progressively narrower and specialized
domain, a scienti�c community needs to move on. Computational harmonic analysis is still well alive because
it went beyond wavelets. Writing such a book is about decoding the trajectory of the school, and gathering
the pearls that have been uncovered on the way. Wavelets are not any more the central topic, despite the
original title. It is just an important tool, as the Fourier transform is. Sparse representation and processing
are now at the core.

In the 80's, many researchers were focused on building time-frequency decompositions, trying to avoid the
uncertainty barrier, and hoping to discover the ultimate representation. Along the way came the construction
of wavelet orthogonal bases, which opened new perspectives through collaborations with physicists and
mathematicians. Designing orthogonal bases with Xlets became a popular sport, with compression and
noise reduction applications. Connections with approximations and sparsity also became more apparent.
The search for sparsity has taken over, leading to new grounds, where orthonormal bases are replaced
by redundant dictionaries of waveforms. Geometry is now also becoming more apparent through sparse
approximation supports in dictionaries.

During these last 7 years, I also encountered the industrial world. With a lot of naiveness, some bandlets
and more mathematics, we created a start-up with Christophe Bernard, Jérome Kalifa and Erwan Le Pen-
nec. It took us some time to learn that in 3 months good engineering should produce robust algorithms that
operate in real time, as opposed to the 3 years we were used to have for writing new ideas with promissing
perspectives. Yet, we survived because mathematics is a major source of industrial innovations for signal
processing. Semi-conductor technology o�ers amazing computational power and �exibility. However, ad-hoc
algorithms often do not scale easily and mathematics accelerates the trial and error development process.
Sparsity decreases computations, memory and data communications. Although it brings beauty, mathe-
matical understanding is not a luxury. It is required by increasingly sophisticated information processing

1This content is available online at <http://cnx.org/content/m23072/1.3/>.
2http://www.wavelet-tour.com/
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CHAPTER 1. PREFACE TO "A WAVELET TOUR OF SIGNAL

PROCESSING"

devices.

1.1.1 New Additions

Putting sparsity at the center of the book implied rewriting many parts and adding sections. Chapter 12 and
Chapter 13 are new. They introduce sparse representations in redundant dictionaries, and inverse problems,
super-resolution and compressive sensing. Here is a small catalogue of new elements in this third edition.
• Radon transform and tomography.
• Lifting for wavelets on surfaces, bounded domains and fast computations.
• JPEG-2000 image compression.
• Block thresholding for denoising.
• Geometric representations with adaptive triangulations, curvelets and bandlets.
• Sparse approximations in redundant dictionaries with pursuits algorithms.
• Noise reduction with model selection, in redundant dictionaries.
• Exact recovery of sparse approximation supports in dictionaries.
• Multichannel signal representations and processing.
• Dictionary learning.
• Inverse problems and super-resolution.
• Compressive sensing.
• Source separation.

1.1.2 Teaching

This book is intended as a graduate textbook. Its evolution is also the result of teaching courses in electrical
engineering and applied mathematics. A new web site provides softwares for reproducible experimentations,
exercise solutions, together with teaching material such as slides with �gures, and Matlab softwares for
numerical classes: http://wavelet-tour.com.

More exercises have been added at the end of each chapter, ordered by level of di�culty. Level1 exercises
are direct applications of the course. Level2 requires more thinking. Level3 includes some technical deriva-
tions. Level4 are projects at the interface of research, that are possible topics for a �nal course project or an
independent study. More exercises and projects can be found in the web site.

1.1.3 Sparse Course Programs

The Fourier transform and analog to digital conversion through linear sampling approximations provide a
common ground for all courses (Chapters 2 and 3). It introduces basic signal representations, and reviews
important mathematical and algorithmic tools needed afterwards. Many trajectories are then possible to
explore and teach sparse signal processing. The following list gives several topics that can orient the course
structure, with elements that can be covered along the way.

Sparse representations with bases and applications
• Principles of linear and non-linear approximations in bases (Chapter 9).
• Lipschitz regularity and wavelet coe�cients decay (Chapter 6).
• Wavelet bases (Chapter 7).
• Properties of linear and non-linear wavelet basis approximations (Chapter 9).
• Image wavelet compression (Chapter 10).
• Linear and non-linear diagonal denoising (Chapter 11).
Sparse time-frequency representations
• Time-frequency wavelet and windowed Fourier ridges for audio processing (Chapter 4).
• Local cosine bases (Chapter 8).
• Linear and non-linear approximations in bases (Chapter 9).
• Audio compression (Chapter 10).
• Audio denoising and block thresholding (Chapter 11).
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• Compression and denoising in redundant time-frequency dictionaries, with best bases or pursuit algo-
rithms (Chapter 12).

Sparse signal estimation
• Bayes versus minimax, and linear versus non-linear estimations (Chapter 11).
• Wavelet bases (Chapter 7).
• Linear and non-linear approximations in bases (Chapter 9).
• Thresholding estimation (Chapter 11).
• Minimax optimality (Chapter 11).
• Model selection for denoising in redundant dictionaries (Chapter 12).
• Compressive sensing (Chapter 13).
Sparse compression and information theory
• Wavelet orthonormal bases (Chapter 7).
• Linear and non-linear approximations in bases (Chapter 9).
• Compression and sparse transform codes in bases (Chapter 10).
• Compression in redundant dictionaries (Chapter 12).
• Compressive sensing (Chapter 13).
• Source separation (Chapter 13).
Dictionary representations and inverse problems
• Frames and Riesz bases (Chapter 5).
• Linear and non-linear approximations in bases (Chapter 9).
• Ideal redundant dictionary approximations (Chapter 12).
• Pursuit algorithms and dictionary incoherence (Chapter 12).
• Linear and thresholding inverse estimators (Chapter 13).
• Super-resolution and source separation (Chapter 13).
• Compressive sensing (Chapter 13).
Geometric sparse processing
• Time-frequency spectral lines and ridges (Chapter 4).
• Frames and Riesz bases (Chapter 5).
• Multiscale edge representations with wavelet maxima (Chapter 6).
• Sparse approximation supports in bases (Chapter 9).
• Approximations with geometric regularity, curvelets and bandlets (Chapters 9 and 12).
• Sparse signal compression and geometric bit budget (Chapters 10 and 12).
• Exact recovery of sparse approximation supports (Chapter 12).
• Super-resolution (Chapter 13).

1.1.4 Acknowledgments

Some things do not change with new editions, in particular the traces left by the ones that were, and remain
important references for me. As always, I am deeply grateful to Ruzena Bajcsy and Yves Meyer.

I spent the last few years, with three brilliant and kind colleagues, Christophe Bernard, Jérome Kalifa,
and Erwan Le Pennec, in a pressure cooker called a start-up. Pressure means stress, despite very good
moments. The resulting sauce was a blend of what all of us could provide, and which brought new �avors
to our personalities. I am thankful to them for the ones I got, some of which I am still discovering.

This new edition is the result of a collaboration with Gabriel Peyré, who made these changes not only
possible, but also very interesting to do. I thank him for his remarkable work and help.
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Chapter 2

Introduction to "A Wavelet tour of

Signal Processing"1

2.1 Sparse Representations

Signals carry overwhelming amounts of data in which relevant information is often more di�cult to �nd than
a needle in a haystack. Processing is faster and simpler in a sparse representation where few coe�cients
reveal the information we are looking for. Such representations can be constructed by decomposing signals
over elementary waveforms chosen in a family called a dictionary. But the search for the Holy Grail of an
ideal sparse transform adapted to all signals is a hopeless quest. The discovery of wavelet orthogonal bases
and local time-frequency dictionaries has opened the door to a huge jungle of new transforms. Adapting
sparse representations to signal properties, and deriving e�cient processing operators, is therefore a necessary
survival strategy.

An orthogonal basis is a dictionary of minimum size that can yield a sparse representation if designed
to concentrate the signal energy over a set of few vectors. This set gives a geometric signal description.
E�cient signal compression and noise-reduction algorithms are then implemented with diagonal operators
computedwith fast algorithms. But this is not always optimal.

In natural languages, a richer dictionary helps to build shorter and more precise sentences. Similarly,
dictionaries of vectors that are larger than bases are needed to build sparse representations of complex
signals. But choosing is di�cult and requires more complex algorithms. Sparse representations in redundant
dictionaries can improve pattern recognition, compression, and noise reduction, but also the resolution of
new inverse problems. This includes superresolution, source separation, and compressive sensing.

This �rst chapter is a sparse book representation, providing the story line and the main ideas. It gives a
sense of orientation for choosing a path to travel.

1This content is available online at <http://cnx.org/content/m23070/1.3/>.
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Chapter 3

Computational Harmonic Analysis1

Fourier and wavelet bases are the journey's starting point. They decompose signals over oscillatory waveforms
that reveal many signal properties and provide a path to sparse representations. Discretized signals often
have a very large size N ≥ 106, and thus can only be processed by fast algorithms, typically implemented
with O (NlogN) operations and memories. Fourier and wavelet transforms illustrate the strong connection
between well-structured mathematical tools andfast algorithms.

3.1 The Fourier Kingdom

The Fourier transform is everywhere in physics and mathematics because it diagonalizes time-invariant
convolution operators. It rules over linear time-invariant signal processing, the building blocks of which are
frequency �ltering operators.

Fourier analysis represents any �nite energy function f (t) as a sum of sinusoidal waves eiωt:

f (t) = 1
2π

∫ +∞
−∞

^
f (ω) eiωt dω. (3.1)

The amplitude
^
f (ω) of each sinusoidal wave eiωt is equal to its correlation with f , also called Fourier

transform:

^
f (ω) =

∫ +∞
−∞ f (t) e−iωt dt. (3.2)

The more regular f (t), the faster the decay of the sinusoidal wave amplitude |
^
f (ω) | when frequency ω

increases.
When f (t) is de�ned only on an interval, say [0, 1], then the Fourier transform becomes a decompo-

sition in a Fourier orthonormal basis {ei2πmt}m∈Z of L2 (R) [0, 1]. If f (t) is uniformly regular, then its
Fourier transform coe�cients also have a fast decay when the frequency 2πm increases, so it can be easily
approximated with few low-frequency Fourier coe�cients. The Fourier transform therefore de�nes a sparse
representation of uniformly regular functions.

Over discrete signals, the Fourier transform is a decomposition in a discrete orthogonal Fourier basis
{ei2πkn/N}0≤k<N of CN , which has properties similar to a Fourier transform on functions. Its embedded
structure leads to fast Fourier transform (FFT) algorithms, which compute discrete Fourier coe�cients with
O (NlogN) instead of N2. This FFT algorithm is a cornerstone of discrete signal processing.

As long as we are satis�ed with linear time-invariant operators or uniformly regular signals, the Fourier
transform provides simple answers to most questions. Its richness makes it suitable for a wide range of

1This content is available online at <http://cnx.org/content/m23069/1.2/>.
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8 CHAPTER 3. COMPUTATIONAL HARMONIC ANALYSIS

applications such as signal transmissions or stationary signal processing. However, to represent a transient
phenomenon�a word pronounced at a particular time, an apple located in the left corner of an image�the
Fourier transform becomes a cumbersome tool that requires many coe�cients to represent a localized event.

Indeed, the support of eiωt covers the whole real line, so
^
f (ω) depends on the values f (t) for all times

t ∈ R. This global �mix� of information makes it di�cult to analyze or represent any local property of f (t)

from
^
f (ω).

3.2 Wavelet Bases

Wavelet bases, like Fourier bases, reveal the signal regularity through the amplitude of coe�cients, and their
structure leads to a fast computational algorithm. However, wavelets are well localized and few coe�cients
are needed to represent local transient structures. As opposed to a Fourier basis, a wavelet basis de�nes a
sparse representation of piecewise regular signals, which may include transients and singularities. In images,
large wavelet coe�cients are located in the neighborhood of edges and irregular textures.

The story began in 1910, when Haar (Haar:10) constructed a piecewise constantfunction

ψ (t) = {
1 if 0 ≤ t < 1/2

−1 if 1/2 ≤ t < 1

0 otherwise

(3.3)

the dilations and translations of which generate an orthonormal basis

{ψ j,n (t) =
1√
2 j

ψ

(
t− 2 jn

2 j

)
}

( j,n)∈Z2

(3.4)

of the space L2 (R) of signals having a �nite energy

‖ f ‖2 =
∫ +∞

−∞
| f (t) |2 dt < +∞. (3.5)

Let us write < f, g >=
∫ +∞
−∞ f (t) g∗ (t) dt�the inner product in L2 (R). Any �nite energy signal f can

thus be represented by its wavelet inner-product coe�cients

< f,ψ j,n >=
∫ +∞

−∞
f (t) ψ j,n (t) dt (3.6)

and recovered by summing them in this wavelet orthonormal basis:

f =
∑+∞

j=−∞
∑+∞
n=−∞ < f,ψ j,n > ψj,n. (3.7)

Each Haar wavelet ψ j,n (t) has a zero average over its support
[
2 jn, 2 j (n+ 1)

]
. If f is locally regular and

2 j is small, then it is nearly constant over this interval and the wavelet coe�cient < f, ψ j,n > is nearly
zero. This means that large wavelet coe�cients are located at sharp signal transitions only.

With a jump in time, the story continues in 1980, when Strömberg (Stromberg:81) found a piecewise linear
function ψ that also generates an orthonormal basis and gives better approximations of smooth functions.
Meyer was not aware of this result, and motivated by the work of Morlet and Grossmann over continuous
wavelet transform, he tried to prove that there exists no regular wavelet ψ that generates an orthonormal
basis. This attempt was a failure since he ended up constructing a whole family of orthonormal wavelet bases,
with functions ψ that are in�nitely continuously di�erentiable (Meyer:86). This was the fundamental impulse
that led to a widespread search for new orthonormal wavelet bases, which culminated in the celebrated
Daubechies wavelets of compact support (Daubechies:88).
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The systematic theory for constructing orthonormal wavelet bases was established by Meyer and Mallat
through the elaboration of multiresolution signal approximations (Mallat:89b), as presented in Chapter 7.
It was inspired by original ideas developed in computer vision by Burt and Adelson (BurtA:83) to analyze
images at several resolutions. Digging deeper into the properties of orthogonal wavelets and multiresolution
approximations brought to light a surprising link with �lter banks constructed with conjugate mirror �lters,
and a fast wavelet transform algorithm decomposing signals of size N with O (N) operations (Mallat:89).

3.2.1 Filter Banks

Motivated by speech compression, in 1976 Croisier, Esteban, and Galand (CroisierEG:76) introduced an
invertible �lter bank, which decomposes a discrete signal f [n] into two signals of half its size using a
�ltering and subsampling procedure. They showed that f [n] can be recovered from these subsampled
signals by canceling the aliasing terms with a particular class of �lters called conjugate mirror �lters. This
breakthrough led to a 10-year research e�ort to build a complete �lter bank theory. Necessary and su�cient
conditions for decomposing a signal in subsampled components with a �ltering scheme, and recovering the
same signal with an inverse transform, were established by Smith and Barnwell (SmithB:84), Vaidyanathan
(Vaidyanathan:87), andVetterli (Vetterli:86).

The multiresolution theory of Mallat (Mallat:89b) and Meyer (Meyer:92c) proves that any conjugate
mirror �lter characterizes a wavelet ψ that generates an orthonormal basis of L2 (R), and that a fast discrete
wavelet transform is implemented by cascading these conjugate mirror �lters (Mallat:89). The equivalence
between this continuous time wavelet theory and discrete �lter banks led to a new fruitful interface between
digital signal processing and harmonic analysis, �rst creating a culture shock that is now well resolved.

3.2.2 Continuous versus Discrete and Finite

Originally, many signal processing engineers were wondering what is the point of considering wavelets and
signals as functions, since all computations are performed over discrete signals with conjugate mirror �lters.
Why bother with the convergence of in�nite convolution cascades if in practice we only compute a �nite
number of convolutions? Answering these important questions is necessary in order to understand why this
book alternates between theorems on continuous time functions and discrete algorithms applied to �nite
sequences.

A short answer would be �simplicity.� In L2 (R), a wavelet basis is constructedby dilating and translating
a single function ψ. Several important theorems relate the amplitude of wavelet coe�cients to the local
regularity of the signal f . Dilations are not de�ned over discrete sequences, and discrete wavelet bases
are therefore more complex to describe. The regularity of a discrete sequence is not well de�ned either,
which makes it more di�cult to interpret the amplitude of wavelet coe�cients. A theory of continuous-time
functions gives asymptotic results for discrete sequences with sampling intervals decreasing to zero. This
theory is useful because these asymptotic results are precise enough to understand the behavior of discrete
algorithms.

But continuous time or space models are not su�cient for elaborating discrete signal-processing algo-
rithms. The transition between continuous and discrete signals must be done with great care to maintain
important properties such as orthogonality. Restricting the constructions to �nite discrete signals adds
another layer of complexity because of border problems. How these border issues a�ect numerical imple-
mentations is carefully addressed once the properties of the bases are thoroughly understood.

3.2.3 Wavelets for Images

Wavelet orthonormal bases of images can be constructed from wavelet orthonormal bases of one-dimensional
signals. Three mother wavelets ψ1 (x), ψ2 (x), and ψ3 (x), with x = (x1, x2) ∈ R2, are dilated by 2 j and
translated by 2 jn with n = (n1, n2) ∈ Z2. This yields an orthonormal basis of the space L2

(
R2
)
of �nite
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energy functions f (x) = f (x1, x2):

{ψkj,n (x) =
1

2 j
ψk
(
x− 2 jn

2 j

)
}
j∈Z,n∈Z2,1≤k≤3

(3.8)

The support of a wavelet ψkj,n is a square of width proportional to the scale 2 j .Two-dimensional wavelet
bases are discretized to de�ne orthonormal bases of images including N pixels. Wavelet coe�cients are
calculated with the fast O (N) algorithm described in Chapter 7.

Like in one dimension, a wavelet coe�cient < f,ψkj,n > has a small amplitude if f (x) is regular over

the support of ψkj,n. It has a large amplitude near sharp transi-tions such as edges. Figure (b) is the array

of N wavelet coe�cients. Each direction k and scale 2 j corresponds to a subimage, which shows in black
the position of the largest coe�cients above a threshold: | < f, ψkj,n > | ≥ T .
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Figure 3.1: (a) Discrete image f [n] of N = 2562 pixels. (b) Array of N orthogonal wavelet coe�cients
< f, ψkj,n > for k = 1, 2, 3, and 4 scales 2 j ; black points correspond to | < f, ψkj,n > | > T . (c)
Linear approximation from the N/16 wavelet coe�cients at the three largest scales. (d) Nonlinear
approximation from the M = N/16 wavelet coe�cients of largest amplitude shown in (b).
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Chapter 4

Approximation and Processing in Bases1

Analog-to-digital signal conversion is the �rst step of digital signal processing. Chapter 3 explains that it
amounts to projecting the signal over a basis of an approximation space. Most often, the resulting digital
representation remains much too large and needs to be further reduced. A digital image typically includes
more than 106 samples and a CDmusic recording has 40×103 samples per second. Sparse representations that
reduce the number of parameters can be obtained by thresholding coe�cients in an appropriate orthogonal
basis. E�cient compression and noise-reduction algorithms are then implemented with simple operators in
this basis.

4.1 Stochastic versus Deterministic Signal Models

A representation is optimized relative to a signal class, corresponding to all potential signals encountered in
an application. This requires building signal models that carry available prior information.

A signal f can be modeled as a realization of a random process F , the probability distribution of which
is known a priori. A Bayesian approach then tries to minimize the expected approximation error. Linear
approximations are simpler because they only depend on the covariance. Chapter 9 shows that optimal
linear approximations are obtained on the basis of principal components that are the eigenvectors of the
covariance matrix. However, the expected error of nonlinear approximations depends on the full probability
distribution of F . This distribution is most often not known for complex signals, such as images or sounds,
because their transient structures are not adequately modeled as realizations of known processes such as
Gaussian ones.

To optimize nonlinear representations, weaker but su�ciently powerful deterministic models can be elab-
orated. A deterministic model speci�es a set Θ, where the signal belongs. This set is de�ned by any prior
information�for example, on the time-frequency localization of transients in musical recordings or on the
geometric regularity of edges in images. Simple models can also de�ne Θ as a ball in a functional space, with
a speci�c regularity norm such as a total variation norm. A stochastic model is richer because it provides the
probability distribution in Θ. When this distribution is not available, the average error cannot be calculated
and is replaced by the maximum error over Θ. Optimizing the representation then amounts to mini-mizing
this maximum error, which is called a minimax optimization.

4.2 Sampling with Linear Approximations

Analog-to-digital signal conversion is most often implemented with a linear approximation operator that
�lters and samples the input analog signal. From these samples, a linear digital-to-analog converter recovers
a projection of the original analog signal over an approximation space whose dimension depends on the

1This content is available online at <http://cnx.org/content/m23068/1.2/>.
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sampling density. Linear approximations project signals in spaces of lowest possible dimensions to reduce
computations and storage cost, while controlling the resulting error.

4.2.1 Sampling Theorems

Let us consider �nite energy signals ‖ f‖2 =
∫
| f (x) |2 dx of �nite support, which is normalized to [0, 1] or

[0, 1]2 for images. A sampling process implements a �ltering of f (x) with a low-pass impulse response φs (x)
and a uniform sampling to output a discrete signal:

f [n] = f[U+2606]φs (ns) for 0 ≤ n < N. (4.1)

In two dimensions, n = (n1, n2) and x = (x1, x2). These �ltered samples can also be written as inner
products:

f[U+2606]φs (ns) =
∫
f (u) φs (ns− u) du =< f (x) , φs (x− ns) > (4.2)

with φs (x) = φs (−x). Chapter 3 explains that φs is chosen, like in the classic Shannon�Whittaker sampling
theorem, so that a family of functions {φs (x− ns)}1≤n≤N is a basis of an appropriate approximation space

UN. The best linear approximation of f in UN recovered from these samples is the orthogonal projection fN
of f in UN, and if the basis is orthonormal, then

fN (x) =
∑N−1
n=0 f [n] φs (x− ns) . (4.3)

A sampling theorem states that if f ∈ UN then f = fN so recovers f (x) from the measured samples.
Most often, f does not belong to this approximation space. It is called aliasing in the context of Shannon�
Whittaker sampling, where UN is the space of functions having a frequency support restricted to the N lower
frequencies. The approximation error ‖ f − fN‖

2
must then be controlled.

4.2.2 Linear Approximation Error

The approximation error is computed by �nding an orthogonal basis B = {gm (x)}0≤m<+∞ of the whole

analog signal space L2 (R) [0, 1]2, with the �rst N vector {gm (x)}0≤m<N that de�nes an orthogonal basis of
UN. Thus, the orthogonal projection on UN can be rewritten as

fN (x) =
N−1∑
m=0

< f, gm > gm (x) . (4.4)

Since f =
∑+∞
m=0 < f, gm > gm, the approximation error is the energy of the removed inner products:

εl (N, f) =‖ f − fN‖
2 =

+∞∑
m=N

| < f, gm > |2. (4.5)

This error decreases quickly when N increases if the coe�cient amplitudes | < f, gm > | have a fast decay
when the index m increases. The dimension N is adjusted to the desired approximation error.

Figure (a) shows a discrete image f [n] approximated with N = 2562 pixels. Figure (c) displays a
lower-resolution image fN/16 projected on a space UN/16 of dimension N/16, generated by N/16 large-scale
wavelets. It is calculated by setting all the wavelet coe�cients to zero at the �rst two smaller scales. The
approximation error is ‖ f − fN/16‖

2
/‖ f ‖2 = 14 × 10−3. Reducing the resolution introduces more blur

and errors. A linear approximation space UN corresponds to a uniform grid that approximates precisely
uniform regular signals. Since images f are often not uniformly regular, it is necessary to measure it at a
high-resolution N. This is why digital cameras have a resolution that increases as technology improves.
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4.3 Sparse Nonlinear Approximations

Linear approximations reduce the space dimensionality but can introduce important errors when reducing
the resolution if the signal is not uniformly regular, as shown by Figure (c). To improve such approxima-
tions, more coe�cients should be kept where needed�not in regular regions but near sharp transitions and
edges.This requires de�ning an irregular sampling adapted to the local signal regularity. This optimized
irregular sampling has a simple equivalent solution through nonlinear approximations in wavelet bases.

Nonlinear approximations operate in two stages. First, a linear operator approximates the analog signal
f with N samples written f [n] = f[U+2606]φs (ns). Then, a nonlinear approximation of f [n] is computed
to reduce the N coe�cients f [n] to M � N coe�cients in a sparse representation.

The discrete signal f can be considered as a vector of CN . Inner products and norms in CN are written

< f, g >=
N−1∑
n=0

f [n] g∗[n] and ‖ f ‖2 =
N−1∑
n=0

| f [n] |2. (4.6)

To obtain a sparse representation with a nonlinear approximation, we choose a new orthonormal basis
B = {gm [n]}m∈Γ of CN , which concentrates the signal energy as much as possible over few coe�cients.
Signal coe�cients {< f, gm >}m∈Γ are computed from the N input sample values f [n] with an orthogonal
change of basis that takes N2 operations in nonstructured bases. In a wavelet or Fourier bases, fast algorithms
require, respectively, O (N) and O (Nlog2N) operations.

4.3.1 Approximation by Thresholding

For M < N , an approximation fM is computed by selecting the �best� M < N vectors within B. The
orthogonal projection of f on the space Vλ generated by M vectors {gm}m∈Λ in B is

fλ =
∑
m∈λ < f, gm > gm. (4.7)

Since f =
∑
m∈γ < f, gm > gm, the resulting error is

‖ f − fλ‖2 =
∑
m∈/λ | < f, gm > |2. (4.8)

We write |λ| the size of the set λ. The best M = |λ| term approximation, which minimizes ‖ f − fλ‖2, is
thus obtained by selecting the M coe�cients of largest amplitude. These coe�cients are above a threshold
T that depends on M :

fM = fλT
=
∑
m∈λT

< f, gm > gm with λT = {m ∈ γ : | < f, gm > | ≥ T}. (4.9)

This approximation is nonlinear because the approximation set λT changes with f . The resulting approxi-
mation error is:

εn (M,f) =‖ f − fM‖2 =
∑
m∈/ΛT

| < f, gm > |2. (4.10)

(b) shows that the approximation support λT of an image in a wavelet orthonormal basis depends on the
geometry of edges and textures. Keeping large wavelet coe�cients is equivalent to constructing an adaptive
approximation grid speci�ed by the scale�space support λT. It increases the approximation resolution
where the signal is irregular. The geometry of λT gives the spatial distribution of sharp image transitions
and edges, and their propagation across scales. Chapter 6 proves that wavelet coe�cients give important
information about singularities and local Lipschitz regularity. This example illustrates how approximation
support provides �geometric� information on f , relative to a dictionary, that is a wavelet basis in this
example.

(d) gives the nonlinear wavelet approximation fM recovered from theM = N/16 large-amplitude wavelet

coe�cients, with an error ‖ f − fM‖2/‖ f ‖2 = 5 × 10−3. This error is nearly three times smaller than the
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linear approximation error obtained with the same number of wavelet coe�cients, and the image quality is
much better.

An analog signal can be recovered from the discrete nonlinear approxima-tion fM :

fM (x) =
N−1∑
n=0

fM [n] φs (x− ns) . (4.11)

Since all projections are orthogonal, the overall approximation error on the original analog signal f (x) is
the sum of the analog sampling error and the discrete nonlinear error:

‖ f − fM‖
2 =‖ f − fN‖

2 + ‖ f − fM ‖2 = εl (N, f) + εn (M,f) . (4.12)

In practice, N is imposed by the resolution of the signal-acquisition hardware, and M is typically adjusted
so that εn (M,f) ≥ εl (N, f).

4.3.2 Sparsity with Regularity

Sparse representations are obtained in a basis that takes advantage of some form of regularity of the input
signals, creating many small-amplitude coe�cients. Since wavelets have localized support, functions with
isolated singularities produce few large-amplitude wavelet coe�cients in the neighborhood of these singular-
ities. Nonlinear wavelet approximation produces a small error over spaces of functions that do not have �too
many� sharp transitions and singularities. Chapter 9 shows that functions having a bounded total variation
norm are useful models for images with nonfractal (�nite length) edges.

Edges often de�ne regular geometric curves. Wavelets detect the location of edges but their square
support cannot take advantage of their potential geometric regularity. More sparse representations are
de�ned in dictionaries of curvelets or bandlets, which have elongated support in multiple directions, that
can be adapted to this geometrical regularity. In such dictionaries, the approximation support λT is smaller
but provides explicit information about edges' local geometrical properties such as their orientation. In this
context, geometry does not just apply to multidimensional signals. Audio signals, such as musical recordings,
also have a complex geometric regularity in time-frequency dictionaries.

4.4 Compression

Storage limitations and fast transmission through narrow bandwidth channels require compression of sig-
nals while minimizing degradation. Transform codes compress signals by coding a sparse representation.
Chapter 10 introduces the information theory needed to understand these codes and to optimize their per-
formance.

In a compression framework, the analog signal has already been discretized into a signal f [n] of size N.
This discrete signal is decomposed in an orthonormal basis B = {gm}m∈Γ of CN :

f =
∑
m∈Γ

< f, gm > gm. (4.13)

Coe�cients < f, gm > are approximated by quantized values Q (< f, gm >). If Q is auniform quantizer of
step ∆, then |x − Q (x) | ≤ ∆/2; and if |x| < ∆/2, then Q (x) = 0. The signal f̃ restored from quantized
coe�cients is

f̃ =
∑
m∈Γ

Q (< f, gm >) gm. (4.14)

An entropy code records these coe�cients with R bits. The goal is to minimize the signal-distortion rate
d (R, f) =‖ f̃−f ‖2.
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The coe�cients not quantized to zero correspond to the set λT = {m ∈ γ : | < f, gm > | ≥ T} with
T = ∆/2. For sparse signals, Chapter 10 shows that the bit budget R is dominated by the number of bits to
code λT in γ, which is nearly proportional to its size |λT |. This means that the �information� about a sparse
representation ismostly geometric. Moreover, the distortion is dominated by the nonlinear approximation er-
ror ‖ f−fΛT

‖2, for fΛT
=
∑
m∈λT

< f, gm > gm. Compression is thus a sparse approximation problem. For
a given distortion d (R, f), minimizing R requires reducing |λT | and thus optimizing the sparsity.

The number of bits to code ΛT can take advantage of any prior information on the geometry. (b) shows
that large wavelet coe�cients are not randomly distributed. They have a tendency to be aggregated toward
larger scales, and at �ne scales they are regrouped along edge curves or in texture regions. Using such prior
geometric models is a source of gain in coders such as JPEG-2000.

Chapter 10 describes the implementation of audio transform codes. Image transform codes in block cosine
bases and wavelet bases are introduced, together with the JPEG and JPEG-2000 compression standards.

4.5 Denoising

Signal-acquisition devices add noise that can be reduced by estimators using prior information on signal
properties. Signal processing has long remained mostly Bayesian and linear. Nonlinear smoothing algo-
rithms existed in statistics, but these procedures were often ad hoc and complex. Two statisticians, Donoho
andJohnstone (DonohoJ:94), changed the �game� by proving that simple thresholding in sparse representa-
tions can yield nearly optimal nonlinear estimators. This was the beginning of a considerable re�nement of
nonlinear estimation algorithms that is still ongoing.

Let us consider digital measurements that add a random noise W [n] to the original signal f [n]:

X [n] = f [n] +W [n] for 0 ≤ n < N. (4.15)

The signal f is estimated by transforming the noisy data X with an operator D:

F̃ = DX. (4.16)

The risk of the estimator F̃ of f is the average error, calculated with respect to the probability distribution
of noise W :

r (D, f) = E{‖ f −DX‖2}. (4.17)

4.5.1 Bayes versus Minimax

To optimize the estimation operator D, one must take advantage of prior information available about signal
f . In a Bayes framework, f is considered a realization of a random vector F and the Bayes risk is the
expected risk calculated with respect to the prior probability distribution π of the random signal model F :

r (D,π) = Eπ{r (D,F )}. (4.18)

Optimizing D among all possible operators yields the minimum Bayes risk:

rn (π) = inf
all D

r (D,π) . (4.19)

In the 1940s, Wald brought in a new perspective on statistics with a decision theory partly imported from
the theory of games. This point of view uses deterministic models, where signals are elements of a set Θ,
without specifying their probability distribution in this set. To control the risk for any f ∈ Θ, we compute
the maximum risk:

r (D,Θ) = sup
f∈Θ

r (D, f) . (4.20)
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The minimax risk is the lower bound computed over all operators D:

rn (Θ) = inf
all D

r (D,Θ) . (4.21)

In practice, the goal is to �nd an operator D that is simple to implement and yields a risk close to the
minimax lower bound.

Figure 4.1
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4.5.2 Thresholding Estimators

It is tempting to restrict calculations to linear operators D because of their simplicity. Optimal linear
Wiener estimators are introduced in Chapter 11. Figure (a) is an image contaminated by Gaussian white
noise. Figure (b) shows an optimized linear �ltering estimation F̃ = X [U+2606]h [n], which is therefore
diagonal in a Fourier basis B. This convolution operator averages the noise but also blurs the image and
keeps low-frequency noise by retaining the image's low frequencies.

If f has a sparse representation in a dictionary, then projecting X on the vectors of this sparse support can
considerably improve linear estimators. The di�culty is identifying the sparse support of f from the noisy
data X. Donoho and Johnstone (DonohoJ:94) proved that, in an orthonormal basis, a simple thresholding
of noisy coe�cients does the trick. Noisy signal coe�cients in an orthonormal basisB = {gm}m∈Γ are

< X, gm >=< f, gm > + < W, gm > for m ∈ γ. (4.22)

Thresholding these noisy coe�cients yields an orthogonal projection estimator

F̃ = XΛ̃T
=
∑
m∈Λ̃T

< X, gm > gm with Λ̃T = {m ∈ γ : | < X, gm > | ≥ T}. (4.23)

The set Λ̃T is an estimate of an approximation support of f . It is hopefully close to the optimal approxi-
mation support λT = {m ∈ γ : | < f, gm > | ≥ T}.

Figure 4.1(b) shows the estimated approximation set λ̃T of noisy-wavelet coe�cients, | < X,ψj,n| ≥ T ,
that can be compared to the optimal approximation support ΛT shown in (b). The estimation in Figure 4.1(d)
from wavelet coe�cients in λ̃T has considerably reduced the noise in regular regions while keeping the
sharpness of edges by preserving large-wavelet coe�cients. This estimation is improved with a translation-
invariant procedure that averages this estimator over several translated wavelet bases. Thresholding wavelet
coe�cients implements an adaptive smoothing, which averages the data X with a kernel that depends on
the estimated regularity of the original signal f .

Donoho and Johnstone proved that for Gaussian white noise of variance σ2, choosing T = σ
√

2logeN
yields a risk E{‖ f − F̃‖2} of the order of ‖ f − fΛT

‖2, up to a logeN factor. This spectacular result shows
that the estimated support λ̃T does nearly as well as the optimal unknown support λT. The resulting risk
is small if the representation is sparse and precise.

The set λ̃T in Figure 4.1(b) �looks� di�erent from the λT in (b) because it has more isolated points.
This indicates that some prior information on the geometry of λT could be used to improve the estimation.
For audio noise-reduction, thresholding estimators are applied in sparse representations provided by time-
frequency bases. Similar isolated time-frequency coe�cients produce a highly annoying �musical noise.�
Musical noise is removed with a block thresholding that regularizes the geometry of the estimated support
λ̃T and avoids leaving isolated points. Block thresholding also improves wavelet estimators.

If W is a Gaussian noise and signals in Θ have a sparse representation in B, then Chapter 11 proves that
thresholding estimators can produce a nearly minimax risk. In particular, wavelet thresholding estimators
have a nearly minimax risk for large classes of piecewise smooth signals, including bounded variation images.
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Chapter 5

Time-Frequency Dictionaries1

Motivated by quantum mechanics, in 1946 the physicist Gabor (Gabor:46) proposed decomposing signals
over dictionaries of elementary waveforms which he called time-frequency atoms that have a minimal spread
in a time-frequency plane. By showing that such decompositions are closely related to our perception of
sounds, and that they exhibit important structures in speech and music recordings, Gabor demonstrated the
importance of localized time-frequency signal processing. Beyond sounds, large classes of signals have sparse
decompositions as sums of time-frequency atoms selected from appropriate dictionaries. The key issue is to
understand how to construct dictionaries with time-frequency atoms adapted to signal properties.

5.1 Heisenberg Uncertainty

Figure 5.1: Heisenberg box representing an atom φγ .

A time-frequency dictionary D = {φγ}γ∈Γ is composed of waveforms of unit norm ‖ φγ ‖= 1, which have a
narrow localization in time and frequency. The time localization u of φγ and its spread around u, are de�ned

1This content is available online at <http://cnx.org/content/m23074/1.2/>.
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by

u =
∫
t|φγ(t) |2 dt and σ2

t,γ =
∫
|t− u|

2

|φγ (t) |2 dt. (5.1)

Similarly, the frequency localization and spread of
^
φγ are de�ned by

ξ = (2π)−1
∫
ω|
^
φγ(ω) |2 dω and σ2

ω,γ = (2π)−1
∫
|ω − ξ|

2

|
^
φγ (ω) |

2

dω. (5.2)

The Fourier Parseval formula

< f, φγ >=
∫ +∞
−∞ f (t) φ∗γ (t) dt = 1

2π

∫ +∞
−∞

^
f (ω)

^
φ

∗

γ (ω) dω (5.3)

shows that < f, φγ > depends mostly on the values f (t) and
^
f (ω), where φγ (t) and

^
φγ (ω) are nonneg-

ligible , and hence for (t, ω) in a rectangle centered at (u, ξ), of size σt,γ × σω,γ . This rectangle is illustrated
by Figure 5.1 in this time-frequency plane (t, ω). It can be interpreted as a �quantum of information� over
an elementary resolution cell. The uncertainty principle theorem proves (see Chapter 2) that this rectangle
has a minimum surface that limits the joint time-frequency resolution:

σt,γ σω,γ ≥ 1
2 . (5.4)

Constructing a dictionary of time-frequency atoms can thus be thought of as covering the time-frequency
plane with resolution cells having a time width σt,γ anda frequency width σω,γ which may vary but with a
surface larger than one-half. Windowed Fourier and wavelet transforms are two important examples.

5.2 Windowed Fourier Transform

A windowed Fourier dictionary is constructed by translating in time and frequency a time window g (t), of
unit norm ‖ g ‖= 1, centered at t = 0:

D = {gu,ξ (t) = g (t− u) eiξt}(u,ξ)∈R2 . (5.5)

The atom gu,ξ is translated by u in time and by ξ in frequency. The time-and-frequency spread of gu,ξ is
independent of u and ξ. This means that each atom gu,ξ corresponds to a Heisenberg rectangle that has a
size σt × σω independent of its position (u, ξ), as shown by Figure 5.2.
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Figure 5.2: Time-frequency boxes (�Heisenberg rectangles�) representing the energy spread of two
windowed Fourier atoms.

The windowed Fourier transform projects f on each dictionary atom gu,ξ:

Sf (u, ξ) =< f, gu,ξ >=
∫ +∞
−∞ f (t) g (t− u) e−iξt dt. (5.6)

It can be interpreted as a Fourier transform of f at the frequency ξ, localized by the window g (t− u) in the
neighborhood of u. This windowed Fourier transform is highly redundant and represents one-dimensional
signals by a time-frequency image in (u, ξ). It is thus necessary to understand how to select many fewer
time-frequency coe�cients that represent the signal e�ciently.

When listening to music, we perceive sounds that have a frequency that varies in time. Chapter 4 shows
that a spectral line of f creates high-amplitude windowed Fourier coe�cients Sf (u, ξ) at frequencies ξ (u)
that depend on time u. These spectral components are detected and characterized by ridge points, which
are local maxima in this time-frequency plane. Ridge points de�ne a time-frequency approximation support
λ of f with a geometry that depends on the time-frequency evolution of the signal spectral components.
Modifying the sound duration or audio transpositions are implemented by modifying the geometry of the
ridge support in time frequency.

A windowed Fourier transform decomposes signals over waveforms that have the same time and frequency
resolution. It is thus e�ective as long as the signal does not include structures having di�erent time-frequency
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resolutions, some being very localized in time and others very localized in frequency. Wavelets address this
issue by changing the time and frequency resolution.

5.3 Continuous Wavelet Transform

In re�ection seismology, Morlet knew that the waveforms sent underground have a duration that is too long
at high frequencies to separate the returns of �ne, closely spaced geophysical layers. Such waveforms are
called wavelets in geophysics. Instead of emitting pulses of equal duration, he thought of sending shorter
waveforms at high frequencies. These waveforms were obtained by scaling the mother wavelet, hence the
name of this transform. Although Grossmann was working in theoretical physics, he recognized in Morlet's
approach some ideas that were close to his own work on coherent quantum states.

Nearly forty years after Gabor, Morlet and Grossmann reactivated a fundamental collaboration between
theoretical physics and signal processing, which led to the formalization of the continuous wavelet transform
(GrossmannM:84). These ideas were not totally new to mathematicians working in harmonic analysis, or to
computer vision researchers studying multiscale image processing. It was thus only the beginning of a rapid
catalysis that brought together scientists with very di�erent backgrounds.

A wavelet dictionary is constructed from a mother wavelet ψ of zero average∫ +∞

−∞
ψ (t) dt = 0, (5.7)

which is dilated with a scale parameter s, and translated by u:

D = {ψu,s (t) = 1√
s
ψ
(
t−u
s

)
}
u∈R,s>0

. (5.8)

The continuous wavelet transform of f at any scale s and position u is the projection of f on the corre-
sponding wavelet atom:

W f (u, s) =< f, ψu,s >=
∫ +∞
−∞ f (t) 1√

s
ψ∗
(
t−u
s

)
dt. (5.9)

It represents one-dimensional signals by highly redundant time-scale images in (u, s).

5.3.1 Varying Time-Frequency Resolution

As opposed to windowed Fourier atoms, wavelets have a time-frequency resolution that changes. The wavelet
ψu,s has a time support centered at u and proportional to s. Let us choose a wavelet ψ whose Fourier

transform
^
ψ (ω) is nonzero in a positive frequency interval centered at η. The Fourier transform

^
ψu,s (ω) is

dilated by 1/s and thus is localized in a positive frequency interval centered at ξ = η/s; its size is scaled by
1/s. In the time-frequency plane, the Heisenberg box of a wavelet atom ψu,s is therefore a rectangle centered
at (u, η/s), with time and frequency widths, respectively, proportional to s and 1/s. When s varies, the
time and frequency width of this time-frequency resolution cell changes, but its area remains constant, as
illustrated by Figure 5.3.

Large-amplitude wavelet coe�cients can detect and measure short high-frequency variations because they
have a narrow time localization at high frequencies. At low frequencies their time resolution is lower, but
they have a better frequency resolution. This modi�cation of time and frequency resolution is adapted to
represent sounds with sharp attacks, or radar signals having a frequency that may vary quickly at high
frequencies.

5.3.2 Multiscale Zooming

A wavelet dictionary is also adapted to analyze the scaling evolution of transients with zooming procedures
across scales. Suppose now that ψ is real. Since it has a zero average, a wavelet coe�cientWf (u, s) measures
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the variation of f in a neighborhood of u that has a size proportional to s. Sharp signal transitions create
large-amplitude wavelet coe�cients.

Figure 5.3: Heisenberg time-frequency boxes of two wavelets, ψu,s and ψu0,s0 . When the scale s

decreases, the time support is reduced but the frequency spread increases and covers an interval that is
shifted toward high frequencies.

Signal singularities have speci�c scaling invariance characterized by Lipschitz exponents. Chapter 6
relates the pointwise regularity of f to the asymptotic decay of the wavelet transform amplitude |Wf (u, s) |
when s goes to zero. Singularities are detected by following the local maxima of the wavelet transform
acrossscales.

In images, wavelet local maxima indicate the position of edges, which are sharp variations of image
intensity. It de�nes scale�space approximation support of f from which precise image approximations are
reconstructed. At di�erent scales, the geometry of this local maxima support provides contours of image
structures of varying sizes. This multiscale edge detection is particularly e�ective for pattern recognition in
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computer vision (Canny:86).
The zooming capability of the wavelet transform not only locates isolated singular events, but can also

characterize more complex multifractal signals having nonisolated singularities. Mandelbrot (Mandelbrot:82)
was the �rst to recognize the existence of multifractals in most corners of nature. Scaling one part of
a multifractal produces a signal that is statistically similar to the whole. This self-similarity appears in
the continuous wavelet transform, which modi�es the analyzing scale. From global measurements of the
wavelet transform decay, Chapter 6 measures the singularity distribution of multifractals. This is particularly
important in analyzing their properties and testing multifractal models in physics or in �nancial time series.

5.4 Time-Frequency Orthonormal Bases

Orthonormal bases of time-frequency atoms remove all redundancy and de�ne stable representations. A
wavelet orthonormal basis is an example of the time-frequency basis obtained by scaling a wavelet ψ with
dyadic scales s = 2 j and translating it by 2 jn, which is written ψj,n. In the time-frequency plane, the
Heisenberg resolution box of ψj,n is a dilation by 2 j and translation by 2 jn of the Heisenberg box of ψ. A
wavelet orthonormal is thus a subdictionary of the continuous wavelet transform dictionary, which yields a
perfect tiling of the time-frequency plane illustrated in Figure 5.4.
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Figure 5.4: The time-frequency boxes of a wavelet basis de�ne a tiling of the time-frequency plane.

One can construct many other orthonormal bases of time-frequency atoms, corresponding to di�erent
tilings of the time-frequency plane. Wavelet packet and local cosine bases are two important examples
constructed in Chapter 8, with time-frequency atoms that split the frequency and the time axis, respectively,
in intervals of varying sizes.

5.4.1 Wavelet Packet Bases

Wavelet bases divide the frequency axis into intervals of 1 octave bandwidth. Coifman, Meyer, and Wick-
erhauser (CoifmanMW:92) have generalized this construction with bases that split the frequency axis in
intervals of bandwidth that may be adjusted. Each frequency interval is covered by the Heisenberg time-
frequency boxes of wavelet packet functions translated in time, in order to cover the whole plane, as shown
by Figure 5.5.

As for wavelets, wavelet-packet coe�cients are obtained with a �lter bank of conjugate mirror �lters
that split the frequency axis in several frequency intervals. Di�erent frequency segmentations correspond to
di�erent wavelet packet bases. For images, a �lter bank divides the image frequency support in squares of
dyadic sizes that can be adjusted.
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Figure 5.5: A wavelet packet basis divides the frequency axis in separate intervals of varying sizes. A
tiling is obtained by translating in time the wavelet packets covering each frequency interval.

5.4.2 Local Cosine Bases

Local cosine orthonormal bases are constructed by dividing the time axis instead of the frequency axis. The
time axis is segmented in successive intervals [ap, ap+1]. The local cosine bases of Malvar (Malvar:88) are
obtained by designing smooth windows gp (t) that cover each interval [ap, ap+1], and by multiplying them by
cosine functions cos (ξt+ φ) of di�erent frequencies. This is yet another idea that has been independently
studied in physics, signal processing, and mathematics. Malvar's original construction was for discrete signals.
At the same time, the physicist Wilson (Wilson:87) was designing a local cosine basis, with smooth windows
of in�nite support, to analyze the properties of quantum coherent states. Malvar bases were also rediscovered
and generalized by the harmonic analysts Coifman and Meyer (CoifmanM:91). These di�erent views of the
same bases brought to light mathematical and algorithmic properties that opened new applications.

A multiplication by cos (ξt+ φ) translates the Fourier transform
^
gp (ω) of gp (t) by ±ξ. Over positive

frequencies, the time-frequency box of the modulated window gp (t) cos (ξt+ φ) is therefore equal to the
time-frequency box of gp translated by ξ along frequencies. shows the time-frequency tiling corresponding
to such a local cosine basis. For images, a two-dimensional cosine basis is constructed by dividing the image
support in squares of varying sizes.



Chapter 6

Sparsity in Redundant Dictionaries1

In natural languages, large dictionaries are needed to re�ne ideas with short sentences, and they evolve
with usage. Eskimos have eight di�erent words to describe snow quality, whereas a single word is typically
su�cient in a Parisian dictionary.Similarly, large signal dictionaries of vectors are needed to construct sparse
representations of complex signals. However, computing and optimizing a signal approximation by choosing
the best M dictionary vectors is much more di�cult.

1This content is available online at <http://cnx.org/content/m23073/1.2/>.
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Figure 6.1: A local cosine basis divides the time axis with smooth windows gp (t) and translates these
windows into frequency.

6.1 Frame Analysis and Synthesis

Suppose that a sparse family of vectors {φp}p∈Λ has been selected to approximate a signal f . An approxi-
mation can be recovered as an orthogonal projection in the space Vλ generated by these vectors. We then
face one of the following twoproblems.

1. In a dual-synthesis problem, the orthogonal projection fλ of f in Vλ must be computed from dictionary
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coe�cients, {< f, φp >}p∈λ, provided by an analysis operator. This is the case when a signal transform

{< f, φp >}p∈Γ is calculated in some large dictionary and a subset of inner products are selected. Such
inner products may correspond to coe�cients above a threshold or local maxima values.

2. In a dual-analysis problem, the decomposition coe�cients of fλ must be computed on a family of
selected vectors {φp}p∈Λ. This problem appears when sparse representation algorithms select vectors
as opposed to inner products. This is the case for pursuit algorithms, which compute approximation
supports in highly redundant dictionaries.

The frame theory gives energy equivalence conditions to solve both problems with stable operators. A family
{φp}p∈Λ is a frame of the space V it generates if there exists B ≥ A > 0 such that

∀h ∈ V, A ‖ h ‖2 ≤
∑
m∈λ

| < h, φp> |2 ≤ B‖ h ‖2. (6.1)

The representation is stable since any perturbation of frame coe�cients implies a modi�cation of similar
magnitude on h. Chapter 5 proves that the existence of a dual frame {φ̃p}p∈Λ that solves both the dual-
synthesis and dual-analysisproblems:

fλ =
∑
p∈λ < f, φp > φ̃p =

∑
p∈λ < f, φ̃p > φp. (6.2)

Algorithms are provided to calculate these decompositions. The dual frame is also stable:

∀f ∈ V, B−1‖ f ‖2 ≤
∑
m∈γ
| < f, φ̃p> |2 ≤ B−1‖ f ‖2. (6.3)

The frame bounds A and B are redundancy factors. If the vectors {φp}p∈Γ are normalized and linearly
independent, then A ≤ 1 ≤ B. Such a dictionary is called a Riesz basis of V and the dual frame is
biorthogonal:

∀ ( p, p') ∈ λ2, < φp, φ̃p' >= δ [ p− p'] . (6.4)

When the basis is orthonormal, then both bases are equal. Analysis and synthesis problems are then
identical.

The frame theory is also used to construct redundant dictionaries that de�ne complete, stable, and
redundant signal representations, where V is then the whole signal space. The frame bounds measure the
redundancy of such dictionaries. Chapter 5 studies the construction of windowed Fourier and wavelet frame
dictionaries by sampling their time, frequency, and scaling parameters, while controlling frame bounds. In
two dimensions, directional wavelet frames include wavelets sensitive to directional image structures such as
textures or edges.

To improve the sparsity of images having edges along regular geometric curves, Candès and Donoho
(CandesD:99) introduced curvelet frames, with elongated waveforms having di�erent directions, positions,
and scales. Images with piecewise regular edges have representations that are asymptotically more sparse
by thresholding curvelet coe�cients than wavelet coe�cients.

6.2 Ideal Dictionary Approximations

In a redundant dictionary D = {φp}p∈γ , we would like to �nd the best approximation support λ with

M = |λ| vectors, which minimize the error ‖ f − fλ‖2. Chapter 12 proves that it is equivalent to �nd λT,
which minimizes the corresponding approximation Lagrangian

L0 (T, f, λ) =‖ f − fλ‖2 + T 2|λ|, (6.5)

for some multiplier T.
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Compression and denoising are two applications of redundant dictionary approximations. When com-
pressing signals by quantizing dictionary coe�cients, the distortion rate varies, like the Lagrangian (6.5),
with a multiplier T that depends on the quantization step. Optimizing the coder is thus equivalent to min-
imizing this approximation Lagrangian. For sparse representations, most of the bits are devoted to coding
the geometry of the sparse approximation set λT in γ.

Estimators reducing noise from observations X = f +W are also optimized by �nding a best orthogonal
projector over a set of dictionary vectors. Themodel selection theory of Barron, Birgé, and Massart (massart-
birge-barron) proves that �nding λ̃T , which minimizes this same Lagrangian L0 (T,X, λ), de�nes an estimator

that has a risk on the same order as the minimum approximation error ‖ f − fΛT
‖2 up to a logarithmic

factor. This is similar to the optimality result obtained for thresholding estimators in an orthonormal basis.
The bad news is that minimizing the approximation Lagrangian L0 is an NP-hard problem and is therefore

computationally intractable. It is necessary therefore to �nd algorithms that are su�ciently fast to compute
suboptimal, but �good enough,� solutions.

6.2.1 Dictionaries of Orthonormal Bases

To reduce the complexity of optimal approximations, the search can be reduced to subfamilies of orthogonal
dictionary vectors. In a dictionary of orthonormal bases, any family of orthogonal dictionary vectors can be
complemented to form an orthogonal basis B included in D. As a result, the best approximation of f from
orthogonal vectors in B is obtained by thresholding the coe�cients of f in a �best basis� in D.

For tree dictionaries of orthonormal bases obtained by a recursive split of orthogonal vector spaces, the
fast, dynamic programming algorithm of Coifman and Wickerhauser (CoifmanMW:92) �nds such a best
basis with O (P ) operations, where P is the dictionary size.

Wavelet packet and local cosine bases are examples of tree dictionaries of time-frequency orthonormal
bases of size P = Nlog2N . A best basis is a time-frequency tiling that is the best match to the signal
time-frequency structures.

To approximate geometrically regular edges, wavelets are not as e�cient as curvelets, but wavelets provide
more sparse representations of singularities that are not distributed along geometrically regular curves.
Bandlet dictionaries, introduced by Le Pennec, Mallat, and Peyré (bandelets-siam, bandlets-peyre), are
dictionaries of orthonormal bases that can adapt to the variability of images' geometric regularity. Minimax
optimal asymptotic rates are derived for compression and denoising.

6.3 Pursuit in Dictionaries

Approximating signals only from orthogonal vectors brings rigidity that limits the ability to optimize the
representation. Pursuit algorithms remove this constraint with �exible procedures that search for sparse,
although not necessarily optimal, dictionary approximations. Such approximations are computed by opti-
mizing the choice of dictionary vectors {φp}p∈Λ.

6.3.1 Matching Pursuit

Matching pursuit algorithms introduced by Mallat and Zhang (MallatZ:93) are greedy algorithms that op-
timize approximations by selecting dictionary vectors one by one. The vector in φp0 ∈ D that best approxi-
mates a signal f is

Φp0 = argmax
p
| < f,Φp > | (6.6)

and the residual approximation error is

Rf = f− < f, φp0 > φp0 . (6.7)
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A matching pursuit further approximates the residue Rf by selecting another best vector φp1 from the
dictionary and continues this process over next-order residues Rmf , which produces a signal decomposition:

f =
M−1∑
m=0

< Rm f, φpm > φpm +RM f. (6.8)

The approximation from the M -selected vectors {φpm
}0≤m<M can be re�ned with an orthogonal back

projection on the space generated by these vectors. An orthogonal matching pursuit further improves this
decomposition by orthogonalizing progressively the projection directions φpm

during the decompositon. The
resulting decompositions are applied to compression, denoising, and pattern recognition of various types of
signals, images, and videos.

6.3.2 Basis Pursuit

Approximating f with a minimum number of nonzero coe�cients a [ p] in a dictionary D is equivalent to
minimizing the 10 norm ‖ a ‖0, which gives the number of nonzero coe�cients. This 10 norm is highly
nonconvex, which explains why the resulting minimization is NP-hard. Donoho and Chen (DonohoC:95)
thus proposed replacing the 10 norm by the 11 norm ‖ a ‖1 =

∑
p∈γ |a [ p] |, which is convex. The resulting

basis pursuit algorithm computes a synthesis operator

f =
∑
p∈γ a [ p] φp, which minimizes ‖ a ‖1 =

∑
p∈γ |a [ p] |. (6.9)

This optimal solution is calculated with a linear programming algorithm. A basis pursuit is computationally
more intense than a matching pursuit, but it is a more global optimization that yields representations that
can be moresparse.

In approximation, compression, or denoising applications, f is recovered with an error bounded by a
precision parameter ε. The optimization (6.10) is thus relaxed by �nding a synthesis such that

‖ f −
∑
p∈γ a [ p] φp‖≤ ε, which minimizes ‖ a ‖1 =

∑
p∈γ |a [ p] |. (6.10)

This is a convex minimization problem, with a solution calculated by minimizing the corresponding 11

Lagrangian

L1 (T, f, a) =‖ f −
∑
p∈γ

a [ p] φp‖2 + T ‖ a ‖1, (6.11)

where T is a Lagrange multiplier that depends on ε. This is called an 11 Lagrangian pursuit in this book. A
solution ã [ p] is computed with iterative algorithms that are guaranteed to converge. The number of nonzero
coordinates of ã typically decrea-ses as T increases.

6.3.3 Incoherence for Support Recovery

Matching pursuit and 11 Lagrangian pursuits are optimal if they recover the approx-imation support λT,
which minimizes the approximation Lagrangian

L0 (T, f, λ) =‖ f − fλ‖2 + T 2 |λ|, (6.12)

where fλ is the orthogonal projection of f in the space Vλ generated by {φp}p∈Λ. This is not always true

and depends on λT. An Exact Recovery Criteria proved byTropp (tropp-multi-omp) guarantees that pursuit
algorithms do recover the optimal supportλT if

ERC (λT ) = max
q∈/λT

∑
p∈λT

| < φ̃p, φq > | < 1, (6.13)
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where {φ̃p}p∈ΛT
is the biorthogonal basis of {φp}p∈ΛT

in VΛT
. This criterion implies that dictionary vectors

φq outside λT should have a small inner product with vectors in λT.
This recovery is stable relative to noise perturbations if {φp}p∈Λ has Riesz bounds that are not too far

from 1. These vectors should be nearly orthogonal and hence have small inner products. These small inner-
product conditions are interpreted as a form of incoherence. A stable recovery of λT is possible if vectors
in λT are incoherent with respect to other dictionary vectors and are incoherent between themselves. It
depends on the geometric con�guration of λT in γ.



Chapter 7

Inverse Problems1

Most digital measurement devices, such as cameras, microphones, or medical imaging systems, can be mod-
eled as a linear transformation of an incoming analog signal, plus noise due to intrinsic measurement �uctu-
ations or to electronic noises. This linear transformation can be decomposed into a stable analog-to-digital
linear conversion followed by a discrete operator U that carries the speci�c transfer function of the measure-
ment device. The resulting measured data can bewritten

Y [q] = Uf [q] +W [q] , (7.1)

where f ∈ CN is the high-resolution signal we want to recover, and W [q] is the measurement noise. For
a camera with an optic that is out of focus, the operator U is a low-pass convolution producing a blur.
For a magnetic resonance imaging system, U is a Radon transform integrating the signal along rays and
the number Q of measurements is smaller than N. In such problems, U is not invertible and recovering an
estimate of f is an ill-posed inverse problem.

Inverse problems are among the most di�cult signal-processing problems with considerable applications.
When data acquisition is di�cult, costly, or dangerous, or when the signal is degraded, super-resolution
is important to recover the highest possible resolution information. This applies to satellite observations,
seismic exploration, medical imaging, radar, camera phones, or degraded Internet videos displayed on high-
resolution screens. Separating mixed information sources from fewer measurements is yet another super-
resolution problem in telecommunication or audio recognition.

Incoherence, sparsity, and geometry play a crucial role in the solution of ill-de�ned inverse problems. With
a sensing matrix U with random coe�cients, Candès and Tao (candes-near-optimal) and Donoho (donoho-
cs) proved that super-resolution becomes stable for signals having a su�ciently sparse representation in a
dictionary. This remarkable result opens the door to new compression sensing devices and algorithms that
recover high-resolution signals from a few randomized linear measurements.

7.1 Diagonal Inverse Estimation

In an ill-posed inverse problem,

Y = Uf +W (7.2)

the image space ImU = {Uh : h ∈ CN} of U is of dimension Q smaller than the high-resolution space N
where f belongs. Inverse problems include two di�culties. In the image space ImU, where U is invertible,
its inverse may amplify the noise W, which then needs to be reduced by an e�cient denoising procedure.
In the null space NullU, all signals h are set to zero Uh = 0 and thus disappear in the measured data Y.
Recovering the projection of f in NullU requires using some strong prior information. A super-resolution

1This content is available online at <http://cnx.org/content/m23071/1.2/>.
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estimator recovers an estimation of f in a dimension space larger than Q and hopefully equal to N, but this
is not alwayspossible.

7.1.1 Singular Value Decompositions

Let f =
∑
m∈Γa [m] gm be the representation of f in an orthonormal basis B = {gm}m∈Γ. An approximation

must be recovered from

Y =
∑
m∈Γ

a [m] Ugm +W. (7.3)

A basis B of singular vectors diagonalizes U∗U . Then U transforms a subset of Q vectors {gm}m∈ΓQ

of B into an orthogonal basis {Ugm}m∈ΓQ
of ImU and sets all other vectors to zero. A singular value

decomposition estimates the coe�cients a [m] of f by projecting Y on this singular basis and by renormalizing
the resultingcoe�cients

∀m ∈ γ, ã [m] =
< Y,Ugm >

‖ Ugm‖2 + h2
m

, (7.4)

where hm
2 are regularization parameters.

Such estimators recover nonzero coe�cients in a space of dimension Q and thus bring no super-resolution.
If U is a convolution operator, then B is the Fourier basis and a singular value estimation implements a
regularized inverseconvolution.

7.1.2 Diagonal Thresholding Estimation

The basis that diagonalizes U∗U rarely provides a sparse signal representation. For example, a Fourier basis
that diagonalizes convolution operators does not e�ciently approximate signals including singularities.

Donoho (Donoho:95) introduced more �exibility by looking for a basis B providing a sparse signal rep-
resentation, where a subset of Q vectors {gm}m∈ΓQ

are transformed by U in a Riesz basis {Ugm}m∈ΓQ

of ImU, while the others are set to zero. With an appropriate renormalization, {λ̃−1
m Ugm}m∈ΓQ

has a

biorthogonal basis {φ̃m}m∈ΓQ
that is normalized ‖ φ̃m ‖= 1. The sparse coe�cients of f in B can then be

estimated with a thresholding

∀m ∈ γQ, ã [m] = ρTm

(
λ̃−1
m < Y, φ̃m >

)
with ρT (x) = x 1|x|>T , (7.5)

for thresholds Tm appropriately de�ned.
For classes of signals that are sparse in B, such thresholding estimators may yield a nearly minimax

risk, but they provide no super-resolution since this nonlinear projector remains in a space of dimension
Q. This result applies to classes of convolution operators U in wavelet or wavelet packet bases. Diagonal
inverse estimators are computationally e�cient and potentially optimal in cases where super-resolution is
not possible.

7.2 Super-resolution and Compressive Sensing

Suppose that f has a sparse representation in some dictionary D = {gp}p∈Γ of P normalized vectors. The P

vectors of the transformed dictionary DU = UD = {Ugp}p∈Γ belong to the space ImU of dimension Q < P
and thus de�ne a redundant dictionary. Vectors in the approximation support λ of f are not restricted
a priori to a particular subspace of CN . Super-resolution is possible if the approximation support λ of f
in D can be estimated by decomposing the noisy data Y over DU. It depends on the properties of the
approximation support λ of f in γ.
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7.2.1 Geometric Conditions for Super-resolution

Let wλ = f−fλ be the approximation error of a sparse representation fλ =
∑
p∈λa [ p] gp of f . The observed

signal can be written as

Y = Uf +W =
∑
p∈λ

a [ p] Ugp + Uwλ +W. (7.6)

If the support λ can be identi�ed by �nding a sparse approximation of Y in DU

Yλ =
∑
p∈λ

ã [ p] Ugp, (7.7)

then we can recover a super-resolution estimation of f

F̃ =
∑
p∈λ

ã [ p] gp. (7.8)

This shows that super-resolution is possible if the approximation support λ can be identi�ed by decomposing
Y in the redundant transformed dictionary DU. If the exact recovery criteria is satisfy ERC (λ) < 1 and if
{Ugp}p∈Λ is a Riesz basis, then λ can be recovered using pursuit algorithms with controlled error bounds.

For most operator U, not all sparse approximation sets can be recovered. It is necessary to impose some
further geometric conditions on λ in γ, which makes super-resolution di�cult and often unstable. Numerical
applications to sparse spike deconvolution, tomography, super-resolution zooming, and inpainting illustrate
these results.

7.2.2 Compressive Sensing with Randomness

Candès and Tao (candes-near-optimal), and Donoho (donoho-cs) proved that stable super-resolution is pos-
sible for any su�ciently sparse signal f if U is an operator with random coe�cients. Compressive sensing
then becomes possible by recovering a close approximation of f ∈ CN from Q � N linear measurements
(candes-cs-review).

A recovery is stable for a sparse approximation set |λ| ≤ M only if the corresponding dictionary family
{Ugm}m∈Λ is a Riesz basis of the space it generates. The M-restricted isometry conditions of Candès, Tao,
and Donoho (donoho-cs) imposes uniform Riesz bounds for all sets λ ⊂ γ with |λ| ≤M :

∀c ∈ C|λ|, (1− δM ) ‖ c ‖2 ≤‖
∑
m∈λ c [ p] Ugp‖2 ≤ (1 + δM ) ‖ c ‖2. (7.9)

This is a strong incoherence condition on the P vectors of {Ugm}m∈Γ, which supposes that any subset of
less than M vectors is nearly uniformly distributed on the unit sphere of ImU.

For an orthogonal basis D = {gm}m∈Γ, this is possible for M ≤ C Q(logN)−1
if U is a matrix with

independent Gaussian random coe�cients. A pursuit algorithm then provides a stable approximation of any
f ∈ CN having a sparse approximation from vectors in D.

These results open a new compressive-sensing approach to signal acquisition and representation. Instead
of �rst discretizing linearly the signal at a high-resolution N and then computing a nonlinear representation
over M coe�cients in some dictionary, compressive-sensing measures directly M randomized linear coe�-
cients. A reconstructed signal is then recovered by a nonlinear algorithm, producing an error that can be
of the same order of magnitude as the error obtained by the more classic two-step approximation process,
with a more economic acquisiton process. These results remain valid for several types of random matrices U.
Examples of applications to single-pixel cameras, video super-resolution, new analog-to-digital converters,
and MRI imaging are described.
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7.2.3 Blind Source Separation

Sparsity in redundant dictionaries also provides e�cient strategies to separate a family of signals { fs}0≤s<S
that are linearly mixed in K ≤ S observed signals with noise:

Yk [n] =
S−1∑
s=0

uk,s fs [n] +Wk [n] for 0 ≤ n < N and 0 ≤ k < K. (7.10)

From a stereo recording, separating the sounds of S musical instruments is an example of source separation
with k = 2. Most often the mixing matrix U = {uk,s}0≤k<K,0≤s<S is unknown. Source separation is a
super-resolution problem since S N data values must be recovered from Q = KN ≤ S N measurements.
Not knowing the operator U makes it even more complicated.

If each source fs has a sparse approximation support λs in a dictionary D, with
∑S−1
s=0 |λs| � N , then

it is likely that the sets {λs}0≤s<s are nearly disjoint. In this case, the operator U, the supports λs, and
the sources fs are approximated by computing sparse approximations of the observed data Yk in D. The
distribution of these coe�cients identi�es the coe�cients of the mixing matrix U and the nearly disjoint
source supports. Time-frequency separation of sounds illustrate these results.



Chapter 8

Travel Guide1

8.1 Travel Guide

8.1.1 Reproducible Computational Science

This book covers the whole spectrum from theorems on functions of continuous variables to fast discrete
algorithms and their applications. argues that models based on continuous time functions give useful asymp-
totic results for understanding the behavior of discrete algorithms. Still, a mathematical analysis alone is
often unable to fully predict the behavior and suitability of algorithms for speci�c signals. Experiments
are necessary and such experiments should be reproducible, just like experiments in other �elds of science
(DonohoB:95).

The reproducibility of experiments requires having complete software and full source code for inspec-
tion, modi�cation, and application under varied parameter settings. Following this perspective, computa-
tional algorithms presented in this book are available as MATLAB subroutines or in other software pack-
ages. Figures can be reproduced and the source code is available. Software demonstrations and selected
exercise solutions are available at http://wavelet-tour.com. For the instructor, solutions are available at
www.elsevierdirect.com/9780123743701.

8.1.2 Book Road Map

Some redundancy is introduced between sections to avoid imposing a linear progression through the book.
The preface describes several possible programs for a sparse signal-processing course.

All theorems are explained in the text and reading the proofs is not necessary to understand the results.
Most of the book's theorems are proved in detail, and important techniques are included. Exercises at the
end of each chapter give examples of mathematical, algorithmic, and numeric applications, ordered by level
of di�culty from 1 to 4, and selected solutions can be found at http://wavelet-tour.com.

The book begins with Chapters 2 and 3, which review the Fourier transform and linear discrete signal
processing. They provide the necessary background for readers with no signal-processing background. Im-
portant properties of linear operators, projectors, and vector spaces can be found in the Appendix. Local
time-frequency transforms and dictionaries are presented in Chapter 4; the wavelet and windowed Fourier
transforms are introduced and compared. The measurement of instantaneous frequencies illustrates the
limitations of time-frequency resolution. Dictionary stability and redundancy are introduced in Chapter 5
through the frame theory, with examples of windowed Fourier, wavelet, and curvelet frames. Chapter 6
explains the relationship between wavelet coe�cient amplitude and local signal regularity. It is applied to
the detection of singularities and edges and to the analysis of multifractals.

1This content is available online at <http://cnx.org/content/m23075/1.2/>.
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Wavelet bases and fast �lter bank algorithms are important tools presented in Chapter 7. An overdose of
orthonormal bases can strike the reader while studying the construction and properties of wavelet packets and
local cosine bases in Chapter 8. It is thus important to read Chapter 9, which describes sparse approximations
in bases. Signal-compression and denoising applications described in Chapters 10 and 11 give life to most
theoretical and algorithmic results in the book. These chapters o�er a practical perspective on the relevance of
linear and nonlinear signal-processing algorithms. Chapter 12 introduces sparse decompositions in redundant
dictionaries and their applications. The resolution of inverse problems is studied in Chapter 13, with super-
resolution, compressive sensing, and source separation.
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