Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.) Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

2.5. Particle Boards

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

2. Materials Made of Wood

2.1. Solid Wood

Solid wood is obtained from raw wood by longitudinal and cross cutting. It is used without or after improvement of the wood.

2.1.1. Not Improved Solid Wood

Name	Definition	R
round timber	Round timber is obtained from rough wood by cross cutting. It includes saw logs, veneer flitches, masts, poles and others.	Saw logs and veneer f products which are int
Sawn timber	Sawn timber is produced by longitudinal cutting of round timber. Sawn timber has at least 2 parallel surfaces and is thicker than 5 mm.	Making of simple cut a
		single passage throug untrimmed products;
		two passages through

emarks

flitches are intermediate tended for further cutting. and double cut; simple cut:

h the machine yields double cut:

/	/===		=, === p.,
			first passage is precu
			cut off;
			second passage is sec
			turned by 90° the tri
	Veneer	Is produced by longitudinal cutting (slicing, sawing) or arcuate cutting-off	
		(peeling) of round wood; veneer is \leq 3 mm thick and \geq 80 mm broad.	

Kinds of sawn timber

Kinds	Width in mm (b)	Thickness in mm (s)
Schematic representation		
squared timber	>100	>100
		20, 100
frame timber	≤ 2S	38100
0 0	round-edaed > 2 s	>16
board (1) round-edged (2) edge-trimmed	edge-trimmed ≥ 75	16100
lath	>75	1635
ply	edge-trimmed ≥ 75	615
	or	615
	round-edged < 75	

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

t, edge boards and slabs are

cond cut; from the material mmed product is obtained.

strip	

Kinds of veneers

Kinds Schematic	Manufacture
representation	
2 3 4 5	Sliced veneers are made by slicing off lamella by lamella in an operation simil
	strokes of the machine: 1636 min ⁻¹
	cutting speed: 0.5 to 1.5 m s ⁻¹
	length: up to 5 m
sliced veneer	thickness: 0.05 to 2.7 mm
1 knife, 2 knife holder, 3 v	eneer, 4 pressure strip, 5 pressure bar
	Peeled veneers are taken from a rotating trunk by an operation similar to tur
ALL STATES	cutting speed: 0.2 to 2.5 m \cdot s ⁻¹
STV/ Keller 4	length: up to 4.5 m
3	thickness: 0.08 - 2.7 mm
2	
1	
peeled veneer	
1 veneer knife, 2 knife ho	lder, 3 veneer, 4 pressure strip, 5 pressure bar, 6 scratcher knife
4	Sawn veneers are produced with a horizontal frame saw or a veneer circular
	frame saw: 200300 min ⁻¹
3' VIH	cutting speed: 68 m · s-1
	length: up to 5 m
	thickness: 0.5 to 3.0 mm
saw veneer	
1 saw blade, 2 compressio	n roll, 3 veneer, 4 cleaving knife

2.1.2. Improved Solid Wood

Kind of solid wood		Manufacture	Appli
	compressed	solid wood compressed by pressing, beating or rolling under the	machine parts in the textile
	solid wood	influence of pressure and temperature	press-drawing tools, etc.

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

cation

e industry, bearing shells,

impregnated solid wood	solid wood impregnated with various agents (e.g. resin, oil, metal) for changing its properties	synthetic resin-impregnate engineering, oil-impregnate machine parts, metal-impresente bearing
formed solid wood	solid wood formed under the influence of temperature, moisture and pressure (by applying pressure on the cross-grain ends of the blank the latter is compressed and thus made bendable)	for bent parts in furniture construction and boat buil of sports equipment etc.

2.2. Laminated Wood

Laminated wood consists of veneer layers which are symmetrically laid one on top of the other. It is glued together by means of adhesive under pressure and temperature to form sheet material. Laminated wood has improved properties compared with solid wood and can be used for many more purposes.

Name	Material construction	Physical quantities	
plies (plywood)	symmetrical arrangement of the veneer layers, the layers are staggered alternately 90° according to the grain direction	ρ = 0.60075 g · cm ⁻³ δzB =3555 MPa δdB = 6080 MPa δbB = 5575 MPa	furniture ind packaging in etc.
laminated wood	veneers are arranged in parallel with each other (grain direction); up to 15 % vertically to it	$\rho = 0.650.95$ g · cm ⁻³ δzB =80170 MPa $\delta dB =$ 70110 MPa $\delta bB =$ 120200	aircraft manu vehicle const etc.

ed timbers in electric ted wood as self-lubricating regnated wood as slide

construction, in vehicle ding, for the manufacture

Application

ustry, interior work, dustry, building industry

ufacture, shipbuilding, truction, timber engineering

		MPa	
compressed	arrangement of the veneers is the same as with plywood or	ρ =	machine par
laminated	laminated wood; by applying pressures of about 10 MPa	0.801.15g	apparaturs c
wood	compression is achieved (10 %)	• cm ⁻³	vehicle const
		$\delta zB \leq 220$	
		MPa	
		$\delta dB \leq 250$	
		MPa	
		$\delta bB \leq 250$	
		MPa	
plastic	same as compressed laminated wood, but made of synthetic	p =	vehicle const
compressed	resin-impregnated veneer	1.151.35	engineering,
laminated		g · cm⁻ ³	timber engin
wood		$\delta zB \leq 140$	
		MPa	
		$\delta dB \leq 300$	
		MPa	
		$\delta bB \leq 240$	
		MPa	

2.3. Sandwich Boards

Sandwich boards consist of a core and two cover plies, one on each side. Compared to the solid starting material considerable savings in material are possible and improved properties are reached.

Name	Material construction	Physical quantities	
sandwich board with solid wood core		$\begin{array}{l} \rho = \\ 0.420.52 \\ g \cdot cm^{-3} \\ \delta dB = \\ 1238 \\ MPa \\ \delta bB = \\ 3040 \\ MPa \end{array}$	furniture pattern working
1			

1 cover nlv of crocchand veneer, thickness > 1 & mm D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

ts, timber engineering, construction, toolroom work, truction

truction, electric apparatus construction, neering, machine parts

Application

e industry, interior work, making, development etc.

2011 2 cover pry or er	Formulae and Tables - Wood / textbooks for vocational training (GTZ, 1: 2 5500110 verteer, unertices \leq 1.0 mm 2 500 f blackboard	22 p.)	
sandwich board with hollow core		ho = 0.010.04 $g \cdot cm^{-3}$ $\delta zB = 1.7$ MPa $\delta dB = 2.9$ MPa $\delta bB = 14$ MPa	doors, p constru interior
<i>1 outer layers of of paper honeyco</i>	veneer, plywood, hard fibre boards, metal or plastic boards; 2 core ombs		
sandwich board with particle board core	Particle boards as cores are coated on both sides with veneer or synthetic resin-impregnated papers. In this way their properties and appearance are improved.	ρ = 0.70.8 g · cm ⁻³ face strength ≈ 0.9 MPa δbB ≈ 40 MPa	furnitur work, s constru

2.4. Fibreboards

Fibreboards are a flat, sheet wood-based material made under the influence of pressure and temperature which consists of fibrous material cotaining lignocellulose.

Properties of fibreboards

Kind of board	Thickness in mm	Gross density ρ in g \cdot cm ⁻³	Bending strength δbB in MPa	Compressive strength δdB in MPa	Transverse tensile strength δ in MPa
hardened fibreboards	16	1.01.1	60	5060	3055
hard fibreboards	16	0.951.05	2575	2550	1540
medium hard fibreboards	625	3075	1040	80	825
porous fibreboards	620	2540	1.03.0	0.82.0	1.03.0
madium danca	10 10		15 22]	

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

partition walls, vehicle ction and shipbuilding, work, boat building

re construction, interior hip building and waggon ction

22/10/2011		Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)					
meaium-aense	1013	כמ.טטס.ט	1052				
fibreboards							

Use of the fibreboards

Kind of board	Special features	Applicat
medium-dense fibreboards	three-layer structure, high surface quality, homogeneous core structure, closed homogeneous narrow surfaces	same as (three-layer) particle b especially for visible outer surfa
porous fibreboards	low density, low strength, heat-insulating	ceilings and panellings, roof she
medium-hard fibreboards	heat-insulating	partition walls, panellings, roof
hard fibreboards	uniform surface, elastic, bendable, nailing and screwing possible	ceiling boarding and panelling, f partition walls, coverings
hardened fibreboards	oil-impregnated, especially abrasion-proof, water- repellent	panelling and sheathing outdoor concrete moulds, floor, staircase
sound- absorbing boards	porous fibreboards provided with holes, slits or similar for sound absorption	ceiling boarding and panellings exchanges, cinemas, concert ha
multilayer insulating boards	boards consisting of two or more layers of porous fibreboards glued in a water-proof manner	partition walls, displaceable wal
varnished boards	hard fibreboards with varnish coating	panellings in kitchens, shops, ba rooms in which water is handled
sheet and plastic-coated fibreboards	hard fibreboards coated with coloured plastic sheets or synthetic resin-impregnated special papers	panellings in kitchens and bathr rooms, for table coverings in kit laboratories etc.
embossed fibreboards	hard fibreboards which during manufacture were given an embossed surface and (possibly subsequently) a colour treatment	for decorative purposes in interi
floor boards	extra hard fibreboards which are laid like parquet, high wear resistance	for floor coverings
hard multi- layer boards	boards consisting of two or more layers of subsequently glued medium-hard or hard fibreboards	panels, shock-resistant covering ceilings

2.5. Particle Boards

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

tions

ooards for furniture, aces of furniture

eathing, floor underlay

sheathing

furniture parts, doors,

rs, inner and outer doors, e and table coverings

in offices, telephone Ils etc.

ls, false ceilings

athrooms, for furniture in

rooms, for furniture in damp tchens, shops, workshops,

ior work

s, partition walls, false

The particle board is a wood-based material made of wood chips with the addition of synthetic resin under the influence of pressure and temperature. Its properties can be varied by the kind and quantity of the additives, by the quality and arrangement of the chips and the compression ratio.

Properties of the particle boards

Kind of board	Thickness in mm	Gross density	ensity Bending strength δbB in MPa Transverse tensile st cm ⁻ 3 MPa				
single-layer flat pressed particle boards	625	0.50.85	1520	0.20.3			
triple-layer flat pressed particle boards	625	0.550.85	2030	0.20.3			
extruded particle boards	875	0.550.70	\approx 2.0 in pressing direction \approx 15.0 at right angles to the pressing direction	\approx 0.6 in pressing direction \approx 4.0 at right angles to the pressing direction			

Use of the particle boards

Kind of board	Special features	Applica
flat pressed particle boards, raw, single-layer	dense surface, heat and sound- insulating, pressure-proof	interior work, building constr building, floor underlays, ins
Flat pressed particle boards, raw multi-layer	like single-layer boards, but surface layer consisting of fine particles; dense surface, little swelling	manufacture of furniture, sel elements, interior work, vehi
extrusion particle boards, raw	low bending strength, coating absolutely necessary, in other aspects like single- layer boards	core for sandwich boards in f interior work, shipbuilding ar building industry
impregnated particle boards	additives are added to the binder, therefore resistant to temperature and wood pests	building industry, agricultura
veneer-coated particle boards	more resistant to varying climatic influences, better stability, higher bending strength	visible surface in furniture m and shipbuilding, for panellin
particle boards coated with laminated boards, PVC-hard- hoards or decorative laminates 3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK//	coating on one side or both sides, higher strength, higher resistance to moisture and chemicals, scratch resistant meister11.htm	furniture in damp rooms, doo structural elements for walls, concrete moulds, mainly in th

ations

ruction, agricultural ulating boards etc.

f-supporting structural icle construction

urniture manufacture, in nd vehicle construction,

al building, shipbuilding

anufacture, interior work ng, cladding

ors, partition walls, but also containers, he kitchen furniture

*) decorative laminates: plastic sheets with wood pattern

💶 📄

<u>Home</u>"" """"> <u>ar.cn.de.en.es.fr.id.it.ph.po.ru.sw</u>

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

3. Plastic materials

Plastics are synthetic materials or macromolecular organic-chemical materials produced by conversion of polymer natural products.

3.1. Classification of Plastic Materials

Type of plastics	Starting material	Che
Modified natural materials		
cellulose nitrate	cellulose, nitric acid	resistant to wea
Polycondensates (thermosetti	ng plastics)	
phenolic moulding compound	phenol or cresol, formaldehyde and filler materials	instable to conce
phenolic laminates	phenol or cresol, formaldehyde and laminar substrates	same as phenoli
urea resins	urea or melamine resins and formaldehyde	same as phenoli
urea resin moulding compounds	urea or melamine resins, formaldehyde and filler materials	same as phenoli

c moulding compounds c moulding compounds

- -

entrated acids and alkalis c moulding compounds

k acids and alkalis

mical stability

22/10/201

0/2011	Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)
urea resin laminates	urea or melamine resins, formaldehyde and laminar same as pheno
	filler materials

Polymerizates (thermoplas	tics)	
polyvinyl chloride, rigid (unplasticized PVC)	acetylene and hydrocloric acid	instable to some
polyvinyl chloride, flexible (plasticized PVC)	acetylene, hydroclorid acid and plasticizer	stability less tha
poloystyrene	ethylene and benzene	instable to most
polyvinyl acetate	acetylene and acetic acid	(almost only imp
Polyaddition products		
polyurethanes	diisocyanates and dialcohols	instable to conce
Polyesterification products		
polyester	carboxylic acid or phtalic acid and alkohols	instable to some unsaturated
epoxy resins	epichlorhydrin, phenols	stable
alkyd resins	maleic acid and phtalic acid, multivalent alcohols	medium resistan

3.2. Properties of Important Plastic Materials

Plastic material	Density in g · cm ⁻³	Temperature stability in °C	Strain in %	Compressive strength ∂dB in MPa	Compressive strength δdB in MPaBending strength δbB in MPa		ressive strength δdB in MPaBending strength δbB in MPaTer	
cellulose nitrate	1.38	50	3050	60	60	6070		
phenolic moulding compounds	1.4	125		120200	5070	25		
phenolic laminates	1.4	125		140	120	40		
urea resins	0.0140.28		0.36	200	80	30		
urea resin moulding compounds	1.45 1.5	130		240	80	70		
urea resin laminates	1.3 1.45	130		150	150	120		
rigid PVC	1.38	60	18	80 120		4560		
flexible PVC	1.231.36					825		
polystyrene	1.041.09	6090	1-20	45120 70 130		3570		
polyvinyl acetate				100	100	50		
	1 7 1 71	~100	250	20 00	20 65	A A C O		

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

22/10/2011

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

,					
bolv-uretnane		<100	<u> ~ ∠50 </u>	<u></u>	<u></u>
polyester	1.21.4	$\approx \overline{130}$		150	90
epoxy resins	1.21.25	60120		90	135

3.3. Applications of Important Plastic Materials

L	
Plastic material	Applications
cellulose nitrate	varnishes and adhesives
phenolic moulding compounds	preservative (see wood-based materials), adhesive and adhesive film, pimer paper for co varnishes, moulded parts
phenolic laminates	compression moulded sheets for coating kitchen furniture parts, but also laboratory furn
urea resins	adhesives, primer paper and decorative overlay for the furniture industry, foamed plastic varnish resins
urea resin moulding compounds	moulded parts, e.g. for furniture fittings
urea resin laminates	decorative laminated sheets for kitchen furniture, laboratory furniture and damp rooms, furniture industry
rigid PVC	films, sheets, moulded parts
flexible PVC	flexible sheet as furniture fittings, decorative overlay and foam sheet, small surface tape veneered stock, overlapping edge bands, foamed plastics, varnishes
polystyrene	compression moulded sheets, furniture films, moulded parts, foamed plastics and varnish
polyvinyl acetate	adhesives, surface coatings, oil-resistant sheets, varnishes
polyurethanes	adhesives, varnishes, rigid foamed plastics as insulation material and for furniture eleme foam as moulded parts for furniture, semirigid foam for cushions, back-rests and similar, upholstery etc.
Polyester	adhesives, primer paper and decorative overlay, foamed plastics, varnishes
epoxy resins	adhesives and varnishes
alkyd resins	varnishes

Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Extbooks for vocational training (GTZ, 122 p.)

- \rightarrow \Box 4. Glass Materials
 - (introduction...)
 - 4.1. Classification of Glass Materials
 - **4.2.** Properties of Glass Materials
 - **4.3.** Applications of Glass Materials

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

4. Glass Materials

Glass is a transparent, isotropic *) inorganic material.

*) showing the same physical properties in all directions of space

4.1. Classification of Glass Materials

Classification aspect	Glass grade	Remarks
flat glass	sheet glass	as thin, window and thick glass
	flat glasses with special effects, refined flat glass products	ribbed glass, antique glass, opal glass, frost glass, thermoglass panes
fibre-glass materials	glas fibres	coarse glass fibres, textile fibres made of gl
	glass silk	superfine glass fibres

4.2. Properties of Glass Materials

Property	Sheet	glass			Glas	s fit	ore	S		
density ρ in g \cdot cm-3	2.4.	2.6				2.5				
compressive strength δdB in MPa	800	.1000								
tensile strength δzB in MPa	70.	90	850.	4000	accord	ding	to	the	thi	ckness
	– – –	4 - 0	4 7 0	~ 4 ^ ^			•	• •		I

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

ed glass, plate glass, safety ass

22/10/2011

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

bending strength $\delta b B$ in MPa	50150	1/03400 according to the thickness
temperature stability in °C	≤ 500	-50+300-C

Dimensions of sheet glass

Glass grade	thickness in mm	width in mm	length in mm
thin glass	0.91.6	300700	12001400
window glass	2.04.0	3001800	10002000
thick glass	4.55.5	4002010	10502550

Dimensions of furniture glass

Glass element	thickness in mm	width in mm	length in mm
sliding doors	3.06.0	801200	1001600
revolving doors	5.06.0	801200	1001600
panels	3.06.0	801200	1001600
glass tops	3.05.5	801200	1001600
insertable plates	3.07.5	80600	1001600

4.3. Applications of Glass Materials

Material	Application	Remarks
thin glass	picture glass	
window glass	glazing in housing construction and social buildings, furniture, glass-houses, stables etc.	
thick glass	shop windows, shop fittings, furniture making	
ribbed glass	shop building, interior work, kitchen furniture etc.	shaping is made during the drawing process
antique glass	interior work, period furniture	old glass is imitated by inclusions, staining and sin
opal glass	hospital windows, office partition walls and similar	toughened or etched panes
frosted	shop building, interior work, furniture	an opal glass from the frosted side of which flat sp
। 3wddvd/NoExe/Master/d	dvd001/dvd1/CD3WD/WOODWORK//meister11.htm	

plinters are torn out

milar

glass plate glass	mirrors in flates and social buildings, vehicle construction, furniture making etc.	flat glass covered on one side with a silver layer o silver layer is provided with protective layers
safety glass	skylights, glass-roofed courts, roof parts, doors, all-glass walls etc.	as wired glass (rolled in wire cloth), one-layer and compound glass (flat glass panes bonded with tran
thermoglass panes	housing construction and social buildings	two window glass panes hermetically joined togeth with dry air, which prevents misting up of the pan down to -15 °C
glass fibres	building industry, machine building, textile industry	for heat and sound insulation, for reinforcement o
glass silk	structural elements, vehicle construction	processing with, for example, polyester resins into

__

Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

5. Steel

Steels are ferrous materials which regardless of other alloying constituents have carbon contents of less than 2 %.

5.1. Classification of Steels

Classification aspect	Kinds of steels	Remarks

 $\|$ according to the $\|_{-}$ D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

of \geq 70 nm thickness; the

multilayer safety glass and sparent foil)

her enclose a space filled es at outdoor temperatures

of plastic building materials

high-strength materials

manufacturing process	Bessemer steel Thomas steel open-hearth steel electric steel crucible cast steel	the electric furnace remelting process in re
according to properties and application	general structural steels steels for mechanical engineering structural steels for special applications high-alloy special steels steels with special electric and magnetic properties tool steels	e.g. sectional steels e.g. screw steel e.g. wear-resistant steels e.g. corrosion-resistant steels e.g. dynamo sheet steels e.g. high-speed steels
according to the composition		
structural steel	unalloyed and alloyed steels	single-alloy steels (one alloying constituer (several alloying constituents)
tool steels	unalloyed tool steels, low-alloy tool steels, medium-alloy tool steels, high- alloy tool steels	
according to the form of production	sectional steel special profiles bar steel strip steel plate and sheet	e.g. U-steel, > 80 mm high e.g. rails e.g. U-steels, ≤ 80 mm high
	tube wire semifinished products forged pieces	e.g. plate > 4 mm thick, sheet < 4 mm thick various gauges and cross-sections sheet back drop forgings

5.2. Properties of Important Steels

Name	Designation of the steel grade	Carbon content C in %	Tensile strength δzB in MPa	Alloyi
heat-treated steel	C 22	0.180.25	500600	0.30.6 M ≤ 0.045 P 0.150.35 ≤ 0.045 S
	C 35	0.320.40	600720	0.40.7 M

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

			-	11
				0.150.35
	C 45	0.420.50	650800	0.045 P m 0.50.8 M 0.150.35 ≤ 0.045 P a
	C 60	0.570.65	750900	like C 45
	30 Mn 5	0.270.34	800950	1.21.5 M 0.150.35
	37 Mn Si 5	0.330.41	9001050	1.11.4 M 1.11.4 S
	25 Cr Mo 4	0.220.29	800950	0.50.8 M 0.91.2 C 0.150.35 0.150.25 ≤ 0.035 P a
	34 Cr Mo 4	0.300.37	9001050	like 25 Cr I
	42 Cr Mo 4	0.380.45	10001200	like 25 Cr l
	50 Cr Mo 4	0.460.54	11001300	like 25 Cr l
	36 Cr Ni Mo 4	0.320.40	10001200	0.91.2 C and S each
	34 Cr Ni Mo 6	0.300.38	11001300	1.41.7 C and S each
	30 Cr Ni Mo 8	0.260.34	12501450	1.82.1 C and S each
case-hardening steels	C 10	0.060.12	420520	0.150.35 0.250.5 ≤ 0.045 P a
	C 15	0.120.18	500650	like C 10
	15 Cr 3	0.120.18	600850	0.40.6 M 0.50.8 C 0.150.35 ≤ 0.035 P a
	16 Mn Cr 5	0.140.19	8001100	1.01.3 M 0.81.1. 0 0.150.35 < 0.035 P a

5 Si
and S each
5 Si
and S each
In
5 Si
in i
r
5 Si
5 Мо
and S each
Mo 4
Mo 4
Mo 4
r and Ni each \leq 0.035 P
r and Ni each \leq 0.035 P
r and Ni each \leq 0.035 P
5 Si
Mn
and S each
•
in r
i 5 Si
and S each
In
Cr
5 Si
and S each

11		s for vocational training (GTZ, 122 p.)	II—
20 Mn Cr 5	0.170.22	10001300	1.11.4
			1.01.3 0
			0.15,0.3
			≤ 0.035 P
15 Cr Ni 6	0.120.17	9001200	1.41.7 0
			1.41.7 N
			Cr 3
18 Cr Ni 8	0.150.20	12001450	1.82.1 0
			1.82.1
			Cr 3

5.3. Applications of Important Steels

Steel grade	Applications
35 W Cr V 7,80 W V 2	machine blades
100 Cr 2	files
100 Cr 6	measuring instruments, saw blades for metal, cutting tools
64 Si Cr 5,85 Cr 1	saw blades for wood working
110 Mo V 5	metal saw blades
90 Cr 3	cutting tools
140 Cr 2,110 Cr 2,120 W V 4	twist drills
C 115 W 1	screws
C 100 W 1	cutters
C 130 W 2	files, flat drills, countersinks and counterbores
C 90 W 2	circular saw-blades, planing tools, cutters, cutter chain teeth, wood-carvir
C 80 W 2	hammers, machine bits for wood
C 70 W 2	screw drivers, axes, pliers, vice jaws
C 60 W 3	wood working tools
C 85 W 6	hand saw blades, frame and circular saw blades
X 97 W Mo 3.3	twist drills
X 82 W V 9.2	high-speed wood working tools
X 86 W V 12.2	turning tools, cutters, twist drills

Чn
Cr
5 Si
and S each
Cr li, Mn, Si, P and S like 15
Cr Ii, Mn, Si, P and S like 15

^CC 35, C 45, 25 Cr Mo 4 ^{Screws}, nuts **5.4. Screws and Nails**

(Material: unalloyed steel with low or medium carbon content, C = \leq 0.55 %)

Name	Representation	Dimensions
raised countersunk head wood screws	T Thomas -	d ₁ = 1.68.0 mm
	2 5 000000000 D	d2 = 3.014.5 mm
		1 = 8.090.0 mm
cross recessed raised countersunk oval head screw		similar dimensions
slotted round head wood screw	- Shanananan	$d_1 = 1.68.0 \text{ mm}$
	el Changener et	d ₂ = 3.216.0 mm
	 •	1 = 8.090.0 mm
cross recessed round head wood screw	S POODOOD	similar dimensions
slotted countersunk head wood screw		d ₁ = 1.68.0 mm
		d ₂ = 3.014.5 mm
		1 = 8.090.0 mm
cross recessed countersunk head wood screw		similar dimensions
hexagon head cap wood screw		d ₁ = 6.012.0 mm
		$d_2 \leq d_1$
		1 = 30.0120.0 mm
countersunk-head nails		d = 1.46.0 mm
		1= 20.0200.0 mm
flat-headed nails		d= 0.84.6 mm
		1= 8.0130.0 mm
button-head nails		d = 0.82.5 mm
		1 = 8.030.0 mm
upset-head nails		d = 1.03.8 mm
		1= 14.0100.0 mm
tin tacks	-TT	$d_1 = 1.42.8 \text{ mm}$
		d ₂ = 4.010.5 mm
	100 million (100 m	$\ 1 - 100 400 \text{ mm}\ $

18/38

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

	1 - 10.040.0
clout nails	like tin tacks
hardened nails	d= 1.2 and 2.0 mm 1 = 16.050.0 mm
light wood board nails	d= 3.1.; 3.4 mm 1 = 70.0; 80.0 mm

Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

6. Basic Terms of Cutting

The science of cutting deals with the processes, laws and connections for chip-forming working with cutting tools.

6.1. Faces and Angles on the Tool

Term	Symbol	Definition
Representation		
primary cutting edge faces on the tool - saw tooth	HS	line of cut between flank and tool face

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

.0/2011 Formula	e and Tables -	Wood / textbooks for vocational training (GTZ, 122 p.)
secondary cutting edge faces on the tool - milling tool	NS	cutting edge adjacent to the primary cutting
tool face faces on the tool - drilling tools	Sf	face on the cutting wedge on which he chip
flank	Ff	face on the cutting wedge facing the area of piece
flank of the drill point	Hf	face on the tool next to the flank
comer	E	point on the tool at which primary and seco
tool orthogonal clearance angles on the tool - planing tool	α	angle between flank and tool cutting plane edge)
tool orthogonal wedge angle angles on the tool - saw tooth	β	angle between flank and tool face
tool orthogonal rake	γ	angle between tool face and a vertical to th $\gamma = 90^{\circ} - \alpha - \beta$
cutting angle angles on the tool - drilling tools	δ	angle between tool face and tool cutting pla

g edge

is removed

of cut produced on the work-

ondary cutting edges meet (plane through the cutting

ne tool cutting plane

ane $\delta = \alpha + \beta$

22/10/2011	For	mulae and Tables - W	/ood / textbooks for vocational training (GTZ, 122 p.)
T T			
angles of	ing edge inclination on the tool - drilling tool	λ	angle between cutting edge and tool referer
G)		
point ar	ngle	3	angle between primary and secondary cutting
drill poi	nt angle	εΒ	angle between two primary cutting edges, a

6.2. Directions of Cutting

The cutting direction of a cutting operation is the direction of motion of the primary cutting edge referred to the grain direction of the solid wood or the board plane of plane materials of wood.

Cutting directions in solid wood	Cutting directions in laminated wood	Cutting
A A A A A A A A A A A A A A A A A A A	a larch are	
A cross-cutting cutting direction vertically to the grain direction; smooth area of cut, crumbly chip, short tool path	b cutting direction vertically to the board plane; approximately like cross-cutting of solid wood	b cutting d board pla crumbly
B longitudinal cutting cutting direction parallel to the grain direction; rough area of cut, coherent chip, long tool path	a/B cutting direction in board plane, in the direction of the grain direction of the top layer; like longitudinal cutting of solid wood	a cutting d cutting o area of c

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

nce plane

ng edges also called face angle

21/38

	5 5	
C transverse cutting cutting direction	a/C	
transversely to the grain direction; rough	cutting direction in board plane and	
area of cut, brittle chip	transversely to the grain direction of the top	
	layer; like transverse cutting of solid wood	

6.3. Cutting Speeds

Term	Symbol	Definition	
cutting speed	V	speed at which the cutti	ing edge of a tool performs chip-forming movements in the w
		$v = d \cdot \pi \cdot n$	in m · s ⁻¹
			d = diameter of the cutting circle of the tool
			n = tool speed
feed rate	u	speed at which the work	piece is fed to the stationary tool or the tool is fed to the wo
		unit of measurement: n	$1 \cdot min^{-1}$

Figure 3 Graph of cutting speeds for circular sawing machines

Example:

Which cutting speed does a circular saw blade having a diameter of 400 mm reach at a speed of rotation of 3000 min⁻ 1?

Solution:

Find the diameter on the lower line, go vertically upwards to the point of intersection with the diagonal for n = 3000 min⁻¹, from there read off the result horizontally on the left side: $v = 62.8m \cdot s - 1$

Figure 4 Graph of cutting speeds for fluting machines

Example:

A cutting speed of approx. $15 \text{m} \cdot \text{s}^{-1}$ is to be reached; the tool speed is 6000 min⁻¹.

Which tool diameter is to be chosen?

Solution:

Find the value for v on the left side, find horizontally the point of intersection with the diagonal for $n = 6000 \text{ min}^{-1}$, from there drop a perpendicular and read off on the lower line: $d \approx 50$ mm.

6.4. Cutting-Edge Dulling and Cutting-Edge Wear

The loss of the original keenness (dressed keenness) of the tool cutting edge and the outer comers in the process of cutting is called dulling, its result is called wear.

Causes of wear

Cause of wear	Effect of wear
Angles on the	tool cutting edges
wedge angle	The cutting forces rise with increasing wedge angle. Therefore, it must be kept as small consideration the necessary stability).
rake angle	If the rake angle is too small, the consequences will be the same as with a too large we
clearance angle	Large clearance angles result in a smaller load on the cutting edge (less friction and low
Cutting condit	ions
cutting speed	High cutting speeds have the effect of increasing the load on the whole cutting wedge. F are to be kept as low as possible.
cutting depth	Keep it as small as possible. Great cutting depths lead to increasing mechanical stress of
Mechanical sti	resses
friction	Excessive roughness of the cutting edge (choice of the proper abrasive tool) results in ir wedge.
impact load	Mainly at the beginning of cutting when the cutting edge penetrates into the wood for the the loss of the original keenness.
compressive stress	The pressure of the workpiece on the tool is increasing with dulling (sharpening in time
Various kinds	of stresses
thermal stress	The friction between workpiece and tool produces temperatures of about 800 °C at the or softening of the cutting wedge surface and increased abrasion of material (proper choice material of the tool is necessary).
electrochemical stress	The diluted acids in the wood cells form electrolytes. In connection with frictional electri cutting the cutting-edge material is dissolved by electrolysis.
electroerosion	Spark discharges occur through electrostatic charges during cutting as a result of which the flank. This formation of craters (increased roghness) favours the mechanical wear.

Forms of wear

Form of wear	Influences and measurable variables
Representation	

as possible (taking into

- dge angle.
- er temperature).
- For economical reasons they
- on the cutting edges.
- ncreased wear at the cutting
- ne first time; it results in
- is necessary).
- cutting edge. This results in e of the cutting-edge
- city produced during
- particules are torn out of

م ا ما م

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.) a result of mechanical wear, thermal load and electroerosion; the wear-land 22/10/2011 tool-flank wear variable. This mark characterizes the size of the regrind, because the cutting during sharpening so far that the wear mark disappears; wear mark for steel cutting edge-wear caused especially by thermal and frictional stresses; the external radius of th measure of the cutting-edge wear; caused by the influence of friction and temperature; with increasing dulling the corner wear fi/HS FI/HS rises; Apart from friction (flowing off chip) and temperature there is above all the e tool face wear that is at work. The resetting of the cutting edge is the measure of the tool fa dimension ≈ 0.15). special form of the tool face wear as a result of friction and thermal influence crater wear measurable variables of cutting-edge dulling 1 crater wear, 2 cuttingedge reset, 3 wear-land idth 1 autting adag D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

width is the measurable
edge has to be set back cutting edges <i>s</i> 0.3 mm.
e cutting edge is the
he comer wear rapidly
electrochemical influence
ace wear (recommended
e by the flowing off chip

rounding

Development of the cutting-edge dulling

or dressed keenness, 4 working keenness, 5 dull cutting edge, 6 time for sharpening again, 7 economic tool path, 8 unsuitably prolonged tool path, 9 time between two regrinds

Figure 5 Graph of cutting-edge dulling

cutting wedge (dressed
keenness) with the original
cutting-edge angles α_1 , β_1 cutting wedge (operating keenness) with the wedge angle β_2
that has become larger by incipient dulling and the toolcu
du
du
orthogonal clearance α_2 that has become smaller and the toolcu
tarand γ_1 orthog rate γ_2 orthog rate γ_2 sti

cutting wedge (advanced stage of dulling) with β_3 that has become still larger and α_3 and γ_3 that have become still smaller

Dulling period of the cutting edge

	Term	Symbol	Definition	Connections
	tool life	Т	pure operating time of a cutting edge between two regrinds	
D:/cd	 3wddvd/No	Exe/Master/dvd0	01/dvd1/CD3WD/WOODWORK//meister11.htm	

221	10	/20)11
22/	TO	/20	, ד ד

				$T = \frac{S}{W_t}$ S = tool path W _t = path of cut per unit of time
t	ool	S	distance travelled by the cutting edge cutting in	the tool path in connection with the too
p	ath		the material between two regrinds	parameter for the economical use of m

__

<u>Home</u>"" """"> <u>ar.cn.de.en.es.fr.id.it.ph.po.ru.sw</u>

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

7. Hand Tools

Hand tools are individually guided working tools by means of which action is taken on the object of work (workpiece) when the respective operations are carried out.

7.1. Measuring and Marking Tools

Marking tools serve the purpose of transferring sizes to the workpiece and of marking the transferred sizes.

Tool Representation	Construction and use		
back square	The back square serves for marking out right angles. It has a shorter, t stop) and a longer, thinner blade (rail). It consists of wood or steel.		

ol life is an important achine tools

thicker part (head piece,

28/38

mitre rule	Mitre rules serve to mark out 45° angles, with the shorter leg serving
bevel gauge	Bevel gauges are back squares where both legs can be adjusted to eac of any size can be formed).
scratch gauge	The scratch gauge serves for marking out straight scribed linears para workpiece. The stop is adjustable and is arrested by wedges or screws.
Compasses	The compasses serve for taking and transferring sizes and for marking
<i>1 guide beam, 2 centring point, 3 slide, 4 pencil holder</i>	

Ш

vernier caliper with depth gauge	Length measurements are possible by placing the wo graduation carrier and sliding member. The diameter measured with the sensing elements. For determinin and similar the depth gauge is used.
1 measuring surface of the graduation carrier, 2 measuring surface of the sliding member, 3 sensing element for determining the diameter of bore holes, 4 depth gauge	
outside caliper	caliper-like measuring instrument (caliper) with inwa and comparing diameter, lengths and tick-nesses
inside caliper	caliper-like measuring instrument (internal caliper g leg points for tracing and comparing bore holes, cour
radius gauge/profile gauge	Radius gauges are templates like profile gauges and the profiles of boards, but also of narrow surfaces ca

as stop.

ch other as desired (angles

llel to one side of the

out circular arcs.

orkpiece between or of bore holes can be ng the depth of bore holes

ardly bent legs for tracing

auge) with outwardly bent nterbores and similar

similar, by means of which an be checked.

7.2. Sawing Tools

Hand saws have triangular teeth and consist of tool steel. We distinguish between span-web saws and saws without span web.

Parts of a saw without span web

I saw arm, 2 adjustable handle, 3 saw blade, 4 connecting strip 5 tensioning part, 6 lock

Figure 6 Parts of a span web saw

Parts of a saw without span web

1 saw blade, 2 back reinforcing part (steel rail), 3 handle Figure 7 Parts of a saw without span web

Kinds and dimensions of span-web saws (frame saws)

Kind of saw	Saw blade					
	length in mm	width in mm	thickness in mm	Saw pitch in mm	Setting width*) in mm	Ар
cabinet saw	700;800	25	0.7	5	0.4	for work in grain dire
pad saw	700:800	40	0.7	4	0.25	finer cuts across the based materials
Bwddvd/NoExe/Mas	ter/dvd001/dvd1/CD3		neister11.htm	2	0.25	for and hands

plications

ection; trimming, cutting off

grain direction, for wood-

*) tooth set: alternate bending out of saw teeth to reach a cutting width which is greater than the blade thickness.

U./

Kinds and dimensions of saws without span web

Kind of saw	length in mm	Saw blade width in mm	thickness in mm	Saw pitch in mm	Setting width in mm	
foxtail	250-500		0.7-0.8	3-5	0.2-0.25	fine work, other mat
keyhole saw	300		1.0	4	0.35	for cutting
fine saw	250	65	0.5	1.5	0.15	especially
back saw	300	100	0.7	3-4	0.2	like fine s

nest of saws: Saw blades of all span-web saws known so far can be fixed to a handle as required.

Tool geometry of hand saws

Kind of saw	Angle at the a tool cutting edge		
	α	β	γ
cabinet, pad, fret saws	45	70	-25
foxtail saw, keyhole saw	60	60	-30
fine saw	65	50	-25
back saw	10	60	20

Recommendations for maintenance and use

Untension frame saws after use, turn the row of teeth inwards during transport, saturate wooden parts with linseed oil varnish or with polish to prevent impurities from getting into them; keep hand saws in a hangig position, clean the saw blade from impurities by means of petroleum or similar and protect it against rust by means of acid-free grease. Cover the teeth of saws without span web during transport and storage so that no injuries are possible.

Applications
cutting of plywood and erials
g out openings
for mitre cuts
aw

31/38

7.3. Planing Tools

Parts of a plane

I nose, 2 plane body, 3 chip hole, 4 clamping wedge, 5 plane knife, 6 hand guard, 7 impact button, 8 plane face, 9 chip opening

Figure 8 Parts of plane

Kind of plane	Cutting angle δ in \circ	Applica
finish plane	45	without flap; coarse chip remo rough smoothing, chip thickne
1 plane knife, 2 plane body, 3 chip hhole, 4 workpiece, 5 chip, 6 wedge angle, 7 cutting angle, 8 flap of the plane		
double iron plane	45	with flap, smoother surface that flattening of finished surfaces
1 plane knife, 2 plane body, 3 chip hole, 4 workpiece, 5 chip, 6 wedge angle, 7 cutting angle, 8 flap of the plane		
trying plane	45	with flap; basically a long dout surfaces, for edging and jointir
smoothing plane	49	with flap; for smoothing of sur surfaces

ations

oval, for flattening and ess up to 1 mm

an with the finish plane, for

ble plane; for dressing of ng of narrow surfaces rfaces, for planing of end

<i>1 plane knife, 2 plane body, 3 chip hole, 4 workpiece, 5 chip, 6 wedge angle, 7 cutting angle, 8 flap of the plane</i>		
rabbet plane	4548	simple rabbet plane without fla flap; for replaning and resmool

Recommendations for maintenance and use

Regularly clean the plane iron and the face of the plane; when putting the plane down, lay it on its side; the face of the plane must be even, if not, dress it and afterwards oil it slightly; replace faces of planes that are excessively worn by new ones; if the plane is blocking, check whether the flap is tightly fitting, the wedge is fitting or whether the pressure of the wedge is properly acting on the lower part of the plane iron.

7.4. Mortising and Ripping Tools

Mortising and ripping tools are hand tools for chiselling, mortising and turning operations.

Parts of the mortising and ripping tools

1 blade, 2 tang, 3 shoulder or collar, 4 haft, 5 clamp,

Figure 9 Parts of the mortising and chiselling tools

Kinds and dimensions of the mortising and ripping tools

Tool		Dimension of the blade		
		width in mm	thickness in mm	Applications
ripping chisel	light medium heavy	450 640 2035	2.54 3.54.2 4.25	for mortising recesses, for recessing fitting an acute angle

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

p, double rabbet plane with thing of rebates

22/10/2011		Formulae and Tables - V	Wood / textbooks for vocational training (GTZ, 122 p.)
mortise chisel	22	6 1215	for mortising orftenon holes and similar
turning chisel, flat	45	0 3.5; 4.5	making of turned bodies, soft wood workin $\alpha = 1020^{\circ}$ $\beta = 2030^{\circ}$
turning chisel, hollow	45	0 3.56	hard wood working, roughing work; $\alpha = 1020^{\circ}$ $\beta = 4050^{\circ}$

Recommendations for maintenance and use

The tool must be clean and sharp; always clamp the workpiece, always chisel on the carpenter's bench plate, not on the collets; further hints: like plane irons.

7.5. Drilling and Boring Tools

Drills are tools for making round holes.

Parts of a drill

1 drill scew, 2 parallel shank, 3 squared end, 4 centre-point with infeed thread, 5 cutting tool tip, entering tap

Figure 10 Parts of a drill

Drilling and boring tool	Dimensions in mm		Applications
twist drill with roof-	diameter thread	3.08.3	for drilling into hard wood and end-grained materials and metals
shaped point	length	4270	

D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOODWORK/.../meister11.htm

wood, into wood-based

22/10/2011

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

twist drill with a spiral	diameter overall	212	for drilling into end-grained wood
flute	length	120170	
auger bit	diameter length	630 185250	for deep drilling into soft and hard wood
twisted auger	diameter length	310 125160	mainly for predrilling for woods screw into s splitting effect
centre bit	diameter length	650 80140	drilling into cross pieces
grimlet	diameter length	210 90200	for predrilling screw and nail holes, mainly i
wood countersinks	diameter length	16 and 20 100	for reaming bore holes, these get a funnel-s

Aspects for the drill selection

Feature	Application
with square shank	for breast drill
with parallel shank	for drill chuck and machine
with entering tap	for cross-piece drilling
with chip groove	for deep drilling
with roof-shaped point	for non-fibrous materials and end-grained wood
with centre point	for exact advance
with feed thread	for manual work
without feed thread	for machine work
with short die head	for flat drilling

Recommendations for maintenance and use

Drilling and boring tools must be clean and well sharpened. When storing them, protect cutting parts. Keep them safe

in a hanging or lying position in cabinets or cases, they must not contact each other. Remove impurities with hot water or petroleum after use, slightly grease them with acid-free grease against rust.

7.6. Rasps and Files

Rasps and files are hand tools for flattening and smoothing. Rasps have coarser cutting edges, files have finer ones.

Parts of rasps and files

1 file blade, 2 file tang, 3 file handle, 4 upcut, 5 undercut Figure 11 Parts of rasps and files

Kinds and dimensions of rasps

ΤοοΙ	Length in mm	Cross-section in mm	Application
flat rasp	200350	20 × 536 × 8	Rasps serve for coarse smoothing of round p
1 width, 2 thickness			
half-round	200300	18 × 630 × 10	
1 width, 2 thickness			
round rasp	200250	diameter 8 and 10 mm	

Kinds of dimensions of files

ΤοοΙ	Length in mm	Cross-section in mm	Application
rectangular file	200 and 250	20 × 3.5; 25 × 4	for fine smoothing of round portions and recesses, rev
flat/round file	like rectangular file		
triangular file	100200	side length 617	especially as saw sharpening file, edge angle 60°, edg machining the tooth gullet

Special kinds, e.g. as special saw and mill files

Recommendations for maintenance and use

Use only tools the tangs of which are straightly and firmly seated in the haft (stab injuries). Work in grain direction, if possible. Choose tooth spacing*) according to the wood quality (use files with coarse cut for soft or damp wood). Clean the tools from impurities by dipping them into hot water, brush them with a hand brush. Clean metal files with file brushes made of fine copper wires.

*) Cuts: Cutting edges lying closely one after the other and recessed or cut into the metal base body by machine.

7.7. Other Tools

Tool	Application
glass cutter	for cutting glass panels. The glass is scratched under slight pressure by means of a diamond p
setting iron	for setting hand saws. The tool head provided with the recesses may
D:/cd3wddvd/NoExe/Master/dvd001/dvd1/CD3WD/WOC	DWORK//meister11.htm

working of rasped surface ges slightly rounded for

particle or a hard metal tip. have a varying number of Каналан на ! ај на адаата аб на а

0/2011	Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.) NOTCHES; THE NOTCHES ARE OF DIFFERENT WIDTHS AND CORRESPOND TO THE D
BEEE BEEE	saw blades.
setting pliers	for setting hand and machine saw blades. The setting pliers are desidepths and blade thicknesses; setting depth and setting width can be allow more exact working than the setting iron.
setting pliers for tooth depths of	
up to 8 mm and blade thicknesses of 0.31.5 mm <i>1 adjusting screw for tooth depth</i> <i>2 adjusting screw for setting width</i>	
setting pliers for tooth depths of up to 15 mm and blade thicknesses of 0.53.0 mm	
hone	for honing (smoothing) the cutting edge. Natural as well as synthetic stones are used, with the latter mostly h different grain sizes (rough honing, fine reworking). Water and oil a
scraper	for smoothing hard wood surfaces. Chip removal by sharp burrs on the longitudinal edges; 0.8 - 3 mm

- -

anterent thicknesses of the igned for various tooth be adjusted. The setting pliers having on both sides are used as lubricants. thick, made of tool steel

