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SPRlNG MATEWbiS - 1 
-- 

The sponginess of me& is rerated in a general way to their hardness. 
Lead, for example, is a sof? meta!, with vi;t*uaiiy no ‘spring’ properties. 
The same with al~minium. Cxtrerns hardness, on the other hand, again 
results in Lack of ‘spring’ properties hecause the material is brittle rather 
than ‘eiastic’. The range of suitabfe spring materials are thus those 
which combine sruitable nardness with ‘eh&icity’. 

lt is also impJrtar;t, if spring performance is to be consistent, that 
the material retains its original properties. Many metal2 are subject to 
‘work-hardening’ or a change of hardness when stressed-and ail 
working springs are subject to cycles <:f str.3ss. &-ass, for example, is a 
metal which is re!atively soft, htit repr~dted stressing or ‘working’ 
causes its hardness to increase, wiin th:; metal becoming more springy 
as a consequence Thus vdniist soft brass is quite useless as a spring 
material, fully-~ hardened b-ass possesses reasonably good spring 
properties. 

The hardness of many meta can also be improved b# heat treatment, 
and as a resuh their spring properties enhan:ed. This is quite common 
practice in the preparation of basic spring ‘stock’. Heat, however, can 
also uioduCe the opposh result. Thus a hard, springy metal can often 
be permanently softened by heating and slow cooling (or annealing)., 
On the Qther hand, heating and rapid cooling a spring materiai can 
increase its hardness to the point of brittleness. Without considerable 
experience in the techniques of heat treatment, therefore, spring 
materials should always be used ‘as is’. 

With suitable knowledge. however, processed springs may often be 
heat treated to advantage -. e.g. to remove inrernal stresses remaining 
in the ma.teriai after cold working to shape or form. The temperature 
and method of heat treatn,ent employed is dependent on the com- 
position of the spring material and the method of spring application. 

Another form of treatment which can produce embrittlement in a 
spring is electroplating. This applies particularly in the case of carbon 
steel springs, where plating may sometimes by thought desirable to 
provide resistance to corrosron. If such springs are plated, regardless of 
the method used they require to be baked immediately after plating to 
drive out hydrogerr absorbed by the materia; during plating. Any 
hydrogen remaining in the pores of the spring material will cause 
embrittlement. Similar comment apolies to plated steel wire, used as a 
spring material. 

The range of true spring materials is fairly limited. Ordinary carbon 
steel rendered in ‘spring temper’ form is the most common choice for 
general purpose springs of all types. In the case of wire, the necessary 
temper may be produced by the method of fabrication - e.g. cold 
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SPRING MATERIALS 

drawing. The spring temper may, however, be further improved by heat 
treatment or oil tempering. Such spring materials are suitable for use 
under ordinary temperatures, in normal stress ranges - i.e. without the 
limit of proportionality of the material (see later). For use under higher 
stresses, or higher temperatures, special alloy steels may be needed. 

Where corrosion may be a problem, the choice of stainiess steel or 
non-ferrous spring materials may be necessary - the former where high 
stresses have to be carried by the spring, and the latter for lower cost, 
easier working, where stresses are not so high. Beryllium copper is an 
attractive choice where high resistance to stress and corrosion are 
necessary, and good electrical conductivity is also required. If electrical 
conductivity is the main requirement, phosphor-bronze provides a 
cheaper alternative; and brass even lower cost (although brass is a 
‘marginal’ spring material, even at full ‘spring temper’). A nickel a!loy 
(e.g. monei) may be specified where high temperatures have to be 
accommodated. 

Mechanical Considerations 
However good the spring material, there are limits over which it can be 
expected to work consistently and show a long ‘spring’ life. The 
critical factor involved is the actual stress born by the material when 

Fig. 1 
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SPRING MATERIALS 

the spring is working. Up to a certain point, with increasing stress the 
corresponding strain in the material follows a linear relationship - 
Fig. 1. Beyond this limit of proportionality this linear relationship no 
longer applies and subjecting the material to these higher stress values 
may permanently change the mechanical properties of the material. 

The limit of proportionality thus represents the upper stress limit for 
the material.. In practice, a lower limit is normally employed - 80 per %F: 
cent of the limit of proportionality -to allow a safety factor in spring 
design. 

Working within this limit will then ensure a consistent performance 
from a spring material. 

This, however, only presents part of the picture. The strength of any 
material is different for different ways in which it is stressed. IVlaximum 
strength is usually available when stressed in pure compression, with 
an almost similar value when stressed in pure tension. If subject to 
twisting or torsion, the material strength available is considerably 
reduced. 

Basically, in fact, the life of a spring depends on four main factors: 

(i) The manner in which the spring material is stressed. 
(ii) The maximum working stress. 
(iii) The range of stess over which the spring material is worked. 
(iv) the number of cycles of stress or the effects of fatigue on material 

properties. 

Items (i) and (ii) are directly related. Once the manner in which the 
material is stressed is established, a safe maximum working stress can 
be established for a particular material - see Table I. 

The stress range is more difficult to establish. In general, the higher 
the range of stress over which the,spring is worked, the lower should 
be the maximum permissible stress to ensure long spring life. However, 
this will vary with both differences in material properties and heat 
‘treatment and with frequency of working. For simplicity of design it is 
,best to adopt ‘safe’ figures which ,err on the, side of underestimating 
material performance, such as give’n in Table I. 

Whilst material strength and stress dete~rmine the load which can be 
carried by a spring of given geometry, and the life of the spring, 
deflection characteristics are determined by the moduli of the material. 
Again this depends on the manner’ in which the spring’,material is 
deflected or stretched. If the spring material is under tension, then it is 
the modulus of elasticity of Young’s modulus which is the parameter 
involved. For a spring materiel subject to’torsion it is the modulus of 
rigidity which is involved in calculating,deflection. 

Values of modulus of elasticity (E) and modulus of rigidity (G) have, 
therefore, to be known for the spring materials used before the full 
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SPRING MATERIALS 

performance of a spring can be evaluated. These are also given in 
Table I. The modulus of elasticity largely governs the material perform- 
ance of flat springs and torsion springs. The modulus of rigidity governs 
the material performance in helical springs. The actual stress produced 
in a spring, on the other hand, is dependent only on the load carried by 
the spring and the spring geometry. All these individual parameters 
appear in the spring design formulas in subsequent chapters. 

Formulas and Units 
Spring design proportions are not something that can be ‘guesstimated’ 
with any degree of accuracy - and trial-and-error design can produce 
a succession of failures. Thus this book on spring design is full of 
formulas, as the only accurate method of predicting spring performance. 
However, all are essentially practical working formulas; and all are 
quite straightforward to use. Each calculation is nothing more elaborate 
than an arithmetical calculation - aided by a slide rule or log tables. 

No units are given with the formulas, since these follow quite 
logically depending on whether you are working to English or metric 
standards. Most quantities are linear dimensicns, and it is only necessary 
to remember that stress values, etc., should be rendered in the same 
units. Thus for working with all dimensions in inches, stresses, etc., 
must be in pounds per square inch. Answers will then work out 
logically in the right units. 

For example, the deflection per coil of a helical compression spring 
is given by 

deflection = g 

where P is the load 
D is the mean coil diameter 
d is the wire diameter 
G is the modulus of rigidity of the spring material. 

In English units, P would be in pounds. Dimensions D and d would 
be in inches. To be consistent, G must then be in pounds per square 
inch. The deflection, calculated from the formula, is another linear 
dimension and so would be given directly in inches. 

Using metric units the point to watch is that the modulus or stress 
values used (or calculated) are in the same units as the linear dimen- 
sions. The latter, for example, will usually be in millimetres. Moduli and 
stress figures may, however, be quoted in kilograms per square centi- 
metre and would need adjusting for consistency when used with 
millimetre linear units. 



SIMPLE FLAT SPRINGS 2 

The basic form of a simple flat spring is shown in Fig. 2. The following 
are the two design formulas concerned: 

SPL 
Stress = - 

4PL3 

(tension) bt2 
Deflection = - 

Ebt3 
in consistent 

units - i.e. Stress is given in Ib/sq.in when P is in pounds and L, b and 
t are in inches. The modulus of elasticity (E) is in Ib/sq.in. 

Fig. 2 

As a general guide it follows that: Stress in the spring material 
z,;$;;,~, increases in direct proportion to spring ~length, and in inverse proportion 
ij{;:;~,:, to width and (thickness)*. Thus, for example, increasing the thickness 
;:,::::: of the spring will decrease the stress more effectively than increasing 
,, * the width. Deflection increases with the cube of the length (thus 

,,, small changes in length will have,a marked effect on deflection); but 
Eli, ca,n be decreased by increasing then width or thickness (the latter being 

,;-: : ,,I’,’ much more effective in stiffening ,the spring). i 

:::$:,~ ,“Design P,rocedure 
‘,‘The,design of a simple flat spring commonly calls’for a certain deflec- 

tion not,t,o be exceeded under a given load. The length (L) of the 
“’ Spnng may also be predetermined, or can be given a suitable value. 

The formula for Deflection can thenbe rearranged as a solution for bt3, 
,, viz: 

bt3 = 
4PL3 

tion E x deflec 

iis equation are known (the 
A material selected), and can thus be 

All values on the right hand, side of tt 
‘:, value,of E ,following from the spring 

calculated as a single quantity I say X 

7 ,: 
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SIMPLE FLAT SPRINGS 

We then have 
bt3 = X 

From this point, either ‘guesstimate’ a value of b and from this 
calcu!ate the corresponding value of t to satisfy the equation; or 
‘guesstimate’ t and from this calculate b. The latter is the usual method 
since thickness is governed by the standard sizes of materials available, 
and thus there is a choice of specific values of t (e.g. 20 swg. 18 swg, 
etc.). Note: See Appendix 6 for tabular values of t3. 

Any solutions derived by the above method will give spring propor- 
tions satisfying the deflection under load requirements. It is now 
necessary to enter these values in the Stress formula, together with 
load (P) and calculate the stress resulting. Providing this is lower than 
the maximum permissible stress for the material used, then the spring 
geometry is satisfactory. If the calculated stress is higher than the 
maximum permissible stress, then the spring geometry must be 
recalculated from the def!ection formula, using different values. This is 
simplest if the spring length is left unaltered. It is then only necessary 
to return to the formula 

bt3 = X 

and use a greater thickness to calculate a new value for b. Check if 
this reduced the stress to below the maximum permissible value. If not 
try again. 

Square Wire Springs 

Use the same formulas, and procedure, substituting a3 fcr bt2 in the stress 
formula: and a4 for bt3 in the Deflection formula; where a = dimension 
of square. 

Round Wire Flat Springs 

Exactly the same formulas (and design procedure) follow in the case 
of a flat spring made from round wire - Fig. 3 -except that b and t 
are replaced by the wire diameter (d). 

6PL 
Stress = d3 

4PL3 
Deflection = Ed4 

Flat Spring Supported at Each End 

The stress and deflection formulas are modified when a flat spring is 
supported at both ends - Fig. 4 - and become 

3PL 
Stress = 2bt2 Deflection = & 

Design procedure is the same again. 
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SIMPLE FLAT SPRINGS 

Fig. 3 

P 

Fig. 4 

In the case of a flat spring made from round wire, supported at both 
ends, bt2 in the ‘Stress’ formula is replaced by d3; and bt3 in the 
‘Deflection’ formula is replaced by d4 

Design of Contact ‘Springs 

A contact spring is simply a flat spring designed to apply a certain 
pressure at a particular point (contact point) along its length - Fig. 5. 
It can be derived from the standard ‘Stress’ formula, rewritten as a 
solution for load (P) or actual contact pressure produced when 
deflected, viz 

p - bt*S 
6L 

P 
Fig. 5 

deflection 
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HELICAL SPRINGS 

where S is the design maximum working stress for the material to be 
used (i.e. use 80 per cent of the limit of proportionality of the spring 
material from Table I). 

The simplest way of tackling design is to fix suitable values of 
spring length L and width (b), from which the required material 
thickness can be calculated. Ii this yields a not standard thickness, then 
the nearest standard thickness (up or down) can be adopted, and the 
corresponding width m-calculated to provide the required contact 
pressure. 

It can also be instructive, having decided on a suitable spring length 
and width, to calculate the maximum contact pressure available over a 
range of thicknesses for different spring materials. This is done in 
Fig. 6 for a spring length of 2” and width $‘, and clearly indicates the 
superiority of beryllium copper as a contact spring material. 

Limitations to Flat Spring Calculations 

Whilst the design formulas provide accurate theoretical solutions, actual 
performance may be modified somewhat by the manner in which the 
end (or ends) of a flat spring is (are) clamped. 

In the case of contact springs, performance may be further modified 
by the fact that such springs are not necessarily simple beam shapes, 
but may be irregular in width. Calculation applied to such shapes is 
tedious. It is best to design the spring on the basis of a ‘mean’ or 
‘typical’ width and check the performance by practical experiment. 

HELICAL SPRINGS 3 

In the case of helical springs which are either compressed or extended 
under load, the spring material is stressed in torsion and so the following 
basic formulas apply for round wire springs: 

8PD 
Torsional stress = - 

sd” 

Deflection = g x N 

where P = load 
D = mean diameter of spring 
d = wire diameter 
G = modulus of rigidity of spring material. 
N = number of active coils in the spring 
(see also Fig. 7) 
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HELICAL SPRINGS 

I Fig. 7 P 

active coils active coils 

‘L-o-4 

The stiffness of a helical spring, therefore, is proportional to :he 

fourth power of the wire diameter, and variesinversely as the cube of 
neter. Both d and D thus have,a marked effect on spring 

. ‘In spring diameter 6~ can .co,nsiderably increase: the deflf 
small decrease in D~Can make thespring much~stiffer~. 

‘, :estimat&d, from~ experience’,&&, it’,wiil, :varv with ,the quality ,of ‘the 



Fig. 8 TENSION SPRING ENDS 

Long round end Long square ,d 
hook on centre hook on centre 

Extended eye on 
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Coned end with 
short sv*i:.~l eye 

Half Hook on centre 

Full eye on side 

Eye and Hook show” in line 

Eye and Hook at right angles 

HELICAL SPRINGS 

Plain Ends One end 
ground Rot 

V hook on 
centre 

Straight and onneoled 
to allow forming 

Coned end to hold 
iong swivel eye 

Coned end with 
swivel hook 

Half eye on centre 

=illU? 
Double loop 

Coned end with 
swivel bolt 

Small eye on centre 

Small eye on side 
on centre 

Eye and hook 
shown at right cngles 

%il eye cm side and 
small eye on centre 
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HELICAL SPRINGS 

in the case of a plain compression spring to produce parallel ends. Thus 
geometrically the spring has a total number of coils equal to N + 1% (or 
N + 2), the number of active coils being calculated for the required 
deflection performance. Extension springs, on the other hand, com- 
monly have all the coils ‘active’, the ends being made off at right angles 
to the main coil, e.g. see Fig. 8. 

Another important parameter is the spring rate (or load rate), which 
is simply the load divided by the deflection. 

Spring Rate = defleLtion 
Gd4 

= 8ND3 
Where the spring is of constant diameter and the coils are evenly 
pitched, the spring rate is constant. A spring can be given a variable 
rate by tapering the coil, or using a variable pitch. Constant rate springs 
are the more usual, and much easier to work out. 

Basically, spring design involves calculating the spring diameter and 
wire size required to give a safe material stress for the load to be 
carried. It is then simply a matter of deciding how many coils are 
required (i.e. how many active turns) to give the necessary spring rate 
or ‘stiffness’ in pounds per inch of movement. This may also be affected 
by the amount of free movement available for the spring. 

The same considerations apply to both compression and extension 
springs, with one difference. Extension springs may be wound with 
initial tenslon, which in some cases can be as high as 25 per cent of 
the safe load. To open the coils of the spring this load must be applied, 
and only the remainder of the load is then available for deflection. This 
does not modify the spring design formula - merely the value of the 
applied load effective in producing deflection. 

Whilst the working formulas are straightforward, spring design is 
complicated by the fact that three variables are involved in then spring 
geometry-diameter (D), wire diameter (d) and number of active 
coils (N). However, only D and d appear in the Stress formula, which is 
the one to start with. So here it is a case of ‘guesstimating’ one figure 
and calcu!ating the other on that basis. 

Design Procedure 

(i) Either 
(a) fix a value for D and calculate d fo: the safe value of working stress 

from 



HELICAL SPRINGS 

(Note: From the value of d3 so found the corresponding wire 
diameter can be found from the tables of Appendix B - there is no 
need to work out the cube root of the answer to the formula) 

or 
(b) fix the va!ue of d (from an estimated suitable or readily available 

wire size), and from this calculate the required value or D from 

D=- nSd3 
8P 

(Note:Ageinyou can !ookupd3directlyin thetablesofAppendix B.) 
(ii) Check that the sizes are practical. For example, if the value of D 

is fixed the calcuiated value of d may be a non-standard wire size. In 
this case, recaiculate for the nearest standard size to yield an acceptable 
value of S. This can be avoided by fixing the value of d to start with, 
but could yield an impractical value for D. 

(iii) Having arrived at suitable values for D and d, calculate the 
number of active turns required for the deflection to be accommodated. 

N= 
Cd“ x deflection 

8PD3 

(Note: you can look up values of d4 directly in the Appendix tables). 

That, in fact is all there really is to designing helical compression or 
extension springs, provided extreme accuracy is not required. Remember 
to add on $ or 1 turn to each end for closed end compression springs. 

More Accurate Working 

,Stress calculation by the above method assumes that the spring material 
isstressed in pure torsion. In fact, further stress is added because of 
‘the curvature in the wire. Thus the true stress in the material is higher 
than predicted from simple calculation, viz 

True stress = K x S 
where K is a correction factor for wire curvature 
(normally known as the Wahl correction factor). 

Unfortunately, the value of ,K depends on the spring geometry and 
thus the spring diameter (D) and wire diameter (d) have to be deter- 
mined before the correction factor can be found. 

K= 471 +0.615 
4c+4 c 
where c = D/d (which ratio is also known 

as the spring index). 

15 



HELICAL SPRINGS 

Having determined a suitable size of spring, therefore, the true stress 
should be calculated, using the Wahl. correction factor calculated as 
above. If this true stress works out higher than the maximum permissibie 
material stress, then the whole spring geometry must be recalculated 
through. 

To save a lot of worki~ng, values of K are shown graphically against 
spring index in Fig. 9, and also in Table II. 

Solid Height of Spring 

The solid or ‘closed’ length of a helical spring follows by multiplying 
wire diameter (d) by the total number of coils (N + ‘dead’ turn at each 
end, where appiicable). This length may be reduced somewhat by 
grinding the ‘dead’ turns flat on a closed end spring see Fig. 10. 

Helical Springs in Rectangular Wre Section 
Similar formulas apply, with wire width (b) a~nd thickness (a) replacing 
d - Fig. 11. Also additional stress factors are introduced to take into 
account the additional stresses imparted by bending rectangular 
section wire into a helical coil. 

PDKK, 
Stress = 2a2b Deflection = 

PD3NK3‘ ; 
Ga3b 

Values of K, and K, are given in Table Ill. The spring index, for 
determining the value of K the Wahl correction factor K, is found as 
follows. 

For rectangular wire coiled on edge, c = D/a 
For rectangular wire coiled on flat c = D/b 

For non-critical applications the design of helical coil springs 
wound from rectangular section, wire can ignore the corrections to 
stress, by adopting an appreciably lower value of maximum permissible 
material stress. This will not utilise the full spring potential of the 
material, but considerably simplifies calculation. 

Stress = $& 
PD3N 

Deflection = Ga3b 

16 



Fig. 9 
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HELICAL SPRINGS 

Fig, 10 

“dead ” turn 1 

“dead ‘I turn 

ground flat 

ground flat 

Energy Stored in Helical Springs 

The energy stored in a compression or extension spring can easily be 
calculated from 

Energy = 
P x deflection 

2 

Fig. 11 

b 

wire coiled on edge 

18 

wire coiled on flat 



TAPERED HELICAL SPRINGS 4 

. 
With the tapered or conical sprmg, each coil is of different diameter. 
This gives the spring a variable rate. The stress imposed by any load 
causing deflection is also variable from coil to coil. For design purposes 
it is the maximum stress, which is most important. This will occur in 

‘, 1, the largest active coil - Fig. 12 - and the stress is largely tension. 

,,, 

Max. stress = 3 x K 

I 
where K is the Wahl correction factor 

(Note: since stress is proportional to spring diameter D, it follows that 
the stress in any coil can be calculated by using the appropriate coil 
diameter; also that the maximum stress will occurwhen~D is~a maximum, 
i.e. equal to that of the largest coil). 

Fig. 12 (smallest active coil) 

“dead” turn 

“dead ‘I turn 

(largest active coil) 

Deflection under a constant load will vary. In the case of a com- 
pression spring, first the largest coil will bottom, then the next largest, 
and so on - Fig. 13. An extension spring will ‘open’ in a similar pro- 
gressive manner. 

8PD;N 
Total deflection = Gd4 

where, D; 
active cdi 

..-I--- -c ^-.:. .^ L_ .“__ N is the number WI ~CLIV~: IWIS 

r is the mean diameter of the smallest 
I 

19 
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TAPERED WELICAL SPRINGS 

170 
P 

1 1 
P 

largest active coil 

bottom first 

This formula can also be rewritten in terms of the maximum load to 
close the spring solid 

P 
Gd“ x deflection 

max = 
8DzN 

The design of tapered springs, therefore, follows the same lines as 
for helical coil springs (Section 3), using these modified formulas. 

Solid Height 

The solid height of a tapered spring is less than that of a helical spring 
since the individual turns ‘stack’ to a certain extent - Fig. 14. The 

Fig. 14 // i 
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TORSION SPRINGS 

effective height (y) per coil can be determined from the right-angled 
triangle shown, where 

d2 = x2 + y2 

or y= JF=-? 

The solid height of the spring then follows as 
Solid height = Ny 

where N = number of active turns. 
Remember to add 2d to this to account for one ‘dead’ turn at each end 
in the case of springs with closed ends. 

=rORSlOhl SPRlNeS 5 

;: 

A helical torsion spring is designed to provide an angular deflection of 
an arm at one end of the spring - see Fig. 15 -the other end of the 
spring being anchored. The stiffness of such a spring (or its resistance 

:~!,,~~ to deflection is directly proportional to the fourth power of the wire 

d 

(degrees) 

anchored end 

diameter; and inversely proportional to its diameter. The coil diameter 
is commonly fixed (e.g. the spring has to fit over a shaft or spindle); 
and thus choice of different wire sizes will have a considerable effect 
on spring performance. 

21 
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TORSION SPRINGS 

The following basic formulas apply: 

Stress = 3~~~R x K, 

where K, is the stress correction factor for round wire 
springs in torsion (see Table IV) 

Angular deflection (degrees) = 
3665PRDN 

Ed” 

where E = Young’s modulus of 
spring material 

Design calculations are again based on working the spring material 
within acceptable limits of stress. The force (P) acting on the spring is 
applied over a radius (R), equal to the effective length of the free arm 
of the spring. Design calculations can proceed as follows: 

(i) Knowing the force to be accommodated and the spring arm 
leverage required (R), use the stress formula (without correction 
factor K4) to calculate a suitable Wire size: 

22 

d3 _ 32PR _ 10.18PR 

76 S 
where S is the maximum permissible 
material. stress. 

I,, ,, 

., : 

,,, 

(ii) Adjust to a standard wire size, if necessary. 
(iii) Calculate the angular deflection of such a spring, using a 

specified value of diameter D, from the deflection formula, and ignoring 
the factor N. This will give the deflection per coil. Then simply find out 
how many coils are needed to produce the required deflection. 

This stage may, of course, be varied. The load moment PR may be 
the critical factor - i.e. the spring is required to exert (or resist) a 
certain force (P) at a radius R with a specific deflection. In this case, 
having adopted a specific value for D, the deflection formuia can be 
used to find a solution for the number of turns required. 

(iv) Having-arrived at a possible spring geometry, recalculate the 
true stress as a check, using the correction factor K,. 

If,necessary, ,readjust the spring geometry to reduce the stress and 
recalculate the spring. 

If the spring is to be fitted over s shaft, or spindle a check should 
also be made that in its’tightened position it does not bind on the shaft. 



TORSION SPRINGS 

Final mean diameter = D x c 

whereINi is the final number of turns when 
tightened. 

This is simple enough to work out. A deflection of x degrees is equivalent i 

to x/360 turns. 

Thus N,=N+L 
360 

Remember that the final inner diameter of the coil will be equal to 
the final mean diameter minus d. 

Torsion Springs in Rectangular Section Wire 

Exactly the same procedure is involved, except that the basic formulas 
are modified slightly (see also Fig. 16). 

Stress =‘-f? x 
a2b 

K 5 
:j;?~, :j;?~, 
“,:, “,:, 
;s;: ;s;: 21 GOPRDN 21 GOPRDN 

&:; &:; Angular deflection (degrees) = Angular deflection (degrees) = Ea3b Ea3b 

‘!I;<;;: ‘!I;<;;: Square wire section is simp!y a special case of rectangular wire section Square wire section is simp!y a special case of rectangular wire section ,,hI /, :,:, ,,hI /, :,:, 
where a = b. where a = b. 

Fig. 16 Fig. 16 
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CLOCK SPRINGS 

Energy Stored in Torsion Springs 

This is easily calculated from the deflection and moment. 

Stored energy = 
PR x deflection (degrees) 

115 

The same formula applies to both round and rectangular wire sections. 

CLOCK SPRINGS 6 
- 

A clock spring is a special type of spiral or torsion spring, wound from 
flat strip. Main interest is in the turning moment or torque, and the 
power such a spring can develop. 

The stress developed in the spring material can be calculated from 
the spring dimensions in a close wound and fully released conditions. 
If R, is the radius of a particular point in the spring in a fully wound 
condition and R, the radius of the same point in an unwound condition, 
a close approximation to the stress is given by: 

Bending stress (Sb) = E 

(see Fig. 17 for notations) 

fully released 

fully wound 

Point X point X 

Note that it is the material stress in bending (or torsion) which applies 
in this case, not the tensile stress (which is lower), 
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CLOCK SPRINGS 

The ‘Deflection’ formula can be rendered in terms of the number of 
turns (T) the spring can be wound up. 

T - 6PRL 
xEt3b 

this can also be rewritten in terms of the stress (S,) 

(see Fig. 18 for notation) 

Fig. 18 
Deflection = number of turns 

r-7 wound up 
unwound 

b 

= Length of spring 

This is by far the more convenient form, but is not strictiy correct 
since it does not allow for the effect of curvature on stress (see Torsion 
Springs). The complete formula for number of turns is thus 

T=,g; 

whert K, is the curvature stress 
factor (see Table V) 

The length of spring (L) can be derived from basic geometry. 

L=ltDN 
where N = number of active coils 

25 
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CLOCK SPRINGS 

In the fully wound condition 

D = 2 R, + R” ; Rw 
but R, - R, = Nt 

or R, = Nt + R, 

Thus D=2 R,+ 
( 

Nt + R, - 

2 
= 2R, + Nt 

Substituting in the first formu!a 

L = xN(2R, + Nt) 

These formulas can be used to determine the required spring 
geometry, with the mechanical output given by 

Turning moment or torque Q, = PR, 

If the applied torque is known, then the number of turns to wind up 
the spring also follows directly as 

T= 6QL 
rrEt=‘y 

Horsepower Calculation 

The stored energy in a clock spring can be released at various rates, 
according to the manner in which the movement is governed or 
restrained. 

Note the relationship between number of turns (T) and stress. 

No. of turns (T) to produce 
LS 

stress S in spring material = - 
rcEt 

Thus 
EEtT 

stress (S) = L 

also: 

Energy per revolution = 
rtSbt* 

6 

To determine the energy produced by a clock spring, proceed as 
follows: 

(i) Calculate length L from the geometry 
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CONSTANT FORCE SPRINGS 

(ii) Calculate stress produced from the number of turns available to 
wind up (this must not exceed the maximum permissible bending 
stress of the material). 

(iii) From the stress, calculate the energy per revolution (E,) 

If the energy per revolution (E,) is determined in units of inch-pounds 
(which will follow using inch units for the spring geometry and stress 
in Ib/sq.in). 

E, x rpm 
Horsepower = 396,000 

or say 
E, x rpm 

400,000 
as a suitable approximation. 

The time for which the spring will develop power also follows as 
T/rpm, in minutes - i.e. the number of turns which can be wound on, 
divided by the rate of unwinding in revolutions per minute. 

The whole series of calculations can, of course, be worked in 
reverse. That is, starting with a horsepower output requirement and a 

+j;,,r:,, known value of maximum permissible stress, suitable geometric 
&c:~ ,’ & proportions for the spring can be determined, together with the number 
$i:;& !f;& of ‘winding’ turns available for the required rate of revolution and 
&, number of complete revolutions. 
1g.a. ,,,, ,, & Note: as a practical design feature the diameter of the inner coil of 

the spring, in the fully wound condition, should not be less than 12 
times the spring strip thickness. That is, the spring should be wound 
on an arbor of this minimum size. If wound up to a smaller diameter the 
spring is likely to suffer from fatigue effects. 

CONSTANT FORCE SPRINGS 7 

Constant force springs are a special type of fiat strip spring, prestressed 
to have a uniform tendency to curl along its whole !ength.* They can 
be used in two ways (see also Fig. 19). 

(i) Rolled onto a bushing to form a constant force extension spring, 
because the resistance to unrolling is the same at any extension. 

(ii) Reverse-wound around a second drum to provide a constant 
torque spring, or constant torque spring motor. 

* Springs of this type are made by Tensator Limited, Acton Lane, Harlesden, London. 
NWIO. They are known as ‘Tensator’ springs in this country; and ‘Neg’ater’ springs in 
America. 
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CONSTANT FORCE SPRINGS 

Fig. 19 

by rolling onto a bushing or spool 

produces a constant force extension spring 

by reverse winding onto a larger drum 
produces CI constant twque spring motor 

Constant force springs of this type have the advantage of being more 
compact when relaxed, compared with helical springs, plus the fact 
that very iong extensions are possible. Either end can be fixed to 
produce an extension spring as shown diagrammatically in Fig. 20. The 
fixed free-end configuration, for example, has proved particularly 
effective for brush springs on electric motors. 

Fig. 20 __----~----__ \ 
I 

,I 

fixed end 
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CONSTANT FORCE SPRINGS 

The constant torque or spring motor form is particularly interesting 
since it offers a performance far superior to an ordinary clockwork 
motor, particularly in the length of run possible and the greater 
mechanical efficiency because of the absence of intercoil friction. Its 
performance can also be predicted quite accurately. 

Extension Spring Design 

Fig. 21 shows the static parameters of a ‘Tensator’ extension spring. 

Fig. 21 strip width = b 

.77 D1 

P 

__-. 

1.25 D1---’ 

The load to extend can be calculated directly from the load factor for 
the material (see Table V) and the spring width and thickness. 

P = Qbt 

The working extension of the spring (X) will be specified, but can 
also be determined from the actual length of spring strip. 

x = L-6D, 
where L is the total length of spring. 

(Note: this formula allows for 13 dead turns on the coil). 
The following formulas can also be used to determine D, and D,. 

D, = ,,/‘I .275(X + 4.75DJ t + 0; 

In design this should be increased by at least 10 per cent to be on the 
safe side, to allow for air space between the coils. 

D, = I.2 x natural free diameter of spring, as made. 
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CONSTANT FORCE SPRINGS 

Torque Motor Design (see Fig. 22) 

The torque output (M) available from a constant torque ‘Tensator’ 
spring motor is given by the formula 

M= 
Qbt D, 

2 
where 0 is the load factor (see Table 
w 

The horsepower output can be derived from the rate of unwinding, 
as with clockwork motors (see Section 6). 

Fig. 22 
t- 

centre distance 

maximum build- 

of turns - 

output drum -- 

The following formulas will also be useful in 

Optimum value of D, = $ 

I t design. 

where Sf = bending factor (see Table V) 

Optimum value of t 
M . Sf 

= 
J- 3bQ 

Optimum centre distance = D, + 4 2 + 30t 

D, = 1.2 times natural free diameter of spring, as made 
D, = jl.275Lt + D; 

where L = total length of spring 
D, = $.275Lt + 0: 

L = 11 (D,N + tN2) approx 
where N = number of working revolutions of D, 
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MULTIPLE LEAF SPRINGS 8 

Basically a laminated spring consisting of a number of individual leaves 
is no different to a single leaf spring, except that the additional leaves 
increase the effective thickness and thus reduce both deflection and 
stress in the individual leaves for a given load. Stress calculations are 
usually based on the assumption of a proportionate load on each leaf 
(i.e. proportionate to the number of leaves). 

Fig. 23 

semi-elliptic 

quarter elliptic 

semi-elliptic cantilever n=number of leaves 

Three common configurations for multiple leaf springs are shown in 
Fig. 23. The following deflection formulas apply: 

Half elliptic: 
Deflection = 4Epb::n 

Quarter elliptic: 4PL3 
Deflection = Ebt3n 

Half elliptic Cantilever: 
Def!ection = 2Epb:ln 

where E = modulus of elasticity 
of spring material 

n = number of leaves 
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MULTIPLE LEAF SPRINGS 

The corresponding stress formulas are (the material being stressed 
in bending as with simple flat springs). 

Half elliptic: 

Stress = ‘zzEL 

Quarter elliptic: 

Stress = g 

Stress = 2 

Half elliptic Cantilever: 

There are several possible design approaches. If the thickness of 
each leaf (t) is decided, the spring width (b) necessary to produce the 
required deflection with 2, 3, 4, etc., leaves can be calculated, using 
the appropriate deflection formula. For example, in the case of a quarter 
elliptic spring 

b= 
4PL3 

Et3n x deflection 

This will give suitable spring geometry with 2, 3, 4 leaves, etc., from 
which the most attractive can be selected. This value of b can then be 
used in the stress formula to check that the maximum permissible 
material stress is not exceeded. If so, then an alternative solution must 
be adopted (e.g. more leaves and smaller width); or the calculations 
re-done starting with a different (higher) value of thickness (t). 

Sometimes it is simpler to work directly from the load the spring will 
carry, which can be arrived at by rewriting the stress formulas: 

Load capability: 

bt2nS, 
Half elliptic = 1 .5L 

bt2nS, 
Quarter elliptic = 6L 

. 

Half elliptic Cantilever = 
bt%S, 

3L 

where S, is the maximum permissible material 
stress in bending. 

A series of alternative spring designs can then be worked out in 
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APPENDIX A 

terms of different values of width (b), thickness (t) and number of 
leaves, all of which would be capable of carrying the required load. 
It is then a matter of calculating the deflection of each of these springs 
and deciding on the most suitable one. If none give a suitable value 
for deflection, then further alternatives must be worked out, bearing in 
mind: 

spring stiffness increases in direct proportion to spring width (b) and 
number of leaves (n); 
increases in direct proportion to the cube of the leaf 
thickness. 

APPENDIX A SPRING TERMINOLOGY 
(and standard units) 

Load (P) is the force in pounds (or kilograms) exerted on or by a 
spring producing or modifying motion, or maintaining a force system 
in equilibrium. Load is directly proportional to deflection and is limited 
by the elastic limit of the spring material. 

Deflection is the maximum movement of a spring from its free length 
or free position to a specified operating position. In the case of helical 
coil springs, deflection per coil is equal to the total deflection divided 
by the number of active coils. 

Rate or load rate is equal to load divided by deflection, and is thus 
inversely proportional to the number of active coils in a coil spring. 

Free length is the true dimensional length of a spring in ils unloaded 
position. 

Solid height is the geometric height (or length) of a coil spring when 
it is fully compressed. 

Active coils-the number of coils in a coil spring which deflect under 
ioad. End turns or part-turns on a compression spring which do not 
take part in deflection are referred to as ‘dead’ coils. 

Pitch is the spacing or pitch dimension between adjacent active coils 
in a coil spring. Pitch determines the number of coils per unit length. 
Spring rate is also dependent on pitch, being substantially constant if 
the pitch is constant. 
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APPENDIX A 

Stress is the operating stress on the spring material under working 
conditions. It is important both to use the right stress value for the 
material (e.g. depending on whether the spring material is being 
subject to tension or compression, bending or torsional loading); and 
also ensure that a maximum permissible stress figure is not exceeded. 
The latter depends on both load and frequency of deflection. 

Mean diameter (D) The mean diameter of a helical coil spring is 
specified as the diameter to the centreline of the coil. The overall 
diameter of a coil spring is thus equal to D + d; and the inner diameter 
of a coil spring to D -d. Note that diameters can vary with working 
in the case of a torsion spring. 

Wire diameter (d) the actual diameter or wire size used in a spring 
made from round wire. 

Spring index. This is the ratio D/d and is used to determine stress 
correction factors where the stress loading on a spring is not simple 
(e.g. helical compression and extension springs, and torsion springs). 



APPENDIX B: WIRE SIZES AND WALUES OF d3 AND d4 

d 

wg 

-- 

33 
32 
30 

24 

23 

22 

21 

20 

IS 

18 

17 

in d3 da 

0~010 0~000001000 
0.01 I 0~00000133! 
0.012 0~000001728 
0.013 0-000002197 
0.014 O-000002744 
o-01 5 0-000003375 
O-016 0-000004096 
O-01 7 0-000004913 
0.018 O-000005832 
0.019 0-000006859 

0.!700000010000 
0-000000014641 
0~000000020736 
O-OOOOOQ028561 
0-000000~38416 
0~00000005~625 
0~000000065636 
0-000000083523 
0~000000104976 
0-000000130321 

O-060 0~00021600 0~0000129600 
0.061 0~00022698 0.0000138458 
0,062 0.00023833 0.0000147763 
0.063 0~00025005 0-0000157530 

16 O-064 0~00028214 0.0000167772 
0,065 0.00027463 0~0000178506 
0.066 0~00028750 0-0000189747 
0.067 0.00030076 0-000020151 I 
O-068 0~00031443 0-0000213814 
0.069 0~00032851 O-0000226670 

0.020 0~000008000 0~000000160000 0.070 0-00034300 0~0000240100 
0.021 0~000009261 0-000000194481 0.071 0-00035791 0~0000254117 
O-022 0~000010648 O-000000234256 15 .,~ O-072 0.00037325 0.0000268739 
0,023 0~000012167 0-000000279840 O-073 0~00038902 0~0000283982 
0.024 0~000013824 0~000000331780 0,074 O-00040522 0~0000299866 
0.025 O-00001 5625 0~000000390620 OG75 O-O@5421 88 0~0000316406 
0,026 O-000017576 0-000000456980 o.oi”i O~OW43898 0~0000?33622 
0,027 0~000019683 0~000000531440 0-077’~;. 0.00045653 5~0000351530 
0,028 0~000021952 0-000000614660 0.078 ‘;,, 0.00047455 0~0000370!51 
0.029 O-000024389 0-000000707280 0.079 ~9~00049304 0-0000389501 

0.030 0-000027000 0-00000081000 14 0.080 o-0G051200 0~0000409600 
0-000029797 0-00000092352 O-081 oao&53144 0-0000430467 
0.000032768 0-00000104858 O-082 0-00055~37 O-0000452122 
0-000035937 0~000001 I8592 O-083 0-00057~ 79 0.0000474583 
0-000039304 0~00000133634 0.084 0~0005927O 0-0000497871 
0~000042875 0~00000150062 0.085 0~00061412 ‘., O-0000522006 
O-000046656 0-00000187962 0.086 0.00063606 O-0000547008 
0~000050653 0~00000187416 O-087 0.00065850 0.0000572898 
0.000054872 0-00000208514 0.088 o.oon68147 C:0000599695 
0-000059319 O-00000231344 0.089 O~C~“70497 O-COO0627422 

0,031 
0~032 
0.033 
0.034 
O-035 
O-036 
0.037 
0.038 
0.039 

0.040 
0.041 
O-042 
0.043 
0,044 
0.045 
0.046 
O-047 
0.048 
0-04s 

0.050 
O-051 
o-o.52 
0.053 
0.054 
0.055 
O-O% 
o-05: O-0001 8519 
0.058 7-00019511 
0.059 0~30020538 

0~000064OOJ3 
O-000068921 
O-000074088 
0-000079507 
0~000085184 
0~000091125 
0~000097336 

0~000125000 
0.00013265 
0-00014061 
0~00014888 
0~00015746 
O-00016638 
O-0001 7562 

0~00000256000 O-090 0~00072900 o-0001?666100 
0~00000282576 0.091 0.00075357 o-0000bS5750 
0~00000311170 13 0~092 0~00077869 0~0000719393 
0~00000341880 0.093 O-00080436 0~0000748C52 
0~00000374810 0.094 0.00083058 0.0000780749 
0-00000410062 0.095 0.00085738 O-0000814506 
0.00000447746 0.096 O-00088474 O-0000849347 
0~00000487968 0.097 0.00091267 0~0000885293 
0~00000530842 0.098 @00034119 0~0000922368 
0~90000576480 0~099 0-00097030 0-0000960596 

0~00000625000 0.100 0~00100000 0~00010000 
0.0000067652 0.101 0~00103030 0~00010406 
~0000073116 0.102 0~00106121 0.00010824 
O-0000078906 0.103 0~00109273 0.00011255 
0-0000085031 12 0.104 0~00112486 000011699 
0~0000091506 0.105 0.00115762 0~00012165 
0~0000098345 0.106 0~00119102 0~00012825 
0~000010F560 0.107 @00122504 0~00013108 
0~0000113165 0.108 0~00124971 0.00013606 
0.00001:‘: i74 0109 O-00129503 0-00014116 

- 

d 

wg in. d’ da 
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‘APPENDIX B: WIRE SIZES AND VALUES OF d3 AND d” 

d 

w in. da da 

0.110 
0.111 
0.112 
0.113 
0.114 
0.115 
O-116 
0,117 
0.118 
0.119 

O.Wl3310 
Cl.0013676 
0~0014049 
O~W14429 
Wool 4815 
04015209 
O~Wl5603 
04016016 
O~W16430 
0.0018852 

0.00014641 
040015181 
O~OW16735 
O~WO16305 
0~00016890 
0~00017490 
O~WO18106 
0-00018739 
O~WO19388 
0~0002W53 

0.120 0~0017280 O-W020736 
0.121 O.Wl7716 @OW21438 
0.122 O.Wl8158 O~WO22153 
0.123 0~0018609 O~WO22889 
0.124 O~WlBO66 O~ooO23642 
0,125 0~0019531 O~WO24414 
O-I 26 O~W20004 O~OW25205 
0.127 O~W20484 O~WO26014 
0.128 O~W20972 O-00026844 
0.129 O.W21467 O-W027692 

O-130 O-0021 970 
O-131 0.0022481 
O-132 O-0023000 
0.133 0.0023526 
0.134 O~W24061 
0.135 om24604 
0.138 O-00251 55 
0.137 0.0025714 
0.138 O-0028281 
0.139 aW26856 

O~OW30360 
O~WO312BO 
O~OW32242 
0.00033215 
O-W03421 0 
O-W035228 
O-00036267 
O~OW37330 

0.140 
0.141 
@I42 
0.143 
0.144 
0.145 
0.146 
0.147 
0.148 
0.149 

OGO27440 
O~W28032 
0.0028633 
O~W29242 
0~0028860 
OGO30486 
0m31121 
04031765 
0+032418 
0~0033079 

O-00038416 
O~WO39626 
0GGO40659 
0~00041816 
O~WO42998 
OW544205 
omo45437 
0-OW46895 
0.00047979 
O~WO49288 

0.150 O~W3375W O+W50625 
0.151 O~W344295 O~WO51889 
0.152 O~W361181 ewo53379 
@153 0~00358160 O~WO54798 
@154 OGO365230 0.00056245 
0.155 OGO372390 OGOO57720 
0.156 oGO37964o O~OW59224 
0.157 000886990 0~00060757 
0.158 O~W394430 O~WO62320 
O-159 0ao401970 O&JO63813 

d 

;wg in. d= d’ 

0,160 OGO40960 
0,161 0.0041733 
0.162 0.0042515 
0.163 O-0043307 
0.184 0~0044109 
O.i65 0~0044921 
0.166 0.0045743 
0,167 0.0046575 
0.168 0.0047418 
O-169 O~W46288 

0.00066636 
0.00067190 
O~WO68875 
0~00070591 

O~WO75933 
O~WO77780 
O~WO79659 
0.00081573 

0.170 0~0049130 @00083621 
0.171 O.OC5CiOOZ 0.00085504 
0.172 O-W50884 0~00087521 
0.173 0.0051777 0~00089575 
0.174 0~0052680 0~00091664 
0.175 0~0053594 O-W937899 
O-176 0.0064518 0.00095951 
0.177 o-0055452 0~00098051 
0.178 0~0058398 0~00100388 
0.179 0.0057353 0.00102683 

O-180 0 0058320 
0.181 0-0059297 
0.182 O-0060286 
O-183 O.W61285 
0.184 0~0062296 
O-185 0.0063316 
0.186 O-0064349 
O-187 O~W65392 
0.188 0.0066447 
0.189 0.0087513 

0-00104976 
O-00107328 
0~00109720 
0~00112151 
0.00114623 
0~00117135 
0~00119688 
O~WI22283 
0~00124920 
0~00127599 

0.190 
0.191 
0~192 
0.193 
0.194 
0195 
0.196 
0.197 
0.198 
0-199 

00068590 
0~0069679 
O~W70779 
O.W71891 
0~0073014 
O~W74149 
O~W75295 
O.W76454 
0.0077624 
0.0078806 

0.0013032 
0~0013309 
@0013590 
0.0013875 
0.0014165 
0.0014459 
0.0014758 
0.0015061 
0~0015370 
0.0015682 

0.200 

0.212 

0.232 

0.252 

0.276 

0.300 

0.324 

O~OOEOW 

O~W9528 

0-012490 

0.108000 

0~0016W 

0~002020 

0.002897 

@W4003 

0.005803 

@OOElOO 

0~011000 
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Math31 

Piano wire up 10 0.1” dia. 
Oil tempered steel wire 
Hard drawn steel wire 
Stainless steel 18.8 wire 

Steel NI wire 
anadium 
bronze’ 

MAI tMlALS, ANU’~rHtlR ~MECHANICAL PROPERTIES 

Litnil of 
proportionality 

lb/w in+ 

- 
- 
-. 

70.000 

Maximum safe working stress 
4” 4” 

lO,SlO” fenslo” 

180.000 120.000 
150.000 100.000 
150.000 100.000 

90-120.000 6~80.000 
120.000 80,OW 

90.000 60.000 

Modulus of 
elasticity 

E (Ib,sq in, 

30.000.000 
30.000.000 
30.000.000 
28~000~00” 
29.000.000 
30,000.000 
15.000.000 

Modulus of 
rigidity 

G (Ib/sq. in) 

12.000.000 
11.500.000 
11.500.000 

9 70” “00 

Brass 52.500 35.000 9000.000 

100-110.000 - 
45-50.000 

30,000 60,000 
- 16 

26.000.000 
-I 8,500.OOO 

11.500.000 
11.500.000 

6.300.000 
5.500.000 
9.000.000 

67.000.000 Beryhn copper’ 
Nickel *iIwY 16.000.000 5.500.000 

. Con1act spring materials 
i Use 80 per cent of this value for design of fiat contact springs. 

TABLE I! WANL’S COR- TABLE III CORRECTION FACTORS FOR 
RECTION FACTOR K FOR RECTANGULAR WIRE HELICAL COIL SPRINGS 
ROUND WIRE HELICAL COIL 

SPRINGS 

spring index D/d K 

2 
3 
4 
5 
6 
8 

10 
12 
15 
20 
25 

2.06 
; .5ij 

1.40 
1.31 
1.25 
1.18 
1.14 
1.12 
1.09 
1.07 
1.06 

Number 
of active 

coils 

1 .o 
1.5 
2.0 
2.5 
3.0 
4.0 
6.0 

10.0 
20 
50 

100 

Stress Deflection 
factor factor 

K* KS 

4.80 5.55 ,,I, 
4.28 _ 4.01 
3.90 3.32 
3.72 3.07 
3.60 2.92 
3.45 2.76 
3.30 2.61 
3.15 2.50 
3.09 2.40 
3.04 2.38 
3.02 2.37 

ABLE IV STRESS CORRECTION TABLE V DESIGN VALUES FOR 
ACTORS FOR TORSION SPRINGS ‘TENSATOR’ SPRINGS 

Stress Stress 
Number factor for factor for Design Carbon 

of active round rectangular life no. of steel 

coils wire K, wire K, cycles Q Sf 

Stainless 
steel 

Q Sf 

s 1.61 1.33 1.54 1.29 
4 1.23 l-20 
5 1.18 1.15 
6 1.14 1.12 I---- 

5000 ,521 0.023 
10,000 418 0.020 
20,000 271 0.015 
40,000 169 0.010 
70,000 123 0,009 

8 1.10 1.09 200,000 101 0.008 
10 1.08 1.07 ,OOO,OOO 81 
12 1.06 1.06 

:: 1.09 1.05 1.04 1.03 
,’ 25 1.04 1.03 

30 1.03 1.02 
above 30 1.0 1 .o 

660 0.027 
502 0.023 
350 0,019 
233 0.012 
151 0.009 

87 0.008 
70 


