
--------C __ u gl TM

User's Guide

91-10128-5

Contents

Co:PYri.gllt ••• ·• ii
IIJ.tl'()(l11~()Jl ••• iii

USER GUIDE... III

Chapter Ul
Introduction . III

ChapterU2
Installation.............................. IV

ChapterU3
Getting Started..... IV

Chapter U4
CUPL Operation....................... IV

Chapter U5
Design Examples...................... IV

REFERENCE IV

Chapter 1
CUPL Language....................... IV

Chapter 2
Using CSIM............................. IV

Chapter 3
Using CBLD..................... v

Chapter 4
Using PTOC............................. v

APPEND ICES........................ v
Appendix A

Error Messages........................ v
Appendix B

Device Usage Notes................... v
Appendix C

Download Formats v

9I-I0128-5 1000 I

Contents

Appendix D

CUPL
Reference Manual

Node Numbering...................... v
Appendix E

Trouble Shooting . v
Index .. ~ v

Conventions Used... vi

Introduction to CUPL... 1
CUPL OVERVIEW..................................... 1
CUPLDATAFLOW.................................... 3

In.s'talling CUPL™ .. 6
MS-DOS INST ALLA TIO N........................... 6

Specifying the Configuration............... 9
The CUPL Menu System . 10
The EZ Edit Editor.............................. 13

UNIX INSTALLATION.............................. 15
Installing the Software on Sun
Workstation 15
Setting Up the Environment................ 16
Installing the Software on Apollo
Workstation....................................... 18
Setting Up the Environment................ 19

VAX/VMS INSTALLATION 2l
Installing the Software....................... 2l
Setting Up The Environment............... Z3

~~~~.................................................... 2!:) 
First Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2!i 
Simple Logic Design . . . .. . . . . .. .. . .. . . . . . . . . . . . . . . .. . . . a> 
Simple Gates Example . . . . .. . . . .. .. .. . . . . . . . . .. . . .. .. . 28 
Compiling the Source File . . .. . . . . . . . . . . . .. .. . . . . .. . . 32 
Simulating a Design................................... 32 

~~ti.()11.................................................. ~ 
CUPL OPERATION.................................... 36 

Input . . . . . .. . . . . .. . . .. . . . . . . . . . . . .. . . . . . . . . . .. . . . .. . 00 

H 1090 91-10128-5 



CUPL 
Reference Manual Contents 

Output.............................................. ~ 
Running CUPL From the Command 
Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ 
Running CUPL Using the Menus........ 46 

Design Examples................................................. .tJ 
PART A. SAMPLE DESIGN SESSION.......... 00 

EXAMINING THE DESIGN TASK...... 00 
CREATING THE CUPL SOURCE 
FILE................................................ 54 
FORMULATING THE EQUATIONS... f56 
CHOOSING A TARGET DEVICE........ 5.9 
MAKING THE PIN ASSIGNMENTS... 61 
RUNNING CUPL....... .. .. . .. . . .. . . . .. . ... . .. ffi 
CREATING THE CSIM SOURCE 
FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 72 
RUNNING CSIM.............................. 76 
SUMMARY...................................... 81 

PART B. SAMPLE PLD FILES..................... 82 
EXAMPLE 1. SIMPLE GATES............ 8.5 
EXAMPLE 2. CONVERTING A TTL 
DESIGN TO PLDs.. ... ........ .... .. ......... .. 88 
EXAMPLE 3. TWO-BIT COUNTER...... S5 
EXAMPLE 4. DECADE UP/DOWN 
COUNTER........................................ 'J7 
EXAMPLE 5. SEVEN-SEGMENT 
DISPLAY DECODER......................... 10'2 

CUPL Language.................................................. 10'7 
LANGUAGE ELEMENTS............................ 1CY7 

91-10128-5 

Variables.......................................... 1CY7 
Indexed Variables............................. 108 
Reserved Words and Symbols.......... . . . . 109 
Numbers.......................................... 110 
Comments........................................ 112 
List Notation .... ·................................. 112 
Template File.................................... 114 

1000 III 



Contents 

N 

CUPL 
Reference Manual 

Header Information.................. 116 
Pin Declaration Statements . . . . . . . 119 
Node Declaration Statements..... 122 
Bit Field Declaration 
Statements............................... 125 
MIN Declaration Statements . . . . . 126 
FUSE Statement . . . . . . . . .. .. .. . .. . . . .. 1Z7 

Preprocessor Commands . . . . . . . . . . . . . . . . . . . 128 
$DEFINE................................. 128 
$UNDEF .. . . . . . . .. . . . ...................... 100 
$INCLUDE.............................. 130 
$IFDEF .............................. ..... 131 
$IFNDEF................................. 132 
$ENDIF.. .. .. .. . . .. . . ... . .. . . .. . . .. . . .. . . . 133 
$EI.BE .... ................................. 134 
$REPEAT . . . . . . .. . . .. . . .. . . . .. . . .. . . . . . . . 135 
$REPEND . . .. . . . . . . . . . . . . . . . .. . . . . . . .. . .. 137 
$MACRO................................. 137 
$MEND . . . . . . .. . . .. . . .... .. . . .. . . .. . . . . . . . 139 

LANGUAGE SYNTAX............................... 140 
Logical Operators.............................. 140 
Arithmetic Operators......................... 141 
Arithmetic Function.......................... 142 
Extensions........................................ 142 
Feedback Extensions Usage................ 147 
Multiplexer Extension Usage.............. 149 
Boolean Logic Review......................... 151 
Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 
Logic Equations................................. 15.3 

APPEND Statements................. 155 
Set Operations................................... 166 

Equality Operations .. . .. . . .. .. . .. .. . . 168 
Range Operations..................... 172 

Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 100 
State-Machine Syntax........................ 171 
State-Machine Model......................... 171 

1090 91-10128-5 



CUPL 
Reference Manual Contents 

Inputs..................................... 172 
Combinatorial Logic................. 172 
State Bits . .. .. . .. . . .. .. . . .. .. .. .. . .. . . . . . . 173 
Storage Registers...................... 173 
Nonregistered Outputs.............. 173 
Registered Outputs . . . . . . . . . . . . . . . . . . . 173 

Syntax.............................................. 174 
Unconditional NEXT 
Statement . .. . .. .. . . . .. . . . . . . . . . . .. . . .. . . . 176 
Conditional NEXT Statement .. .. . 178 
Unconditional Synchronous 
Output Statement .. .. .. . .. . . . .. .. . . . .. 183 
Conditional Synchronous 
Output Statement . . . . . . . . . . . . . . . . . . . . . 186 
Unconditional Asynchronous 
Output Statement . . . . . . . . . . . . . . . . . . . . . 19'2 
Conditional Asynchronous 
Output Statement . . . . . . . . . . . . . . . . . . . . . 194 
Sample State-Machine Syntax 
File......................................... 197 

Condition Syntax .. .. .. .. .. .. .. . .. .. .. .. . . . . .. .. 199 
User-Defined Functions . . . . . . . . . . . . . . . . . . . . . 201 
CUPL to XILINX XNF Interface .. .. .. .. . 205 

Getting an XNF File.................. 206 
Translating an Existing PLD 
File. .. . . .. .. .. .. .. . .. . . .. . . .. . . .. . . . .. . . . . . . '2IJ7 
Using a PALASM Device........... 208 
Source Files for XILINX 
Devices.................................... 208 

Using CSIM........................................................ 210 
INPUT...................................................... 210 
OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 
RUNNING CSIM .. .. .. .... . .. . .. .. .. .. .. . .. .. . .. .. . . . . . 213 

Simulator Option Flags . .. .. .. .. .. .. . .. .. . . .. 214 
Viewing Waveform(MS-DOS) .............. 216 

91-10128-5 v 



Contents CUPL 
Reference Manual 

Change Signal Order . . . . . . . . . . . . . . . . 216 
Group Signals into Bus . . . . . . . . . . . . . 218 
Create Waveform Hardcopy....... 219 
Help Menu............................... 2a:> 

TEST SPECIFICATION FILE...................... 2a:> 
Header Information........................... 221 
Comments........................................ 222 
Statements........................................ 222 

ORDER Statement . . . . . . . . . . . . . . . . . . . . 222 
BASE Statement . . . . . . . . . . . . . . . . . . . . . . . 22A 
VECTORS Statement . . . . . . . . . . . . . . . . 226 
Preload. .. . .. . . ... . . . . . . . . . ... . . . . . .. .. . . . . 228 
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ 
Asynchronous Vectors.............. 230 

Simulator Directives . . . . . . . . . . . . . . . . . . . . . . . . . . 232 
$MSG...................................... 233 
$REPEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 
$TRACE . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . 234 
$EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '237 
$SIM 0 FF................................. '2Z"l 
$SIMON.................................. '2Z"l 

Fault Simulation............................... 238 

Using CBLD........................................................ 21} 
RUNNING CBLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 
LISTING THE CONTENTS OF A 
LIBRARY.................................................. 241 
LISTING ALLOW ABLE EXTENSIONS......... 242 
LISTING ALLOWABLE MACROS............... 243 
BUILDING DEVICE LIBRARIES................ 245 

Using PTOC........................................................ 248 
RUNNING PTOC........... .. . . . . . . . . . . .. . . .. . . . . . . . . . . 248 
PALASM SOURCE FILE FORMAT .............. 249 
PTOC .PLD 0 UTPUT FILE.......................... 200 

Header Information........................... 251 
Pin List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~1 

VI 1000 91-10128-5 



CUPL 
Reference Manual Contents 

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 
PrOC .SI OUTPUT FILE............................. 253 

Translation Ambiguities.................... 2.54 

E.ri-or Messages.................................................. . . 2:J(; 
CUPL ERROR MESSAGES.......................... '2!57 

CUPL Module Error Messages............ 258 
CUPLX Module Error Messages.......... '2!59 
CUPLA Module Error Messages . . . . . . . . . 282 
CUPLB Module Error Messages.......... 200 
CUPLM Module Error Messages......... 273 
CUPLC Module Error Messages.......... 275 

CSIM ERROR MESSAGES . . . . . . .. . . . . . . . . . . . . . . . . . . 278 
CSIM Module Error Messages............ 278 
CS IMA Module Error Messages.......... 279 

CBLD ERROR MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . 283 
CBLD Module Error Messages............ 283 

PrOC ERROR MESSAGES.......................... 286 
PTOC Module Error Messages . . . . . . . . . . . . 286 
WCSIM Error Messages..................... '2S7 

~vi.re Usa.g"e: Not;es............................................... ~ 
Download Formats .............................................. 3)1 

DOWNLOADABLE FILE FORMATS . . . . . . . ... .. 30'1 
JED EC Format.................................. 30'1 
ASCII-Hex Format............................ 309 
HL Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 

DOCUMENTATION FILE FORMAT............ 323 
PDIF FILE FORMAT .................................. 330 
BERKELEY PLA FILE FORMAT................. 331 

Node N"Um.l>erin.g.... .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3fi 
Advanced Micro Devices.............................. 336 
Altera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3iJ8 
Atmel........................................................ 3iJ8 
Cypress..................................................... 339 
Intel.......................................................... 34-1 

91-1012.8-6 1090 Vil 



Contents CUPL 
Reference Manual 

Lattice....................................................... M2 
Monolithic Memories.................................. 343 
PLX Technology . .. . . . . . . . .. . . . . . .. . . .. . . .. .. .. . . . . . . . . . . 343 
Signetics.............. ................. ... .. .. ........... .. . 344 
Texas Instruments................... . . . . . . . . . . . . . . . . . . 351 

Tl'o'Uble ShcM>'ting •• • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • ~ 
HOW TO GET SUPPORT............................. 353 

VIII 1090 91-10128-5 



Copyright 
Copyright© 1983, 1990 by Logical Devices, Inc.(LDI) 

All rights reserved. No part of this publication may be 
reproduced, stored in a retrieval system, or transmitted, in 
any form or by any means -electronic, mechanical, 
photocopying, recording, or otherwise - without the written 
permission of LDI. 

Logical Devices, Inc. provides this manual "as is" without 
warranty of any kind, either expressed or implied, 
including, but not limited to, the implied warranties of 
merchantability and fitness for a particular purpose. LDI 
may make improvements and/or changes in the product(s) 
and/or program(s) described in this manual without notice. 

Although LDI has gone to great effort to verify the integrity of 
the information herein, this publication could contain 
technical inaccuracies or typographical errors. Changes are 
periodically made to the information herein. These changes 
will be incorporated in new editions of this publication. 

TRADEMARKS 

CUPL, NX-CUPL and ON-CUPL are trademarks of Logical 
Devices, Inc. Schema is a trademark of Omation. Wintek 
and HiWIRE are registered trademarks of Wintek 
Corporation. 

Logical Devices, Inc. 1201 NW 65th Place, Ft. Lauderdale, 
FL. 33309 USA Technical Support Telephone: (305) 974-0975 





Introduction 

This book is designed to serve as a learning aid and as a 
reference manual for CUPL, the programmable logic 
compiler from Logical Devices, Inc. It is divided into three 
sections: the User Guide section, the Reference section and the 
Appendices. The User Guide provides information on getting 
started with the CUPL package. The Reference section 
provides specific information about the programs that make up 
the CUPL package. The Appendices contain a variety of 
information, including error messages, important 
information about specific devices, node numbering and 
download formats. 

Be sure to read the Installation Chapter in the User Guide 
section to find out what to do before using the CUPL software on 
a system. Since improvements are made to CUPL quite 
frequently, additional information is provided in the form of 
an addendum. Be certain to read the addendum, which 
provides information on the latest enhancements to the CUPL 
software. 

USER GUIDE 

The USER GUIDE provides information on installing and 
using CUPL. There is also a section that provides several 
examples. These examples are provided on the distribution 
disks. 

Chapter Ul: Introduction 
Gives a brief overview of CUPL and includes some notes on 
recent enhancements to CUPL. Also included is a section on 
getting technical support. 

91-10128-5 0690 iii 



General Introduction 
CUPL 

Programmable Logic Compiler 

iv 

Chapter U2: Installation 
Provides information necessary to get CUPL to run on a 
system. 

Chapter U3: Getting Started 
Is a step-by-step guide on how to create a source file, and 
compile and simulate the design using a simple example. 

Chapter U4: CUPL Operation 
Is a description of the use of CUPL. This includes running 
CUPL. 

Chapter U5: Design Examples 
Provides instructions on using CUPL and CSIM and 
examples of CUPL designs. Part A, Sample Design Session, 
goes step-by-step through a sample design session using CUPL 
and CSIM. Part B, Sample PLD files, illustrates some typical 
designs that can be created using CUPL. 

REFERENCE 

The REFERENCE section is provided for easy access to 
random facts related to the CUPL language and related 
utilities. 

Chapter 1: CUPL Language 
Describes CUPL, a programmable logic compiler. This 
chapter provides an overview of CUPL, and describes the input 
and output and how to run the program. It also describes the 
elements of the CUPL design language, and the syntax of the 
CUPL design language. 

Chapter2: Using CSIM 
Describes CSIM, a logic simulation program. This chapter 
explains how to use CSIM, including input and output and 
running the program, and how to create test specification files 
to verify a CUPL design. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler General Introduction 

Chapter 3: Using CBLD 
Describes CBLD, a utility program for managing device 
libraries. 

Chapter 4: Using PI'OC 
Describes PTOC, a utility program for converting PALASM 
source files to CUPL format. 

APPENDICES 

Appendix A: EITOr Messages 
Lists error messages that may appear during operation of any 
of the CUPL programs. The messages are listed by program 
name and module name within each program. 

Appendix B: Device Usage Not.es 
Provides information about specific devices and how they 
require special attention with CUPL. 

Appendix C: Download Formats 
Describes the format of the CUPL downloadable files and the 
documentation file. 

Appendix D: Node Numbering 
Lists the devices which contain internal nodes supported by 
CUPL. 

Appendix E: Trouble Shooting 

Lists some common problems and their respective solutions. 

Index 
Is an index of the entire book. 

91-10128-5 0690 v 



Conventions Used 
In This Manual 

This manual gives step-by-step procedures and examples. To 
make it easy to follow these procedures, the following 
conventions.are used. 

Note 

LDI software is not case sensitive. It doesn't matter 
whether upper or lower case.characters are typed. 

@turn J 

91-10145-5 

Screen icons indicate a prompt or response on 
the screen. For example: 

~II] Name of List Device? PRN 

(Return )is the key that must be pressed to 
execute a command or accept an option. This 
key is called different names on different 
systems. For example: 

(Enter...JJ (Enter J (~ J (ENTER J (RETURN J , , ' , 

Revision 3.0 vi 



CUPL 
Reference Manual Notes 

c=J_(=:J Connected keys indicate the keys must be 
pressed simu1taneous1y. For exampJe: 

\ 

* 

SeJect 

Boldface 

91-10145-5 

Press 

A backward s1ash separates main menu and 
sub-menu commands. For examp]e: 

FILE\LOAD 

It a1so begins a keyboard command. For 
examp]e: 

\EXE 

An asterisk in a fi]ename indicates any 
characters can occupy that position and an 
remaining positions. For more information, 
refer to the DOS manual. 

Select means use ( Space ) or the cursor keys 
to cycle through options or settings, and press 

(Return ) to select the desired option or setting. 

BoJdface is used for two purposes. First, it is 
used to highlight menu or file names within 
text, and, second, it indicates characters that 
must be typed from the keyboard.These 
characters are usually designated as "Enter 
the following:" or are set aside by line 
spacing. For examp]e: 

del pcprint.cfg 

Revision 3.0 uii 



Notes 

Italics 

<> 

[ ] 

viii 

CUPL 
Reference Manual 

Italics represent variable names. For 
example: 

filename.SCH 

When shown on the screen, variable names 
are indicated by angle brackets. For 
example: 

<filename>.SCH 

Square brackets indicate the enclosed item is 
optional. For example: 

prepack filename.fil [filenameJib] 

When shown on the screen, square brackets 
indicate the name of a key. For example: 

Press [Return] to accept 

Revision 3.0 91-10145-5 



Introduction to CUPL Ul 

0 INTRODUCTION 

Welcome to CUPL Universal Compiler for Programmable 
Logic. CUPL is a very versatile and powerful logic compiler, 
and can be used to create very sophisticated logic designs for 
PLDs. This section will introduce the user to CUPL. 

0 CUPL OVERVIEW 

The CUPL package consists of the following programs: CUPL 
(Universal Compiler for Programmable Logic), CSIM (CUPL 
Simulator), CBLD (CUPL Build), and PTOC (PALASM to 
CUPL Translator). 

Using CUPL, logic descriptions may be written and compiled. 
The logic descriptions can be assigned to specific 
programmable logic devices (PLDs). CUPL searches its 
library and creates a file which can he downloaded to a device 
programmer and, from there, the PLD can be programmed. 

CSIM permits a design to be simulated before it is put into 
production. A file is created, describing the expected 
functionality of the PLD in terms of input and output values. 
CSIM compares the expected values to actual values calculated 
during CUPL operation. The DOS version of CSIM will also 
allow the simulation to be viewed in waveform. 

CBLD allows the manipulation of the device libraries 
containing descriptions of the PLDs supported by CUPL. 

91-10128-5 0690 UJ-1 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

Ul-2 

PTOC converts P ALASM designs to CUPL format. 

The key features of the CUPL package include: 

:>- Universal applicability. CUPL supports products 
from all manufacturers of PLDs, enabling a user 
to put the same functional logic into physically 
different parts, to create a second source at the 
socket. CUPL produces a standard type of file 
called JEDEC. This is a download file that is 
compatible with any logic programmer that uses 
JEDEC files. The CUPL language translator 
(PTOC) converts PALASM designs to CUPL, 
enabling the use of any P ALASM designs. 

A high-level language. Expression substitution for 
equations, shorthand notation for lists, address 
ranges, and bit fields are available to save design 
time. 

CUPL simplifies Boolean operations by the 
distributive property and DeMorgan's Theorem. 

State machine syntax provides a powerful means 
of implementing a~y synchronous application 
using either Mealy or Moore state machine 
models. 

Truth table syntax provides a way to clearly 
express certain logic descriptions. 

User-defined functions allow the creation of 
keywords for use by CUPL. 

Flexible documentation. CUPL provides a template 
file for standard "fill in the blanks" 
documentation and allows the placement of free­
form comments throughout a design. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

CUPL's comprehensive error-checking capability 
generates detailed error messages designed to lead 
to the source of any problems. 

Powerful minimizer and simulation programs. 
CUPL contains the fastest and most powerful 
minimizer offered for programmable logic 
equation reduction, featuring four levels of 
minimization. 

The CUPL simulation program enables logic to be 
simulated prior to using a PLD. This feature 
prevents blown devices and helps debug system­
level problems. Test vectors verified by CSIM can 
be downloaded to a logic programmer. 

0 CUPL DATA FLOW 

This section describes the CUPL data flow. 

First, a logic description source file is created, using the CUPL 
language to describe the logic that will be assigned to a 
programmable logic device. 

Then, run CUPL to compile the source file to create a fusemap 
file for downloading to a device programmer. On execution of 
CUPL, the '-a' flag may be used to cause CUPL to generate an 
'.ABS' file for later use by CSIM. 

Optionally, a test specification file may be created to verify the 
design. CSIM is executed to compare the expected values in the 
test file to the actual values in the absolute file created by 
CUPL. When simulation is complete without any errors, the 
verified test vectors can be appended to the download file 
generated by CUPL. 

91-10128-5 0690 UJ-3 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

UJ-4 

At this point, the verified fusemap file can be transferred to a 
device programmer. 

Figure Ul-1 shows the CUPL data flow. 

Target Device 

Information DEVICE 
LIBRARY 

Target Device 

Information 

Logic 
Source 
File 

Hex 
Down­
load 

File 

HL 
Down-

Test 

Vectors 

LOGIC PROGRAMMER 
(PROM PROGRAMMER) 

Figure Ul-1. CUPL Data Flow 

0690 

Source 

Specification 

File 

Simulator Output 

With Errors 

Jedec File 

With Test 

91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

91-10128-5 0690 UJ-5 



Installing CUPL™ U2 

0 INSTALLING CUPL 

The following are the requirements and steps for installing 
CUPL on a system. 

0 MS-DOS INSTALLATION 

The following are the minimum requirements in order to 
install and run CUPL properly: 

> An IBM PC, PC/XT, or PC/AT (or equivalent) with 
at least 512KofRAM. 

> PC-DOS version 2.0 or higher (or MS-DOS 2.0). 

> A hard disk 

> At least one double-sided floppy disk drive. 

> Network operators need to be notified of the need for 
total access to the root directory and directory 
where CUPL will be installed. Users will need 
read access to the root directory and directory 
where CUPL will be installed. 

Building the libraries requires additional hard disk space. 
Before running build, there should be an additional 1 Mb of 
free space on the hard disk. To build the SMT libraries, an 
additional . 7 Mb hard disk space is required. To install CUPL 

91-10128-5 0690 U2-6 



CUPL 
Programmable Logic Compiler Using CUPL™ 

and all the libraries, therefore, requires 4.2Mb hard disk 
space. After building the libraries, the partial library files 
may be deleted and CUPL will occupy only 2.5 Mb of disk 
space. 

Installing CUPL requires four st.eps. 

> Run the INST ALL program contained on the 
diskette labelled "DISK 1 ". 

> Build the library. 

> Set the 'Configuration' of the computer so that CUPL 
wiJJ have the setup that it needs. 

Set the 'Environment'of the computer so that the 
system will function properly. 

The INST ALL program has been provided to quickly and 
easily install the CUPL software. It creates the appropriate 
directory and copies the original diskettes onto the hard drive. 

To run the INSTALL program, foUow the steps below: 

1. Place the "DISK 1" diskette in drive A Change the 
current drive to drive A by typing 

a:[ Return ) 

2. Type 

install ( Return ) 

3. Follow the prompts on the screen. The program 
suggests default values at each prompt; for 

91-10128-5 0690 U2-7 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

U2-8 

example, it supplies CUPL as the directory name. 

Press (Return } to accept the default name or type a 

different name and then press (Return ). 

4. CUPL needs to access its device library CUPL.DL. 
This file must be created on the hard disk. To do 
this, run build. This is a batch file which creates 
the library and puts the required information into 
it. A batch file is simply a text file which contains a 
series of DOS commands which can be executed by 
typing in the batch file name. Before running 
build, make sure that there is 1 Mb of disk space 
available. 

Type build ( Return J 

If SMT parts are to be used, then an additional step 
is required to add these to the library. Before 
running buildsmt, make sure that there is . 7 Mb 
free space on the disk. 

Type buildsmt ( Return I 

5. When a DOS computer starts up, it executes 
commands that are contained in a file called 
AUTOEXEC.BAT if it is present on the disk. Some 
additional commands must be added to the 
AUTOEXEC.BAT file for CUPL to function most 
efficiently. If there is no AUTOEXEC.BAT file on 
the computer, then create one and add the following 
information to it: 

path c:\cupl 

set LIBCUPL=c:\cupl\cupLdl 

This lets the computer know where to find the 
CUPL Program and Library. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

The computer may already have an 
AUTOEXEC.BAT file. In that case, it should be 
modified as follows. 

• Add CUPL to the path command. 

If the current path command reads: 

path c:\dos;c:\bin 

Change it to: 

path c:\dos;c:\bin;c:\cupl 

• Add this set command to the AUTOEXEC.BAT file: 

set LIBCUPL=c:\cupl\cupldl 

This example assumes that CUPL is installed in a directory 
called CUPL on Drive C of the computer. 

Specifying the Configuration 

Each time the system is booted, the disk operating system 
(DOS) configures the system for a specified number of buffers 
and files. A buffer is a block of memory that DOS uses to hold 
data being read from or written to disk when the amount of 
data being transferred is not an exact multiple of the sector 
size. The number of files for which the system is configured 
determines how many files can be open at one time during 
program operation. A CONFIG.SYS file in the root directory 
instructs DOS on how to configure the system. If there is no 
CONFIG.SYS file, DOS sets default values for the 
configuration. CUPL requires 20 buffers and 15 files to ensure 
proper operation. Verify that the system has a CONFIG.SYS 
file in the root directory and that it contains the following two 
commands: 

91-10128-5 

buffers=20 
files=15 

0690 U2-9 



Using CUPLTM 
CUPL 

Programmable Logic Compiler 

U2-10 

If the system does not have a CONFIG.SYS file, create one 
using the a editor in non-document mode. Type in the 
following: 

BUFFERS=20 
FILES=15 

If the system has a CONFIG.SYS file, but the buffers are less 
than 20 or the files are less than 15, change the values to 20 and 
15 respectively. If the CONFIG.SYS file on the system 
specifies buffers greater than 20 and files greater than 15, 
leave the file intact. Other programs that are running may 
require more buffers or files than CUPL does. If a 
CONFIG.SYS file has been created or altered, or if the 
AUTOEXEC.BAT file was changed according to the 
instructions in the previous section, press Control-Alternate­
Delete to reboot the system and put the new commands into 
effect. 

The CUPL Menu System 

There are two ways to run the CUPL program. The program 
may be executed using the DOS command line, or the optional 
menu system may be used. 

The CUPL menu system is called MCUPL. It is entirely menu 
driven and can be learned in a few minutes. This section will 
describe MCUPL. 

Note: MCUPL is available for MS-DOS computers only. 

Note: Although it may not be explicitly stated on the 
screens, the Escape key can be used to cancel a 
choice or to go back to the previous screen or menu. 

MENU CONFIGURATION 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

The menu system uses information stored in a file called 
"MCUPL.CFG". This file permits the following information 
to be specified: 

Machine ID: This can be set to "PC" or "AT". If using a 
computer with an 8088/8086 processor, then select "PC". If 
using an 80286 or better, then select "AT". The specification is 
done with the following syntax: 

"set mid PC" or "set mid AT". 

The editor being used must be specified. If this is not done, 
then MCUPL will not function properly. Specifying the editor 
is done as follows: 

"set editor me" 
"set editor ws" 

if"me.exe" is the editor being used. 
if"ws.exe" is the editor being used. 

MCUPL uses a working directory where it reads and writes 
files. Any file created by the user or by CUPL should be stored 
here. Set the working directory with the following syntax: "set 
wdpath pathname", where pathname is a directory path name. 

Example: "set wdpath c:\cupl\files". 

MCUPL.CFG contains specifications for screen colors of the 
menus. Use "set color area color", where area is the area of the 
screen, such as MC F G (Message Center Text), MC BG 
(Message Center Background), MCBC (Message Center 
Border), UIFG (User Input Text), UIBG (User Input 
Background), UIBC (User Input Border), MMFG (Main Menu 
Text), MMBC (Main Menu Border) and MMBG (Main Menu 
Background). 

The color attribute determines what color the area will have, 
such as Black, Blue, Green, Cyan, Red, Magenta, Brown, 
Yellow, Darkgrey, Lightgrey, Lightblue, Lightgreen, 
Lightcyan, Lightred, Lightmagenta and White. Example "set 

91-10128-5 0690 U2-11 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

U2-12 

color MCFG Lightblue" will make the message center text 
appear light blue. 

The function keys F6 to FlO can be user-defined. Since the 
menus can be operated either by using the arrow keys or by 
typing the first key of the desired menu selection, the menus 
can be used normally or a function key can be defined to 
perform a specific action by having it type a series of keys. 
The following example defines FlO (FO) to quit MCUPL by 
typing 'Q' to select quit and then 'Y' to confirm the action. 

Example: "defFOQY" 

Start the menu system as follows. Start up the computer. At the 
prompt, type: 

mcupl ( Return ) 

The startup screen will appear, followed by the main menu 
with 11 items on it. 

* Edit Design Entry 

* Compile CUPL file 
it. 

* Look at DOC file 

* JEDEC file editor 

Edit or convert a design file 

Prompts for a .PLD file then compiles 

View the Documentation file. 

View or edit a JEDEC file. 

* Input simulation file Create or edit a simulation input file 
(.SI) 

* Simulate CUPL file Simulate the PLD design using the 
.SI file. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPLTl4 

* View simulation results 
(.SO). 

View simulation output file 

* Device Selection Choose a device from a list, giving 
device type and manufacturer. 

* Help The online quick reference guide for CUPL 

* Tutorial for PLDs Executes the Programmable Logic 
User's guide demonstration. 

* Quit Return to DOS. 

Only one menu item can be highlighted at a time. While an 
item is highlighted, a description of the action performed is 
displayed in the message center window. To initiate the action 

associated with the menu item, press (Return ]. The action may 
also be initiated by pressing the first letter of the menu item. 

The keyboard can be used to select from the menu by typing the 
first letter of the menu item name. This has the same effect as 
using the arrow keys and pressing the return key for that 
item. 

Some menu selections simply cause another menu to appear. 
Selecting items from sub-menus is the same as selecting from 
the main menu. To return to the previous menu, press the ESC 
key. 

The EZ Edit Edit.or 

The EZ Edit editor is the stand-alone editor used by MCUPL, unless 
a different editor is specified in MCUPL.CFG. EZ Edit is a simple 
text editor. 

When using EZ Edit, the insert key is used to alternate between the 
insert and overwrite modes. The Alternate-X [Alt-X] key is used to 

91-10128-5 0690 U2-13 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

exit the editor. When exiting, the editor will ask for the filename to 
which changes should be saved (only if there were changes). 

The following are the keystrokes and commands available when 
using the EZ Edit editor: 

U2-14 

Key 

Up Arrow 
Down Arrow 
Left Arrow 
Right Arrow 
Home 
End 
Pg Up 
PgDn 
Ctrl-Home 
Ctrl-End 
Ctrl-PgUp 
Ctrl-PgDn 
Backspace 
Ctr I-Backspace 
Alt-X 

Action 

Cursor up 
Cursor down 
Cursor left 
Cursor right 
Beginning of line 
End of line 
Page up 
Page down 
Top of screen 
Bottom of screen 
Top of file 
Bottom of file 
Deletes a character 
Deletes a line 
Exits EZ Edit 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

0 UNIX INSTALLATION 

CUPL for the UNIX operating system is supplied on either 1/4" 
cartridge tape with device = rstO or 112" 9 track tape with device 
= rmtO. Both tapes are written in TAR format. 

The following are required in order to run CUPL successfu1ly 
on a UNIX System: 

> CUPL is available in versions compatible with UNIX 
Version 7, System V and Berkeley 4.2 BSD. Make sure that the 
correct version is being used. 

> At least 1000 (512 byte) blocks of disk space available. 

> A text editor to create CUPL source files. Any text 
editor will work once it can create a standard ASCII text file. 

> An RS-232 port for downloading fusemap files to the 
device programmer. 

Installing the Software on Sun Workstation 

CUPL requires SunOS release 4.0.3 or higher. 

The program files should be placed in a directory which will 
be accessible to CUPL users. for example, the /usr/bin or 
/usr/local directories. A new directory /usr/cupl may be 
created, if having such a directory is more suitable. 

91-10128-5 0690 U2-15 



Using CUPLTM 
CUPL 

Programmable Logic Compiler 

U2-16 

If a new directory /usr/cupl is being created, then do the 
following: 

mkdir /usr/cupl 
chown root /usr/cupl 
chmod 755 /usr/cupl 

These make the directory /usr/cupl owned by root. It is read­
write-execute by the owner and read-execute for all other 
groups and users. 

Change the default directory to the new /usr/cupl. 
cd /usr/cupl 

Place the CUPL tape into the tape drive and put the drive 
online. Then start the installation by typing: 

Note: 

t.arxv 

The above command assumes that the tape is 
loaded on the default device for tar (usua11y 
/dev/rstO). The command copies a11 the files from 
the tape to the current directory, therefore, the cupl 
directory should be set to the current directory. If 
the system uses a different tape device, consult the 
system administrator for assistance. 

Remove the distribution tape and put it into a proper storage 
rack for safe keeping. 

Setting Up the Environment 

CUPL uses the environment to locate the device library file 
CUPL.DL. The environment is a series of names and 
parameters which is made available to all UNIX commands 
and application programs. The user may display the current 
contents at any time by typing the command: 

printenv 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL'™ 

The display might look something like this, assuming the 
user login name is "designer": 

HOME=/usr/designer 
PATH=.:lbin:/usr/bin 

This shows the user that the "home directory" (the directory 
first entered after login) is the /usr/designer directory. The 
path to be searched for all application programs is the current 
directory specified by the period and then /bin and /usr/bin 
directories. 

CUPL takes advantage of the hierarchical directory structure 
of UNIX so that the user can execute the compiler from a 
directory other than the one where the CUPL application is 
stored. In order for this to work, the user must set the UNIX 
path parameter in the environment to search for the executable 
files in the appropriate directories. The name of the directory 
where CUPL is stored should be added to the path parameter of 
each CUPL user. 

CUPL searches the environment for the string name 
LIBCUPL, and uses the supplied parameter for the directory 
and filename of the default device library file. In order to 
properly access this file, the user must add the string LIBCUPL 
to the environment. If CUPL was installed in a directory 
called /usr/cupl, then use the following commands. 

setenv PATH .:/bin:/usr/bin:/usr/cupl 
setenv LIBCUPL /usr/cupl/cupldl 

These new parameters are assigned during login or by the 
following command in the home directory: 

source.cshrc 

91-10128-5 0690 U2-17 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

U2-18 

Note: The above procedure applies only when using the 
UNIX C-shell command interpreter. 

For those installations running the Bourne shell, the 
following commands must be placed in the .profile file of the 
home directory: 

PATH=.:lbin:/usr/bin:/usr/cupl 
LIBCUPL=/usr/cupYcupLdl 
export PA'IH LIBCUPL 

These new parameters will take effect at login time or by 
executing the following command in the home directory: 

source .profile 

If it is not known which command interpreter is being used on 
the system, consult the system administrator. 

Installing the Software on Apollo Workstation 

CUPL requires DOMAIN/IX rev 9. 7 .5 or higher. 

The program files should be placed in a directory which will 
be accessible to CUPL users, for example, the /usr/bin or 
/usr/local directories. A new directory /usr/cupl may be 
created if desired. 

When creating a new directory /usr/cupl, do the following: 

mkdir /usr/cupl 
chown root /usn'cupl 
chmod 755 /usr/cupl 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

These make the directory /usr/cupl owned by root. It is read­
write-execute by the owner and read-execute for all other 
groups and users. 

Change the default directory to the new /usr/cupl. 

cd /usr/cupl 

Place the CUPL tape into the tape drive and put the drive 
on line. 

If using cartridge tape, it must be retensioned before use. 
Type: 

/com/rbak -dev c -reten 

Then start the installation by typing: 

Note: 

tar xvf /devlrct8 

The above command assumes that the tape is 
loaded on the device rct8. If the system uses a 
different tape device, consult the system 
administrator for assistance. 

Remove the distribution tape and put it into a proper storage 
rack for safe keeping. 

Setting Up the Environment 

CUPL uses the environment to locate the device library file 
CUPL.DL. The environment is a series of names and 
parameters which is made available to all UNIX commands 
and application programs. The user may display the current 
contents at any time by typing the command: 

printenv or 

91-10128-5 0690 U2-19 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

U2-20 

set 

The display might look something like this, assuming the 
user login name is "designer": 

HOME=/usr/designer 
PATH=.:lbin:/usr/bin 
TERM=apollo_15_color 

This shows the user that the home directory (the directory first 
entered after login) is the /usr/designer directory. The path to 
be searched for all application programs is the current 
directory specified by the period and then /bin and /usr/bin 
directories. 

CUPL takes advantage of the hierarchical directory structure 
of UNIX so that the user can execute the compiler from a 
directory other than the one where the CUPL application is 
stored. In order for this to work, the UNIX path parameter in 
the environment must be set to search for the executable files 
in the appropriate directories. The name of the directory where 
CUPL is stored should be added to the path parameter of each 
CUPL user. 

CUPL searches the environment for the string name 
LIBCUPL and uses the supplied parameter for the directory 
and filename of the default device library file. In order to 
properly access this file, the user must add the string LIBCUPL 
to the environment. If CUPL was installed in a directory 
called /usr/cupl, then use the following commands: 

setenv PATH (.:lbin:/usr/bin:/usr/cupl) 
setenv LIBCUPL/usr/cupl/cupLdl 

These new parameters are assigned during login or by the 
following command in the home directory: 

source.cshrc 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

Note: The above procedure applies only when using the UNIX 
C-shell command interpreter. 

To use the AEGIS shell, the following statements must appear 
in the user_data/sh/startup file: 

SETV AR LIBCUPL /usr/cupl/cupl.dl 

exportLIBCUPL 

SETVAR PATII ((PATH:/usr/cupl)) 

csr ./bin: /usr/bin : /usr/cupl 

For those installations running the Bourne shell, the 
following commands must be placed in the .profile file of the 
home directory: 

PATH=.:lbin:/usr/bin:/usr/cupl 
LIBCUPL=/usr/cupl/cupLdl 
export PATH LIBCUPL 

These new parameters will take effect at login time or by 
executing the following command in the home directory: 

source.profile 

If it is not known which command interpreter is being used on 
the system, consult the system administrator. 

91-10128-5 U2-21 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

0 VAX/VMS INSTALLATION 

U2-22 

The following are necessary to use CUPL on a VAX system: 

> A VAX Computer capable of running VMS operating 
system 3.6 or later. 

> A minimum of 512KofRAM. 

> At least 6250 {512 byte) blocks of disk space available. 

> A text editor to create CUPL source files. Any text 
editor will work once it can create a standard ASCII text file. 

> An RS-232 port for downloading fusemap files to the 
device programmer. 

Installing the Software 

CUPL for the VAX is normally supplied on a nine-track 
magnetic tape, written at 1600 BPI density using the VAX/VMS 
BACKUP command. 

All files are contained in a single save set called 
"CUPL.BCK". The program and device library files should be 
placed so that all CUPL users may have access. This may be 
the SYS$SYSTEM directory, or a new directory USR_CUPL 
may be created for CUPL only. 

IfCUPL is to be installed in USR_CUPL do the following: 

Have the system administrator create the directory 
USR_CUPL by typing: 

CREATE/DIR/PROT=(S:RWED,O:RWED,G:RE, 
W:RE) DISKl: [USR_CUPLJ 

0690 91-10128-5 



"' 

CUPL 
Programmable Logic Compiler Using CUPLT~ 

This creates the new directory on the device DISKl and gives 
full access privileges to the system and owner. The group and 
world categories are allowed only read and execute 
privileges. Change the name of the device to agree with the 
installation being used, as necessary. 

Change the default to the new USR_CUPL directory: 

SET/DEFAULT DISKl:[USR_CUPLJ 

Place the distribution tape into the system tape drive. Load the 
tape and put the tape ON-LINE. To read the tape onto the 
system, type the following: 

MOUNT/FOR MTAO 
BACKUP/REW/LOG MTAO:CUPL.BCK *. * 
DISMOUNT MTAO 

Remove the distribution tape and put it into the proper storage 
rack for safe keeping. 

Setting Up The Environment 

CUPL uses logical names to locate the device library file 
(CUPL.DL). The file Login.com contains a series of names 
and parameters which are made available to all VAX 
commands and application programs. The user may display 
the current logical names at any time by using the command: 

show logica1/process 

The display might look like this: 

"SYS$CUPL" = "SYS$VAX1:[USR.DISTRJ" 

91-10128-5 0690 U2-23 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

" 

U2·24 

"SYS$LIBCUPL" = ''SYS$CUPL:CUPL.DL" 

Note: SYS$LIBCUPL must be in uppercase letters. 

This shows how CUPL finds the device library. Within 
Login.com are other global variables that allow CUPL to be 
run from any directory or sub-directory within the login 
environment. The contents of Login.com must be added to the 
existing Login.com to be able to use CUPL properly. The disk 
and directory names in the ASSIGN statements should be 
changed to reflect the. system that is being used. 

0690 91-10128-5 



Getting Started U3 

This chapter assumes that the user has had some experience 
with programming devices. A basic understanding of logic 
and logic gates, and how they relate to the design of 
programmed devices, is required. 

0 GETTING STARTED 

First Steps 

Examine the Design Task 

> Take a close look at the design that is needed. 
Remember that state-machine, Boolean equations, 
or truth tables are available for the design. Try to 
determine which type of syntax best suits the 
design task that is being worked on. 

Create the CUPL Source File 

> Use the template file provided and remove the 
sections that do not apply. Remember to edit the 
header to reflect the new file that is being created. 

Formulate the Equations 

> Equations must be written in CUPL syntax to 
specify the logic desired. This can be in Boolean, 
state-machine, or truth table format. 

Choosing a Target Device 

> Make sure that there is a sufficient number of input 
pins. 

91-10128-5 0690 U3-25 



CUPL 
Using CUPL™ Programmable Logic Compiler 

U3-26 

> Check that the number of registered and non­
registered output pins is sufficient for the design. 

> Ensure that the device has three-state output 
control. 

> Check that the device can adequately handle the 
number of product terms required. 

Making Pin Assignments 
Assign the inputs and outputs of the design to the 
pins of the device. Make sure that the device is 
being used properly by consulting the reference : 
material available from the manufacturer. 

Running CUPL 
Decide which file formats will be needed for 
downloading and simulation. A choice of four 
minimizers is available (Ml-M4). CUPL will use 
Ml minimization if none is specified. See Chapter 
1 "CUPL Language" for details. 
The device library which CUPL will use may be 
specified when the compiler is invoked. CUPL will 
use the library defined in the environment 
variable 'LIBCUPL' if none is specified. See 
Chapter U2 "Installation" for more information on 
LIBCUPL. 

Simple Logic Design 

The Subway Turnstile controller is the simplest state machine 
design. This controller waits for a signal that a coin has been 
deposited. It then changes its state from locked to open. In the 
open phase, it waits for someone to walk through the turnstile, 
then it changes from open to locked. This two-state design 
cycles between open and locked using a coin detector and a 
walk-through detector as inputs. The following diagram 
shows the states and the pulses that change the device from one 
state to the next. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPUM 

STATE DIAGRAM 
!COIN 

CUPLSYNTAX 

sequence LOCK { 

· - - - - - - :- - - - - PresentLOCl<ED 

, If COIN Next OPEN; 
' - -: - - - - If ICOIN NextLOCKED; 

- - - - - - - PresentOPEN 

lfWALK_THRU Next LOCKED; 
Default Next OPEN: 

r - - Out CNT_PULSE: 

Figure U3-1 Subway Turnstile Example 

The corresponding CUPL state machine code is displayed on 
the right, so that the relationship between the code and the 
design concept is easily understood. 

91-10128-5 0690 U3-27 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

U3-28 

Name 
Part no 
Date 
Designer 
Company 
Location 
Assembly 

TURNSTIL. PLO 
Turnstyl: 
FLOOOOl: 
03/06/89; 
R. Teixeira; 
LOI; 
021; 
Example 

/** •• • • • •• •• *** •* •• • * ••••• ***" ** ** ** ** * ** ** ••• ** ••• ****I 
/* •/ 
I* This is an example to demonstrate how CUPL */ 
/* compiles a subway turnstile controller */ 
/* *I 
/** ••••• -·. * ••••••• * ••••••••••• * - • -· ••••••••• *****. ·-**I 
/* Target Devices: P16R4 */ 
/ ** •• * •••••• *** •••• *.fl •• *** •• *** ••••••••••••••••••••• ••/ 

/* Inputs: define inputs to Turnstile controller */ 
Pin I - CL!<: 
P .in 2 - WALi< THRU; 
Pin 3 - ccrn: 

/" outputs: define outputs as act! ve HI levels 

Pin 15 - LOCK; 

*I 

/• Logic: Subway Turnstile example expressed in CUPL */ 

Sequence LOCK { 

Present LOCKED 
it COIN Next OPEN; 
if ~COIN Next LOCKED; 

Present OPEN 

if WALK THRU Next LOCKED; 
Default- Next OPEN; 
Out CNT_PULSE: 

Figure U3-2 TURNSTIL.PLD 

Simple Gates Example 

This section will explain in detail the creation of a simple 
gates program for a PLD. The following diagram shows what 
design will be implemented. This design is taken from the 
Chapter U5 "Design Examples". 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

:~D- r- xnor 

:=JD- r- xor 

:=[)- r- nor 

:=[)- I-or 

:=0- I- and 

:=0- I- nand 

b-t>- I- lnvb 

·-t>- I- lnva 

Figure U3-3 Simple Gates 

This design gives a simple set of inputs and generates output 
simulating some simple gates. The outputs are labeled to 
reflect the function of their gate; for example, the AND gate 
has an output labeled AND. 

Figure U3-4 shows the CUPL source file (GATES.PLD 
provided in the CUPL package) that describes the design. 

91-1012.8-5 0690 U3-29 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

UJ-30 

Name 
Partno 
Date 
Designer 
Company 
Location 
Assembly 

GATES.PLO 
Gates; 
CAOOOl; 
07/16/87; 
G Woolheiser: 
AT!; 
San Jose, CA.: 
Example 

/* * •• ** * •• • * * ****** *** ,.,. ** *** ** * * **** •• ** * *** **** ******I 
I* •/ 
/ * This is an example to demonstrate how CUPL *I 
/* compiles simple gates */ 
I•. *I 
/** * * •"' * • • • • • • • • 111 •• • * • • • •• • •• •• • •• •• ••• •• ••• • • •• •• •••••I 
/* Target Devices: P16L8, Pl6P8, EP300, and 825153 */ 
/** • * •111"' * * * * • * *"'" -• • ** ** ** * ** ** • **** ** ••• * *** • **•******I 

/* Inputs: define inputs to build simple gates •/ 
Pin 1 .. a: 
Pin 2 - b; 

/* outputs: define outputs as active HI levels 

For PAL16L8 and PAL16LD8, De Morgan•s Theorem is 
applied to invert all outputs due to fixed 
inverting buffer in the device. •/ 

Pin 12 - inva; 
Pin 13 - invb; 
Pin 14 - and; 
Pin 15 .. nand; 
Pin 16 • or; 
Pin 17 - nor; 
Pin 18 - xor; 
Pin 19 - xnor; 

/* Loqic: examples of simple gates expressed in CUPL "'/ 

lnva - !a: 
itwb • !b; 
and - a & b; 
nand ... J (a & b); 
or - a t b; 
xor - a $ b; 
xnor - ! (a $ b): 

I* inverters 

I* and gate 
I* nand gate 
/" or gate 
/• nor gate 
/* exclusive nor gate 

•/ 

•/ 
•/ 
•/ 
•/ 
•/ 

Figure U3-4. Simple Gates Source File (GATES.PLD) 

The first part of the file provides archival information and a 
description of the intended function of the design, including 
compatible PLDs. First, there is the 'Name' line, which CUPL 
uses to name the output files by adding extensions. 'Partno' 
specifies the Company's proprietary part number, issued by 
manufacturing, for a particular PLO design. The part 
number is not the type of the target PLD. 'Date' is used to 
specify the date of compilation. The date should be changed to 
the current date as a good documentation practice. 'Designer' 
should be the designer's name or the name of the design team. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

'Assembly' is used to specify the assembly name or number of 
the PC board on which the PLD will be used. Use the 
abbreviation ASSY if desired. 'Location' is supposed to be used 
to indicate the PC board reference or coordinate where the PLD 
is located. The abbreviation LOC may also be used. This may 
be used for other purposes. 

Pin declarations are made corresponding to the inputs and 
outputs in the design diagram. The gates in this example 
require two inputs, which are passed through the gates as 
necessary. 'a' and 'b' are names for the input pins. Next, 
names are assigned to the output pins. The names chosen are 
descriptive of the function being performed. The use of 
descriptive names is encouraged, as it makes files easier to 
debug and update at a later time. 

In the "Logic" section of the file, equations describe each of the 
gates in the design. Boolean syntax is used to specify each 
output pin as a function of the input pins 'a' and 'b'. 

For the PAL16L8 and PAL16LD8 devices, which contain fixed 
inverting buffers, CUPL applies DeMorgan's Theorem to 
invert all outputs because they were all declared active-HI in 
the pin list. For example, during compilation, CUPL converts 
the following equation for an OR gate, on an output pin that has 
been declared as active-HI: 

or=a#b; 

to the following single expanded product term (as shown in the 
documentation file): 

or=> !a&!b 

The devices chosen for this design were selected because they 
fit the criteria, as specified earlier, for choosing a device. 
They have an adequate number of pins, both input and output. 
They have tri-st~te control. The number of registered and 

91-10128-5 0690 U3-31 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

U3-32 

non-registered pins fits our design, and the device can handle 
the number of product terms. 

Compiling the Source File 

At the system prompt, type: 

cupl -x P16L8 gates 

This will execute CUPL. The '·x' means to generate a 
documentation file (GATES.DOC) so that the expanded listing 
generated by CUPL may be viewed. The target device is a 
PAL16L8 and the source file is GATES.PLD. 

After running CUPL, open the file GATES.DOC, which has the 
expanded listing generated by CUPL. This shows how CUPL 
expands the logic equations when it compiles the design for the 
device chosen. 

In order to see how CUPL reports errors, edit the source file 
GATES.PLD and remove the semicolon at the end of one of the 
assignment statements. Now run CUPL as follows: 

cupl -l P16L8 gates.pld 

After it has finished, take a look at the file GATES.LST to see 
how CUPL reports errors. Notice that an error line appears 
next to the error, and there are line numbers at the beginning 
of each line. 

Simulating a Design 

Now the design will be simulated using CSIM. Test vectors 
must be created for the simulator to function. Test vectors 
specify the expected functional operation of a PLD by defining 
the outputs as a function of the inputs. Test vectors are also 
used to do functional testing of a device once it has been 
programmed, to see if the device functions as expected. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

CSIM needs a test specification source file. For this example, it 
will be called GATES.SI. This file has a description of the 
function of the device in the circuit. 

CSIM compares the input pin and output pin test values in the 
GATES.SI file, as shown in figure U3-5, with the actual values 
that are calculated from the logic equations in the absolute file 
GATES.ABS created by CUPL when the '-a' option is used. 
CSIM will not work unless the GATES.ABS file is created. To 
create the file GATES.ABS, type: 

CUPL -aj p1618 gates (Return J 

91-10128-5 0690 UJ-33 



Using CUPL™ 
CUPL 

Programmable Logic Compiler 

U3-34 

Name 
Partno 
Revision 
Date 
Designer 
company 
Location 
Assembly 

Gates; 
000000: 
03; 
9/12/83: 
CUPL Engineering; 
Logical Devices, Inc.; 
None; 
None; 

/• "* **" ** •• •• •" * ***** ** **" *" * • * ** •• ** * ** •••• * ••••" ** **** * •• ""•••*I ,. •/ 
t• This is a example to demonstrate how CUPL */ 
/* compiles simple gates. */ 
/* */ 
/*** ** * ** • * * * • ** ** * ..,. ** •• • ** * * • ** • * ** * ** ** •• * •••• * * * **** * *****••*I 
/* Taget Devices: Pl6L8, P16LD8, Pl6P8, EP300, and 825153 */ 
/11 ** ** * •• * •••• ** ................... ** •• * ** ••••• ** ** * •• ** * •••• ** * * *., 
,. 

• Order: define order, polarity, and output 
• spacing of st lmulus and response values 
•/ 

Order: a, ,2, b, ,4, inva, \3, invb, ,5, and, \8, 
nand, \1, or, ,8, nor, l7, xor, \8, xnor; 

,. 
* Vectors: define stimulus and response values, with header 

and intermediate messages for the simulator listing. 

* Note: Don't Care state (X) on inputs is reflected in outputs 
where appropriate. 

•/ 

Vectors: 

$msg nu; 

$msg 11 

Smsq 111•; 

$msg " inverters and 

Simple Gates Simulation"; 

nand or nor xor xnor"; 

Smsq " 
Srr1sq 11 

b ! a ! b a ' b ! (a & b) a t b ! (a t b) a S b ! (a $ b) 11 : 

00 HHLHLllLll 
01 HLLHHLHL 
l 0 LllLHHLHL 
11 LLHLHLLll 
1X LXXXHLXX 
Xl XLXXHLXX 
OX HXLHXXXX 
XO XHLHXXXX 
xx xxxxxxxx 

________ .. : 

Figure U3-5 Gates SimuJator Input File (GATES.SD 

To run the simulator for the simple gates example, type the 
following: 

CSIM -w P16L8 gates ( Return ) 

The waveform output is available for the DOS version of CUPL 
only. For UNIX, VMS and all other versions, the only output 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler Using CUPL™ 

available is the simulator output file. Figure U3-6 shows the 
simulator output file. The inputs are listed with the 
corresponding outputs. 

1 :Name 
2 :Partno 
3 :Revision 
4: Date 
S:Designer 
6:Company 
1 :·Location 
&:Assembly 
9: 

Gates; 
000000: 
OJ; 
9/ 12 /83; 
CUPL Engineering; 
Logical Devices, Inc.: 
None: 
None: 

10: I******••*••*****•***•••••••••**••••••••••• 1111 • ** • •• ** ***** • *****••I 
11:/* */ 
12:/* This is a example to demonstrate how CUPL •/ 
13: I* compiles simple gates. *I 
14 :/* */ 
15: / •• •• • • * ** •• •• ** * • • •• * • • * •• • • • •• • • •• * •• • •• * •• ** * •• * • •• •• * •• ••••••I 
16:/* Taget Devices: Pl6L8, Pl6L08, Pl6P8, EP300, and 825153 */ 
17: I••••••••.,•••••*•••••••••••*••••"'••••**••••••**•••******"'**••"'*•* I 
18: 
19: 
20:/* 
21; * Order: define order, polarity, and output 
22: * spacing of stimulus and response values 
23: •/ 
24: 
25:0rder: a, \:2, b, •4, inva, l3, lnvb, •s, and, •a, 
26: nand, l7, or, •B, nor, ''' xor, •e, xnor; 
27: 
28:/* 
29: * Vectors: define stimulus and response values, with header 
30: • and intermediate messages for the simulator listln9. 
31: * 
32: * Note: Don't Care state (X) on inputs la reflected in outputs 
33: • where appropr late. 
J4: */ 
JS: 

Simulation Results 

simple Gates Simple Simulation 

inverters and namd or nor xor xnor 
a a !a !b a • b ! (a ' bl a t b ! (a t b) a $ b ! (a $ bl 

0001: 0 H H L H L H L H 
0002: 0 H L L H H L H L 
OOOJ: 1 L H L H H L H L 
0004: 1 L L H L H L L H 
0005: 1 x L x x x H L x x 
0006: x 1 x L x x H L x x 
0007: 0 x H x L H x x x x 
0008: x 0 x H L H x x x x 
0009: x x x x x x x x x x 

Figure U4-6 Gates Simulat.or Output File (GATES.SO) 

91-10128-5 0690 U3-35 



CUPL Operation U4 

This chapter explains how to use the various components of the 
CUPL package. It includes CUPL, CSIM, CBLD and P'I'OC. 

0 CUPL OPERATION 

This section describes CUPL input and output and explains 
how to run CUPL using the command line options or the Menu 
system. This is a condensed version of the information given 
in the User Guide section "Using The CUPL System". 

0 Input 

A logic description source file (filename.PLD) is the input to 
CUPL. This file describes the logical functionality to assign to 
a specified target device. 

The source file is created using a standard text editor. There 
are a wide variety of text editors available and the choice 
depends entirely upon personal preference. The only 
requirement is that it be able to produce a standard text file. 

The CUPL compiler must be able to access the device library 
file (CUPL.DL), which contains a description of each of the 
target devices supported in the current version of CUPL. The 
library describes the physical characteristics of each device, 
including internal architecture, number of pins, and valid 
input and output pins, and also describes the logical 
characteristics, including registered and non-registered 
pins, number of product terms, fuse map information, and 
download format information. 

91-10128-5 0690 U4-36 



CUPL 
Programmable Logic Compiler CUPL Operation 

The target device is referenced using device mnemonics. The 
mnemonic is composed of a device family prefix and industry 
standard part number suffix. Table U4-l lists the device 
mnemonic prefixes. 

Table U4-1. CUPL Device Mnemonic Prefixes 

Symbol Meaning 
EP Erasable Programmable Logic 

Device (EPLD) 
G Generic Array Logic (GAL) 
F Field Programmable Logic Array 

(FPLA) 
F Field Programmable Gate Array 

(FPGA) 
F Field Programmable Logic 

Sequencer (FPLS) 
F Field Programmable Sequence 

Generator (FPSG) 
p Programmable Logic Array (PAL) 
p Programmable Logic Device (PLD) 
p Programmable Electrically Erasable 

Logic (PEEL) 
PLD Pseudo Logical Device 
RA Bipolar Programmable Read Only 

Memory (PROM) 

For example, the device mnemonic for a PALIOL8 is PIOL8; 
for an 828100 the device mnemonic is FlOO. For bipolar 
PROMs, the suffix is the array size; for example, the device 
mnemonic for a 1024 x 8 bipolar PROM is RA10P8, since there 
are 10 address input pins and 8 data output pins. 

91-10128-5 0690 U4-37 



CUPL Operation 
CUPL 

Programmable Logic Compiler 

0 Output 

U4-38 

CUPL can output the files described below. 

);>- A JEDEC-compatible ASCII download file 
(filename.JED) for input to a device programmer. 

An ASCII Hex download file (filename.HEX) 
available for PROMs. 

An HL download file (filename.BL) available for 
Signetics IFL devices. 

An absolute file (filename.ABS) for use by CSIM, 
the CUPL logic simulation program. 

An error listing file (filename.LST) that lists 
errors in the original source file. 

A documentation file (filename.DOC) that 
contains expanded logic equations, a variable 
symbol table, product term utilization, and 
fusemap information. 

P-CAD PDIF file (filename.PDF) that can be 
translated by PDIFIN into a PC-CAPS symbol 
representing the pinouts of the programmable logic 
device. 

A Berkeley PLA file (filename.PLA) for use by the 
Berkeley PLA tools. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler CUPL Operation. 

0 Running CUPL From the Command Line 

Run CUPL using the following command line format: 

cupl [-flags] [library] [device] source 

where 

-flags is the following set of compiler options: 

-j 
-h 
-i 
-n 
-a 
-I 
-e • 
·X 

.f 

-p 
-b 
·C 
-d 
-r 
-g ' 
·U 

·S 

·W 

-mo 
-ml 
-m2 
-m3 
-m4 

91-10128-5 

JEDEC download format 
ASCII-HEX download format 
HL download format 
use input filename for output file 
create absolute file 
create listing file 
create expanded macro definition file 
create expanded product-terms in documentation 
file 
create fuse plot/chip diagram in documentation 
file 
create PDIF database interchange format file 
create Berkeley PLA format file 
create PALASM format file 
deactivate unused OR terms 
disable product term merging 
program security fuse 
use specified library for compilation 
perform logic simulation after compilation 
perform simulation with waveform output 
(MS-DOS only) 
no minimization 
quick minimization (default) 
Quine McCluskey 
Presto 
Expresso 

0690 U4-39 



CUPL Operation 
CUPL 

Programmable Logic Compiler 

U4-40 

library is the path name and library name used with the ·u 
flag to specify a library other than the default library. 

device is the device mnemonic for the type of part to be used in 
the compilation. Use the CBLD program to list available 
devices (see Chapter 3, "Using CBLD"). 

source is the user-created ASCII logic description file 
(filename.PLD). The .PLD extension is assumed for the 
source file and may be omitted when giving the CUPL 
command. 

The square brackets indicate optional items. 

Multiple option flags can be specified when running CUPL. A 
hyphen must be typed before the first flag entered, but is 
optional for additional flags. Spaces also can be put between 
the option flags. For example, the following two CUPL 
command lines are equivalent: 

cupl -a -1-j p16r4 waitgen ( Return ] 

cupl -alj p16r4 waitgen ( Return J 

Type CUPL without any flags to see the command line format 
and a list of the option flags. Table U4-2 lists descriptions of 
the CUPL option flags and output files. An introductory 
example will be presented in the next chapter. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler CUPL Operation 

Table U4-2. Compiler Option Flags 

I Option Flag 

j 

c 

h 

i 

a. 

91-10128-5 

Description 

Generates a JEDEC-compatible ASCII 
download file (filename.JED). The filename is 
not necessarily the same as the logic description 
filename input to CUPL. The NAME statement 
in the header information section of the logic 
description file determines the download 
filename (see the subtopic, Header Information 
in this chapter). 

This can be used to create an input file for other 
logic design tools and gate array fitters such as 
PDS2XNF from XILINX. 

Generates an ASCII-hex download file 
(filename.HEX). This format is available only 
for PROMs. The filename is not necessarily the 
same as the logic description filename input to 
CUPL. The NAME statement in the header 
information section of the logic description file 
determines the download filename (see the 
subtopic, Header Information in this chapter). 

Generates an HL download file 
(filename.HL). This format is available only 
for the Signetics IFL devices. The filename is 
not necessarily the same as the logic description 
filename input to CUPL. The NAME statement 
in the header information section of the logic 
description file determines the download 
filename (see the subtopic, Header Information 
in this chapter). 

Generates an absolute file (filename.ABS) for 
use by the CSIM logic simulation program. 

0690 U4-41 



CUPL Operation 

n 

I 

f 

p 

b 

U4-42 

CUPL 
Programmable Logic Compiler 

Allows the source filename to be used as the 
JEDEC filename instead of using the name in 
the NAME field of the source file. 

Generates an error listing file (filename.LST). 
Each line in the original source file is numbered. 
Error messages are listed at the end of the file 
and use the line numbers for reference. 

Generates a documentation file 
(filename.DOC) which contains an expanded 
listing of the logic terms in sum-of-products 
format and a symbol table of all variables used 
in the source file. It includes the total number of 
product terms and the number available for 
each output. 

Generates a fuse plot in the documentation file. 
For PAL devices, each output pin is listed and 
the associated product term rows are shown 
with the starting JEDEC fuse number. Fuses 
present are denoted with "x". Fuses blown are 
denoted with "·". For IFL devices, the HL 
download format is used, showing JEDEC fuse 
numbers with input terms denoted as "H," "L," 
"O," or"·". 

Generates a PDIF (P-CAD Database 
Interchange Format) file (filename.PDF) 
which can be translated by the PDIFIN 
program into a symbol for the PC-CAPS (P­
CAD Schematic Capture) program. The 
generated symbol will contain packaging 
information for the PLD. 

Generates a Berkeley PLA file (filename.PLA) 
for use by the Berkeley PLA tools, such as 
PLEASURE, or other PLA layout tools which 
use the Berkeley PLA format. 

0690 . 91-10128-5 



CUPL 
Programmable Logic Compiler CUPL Operation 

d In IFL devices, the OR-gate output array is 
driven by each of the AND-gate product.terms. 
Normally, unused OR-gate inputs are left 
connected to the product term array ,so that 
new terms may be added. However, with this 
option, the unused OR-gate inputs are removed 
(deactivated) from the product term array. The 
result is reduced propagation delay from input 
to output. 

r In IFL devices, each product term from the 
AND- gate array may be shared among any 
number of OR- gate outputs. This option 
defeats this capability, forcing identical product 
terms to be generated for each output OR-array 
when required. The result is reduced 
propagation delay from input to output. This 
option will also force minimization to be 
performed on each output individually (as 
opposed to minimization on all outputs at once) 
when level m2 or m4 minimization is chosen. 

g Adds the necessary code in the JEDEC 
download file to automatically allow the device 
programmer to blow the security fuse when 
programming. Not all programmers support 
this option. 

u Overrides the default device library specified in 
the environment. Specify the complete path and 
filename for the library. Use this option on 
systems that may have special libraries created 
for unique or custom devices. 

s Creates the absolute file and automatically runs 
the CSIM logic simulator. CSIM is run with the 
-1 option that creates a list file. If the -j flag was 
specified for CUPL, it will be passed to CSIM, 
creating a JEDEC download file with test 
vectors. 

91-10128-5 0690 U4-43 



CUPL Operation 

e 

w 

mo 

ml· m4 

U4-44 

CUPL 
Programmable Logic Compiler 

Generates an expanded macro definition file 
(filename.MX) which contains an expanded 
listing of all macros used in the source file. It 
also contains the expanded expressions that use 
the REPEAT command. 

(MS-DOS only) Creates the absolute file and 
automatically runs the CSIM logic simulator 
with waveform output. CSIM is executed with 
the -w option that displays the output in wave 
form. 

Defeats all logic minimization during a CUPL 
compilation. It is useful when working with 
PROMs, to keep contained product terms from 
being eliminated. 

CUPL provides four minimization levels: -ml, -
m2, ·m3, and -m4. The default minimization 
level is ml. Figure U4-1 shows the relative 
memory usage, speed, and efficiency of the 
four minimization levels. Minimization levels 
m2 and m4 will perform multipie output 
minimization in IFL devices. This maximizes 
product term sharing in these types of devices. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler 

Reduction 
Efficiency 

Memory 
Usage 

Execution 
Time 

M1 

M1 

M1 

CUPL Operation 

M2 M3 M4 

11 
M2 M3 M4 

M2 M3 M4 

Figure U4-1. Logic Minimization Levels 

jFJag 
I Ml 
IM2 
IM3 
IM4 

91-10128-5 

Minimization Description 
Quick Minimization 
Quine-McCluskey Minimization 
Presto Minimization 
Expresso Minimization 

0600 U4-45 



CUPL Operation 
CUPL 

Programmable Logic Compiler 

0 Running CUPL Using the Menus 

U446 

The MS-DOS version of CUPL contains a front-end menu 
system. This can be used instead of the command line for 
working more quickly with CUPL. An explanation of the 
menu system follows. 

The CUPL menu program is called MCUPL. It is a front-end 
program, meaning that it executes the other CUPL programs 
just as a user would, but the user never sees this step. All that is 
necessary is to select a choice from a menu and press return. 

The Installation Chapter contains a description of how to 
install MCUPL. The MCUPL files MCUPL.EXE and 
MCUPL.CFG must be copied to the hard disk. MCUPL.CFG 
must be modified, so that it knows how the system has been set 
up. This is not difficult. MCUPL.CFG contains information 
such as the location of a working directory where work files 
are stored, what colors to use on the screen, the name of the 
editor being used and the class of computer that is being used. 
The installation chapter gives more information on this. 

MCUPL is used by pressing keys on the keyboard to make 
selections from the menus. The arrow keys can be used to 
move up and down the menu. When the desired choice is 
selected, simply press the return key. This will either cause 
another menu to appear with more specific choices or it will 
cause an action to occur. It is also possible to press the first 
letter of the menu item to select it. For example, from the main 
menu, [QJ can be pressed to select the quit item. Type a 'Y' to 
confirm the choice. This will quit the program back to DOS. 

Often, an action will require input from the user. The 
message center will display a prompt detailing what 
information is required, such as a file name to be compiled. 
After entering the information, the user then presses the 
return key on the keyboard, and the action proceeds. 

0690 91-10128-5 



CUPL 
Programmable Logic Compiler CUPL Operation 

If a sub-menu is displayed, the escape key [Esc] can be used to 
display the previous menu. 

The following is a description of the main menu of MCUPL. 

* Edit Design Entry 

* Compile CUPL file 

* Look at DOC file 

.* Review error list file 

* JEDEC file editor 

* Input simulation file 

* Simulate CUPL file 

Edit or convert a design file. 

Prompts for a .PLD file then 
compiles it. 

View the Documentation file. 

View the error listing file. 

View or edit a JED EC file. 

Create or edit the simulation input 
file (.SI). 

Simulate the PLD design using 
the .SI file. 

* View simulation results View simulation output file (.SO). 

* Device Selection 

*Help 

* Tutorial for PLDs 

*Quit 

91-10128-5 

Choose a device from a list giving 
device type and manufacturer. 

The online quick reference guide 
for CUPL. 

This executes the Programmable 
Logic User's guide 
demonstration. 

Return to DOS. 

0690 U4-47 



CUPL Operation 
CUPL 

Programmable Logic Compiler 

Defining Function keys 

MCUPL allows for the custom definition of Function Keys F6 
to FlO. This involves modifying MCUPL.CFG. The function 
key definitions simply simulate the typing of a sequence of 
keys. 

To define F6 to quit, add the following to MCUPL.CFG: 

defF6QY 

This will type the letter 'Q' then 'Y' for the response to the 
confirm prompt. 

Boolean Logic 

Table U4-3 shows the Boolean Logic rules for eliminating 
excess product terms from the expanded equations, used by the 
logic reduction algorithms built into the CUPL compiler. 

Table U4-3. Boolean Logic Rules 

I Exp1·ession Result 
!O = 1 

!1. = 0 
A&O = 0 
A&l = A 
A&A = A 
A&!A = 0 
A#O = A 

A#l = 1 
A#A = A 
A#!A = 1 
A& (A#B) = A 
A# (A& B) = A 

U4-48 0690 91-10128-5 



Design Examples U5 

This chapter provides examples of using CUPL and CSIM. It is 
divided into two parts. 

Part A provides step-by-step instructions through a sample 
design session. Part B describes some of the designs that can 
be implemented with the logic description files provided with 
the CUPL package. 

91-10145-5 0690 US-49 



Design 
Examples 

CUPL 
User Guide 

PART A. SAMPLE DESIGN SESSION 

This part provides step-by-step instructions through a sample 
design session using CUPL and CSIM. The steps in the 
process are: 

Step 1. 

Step2. 

Step3. 

Step4. 

Step5. 

Step6. 

Step7 

Step8 

Examining the Design Task 

Creating the CUPL Source File 

Formulating the Equations 

Choosing a Target Device 

Making the Pin Assignments 

Running CUPL 
Creating the CSIM Source File 

Running CSIM 

0 STEP 1. EXAMINING THE DESIGN 
TASK 

US-50 

The system in this programmable logic device (PLD) design 
example is microprocessor-based, with the CPU interfacing 
with ROM and RAM. Figure U5-1 shows a diagram of _the 
system. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

READY 

RESET R 

Figure U5-1. Microprocessor-Based System 

A PLD provides a flexible interface between the CPU and 
peripherals by performing address decoding and timing 
control functions. As the diagram shows, a ROM (or PROM) 
is used for system control and two static RAMs are used for 
scratch pad and auxiliary memory functions. 

In this sample session, a PLD will be designed that decodes the 
CPU's address using a memory map, and creates chip select 
signals for the ROM and RAM chips based upon CPU address 
and CPU data strobes. 

The memory map in Figure U5-2 shows where the ROM and 
two RAM chips reside in the CPU's addressing space. 

91-10145-5 0690 US-51 



Design 
Examples 

CUPL 
User Guide 

U5-52 

FFFF 

r-- ./ 
3000 

RAM1 
2800 

RAMO 
2000 

1000 I---1 ROM 

0000 

Figure U5-2. Memory Map 

Addresses are marked and shown in hexadecimal in the 
memory map. Use this memory map when designing the logic 
for the PLD. 

Because the ROM chip is slow, the PLD must be designed to 
perform a wait state generation that adds at least one CPU 
clock period to the ROM access. The worm arrows on the 
timing diagram in Figure U5-3 show signals affected or 
created by other signals. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

(1) (2) (3) 

CPU_CLK 

A15 .. 11 

IMEMR 

WAIT1 

WAIT2 

IROM_CS 

READY 

Figure U5-3. Wait St.ate Generator Timing Diagram 

A description of the operation of the timing diagram follows. 
The numbers in parentheses indicate the rising edge of the 
CLOCK signal. 

A wait state sequence starts with the CPU address becoming 
valid prior to the memory read strobe. Only the !MEMR signal 
needs to be considered, because the wait state is generated only 
for the ROM. 

When the ! ME MR strobe is active for an address 
corresponding to the ROM, the !ROM_CS signal is asserted 
and turns on the three-state buffer, driving the CPU READY 
signal LO, (indicating not ready, or wait). The next rising 
edge of the CPU clock (1) after !ROM_ CS becomes active and 
sets the W AITl signal. After one CPU clock period passes, the 
WAIT2 signal is asserted (2); the wait state period (one CPU 
clock) is completed, causing the CPU READY signal to be 
driven HI, which causes the CPU to continue its read cycle and 
remove the !MEMR strobe at the appropriate time. The 
!ROM_CS signal is negated, disabling the three-state buffer 
driving the ready signal and, at the next rising edge of the 
CPU clock (3), causing W AITl and W AIT2 to be reset. The 

91-10145-5 0690 US-53 



Design 
Examples 

CUPL 
User Guide 

wait state generator is now prepared for the next CPU access 
time. 

0 STEP 2. CREATING THE CUPL SOURCE 
}.,ILE 

U5-54 

In this step, a logic description file will be created to describe 
the design for the PLD. The logic description file serves as 
input to CUPL, which compiles the design for downloading to a 
device programmer. 

To make it easy to set up the required format for the logic 
description file, CUPL provides a template file, TMPL.PLD, 
that can be copied into the file being used. First, choose a name 
for the file that reflects the use being designed for the PLD. 
Since this is a sample session, use the name SAMPLE.PLD. 
Copy TMPL.PLD to SAMPLE.PLD, by typing: 

copy tmplpld sample.pld ( Return J 

Note 

To move more quickly through this design example, 
it is not necessary to actually create and edit the 
SAMPLE.PLD file. The CUPL package provides a 
sample file, WAITGEN.PLD, that can be used 
instead. 

Use a text editor in non-document mode to open 
SAMPLE.PLD. Figure U5-4 shows the template information 
that has been copied into the file. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

Name 
Partno 
Date 
Revision 
Designer 
Company 
Assembly 
Location 

TEMPLATE FILE 

XXXXX: 
xxxxx: 
XX/XX/XX: 
XX: 
XXXXX: 
XXXXX; 
XXXXX; 
XXXXX: 

/ * • •• • * * * * * * * • •• ** ** • • • •• • • ** •• •• • ** ** • • **** • • • ** •• • • •••••••I 
I* *I 
I* •I 
/* *I 
I•******"' 1111

• * ** •• * * ** * • * ** * * ** ** ** * ** ** * * **** * ** ** ** • •**"'•***I 
I• Allowable Target Device • / 
I** tt * * * * *** • • * ** •• ** * * * •• ** * * ** ** * ** ** ** **** • * *"'"" ** ** **•****I , .. Inputs **/ 

Pin /• */ 
Pin 1• *I 
Pin /• •/ 
Pin /• •/ 
Pin I* •/ 
Pin /• •/ 
Pin /• •/ 
Pin /• •/ 
Pin I* •/ 
Pin I• •/ 
Pin /• •/ 
Pin /• •/ 
Pin /• •/ 
Pin /• •/ , .. Outputs .. , 
Pin 1• •/ 
Pin /• •/ 
Pin /• •/ 
Pin /• *I 
Pin /• • / 
Pin I* •/ 
Pin /• •/ 
Pin /• *I 

_L" Oecla rat ions and Intermediate Vari able Definitions ''L 

Figure US-4. SAMPLE.PLD Template Information 

The file can be edited, in order to enter specific header and 
title information, specify the input and output pins, and write 
the intermediate and logic equations. 

In the header section, replace the XX.Xs with specific 
information referring to the company and the PLD being 
designed. Since this is a sample design, use the information 
provided (as shown in Figure U5-5) or any other desired 
information. 

91-10145-5 0690 US-55 



Design 
Examples 

CUPL 
User Guide 

Below the header section is a title block with comment symbols 
(/* and */). In the title block, type in information describing 
the design, as shown in Figure U5-5. 

Name 
Partno 
Date 
Revision 
Designer 
Company 
Assembly 
Location 

SAMPLE.PLO 

Sample; 
P9000183: 
07/16/87: 
02: 
Osann; 
ATI: 
PC Memory: 
Ul06; 

I••******•********••** 11 * ** * ** ** * ** * * * * • ** •• ** * ** "* * **••I 
I* This device generates chip select signals for one */ 
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives •/ 
/* the system READY line to insert a wait-state of at ""/ 
/ * least one cpu clock for ROM accesses *I 
/** ** •• "*" * * * • • * ** * * **** ** * **** * • * * * "* * -• ** ** *** •• * ****I 

Figure U5-5. SAMPLE.PLD Header and Title Block 

0 STEP 3. FORMULATING THE 
EQUATIONS 

U5-56 

To make it easier to enter the specific equations for address 
decoding and wait state generation, first enter equations for 
intermediate variables. Intermediate variables are arbitrary 
names; that is, they do not represent specific pins. Enter the 
intermediate equations in the space provided in the 
SAMPLE.PLD file for "Declarations and Intermediate 
Variable Definitions." 

The first intermediate equation to enter is a bit field 
declaration to define the address bus. Use the name MEMADR 
(memory address) to represent the address, and type the 
equation as follows: 

FIELD MEMADR = [A15 •• 11] ; 

In the system diagram in Figure U5-1, notice that the chip 
select signals for the static RAMs are not dependent solely 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

upon address but must be asserted for either the MEMW or 
MEMR data strobes. 

To simplify the equations for the static RAM chip select 
signals, create a signal called MEMREQ (memory request). 
Type the following: 

MEMREQ = MEMW # MEMR; 

Whenever MEMREQ is used in other equations, CUPL 
substitutes MEMW # MEMR when it compiles. 

Notice in the timing diagram in Figure U5-3 that the decoding 
of the address corresponding to the ROM combines with the 
!MEMR strobe to produce the ROM chip select (ROM_CS), and 
to initiate the wait state sequence. 

Create an intermediate variable, called SELECT _ROM, 
representing the combination of the !MEMR strobe and the 
specific address decoding for the ROM's address space, by 
typing the following: 

SELECT_ROM = MEMR & MEMADR : 
(0000 •• lFFF]; 

After entering the above intermediate equations, the specific 
equations for address decoding and wait state generation may 
be entered. 

If the signal ROM_ CS, which feeds back into the array, is 
being used to initiate the wait state timing, an additional pass 
delay is incurred through the PLD. Because the clock rate is 
relatively slow (4-8 MHz), in this example the additional 
delay is not a problem. However, at higher clock rates it is 
better to recreate the same logic (using the SELECT _ROM 
intermediate) in the registered logic equations. 

Create the ROM chip select (ROM_CS) using the intermediate 
variable SELECT_ROM, by typing: 

91-10145-5 0690 US-57 



Design 
Examples 

CUPL 
User Guide 

US-58 

ROM_CS = SELECT_ROM; 

The chip-selects for the two RAMs, RAM_CSO and RAM_CSl, 
are dependent on MEMREQ and the address bus being within 
the hexadecimal boundaries taken from the memory map. Use 
the CUPL range operation with the lower and upper boundaries 
of the desired address range to decode these signals. Type the 
following: 

RAM_CSO = MEMREQ & MEMADR : 
[2000 • .27FF]; 

RAM_CSl = MEMREQ & MEMADR 
[2800 • .2FFF]; 

Next, create the equations that relate to the wait state timing 
and generation. First, as shown in the timing diagram 
(Figure U5- 3), a signal called WAITl is required that 
responds to the selection of the ROM chip by being set at the 
next rising edge of the CPU clock. According to the rules for a 
D-type flip-flop, the logic level at the D input is transferred to 
the Q output after the clock. Enter the equation for this signal, 
where WAIT.D represents the signal at the D input of the flip­
flop within the PLD, by typing the following: 

W AIT.D = SELECT_ROM & !RESET ; 

Notice that in the equation for WAITl.D, the !RESET signal 
has been ANDed with the rest of the equation to perform a 
synchronous reset when the RESET signal is asserted. 

Next, create the signal WAIT2 at the next clock edge following 
the one that causes W AITl to set, by making the equation for 
W AIT2.D dependent on the signal WAITl. Since W AIT2.D 
must reset at the next clock edge following the removal of the 
CPU's access of the ROM, AND the variable, and then 
SELECT_ROM into this equation by typing the following: 

WAIT2.D = SELECT_ROM& WAITl; 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

This creates the signal SELECT_ROM in accordance with the 
timing diagram (Figure U5-3) to indicate that the three-state 
buffer should be turned on while the ROM is being decoded and 
the MEMR data strobe is active. Therefore, enter the equation 
for the three-state output by typing the following: 

READY.OE = SELECT_ROM; 

While this equation determines when the three-state buffer 
actually drives its output and leaves the high impedance state, 
it does not determine which logic level the signal is driven to. 
The equation for READY determines the logic level to which 
the signal is driven; the signal should remain inactive at 
READY until the completion of a wait state period equal to one 
full CPU clock cycle. As this condition does not occur until 
W AIT2 becomes set, type the equation for READY as follows: 

READY= WAIT2; 

0 STEP 4. CHOOSING A TARGET DEVICE 

After the equations are completed, the next step is to identify a 
compatible, commercially available PLD. Points to consider 
when choosing a target device are: 

> The number of input pins required. 

> The relative number of registered and non­
registered output pins. 

> Three-state output control. 

> The number of product terms required to 
implement the logic function for each equation. 

91-10145-5 0690 U5-59 



Design 
Examples 

CUPL 
User Guide 

U5-60 

The PLD package diagram in Figure U5-6 shows pin 
assignments configured to match up with a device similar to a 
PAL16R4 or an 828155 IFL. 

PLO 

A15 2 I 110 19 !ROM_CS 

A14 3 I 110 18 READY 

A13 4 I 

A12 _5_ I 

A11 6 I RO 15 WAIT1 

RO 14 WAIT2 

!MEMW 7 I 

!MEMR 8 I 1/0 13 !RAM_CS 

RESET 9 I l/O 12 !RAM_C so 

-6. OE 

CPU_CLK 1J ~1 

Figure U5-6. Sample Pin Configuration 

In the pin configuration in Figure U5-6, the three chip select 
signals are assigned to 1/0 type pins that should always be in 
the output drive mode. The READY pin, attached to the READY 
signal on the CPU bus, is used in a controllable three-state 
mode. The two flip-flops that are needed to implement the wait 
state generator have been assigned to output pins that are 
internally connected to registers. 

One of the registered outputs could be used to drive the READY 
signal directly, since the logical function of READY is the 
same as that of the signal WAIT2. However, use of the 
dedicated three-state output enable signal connected to pin 11 of 
the target device would be required. Since pin 11 controls the 

0690 91-10145-fj 



CUPL 
User Guide 

Design 
Examples 

three state outputs of all four pins connected to internal 
registers, this defeats the ability to use the other two registered 
output pins for any purpose other than wait state generation. 

It is better to keep options open by not using the dedicated three­
state control, since it is difficult to predict all the changes that 
might be made during the evolution of a design. Therefore, 
pin 11 is tied to ground, which always enables the three-state 
outputs corning from the registers. 

The PAL16R4 has at least seven product terms available on all 
outputs, which is an adequate number for this application. The 
IFL 828155, which is a second source for this socket position, 
has a total of thirty-two product terms available for all outputs 
combined, which is also an adequate number for this 
application. 

The PAL16R4 devices have only D-type flip-flops, whereas the 
828155 devices may be configured for either D or JK types. 
CUPL automatically chooses a D-type flip flop configuration 
because the equations entered for WAITl and WAIT2 in step 3 
specified the .D extension. 

0 STEP 5. MAKING THE PIN 
ASSIGNMENTS 

Match the pin assignments to the pins in Figure U5-6 for a 
PAL16R4 or 828155 device. First, in SAMPLE.PLD in the 
comment space labeled "Allowable Target Device Types," 
type: 

pal16r4, 82s155 ( Return J 

To ensure consistent documentation when making the pin 
assignments, be certain that the signal polarities (signal 
levels) assigned are the same as those in the logic schematic 
(see Figure U5-1). Make the pin assignments as shown in 
Figure U5- 7. 

91-10145-5 0690 US-61 



Design 
Examples 

CUPL 
User Guide 

U5-62 

SAMPLE PIN ASSIGNMENTS 

/** Inputs • .. •/ 

Pin 1 
Pin {2 .. 6) 
Pin [7,8) 
Pin 9 
Pin 11 

• cpu elk 
- ra1"5 .. 111 : 
- ! [memw,memr] 
- reset 
- !oe 

/** Outputs **/ 
Pin 19 • ! rom cs 
Pin 18 - ready 
Pin 15 - wait! 
Pin 14 - wait2 ; 
Pin [13,12) - ! {ram_csl. .OJ 

I* CPU clock 
I* CPU Address Bus 
I* Memory Data Strobes 
/* System Reset 
/ * OUtput Enable 

/* ROM Chip select 
/* CPU Ready signal 
/* Start wait state 
/* End wait state 
/* RAH Chip selects 

*I 
*I 
*I 
*I 
*I 

*I 
*/ 
*/ 
*I 
*/ 

Figure U5-7. SAMPLE.PLD Pin Assignments 

After making all the pin assignments, delete the extra "pin = 
;" lines provided by the template file. 

Figure U5-8 shows the completed logic description file, 
SAMPLE.PLD. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

Name 
Partno 
Date 
Revision 
Designer 
Company 
Assembly 
Location 

SAMPLE.PLO 

Sample: 
P9000183: 
07/16/87: 
02; 
Osann: 
ATI ~ 
PC Memory: 
Ul06; 

/** ** * • • •• ** * •• ** •• ••• • ••• • •• ••• • • •• *** ** •• •• * •• •• * ** •11t I 
I• This device generates chip select siqnala !or one *I 
I• 8Kx8 ROM and two 2f<x8 static RAMs. It also drives •/ 
I* the system READY line to insert a wait-state of at */ 
I• least one cpu clock for ROM accesses • / 
!• * * • "'• • • * ** * ** •• * • * • • ** ** • ** ** ... ** ** * * • ** ** • ** * • ***••**I 
/*"'** "'* ••• ••••••••• ******"**••* ••••• *• * **"'******•* • ••**I 
/** Allowable Target Device Types : PAL16R4, 82Sl55 "*/ 
I************•***•••************••••***•••*••*•*••*•*•* I 
/** Inputs **/ 

Pin 1 • cpu elk /• CPU clock 
Pin (2 .. 61 - (al5 .. lll 1 • CPU Address Bus 
Pin (7, 81 - ! (memw,memr] /• Memory Data strobes 
Pin 9 • reset /• System Reset 
Pin 11 - !oe /' OU tput Enable 

/" Outputs "/ 

Pin 19 • ! rom ca 1• 
Pin 18 - ready /• 
Pin 15 - waitl I' 
Pin 14 - wait2 1• 
Pin ( 13, 121 - ! (ram_csl. .OJ /• 

tu Declarations and Intermediate Variable Definitions 

Field memadr - (alS •• 111 /* Give the address bus 
/* the Name ••memadr 11 

•/ 
•/ 
•/ 
• / 
•/ 

•/ 
•/ 
•/ 
•/ 
• / 
•/ 

•/ 
•/ 

memreq - memw t memr : /* Create the intermediate *I 
/• variable "memreq" */ 

select rom - memr' memadr: [0000 .. lFFF] /* - rom_cs */ 

/** Logic Equations **/ 

rom cs - select rom; 
ram-csO - memreij ' memadr: (2000 .. 27FFJ 
ram=csl - memreq ' memadr: {2800 •. 2FFFJ 

waitl.d - select_rom ' !reset 

walt2.d - select_rom ' waitl : 
I* synchronous Reset 
I* wai tl delayed 

ready. oe - select _rem /• Turn Buffer off */ 

reac:!Y...- wait2 · J.: end wait ";J_ 

Figure U5-8. SAMPLE.Pill File 

0 STEP 6. RUNNING CUPL 

•/ 
*I 

When running CUPL, specify the target PLD, the source logic 
description file, and option flags to enable specific output files. 
In this step, compile the logic description file SAMPLE.PLD 

91-10145-5 0690 US-63 



Design 
Examples 

CUPL 
User Guide 

U5-64 

for the target device PAL16R4, and create the following output 
files: 

SAMPLE.ABS (-a flag) • This is the absolute file for later use 
by CSIM, the CUPL simulator (This file is needed for step 7). It 
contains a condensed representation of the logical function to 
be programmed into a device. CSIM compares this 
representation to test vectors in a user-created input file to 
determine whether the response vectors in the input file are a 
correct response to the stimulus vectors. 

SAMPLE.DOC (-x, and -f flags) ·This is the documentation 
file. It provides fully expanded product terms for both 
intermediate and output pin variables, and a fuse plot and chip 
diagram. 

SAMPLE.LST (-1 flag) ·This is the list file. It is a recreation 
of the description file, except line numbers have been added 
and any error messages generated during compilation are 
appended at the end of the file. 

SAMPLE.JED (-j flag)· This is a JEDEC file for downloading 
to a device programmer. It contains a fuse pattern but no test 
vectors. 

Note 

The SAMPLE.JED fi1ename is determined by the 
NAME field in the header information section of the 
logic description file. When only one device is 
described in the file, be certain to use the same name 
(in this case, SAMPLE) as the filename. 

0690 91-10145-5 



CUPL 
User Guick 

Design 
Examples 

To begin to compile and create the files described above, type 
the following command line: 

cupl -jaxtl p16r4 sample (Return ) 

Note 

If SAMPLE.PLD has not been created, type 
W AlTGEN instead of SAMPLE to specify the sample 
file, WAITGEN.PLD, provided by CUPL. The 
filename for all output files created by CUPL is 
WAITGEN instead of SAMPLE. 

The following messages appear on the screen, indicating how 
much time each CUPL module takes for completion. The 
actual time will vary depending on the system being used. 

91-10145-5 0690 US-65 



Design 
Examples 

CUPL 
User Guide 

US-66 

CUPL: Universal Compiler for Programmable Logic 
Version 3.XX Serial# XX-XXX-XXXX 
Copyright (C) 1983, 1990 Logical Devices, Inc. 

cuplx 
time: 2 secs 
cup la 
time 2 secs 
cup lb 
time: 2 secs 
cuplm 
time: 1 secs 
cuplc 
time: 5 secs 
total time: 12 secs 

When the prompt appears, compilation is complete. 
SAMPLE.LST and SAMPLE.DOC are ASCII files, so it is 
possible to display them on the screen, open them with a text 
editing program, or print a hard copy of their contents. 

The list file, SAMPLE.LST, is essentially a recreation of the 
source file with line numbers inserted and any error 
messages attached to the end. The line numbers facilitate the 
quick locating of error sources, if any are detected by CUPL. 

Figure U5-9 shows the contents of SAMPLE.LST. 

0690 91-10145-5 



CUPL 
User Guide 

SAHPLE.LST 

CUPL Verdon l.XX Serial I XX-XXX-XXXX 
Copyrt9ht (C) 1983, 1990 Logical D•vic••• Inc, 
CREATED Thur Jan 14 01:42il2 1990 

LISTINQ FOR LOCIC DESCRIPTlaf FILE: •uple.pld; 

l:Nmne 
2 :Pa.rtno 
l :Date 

Sample; 
PIJIOOOUJ; 
07/16/87; 
02; 
O.:ann; 
ATI; 

• :R.evlaion 
5 :D••i9ner 
6:Compa.ny 
1 :Aaswnbly 
8 :Location ., PC H9111ory; 

Ul06; 

10:/••···························••11•••111••················1 
11:/• Thia device generate• chip ••l•ct st9nala for one •/ 
12:/• 8Kx8 ROM and two 211'.x8 static RAMs. It also driV•• •/ 
13:/* th• syatem READY line to inaert a wait-state of at •/ 
14:/• leaat on• cpu clock for RCM ace••••• •/ 
15: , ....................... '"' •••• "" •••••••••••••••••••••• •/ 
16: , •••••••••••••••••••••• t •••••••••••••••••••••••••••••• •/ 

17:/U Allowable Tar9•t Devlc• Typea : PAL16R4, 825155 U/ 18:/•••••••••••••t•••···································••/ 
Uh/** Input• U/ 
20: 
2l:Pin 1 - cpu elk 
22:Pin 12 •. 6] • lal5 .• ll] 
23:P1n 17,BJ • !(meaw,1r1-r) 
24:P1n !I • reset 
25:P1n 11 • !oe 
26: 
27:/U 
28: 
29:Pin 
30: Pin 
ll1Pin 
32:P1n 
l3:P1n 
H: 

Output• 

19 
18 
IS 
14 
(13, 12] 

.. , 
- lr0tn_cs 

- re.111dy 
• wait 1 
.. wa1t2 - I (rui_e.tl. .OJ 

t • CPU clock 
/" CPU Addreu Bua 

t• Hemory Data Strobe• 
t • Syst•111: Reset 
I' OUtput Enable 

,. 
/' 
/' ,. 
/' 

35:/•• Declaration• and Intermediate Variable D•finitiona 
36, 
l7:F1eld memadr • fal5 •• 11] 
38: 
39: 
40:memreq • 111.m11t I m•mr 
41: 
"2: 

/• Give the addreaa bua 
J• the Name "'aemadr"' 

/' Create th• int•rm.ediate 
t• variable "'niemr•q" 

4l:••lect_r0111 • 11•11r i memadr: (0000 •• lFFF] 
44: 
45:/u Logic Equation• .. , 
46: 
41:rom cs • ••l•ct rom: 
48:rain -caO - m•mr.q i 11.9111adr: (2000 •. 27FF} 
49:ram-cllll • m•mreq' memadr:f2800 •• 2FFFJ 
50:wait"l.d • aelect_ran ' lr••et ; 
51: /" Synchronoua Jteaet 
52:wait2.d - select rom i waitl ; /' waitl delayed 
Sl:ready.oe • select" rom : I' Turn Buff•r off '/ 
54:ready .. wait2 : 7• end wait •/ 

Jed•c ru11e Ch•cksUlll C4D50) 
Jedec T ransm 1 t Checksum _iE88!1. 

Figure U5-9. SAMPLELST 

•/ 
•/ 
•/ 
•/ 
•/ 

•/ 
•/ 
•/ 
•/ 
•/ 

., 
•/ 
'/ 

•/ 
•/ 

•/ 

., ., 

Design 
Examples 

Figure U5-10 shows the documentation file, SAMPLE.DOC, 
created by CUPL. 

91-10145-5 0690 US-67 



Design 
Examples 

SAMPLE.DOC 

Sample 

CUPL 
User Guide 

*** ** ••••• *** •••• ** *** ••••••• ***** *. *** ** ••••••••••••••••••••• *·******* **** * •• * 

U5-68 

CUPL 
Device 
Created 
Name 
Partno 
Date 
Revision 
Oesiqner 
Company 
Assembly 
Location· 

waltl .d -> 
!memr 
tan 
t al4 
t al3 
f reset 

select_rom •> 

4 .xx Serial# XX-XXX-XXXX 
pl6r4 Library DLIB-d-26-11 
Mon Aug 20 10:48:32 1990 
Sample; 
P9000183: 
04/1/90: 
02: 
Osann: 
ATI: 
PC Memory: 
Ul06: 

Expanded Product Terms 

!al3 !al4 ' !alS ' mem.r 

wait2 .d -> 
!memr 
• •l5 
t al4 
t al3 
!wa.it 

memadr -> 
alS, a 14, all, a12,all 

·ready -> 
!wait2 

ready.oe -> 
!all ' !a14 ' !alS memr 

rom._cs •> 
!all ' !al4 ' !alS mem.r 

Figure US-10. SAMPLE.DOC Sheet 1of4 

0690 91-10145-5 



CUPL 
User Guide 

memreq -> 
memw 
t memr 

ram caO -> 
!all ' !a12 ' !al3 ' !al4 ' !alS ' memw 
f !all ' !a12 ' !a13 ' !al4 ' !alS ' memr 

ram csl •) 
a11 ' !al2 ' al3 ' !al4 ' !a15 ' memv 
f all ' !a12 ' alJ ' !a14 ' !alS ' memr 

rom ca.oe -> 
-1 

ram csO .oe •> 
-1 

ramcsl.oe -> 
-1 

Pin Variable 
Pol Name 

waitl 
waitl 
all 
select ram 
wait2 -
wait2 
al2 
al3 
al4 
al5 
oe 
memr 
memadr 
ready 
ready 
memw 
cpu elk 
rom~ cs 
reset 
memreq 
ram csO 
ram-csl 
ram cs 
ram-csO 
ram=:csl 

Symbol Table 

Ext 

d 

d 

oe 

oe 
oe 
oe 

LEGEND F field D default 

Pin 

IS 
IS 
6 
0 
14 
14 
s 
4 
3 
2 
11 
8 
0 
18 
18 
7 
I 
19 
9 
0 
12 
13 
19 
12 
13 

Type 

v 
x 
v 
I 
v 
x 
v 
v 
v 
v 
v 
v 
F 
v 
x 
v 
v 
v 
v 
I 
v 
v 
D 
D 
D 

N node I 
V variable X 

Intermediate variable 
extended variable 

Figure -10. Sheet2of4 

91-10145-5 0690 

Pterms Max 
used Pterms 

Design 
Examples 

Min 
Level 

M extended node 
T function 
U unde!lned 

US-69 



Design 
Examples 

US-70 

Fuse Plot 

Pin f1' 
0000 -------------------------------
0032 -x---x---x---------------x------
0064 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0096 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0128 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0160 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0192 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0224 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin fl8 
0256 -x---x---x---------------x------
0288 -----------------------x--------
0320 xxxxxxxxxxxxxxxxxx.xxxxxxxx xxxxxx 
0352 XXXXXXXX·XXXXXXXXXXXXJCXXXXXXXXXXX 

03 8 4 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0416 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
044 8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
04 8 0 xxxxxxxxxxxxxxxxxxxxx.xxxxxxxxxxx 

Pin fl 7 
0S12 xxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxx 
0 S4 4 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXJUf.X 

0 5 7 8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0 60 8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0640 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0612 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0704 xxxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxx 
0 73 8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin fl6 
0768 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0800 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0832 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0864 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0 8 96 xxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxx 
0928 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0960 xxxxxxxxxxxxxxxxxxxxxxxxxxx.xxxxx 
0992 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin fl5 
1024 ------------------------x-------
1056 x-------------------------------
108 8 ----x---------------------------
1120 --------x-----------------------
115 2· ----------------------------x---
118 4 xx.xxxxxxxxxx.xxxxxxxxxxxxxxxxxx.xx 
1216 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
124 8 xxxxxxXxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin fl4 
1280 ------------------------x-------1312 ,, ______________________________ _ 

1344 ----x--------------------------
1378 --------x-----------------------
1408 -------------------x------------
14 4 0 xxxxxxxxxxxxxxxxxxxxxxx.xxxxxxxxx 
1412 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1504 xxxxxxxxxxxxxx~xxxxxxxxxxxxxxx 

Figure U5-10. Sheet 3 of 4 

0690 

CUPL 
User Guide 

91-10145-5 



CUPL 
User Guide 

Design 
Examples 

Pin f!J 
1536 -------------------------------­
! 568 -x---x--x----x--x----x----------
1600 -x---x--x----x--x--------x------
1632 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1664 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1696 xxxxxxxxxxx.xx.xxxxx.xxxxxxx.xxxxxxx 
112 8 xxxxxxxxx.xx.xxxxxxxxxxxxxxxxxxxxx 
i "160 xxxxxx.xxxx.x.xxxxxxxxxxxx.xxxxxxxxx 

Pin fl2 
1792 --------------------------------
1824 -x---x--x----x---x---x----------
185 6 -x---x--x----x---x-------x------
188 8 xx.xxxxxxx.xxxxxxxxxxxxxxxxxxxxxxx 
192 a xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1952 xxxx.xxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1984 xxxxxx.xxxxxxx.xxxxx.xxxxxxxxxxxx.xx 
2 016 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Chip Diagram 

I WAITGEN 
cpu_clk x---1 1 

I 
al5 x---1 2 

I 
a14 x---1 3 

I 
a13 x---1 4 

I 
a12 x---1 5 

I 
all x---1 6 

I 
!memw x---1 7 

I 
!memr x---/ 8 

I 
reset x---/ 9 

I 
GND x---110 

I 

Figure US-10. Sheet 4 of 4 

I 
20 1---x vcc 

I 
19 1---x ! rom_cs 

I 
18 1---x ready 

I 
17 1---x 

I 
16 1---x 

I 
15 1---x waitl 

I 
14 1---x wait2 

I 
13 /---x l ram_csl 

I 
12 1---x ! ram_csO 

I 
11 1---x !oe 

I 

The expanded product terms for WAITl.D and WAIT2.D 
show five product terms, because the fixed inverting output 
buffer (active-LO architecture) in the PAL16R4 causes CUPL 
to perform DeMorgan's Theorem on equations when an output 
variable has been declared as active-HI in the pin list for this 
particular device. 

91-10145-5 0690 US-71 



Design 
Examples 

CUPL 
User Guide 

0 STEP 7. CREATING THE CSIM SOURCE 
FILE 

US-72 

In this step, a simulation will be performed to verify the 
compiled design for the PAL16R4 device. Performing this step 
before downloading to a logic programmer decreases the 
probability of programming a device with incorrect logic. 

Create a source specification file, SAMPLE.SI, containing test 
vectors for input to CSIM. CSIM compares the test vector inputs 
and expected outputs to the actual values contained in the 
SAMPLE.ABS file that was created during CUPL operation, 
and flags any discrepancies. 

Figure U5-11 shows the contents of a sample source 
specification file. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

Name 
Partno 
Date 
Revision 
Designer 
Company 
Assembly 
Location 

sample; 
P9000)83; 
07/16/87; 
02: 
Osann; 
l'TI: 
PC Memory; 
Ul06; 

/* •••••••••••••••••••••••••••••••••• ** * .................. , 
I* This device generates chip select signals for one •/ 
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives •/ 
/• the system READY line to insert a wait-state of at */ 
/* least one cpu clock for ROH accesses *I 
, ••••• * •••• * •• * •• ** •• * ••• * ••••••• * •••••••••• * ••••• *.*.*I 

ORDER: 
cpu elk, ,2, al5, •2, al4, •2, 
a13; •2, al2, t2, •11, •2, 
!memw, \2, !memr, \2, reset, \2, !oe, 
\4, !ram csl, \2, !ram csO, \2, !rom cs, \2, 
wait!, •2. wait2, \2, ready; -

VECTORS: ,. 123456-leave six blanks to allow !or numbers in .so file • 
$msg " " 
$msg • c r r 
$msg " p a a 
$msg " r m m 0 w w r" 
$msg • m m e m a e" 
$msg " c a a e e s c c i ... 
$msg " l I I m m e 0 c t d" 
$msq • k 3 l w r t e 2 y:: 
$msg • 
Smsg • Power On Reset 

0 x x x x x H H H 
$msg " Reset Flip Flops ": 

c x x x x x H H H L L 
$msg • lfrite RAMO ": 

0 0 0 I H L H L L z 
Smsg • Read RAMO ... 

0 0 0 I H L H L L 
Smsg " lllrite RAM! "; 

0 0 0 I L H H L L 
$rnsg • Read RAMl .. 

0 0 0 L H H L L 
$msg • Begin ROM read II; 

0 0 0 0 0 0 0 0 H H L L L L 
$msg " Two clocks for wait state, Then drive READY High "· 
$repeat2; 

c 0 0 H H L 
$msg " End ROH Read ... 

0 0 0 0 H H H H H 
$msg • End ROM Read .. 

c 0 0 0 H H H L L z 

Figure U5-11. SAMPLE.SI 

The source specification file contains three major parts: 
header information and title block, an ORDER statement, and 
a VECTORS statement. 

SAMPLE.SI must have the same header information as 
SAMPLE.PLD to ensure that the proper files, including 
current revision level, are being compared against each other. 
Therefore, first copy SAMPLE.PLD to SAMPLE.SI and then 

91-10145-5 0690 US-73 



Design 
Examples 

CUPL 
User Guide 

US-74 

use a text editor to delete everything in SAMPLE.SI, except the 
header and title block. Figure U5-12 shows the result. 

Name 
Partno 
Date 
Revision 
D@signer 
Company 
Assembly 
Location 

Sample; 
P9000183; 
07/16/87; 
02; 
osann: 
J\TI: 
PC Memory; 
Ul06; 

1 •• ** •111 * • * •• *" • **** * ** * • ****• •• * ** ** ** * ** ** ** * ** *****•*I 
/* This device generates chip select siqnals for one */ 
/• 8Kx8 ROH and two 2Kx8 static RAMs. It also drives */ 
/* the system READY line to insert a wait-state of at "I 
t • least one cpu clock for ROM accesses - *I 
I*•*****•****••****•****•*•••**•*•••*•**********••***•• I 

Figure US-12. SAMPLE.SI Header Information 

In the ORDER statement, list the input and output variables 
from SAMPLE.PLD to be included in test vectors. List the 
variables in the order in which they will be used in test 
variables; that is, put the clock variable, CPU_ CLK, first, 
followed by the other input variables. Put the output variables to 
the right. Separate variables with commas. Use the % symbol 
to insert spaces between the variables; put two spaces between 
each variable, and four spaces between the last input variable 
in the list, !OE, and the first output variable, !RAM_CSl. Type 
the ORDER statement as follows: 

ORDER: 

CPU_CLK, %2, A15, %2, A14, %2, 

A13, %2,A12, %2, ALL, %2, 

!MEMW, %2, !MEMR, %2, RESET, %2, !OE, 

o/o4, !RAM_CS1, %2, !RAM_CSO, %2, !ROM_CS, %2 

WAITl, %2, READY; 

Following the ORDER statement, enter a VECTORS statement 
that creates a function table containing eleven test vectors (see 
Figure U5- ll). First, to make the vectors easier to enter and 
understand, use the $MSG command to create a heading for 

0690 91-10145-5 



CUPL 
User Guick 

Design 
Examples 

the function table. List the variable names in vertical 
columns in the same order and with the same spacing as 
specified in the ORDER statement, by typing the information 
in Figure U5-13. 

/• 123456-leave six blanks to allow for nllll\bers in .SO file •/ 
$msg " 
Smeg " 
$msg " 
$msg " 
$msg " 
$msq " 
$msg " 
,Smsg " 
$msq II 

c 
p 
u 

c 
l 
k 

a 
I 
4 

! r 
m m e 

a e e s 
1 m m e o 
1 w r t e 

": 
r r .. 
a a r ": 
m m o w w r": 

c c m • a e": 
i 1 a"; c t t d"; 

a I 2 y": _____ .. : 

Figure U5·13. Vectors Table Header 

Now enter the test vectors. Create the vectors by assigning a 
value to each of the input variables and an expected value to 
each of the output variables. Refer to Table 4-4 in Chapter 4, 
"Using CSIM", for allowable values to use for test vectors. Use 
the $MSG directive to describe the device function tested by the 
function. The ORDER statement above specifies the spacing 
when creating the test vectors. For example, create the first 
vector, Power On Reset, by typing: 

$msg " Power On Reset 

OXXXXXl 11 OHHH* *"{Return J 

"· ' 

Note that the output value (*) has been used for WAITl and 
WAIT2 to instruct CSIM to calculate the power-on state of the 
registers, since some devices power-on to X and some to H or 
L. Using the asterisk gives a more universal simulation file. 
Type in the rest of the test vectors, as shown in Figure U5-14. 

91~10145-5 0690 US-75 



Design 
Examples 

CUPL 
User Guidi! 

$msq • Power On Reset •: 
OXXXXXlllO HHH**Z 

$msq • Reset Flip Flops •; 
CXXXXXllOO HHHLLZ 

$msq • llrite Rl\110 •; 
0001000100 HLHLLZ 

$msq • Read RAMO • • 
00010010.00 HLHLLZ 

$msq • llr ite Rl\111 •; 
0001010100 LHHLLZ 

$msq " Read RAMl 11 • 

0001011000 LHHLLZ 
$msq • Beqln ROii read •; 

0000001000 HKLLLL 
$maq • Two clocks for wait state, Then drive READY Kiqh •; 
$repeat2; 

$msq • 

$msg " 

COOOOOlOOO 
End ROM Read 
0000001100 

End ROM Read 
cooooo1100 

Figure U5-14. Test Vectors 

H H L * 

H H H H H Z 
•: 

H H H L L Z 

The $REPEAT directive in the test vectors causes the eighth 
vector to be repeated twice. The asterisks in the eighth vector 
for WAITl, WAIT2, and READY tell CSIM to compute the 
output based on the inputs and place the results in the output 
file. 

The value of the clock variable, CPU_CLK, is 0 in some 
vectors and C in others. A value of 0 causes no clocking to 
occur. A value of C causes CSIM to examine the input values in 
the vector and also look back to the previous vector for any 
registered outputs that would be fed back internally prior to the 
clock. Then, after a clock is applied, CSIM computes the 
appropriate expected outputs for registered and non-registered 
variables. 

After putting in the VECTORS statement, save the file. The 
next step is to run CSIM to perform the simulation. 

0 STEP 8. RUNNING CSIM. 

US-76 

When CSIM is run, it creates SAMPLE.SO, which contains the 
result of the simulation. Specify the -1 flag to list any errors 
that might be generated. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

To run CSIM, type: 

csim-1 p16r4 sample( Return ) 

Note 

If W AITGEN.PLD was used to run CUPL in step 6, 
specify WAITGEN instead of SAMPLE when 
running CSIM. 

CSIM displays the amount of time to perform the simulation, 
as follows: 

CSIM: CUPL Simulation Program 
Version 3.:XX Serial# XX-:XXX-XXXX 
Copyright (C) 1983, 1990 Logical Devices, Inc. 

csima 
time: 4 secs 
total time: 4 secs 

When the prompt reappears, the simulation is complete. 
SAMPLE.SO is an ASCII file, so it is possible to display it on 
the screen, print a hardcopy of it, or open it with a text editor. 

Figure U5-15 shows the contents of SAMPLE.SO. 

91-10145-5 0690 US-77 



Design 
Examples 

CUPL 
User Guide 

US-78 

SAMPLE. SO 

CSIH: CVPL Simulation Program 
Version 4 .XX Serial I XX-XXX-XXXX 
copyright (c) 1983, 1990 Logical Devices, Inc. 
CREATED Thur Aug 20 09:34:16 1990 

Name 
Partno 
Date 
Revision 
Designer 
Company 
Assembly 
Location 

Sample: 
P9000183; 
07/16/87; 
02; 
Osann; 
AT!; 
PC Memory; 
Ul06; 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: J •• • •• •• • •• • • *** • • ** ** *** • • * * * ** ** * *** * • ** ** • •• •• "*•••*I 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 

/* This device generates chip select signals for one */ 
/ • 8Kx8 ROM and two 2Kx8 static RAMs. It also drives *I 
I* the system READY line to insert a wait-state of at */ 
/ * least one cpu clock for ROM accesses • / 
, •••••••••• •••*• ** **** •••••••••• ····- ·········- ···-··. */ 

ORDER: 
cpu elk, •2, al5, •2, al4, ,2, 
a13~ \2, al2, ,2, all, \2, 
!memw, \2, !memr, \2, reset, t2, !oe, 
\4, !ram cal, ,2, !ram csO, ,2, !rom cs, ,2, 
waitl, t2, walt2, \2, ready; -

Simulation Results 

c r 
p a a r 
u r m ,. 0 v v 

m m e .. a 
c • a a e e c c i 
l I 1 1 m m e 0 • • c 
k 5 4 3 v r t e 1 0 • 

Power On Reset 
0001: 0 x x x x x 0 H H H x x 

Reset Flip Flops 
0002: c x x x x x H H H L L 

Write RAMO 
0003: 0 0 0 1 H L H L L 

Read RAMO 
0004: 0 0 0 1 H L H L L 

Write RAHi 
0005: 0 0 0 1 L H H L L 

Read RAM.l 
0006: 0 0 0 0 L H H L L 

Begin ROH read 
0007: 0 0 0 0 0 0 1 0 0 H H L L L 

Two clocks for wait state, Then drive READY High 
0008: c 0 0 0 0 0 1 0 0 0 H H L H L 
0009: c 0 0 0 0 0 1 0 0 0 H H L H H 

End ROH Read 
0010: 0 0 0 0 H H H H H 

End ROH Read 
0011: c 0 0 0 H H H L L 

Figure U5-15. SAMPLE.SO 

e 
a 
d 
y 

z 

z 

z 

L 

L 
H 

Compare SAMPLE.SO to the SAMPLE.SI file in Figure U5-11. 
Note that vectors 8 and 9 were created as a result of the 
$REPEAT directive, and that CSIM has replaced the asterisks 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

from SAMPLE.SI with the appropriate logic levels (H and L) 
for the WAITl, WAIT2 and READY signals. 

Now that a successful simulation has been completed, test 
vectors can be added to the JEDEC file created while running 
CUPL (in step 6). Run the simulation again with the -j option 
flag, by typing: 

csim -j p16r4 sample (Return ) 

If WAITGEN.SI was used to perform the simulation, specify it 
here instead of SAMPLE.SI. 

Figure U5-16 shows the contents of SAMPLE.JED, which now 
contains both programming and testing information. 

91-10145-5 0690 US-79 



Design 
Examples 

U5-80 

SAMPLE.JED 

CUPL 
Device 
Created 
Name 
Partno 
Revision 
Date 
Designer 
Company 
Assembly 
Location 
111 QP20 

4. XX Serialf XX-XXX-XXXX 
pl6r4 Library OLIB-d-26-11 
Thur Aug 20 09: 52: 02 1990 
Sample 

'QF2048 
'GO 
'FO 

P9000!83 
02 
12/16/89 
Osann 
ATI 
PC Memory; 
Ul06: 

•100000 11111111111111111111111111111111 
• 100032 JOU I 0111011llJll111111110111111 
• 100256 101110111011111111JllllllOl!1111 
• 100288 1111111JI111111111 Jlll!Ol l lll l ll 
'101024 111111111 JI l ll lll l llll l lOlll ll ll 
'LO 1056 01111111111111111111111111111111 
• 101088 11110111111111111111111111111111 
'LO 1120 111111110 l ll ll ll ll l l l l l l11111111 
•101152 111111 l l ll ll ll lll l l lllllllllOlll 
• 101280 ll ll ll l l l lJlll ll ll l ll l llOl JI ll ll 
'L0l312 0111lll lllll ll ll ll l llllll l ll ll ll 
'101344 111101111111111111111l!111111111 
• L013 76 11111111011 lllll l ll ll ll lll ll ll ll 
'L01408 1111111 JI lll ll ll ll !Ol llllll l llll 
'101536 11111111111111111111111111111111 
• J,01568 101110110tl 110110111101111111111 
• L01600 101110110ll110110111111110111111 
'LOl 792 11111111111111111111111111111111 
'LO 1824 10111011011110111011101111111111 
'LO 1856 10111011011110111011111110111111 
*C4DSO 
•voool OXXXXXl llNOHHXXXXZHN 
•vooo2 CXXXXXl IONOHHL1XXZHN 
'V0003 OOOJ00010NOLH11XXZHN 
•vooo4 0001001 OONO LHLLXXZHN 
•vooos 000101010NOHLLLXXZHN 
•vooo6 000101100NOHLL1XXZHN 
•vooo7 0000001 OONOHHLLXXLLN 
•vooo8 COOOOOlOONOHHLHXXLLN 
"'V0009 COOOOOlOONOHHHHXXHLN 
•voo10 OOOOOOllONOHHHHXXZHN 
•voo11 COOOOOllON!HHLLXXZHN 
•3152 

Figure U5-16. SAMPLE.JED with Test Vectors 

0690 

CUPL 
User Guide 

91-10145-5 



CUPL 
User Guide 

Design 
Examples 

0 SUMMARY 

This part provided the opportunities to create and compile a 
CUPL source file and a CSIM test specification file. The 
important points were how to: 

)> Use the template file. 

)> Choose a PLD and make pin assignments. 

)> Write intermediate and logic equations to describe 
the design. 

)> Run CUPL to compile a file. 

)> Create and compile a test specification file to verify 
the design. 

)> Run CSIM to simulate a logic design. 

The design examples in Part B do not provide the same step­
by-step instruction, but are provided as familiarization with 
how CUPL can be used to describe different types of designs. 

91-10145-5 0690 U5-81 



Design 
Examples 

CUPL 
User Guide 

US-82 

PART B. SAMPLE PLD FILES 

This section lists the logic description files that are included 
in the CUPL package to illustrate how CUPL and CSIM 
implement various designs. 

FILE: GATES.PLO 
DEVICES: PAL16L8, PAL16P8 , 82S153 
Simple use of NOT, AND, OR, and XOR gates 

FILE: FLOPS.PLO 
DEVICES: PAL16R8, PAL16RP8, 82S159 
Using D-type flip-flops to create a 2-bit counter (four ways) 

FILE: SHFTCNT.PLD 
DEVICES: 828105, 828159 
4-bit counter/shifter using SR SHFTCNT4.PLD and JK-type 
flip-flops 

FILE: SHFTCNT6.PLD 
DEVICES: 828167 
4-bit counter/shifter 

FILE: BARREL22.PLD 
DEVICES: PAL22V10 
8-bit barrel shifter 

FILE: HEXDISP.PLD 
DEVICES: 32x8 PROM 
7-segment decoder 

FILE: COUNTS.PLO 
DEVICES: PAL20X8 
8-bit counter using XOR capability 

FILE: COUNT8A.PLD 
DEVICES: PAL20X8 
8-bit counter using set notation 

0690 91-10145-5 



CUPL 
User Guide 

DesigTJ 
Examples 

FILE: IODECODE.PLD 
DEVICES: PAL12L6 , PAL12P6, 82S153 
1/0 decoder 

FILE: MDECODE.PLD 
DEVICES: PAL16L8, PAL16P8, 82S153 
Memory decoder 

FILE: RIPPLES.PLO 
DEVICES: PAL20RA10 
8-bit ripple counter with asynchronous load 

FILE: COUNT13.PLD 
DEVICES: PAL32R16 
13-bit counter using set notation with load hold and clear 

FILE: IOPORT.PLD 
DEVICES: PAL20RA10 
7-bit parallel 1/0 port with hand-shake and data ready flag 

FILE: DECADE.PLO 
DEVICES: 828157 
Decade counter uses state-machine syntax and complement 
array 

FILE: ADDER.PLO 
DEVICES: PAL16L8, PAL16P8, 828153 
4-bit adder slice uses CUPL function caJJs 

FILE: LOOKUP.PLO 
DEVICES: 256 x 8 EPROM 
Arithmetic lookup table for PROM circle perimeter 

FILE: COUNTlO.PLO 
DEVICES: PAL16RP4, GAL16V8 
Synchronous up/down counter with clear, uses state-machine 
syntax 

FILE: BUSARB.PLO 

91-10145-5 0690 US-&1 



Design 
Examples 

CUPL 
User Guide 

US-84 

DEVICES: 82S105 
Multiprocessor bus arbiter having two machines in one part 

FILE: TCOUNTER.PLD 
DEVICES: EP600 
16-bit synchronous counter using toggle flip-flops 

FILE: PRIORITY.PLD 
DEVICES: PALR19L8 
68000 priority interrupt encoder with registered inputs 

FILE: DATASEP.PLD 
DEVICES: EP600 
Single density 8" floppy disk data separator 

FILE: KEYBOARD.PLD 
DEVICES: 82S100 
Keyboard encoder converts rows and columns to ASCII 

FILE: STEPPER.PLD 
DEVICES: PALT19R6 
Stepper motor controller interface for 8048 microprocessor 

FILE: MULTIBUS.PLD 
DEVICES: PAL23S8 
Simple MULTIBUS arbiter supports parallel and serial 
priority 

FILE: ADDER_TT.PLD 
DEVICES: PAL16L8, PAL16P8, 82S153 

FILE: TTL.PLD 
DEVICES: PAL16L8 
TTL chip representation using macros 

FILE: CYP _CNT.PLD 
DEVICES: CY7C330 
Up/Down counter with preloadable upper and lower limits. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

Any of these logic description files can be viewed or printed 
out, or they can be input to CUPL to generate documentation or 
download files. A corresponding test specification file 
(filename.SI) is also provided for each logic description file, 
so that CSIM can be run to verify the designs. 

The following examples describe key points of the following 
designs (the logic description file for each design is shown in 
parentheses): 

)> Simple gates (GATES.PLD) 

)> TTL conversion (WGTTL.PLD) 

)> Two-bit counter (FLOPS.PLD) 

)> Decade up/down counter using state-machine 
syntax (COUNTlO.PLD) 

)> Seven-segment display decoder (HEXDISP.PLD) 

0 EXAMPLE 1. SIMPLE GATES 

This example describes a design containing simple gates. 
Figure U5-17 shows the design. 

91-10145-5 0690 US-85 



Design 
Examples 

CUPL 
User Guide 

US-86 

:=iD- I- xnor 

:=JD- I- xor 

:=[)- r- nor 

:=[)- I- or 

:=[)- r- and 

:=[)- r- nand 

b-[>- I- 1nw 

a-{>- r- lnva 

Figure U5-17. Design with Simple Gates 

The outputs are labeled to reflect the function of their gate; for 
example, the AND gate has an output labeled AND. 

Figure U5-18 shows the CUPL source file (GATES.PLD 
provided in the CUPL package) that describes the design. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

Name 
Partno 
Date 
Designer 
company 
Location 
Assembly 

GATES.PW 
Gates: 
CA0001; 
07/16/87; 
G Woolheiser: 
A.TI; 
San Jose, CA.: 
Example; 

/•••••• • .,..,. *" *** •• *** •• •• •• ••• ••••••••• • •• •••• * •••• * ••••I , . . , 
I* This is an example to demonstrate how CUPL • / 
/* compiles simple gatea •/ 
/* *I 
/** ••••••• *"' ••••••••••••••••• *** •••••• * ••••••• "'"' ••••••• , 
/* Target Devices: P16L8, P16P8, EP300, and 825153 */ 
, .................................... ,. •••••••••••••• * •• ••/ 

/* Inputs: 
Pinl-a; 
Pin 2 - b: 

/* outputs: 

define inputs to build simple gates 

define outputs as active HI levels 

For PAL16L8 and PAL16LD8, De Morgan's Theorem is 
applied to invert all outputs due to fixed 

. , 

inverting buffer in the device. •/ 

Pin 12 - inva: 
Pin 13 - invb; 
Pin 14 - and; 
Pin 15 - nand; 
Pin 16 - or; 
Pin 17 - nor: 
Pin 18 - xor; 
Pin 19 - xnor; 

,. Logic: examples of simple gates expressed in CUPL ., 
inva - !a: ,. inverters ., 
invb - !b; 
and • a ' b: ,. and gate ., 
nand - ! (a • b): ,. nand gate ., 
or • a ' b; ,. or gate ., 
xor - a $ b; ,. nor gate ., 
xnor - ! (a $ bl: ,. exclusive nor gate ., 

Figure U5-18. Simple Gates Source File (GATES.PLD) 

The first part of the file provides archival information and a 
description of the intended function of the design, including 
compatible PLDs. 

Pin declarations are made corresponding to the inputs and 
outputs in the design diagram. 

In the "Logic" section of the file, equations describe each of the 
gates in the design. 

91-10145-5 0690 U5-87 



Design 
Examples 

CUPL 
User Guide 

For the PAL16L8 and PAL16LD8 devices, which contain fixed 
inverting buffers, CUPL applies DeMorgan's Theorem to 
invert all outputs because they were all declared active-HI in 
the pin list. For example, during compilation, CUPL converts 
the following equation for an OR gate, on an output pin that has 
been declared as active high: 

or=a#b; 

to the following single expanded product term (as shown in the 
documentation file): 

or=> !a & !b 

0 EXAMPLE 2. CONVERTING A TTL 
DESIGN TO PLDs 

U5-88 

This example shows how to use a PLD to replace existing TTL 
circuitry. The conversion requires translating the gates of a 
TTL logic design into equivalent Boolean logic equations, 
which can then be compiled by CUPL and assigned to a PLD. 

Figure U5-19 shows the TTL gate representations used in 
designing logic systems and the corresponding Boolean 
equation for each gate. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

Figure US-19. TfL Gate Representations and Boolean 
Equations 

The basic conversion rules shown in Figure U5-19 are 
sufficient to write equations for each gate within a system of 
TTL gates when converting the logic to a PLD equivalent. 
CUPL uses an expression substitution process to build larger 
equations from the smaller expressions representing each 
gate in the TTL schematic. Expression substitution permits 
approaching a schematic one gate at a time. 

Figure U5-20 shows the schematic for the TTL logic that is 
converted in Example 1. 

91-10145-5 0690 US-89 



Design 
Examples 

CUPL 
User Guide 

US-90 

Figure US-20. TTL Schematic 

The TTL logic shown in Figure U5-20 performs the same 
address decoding and wait state generation as the 
WAITGEN.PLD file contained in the CUPL distribution 
package. The SAMPLE.PLD file created in the sample design 
session (see Part A of this chapter) is identical to 
WAITGEN.PLD. 

The PLD equivalent of this TTL circuit replaces five to six 
packages with one device. 

The first step in the conversion process is to determine from 
the TTL schematic the logic that is to be placed in the PLD. 
Figure U5-21 shows a PLD diagram equivalent to the TTL 
schematic with a box around the logic, and PLD pin number 
assignments. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

RESET 

IMEMR 

"'" 
"" 
A13 

A12 

"" 

1-------------------~ 

I •• WAITI •• WAIT2 : 

IROM_CS 

IRAM_CSO 

IRAM_CS1 

Figure U5-21. PLD Equivalent Diagram 

Note that the outputs of the internal gates (those that do not 
connect to the PLD output pins) are arbitrarily labeled with the 
variable names, A-H, to aid in entering equations in the logic 
description file. 

The logic description file used to convert this design is named 
WGTTL.PLD because it performs wait state generation and is 
based on a TTL design. Figure U5-22 shows the contents of 
WGTTL.PLD. 

91-10145-5 0690 US-91 



Design 
Examples 

CUPL 
User Guide 

US-92 

Name 
Partno 
Date 
Revision 
Designer 
Company 
Assembly 
Location 

WGTTL.PLD 

Sample; 
P9000183; 
07/16/87; 
02; 
Osann; 
ATI; 
PC Memory; 
Ul06; 

I*****•••••**•**•*•*.•••*****•••**••••••• 111 • • •• • • •••••••••I 
I* This device generates chip select signals for one *I 
/* 8Kx8 ROM and two 2J<x8 static RAMs. It also drives */ 
/* the system READY line to insert a wait-state of at *I 
I* least one cpu clock for ROM accesses • / 
I••••••••••••••*••••**••••"••**••••••••••**•••*********••/ 
/** Inputs ••/ 

PIN 1 
PIN (2 .• 6) 
PIN 9 
PIN 11 

I** outputs 

PIN 19 
PIN 18 
PIN 15 
PIN 14 
PIN ( 13, 12) 

••I 

- cpu elk 
- [a15 .. 111 
- ! [memw,memrJ 
- Joe 

- !rom cs 
- readY 
- wa l tl 
- wait2 - ! [ram_csl .. OJ 

/* CPU clock */ 
/• CPU Address Bus "I 
/* Memory Data Strobes-I 
/* Output enable *I 

,. ROH Chip Select */ 
/' CPU ready signal •/ 
/* Start wait state *I 
I' End wait state •/ 
I* RAM chip selects *I 

/"* Declarations and Intermediate Variable Definitions *"1 / 

a - ! '!memw} t ! ( !memr) 
b - !a15 & !al4 
c - !a13 
d - !al2 & !all 
e - ! al 1 
f - !al2 & !oe : 
g - ! (!rom cs t reset) 
h .. ! f !memr) : 

/*" Logic Equations **/ 

!rom_cs - !(h & b & c): 

!ram_csO • ! Ca & b & al3 d) 

!ram_csl - ! fa 'b & al3 f) 

waitl.d - g ; 

wait2.d - waltl ' g : 

ready.oe - !(!(h' b & c)) 

ready - wait2 : 

Figure US-22. WGTTL.PLD 

The header information is identical to that in 
WAITGEN.PLD (and SAMPLE.PLO; see Part A), because the 
functionality is the same. 

The pin assignments match the schematic in Figure U5-21. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

The logic equations for the internal gates are placed in the 
section of the file for "Declarations and Intermediate Variable 
Definitions." The equations in this section use the output 
variable names, A-H, assigned in the schematic in Figure 
U5-21. For example, the AND gate LS02 is described by the 
following equation: 

d = !a12 & !all; 

The equations in this section can be simplified. For example, 
the double negations can be eliminated in the following 
equation: 

a = !(!memw) # !(!memr) ; 

by entering: 

a= memw # memr; 

The section of the file "Logic Equations" contains equations 
that describe the output signals of the PLD. These equations 
are written in terms of the intermediate equations that 
describe the outputs of the internal gates. For example, the 
AND gate, LSlO, has !ROM_CS as its output signal, and the 
signals H, B and C as inputs. Therefore, enter the following 
equation to describe LSlO: 

!rom_cs = !(h & b & c) ; 

WGTTL.PLD to WAITGEN.PLD are not exactly alike, 
because the internal gates have been defined differently. 
When compiled, however, they perform the same function. 
This can be verified by simulating each logic description in 
turn with an identical simulation source file (WGTTL.SI and 
WAITGEN.SI provided in the CUPL package). 

91-10145-5 0690 US-93 



Design 
Examples 

CUPL 
User Guide 

US-94 

When converting a TTL design to a PLD, some slight changes 
in functionality are required. The asynchronous reset 
capability found on TTL flip-flops like the LS74 is not found in 
many of the commonly available PLDs. However, the same 
reset capability can be achieved by including a RESET 
variable in all product terms to ensure a synchronous reset at 
the clock. 

Therefore, WGTTL.PLD incorporates !RESET into the 
equation for G, which is used in the equations for both WAITl 
(waitl.d = g;) and WAIT2 (wait2.d = waitl.d & g). Although 
the functional nature of the synchronous reset does differ in 
timing from that of the asynchronous reset, the synchronous 
reset is sufficient for proper function of the device. 

The simple methodology described in Example 2 allows the 
conversion of many TTL designs, especially those consisting 
of simple gates, to a PLD equivalent, regardless of the number 
of gate delays of TTL (logic) in the original design. In most 
cases, the only difference between the TTL design and the 
PLD is the total propagation delay through the circuit. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

0 EXAMPLE 3. TWO-BIT COUNTER 

This example demonstrates the implementation of a two-bit 
counter for a D-type flip-flop. 

Figure U5-23 shows the timing diagram for the counter. 

Twoblclllrller 

CLOCK 

qO 
L 

q1 
Im..__• __ ___, L 

reset 

Figure US-23. Two-Bit Counter Timing Diagram 

As indicated by the arrows, the registers are clocked on the 
rising edge of the clock signal. 

Figure U5-24 shows the CUPL source file (FLOPS.PLD, 
provided in the CUPL package) to describe the two-bit counter 
design. 

91-10145-5 0690 US-95 



Design 
Examples 

CUPL 
User Guide 

U5-96 

Name 
Partno 
Revision 
Date 
Designer 
Company 
Location 
Assembly 

HEXDISP. PLO 

Flops: 
CA0002; 
02: 
07/16/87; 
G. Woolheiser: 
AT!; 
None; 
None; 

I*•••**********•••••**"*********** 111• ** * **** * ** ***** ** ** *** ** */ 
/* */ 
I* This example demonstrates the use of D-type flip-flop */ 
/* to implement a two bit counter usinq the following */ 
/• timinq diagram. •/ 
/* */ 
/* clock */ 
/* 11/ 
/' qO 7711 '/ 
/' */ 
,. qi 7711 •/ ,,, •/ 
/* */ 
/• ---- ., 
I* reset •/ 
/• *I 
I***•*••••••***•••••**•**••*""•••* 11 ** • * * ** "* • •• •• • •"' ** **"••*•*I 
/* Target Devices: PAL16R8, PAL16RP8, GAL16V8 */ 
/•• •••• ,.. IHll •• ••• "**• " ••••••••• ** ••• ******* ** ••• ** *** ·-··-· ••• *I 

Pin 1 - clock; 
Pin 2 - reset; 

/* outputs: define outputs and output active levels */ 

Pin 17 - qO; 
Pin 16 - qi; 

Jtt. Logic: two bit counter using expanded exclusive 
ors with d-t ype flip- flop • / 
qo.d .. !reset ' (!qO & !ql 

f !qO & qll: 
ql.d - !reset & (!qO & ql 

f qO • !qll: 
/* ANDed !reset defines a gynchronous register reset */ 

Figure U5-24. Two-Bit Counter Source File (FLOPS.Pill) 

The first part of the file provides archival information and a 
description of the intended function of the design, including 
compatible PLDs. 

Pin declarations are made corresponding to the inputs and 
outputs in the design diagram. 

In the "Logic" section of the file, equations are written to 
implement the counter. The equation for qO is written to define 
when qO asserts; that is, it defines the situation immediately 
before the rising clock edge. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

The !reset term is used in the equations for both qO and ql to 
initialize the circuit, providing a synchronous reset. At power­
on, the registers can be either high or low, as indicated by the 
DON'T CARE slashes in the timing diagram (see Figure U5-
23); the reset signal is initially asserted. By ANDing !reset 
into the equation for each variable, the conditions are not met 
at power-on, so the registers do not set. Because the reset signal 
returns LO (false) after the power-on process is complete, 
!reset is then true and does not affect the value of the registers 
at any other point in the circuit. 

The .d extension in the equations specifies a D-type flip-flop. 
However, when an output is used as feedback, the .d extension 
is dropped. For example, if qO is fed back to ql, an e<Juation 
could be written as: 

ql.d = qO & !reset; 

not as: 

ql.d = qO.d & !reset ; 

or: 

ql.d = qO.dq & !reset ; 

0 EXAMPLE 4. DECADE UP/DOWN 
COUNTER 

This example describes a four-bit up/down decade counter 
with a synchronous clear capacity. The counter also provides 
an asynchronous ripple carry output for cascading multiple 
devices. The source file to implement the counter uses CUPL 
state machine syntax. 

Figure U5-25 shows the counter design and its state. 

91-10145-5 0690 US-97 



Design 
Examples 

CUPL 
User Guide 

US-98 

a•o Qr :" 

01 
D• OZ 

00 

OE 

Figure U5-25. Up/Down Counter Diagram 

The input signal dir determines the direction of the count. 
When dir is high, the count goes down one on each clock; when 
dir is low, the count goes up one on each clock. The cir signal 
performs a synchronous reset. 

Figure U5-26 shows the CUPL source file (COUNTlO.PLD, 
provided in the CUPL package) that implements the design. 

0690 91-10145-5 



CUPL 
User Guide 

Name 
Partno 
Revision 
Date 
Designer 
Company 
Location 
Assembly 
Device 

COUNTlO.PLD 

CountlO; 
CA0018; 
02; 
07/16/87; 
Kahl; 
AT!; 
None; 
None; 
pl6rp4: 

I****••••****•••** 1111 
• ** • ** **** • • •• * 1111 *** • * ** •• *** ** * • ** • • * ****I 

!• */ 
I* Decade Counter *I 
/* This is a 4-bit up/down decade counter with •/ 
/ • synchronous clear ca pa bill ty. An asynchronous *I 
/* ripple carry output is provided for cascading •/ 
/* multiple devices. CUPL state machine syntax */ 
/" is used */ 
/ ****"* •• ** • 111111 •• •••• •• ••••• ** ***"*** •• ••••••• •*** •••• ••• *" •• / 
/* Allowable Target Device Types: PA.Ll6RP4, GAL16V8, EP300 */ 
J •• • • • • • 111 • • * * • • * * •• • •"' • * • •••• •"" * • * * * *"' * * * • * 111 •• ** • *"' • • ***•*••*I 
/** Inputs **/ 
Pin l - elk; 
Pin 2 - clr; 
Pin 3 - dir: 
Pin 11 - toe; 

J• Outputs 

Pin (14 .• 17) - (QJ •• 0); 
Pin 18 • carry; 

/• counter clock 
I* counter clear input 
/* counter direction input 
/* Register output enable 

I* counter outputs 
I* ripple carry out 

., . , . , ., 

., 

., ., 
I* Declarations and Intermediate Variable Definitions */ 
field count - [03 .. OJ; /*declare counter bit field •/ 
$define SO 'b'OOOO 
$define Sl 'b'OOOl 
$define 52 'b' 0010 
$define SJ 'b'OOll 
$define S4 'b'OlOO 
$define SS 1 b'Ol01 
$define 56 'b' 0110 
$define S1 'b' 0111 
$define 58 • b' 1000 
$define 59 'b' 1001 
field node - (clr ,dir): 
up - mode:O; 
down - mode: l; 
clear - mode:2 .. 3): 

J• declare filed node control */ 
J • define count up mode *I 
/* define count down mode • / 
I* define count clear mode *I 

Figure U5-26. Up'Down Counter Source File 
(COUNTlO.PLD) Sheet 1 of 2 

91-10145-5 

Design 
Examples 

US-99 



Design 
Examples 

CUPL 
User Guide 

US-100 

/• Loqlc Equations • / 
sequence count ( / • 

present so if up 
1f down 
1f clear 

present Sl if up 
if down 
1! clear 

present S2 1f up 
if down 
if clear 

present SJ if up 
if down 
1f clear 

present 54 1f up 
1f down 
if clear 

present s~ 1f up 
1f down 
1f clear 

pr~sent 56 if up 
if down 
if clear 

present 57 if up 
if down 
if clear 

present sa if up 
if down 
if clear 

present 59 if up 
1f down 
if clear 
out 

free ruMing counter 

next Sl; 
next 59: 
next SO; 
next S2: 
next SO: 
next SO: 
next Sl; 
next Sl; 
next SO: 
next 54; 
next 52; 
next SO: 
next SS: 
next SJ: 
next SO; 
next 56; 
next 54; 
next SO; 
next 57; 
next SS; 
next SO; 
next 58; 
next 56; 
next SO; 
next S9; 
next S7; 
next SO; 
next SO: 
next 58; 
next SO; 
carry: 

FigureU5-26. Sheet2of2 

•/ 

/• assert carry output */ 

The first part of the file provides archival information and a 
description of the intended function of the design, including 
compatible PLDs. 

Pin declarations are made corresponding to the inputs and 
outputs in the design diagram. 

The "Declarations and Intermediate Variable Definitions" 
section contains declarations that simplify the notation. 

The name "count" is assigned to the output variables Q3, Q2, 
Ql, and QO. 

The $DEFINE command is used to assign names to ten binary 
states representing the state machine output. The state name 
can then be used in the logic equations to represent the 
corresponding binary number. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

The FIELD keyword is used to combine the cir and dir inputs 
into a set called mode. Mode is defined by the following 
equations: 

lup = mode:O; 
down = mode:l; 
clear= mode (2 .. 3]; 

Mode represents the inputs cir and dir, so the three equations 
above are equivalent to the following equations: 

up= !clr & !dir ; 
down = !clr & dir ; 
clear = (clr & !dir) # (clr & dir) 

The three modes are defined as follows: 

up • Both the dir and cir inputs are not asserted. 

down • The dir input is asserted and cir is not asserted. 

clear· The cir input is asserted and dir is either asserted 
or not asserted. 

The "Logic Equations" section contains the state machine 
syntax that specifies the states in the counter. In the first line, 
the SEQUENCE keyword identifies count (that is, Q3, Q2, Ql, 
and QO) as the outputs to which the state values apply. 

Conditional statements have been written to specify the 
transition from each possible present state to a next state, for 
each of the three modes. For example, when the present state is 
S4, if the mode is up, the counter goes to S5; if the mode is down 
the counter goes to S3; or if the mode is clear, the counter goes to 
SO. As example 4 shows, one advantage of the state machine 
syntax is that it clearly documents the operation of the design. 

In Example 4, state 0 (binary value 0000) is defined, because it 
is the result of the cir signal. It is recommended that all 
designs have a valid 0000 defined to avoid being stuck at state 
0. For example, in this design, if a state that hasn't been 

91-10145-5 0690 US-101 



Design 
Examples 

CUPL 
User Guide 

defined occurs at power-on, such as hexadecimal A-F, none of 
the conditions described in the equations is met, so the state 
goes to state 0 (hex value 0000). If 0000 has not been defined as a 
valid state, the counter stays at state 0. 

0 EXAMPLE 5. SEVEN-SEGMENT 
DISPLAY DECODER 

US-102 

This example shows a hexadecimal-to-seven-segment 
decoder for driving common-anode LEDs. The design 
incorporates both a ripple-blanking input to inhibit the display 
of leading zeroes, and a ripple-blanking output for easy 
cascading of digits 

Figure U5-27 shows the segment display decoder. 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

a 

DO b 

01 c 

03 d 

04 e 

g 

rbo 

a 

d 

Figure U5-27. Seven-Segment Display Decoder 

The segments in the display, labeled a-g, correspond to the 
outputs in the diagram. 

Figure U5-28 shows the source file (HEXDISP.PLD, provided 
with the CUPL package). 

91-10145-5 0690 US-103 



Design 
Examples 

CUPL 
User Guide 

US-104 

Name 
Partno 
Revision 
Date 
Designer 
Company 
Location 
Assembly 

HEXOISP. PLO 

Hexdisp; 
CA0007; 
02; 
07/16/87; 
T. I<ahl; 
ATI; 
None; 
Hone: 

I •• ** •• *.* ••• * •••• ** •• ** ••••• * •• ** •• * •••• *.*** •• *** •••• * •••• ** II**** ••• * I ,. •/ 
/* a */ 
/* This is a hexadecimal-to-aeven-seqment */ 
/* decoder caJ)able of driving common-anode I I */ 
/• LEDs. It incorporates both a ripple- fl lb •/ 
I• blanking input (to inhibit displaying I g I • / 
/* leading zeroes) and a ripple blankinq output */ 
t • to allow for easy cascading of digits I I • / 
/• el lc •/ 
/• I I •/ ,. ., 
,. d •/ 
I* */ 
I*•*•**•••••*•***•**••**•**•******••********************************•** I 
/• Allowable Target Device Types: 32 x 8 PROM (825123 or 

equivalent */ 
J •• • • • • • • • ** • • *.., * •• • • •••• •• •• •• • ** *** ** ** ** ••• ** ** *·*'**** •• ** ** • "'* •••••*I 
/ 0 Input group (Note this is only a comment) **/ 

pin (10 •. lJJ - IDO .. JJ; 
pin 14 - ! rbi; 

I• data input lines to display 
I• r.ipple blanking input 

t •• output Group ( Note this is only a comment ) 

pin (7 .. 1] - ! (a,b,c,d,e,f,gJ: 
pin 9 • !rbo; 

/• segment output lines 
J• Ripple Blanking output 

/•• Declarations and Intermediate Variable Definitions 
field data - (OJ .• 0): /• hexadecimal input field 
field aegment-(abcdefg); /• Display segment field 
$define ON 'b'l !• segment lit when logically 
$define OFF 'b'O !• segment dark when logically 

., ., .. , 

., ., 

., ., 
•/ 

"ON .. •/ 
•OFF• •/ 

Figure U5-28. Display Decoder Source File (HEXDISP.PLD) 
Sheetlof2 

0690 91-10145-5 



CUPL 
User Guide 

Design 
Examples 

/** Logic Equation a **/ ,. a b c d e t g */ 
segment • 
,. 0 ., ( ON, ON, ON, ON, ON, ON, OFF) ' data 0 ' !rbi 
I* I •/ ' (OFF, ON, ON, OFF, OFF, OFF, OFF) ' data 1 
,. 2 • / ' [ ON, ON, OFF, ON, ON, OFF, ON) ' data 2 
/• 3 *I ' I ON; ON, ON, ON, OFF, OFF, ON( ' data 3 
/• 4 •/ ' (OFF, ON, ON, OFF, OFF, ON, ON) ' data 4 ,. 5 •/ ' [ ON, OFF, ON, ON, OFF, ON, ON) ' data ~ 
/• 6 */ ' I ON, OFF, ON, ON, ON, ON, ONJ ' data 6 
/* 1 */ ' [ ON, ON, ON, OFF, OFF, OFF, ON) ' data 1 ,. B •/ ' I ON, ON, ON, ON, ON, OH, OFF! ' data 8 ,. 9 */ ' I ON, ON, ON, ON, OFF, ON, ON) ' data 9 
/• A •/ ' I ON, ON, ON, OFF, ON, ON, ON) ' data A 
/• B •/ • [OFF, OFF, ON, ON, ON, OH, ON) 4 data B 
/* c •/ ' ( ON, OFF, OFF, ON, ON, ON, OFF) 4 data c 
/* D */ • [OFF, ON, ON, ON, ON, OFF, ON! ' data 0 
I• E */ ' [ ON, OFF, OFF, ON, ON, ON, ON) ' data E 
/* F */ ' ( ON, OFF, OFF, OFF, ON, ON, ONJ & data F: 

rbo - rbi ' data: 0; 

Figure US-28. Sheet2of2 

The first part of the file provides archival information and a 
description of the intended function of the design, including 
compatible PLDs. 

Pin declarations are made corresponding to the in puts and 
outputs in the design diagram. 

In the "Declarations and Intermediate Variables" section, 
field assignments are made to group the input pins into a set 
named data and the output pins into a set named segment. ON 
and OFF are defined respectively as binary 1 and binary 0. 

The logic equations are set up as a function table to describe the 
segments that are lit up by each input pattern. Comments 
create a header for the function table, listing the output 
segments across the top and the input numbers vertically down 
the side. 

Each line of the table describes a decoded hex value and the 
segments of the display that the hex value turns on or off. For 
example, the line for an input value of 4 is written as follows: 

[OFF, ON, ON, OFF, OFF, ON, ON] & data:4 

91-10145-5 0690 US-105 



Design 
Examples 

CUPL 
User Guide 

US-106 

The function table format expresses the intent of the design 
more clearly than equations; that is, the example above shows 
that an input value of 4 turns segment a off, segment b on, 
segment c on, and so on. 

0690 91-10145-5 



CUPL Language 1 

This chapter explains CUPL language elements and CUPL 
language syntax. 

0 LANGUAGE ELEMENTS 

This section describes the elements that comprise the CUPL 
logic description language. 

0 Variables 

Variables are strings of alphanumeric characters that specify 
device pins, internal nodes, constants, input signals, output 
signals, intermediate signals, or sets of signals. This section 
explains the rules for creating variables. 

Variables can start with a numeric digit, alphabet character, 
or underscore, but must contain at least one alphabet 
character. 

Variables are case sensitive; that is, they distinguish between 
uppercase and lowercase letters. 

Do not use spaces within a variable name. Use the underscore 
character to separate words. 

Variables can contain up to 31 characters. Longer variables 
are truncated to 31 characters. 

Variables cannot contain any of the CUPL reserved symbols 
(see Table 1-2). 

91-10128-5 1090 J(Jl 



CUPL Language 
CUPL 

Reference Manual 

Variables cannot be the same as a CUPL reserved keyword 
(see Table 1-1). 

Examples of some valid variable names are: 

aO 
AO 
8250_ENABLE 
Real_time_clock_interrupt 
_address 

Note how the use of the underscore in the above examples 
makes the variable names easier to read. Also, note the 
difference between uppercase and lowercase variable names. 
The variable AO is not the same as aO. 

Examples of some invalid variable names are: 

99 

110 enable 

out6a 

tbl-2 

does not contain an alpha character 

contains a special character (/) 

contains a space; the system reads it as two 
separate variables 

contains a dash; the system reads it as two 
variables. 

0 Indexed Variables 

Jal 

Variable names can be used to represent a group of address 
lines, data lines, or other sequentially numbered items. For 
example, the following variable names could be assigned to 
the eight LO-order address lines of a microprocessor: 

AO Al A2 A3 A4 A5 A6 A7 

Variable names that end in a number, as shown above, are 
referred to as indexed variables. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

The index numbers are always decimal numbers between 0 
and 31. When used in bit field operations (see the subtopic, Bit 
Field Declaration Statements in this chapter) the variable with 
index number 0 is always the lowest order bit. 

Examples of some valid indexed variable names are as 
follows: 

a23 
D07 
m 
counter_bit_3 

Note the difference between index variables with leading 
zeroes; the variable D07 is not the same as D7. 

Examples of some invalid indexed variable names are as 
follows: 

DOF 
a36 

index number is not decimal 
index number out of range 

0 Reserved Words and Symbols 

CUPL uses certain character strings with predefined 
meanings called keywords. These keywords cannot be used 
as names in CUPL. Table 1-1 lists these keywords. 

91-10128-5 1090 1(1} 



CUPL Language 
CUPL 

Reference Manual 

Table 1-1. CUPL Reserved Keywords 

APPEND 
ASSEMBLY 
ASSY 
COMPANY 
CONDITION 
DATE 
DEFAULT 
DESIGNER 
DEVICE 
ELSE 
FIELD 
FLD 

FORMAT 
FUNCTION 
FUSE 
IF 
JUMP 
LOC 
LOCATION 
MACRO 
MIN 
NAME 
NODE 
OUT 

PARTNO 
PIN 
PINN ODE 
PRESENT 
REV 
REVISION 
SEQUENCE 
SEQUENCED 
SEQUENCEJK 
SEQUENCERS 
SEQUENCET 
TABLE 

CUPL also reserves certain symbols for its use that cannot be 
used in variable names. Table 1-2 lists these reserved 
symbols. 

Table 1-2. CUPL Reserved Symbols 

& # { ) . 
* + [ 1 I 

/* *I . = ' ' @ $ " 

a Numbers 

110 

All operations involving numbers in the CUPL compiler are 
done with 32-bit accuracy. Therefore, the numbers may have a 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

value from 0 to 232 -1. Numbers may be represented in any one 
of the four common bases: binary, octal, decimal, or 
hexadecimal. The default base for all numbers used in the 
source file is hexadecimal, except for device pin numbers and 
indexed variables, which are always decimal. Numbers for a 
different base may be used by preceding them with a prefix 
listed in Table 1-3. 

Table 1-3. Number Base Prefixes 

Base Name Base Prefix 
Binary 2 'b' 
Octal 8 'o' 
Decimal 10 'd' 
Hexadecimal 16 'h' 

The base letter is enclosed in single quotes and can be either 
uppercase or lowercase. Some examples of valid number 
specifications are listed in Table 1-4. 

Table 1-4. Sample Base Conversions 

Number Base Decimal Value 

'b'O Binary 0 
'B'llOl Binary 13 
'0'663 Octal 43.5 
'D'92 Decimal 9'2 
'h'BA Hexadecimal 186 
'0'[300 . .4 77] Octal (range) 192 .. 314 

Binary, octal, and hexadecimal numbers can have don't-care 
values ("X") and numerical values. Some examples of valid 
number specifications with don't-care values are listed in 
Table 1-5. 

Table 1-5. Sample Don't-Care Numbers 

Number Base 

91-10128-5 1090 111 



CUPL Language 
CUPL 

Reference Manual 

'b'lXll 
'O'OX6 
'H'[3FXX .. 7FFF] 

Binary 
Octal 
Hexadecimal (range) 

0 Comments 

Comments are an important part of the logic description file. 
They improve the readability of the code and document the 
intentions, but do not significantly affect the compile time, as 
they are removed by the preprocessor before any syntax 
checking is done. Use the symbols /* and */ to enclose 
comments; the program ignores everything between these 
symbols. 

Comments may span multiple lines and are not terminated by 
the end of a line. Comments cannot be nested. Some examples 
of valid comments are shown in Figure 1-1. 

/*******************************************/ 
/* This is one way to create a title or */ 
/* an information block */ 
/*******************************************/ 

I* 
This is another way to create an information block 
*I 

outl=inl # in2; 
out2=inl & in2; 
out3=inl $ in2; 

/* A Simple OR Function */ 
/* A Simple AND Function */ 
/* A Simple XOR Function */ 

Figure 1·1. Sample Comments 

a List Notation 

112 

Shorthand notations are an important feature of the CUPL 
language. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

The most frequently used shorthand notation is the list. It is 
commonly used in pin and node declarations, bit field 
declarations, logic equations, and set operations. The list 
format is as follows: 

[variable, variable, •.• variable] 

where 

[ ] are brackets used to delimit items in the list as a set of 
variables. 

Two examples of the list notation are as follows: 

[UP, DOWN, LEFT, RIGHT] 
[.A.O,.A.1,J\2,..A3,.A.4,i\5,.A.6,.A.7] 

When all the variable names are sequentially numbered, 
either from lowest to highest or vice versa, the following 
format may be used: 

[ variablem .. n] 

where 

m is the first index number in the list of variables. 

n is the last number in the list of variables; n can be 
written without the variable name. 

For example, the second line from the example above could be 
written as follows: 

[.A.0 .. 7) 

Index numbers are assumed to be decimal and contiguous. 
Any leading zeros in the variable index are removed from the 
variable name that is created. For example: 

[.A.00 .. 07) 

is shorthand for: 

91-10128-5 1090 113 



CUPL Language 
CUPL 

Reference Manual 

[.A.O,.A.1,J\2,.A.3,.A.4,J\5,.A.6,.A.7] 

not for: 

[.A.00, .A.01, .A.02, .A.03, .A.04, .A.05, .A.06, .A.07) 

The two forms for the list notation may be mixed in any 
combination. For example, the following two list notations are 
equivalent: 

[.A.0 • .2, .A.3, .A.4, .A.5 •• 7) 

[.A.0,.A.1,J\2,.A.3,.A.4,J\5,.A.6,.A.7] 

0 Template File 

114 

When a logic description source file is created using the CUPL 
language, certain information must be entered, such as 
header information, pin declarations, and logic equations. As 
an assist, CUPL provides a template file that contains the 
proper structure for the source file. Figure 1-2 shows the 
contents of the template file. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

Name 

Part no 
Date 
Revision 
Designer 
Company 
Assembly 
Location 

XXXXX: 
XXXXX; 

/***********************************************************/ 
/* 
/* 

I* 

*I 
*/ 

*I 
/***********************************************************/ 
/* Allowable Target Device *I 
/***********************************************************/ 
I* Inputs *I 
Pin ,. •/ 
Pin ,. •/ 
Pin /* •/ 
Pin ,. *I 
Pin ,. *I 
Pin I* *I 
Pin I* *I 
Pin I* •/ 
Pin I* •/ 
Pin ,. •/ 
Pin /* *I 
Pin ,. *I 
Pin ,. •/ 
Pin ,. •/ 

I* outputs •/ 
Pin I* *I 
Pin ,. *I 
Pin ,. ., 
Pin ,. *I 
Pin ,. •/ 
Pin ,. *I 
Pin ,. •/ 
Pin ,. •/ 

Figure 1-2. Template File 

91-10128-5 1090 115 



CUPL Language 
CUPL 

Reference Manual 

The template file provides the following sections: 

Header Inf9rmation - Keywords followed by XXXs that are 
replaced with text to identify the file for archival and revision 
purposes. 

Title Block - Comment symbols that enclose space for 
describing the function of the design and allowable target 
devices. 

Pin Declaration • Keywords and operators in the proper format 
for input and output pin declarations and comment space to 
describe the pin assignments. After pin declarations are 
made, remove any extra "pin = ;" lines. Otherwise, a syntax 
error will occur during compilation. 

The I* Inputs */and I* Outputs */ are comments that provide 
groupings for readability only. Assign any pin type in any 
order, no matter how it is used in the logic description file. 

Declaration and Intermediate Variable • Space for making 
declarations, such as bit field declarations (see the subtopics, 
Bit Field Declaration Statements and Node Declaration 
Statements in this chapter) and for writing intermediate 
equations (see the subtopic, Logic Equations in this chapter). 

Logic Equation • Space for writing logic equations describing 
the function of the device (see the subtopic, Logic Equations in 
this chapter). 

Header Information 

116 

The header information section of the source file identifies the 
file for revision and archival purposes. Normally place it at 
the beginning of the file. CUPL provides 10 keywords to use in 
header information statements. Begin each statement with a 
keyword which can be followed by any valid ASCII characters, 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

including spaces and special characters. End each statement 
with a semicolon. Table 1-6 lists the CUPL header keywords 
and the information to provide with each keyword. 

Table 1-6. Header Information Keywords 

I Keyword 
NAME 

PARTNO 

REVISION 

DATE 

DESIGNER 

COMPANY 

ASSEMBLY 

LOCATION 

91-10128-5 

Information 
Normally use the source logic description 
filename. Use only character strings that are 
valid for the operating system. The name 
specified here determines the name for any 
JEDEC, ASCII - hex, or HL download files. The 
NAME field accommodates filenames up to 32 
characters long. When using systems such as 
DOS which allow filenames of only eight 
characters, the filename will be truncated. 
Specify a company's proprietary part number 
(usually issued by manufacturing) for a 
particular PLD design. The part number is not 
the type of target· PLD. For GAL devices, the 
first eight characters are encoded using seven­
bit ASCII in the User Signature Fuses of the 
devices' fuse map. 

Begin with 01 when first creating a file and 
increment each time a file is altered. REV can be 
used for an abbreviation. 

Change to the current date each time a source 
file is al t.ered. 

Specify the designer's name. 

Specify the company's name for proper 
documentation practice and because 
specifications may be ·sent to semiconductor 
manufacturers for high volume PLD orders. 

Give the assembly name or number of the PC 
board on which the PLD will be used. The 
abbreviation ASSY can be used. 

Indicate the PC board reference or coordinate 
where the PLD is located. The abbreviation 
LOC can be used. 

1090 117 



CUPL Language 
CUPL 

Reference Manual 

118 

DEVICE 

FORMAT 

Set the default device type for the compilation. 
A device type specified on the command line 
overrides all device types set in the source file. 
For multi-deyice source files, DEVICE must be 
used with each section if the device types are 
different. 

Set a download output format override for the 
current logic description section. The valid 
values to use for the output format are: 

h produce ASCII-hex output 
produce Signetics HL output 

j produce JEDEC output 
FORMAT overrides any option flag on the 
command line. It is useful in multi-device 
source files where different parts have 
incompatible output formats. More than one 
format value at a time may be specified to 
produce more than one type of output. The 
format value must be a lowercase letter. 

The template file provides all the header keywords except 
DEVICE and FORMAT. An example of proper CUPL header 
information is as follows: 

Name 
Partno 
Revision 
Date 
Designer 
Company 
Assembly 
Location 
Device 
Format 

WAITGEN 
P9000183; 
02; 
1/11/89; 
Osann ; 
Logical Devices, Inc. 
PC Memory Board ; 
U106; 
F155; 
ij ; 

If any header information is omitted, CUPL issues a warning 
message, but continues with compilation. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

Pin Declaration Statements 

Pin declaration statements declare the pin numbers and 
assign them symbolic variable names. The format for a pin 
declaration is as follows: 

PIN pin_n=[!]var ; 

where 

PIN is a keyword to declare the pin numbers and assign them 
variable names. 

pin_n is a decimal pin number or a list of pin numbers 
grouped using the list notation; that is, 

[pin_n 1, pin_n 2 ... pin_nn] 

! is an optional exclamation point to define the polarity of the 
input or output signal. 

= is the assignment operator. 

var is a single variable name or a list of variables grouped 
using the list notation; that is, 

[var, var ... var] 

; is a semicolon to mark the end of the pin declaration 
statement. 

The template file provides a section for entering the pin 
variables individually or in groups using the list notation. 

Use the exclamation point(!) to define the polarity of an input 
or output signal. If an input signal is active-level LO (that is, 
the asserted TTL signal voltage level is 0 volts), put an 
exclamation point before the variable name in the pin 
declaration. The exclamation point informs the compiler to 

91-10128-5 1090 119 



CUPL Language 
CUPL 

Reference Manual 

JID 

choose the inverted sense of the signal when it is listed as 
active in the logic equations. 

Similarly, if an output sign~] is active-level LO, define the 
variable with an exclamation point in the pin declaration and 
write the logic equation in a logically true form. The 
exclamation point permits declaring pins without regard to the 
limitations of the type of target device. 

If a pin declaration specifying an active-level HI output is 
compiled for a target device (such as a PAL16L8) that has only 
inverting outputs, CUPL automatically performs DeMorgan's 
Theorem on the logic equation to fit the function into the 
device. 

Consider the following example. The logic description file is 
written for a PAL16L8 device. All output pins are declared as 
active-HI. The following equation has been written to specify 
an OR function: 

c=a#b; 

However, because the PAL16L8 contains a fixed inverting 
buffer, CUPL must perform a DeMorgan to fit the logic to the 
device. CUPL generates the following product term in the 
documentation file (see Documentation File Formats in 
Appendix C): 

c =>!a & ! b 

Figure 1-3 shows the process described above. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

a 

b 

a 

b 

DeMorgan Translalion 

c-a#b 

Desired OR Function 

C•> la& lb .-----------------------. 
• ..--~ 
I 
I 
I ::><>-',!---= c 

I 
I 
I 

I I 

~----------------------~ 
Fixed Inverting Buffer In Device 

Figure 1-3. Active-ID Pin Declaration for Inverting Buffer 

If excess product terms are generated, CUPL displays an error 
message and the compilation stops. The documentation file 
(filename.DOC) lists the number of product terms required to 
implement the logic function and the number of product terms 
the device physically has for the particular output pin. 

Some examples of valid pin declarations are: 

pint 
pin2 
pin[3,4] 
in [5 •• 7) 

= 
= 
= 
= 

clock; 
!enable; 
![stop,go]; 
[a0 • .2]; 

I* Register Clock */ 
I* Enable 110 Port */ 
/*Control Signals */ 
I* (Address Bit 0-2 */ 

The last two lines in the example above are shorthand 
notations for the following: 

pin3 = !stop; I* Control Signal */ 
pin4 = !go; I* Control Signal */ 
pin5 = aO; I* Address Bit 0 *I 
pin6 = al; I* Address Bit 1 *I 
pin7 = a2; I* AddressBit2 *I 

91-10128-5 1090 121 



CUPL Language 
CUPL 

Reference Manual 

The input, output, or bi-directional nature of a device pin is not 
specified in the pin declaration. The compiler infers the 
nature of a pin from the way the pin variable name is used in 
the logic specification. If the logic specification and the 
physical characteristics of the target device are incompatible, 
CUPL displays an error message denoting the improper use of 
the pin. 

Node Declaration Statements 

122 

Some devices contain functions that are not available on 
external pins, but logic equations must be written for these 
capabilities. For example, the 828105 contains both buried state 
registers (flip-flops) and a mechanism for inverting any 
transition term through a complement array. Before writing 
equations for these flip-flops (or complement arrays), they 
must be assigned variable names. Since there are no pins 
associated with these functions, the PIN keyword cannot be 
used. Use the NODE keyword to declare variable names for 
buried functions. 

The format for node declarations is as follows: 

NODE [!] var; 

where 

NODE is a keyword to declare a variable name for a 
buried function. 

! is an optional exclamation point to define the polarity of 
the internal signal. 

var is a single variable name or list of variables 
grouped using the list notation. 

; is a semicolon to mark the end of the statement. 

Place node declarations in the "Declarations and 
Intermediate Variables Definitions" section of the source file 
provided by the template file. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

Most internal nodes are active-level HI; therefore, the 
exclamation point should not be used to define the polarity of 
an internal signal as active-level LO. Using the exclamation 
point almost always causes the compiler to generate a 
significantly greater number of product terms. An exception 
is the complement array node, which, by definition, is an 
active-level LO signal. 

Although no pin numbers are given in the declaration 
statement, CUPL assigns the variable name to an internal 
pseudo-pin number. The assignment is automatic and 
determined by usage (flip-flop, complement array, and so on), 
so variable order is not a concern. However, once a node 
variable is declared, a logic equation must be created for the 
variable, or a compilation error results. 

CUPL uses the node declaration to distinguish between a logic 
equation for a buried function and an intermediate 
expression. 

Examples of the use of the NODE keyword are: 

NODE [State0..5]; I* Internal State Bits *I 

NODE !Invert; I* For Complement Array *I 

An alternative for assigning buried functions instead of 
allowing CUPL to automatically assign them via the NODE 
keyword, is to use the PINNODE keyword. The PINNODE 
keyword is used for explicitly defining buried nodes by 
assigning a node number to a symbolic variable name. This 
is similar to the way the pin declaration statements work. The · 
format for a pinnode declaration is as follows: 

PINNODE node_n = [!]var; 

where 

91-10128-5 

PINNODE is a keyword to declare the node numbers and 
assign them variable names. 

1090 JZJ 



CUPL Language 
CUPL 

Reference Manual 

124 

node_n is a decimal node number or a list of node 
numbers grouped using the list notation; that is, 

[node_nl,node_n2 ~·· node_nn] 

! is an optional exclamation point to define the polarity of 
the internal signal. 

= is the assignment operator. 

var is a single variable name or list of variables 
grouped using the list notation; that is, 

[var,var ••• var] 

; is a semicolon used to mark the end of the statement. 

Place pinnode declarations in the "Declarations and 
Intermediate Variables Definitions" section of the source file 
provided by the template file. 

As with node declarations, most internal nodes are active­
level HI; therefore, the exclamation point should not be used to 
define the polarity of an internal signal as active level LO. 
Using the exclamation point almost always causes the 
compiler to generate a significantly greater number of product 
terms. An exception is the complement array node, which by 
definition is an active-level LO signal. 

A list of node numbers for all devices containing internal 
nodes is included in Appendix D. Please reference these node 
numbers for pinnode declarations. · 

Examples of the use of the PINNODE keyword are: 

PINNODE [29..34] = [State0..5]; I* Internal State Bits */ 
PINN ODE 35 = !Invert; I* For Complement Array */ 
PINNODE 25 =Buried; I* For Buried register part*/ 

I* of an 1/0 macrocell with */ 
I* multiple feedback paths */ 

1090 91-10128-5 



CUPL 
Ref ere nee Manual CUPL Language 

Bit Field Declaration Stat.ements 

A bit field declaration assigns a single variable name to a 
group of bits. The format is as follows: 

FIELD var = [var, var, ... var] ; 

where 

FIELD is a keyword. 

var is any valid variable name. 

[var, var, ••• var] is a list of variable names in list 
notation. 

= is the assignment operator. 

; is a semicolon used to mark the end of the statement. 

Note 

The square brackets do not indicate optional items 
but are used to delimit items in a 
list. 

Place bit field declarations in the "Declarations and 
Intermediate Variable Definitions" section of the source file 
provided by the template file. 

After assigning a variable name to a group of bits, the name 
can be used in an expression; the operation specified in the 
expression is applied to each bit in the group. See the subtopic, 
Set Operations in this chapter for a description of the 

. operations allowed for FIELD statements. The example below 
shows two ways to reference the eight address input bits (AO 
through A7) of an 1/0 decoder as the single variable named 
ADDRESS. 

FIELD ADDRESS= [A7,A6,A5,A4,A3,A2,Al,AOJ; 

91-1012.8-5 1090 125 



CUPL Language 
CUPL 

Ref ere nee Manual 

or 

FIELD ADDRESS= [A7-0]; 

MIN Declaration St.at.ements 

126 

The MIN declaration statement overrides, for specified 
variables, the minimization level specified on the command 
line when running CUPL. The format is as follows: 

MIN var [.ext] = level ; 

where 

MIN is a keyword to override the command line 
minimization level. 

var is a single variable declared in the file or a list of 
variables grouped using the list notation; that is, 

[var, var, ... var] 

.ext is an optional extension that identifies the function 
of the variable. 

level is an integer between 0 and 4. 

; is a semicolon to mark the end of the statement. 

The levels 0 to 4 correspond to the option flags on the command 
line, -mO through -m4. 

The MIN declaration permits specifying different levels for 
different outputs in the same design, such as no reduction for 
outputs requiring redundant or contained product terms (to 
.avoid asynchronous hazard conditions), and maximum 
reduction for a state machine application. 

The following are examples of valid MIN declarations. 

MIN async_out 
MIN [out.a, outh] 
MINcount.d 

=0; 
=2; 
=4; 

1090 

I* no reduction * I 
I* level 2 reduction * I 
I* level 4 reduction * I 

91-10128-5 



CUPL 
Reference Manual CUPL Language 

Note that the last declaration in the example above uses the .d 
extension to specify that the registered output variable is the 
one to be reduced. 

FUSE St.at;ement 

The FUSE statement provides for special cases where it is 
necessary to blow TURBO or MISER bits. This statement 
should be used with utmost care, as it can lead to unpredictable 
results if used incorrectly. 

FUSE (fusenumber, x) 

where fusenumber is the fuse number corresponding to the 
MISER Bit or TURBO Bit that must be blown, and xis either 0 
or 1. Specify 0 if the bit must not be blown. Specify 1 to blow the 
bil Use this statement with extreme caution 

In this example, fuse 101 is a MISER Bit or TURBO Bit. This 
blows fuse number 101. 

example: 

FUSE(lOl,1) 

DO NOT ATTEMPT TO USE THIS STATEMENT TO 
BLOW ARBITRARY FUSES! 

The fuse statement was designed to blow MISER bits and 
TURBO Bits only. The exact fuse number for the TURBO or 
MISER Bit must be specified. Every time this statement is 
used, CUPL will generate a warning. This is a reminder to 
double check that the fuse number specified is correct. If a 
wrong fuse number is specified, disastrous results can occur. 
Be very careful using this statement. If the FUSE statement is 

91-10128-5 1090 127 



CUPL Language 
CUPL 

Reference Manual 

used in a design and strange results occur, check the fuse 
number specified and make sure that it is a MISER or TURBO 
Bit. 

0 Preprocessor Commands 

The preprocessor portion of CUPL operates on the source file 
before it is passed to the parser and other sections of the 
compiler. The preprocessor commands add file inclusion, 
conditional compilation, and string substitution capabilities 
to the source processing features of CUPL. Table 1-7 lists the 
available preprocessor commands. Each command is 
described in detail in this section. 

Table 1-7. Preprocessor Commands 

$DEFINE 
$ELSE 
$ENDIF 
$MACRO 

$IFDEF 
$IFNDEF 
$INCLUDE 
$MEND 

$UNDEF 
$REPEAT 
$REPEND 

The dollar sign ($) is the first character in all preprocessor 
commands and must be used in column one of the line. Any 
combination of uppercase or lowercase letters may be used to 
type these commands. 

$DEFINE 

12.8 

This command replaces a character string by another 
specified operator, number, or symbol. The format is as 
follows: 

$DEFINE argumentl argument2 

where 

argumentl is a variable name or special ASCII 
character. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

a:rgument2 is a valid operator, a number, or a variable 
name. 

"Argumentl" is replaced by "argument2" at all locations in 
the source specification after the $DEFINE command is given 
(or until the preprocessor encounters an $UNDEF command). 
The replacement is a literal string substitution made on the 
input file before being processed by the CUPL compiler. Note 
that no semicolon or equal sign is used for this command. 

The $DEFINE command allows numbers or constants to be 
replaced with symbolic names, for example: 

$DEFINE ON 'b'l 
$DEFINE OFF 'b'O 
$DEFINE PORTC 'h'3FO 

The $DEFINE command also allows creation of a personal set 
of logical operators. For example, the following define an 
alternate set of operators for logic specification: 

$DEFINE 
$DEFINE 
$DEFINE 
$DEFINE 
$DEFINE 
$DEFINE 

{ 
) 
I 
* 
+ 
:+: 

Note 

I* Alt.ernat.e Start Comment 
*I Alt.ernat.e End Comment 
! Alt.ernat.e Negation 
& Alt.ernat.e AND 
# Alt.ernat.e OR 
$ Alt.ernat.e XOR 

The above definitions are contained in the 
PALASM.OPR file included with the CUPL software 
package. This file may be included in the source file 
(see $INCLUDE command) to allow logic equations 
using the PALA.SM set of logical operator symbols, 
as well as the standard CUPL operator 
symbols. 

91-10128-5 1090 129 



CUPL Language 
CUPL 

Reference Manual 

$UNDEF 

This command reverses a $DEFINE command. The format is 
as follows: 

$UNDEF argument 

where 

argument is an argument previously used in a 
$DEFINE command. 

Before redefining a character string or symbol defined with 
the $DEFINE command, use the $UNDEF command to undo 
the previous definition. 

$INCLUDE 

J:KJ 

This command includes a specified file in the source to be 
processed by CUPL. The format is as follows: 

$INCLUDE filename 

where 

filename is the name of a file in the current directory. 

File inclusion allows standardizing a portion of a commonly 
used specification. It is also useful for keeping a separate 
parameter file that defines constants that are commonly used 
in many source specifications. The files that are included 
may also contain $INCLUDE commands, allowing for 
"nested" include files. The named file is included at the 
location of the $INCLUDE command. 

1090 91-10128-5 



CUPL 
Ref ere nee Manual CUPL Language 

For example, the following command includes the 
PALASM.OPR file in a source file. 

$INCLUDE PALASM.OPR 

PALASM.OPR is included with the CUPL software and 
contains $DEFINE commands that specify the following 
alternate set of logical operators. 

$DEFINE I ! Alternate Negation 
$DEFINE * & Alternate AND 
$DEFINE + # Alt.ernate OR 
$DEFINE :+: $ Alternate XOR 
$DEFINE ( I* Alternate Start Comment 
$DEFINE } *I Alternate End Comment 

$1FDEF 

This command conditionally compiles sections of a source 
file. The format is as follows: 

$1FDEF argument 

where 

argument may or may not have previously been defined 
with a $DEFINE command. 

When the argument has previously been defined, the source 
statements following the $1FDEF command are compiled 
until the occurrence of an $ELSE or $ENDIF command. 

When the argument has not previously been defined, the 
source statements following the $1FDEF command are 

91-10J28..5 1090 131 



CUPL Language 
CUPL 

Reference Manual 

ignored. No additional source statements are compiled until 
the occurrence of an $ELSE or $ENDIF command. 

One use of $IFDEF is to temporarily remove source equations 
containing comments from the file. It is not possible to 
"comment out" the equations because comments do not nest. 
The following example illustrates this technique. NEVER is 
an undefined argument. 

$IF'DEF NEVER 

outl=inl & in2; 

out2=in3 # in4; 

$END IF 

I* A Simple AND Function */ 

I* A Simple OR Function */ 

Because NEVER is undefined, the equations are ignored 
during compilation; that is, they function as comments. 

$1FNDEF 

13'2 

This command sets conditions for compiling sections of the 
source file. 

$IFNDEF argument 

where 

argument may or may not have previously been defined 
with a $DEFINE command. 

The $IFNDEF command works in the opposite manner of the 
$IFDEF command. When the argument has not previously 
been defined, the source statements following the $IFNDEF 
command are compiled until the occurrence of an $ELSE or 
$ENDIF command. 

If the argument has previously been defined, the source 
statements following the $IFNDEF command are ignored. No 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

additional source statements are compiled until the 
occurrence of an $ELSE or $ENDIF command. 

One use of $IFNDEF is to create a single source file 
containing two. mutually exclusive sets of equations. Using 
an $1FNDEF and $END IF command to set off one of the sets of 
equations, quick toggling is possible between the two sets of 
equations by defining or not defining the argument specified 
in the $IFNDEF command. 

For example, some devices contain common output enable 
pins that directly control all the tri-state buffers, whereas other 
devices contain single product terms to enable each tri-state 
buffer individually. In the following example, the argument, 
COMMON_OE has not been defined, so the equations that 
follow are compiled. Any equations following $ENDIF are not 
compiled. 

$IFNDEF COMMON_OE 

pin 11 = !enable; /*' input pin for OE * I 
[q3,q2,ql,q0].oe =enable; /*'assign tri-state *I 

/*' equation for 4 *I 

/*' outputs * I 
$END IF 

If the device has common output enables, no equations are 
required to describe it. Therefore, in the above example, for a 
device with common output enables, define COMMON_OE so 
the compiler skips the equations between $1FNDEF and 
$END IF. 

$END IF 

This command ends a conditional compilation started with 
the $1FDEF or $1FNDEF commands. The format is as follows: 

$END IF 

91-10128-5 1090 133 



CUPL Language 
CUPL 

Reference Manual 

The statements following the $ENDIF command are compiled 
in the same way as the statements preceding the $IFDEF or 
$IFNDEF commands. Conditional compilation may be 
nested,. and for each level of nesting of the $IFDEF or 
$IFNDEF command, an associated $ENDIF must be used. 

The following example illustrates the use of $ENDIF with 
multiple levels of nesting. 

$1FDEF prototype_l 

pint =set; I* Set on pin 1 *I 
pin2 =reset; I* Reset on pin 2 *I 
$1FDEF prototype~ 

pin3 =enable; /* Enable on pin 3 *I 
pin4 =disable; I* Disable on pin 4 *I 
$END IF 

pin5 =run; I* Run on pin 5 */ 

pin6 =halt; I* Halt on pin 6 */ 

$END IF 

$ELSE 

134 

This command reverses the state of conditional compilation 
as defined with $1FDEF or $1FNDEF. The format is as 
follows: 

$EISE 

If the tested condition of the $1FDEF or $1FNDEF commands is 
true (that is, the statements following the command are 
compiled), then any source statements between an $ELSE and 
$ENDIF command are ignored. 

If the tested condition is false, then any source statements 
between the $1FDEF or $1FNDEF and $ELSE command are 
ignored, and statements following $ELSE are compiled. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

For example, many times the production printed circuit board 
uses a different pinout than does the wire-wrap prototype. In 
the following example, since Prototype has been defined, the 
source statements following $IFDEF are compiled and the 
statements following $ELSE are ignored. 

$DEFINE Prot.otype X 
$IFDEF Prot.otype 
pin 1 = memreq; 

pin2 

$EI.SE 
pint 

pin2 

$END IF 

= ioreq; 

= ioreq; 

=memreq; 

I* define Prot.otype * I 

I* memory request on*/ 
/*pin 1 of prot.otype * I 
I* 110 request on * I 
/*pin 2 of prot.otype *I 

I* 110 request on * I 
I* pin 1 of PCB *I 
I* memory request on*/ 
/*pin2ofPCB */ 

To compile the statements following $ELSE, remove the 
definition of Prototype. 

$REPEAT 

This command is similar to the FOR statement in C language 
and DO statements in FORTRAN language. It allows the user 
to duplicate repeat body by index. The format is as follows: 

$REPEAT index=[numberi,numbe1'2, ••. numbern] 
repeat body 

$REPEND 

where n can be any number in the range 0 to 1023 

In preprocessing, the repeat body will be duplicated from 
number1 to numbern. The index number can be written in 
short form as [numberl..numbern] if the number is 
consecutive. The repeat body can be any CUPL statement. 

91-10128-5 1090 135 



CUPL Language 
CUPL 

Reference Manual 

136 

Arithmetic operations can be performed in the repeat body. 
The arithmetic expression must be enclosed by braces { }. 

For example, design a three to eight decoder. 

FIELD sel = Cin2-0J 
$REPEAT i = (0 •• 7) 

!out{i} = sel:'h'{i} &enable; 
$REPEND 

Where index variable i goes from 0 to 7, so the statement 
"out(i} = sel:'h'(i} &enable;" will be repeated during 
preprocessing and create the following statements: 

FIELD sel = [in2 .. 0]; 
!outO = sel:'h'O &enable; 
!outl = sel:'h'l &enable; 
!out2 = sel:'h'2 &enable; 
!out3 = sel:'h'3 &enable; 
!out4 = sel:'h'4 &enable; 
!out5 = sel:'h'5 &enable; 
!out6 = sel:'h'6 &enable; 
!out7 = sel:'h'7 &enable; 

The following example shows how the arithmetic operation 
addition ( +) and modulus(%) are used in the repeat body. 

Design a five bit counter with a control signal advance, 
if advance is high, counter is increased by one. 

FIELD count[out.4-0) 
SEQUENCE count ( 
$REPEAT i = (0 • .311 

PRESENT S{i} IF advance & !reset NEXT 
S{(i+1)%(32)}; 
IF reset NEXT S{O}; 
DEFAULT NEXT S{i}; 

$REPEND 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

$REPEND 

This command ends a repeat body that was started with 
$REPEAT. The format is as follows: 

$REPEND 

The statements following the $REPEND command are 
compiled in the same way as the statements preceding the 
$REPEAT command. For each $REPEAT command, an 
associated $REPEND command must be used. 

$MACRO 

This command creates user-defined macros. The format is as 
follows: 

$MACRO name a:rgument1 a:rgument2.-argumentn 
macro function body 

$MEND 

When macros are invoked, the keyword NC is used to 
represent no connection. Because NC is a keyword, the letters 
NC should not be used as a variable elsewhere in CUPL. 

The macro function body will not be compiled until the macro 
name is called. The function is called by stating function 
name and passing the parameters to the function. 

Like the $REPEAT command, the arithmetic operation can be 
used inside the macro function body and must be enclosed in 
braces. 

The following example illustrates how to use the $MACRO 
command. 

Use the $MACRO command to define a decoder function with 
an arbitrary number of bits. This example places the macro 
definition and call in the same file. 

91·10128-5 1090 137 



CUPL Language 
CUPL 

Reference Manual 

138 

$MACRO decoder bits XY E; 
FIELD select= [y(bits-1} .. 0]; 
$REPEAT i = [0 .. {2**(bits-1)}] 

!X {i} = select:'h' {i} & E; 
$REPEND 

$MEND 

•• J* Other statements */ 

decoder(3, out, in, enable); /*macro function call*/ 

Calling function decoder will create the following statements 
by macro expansion. 

FIELD sel = [in2 •• 0]; 
!outO = sel:'h'O &enable; 
!outl = sel:'h'l &enable; 
!out2 = sel:'h'2 &enable; 
!out3 = sel:'h'3 &enable; 
!out4 = sel:'h'4 &enable; 
!out5 = sel:'h'5 &enable; 
!out6 = sel:'h'6 &enable; 
!out7 = sel:'h'7 &enable; 

Use the flag-e when compiling the PLD file. CUPL will create 
an expanded file with the same name as the PLD file, with an 
extension ".mx". 

The macro definition can be stored in a separate file with a 
".m" extension. Using the $INCLUDE command, specify the 
file. All the macro functions in that file wi11 then be 
accessible. The following example shows the macro definition 
and calling statement stored in different files. 

The macro definition of decoder is stored in the file 
"macrolib.m" 

$INCLUDE macrolib.m /*specify the macro library*/ 
•• J* other statements */ 
decoder(4, out, in enable); 
•• .!* other statements */ 

1090 91·10128-5 



CUPL 
Reference Manual CUPL Language 

More examples can be found in the example files provided on 
diskette. 

$MEND 

This command ends a macro function body started with 
$MACRO. The format is as follows: 

$.MEND 

The statements following the $MEND command are compiled 
in the same way as the statements preceding the $MACRO 
command. For each $MACRO command, an associated 
$MEND command.must be used. 

91-10128-5 1090 139 



CUPL Language 
CUPL 

Ref ere nee Manual 

0 LANGUAGE SYNTAX 

This section describes the CUPL language syntax. It explains 
how to use logic equations, truth tables, state machine syntax, 
condition syntax and user-defined functions to create a PLD 
design. 

0 IA>gical Operators 

140 

CUPL supports the four standard logical operators used for 
boolean expressions. Table 1-8 lists these operators and their 
order of precedence, from highest to lowest. 

Table 1-8. Precedence of Logical Operat.ors 

Operator Example Description Precedence 

! !A NOT 1 
& A&B AND 2 
# A#B OR 3 
$ A$B XOR 4 

The truth tables in Figure 1-4 list the Boolean Logic rules for 
each operator. 

1090 91-10128-5 



CUPL 
Ref ere nee Manual CUPL Language 

NOT : ones com.R,le ment ! AND& 

A !A A B A&B 

0 0 0 
0 1 

0 1 0 
1 0 

1 0 0 

1 1 1 

OR# XOR : exclusive OR $ 

A B A#B A B A$B 

0 0 0 0 0 0 

0 1 1 0 1 1 

1 0 1 1 0 1 

1 1 1 1 1 0 

Figure 1-4. Truth Tables 

0 Arithmetic Operat.ors 

CUPL supports six standard arithmetic operators used for 
arithmetic expressions. The arithmetic expressions can on]y 
be used in the $REPEAT and $MACRO commands. 
Arithmetic expressions must appear in braces [ ). Table 1-9 
Jists these operators and their order of precedence, from 
highest to Jowest. 

Table 1-9 Precedence of Arithmetic Operat.ors 

91-10128-5 1090 141 



CUPL Language 
CUPL 

Reference Manual 

jOperat.or 
** 
* 
I 
% 
+ 

Example 
2**3 
2*i 
412 
9%8 
2+4 
4-i 

Description ~dence 

Exponentiation 1 
Multiplication 2 

. Division 2 
Modulus 2 
Addition 3 
Subtraction 3 

0 Arithmetic Function 

CUPL supports one arithmetic function used for arithmetic 
expressions. The arithmetic expressions can on]y be used in 
the $REPEAT and $MACRO commands. Table 1-10 lists the 
function. 

Table 1-10 Arithmetic Function 
I Function Base 

LOG2 Binary 
LOGS Octal 
LOG16 Hexadecimal 
LOG Decimal 

The LOG function returns a rounded integer value. For 
example: 

LOG2(32) = 5 <==> 2**5 = 32 

LOG2(33) = round(5.0444) = 6 <==> 2**6 = 64 

0 Ext.ensions 

142 

Extensions can be added to variable names to indicate specific 
functions associated with the major nodes inside a 
programmable device, including such capabilities as flip-flop 
description and programmable three-state enables. Table 1-11 
lists the extensions that are supported by CUPL and on which 
side of the equal sign (=) they are used. The compiler checks 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

the usage of the extension to determine whether it is valid for 
the specified device. 

Table 1-11. Extensions 
Extension Side Description 

Used 

D L D input of D-type flip-flop 

L L D input of transparent latch 

~ L J input of JK-type flip-flop 

K L K input of JK-type flip-flop 

s L S input of SR-type flip-flop 

.R L R input of SR-type flip-flop 

.T L T input of toggle flip-flop 

.DQ R Q output of D-type flip-flop 

LQ R Q output of transparent latch 

.AP L Asynchronous preset of flip-flop 

.AR L Asynchronous reset of flip-flop 

.SP L Synchronous preset of flip-flop 

.SR L Synchronous reset of flip-flop 

.CK L Programmable clock of flip-flop 

.OE L Programmable output enable 

.CA L Complement array 

.PR L Programmable preload 

.CE L CE input of enabled D-CE type flip-flop 

LE L Programmable latch enable 

.OBS L Programmable observability of buried 
nodes 

.BYP L Programmable register bypass 

.DFB R D registered feedback path selection 

.LFB R D latched feedback path selection 

.TFB R T registered feedback path selection 

.IO R Pin feedback path selection 

.INT R Internal feedback path selection 

91-1012&5 1090 141 



CUPL 
CUPL Language Reference Manual 

144 

.CKMUX L Clock multiplexer selection 

.OEMUX L Tri-state multiplexer selection 

.TEC L Technology-dependent fuse selection 

.IMUX L Input multiplexer selection of two pins 

.Tl L Tl input of 2-T flip-flop 

.T2 L T2 input of2-T flip-flop 

.IOD R Pin feedback path through D register 

.IOL R Pin feedback path through latch 

.IOCK L Clock for pin feedback register 

.IOAR L Asynchronous reset for pin feedback 
register 

.IOAP L Asynchronous preset for pin feedback 
register 

.IOSR L Synchronous reset for pin feedback 
register 

.IOSP L Synchronous preset for pin feedback 
register 

.ARMUX L Asynchronous reset multiplexer selection 

.APMUX L Asynchronous preset multiplexer 
selection 

.LEMUX L Latch enable multiplexer selection 

Each extension provides access to a specific function. For 
example, to specify an equation for output enable (on a device 
that has the capability) use the .OE extension. The equation 
will look as follows: 

PIN 2 = A; 
PIN 3 = B; 
PIN 4 = C; 
PIN 15 = VARNAME; 
VARNAME.OE = A&B; 

Note that the compiler supports only the flip-flop capabilities 
that are physically implemented in the device. For example, 
the compiler does not attempt to emulate a JK-type flip-flop in a 
device that only has D-type registers. Any attempt to use 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

capabilities not present in a device will cause the compiler to 
report an error. 

For those devices containing bi-directional 1/0 pins with 
programmable oµtput enables, CUPL automatically generates 
the output enable expression according to the usage of the pin. 
If the variable name is used on the left side of an equation, the 
pin is assumed to be an output and is assigned binary value 1; 
that is, the output enable expression is defaulted to the 
following: 

PIN_NAME.OE='b'l; I* Tri-state buffer *I 
I* Always ON *I 

Those pins that are used only as inputs (that is, the variable 
name appears only on the right side of an equation) are 
assigned binary value O; the output enable expression is 
defaulted to the following: 

PIN_NAME.OE = 'b'O; I* Tri-state buffer 
Always OFF *I 

When the 1/0 pin is to be used as both an input and output, any 
new output enable expression that the user specifies overrides 
the default to enable the tri-state buffer at the desired time. 

When using a JK or SR-type flip-flop, an equation must be 
written for both the J and K (or S and R) inputs. If the design 
does not require an equation for one of the inputs, use the 
following construct to tum off the input: 

COUNTO.J='b'O; /*Jinputnotused *I 

Control functions such as asynchronous resets and presets are 
commonly connected to a group (or all) of the registers in a 
device. When an equation is written for one of these control 
functions, it is actually being written for all of the registers in 
the group. For documentation purposes, CUPL checks for the 
presence of such an equation for each register in the group and 
generates a warning message for any member of the group 
that does not have an identical equation. If all the control 

91-10128-5 1090 145 



CUPL Language 
CUPL 

Reference Manual 

146 

functions for a given group are defined with different 
equations, the compiler will generate an error since it cannot 
decide which equation is the correct one. Remember that this is 
a device specific issue and it is a good idea to understand the 
capability of the device being used. 

Figure 1-5 shows the use of extensions. Note that this figure 
does not represent an actual circuit, but shows how to use 
extensions to write equations for different functions in a 
circuit. 

IN_VAR1 

tN_VAR2 

IN_VAR3.DQ 
IN_VAR3 

D 

FUSE 
ARRAY 

OUT_VAR.SP 
n 

OUT_ VAR (default feedback) 

OUT_ VAR.IQ (alternate feedback) 

Figure 1-5. Circuit illustrating Extensions 

OUT_ VAR 

The figure shows an equation with a .D extension that has 
been written for the output to specify it as a registered output. 
Note that when feedback (OUT_ VAR) is used in an equation, 
it does not have an extension. 

The .DQ extension is used for input pins only. 

Additional equations can be written to specify other types of 
controls and control points. For example, an equation for the 
output enable can be written as follows: 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

OUT_VAR.OE = IN_VARl # IN_VAR2 

O Feedback Ext.ensions Usage 

Certain devices can program the feedback path. For example, 
the EP300 contains a multiplexer for each output that allows the 
feedback path to be selected as internal, registered, or pin 
feedback. Figure 1-6 shows the EP300 programmable feedback 
capability. 

FUSE 
ARRAY 

OUT_VAR.D 
D 

Figure 1-6. Programmable Feedback 

CUPL automatically chooses a default feedback path 
according to the usage of the output. For example, if the output 
is used as a registered output, then the default feedback path 
will be registered, as in Figure 1-7. This default can be · 
overridden by adding an extension to the feedback variables. 
For example, by adding the .IO extension to the feedback 
variables of a registered output, CUPL will select the pin 
feedback path. Figure 1-7 shows a registered output with pin 
feedback. 

91-10128-5 1090 147 



CUPL Language 
CUPL 

Reference Manual 

148 

IN_VARt 

FUSE 
ARRAY 

OUT VAR.IQ 

OUT_VAR.D ..----. 

D 

OUT_VAR.D = IN_VAR1 & OUT_VAR.10 

OUT_VAR 

Figure 1-7. Programmable Pin (110) Feedback 

Figure 1-8 shows a combinatorial output with registered 
feedback. 

IN_VAR1 

FUSE 
ARRAY 

OUT VAR.DFB 

OUT_VAR 

Qi---. 

OUT_VAR = IN_VAR1 & OUT_VAR.DFB 

Figure 1-8. Programmable Registered Feedback 

Figure 1-9 shows a registered output with internal feedback. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

IN_VAR1 

FUSE 
ARRAY 

OUT VAR.INT 

OUT_VAR.D ---. 

OUT_VAR.D = IN_VAR1 & OUT_VAR.INT 

Figure 1-9. Programmable Internal Feedback 

0 Multiplexer Extension Usage 

Certain devices allow selection between programmable and 
common control functions. For example, for each output, the 
P29MA16 contains multiplexers for selecting between 
common and product term clocks and output enables. Figure 
1-10 shows the P29MA16 programmable clock and output 
enable capability. 

91·10128-5 1090 149 



CUPL Language 
CUPL 

Reference Manual 

150 

IOE 

FUSE 
ARRAY 

OUT_VAR 

CLOCK 

MUX 
OUT_VAR.OE 

OUT_VAR.D 
GND 

n ,__ ____ __. D 

OUT_VAR.CK 

MUX 

Figure 1-10. Outpui; ~>ith Output Enable and Clock 
Multiplexers 

If expressions are written for the .OE and .CK extensions, the 
multiplexer outputs are selected as product term output enable 
and clock, respectively. Otherwise, if expressions are written 
for the .OEMUX and .CKMUX extensions, the multiplexer 
outputs are selected as common output enable and clock, 
respectively. 

Expressions written for the .OEMUX and .CKMUX extensions 
can have only one variable and be operated on only by the 
negation operator, !. This is because their inputs are not from 
the fuse array, but from a common source, such as a clock pin. 
This is in contrast with expressions written for the .OE and 
.CK extensions, which take their inputs from the fuse array. 

Figure 1-11 shows a registered output with the output enable 
multiplexer output selected as Vee, output enable always 
enabled, and the clock multiplexer output selected as the 
common clock pin inverted, negative-edge clock. 

1090 91-10128-5 



CUPL 
Reference Manual 

FUSE 
ARRAY 

OUT_VAR 

CLOCK 

OUT_VAR.OE 

>-------oO 

PIN 1 =CLOCK; r Common clock pin •1 
PIN 24 =Vee; r Vee pin 'I 

Vee 

OUT VAR.OEMUX =Vee; r Vee, Always Enabled'/ 
OUTYAR.CKMUX =!CLOCK; r Negative-Edge Clock ., 

CUPL Language 

OUT_ VAR 

Figure 1-11. Output with Output Enable and Clock 
Multiplexers Selected 

Expressions for the .OE and .OEMUX extensions are 
mutually exclusive; that is, only one may be written for each 
output. Likewise, expressions for the .CK and .CKMUX 
extensions are mutually exclusive. 

0 Boolean Logic Review 

Table 1-12 lists the rules that the CUPL compiler uses for 
evaluating logic expressions. These basic rules are listed for 
reference purposes only. 

Table 1-12. Logic Evaluation Rules 

Commutative Property: 
A&B=B&A 
A#B=B#A 
Associative Property: 

91-10128-5 1090 151 



CUPL Language 
CUPL 

Reference Manual 

A & (B & C) = (A & B) & C 
A # (B # C) = (A # B) # C 
Distn"butive Property: 
A & (B # C) = (A & B) # (A & C) 
A # (B & C) = (A # B) & (A # C) 
Absorptive Property: 
A& (A# B) =A 
A# (A& B)=A 
DeMorgan's Theorem: 
!(A & B & C) = !A # !B # !C 
!(A # B # C) = !A & !B & !C 
XOR Identity: 
A $ B = (!A & B) # (A & !B) 
!(A$ B) =A$ !B = !A$ B 
= (!A & !B) # (A& B) 
Theorems: 
A&O=O A&l=A 
A#O=AA#l=l 
A&A=A A& !A= 0 
A#A=A A#!A=l 

0 Expressions 

15'2 

Expressions are combinations of variables and operators that 
produce a single result when evaluated. An expression may be 
composed of any number of sub-expressions. 

Expressions are evaluated according to the precedence of the 
particular operators involved. When operators with the same 
precedence appear in an expression, evaluation order is taken 
from left to right. Parentheses may be used to change the order 
of evaluation; the expression within the innermost set of 
parentheses is evaluated first. 

In Table 1-13, note how the order of evaluation and use of 
parentheses affect the value of the expression. 

Table 1-13. Sample Expressions 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

Expression Result Comments 
A#B&C A# 

B&C 
(A# B) & C A&C Parentheses change order 

# 
B&C 

!A&B !A&B 
!(A & B) !A# !B DeMorgan's Theorem 
A#B&C#D A# 

D# 
B&C 

A# B & (C # D) A# Parentheses change order 
B&C 
# 
B&D 

0 Logic Equations 

Logic equations are the building blocks of the CUPL language. 
The form for logic equations is as follows: 

[!] var [.ext] = exp ; 

where 

91-101?.8-5 

var is a single variable or a list of indexed or non­
indexed variables defined according to the rules for the 
list notation (see the subtopic, List Notation in this 
chapter). When a variable list is used, the expression is 
assigned to each variable in the list . 

• ext is an optional extension to assign a function to the 
major nodes inside a programmable device (see Table 1-
11). 

exp is an expression; that is, a combination of variables 
and operators (see "Expressions" in this chapter). 

= is the assignment operator; it assigns the value of an 
expression to a variable or set of variables. 

1090 153 



CUPL Language 
CUPL 

Ref ere nee Manual 

154 

! is the complement operator. 

The complement operator can be used to express the logic 
equation in negative true logic. The operator directly precedes 
the variable name (no spaces) and denotes that the expression 
on the right side is to be complemented before it is assigned to 
the variable name. Use of the complement operator on the left 
side is provided solely as a convenience. The equation may 
just as easily be written by complementing the entire 
expression on the right side. 

Older logic design software that did not provide the automatic 
DeMorgan capability (output polarity assigned according to 
the pin variable declaration) required the use of the 
complement operator when using devices with inverting 
buffers. 

Place logic equations in the "Logic Equation" section of the 
source file provided by the template file. 

Logic equations are not limited solely to pin (or node) 
variables, but may be written for any arbitrary variable 
name. A variable defined in this manner is an intermediate 
variable. An intermediate variable name can be used in other 
expressions to generate logic equations or additional 
intermediate variables. Writing logic equations in this "top 
down" manner yields a logic description file that is generally 
easier to read and comprehend. 

Place intermediate variables in the "Declarations and 
Intermediate Variable Definitions" section of the source file. 

The following are some examples of logic equations: 

SEL_O=A15 & !A14; 

QO.D=Ql & Q2 & Q3; 

I* A simple, decoded output pin *I 
I* Output pin w/ D flip-flop */ 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

QLJ = Q2 # Q3; 

QI.K = Q2 & !Q3; 
. MREQ=READ #WRITE; 

SEL_l=MREQ & A15; 

[D0 .. 3] = 'h'FF; 

[D0 .. 3].oe = read; 

I* Output pin w/ JK flip-flop */ 

I* Int.ermediate Variable *I 

I* Output intermediate var *I 
I* Data bits assigned to constant 
*/ 

I* Data bits assigned to variable 
*/ 

APPEND Statements 

In standard logic equations, normally only one expression is 
assigned to a variable. The APPEND statement enables 
multiple expressions to be assigned to a single variable. The 
format is as follows. 

APPEND [!]var[.ext] = expr; 

where 

! is the complement operator to optionally define the 
polarity of the variable. 

var is a single variable or a list of indexed or non­
indexed variables in standard list format . 

• ext is an optional extension that defines the function of 
the variable. 

= is the assignment operator. 

expr is a valid expression. 

; is a semicolon to mark the end of the statement. 

The expression that results from multiple APPEND 
statements is the logical OR of all the APPEND statements. If 
an expression has not already been assigned to the variable, 
the first APPEND statement is treated as the first assignment. 

The following example shows several APPEND statements. 

APPENDY=AO&Al; 

91-10128-5 1090 155 



CUPL Language 
CUPL 

Reference Manual 

APPENDY=BO&Bl; 

APPENDY=CO&Cl; 

The three statements above are equivalent to the following 
equation; 

Y= (AO&Al) #(BO &Bl)# (CO& Cl); 

The APPEND statement is useful in adding additional terms 
(such as reset) to state-machine variables or constructing 
user-defined functions (see the subtopics, State Machine 
Syntax and User-Defined Functionsin this chapter). 

0 Set Operations 

156 

All operations that are performed on a single bit of 
information, for example, an input pin, a register, or an output 
pin, may be applied to multiple bits of information grouped 
into sets. Set operations can be performed between a set and a 
variable or expression, or between two sets. 

The result of an operation between a set and a single variable 
(or expression) is a new set in which the operation is 
performed between each element of the set and the variable (or 
expression). For example 

[DO, Dl, D2, D3] & read 

evaluates to: 

[DO & read, Dl & read, D2 & read, D3 & read] 

When an operation is performed on two sets, the sets must be 
the same size (that is, contain the same number of elements). 
The result of an operation between two sets is a new set in 
which the operation is performed betweei:i elements of each set. 

For example 

[AO, Al, A2, .A3] & [BO, Bl, B2, B3] 

evaluates to: 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

[AO & BO, Al & Bl, A2 & B2, A3 & B3] 

Bit field statements (see the subtopic, Bit Field Declaration 
Statements in this chapter) may be used to group variables into 
a set that can be referenced by a single variable name. For 
example, group the two sets of variables in the above operation 
as follows: 

FIELD a_inputs = [AO, Al, A2 A3] ; 

FIELD b_inputs = [BO, Bl, B2, B3] ; 

Then perform a set operation between the two sets, for example, 
an AND operation, as follows: 

a_inputs & b_inputs 

When numbers are used in set operations, they are treated as 
sets of binary digits. A single octal number represents a set of 
three binary digits, and a single decimal. or hexadecimal 
number represents a set of four binary digits. Table 1-14 lists 
the representation of numbers as sets. 

Table 1-14. Equivalent Binary Sets 

Equivalent Equivalent 
Number Binary Set Number Binary Set 
'O'X [X, :X, XJ 'H'X [X,:X,X,XJ 
'O'O [O; 0, OJ 'H'O [O,O,O,OJ 
'0'1 [O, 0, lJ 'H'l [0,0,0,lJ 
'0'2 [O, 1, OJ 'H'2 [0,0,1,0J 
'0'3 [O, 1, lJ 'H'3 [0,0,1,lJ 
'0'4 [1, 0, OJ 'H'4 [0,1,0,0J 
'0'5 [1, 0, lJ 'H'5 [0,1,0,lJ 
'0'6 [1, 1, OJ 'H'6 [0,1,1,0J 
'0'7 [1, 1, lJ 'H'7 [0,1,1,lJ 
'D'O [0,0,0,0J 'H'S [1,0,0,0J 
'D'l [0,0,0,lJ 'H'9 [1,0,0,lJ 
'D'2 [0,0,1,0J 'H'A [1,0,1,0J 
'D'3 [0,0,1,lJ 'H'B [1,0,1,lJ 
'D'4 [0,1,0,0J 'H'C (1,1,0,0J 

91-10128-5 1090 157 



CUPL Language 
CUPL 

Reference Manual 

'D'5 
'D'6 
'D'7 
'D'S 
'D'9 

J!iB 

[0,1,0,l] 'H'D [1,1,0,1] 
[0,1,1,0] 'H'E [1,l,1,0) 
[0,1,1,1] 'H'F [1,1,1,1] 
[1,0,0,0] 
[1,0,0,1] 

Numbers may be effectively used as "bit masks" in logic 
equations using sets. An example of this application is the 
following 4-bit counter. 

field count= [Q3, Q2, Qt, QOJ; 

count.d = 'b' 0001 & (!QO) 

# 'b' 0010 & (Qt $ QO) 

# 'b' 0100 & (Q2 $ Ql & QO) 

# 'b' 1000 & (Q3 $ Q2 & Ql & QO); 

The equivalent logic equations written without set notation are 
as follows: 

QO.d = !QO; 

Ql.d = Ql $ QO; 

Q2.d = Q2 $ Ql & QO; 

Q3.d = Q3 $ Q2 & Ql & QO; 

&Juality Operations 

Unlike other set operations, the equality operation evaluates to 
a single Boolean expression. It checks for bit equality between 
a set of variables and a constant. The format for the equality 
operation is as follows: 

1. [var, var, ••• var]: constant; 

2. bit_field_var:constant; 

where 

[var, var, ... var] is a list of variables in shorthand 
notation. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

constant is a number (hexadecimal by default). 

bit_field_var is a variable defined using a bit field 
statement. 

: is the equality operator. 

; is a semicolon used to mark the statement end. 

Note 

Square brackets do not indicate optional items, hut 
delimit variables in a list. 

Format 1 is used between a list of variables and a constant 
value. Format 2 is used between a bit field variable and a 
constant value. 

The bit positions of the constant number are checked against 
the corresponding positions in the set. Where the bit position is 
a binary 1, the set element is unchanged. Where the bit 
position is a binary 0, the set element is negated. Where the bit 
position is a binary X, the set element is removed. The 
resulting elements are then ANDed together to create a single 
expression. In the following example, hexadecimal D (binary 
1101) is checked against A3, A2, Al, and AO. 

select = [A3 .. 0]:D ; 

The set elements A3, A2, and AO remain unchanged because 
the corresponding bit position is positive. Set element Al is 
negated because its corresponding bit position is negative. 
Therefore, the above expression is equivalent to the following 
expression: 

select = A3 & A2 & !Al & AO ; 

91-10128-5 1090 159 



CUPL Language 
CUPL 

Reference Manual 

JU) 

In the following example, binary lXOX is checked against A3, 
A2, Al, AO. 

select = [A3 •• 0]:'B'1XOX ; 

The set element A3 remains unchanged because the 
corresponding bit position is positive. Set element Al is 
negated because its corresponding bit position is negative. Set 
elements A2 and AO are removed from the expression because 
the corresponding bit positions are "don't-cared." Therefore, 
the above expression is equivalent to the following expression: 

select = A3 & !Al ; 

In addition to address decoding, the equality operator can be 
used to specify a counter or state machine. For example, a 4-bit 
counter can be specified using the following notation: 

FIELD count= [Q0..31; 

QO.J = count.1> # count-.2 # count:4 # count:6 

# count:8 # count:A # count:C # count:E ; 

QO.K = count:l # count:3 # count:5 # count:7 

# count:9 # count:B # count:D # count:F ; 

Ql.J = count:l # count:5 # count:9 # count:D 

Ql.K 

Q2.J 

Q2.K 

Q3.J 

Q3.K 

= 

= 

= 

= 

count:3 # count:7 # count:B # count:F 

count:3 # count:B ; 

count:7 # count:F ; 

count:7; 

count:F; 

The equality operator can also be used with a set of variables 
that are to be operated upon identically. The following syntax 
can be used as a time-saving convenience: 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

[var, var, ••• , var]:op 

which is equivalent to: 

var op var op - var 

where 

op is the &, # or $ operator (or its equivalent if an 
alternate set of operators has been defined). 

var is any variable name. 

For example, the following three expressions 

[A3,A2,Al ,AO]:& 

[B3,B2,Bl,BOJ:# 

[C3,C2,Cl,CO]:$ 

are equivalent respectively to: 

A3&A2&Al &AO 

B3 # B2 #Bl #BO 

C3$C2$C1$CO 

The equality operation can be used with an equivalent binary 
set to create a function table description of the output values. 
For example, in the following Binary-to-BCD code converter, 
output values are assigned by using the equality operation to 
define the inputs, and equivalent binary sets ·to group the 
output. 

$DEFINE L 'b'O 

$DEFINE H 'b'l 

FIELD input= [in3-0] ; 

FJELD output= [E, D, C, B, A] ; 

I* in3 •• 0 ·>EDCBA 

*I 
output= 

91-1012.8-5 

input:O 
# input:l 

& [L, L, L, L, L] 
& [L, L, L, L, HJ 

1090 161 



CUPL Language 
CUPL 

Reference Manual 

162 

# input:2 
# input:3 
# input4 
# input:5 
# input:6 
# input:7 
# input:S 
# input:9 
# input:A 
# input:B 
# input:C 
# input:D 
# input:E 
# inputF 

Range Operations 

& [L L, L, 
& [L, L, L, 
& [L, L, H, 
& [L, L, H, 
& [L, L, H, 
& [L, L, H, 
& [L, H, L, 
& [L, H, L, 
& [H, L, L, 
& [H, L, L, 
& [H, L, L, 
& [H, L, L, 
& [H, L, H, 
& [H, L, H, 

H, 
H, 
L, 
L, 
H, 
H, 
L, 
L, 
L, 
L, 
H, 
H, 
L, 
L, 

L] 
HJ 
L] 
HJ 
L] 
HJ 
L] 
HJ 
L] 
HJ 
L] 
HJ 
L] 
H]; 

The range operation is similar to the equality operation except 
that the constant field is a range of values instead of a single 
value. The check for bit equality is made for each constant 
value in the range. The format for the range operation is as 
fo11ows: 

1. [var, var, ••• var]:[constant_lo .• constant_hi]; 

2. bit_field_ var:[ constant_lo •• constant_hi] ; 

where: 

[var, var, ••• var] is a list of variables in shorthand 
notation. 

bit_field_var is a variable that has been defined using a 
bit field statement. 

: is the equality operator. 

; is a semicolon used to end the statement. 

[constant_lo constant_hi] are numbers (hexadecimal by 
default) that define the range operation. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

Note 

Square brackets do not indicate optional items, but 
delimit items in a list 

Format 1 specifies the range operation between a list of 
variables and a range of constant values. Format 2 specifies a 
range operation between a bit field variable and a range of 
constant values. 

All numbers greater than or equal to constant_lo and less than 
or equal to constant_hi are used to create ANDed expressions 
as in the equality operation. The sub-expressions are then 
ORed together to create the final evaluated expression. For 
example, the RANGE notation can be used to look for a decoded 
hex value between 1100 and 1111 on an address bus containing 
A3, A2, Al, and AO. First, define the address bus, as follows: 

FIELD address= [A3..AO] 

Then write the RANGE equation: 

select= address:[C • .F] ; 

This is equivalent to the following equation: 

select = address:C # address:D 

# address:E # address:F ; 

This equation expands to: 

select 

91-lOJ.28.5 

= A3 
# A3 
# A3 
# A3 

& A2 & 
& A2 & 
& A2 & 
& A2 & 

1090 

!Al & 
!Al & 
Al & 
Al & 

!AO 
AO 
?AO 
AO; 

151 



CUPL Language 
CUPL 

Reference Manual 

164 

The logic minimization capabilities within CUPL reduce the 
previous equation into a single product term equivalent. The 
minimization works as follows. First, lines one and two are 
combined and lines three and four are combined to produce the 
following equation: 

select= A3 & A2 & !Al & (!AO # AO) 

# A3 & A2 & Al & (!AO # AO) ; 

Since the expression (!AO # AO) is always true, it can be 
removed from the equation, and the equation reduces to: 

select= A3 & A2 & !Al 

#A3&A2& Al; 

By the same process, the equation reduces to the following: 

select = A3 & A2 & (!Al # Al) ; 

Since the expression (!Al # Al) is always true, removing it 
reduces the equation to the single product term: 

select= A3 & A2; 

When either the equality or range operations are used with 
indexed variables, the CONSTANT field must contain the 
same number of significant bit locations as the highest index 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

number in the variable list. Index positions not in the pin list 
or field declaration are DON'T CAREd in the operation. 

In the following example, pin assignments are made, an 
address bus is declared, and a decoded output is asserted over 
the hexadecimal memory address range 8000 through BFFF. 

PIN [1 •• 4) = [A15 •• 12] ; 

FIELD address = [A15 •• 12] ; 

chip_select = address:[SOOO..BFFFJ ; 

Although the variables A15, A14, A13, and A12 are the only 
address inputs to the device, a full 16-bit address is used in the 
range expression. The most significant bit, A15, determines 
that the field is a 16-bit field. The lower order address bits (AO 
through All) are effectively DON'T CAREd in the equation, 
because the variable index numbers are used to determine bit 
position. Even though the lower order bits are not present in the 
device, the constant value is written as though they did exist, 
generating a more meaningful expression in terms of 
documentation. 

Consider, for example, the following application that decodes a 
microprocessor address for an 1/0 port: 

PIN [3 •• 6) = [A7 "10) ; 

FIELD ioaddr = [A7"10]; I* 
declaration is not 

important when using 

indexed variables */ 

io_port = ioaddr:[ 400"6FF] ; 

order of field 

Since the most significant bit is AlO, an ll-bit constant field is 
required (although three hex digits form a 12-bit address, the 
bit position for All is ignored). 

91-10128-5 1090 165 



CUPL Language 
CUPL 

Reference Manual 

100 

Address bits AO through A6 are DON'T CAREd in the 
expression. Without the bit position justification, the range 
equation would be written as 

io_port = ioaddr:[S..D] ; 

This expression doesn't clearly document the actual 1/0 
address range that is desired. 

The original equation without the range operation could be 
written as follows: 

io_port= AlO & !A9 & !AS & !A7 

# A10&!A9&!A8& A7 

# AlO&!A9& A8&!A7 

# AlO&!A9& AS& A7 

# AlO & A9 & !AS & !A7 

# AlO& A9&!A8& A7; 

CUPL reduces this equation to the following: 

io_port =AlO & !A9 # AlO & A9 & !A8; 

Note 

Careless use of the range feature may result in the 
generation of huge numbers of product terms, 
particularly when fields are composed of variables 
with large index numbers. The algorithm for the 
range does a bit-by-bit comparison of the two constant 
values given in the range operation, starting with 
index variable 0 (whether it exists in the field or not). 
If the value of the bit position for constant_lo is less 
than that for constant_hi, the variable for that bit 
position is not used in the generation of the ANDed 
expressions. When the value of the bit position for 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

constant_lo is equal to or greater than that for 
constant_hi, an ANDed expression is created for an 
constant values between this new value and the 
original constant_hi value. 

For example, consider the following logic equation that uses 
the range function on a 16-bit address field. 

field address = [AlS •• 12] ; 

board_select = address:[AOOO.DFFF] ; 

Figure 1-12 shows how the CUPL algorithm treats this 
equation. 

RANGE FUNCTION ALGORITHM 

AAAAAAAAAAAAAAA 

bit 1 1 1 1 1 1 
position -> 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 

constant hi 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 
constant lo 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

t 
No longer DON'T CARE 

Figure 1-12. Range Function Algorithm 

The algorithm ignores all bit positions lower than position 13, 
because for these positions constant_lo is less than 
constant_hi. Figure 1-13 shows the result. 

91-10128-5 1090 167 



CUPL Language 
CUPL 

Reference Manual 

168 

RANGE FUNCTION ALGORITHM 

AAAAAAAAAAAAAAA 

bit 1 1 1 1 1 1 
position -> 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 

constant hi 1 1 0 x x x x x x x x x x x x 
constant lo 1 0 1 x x x x x x x x x x x x 

Figure 1-13. Range Function Results 

The following two product terms are generated as a result of 
the range function in Figure 1-13. 

A15 & A14 & !A13 

A15 & !A14 & A13 

The following equation is another example using the range 
function. 

board_select = address:[AOOO..DOOO] ; 

Because the values of constant_lo and constant_hi match for 
the least significant bits, the algorithm generates product 
terms as follows: 

1010 0000 0000 0000 

1010 0000 0000 0001 

1010 0000 0000 0010 

1010 0000 0000 0011 

1100111111111111 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

1101 0000 0000 ()()()() 

The number of product terms generated is over twelve 
thousand (4096 x 3 + 1). This number of product terms would 
probably produce an "out of memory" error message because 
CUPL cannot hold this many product terms in memory at one 
time. 

0 Truth Tables 

Sometimes the clearest way to express logic descriptions is in 
tables of information. CUPL provides the TABLE keyword to 
create tables of information. The format for using TABLE is 
as follows: 

TABLE var_list_l => var_list_2 

input_n => output_n ; 

input_n => output_n ; 

where 

var_list_l defines the input variables. 

var_list_2 defines the output variables. 

input_n is a decoded value (hex by default) or a list of 
decoded values of var_list_l. 

output_n is a decoded value (hex by default) of 
var_list_2. 

I ) are braces to begin and end the assignment block. 

=> specifies a one-to-one assignment between variable 
lists, and between input and output numbers. 

First, define relevant input and output variable lists, and then 
specify one-to-one assignments between decoded values of the 

91-10128-5 1090 J(I} 



CUPL Language 
CUPL 

Reference Manual 

input and output variable lists. Don't-care values are 
supported for the input decode value, but not for the output 
decode value. 

A list of input values can be specified to make multiple 
assignments in a single statement. The following block 
describes a simple binary-to-BCD code converter: 

FIELD input= [in3 .• 0] ; 

FIELD output= [E, D, C, B, AJ ; 
TABLE input=> output ( 

0=>00; 1=>01; 

4=>04; 5=>05; 

8=>08; 9=>09; 

C=>12; D=>l3; 

2=>02; 

6=>06; 

A=>lO; 

E=>l4; 

3=>03; 

7=>07; 

B=>ll; 

F=>l5; 
) 

The following example illustrates the use of a list of input 
numbers to do address decoding for various-sized RAM, 
ROM, and I/O devices. The address range is decoded 
according to the rules (in terms of indexed variable usage) for 
the range operation (see the subtopic, Range Operations in this 
chapter). 

PIN [1 •• 4] = [a12 .. 15] ; 

PIN 12 = !RAM_sel ; 

PIN 13 = !ROM....sel ; 

I* Upper 4 address 

/*8Kx8RAM 

/*32Kx8ROM 

*I 

*I 

*I 

PIN 14 = !timer_sel ; I* 8253 Timer *I 

FIELD address = [a15 .. 12] ; 

FIELD decodes= [RAM_sel,ROM_sel,timer_sel] ; 

TABLE address =>decodes ( 

[1000 • .2FFF] => 'b'lOO; I* select RAM *I 

(5000 .. CFFF] => 1>'010; I* select ROM *I 

FOOO => 1>'001; I* select timer 
) 

17rJ 1090 

*I 

91-10128-5 



CUPL 
Reference Manual CUPL Language 

0 State-Machine Syntax 

This section describes the CUPL state machine syntax, 
providing a brief overview of its use, a definition of a state 
machine, and explaining in detail the CUPL state machine 
syntax. 

The state-machine approach used with the CUPL compiler­
based PLD language permits bypassing the gate and equation 
level stage in logic design and to move directly from a 
system-level description to a PLD implementation. 
Additionally, unlike assembler-based approaches, the state­
rnachine approach allows clear documentation of design, for 
future users. 

0 State-Machine Model 

A synchronous state machine is a logic circuit with flip-flops. 
Because its output can be fed back to its own or some other flip­
flop's input, a flip-flop's input value may depend on both its 
own output and that of other flip-flops; consequently, its final 
output value depends on its own previous values, as well as 
those of other flip-flops. 

The CUPL state-machine model, as shown in Figure 1-14, uses 
six components: inputs, combinatorial logic, storage 
registers, state bits, registered outputs, and non-registered 
outputs. 

91-10128-5 1090 171 



CUPL Language 

Inputs..----------. 

CUPL 
Reference Manual 

COMBINATORIAL 
LOGIC 

r-------.. Registered Outputs 
STORAGE 

REGISTERS State Bits 

Figure 1-14. State Machine Model 

Figure 1-15 shows the timing relationships between the state 
machine components. 

CLOCK 
1--Teo-I 

STATE BIT 

REGISTERED OUTPUT _i:_e_0_-_""'!'1 __ ...... r 
I J--Teo + Tpd 

NON-REGISTERED OUTPUT _--~----.....1' 
(Depends only on state) I 
INPUT 

I ~Teo +Tpd 
NON-REGISTERED - I -
OUTPUT ------...1 Tpd-1 '=-
(Depends on state and input) 

172 

Figure 1-15. State Machine Timing Diagram 

The following definitions refer to the timing diagram m 
Figure 1-15. 

Inputs - are signals entering the device that originate in some 
other device. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

Combinatorial Logic - is any combination of logic gates 
(usually AND-OR) that produces an output signal that is valid 
Tpd (propagation delay time) nsec after any of the signals that 
drive these gates changes. Tpd is the delay between the 
initiation of an input or feedback event and the occurrence of a 
non-registered output. 

State Bits - are storage register outputs that are fed back to 
drive the combinatorial logic. They contain the present-state 
information. 

Storage Registers - are any flip-flop elements that receive 
their inputs from the state machine's combinatorial logic. 
Some registers are used for state bits: others are used for 
registered outputs. The registered output is valid Teo (clock to 
out time) nsec after the clock pulse occurs. Teo is the time 
delay between the initiation of a clock signal and the 
occurrence of a valid flip-flop output. 

For the system to operate properly, the PLD's requirements for 
setup and hold times must be met. For most PLDs, the setup 
time (Tsu) usually includes both the propagation delay of the 
combinatorial logic and the actual setup time of the flip-flops. 
Tsu is the time it takes for the result of either feedback or an 
input event to appear at the input to a flip-flop. A subsequent 
clock input cannot be applied until this result becomes valid at 
the flip-flop's input. The flip-flops can be either D, D·CE, J- K, 
S-R, or T types. 

Non-registered Outputs - are outputs that come directly from 
the combinatorial logic gates. They may be functions of the 
state bits and the input signals (and have asynchronous 
timing), or they may be purely dependent on the current state­
bit values, in which case they become valid Teo + Tpd nsec 
after an active clock edge occurs. 

Registered Outputs - are outputs that come from the storage 
registers but are not included in the actual state-bit field (that 
is, a bit field composed of all the state bits). State- machine 

91-10128-5 1090 173 



• 

CUPL Language 
CUPL 

Reference Manual 

theory requires that the setting or resetting of these registered 
outputs depends on the transition from a present state to a next 
state. This allows a registered output to be either set or reset in 
a given state depending upon how the machine came to be in 
that state. Thus, a registered output can assume a hold 
operation mode. In the hold mode, the registered output will 
remain at its last value as long as the current state transition 
does not specify an operation on that registered output. 

Note 

This hold mode of operation is available only for 
devices which use D-CE, J-K, or S-R type flip-flops. 

O Syntax 

174 

To implement the state machine model, CUPL supplies a 
syntax that allows the describing of any function in the state 
machine. 

The SEQUENCE keyword identifies the outputs of a state 
machine and is followed by statements that define the function 
of the state machine. The format for the SEQUENCE syntax is 
as follows: 

SEQUENCE state_var_list ( 

PRESENI' state_nO statements; 

PRESENI' state_nn statements; 

) 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

where 

state_var_list is a list of the state bit variables used in the state 
machine block. The variable list can be represented by a field 
variable. 

state_n is a decoded value (hex by default) of the 
state_variable_list and must be unique foi: each PRESENT 
statement. 

statements are any of the conditional, next, or output 
statements described in the following subsections of this 
section. 

; is a semicolon used to mark the end of a statement. 

( ) are braces to mark the beginning and end of the state 
machine description. 

Symbolic names defined with the $DEFINE command may be 
used to represent state_numbers. 

The SEQUENCE keyword causes the storage registers and 
registered output types generated to be the default type for the 
target device. For example, by using the SEQUENCE keyword 
in a design with a P16R8 target device, the state storage 
registers and registered outputs will be generated as D-type 
flip-flops. 

The storage registers for certain devices can be programmed 
as more than one type. In the case of the F159 (Signetics 
PLS159), they can be either D or J-K type flip-flops. By default, 
using the SEQUENCE statement with a design for the F159 
will cause the state storage registers and registered outputs to 
be generated as J-K type flip-flops. To override this default, the 
SEQUENCED keyword would be used in place of the 
SEQUENCE keyword. This would cause the state registers 
and registered outputs to be generated as D-type flip-flops. 

91-10128-5 1090 175 



CUPL Language 
CUPL 

Reference Manual 

176 

Along with the SEQUENCE and SEQUENCED keywords are 
the SEQUENCEJK, SEQUENCERS, and SEQUENCET 
keywords. Respectively, they cause the state registers and 
registered outputs to be generated as J-K, S-R, and T-type flip­
flops. 

The subsections that follow describe the types of statements that 
can be written in the state:.machine syntax. Statements use the 
IF, NEXT, OUT and DEFAULT keywords. 

Unconditional NEXT Statement 

This statement describes the transition from the present state 
to a specified next state. The format is: 

PRESENT state_n 

NEXT state_n ; 

where 

state_n is a decoded value (default hex) of the state bit 
variables that are the output of the state machine. 

A symbolic name can be assigned with the $DEFINE 
command to represent state_n. 

Because the statement is unconditional (that is, it describes the 
transition to a specific next state), there can be only one NEXT 
statement for each PRESENT statement. 

The following example specifies the transition from binary 
state 01 to binary state 10. 

PRESENT 'b'Ol 

NEXT 'b'lO; 

Figure 1-16 shows the transition described in the example 
above. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

PRESENT 'b'01 
NEXT 'b'10; 

Figure 1-16. Unconditional NEXT Statement Diagram 

For the transition described in the example and figure above, 
CUPL generates the following equations, depending on the 
type of flip-flop that is specified: 

D-Type Flip-Flop 

APPEND Ql.D = !Ql & QO; 

APPEND QO.D = 'b'O; I* implicitly resets*/ 

J-K-Type Flip-Flop 

APPEND Ql.J = !Ql & QO; 

APPEND Ql.K = 'b'O; 

APPEND QO.J = 'b'O; 

APPEND QO.K = !Ql & QO; 

S-R-Type Flip-Flop 

91-10128-5 

APPEND Ql.S = !Ql & QO; 

APPEND Ql..R = 'b'O; 

APPEND QO.S = 'b'O; 

APPEND QO..R = !Ql & QO; 

1090 171 



CUPL Language 
CUPL 

Reference Manual 

D-CE-Type Flip-Flop 

APPEND Ql.D = !Ql & QO; 

APPEND Qt.CE = !Ql & QO; 

APPEND QO.D = 'b'O; 

APPEND QO.CE = !Ql & QO; 

T-Type Flip-Flop 

APPEND Ql.T = !Ql & QO; 

APPEND QO.T = !Ql & QO; 

See the subtopic, APPEND Statements in this chapter for a 
description of the APPEND command. 

Conditional NEXT Statement 

178 

This statement describes the transition from the present state 
to a next state if the conditions in a specified input expression 
are met. The format is as follows. 

PRESENT stat.e_n 

IF expr NEXT state_n; 

IF expr NEXT state_n; 

[DEFAULT NEXT state_n;] 

where 

state_n is a decoded value (default hex) of the state bit 
variables that are the output of the state machine. 

expr is any valid expression (see the subtopic, Expressions in 
this chapter). 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

; is a semicolon used to mark the end of a statement. 

Note 

The square brackets indicate optional items. 

The value for each state number must be unique. 

More than one conditional statement can be specified for each 
PRESENT statement. 

The DEFAULT statement is optional. It describes the 
transition from the present state to a next state if none of the 
conditions in the specified conditional statements are met. In 
other words, it describes the condition that is the complement of 
the sum of all the conditional statements. 

Note 

Be careful when using the DEFAULT statement. 
Because it is the complement of all the conditional 
statements, the DEF AULT statement can generate 
an expression complex enough to greatly slow CUPL 
operation. In most applications, one or two 
conditional statements can be specified instead of the 
DEFAULT statement. 

The following is an example of two conditional NEXT 
statements without a DEFAULT statement. 

91-10128-5 1090 179 



CUPL Language 
CUPL 

Reference Manual 

Jl1) 

PRESENT 'b'Ol 

IF INA NEXT 'b'lO; 

IF !INA NEXT 'b'l l; 

Figure 1-17 shows the transitions described by the above 
example. 

!INA 

PRESENT 'b'01 
IF INA NEXT 'b'1 O; 
IF !INA NEXT '8'11 ; 

Figure 1-17. Conditional NEXT Stat.ement Diagram 

For the transitions described in the above example and figure, 
CUPL generates the following equations, depending on the 
type of flip-flop that is specified: 

D-Type Flip-Flop 

APPEND Ql.D = !Ql & QO; 

APPEND QO.D = !Ql & QO & !INA; 

D-CE-Type Flip-Flop 

APPEND Ql.D = !Ql & QO; 

APPEND Qt.CE = !Ql & QO; 

APPEND QO.D = !Ql & QO & !INA; 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

APPEND QO.CE = !Ql & QO & INA; 

J-K-Type Flip-Flop 

APPEND Ql.J = !Ql & QO; 

APPEND Ql.K = 'b'O; 

APPEND QO.J = 'b'O; 

APPEND QO.K = !Ql & QO & INA; 

S-R-Type Flip-Flop 

APPEND Ql.S = !Ql & QO; 

APPEND Ql.R = 'b'O; 

APPEND QO.S = 'b'O; 

APPEND QO.R = !Ql & QO & INA; 

T-Type Flip-Flop 

APPEND Ql.T = !Ql & QO; 

APPEND QO.T = !Ql & QO & INA; 

The following is an example of two conditional statements 
with a DEFAULT statement. 

PRESENT 'b'Ol 

IF INA & INB NEXT 'b'lO'; 

IF INA & !INB NEXT 'b'l 1; 

DEFAULT NEXT 'b'OO; 

Figure 1-18 shows the transitions described by the above 
example. Note the equation generated by the DEFAULT 
statement. 

91-1012.8-5 1090 181 



CUPL Language 
CUPL 

Reference Manual 

182 

INA & !INB 

PRESENT 'b'01 
IF INA NEXT 'b'1 O; 
IF !INA NEXT '8'11; 
DEFAULT NEXT 'b'OO; 

Figure 1-18. Conditional NEXT Statement with Default 
Diagram 

For the transitions described in the above example and figure, 
CUPL generates the following equations, depending on the 
type of flip-flop that is specified. 

D-Type' Flip-Flop 

APPEND Ql.D = !Ql & QO & INA; 

APPEND QO.D = !Ql & QO & INA & !INB; 

D-CE-Type Flip-Flop 

APPEND Ql.D = !Ql & QO & INA; 

APPEND Qt.CE = !Ql & QO & INA; 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

APPEND QO.D = 'b'O; 

APPEND QO.CE • !Qt & QO & !INA 

# !Ql & QO & INA& INB; 

J-K-Type Flip-Flop 

APPEND Ql.J = !Ql & QO & INA; 

APPEND Ql.K = 'b'O; 

APPEND QO.J = 'b'O; 

APPEND QO.K = !Ql & QO & INA & INB 

# !Ql & QO & !INA; 

S-R-Type Flip-Flop 

APPEND Ql.S = !Ql & QO & INA; 

APPEND Ql.R = 'b'O; 

APPEND QO.S = 'b'O; 

APPEND QO.R = !Ql & QO & INA & INB 

# !Ql & QO & !INA; 

T-Type Flip-Flop 

APPEND Ql.T = !Ql & QO & INA; 

APPEND QO.T = !Ql & QO & !INA 

# !Ql & QO & INA& INB; 

Unconditional Synchronous Output Stat.ement 

This statement describes a transition from the present state to 
a next state, specifies a variable for the registered 
(synchronous) outputs associated with the transition, and 
defines whether the variable is logically asserted. The format 
is as fo1lows: 

PRESENT state_n 

NEXT state_n our [!]var ... our [!]var; 

91-10128-5 1090 183 



CUPL Language 
CUPL 

Reference Manual 

184 

where 

state_n is a decoded value (default hex) of the state bit 
variables that are the output of the state machine. 

var is a variable name declared in the pin declarations. 
It is not a variable from the SEQUENCE state_ var_list. 

! is the complement operator; use it to logically negate the 
variable, or omit it to logically assert the variable. 

; is a semicolon used to mark the end of a statement. 

Note 

The square brackets indicate optional items. 

The PIN declaration statement (see the subtopic, Pin 
Declaration Statements in this chapter) determines whether 
the variable, when asserted, is active-HI or active-LO. For 
example, if the variable has the negation symbol (!var) in the 
pin declaration, when it is asserted in the OUT statement, its 
value is active-LO. 

Note 

Use the negation mode only for D-CE, J-K, T or S-R 
type flip-flops; D-type flip-flops implicitly reset when 
assertion is not specified. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

The following is an example of an unconditional 
synchronous output statement. 

PRESENT 'b'Ol 

NEXT 'b'lO OUT Y OlIT !Z ; 

Figure 1-19 shows the transition and output variable definition 
described in the example above. 

y 

!Z 

PRESENT 'b'01 
IF INA NEXT 'b'10 OUT Y 

OUT!Z 

Figure 1-19. Unconditional Synchronous Output Diagram 

For the synchronous output definitions in the example and 
figure above, CUPL generates the following equations, 
depending on the type of flip-flop that is specified. 

D-Type Flip-Flop 

APPENDY.D =!Qt & QO; 

(not defined for Z output) 

D-CE Type Flip-Flop 

APPENDY.D = !Ql & QO; 

APPENDY.CE = !Ql & QO; 

APPENDZ.D = 'b'O; 
APPENDZ.CE = !Ql A QO; 

91-10 J2.8..5 1090 185 



• 

CUPL Language 
CUPL 

Reference Manual 

J-K-Type Flip-Flop 

APPEND Y.J = 
APPEND Y.K = 
APPEND Z.J = 
APPEND Z.K = 

S-R-Type Flip-Flop 

APPEND Y.S = 
APPEND Y.R = 

APPEND Z.S = 

APPEND Z.R = 

T-Type Flip-Flop 

APPENDY.T = 

APPENDZ.T = 

!Ql & QO; 

'b'O; 
'b'O; 
!Ql & QO; 

!Qt & QO; 

'b'O; 
'b'O; 
!Ql & QO; 

!Ql & QO; 

!Ql & QO; 

Conditional Synchronous Output Statement 

}$ 

This statement describes a transition from the present state to 
a next state, specifies a variable for the registered 
(synchronous) outputs associated with the transition, and 
defines whether the variable is logically asserted if the 
conditions specified in an input expression are met. The 
format is as follows: 

PRESENT stat.e_n 

where 

IF expr NEXT stat.e_n OUT [!]var ••• OUT [!] var; 

IF expr NEXT stat.e_n OUT [!]var ••• OUT [!]var; 
[DEFAULT] NEXT state_n OUT (!]var,] 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

state_n is a decoded value (default hex) of the state bit 
variables that are the output of the state machine. 

var is a variable name declared in the pin declarations. 
It is not a variable from the SEQUENCE 
state_ variable_list. 

! is the complement operator; use it to logically negate the 
variable, or omit it to logically assert the variable. 

; is a semicolon used to mark the end of a statement. 

expr is any valid expression. 

Note 

The square brackets indicate optional items. 

The PIN declaration statement (see the subtopic, Pin 
Declaration Statements in this chapter) determines whether 
the variable, when asserted, is active-HI or active-LO. For 
example, if the variable has the negation symbol (!var) in the 
pin declaration, when it is asserted in the OUT statement, its 
value is active-LO. 

Note 

Use the negation mode only for J-K or S-R-type flip­
flops; D-type flip-flops implicitly reset when 
assertion is not specified. 

91-10128-5 1090 187 



CUPL Language 
CUPL 

Reference Manual 

188 

The DEFAULT statement is optional. It describes the 
transition from the present state to a next state, and defines the 
output variable, if none of the conditions in the specified 
conditional statements are met. In other words, it describes the 
condition that is the complement of the sum of all the 
conditional statements. 

Note 

Be careful when using the DEF AULT statement. 
Because it is the complement of all the conditional 
statements, the DEFAULT statement can generate 
an expression complex enough to greatly slow CUPL 
operation. In most applications, one or two 
conditional statements can be specified instead of the 
DEFAULT statement. 

The following is an example of conditional synchronous 
output statements without a DEFAULT statement. 

PRESENT 'b'Ol 

IF INA NEXT 'b'lO our Y; 

IF !INA NEXT 'b'l l OUT Z; 

Figure 1-20 shows the transitions and outputs defined by the 
statements in the example above. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

PRESENT 'b'01 
IF INA NEXT 'b'10 OUT Y ; 
IF !INA NEXT 'b' 11 OUT Z ; 

Figure 1-20. Synchronous Conditional Output Diagram 

For the synchronous output definitions in the example and 
figure above, CUPL generates the following equations, 
depending on the type of flip-flop specified: 

D-Type Flip-Flop 

APPENDY.D 

APPENDZ.D 

D-CE-Type Flip-Flop 

APPENDY.D 

APPENDY.CE 

APPENDZ.D 

APPENDZ.CE 

J-K-Type Flip-Flop 

APPENDY.J 

APPENDY.K 

APPENDZ.J 

91-10128-5 

= !Ql & QO & INA; 

= !Ql & QO & !INA; 

= !Ql & QO & INA; 

= !Ql & QO & INA; 

= !Ql & QO & !INA; 

= !Ql & QO & !INA; 

= !Ql & QO & INA; 

= 'b'O; 

= !Ql & QO & !INA; 

1090 Jg} 



CUPL Language 
CUPL 

Reference Manual 

l!XJ 

APPENDZ.K 

S-R-Type Flip Flop 

APPENDY.S 

APPENDY.R 

APPENDZ.S 

APPENDZ.R 

T-Type Flip-Flop 

APPENDY.T 

APPENDZ.T 

= 

= 
=' 

= 
= 

= 

= 

'b'O; 

!Qt & QO & INA; 

'b'O; 

!Qt & QO & !INA; 

'b'O; 

!Qt & QO & INA; 

!Qt & QO & !INA; 

The following is an example of conditional output statements 
with a DEFAULT statement. 

PRESENT 'b'Ot 

IF INA& INB NEXT 'b'tO; 

IF INA & !INB NEXT 'b'll; 

DEFAULT NEXT 'b'OO OUT Y 

OUT !Z; 

Figure 1-21 shows the transitions described by the above 
example. Note the equation generated by the DEFAULT 
statement. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

PRESENT 'b'01 
IF INA & INB 
IF INA & llNB 
DEFAULT 

NEXT 'b'10; 
NEXT '8'11; 
NEXT 'b'OO OUT Y; 

OUT !Z; 

• 

Figure 1-21. Synchronous Conditional Output with Default 
Diagram 

For the transitions described in the above example and figure, 
CUPL generates the following equations, depending on the 
type of flip-flop that is specified. 

D-Type Flip-Flop 

APPENDY.D = 
(not defined for Z output) 

D-CE-Type Flip-Flop 

!QI & QO & !INA; 

APPEND Y.D = !Ql & QO & !INA; 

APPEND Y.CE = !Ql & QO & !INA; 

91-10128-5 1090 191 



CUPL Language 
CUPL 

Reference Manual 

APPENDz.D = 
APPEND Z.CE = 

J-K-Type Flip-Flop 

APPEND Y.J = 
APPEND Y.K = 

APPEND Z.J = 
APPEND Z.K = 

S-R-Type Flip-Flop 

APPEND Y.S = 

APPEND Y.R = 
APPEND Z.S = 
APPEND Z.R = 

T-Type Flip-Flop 

APPENDY.T = 

APPENDZ.T = 

'b'O; 
!Ql & QO & INA; 

!Ql & QO & !INA; 

'b'O; 
'b'O; 
!Ql & QO & !INA; 

!Ql & QO & !INA; 

'b'O; 
'b'O; 
!Ql & QO & !INA; 

!Ql & QO & !INA 

!Ql & QO & INA; 

Unconditional Asynchronous Output Statement 

1!12 

This statement specifies variables for the non-registered 
(asynchronous) outputs associated with a given present state, 
and defines when the variable is logically asserted. The 
format is as follows: 

PRESENT state_n 

OUT var ••. OUT var; 

where: 

state_n is a decoded value (default hex) of the state bit 
variables that are the output of the state machine. 

var is a variable name declared in the pin declarations. 
It is not a variable from the SEQUENCE state_var_list. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

; is a semicolon used to mark the end of a statement. 

The PIN declaration statement (see the subtopic, Pin 
Declaration Statements in this chapter) determines whether 
the variable, when asserted, is active-HI or active-LO. For 
example, if the variable has the negation symbol (!var) in the 
pin declaration, when it is asserted in the OUT statement, its 
value is active-LO. 

Negating the variable (with the complement operator) is not a 
valid format for this statement. 

Only one output statement can be written for each present state. 
However, multiple variables can be defined using more than 
one OUT keyword. 

The following is an example of an unconditional 
asynchronous output statement. 

PRESENT 'b'Ol 

OUTY OUTZ; 

Figure 1-22 shows the outputs defined by the statements in the 
example above. 

v 
z 

PRESENT 'b' 01 
OUTY OUT Z; 

Figure 1-22. Unconditional Asynchronous Output Diagram 

For the asynchronous output definitions in the example and 
figure above, CUPL generates the following equations: 

APPEND Y = !Ql & QO; 

91-10128-5 1090 193 



CUPL Language 
CUPL 

Reference Manual 

APPEND Z = !Qt & QO; 

Conditional Asynchronous Output Stat.ement 

194 

This statement specifies variables for the non-registered 
(asynchronous) outputs associated with a given present state, 
and defines when the variables are logically asserted, if the 
conditions in an input expression are met. The format is as 
follows: 

PRESENT stat.e_n 

IF expr OUT var·- OUT var, 

IF expr OUT var·- OUT var, 
[DEFAULT OUT var ••• OUT var,] 

where 

stat.e_n is a decoded value (default hex) of the state bit 
variables that are the output of the state machine. 

var is a variable name declared in the pin declarations. 
It is not a variable from the SEQUENCE statement. 

expr is any valid expression. 

; is a semicolon used to mark the end of a statement. 

Note 

The square brackets indicate optional items. 

The PIN declaration statement determines whether the 
variable, when asserted, is active-HI or active-LO. For 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

example, if the variable has the negation symbol (!var) in the 
pin declaration, when it is asserted in the OUT statement, its 
value is active-LO. 

Negating the variable (with the complement operator) is not a 
valid format for this statement. Multiple output statements can 
be written for each present state, and define multiple variables 
using the OUT keyword. 

The DEFAULT statement is optional. It defines the output 
variable if none of the conditions in the specified conditional 
statements are met. In other words, it describes the condition 
that is the complement of the sum of all the conditional 
statements. 

Note 

Be careful when using the DEFAULT statement. 
Because it is the complement of all the conditional 
statements, the DEFAULT statement can generate 
an expression complex enough to greatly slow CUPL 
operation. In most applications, one or two 
conditional statements can be specified instead of the ' 
DEFAULT statement. 

The following is an example of conditional asynchronous 
output statements without a default statement. 

PRESENT 'b'Ol 

IFINAOUTY; 

IF !INA OUT Z; 

Figure 1-23 shows the outputs defined by the statements in' the 
above example. 

91-10128-5 1090 . 195 



CUPL Language 
CUPL 

Reference Manual 

196 

y 

PRESENT 'b' 01 
IFINAOUTY, 
IF !INA OUT Z ; 

z 

Figure t-23. Conditional Asynchronous Output Diagram 

For the asynchronous output definitions in the example and 
figure above, CUPL generates the following equations: 

APPEND Y =!Qt & QO & INA; 

APPEND Z =!Qt & QO & !INA; 

The following is an example of conditional asynchronous 
output statements with a DEFAULT statement. 

PRESENT 'b'Ot 

IF INA & INB our X; 

IF INA & !INB our Y; 

DEFAULTOurZ; 

Figure 1-24 shows the transitions described by the above 
example. Note the equation generated by the DEFAULT 
statement. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

INA c x )-

PRESENT 'b' 01 
IF INA& INB 
IF INA& !INB 
DEFAULT 

!INA 

·-( v) 

z 
OUTX; 
OUTY; 
OUTZ; 

Figure 1-24. Conditional Asynchronous Output with Default 
Diagram 

For the transitions described in the above example and figure, 
CUPL generates the following equations, depending on the 
type of flip-flop that is specified. 

APPEND X = !Ql & QO & INA & !INB; 

APPEND Y = !Ql & QO & INA & INB; 

APPEND Z = !Ql & QO & !INA; 

Sample State-Machine Syntax File 

This section provides an example of a simple two-bit counter 
implemented with state-machine syntax. 

Figure 1-25 shows a diagram of the counter operation. 

91-10128-5 1090 197 



CUPL Language 
CUPL 

Reference Manual 

•. , 

• 

1~ 

Figure 1-25. Simple 2-Bit Counter Diagram 

The $DEFINE command assigns symbolic names to the states 
of the counter, and the SEQUENCE statement defines the 
transitions between states. 

$DEFINE SO 0 I* assign symbolic names */ 

$DEFINE Sl 1 I* to stat.es * I 
$DEFINE S2 2 

$DEFINE S3 3 

FIELD count = [Ql, QO]; 

I* assign field variable to statebits */ 

SEQUENCE count [ 

PRESENT SO NEXT Sl ; 

PRESENT Sl NEXT S2; 

PRESENT 82 NEXT 83; 

PRESENT S3 NEXT SO; 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

See the example, Decade Up/Down Counter, in Chapter U5 for 
another illustration of a state machine implementation. 

0 Condition Syntax 

The CONDITION syntax provides a higher-level approach to 
specifying logic functions than does writing standard 
Boolean logic equations for combinatorial fogic. The format 
is as follows: 

CONDITION { 

IF exprt> our var; 

IFexprn Our var; 

DEFAULT Our var; 
} 

where 

expr is any valid expression. 

var is a variable name declared in the pin declaration. 
It can also be a list of indexed or non-indexed variables 
in list notation. 

; is a semicolon used to mark the end of a statement. 

The CONDITION syntax is equivalent to the asynchronous 
conditional output statements of the state machine syntax, 
except that there is no reference to any particular state. The 
variable is logically asserted whenever the expression or 
DEFAULT condition is met. 

The variable cannot be logically negated in this format. 

91-10128-5 1090 lW 



CUPL Language 

Note 

CUPL 
Reference Manual 

Be careful when using the DEFAULT statement. 
Because it is the complement of all the conditional 
statements, the DEFAULT statement can generate 
an expression complex enough to greatly slow CUPL 
operation. In most applications, one or two 
conditional statements may be specified instead of 
the DEFAULT statement. 

The following is an example of a 2 to 4 line decoder for the 
CONDITION syntax. The two data inputs, A and B, select one 
of four decoded outputs, YO through Y3, whenever the ENABLE 
signal is asserted. The NO_MATCH output is asserted if none 
of the other four outputs are true. 

PIN (1,2] = [A,B] ; I* Data Inputs */ 

PIN 3 = !enable ; I* Enable Input */ 

PIN (12 •• 15] = [Y0 •• 3] ; I* Decoded Outputs */ 

PIN 14 = no_match ; 

CONDITION ( 

I* Match Output*/ 

IF enable & !B & !A out YO; 

IF enable & !B & A out Y1 ; 

IF enable & B & !A out Y2; 

IFenable&B&A out Y3; 

The DEFAULT expression of the above example is equivalent 
to the following logic equation 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

0 

no_match = !( enable & !B & !A) 

#enable & !B & A 

#enable & B & !A 

#enable & B & A 

which reduces to the following: 

no_.match = !enable ; 

User-Defined Functions 

The FUNCTION keyword permits the creating of personal 
keywords by encapsulating some logic as a function and 
giving it a name. This name can then be used in a logic 
equation to represent the function. The format for user­
defined functions is as follows: 

FUNCTION name ([parametero, .•• .,parametern]) 

( body ) 

where 

name is any group of valid symbols used to reference the 
function. Do not use any of the CUPL reserved 
keywords. 

parameter is an optional variable used to reference 
variables when the function is used in a logic equation. 
It cannot be an expression. 

body is any combination oflogic equations, truth tables, 
state-machine syntax, condition syntax, or user 
function. 

( ) are parentheses used to enclose the parameter list. 

( ) are braces used to enclose the body of the funetion. 

91-10128-5 1090 201 



CUPL Language 
CUPL 

Reference Manual 

202 

Note 

The square brackets indicate optional items. 

The statements in the body may assign an expression to the 
function, or may be unrelated equations. 

When using optional parameters, the number of parameters 
ih the function definition and in the reference must be 
identical. The parameters defined in the body of the function 
are substituted for the parameters referenced in the logic 
equation. 

For example, the following defines an exclusive OR function: 

FUNCTION xor(inl, in2) ( 

I* inland in2 are parameters*/ 

xor = inl & in2 # !inl & in2 ; 

An xor can be used in an equation with the inputs A and B 
passed as parameters, as follows: 

Y = xor(A,B) ; 

The result is the following logic equation assignment for the 
output variable Y: 

Y=A&ffi#!A&B; 

When a function variable is referenced in an expression, the 
compiler takes the following action: 

1090 91-10128-5 



CUPL 
Ref ere nee Manual CUPL Language 

1. A special function invocation variable is assigned 
for the function name and its arguments. This 
variable name is not user accessible. 

The rest of the expression is evaluated. • 2. 

3. The function body, with the invocation parameters ,., 
substituted, is evaluated. 

4. The function invocation variable is assigned an 
expression according to the body of the function. If 
no assignment is made in the body statements, the 
function invocation variable is assigned the value 
of 'h'o. 

Note 

Functions must be defined before they may be 
referenced. Functions are not recursive; that is, a 
function body may not include a reference of the 
function being defined. 

The following example shows a user-defined function to 
construct state-machine-type transitions for non-registered 
devices without internal feedback (such as PROMs). 

91-10128-5 

FUNCTION TRANSITION(present_state, 
next_state, 

input_conditions ) ( 

APPEND state_out = state_in:present_state & 

input_condition & 

1090 



CUPL Language 
CUPL 

Reference Manual 

204 

next_state; 

The function defined in the example above is used in the 
following example to implement a simple up/down counter as 
a series of TRANSITION function references: 

PIN [10,11] = [QinO .• l]; I* Registered PROM*/ 

I* 

I* 

output ml 

back externally 

*I 

*I 
I* on input pins *I 

PIN (12,13] = [ count0 .. 1] ; I * Count Control * I 
PIN [1,2] = [Q0 .. 1] ; I* PROM Outputs*/ 

FIELD state_in = 
FIELD state_out = 

[QinO •• l] ; 

[QO •. l]; 

count_ up = !oountl & !oountO ; I* count up *I 

oount_dn = !countl & oountO; I* count down * I 
hold_cnt = oountl; /* hold count *I 

$DEFINE STATEO 'b'OO 

$DEFINE STATEl 'b'Ol 

$DEFINE STATE2 'b'lO 

$DEFINE STATE3 'b'll 

I* (transition function definition made here) *I 

TRANSITION(STATEO, STATEl, oount_up); 

TRANSITION(STATEl, STATE2, oount_up); 

TRANSITIONCSTATE2, STATE3, 

TRANSITION(STATE3, STATEO, 

TRANSITION(STATEO, STATE3, 

TRANSITION(STATEl, STATEO, 

1090 

count_up); 

oount_up; 

count_dn); 

count_dn); 

91-10128-5 



CUPL 
Reference Manual CUPL Language 

TRANSITIONCSTATE2, STATEl, 

TRANSITION(STATE3, STATE2, 

TRANSITION(STATEO, STATEO, 

TRANSITION(STATEl, STATEl, 

TRANSITIONCSTATE2, STATE2, 

TRANSITION(STATE3, STATE3, 

count_dn); 

count_dn); 

hold_cnt); 

hold_cnt); 

hold_cnt); 

hold_cnt); 

0 CUPL to XILINX XNF Interface 

91~10128-5 

This section describes how a CUPL source file can be 
translated into an XNF netlist file. CUPL generates an 
equivalent PALASM file, using the c flag, which can be 
used as input to PDS2XNF. PDS2XNF will translate the 
PALASM file into an XNF file to be used by the 
remaining XILINX XACT™ integrated software 
package. 

1090 



CUPL Language 
CUPL 

Reference Manual 

206 

.PLO 

l 
CUPL 

l 
.PDS 

l 
PDS2XNF 

l 
.XNF 

l 
XNF2LCA 

l 
.LCA 

Figure 1-26. CUPL Design to LCA Translation Data 
Flow. 

Getting an XNF File. 

1090 91-10128-5 



CUPL 
Reference Manual CUPL Language 

91-1012.8-5 

Just as CUPL is run to compile a PLD design, it can be 
run using the -c flag to produce an equivalent PALASM 
format file. For example, entering the following: 

CUPL -c EXAMPLE.PLD 

will create the PALASM file EXAMPLE.PDS. 

Translating an Existing PLD File. 

Any PLD which can be compiled by CUPL can be 
translated into PALASM format. Because a device must 
be specified for PLD design, a device must also be 
specified when translating a CUPL file to a PALASM 
format. The VffiTUAL device should be specified when 
a source file is for XILINX devices. In order to preserve 
the original use of the PLD source file, do not change the 
device name; CUPL will translate the file based on the 
devices that PALASM recognizes. A recognizable device 
is translated into the PDS file using the names given in 
Table 1-15. An unrecognizable or VffiTUAL device is 
translated into the PDS file as USER. 

Table 1-15. PALASM Device Listing 

PAL6L16 
PAL10H20G8 
PAL12L6 
PAL14L4 
PAL16H2 
PAL16L8 
PAL16R6 

PAL10H8 
P AL10H20P8 
PAL12L10 
PAL14L8 
PAL16L2 
PAL16P8 
PAL16R8 

1090 

PAL10L8 
PAL12H6 
PAL14H4 
PAL16Cl 
PAL16L6 
PAL16R4 
PAL16RA8 

2UI 



CUPL Language 

PAL16RP4 
PAL18L4 
PAL20L8 
PAL20R6 
PAL20RS4 
PAL20X4 
PAL22RX8 
PAL32VX10 

PAL16RP6 
PAL20Cl 
PAL20L10 
PAL20R8 
PAL20RS10 
PAL20X8 
PAL22V10 
PAL64R32 

Using a PALASM Device 

CUPL 
Reference Manual 

PAL16RP8 
PAL20L2 
PAL20R4 
PAL20RA10 
PAL20S10 
PAL20X10 
PAL32R16 
PMS14R21 

When a PALASM device is selected, CUPL will generate 
a functionally-equivalent PALASM file, which can then 
be translated into an XNF file. 

When a device is selected that PALASM does not 
recognize, CUPL will insert USER as the device name in 
the PALASM file. PDS2XNF recognizes this USER 
device. Some PLD macro configurations which are not 
supported by PALASM will be ignored or translated into 
a PALASM equivalent. This will generate a warning 
message. For example, if the extension CKMUX is used, 
it is considered to be a CK extension, and a warning 
message is generated. If the extension DFB is used, it is 
ignored and a warning message is generated. 

Source Files for XILINX Devices. 

The following discusses how to create a new CUPL 
source file for XILINX devices. 

1090 91·10128-5 



CUPL 
Reference Manual CUPL Language 

91-10128-5 

I 

When a new CUPL source file is created, any device on 
the CUPL device list can be specified. The imaginary 
PLD9000 or the limitless VIRTUAL device can also be 
specified. Refer to the device support section of the CUPL 
manual for details on these devices. 

The CUPL source file remains the same except for the 
following few differences: 

Pin numbers are not needed when using the VIRTUAL 
device. The PIN keyword is still used, however, to 
assign names to the pins of a device that will be used 
later. For example: 

pin= lnputO; 

The keyword NODE is not used with the VIRTUAL 
device. The keyword PINNODE is, however, still used. 

1090 



UsingCSIM 2 

This chapter explains how to use CSIM program to create test 
vectors for the programmable logic device under design. Test 
vectors specify the expected functional operation of a PLD by 
defining the outputs as a function of the inputs. Test vectors 
are used both for simulation of the device logic before 
programming and for functional testing of the device once it 
has been programmed. CSIM can generate JEDEC-compatible 
downloadable test vectors. 

0 INPUT 

• 

A test specification source file (filename.SI) is the input to 
CSIM. It contains a functional description of the requirements 
of the device in the circuit. 

The source file may be created using a standard text editor 
like DOS EDLIN or WordStar in non-document mode. 

The input pin stimuli and output pin test values entered in the 
source file are compared to the actual values calculated from 
the logic equat;ons in the CUPL source file. These calculated 
values are contained in the absolute file (filename.ABS), 
which is created during CUPL operation when the -a flag on 
the command line is specified. The absolute file must be 
created during CUPL operation before running CSIM . 

CSIM must also be able to access the device library file, 
CUPL.DL, which contains a description of each of the target 
devices supported in the current version of CSIM. 

The library describes the physical characteristics of each 
· device, including internal architecture, number of pins, and 

91-10128-5 1090 210 



CUPL 
Reference Manual UsingCSIM 

type of registers available, and the logical characteristics, 
including registered and non-registered pins, feedback 
capabilities, register power-on state and register control 
features. 

Reference the target device using device mnemonics. Each 
mnemonic is composed of a device family prefix and 
industry-standard part number suffix. Table 2-1 lists the 
device mnemonic prefixes. 

Table 2-1. CSJMDevice Mnemonic Prefixes 
I Prefix Device Family 
EP Erasable Programmable Logic Device (EPLD) 

G 

F 
F 
F 
F 

p 

p 

p 

PLD 

RA 

Generic Array Logic (GAL) 

Field Programmable Logic Array (FPLA) 

Field Programmable Gate Array (FPGA) 

Field Programmable Logic Sequencer (FPLS) 

Field Programmable Sequence Generator 
(FPSG) 

Programmable Logic Array (PAL) 

Programmable Logic Device (PLD) 

Programmable Electrically Erasable Logic 

(PEEL) 

P-CAD Logical Device 

Bipolar Programmable Read-Only Memory 

(PROM) 

For example, the device mnemonic for a PAL10L8 is P10L8; 
for an 828100 the device mnemonic is FlOO. For bipolar 
PROMs, the suffix is the array size. For example, the device 
mnemonic for a 1024 x 8 bipolar PROM is RA10P8, since there 
are 10 address input pins and 8 data output pins. 

91-10128-5 1090 211 



Using CSIM 
CUPL 

Reference Manual 

0 OUTPUT 

212 

The simulator output is the following two files: a simulation 
listing file and an optional JEDEC downloadable fuse link 
file. 

A simulation listing file (filename.SO) contains the results of 
the simulation. It has the same filename as the input test 
specification file. 

All header information is displayed in the listing file with 
any header errors marked appropriately. Each complete 
vector is assigned a number. Any output tests that failed are 
flagged with the actual (simulator-determined) output value 
displayed. Each variable in error is listed along with the 
expected (user-supplied) value. Any invalid or unexpected test 
values are listed along with an appropriate error message. 

The simulator output listing can also be output to the screen 
(using the -v option on the command line). 

An optional JEDEC downloadable fuse link file 
(filename.JED) contains structured test vectors. CSIM 
appends the test vectors to an existing filename.JED created 
during CUPL operation. 

Note 

CSIM does not support multi-device files as does 
CUPL. CSIM only simulates the first device of a 
multi-device file. 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

0 RUNNING CSIM 

Run CSIM using the following command line format: 

csim[-flags] [library] [device] source 

where 

91-10128-5 

-flags is the following set of simulator options: 

-1 create listing file. 

-j append test vectors to JEDEC file. 

-n use source filename for JEDEC file. 

-v display simulation results to terminal. 

-u use specified library for simulation. 

-w (MS-DOS only) simulate and display output file in 
waveform. 

-d (MS-DOS only) display an existing simulation 
output file in waveform. 

library is the library name and path name if the -u flag 
is being used to specify a library other than the default 
library. 

device must be the same device mnemonic as was used 
in the CUPL compilation. Specifying the device is 
optional; if a device is not specified, CSIM uses the 
device CUPL compiled (contained in the .ABS file). 

source is the user-created ASCII test specification file 
(filename.SI). The extension .SI is assumed for the 
source file and may be omitted when giving the CSIM 
command. 

1090 213 



UsingCSIM 
CUPL 

Reference Manual 

Note 

The square brackets indicate optional items. 

0 Simulat.or Option Flags 

214 

Multiple option flags can be specified when running CSIM. A 
Jwphen must be used before the first flag entered, but can be 
omitted for subsequent flags. Spaces may also be placed 
between the flags. For example, the following two CSIM 
command lines are equivalent: 

csirn -1 -v -j p16r4 waitgen ( Return ) 

csirn -lvj p16r4 waitgen (Return ) 

CSIM can be typed without any flags, to see the command line 
format and a list of the option flags. 

Table 2-2 lists descriptions of the CSIM option flags. 

Table 2-2. Simulator Option F1ags 
!Option Flag Description 

-l 

Appends the structured test vectors generated 
by the simulation onto the existing JEDEC 
download file. 

Generates a simulation listing file 
(filename.SO.) The input and output values for 
each variable are listed. Error messages are 
listed following each vector, with the signal 
name in error displayed. 

1090 91-10128-5 



CUPL 
Reference Manual 

-n 

-v 

-u 

-d 

-w 

91-10128-5 

Using CSIM 

Allows the source filename to be used as the 
JEDEC filename instead of using the name in 
the NAME field of the source file. 

Displays the contents of the listing file to the 
screen. When the simulation data begins to 

• 
appear on the screen, type @!!!]-@) to stop 

the display (and any key to start it again) or '~ 

@!) -(2) to cancel the simulation. 

Overrides the default device library specified in 
the environment. Specify the complete path and 
library name. This option is of particular use on 
systems that have special libraries created for 
unique or custom devices. 

(MS-DOS only) Displays an existing simulation 

output file in waveform. Type l!:!J• @ @ 

@ [D GJ B Ej keys to view the 

waveform output. Type ~to exit. 

(MS-DOS only). Generates a simulation listing 
file and displays the output in waveform. Use 

the®·®®®CDGJ B El 
keys to view the waveform output. Type ®to 

exit. 

1000 215 



Using CSIM 

0 ViewingWaveform(MS-DOS) 

CUPL 
Reference Manual 

Running CSIM with the -w or -d flag generates waveform output on 
the screen. The view of the waveform can be changed by using the 
following keys: 

El Scroll right 

El Scroll left 

lil Scroll down 

rn Scroll up 

(£!) Decrease scale horizonta11y 

@ Enlarge scale horizontally 

® Exit to DOS 

@ Shift screen left 

~ Shift screen right 

~ Change signal orders 

@) Group signals into bus 
@) Create Waveform Hardcopy 
(F10J Waveform Legend 

Change Signal Order 

The CSIM waveform display a11ows signal orders to be changed. To 
change signals, press the F7 key. The cursor appears on the signal 
window instead of the waveform window. Position the cursor over 
the desired signal, and then press [Return] to select the signal. The 
selected signal is indicated as <Sel: signal-name> on the lower 
right portion of the screen (Refer to Figure 1). Move the cursor to the 

216 1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

desired position and press the [Insert] key. The selected signal is 
inserted into the cursor position, and the signals below the cursor 
are shifted one position down. As an example, refer to Figure 1. 

...---------WCSIM----------. 

Numbers4 
Numbers3 
Numbers2 
Numbers1 
NumbersO 

Result4 
Result3 

----Simulation Result<>------. 

Vector# 2 . 3 4 5 6 7 8 9 10 
<Sel: Result3>--Press ? for HELP--'---------' 

Figure 1. Moving a Signal 

.-----------WCSIM-----------. 

Numbers? 
Numbers6 
Numbers5 
Numbers4 

Result3 
Numbers3 
Numbers2 
Numbers1 
NumbersO 

Result4 

Vector# 

----Simulation Resultc:-----. 

2 3 .• 4 / 5 . 6 7 8 9 10 

---------~Press? for HELP·-------_;... __ __. 

Figure 2. Signal After Being Moved 

In this figure, Result3 is selected. Result3 is to be placed between 
Numbers3 and Numbers4. Move the cursor to Numbers4 and press 

91-101?.8-5 1090 217 



Using CSJM 
CUPL 

Reference Manual 

[Insert]. Figure 2 shows the result. To quit the change signal mode, 
press [Escape]. The cursor returns to the waveform window. 

Group Signals int.o Bus 

Grouping signals into bus is another useful feature. This feature 
allows the grouping of up to eight signals into a bus, and the hex 
value can be displayed on the screen. Figure 4 shows the grouping of 
NumbersO to Numbers7 into a bus called INPUT_BUS . 

218 

....---------WCSIM ----------. 

Numbers? 
Numbers6 
Numbers5 
Numbers4 
Numbers3 
Numbers2 
Numbers1 
NumbersO 

Result4 
Result3 

----Simulation Results-----. 

Group Signals as Bus 

Bus 1 INPUT 
Bus2 bb 

Press ESC key to exit 

Vector# 1 2 3 4 5 6 7 8 9 10 
--------Press? for HELP--------­

Figure 3. Making a Bus 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

..----------WCSIM-----------. 
Name 

Numbers3 
Numbers2 
Numbers1 
NumbersO 

Result4 
Result3 
Result2 
Result1 
ResultO 
INPUT 

...----Simulation Result<>-----. 

Vector# 2 3 4 56 7 8 9 10 

--------Press? for HELP·--------­
Figure 4. Moving a Bus 

To group signals, first press F8, and a bus window pops up onto the 
screen (see Figure 3). Type the bus name INPUT_BUS at Busl and 
press [Return]. The cursor moves to the signal window. Move the 
cursor to NumbersO and press [Return]. This signal is grouped into 
bus INPUT_BUS as the least significant bit. Now move the cursor to 
Numbers! and press [Return]. This becomes the second least 
significant bit of INPUT_BUS. Continue this procedure until the 
eighth signal, Numbers7, is selected. After all signals are selected, 
a new bus-type signal called INPUT_BUS is placed after the l~st 
signal, as shown in Figure 4. 

Iffewer than eight signals are to be grouped into a bus, press [Escape] 
after all the desired signals have been selected. The new bus-type 
signal is placed after the last signal. 

The maximum number of busses that can be created if four, and the 
maximum number of signals that can be grouped into a bus is eight. 
A sixteen-signal bus can be created as two busses of high-order and 
low-order. 

Create Waveform Hardcopy 

91-10128-5 1090 219 



Using CSIM 
CUPL 

Reference Manual 

The F9 function key does not cause an immediate print-out. When 
activated, F9 creates a file with an extension .prt. This file can then 
be sent to the printer. The printer must be capable of handling 
extended ASCII characters. 

Help Menu 

The question mark (?)key can be used to bring up the help menu. 
This menu provides a description of the function keys. 

The following figure defines the waveforms that may appear during 
view waveform. The waveform legend screen appears when the FlO 
key is depressed. 

Waveform Legend 

_fl_ ==i__r= 
logic High logic low 

_FL p 

Don't Care Pre load 

~ * 

High Impedance Unknown to Display 

Press any key to exit 

Figure. Waveform Legend 

0 TEST SPECIFICATION FILE 

The test specification file (filename.SI) may be created using 
• a text editing program. The filename is the same as the 

corresponding CUPL logic description source file. Put the 
following information into the test specification file: 

> Header information 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

0 

> Comments 

> Variable ordering 

> Base sets 

> Test vectors 

> Simulator directives 

Header Information 

Header information which is entered must be identical to the 
information in the corresponding CUPL logic description file. 
If any header information is different, a warning message 
appears, stating that the status of the logic equations could be 
inconsistent with the current test vectors in the test 
specification file. Table 2-3 lists the keywords used for header 
information (see the subtopic, Header Information in Chapter 
1): 

Table 2-3. CSIM Header Keywords 

PARTNO 

REVISION 

DESIGNER 

ASSEMBLY 

DEVICE 

NAME 
DATE 

COMPANY 

LOCATION 

FORMAT 

When creating a test specification file, begin by copying the 
contents of the corresponding CUPL source file to the test 
specification file, to assure proper header information. Then 
delete everything except the header information from the test 
specification file. 

91-10128-5 1090 2'21 



Using CSIM 

0 Comments 

CUPL 
Reference Manual 

Comments can be placed anywhere within the test 
specification file. Comments can be used to explain the 
contents of the specification file or the function of certain test 
vectors. A comment begins with a slash-asterisk (!*) and 
ends with an asterisk-slash (*/). Comments can span 
multiple lines and are not terminated by the end of a line. 
However, comments cannot be nested. 

0 Statements 

CSIM provides the keywords, ORDER, BASE, and VECTORS 
to write statements in the source file that determine the 
simulation output and how it is displayed. The following 
sections describe how to write statements with the CUPL 
keywords. 

ORDER Statement 

Use the ORDER keyword to list the variables to be used in the 
simulation table, and to define how they are displayed. 
Typically, the variable names are the same as those in the 
corresponding CUPL logic description file. 

Place a colon after ORDER, separate each variable in the list 
with a comma, and terminate the list with a semicolon. The 
following is an example of an ORDER statement: 

ORDER: inputA, inputB, output; 

Only those variables that are actually used in the simulation 
must be listed. 

The polarity of the variable name can be different than was 
declared in the CUPL logic description file, allowing 
simulation of active-LO outputs with an active-HI simulation 
vector. The variable names can be entered in any order; CSIM 

1090 91-10128-5 



CUPL 
Ref ere nee Manual Using CSIM 

automatically creates the proper order and polarity of the 
resulting vector to match the requirements of the JEDEC 
download format for the device. 

When indexed variables are used in the ORDER statement, 
they can be expressed in list notation format. However, since 
the ORDER statement is already in list form, square brackets 
are not needed to delimit the ORDER set. The following is an 
example of two equivalent ORDER statem'ents; the first 
statement lists all the variables, and the second is written in 
list form. 

ORDER: AO, Al, A2, A3, SELECT, !OUTO, !OUTl; 

ORDER: A0 •. 3, SELECT, !OUT0 .• 1 ; 

In list notation format, the polarity of the first indexed 
variable (!OUTO in the above example) determines the 
polarity for the entire list. 

Bit fields that are declared in the CUPL logic description file 
can be referenced by their single variable name. Bit fields 
can also be declared in the test specification file for CSIM, 
using FIELD declaration statements (see Bit Field 
Declaration Statements in Chapter 2). The FIELD statement 
must appear before the ORDER statement. 

The ORDER statement can be used to specify the format of the 
vector results in the simulator listing file (or on the screen if 
screen output is specified.) By default, variable values are 
displayed without spaces between columns. For example, the 
following ORDER statement 

ORDER: clock, input, output; 

generates the following display in the output file (using 
sample values): 

91-10128-5 1090 223 



UsingCSIM 
CUPL 

Reference Manual 

OOOI:COH 

0002:CIL 

Spaces can be inserted between columns by using the % symbol 
and a decimal value between 1 and 80. For example, the 
fo11owing ORDER statement 

ORDER: clock, o/'2, input, %4, output ; 

generates the fo11owing display in the output file: 

OOOI:CO H 

0002:Cl L 

Text can be inserted into the output file by putting a character 
string, enclosed by double quotes (" ",) into the ORDER 
statement. For example, the fo11owing ORDER statement 

ORDER: "Clock is ",clock, 

"and input is", input, 

"output goes", output; 

produces the following result in the output file: 

0001: Clock is C and input is 0 output goes H 

0002: Clock is C and input is 1 output goes L 

BASE Stat.ement 

In most cases, each variable in the ORDER statement (except 
for FIELD variables) has a corresponding single character 
test value that appears in the test vector table of the output file. 
Multiple test vector values can be represented with quoted 
numbers. Use single quotes for input values and double quotes 
for output values. Enter a BASE statement to specify how each 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

quoted number is expanded. The format for the BASE 
statement is: 

BASE: name 

where 

name is either octal, decimal or hex. 

Follow BASE with a colon. 

The default base for quoted test values is hexadecimal. The 
BASE statement must appear in the file before the ORDER 
statement. 

If the base is decimal or hexadecimal, quoted numbers expand 
to four digits; if the base is octal, they expand to three digits. 
For example, a test vector entered as '7' is interpreted as 
follows: 

111 Base is octal 

or 

0111 Base is decimal 

or 

0111 Base is hex 

More than one hexadecimal or octal digit may be entered 
between quotes. For example, '563' expands to the following: 

101 110 011 Base is octal 

or 

0101 0110 0011 Base is decimal 

or 

0101 0110 0011 Base is hex 

91-10128-5 1090 



Using CSIM 
CUPL 

Reference Manual 

226 

Quoted values may also be used with all other test values. For 
example, if the base is set to octal 

"XX" expands to XX XX XX 

"LL" expands to LL LL LL 

"45" expands to H LL H L H 

Test values for FIELD variables can be expressed either 
individually (for example, 001, HHLL) or with quoted values 
(for example, '1', "C"). When quoted values are used, the 
value is automatically expanded to the number of variables in 
the field. For example, for the following address field 

FIELD address = [A0 • .5] ; 

A test value of 

/* 

A 

5 

A 

4 

A 

3 

A 

2 

A 

1 

A 

0 

--------------------------------*/ 
1 1 1 0 0 1 

could be written using single test values, or 

'39' 

using quoted test values. 

VECTORS Stat.ement 

Use the VECTORS keyword to prefix the test vector table. 
Following the keyword, include test vectors made up of single 
test values or quoted test values (see the subtopic, Base 
Statement in this chapter). Each vector must be contained on a 
single line. No semicolons follow the vector. Table 2-4 lists 
allowable test vector values. 

fl'able 2-4. Test Vector Values 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

!Test Value Description 
0 

1 

c 
K 
L 

H 

z 
x 

N 
p 

* 

" ,, 

Drive input LO (0 volts) (negate active-HI 
input) 

Drive input HI ( +5 volts) (assert active-HI 
input) 

Drive (clock) input LO, HI, LO 

Drive (clock) input HI, LO, HI 

Test output LO (0 volts) (active-HI output 
negated) 

Test output HI (+5 volts) (active-HI output 
asserted) 

Test output for high impedance 

Input HI or LO, output HI or LO. 

NOTE: Not all device programmers treat X on 
inputs the same; some put it to 0, some allow 
input to be pulled to 1, and some leave it at the 
previous value. 

Output not tested 

Preload internal registers (value is applied to !Q 
output) 

Outputs only -simulator determines test value 
and substitutes in vector 

Enclose input values to be expanded to a 
specified BASE (octal, decimal, or hex). Valid 
values are 0-F and X. 

Enclose output values to be expanded to a 
specified BASE (octal, decimal, or hex.) Valid 
values are 0-F, H, L, Z, and X. 

The following is an example of a test vector table: 

VECTORS: 

0 0 1 1 1 'F Z "H" I* test outputs HI * I 
0 1 1 0 0 'O' Z ''L" I* test outputs W * I 

Unlike many other simulators, CSIM treats the DON'T-CARE 
(state X) as any other value. State X is not assumed to be 0 on 

91-10128-5 1090 227 

• 



Using CSIM 
CUPL 

Reference Manual 

input and Non the output as with PALASM. The X state aJJows 
specific determination of which inputs affect the output value, 
according to the rules listed in the truth tables in Figure 2-1. 

NOT : ones comJ!.lement ! 
A !A 
0 1 

1 0 

x x 

OR# 

A B A#B 
0 0 L 

0 1 H 

0 x x 
1 0 H 

1 1 H 

1 x H 

x x x 

Figure 2-1. Vector Truth Tables 

Pre load 

AND& 
A B A&B 

0 0 L 

0 1 L 

0 x L 

1 0 L 

1 1 H 

1 x x 
x x x 

XOR : exclusive OR $ 

A B A$B 
0 0 L 

0 1 H 

0 x x 
1 0 H 

1 1 L 

1 x x 
x x x 

Use the P test value on the clock pin of a registered device to 
preload internal registers of a state machine or counter design 
to a known state, if the device does not have a dedicated TTL­
level preload pin. The device programmer uses a supervoltage 
to actually load the registers. All input pins to the device are 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

ignored and hence should be defined as X. The values that 
appear for registered variables are loaded into the !Q output of 
the register. These values (0 or 1) are absolute levels and are 
not affected by output polarity nor inverting buffers. The 
following is an example of a preload sequence for an active­
LO output variable in a device with an inverting buffer 
between the register Q output and device pin: 

ORDER: clock, inputl, input2 , !output; 

VECTORS: 

PXXl 

OXXH 

Note 

I* reset flip-flop */ 

I* !Q goes to 1 */ 

I* Q goes to 0 */ 

I* output is HI due to */ 

I* inverting buffer*/ 

Although CSIM can simulate and generate preload 
test vectors, not all PLDs are capable of pre load using 
a supervoltage. Some devices have dedicated preload 
pins to use for this purpose. CSIM does not verify 
whether the device under simulation is actually 
capable of preload because parts from different 
manufacturers exhibit different characteristics. 
Before using the preload capability, determine 
whether the device being tested is physically capable 
of supervoltage preloading. 

Clocks 

91-10128-5 1090 



Using CSIM 
CUPL 

Reference Manual 

Most synchronous devices (devices containing registers with 
a common clock tied to an output pin) use an active-HI 
(positive edge triggered) clock. To assure proper CS IM 
operation for these devices, always use a C test value (not a 1 or 
O) on the clock pin. For synchronous devices with an active­
LO (negative edge triggered) clock, use the K test value on the 
clock pin. 

Asynchronous Vectors 

When writing test vectors for a circuit with asynchronous 
feedback, changing two test values at once can create a spike 
condition that produces anomalous results. (See Figure 2-2. It 
shows the diagram for a circuit with three inputs [A, B, and Cl 
and an output at Y that feeds back.) 

A 
B 
c 

Y·A&B&C#C&Y 

Figure 2-2. Circuit with Feedback 

The equation for the output at Y is as follows: 

Y=:=A&B&C#C&Y 

The vectors table in Figure 2-3 shows an expected low output at 
Y based on the specified input values. 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

A 8 C Y 
0001 0 0 0 L 
0002 0 1 1 L 
0003 1 0 1 L 

Figure 2-3. Vectors Table for Circuit with Feedback 

Because one of the inputs is 0 in each of the vectors, the AND 
gate defined by A, B, and C produces a low output. The low 
value feeding back from the Y output keeps the other AND gate 
low also. Therefore, the OR gate (driven by the output of the two 
AND gates) and consequently the output at Y remain low for 
the specified test vectors. 

However, when the programmer operates on the test vectors, it 
applies values serially, beginning with the first pin. Because 
two test values change between vectors, the programmer 
creates intermediate results (labeled "a" in Figure 2-4). , 

91-10128-5 1090 . 231 



Using CSIM 

A B 
0001 0 0 
0001a O 1 
0002 0 1 
0002a 1 1 
0003 1 0 

c 
0 
0 
1 
1 
1 

y 

L 
L 
L 
H 
H 

CUPL 
Reference Manual 

Figure 2-4. Vectors Table with Intermediate Results 

The intermediate result, [0002a], produces a high value for the 
output at Y. This high value feeds back and combines with the 
"1" value specified for input C in vector [0003] to produce a high 
output for the AND gate and consequently for the OR gate and 
for the output at Y. This high value conflicts with the expected 
low value specified in the third test vector, and the result is a 
spike condition. 

By taking care to always change only one value between test 
vectors, the spike condition described above can be avoided. 
Also, in the source specification file, it is possible to specify a 
TRACE value of 1, 2, or 3 (rather than the default value of O) 
that instructs CSIM to display intermediate results in the 
output file (see "TRACE" in the following section, Simulator 
Directives). 

'Cl Simulat.or Directives 
• 

CSIM provides four directives that can be placed on any row of 
the file after the VECTOR statement. All directive names 
begin with a dollar sign and each directive statement must 
end with a semicolon. Table 2-5 lists the CSIM directives. 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

Table 2-5. CSIM Directives 

$MSG $REPEAT 

$SIMOFF $SIMON 

$MSG 

$TRACE 

$EXIT 

Use the $MSG directive to place documentation messages or 
formatting information into the simulator output file. For 
example, a header for the simulator function table, listing the 
variable names, may be created. The format is as follows: 

$MSG "any text string" ; 

In the output table, the text string appears without the double 
quotes. 

Blank lines can be inserted into the output, for example, 
between vectors, by using the following format: 

$MSG''"; 

$REPEAT 

The $REPEAT directive causes a vector to be repeated a 
specified number of times. Its format is: 

$REPEATn; 

where 

n is a decimal value between 1 and 9999. 

The vector following the $REPEAT directive is repeated the 
specified number of times. 

The $REPEAT directive is particularly useful for testing 
counters and state transitions. Use the asterisk(*) to represent 
output test values supplied by CSIM. The following example 

91-1012.8-5 1090 233 



Using CSIM 
CUPL 

Reference Manual 

234 

shows a a 2-bit counter from a CUPL source file, and a 
VECTORS statement using the $REPEAT directive to test it. 

From CUPL: 

QO.d = !QO; 

Ql.d = !Ql & QO # Ql & !QO ; 

In CSIM: 

ORDER: clock, input, Ql, QO; 

VECTORS: 

I* power-on condition ooxx 
PXll 

OOHH 

$REPEAT4; 

I* reset the flip-flops * I 

I* clock 4 times 

CO** 

*I 

*I 

The above file generates the following test vectors: 

ooxx 
PXll 

OOHH 

COLL 

COLH 

COHL 

COHH 

CSIM supplies four sets of vector values. 

$TRACE 

Use the $TRACE directive to set the amount of information that 
CSIM prints for the vectors during simulation. The format is 

$TRACEn; 

where 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM · 

n is a decimal value between 0 and 4. 

Trace level 0 (the default) turns off any additional 
information and only the resulting test vectors are printed. 

When non-registered feedback is used in a design, the value 
for the output feeding back is unknown for the first evaluation 
pass of the vector. If the new feedback value changes any 
output value, the vector is evaluated again. All outputs must be 
identical for two passes before the vector is determined to be 
stable. 

Trace level 1 prints the intermediate results for any vector that 
requires more than one evaluation pass to become stable. Any 
vector that requires more than twenty evaluation passes is 
considered unstable. 

Trace level 2 identifies three phases of simulation for designs 
using registers. The first phase is "Before the Clock," where 
intermediate vectors using non-registered feedback are 
resolved. The second phase is "At the Clock," where the values 
of the registers are given immediately after the clock. The 
third phase is "After the Clock," where the outputs utilizing 
feedback are resolved as in trace level 1. 

Trace level 3 provides the highest level of display information 
possible from CSIM. Each simulation phase of "Before Clock," 
"At Clock," and "After Clock" is printed and the individual 
product term for each variable is listed. The output value for 
the AND gate is listed along with the value of the inputs to the 
AND array. 

Trace level 4 provides the ability to watch the logical value 
before the output buffer. Using $TRACE 4, CSIM only reports 
the true output pin values, and assigns a "?" to inputs and 
buried nodes. For combinatorial output, trace level 4 displays 
the results of the OR term. For registered outputs, trace level 4 
shows the Q output of the register. 

91-10128-5 1090 235 



UsingCSIM 
CUPL 

Reference Manual 

236 

The following example uses a p22v10: 

pin 1 • CLK; 
pin 2 - JN2; 
pin 3 • IN3; 

pin 14 • OUT14; 
pin 15 • OUT15; 

OUT 14 .D • IN2; 
OUT 14 .AR • IN3; 
OUT 14.0E • IN4; 

Figure 2-5. Using P22V10. 

Figure 2-6 shows the simulation result file: 

order CLK, IN2, IN3, IN4, . OUT14, OUT15 
•*••••before output buffer****** 

???? .. LL ••• 
0001: 0011 .. HH ••• 

•***"'*before output buffer•••••• 
???? HH ••• 

0004 ClOO •.• zz 

Figure 2-6. Simulation File. 

Figure 2-7 shows the virtual observation points when using 
trace level 4 with either a combinatorial configuration or a 
register configuration. 

1090 91-10128-5 



CUPL 
Reference Manual Using CSIM 

Pl 

Pn 

view point in register 

view point in combin- configuration 

atorial configuration 

Figure 2-7. Observation Points Using Trace Level 4. 

$EXIT 

Use the $EXIT directive to abort the simulation at any point. 
Test vectors appearing after the $EXIT directive are ignored. 
This directive is useful in debugging registered designs in 
which a false transition in one vector causes an error in every 
vector thereafter. 

Placing a $EXIT command after the vector in error directs 
attention to the true problem, instead of to the many false 
errors caused by the incorrect transition. 

$SIMO FF 

Use the $SIMOFF simulator directive to turn off test vector 
evaluation. Test vectors appearing after the $,SIMOFF 
directive are only evaluated for invalid test values and the 
correct number of test values. This directive is useful in 
testing asynchronously clocked designs in which CSIM is 
unable to correctly evaluate registered outputs. 

$SIMON 

91-1012.8-5 1090 



Using CSIM 
CUPL 

Reference Manual 

Use the $SIMON simulator directive to cancel the effects of the 
$SIMOFF directive. Test vectors appearing after the $SIMON 
directive are evaluated fully. 

0 Fault Simulation 

238 

An internal fault can be simulated for any product term, to 
determine fault coverage for the test vectors. The format for 
this option is as follows: 

STUCKLn; 

or 

STUCKHn; 

where 

n is the JEDEC fuse number for the first fuse in the 
product term. 

The documentation file (filename.DOC) fuse map lists the 
fuse numbers for the first fuse in each product term in the 
device. 

Format 1 forces the product term to be stuck-at-0. 

Format 2 forces the product term to be stuck-at-1. The STUCK 
command must be placed between the ORDER and VECTORS 
statements. 

1090 91-10128-5 



UsingCBLD 3 

CBLD permits the maintaining and personalizing of CUPL 
device libraries. It can list the contents of a library and build 
new libraries from existing ones. 

A CUPL device library is a file containing descriptions of one 
or more PLDs. CUPL and CSIM use device libraries to 
determine the characteristics of target devices. CUPL provides 
device libraries to describe all the PLDs instead of supplying 
individual files for each PLD. The advantage of device 
libraries is that they are easier to keep track of than multiple 
device files and they enable quicker program operation. 

The use of device libraries also resolves compatibility 
problems between the compiler and device descriptions. Each 
version of CUPL and its corresponding device library is given 
a matching key. If a library is used that has a different key 
than the CUPL compiler, an error message is generated 
during compilation and the compilation is aborted. 

The library that is created when the BUILD batch file is 
executed, CUPL.DL, contains descriptions for each device that 
is supported by the current version of CUPL. 

0 RUNNING CBLD 

Run CBLD with the following command line format: 

cbld [-flags] [build] [library] [devices] 

91-10128-5 1090 239 



UsingCBLD 
CUPL 

Ref ere nee Manual 

240 

where 

-flags is the following set of options: 

-b generate library using build file. 

-e list allowable extensions. 

-1 list long contents of library. 

-m list allowable macros by pin. 

-t list short contents of library. 

-u use specified library for listings. 

build is the name of a file to be used with the -b option flag 

library is a device library name and path name to be used with 
the -u option flag. 

devices is one or more device names to be used with the -t or -1 
options. 

Note 

The square brackets indicate optional items. 

CBLD can be typed without any flags to see the command line 
format and a list of the option flags. 

CBLD provides two distinct functions: listing the contents of a 
library (the -t, -1 and -u options) and building a new library 
(the -b option). These two functions are described in the 
following sections. 

1090 91-10128-5 



CUPL 
Reference Manual UsingCBLD 

0 LISTING THE CONTENTS OF A 
LIBRARY 

To list the contents of a device library, use one of the following 
command line formats: 

cbld-t [-u library] [devices] 

cbld -1 [-u library] [devices] 

where 

library is a device library name and path name. 

devices is one or more device names. 

Note 

The square brackets indicate optional items. 

Use the -t flag to specify the short form, which lists only the 
device names and the revision number of the library. 

Use the -1 flag to specify the long form, which lists the revision 
number of the library and the names of the devices, and 
provides the revision number, the number of pins, the number 
of fuses, and the number of product terms for each device. 

By default, CBLD lists the entire contents of the library; 
however, certain devices can be specified to be listed. For 
example, by typing: 

cbld-1 p16h8 p1618 p16hd8 p16ld~ Return ) 

91-10128-5 1090 241 



UsingCBW 
CUPL 

Reference Manual 

CBLD lists the characteristics of the p16h8, p16l8, p16hd8 and 
p16ld8 devices in the CUPL.DL library as follows: 

Device Rev Pins Fuses Pt.erms 

pl6h8 00 ID 2048 64 

pl6l8 00 ID 2048 64 

pl6hd8 00 ID 2048 64 

pl6ld8 00 ID 2048 64 

Use the -u flag and a library name with either the -1 or -t flag to 
list the contents of a library other than the default library 
specified in the environment file. 

For example, to see the contents of a library named small.di, 
type: 

cbld -1 -u small.di (Return J 

0 LISTING ALLOWABLE EXTENSIONS 

The -e flag allows the listing of the valid extensions for 
devices. For example: 

cbld -e p22v10 

The screen will display: 

Device 
p22v10 

Extension 
OE DAR SP 

This shows that the valid extensions for the P22Vl0 are: 

OE output enable control 
D D-type register 
AR asynchronous reset 
SP synchronous reset 

1090 91-10128-5 



CUPL 
Reference Manual UsingCBW 

If more than one device type must be listed, specify multiple 
device names. For example: 

cbld-e p22v10 ep600 

The screen will display: 

Device 
qfil) 
p22v10 

Extensions 
OE D T AR CK IO DFB TFB 
OED AR SP 

If a particular device is not specified, CBLD will, by default, 
list all the devices of the library. 

0 LISTING ALLOW ABLE MACROS 

When defining device logic using schematic capture, only 
certain component symbols (macros) can be used on any 
given device pin. 

To list the macros that can be used on a device pin, use the 
following command line format: 

cbld -m [-u library] [devices] 

where 

library is a device library name and path name. 

devices is one or more device names. 

Not.e 

The square brackets indicate optional items. 

91-10128-5 1090 243 



UsingCBLD 
CUPL 

Reference Manual 

244 

The -m flag lists, for each device, the pin number and the 
macro number. 

By default, CBLD lists the entire contents of the library; 
however, certain devices can be specified to be listed. For 
example, by typing: 

,cbld-m p16L8 (Return ) 

CBLD lists the macros for the pl6L8 device in the CUPL.DL 
library as follows: 

Device Pin Macros 

P16L8 1 0 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

10 0 

11 0 

12 1246 

13 0 12 3 4 5 6 16 17 

14 0 12 3 4 5 6 16 17 

15 01234561617 

16 0 12 3 4 5 6 16 17 

17 0 12 3 4 5 6 16 17 

18 01234561617 

19 1246 

1090 91-10128-5 



CUPL 
Reference Manual UsingCBW 

0 BUILDING DEVICE LIBRARIES 

To build a new library from an existing library, first create 
an ASCII build file (filename.BLD) that specifies the name of 
the new library, the name of the source library, and the devices 
to use from it. Any text editor can be used, once it can produce a 
standard ASCII Text file. 

Note 

The vertical line ( I ) separates items in the syntax 
that are mutually exclusive. Do not type it in. 

The build file uses the following syntax: 

TARGET library 

SOURCE libraryl 

devices I* 

SOURCE library2 

devices I* 

where 

91-101?.8-5 

TARGET is a keyword to identify the new library. 

SOURCE is a keyword to identify the source libraries. 

1090 



UsingCBW 

library is a target library name. 

CUPL 
Reference Manual 

libraryl and library2 are source library names. 

devices are device names contained in the source 
libraries. 

* is a "wildcard" representing all devices in the 
specified library. 

When building a new library, devices from more than one 
source library can be specified by using more than one 
SOURCE keyword . 

• 
Comments may be used in the build file. Enclose comments 
between the/* and*/ symbols. 

To compile the build file, use the following command line 
format: 

cbld -b filename.bid 

Not.e 

There is no standard extension for build files. The 
.BLD extension is for mnemonic convenience only. 
When running C BLD, the entire filename, 
including the extension, must be typed in. 

The following example shows the contents of a build 
specification file, small.bid. Small.bid specifies that a new 
library, smallib.dl, be built containing the devices p22v10, 
fl.05, and pl6rp8 from the cupl.dl library, and all the devices in 
the biglib.dl 

1090 91-10128-5 



CUPL 
Reference Manual 

TARGET smallib.dl 

SOURCE cupldl 

p22v10 

f105 

p16rp8 

SOURCE biglib.dl 

* 

Using CBLD , 

To run CBLD and build the smallib.dl library specified in the 
sample file above, type 

cbld -b small.bid (Return ) 

91-10128-5 1090 247 



UsingPTOC 4 

PTOC converts PALASM source files into CUPL and CSIM 
source files in order to maintain existing designs and develop 
new ones while using only one universal language. 

Use PTOC on files that have assembled successfully with a 
PALASM assembler. The output of PTOC is directly 
compatible with CUPL syntax and may be compiled without 
modifications. 

0 RUNNING PTOC 

Run PTOC with the following format: 

ptoc palasm_filel palasm_file2 ••• 

where 

palasm_filel, palasm_file2 are PALASM source files to 
be translated. 

There is no standard file extension for PALASM source files; 
specify the full filename and extension when running PTOC. 

For each input PALASM file, PTOC generates a CUPL logic 
description file, filename.PLD; the filename is the same as 
the input PALASM filename. 

If the PALASM file contains a function table (that is, test 
vector information) PTOC also generates a test specification 
file, filename.SI, that can be input to CSIM. It is possible to 
specify more than one file to be translated with a single PTOC 
command line. 

91-1012.8-5 1090 248 



CUPL 
Reference Manual Using PI'OC 

For example, to translate the files COUNT2 and DECADE, 
type the following: 

pt.ocrount2 demde 

Pl'OC generates the files COUNT2.PLD and DECADE.PLD. 
If the PALASM files contain test vectors, PTOC also generates 
COUNT2.SI and DECADE.SI. 

0 PALASM SOURCE FILE FORMAT 

Because of variations in PALASM assemblers, PTOC follows 
the standard set by Monolithic Memories in the PAL 
Handbook (Third Edition). Figure 4-1 shows a sample 
PALASM source file in the format required by Pl'OC. 

91-10128-5 1090 



Using PTOC 

PAL16R8 
PART NO 1234B 
SAMPLE 
GYRO, SAN JOSE, CA 
CLK IO Il I2 I3 I4 IS I6 I7 
GND /OE 01 02 03 NC NC 
NC NC NC VCC 

CUPL 
Reference Manual 

Line 1, col 1 - PAL part # 
Line 2 - User's part # 
Line 3 - Name of device 
Line 4 - Company, city, state 
Line 5 - Pin list (must start on 
line 5), consists of 20 or 24 
symbolic names that are 
consecutively assigned to pins 1 
through 20 (24) . 

/01 .- /IO*/Il*/I2 + 
/02 := /IO*/Il*/I2 + 
/03 := /I0*/Il*/I2 + 
FUNCTION TABLE 

/Il*/I2*/I3 Equaticns 
/Il * /I2* /14 
/Il*/I2*/IS 

Keyword (must start in column 1) 

IO Il I2 I3 I4 IS CLK /OE 01 02 03 Function table pin list 
;IO-IS CLK /OE 01-03 COMMENTS Optional comments 

Dashed line (length optional) 

Function table vectors, 
one vector per line 

LLLLLL C L LLL LOAD ZEROS 
HHHHHH C L HHH LOAD ONES 
HHHHHL C L HHH WHATEVER 
HHHHLL C L HHH 

followed by optional comments 

HHHLLL C L HHH 

-------------------------------- Dashed line(length optional) 
DESCRIPTION Keyword, optional if following 

function table (must start 
THIS IS A SAMPLE PALASM FILE in column 1) followed by 
FOR A PAL16R8 DEVICE comments 

Figure 4-1. Sample PALASM File with Explanations 

The following sections refer back to this sample file to show 
how PTOC converts PALASM files to CUPL format. 

0 PrOC .. PLD OUTPUT FILE 

PTOC generates a CUPL source file (palasm_file.PLD) for 
each PALASM file that it translates. The CUPL source file is 
organized into header information, pin assignments, and 
equations. 

1090 91-10128-5 



CUPL 
Reference Manual Using PTOC 

0 Headerlnformation 

PALASM header information cannot be directly translated 
into CUPL header information. PTOC places dummy header 
information into the CUPL source file, and puts the PALASM 
header information within comments. Use a text editor to 
replace the dummy header information with valid 
information to maintain consistent documentation. Figure 4-
2 shows the header information created by translating the 
PALASM sample file in Figure 4-1. 

NAME xx:xxx. 
' 

PARTNO xx:xxx. 
' 

REV xx:xxx. 
' 

DATE xx:xxx. , 
DESIGNER xx:xxx. 

' 
COMPANY xx:xxx. , 
ASSEMBLY xx:xxx. , 
LOCATION xx:xxx. , 
/* PAL16R8 */ 

/* PART NO 1234B */ 

/*SAMPLE*/ 

/*GYRO, SAN JOSE, CA*/ 

Figure 4-2. Header Information Translation 

0 PinList 

PTOC translates the PALASM pin list into CUPL pin 
assignments beginning at line five in the PALASM source 
file. CUPL does not translate GND, NC and VCC pins. Figure 
4-3 shows the pin list translation from the sample PALASM 
file in Figure 4-1. 

91-10128-5 1090 251 



Using PTOC 

PINI= CLK; 
PIN2= IO; 

PIN3= 11; 

PIN4= 12; 

PIN5= 13; 

PIN6= 14; 

PIN7= 15; 

PINll = !OE; 

PJN12= 01; 

PIN13= 02; 

PIN14= 03; 

Figure 4-3. Pin List Translation 

0 Equations 

CUPL 
Reference Manual 

PTOC translates PALASM equations into CUPL equations, 
replacing symbols, and adding parentheses and variable 
extensions as necessary. Figure 6-4 shows the equation 
translation for the PALASM sample file shown in Figure 4-1. 

!Ol.D 

!02.D 

!03.D 

!IO & !Il & !I2 # !Il & !I2 & !I3 

!IO & !Il & !I2 # !Il & !I2 & !I4 

!IO & !Il & !I2 # !Il & !I2 & !IS 

Figure 4-4. Equation Translation 

PTOC replaces the*,+, and I symbols in the PALASM file 
with the CUPL & , # and ! symbols respectively. PT 0 C 
translates the assignment operator for registered outputs, :=, 
by adding the .D extension to the variable name on the left side 
of the assignment statement (see the subtopic, Extensions in 
Chapter 1). 

1090 91-10128-5 



CUPL 
Reference Manual Using PTOC 

0 PrOC .SI OUTPUT FILE 

When PTOC translates a PALASM file containing a function 
table, it generates a CSIM source file, (palasm_file.SI). This 
CSIM source file is organized into header information, pin 
order, and vectors. The header information is translated in 
the same manner as the CUPL source file header information 
(see the subtopic, Header Information in this chapter). 

PTOC translates the PALASM function table pin list into a 
CSIM pin order list. Figure 4-5 shows the function table pin list 
translation for the PALASM sample file shown in Figure 4-1. 

ORDER: 

IO, Il, I2, I3, I4, IS, CLK, !OE, 01, 02, 03; 

Figure 4-5. CSIM Pin Order List 

PTOC translates the P ALASM function table vectors into a 
CSIM vectors list. Figure 4-6 shows the function table vectors 
translation for the PALASM sample file shown in Figure 4-1. 

91-10128-5 1090 253. 



Using PTOC 
CUPL 

Reference Manual 

VECTORS: 

000000 c 
111111 c 
111110 c 
111100 c 
111000 c 

Figure 4-6. Vectors List 

0 

0 

0 

0 

0 

LLL /* LOAD ZEROS */ 

HHH /* LOAD ONES */ 

HHH /* WHATEVER */ 

HHH 

HHH 

0 Translation Ambiguities 

254 

Because of inherent ambiguities in PALASM syntax, certain 
conditions cannot be accurately translated into CUPL syntax. 

Many PALASM assemblers do not verify that the correct 
assignment statement, "=" for combinatorial outputs and ":=" 
for registered outputs, is being used. For example, source 
assemblers treat the following equations in the same manner: 

OUT= INA* INB 

OUT := INA* INB 

PTOC translates them respectively as follows: 

OUT= INA & INB 

OUT.D =INA & INB 

Another ambiguity concerns the use of exclusive OR devices. 
PTOC requires the use of the PALASM exclusive OR symbol 
":+:" to explicitly define the position of the exclusive OR in the 
equation. However, some PALASM assemblers allow an 
exclusive OR output to be organized by position without 
explicitly defining the exclusive OR. For example, some 
P ALASM assemblers treat the following two equations in the 
same manner: 

1090 91-10128--5 



CUPL 
Reference Manual Using PTOC 

OUT := INA* INB 

OUT := INA* INB 

+ INC*IND 

+ INC*IND 

+ INE.*INF 

:+: INE *INF 

PTOC translates them respectively as follows: 

OUT .D =INA & INB 

OUT.D =INA& INB 

# INC & IND # INE & INF; 

# INC & IND $ INE & INF; 

The most troublesome ambiguity is in the function table of 
source files with bi-directional pins. Since the same values 
are used by PALASM to indicate inputs and outputs during 
simulation, PTOC cannot accurately determine whether a 
bidirectional pin should be treated as an input or an output. If a 
PALASM source file has bidirectional pins, check the vector 
table translation in the source specification file to determine 
whether PTOC's interpretation is correct. 

91-10128-5 1090 255 



Error Messages A 

CUPL error messages are intended to be self-explanatory. 
This .appendix provides additional information describing 
them. 

Some of the CUPL programs, such as CUPL and CSIM, are 
composed of individual modules. Error messages are 
numbered and listed according to the program and module in 
which they occur. The suffix to the error message number 
identifies the program and module. 

Table A-1. Error Message Module Suffixes 
!Module Suffix 
CUPL processor ck 

CUPLX preprocessor ex 
CUPLA source file parser ca 

CUPLB equation fitter ch 

CUPLM minimizer cm 

CUPLC fusemap generator cc 

CSIM processor sk 

CSIMA logic simulator sa 
CBLD device library manager ha 

Pl'OC PALASM translator pt 

This appendix lists the error messages by modules in the same 
order as they appear in Table A-1 above. The error messages 
within each module are listed in numerical order. 

CUPL provides three levels of error messages: warnings, 
errors, and fatals. 

91-10128-5 1090 256 



CUPL 
Reference Manual Error Messages 

warnings - do not prevent CUPL from continuing, but 
indicate a problem that should be corrected. 

errors - allow CUPL to continue but must be corrected before 
future compiles. 

fatals - prevent CUPL from continuing and must be 
corrected. 

Note 

Error messages with indexes greater than 1000 are 
program errors. This section does not individually 
list program errors. Possible causes for program 
errors are bad data in a source file caused by disk 
errors or word processors in document mode; or 
previous errors continuing to propagate unexpected 
circumstances. If the cause of a program error 
cannot be determined, gather as much information 
as possible on the conditions in effect when the error 
occurred, then call CUPL support. 

Error messages report the line number on which the error was 
detected; however, the cause of the error may be on a previous 
line. If the message doesn't seem to apply to the reported line, 
look at preceeding lines for the source of the error. 

0 CUPL ERROR MESSAGES 

This section describes the errors for the CUPL, CUPLX, 
CUPLA, CUPLB, CUPLM, and CUPLC modules. 

91-10128-5 1090 2,57 



Error Messages 
CUPL 

Reference Manual 

O CUPL Module Error Messages 

258 

OOOlck could not open: ''filename" 

Fatal. CUPL cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an 
input. 

0002ck could not execute program: "program name" 

Fatal. CUPL is unable to perform the next step in the 
compilation. Be sure that all of the CUPL program files 
exist on the same directory or disk. 

• 0003ck could not find PATII in ENVIRONMENT 

Fatal. The PATH assignment has not been made in the 
ENVIRONMENT. 

0004ck could not find LIBCUPL in ENVIRONMENT 

Fatal. The LIBCUPL assignment has not been made in 
the ENVIRONMENT. 

0005ck could not find program: "program name" 

Fatal. CUPL is unable to locate the CUPL programs 
using the PATH in the ENVIRONMENT. 

0006ck insufficient memory to execute program: ''filename" 

Fatal. Not enough program storage available to load 
and execute the program. Refer to Chapter 1, 
"Introduction," for the minimum memory requirements 
for the configuration being used. 

0007ck invalid flag: "option flag" 

Fatal. The option flag specified is not one of the 
allowable compilation flags. Verify proper command 
line flags and syntax as discussed in Chapter 2, "Using 
CUPL." 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages , 

0008ck out of memory: "condition" 

Fatal. CUPL has used all available RAM memory which 
has been allocated by the operating system. Check for the 
existence of print spoolers, RAM disks, or other 
memory-resident programs which may decrease the 
amount of memory available to the CUPL application. 

lOxxck program error: "specifics" 

Fatal. An operating system interface problem is 
suspected. Contact Logical Devices, Customer Support. 

0 CUPLX Module EITor Messages 

OOOlcx could not open: "filename" 

Fatal. CUPLX cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an 
input. 

0002cx could not execute program: "program name" 

Fatal. CUPLX is unable to perform the next step in the 
compilation. Be sure that all of the CUPL program files 
exist on the same directory or disk. 

0003cx no label given for command 

Error. One of the preprocessor commands, $DEFINE, 
$UNDEF, $IFDEF, or $IFNDEF, was used without a 
succeeding label. 

0004cx already defined: "label" 

Error. The label was previously defined using 
$DEFINE. To redefine the label, first use $UNDEF to 
undefine the label, and then use $DEFINE to redefine it. 

0005cx string error 

Fatal. All preprocessor label string space has been used. 

91-10128-5 1090 259 



Error Messages 

0006cx $else without $ifdef 

CUPL 
Reference Manual 

Error. An $ELSE preprocessor command was used 
without being preceded by an $IFDEF or $1FNDEF 
command. 

0007cx: $endif without $ifdef 

Error. An $ENDIF preprocessor command was used 
without being preceded by an $1FDEF or $IFNDEF 
command. 

0008cx. $if def nesting t.oo deep 

Error. The level of $1FDEF nesting exceeded twelve. 

0009cx missing $endif 

Error. An $IFDEF preprocessor command was used 
without being succeeded by an $ENDIF command. 

OOlOcx invalid preprocessor command: "$conunand" 

Error. The preprocessor command is unknown. Refer to 
Preprocessor Commands in Chapter 2 for a list of valid 
commands. 

OOllcx disk write error: ''filename" 

Fatal. CUPLX encountered an 1/0 error trying to write 
the indicated file. This error usually occurs when there 
is insufficient disk space. 

0012cx out of memory: "condition" 

Fatal. CUPLX has used all the available RAM memory 
allocated by the operating system. 

0013cx illegal character: "hex value" 

Error. CUPLX has encountered an illegal ASCII value 
in the source file. Make sure the file was created in 
nondocument mode on the word processor. This error 

1090 91-10128-5 



CUPL 
Ref eren.ce Manual Error Messages 

can also be caused by files which were created over a 
serial modem upload/download link. 

0014cx unexpected symbol"'symbol" 

Fatal. CUPLX encountered a symbol that it was not 
expecting. This occurs when certain symbols are 
expected in a particular order and are either incorrect, 
misplaced or misspelled. 

OOlb Repeat nesting t.oo deep 

Fatal. The level of Repeat nesting exceeded two. 

0016cx duplicate Macro function name:"function" 

Error. The Macro function name has already been 
previously defined. A duplicate Macro name will cause 
confusion when they are called. 

0017cx missing Macro name 

Fatal. A Macro was defined without a name. This macro 
will never be accessed. 

0018cx inoonect number of parameters 

Fatal. The number of parameters defined in the Macro 
function did not equal the number of parameters in the 
macro call. All parameters defined in the Macro 
function must be defined in the Macro call. 

0019cx out of range 

Fatal. The index number exceeded 1023. Valid index 
numbers are 0 - 1023. 

0020cx internal stack overflow 

91-10128-5 

Fatal. A mathematical expression was too complex for 
CUPLX to handle. The expression can be reduced by 
eliminating as many parenthetical expressions as· 
possible. Expressions are evaluated from left to right 

1090 261 



" Error Messages 
CUPL 

Reference Manual 

using standard precedence. The user should take 
advantage of this. 

0021cx expression contains undefined symbol:''symbol" 

Fatal. A symbol appearing in the expression has not 
been defined in the source file or predefined by CUPL. 

0022cx invalid library access key 

Fatal. The version of CUPLX is not compatible with the 
version of the device library file. This occurs when 
either CUPLX or the device library, but not both, has been 
updated. 

0023cx invalid library interface 

Fatal. Either the device library was not created using the 
CUPL library manager, CBLD, or CUPLX and the device 
library are not compatible. 

0024cx bad library file: ''library" 

Fatal. Either the device library does not exist or the 
contents of the device library have been damaged. 

lOxxcx program error: "specifics" 

Fatal. An operating system interface problem is 
suspected. Contact Logical Devices customer support. 

0 CUPLA Module Error Messages 

OOOlca could not open: "filename" 

Fatal. CUPLA cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an 
input. 

0002ca invalid number: "number" 

Error. Either the number is used improperly, or a 
previous syntax error caused the number to be used 
improperly. 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

0003ca invalid library access key 

Fatal. The version of CUPLA is not compatible with the 
version of the device library file. This occurs when 
either CUPLA or the device library, but not both, has been 
updated. 

0004ca invalid library interface 

Fatal. Either the device library was not created using the 
CUPL library manager, CBLD, or CUPLA and the 
device library are not compatible. 

0005ca bad library file: ''library" 

Fatal. Either the device library does not exist or the 
contents of the device library have been damaged. 

0006ca device not in library: "device" 

Fatal. Either the specified target device does not exist or 
an entry has not been made in the device library for the 
device. 

0007ca invalid syntax: "symbol" 

Error. Either the symbol is used improperly, or a 
previous syntax error caused the symbol to be u~ed 
improperly. 

~ t.oomany eJTOrs 

Fatal. CUPLA has encountered more than 30 errors. 

0009ca missing: "symbol" 

Error. The missing symbol is required to make the 
specified statement valid. 

OOlOca vector t.oo wide 

Fatal. A variable list has more than 50 members. 

91-10128-5 1090 



Error Messages 
CUPL 

Reference Manual 

264 

OOllca expression already assigned to: "variable" 

Error. The variable (either an intermediate or output 
variable) was previously assigned an expression. Use 
APPEND to make multiple expression assignments for 
the same variable. 

0012ca vector size mismatch 

Error. The number of members in the variable list on the 
left side of the equation does not match the number of 
variables on the right side. 

0013ca undefined function: ''function" 

Error. The variable name used as a function reference 
has no corresponding function definition. Functions 
must be defined before they can be referenced. 

0014ca variable already declared: "variable" 

Error. The variable which was previously assigned an 
expression cannot be reassigned. 

0015ca out of memory: "condition" 

Fatal. CUPLA has used all available RAM memory 
which has been allocated by the operating system. 
Decrease the number of intermediate variables, fields, 
or numbers in order to reduce the size of the symbol table. 

Note 

This error is not a result of insufficient product 
terms in the device to implement a particular 
expression. 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

0016ca invalid number of function arguments: ''number" 

Error. The user has attempted to pass an incorrect 
number of arguments to the user-defined function. The 
number of arguments for the function reference does not 
match the number in the function definition. 

0017ca disk writ.e error: "filename" 

Fatal. CUPLA encountered an 1/0 error trying to write 
the indicated file. This error usually occurs when there 
is insufficient disk space. 

0018ca intermediate var not assigned an expression: 
"variable" 

Error. The intermediate variable was used as an input 
in an expression without having been assigned an 
expression. This error often occurs when a pin or 
intermediate variable in a logic expression is 
misspelled. 

0019ca indexed and non-indexed vars in range or match 
expression 

Warning. A list (or field variable) in a range or match 
expression contains both indexed (variable names 
ending in a number) and nonindexed variables. This 
type of operation cannot produce the expected results 
because of inability to hold relative bit positions in the 
field. It is recommended to use all non-indexed 
variables in a field for portability to future versions of 
CUPL. 

~index too large for range or mat.ch operation 

Error. The index of a variable in a list or field exceeds 
the range or match values. 

00'2lca header it.em already declared 

Error. One of the header statements was duplicated. 

91-101?.8-5 1090 



Error Messages 

0022ca missing header item(s) 

CUPL 
Reference Manual 

Warning. At least one of the header statements is 
missing. 

0023ca invalid range arguments: always true (in range) 

Error. A range has been specified which will always be 
true and is therefore not an actual range. CUPLA 
attempts to minimize range functions and does not allow 
a NULL range such as this. This happens with ranges 
such as (0000 .. FFFF] for a 16-bit address. This error can 
also be given if non-indexed list variables are used in a 
range expression. 

0024ca range or match number larger than variable list 

Warning. The range or match number exceeds the 
width of the bit field it is being applied to. Values 
exceeding the width of the bit field will be ignored. 

0025ca range minimization ermr 

Error. The range reduces to always false, that is, none of 
the bits in the range are active. 

0026ca invalid table statement 

Error. Input numbers cannot be mapped into more than 
one output number. 

0027ca invalid present state number 

Error. The present state number specified is not valid. 
This error can occur whenever the present state has not 
been properly defined as a number using the $DEFINE 
command. 

00'28ca invalid next state number 

Error. The next state number specified is not valid. This 
error can occur whenever the next state has not been 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

properly defined as a number using the $DEFINE 
command. 

0029ca invalid flip-flop type for sequence stat.ement: "type" 

Error. The flip-flop type for this device cannot be used for 
building the requested sequential state machine. 

0030ca int.ermediat.e dependent on itself: "variable" 

Error. The intermediate variable was used in the 
expression defining the same intermediate variable. 
This error often occurs when an intermediate variable 
is misspelled or an output pin expression is being 
defined using feedback without declaring the output 
variable as a pin. 

0031ca invalid minimization level: "level" 

Error. The minimization level specified is invalid. 
Refer to "Running CUPL" in Chapter 2 for valid 
minimization levels. 

0032.ca invalid next stat.e: "hex number' 

Error. The next state value is invalid. This error can 
occur whenever the next state has not been properly 
defined as a number using the $DEFINE command or 
has not been identified as a present state using the 
present command. 

0033ca multiple asynchronous defaults for state: "hex 
number" 

Error. By definition, only one asynchronous default 
expression can be assigned for any one state. The 
resulting expression is the complement of all previous 
conditional (iO asynchronous expressions. 

0034ca multiple synchronous defaults for stat.e: ''hex n~r" 

Error. By definition, only one synchronous default 
expression can be assigned for any one state. The 

91-101?.8-5 1090 261 



Error Messages 
CUPL 

Reference Manual 

268 

resulting expression is the complement of all previous 
conditional (if) synchronous expressions. 

0035ca multiple unconditional statements for state: "hex 
number" 

Error. By definition, only one unconditional 
synchronous statement can be given for any one state. 

~device does not support synchronous st.at.e machines 

Fatal. The device specified for compilation cannot be 
used with the sequence statement since it does not support 
registered operations. 

0037ca duplicat.e present st.at.e: "hex number" 

Error. The present state number was identified in more 
than one PRESENT command. This can occur when 
symbolic state names are used to refer to states, but the 
$DEFINE command, used to define states, assigned the 
same number to more than one symbolic name. 

0038ca target device not specified 

Fatal. The user did not specify a target device on the 
command line and the source file did not contain a 
DEVICE assignment in the header information. 

0039ca line exceeds maximum length 

Error. The statement is greater than 256 characters 
long. Break the line up into shorter statements. 

0040ca invalid or duplicat.e header name: "name" 

Fatal. The NAME field in the header information must 
not be NULL. When more than one device is being 
defined in a logic description file, the NAME field in the 
header information must be unique. 

0041ca don't care(s) not allowed for decimal number, treated 
asO 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

Warning. "Don't-care" values, "X", are valid only for 
binary, octal, and hexadecimal numbers. 

0042ca range or match list completely don't cared, decoded as 0 

Warning. The variable list in a range or match 
operation has been completley "don't-cared," leaving an 
empty variable list. The empty variable list will be 
decoded into a 0. 

lOxxca program error: "specifics" 

Fatal. An operating system interface problem is 
suspected. Contact Logical Devices, customer support. 

0 CUPLB Module Error Messages 

OOOlcb could not open: "filename" 

Fatal. CUPLB cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an 
input. 

0002.cb could not execute program: "program name" 

Fatal. CUPLB is unable to perform the next step in the 
compilation. Be sure that all of the CUPL program files 
exist on the same directory or disk. 

0003cb invalid file: "filename" 

Warning. The file was not created by the current 
version of CUPL. 

0004cb missing or mismatched parentheses: 

Error. The number of open parentheses [(] and close 
parentheses [)] in the specified statement does not match. 

0005cb invalid library access key 

91-1012.8-5 

Fatal. The version of CUPLB is not compatible with the 
version of the device library file. This occurs when 

1090 



Error Messages 
CUPL 

Reference Manual 

either CUPLB or the device library, but not both, has been 
updated. 

0006cb invalid library interface 

Fatal. Either the device library was not created using the 
CUPL library manager, CBLD, or CUPLB and the device 
library are not compatible. 

0007cb bad library file: "library'' 

Fatal. Either the device library does not exist or the 
contents of the device library have been damaged. 

0008cb device not in library: "device" 

Fatal. Either the specified target device does not exist or 
an entry has not been made in the device library for the 
device. 

0009cb pin/node ''number" redeclared: ''variable" 

Error; The same pin number or variable name was used 
more than once in a pin declaration statement. 

OOlOcb pin/node ''number" invalid output: ''variable" 

Error. The variable being assigned an output expression 
was previously declared for an input-only pin. 

001 lcb unknown extension: "extension" 

Error. The extension is unknown or invalid for the 
particular device. Refer to "Extensions" in Chapter 2 for 
a list of valid extensions. Check to make sure the device 
has the capability required. 

0012cb pin/node "number" invalid usage: "variable" 

Fatal. The pin number assigned to the variable is 
invalid for the target device specified. 

0013cb pin/node ''number" invalid output extension or usage: 
"variable" 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

Error. Either the extension is used improperly or it is not 
valid for the assigned pin/node. 

0014cb invalid input: "variable" or pin/node "number" 
invalid input: "variable" 

Error. The variable used as an input was previously 
assigned to an output that is neither bidirectional nor 
feeds back into the input array. 

0015cb device not yet fully supported: "device" 

Fatal. There is an entry for the device in the device 
library, but the device is not fuUy supported by the 
current version of CUPL. 

0016cb no expression assigned t.o: "variable" 

Warning. The variable requires an output expression 
assignment. This warning message is commonly 
given when an outputs in a bank have the same 
capability (reset, preset, and so on) and not aH the 
variables have been assigned the same expression. It is 
given to remind the user that an outputs wiU be affected. 

Not.e 

This warning may be suppressed by assigning the 
variable to 'b'O or 'b'l as appropriate. 

0017cb out of memory: "conditions" 

91-10128-5 

Fata]. CUPLB has used aU avai1able RAM memory that 
has been aUocated by the operating system, typical1y as a 
result of performing a DeMorgan or expansion operation 
on a large expression. If using fixed polarity devices, 
check to make sure that the pin variable dec1aration 

1090 271 



Error Messages 
CUPL 

Reference Manual 

matches the polarity of the device. Also check whether an 
intermediate variable which has been expressed in sum­
of-product form is being complemented. 

Note 

This error does not result from insufficient product 
terms in the device to implement a particular 
expression. 

0018cb missing flip-flop expression for: "variable" 

Error. The matching flip-flop expression for a J-K or S­
R type flip-flop is missing. Both inputs must have 
expressions assigned to them. An input may be assigned 
to 'b'O or 'b'l as appropriate. 

0019cb DeMorgan's theorem invoked for: "variable" 

Warning. DeMorgan's Theorem has been applied to the 
expression assigned to the variable. Unlike D- or T-type 
flip-flops, meaningful results are not guaranteed when 
a DeMorgan equivalent expression is applied to the logic 
input. 

0020cb invalid mix of banked outputs: "variable" 

Error. All outputs in a banked group must be used in the 
same manner. An attempt was made to mix registered 
and nonregistered output types. 

OOOlcb no expression allowed for: "variable" 

Error. Logic expressions are not allowed for reset and 
preset nodes when the output has been specified as 
asynchronous. CUPL will generate the proper defaults. 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

0022cb pin/node "number" conflicting input architectures: 
"variable" 

Error. A fuse-assigned input architecture must be used 
consistently in all expressions. An attempt was made to 
specify both fuse options in different expressions. 

0023cb disk write ermr: ":filename" 

Fatal. CUPLB encountered an 1/0 error trying to write 
the indicated file. This error usually occurs when there 
is insufficient disk space. 

OO'Mcb output defined for node which ·does not exist: "variable" 

Error. Variable is defined for a pin or node number 
which does not exist. 

0005cb output mutually excluded by previous output: "variable" 

Error. Variable usage is mutually excluded by a 
previous usage or other output. A shared product term or 
terms has been defined more than once. 

0026cb disk read ermr, unexpected end of file: "filename" 

Fatal. CUPLB encountered an 1/0 error trying to read 
the indicated file. This error usually occurs when the 
file is being read from damaged media. 

lOxxcb program error: "specifics" 

Fatal. An operating system interface problem is 
suspected. Contact LDI customer support. 

0 CUPLM Module Error Messages 

OOOlcm could not open: ":filename" 

Fatal. CUPLM cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an· 
input. 

91-10128-5 1090 273 



Error Messages 
CUPL 

Ref ere nee Manual 

274 

0002cm could not execute program: "program name" 

Fatal CUPLM is unable to perform the next step in the 
compilation. Be sure that all of the CUPL program files 
exist on the same directory or disk. 

0003cm invalid file: "filename" 

Warning. The file was not created by the current 
version of CUPL. 

0004cm out of memory: "conditions" 

Fatal CUPLM has used all available RAM memory 
which has been allocated by the operating system while 
performing logic reduction. 

Note 

This error does not result from insufficient product 
terms in the device to implement a particular 
expression. 

0005cm disk write error: "filename" 

Fatal CUPLM encountered an 110 error trying to write 
the indicated file. This error usually occurs when there 
is insufficient disk space. 

0006cm invalid library access key 

Fatal. The version of CUPLM is not compatible with the 
version of the device library. This occurs when either 
CUPLM or the device library, but not both, has been 
updated. 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

0007cm invalid library interface 

Fatal. Either the device library was not created using the 
CUPL library manager, CBLD or CUPLM and the device 
library are not compatible. 

0008cm bad library file: "library" 

Fatal. Either the device library does not exist or the 
contents of the device library have been damaged. 

0009cm device is not in library: "device" 

Fatal. Either the specified target device does not exist or 
an entry has not been made in the device libary for the 
device. 

00010cm design too complex for this minimization level 

Fatal. CUPLM has exceeded the array size allowed on 
this machine while reducing a particular expression. 
Specify a more efficient minimization level. 

OOOllcm disk read error, unexpected end of file: ''filename" 

Fatal. CUPLM encountered an 1/0 error trying to read 
the indicated file. This error usually occurs when the 
file is being read from damaged media. 

lOxxcm program error: "specifics" 

Fatal. An operating system interface problem is 
suspected. Contact LDI customer support. 

0 CUPLC Module Error Messages 

OOOlcc could not open: "filename" 

91-10128-5 

Fatal. CUPLC cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an 
input. 

1090 275 



Error Messages 
CUPL 

Reference Manual 

276 

0002cc invalid file: "filename" 

Warning. The file was not created by the current 
version of CUPL. 

0003cc invalid library access key 

Fatal. The version of CUPLC is not compatible with the 
version of the device library. This occurs when either 
CUPLC or the device library, but not both, has been 
updated. 

0004cc invalid library interface 

Fatal. Either the device library was not created using the 
CUPL library manager, CBLD, or CUPLC and the device 
library are not compatible. 

0005cc bad library file: ''library" 

Fatal. Either the device library does not exist or the 
contents of the device library have been damaged. 

0006cc excessive number of product tenns: "variable" 

Error. The number of product terms needed to 
implement the logic expression for the given variable 
exceeds the capacity of the output pin for which it was 
declared. 

0007cc invalid download format(s) 

Warning. At least one of the download formats specified 
is not available for the target device. For example, the 
HL download format is not available for PALs or 
PRO Ms. 

0008cc pin can not be used as input: "variable" 

Error. The pin to which the variable is assigned provides 
no input or feedback capability. 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

0009cc header name undefined, using no_narne 

Error. The NAME field in the header information is 
missing. Since CUPLC uses this name to generate 
download files, the desired file will be created as 
"no_name" along with the appropriate extension. 

OOlOcc disk write error: "filename" 

Fatal. CUPLC encountered an 1/0 error trying to write 
the indicated file. This error usually occurs when there 
is insufficient disk space. 

OOllcc out of memory: "conditions" 

Fatal. CUPLC has used all the available RAM memory 
allocated by the operating system. 

Note 

This error does not result from insufficient product 
terms in the device to implement a particular 
expression. 

0012cc disk read error, unexpected end of file: ''filename" 

Fatal. CUPLC encountered an 110 error trying to read 
the indicated file. This error usually occurs when the 
file is being read from damaged media. 

0013cc conflicting usage of pinnode:''variable" 

91-10128-5 

Error. Variable usage is mutually excluded by a 
previous usage of the pin or pinnode. A shared product 
term or terms has been defined more than once. 

1090 271 



E"or Messages 
CUPL 

Reference Manual 

lOxxcc program eJTOr: "specifics" 

Fatal. An operating system interface problem is 
suspected. Contact Logical Devices customer support. 

0 CSIM ERROR MESSAGES 

This section describes the error messages for the CSIM and 
CSIMA modules. 

O CSIM Module Error Messages 

278 

OOOlsk could not open: '':filename" 

Fatal. CSIM cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an 
input. 

0002sk could not execute program: "program name" 

Fatal. CSIM is unable to perform the next step in the 
simulation. Be sure that all of the CSIM program files 
exist on the same directory or disk. 

0003sk could not find PATH in ENVIRONMENT 

Fatal. The PATH assignment has not been made in the 
ENVIRONMENT. 

0004sk could not find LIBCUPL in ENVIRONMENT 

Fatal. The LIBCUPL assignment has not been made in 
the ENVIRONMENT. 

0005sk could not find program: "program name" 

Fatal. CSIM is unable to locate the CSIM program using 
the PATH in the ENVIRONMENT. 

0006sk insufficient memory to execute program: "filename" 

Fatal. Not enough program storage available to load and 
execute the program. Refer to the System Overview for 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

the minimum memory requirements for the 
configuration being used. 

0007sk invalid flag: "flag" 

Fatal. The specified flag is not a valid option flag. 
Execute CSIM without arguments to get a listing of valid 
option flags. 

008sk out of memory: "condition" 

Fatal. CSIM has used all the available RAM memory 
allocated by the operating system. Check for the 
existence of print spoolers, RAM disks, or other 
memory-resident programs which may decrease the 
amount of memory available to the CUPL application 
program. 

lOxxsk program eJTOr: "specifies" 

Fatal. An operating system interface problem is 
suspected. Contact LDI customer support. 

0 CSIMA Module Error Messages 

OOOlsa could not open: "filename" 

Fatal. CSIM cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an 
input. 

0002sa invalid number: "number" 

Error. Either the number is used improperly, or a 
previous syntax error has caused the number to be used 
improperly. 

0003sa invalid file format: "filename" 

91-10128-5 

Warning. The file was not created by a compatible 
version of CUPL. 

1090 279 



Error Messages 

0004sa invalid library access key 

CUPL 
Reference Manual 

Fatal. The version of CSIMA is not compatible with the 
version of the device library used in the simulation. 
This occurs when either CSIMA or the device library, but 
not both, has been updated. 

0005sa invalid library int.erface 

' Fatal. Either the device library was not created using the 
CUPL library manager, CBLD, or CSIMA and the device 
library are not compatible. 

0006sa bad library file: ''library" 

Fatal. Either the device library does not exist or the 
contents of the device library have been damaged. 

0007sa device not in library: "device" 

Fatal. Either the specified target device does not exist or 
an entry has not been made in the device library for the 
device. 

0008sa invalid output fonnat: "format" 

Warning. The download format is not available for the 
target device; for example, the JEDEC download format 
is not available for PROMS. 

0009sa invalid syntax: "symbol" 

Error. Either the symbol is used improperly, or a 
previous syntax error has caused the symbol to be used 
improperly. 

0010sa expecting device: "device" 

Fatal. The target device is not the same as used when 
CUPL created the absolute file. 

OOllsa unknown symbol: "symbol" 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

Error. The symbol, used in the order statement, was not 
previously defined in the CSIM or CUPL source files. 

0012sa t.oo many symbols: 

Fatal. The number of symbols in the order statement 
exceeds the number of symbols previously defined in the 
CSIM and CUPL source files. 

0013sa excessive test value "value" 

Error. The test vector value is greater than the 
maximum possible value defined in the order statement. 
This error will occur when there are too many test 
values. 

0014sa insufficient test values 

Fatal. The test vector value is less than the minimum 
possible value defined in the order statement. This error 
will occur when there are too few test values. 

0015sa field already defined: ''field" 

Error. The field name was previously used in either the 
CSIM or CUPL source files. 

0016sa t.oo many errors 

Fatal. CSIM has encountered too many errors to 
continue. 

0017sa missing symbol "symbol" 

Error. CSIM expected a keyword. 

0018sa out of memory: "condition'' 

Fatal. CSIM has used all the available RAM memory 
allocated by the operating system. 

0019sa user expected (value) for: "variable" 

91-10128-5 

Error. The test value expected by the user in the .SI file 
did not match the actual value computed by CSIM. 

1090 2111 



E"or Messages 

0020sa unstable output: "variable" 

CUPL 
Reference Manual 

Error. The output variable did not have the same test 
value for two continuous evaluation passes after the 
maximum twenty passes were attempted. Check the logic 
equation for an untestable design. 

0021sa invalid test value: "value" 

Error. Either the test value is an invalid test vector 
symbol or the test value is used improperly; that is, a test 
value of 0 is used for an output. 

0022sa bad fault id: "jedec number" 

Error. The JEDEC number, given as the fault ID, is not 
the address of the beginning of a product term. 

0023sa oould not read file: "filename" 

Fatal. CSIM could not read from the specified file. This 
occurs when the contents of the file have been corrupted. 

0024sa could not write file: "filename" 

Fatal. CSIM could not write to the specified file. This 
occurs when the file is write protected or there is no room 
left on the disk. 

0025sa inoonsistent header information 

Warning. The header information in the CSIM source 
file does not match the header information in the CUPL 
source file used to create the absolute file. 

0026sa missing header item(s) 

Warning. At least one of the header statements is 
missing. 

0027sa old absolute file format for "filename" 

Fatal. The absolute file was created by an incompatible 
version of CUPL. 

1090 91-10128-5 



CUPL 
Reference Manual E"or Messages ' 

0008sa stat.ement t.oo long 

Fatal. The statement exceeds 256 characters. 

0029sa invalid trace level: "number" 

Error. The trace level must be a decimal number in the 
range of 0 through 4. 

0030sa invalid charact.er: "hex value" 

Error. CSIMA has encountered an illegal ASCII value 
in the source file. Make sure the file was created in 
nondocument mode on the word processor. This error 
can also be caused by files which were created over a 
serial modem upload/download link. 

0031sa disk read eITOr, unexpected end of file: ''filename" 

Fatal. CSIMA encountered an 1/0 error trying to read 
the indicated file. This error usually occurs when the 
file is being read from damaged media. 

lOx:xsa program eITOr: "specifies" 

Fatal. An operating system interface problem is 
suspected. Contact Logical Devices customer support. 

0 CBLD ERROR MESSAGES 
This section describes the error messages for the single 
CBLD program module. 

0 CBLD Module Error Messages 

OOOlba invalid syntax: "stat.ement line number" 

Fatal. The specified statement contains a syntax error. 

000'2ba could not open: "filename" 

91-10128-5 1090 283 



Error Messages 
CUPL 

Reference Manual 

Fatal. CBLD cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an 
input. 

0003ba invalid flag: "flag" 

Warning. CBLD will warn that the invalid flag cannot 
be evaluated, and then continue operation. Invoke CBLD 
without arguments for a list of valid flags. 

0004ba invalid library access key 

Warning. The version number of CBLD does not match 
the version number of the device library. This occurs 
when either CBLD or the device library, but not both, has 
been updated. To prevent incompatibility problems, it is 
important that the version numbers match. 

0005ba invalid library interface 

Fatal. Either the device library was not created using 
CBLD, or the library and CBLD have different version 
numbers causing incompatibility problems. 

0006ba bad library file: "library" 

Fatal. Either the device library does not exist or the 
contents have been damaged. 

0007ba device not in library: "device" 

Warning. Either the specified target device does not 
exist or an entry has not been made in the device library 
for the device. 

0008ba inconsistent library access key 

Warning. During a build operation, the target library 
and a source library have different access keys. 

0009ba inconsistent library rev 

Warning. During a build operation, the target library 
and a source library have different revision numbers. 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

0010ba too many devices for target library: "library" 

Fatal. The device library directory is full. 

001 lba device not in library: "device" 

Error. Either the specified device does not exist or an 
entry has not been made in the device library. 

0012ba could not find LIBCUPL in ENVJRONMENI' 

Fatal. The LIBCUPL assignment has not been made in 
the ENVIRONMENT. 

0013ba too many devices on command line 

Error. The user has specified too many devices on the 
command for CBLD to proceed. The maximum 
allowable is determined by the command line limit of 
the operating system. 

0014ba disk write error: "filename" 

Fatal. CBLD encountered an 1/0 error in trying to write 
the indicated file. This error usually occurs when there 
is insufficient disk space. 

0015ba out of memory: "condition" 

Fatal. CBLD has used all the available RAM memory 
allocated by the operating system. Check for the 
existence of print spoolers, RAM disks, or other 
memory-resident programs which may decrease the 
amount of memory available to the CUPL application 
progam. 

lOxxba program error: "specifies" 

91-10128-5 

Fatal. An operating system interface problem is 
suspected. Contact Logical Devices customer support. 

1090 



.. 
Error Messages 

0 PfOC ERROR MESSAGES 

CUPL 
Reference Manual 

This section describes the error messages for the single PTOC 
program module. 

0 PfOC Module Ermr Messages 

OOOlpt invalid syntax: "starement" 

Error. The specified statement contains a PALASM 
syntax error. 

0002pt could not open: ''filename" 

Fatal. PTOC cannot continue because of the failure to 
open the indicated file. Be sure the file exists if it is an 
input. 

OOOOpt string t.oo large: "string' 

Error. The character string exceeds the maximum 
allowed number of characters (256). 

0004pt unrecognized symbol: "symbol" 

Error. The symbol is not a valid PALASM symbol. 

0005pt unknown variable: "variable" 

Error. The variable used in the function table has not 
been defined in the pin list. 

0006pt unknown part: "part" 

Fatal. The part is either not a valid PALASM part 
number or the part number does not start at line 1, 
column 1. 

0007pt missing dashed line 

Error. The dashed line designating the beginning or the 
end of the PALASM function table is missing. 

1090 91-10128-5 



CUPL 
Reference Manual Error Messages 

OOOSpt disk write error: "filename" 

Fatal. PI'OC encountered an 1/0 error in trying to write 
the indicated file. This error usually occurs when there 
is insufficient disk space. 

0009pt out of memory: "condition" 

Fatal. PI'OC has used all the available RAM memory 
allocated by the operating system. Check for the 
existence of print spoolers, RAM disks, or other 
memory-resident programs which may decrease the 
amount of memory available to the CUPL application 
program. 

lOxxpt program error: "specifies" 

Fatal. An operating system interface problem is 
suspected. Contact LDI customer support. 

0 WCSIM Error Messages 

OOOlsw could not open: "filename" 

Fatal. WCSIM cannot continue because of the failure 
to open the indicated file. Be sure the file exists if it is 
an input. 

0002sw out of memory: "condition" 

Fatal. WCSIM has used all the available RAM 
memory allocated by the operating system. Check for 
the existence of print spoolers, RAM disks, or other 
memory-resident programs which may decrease the 
amount of memory available to the CUPL application 
program. 

0003sw too many symbols 

91-10128-5 1090 



Error Messages 
CUPL 

Reference Manual 

288 

Fatal. The number of symbols in the order statement 
exceeds the number of symbols previously defined in 
the CSIM source file. 

0004sw index variable not mat.ched 

Fatal. A variable list was defined using incorrect list 
notation. Refer to List Notation in the Using CUPL 
chapter. 

0005sw too many test vectors 

Fatal. The number of test vectors exceeded 1024. 

1090 91-10128-5 



Device Usage Notes B 

This appendix lists the programmable logic devices (PLDs) 
that require special attention when being used with CUPL and 
CSIM. 

Device Mnemonic: P20X4, P20X8, P20X10 

1. When writing logic equations for devices 
containing an XOR gate, the $ operator may 
not be included inside any parentheses that 
change the evaluation order of the 
expression. 

2. When applying DeMorgan's Theorem to an 
equation involving the XOR gate, the 
expression written first is the one negated. 

Device Mnemonic: FlSS, F157, F159, F179 

91-10128-5 

1. Registers may be used as either D-type or JK­
type, but not both (no dynamic conversion). 

2. The output enable buffer for all registers is 
always controlled by pin 11 (pin 13 for Fl 79). 

3. The load control term (for loading registers 
from the output pins) is not supported. 

4. The product term that drives the register 
control buffer is fixed and may not be 
accessed to drive the complement array. 

1090 



Device Usage Notes 

Device Mnemonic: EP300, Pl8CV8 

CUPL 
Reference Manual 

1. The registered, internal combinatorial and 
110 feedback paths can be selected by using 
the .DFB, .INT and .IO extensions 
respectively. If the feedback type is the same 
as the output (registered feedback for 
registered output), a feedback extension ".IO" 
is required. 

Device Mnemonic: EP600, EP900 

1. Support for registered mode of the macrocell 
consists only of D-type and T-type flip-flops. 
J-K and S-R flip-flops are not supported 
because they don't physicalJy exist in the 
device. They must be emulated with 
exclusive-or equations. 

2. The D-type registered, T-type registered, and 
1/0 feedback paths can be selected by using 
the .DFB, .TFB and .IO extensions 
respectively. If the feedback type is the same 
as the output (D-type registered feedback for 
D-type registered output), then a feedback 
extension is not required. 

Device Mnemonic: FSOI, F502 

1. Both f501 and £502 contain NAND array 
architecture. The NAND gates must be 
defined as complement array nodes. 

2. Although there is only one product term for 
each output pin in £501 and £502, multiple 

1090 91-10128-5 



CUPL 
Reference Manual Device Usage Noles 

product term output can be implemented 
using DeMorgan algorithm and NAND 
node. 

For example, to implement the following 
logical function in f502: 

X=(a&b) 
# (c&d) 
# (e & f); 

Define as follows: 

Pin 19 =X; 

Pinnode 81 = !Xl; 
Pinnode 82 = !X2; 
Pinnode 83 = !X3; 

x = !(!Xl & !X2 & !X3); 
Xl.ca =a & b; 
X2.ca=c& d; 
X3.ca=e &f; 

Device Mnemonic: F506 

1. The registered clock polarity is set by writing 
one .CKMUX expression for all registers 
used in the design. By default, the clock is 
treated as positive-edge triggered. 

Device Mnemonic: F507 

91-10128-5 

1. The register and counter clock polarity are 
set by writing one .CKMUX expression for all 

1090 291 



Device Usage Notes 
CUPL 

Reference Manual 

registers and counter inputs used in the 
design. By default, the clock is treated as 
positive-edge triggered. 

2. The built-in counter input nodes are defined 
using the NODE or PINNODE statements, 
and the .CNT extension. The counter clear 
and hold controls are defined using the 
NODE or PINNODE statements and writing 
either combinatorial or S-R registered 
expressions. 

3. CSIM generates the counter inputs 
automatically, based on the counter control 
logic. 

Device Mnemonic: F16V8, F18V8Z, F20V8 

1. These devices emulate two different PAL 
architectures with their flexible output macro 
configuration. If the F16V8, F18V8Z or F20V8 
device mnemonic is used, the device 
parameters for the proper sub-mode are 
automatical1y selected according to the 
following: 

A. Regist.ered Mode 
Specifying any output pin as registered 
invokes the registered mode (D). Specifying 
any output enable term for a nonregistered 
pin invokes the registered mode (D). 

Mnemonic: 

B. Small Mode 

F16V8D 
F18V8ZD 
F20V8D 

If neither of the above conditions are met, the 

1090 91-10128-5 



CUPL 
Reference Manual Device Usage Noles 

device type defaults to the small mode (S). 

Mnemonic: F16V8S 
F18V8S 
F20V&g 

2. Either the automatic selection mechanism or 
the device mnemonic for the specific sub­
mode may be used. 

Device Mnemonic: G 16V8, G20V8 

91-10128-5 

1. These devices emulate three different PAL 
architectures with their flexible output macro 
configuration. If the G16V8 or G20V8 device 
mnemonic is used, the device parameters for 
the proper sub-mode are automatically 
selected according to the following: 

A. Medium Synchronous Mode 
This mode is automatically chosen when the 
PLD source file has registered output. In the 
medium synchronous mode, specifying an 
output enable term for a registered output pin 
is not flagged as an error by the compiler or 
simulator. In this mode, the output enable 
control for registered pins is common to pin 
11 (GAL16V8) or pin 13 (GAL20V8). 

Mnemonic: G16V8MS 

Input only 
2, 3, 4, 

Output only Input/Output 
12, 13, 14, 

5,6, 7, 
8,9 

Pin 1 = common clock 
Pin 11 = common output enable 

1090 

15, 16, 17, 
18,19 

293 



Device Usage Notes 
CUPL 

Reference Manual 

294 

Mnemonic: 

Input only 
2, 3, 4, 
5, 6, 7, 
8, 9, 10, 
11,14,23 

Output only 

Pin 1 = common clock 
Pin 13 = common output enable 

B. Medium Asynchronous Mode 

G20V8MS 

Input/Output 
15, 16, 17, 
18, 19, 20, 
21,22 

This mode is automatically chosen when the 
PLD source file has an output enable term for 
a non-registered pin and/or. 

Mnemonic: 

Input only 
1, 2, 3, 
4, 5, 6, 
7, 8, 9, 
11 

Mnemonic: 

Input only 
1, 2, 3, 
4, 5, 6, 
7, 8, 9, 
10, 11, 13, 
14,23 

Output only 
12, 19 

Output only 
15,22 

C. Small Mode (Default) 

G16V8MA 

Input/Output 
13, 14, 15, 
16,17,18 

G20V8MA 

Input/Output 
16, 17, 18, 
19,20,21 

If none of the above are met, the device type 
defaults to the small mode. In this mode, the 
Input/Output pins are configured as either 

1090 91-10128-5 



CUPL 
Reference Manual Device Usage Notes , 

Input Only or Output only (that is, no 
feedback can occur) . 

Mnemonic: 

Input only 
1,2, 3, 
4,5,6, 
7,8,9, 
11 

Mnemonic: 

Input only 
1,2,3, 
4,5,6, 
7,8,9, 
10, 11, 13, 
14,23 

Output only 
15, 16 

Output only 
18,19 

G16V8S 

Input/Output 
12, 13, 14, 
17,18,19 

G20V8S 

Input/Output 
15, 16, 17, 
20,21,22 

2. Either the automatic selection mechanism or 
the device mnemonic for the specific sub­
mode desired can be used. 

Device Mnemonic: G6001 

1. 

2. 

91-10128-5 

The output logic macrocell feedback paths 
can be selected as internal only, 1/0 only, or 
both, via the .INT and .IO extensions. If the 
feedback type is the same as the output 
(internal feedback for registered output), 
then a feedback extension is not required. 

The output logic macrocells can be treated as 
buried register or combinatorial nodes, 
allowing the pins to be treated as inputs. The 
buried nodes must be defined in NODE or 

1090 



Device Usage Notes 
CUPL 

Reference Manual 

PINNODE statements and the input pins 
defined in PIN statements. 

3. All input pins can be configured as 
registered or latched inputs via the .DQ and 
.LQ extensions, respectively. Each input pin 
in a group must be treated in the same 
manner. 

Device Mnemonic: RA10P8, RA11P8, RA12P8 

1. Active-HI chip enables are simulated as 
Active-LO. 

Device Mnemonic: P10P8V, P12P6V, P14P4V, P16P2V 

1. The output macrocell for these devices is 
always configured for the OR path, utilizing 
double the product terms of a standard PAL. 
The default bypass path (lower power) and 
XOR path are not supported. · 

Device Mnemonic: Pl6P8V, P16RP4V, Pl6RP6V, 
P16RP8V 

1. The output macrocell for these devices is 
always configured for the default bypass 
path. The OR path (double product terms at the 
expense of an output pin) and XOR path are 
not supported. 

Device Mnemonic: P22CV10, P22VP10, P23S8 

296 

1. The registered and 1/0 feedback paths can be 
selected by using the .DFB and .IO 

1090 91-10128-5 



CUPL 
Reference Manual Device Usage Notes 

extensions respectively. If the feedback type 
is the same as the output (registered feedback 
for registered output), then a feedback 
extension is not required. 

Device Mnemonic: P29M16 

91-10128-5 

1. The output feedback paths can be selected as 
registered only, latched only, 1/0 only, 
registered and 1/0 or latched and 110 via the 
.DFB, .LFB and .IO extensions. If the 
feedback type is the same as the output 
(registered feedback or registered feedback 
for registered output), then a feedback 
extension is not required. 

2. The dual feedback outputs can be treated as 
buried register or latched nodes, allowing the 
pins to be treated as inputs. The buried nodes 
must be defined in NODE or PINNODE 
statements and the input pins defined in PIN 
statements. 

3. The dual feedback outputs can be treated as 
registered or latched inputs, via the .DQ and 
.LQ extensions. 

4. Individual clock control is set by writing a 
.CKMUX expression. By default, the clock 
control is set to clock/latch enable pinl, 
positive edge triggered. 

5. Individual output enable control is set by 
writing either a .OEMUX expression for 
common control, or a .OE expression for 
banked product term control. By default, the 
output enable control is set to common output 
enable pin 11. 

1090 297 



Device Usage Notes 

Device Mnemonic: P29MA16 

CUPL 
Reference Manual 

1. The output feedback paths can be selected as 
registered only, latched only, 1/0 only, 
registered and 1/0 or latched and 1/0 via the 
.DFB, .LFB and .IO extensions. If the 
feedback type is the same as the output 
(registered feedback for registered output), 
then a feedback extension is not required. 

2. The dual feedback outputs can be treated as 
buried register or latched nodes, allowing the 
pins to be treated as inputs. The buried nodes 
must be defined in NODE or PINNODE 
statements and the input pins defined in PIN 
statements. 

3. The dual feedback outputs can be treated as 
registered or latched inputs via the .DQ and 
.LQ extensions. 

4. Individual clock or latch enable control is set 
by writing either a .CKMUX expression for 
syndironous control or a .CK expression for 
asynchronous control. By default, the clock 
control is set to clock/latch enable pin 1, 
positive edge triggered. 

5. Individual output enable control is set by 
writing either a .OEMUX expression or 
common control, or by a .OE expression for 
banked product term control. By default, the 
output enable control is set to common output 
enable pin 11. 

1090 91·10128-5 



CUPL 
Reference Manual Device Usage Notes 

Device Mnemonic: P32VX10 

1. Combinatorial outputs have active low 
polarity, whereas registered outputs have 
programmable polarity. 

2. The output feedback paths can be selected as 
registered only, 1/0 only, or both, via the 
.DFB and .IO extensions. If the feedback type 
is the same as the output (registered feedback 
for registered output), then a feedback 
extension is not required. 

3. The outputs can be treated as buried register 
nodes allowing the pins to be treated as 
inputs. The buried nodes must be defined in 
NODE or PINNODE statements and the input 
pins defined in PIN statements. 

Device Mnemonic: PLX448 

1. 

2. 

91-10128-5 

The output feedback paths can be selected as 
internal only, 1/0 only, or both, via the .INT 
and .IO extensions. If the feedback type is the 
same as the output (internal feedback for 
registered output), then a feedback extension 
is not required. 

The outputs can be treated as a buried register 
or combinatorial nodes, allowing the pins to 
be treated as inputs. The buried nodes must 
be defined in NODE or PINNODE statements 
and the input pins defined in PIN 
statements. 

1090 



Device Usage Notes 

3. 

CUPL 
Reference Manual 

The 48mA output pins can be programmed to 
behave as open collector outputs, by writing 
.TEC expressions. 

Device Mnemonic: V750 

1. The output feedback paths can be selected as 
registered only, 1/0 only, or both, via the 
.DFB and .IO extensions. If the feedback type 
is the same as the output (registered feedback 
for registered output), then a feedback 
extension is not required. 

2. The outputs can be treated as buried register 
nodes allowing the pins to be treated as 
inputs. The buried nodes must be defined in 
the NODE or PINNODE statements and the 
input pins defined in PIN statements. 

3. When an output requires more product terms 
than its sum term provides, CUPL uses the 
sum term pairing capability to increase the 
number of available product terms. This will 
cause an incorrect fuse map to be generated if 
the associated buried register is also being 
used. 

Device Mnemonic V2500 

1. The output feedback paths can be selected as 
registered with 1/0 or as combinatorial. 
When a registered output is specified, the .IO 
extension is required for the 110 feedback. 

2. The outputs can be treated as buried register 
nodes allowing the pins to be treated as 
inputs. The buried nodes must be defined in 

1090 91-10128-5 



CUPL 
Reference Manual Device Usage Notes 

the NODE or PINNODE statements and the 
input pins defined in PIN statements. 

3. When an output requires more product terms 
than its sum term provides, CUPL uses the 
sum term pairing capability to increase the 
number of available product terms. This will 
cause an incorrect fuse map to be generated if 
the associated buried register is also being 
used. 

Device Mnemonic: PLD9000 

This is an imaginary device designed to represent a 
generalized PLA It is intended to be used for designs which 
are not targeted for any particular device. 

The device contains 100 pins, 45 inputs, 50 outputs, and 5 
clocks. Each output has individual output enable control and 
can be configured in one of four modes.: combinatorial/active 
low, combinatorial/active high, D-registered/active low, or D­
registered/active high. There are no power and ground pins. 
The pin organization is as follows: 

91-10128-5 

1. Pin organization: 

Pin 1 - A common register clock input for output pins 
51-100. 

Pin 2 - A secondary common register clock input for 
output pins 61- 70. 

Pin 3 - A secondary common register clock input for 
output pins 71 - 80. 

Pin 4 - A secondary common register clock input f<_>r 
output pins 81- 90. 

1090 301 



CUPL 
Device Usage Notes Reference Manual 

Pin 5 - A secondary common register clock input for 
output pins 91- 100. 

Pins 6-50- Input pins. 

Pins 51-100 Input-Output pins. 

2. Banked clock control is set by writing 
.CKMUX expressions. By default the clock 
control is set to clock pin 1. 

3. There are 200 product terms organized in a 
PLA format, so each is available to any 
output. 

1090 91-10128-5 



CUPL 
Reference Manual Device Usage Notes 

91-10128-5 1090 303 



Download Formats c 
This appendix describes downloadable file formats and the 
.DOC file. 

0 DOWNLOADABLE FILE FORMATS 

This section describes the JEDEC, ASCII-hex, and HL 
standards for data transfer to a device programmer. 

O JEDEC Format 

The JEDEC JC-42.1 standard consists of a transmission that 
begins with an ASCII Start-of-Text (STX) character, followed 
by various fields of information: an ASCII End-of-Text (ETX) 
character, and a transmission checksum. The allowed legal 
characters consist of printable ASCII characters (hex 20 
through 7E) and the four control characters listed in table C-1. 

Table C-1. Control Characters 

STX Start-of-Text hex02 

hex03 

hexOA 

hex OD 

ETX 

LF 

CR 

End-of-Text 

Line Feed 

Carriage Return 

Figure C-1 shows a sample JEDEC file created by using CUPL 
and CSIM. 

<STX> 

Cu pl 

Device 

91-10128-5 

3.0 Serial # 0-00000-000 

pl6r4 Library DLIB-h-24-11 

1090 



CUPL 
Reference Manual 

Download 
Formats 

Created 

Name 

Part no 

Revision 

Date 

Designer 

Company 

Assembly 

Location 

*QP20 

*QF2048 

*GO 

*FO 

Tue Jul 07 15:22:33 1987 

WAITGEN 

P9000183 

02 

03/14/85 

Osann 

P-CAD 

PC Memory 

Ul06 

*LOOOOO 10110101110111111100111000110111 

*C0307 

*QV. 

*P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

*VOOOl CXXXXXllONOHHLLZXXHN 

*<<ETX>6AA1 

Figure C-1. Sample JEDEC File 

The rest of this section describes the fields in the sample file in 
Figure C-1. 

The design specification is the first field in the format. It 
includes all information between the STX and the first 
asterisk (*). This information is for documentation purposes 
only, and consists of the header information from the CUPL 
source file along with the version number of the compiler and 
device library. 

Each of the fields after the design specification field begins 
with one of the single character identifiers shown in Table C-
2. 

91-10128-5 1090 



Download 
Formats 

CUPL 
Reference Manual 

306 

Table C-2. Field Identifiers 

A-* N-* 

B-* 0- * 

C - Fuse check sum P-Pin Order 

D - Device type Q-Value 

E- * R- * 

F - Default fuse state S-* 

G - Security fuse T-* 

H-* U- * 

I-* V - Test vector 

J - * W-* 

K- * X- * 

L - Fuse link data Y- * 

M-* Z-* 

* -indicates reserved for future use 

Characters that have not been defined are reserved for future 
use. 

Fields can be identified by multiple characters; for example, 
QF to indicate a value default fuse state. 

The device field (D) is no longer supported. In CUPL 1.0 the 
device field contained a four-digit code that identified the 
device to be programmed. However, lack of consistent support 
by the device programmer manufacturers led to this field 
being dropped from the JEDEC file format for CUPL 2.0 and 
higher. 

A value field, QP, describes the number of pins for the device; 
another value field, QF, describes the total number of 
programmable fuses in the device. Both values are decimal 
numbers. 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

The security fuse field (G) instructs the programmer to disable 
(GO) or enable (Gl) the programming of the security fuse on the 
devices that contain this option. A single space follows the 
number for compatibility with certain manufacturers' 
equipment. 

The default fuse state field (F) defines the state of the fuses that 
are not explicitly defined in the L field. Since CUPL 3.0 does 
not transmit all fuse states (to speed data transmission on 
large designs), this field must be recognized by the device 
programmer. 

The fuse link field (L) contains the actual data. Each device 
fuse link is assigned a decimal number, starting with 0000. 
Each numbered fuse has two possible states: binary 0 specifies 
a low resistance link (FUSE INTACT) and binary 1 specifies 
a high resistance link (FUSE BLOWN). 

Note 

Some manufacturers specify "test fuses" for purposes 
of running AC parameter tests on the device before 
programming. These fuses are not part of the fuse 
link data. 

The L identifier begins the field and is followed by the number 
of the first fuse being defined in the field. When more than 
one binary value is specified, the additional values are 
assigned to fuses numbered consecutively from the first fuse 
number. 

The next field is a fuse checksum (C) field. The checksum is a 
16-bit hexadecimal value which is computed by adding 8-bit 
words formed from the specified state of each fuse link in the 

91-10128-5 1090 



Download 
Formats 

CUPL 
Reference Manual 

device. Link number 0 is the least-significant bit (lsb) and 
link number 7 is the most significant bit (msb) of word 0. 
-Unspecified bits in the final 8-bit word are set to zero before 
computing the checksum. In the Figure C-1 the first thirty-two 
fuses generate four 8-bit words as follows: 

msb lsb 

wordOO 1 0 1 0 1 1 0 1 --> AD 
word 01 1 1 1 1 1 0 1 1 --> FB 
word 02 0 1 1 1 0 0 1 1 --> 7J 
word 03 1 1 1 0 1 1 0 0 --> EC 

0307 

The optional test vector field (V) is created by running CSIM 
with the -j option flag. It contains functional test information 
for each device pin. The QV value field defines the number of 
test vectors which the file contains. Test vectors are numbered 
starting with 0001 and applied in numerical order to the device 
being tested. Table C-3 lists the valid conditions for any pin. 

Table C-3. Test Conditions 

0 Drive input LO (0 volts) 

1 Drive input HI (+5 volts) 

c - Drive input LO, HI, LO 

K - Drive input HI, LO, HI 

L - Test output LO (0 volts) 

H - Test output HI ( +5 volts) 

z - Test output for high impedance 

x - Input undefined, Output untested 

N - Power pins and Outputs not tested 
p - Preload registers 

Value given applied to Q' of register 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

The test conditions, as they appear in the vector, are applied to 
the device pins according to the sequence given in the pin 
order (P) field. In this example (figure C-1), the first condition 
is applied to pin 1 and the last to pin 20 of a 20 pin device. The C 
and K driving signals are presented after all other inputs are 
stable. The L, H, and Z conditions are tested after all inputs 
have been stabilized, including C and K. 

The P driving signal on the clock pin is valid only for those 
devices capable of preloading registers with a supervoltage. 
Devices which use dedicated 'ITL-level preload pins must use 
the C or K driving signals on these pins to preload the 
registers. 

The end of transmission is signified with a non-printing 
ASCII ETX character followed immediately by a 
transmission checksum (sum-check) of four ASCII hex 
characters. The checksum is the 16-bit sum of the ASCII values 
of all the transmitted characters between, and including, the 
starting STX and ending ETX characters. In the sample file 
(figure C-1), the transmission checksum calculates to 46C9, 
when taking into account a non-printing carriage return and 
line feed at the end of every line. 

0 ASCII-Hex Format 

The ASCII-hex format is generated for PROMs only. Data in 
this format is organized in sequential bytes separated by the 
execute character (space). Characters immediately preceding 
the execute character are interpreted as data bytes. The format 
may express the data bytes as either a single hex digit (x4 
PROMs) or two hex digits (x8 PROM's) 

An ASCII STX [Ctrl]-[B] character starts the transmission. A 
four-digit hexadecimal address, preceded by a $ , A , and 
comma ($A,) starts each line of 16 data bytes. An ASCII ETX 
[Ctrl]-[C] ends the data portion of the transmission. It is 
followed by forty spaces. Figure C-2 shows a sample hex file. 

91-10128-5 1090 



Download 
Formats 

CUPL 
Reference Manual 

D 

310 

AB 

$AOOOO,OO 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 

$A0010,10 11 12 13 14 15 16 17 18 19 lA 1B lC 1D lE lF 

$A0020,20 21 22 23 24 25 26 27 28 292A2B2C 2D 2E 2F 

$A0030,30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 

Ac 

$S07EO, 

Figure C-2. Sample Hex File 

HLFormats 

The HL Download Format is generated for Signetics IFL 
devices only. Each device has its own unique format. All 
formats begin with STX [Ctrl]-[B] and end with ETX [Ctrl]-[C]. 
The following sections describe the format for each type of IFL 
device. 

828100/101 FPLA 

The active-level identifier *A is followed by the states of the 
active levels for F7 to FO, where H denotes active-HI and L 
denotes active-LO. The product terms are described by the *P 
identifier followed by a space and the P-term number. The 
input variable identifier *I is followed by the input variables 
115 to IO and then the output function identifier *F followed by 
F7 to FO. Figure C-3 shows a sample file in this format. 

AB 

*A LHLHLHLH 

*P 00 *I HHHHLLLLHHHHLLLL *F A.A.A.A. 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

*P 47 *I LLLLLLLLLLLLLLLL *F ,,,,AAAA 

"C 

Figure C-3. Sample 828100/101 FPLA File 

8?S103FPGA 

The product terms start with the *G identifier followed by a 
space and the term number. This is followed by the active­
level identifier *A and the active-level data. The input 
variable identifier *I is followed by the input variables 115 to 
IO. Figure C-4 shows a sample file in this format. 

"B 

*G 00 *A L *I HHHHLLLLHHHHLLLL 

*G 47 *A H *I LLLLLLLLLLLLLLLL 

"C 

Figure C-4. Sample 828103 FPGA File 

828105 FPI.S 

The preset I output enable option is entered using the *A 
identifier followed by H (preset) or L (output enable). The 
transition terms are described by the term identifier * T 
followed by the term number. The complement array 
identifier *C is followed by the value of this term. The input 
variables for the term are given with the input variable 
identifier *I followed by 115 to IO. The present state of the flip­
flops is given with *P foUowed by P5 to PO. The next state 
values foUow with *N and N5 to NO. The output function is 
described as *F followed by F7 to FO. Figure C-5 shows a 
sample file in this format. 

"B 

*AL 

91-10128-5 1090 311 



Download 
Formats 

CUPL 
Reference Manual 

312 

*T QO *C.*ILLLLHHHHLLLLHHH*PHHHLLL 

*NHHHLLL *F HHHHHHHH 

*T 47 *C A *I LL------- *P LLLLLL 

*N HHHHHH *F HHHLLL-

Figure C-5. Sample 828105 FPLS File 

828151FPGA 

The direction of the 1/0 pins follows the *DIR identifier, and 
the output polarity follows the *POL identifier. The product 
terms are described by the *P identifier followed by a space 
and the P-term number. 

Control term numbers start with a *D and then the term 
number. The input variable identifier *I is followed by the 
input variables 15 to IO and then the 1/0 feedback identifier *B 
followed by BU to BO. Figure C-6 shows a sample file in this 
format. 

*DIR HHLLHHLLHLHL *POL HHHHLLLLHHLL 

*P 00 *I HHLLLL *B HL--HL--LLHH 

*P 11 *I LLLLLL *B HHHHLLLLHHLL 

*D 02 *I ----HH *B ----LLLLLL-

*D 00 *I LLLL-- *B HHHHHHLLLL-

Figure C-6. Sample 828151 FPGA File 

82S153FPLA 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

The output polarity identifier *POL is followed by the states of 
the active levels for outputs B9 to BO, where H denotes active-HI 
and L denotes active-LO. The product terms are described by 
the *P identifier followed by a space and the P-term number. 
Control term numbers start with a D and then the term 
number. The input variable identifier *I is followed by the 
input variables I7 to IO. The feedback variables B9 to BO follow 
the *BI identifier and the output functions B9 to BO follow the 
*BO identifier. Figure C-7 shows a sample file in this format. 

"B 

*POL HHLLHHLLHH 

*P 00 *I --HH--LL *BI --HL------ *BO A •. A .• A •• A 

*P 31 *I ------HH *BI HLHLHLHLHL *BO .••. AA •••• 

*P D9 *I --HHHHHH *BI ----HHHHLL 

*P DO *I LLLLLLLL *BI ---------

"C 

Figure C-7. Sample 828153 FPLAFile 

8'1S155 FPI.43 

The output enable modes for groups A and B follow the * E 
identifier. The flip-flop mode for each register follows an 
*F/F identifier. The polarity for the output pins follows an 
*POL identifier. The transition terms are described by the 
term identifier *T followed by the term number. The 
complement array identifier *C is followed by the value of this 
term. The input variables for the term are given with the input 
variable identifier *I followed by I3 to IO. The 1/0 feedback 
data follows the *B identifier. The present state of the flip­
flops is given with *QP followed by Q3 to QO. The next state 
.values follow with *ON and 03 to 00. The preset terms for 

91-10128-5 1090 313 



Download 
Formats 

CUPL 
Reference Manual 

314 

groups PB and PA follow the preset identifier *P. The reset 
terms for groups RB and RA follow the reset identifier *R. The 
-output function is described as *BO followed by B7 to BO. The 
terms for flip-flop control, reset, preset, load, and output enable 
fo1low. Figure C-8 shows a sample file in this format. 

*E AA *F/F A.A. *POL HLHLLHLH 

*T 00 *C • *I HHLL *BI HL--HLHL *QP LH-

*QN LLHH *P .• *R .• *BO .A.A.A.A 

*T 31 *C A *I LLHH *BI ----HLHL *QP HHLL 

*QNHHHH *P .A *R .A *BO .. A.AA.A 

*T FC *C *I LLLL *BI LLLLHHHH *QP LLHH 

*T LB *C *I HLLL *BI --LL--LL *QP HHHH 

*T LA *C *I LL-- *BI LLLLHHHH *QP --LL 

*T 03 *C *I LLLL *BI LLLLLLL- *QP LLHH 

*T DO *C • *I LLLL *Bl LLHHHHLL *QP HLLH 
~c 

Figure C-8. Sample 828155 FPLS File 

828157 FPI.S 

The output enable modes for groups A and B follow the * E 
identifier. The flip-flop mode for each register fo1lows a *F/F 
identifier. The polarity for the output pins follows a *POL 
identifier. The transition terms are described by the term 
identifier *T followed by the term number. The complement 
array identifier *C is followed by the value of this term. The 
input variables for the term are given with the the input 
variable identifier *I followed by 13 to IO. The 1/0 feedback 
data follows the *BI identifier. The present state of the flip-

1090 91-10128-5 



CUPL 
Ref ere nee Manual 

Download 
Formats 

flops is given with *QP followed by Q5 to QO. The next state 
values follow with *QN and Q5 to QO. The preset terms for 
group PA follows the preset identifier *P. The reset terms for 
group PA follows the reset identifier *R. The output function is 
described as *BO followed by B5 to BO. The terms for Flip-Flop 
control, reset, preset, load and output enable follow. Figure C-9 
shows a sample file in this format. 

*E AA *F/F A.A. *POL HLHLLHLH 

*T 00 *C . *I HHLL *BI HL--HL *QP LH--HL 

*QN LLHHHL *P . *R . *BO .A.A.A 

*T 31 *C A *I LLHH *BI --HLHL *QP HHLLHH 

*QNHHHHLL *P A *R A *BO •. AA.A 

*T FC *C *I LLLL *BI LLLLHH *QP LLHHHH 

*T PB *C *I *BI ----HH *QP ----LL 

*T RB *C *I HHHL *BI HHLLLL *QP HLLLHH 

*T LB *C *I HLLL *BI --L-LL *QP HHHHLL 

*T LA *C *I LL-- *BI LLLHHH *QP --LLHH 

*T D3 *C *I LLLL *BI LLLLL- *QP LLHH-

*T DO *C . *I LLLL *BI LLHHLL *QP HLLHLL 

~c 

Figure C-9. Sample 828157 FPLS File 

8'lS159 FPlS 

The output enable modes for groups A and B follow the * E 
identifier. The flip-flop mode for each register follows a *F/F 
identifier. The polarity for the output pins follows a *POL 
identifier. The transition terms are described by the term 
identifier. *T followed by the term number. The complement 
array identifier *C is followed by the value of this term. The 

91-10128-5 1090 315 



Download 
Formats 

CUPL 
Reference Manual 

316 

input variables for the term are given with the the input 
variable identifier *I followed by 13 to IO. The 1/0 feedback 
data follows the *BI identifier. The present state of the flip­
flops is given with *QP followed by Q7 to QO. The next state 
values follow with *QN and Q7 to QO. The output function is 
described as *BO followed by B7 to BO. The terms for Flip-Flop 
control, reset, preset, load and output enable follow . Figure C-
10 shows a sample file in this format. 

~B 

*E AA *F/F A.A.A.A. *POL LHLH 

*T 00 *C . *I HHLL *BI HL-- *QP HHLLHH­

*QN LLHHLLHH *BO .A.A 

*T 31 *C A *I LLHH *BI ---- *QP --HHHHLL 

*QN LLLLHHHH *BO ••• A 

*T FC *C *I LLLL *BI LLLL *QP LLLLHHHH 

*T PB *C *I LLLL *BI LLLL *QP LLLLHHHH 

*T RB *C *I LLLL *BI LLLL *QP LLLLHHHH 

*T LB *C *I LLLL *BI LLLL *QP LLLLHHHH 

*T PA *C *I LLLL *BI LLLL *QP LLLLHHHH 

*T RA *C *I LLLL *BI LLLL *QP LLLLHHHH 

*T LA *C *I LLLL *BI LLLL *QP LLLLHHHH 

*T D3 *C *I LLLL *BI LLLL *QP LLLLHHHH 

*T DO *C • *I LLLL *BI LLLL *QP LLLLHHHH 

~c 

Figure C-10. Sample 828159 FPIB File 

828161 FPIA 

The active level identifier *A is followed by the states of the 
active levels for F7 to FO, where H denotes active-HI and L 
denotes active-LO. The product terms are described by the *P 

1090 91-10128-5 



CUPL 
Ref ere nee Manual 

Download 
Formats 

identifier followed by a space and the P-term number. The 
input variable identifier *I is then followed by the input 
variables Ill to IO and the output function identifier * F 
followed by F7 to FO. Figure C-11 shows a sample file in this 
format. 

"B 

*A LHLHLHLH 

*P 00 *I LLLLHHHHLLLL *F A.A.A.A. 

*P 47 *I LLLLLLLLLLLL *F •••• AAAA 

"C 

Figure C-11. Sample 828161 FPLA File 

828162FPGA 

The output polarity identifier *POL is followed by the states of 
the active levels for outputs F4 to FO. The product terms start 
with the * G identifier followed by a space and the term 
number. The input variable identifier *I is followed by the 
input variables 115 to IO. Figure C-12 shows a sample file in 
this format. 

"B 

*POL HHLL 

*G 00 *I HHHHLLLLHHHHLLLL 

*G 04 *! LLLLLLLLLLLLLLLL 

"C 

Figure C-12. Sample 82$162 File 

828163FPGA 

91-10128-5 1090 317 



Download 
Formats 

CUPL 
Reference Manual 

318 

The output polarity identifier *POL is followed by the states of 
the active levels for outputs F8 to FO. The product terms start 
with the * G identifier followed by a space and the term 
number. The input variable identifier *I is foJlowed by the 
input variables Ill to IO. Figure C-13 shows a sample file in 
this format. 

"B 

*G 00 *I HLLLHHHHLLLL 

*G 08 *I LLLLLLLLLLLL 

"C 

Figure C-13. Sample 828163 FPGAFile 

828167 FPI.S 

The preset I output enable option is entered using the *A 
identifier followed by H (preset) or L (output enable). The 
transition terms are described by the term identifier * T 
followed by the term number. The complement array 
identifier *C is followed by the value of this term. The input 
variables for the term are given with the input variable 
identifier *I followed by Il3 to IO. The present state of the flip­
flops is given with *P followed by P7 to PO. The next state 
values follow with *N and N7 to NO. The output function is 
then described as *F followed by F3 to FO. Figure C-14 shows a 
sample file in this format. 

"B 

*AL 

*T 00 *C .*ILLHHHHLLLLHHHH*PHHHLLLHH 

*NHHHLLLLL *F HHHH 

*T 47 * A *I LL------------ *P --LLLLLL 

*N HHLLHHHH *F HL-

1090 91-10128-5 



CUPL 
Reference Manual 

Figure C-14. Sample 828167 FPIS File 

91-10128-5 1090 

Download 
Formats 

319 



Download 
Formats 

828168 FPI.S 

CUPL 
Reference Manual 

The presetloutput enable option is entered using the *A 
identifier followed by H (preset) or L (output enable). The 
transition terms are described by the term identifier * T 
followed by the term number. The complement array 
identifier *C is followed by the value of this term. The input 
variables for the term are given with the input identifier *I 
followed by Ill to IO. The present state of the flip-flops is given 
with *P followed by P9 to PO. The next state values follow with 
*N and N9 to NO. The output function is described as * F 
followed by F3 to FO. Figure C-15 shows a sample file in this 
format. 

*AL 

*T 00 *C.*ILLHHHLLLHHHH*PHHHLLLHHLH 

*NHHLHHLLLLL *F HHHH 

*T 47 *C A *I LL------------ *P --LLLLLL­

*N HHLLHHHH-L *F HL-

Figure C-15. Sample 828168 FPLS File 

82S173FPLA 

The output polarity identifier *POL is followed by the states of 
the active levels for outputs B9 to BO, where H denotes active-HI 
and L denotes active-LO. The product terms are described by 
the *P identifier followed by a space and the P-term number. 
Control term numbers start with D and then the term number. 
The input variable identifier *I is followed by the input 
variables Ill to IO. The feedback variables B9 to BO fo11ow the 
*BO identifier. Figure C-16 shows a sample file in this format. 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

"B 

*POL HHLLHHLLHH 

*P 00 *I --HH--LLHH *BI --HL------ *BO A •. A .. A •• A 

*P 31 *I LL------HH *BI HLHLHLHLHL *BO •... AA •... 

*P D9 *I LL--HHHHHH *BI ----HHHHLL 

*P DO *I --LLLLLLLL *BI ---------

"C 

Figure C-16. Sample 828173 FPLA File 

828179 FPI.S 

The output enable modes for groups A and B follow the * E 
identifier. The flip-flop mode for each register follows a *F/F 
identifier. The polarity for the output pins follows a *POL 
identifier. The transition terms are described by the term 
identifier *T followed by the term number. The complement 
array identifier *C is followed by the value of this term. The 
input variables for the term are given with the input variable 
identifier *I followed by 17 to IO. The I/O feedback data follows 
the *BI identifier. The present state of the flip-flops is given 
with *QP followed by Q7 to QO. The next state values follow 
with *QN and Q7 to QO. The output function is described as 
*BO followed by B7 to BO. The terms for flip-flop control, reset, 
preset, load, and output enable follow. Figure C-17 shows a 
sample file in this format. 

91-10128-5 

"B 

*E AA *F/F A.A.A.A. *POL LHLH 
*T 00 *C . *I HHLLHHLH *BI HL-- *QP HHLLHH­

*QN LLHHLLHH *BO .A.A 

*T 31 *C *l LLH--LHH *BI LLLL *QP --HHHHLL 
*QN LLLLHHHH *BO •.. A 

*T FC *C • *l LLLHHHHL *BI LLLL *QP LLLLHHHH 

1090 321 



Download 
Formats 

CUPL 
Reference Manual 

*T PB *C *I LLLHLHLL *BI LLLL *QP LLLLHHHH 
*T RB *C *I LLLLLLHL *BI LLLL *QP LLLLHHHH 
*T LB *C *I LLLHHHHL *BI LLLL *QP LLLLHHHH 
*T PA *C *I LLLLHLHL *BI LLLL *QP LLLLHHHH 
*T RA *C *I LLLL---- *BI LLLL *QP 
*T LA *C *I LLLL---H *BI LLLL *QP LLLLHHHH 
*T D3 *C *T LLLLLLLL *BI LLLL *QP LLLLHHHH 

*T DO *C . *I HHHHHHHH *BI LLLL *QP LLLLHHHH 
he 

Figure C-17. Sample 828179 FPl.S File 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

0 DOCUMENTATION FILE FORMAT 

This section describes the format for the documentation file 
(filename .DOC), including fuse plot information. A 
documentation file can be generated by specifying the -x 
option flag when running CUPL. Specifying the -f option 
generates a fuse plot in the documentation file. 

Figure C-18 shows a sample documentation file. 

9l-10J2.8..5 1090 



Download 
Formats 

CUPL 
Reference Manual 

324 

WAITGEN.DOC 

............................•....•..................•...... 
Wait gen ........................................................... 

CUPL 
Device 
Created 
Name 
Part no 
Revision 
Date 
Designer 
Company 
Assembly 
Location 

waitl.d => 
!memr 

al5 
al4 
al3 
reset 

select rom => 

3.0 Serial# 9-99999-999 

Expanded Product Terms 

!al3 & !al4 & !al5 & memr 

wait2.d => 
!memr 

al5 
al4 
al3 
!waitl 

memadr => 
a15 , al4 , al3 , al2 , all 

ready => 
!wait2 

ready.oe => 
!al3 & !al4 

rom os => 
!al3 & !a14 

memreq => 
memw 

I memr 

!al5 & memr 

!al5 & memr 

Figure C-18. Sample Documentation File Sheet 1 of 5 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

ram csO => 
!all 
!all 

ram_csl => 
all ' all ' 

rom cs.oe 
- 1 

ram_csO.oe *"'> 
1 

ram csl.oe => 
- 1 

' 
' 

!al2 ' a13 ' !a14 
!al2 & a13 & !a14 

!a12 ' a13 !al4 
!a12 & a13 ' !a14 

Symbol Table 

Pin 
Min 
Pol 

Variable 

Name Ext 
--------
waitl 
waitl d 
all 
select rom 

wait2 
wait2 
a12 
a13 
a14 
alS 
oe 
memr 
memadr 
ready 

d 

ready oe 
memw 
cpu_clk 
rorn cs 
reset 
memreq 
ram csO 
ram csl 
rom cs 
rom-csO 
rom-csl 

oe 
oe 
oe 

Pin 

15 
15 
6 

14 
14 
5 
4 
3 
2 
11 
8 
0 
18 
18 
7 
1 
19 
9 
0 
12 
13 
19 
12 
13 

!a15 

' !a15 

' !a15 

' !al5 

Type 

v 
x 
v 

0 

v 
x 
v 
v 
v 
v 
v 
v 
F 
v 
x 
v 
v 
v 
v 

v 
v 
D 
D 
D 

' memw 

' memr 

& memw 
& memr 

Pterms Max 

Used Pterms Level 

5 8 

5 

1 
1 

1 

2 
2 
2 
1 
1 
1 

8 

7 
1 

7 

7 
7 
1 
1 
1 

1 
1 
0 
0 
0 

LEGEND F:field D:default variable W:extended node 
N:node !:intermediate variable T:function 
V:variable X:extended variable U:undefined · 

Figure C-18. Sheet 2 of 5 

91-10128-5 1090 325 



Download 
Formats 

Pin 119 

Fuse Plot 

0000 --------------------------------
0032 -x---x-------------------x------
0064 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0096 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0126 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0160 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0192 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0224 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin 118 
0256 -x---x---x---------------x------
0256 -----------------------x--------
0320 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0352 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0384 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0416 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0446 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0480 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin 117 
0512 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0544 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0576 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0608 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0640 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0672 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0704 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0738 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pinfl6 
0788 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0800 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0832 xxxxxxxxxxxxxxxxxxxxxxxxxxx.xxxxx 
0864 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0898 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0928 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0980 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0992 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin f15 

1024 -----------------------x--------
1056 x-------------------------------
1088 ----x---------------------------
1120 --------x-----------------------
1152 ----------------------------x---
1184 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1216 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1248 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Figure c" 18. Sheet 3 of 5 

1090 

CUPL 
Reference Manual 

91-10128-5 



CUPL 
Reference Manual 

Pin 114 
1280 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1312 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1344 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1378 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1408 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1440 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1472 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1504 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Plnf13 
1536 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1568 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1600 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1632 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1664 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1696 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1728 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1760 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin 112 

1792 --------------------------------
1824 -x---x--x----x---x---x----------
1856 -x---x--x----x---x-------x------
1888 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1920 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1952 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1984 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2016 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

LEGEND x fuse not blown 
fuse blown 

Figure C-18. Sheet 4 of 5 

91-101?.8-5 1090 

Download 
Formats 

3Zl 



Download 
Formats 

CUPL 
Reference Manual 

328 

Chip Diagram 

*********** *********** 
• • 

**** .... 
cpu_cllc . 1 20 • vcc 

**** **** 
Waitgen 

**** .... 
alS . 2 19 • !rom_cs .... ** ** 

**** •• ** 
a14 * 3 18 . ready .... 

**** 
a13 * 4 17 * .... 

**** 
a12 * s 16 * 

* * ** .... 
all * 6 15 . waitl 

.... 
!memw * 7 14 . wait2 .... 

..... . ... 
!memr . 8 13 . ram csl 

* * ** 

reset • 9 12 * !ram csO .... **** 

• * •• **** 
GND . 10 11 • !oe .... . ... 

*************************** 

Figure C-18. Sheet 5 of 5 

The first part of the file contains archival and rev1s1on 
information that is identical to the header information in the 
corresponding CUPL source file. The first part also contains 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

version information about the device library and the CUPL 
program, and the date and time the file was created. 

The next section of the file, Expanded Product Terms, 
contains the product terms generated by CUPL from the 
equations contained in the logic description file. 
WAITGEN.PLD, contained in the CUPL package, is the 
source logic description file for the sample documentation file 
in Figure C-18. Its contents can be viewed in order to compare 
the original logic equations with the product terms generated 
byCUPL. 

CUPL generates product terms for the devices specified on the 
command line when running CUPL or with the DEVICE 
keyword in the logic description file. For example, some 
devices, such as PAL16L8s, contain fixed inverting buffers. 
In certain cases, to fit the logic to the device, CUPL performs 
DeMorgan'sTheorem. For example, the logic description file 
is written for a PAL16L8 device; in the pin list, all outputs have 
been declared as active-HI. The following equation is written 
to specify an OR function. 

c=a#b; 

However, the PAL16L8 contains a fixed inverting buffer. 
Because the inverting buffer cannot be changed, CUPL fits the 
logic to the device by performing a DeMorgan on the OR 
equation, which generates the following product term: 

c => !a&!b 

See Pin Declaration Statements in Chapter 2 for further 
information on how CUPL generates product terms for devices 
with fixed inverting buffers, when the output pins are asserted 
in the pin declaration statement. 

The next section of the file, Symbol Table, provides 
information about each variable in the logic description file, 
including the pin number, extension, type of variable, number 
of product terms available, number of product terms used, and 
the minimization level used by CUPL. 

91-1012.8-5 1090 329 



Download 
Formats 

CUPL 
Reference Manual 

If the maximum avai1able product terms for a device is 
exceeded, CUPL displays an error message during 
compilation, naming the pin. However, the message doesn't 
indicate how much the limit was exceeded. The product term 
availability and use information in the Symbol Table (see 
Figure C-18) indicates if the number of available product 
terms was grossly exceeded, or was just slightly over the 
limit. 

The next section, Fuse Plot, is generated by specifying the -f 
option flag when running CUPL. This section provides more 
detailed fuse information than that contained in the JEDEC 
file. The four-digit beginning JED EC number for each product 
term is the number to use to reference STUCK H and STUCK L 
(see Fault Simulation in Chapter 4) 

The last section, Chip Diagram, provides a diagram of the 
device showing the location of each variable name. 

0 PDIF FILE FORMAT 

This section describes the use of the PDIF (P-CAD Database 
Interchange Format) file (<F59>filename.PDF) generated by 
CUPL. For a detailed description of the PDIF-format file, see 
the PDIF User's Manual. A PDIF-format file can be generated 
by specifying the -p option flag when running CUPL. 

The PDIF format is used as an interface to the P-CAD 
schematic capture program PC-CAPS. This is accomplished 
by translating the CUPL-generated PDIF-format file into a 
PC-CAPS symbol using the PDIF-IN program. The resulting 
symbol represents the logical representation of the PLD 
design. This includes pin packaging information, printed 
circuit board reference designator, PLD type, and design 
name. 

Figure C-19 shows an example of a PC-CAPS symbol 
generated by PDIF-IN. 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

U1 

x IOE 

x >CPU_CLK 

x A15 

x A14 

x A13 RAM_ CS x 
x A12 READY x 
x A11 WAIT1 x 
x !MEMW WAIT2 x 
x IMEMR IRAM_CS1 x 
x RESET !RAM_CSO x 

P16R4 

Figure C-19. PC-CAPS Symbol Generated by PDIF-IN 

Refer to the PDIF User's Manual and the PC-CAPS User's 
Manual for instructions on running the PDIF-IN and PC­
CAPS programs, respectively. 

0 BERKELEY PLA FILE FORMAT 

This section describes the format for the Berkeley PLA file 
(filename.PLA). The Berkeley PLA format is used as an 
interface format for PLA logic synthesis tools, such as the 
Berkeley PLA tools. A Berkeley PLA-format file can be 
generated by specifying the -b option flag when running 
CUPL. 

Figure C-20 shows a sample Berkeley PLA-format file. 

91-10128-5 1090 331 



Download 
Formats 

CUPL 
Reference Manual 

# Berkeley PIA format generated using 
# 
# CUPL 
# Device 
# Created 
# Name 
ii Partno 
ii Revision 
# Date 

3.0 Serial# 9-99999-999 
pl6rp4 Library DLIB-g-24-15 
Thu Feb 26 13:45:23 1987 
CountlO 
CA0018 
01 
07/16/87 

# Designer Kahl 
# Company Assisted Technology 
# Assembly None 
# Location None 
# 
# Inputs 1 QO Ql Q2 
# Q3 clr dir 
# Outputs QO.d Ql.d Q2.d Q3.d 
# carry carry.oe 
.i 7 
.o 6 
.p 18 
-00010- 100000 
-0--00- 100000 
-000101 010000 
-10-000 010000 
-01-000 010000 
-11-001 010000 
-001001 010000 
-000101 001000 
-110000 001000 
--01000 001000 
-1-1001 001000 
-01100- 001000 
-100101 000100 
-000001 000100 
-111000 000100 
-000100 000100 
-1001-- 000010 
1------ 000001 
.end 

Figure C-20. Sample Berkeley PI.A-Format File 

The first part of the file contains archival and revision 
information. The # character indicates these are comments. 
This information is identical to the header information in the 
corresponding CUPL source file. There is also version 
information about the device library and CUPL program, the 

1090 91-10128-5 



CUPL 
Reference Manual 

Download 
Formats 

date and time the file was created, and a list of the input and 
outputs to the PIA 

The next section consists of a PLA description generated by 
CUPL from the equations contained in the logic description 
file, COUNTlO.PLD (contained in the CUPL package). Its 
contents can be viewed to compare the original logic equations 
with the PLA description generated by CUPL. 

The PLA description consists of fields to define the number of 
inputs '.i', outputs '.o', product terms '.p', and a description of 
the AND and OR planes of the PLA with one line per product 
term. Connections in the AND plane are represented with a '1' 
for connection to the non-inverted input line and a 'O' for 
connection to the inverted input line. No connection to an 
input line is indicated with a'.'. Connections in the OR plane 
are indicated by a '1'. No connections are indicated with a 'O'. 
The end of the PLA description is indicated with a'.end'. 

91-1012.8-5 1090 



Download 
Formats 

334 1090 

CUPL 
Reference Manual 

91-10128-5 



Node Numbering D 

This appendix lists the devices which contain internal nodes 
supported by CUPL. Each entry contains a node number and a 
reference. For example, in the case of the AmPAL29M16, the 
pin number of the 1/0 macrocell for which the node is 
contained is given along with the corresponding node 
number. In the case of the AmPAL23S8, the pin on which the 
node output would be seen if observability were used is 
referenced. In the case of Signetics and TI FPLA's, the logical 
names used in "Signetics Programmable Logic Data Manual 
1986" are used for reference. 

91-1012.8-5 1090 335 



Node CUPL 
Numbering Reference Manual 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

Advanced Micro Devices 
pin node pin node 

AmPAL29M/MA16 3 25 4 29 
4 al 5 30 
9 Z7 11 31 

10 28 12 32 
15 29 18 33 
16 30 19 34 
21 31 25 35 
22 32 al 36 

obs pin node 

AmPAL23S8 13 al 
14 24 
15 22 
16 21 
17 Z3 
18 25 

name node 

PLS30K12 QO 29 
Ql 30 
Q2 31 
Q3 32 
Q4 33 
Q5 34 
Q6 35 
Q7 36 

HOLD 37 
LOAD 38 

D-336 91-10128-5 



CUPL Node 
Reference Manual Numbering 

Table D-1. Node Numbering 

Device Dip I.CC 
Manufacturer Package Package 

c 39 
c 40 

name node 

PLS30S16 QI 29 
Q2 30 
Q3 31 
Q4 32 
c 33 
c 34 

name node 

PMS14R21 AS 25 
A6 26 
AO 'Xl 
Al 28 
A2 29 
A3 30 
A4 31 

cso 32 
CSl 33 
CS2 34 
CS3 35 
CS4 36 
CS5 37 
XFO 38 
XFl 39 

91-10128-5 D-337 



Node CUPL 
Numbering Reference Manual 

Table D·l. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

Altera 
pin node 

EP1800 10 69 
11 70 
12 71 
13 72 
Z3 73 
2A 74 
25 75 
26 76 
44 77 
45 78 
46 79 
47 80 
57 81 
58 82 
59 83 
60 84 

Atmel 
pin node pin node 

V750 14 25,35 17 29,39 
l5 26,36 18 30,40 
16 27,27 19 31,41 
17 28,38 ~ 32,42 
18 29,39 21 33,43 
19 30,40 Z3 34,44 
~ 31,41 2A 35,45 
21 32,42 25 36,46 
2'2 33,43 26 37,47 
Z3 34,44 '};/ 38,49 

D-338 91-10128-5 



CUPL Node 
Reference Manual Numbering 

Table D-1. Node Numbering 

Device Dip ICC 
Manufacturer Package Package 

pin node pin node 

QW.l QW.l 
V2500 4 41,65 5 45,69 

5 42,66 6 46,70 " 
6 43,67 7 47,71 
7 44,68 8 48,72 
8 45,69 9 49,73 
9 46,70 10 50,74 

11 47,71 13 51,75 
12 48,72 14 52,76 
13 49,73 15 53,77 
14 50,74 16 54,78 
15 51,75 17 55,79 
16 52,76 18 56,80 
24 53,77 27 57,81 
25 54,78 28 58,82 
26 55,79 29 59,83 
27 56,80 30 60,84 
28 57,81 31 61,85 
29 58,82 32 62,86 
31 59,83 35 63,87 
32 60,84 36 64,88 
33 61,85 :J7 65,89 
34 62,86 38 66,90 
35 63,87 39 67,91 
36 64,88 40 68,92 

Cypress 
pin node 

P7C330 BRO 29 

91-10128-5 D-339 



Node CUPL 
Numbering Reference Manual 

Table D-1. Node Numbering 

Device Dip I.CC 
Manufacturer Package Package 

BRl 30 
BR2 31 
BR3 32 

28 33 
'El 34 
26 3.5 
25 36 
24 37 
Z3 38 
20 39 
19 40 
18 41 
17 42 
16 43 
15 44 

* IMUX.1 45 
IMUX2 46 
IMUX.3 47 
IMUX.4 48 
IMUX.5 49 
IMUX.6 50 

pin node 

P7C331 28 29 
'El 30 
26 31 
25 32 
24 33 
Z3 34 
20 3.5 
19 36 
18 37 
17 38 

D-340 91-10128-5 



CUPL 
Reference Manual 

Table D-1. Node Numbering 

Device 
Manufacturer 

Dip 
Package 

16 39 
15 40 

IMUXl 41 
IMUX2 42 
IMUX3 43 
IMUX4 44 
IMUX5 45 
IMUX6 46 

Node 
Numbering 

I.CC 
Package 

* IMUXl is Input mux between pin 28 and pin 27, IMUX2 is 
Input mux between pin 26 and 25, etc. 

Intel 
pin node 

5AC312 2 25 
11 ~ 
14 27 
15 28 
16 2} 

17 30 
18 31 
19 32 
m 33 
21 34 
Z2 35 
Z3 36 

pin node 

5AC324 4 41 
5 42 
6 43 
7 44 

91-1012.8-5 D-341 



Node CUPL 
Numbering Reference Manual 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

9 45 
10 46 
11 47 
12 48 
14 49 
15 fl() 

16 51 
17 52 
2A 53 
25 54 
2i) 55 
'Zl 56 
29 57 
30 58 
31 59 
32 60 
33 61 
34 6'2 
35 63 
36 64 

Lattice 
pin node pin node 

GAL6001 · slmcO 25 slmcO 29 
slmcl 2i) slmcl 30 
slmc2 'Zl slmc2 31 
slmc3 28 slmc3 32 
slmc4 29 slmc4 33 
slmc5 30 slmc5 34 
slmc6 31 slmc6 35 
slmc7 32 slmc7 36 

14 33 17 37 

D-342 91-10128-5 



CUPL Node 
Reference Manual Numbering 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

15 34 18 38 
16 3.5 19 39 
17 36 m 40 
18 m 21 41 
19 38 22 42 
m 39 23 43 
21 40 24 44 
22 41 2.5 45 
23 42 26 46 

Monolithic Memories 
pin node pin node 

PAL32VX10 14 2.5 17 29 
15 26 18 30 
16 27 m 31 
17 28 21 32 
18 29 22 33 
19 30 23 34 
m 31 24 3.5 
21 32 2.5 36 
22 33 26 m 
23 34 2 738 

PLX Technology 
pin node 

PLX448 13 2.5 
15 26 
16 27 
17 28 
19 29 
21 30 
22 31 

91-10128-5 D-343 



Node CUPL 
Numbering Reference Manual 

Table D-1. Node Numbering 

Device Dip I.CC 
Manufacturer Package Package 

Zl 3'2 

Signetics 
pin node 

PLC415 co :rl 
cl 38 
~ 29 
pl 30 
p2 31 
p3 3'2 
pi 33 
µ5 34 

JXJ 35 
p7 36 

pin node 

PLC42VA12 14 2.5 
15 26 
16 'Zl 
17 28 
18 29 
19 30 
20 31 
21 3'2 
22 33 
Zl 34 

name node 

PLHS501 TO 53 
Tl 54 
T2 55 

D-344 91-10128-5 



CUPL Node 
Reference Manual Numbering 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

T3 fJ6 
T4 57 
T5 58 
T6 59 
T7 60 
T8 61 
T9 62 

TlO 63 
Tll 64 
T12 65 
T13 66 
Tl4 67 
T15 68 
T16 6.9 
T17 70 
T18 71 
T19 72 
T20 73 
T21 74 
T22 75 
T23 76 
T24 77 
T25 78 
T26 79 
T27 80 
T28 81 
T29 82 
T30 83 
T31 84 
T32 85 
T33 86 
T34 87 
T35 88 
T36 89 

91-10128-5 D-345 



Node CUPL 
Numbering Reference Manual 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

T37 90 
T38 91 
T39 92 
T40 93 
T41 94 
T42 95 
T43 96 
T44 97 
T45 98 
T46 99 
T47 100 
T48 101 
T49 10'2 
T50 103 
T51 104 
T52 105 
T53 106 
T54 107 
T55 108 
T56 109 
T57 110 
T58 111 
T59 112 
T60 113 
T61 114 
T62 115 
T63 116 
T64 117 
T65 118 
T66 119 
T67 120 
T68 121 
T69 122 
T70 123 

D-346 91-10128-5 



CUPL Node 
Reference Manual Numbering 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

T71 124 

name node name node 

PLHS502 QO ffi QO 6.5 
Ql 70 Ql 66 
Q2 71 Q2 67 
Q3 72 Q3 68 
Q4 7'J Q4 ffi 
Q5 74 Q5 70 
Q6 75 Q6 71 
Q7 76 Q7 72 
Q8 77 Q8 7'J 
Q9 78 Q9 74 

QlO 79 QlO 75 
Qll 80 Qll 76 
Q12 81 Q12 77 
Q13 82 Q13 78 
Ql4 83 Q14 79 
Q15 84 Q15 80 
FBO 85 FBO 81 
FBl 86 FBl 82 
FB2 f5l FB2 83 
FB3 88 FB3 84 
FB4 00 FB4 85 
FB5 90 FB5 86 
FB6 91 FB6 f5l 
FB7 92 FB7 88 
FB8 00 FB8 00 
FB9 94 FB9 90 

FBlO 95 FBlO 91 
FBll 96 FBll 92 
FB12 97 FB12 00 
FB13 98 FB13 94 

91-10128-5 D-347 



Node CUPL 
Numbering Reference Manual 

Table D-1. Node Numbering 

Device Dip I.CC 
Manufacturer Package Package 

FB14 99 FB14 95 
FB15 100 FB15 96 
FB16 101 FB16 'fl 
FB17 102 FB17 00 
FB18 103 FB18 99 
FB19 104 FB19 100 
FB20 105 FB20 101 
FB21 106 FB21 102 
FB22 107 FB22 103 
FB23 108 FB23 104 
FB24 109 FB24 105 
FB25 110 FB25 106 
FB26 111 FB26 107 
FB27 112 FB27 108 
FB28 113 FB28 109 
FB29 114 FB29 110 
FB30 115 FB30 111 
FB31 116 FB31 112 
FB32 117 FB32 113 
FB33 118 FB33 114 
FB34 119 FB34 115 
FB35 120 FB35 116 
FB36 121 FB36 117 
FB37 122 FB37 118 
FB38 123 FB38 119 
FB39 124 FB39 120 
FB40 125 FB40 121 
FB41 126 FB41 122 
FB42 127 FB42 123 
FB43 128 FB43 124 
FB44 129 FB44 125 
FB45 130 FB45 126 
FB46 131 FB46 127 
FB47 132 FB47 128 

D-348 91-10~ 



CUPL Node 
Reference Manual Numbering 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

FB48 133 FB48 129 
FB49 134 FB49 130 
FB50 135 FB50 131 
FB51 136 FB51 132 
FB52 137 FB52 133 
FB53 138 FB53 134 
FB54 139 FB54 135 
FB55 140 FB55 136 
FB56 141 FB56 137 
FB57 142 FB57 138 
FB58 143 FB58 139 
FB59 144 FB59 140 
FB60 145 FB60 141 
FB61 146 FB61 142 
FB62 147 FB62 143 
FB63 148 FB63 144 

CKFBO 149 CKFBO 145 
CKFBl 150 CK.FBI 146 
CKFB2 151 CKFB2 147 
CKFB3 152 CKFB3 148 

name node 

Pl.S105 c 35 
µ> 29 
pl 30 
p2 31 
µ3 32 
p4 33 
µ5 34 

name node 

Pl.S155 c 21 

91-10128-5 D-349 



Node CUPL 
Numbering Reference Manual 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

name node 

PLS157 c 21 

name node 

PLS159 c 21 

name node name node 

PLS167 c 31 c 3.5 
p2 25 p2 29 
p3 ~ p3 30 
pt 'XI pt 31 
p5 28 p5 32 
IX> 29 IX> 33 
p7 30 p7 34 

name node name node 

PLS168 c 31 c 3.5 
pt 30 pt 34 
p5 29 p5 33 

IX> 28 IX> 32 
p7 'XI p7 31 
pS ~ pS 30 

P:l 25 P:l 29 

name node name node 

PLS179 c 25 c 29 

D-350 91-10128-5 



CUPL Node 
Reference Manual Numbering 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

name node 

PI.S405 cO '37 
cl 38 
µ> 29 
pl 30 
p2 31 
µ3 3'2 
p4 33 
p5 34 
IX> 35 
p7 36 

Texas Instruments 
name node name node 

FPI.S506 co 41 co 45 
cl 42 cl4 6 
µ> 'Zl µ> 31 
pl 28 pl 3'2 
p2 29 p2 33 
µ3 30 µ3 34 
p4 31 p4 35 
p5 3'2 p5 36 

IX> 33 IX> '37 
p7 34 p7 38 
p8 35 p8 39 
if) 36 if) 40 

plO '37 plO 41 
pll 38 pll 42 
p12 39 pl2 43 
p13 40 p13 44 
pl4 26 pl4 30 

91-10128-5 D-351 



Node CUPL 
Numbering Reference Manual 

Table D-1. Node Numbering 

Device Dip LCC 
Manufacturer Package Package 

p15 2.5 p15 29 

name node name node 

FPLS507 co 33 co 'J7 
cl 34 cl 38 
c2 3.5 c2 39 
c3 36 c3 40 
c4 37 c4 41 
c5 38 c5 42 

sclrO 39 sc1ro 43 
sclrl 40 sclrl 44 

!cntlholdO 41 !cnt/holdO 45 
!cntlholdl 42 !cntlholdl 46 

~ 2.5 ~ 29 
pl 26 pl30 
p2 27 p2 31 
p3 2.8 p3 32 
p4 29 p4 33 
p5 30 p5 34 

Ii> 31 Ii> 3.5 
p7 32 p7 36 

D-352 91-10128-5 



Trouble Shooting E 

0 HOW TO GET SUPPORT 

The user of the CUPL product may need to have some questions 
answered or get help with the package in some way. If 
problems are encountered, LDI customer support may be 
contacted. There are several ways to do this. 

By Telephone (305) 974-0967 

By FAX (305) 974-8531 

Via Customer Support Electronic Bulletin Board Service (BBS) 
(305) 974-0612 

The BBS requires that a modem be attached to a terminal or a 
computer. The BBS can be dialed, and messages may be left 
for the customer support staff. Additionally, files may be 
uploaded for review at LDI. 

Baud: 300, 1200, 2400 
Parity: None 
Data Bits: 8 
Stop Bits: 1 
Password: user-defined 

Special Interest Groups (SIGS) are also available; these can be 
a great source of information. 

If assistance is neeeded with using CUPL, it is a good idea to 
contact your local dealer or distributor first, for their 
suggestions as to how to proceed. 

91-10128-5 1090 353 



Trouble 
Shooting 

0 Contacting Customer Support 

CUPL 
Reference Manual 

Before contacting Customer Support, make sure to collect the 
following information: 

Make sure that you have a semicolon at the end of each 
statement. You would be surprised at the number of files we get 
that contain only this problem. Examine the header section of 
the PLD file in particular since a missing semicolon in this 
area will often cause strange results. 

Check to make sure that all comment blocks are closed. Many 
times designers start a comment with /* but forget to close it 
with */. What happens is that the compiler continues reading 
until it finds an end of comment marker */. Everything read 
is considered a comment and is therefore invisible to the 
compiler. 

The CUPL serial number: This enables us to know if there is a 
known problem with your version. 

The CUPL version number. 

The device mnemonic that you were using when you 
encountered the problem. 

Fax a copy of the PLD file or upload the file to the BBS. 
Uploading the file is better because we can test it. Make sure to 
send the entire file. Sometimes, a problem will seem to be 
caused by one thing but it is actually caused by something else. 

1090 91-10128-5 



Index 

! symbol 119 
$DEFINE 128 
$ELSE 134 
$ENDIF 133 
$EXIT237 
$IFDEF 131 
$IFNDEF 132 
$INCLUDE 130 
$MACRO 137 
$MEND 139 
$MSG233 
$REPEAT 135, 233 
$REPEND 137 
$SIMOFF237 
$SIMON238 
$TRACE234 
$UNDEF 130 
/* symbol 116 
absolute file 38 
alternate operators 129 
Apollo work station 18 
APPEND 155 
arithmetic 

function 142 
operators 141 

ASCII format 38, 309 
ASSEMBLY 117 
ASSY 117 
asynchronous output 

conditional 194 
unconditional 192 

AUTOEXEC.BAT 8 

91-10128-5 1090 

base225 
prefixes 111 

BASE keyword 222, 224 
Berkeley 

PLA file 38 
PLA format 331 

binary sets 157 
bit 

masks 158 
positions 159 

bit field statements 125, 156 
equality operations 158 
range operations 162 

Boolean 
expressions 152 
logic 140, 151 
review 151 
rules 48 

build 6, 8, 240 
syntax 245 

buildsmt 8 
bulletin board 353 
buried function 122 
C-shell 18, 21 
CBLD239 

allowable macros 243 
building libraries 245 
error messages 283 
extensions 242 
flags 240 
library 241 
running 239 

1 



Index 

CK151 
CKMUX 150, 151 
clock 149, 150, 230 
color 11 
combinatorial 

logic 173 
output148 

command line 
options - see flag 

comments 112, 222 
in test spec file 222 
sample 112 
with $1FDEF 132 

COMPANY117 
complement operator 154 
CONDITION 199 
conditional 

asynchronous output 194, 197 
NEXT 178 
synchronous output 186, 191 

configuration 9 
buffers 9 
files 9 

constant number bit positions 159 
conventions used vi 
conversion, base 111 
counters 95, 97 
CSIM210 

2 

design example 50 
design simulation 32 . 
error messages 278 
example running 76 
example source file 72 
flags 214 
input210 
mnemonic 211 
output212 
running 213 
simulator directives 232 

1090 

CUPL 
Reference Manual 

test specification 220 
CUPL 

assistance 353 
command options 39 
compiler 36 
data flow 3 
design example 50 
device mnemonic 37 
error messages 256 
example running 63 
input36 
installation 6 
introduction 1 
key features 2 
language 107 
operation 36 
output38 
overview 1 
running 32 
running using menus 46 
syntax 140 
toXNF205 

CUPL.BCK22 
CUPL.DL 8 
data flow 3 
DATE 117 
decade up/down example 97 
DEFAULT 179, 188, 195 
default equations 181, 190, 196, 200 
DeMorgan's Theorem 152 
design examples 49 
DESIGNER 117 
DEVICE 118 

EP300290 
EP600290 
EP900290 
F155289 
F157289 
F159289 

91-10128-5 



CUPL 
Reference Manual fodex 

F16V8292 library also see library 
F179289 usage notes 289 
F18V8Z292 directives 232 
F20V8292 DOC323 
F501290 documentation 
F502290 file 38 
F506291 format323 
F507291 DOS 
G16V8293 installation 6 
G20V8293 requirements 6 
G6001295 download formats 304 
P10P8V296 equality operations 158 
P12P6V296 bit field 158 
P14P4V296 counter 160 
P16P2V296 function table 161 
P16P8V296 equations 
P16RP4V296 address decoding 56 
P16RP6V296 example 56 
P16RP8V296 logic 153 
P18CV8290 Pl'OC 252 
P20X10289 wait state 56 
P20X4289 error 
P20X8289 CBLD module 283 
P22CV10296 CSIM module 278 
P22VP10296 CSIMA module 279 
P23S8296 CUPL module 258 
P29M16297 CUPLA module 262 
P29MA16298 CUPLB module 269 
P32VX.10299 CUPLC module 275 
PLD9000301 CUPLM module 273 
PLX.448299 CUPLX module 259 
RA10P8296 list of messages 256, 257 
RA.11P8296 message suffix 256 
RA.12P8296 messages in list file 38 
V2500300 Pl'OC module 286 
V750300 errors message 257 

devices 240 examples 
choosing 59 design 49 
extensions 142 summary 81 

91-10128-5 1090 3 



Index 

expressions 152 
extensions 142 

CBLD242 
example use 146 
feedback 147 
multiplexer 149 
tableof143 

EZ editor 13 
fatals 257 
fault simulation 238 
feedback 

extensions 147 
internal 149 
pin 148 
programmable 14 7 
registered 148 
test vectors 230 

FIELD 125 
fields 306 

identifiers 306 
file, template 114 
flag 

CBLD240 
compiler option 39, 41 
CSIM213,214 
CUPL39 
multiple option 40 
PTOC248 
simulator option 214 

flip-flops 142, 171 
format 

ASCII 304, 309 
Berkeley PLA file 331 
documentation file 323 
download 304 
HL304,310 
JEDEC304 
PDIF file 330 

FORMAT keyword 118 

4 1090 

CUPL 
Reference Manual 

function 
arithmetic 142 
buried 122 
control 145 
extensions 142 
table 169 
user-defined 201 
writing equations for 146 

function keys 12 
defining 48 

FUNCTION keyword 201 
FUSE127 
gates, designing 88 
GATES.ABS 33 
GATES.PLD 29 
header information 116 

CSIM221 
CUPL116 
in source spec file 72 
keywords 116 
PTOC251 
template file 114 

hex download format 309 
HL download file 38 
HL format 310 
IF178 
imaginary device 301 
indexed variables 108 
input, CSIM 210 
INSTALL 7 
installing 

CUPL on Apollo 18 
CUPLonDOS6 
CUPL on Sun 15 
CUPL on UNIX 15 
CUPL on VAX/VMS 22 
procedure 7 

intermediate variable 116, 154 
internal nodes 335 

91-10128-5 



CUPL 
Ref ere nee Manual 

introduction iii 
toCUPLl 

JED EC 
field identifiers 306 
file 38 
format 304 
test vectors 308 

keywords 
CSIM222 
CUPL reserved 109 
header 116, 117 
preprocessor 128 
user-defined 201 

language 
elements 107 
syntax 140 

LIBCUPL8 
library 240, 241 

CBLD245 
CSIM210 
description of210 
listing contents of 241 

list notation 112, 113 
LOCATION 117 
logic 

description file 36 
evaluation rules 151 
minimization 126 
minimization example 164 
reduction 126 

logic equation 116, 153 
complement operator 154 
intermediate variable 154 
with APPEND 155 

logical operators 140 
precedence 140 

machine ID 11 
macros 

CBLD243 

91-1012.8-5 1090 

Index 

listing 243 
main menu 12 
MCUPLl0,46 
MCUPL.CFG 11, 46, 48 
MCUPL.EXE 46 
memory map, PLD 52 
menu 

MCUPL described 47 
running CUPL using 46 
screen 12 
system for MCUPL 10 

MIN 126 
MIN declaration 126 

examples 126 
minimization 126 

flags 44 
levels 45 

MISER bit 127 
mnemonic 

CSIM prefix 211 
CUPL prefix 37 

modulus % symbol 136 
multiplexer extension usage 149 
NAME 117 
negation 187 

conditional 187 
pin declaration 184 
symbol 119, 129 
unconditional 184 

NEXT 
conditional 178 
unconditional 1 76 

node 
declaration 122 
numbering 335 

NODE keyword 122 
non-registered outputs 173 
notation, list 112 
numbers 110 

5 



Index 

base conversion 111 
base prefix 111 
index 113 
value range 110 

OE 151 
OEMUX 150, 151 
operation, CUPL 36 
operators 

alternate 129, 131 
arithmetic 141 
arithmetic example 135, 136 
complement 154 
logic rules 107, 140 
modulus example 136 
precedence 140 

option flag - see flag 
ORDER 222, 224 

statement in source spec file 
73 

OUT 146 
output 

CSIM212 
CUPL38 
enable 150 

PALASM208 
ambiguities 254 
devices 207 
format207 
in PTOC 248 
operators 129 
source file format 249 

parentheses 152 
in parameter list 201 

PARTNO 117 
PCAD PDIF format 330 
PDIF format 330 
pin 

6 

assignments 26 
assignments example 61 

1090 

CUPL 
Reference Manual 

configuration example 60 
declaration 116, 119 

PIN keyword 119 
pin list 

PTOC251 
PINNODE 123, 124 
PLA 

with Berkeley format 331 
PLD 

design example 51 
file example 82 
file to PALASM 207 
from TTL example 88 
gates example 28 
output file 250 
usage - see device 

polarity 119 
of internal signal 123 
with DeMorgan 154 

precedence of operators 140 
preload 228 
preprocessor commands 128 
PRESENT 174 
product terms 330 
PTOC248 

equations 252 
error messages 286 
header information 251 
pin list 251 
PLD output file 250 
running 248 
SI output file 253 
translation ambiguities 254 

range 
address decoding 58 
function 167 
operations 162 

registered outputs 173 
requirements 

91-10128-5 



CUPL 
Reference Manual 

DOS6 
UNIX 15 
VAXNMS 22 

reserved 
symbols 110 
words 109 

REVISION 117 
SAMPLE files 64 
screen color 11 
SEQUENCE 174, 176 
SEQUENCED 176 
SEQUENCEJK 176 
SEQUENCERS 176 
SEQUENCET 176 
set operations 156 

binary equivalent 157 
bit field 157 
equality 158 

seven segment decoder example 
100 
shorthand notation 112 
SI output files 253 
signal polarity 119 
simple gates example 85 
simulator 

directives 232 
flags 214 

small.bid 246 
SMTparts8 
SOURCE245 
source file 32 

example 54 
example creating CSIM 72 
format249 
header 74 

state bits 173 
state machine 

combinatorial logic 173 
model 171 

91-1012.8-5 1090 

Index 

sample 197 
syntax 171, 174 

storage registers 173 
STUCK238 
subway turnstile example 26 
Sun work station 15 
symbols, CUPL reserved 110 
synchronous output 

conditional 186 
unconditional 183 

syntax 140 
arithmetic function 142 
arithmetic operators 141 
condition 199 
extensions 142 
logical operators 140 
state machine 171, 17 4 
state machine sample 197 

TABLE 169 
tar 16 
target25 

example choosing 59 
mnemonic 37 

TARGET keyword 245 
template 25 
template file 114, 116 

header information 116 
pin declaration 116 
title block 116 

test conditions 308 
test specification file 33 
test vector 

see also vector 
translated by PTOC 254 
using* in 75 
values 226 

text editor 36 
timing diagram example 95 
title block 116 

7 



Index 

trace levels 235 
translation ambiguities 254 
truth tables 

CUPL141 
variable list 169 

TTL to PLD example 88 
TURBO bit 127 
two bit counter example 95 
unconditional 

asynchronous output 192 
NEXT 176 
synchronous output 183 

UNIX 
environment 16, 19 
installation 15 
requirements 15 

user-defined functions 201 
variables 107 

extensions 142 
indexed 108 
intermediate 116, 154 

VAX/VMS 
environment 23 
installation 22 

vector 
asynchronous 230 
clock 230 
creating 75 
preload228 
see also test vector 
tables 231 
values 226 

VECTORS 222, 226 
in source spec file 73 

warnings 257 
waveform output 34 
XILINX devices 209 
XNF205 

8 1090 

CUPL 
Reference Manual 

91-10128-5 



Installing CUPL MS-DOS 

Note: If the install procedure is interrupted, resume install with the disk that 
was due to be installed next. For example, if disk 3 was completely 
installed, resume by typing INSTALL 4. If disk 3 was partially 
installed, resume by typing INSTALL 3. 

1. Place the diskette labelled Disk 1 into drive A and type A: [Return] 
and then INSTALL [Return]. 

2. Follow the prompts as they appear on the screen. If a one-character 
response is requested, type in only the character; do not press the 
[Return] key. 

3. If the computer being used has more than one floppy disk drive, a 
screen will appear asking which drive should be used. 

4. When requested, input the name of the destination drive and the 
directory name. Use the defaults as a guide. 

5. After the source and target drives are selected, copying will begin. 
The Message window will indicate when the next diskette should be 
inserted. 

6. If you chose not to install the example files and later wish to use them, 
copy EXAMPLES.ARC from Disk 4 to your CUPL directory and type 
ARCE EXAMPLES.ARC . 

7. After copying is complete, a screen will appear asking if the SET 
LIBCUPL= command should be added to the AUTOEXEC.BAT 
file. Respond with either a Y for yes or an N for no. 
The following screen explains what is needed to add the PATH 
statement to the AUTO EXEC.BAT file. Make certain that the 
environment is updated by either re-booting the computer or by 
running the AUTOEXEC.BAT file. 
For further details, refer to page U2-8 in the CUPL Manual. 

8. Once the installation is complete, type BUILD [Return). This will 
combine the device libraries into one device library named 
CUPL.DL. To add the SMT library, type BUILDSMT [Return] after 
completing BUILD. 
For further details, refer to page U2-8 in the CUPL Manual. 

9. If the CUPL front-end menu system MCUPL is to be used, edit the 
MCUPL configuration file MCUPL.CFG, and configure it as desired. 
For further details, refer to page U2-1 in the CUPL Manual. 

91-10145·5 



CUPL 
Addendum 

What's New in CUPL 4.0a 

The latest version of CUPL, the Universal Compiler for 
Programmable Logic, is 4.0a. This version encompasses Software 
Improvements, New Architecture Features, New Device 
Architectures, menu support for New Devices using existing 
mnemonics, and mnemonic changes and revisions. 

D Software Improvements 

CUPL Executables 
Increased operation speeds. 

Installation 
Installation has been modified to recognize the difference between 
an update and a brand new copy. When the package is an update, the 
install queries for original serial number. The install also queries 
for company name which is displayed during compilation. 

Menu 
Menu operation has been modified to improve the method of moving 
around the directory structure. If the directory mask is set to *. *, 
the directories are displayed along with the files. It is possible to 
change to any of those directories simply by highlighting and 
selecting the desired directory. 

Menu operation now expects to find the INCLUDE and individual 
user library files in the current working. directory. 

Fz14:11rr 
The exiting procedure for EZEDIT has been improved to allow for 
either highlighting the SAVE or QUIT option or typing 'S' or 'Q'. If 

91-10164-5 1190 1 



CUPL 
Addendum 

the quit option is selected, EZEDIT queries whether or not to save the 
file. 

Simulation 
The simulation waveform displayer now displays 10 waveforms. 
It can also allow the user to arbitrarily change the order of the 
waveforms and combine up to 8 waveforms to form a BUS with hex 
output. 

The waveform hardcopy supports additional printers. 

CSIM recognizes the symbol'.' as a valid path symbol. 

DOC File 
The DOC file will now show the total number of product terms used in 
a FPLA device. 

Syntax 
The OUT equations generated from a D-CE type state machine have 
been corrected. This affects the GAL6001. 

OUfPUf Formats 
Interfacing to PCAD 4.5 is supported by CUPL PDIF files. 

Virtual device supports PLA output format. 

D New Architecture Features 

Automatic Product Term Allocation 
Automatic product term allocation is now supported. Intel's 5AC312 
and 5AC324, and Altera's EP512 have this capability. 

Sharable Product Terms 
Some devices have sharable product terms that can be isolated for 
single use by a buried register. This makes the product term 
unusable by anything else. CUPL determines when these types of 
product terms are being used by more than one storage component 

2 0490 91-10164-5 



CUPL 
Addendum 

and generates an error message. The best example of this is the 
ATV2500. 

D New Device Architectures 

Manufacturer 

Cypress 

Exel 
Intel 

National 

Signetics 

Device 
Name 

CY10E30l/100E301 

CY10E302/100E302 

PLDC18G8 
XL78C800 
85C224 

PAL1016C4/10016C4 
PAL1016PE8/10016PE8 
PAL1020RP4/10020RP4 
PHD48N22 

Device 
Mnemonic 

P16P8C, 
P16P8CLCC 
Pl6P4C, 
P16P4CLCC 
P18G8 
XL78C800 
PC224, 
PC224LCC 
P1016C4 
P1016PE8 
P1020RP4 
F48N22 

D New Devices 

Manufacturer 

Altera 

AMD/MMI 
Cypress 

Intel 

Signetics 

91-10164-5 

Device 
Name 

EP330 
EP630 
PALCE630 
PAL22V10C 
PAL22VP10C 
8.5C060 
8.5C090 
10020EV8 
10H20EV8 

0490 

Device 
Mnemonic 

EP320 
EP600 
EP600 
P22V10 
P22VP10 
EP600 
EP900 
P1020EV8 
P1020EV8 

3 



CUPL 
Addendum 

Texas Inst. EP330 
TIBPAL1602 

EP320 
P16L8 

D Mnemonic Changes 

SGS-Thomson changed the name ofGAL36V18 to GAL6001. 

The mnemonic PC220 was removed. Use EP320 as the mnemonic 
for the Intel 85C220. 

The incorrectly listed P20RP10 mnemomc was removed from the 
menu. 

The P1016 family can now correctly simulate the active high common 
reset pin. It previously was simulated using an active low reset pin. 

The G20V8A LCC and G 16Z8 LCC mnemonics were added. 

PA7024 support will be available on CUPL-386. 

D Mnemonic Revision Changes 

Mnemonic Rev. Description 

epl800 

ep312 

fl.8v8z 
J20v8 
£30sl6 

:t273 

4 

00 

04 
03 
02 

02 

Corrected AR simulation for buried nodes. 
synchronous Added INT for global 
macrocells. Defaulted buried registers to use 
synchronous Clock.Corrected polarity 
definition of buried registers. 
Corrected pin 16 combinatorial feedback 
column number. 
Corrected configuration bits. 
Improved mode selection. 
Added automatic defaulting of OE terms to 
'b'l. 
Corrected total number of fuses. 

0490 91-10164-5 



CUPL 
Addendum 

f415 03 Corrected AR and AP default. Corrected 
buried node feedback. 

g16v8 00 Changed device to power-up to zero in the 
registers. 

g20v8 03 Changed device to power-up to zero in the 
registers. 

g2'2v10 00 Corrected common clock pin. Corrected DOC 
file fuse map. 

g6001 13 Corrected feedback polarity of output 
registers defined as buried nodes. 

p1016rm4 00 Corrected clocking of registers using all 
clock pins. Corrected DOC file fuse map. 

p20cgl0 00 Corrected definition of input only on an 1/0 
pin. 

p20l8loo 00 Corrected DOC file fuse map. 
p20r6loo 11 Corrected clocking of registers. 
p20r8loo 10 Corrected DOC file fuse map. 
p24110 00 Changed to new specifications. 
p24r10 00 Changed to new specifications. 
p26v12 03 Exchanged pins 7(VCC) and 21(GND). 
p29ma16 11 Corrected AP definition for node 31. 
p32vx10 10 Corrected pin 16 registered feedback column 

number. 
p7ca30 ex> Improved simulation for IOD. 
p7c331 04 Corrected total number of fuses. 
v750loo ex> Corrected buried node numbers. Corrected 

DOC file fuse map. 
~ (Jl Corrected fuse array number for pin nodes 51, 

55, 71, 75, 76. Corrected configuration of 1/0 
pins for dedicated input. 

v2500loo 08 Corrected pin 89 AR array number. 

91-10164-5 0490 5 



J.0/:19/90 CUPL VER. 4.0a PLO DEVICE LIBRARY 

DEVICE 
CODE 

ALTERA 
EPJ.200 
EPJ.210 
El'l.800 

EPl.8J.0 
EP300 
EP3l.O 
EP320 
EP330 
EPSl.2 
EP600 
EP6J.O 
EP630 
EP900 
EP9l.O 

AllD/-I 
AHPALl.6H8 
AKPALJ.6HD8 
AHPALl.6L8 
AKPALl.6LD8 
AHPALl.6R4 
AKPALl.6R6 
AKPALl.6R8 
AKPALl.8P8 
AKPAL20Ll.O 
AKPAL20L8 
AKPAL20R4 

AKPAL20R6 
AKPAL20R8 
AKPAL20RPJ.O 
AHPAL20RP4 
AKPAL20RP6 
AKPAL20RP8 
AKPAL20XRPl.0 
AKPAL20XRP4 
AKPAL20XRP6 
AKPAL20XRP8 
AKPAL22Pl0 
AKPAL22Vl.O 
AKPAL22XPJ.O 
AKPAL23S8 
PALJ.OH/l.0020EC8 
PALl.OH/J.0020EV8 
PALJ.OH20C8 
PALJ.OH20P8 
PALJ.OH8 
PALJ.OH8..:2 
PALJ.OL8 
PALlOL8-2 
PALJ.2H6 
PAL12H6-2 
PALJ.2Ll0 
PALJ.2L6 
PALJ.2L6-2 
PAL14H4 
PALJ.484-2 
PAL14L4 
PALJ.4L4-2 
PALJ.4L& 
PALJ.6Cl 

PALJ.6Cl-2 
PALJ.6H2 
PALJ.6H2-2 
PALJ.6L2 
PAL16L2-2 

DEVICE 
KNEKONIC 

EPJ.200 
£P1200 

EPJ.800 
EP1800 
EP300 
EP300 
EP320 
EP320 
EP312 
EP600 
EP600 

. EP600 

EP900 
EP900 

Pl.688 
P16HD8 
PJ.6L8 
P16LD& 
P16R4 

P16R6 
P16R8 
P18P8 
P20Ll.0 
P20L8 
P20R4 

P20R6 
P20R8 
P20RP10A 
P20RP4A 
P20RP6A 
P20RP8A 
P20XRP10 
P20XRP4 
P20XRP6 
P20XRP8 
P22PJ.OA 
P22VJ.0 
P22XPJ.O 
P23S8 
Pl.020EC8 
PJ.020EV8 
Pl020C8 
P1020P8 
PlOH8 
Pl.OHS 
PlOL8 

Pl0L8 
PJ.2H6 
Pl2H6 
Pl2Ll0 
PJ.2L6 
Pl2L6 

Pl4H4 
Pl4H4 

Pl4L4 

PJ.4L4 
Pl4L8 
Pl6Cl 
Pl6Cl 
Pl6H2 
Pl6H2 
Pl.6L2 
Pl6L2 

I OF 
PINS 

40 
40 
68 
68 
20 
20 
20 
20 
24 

24 
24 
24 
40 
40 

20 
20 
20 
20 
20 
20 
20 
20 

24 
24 
24 
24 
24 
24 
24 
24 
24 

24 
24 
24 
24 
24 

24 
24 
20 
24 
24 
24 
24 
20 
20 
20 
20 
20 
20 
24 
20 
20 
20 
20 
20 
20 
24 
20 

20 
20 
20 
20 
20 

9J.-1019l-5 

I OF 
FUSES 

l.Sl.46 
15146 
42490 
42490 

2720 
2720 

2916 
2916 

13713 
6482 
6482 
6482 

17402 
17402 

2048 
2048 
2048 
2048 
2048 

2048 
2048 
2600 
1600 
2560 
2560 

2560 
2560 
3210 
3450 
3370 

3290 
3210 
3450 
3370 
3290 
3970 

5828 
3970 
6234 
3616 
36J.6 
1352 
J.352 

320 
320 
320 

320 
384 
384 
480 
384 
384 

448 
448 
448 
448 
560 
512 

512 
512 
512 
512 
512 

I OF 
PTERKS 

236 
236 
480 
480 

74 
74 
72 
72 

200 
J.60 
160 
160 

240 
240 

64 
64 

64 
64 
64 
64 
64 
72 

40 
64 
64 
64 
64 
80 
86 
84 
82 
80 
86 
84 
82 
90 

132 
90 

J.35 
80 
80 
32 
32 
J.6 
16 
16 

16 
16 

16 
20 
16 
16 

16 
16 
J.6 
16 
20 
16 

16 
16 
16 

16 
16 

PAGE I. 

REC. VER. 
LEVEL 

3.2b 
3.2b 
4.0a 

4.0a 

2.lSa 
2.15a 
4.0a 

3.0a 
3.0a 
3.0a 
3.2b 
3.2b 

l..Ol.a 

1.01a 

1.01• 
1 .. 01a 

2.01• 
1.01a 
2.004 
2.ooa 
2.ooa 
2.ooa 
2.l.l.b 
2.l.J.b 
2.llb 
2.ll.b 
2.11c 
2.11c 
2.11c 
2.J.l.c 
2.J.lb 
2.1la 
2 .. l..1c 
2.11a 
2.J.J.b 

3.0a 
2.ll.b 

l.Ola 

l.Ola 
l.Ola 



10/J.9/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 

DEVJ:CE 
CODE 

AJID/IDIX 
PAL16L6 
PAt.16L8 
PM,J.6L8A 
PAL16L8A-2 
PAL16L8A-4 
PAL16L8B 
PAL16L8B-2 
PAL16L8B-4 
PAL16L8BP 
PALJ.6L8D 
PAL16P8A 
PALJ.6P8B 
PAL16R4 
PAL16R4A 
PAL16R4A-2 
PAL16R4A-4 
PALJ.6R4B 
PAL16R4B-2 
PAL16R4B-4 
PAL16R4BP 
PALJ.6R4D 
PALJ.6R6 
PAL16R6A 
PAL16R6A-2 
PAL16R6A-4 
PAL16R6B 
PAL16R6B-2 
PAL16R6B-4 
PAL16R6BP 
PAL16R6D 
PAL16R8 
PALJ.6R8A 
PAL16R8A-2 
PAL16R8A-4 
PAL16R8B 
PAL16R8B-2 
PALJ.6R8B-4 
PALJ.6R8BP 
PAL16R8D 
PAL16RA8 
PALJ.6RP4A 
PAL16RP6A 
PAL16RP8A 
PALJ.8L4 
PAL20Cl. 
PAL20L10 
PAL20L10A 
PAL20L2 
PAL20L8 
PAL20L8A 
PAL20L8A-2 
PAL20L8B 
PAL20R4 
PAL20R4A 
PAL20R4A-2 
PAL20R4B 
PAL20R6 
PA.L20R6A 

PAL20R6A-2 
PAL20R6B 
PAL20R8 
PAL20R8A 
PAL20R8A-2 
PAL20R8B 
PA.L20RA10 

DEVJ:CE 
IQIEKONIC 

PJ.6L6 
PJ.6L8 
PJ.6L8 
Pl6L8 
Pl6L8 
P16L8 
PJ.6L8 
Pl.6L8 
PJ.6L8 
Pl.6L8 
Pl6P8 
P16P8 
Pl6R4 
PJ.6R4 
P16R4 
Pl.6R4 
P16R4 
Pl6R4 
Pl6R4 
P16R4 
PJ.6R4 
PJ.6R6 
P16R6 
P16R6 
PJ.6R6 
P16R6 
Pl6R6 
P16R6 
Pl.6R6 
Pl6R6 
Pl.6R8 
Pl.6R8 
Pl6R8 
Pl.6R8 
Pl.6R8 
Pl.6R8 
Pl6R8 
Pl.6R8 
Pl.6R8 
PJ.6RA8 
Pl6RP4 
P16RP6 
Pl.6RP8 
PJ.SL4 

P20C1 
P20L10 
P20Ll0 
P20L2 
P20L8 
P20L8 
P20L8 
P20L8 
P20R4 
P20R4 
P20R4 
P20R4 
P20R6 
P20R6 
P20R6 
P20R6 
P20R8 
P20R8 
P20R8 
P20R8 
P20RAl.0 

I OF 
PINS 

24 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 

PAGE 2 

I OF I OF REC. VER. 
FUSES PTERMS LEVEL 

640 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2056 
2056 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2056 
2056 
2056 
2056 

720 
640 

l.600 
1600 

640 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
3210 

20 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
20 
16 
40 
40 
16 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
80 

l. .. 01a 

l..Ola 
l..Ola 

l.Ola 
l.Ola 
l.Ol.a 
l.O].a 
l..Ol.a 
l..Ol.a 

]..OJ.a 
l. .. Ol.a 

J..Ola 
l.Ol.a 
l.Ol.a 
l..Ola 
l.Ol.a 
l..Ola 
l..Ol.a 
l..Ola 
l..Ola 
l.Ola 
J..Ola 
l..Ol.a 
l..Ol.a 
l..Ola 
l..OJ.a· 
l..Ola 
1 .. 01a 

l.Ol.a 
l .Ola 
l..Ola 
l..Ol.a 
1.0la 
l.Ol.a 
l. .. Ol.a 

l.Ol.a 

l .. Ol.a 

l.Ola 

2.ooa 
2.00a. 

2 .. ooa 
2.ooa 
2.ooa 
2 .. ooa 
2.ooa 
2.ooa 
2.ooa 
2 .. ooa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2.02a 



10/19/90 CUPL VER ••• oa PLD DEVICE LIBRARY 

DEVICE 
CODE 

AllD/MKI 
PAL20RS10 
PAL20RS4 
PAL20RS8 
PAL20S10 
PAL20Xl0 
PAL20XlOA 
PAL20X4 
PAL20X4A 
PAL20X8 
PAL20X8A 
PAL22J:P6-35 
PAL22RX8 
PAL22RX8A 
PAL2•L10 
PAL24R10 
PAL32R16 
PAL32VX10 
PAL32VX10A 
PAL6•R32 
PAL6L16A 
PAL8L.14A 
PALC16L8Q 
PALC16L8Z 
PALC16R4Q 
PALC16R4Z 
PALC16R6Q 
PALC16R6Z 
PALC16R8Q 
PALC16R8Z 
PALC18U8 
PALC20L8Z 
PALC20R4Z 
PALC20R6Z 
PALC20R8Z 
PALC22VlOB 
PALC22VlOQ 
PALCE16V8 
PALCE20RA10 
PALCE20V8 
PALCE22V10 
PALCE22V10Z 
PALCE26Vl211 
PALCE29K16 
PALCE29KA16 
PALCE630 
PLS105 
PLS167.A,/B 
PLS168A/B 
PLS301<12 
PLS30Sl6 
PllS14R21 

ATKllL 

AT22Vl0 
ATV2500 
ATV750 

CYPRESS 
CY100E301 
CY100E302 
CY10E301 
CY10E302 
CY7C330 
CY7C331 
CY7C332 

DEVICE 
JOIEKONIC 

P20RS10 
P20RS4 
P20RS8 
P20S10 
P20X10 
P20X10 
P20X4 
P20X4 
P20X8 
P20X8 
P22IP6 
P22RX8 
P22RX8 
P24L10 
P24R10 
P32R16 
P32VX10 
P32VX10 
P64R32 
P6L16 
P8L14 
P16L8 
P16L8 
P16R4 
P16R4 
P16R6 
P16R6 
P16R8 
P16R8 
P18U8 
P20L8 
P20R4 
P20R6 
P20R8 
P22V10 
P22V10 
C16V8 
P20RA10 
C20V8 
P22V10 
P22V10 
P26V12 
P29Kl6 
P29KA16 
EP600 
F105 
Fl67 
F168 
F301<12 
F30S16 
P14R21 

P22Vl0 
V2500 
V750 

Pl6P8C 
Pl6P4C 
Pl6P8C 
Pl6P4C 
P7C330 
P7C331 
P7C332 

I OF 
PINS 

24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
28 
28 
40 
24 
24 
84 
24 
24 
20 
20 
20 
20 
20 
20 
20 
20 
20 
24 
24 
24 
24 
24 
24 
20 
24 
24 
24 

2~ .. 
28 
24 

24 
24 
28 
24 
24 
28 
28 
24 

24 
40 
24 

24 
24 
24 
24 
28 
28 
28 

91-10193-5 PACE 3 

' OF ' OF REC. VER. 
FUSES PTERKS LEVEL 

3338 
3330 
3338 
3322 
1600 
1600 
1600 
1600 
1600 
1600 
3294 
3616 
3616 
3840 
3840 
8466 
9738 
9731 

33316 
192 
224 

2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2688 
2560 
2560 
2560 
2560 
5828 
5828 
2194 
3210 

560 
5828 
5828 
7848 

11040 
11460 

6482 
3553 
3361 
3553 
7424 
7236 
3137 

5828 
71644 
14394 

2056 
2056 
2056 
2056 

17082 
11934 

9902 

80 
80 
80 
80 
40 
40 
40 
40 
40 
40 
72 
82 
82 
80 
80 

128 
152 
152 
256 

16 
16 
64 
64 
64 
64 
64 
64 
64 
64 
72 
64 
64 
64 
64 

132 
132 

64 
80 
20 

132 
132 
150 
188 
188 
160 

48 
48 
48 
72 
71 
116 

132 
416 
171 

32 
32 
32 
32 

258 
216 
194 

2.004 
2.00& 
2.004 
2.008 
2.ooa 
2.008 
3.0 
2.158 
2.158 
4.08 
4.08 

4.08 
4.08 

2.018 
2.018 
1.018 
1.018 
1.0la 
1.0la 
1.018 
l.Ola 
1.018 
1.0la 
3.0 
2.ooa 
2.004 
2.00a 
2.ooa 
2.11 .. 
2.lla 
4.0a 

2.02a 
4.0a 
2.lla 
2 • .1.la 

3.0 
3.2b 
4.0a 

3.0a 
2.ooa 
2.ooa 
2.lOa 
3.2b 
4.0a 

3.0 

2.lla 
4.0a 

4.0a 

4.0a 
4.0a 
4.0a 

4.0a 

4.08 
4.0a 

3.2b 



10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 

DEVICE 
CODE 

CYPRESS 
PAL16L8A 
PAL16L8A-2 

PAL16R4A 
PAL16R4A-2 

PAL16R6A 
PAL16R6A-2 
PAL16R8A 
PAL16R8A-2 
PAL22\'10C 
PAL22VP10C 
PALC12L10 
PALC14L8 
PALC16L6 
PALC16Lll 

PALC16R4 
PALC16R6 
PALC16Rll 
PALC18L4 
PALC20L10 
PALC20L2 

PALC20L8 
PALC20R4 
PALC20R6 
PALC20R8 
PALC22\"10 
PLDC18G8 
PLDC20Gl0 
PLDC20RA10 

EXEL 
XL78C800 

FAIRCHILD 
93Z458 
93Z459 
Fl6L8 
F16P8 
Fl6R4 
Fl6R6 
F16R8 
F16RP4 

Fl6RP6 
F16RP8 
F20P8 
F20RP4 
F20RP6 

F20RP8 

GAZELLE 
GA22Vl0 
GA22VP10 
GA23S8 
GA23S\"6 

GOULD 
PEEL153 
PEELJ.73 
PEEL18C'\"8 
PEEL22C-:l.O 
PEEL22C'\"10Z 
PEEL253 
PEEL273 

ILUtRIS 
HPL16Hll 

DEVICE 
HJIEKONIC 

Pl6L8 
Pl6L8 
Pl6R4 
Pl6R4 
P16R6 
Pl6R6 
Pl6R8 
Pl6R8 
P22Vl0 
P22VP10 
Pl2Ll0 
Pl4L8 
Pl6L6 
Pl6L8 

Pl6R4 
Pl6R6 
Pl6R8 

Pl8L4 
P20Ll0 
P20L2 
P20L8 
P20R4 
P20R6 
P20R8 
P22Vl0 
Pl8G8 
P20Gl0 
P20RA10 

XL78C800 

FlOO 
Fl.00 
P16L8 
Pl.6P8 

P16R4 
P16R6 
P16R8 
P16RP4 

Pl6RP6 
P16RP8 
P20P8 
P20RP4 
P20RP6 
P20RP8 

P22Vl0 
P22VPl.0 
P23S8 
P23SV8 

Fl53 
Fl.73 
P18CV8 

P22Vl0 

P22CV10Z 
F253 
F273 

Pl6Hll 

I OF 
PINS 

20 
20 
20 
20 
20 
20 
20 
20 
24 
24 
24 
24 
24 
20 
20 
20 
20 
24 
24 
24 

24 
24 
24 
24 
24 
20 
24 
24 

24 

28 
28 
20 
20 
20 
20 
20 
20 

20 
20 
24 
24 
24 
24 

24 
24 
20 
20 

20 
24 
20 
24 
24 
20 
24 

20 

91-10193-6 

I OF 
FUSES 

2048 
2048 
2048 
2048 

2048 
2048 
2048 
2048 
5828 
5828 

480 
560 
640 

2048 

2048 
2048 
2048 

720 
1600 

640 
25.60 

2560 
2560 
2560 
5828 
2624 
3990 
3210 

6400 

1928 
1928 
2048 
2056 
2048 
2048 
2048 
2056 
2056 
2056 
2568 

2568 

2568 
2568 

5828 
5828 

6234 
6242 

1842 

2178 
2696 

5828 
5873 
2378 
2714 

2048 

I OF 
PTERKS 

64 
64 
64 
64 
64 
64 
64 
64 

132 
132 

20 
20 
20 
64 

64 
64 
64 
20 
40 
16 
64 
64 
64 
64 

132 
72 

90 
80 

66 

48 
48 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 

132 
132 
135 
135 

42 
42 
74 

132 
132 

42 
42 

64 

PAGE 4 

REC. VER. 
LEVEL 

1.0la 
1.0la 
1.01a 
1 .. 014 

1.0la 
l.Ol.a 
l.Ol.a 
l.Ol.a 
2.11a 
2.11a 
l.Ola 

1.01a 

l.Ol.a 
l.Ola 

l.Ol.a 

1.01a 

2.ooa 
2.ooa 
2.ooa 
2.00a 
2.11& 
4.0a 

2.02a 

4.0a 

2 .. ooa 
2.ooa 
1.0l.a 

1 .. 0l.a 

l..Ol.a 
1 .. 0J.a 

2 .. l.5a 

2.11a 
2 .. 11.a 

2.114 
3.0 

2.15a 
2 .. J.Oa 

2.15a 

2.11.a 

3.2b 
3.0 
4 .. 0a 



10/19/90 CUPL VER. c.oa PLD DEVICE LIBRARY 

DEVrcE 
CODE 

HARR rs 
HPL16L8 
HPL16LC8 
HPL16P8 
HPL16R4 
HPL16R6 
HPL16R8 
BPL16RC4 

HPL16RC6 
HPt.16RC8 
BPL77153 
BPL77209 
HPL77216 
BPL82S153 

Icr 
PEEL153 
PEEL173 
PEELJ.8CV8 
PEEL20CGJ.O 
PEEL22CV10 
PEEL22CV10Z 
PEEL253 
PEEL273 

INTEL 
5AC312 
5AC324 
5C031 
5C032 
5C060 
5C090 
5C180 
85C060 
85C090 
85C220 
85C224 
85C508 

LATTrCE 
GALJ.6V8 
GAL16V8A 
GAL16Z8 
GAL18V10 
GA.L20RA10 

CAL20V8 
CAL20V8A 
CAL22V10 
GAL26CV12 
CAL6001 
RAL10H8 
RAL10L8 
RAL10P8 
RAL12H6 
RAL12L6 
RAL12P6 
RAL14H4 
RALl.4H8 
RALl.4L4 
RALl.4L8 
RAL14P4 
RALl.4P8 
RAL16C1 
RALl.6H2 
RAL16H6 
RAL16H8 

DEVrCE 
KNEMONrc 

P16L8 
P16L8 
P16P8H 
P16R4 
P16R6 
P16R8 
P16RPC 
P16RP6 
P16RPa 
F153 
PJ.6L8 
PJ.6P8H 
FJ.53 

Fl.53 
Fl.73 

P18CV8 
P20CGJ.O 
P22Vl.O 
P22CV10Z 
F253 
F273 

EP3l.2 
EP324 
EP300 
EP320 
EP600 
EP900 
EPJ.800 
EP600 
EP900 
EP320 
PC224 
PC508 

C16V8 
Gl.6V8A 
CJ.6Z8 
C18V10 
C20RA10 
G20V8 
G20V8A 
G22VJ.O 
G26CV12 
G6001 
Pl.OHS 
P10L8 
Pl.OPS 

P12H6 
P12L6 
P12P6 
P14H4 
C20V8 
P14L4 
P14L8 
P14P4 
P14P8 
P16C1 
P16H2 
C20V8 
PJ.6H8 

I OF 
PrNs 

20 
20 
20 
20 
20 

·20 
20 
20 
20 
20 
20 
20 
20 

20 
24 
20 
24 
24 
24 
20 
24 

24 
40 
20 

20 
24 
40 
68 
24 
co 
20 
24 
28 

20 
20 
24 
20 
24 
24 
24 
24 

28 
24 
20 
20 
20 
20 
20 
20 
20 
24 
20 
24 
20 
24· 

20 
20 
24 

20 

91-10193-5 

I OF 
FUSES 

2048 
2048 
2056 
2048 
2048 
2048 
2056 
2056 
2056 
l.842 

2048 
2056 
l.842 

1842 
2178 

2696 
4088 

5828 
5873 
2378 
2714 

l.371.3 
47493 

2720 

2916 
6482 

l.7402 
42490 

6482 
l.7402 

2916 
3204 

::<56 

2194 
2194 
2J.95 
3540 
3274 

560 
2706 

5892 
6432 
8294 

320 
320 
328 
384 
384 
390 

448 
560 
448 
560 
452 
568 

5J.2 
5J.2 
560 

2048 

I OF 
PTERMS 

6C 
64 
64 
64 
64 
64 
64 
64 
64 
42 

64 
64 
42 

42 
42 
74 
92 

l.32 
132 

42 
42 

200 
394 

74 
72 

160 
240 
480 
160 
240 

72 

72 
8 

64 

64 
64 
96 
80 
20 
64 

132 
120 

75 

l.6 
J.6 
l.6 
J.6 
l.6 
J.6 

16 
20 
J.6 
20 
J.6 
20 

16 
16 
20 
64 

PACE 5 

REC. VER. 
LEVEL 

l.OJ.a 
1.014 

J..Ola 
J..Ola 
J..014 

2.l.5a 
1.0J.a 

2.l.54 

2.154 
2.l.04 
2.154 
4.04 

2.l.l.a 
3.2b 
3.0 
4 .. 0a 

4.04 
4.04 

2.l.54 
3.0a 
3.2b 

4.0a 

3.0a 

3.2b 

2.154 
4 .. 0a 
3 .. 2a 

4.0a 

4 .. 0a 

3 .. 2a 

3 .. 2a 

4 .. 0a 
4.0a 

4.0a 

3.2a 
4 .. 0a 

4.04 

1.0J.a 

4.0a 



10/19/90 CUPL VER. 4.0a PLD DEVJ:CE LIBRARY 

PEVJ:CE 
CODE 

LATTJ:CH 
RAL16L2 
RAL16L6 
RAL16L8 
RAL16P2 

RAL16P6 
RAL16P8 
RAL16R4 
RAL16R6 
RAL16R8 
RAL16RP4 
RAL16RP6 
RAL16RP8 
RAL18B4 
RAL18L4 
RAL18P4 
RAL20B2 
RAL20B8 
RAL20L2 
RAL20L8 
RAL20P2 
RAL20P8 
RAL20R4 
RAL20R6 
RAL20R8 
RAL20RP4 
RAL20RP6 
RAL20RP8 

llATJ:OllAL 
87X839 
87X840 
GAL16V8 
GAL16V8A 
GAL20RA10 
GAL20V8 
GAL20V8A 
GAL22V10 
GAL6001 
PAL10012C4 
PAL10016C4 

PtL10016LD4 
PAL10016LD8 
PAL10016LH4 
PAL10016P4 
PAL10016P8 
PAL10016PE8 
PAL10016RD4 
PAL10016RD8 
PAL10016RH4 
PAL10020RP4 
PAL1012C4 
PAL1016C4 
PAL1016LD4 
PAL1016LD8 
PAL1016LH4 
PAL1016P4 
PAL1016P8 
PAL101.6PE8 

PAL1016RD4 
PAL1016RD8 
PAL1016RH4 
PAL1020RP4 
PAL10H8 
PAL10H8/16V8 
PAL10H8A 

PEVJ:CE 
HNEKONJ:C 

P16L2 
Pl6L6 
Pl6L8 
Pl6P2 
Pl6P6 
Pl6P8 
Pl6R4 
Pl6R6 
Pl6R8 
Pl6RP4 
Pl6RP6 
Pl6RP8 
G20V8 
Pl8L4 
Pl8P4 
G20V8 
G20V8 
P20L2 
P20L8 
P20P2 
P20P8 
P20R4 
P20R6 
P20R8 
P20RP4 
P20RP6 
P20RP8 

F839 
F839 
Gl6V8 
G16V8A 
G20RA10 
G20V8 
G20V8A 
G22V10 

G600l 
Pl012C4 
Pl016C4 
Pl016LD4 
Pl016LD8 
Pl016LH4 
Pl016P4 
Pl016P8 
P1016PE8 
Pl016RD4 
Pl016RD8 
P1016RH4 
Pl020RP4 
P1012C4 

Pl016C4 
Pl016LD4 
Pl016LD8 
P1016LK4 
P1016P4 
Pl016P8 
Pl016PE8 

Pl016RD4 
Pl016RD8 
Pl016RH4 

Pl020RP4 
P10H8 
PlOH8 
PlOH8 

I OF 
PJ:NS 

20 
24 
20 
20 
24 
20 
20 
20 
20 
20 
20 
20 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 

24 

24 
24 
20 
20 
24 
24 
24 
24 
24 
24 
28 
24 
24 
24 
24 
24 
28 
24 
24 
24 

28 
24 
28 
24 

24 
24 

24 
24 
28 
24 
24 
24 

28 
20 
20 
20 

91-10193-5 PAGE 6 

I OF I OF REC. VER. 
FUSES PTERKS LEVEL 

512 
640 

2048 
514 
646 

2056 
2048 
2048 
2048 
2056 
2056 
2056 
560 
720 
724 
560 
560 
640 

2560 
642 

2568 
2560 
2560 
2560 
2568 
2568 
2568 

1094 

1094 
2194 
2194 

3274 
560 

2706 
5892 

8294 
2056 
2056 
2056 
2056 
2056 
2056 

2056 
2056 
2056 

2056 
2056 
2568 
2056 

2056 

2056 
2056 
2056 
2056 
2056 
2056 

2056 
2056 
2056 
2568 

320 
320 
320 

16 
20 
64 
16 
20 
64 
64 
64 
64 
64 

.64 
64 
20 
20 
20 
20 
20 
16 
64 
16 
64 
64 
64 
64 
64 
64 
64 

32 
32 
64 
64 
80 
20 
64 

132 
75 

32 
32 
64 
64 
32 
32 
64 

64 

64 

64 
32 

32 
32 
32 
64 

64 

32 
32 
64 

64 

64 

64 
32 
32 
16 
16 
16 

l.Ola 
1.014 
l.Ola 

4.0a 

4.0a 
4.0a 

2.ooa 

2.15a 
2.ooa 
2 .. ooa 
2.ooa 

2.00a 
2.00a 

4.0a 
4.0a 
3.2a 
4.0a 

4.0a 
4.0a 

4.0a 

3.2a 
4.0a 

4.0a 

4.0a 

4.0a 

3.0 
2.1oa 
4.0a 

4.0a 

4.0a 
4.0a 

4.0a 

3.2a 

4.0a 

4.0a 

4.0a 

4.0a 

3.0 
2.1ua 
4.0a 

4.0a 

4.0a 

4.0a 

4.0a 



10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 

DEVICE 
CODE 

NATIONAL 
PAL10H8A2 
PAL10L8 
PAL10L8/l6V8 
PAL10L8A 
PAL10L8A2 
PAL10P8/16V8 
PAL12H6 
PAL12R6/16V8 
PAL12H6A 
PAL12H6A2 
PAL12Ll0 
PAL12L6 
PAL12L6/16V8 
PAL12L6A 
PAL12L6A2 
PAL12P6/16V8 
PAL14H4 
PAL14H4/16V8 
PAL14H4A 
PAL14R4A2 
PAL14H8/20V8 
PAL14L4 
PAL14L4/16V8 

PAL14L4A 
PAL14L4A2 
PAL14L8 
PAL14L8/20V8 
PAL14P4/16V8 
PAL14P8/20V8 
PALJ.6Cl 
PAL16ClA 
PAL16ClA2 
PALJ.6H2 
PAL16H2/16V8 
PAL16R2A 
PAL16H2A2 
PAL16H6/20V8 
PAL16R8/16V8 
PAL16L2 
PAL16L2/16V8 
PAL16L2A 
PAL16L2A2 
PAL16L6 
PAL16L6/20V8 
PAL16L8 
PAL16L8/16V8 
PAL16L8A 
PAL16L8A2 
PAL16L8B 
PAL16L8B2 
PAL16L8D 
PAL16P2/16V8 
PAL16P6/20V8 
PAL16P8 
PAL16P8/16V8 
PAL16R4 
PAL16R4/16V8 
PAL16R4A 
PAL16R4A2 
PAL16R4B 
PAL16R4B2 
PAL16R4D 
PAL16R6 
PAL16R6/16V8 
PAL16R6A 

DEVICE 
KNEHONJ:C 

PlOH8 
PlOL8 
PlOL8 
PlOL8 
PlOL8 
PlOP8 
Pl2H6 
PJ.286 
Pl2H6 
P12H6 
Pl2Ll0 
Pl2L6 
Pl2L6 
Pl2L6 
Pl2L6 
Pl2P6 
Pl4H4 
Pl4H4 
Pl4H4 
PJ.4H4 
G20V8 
P14L4 
Pl4L4 
Pl4L4 
P14L4 
Pl4L8 
Pl4L8 
Pl4P4 
Pl4P8 
Pl6Cl 
Pl6Cl 
Pl6Cl 
Pl6H2 
Pl6H2 
Pl6H2 
Pl6H2 
G20V8 

PlCHB 
P16L2 
P16L2 
Pl6L2 
Pl6L2 
Pl6L6 
P16L6 

Pl6L8 
Pl6L8 
Pl6L8 
P16L8 
Pl6L8 
Pl6L8 
Pl6L8 
Pl6P2 
Pl.6P6 
Pl6P8 
P16P8 

Pl6R4 
Pl6R4 
P16R4 

Pl6R4 
Pl.6R4 
Pl.6R4 
Pl6R4 

P16R6 
P16R6 
P16R6 

I OF 
PINS 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
24 
20 
20 
20 
20 
20 
20 
20 
20 
20 
24 
20 
20 
20 
20 
24 
24 
20 

24 
20 
20 
20 
20 
20 
20 
20 
24 
20 

20 
20 
20 
20 
24 
24 
20 
20 
20 
20 
20 
20 
20 
20 
24 

20 
20 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

91-10193-5 PAGE 7 

' OF , OF REC. VER. 
FUSES PTERHS LEVEL 

320 
320 
320 
320 
320 
328 
384 
384 
384 
384 
480 
384 
384 
384 
384 
390 
448 
448 
448 
4·49 

560 
448 
448 
448 
448 
560 
560 
452 
568 
512 
512 
512 
512 
512 
512 
512 
560 

2048 
512 
512 
512 
512 
640 
640 

2048 
2048 
2048 
2048 
2048 
2048 
2048 

514 
646 

2056 
2056 
2048 
2048 
2048 
2048 
2048 
2048 
2048 

2048 
2048 
2048 

16 
16 
16 
16 
16 
16 
J.6 
16 
16 
J.6 
20 
16 
16 
16 
16 
16 
16 
16 
16 
16 
20 
16 
16 
16 
J.6 
20 
20 
16 
20 
16 
16 
16 
16 
16 
16 
16 
20 
64 

16 
16 
16 
16 
20 
20 
64 
64 
64 
64 
64 
64 
64 
16 
20 
64 
64 

64 
64 
64 
64 
64 
64 
64 
64 
64 
64 

1.01• 

4.0a 

2.01a 
1.014 
1.014 

4 .. 0a 

1.014 
1.014 
1.01a 

.l.0.14 

1.014 
1.014 
1.0.la 

1.014 

1.014 
1.01.a 

1.014 
.l.O.la 

1.014 
1.014 

1.01a 
1.014 
1.01a 



10/19/90 CUPL VER. 4.0a PLP PEVICE LIBRARY 

PEVICE 
COPE 

NATIONAL 
PAL16R6A2 
PAL16R6B 
PAL16R6B2 
PAL16R60 
PAL16R8 
PAL16R8/l6V8 
PAL16R8A 
PAL16R8A2 
PAL16R8B 
PAL16R8B2 
PAL16R80 
PAL16RA8 
PAL16RP4 
PAL16RP4/16V8 

PAL16RP6 
PAL16RP6/l6V8 
PAL16RP8 
PAL16RP8/l6V8 
PAL18H4/20V8 
PAL18L4 
PAL18L4/20V8 
PAL18P4/20V8 
PAL20Cl 
PAL20H2/20V8 
PAL20H8/20V8 
PAL20Ll0 
PAL20LlOA 
PAL20L2 
PAL20L2/20V8 
PAL20L8 
PAL20L8/20V8 
PAL20L8A 
PAL20L8B 
PAL20L80 
PAL20P2/20V8 
PAL20P8/20V8 
PAL20R4 

PAL20R4/20V8 
PAL20R4A 
PAL20R4B 
PAL20R4D 

PAL20R6 
PAL20R6/20V8 
PAL20R6A 

PAL20R6B 
PAL20R60 
PA.L20R8 

PAL20R8/20V8 
PAL20R8A 
PAL20R8B 
PA.L20R80 

PAL20RA10 
PAL20RP4/20V8 

PAL20RP6/20V8 
PAL20RP8/20V8 
PAL20Xl0 
PAL20XlOA 
PAL20X4 

PAL20X4A 
PAL20X8 
PAL20X8A 

PLX TECH. 
PLX448 
PLX464 

DEVICE 
NNEKONIC 

Pl6R6 
Pl6R6 
Pl6R6 
Pl6R6 
Pl6R8 
Pl6R8 
Pl6R8 
Pl6R8 
Pl6R8 
Pl6R8 
Pl6R8 
Pl6RA8 
Pl6RP4 
Pl6RP4 
Pl6RP6 
Pl6RP6 
Pl6RP8 
Pl6RP8 
G20V8 
Pl8L4 
Pl8L4 
Pl8P4 
P20Cl 
G20V8 
G20V8 
P20Ll0 

P20Ll0 
P20L2 
P20L2 
P20L8 
P20L8 
P20L8 

P20L8 
P20L8 
P20P2 
P20P8 
P20R4 

P20R4 
P20R4 
P20R4 
P20R4 
P20R6 
P20R6 
P20R6 

P20R6 
P20R6 
P20R8 
P20R8 
P20R8 
P20R8 
P20R8 

P20RA10 
P20RP4 

P20RP6 
P20RP8 
P20Xl0 
P20Xl0 
P20X4 

P20X4 

P20X8 
P20X8 

PLX448 
PLX448 

, OF 

PINS 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

20 
20 
20 
20 
24 
24 

24 
24 
24 
24 
24 
24 
24 
24 

24 
24 
24 
24 

24 
24 
24 
24 
24 
24 

24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 

24 
24 
24 
24 
24 
24 
24 
24 
24 

24 
24 

91-10193-5 PAGE 8 

I OF I OF REC. VER. 
FUSES PTERKS LEVEL 

2048 
2048 
2048 
2048 
2048 

2048 
2048 
2048 
2048 
2048 
2048 
2056 
2056 
2056 
2056 
2056 
2056 
2056 

560 
720 

720 
724 
640 
560 
560 

1600 
1600 

640 
640 

2560 
2560 

2560 
2560 
2560 

642 
2568 
2560 
2560 

2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
3210 
2568 

2568 
2568 
1600 
1600 
1600 
1600 
1600 
1600 

5116 
5116 

64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
20 
20 

20 
20 
16 
20 
20 
40 
40 
16 
16 
64 
64 

64 
64 
64 
16 
64 
64 

64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 

64 
64 
80 
64 
64 
64 
40 
40 
40 
40 
40 
40 

98 
98 

l•Ola 
l..01a 

1.01a 

1.0la 
1.01a 

J..Ola 
1.0la 
J..Ola 
1.0la 
l.Ola 
i.01a 

4.0a 

4 .. 0a 
4 .. 0a 

l.Ola 
1.0la 

2.ooa 
2.ooa 
2 .. ooa 
2 .. ooa 
2 .. ooa 

2.15a 
2 .. ooa 
4:..00a 

2.ooa 
2.ooa 
2 .. ooa 
2 .. ooa 
2.0Cla 
2 .. ooa 
2 .. 00a 
2.ooa 
2.ooa. 
2.ooa 
2.ooa 
2 .. ooa 
2.ooa 
2.02a 

2.ooa 
2 .. ooa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 

J.2b 
3.2b 



10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 

DEVICE 
CODE 

RIOOB 
EPL10P8A 
EPL10P8B 
EPLJ.2P6A 
EPLJ.2P6B 
EPLJ.4P4A 
EPLJ.4P4B 
EPLJ.6P2A 
EPLJ.6P2B 
EPLJ.6P8B 
EPLJ.6RP4B 
EPLJ.6RP6B 
EPLJ.6RP8B 

SAJISUJIG 

CPLJ.6L8 
CPLJ.6L8L 
CPLJ.6R4 

CPLJ.6R4L 
CPL16R6 
CPL1.6R6L 
CPL16R8 
CPLJ.6R8L 
CPL20Ll.O 
CPL20Ll.OL 
CPL20L8 
CPL20L8L 
CPL20R4 
CPL20R4L 
CPL20R6 
CPL20R6L 
CPL20R8 
CPL20R8L 

SEBQ 

20RA1.0Z 

26Vl.2H 

SGS-THOM. 

GALJ.6V8 
GAL16V8A 
GALJ.6Z8 
GAL20V8 
GAL20V8A 
GAL6001. 

RAL1.0H8 
RALJ.OL8 
RALJ.OP8 
RALJ.2H6 
RAL12L6 
RALJ.2P6 
RAL14H4 
RAL14H8 
RAL14L4 
RAL14L8 
RAL14P4 
RALJ.4P8 
RAL16H2 
R.AL1.6H6 

RAL16H8 
RAL16L2 
RAL16L6 
RAL16L8 
RAL16P2 
RAL16P6 
RAL16P8 

DEVICE 
KNEKONIC 

P10P8V 
Pl.OP8V 
P12P6V 
P12P6V 
Pl4P4V 
Pl4P4V 
Pl.6P2V 
Pl.6P2V 
Pl.6P8V 
Pl.6RP4V 
Pl.6RP6V 

Pl.6RP8V 

P16L8 
Pl.6L8 
Pl6R4 

Pl.6R4 
Pl6R6 
Pl6R6 
Pl.6R8 
Pl6R8 
P20Ll.O 

P20Ll.O 
P20L8 
P20L8 
P20R4 
P20R4 
P20R6 
P20R6 
P20R8 
P20R8 

P20RAJ.O 
P26VJ.2 

G16\.'8 

Gl6V8A 
Gl6Z8 

G20V8 
G20V8A 
G600l. 
PlOH8 
PlOL8 
PlOP8 
Pl.2H6 
PJ.2L6 
Pl.2P6 
Pl.4H4 

G20V8 
Pl4L4 
Pl4L8 
Pl4P4 
Pl.4P8 

P16H2 
C20V8 

P16H8 
P16L2 
P16L6 
P16L8 
P16P2 
Pl6P6 
P16P8 

I OF 
PINS 

20 
20 
20 
:w 
20 
20 
20 
20 

20 
20 
20 
20 

20 
20 
20 
20 
20 
20 
20 
20 
24 
24 
24 
24 
24 
24 

24 
24 
24 
24 

24 

28 

20 
20 
24 
24 
24 
24 
20 
20 
20 
20 
20 
20 
20 
24 
20 
24 
20 
24 

20 
24 
20 
20 
24 
20 

20 
24 
20 

91-1.0193-5 PAGE 9 

• OF I OF REC. VER. 
FUSES PTERICS LEVEL 

664 
664 
786 
786 
908 
908 

1030 
l.030 
2072 
2072 
2072 
2072 

2048 
2048 
2048 

2048 
2048 
2048 
2048 
2048 
1600 

1600 
2560 
2560 
2560 
2560 
2560 
2560 
2560 
2560 

321.0 
7848 

2194 
2194 
2195 

560 
2706 
8294 

320 
320 
328 
384 
384 
390 
448 
560 

448 

560 

452 
568 

512 
560 

2048 
512 
640 

2048 

514 
646 

2056 

32 
32 
32 
32 
32 
32 
32 
32 
64 
64 
64 

64 

64 
64 
64 
64 
64 
64 
64 
64 
40 
40 
64 
64 
64 
64 
64 
64 
64 
64 

80 
150 

64 
64 
64 

20 
64 
75 
16 
16 
16 
16 
16 
16 

16 
20 
16 
20 
16 
20 
16 
20 
64 
16 
20 
64 
16 
20 
64 

2.lOa 
2.J.Oa 
2.1oa 
2.1oa 

2.lOa 
2.1oa 

2 .. l.Oa 

2.10• 
2.l.Oa 

2.10• 

l.Ol.a 
l.Ola 
1 .. 01.a 

1 .. 01.a 

l.Ola 
l.Ola 
1..01.a 
l.Ola 
1.01a 

1 .. 01.a 

2 .. ooa 
2.ooa 
2.00a 
2.00a 

2 .. 004 

2.ooa 
2.00a 

2 .. ooa 

2.02a 

3.0 

4.0a 

4.0a 

4 .. 0a 

4.0a 

4.0a 

4.0a 

4.0a 

l. Ola 



10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 

DEVJ:CE 
CODE 

SGS-TBOJI. 
RAL16R4 
RAL16R6 
RAL16R8 
RAL16RP4 
RAL16RP6 
RAL16RP8 
RAL18B4 
RAL18L4 
RAL18P4 
RAL20B2 
RAL20B8 
RAL20L2 
RAL20L8 
RAL20P2 
RAL20P8 
RAL20R4 
RAL20R6 
RAL20R8 
RAL20RP4 
RAL20RP6 
RAL20RP8 

SJ:GNll'l'J:CS 

10020EV8 
10B20EV8 
82Sl00 
82Sl01 
82Sl03 
82Sl05 
82Sl05A 
82Sl51 
82Sl53 
82Sl53A 
82Sl55 
82Sl57 
828159 
828161 
828162 
82Sl63 
828167 
82Sl67A 
828168 
828173 
828179 
PHD16N8 
PRD48N22 
PLC153 
PLC16V8 
PLC18V8Z 
PLC20V8 
PLC415 
PLC42VA12 
PLC473 
PLllS153 
PLHS16L8A 
PLHS16L8B 
PLHS18P8A 
PLHS18P8B 
PLHS473 
PLHS501 
PLHS502 
PLSlOO 
PLSlOl 
PLS103 
PLS105 

DEVJ:CE 
IOIEKONIC 

Pl6R4 
Pl6R6 
P16R8 
P16RP4 
Pl6RP6 
Pl6RP8 
G20V8 
Pl8L4 
Pl8P4 
G20V8 
G20V8 
P20L2 
P20L8 
P20P2 
P20P8 
P20R4 
P20R6 
P20R8 
P20RP4 
P20RP6 
P20RP8 

Pl020EV8 
Pl020EV8 
FlOO 
FlOO 
Fl03 
Fl05 
Fl05 
Fl51 
Fl53 
FJ.53 
Fl55 
Fl57 
Fl59 
Fl6l. 
Fl62 
Fl63 
Fl67 
Fl.67 
Fl68 
Fl73 
Fl79 
Pl6N8 
F48N22 
Fl53 
Fl6V8 
Fl8V8Z 
F20V8 
F4l.5 
F42VA12 
F473 
Fl53 
Pl.6L8 
Pl6L8 
Pl8P8 
Pl8P8 
F473 
F501 
F502 
FlOO 
FlOO 
Fl03 
Fl05 

I OF 
PINS 

20 
20 
20 
20 
20 
20 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 

24 
24 
28 
28 
28 
28 
28 
20 
20 
20 
20 
20 
20 
24 
24 
24 
24 
24 
24 
24 
24 
20 
68 
20 
20 
20 
24 
28 
24 
24 
20 
20 
20 
20 
20 
24 
52 
64 
28 
28 
28 
28 

91-10193-5 

#OF IOF 
FUSES PTERKS 

2048 
2048 
2048 
2056 
2056 
2056 

560 
720 
724 
560 
560 
640 

2560 
642 

2568 
2560 
2560 
2560 
2568 
2568 
2568 

3616 
3616 
1928 
1928 

297 
3553 
3553 

564 
1842 
1842 
2108 
2108 
2108 
J.544 

165 
225 

336l. 
,..3361 

3553 
2178 
2452 

5l.2 
7008 
l.842 
2617 
2689 
3193 
5751 
8994 
1499 
1842 
2048 
2048 
2600 
2600 
1499 

15780 
23464 

1928 
1928 

297 
3553 

64 
64 
64 
64 
64 
64 
20 
20 
20 
20 
20 
16 
64 
16 
64 
64 
64 
64 
64 
64 
64 

80 
80 
48 
48 

9 

48 
48 
15 
42 
42 
43 
43 
43 
48 

5 

9 

48 
48 
48 
42 
43 
16 
73 
42 
72 
72 
72 
68 
10 
24 
42 
64 
64 
72 
72 
24 

112 
144 

48 
48 

9 

48 

PAGE 10 

REC. VER. 
LEVEL 

l.Ola 
1.0la 
l.Ola 

4.0a 

4.0a 
4.0a 

2.ooa 

2.15• 
2.ooa 
2.00. 
2.ooa 

3.0a 
3.0a 
2.00a 
2.ooa 
2.00• 
2.ooa 
2.ooa 
2.10& 
2.15• 
2.l.54 
2.00 .. 

2.ooa 
2.00 .. 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2.10• 
2.1oa 
3.0a 
2.5oa 
4.0a 
2.lSa 
3.2b 
4.0a 

4.0a 
4.0a 

3.2b 
2.15• 
2.15a 
J..Ola 
l.Ola 
2.0la 
2.01a 
2.15• 
3.2b 
3.24 
2.00a 
2.ooa 
2.ooa 
2.ooa 



10/19/90 CUPL VER. 4.0a PLO DEVICE LIBRARY 

DEVICE 
CODE 

SJ:CNETICS 
PLSlOSA 
PLSlSJ. 
PI.Sl52 
PLSJ.S3 
PLSJ.53A 
PLSJ.SS 
PLSJ.S7 
PLSJ.S9 
PLSJ.S9A 
PLSJ.61 
PLSJ.62 
PLSJ.63 
PLSJ.67 
PLSJ.67A 
PLSJ.68 
PLS168A 
PLSJ.73 
PLSJ.79 
PLUS10S 
PLUS1S3B/D 
PLUS16L8D/-7 
PLUS16R4D/-7 
PLUSJ.6R6D/-7 
PLUS16R8D/-7 
PLUSJ.738/D 
PLUS20L8D/-7 
PLUS20R4D/-7 
PLUS20R6D/-7 
PLUS20R8D/-7 
PLUS405 

SPRAGUE 
SPL16LC8 
SPL16RC4 
SPL16RC6 
Sl>LJ.6RC8 
SPL20LC8 

SPL20XC8 

TI 
EPJ.810 
EPJJO 
EP6J.O 
EP630 
EP910 
N82Sl.05A 
N82Sl.67A 
PALl.6L8A /-2 
PALJ.6R4A /-2 
PALl.6R6A /-2 
PAL16R8A /-2 
PAL20L8A 
PAL20R4A 
PAL20R6A 
PAL20R8A 
TIB82SJ.OSA 
TIB82Sl.OSB 
TIB82Sl.67B 
TIBFPCAS29 
TIBPADJ.6N8-7.S 
TIBPADl.8N8-6 
TIBPALJ.6H8 
TIBPALl.6HD8 
TIBPALl.6L8-l.O 
TIBPALl.6L8-J.2/J.S/2S 

l>EVJ:CE 
KHEHONJ:C 

f'J.05 
FJ.51 
FJ.53 
Fl.53 
F153 
F155 
f'J.57 
FJ.59 
f'J.59 
F161 
FJ.62 
f'J.63 
f'J.67 
FJ.67 
Fl.68 
F168 
FJ.73 
F179 
Fl OS 
Fl.SJ 
P16L8 
PJ.6R4 
PJ.6R6 
P16R8 
Fl 73 
P20L8 
P20R4 
P20R6 
P20R8 
F40S 

PJ.6L8 
P16R4 
Pl.6R6 
PJ.6R8 
P20L8 
P20X8 

EPJ.800 
EP320 
EP600 
EP600 
EP900 
Fl.OS 
FJ.67 
Pl.6L8 
PJ.6R4 
Pl.6R6 
P16R8 
P20L8 
P20R4 
P20R6 
P20R8 
Fl.OS 
Fl.05 
Fl.67 
FS29 
PJ.6N8 
P18N8 
Pl6H8 
PJ.6HD8 
Pl.6L8 
PJ.6L8 

I Of' 
PJ:NS 

28 
20 
20 
20 
20 
20 
20 
20 
20 
24 
24 
24 
24 
24 
24 
24 
24 
24 
28 
20 
20 
20 
20 
20 
24 
24 
24 
24 
24 
28 

20 
20 
20 
20 
24 
24 

68 
20 
24 
24 
40 
28 
24 
20 
20 
20 
20 
24 
24 
24 
24 
28 
28 
24 
20 
20 
20 
20 
20 
20 
20 

91.-10193-6 PACE 11 

I OF I OF REC. VER. 
FUSES PTERHS LEVEL 

3S53 
S64 

1842 
1842 
J.842 
2108 
2J.08 
21.08 
2108 
1544 
165 
22S 

336J. 
3361 
3SS3 
3SS3 
2178 
24S2 
3S53 
1842 
2048 
2048 
2048 
2048 
2178 
2560 
2560 
2S60 
2S60 
S4l.O 

2048 
2048 
2048 
2048 
2S60 
l.600 

42490 
291.6 
6482 
6482 

J.7402 
3SS3 
336). 
2048 
2048 
2048 
2048 
2S60 
2S60 
2S60 
2560 
3553 
3SS3 
3361 

128 
Sl.2 
304 

2048 
2048 
2048 
2048 

48 
l.S 
42 
42 
42 
43 
43 
43 
43 
48 

s 
9 

48 

48 
48 
48 
42 
43 
48 

42 
64 
64 
64 
64 
42 
64 
64 
64 
64 
64 

64 
64 
64 

64 
64 
40 

480 
72 

160 
J.60 
240 

48 
41 
64 
64 
64 
64 
64 

64 

64 
64 

48 
48 
48 

8 

16 
8 

64 

64 
64 

64 

2.ooa 
2.1oa 
2.J.Sa 
2.l.Sa 
2.J.Sa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
2 .. ooa 
2.1oa 
2.1.0a 
2.1.0a 
3.0a 
2.00a 
2.1.Sa 
l.Ola 
1.01.a 
l.Ola 
l.Ola 
2.1.0a 
2.ooa 
2.ooa 
2.ooa 
2.ooa 
3.0a. 

l.Ola 
LOl.a 
1.01a 

1.0J.a 
2 .. ooa 
2.ooa 

4.0a 

2.15& 
3.0a 

3.0a 

3.2b 
2.ooa 
2 .. ooa 
l..01a 
1.0la 
l..Ola 
1.01a 
2.ooa 
2 .. ooa 
2.ooa 
2.00a 
2 .. ooa 
2.ooa 
2 .. ooa 
2.l.Oa 
2.50a 
3.0 

1.0la 
l..01a 



10/19/90 CUPL VER. 4.0a PLO DEVICE LIBRARY 

TI 

DEVICE 
CODE 

TIBPAL16Lll-5/7 
TIBPAL16LD8 
TIBPAL1602 
TIBPAL16R4-10 
TIBPAL16R4-12/15/25 
TIBPAL16R4-5/7 
TIBPAL16R6-l0 
TIBPAL16R6-12/15/25 
TIBPAL16R6-5/7 
TIBPAL16R8-10 
TIBPAL16R8-12/15/25 
TIBPAL16R8-5/7 
TIBPAL20Ll0 
TIBPAL20L8-l.5/25 
TIBPAL20R4-15/25 
TIBPAL20R6-15/25 
TIBPAL20Rll-l.5/25 
TIBPAL20RSP4 
TIBPAL20RSP6 
Tl:BPAL20RSP8 

TIBPAL20SP8 
TIBPAL20Xl.O 
TIBPAL20X4 
TIBPAL20X8 
TIBPAL22Vl.O /A 
TIBPAL22VP10 

TIBPALR19L8 
TIBPALR19R4 
TIBPALR19R6 
TIBPALR19R8 
TIBPALT19L8 
TIBPALT19R4 

TIBPALTl.9R6 
TIBPALT19R8 
TIBPLS506A 
TIBPSC507A 
TICPAL16L8-55 
TICPAL16R4-55 
TICPAL16R6-55 
TICPAL16R8-55 
TICPAL16RSP4 
TICPAL16RSP6 
TICPAL16RSP8 
TICPAL16SP8 
TICPAL18V8 
TICPAL22Vl.O 
TIEPALl.OOl.6ET6 

TIEPALl.0016P8-6 
TIEPAL100l.6TE6 
TIEPAL10Rl.6ET6 
TIEPAL10Hl.6P8-6 
TIEPALl.OH16TE6 
TIFPLA839 
TIFPLA840 

TOSHIBA 

TC9800P 
TC9801P 

VLSI 
VP10P8 
VP12P6 
VP14P4 
VP16P2 
VP16PB 

DEVICE 
KNEKONJ:C 

Pl6Lll 
Pl.6LD8 
Pl6L8 
Pl6R4 
Pl6R4 
Pl6R4 
Pl.6R6 
Pl.6R6 
Pl.6R6 
Pl6R8 
P16R8 
Pl.6R8 
P20Ll0 
P20L8 
P20R4 
P20R6 
P20R8 
P20RSP4 
P20RSP6 
P20RSP8 

P20SP8 
P20X10 
P20X4 
P20X8 
P22V10 
P22VP10 
P19L8R 
P19R4R 
P19R6R 
Pl.9R8R 
P19L8T 
Pl.9R4T 

Pl9R6T 
Pl9R8T 
F506 
F507 
P16L8 
Pl6R4 
Pl6R6 
Pl6R8 
P16RSP4 
P16RSP6 
P16RSP8 
Pl6SP8 
Pl8V8 
P22Vl0 
Pl016ET6 

Pl016P8 
Pl016ET6 
Pl016ET6 
Pl016Pll 
Pl016ET6 
F839 

F839 

F9800 
F9800 

PlOP8 
Pl2P6 
Pl4P4 
Pl6P2 
Pl6P8 

I OF 
PINS 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
24 
24 

24 
24 
24 
24 
24 
24 

24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
24 

24 
24 
24 

24 
20 
20 
20 
20 
20 
20 
20 
20 
20 
24 
24 

24 
24 

24 

24 
24 

24 

24 

20 
20 

20 
20 
20 
20 
20 

91-10193-5 PACE 12 

I OF I OF REC. VER. 
FUSES PTERHS LEVEL 

20411 
20411 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 
2048 

2048 
1600 
2560 
2560 
2560 
2560 
26118 
2692 
2696 
2680 
1600 
1600 
1600 
51128 
51128 
2443 
2443 
2443 
2443 
2443 
2443 
2443 

2443 
10680 

7370 

2048 
2048 
2048 
2048 
2176 
2180 
2184 
2168 
2752 

5828 
1542 
2056 
1542 
1542 
2056 
1542 
1094 

1094 

1830 
1830 

328 
390 
452 
514 

2056 

64 
64 

64 
64 
64 
64 
64 
64 
64 
64 
64 

64 
40 
64 
64 
64 
64 

64 
64 
64 
64 
40 
40 
40 

132 
132 

64 
64 
64 
64 
64 
64 

64 
64 
98 
80 
64 
64 
64 
64 
64 
64 
64 
64 
74 

132 
48 
64 
48 
48 
64 
48 
32 
32 

45 
45 

16 
16 
16 
16 
64 

1.01• 

1.01• 
l.Ola 
1.0la 
1.0l.a 
1.014 

l.O.la 

l..Ola 
l.Ola 
!.Ola 
1.01a 
!.Ola 
2.ooa 
2.ooa 
2.00a 
2.ooa 
2.11a 
2.lla 
2.114 

2.ooa 
2.ooa 
2.ooa 
2.114 
2.l.la 

2.104 
2.104 
2.lOa 
2.lOa 
2.lla 
.2.lla 

2.lla 
2.154 
2.15a 

l .Ola 
l.Ola 
l.Ol.a 
l.Ola 
2.llb 
2.llb 
2.l.lb 
2.llb 
3.0 
2. lla 

3.2a 

2. lOa 
3.2a 

3.2a 

2.104 

3. 24 
2.ooa 
2.ooa 

3.2a 
3.2a 



10/19/90 CUPL VER. 4.0a PLO DEVICE LIBRARY 91-10193-5 PAGE 13 

DEVICE DEVICE I OF I OF I OF REC. VER, 
OODB JIJfEKOllIC PillS FUSES PTERJIS LEVEL 

VLSI 
VP16RP4 P16RP4 20 2056 64 
VP16RP6 P16RP6 20 2056 64 
VP16RP8 P16RP8 20 2056 64 
VP16V8E Gl6V8 20 2194 64 4.0a 
VP20V8E G20V8 24 560 20 4.0a 

SUPPORT llOTES1 
XILillX LCA devices are supported by CUPL in conjunction with XACT. 



10/19/90 CUPL VER. 4.0a PROK DEVJ:CE LJ:BRARY 

DEVJ:CE 
OODE 

AllD/RKJ: 
53/6300 
53/6301 
53/6305 
53/6306 
53/630& 
53/6309 
53/6330 
53/6331 
53/634& 
53/6349 
53/6352 
53/6353 
53/63&0 
53/6380J5 
S3/63&0S 
S3/6381 
53/63&1JS 
S3/63&1.S 
53/63&& 
S3/63&9 
S3/6351.641. 
S3/63Sl.641.A 
53/6351.681. 
S3/63Sl.68l.A 
S3/6353281. 
53/635.3281.A 
AK27Sl.2 
AK27Sl.3 
AK27Sl.& 
AK2751.80 
AK2751.81. 
AK27S184 
AK27S185 
AK27Sl.9 
AK2751.90 
AH275191. 
AK27S20 
AK27S21 
AK27528 
AN27S29 
AK27S32 
AK27S33 
AK27S37 
AK27S40 
AH27S41 
AK27S43 
AN27S49 

CYPRESS 
CY7C264 
CY7C282 
CY7C292 

BARRJ:S 
HN7602 
HH7603 
RH7610 
RH7610A 

·HK7610B 
·HK7611 
HK7611A 
HH7611B 
llN76l60 
RK76161 
HK76161.A 

DEVJ:CE 
llNEKONJ:C 

RA8P4 
RA8P4 
RA9P4 
RA9P4 
RA8P& 
RA8PS 
RASPS 
RASP8 
RA9P& 
RA9P8 
RA10P4 
RA1.0P4 
RAJ.OPS 
RA10PI 
RA1.0P8 
RA10PS 
RAJ.OPS 
RAJ.OPS 
RA1.1Po& 
RA1.1Po& 
RA12P4 
RA1.2Po& 
RA1.l.P8 
RA1.l.P8 
RA1.2P8 
RA1.2P8 
RA9P4 
RA9P4 
RASPS 
RA1.0P8 
RAJ.OPS 
RA11P4 
RA11P4 
RA5P8 
RA1.1P8 
RAl.lP8 
RASPo& 
RASP4 
RA9PS 
RA9PS 
RA1.0P4 
RA1.0P4 
RA10PS 
RA1.2P4 
RA12P4 
RA1.2PS 
RA13PS 

RA13PS 
RAJ.OPS 
RA1.l.P8 

RASPS 
RASPS 
RA8P4 
RAIP4 
RA8P4 
RA8P4 
RASP4 
RA8P4 
RA1.1P8 
RA11P8 
RA11P8 

110. OF 
PJ:H5 

16 
16 
1.6 
16 
20 
20 
1.6 
16 
20 
20 
1.8 
18 
24 
24 
24 
2o& 
24 
24 
1.8 
1.8 
20 
20 
24 
24 
24 
24 
1.6 
16 
1.6 
24 
24 
18 
18 
1.6 
24 
24 
1.6 
l~ 

20 
20 
18 
18 
24 
20 
20 
24 
24 

24 
24 
24 

1.6 
16 
16 
16 
16 
16 
16 
16 
24 
24 
24 

91.-101.93-5 

ARRAY 
SIZE 

256 x 4 
256 x 4 
51.2 x 4 
512 x 4 
256 x 8 
256 x • 
32 x • 
32 x • 
51.2 x • 
51.2 x • 
l.K X 4 
1K X 4 
l.K X 8 

l.K X 8 

l.K X 8 
l.K X 8 

lK X 8 

l.K X 8 
2K X 4 

2K X 4 

4K X 4 
4K X 4 

2K X 8 

2K X 8 
4K X 8 

4K X 8 

512 x 4 
Sl.2 x 4 
32 x • 
·1K X 8 

l.K X 8 

2K X 4 

2K X 4 

32 x • 
2K X 8 

21< x • 
2S6 x 4 
2S6 x 4 
Sl.2 x • 
512 x 8 
l.K X 4 
l.K X 4 
l.K X 8 

4K X 4 

4K X 4 

o&K X 8 
8K X 8 

8K X 8 

11< x • 
2K X 8 

32 x • 
32 x 8 
2S6 x 4 
2S6 x 4 
2S6 x 4 
2S6 x 4 

2S6 x ' 
2S6 x 4 
21< x • 
2K X 8 

21< x • 

PAGE 1 



10il9/90 CUPL VER. 4.0a PROK DEV:CCE L:CBRARY 

DEVICE 
CODE 

UARR:CS 
HH76161B 
HH76164 
HM76165 
HH7620 
HH7620A 
HK7620B 
HM7621 
HH7621A 
HM7621B 
HK7632l 
HK7642 
HK7642A 
HH7642B 
HK7643 
HK7643A 
HH7643B 
HH7648 
HH7649 
HH7649A 
HH7664l 
HH76641A 
HK7680 
HH7680P 
HH7680R 
HH7680RP 
HH768l 
HH7681A 
HH7681P 
RK7681R 
HK7681RP 
HK7684 
HM7684P 

HK76S5 
HH7685A 
RK7685P 

NATIONAL 
DK74LS471 
DK74Sl88 
DK74S287 
DK74S288 

DK74S387 
DK74S472 
DK74S472A 
DK74S472B 
DK74S473 
DK74S473A 
DH74S570 
DK74S570A 

DK74S571 
DM74S57l.A 

DH74S571B 
DK74S572 
DH74S572A 
DK74S573 
DH74S573A 
DH74S573B 
DK87Sl80 

DH87Sl81 
DK87Sl81A 
DH87Sl84 
DH87Sl85 

DHS7Sl8SA 
DH87Sl8SB 
DH87Sl.90 

DEV:CCE 
KNEKON:CC 

RA11P8 
RA12P4 
RA12P4 
RA9P4 
RA9P4 
RA9P4 
RA9P4 
RA9P4 
RA9P4 
RA12P8 
RA10P4 
RA10P4 
RA10P4 
RA10P4 
RA10P4 
RA10P4 
RA9P8 
RA9P8 
RA9P8 
RA13P8 
RA13P8 
RA10P8 
RA10P8 

RA10P8 
RA10P8 
RA10P8 
RA10P8 
RA10P8 
RA10P8 
RA10P8 
RA11P4 
RA11P4 
RA11P4 
RA11P4 
RA11P4 

RASPS 
RASPS 
RA8P4 
RASPS 

RA8P4 
RA9P8 
RA9P8 

RA9P8 
RA9P8 
RA9P8 
RA9P4 
RA9P4 
RA9P4 
RA9P4 

RA9P4 
RA10P4 
RA10P4 
RA10P4 
RA10P4 
RA10P4 
RAlOPS 
RA10P8 
RA10P8 
RA11P4 
RA11P4 

RA11P4 
RA11P4 
RAllPS 

NO. OF 
PINS 

24 
20 
20 
16 
J.6 

J.6 

16 
16 
16 
24 
18 
18 
18 
J.8 

18 
18 
20 
20 
20 
24 

24 
24 
24 
24 
24 
24 
24 
;24 
24 
24 
J.8 

18 
18 
J.8 

J.8 

20 
16 
16 
16 

16 
20 
20 
20 
20 
20 
16 
16 
16 
16 
16 
18 

18 
18 
18 

18 
24 
24 

24 
18 
18 
18 
18 
:i!4 

91-10193-5 

ARRAY 
SIZE 

:i!K X 8 

4K X 4 

4K X 4 

S12 x 4 
512 x 4 
S12 x 4 
S12 x 4 
S1;2 x 4 

512 x 4 
4K X 8 

lK X 4 

lK X 4 

lK X 4 

lK X 4 

lK X 4 

lK X 4 

S12 x 8 
Sl:i! X 8 

Sl:i! X 8 

8K X 8 

SK X S 

lK X 8 

lK X 8 

lK X 8 

lK X S 

lK X S 

lK X 8 

lK X 8 

lK X 8 

lK X S 

2K X 4 

2K X 4 

21< x 4 
21< x 4 
2K X 4 

2S6 x 8 
32 x 8 
2S6 x 4 
32 x 8 
2!>6 x 4 
Sl:i! X 8 

512 x 8 
S12 x 8 
512 x • 
512 x 8 
512 x 4 
512 x 4 

512 x 4 
512 x 4 
512 x 4 
11< x 4 

lK X 4 
lK X 4 
lK X 4 

l.J< x 4 

lK X 8 

lK X 8 

lK X 8 
2K X 4 
2K X 4 

21< x 4 
21< x 4 
21< x 8 

PAGE ;j! 



10/19/90 CUPL VER. 4.0a PROK DEVICE LIBRARY 91-10193-5 PAGE 3 

DEVJ:CE DEVICE NO. OF ARRAY 
CODE KNEHONJ:C PINS SIZE 

MATIOlfAL 
DK87Sl.90A RA1l.P8 24 21< x 8 

DK87Sl.90B RA1.l.P8 24 21< x 8 

DH87Sl.9l. RAllP8 24 21< x 8 

DH87S191A RA11P8 24 21< x 8 

DH87Sl.9l.B RA11P8 24 21< 8 

DH875195 RA12P4 20 41< x 4 

DH875195A RA12P4 20 41< x 4 

DK87Sl95B RA12P4 20 41< x 4 

DK87S32l. RA12P8 24 41< x 8 

DK87S321A RA12P8 24 41< x 8 

SICll'BTICS 
825123 RASP8 16 32 x 8 

8251.23A RA5P8 16 32 x 8 

825126 RA8P4 16 256 x 4 

82Sl26A RA8P4 1.6 256 x 8 

8251.29 RA8P4 1.6 256 x 4 

8251.29A RA8P4 1.6 256 x a 
8251.30 RA9P4 1.6 512 x 4 

825130A RA9P4 16 512 x 4 

825131 RA9P4 16 512 x 4 

825131A RA9P4 16 512 x 4 

8251.35 RA8P8 20 256 x 8 

825137 RA10P4 18 11< x 4 

825137A RA10P4 18 11< x 4 

8281378 RA10P4 18 11< x 4 

8251.47 RA9P8 20 512 x 8 

8281.47A RA9P8 20 512 x a 
8281.80 RA10P8 24 11< x 8 

8251.81. RA10P8 24 11< x 8 

828181.A RA10P8 24 11< x 8 

8251.81.B RA10P8 24 11< x 8 

825184 RA11P4 18 21< x 4 

825185 RAllP4 18 21< x 4 

8251.85A RAll.P4 18 21< x 4 

82Sl.85B RA1.l.P4 1.8 21< x 4 

828191. RAll.P8 24 21< x 8 

825191.A RA11P8 24 2t< x 8 

8251918 RA11P8 24 21< x 8 

825195 RA1.2P4 20 41< x 4 

82523 RA5P8 16 32 x 8 

82523A RA5P8 (16 32 x 8 

825321. RA1.2P8 24 41< x 8 

825641 RA13P8 24 81< x 8 

Tl: 
TBPl.85030 RA5P8 16 32 x 8 

TBPl.8522 RA8P8 20 256 x 8 

TBPl.8SA030 RA5P8 16 32 x 8 

TBPl.85A22 RA8P8 20 256 x 8 

TBP2451.0 RA8P4 16 256 x 4 

TBP245166 RA12PS 24 41< x 4 

TBP2454l RA10P4 18 11< x 4 

TBP2458l RA11P4 18 21< x 4 

TBP245Al.O RA8P4 16 256 x 4 

TBP248Al66 RAllP8 24 41< x 4 

TBP245A41. RA10P4 18 11< x 4 

TBP245A8l. RA1.1P4 18 21< x 4 

TBP285l.66 RAllP8 24 21< x 8 

TBP28S42 RA9PS 20 512 x a 
TBP28586A RA10P8 24 11< x 8 

TBP285Al66 RA11P8 24 21< x 8 

TBP285A42 RA9P8 20 512 x 8 

TBP285A86A RA10P8 24 11< x 8 


