
So F Cf L- oiJ-f S-M'f

CUPL4
QUICK REFERENCE GUIDE

ON-CU PL
DEVICE
LIBRARY

[iJ
PDSfile

Berkeley
PLA

No Test Test
Vectors Vectors

• • LOGIC PROGRAMMER
(PROM PROGRAMMER)

THECUPLPREPROCESSOR
The preprocessor program operates on the CUPL
source file before compiler operations actually begin.
All preprocessor commands are prefixed with a $.

STRING SUBSTITUTION
$DEFINE argumentl argument2

where argument1 is replaced with argument2 until
$UNDEF argumentl

is encountered.

FILE INCLUSION
$INCLUDE filename

where filename becomes part of the specification at
the compile time. The file must be in the current
directory.

CONDITIONAL COMPILATION
Portions of the source specification can be compiled
or not depending on whether or not the argument
has been defined using the $DEFINE command.
The formats are:

$IFDEF argument
. . . statements

$ELSE
. . . statements

$ENDIF
or, if not defined:

$IFNDEF argument
. . . statements

$ELSE
. . . statements

$END IF

MACROS
User defined macros can be defined by using the
following syntax:

$MACRO name arql arq2 ... arqN
... macro function body ...

$MEND
The function is called by stating the macro name and
supplying parameters. Arithmetic operations may be
used in the macro body by including them in braces {
};

REPEAT STATEMENT
The syntax for the repeat statement is as follows:

$REPEAT index= [nl, n2, ... , nN]
. . . repeat body ...

$REPEND
The repeat body is duplicated from number n1 to nN.
The index can be written [n1 .. nN] if the numbers are
consecutive. The repeat body can be any CUPL
statement. Arithmetic operations are placed within
braces { }.

LOGICAL OPERATORS
! = Logical NEGATION
& = Logical AND
= Logical OR
$ = Logical XOR

ARITHMETIC OPERATORS FOR
MACROS

** = Exponentiation
% = Modulus
* = Multiplication
I Division
+ = Addition
- = Subtraction

FREE FORM COMMENT STRUCTURE
/* = Start comment
*I = End comment

ARITHMETIC FUNCTIONS FOR MACROS
LOG() = decimal based
LOG2() binary based
LOGS() = octal based
LOG16() = hex based
Ex. LOG2(64) = 6

(i.e. 2**6 = 64)

NODE DECLARATIONS
NODEvariable name;
/* Single Node as in complement arrays in IFL
Devices */
NODE[variable list];

LIST NOTATIONS
You can represent groups of variables in a short
hand list notation by using the following formats:
"[Varl, Var2, .•. , VarN] as in
. [MEMR,MEMN,IOR,IOW]

or
[VarN .. O] as in [A7 •. 0] which is equivalent to

[A7,A6,AS,A4,A3,A2,Al,AO]

BIT FIELDS
A declaration of a group of bits that is represented
by a single symbolic name is declared as follows:

FIELD IOARD=[A7 .. 0];
where IOADR can be used in expressions instead
of [A7 .. 0].

EQUALITY AND ADDRESS RANGE
The : operator compares a bit field with a hex
constant value or a list of constant values. For·
example

IOADR:C3
or

IOADR: [10 •• 3F]
The latter will be true for addresses in the range 1 O
Hex through 3F Hex, inclusive.
NOTE: Hex constant values must contain the
correct number of nibbles to include the most
significant bit of the bit-field variable list.
The : operator can also be used on a bit-field
variable list as follows:

/* Multiple nodes as when used for buried state bits
*I

IOADR: & replaces
A7 & A6 & AS & A4 & A3 & A2 & Al lo AO

IOADR:# replaces
THE DISTRIBUTIVE PROPERTY

A & (B # C) is replaced by A & B # A & C
where & operations are performed before # opera
tions

DEMORGAN'S THEOREM:
!(A# B) is replaced by !A & !B

also
!(A & B) is replaced by !A# !B

NOTE: This symbology tends to create large num-
bers of product terms.

INTERMEDIATE VARIABLES
You can arbitrarily create and define a symbolic
name as follows:

MEMREQ = MEMW # MEMR;
where MEMREQ does not appear as a pin variable
name. MEMREQ can then be used in expressions
for other variables. The value "MEMW # MEMR" will
be substituted wherever MEMREQ is used.

A7 # A6 # AS # A4 # A3 # A2 # Al # AO

PALASM TO CUPL TRANSLATOR
The PTOC program converts PALASM™ source
files into CUPL source files. To convert one or more
PALASM source files into CUPL format, type the
following:

PTOC filename1 filename2 [enter]
For example:

PTOC BUS_CNTL.ASM [enter]
produces the CUPL file

BUS_CNTL.PLD
If the original PALASM file contained function table
information, the file BUS_CNTL.SI will also be
produced.

CSIM: THE CUPL SIMULATOR
CSIM is a stimulus/response function table oriented
simulator that compares each expected response
with that which the logic in the associated .PLO file
would produce given the specified stimulus. The
simulator input file (filename.SI) must contain the
same header information as the associated logic
source file (filename.PLO). Also, CUPL must have
been previously run for the .PLO file with the -A
option flag to produce an absolute file
(filename.ABS), and also with the -J flag if you would
like CSIM to append the function table test-vector
information to your .JED file to produce a .JED file
with both fuse and testing information.
The general format for the .SI file is:
~Header Information/* Same as the .PLO file */
ORDER:
varl, var2, ... , varN;
VECTORS:
Stimulus patternlResponse patternl
Stimulus pattern2Response pattern2

Stimulus patternNResponse patternN
Within the vector table, inputs are defined with 1
(+5V), and 0 (GND), while outputs are defined with H
(+5V), L (GND), and Z (high impedance). "Don't
Cares·~ are represented by an X. An * in the re
sponse field causes the simulator to determine the
output according to the logic definition contained in
the .ABS file, which was derived from your .PLO file.

RUNNING CSIM
To run CSIM from the command line, type:

CSIM [-flags] [library] [target device] filename
where flags are as follows: -

-L Produces a .SO file (simulator output)
-J Produces a .JED file (JEDEC with test

vectors)
-N Use source file name for JEDEC file
-D Display waveform output only
-W Display waveform and create simulation file
-V Displays simulator output vectors
-U Uses specified library for simulat1on

NOTE: D and W flags are available on MS-DOS only

VARIABLE EXTENSIONS
.D L D input of 0-type flip-flop
.L L D input of transparent latch
.J L J input of JK-type flip-flop
.K L K input of JK-type flip-flop
.s L S input of SR-type flip-flop
.R L R input of SR-type flip-flop
.T L T input of toggle flip-flop
.DO R 0 output of D-type flip-flop
.LO R 0 output of transparent latch
.AP L Asynchronous preset of flip-flop
. AR L Asynchronous reset of flip-flop
.SP L Synchronous preset of flip-flop
.SR L Synchronous reset of flip-flop
. CK L Programmable clock of flip-flop
. OE L Programmable output enable
. CA L Complement array
. PR L Programmable preload
.CE L CE input of enabled 0-CE type flip-

flop
.LE L Programmable latch enable
.OBS L Programmable observability of buried

nodes
. BYP L Programmable register bypass
.DFB R D registered feedback path selection
.LFB R D latched feedback path selection
.TFB R T registered feedback path selection
.INT R Internal feedback path selection
.10 R Pin feedback path selection
.IOD R D register on pin feedback path

selection
.IOL R Latch on pin feedback path selection
.IOT R T register on pin feedback path

selection
.IOAP R Asynchronous preset of flip-flop on

pin feedback
.IOAR R Asynchronous reset of flip-flop on pin

feedback
.IOSP R Synchronous preset of flip-flop on pin

feedback
.IOSR R Synchronous reset of flip-flop on pin

feedback
.CKMUXL Clock multiplexor selection
.LEMUX L Latch Enable multiplexor selection
.OEMUXL Tri-state multiplexor selection
.IMUX L Input multiplexor selection of two pins
.TEC L Technology-dependent fuse selection
.T1 L T1 input of 2-T flip-flop
.T2 L T2 input of 2-T flip-flop

·----- . ·-----

A design can be described with a combination of
these three formats.: State Machine, Table, or
Equation.

State Machine
When implementing a design with state machine,
use the following format.

Output Variable

SEQUENCE name of sequence {
PRESENT stateO-

IF input_conditionNEXT statel OUT output_var;
DEFAULT NEXT stateO;

PRESENT statel
NEXT state2

t!F NEXT Conditional Next State
~F NEXT OUT Conditional ~chronous 0u£l)ut

NEXT Unconditional Next State
NEXT OUT Unconditional ~chronous OutPut

OUT Unconditional Asynchronous Outpu~
[F OUT Conditional Asynchronous OutPut
~:8FAULT NEXT Default Next State
!IEFAULT OUT Defa~t A~ronous ~tp""ut
PEFAULT NEXT OUT Default Synchronous Output

The simple, flexible syntax allows variations in the IF
NEXT OUT or DEFAULT NEXT OUT formats to
properly represent any element of a state machine:

Truth Tables
When logic is best described in a tabular form, use
the format in the following decode example:
FIELD input= [inl .. O];
FIELD output= [out3 .. 0];
TABLE input => output {
00 =>01;
01 =>02;
10 =>04;
11 =>08;
}

High Level Equations
output(s).EXT =expression

RUNNING CUPL
To compile a specific source file filename.PLO for a
specific target device, type:
CUPL [-flags] [library] [target device] filename

For example:
CUPL -JA P16L8 RAMCNTRL
Compiles the file RAMCNTRL.PLD for a PAL 16L8
device. The files produced are RAMCNTRL.JED and
RAMCNTRL.ABS which must be created in order to
simulate the design with CSIM .
The CUPL command line flags are as follows:
J Produce JEDEC output.
H Produce ASCII HEX file .
I Produce Downloadable HL format file .
A Produce .ABS file for use with CSIM .
C Produce .PDS file for XILINX interface .
L Produce list file.
R Disable global product term merging (FPLAs)
F Produce fuse plot in .DOC file.
X Produce expanded product terms in .DOC file.
N Use source file name foe JEDEC file name .
G Program security fuse.
B Produce Berkeley PLA file.
U Use a specific library for compilation.
D Deactivates unused OR terms.
S Simulate after compile.
E Produce macro expansion file.
W Waveform simulate after compile.
MO No logic minimization.
M1 Quick minimization.
M2 Quine-MCCiuskey Minimization.
M3 Presto Minimization .
M4 Espresso Minimization.

