™

Cupl

User's Guide

Contents

COMt ...;.O....C...O..OO.Q.....O...‘ 900000 0OCCIOOIOIPONOOOOIOS ii

Introductioncc..c.... cecscscsncesacensrsesansrsasenas cevene iii
USER GUIDE.......cccirieiitveiierieeeeeeceens iii
Chapter U1l
Introduction.......c.cceovuveniennnnen.. iii
Chapter U2
Installation......cccccccevueennennnnnnn.. iv
Chapter U3
Getting Started...........c.ceeuvne... iv
Chapter U4
CUPL Operation............ccc......... iv
Chapter U5
Design Examples...........cc.......... iv
REFERENCEccitiiiiiiiiiiiiiieeeiceeeennns iv
Chapter 1
CUPL Language........ccccceeeeeen.. v
Chapter 2
Using CSIM......cccccevvneevnivnnnnnne. iv
Chapter 3
Using CBLD......cc.cceeivnirnnnnnnnne. \
Chapter 4
Using PTOC......ccoovvveievreernennnnn. v
APPENDICES.......cccititiieiinieiriniieneecennncnnes v
Appendix A
Error Messages.......cccccceuuneeen.n v
Appendix B _
Device Usage Notes................... v
Appendix C
Download Formats.................... \4

91-10128-5 1090 1

Contents CUPL
Reference Manual

Appendix D

Node Numbering...................... v
Appendix E
Trouble Shootingcccccevuue.... v
IndeX..cveniniiiiiieiiiiieiere e e .V
Conventions Used........... cerecsresasesannne cessensesesesesese vi
Introduction to CUPL 1
CUPL OVERVIEWcocviiriiiiiiiiiicnceeeenes 1
CUPL DATA FLOW.....cccviiiieiiniieieeneeeenenn 3
Installing CUPL™.............. crececscrtsrsesnsesacsesesasanas 6
MS-DOS INSTALLATION 6
Specifying the Configuration............... 9
The CUPL Menu System 10
The EZ Edit Editor.......ccceeevevnnnennnnne. 13
UNIX INSTALLATION....cccceiiiuieiiiienieennns 15
Installing the Software on Sun
Workstation.....cocevvveiiiieiniiiineenennnnnas 15
Setting Up the Environment................ 16
Installing the Software on Apollo
Workstation......ccoeeeveiieeneienieiennennns ... 18
Setting Up the Environment................ 19
VAX/VMS INSTALLATIONccccvvveveninnnnnns 22
Installing the Software....................... 22
Setting Up The Environment............... 23
Getting Started........ccccceeeuu... ceesesescssncesrssessssssssnnans 2
First Steps ..cvuvevieviiiiieiieiieireeeenereneeeaenes 25
Simple Logic Designcovevuveeeieieienrncnnnenn. 2%
Simple Gates Example........cccceevvvuievenennnne. 28
Compiling the Source File.......cccccceeeninnnnnnnnns 32
Simulating a Design......cccceeeiineniicinrenienaennns 32
CUPL Operation...cicccrerescecsscsssescosscscasasssacesesescssss IO
CUPL OPERATION......cccectuieiinreerrncennenecnnns 36
Input ...civiiiiiiiiiinrcrcc e, 36

o 1090 91-10128-5

CUPL

Reference Manual Contents
{02717 11 U 2P 38
Running CUPL From the Command
) 05 1 o - R 39
Running CUPL Using the Menus........ 46

Design Examples.....ccccccceinneecccaseccrecssccassecsasssncens 9

PART A. SAMPLE DESIGN SESSION........... 50
EXAMINING THE DESIGN TASK...... 50
CREATING THE CUPL SOURCE
) 2 0 53 OB 54
FORMULATING THE EQUATIONS... 5
CHOOSING A TARGET DEVICE........ 59
MAKING THE PIN ASSIGNMENTS... 61
RUNNING CUPL....ccoveviiiiieenennen. 63
CREATING THE CSIM SOURCE
FILE oo ecieneeen 72
RUNNING CSIM....ccovovvrenvininiineninnnen 76
SUMMARY .aiieiiiieieciiieneeiceinenns 81

PART B. SAMPLE PLD FILES......ccccceuueu..... 82
EXAMPLE 1. SIMPLE GATES............ 85
EXAMPLE 2. CONVERTING A TTL
DESIGN TO PLDS..cccovvuiiriirnieeeniennns 88
EXAMPLE 3. TWO-BIT COUNTER...... %
EXAMPLE 4. DECADE UP/DOWN
COUNTER...ccoviiieiriiiiiriiieinienneaenens 97
EXAMPLE 5. SEVEN-SEGMENT
DISPLAY DECODER........ccecvvvenennnenn 102

CUPL Language....cccceceeceeccrccecceccrcseene cecessecsseecenes 107

LANGUAGE ELEMENTS.....ccccovvternreneennen 107
Variables....cceeeeveieiereirneenieieneieennenes 107
Indexed Variables......c.coccevvvinvvnnennnnn. 108
Reserved Words and Symbols.............. 109
JURTE 1 11123 o U 110
COMMENES...ccvveiriiiiieeniineieeneeerencenns 112
List Notation......c.ccoevvevevieieeienneennnnnnn. 112
Template File......cccevvvveeevieniniinincnnnnn. 114

91-10128-6

1090 m

Contents

CUPL
Reference Manual

Header Information.................. 116
Pin Declaration Statements 119
Node Declaration Statements..... 122

Bit Field Declaration :
Statements.....ccccceeeeeveieeienneannnns 125
MIN Declaration Statements..... 126
FUSE Statement...................... 127
Preprocessor Commands................... 128
SDEFINE......ccecevvuiviiieeneennnnn. 128
SUNDEFccovvvvieneneeneenrnnannnnns 130
SINCLUDE....ccvvivieiienennennnnns 130
SIFDEF ...cuvveniininiienieenenennes 131
SIFNDEFccccieeiuiiieinernenennns 132
SENDIF.....ccuveieiiieiieieeeennne. 133
SELSE ...oovviriiinienceceecrieeennnaens 134
SREPEATccuvvevveevienenennen, 135
SREPEND......ccocvviirinienenannnen. 137
SMACRO....ccctevetenienieeicennenns 137
SMENDccovvrniiirneeenieecenennenns 139
LANGUAGE SYNTAX ...ccoviiveieneinenenennennn 140
Logical Operators.........ccocevvevenenunennnnn. 140
Arithmetic Operators.......ccceceevveneennnns 141
Arithmetic Function........ccccceevvenaen.e.. 142
ExXtensionsS....ccccceveviiieiiiiniccenensencenens 142
Feedback Extensions Usage................ 147
Multiplexer Extension Usage.............. 149
Boolean Logic Review........cccccccvvenennnn.. 151
EXpressions....ccccceveeeeeeeieieeenenenenenannns 152
Logic Equations.......ccccecviieveiiiiinininn. 153
APPEND Statements................. 155
Set Operations.......cccceeeveeevinenerennennnens 166
Equality Operations 168
Range Operations...........cc......... 172
Truth Tables.....cccoceeviivirirniieerenenenns 169
State-Machine Syntax........cccccceenenennn. 171
State-Machine Modelc.............. 171

1090 91-10128-6

CUPL

Reference Manual Contents
Inputs...ccceueeninieiiieieneiineienenens 172
Combinatorial Logic................. 172
State BitSccceevveeneenierennnennns 173
Storage Registers...................... 173
Nonregistered Outputs.............. 173
Registered Outputs................... 173

07 117: 0 SR 174
Unconditional NEXT
Statement..........ccoeeuveienenninnnn.. 176
Conditional NEXT Statement..... 178
Unconditional Synchronous
Output Statement 183
Conditional Synchronous
Output Statement 186
Unconditional Asynchronous
Output Statement 192
Conditional Asynchronous
Output Statement 14
Sample State-Machine Syntax
File i 197

Condition Syntax......ccccoceeeeereennnnnnnn. 199

User-Defined Functions..... ceereennreeeans 201

CUPL to XILINX XNF Interface......... 205
Getting an XNF File.................. 206
Translating an Existing PLD
File. .o, 207
Using a PALASM Device........... 208
Source Files for XILINX
Devices...ccceeeveniiierieieninenenennnn. 208

Using CSIM....cccccevennees cessesenane cesecsasane coscecresraneese 210

INPUT ittt reeeeeree e e annanns 210
OUTPUT ... ceerteeitiececierrecreceeteseaensacensanss 212
RUNNING CSIM.....coieiiiininiecrecncencneenennennn. 213

Simulator Option Flags...................... 214

Viewing Waveform(MS-DOS).............. 216

91-101286 1090 v

Contents CUPL
Reference Manual

‘Change Signal Order................ 216

Group Signals into Bus.............. 218

Create Waveform Hardcopy....... 219

Help Menu......ccccevrvenrennennnennnn. 220

TEST SPECIFICATION FILE........cccceuvuunene. 220

Header Information.........cccccovueeueennnn. 221

CommEentS....ccoeeeerienreeieieneienrieneeeneenns 222
Statements........ccccevvinniiiiiiiinninnnnnnnn.. 222

ORDER Statementccccce.u..... 222

BASE Statement.........cccevnnenenn. 224

VECTORS Statement 226

Preload......cccoeveevnveivnieinvennennnnn. 228

{6 1173 & S 229

Asynchronous Vectors.............. 230

Simulator Directives.......cccocvvevnvinvnnnes 232

PMSG...cniiiiiiiiieeeineieeenenans 233

SREPEATccvvvviiinieeneeinennen, 233

STRACEcuevevriieeeeeerenennen, 234

(3 09 € ¥ AR 237

SSIMOFF...ciieniiiriiiiiieeenenns 237

SSIMON ..cvvinieriniiiriininieinnenennns 237

Fault Simulation.........ccccecevveenvnnnnnn.. 238

Using CBLD......... erecssuncasesasuseessseassessasennne corecesnnes 239

RUNNING CBLD...ccceviiiiiiieeieiiineienenenenns 239

LISTING THE CONTENTS OF A

LIBRARY .cueuiiiiiiiiieiiiieieeienenenrnenenennaenes 241

LISTING ALLOWABLE EXTENSIONS......... 242

LISTING ALLOWABLE MACROS............... 243

BUILDING DEVICE LIBRARIES................ 245

USING PTOC...cccciecireccrecorccorcseerseccsessecsescssossossascee A8

RUNNING PTOC...ccccttiieieieieieiiiereenncnennes 248

PALASM SOURCE FILE FORMAT.............. 249

PTOC .PLD OUTPUT FILE......cccocevvvvuenrnrnens 250

Header Information.........cc..cuuuununnn.. 251

| 351 o Y 5T AU 251

vI 1090 91-10128-5

CUPL

Reference Manual Contents
Equationsc.ceccveviiiieiiieiennnennnrnennns, 252

PTOC .SIOUTPUT FILE.......c.ccevvvvviveunnnnen. 253
Translation Ambiguities.................... 254

Error MeSSageS..ceicesceececersscsosesasscsssesasssscsonsecsonss 256
CUPL ERROR MESSAGES 257
CUPL Module Error Messages............ 258

CUPLX Module Error Messages.......... 259

CUPLA Module Error Messages......... 262

CUPLB Module Error Messages.......... 269

CUPLM Module Error Messages......... 273

CUPLC Module Error Messages.......... 275

CSIM ERROR MESSAGEScccevvvnvvennnnnn. 278

CSIM Module Error Messages............ 278

CSIMA Module Error Messages.......... 279

CBLD ERROR MESSAGESccoceevvinvennnns 283
CBLD Module Error Messages............ 283

PTOC ERROR MESSAGES.cccoiivviiieeiennens 286
PTOC Module Error Messages............ 286

WCSIM Error Messages.......cc.cccu...... 287

Device Usage Notes....ccceeecereneiecncasanns cesescrcresesasess 289
Download Formatscccccecceneccceneccssecssocsssesansens 304
DOWNLOADABLE FILE FORMATS............ 304
JEDEC Format......ccccocevviiiiiniinininnnnen. 304

ASCII-Hex Format............cccoeveeinnnnen. 309

HL Formats......c.cocoviieiiiieiiiiiiiiinnnnnen. 301
DOCUMENTATION FILE FORMAT............ 323

PDIF FILE FORMAT......cccoceniivieeeeeenrenennnne, 330
BERKELEY PLA FILE FORMAT 331

Node Numbering......cccccecececncaes cescccace cestesesscesasases 335
Advanced Micro Devices.....ccccceeuureennnennnnnnn. 336
ALLera ..ceuininieiiieiieiiiiieen e eaeaes 338
Atmel.....ononieiiii e 338
0377 ¢ (11 F TP RRPPPPN 339

Intel...ne e 341

91-10128-5 1090 vir

Contents CUPL
Reference Manual

| I 17 5 1 - S 342
Monolithic MemorieS....ccceveeeneirereererseeneesees 343

PLX Technology ...ccceeveeeieninieneieroenceneeeennnns 343
SIZNELICS. ieieiiirereienenieceernenernerencenensnsnssasnnes 344
Texas InStruments....ccceeeeveeiiirieieiereneennennns 351
mub]e Smhng 000000000 OPOOPOOONOOOONTS [IXX XYY] 90000000 OOGOIOGOICOOITS %
HOW TO GET SUPPORT 353

VI 1090 91-10128-5

Copyright
Copyright © 1983, 1990 by Logical Devices, Inc.(LDI)

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means —electronic, mechanical,
photocopying, recording, or otherwise — without the written
permission of LDI,

Logical Devices, Inc. provides this manual “as is” without
warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. LDI
may make improvements and/or changes in the product(s)
and/or program(s) described in this manual without notice.

Although LDI has gone to great effort to verify the integrity of
the information herein, this publication could contain
technical inaccuracies or typographical errors. Changes are
periodically made to the information herein. These changes
will be incorporated in new editions of this publication.

TRADEMARKS

CUPL, NX-CUPL and ON-CUPL are trademarks of Logical
Devices, Inc. Schema is a trademark of Omation. Wintek
and HiWIRE are registered trademarks of Wintek
Corporation.

Logical Devices, Inc. 1201 NW 65th Place, Ft. Lauderdale,
FL. 33309 USA Technical Support Telephone: (305) 974-0975

Introduction

This book is designed to serve as a learning aid and as a
reference manual for CUPL, the programmable logic
compiler from Logical Devices, Inc. It is divided into three
sections: the User Guide section, the Reference section and the
Appendices. The User Guide provides information on getting
started with the CUPL package. The Reference section
provides specific information about the programs that make up
the CUPL package. The Appendices contain a variety of
information, including error messages, important
information about specific devices, node numbering and
download formats.

Be sure to read the Installation Chapter in the User Guide
section to find out what to do before using the CUPL software on
a system. Since improvements are made to CUPL quite
frequently, additional information is provided in the form of
an addendum. Be certain to read the addendum, which
provides information on the latest enhancements to the CUPL
software.

USER GUIDE

The USER GUIDE provides information on installing and
using CUPL. There is also a section that provides several
examples. These examples are provided on the distribution
disks.

Chapter Ul: Introduction
Gives a brief overview of CUPL and includes some notes on
recent enhancements to CUPL. Also included is a section on
getting technical support.

91-10128-5 0690 il

CUPL

General Introduction Programmable Logic Compiler

iv

Chapter U2: Installation
Provides information necessary to get CUPL to run on a
system.

Chapter U3: Getting Started
Is a step-by-step guide on how to create a source file, and
compile and simulate the design using a simple example.

Chapter U4: CUPL Operation
Is a description of the use of CUPL. This includes running
CUPL.

Chapter U5: Design Examples

Provides instructions on using CUPL and CSIM and
examples of CUPL designs. Part A, Sample Design Session,
goes step-by-step through a sample design session using CUPL
and CSIM. Part B, Sample PLD files, illustrates some typical
designs that can be created using CUPL.

REFERENCE

The REFERENCE section is provided for easy access to
random facts related to the CUPL language and related
utilities.

Chapter 1: CUPL Language

Describes CUPL, a programmable logic compiler. This
chapter provides an overview of CUPL, and describes the input
and output-and how to run the program. It also describes the
elements of the CUPL design language, and the syntax of the
CUPL design language.

Chapter 2: Using CSIM

Describes CSIM, a logic simulation program. This chapter
explains how to use CSIM, including input and output and
running the program, and how to create test specification files
to verify a CUPL design.

0690 91-10128-5

CUPL

Programmable Logic Compiler General Introduction
Chapter 3: Using CBLD
Describes CBLD, a utility program for managing device
libraries.
Chapter 4: Using PTOC

Describes PTOC, a utility program for converting PALASM
source files to CUPL format.

APPENDICES

Appendix A: Error Messages

Lists error messages that may appear during operation of any
of the CUPL programs. The messages are listed by program
name and module name within each program.

Appendix B: Device Usage Notes
Provides information about specific devices and how they
require special attention with CUPL.

Appendix C: Download Formats
Describes the format of the CUPL downloadable files and the
documentation file.

Appendix D: Node Numbering
Lists the devices which contain internal nodes supported by
CUPL.

Appendix E: Trouble Shooting
Lists some common problems and their respective solutions.

Index
Is an index of the entire book.

91-10128-5 0690 v

Conventions Used
In This Manual

This manual gives step-by-step procedures and examples. To
make it easy to follow these procedures, the following

conventions.are used.

% Note

LDI software is not case sensitive. It doesn't matter
whether upper or lower case.characters are typed.

Screen icons indicate a prompt or response on

the screen. For example:

Name of List Device? PRN

is the key that must be pressed to
execute a command or accept an option. This
key is called different names on different
systems. For example:

(Enter]), (Enter), =—1), (ENTER), (RETURN)

91-10145-5 Revision 3.0 vi

CUPL

Reference Manual

Notes

D—D Connected keys indicate the keys must be

Select

Boldface

91-10145-5

pressed simultaneously. For example:

Press (ctrt)] —[(Att] —[Del)

A backward slash separates main menu and
sub-menu commands. For example:

FILE\LOAD

It also begins a keyboard command. For
example:

\EXE

An asterisk in a filename indicates any
characters can occupy that position and all
remaining positions. For more information,
refer to the DOS manual.

Select means use or the cursor keys
to cycle through options or settings, and press

to select the desired option or setting.

Boldface is used for two purposes. First, it is
used to highlight menu or file names within
text, and, second, it indicates characters that
must be typed from the keyboard.These
characters are usually designated as “Enter
the following:” or are set aside by line
spacing. For example:

del pcprint.cfg

Revision 3.0 vii

Notes

viii

Italics

[]

CUPL
Reference Manual

Italics represent variable names. For
example:
filename. SCH

When shown on the screen, variable names
are indicated by angle brackets. For
example:

<filename>.SCH

Square brackets indicate the enclosed item is
optional. For example:

prepack filename.fil [filename.lib]

When shown on the screen, square brackets
indicate the name of a key. For example:

Press [Return] to accept

Revision 3.0 91-10145-5

Introduction to CUPL Ul

o

INTRODUCTION

Welcome to CUPL Universal Compiler for Programmable
Logic. CUPL is a very versatile and powerful logic compiler,
and can be used to create very sophisticated logic designs for
PLDs. This section will introduce the user to CUPL.

CUPL OVERVIEW

The CUPL package consists of the following programs: CUPL
(Universal Compiler for Programmable Logic), CSIM (CUPL
Simulator), CBLD (CUPL Build), and PTOC (PALASM to
CUPL Translator).

Using CUPL, logic descriptions may be written and compiled.
The logic descriptions can be assigned to specific
programmable logic devices (PLDs). CUPL searches its
library and creates a file which can be downloaded to a device
programmer and, from there, the PLD can be programmed.

CSIM permits a design to be simulated before it is put into
production. A file is created, describing the expected
functionality of the PLD in terms of input and output values.
CSIM compares the expected values to actual values calculated
during CUPL operation. The DOS version of CSIM will also
allow the simulation to be viewed in waveform.

CBLD allows the manipulation of the device libraries
containing descriptions of the PLDs supported by CUPL.

91-10128-5 0690 U1-1

Using CUPL™

U1-2

PTOC converts PALASM designs to CUPL format.

CUPL

Programmable Logic Compiler

The key features of the CUPL package include:

>

Universal applicability. CUPL supports products
from all manufacturers of PLDs, enabling a user
to put the same functional logic into physically
different parts, to create a second source at the
socket. CUPL produces a standard type of file
called JEDEC. This is a download file that is
compatible with any logic programmer that uses
JEDEC files. The CUPL language translator
(PTOC) converts PALASM designs to CUPL,
enabling the use of any PALASM designs.

A high-level language. Expression substitution for
equations, shorthand notation for lists, address
ranges, and bit fields are available to save design
time.

CUPL simplifies Boolean operations by the
distributive property and DeMorgan’s Theorem.

State machine syntax provides a powerful means
of implementing any synchronous application
using either Mealy or Moore state machine
models.

Truth table syntax provides a way to clearly
express certain logic descriptions.

User-defined functions allow the creation of
keywords for use by CUPL.

Flexible documentation. CUPL provides a template
file for standard “fill in the blanks”
documentation and allows the placement of free-
form comments throughout a design.

0690 91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

CUPL’s comprehensive error-checking capability
generates detailed error messages designed to lead
to the source of any problems.

> Powerful minimizer and simulation programs.
CUPL contains the fastest and most powerful
minimizer offered for programmable logic
equation reduction, featuring four levels of
minimization.

The CUPL simulation program enables logic to be
simulated prior to using a PLD. This feature
prevents blown devices and helps debug system-
level problems. Test vectors verified by CSIM can
be downloaded to a logic programmer.

(1 CUPL DATA FLOW

This section describes the CUPL data flow.

First, a logic description source file is created, using the CUPL
language to describe the logic that will be assigned to a
programmable logic device.

Then, run CUPL to compile the source file to create a fusemap
file for downloading to a device programmer. On execution of
CUPL, the ‘-a’ flag may be used to cause CUPL to generate an
‘. ABS’ file for later use by CSIM.

Optionally, a test specification file may be created to verify the
design. CSIM is executed to compare the expected values in the
test file to the actual values in the absolute file created by
CUPL. When simulation is complete without any errors, the
verified test vectors can be appended to the download file
generated by CUPL.

91-10128-5 0690 U13

Using CUPL™

U14

CUPL

Programmable Logic Compiler

At this point, the verified fusemap file can be transferred to a
device programmer.

Figure U1-1 shows the CUPL data flow.

Target Device
Information DEVICE
Logic LIBRARY
Source .
Absolute File

File

Target Device
Information

Source

Specification

File

List File
With Errors
.SO
LST
' JED Simulator Output
Documentation ' With Errors
F“G/L__ Hex Iy Jedec File
 DOC -z::"' Down- |Without
N— o |29 [T Jedec File
' File Vectors With Test
Macro Expansion
. Vectors
File HE HL JED
MX
Y
LOGIC PROGRAMMER
(PROM PROGRAMMER)

Figure Ul-1. CUPL Data Flow

91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

91-10128-5 0690 U1-s

Installing CUPL™ U2

(d INSTALLING CUPL

The following are the requirements and steps for installing
CUPL on a system.

0 MS-DOS INSTALLATION

The following are the minimum requirements in order to
install and run CUPL properly:

> An IBM PC, PC/XT, or PC/AT (or equivalent) with
at least 512K of RAM.

PC-DOS version 2.0 or higher (or MS-DOS 2.0).
A hard disk

At least one double-sided floppy disk drive.

Y YV VY

Network operators need to be notified of the need for
total access to the root directory and directory
where CUPL will be installed. Users will need
read access to the root directory and directory
where CUPL will be installed.

Building the libraries requires additional hard disk space.
Before running build, there should be an additional 1 Mb of
free space on the hard disk. To build the SMT libraries, an
additional .7 Mb hard disk space is required. To install CUPL

91-10128-5 0690 U26

CUPL
Programmable Logic Compiler Using CUPL™

and all the libraries, therefore, requires 4.2Mb hard disk
space. After building the libraries, the partial library files
may be deleted and CUPL will occupy only 2.5 Mb of disk
space.

Installing CUPL requires four steps.

> Run the INSTALL program contained on the
diskette labelled “DISK 1 .

> Build the library.

> Set the ‘Configuration’ of the computer so that CUPL
will have the setup that it needs.

> Set the ‘Environment’of the computer so that the
system will function properly.

The INSTALL program has been provided to quickly and
easily install the CUPL software. It creates the appropriate
directory and copies the original diskettes onto the hard drive.

To run the INSTALL program, follow the steps below:

1. Place the “DISK 1” diskette in drive A. Change the
current drive to drive A by typing

2. Type

install

3. Follow the prompts on the screen. The program
suggests default values at each prompt; for

91-10128-5 0690 v2-7

CUPL
Using CUPL™ Programmable Logic Compiler

example, it supplies CUPL as the directory name.
Press to accept the default name or type a

different name and then press .

4. CUPL needs to access its device library CUPL.DL.
This file must be created on the hard disk. To do
this, run build. This is a batch file which creates
the library and puts the required information into
it. A batch file is simply a text file which contains a
series of DOS commands which can be executed by
typing in the batch file name. Before running
build, make sure that there is 1 Mb of disk space
available.

Type build (o)

If SMT parts are to be used, then an additional step
is required to add these to the library. Before
running buildsmt, make sure that there is .7 Mb
free space on the disk.

Type buildsmt
5. When a DOS computer starts up, it executes

commands that are contained in a file called
AUTOEXEC.BAT if it is present on the disk. Some
additional commands must be added to the
AUTOEXEC.BAT file for CUPL to function most
efficiently. If there is no AUTOEXEC.BAT file on
the computer, then create one and add the following
information to it:

path c:\cupl
set LIBCUPL=c:\cupl\cupl.dl

This lets the computer know where to find the
CUPL Program and Library.

U2s 0690 91-10128-5

¥

CUPL
Programmable Logic Compiler Using CUPL™

The computer may already have an
AUTOEXEC.BAT file. In that case, it should be
modified as follows.

¢ Add CUPL to the path command.
If the current path command reads:
path c:\dos;c:\bin
Change it to:
path c:\dos;c:\bin;c:\cupl
¢ Add this set command to the AUTOEXEC.BAT file:
set LIBCUPL=c:\cupl\cupldl

This example assumes that CUPL is installed in a directory
called CUPL on Drive C of the computer.

Specifying the Configuration

Each time the system is booted, the disk operating system
(DOS) configures the system for a specified number of buffers
and files. A buffer is a block of memory that DOS uses to hold
data being read from or written to disk when the amount of
data being transferred is not an exact multiple of the sector
size. The number of files for which the system is configured
determines how many files can be open at one time during
program operation. A CONFIG.SYS file in the root directory
instructs DOS on how to configure the system. If there is no
CONFIG.SYS file, DOS sets default values for the
configuration. CUPL requires 20 buffers and 15 files to ensure
proper operation. Verify that the system has a CONFIG.SYS
file in the root directory and that it contains the following two
commands:

buffers=20
files=15

91-10128-5 0690 U2-9

CUPL

Using CUPL™ Programmable Logic Compiler

v2-10

If the system does not have a CONFIG.SYS file, create one
using the a editor in non-document mode. Type in the
following:

BUFFERS=20
FILES=15

If the system has a CONFIG.SYS file, but the buffers are less
than 20 or the files are less than 15, change the values to 20 and
15 respectively. If the CONFIG.SYS file on the system
specifies buffers greater than 20 and files greater than 15,
leave the file intact. Other programs that are running may
require more buffers or files than CUPL does. If a
CONFIG.SYS file has been created or altered, or if the
AUTOEXEC.BAT file was changed according to the
instructions in the previous section, press Control-Alternate-
Delete to reboot the system and put the new commands into
effect.

The CUPL Menu System

There are two ways to run the CUPL program. The program
may be executed using the DOS command line, or the optional
menu system may be used.

The CUPL menu system is called MCUPL. It is entirely menu
driven and can be learned in a few minutes. This section will
describe MCUPL.

Note: MCUPL is available for MS-DOS computers only.
Note: Although it may not be explicitly stated on the

screens, the Escape key can be used to cancel a
choice or to go back to the previous screen or menu.

MENU CONFIGURATION

0690 91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

The menu system uses information stored in a file called
“MCUPL.CFG". This file permits the following information
to be specified:

Machine ID: This can be set to “PC” or “AT”. If using a
computer with an 8088/8086 processor, then select “PC”. If
using an 80286 or better, then select “AT”. The specification is
done with the following syntax:

“set mid PC” or “set mid AT”.

The editor being used must be specified. If this is not done,
then MCUPL will not function properly. Specifying the editor
is done as follows:

“set editor me” if “me.exe” is the editor being used.
“set editor ws” if “ws.exe” is the editor being used.

MCUPL uses a working directory where it reads and writes
files. Any file created by the user or by CUPL should be stored
here. Set the working directory with the following syntax: “set
wdpath pathname”, where pathname is a directory path name.

Example: “set wdpath c:\cupl\files”.

MCUPL.CFG contains specifications for screen colors of the
menus. Use “set color area color”, where area is the area of the
screen, such as MCFG (Message Center Text), MCBG
(Message Center Background), MCBC (Message Center
Border), UIFG (User Input Text), UIBG (User Input
Background), UIBC (User Input Border), MMFG (Main Menu
Text), MMBC (Main Menu Border) and MMBG (Main Menu
Background).

The color attribute determines what color the area will have,
such as Black, Blue, Green, Cyan, Red, Magenta, Brown,
Yellow, Darkgrey, Lightgrey, Lightblue, Lightgreen,
Lightcyan, Lightred, Lightmagenta and White. Example “set

91-10128-5 0690 U211

CUPL

Using CUPL™ Programmable Logic Compiler

U212

color MCFG Lightblue” will make the message center text
appear light blue.

The function keys F6 to F10 can be user-defined. Since the
menus can be operated either by using the arrow keys or by
typing the first key of the desired menu selection, the menus
can be used normally or a function key can be defined to
perform a specific action by having it type a series of keys.
The following example defines F10 (F0) to quit MCUPL by
typing ‘Q’ to select quit and then Y’ to confirm the action.

Example: “def FO QY”

Start the menu system as follows. Start up the computer. At the
prompt, type:

meupl ()

The startup screen will appear, followed by the main menu
with 11 items on it.

* Edit Design Entry Edit or convert a design file

* Compile CUPL file Prompts for a .PLD file then compiles
it.

* Look at DOC file View the Documentation file.
* JEDEC file editor View or edit a JEDEC file.

* Input simulation file Create or edit a simulation input file

(.SI

* Simulate CUPL file Simulate the PLD design using the
SI file.

0690 91-10128-5

CUPL

Programmable Logic Compiler Using CUPL™
* View simulation results View simulation output file
(.S0).

* Device Selection Choose a device from a list, giving

device type and manufacturer,
* Help The online quick reference guide for CUPL

* Tutorial for PLDs Executes the Programmable Logic
User's guide demonstration,

* Quit Return to DOS.

Only one menu item can be highlighted at a time. While an
item is highlighted, a description of the action performed is
displayed in the message center window. To initiate the action

associated with the menu item, press (Return). The action may
also be initiated by pressing the first letter of the menu item.

The keyboard can be used to select from the menu by typing the
first letter of the menu item name. This has the same effect as
using the arrow keys and pressing the return key for that
item.

Some menu selections simply cause another menu to appear.
Selecting items from sub-menus is the same as selecting from
the main menu. To return to the previous menu, press the ESC
key.

The EZ Edit Editor

The EZ Edit editor is the stand-alone editor used by MCUPL, unless
a different editor is specified in MCUPL.CFG. EZ Edit is a simple
text editor.

When using EZ Edit, the insert key is used to alternate between the
insert and overwrite modes. The Alternate-X [Alt-X] key is used to

91-10128-5 0690 U2-13

Using CUPL™

CUPL
Programmable Logic Compiler

exit the editor. When exiting, the editor will ask for the filename to
which changes should be saved (only if there were changes).

The following are the keystrokes and commands available when

using the EZ Edit editor:

Key

Up Arrow
Down Arrow
Left Arrow
Right Arrow
Home

End

PgUp

PgDn
Ctrl-Home
Ctrl-End
Ctrl-PgUp
Ctrl-PgDn
Backspace
Ctrl-Backspace
Alt-X

U2-14

Action

Cursor up

Cursor down
Cursor left
Cursor right
Beginning of line
End of line

Page up

Page down

Top of screen
Bottom of screen
Top of file

Bottom of file
Deletes a character
Deletes a line
Exits EZ Edit

0690 91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

O UNIX INSTALLATION

CUPL for the UNIX operating system is supplied on either 1/4"
cartridge tape with device = rst0 or 1/2" 9 track tape with device
= rmt0. Both tapes are written in TAR format.

The following are required in order to run CUPL successfully
on a UNIX System:

> CUPL is available in versions compatible with UNIX
Version 7, System V and Berkeley 4.2 BSD. Make sure that the
correct version is being used.

> At least 1000 (512 byte) blocks of disk space available.

> A text editor to create CUPL source files. Any text
editor will work once it can create a standard ASCII text file.

> An RS-232 port for downloading fusemap files to the
device programmer.

Installing the Software on Sun Workstation
CUPL requires SunOS release 4.0.3 or higher.

The program files should be placed in a directory which will
be accessible to CUPL users. for example, the /usr/bin or
lusr/local directories. A new directory /usr/cupl may be
created, if having such a directory is more suitable.

91-10128-5 0690 U2-15

CUPL

Using CUPL™ Programmable Logic Compiler

U2-16

If a new directory /usr/cupl is being created, then do the
following:

mkdir /usr/cupl
chown root fusr/cupl
chmod 755 /usr/cupl

These make the directory /usr/cupl owned by root. It is read-
write-execute by the owner and read-execute for all other
groups and users.

Change the default directory to the new /usr/cupl.
cd /usr/cupl

Place the CUPL tape into the tape drive and put the drive
online. Then start the installation by typing:

tar xv

Note: The above command assumes that the tape is
loaded on the default device for tar (usually
/dev/rst0). The command copies all the files from
the tape to the current directory, therefore, the cupl
directory should be set to the current directory. If
the system uses a different tape device, consult the
system administrator for assistance.

Remove the distribution tape and put it into a proper storage
rack for safe keeping.

Setting Up the Environment

CUPL uses the environment to locate the device library file
CUPL.DL. The environment is a series of names and
parameters which is made available to all UNIX commands
and application programs. The user may display the current
contents at any time by typing the command:

printenv

0690 91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

The display might look something like this, assuming the
user login name is "designer":

HOME-=/usr/designer
PATH=.:/bin:/usr/bin

This shows the user that the “home directory” (the directory
first entered after login) is the /usr/designer directory. The
path to be searched for all application programs is the current
directory specified by the period and then /bin and /usr/bin
directories.

CUPL takes advantage of the hierarchical directory structure
of UNIX so that the user can execute the compiler from a
directory other than the one where the CUPL application is
stored. In order for this to work, the user must set the UNIX
path parameter in the environment to search for the executable
files in the appropriate directories. The name of the directory
where CUPL is stored should be added to the path parameter of
each CUPL user.

CUPL searches the environment for the string name
LIBCUPL, and uses the supplied parameter for the directory
and filename of the default device library file. In order to
properly access this file, the user must add the string LIBCUPL
to the environment. If CUPL was installed in a directory
called /usr/cupl, then use the following commands.

setenv PATH .:/bin:/usr/bin:/usr/cupl
setenv LIBCUPL /usr/cupl/cupl.dl

These new parameters are assigned during login or by the

following command in the home directory:

source .cshre

91-10128-5 0690 U2-17

CUPL

Using CUPL™ Programmable Logic Compiler

U218

Note: The above procedure applies only when using the
UNIX C-shell command interpreter.

For those installations running the Bourne shell, the
following commands must be placed in the .profile file of the
home directory:

PATH-=.:/bin:/usr/bin:/usr/cupl
LIBCUPL=/usr/cuplV/cupldl
export PATH LIBCUPL

These new parameters will take effect at login time or by
executing the following command in the home directory:

source .profile

If it is not known which command interpreter is being used on
the system, consult the system administrator.

Installing the Software on Apollo Workstation
CUPL requires DOMAIN/IX rev 9.7.5 or higher.

The program files should be placed in a directory which will
be accessible to CUPL users, for example, the /usr/bin or
/usr/local directories. A new directory /usr/cupl may be
created if desired.

When creating a new directory /usr/cupl, do the following:

mkdir /usr/cupl
chown root /usr/cupl
chmod 755 /usr/cupl

0690 91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

These make the directory /usr/cupl owned by root. It is read-
write-execute by the owner and read-execute for all other
groups and users.

Change the default directory to the new fusr/cupl.

cd /usr/cupl

Place the CUPL tape into the tape drive and put the drive
online.

If using cartridge tape, it must be retensioned before use.
Type:
/com/rbak -dev ¢ -reten

Then start the installation by typing:

tar xvf/dev/rct8

Note: The above command assumes that the tape is
loaded on the device rct8. If the system uses a
different tape device, consult the system
administrator for assistance.

Remove the distribution tape and put it into a proper storage
rack for safe keeping.

Setting Up the Environment

CUPL uses the environment to locate the device library file
CUPL.DL. The environment is a series of names and
parameters which is made available to all UNIX commands
and application programs. The user may display the current
contents at any time by typing the command:

printenv or

91-10128-5 0690 U2-19

CUPL

Using CUPL™ Programmable Logic Compiler

U2-20

set

The display might look something like this, assuming the
user login name is "designer":

HOME-=/usr/designer
PATH=.:/bin:/usr/bin
TERM-=apollo_15_color

This shows the user that the home directory (the directory first
entered after login) is the /usr/designer directory. The path to
be searched for all application programs is the current
directory specified by the period and then /bin and /usr/bin
directories.

CUPL takes advantage of the hierarchical directory structure
of UNIX so that the user can execute the compiler from a
directory other than the one where the CUPL application is
stored. In order for this to work, the UNIX path parameter in
the environment must be set to search for the executable files
in the appropriate directories. The name of the directory where
CUPL is stored should be added to the path parameter of each
CUPL user.

CUPL searches the environment for the string name
LIBCUPL and uses the supplied parameter for the directory
and filename of the default device library file. In order to
properly access this file, the user must add the string LIBCUPL
to the environment. If CUPL was installed in a directory
called /usr/cupl, then use the following commands:

setenv PATH (.:/bin¥usr/bin:/usr/cupl)
setenv LIBCUPL /usr/cupl/cupl.dl

These new parameters are assigned during login or by the
following command in the home directory:

source .cshre

0690 91-10128-5

‘

CUPL
Programmable Logic Compiler Using CUPL™

Note: The above procedure applies only when using the UNIX
C-shell command interpreter.

To use the AEGIS shell, the following statements must appear
in the user_data/sh/startup file:

SETVAR LIBCUPL /usr/cupl/cupl.dl
export LIBCUPL

SETVAR PATH ((PATH:/usr/cupl))
csr J/bin: /usr/bin : /usr/cupl

For those installations running the Bourne shell, the
following commands must be placed in the .profile file of the
home directory:

PATH-=.:/bin:/usr/bin:/usr/cupl
LIBCUPL=/usr/cupl/cupl.dl
export PATH LIBCUPL

These new parameters will take effect at login time or by
executing the following command in the home directory:

source .profile

If it is not known which command interpreter is being used on
the system, consult the system administrator.

91-10128-5 0690 U221

CUPL

Using CUPL™ Programmable Logic Compiler

0

U222

VAX/VMS INSTALLATION

The following are necessary to use CUPL on a VAX system:

> A VAX Computer capable of running VMS operating
system 3.6 or later.

> A minimum of 512K of RAM.
> At least 6250 (512 byte) blocks of disk space available.

> A text editor to create CUPL source files. Any text
editor will work once it can create a standard ASCII text file.

> An RS-232 port for downloading fusemap files to the
device programmer.

Installing the Software

CUPL for the VAX is normally supplied on a nine-track
magnetic tape, written at 1600 BPI density using the VAX/VMS
BACKUP command.

All files are contained in a single save set called
"CUPL.BCK". The program and device library files should be
placed so that all CUPL users may have access. This may be
the SYS$SYSTEM directory, or a new directory USR_CUPL
may be created for CUPL only.

If CUPL is to be installed in USR_CUPL do the following:
Have the system administrator create the directory

USR_CUPL by typing:

CREATE/DIR/PROT=(S:RWED,0:RWED,G:RE,
W:RE) DISK1: [USR_CUPL]

0690 91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

This creates the new directory on the device DISK1 and gives
full access privileges to the system and owner. The group and
world categories are allowed only read and execute
privileges. Change the name of the device to agree with the
installation being used, as necessary.

Change the default to the new USR_CUPL directory:

SET/DEFAULT DISK1:[USR_CUPL]

Place the distribution tape into the system tape drive. Load the
tape and put the tape ON-LINE. To read the tape onto the
system, type the following:

MOUNT/FOR MTAO
BACKUP/REW/LOG MTAO:CUPL.BCK *.*
DISMOUNT MTAO

Remove the distribution tape and put it into the proper storage
rack for safe keeping.

Setting Up The Environment

CUPL uses logical names to locate the device library file
(CUPL.DL). The file Login.com contains a series of names
and parameters which are made available to all VAX
commands and application programs. The user may display
the current logical names at any time by using the command:

show logical/process
The display might look like this:
"SYS$CUPL" = "SYS$VAX1:[USR.DISTR]"

91-10128-5 0690 U2-23

CUPL

Using CUPL™ Programmable Logic Compiler

U2-24

"SYSS$LIBCUPL" = "SYS$CUPL:CUPL.DL"
Note: SYS$LIBCUPL must be in uppercase letters.

This shows how CUPL finds the device library. Within
Login.com are other global variables that allow CUPL to be
run from any directory or sub-directory within the login
environment. The contents of Login.com must be added to the
existing Login.com to be able to use CUPL properly. The disk
and directory names in the ASSIGN statements should be
changed to reflect the system that is being used.

0690 91-10128-5

Getting Started U3

This chapter assumes that the user has had some experience
with programming devices. A basic understanding of logic
and logic gates, and how they relate to the design of
programmed devices, is required.

(1 GETTING STARTED
First Steps
Examine the Design Task

> Take a close look at the design that is needed.
Remember that state-machine, Boolean equations,
or truth tables are available for the design. Try to
determine which type of syntax best suits the
design task that is being worked on.

Create the CUPL Source File

> Use the template file provided and remove the
sections that do not apply. Remember to edit the
header to reflect the new file that is being created.

Formulate the Equations

> Equations must be written in CUPL syntax to
specify the logic desired. This can be in Boolean,
state-machine, or truth table format.

Choosing a Target Device
> Make sure that there is a sufficient number of input
pins.

91-10128-5 0690 U3-25

CUPL

Using CUPL™ Programmable Logic Compiler

U3s-26

> Check that the number of registered and non-
registered output pins is sufficient for the design.

> Ensure that the device has three-state output
control.

> Check that the device can adequately handle the
number of product terms required.

Making Pin Assignments
Assign the inputs and outputs of the design to the
pins of the device. Make sure that the device is
being used properly by consulting the reference :
material available from the manufacturer.

Running CUPL

Decide which file formats will be needed for
downloading and simulation. A choice of four
minimizers is available (M1-M4). CUPL will use
M1 minimization if none is specified. See Chapter
1 “CUPL Language” for details.

The device library which CUPL will use may be
specified when the compiler is invoked. CUPL will
use the library defined in the environment
variable ‘LIBCUPL’ if none is specified. See
Chapter U2 “Installation” for more information on
LIBCUPL.

Simple Logic Design

The Subway Turnstile controller is the simplest state machine
design. This controller waits for a signal that a coin has been
deposited. It then changes its state from locked to open. In the
open phase, it waits for someone to walk through the turnstile,
then it changes from open to locked. This two-state design
cycles between open and locked using a coin detector and a
walk-through detector as inputs. The following diagram
shows the states and the pulses that change the device from one
state to the next.

0690 91-10128-5

CUPL

Programmable Logic Compiler Using CUPL™
STATE DIAGRAM CUPL SYNTAX
ICON
: Sequence LOCK {
------- ©~ - - - - Present LOCKED

---- IKCOIN NextOPEN:;
t- - ---- IfICOIN NextLOCKED:;

.......... Present OPEN

........ If WALK_THRU Next LOCKED:
....... Default Next OPEN;
- . Out CNT_PULSE;

WALK_THRU

IWALK_THRU
Figure U3-1 Subway Turnstile Example

The corresponding CUPL state machine code is displayed on
the right, so that the relationship between the code and the
design concept is easily understood.

91-10128-5 0690 U3-27

CUPL
Using CUPL™ Programmable Logic Compiler

TURNSTIL.PLD

Name Turnstyl;

Partno FL00001:

Date 03/06/89;

Designer R. Teixeira:

Company LDI:

Location D21;

Assembly Example
/.llltﬂt*'.l!'-...lllﬁﬁ.ﬂ't..lltltl.Qt.t..'il......!!'ﬁ/
/* =/
/* This is an example to demonstrate how CUPL */
/* compiles a subway turnstile controller */
/* . */
/ﬂ.ﬂﬂlﬁ.ltﬁ'ﬁ'!.h't'iﬂli....!'.!i..lﬂﬁﬁ.h.l.l.'..'.l!t'/
/* Target Devices: P16R4 */

SRR AR AR AR R RN AR R AR R R RN AR AR R AR RN R AR AR R AR R AR AR RN RN AR AR

/* Inputs: define inputs to Turnstile controller */
Pin 1 = CLK;
Pin 2 = WALK_THRU;
?in 3 = COIN;
/* Outputs: define outputs as active HI levels
............................... ./
Pin 15 = LOCK:
/* Logic: Subway Turnstile example expressed in CUPL */
Sequence LOCK{
Present LOCKED
if COIN Next OPEN:
if !COIN Next LOCKED:
Present OPEN
if WALK_THRU Next LOCKED;

Default Next OPEN;
Out CNT_PULSE;

Figure U3-2 TURNSTIL.PLD
Simple Gates Example

This section will explain in detail the creation of a simple
gates program for a PLD. The following diagram shows what
design will be implemented. This design is taken from the
Chapter U5 “Design Examples”.

U3-28 0690 91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

|— Xxnor

}— xor

}— nor

sielvil

VY OU

| __ nand

| invb

| inva

Figure U3-3 Simple Gates

This design gives a simple set of inputs and generates output
simulating some simple gates. The outputs are labeled to
reflect the function of their gate; for example, the AND gate
has an output labeled AND.

Figure U3-4 shows the CUPL source file (GATES.PLD
provided in the CUPL package) that describes the design.

91-10128-5 0690 U3-29

Using CUPL™

U3-30

CUPL

Programmable Logic Compiler

GATES.PLD
Name Gates;
Partno CAQ001;
Date 07/16/87;
Designer G Woolheiser;
Company ATI: .
Location San Jose, CA.:
Assembly Example
/t!.ﬁ.ut.ltkt'...ﬂ!.'ﬁtt'lQ‘ﬁ....tt.ﬁt"'ﬁtl"..!'.‘ﬂ.ﬂ/
/" */
/* This 18 an example to demonstrate how CUPL */
/* compiles simple gates . */
/* */

SRR R AR A RRR R AR RN N RR AR KRR KA RARR AR RN AR ARR R KR RN R R AR AN/

/* Target Devices: P16L8, P16P8, EP300, and 825153 */

AR P AR AR R AR AR RNR R AN AR KRR RRRR R AR R AR AN RARAR AR RARRNRR]

/* Inputs: define inputs to build simple gates */
Pin 1 = a;
Pin 2 = b;

/* Outputs: define outputs as active HI levels

For PAL16L8 and PAL16LD8, De Morgan's Theorem is
applied to invert all outputs due to fixed

inverting buffer in the device. */
pPin 12 = inva:
pin 13 = invb;
Pin 14 = and;
Pin 15 = nand:
Pin 16 = or;
Pin 17 = nor:
Pin 18 = xor:
pin 19 = xnor;

/* Logic: examples of simple gates expressed in CUPL */

inva = ta: /* inverters */
ipvb = !b

and = a & b; /* and gate */
nand = {{a & b); /* nand gate */
or =a ¢ b; /* or gate */
xor = a $ b; /* nor gate */
xnor = !(a $ b): /* exclusive nor gate */

Figure U3-4. Simple Gates Source File (GATES.PLD)

The first part of the file provides archival information and a
description of the intended function of the design, including
compatible PLDs. First, there is the ‘Name’ line, which CUPL
uses to name the output files by adding extensions. ‘Partno’
specifies the Company’s proprietary part number, issued by
manufacturing, for a particular PLD design. The part
number is not the type of the target PLD. ‘Date’ is used to
specify the date of compilation. The date should be changed to
the current date as a good documentation practice. ‘Designer’
should be the designer’s name or the name of the design team.

91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

‘Assembly’ is used to specify the assembly name or number of
the PC board on which the PLD will be used. Use the
abbreviation ASSY if desired. ‘Location’ is supposed to be used
to indicate the PC board reference or coordinate where the PLD
is located. The abbreviation LOC may also be used. This may
be used for other purposes. .

Pin declarations are made corresponding to the inputs and
outputs in the design diagram. The gates in this example
require two inputs, which are passed through the gates as
necessary. ‘a’ and ‘b’ are names for the input pins. Next,
names are assigned to the output pins. The names chosen are
descriptive of the function being performed. The use of
descriptive names is encouraged, as it makes files easier to
debug and update at a later time.

In the “Logic” section of the file, equations describe each of the
gates in the design. Boolean syntax is used to specify each
output pin as a function of the input pins ‘a’ and ‘b’.

For the PAL16L8 and PAL16LD8 devices, which contain fixed
inverting buffers, CUPL applies DeMorgan’s Theorem to
invert all outputs because they were all declared active-HI in
the pin list. For example, during compilation, CUPL converts
the following equation for an OR gate, on an output pin that has
been declared as active-HI:

or=a#b;

to the following single expanded product term (as shown in the
documentation file):

or=>!a&!b

The devices chosen for this design were selected because they
fit the criteria, as specified earlier, for choosing a device.
They have an adequate number of pins, both input and output.
They have tri-state control. The number of registered and

91-10128-5 0690 U3-31

CUPL

Using CUPL™ Programmable Logic Compiler

Us32

non-registered pins fits our design, and the device can handle
the number of product terms.

Compiling the Source File
At the system prompt, type:

cupl -x P16L8 gates

This will execute CUPL. The “x’ means to generate a
documentation file (GATES.DOC) so that the expanded listing
generated by CUPL may be viewed. The target device is a
PAL16L8 and the source file is GATES.PLD.

After running CUPL, open the file GATES.DOC, which has the
expanded listing generated by CUPL. This shows how CUPL
expands the logic equations when it compiles the design for the
device chosen.

In order to see how CUPL reports errors, edit the source file
GATES.PLD and remove the semicolon at the end of one of the
assignment statements. Now run CUPL as follows:

cupl -1 P16L8 gates.pld

After it has finished, take a look at the file GATES.LST to see
how CUPL reports errors. Notice that an error line appears
next to the error, and there are line numbers at the beginning
of each line.

Simulating a Design

Now the design will be simulated using CSIM. Test vectors
must be created for the simulator to function. Test vectors
specify the expected functional operation of a PLD by defining
the outputs as a function of the inputs. Test vectors are also
used to do functional testing of a device once it has been
programmed, to see if the device functions as expected.

0690 91-10128-5

CUPL)
Programmable Logic Compiler Using CUPL™

CSIM needs a test specification source file. For this example, it
will be called GATES.SI. This file has a description of the
function of the device in the circuit.

CSIM compares the input pin and output pin test values in the
GATES.SI file, as shown in figure U3-5, with the actual values
that are calculated from the logic equations in the absolute file
GATES.ABS created by CUPL when the ‘-a’ option is used.
CSIM will not work unless the GATES.ABS file is created. To
create the file GATES.ABS, type:

CUPL -aj p1618 gates

91-10128-5 0690 U3-33

Using

U334

CUPL

CUPL™ - Programmable Logic Compiler
Name Gates;

Partno 000000

Revision 03;

Date 9/12/83;

Designer CUPL Engineering:

Company Logical Devices, Inc.:

Location None;

Assembly None;
/..t.!l‘nﬂiQh.l".'.lﬁﬁﬁ".ﬂ.ﬁ't.ﬁ.'..ﬂ'ﬂ!.'.‘ﬁn.ﬂﬂ.ll!‘t'ﬂl!.ﬂ'ﬁ/
/* */
/* This is a example to demonstrate how CUPL */
/* compiles simple gates. */
. */
/kl'iihiﬂtnl"'t'!ﬂﬂl't.lﬂ.tl"ﬁ'ﬁﬁ'tiﬁ"..l'..ﬁ'ﬁlﬁttllﬁl!iﬂ'.ﬁﬂ/
/. Taget Devices: P16L8, P16LD8, P16P8, EP300, and 825153 */

AR AR AR AR AR AR AR AR AR AR AN RR AR KR NAN TR ARR AR R AR KRR KRR R RN AR

/t

* Order: define order, polarity, and output
* spacing of stimulus and response values

*/

Order: a, %2, b, %4, inva, %3, invb, %5, and, %8,
nand, %7, or, %8, nor, %7, xor, %8, xnor:

~

R EEEEE

Vectors: define stimulus and response values, with header
and intermediate messages for the simulator listing.

Note: Don't Care state (X) on inputs is reflected in outputs
where appropriate.

/

Vectors:

$msg "

$msqg * simple Gates Simulation%;
$msg "o,

Smsg " inverters and nand or nor xor xnor":

$msqg * a b !a !b a&b !(a&b) atb !(atb as$b !(a$ b
- ".

Smsqg " -

00 HHLHLHLH
01 HLLHHLHL
10 LHLHHLHL
11 LLHLHLLH
1X LXXXHLXX
X1 XLXXHLXX
0X HXLHXXXX
X0 XHLHXXXX
XX XXXXXXXX

Figure U3-5 Gates Simulator Input File (GATES.SI)

To run the simulator for the simple gates example, type the

following:

CSIM -w P16L8 gates

The waveform output is available for the DOS version of CUPL
only. For UNIX, VMS and all other versions, the only output

91-10128-5

CUPL
Programmable Logic Compiler Using CUPL™

available is the simulator output file. Figure U3-6 shows the
simulator output file. The inputs are listed with the
corresponding outputs.

1:Name Gates;

2:Partno 000000;

3:Revision 03;

4:Date 9/12/83;

5:Designer CUPL Engineering:

6:Company Logical Devices, Inc.:

7:Location None:

8:Assembly None;

9:
lo:/l"I.ll."ll."...Ql..ﬁﬁ!..........l.!'l..ﬂt..'l'..'..'ﬂl.ﬂ.ﬂ‘ll,
11:/+ */
12:/* This is a example to demonstrate how CUPL */
13:/* compiles simple gates. */
14:/* */
15:/!.'ﬂﬁﬁ.ﬂl.QQ..lQ!l.ll..ﬂ'...tk.....!'.ﬂ....ll."-.t.lt.n!l.t..t'/
16:/* Taget Devices: P16L8, P16LD8, P16P8, EP300, and 825153 */
1":/‘hliltﬁ.l'.tl.n!l..l'!..'tﬁ'lt...'.t...Q.Ql.'t..l..ﬁ...l!l.....ﬁ/
18:

19:
20:/*

21; * Order: define order, polarity, and output
22: * spacing of stimulus and response values

23: +/

24:

25:0rder: a, %2, b, %4, inva, 83, invb, 85, and, %8,

26: nand, %7, or, %8, nor, %7, xor, %8, xnor:

27:

28:/*

29: * Vectors: define stimulus and response values, with header
30: * and intermediate messages for the simulator listing.
31: *

32: * Note: Don't Care state (X) on inputs is reflected in outputs
33: » where appropriate.

34: */

35:

Simulation Results

Simple Gates Simple Simulation

inverters and namd or nor xor xnor

a a ta b a&b !{aeb) atb !(atb) as$Sb !(as$b)
0001: 0 O H H L H L H L H
0002: 0 1 H L L H H L H L
0003: 1 0 L H L H H L H L
0004: 1 1 L L H L H L L H
0005: 1 X L X X X H L X X
0006: X 1 X L X X H L X X
0007: 0 X H X L H X X X X
0008: X 0 X H L H X X X X
0009: X X X X X X X X X X

Figure U4-6 Gates Simulator Output File (GATES.SO)

91-10128-5 0690 U3-35

CUPL Operation U4

This chapter explains how to use the various components of the
CUPL package. It includes CUPL, CSIM, CBLD and PTOC.

(1 CUPL OPERATION

This section describes CUPL input and output and explains
how to run CUPL using the command line options or the Menu
system. This is a condensed version of the information given
in the User Guide section “Using The CUPL System”.

0 Input

Alogic description source file (filename.PLD) is the input to
CUPL. This file describes the logical functionality to assign to
a specified target device.

The source file is created using a standard text editor. There
are a wide variety of text editors available and the choice
depends entirely upon personal preference. The only
requirement is that it be able to produce a standard text file.

The CUPL compiler must be able to access the device library
file (CUPL.DL), which contains a description of each of the
target devices supported in the current version of CUPL. The
library describes the physical characteristics of each device,
including internal architecture, number of pins, and valid
input and output pins, and also describes the logical
characteristics, including registered and non-registered
pins, number of product terms, fuse map information, and
download format information.

91-10128-5 0690 U436

’

CUPL

Programmable Logic Compiler

CUPL Operation

The target device is referenced using device mnemonics. The
mnemonic is composed of a device family prefix and industry
standard part number suffix. Table U4-1 lists the device

mnemonic prefixes.

Table U4-1.

CUPL Device Mnemonic Prefixes

Symbol

Meaning

EP

oot o =mo=m™m 1 1@

Erasable Programmable Logic
Device (EPLD)

Generic Array Logic (GAL)

Field Programmable Logic Array
(FPLA)

Field Programmable Gate Array
(FPGA)

Field Programmable Logic
Sequencer (FPLS)

Field Programmable Sequence
Generator (FPSG)

Programmable Logic Array (PAL)
Programmable Logic Device (PLD)
Programmable Electrically Erasable
Logic (PEEL)

Pseudo Logical Device

Bipolar Programmable Read Only
Memory (PROM)

For example, the device mnemonic for a PAL10L8 is P10LS;
for an 825100 the device mnemonic is F100. For bipolar
PROMs, the suffix is the array size; for example, the device
mnemonic for a 1024 x 8 bipolar PROM is RA10P8, since there
are 10 address input pins and 8 data output pins.

91-10128-5

0690 U437

CUPL
CUPL Operation Programmable Logic Compiler

Q Output

CUPL can output the files described below.

> A JEDEC-compatible ASCII download file
(filename.JED) for input to a device programmer.

> An ASCII Hex download file (filename.HEX)
available for PROMs.

> An HL download file (filename.HL) available for
Signetics IFL devices.

An absolute file (filename.ABS) for use by CSIM,
the CUPL logic simulation program.

> An error listing file (filename . LST) that lists
errors in the original source file.

> A documentation file (filename.DOC) that
contains expanded logic equations, a variable
symbol table, product term utilization, and
fusemap information.

> P-CAD PDIF file (filename.PDF) that can be
translated by PDIFIN into a PC-CAPS symbol
representing the pinouts of the programmable logic
device.

> A Berkeley PLA file (ﬁlename.PLA) for use by the
Berkeley PLA tools.

U438 0690 91-10128-5

CUPL
Programmable Logic Compiler CUPL Operation

O Running CUPL From the Command Line
Run CUPL using the following command line format:
cupl [-flags] [library] [device] source
where

-flags is the following set of compiler options:

-j JEDEC download format

-h ASCII-HEX download format

-i HL download format

-n use input filename for output file

-a create absolute file

-1 create listing file

-e . create expanded macro definition file

-X create expanded product-terms in documentation
file

-f create fuse plot/chip diagram in documentation
file

P create PDIF database interchange format file

-b create Berkeley PLA format file

-c create PALASM format file

-d deactivate unused OR terms

-r disable product term merging

-g . program security fuse

-u use specified library for compilation

-S perform logic simulation after compilation

W perform simulation with waveform output
(MS-DOS only)

-m0 no minimization

-m1l quick minimization (default)

-m2 Quine McCluskey

-m3 Presto

-m4 Expresso

91-10128-5 0690 U4-39

CUPL

CUPL Operation Programmable Logic Compiler

U440

library is the path name and library name used with the -u
flag to specify a library other than the default library.

device is the device mnemonic for the type of part to be used in
the compilation. Use the CBLD program to list available
devices (see Chapter 3, “Using CBLD”).

source is the user-created ASCII logic description file
(filename.PLD). The .PLD extension is assumed for the
source file and may be omitted when giving the CUPL
command.

%,

Note

The square brackets indicate optional items.

Multiple option flags can be specified when running CUPL. A
hyphen must be typed before the first flag entered, but is
optional for additional flags. Spaces also can be put between
the option flags. For example, the following two CUPL
command lines are equivalent:

cupl -a -1-j p16r4 waitgen
cupl -alj p16r4 waitgen

Type CUPL without any flags to see the command line format
and a list of the option flags. Table U4-2 lists descriptions of
the CUPL option flags and output files. An introductory
example will be presented in the next chapter.

0690 91-10128-5

CUPL
Programmable Logic Compiler

CUPL Operation

Table U4-2. Compiler Option Flags

Description

|Option Flag
i

91-10128-5

Generates a JEDEC-compatible ASCII
download file (filename.JED). The filename is
not necessarily the same as the logic description
filename input to CUPL. The NAME statement
in the header information section of the logic
description file determines the download
filename (see the subtopic, Header Information
in this chapter).

This can be used to create an input file for other

logic design tools and gate array fitters such as
PDS2XNF from XILINX.

Generates an ASCII-hex download file
(filename.HEX). This format is available only
for PROMs. The filename is not necessarily the
same as the logic description filename input to
CUPL. The NAME statement in the header
information section of the logic description file
determines the download filename (see the
subtopic, Header Information in this chapter).

Generates an HL download file
(filename.HL). This format is available only
for the Signetics IFL devices. The filename is
not necessarily the same as the logic description
filename input to CUPL. The NAME statement
in the header information section of the logic
description file determines the download
filename (see the subtopic, Header Information
in this chapter).

Generates an absolute file (filename.ABS) for
use by the CSIM logic simulation program.

0690 U441

CUPL Operation

U442

CUPL
Programmable Logic Compiler

Allows the source filename to be used as the
JEDEC filename instead of using the name in
the NAME field of the source file.

Generates an error listing file (filename.LST).
Each line in the original source file is numbered.
Error messages are listed at the end of the file
and use the line numbers for reference.

Generates a documentation file
(filename.DOC) which contains an expanded
listing of the logic terms in sum-of-products
format and a symbol table of all variables used
in the source file. It includes the total number of
product terms and the number available for
each output.

Generates a fuse plot in the documentation file.
For PAL devices, each output pin is listed and
the associated product term rows are shown
with the starting JEDEC fuse number. Fuses
present are denoted with “x”. Fuses blown are
denoted with “.”. For IFL devices, the HL
download format is used, showing JEDEC fuse
numbers with input terms denoted as “H,” “L,”
ao’” or %7,

Generates a PDIF (P-CAD Database
Interchange Format) file (filename.PDF)
which can be translated by the PDIFIN
program into a symbol for the PC-CAPS (P-
CAD Schematic Capture) program. The
generated symbol will contain packaging
information for the PLD.

Generates a Berkeley PLA file (filename.PLA)
for use by the Berkeley PLA tools, such as
PLEASURE, or other PLA layout tools which
use the Berkeley PLA format.

0690 ' 91-10128-5

4

CUPL
Programmable Logic Compiler

91-10128-5

CUPL Operation

In IFL devices, the OR-gate output array is
driven by each of the AND-gate product terms.
Normally, unused OR-gate inputs are left
connected to the product term array so that
new terms may be added. However, with this
option, the unused OR-gate inputs are removed
(deactivated) from the product term array. The
result is reduced propagation delay from input
to output.

In IFL devices, each product term from the
AND- gate array may be shared among any
number of OR- gate outputs. This option
defeats this capability, forcing identical product
terms to be generated for each output OR-array
when required. The result is reduced
propagation delay from input to output. This
option will also force minimization to be
performed on each output individually (as
opposed to minimization on all outputs at once)
when level m2 or m4 minimization is chosen.

Adds the necessary code in the JEDEC
download file to automatically allow the device
programmer to blow the security fuse when
programming. Not all programmers support
this option.

Overrides the default device library specified in
the environment. Specify the complete path and
filename for the library. Use this option on
systems that may have special libraries created
for unique or custom devices.

Creates the absolute file and automatically runs
the CSIM logic simulator. CSIM is run with the
-1 option that creates a list file. If the -j flag was
specified for CUPL, it will be passed to CSIM,
creating a JEDEC download file with test
vectors.

CUPL Operation

U444

mO0

ml - m4

CUPL
Programmable Logic Compiler

Generates an expanded macro definition file
(filename.MX) which contains an expanded
listing of all macros used in the source file. It
also contains the expanded expressions that use
the REPEAT command.

(MS-DOS only) Creates the absolute file and
automatically runs the CSIM logic simulator
with waveform output. CSIM is executed with
the -w option that displays the output in wave
form.

Defeats all logic minimization during a CUPL
compilation. It is useful when working with
PROMs, to keep contained product terms from
being eliminated.

CUPL provides four minimization levels: -m1, -
m2, -m3, and -m4. The default minimization
level is m1. Figure U4-1 shows the relative
memory usage, speed, and efficiency of the
four minimization levels. Minimization levels
m2 and m4 will perform multiple output
minimization in IFL devices. This maximizes
product term sharing in these types of devices.

0690 91-10128-5

CUPL

Programmable Logic Compiler

CUPL Operation

Reduction
Efficiency

Memory
Usage

Execution
Time

M1 M2 M3 M4

Figure U4-1.

Logic Minimization Levels

|Flag Minimization Description
M1 Quick Minimization
| M2 Quine-McCluskey Minimization
| M3 Presto Minimization
| M4 Expresso Minimization
91-10128-5 0690 U4-45

CUPL

CUPL Operation Programmable Logic Compiler

0

U446

Running CUPL Using the Menus

The MS-DOS version of CUPL contains a front-end menu
system. This can be used instead of the command line for
working more quickly with CUPL. An explanation of the
menu system follows.

The CUPL menu program is called MCUPL. 1t is a front-end
program, meaning that it executes the other CUPL programs
just as a user would, but the user never sees this step. All that is
necessary is to select a choice from a menu and press return.

The Installation Chapter contains a description of how to
install MCUPL. The MCUPL files MCUPL.EXE and
MCUPL.CFG must be copied to the hard disk. MCUPL.CFG
must be modified, so that it knows how the system has been set
up. This is not difficult. MCUPL.CFG contains information
such as the location of a working directory where work files
are stored, what colors to use on the screen, the name of the
editor being used and the class of computer that is being used.
The installation chapter gives more information on this.

MCUPL is used by pressing keys on the keyboard to make
selections from the menus. The arrow keys can be used to
move up and down the menu. When the desired choice is
selected, simply press the return key. This will either cause
another menu to appear with more specific choices or it will
cause an action to occur. It is also possible to press the first
letter of the menu item to select it. For example, from the main
menu, [Q] can be pressed to select the quit item. Type a ‘Y’ to
confirm the choice. This will quit the program back to DOS.

Often, an action will require input from the user. The
message center will display a prompt detailing what
information is required, such as a file name to be compiled.
After entering the information, the user then presses the
return key on the keyboard, and the action proceeds.

0690 91-10128-5

Programmable Logic Compiler

CUPL Operation

If a sub-menu is displayed, the escape key [Esc] can be used to

display the previous menu.

The following is a description of the main menu of MCUPL.

* Edit Design Entry
* Compile CUPL file

* Look at DOC file
* Review error list file
* JEDEC file editor

* Input simulation file
* Simulate CUPL file

* View simulation results

* Device Selection
* Help

* Tutorial for PLDs

* Quit

91-10128-5

Edit or convert a design file.

Prompts for a .PLD file then
compiles it.

View the Documentation file.
View the error listing file.
View or edit a JEDEC file.

Create or edit the simulation input
file (.SI).

Simulate the PLD design using
the .SI file.

View simulation output file (.SO).

Choose a device from a list giving
device type and manufacturer.

The online quick reference guide
for CUPL.

This executes the Programmable

Logic User's guide
demonstration.
Return to DOS.

U447

CUPL
CUPL Operation Programmable Logic Compiler

Defining Function keys

MCUPL allows for the custom definition of Function Keys F6
to F10. This involves modifying MCUPL.CFG. The function
key definitions simply simulate the typing of a sequence of
keys.

To define F6 to quit, add the following to MCUPL.CFG:
def F6 QY

This will type the letter ‘Q’ then ‘Y’ for the response to the
confirm prompt.

Boolean Logic
Table U4-3 shows the Boolean Logic rules for eliminating
excess product terms from the expanded equations, used by the

logic reduction algorithms built into the CUPL compiler.
Table U4-3. Boolean Logic Rules

|Expression Result |
0 =
. =
A&O =
A&l =
A&A =
A&A =
A#0 =
A#1 =
A#A =
A#!A =
A& (A#B) =
A#(A&B) =

-

B> OR» OO

U448 0690 91-10128-5

Design Examples UbH

This chapter provides examples of using CUPL and CSIM. It is
divided into two parts.

Part A provides step-by-step instructions through a sample
design session. Part B describes some of the designs that can
be implemented with the logic description files provided with
the CUPL package.

91-10145-5 0690 U5-49

Design
Examples

CUPL
User Guide

PART A. SAMPLE DESIGN SESSION

This part provides step-by-step instructions through a sample
design session using CUPL and CSIM. The steps in the

process are:
Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.
Step 7
Step 8

Examining the Design Task
Creating the CUPL Source File
Formulating the Equations
Choosing a Target Device
Making the Pin Assignments
Running CUPL

Creating the CSIM Source File
Running CSIM

| STEP 1. EXAMINING THE DESIGN

TASK

The system in this programmable logic device (PLD) design
example is microprocessor-based, with the CPU interfacing
with ROM and RAM. Figure U5-1 shows a diagram of the

system.

U5-50

0690 91-10145-5

CUPL Design
User Guide Examples

A
% R READY ROM
—|RDY A LME-SAS& PLD CS
_RESET] M \

'RESET]| | , Amxm

CS

CPU_CLK

RAMO

RW
CS

Figure U5-1. Microprocessor-Based System

A PLD provides a flexible interface between the CPU and
peripherals by performing address decoding and timing
control functions. As the diagram shows, a ROM (er PROM)
is used for system control and two static RAMs are used for
scratch pad and auxiliary memory functions.

In this sample session, a PLD will be designed that decodes the
CPU's address using a memory map, and creates chip select
signals for the ROM and RAM chips based upon CPU address
and CPU data strobes.

The memory map in Figure U5-2 shows where the ROM and
two RAM chips reside in the CPU's addressing space.

91-10145-5 0690 Us-51

Design

CUPL

Examples User Guide

Us-52

FFFF
3000 r—_/
RAM 1
2800
RAM 0
2000
1000 —r— ROM
0000

Figure U5-2. Memory Map

Addresses are marked and shown in hexadecimal in the
memory map. Use this memory map when designing the logic
for the PLD.

Because the ROM chip is slow, the PLD must be designed to
perform a wait state generation that adds at least one CPU
clock period to the ROM access. The worm arrows on the
timing diagram in Figure U5-3 show signals affected or
created by other signals.

0690 91-10145-5

CUPL Design

User Guide Examples
)] (2 3)
CPU_CLK [1 |] [1 | L
A15.11 i CPU ADDRESS VALID €
IMEMR —‘qu T
WAIT1 / /ﬁ

WAIT2 / \A\.
IROM_CS —‘—kﬂ/ 5

READY

Figure U5-3. Wait State Generator Timing Diagram

A description of the operation of the timing diagram follows.
The numbers in parentheses indicate the rising edge of the
CLOCK signal.

A wait state sequence starts with the CPU address becoming
valid prior to the memory read strobe. Only the IMEMR signal
needs to be considered, because the wait state is generated only
for the ROM.

When the !MEMR strobe is active for an address
corresponding to the ROM, the IROM_CS signal is asserted
and turns on the three-state buffer, driving the CPU READY
signal LO, (indicating not ready, or wait). The next rising
edge of the CPU clock (1) after IROM_CS becomes active and
sets the WAIT1 signal. After one CPU clock period passes, the
WAIT?2 signal is asserted (2); the wait state period (one CPU
clock) is completed, causing the CPU READY signal to be
driven HI, which causes the CPU to continue its read cycle and
remove the IMEMR strobe at the appropriate time. The
IROM_CS signal is negated, disabling the three-state buffer
driving the ready signal and, at the next rising edge of the
CPU clock (3), causing WAIT1 and WAITZ2 to be reset. The

91-10145-5 0690 U5-53

Design CUPL
Examples User Guide

U554

wait state generator is now prepared for the next CPU access
time.

STEP 2. CREATING THE CUPL SOURCE
FILE

In this step, a logic description file will be created to describe
the design for the PLD. The logic description file serves as
input to CUPL, which compiles the design for downloading to a
device programmer.

To make it easy to set up the required format for the logic
description file, CUPL provides a template file, TMPL.PLD,
that can be copied into the file being used. First, choose a name
for the file that reflects the use being designed for the PLD.
Since this is a sample session, use the name SAMPLE.PLD.
Copy TMPL.PLD to SAMPLE.PLD, by typing:

copy tmpl.pld sample.pld

D

Note

To move more quickly through this design example,
it is not necessary to actually create and edit the
SAMPLE.PLD file. The CUPL package provides a
sample file, WAITGEN.PLD, that can be used
instead.

Use a text editor in non-document mode to open
SAMPLE.PLD. Figure U5-4 shows the template information
that has been copied into the file.

0690 91-10145-5

CUPL Design
User Guide Examples
TEMPLATE FILE

Name XXXXX:

Partno XXXXX;

Date XX/ XX/ XX 3

Revision XX;

Designer XXXXX ;

Company XXXXX;

Assembly XXXXX

Location XXXXX;

[R R AR AR AR A AR AN A SR AR N AN R AN R TR AR RN R R R RN AR BN RA RN RN/

TAd */
/* */
/* */
/Q.'ﬂ...'kl.."'...'ﬁ.'.-."ﬁt...l.l.i.l‘..ﬂ..".ﬁ.l.".‘..../
/* Allowable Target Device */

[R R R R AR R AR R R R AR R AR AN R AR NN RRRR AR AN RN N R AR R AR R AN AR AN RN]

/** Inputs **/

Pin - /* */
Pin - /* */
Pin - : /* -/
Pin - /* */
Pin - f /* */
Pin - /* “/
Pin - /* */
Pin - : YA */
Pin - : /* %/
Pin - /* */
pin - A */
Pin - /* */
pin - /* */
pin - IAd ~/
/** Outputs **/

Pin - : /* */
Pin - 3 /* */
Pin - /* */
Pin - /* */
Pin - /™ */
Pin - /* */
Pin - /* */

Pin

[**___Declarations and Intermediate Variable Definitions *+*/

Figure U5-4. SAMPLE.PLD Template Information

91-10145-5 0690

The file can be edited, in order to enter specific header and
title information, specify the input and output pins, and write
the intermediate and logic equations.

In the header section, replace the XXXs with specific
information referring to the company and the PLD being
designed. Since this is a sample design, use the information
provided (as shown in Figure U5-5) or any other desired
information.

Us-55

Design CUPL
Examples User Guide

.

Us-56

Below the header section is a title block with comment symbols
(/* and */). In the title block, type in information describing
the design, as shown in Figure U5-5.

SAMPLE.PLD
Name Sample:
Partno P9000183;
Date 07/16/87:
Revision 02;
Designer Osann;
Company ATI:
Assembly PC Memory:
Location ul106;

/-ﬁtnt‘-n-an-nnnn-u-anannn-'nnn-ann-ann-anntnnnntt.tttn/
/* This device generates chip select signals for one */
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives */
/* the system READY line to insert a wait-state of at */

/* least one cpu clock for ROM accesses */
/ﬂl.ﬁ.tl...‘.Q!ﬂ!'ll!.ﬁ.l!ﬂ.lﬂ..h..t.k.tﬁ..l‘litl...tlﬂ/

Figure U5-5. SAMPLE.PLD Header and Title Block

STEP 3. FORMULATING THE
EQUATIONS

To make it easier to enter the specific equations for address
decoding and wait state generation, first enter equations for
intermediate variables. Intermediate variables are arbitrary
names; that is, they do not represent specific pins. Enter the
intermediate equations in the space provided in the
SAMPLE.PLD file for “Declarations and Intermediate
Variable Definitions.”

The first intermediate equation to enter is a bit field
declaration to define the address bus. Use the name MEMADR
(memory address) to represent the address, and type the
equation as follows:

FIELD MEMADR = [A15..11] ;

In the system diagram in Figure U5-1, notice that the chip
select signals for the static RAMs are not dependent solely

0690 91-10145-5

CUPL Design
User Guide Examples

upon address but must be asserted for either the MEMW or
MEMR data strobes.

To simplify the equations for the static RAM chip select
signals, create a signal called MEMREQ (memory request).
Type the following;

MEMREQ = MEMW # MEMR ;

Whenever MEMREQ is used in other equations, CUPL
substitutes MEMW # MEMR when it compiles.

Notice in the timing diagram in Figure U5-3 that the decoding
of the address corresponding to the ROM combines with the
IMEMR strobe to produce the ROM chip select (ROM_CS), and
to initiate the wait state sequence.

Create an intermediate variable, called SELECT_ROM,
representing the combination of the IMEMR strobe and the
specific address decoding for the ROM's address space, by
typing the following:

SELECT_ROM = MEMR & MEMADR :
[0000..1FFF] ;

After entering the above intermediate equations, the specific
equations for address decoding and wait state generation may
be entered.

If the signal ROM_CS, which feeds back into the array, is
being used to initiate the wait state timing, an additional pass
delay is incurred through the PLD. Because the clock rate is
relatively slow (4-8 MHz), in this example the additional
delay is not a problem. However, at higher clock rates it is
better to recreate the same logic (using the SELECT_ROM
intermediate) in the registered logic equations.

Create the ROM chip select (ROM_CS) using the intermediate
variable SELECT_ROM, by typing:

91-10145-5 0690 Us-57

Design CUPL
Examples User Guide

U558

ROM_CS = SELECT_ROM ;

The chip-selects for the two RAMs, RAM_CS0 and RAM_CSI1,
are dependent on MEMREQ and the address bus being within
the hexadecimal boundaries taken from the memory map. Use
the CUPL range operation with the lower and upper boundaries
of the desired address range to decode these signals. Type the
following:

RAM_CS0 = MEMREQ & MEMADR :
[2000.27FF];

RAM_CS1 = MEMREQ & MEMADR :
[2800..2FFF];

Next, create the equations that relate to the wait state timing
and generation. First, as shown in the timing diagram
(Figure U5- 3), a signal called WAIT1 is required that
responds to the selection of the ROM chip by being set at the
next rising edge of the CPU clock. According to the rules for a
D-type flip-flop, the logic level at the D input is transferred to
the Q output after the clock. Enter the equation for this signal,
where WAIT.D represents the signal at the D input of the flip-
flop within the PLD, by typing the following:

WAIT.D = SELECT_ROM & !RESET ;

Notice that in the equation for WAIT1.D, the]RESET signal
has been ANDed with the rest of the equation to perform a
synchronous reset when the RESET signal is asserted.

Next, create the signal WAITZ2 at the next clock edge following
the one that causes WAIT1 to set, by making the equation for
WAIT2.D dependent on the signal WAIT1. Since WAIT2.D
must reset at the next clock edge following the removal of the
CPU's access of the ROM, AND the variable, and then
SELECT_ROM into this equation by typing the following:

WAIT2.D = SELECT_ROM & WAIT1 ;

0690 91-10145-5

CUPL Design
User Guide Examples

This creates the signal SELECT_ROM in accordance with the
timing diagram (Figure U5-3) to indicate that the three-state
buffer should be turned on while the ROM is being decoded and
the MEMR data strobe is active. Therefore, enter the equation
for the three-state output by typing the following:

READY.OE = SELECT_ROM ;

While this equation determines when the three-state buffer
actually drives its output and leaves the high impedance state,
it does not determine which logic level the signal is driven to.
The equation for READY determines the logic level to which
the signal is driven; the signal should remain inactive at
READY until the completion of a wait state period equal to one
full CPU clock cycle. As this condition does not occur until
WAIT2 becomes set, type the equation for READY as follows:

READY = WAIT2 ;

(1 STEP 4. CHOOSING A TARGET DEVICE

After the equations are completed, the next step is to identify a
compatible, commercially available PLD. Points to consider
when choosing a target device are:

> The number of input pins required.

The relative number of registered and non-
registered output pins.

Three-state output control.

VY Vv

The number of product terms required to
implement the logic function for each equation.

91-10145-5 0690 Us5-59

Design CUPL
Examples User Guide

The PLD package diagram in Figure U5-6 shows pin
assignments configured to match up with a device similar to a
PAL16R4 or an 825155 IFL.

PLD

A15 211 o |19 IROM_CS
A4 3] Vo |18 READY
A13 a1
Al12 511
A1 61 RO [15 WAIT1

RO |14 WAIT2
IMEMW 7!

IMEMR 8 || o |13 'RAM_CS1
RESET 9|l Vo {12 !'RAM_CSO
VAN OE

CPU_CLK 11 iﬂ

Us-60

Figure U5-6. Sample Pin Configuration

In the pin configuration in Figure U5-6, the three chip select
signals are assigned to I/O type pins that should always be in
the output drive mode. The READY pin, attached to the READY
signal on the CPU bus, is used in a controllable three-state
mode. The two flip-flops that are needed to implement the wait
state generator have been assigned to output pins that are
internally connected to registers.

One of the registered outputs could be used to drive the READY
signal directly, since the logical function of READY is the
same as that of the signal WAIT2. However, use of the
dedicated three-state output enable signal connected to pin 11 of
the target device would be required. Since pin 11 controls the

0690 91-10145-5

CUPL Design
User Guide Examples

three state outputs of all four pins connected to internal
registers, this defeats the ability to use the other two registered
output pins for any purpose other than wait state generation.

It is better to keep options open by not using the dedicated three-
state control, since it is difficult to predict all the changes that
might be made during the evolution of a design. Therefore,
pin 11 is tied to ground, which always enables the three-state
outputs coming from the registers.

The PAL16R4 has at least seven product terms available on all
outputs, which is an adequate number for this application. The
IFL 825155, which is a second source for this socket position,
has a total of thirty-two product terms available for all outputs
combined, which is also an adequate number for this
application.

The PAL16R4 devices have only D-type flip-flops, whereas the
825155 devices may be configured for either D or JK types.
CUPL automatically chooses a D-type flip flop configuration
because the equations entered for WAIT1 and WAITZ2 in step 3
specified the .D extension.

(1 STEP 5. MAKING THE PIN
ASSIGNMENTS

Match the pin assignments to the pins in Figure U5-6 for a
PAL16R4 or 825155 device. First, in SAMPLE.PLD in the
comment space labeled “Allowable Target Device Types,”

type:

pall6r4, 825155

To ensure consistent documentation when making the pin
assignments, be certain that the signal polarities (signal
levels) assigned are the same as those in the logic schematic
(see Figure U5-1). Make the pin assignments as shown in
Figure U5- 7.

91-10145-5 0690 Us-61

Design
Examples

CUPL

User Guide

Jan

Pin
Pin
Pin

Pin
/nn
Pin
Pin

Pin
Pin

Inputs
1
[2..6)
(7,8)
9
11

Outputs
19

[13,12]

SAMPLE PIN ASSIGNMENTS

'f/

cpu_clk :
(a15..11)
! (memw, memr)
reset

loe

l!/

!rom_cs
ready

waitl

wait2 :
{(ram_csl..0]

/* CPU clock

/* CPU Address Bus

/* Memory Data Strobes
/* System Reset

/* Output Enable

/* ROM Chip select
/* CPU Ready signal
/* start wait state
/* End wait state
/* RAM Chip selects

Figure U5-7. SAMPLE.PLD Pin Assignments

After making all the pin assignments, delete the extra “pin =
;” lines provided by the template file.

Figure U5-8 shows the completed logic description file,
SAMPLE.PLD.

Us62

91-10145-5

CUPL Design

User Guide Examples

SAMPLE.PLD

Name Sample:

Partno P9000183;

Date 07/16/87;

Revision 02;

Designer Osann;

Company ATI;

Assembly PC Memory:

Location u106;

/n.'t.l'.tt.tt.....'.l......."ﬂ..it.!QOQ...Q....'...-‘/
/* This device generates chip select signals for one */
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives */
/* the system READY line to insert a wait-state of at "/
/* least one cpu clock for ROM accesses

/l'..ll.tt.i.t..ﬂ..n..‘.".'t'..!!".l.‘..'.t'ilt.ﬁﬂ'!ﬂ/
/l..ﬂﬁl.llﬁ.t"l'.'..n..tl.l!'ﬁht.ﬂ.l-..i..".t.-l.!'.ﬂ/
/** Allowable Target Device Types : PAL16R4, 825155 *#/

/tn.t.ﬂQt.-t..'tlﬁtﬁtt.t...'t'.tl‘t!tl'..!'t.'.‘lt-n.‘t,
/** Inputs **/

Pin 1 = cpu clk : /* CPU clock */
pin (2..6] = [al3..11] : /* CPU Address Bus */
Pin (7,8) - ![memw,memr] : /* Memory Data Strobes ./
pin 9 - reset H /* System Reset */
Pin 11 - loe : /* Output Enable */

/%% Outputs #**/

Pin 19 = lrom _cs : /* ./
Pin 18 - ready : /* */
Pin 15 - waitl H /* */
Pin 14 - wait2 : TAd . */
Pin (13,12) = ![ram_csl..0] ; /* */
/** Declarations and Intermediate Variable Definitions */
Field memadr = (al5..11}] : /* Give the address bus */

/* the Name “memadr* */
memreq = memw # memr ; /* Create the intermediate */

/* variable “memreq® */
select_rom = memr & memadr:(0000..1FFF] ; /* = rom_cs */

/** Logic Equations #**/

rom_cs = select_rom;
ram_cs0 = memreq & memadr:(2000..27FF) :
ram_csl = memreq & memadr:(2800..2FFF]

waitl.d - select_rom & !reset
/* sSynchronous Reset */
wait2.d = select_rom & waitl ; /* waitl delayed */

ready.oe = select_rom ; /* Turn Buffer off */

ready = wait2 ; /* end wait */

Figure U5-8. SAMPLE.PLD File

(d STEP 6. RUNNING CUPL

When running CUPL, specify the target PLD, the source logic
description file, and option flags to enable specific output files.
In this step, compile the logic description file SAMPLE.PLD

91-10145-5 0690 Us-63

Design CUPL
Examples User Guide

Us-64

for the target device PAL16R4, and create the following output
files:

SAMPLE.ABS (-a flag) - This is the absolute file for later use
by CSIM, the CUPL simulator (This file is needed for step 7). It
contains a condensed representation of the logical function to
be programmed into a device. CSIM compares this
representation to test vectors in a user-created input file to
determine whether the response vectors in the input file are a
correct response to the stimulus vectors.

SAMPLE.DOC (-x, and -f flags) - This is the documentation
file. It provides fully expanded product terms for both
intermediate and output pin variables, and a fuse plot and chip
diagram.

SAMPLE.LST (-1 flag) - This is the list file. It is a recreation
of the description file, except line numbers have been added
and any error messages generated during compilation are
appended at the end of the file.

SAMPLE.JED (-j flag) - This is a JEDEC file for downloading
to a device programmer. It contains a fuse pattern but no test
vectors.

%

Note

The SAMPLE.JED filename is determined by the
NAME field in the header information section of the
logic description file. When only one device is
described in the file, be certain to use the same name
(in this case, SAMPLE) as the filename.

0690 91-10145-5

CUPL Design
User Guide Examples

To begin to compile and create the files described above, type
the following command line:

cupl -jaxfl p16r4 sample

>

Note

If SAMPLE.PLD has not been created, type
WAITGEN instead of SAMPLE to specify the sample
file, WAITGEN.PLD, provided by CUPL. The
filename for all output files created by CUPL is
WAITGEN instead of SAMPLE,

The following messages appear on the screen, indicating how
much time each CUPL module takes for completion. The
actual time will vary depending on the system being used.

91-10145-5 0690 Us-65

Design CUPL
Examples User Guide

CUPL: Universal Compiler for Programmable Logic
Version 3.XX Serial # XX-XXX-XXXX
Copyright (C) 1983, 1990 Logical Devices, Inc.

cuplx

time: 2 secs
cupla

time 2 secs
cuplb

time: 2 secs
cuplm

time: 1 secs
cuple

time: 5 secs
total time: 12 secs

When the prompt appears, compilation is complete.
SAMPLE.LST and SAMPLE.DOC are ASCII files, so it is
possible to display them on the screen, open them with a text
editing program, or print a hard copy of their contents.

The list file, SAMPLE.LST, is essentially a recreation of the
source file with line numbers inserted and any error
messages attached to the end. The line numbers facilitate the
quick locating of error sources, if any are detected by CUPL.

Figure U5-9 shows the contents of SAMPLE.LST.

Us-66 ‘ 0690 91-10145-5

CUPL
User Guide

Design
Examples

SAMPLE.LST
CUPL Version 3.XX Serial # XX-XXX-XXXX
Copyright (C) 1983,1990 Logical Devices, Inc.
CREATED Thur Jan 14 09:42:12 1990

LISTING FOR LOGIC DESCRIPTION FILE: sample.pld;

1:Name Sample;
2:Partno P9000183;
3:Date 07/16/87;
4:Revision 02;
5:Designer Osann;
6:Company ATI;
7:Assembly PC Memory;
8:Location u106;

9:

10: /0000w

11:/4 This device generates chip

14:/* least one cpu clock for ROM accesses
15:/%0400nnancannassesncscsasaescnsnrsnatsarson

16:/00scanens “eecassaassasaratetnantanbbag

17:

Logic Equations **/

47:rom_cs = select_rom;

48:ram_cs0 = memreq & memadr:[2000..27FF]
:iram_csl = memreq & memadr:([2800..2FFF] ;

iwaitl.d = select rom & lreset ;

ait2.d = ect_rom & waitl ; /* waitl delayed
dy.oe = select_rom ; /* Turn Buffer off */
iready = wait2 ; /* end wait */

Jedec Fuse Checksum (4D50)

Jedec Transmit Checksum _(F88F)

Aessssnneneny

./
./

¢ the system READY line to insert a wait-state of at ¢/

*/
asenay

say

¢* Allowable Target Device Types : PAL16R4, 825155 +¢/

18: /0040000 0tatecancinoetiessatatsnnatienatscinasisocanniss
1 Inputs *¢/
2
2 in 1 = cpu_clk H /* CPU clock
2 in [2..6) = [al5..11] ; /* CPU Address Bus
23:Pin (7,8) « |[memw,memr] ; /* Memory Data Strobes
24:Pin 9 - reset H /* System Reset
25:Pin 11 - loe 3 /* Output Enable
26;
27:/¢* Outputs **/
28:
29:Pin 19 = lrom_cs : /"
30:Pin 18 = ready H /*
31:Pin 15 = waitl H /¢
32:Pin 14 - wait2 : /*
3 in [13,12) = l(ram_csl..0] ; Al
34:
35:/%* Declarations and Intermediate Variable Definitions
36:
37:Field memadr = (al5..11] : /* Give the address bus
3 /* the Name "memadr"”
3
40:memreq = memw # memr ; /* Create the intermediate
41: /* variable "memreq”
elect _rom = memr & memadr:(0000..1FFF] ; /* = rom_cs

/* Synchronous Reset

¢/
./

./
./

*/
*/

./
¢/

*/
¢/

*/
*/

*/

*/
*/

Figure U5-9. SAMPLELST

Figure U5-10 shows the documentation file, SAMPLE.DOC,

created by CUPL.

91-10145-5 0690

Us-67

Design CUPL

Examples User Guide
SAMPLE .DOC
ARAANRARRRARNR AR A A RR AR R AR AN AR RANANRAAA AR AR AR ARRN AR R RARRARARR AN ANARR AR R AN RN AN RRA N
Sample
RARAR AR R AR R R R RN RN RN AR AR AR AARR R A AN AR KA AN A AR R R A AN R AN R R AR AN N AARNRARRARARANANRRRR AR
CUPL 4.XX Serial# XX-XXX-XXXX
Device plérd4 Library DLIB-d-26-11
Created Mon Aug 20 10:48:32 1990
Name Sample:
Partno P9000183;
Date 04/1/90;
Revision 02:
Designer Osann;
Company ATI;
Assembly PC Memory:
Location” ul06;

Expanded Product Terms

waitli.d =>
!memr
+ als
¢ al4
al3
+ reset

select_rom =>
falld & !al4 & !al5 & memr

wait2.d =>
{memr
+ als
4+ al4
4 all
Iwait

memadr =>
als,al4,al3,al2,all

ready =>
‘wait2

ready.oce =>
'ald ¢ !al4 & !al5 & memr
rom cs =>
T tald & !al4 & !al5 & memr

Figure U5-10. SAMPLE.DOC Sheet 1 of 4

Us-68 0690 91-10145-5

CUPL Design
User Guide Examples
memreq =>
memw
¢ memr
ram_cs0 =>
fall & !al2 & !al3 ¢ !al4 & !al5 & memw
!all & !al2 & !al3 & !al4 & !alS & memr
ram _csl =>
all ¢ !al2 & al3 & ‘al4 & !alS & memw
all & !al2 & al3d & !al4 & !al5 % memr
rom cs.oe =>
1
ram_cs0.oe =>
1
ram_csl.oe =>
1
Symbol Table
Pin variable Pterms Max Min
Pol Name Ext Pin Type Used Pterms Level
waltl 15 v - - -
waitl d 15 X 5 8 1
all 6 v - - -
select_rom 0 I 1 - -
wait2 14 v - - -
wait2 d 14 X S 8 1
alz 5 v - - -
al3 4 v - - -
al4 3 v - - -
als 2 v - - -
! oe 11 v - - -
! memr 8 \4 - - -
memadr 0 F - - -
ready 18 v 1 7 1
ready oe 18 X 1 1 1
! memw ? v - - -
cpu_clk 1 \' - - -
! rom_cs 19 \4 1 7 1
reset 9 v - - -
memreq 0 I 2 - -
! ram_cs0 12 v 2 7 1
! ram _csl 13 v 2 7 1
rom cs oe 19 D 1 1 0
ram_cs0 oe 12 D 1 1 0
ram_csl oe 13 D 1 1 0
LEGEND F : field D : default M : extended node
N : node I : Intermediate variable T : function
V : variable X : extended variable U : undefined
o
Figure -10. Sheet 2 of 4
91-10145-5 0690 Us-69

Design
Examples

Us-70

CUPL
User Guide

N Fuse Plot

Pin #19
0000
0032 -x---x---Xx X
0064 XXAXXXXXXXXXXXXAXXXXX XXX XXKXXXXXX
0096 XXXXXXXXXXXXXKXXXXKXXXXXXXXXXXXX
0128 XXXXXXXXXXKXXXXXXXXXXXXXXXXXXXXX
0160 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0192 XXXXAXXXXXXXXXXXXXXXXXXXXXXXXXXX
0224 XXXXXXXXXXXXXXXXXXXXXXXXAXXXXXXX

Pin #18
0256 -x---Xx---X X
0288 3
0320 XXXXXXXXXXXXXXXXXKXKXXXX KX XXXXXX
0352 XXXXRXXXRXXXXKXXXXXXXXXXXXAXKXAX
0384 XXXXXXXXXXXXXXXAXXXAXXXXXXXXXXXXX
0416 XXXXXXXKXXXXXAXAXXXKXXXXXXXXXXXXX
0448 XAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0480 XXXXXXXXXXXXXXXAXXXKXXXXXXXXXXXX

Pin #17

0512 XXXARXXXXXXXXXKXXXXKXXXXXXXXXXXXX
0544 XXXXXXXXXXXXXKXXXXXXXXKXXXKXXXXX
0578 XXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXX
0608 XXXXXXXXXXXXKAXXXXXXXXXXXXXXXXXXX
0640 XXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXX
0672 XXXXXXXXXXAXXXKXXXXAXXXXAXXXXXXXX
0704 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXX
0738 XXXXKXXXXXXXXXXKXXXXXXXXXXXXXXXX

Pin #16

0768 XXXAXXXXXXXXXXXKAXXXXXXXXXXXKXXXX
0800 XXXXXXAXXXXXXXXAXXXXXXXXXXXXXXXX
0832 XXXAXXXXAXXXXXXKXXXXXXXXKXXXXXXXX
0864 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0896 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0928 XXXXXXXXXXXXXXXXXAXXXXXXXXXXKXXXX
0960 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0992 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Pin #15
1024 $3
1056 x
1088 ----x
1120 X
1152 33
1184 XXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXX
1216 XXAXXXXXXXXXXXXAXXXXXXXXXXXXXXXX
1248 XXXXXXXXXXXXXXXAXXXXXXXXXXXXXXXXX

pin #14
1280 X
1312 x
1344 23
1378 3
1408 23
1440 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1472 XXAXXXXXXAXXXKXXXXXXXKXXXXKXXXXXX
1504 XXXXXXXXXXXXXKX XK XKXXXXXXXXKXKXX

Figure U5-10. Sheet 3 of 4

91-10145-5

CUPL Design
User Guide Examples

Pin #13
1536
1568 —x-==X~=X: ==X X
1600 =~x~==Xx-=-X X=X X
1632 XXXXXXXAXXXKXXNXXXXXXXXKXKXXXXXXX
1664 XAXXXXXXXXXAXXXKXXXXNKXXKXKXXXKXX
1696 XXAXXXXXXXNAKXXKXXXXXXXXXXXXXXXX
1728 AXXXNIKXXXAXKXXKXK KX XX KKK KK XXXXXX
1760 XXXXXXXXHAXXXKKHUAKKKKXXX XXX XXXXK

Pin #12
1792
1824 -X===X-=X===-K===X===K======m===
1856 -x-=-x--x R===X X

1888 XXXAXXXXXXXAXXXXXXXXXXXXXXXXXXXXX
1920 XXXAXXXXAXXAXKXKXXKXXXXKXXXXXXXX
1952 XXXXXXXXXXAXXXXXKXXXXXXXKXXXXXXXX
1984 XXXXXXXXXKXXXXXXXXXXXXKXXXXXXXXX
2016 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

chip Diagram

| WAITGEN |
cpu_clk x--=| 1 20 |---x VCC
als x-——: 2 19 :—--x ‘rom_cs
al4q x~—-: 3 18 :-—-x ready
al3 xv-~: 4 17 :---x
' a12 xe-] § 16 |-mox
all x---: 6 15 :---x waitl
!memw x«-: 7 14 :---x wait2
{memr x—-~|I 8 13 |I---x !ram_csl
reset x—--|' 9 12 |‘---x !ram_cs0
GND x-——:lo 11 :--—x toe

Figure U5-10. Sheet 4 of 4

The expanded product terms for WAIT1.D and WAIT2.D
show five product terms, because the fixed inverting output
buffer (active-LO architecture) in the PAL16R4 causes CUPL
to perform DeMorgan’s Theorem on equations when an output
variable has been declared as active-HI in the pin list for this
particular device.

91-10145-5 0690 Us-71

Design CUPL
Examples User Guide

[

Us-72

STEP 7. CREATING THE CSIM SOURCE
FILE

In this step, a simulation will be performed to verify the
compiled design for the PAL16R4 device. Performing this step
before downloading to a logic programmer decreases the
probability of programming a device with incorrect logic.

Create a source specification file, SAMPLE.SI, containing test
vectors for input to CSIM. CSIM compares the test vector inputs
and expected outputs to the actual values contained in the
SAMPLE.ABS file that was created during CUPL operation,
and flags any discrepancies.

Figure U5-11 shows the contents of a sample source
specification file.

0690 91-10145-5

CcuPrPL Design
User Guide Examples

Name Sample;

Partno P9000183;

Date 07/16/87;

Revision 02;

Designer Osann;

Company ATI:

Assembly PC Memory;

Location u106;

ORDER:

cpu_clk, %2, al5, 2, al4, %2,
all, &2, al2, %2, all, &2,
!memw, %2, !memr, %2, reset, %2,
%4, !ram csl, 2, !ram _cs0, %2,
waitl, %2, wait2, 82, ready:

‘oe,
‘rom_cs, %2,

It also drives

/ﬁ'.'.!'.l.....“.ttl..l...l..l..ﬂ..‘l'....ﬁ".l"t..t'/
/* This device generates chip select signals for one
/* 8Kx8 ROM and two 2Kx8 static RAMs.
/* the system READY line to insert a wait-state of at '/

/* least one cpu clock for ROM accesses
/t!..l'.t!.lt'.lt.'.lt..'..".i.lh-tl.ﬂ....!.ﬂ...l..lu'/

*/
*/

VECTORS :
/* 123456-leave s8ix blanks to allow for numbeu in .so file "/
$msg * ¢t
Smsg * c r r ! "
$msqg * [a a r “;
$msg u [4 m m o w w r"
$msg - m m e _ m a a e"
Smsg * C a a a a aeess ! cc _ 11 a
$msg * 1 1 1 11 1 mme o 8 8 ¢ t t d":
Smsg * kK 5 4 3 2 1 wirte 10 8 1 2 y"
$msg * "
Smsqg * Power On Reset "
O X X X x x 1 1 1 0 H H H *» * 2
$msqg * Reset Flip lops "
X X x Xx 1 1 0 0 H HHL L 2
$msg ¥ erte R)\MO .
0 0 01 0 0 0 1 0 O H L H L L 2
Smsg * Read RAMO "
0 01 0 01 0 0 O H L HL L 2
Smsqg % Write RAM1 L
0 0 01 0 1 0 1 0 0 L HH L L 2
Smsg * Read RAM1 “,
0 0 01 0 1 1 0 0 0 L HH L L 2
$msqg Begin ROM read "
00 0 0 0 0 1 0 0 H H L L L L
$msg " Two clocks for wait state, Then drive READY High ",
Srepeat2;
c 0 0 0 0 01 0 0 O H H L *» *
Smsg * End ROM Read "
0 0 0 0 0 01 1 0 0 H H H HH 2
$msqg End ROM Read ";
c o0 0 0 0 0 1 1 0 0 H H H L L 2

Figure U5-11. SAMPLE.SI

The source specification file contains three major parts:
header information and title block, an ORDER statement, and
a VECTORS statement.

SAMPLE.SI must have the same header information as
SAMPLE.PLD to ensure that the proper files, including
current revision level, are being compared against each other.
Therefore, first copy SAMPLE.PLD to SAMPLE.SI and then

91-10145-5

U5-73

Design CUPL
Examples User Guide

U574

use a text editor to delete everything in SAMPLE.SI, except the
header and title block. Figure U5-12 shows the result.

Name Sample;

Partno P3000183;
Date 07/16/87;
Revision 02;
Designer Osann;
Company ATI:
Assembly PC Memory:
Location vloe:

/ llllllllll RAARRRRARAARARARAARRARAAARRRARAARRAAARAAARAAAR '.‘/
/* This device generates chip select signals for one */
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives */
/* the system READY line to insert a wait-state of at '/
/*
/*

1east one cpu clock for ROM accesses
R RARARARRARAANARARRAARARRARRA AARRAARARAARARAR "l/

Figure U5-12. SAMPLE.SI Header Information

In the ORDER statement, list the input and output variables
from SAMPLE.PLD to be included in test vectors. List the
variables in the order in which they will be used in test
variables; that is, put the clock variable, CPU_CLK, first,
followed by the other input variables. Put the output variables to
the right. Separate variables with commas. Use the % symbol
to insert spaces between the variables; put two spaces between
each variable, and four spaces between the last input variable
in the list, !OE, and the first output variable, IRAM_CS1. Type
the ORDER statement as follows:

ORDER:
CPU_CLK, %2, A15, %2, Al4, %2,
A13, %2,A12, %2, ALL, %2,
IMEMW, %2, IMEMR, %2, RESET, %2, OE,
%4, IRAM_CS1, %2, TRAM_CSO, %2, IROM_CS, %2
WAIT1, %2, READY;

Following the ORDER statement, enter a VECTORS statement
that creates a function table containing eleven test vectors (see
Figure U5-11). First, to make the vectors easier to enter and
understand, use the $MSG command to create a heading for

0690 91-10145-5

CUPL Design
User Guide Examples

the function table. List the variable names in vertical
columns in the same order and with the same spacing as
specified in the ORDER statement, by typing the information
in Figure U5-13.

/* 123456-1leave six blanks to allow for numbers in .SO file %/
$msg ¢ "
$msg "
Smsq *
S$msg ¥
$msg *
$msqg *
smsg *
$msg *
$msq *

x+=0nl E0TAO
[Ty Y
Y
W
N
-
€3 0 3~
n3 o3 .-
towon
~®wQol Fwn
owal FWNe—
®nl 30N~
et en €
N T

o

]

Figure U5-13. Vectors Table Header

Now enter the test vectors. Create the vectors by assigning a
value to each of the input variables and an expected value to
each of the output variables. Refer to Table 4-4 in Chapter 4,
“Using CSIM”, for allowable values to use for test vectors. Use
the $MSG directive to describe the device function tested by the
function. The ORDER statement above specifies the spacing
when creating the test vectors. For example, create the first
vector, Power On Reset, by typing:

$msg " Power On Reset "

0XXXXX1110HHH?**ZReum)

Note that the output value (*¥) has been used for WAIT1 and
WAIT2 to instruct CSIM to calculate the power-on state of the
registers, since some devices power-on to X and some to H or
L. Using the asterisk gives a more universal simulation file.
Type in the rest of the test vectors, as shown in Figure U5-14.

91-10145-5 0690 Us-75

Design CUPL

Examples User Guide
Smsg * Power On Reset "
O X X X x x 1 1 1 0 H HH * * 2
$msg * Reset Flip Flops ";
cC X X X x x 1 1 0 0 HHHLL 2
$msg " Write RAMO b
0 0 01 0 0 01 0 0 H L HL L 2
$msg " Read RAMO .
0 00 1 0 010 0 O H L HL L 2
$msqg * Write RAM1 ";
0 0 01 0 1 0 1 0 0 L HH L L 2
$msqg * Read RAM1 "
0 001 0 1 1 0 0O L HH L L 2
$msg * Begin ROM read "
0 00 0 0 01 0 0 O H H L L L L
$msg * Two clocks for wait state, Then drive READY High ",
$repeat2;
c 00 0 0 01 0 0 0 H H L * *
$msqg " End ROM Read "
0 00 0 0 01 1 0 O H H HHH 2
$msg " End ROM Read "
cC 0 0 0 0 0 1 1 0 0 H HHL L 2

Us-76

Figure U5-14. Test Vectors

The $REPEAT directive in the test vectors causes the eighth
vector to be repeated twice. The asterisks in the eighth vector
for WAIT1, WAIT2, and READY tell CSIM to compute the
output based on the inputs and place the results in the output
file.

The value of the clock variable, CPU_CLK, is 0 in some
vectors and C in others. A value of 0 causes no clocking to
occur. A value of C causes CSIM to examine the input values in
the vector and also look back to the previous vector for any
registered outputs that would be fed back internally prior to the
clock. Then, after a clock is applied, CSIM computes the
appropriate expected outputs for registered and non-registered
variables.

After putting in the VECTORS statement, save the file. The
next step is to run CSIM to perform the simulation.

STEP 8. RUNNING CSIM

When CSIM is run, it creates SAMPLE.SO, which contains the
result of the simulation. Specify the -1 flag to list any errors
that might be generated.

0690 91-10145-6

CUPL Design
User Guide Examples

To run CSIM, type:

csim -1 p16r4 sample

D

Note

If WAITGEN.PLD was used to run CUPL in step 6,
specify WAITGEN instead of SAMPLE when
running CSIM.

CSIM displays the amount of time to perform the simulation,
as follows:

CSIM: CUPL Simulation Program
Version 3.XX Serial # XX-XXX-XXXX
Copyright (C) 1983, 1990 Logical Devices, Inc.

csima
time: 4 secs
total time: 4 secs

When the prompt reappears, the simulation is complete.
SAMPLE.SO is an ASCII file, so it is possible to display it on
the screen, print a hardcopy of it, or open it with a text editor.

Figure U5-15 shows the contents of SAMPLE.SO.

91-10145-5 0690 U5-77

Design CUPL
Examples User Guide
SAMPLE. SO
CSIM: CUPL Simulation Program
Version 4.XX Serial # XX-XXX-XXXX
copyright (c) 1983,1990 Logical Devices, Inc.
CREATED Thur Aug 20 09:34:16 1990
1: Name Sample:
2: Partno P9000183;
3: Date 07/16/87;
4: Revision 02;
$: Designer Osann;
: Company ATI;
7: Assembly PC Memory:
8: Location vU106;
1?).: /ﬂﬁ.l.'ﬂt'Qtl.'t'lﬂ.i'.ﬁ'tﬂ".‘.t.t.ﬂtﬁ'lt.t..ﬁt.R-Qﬁtﬁ/
11: /* This device generates chip select signals for one */
12: /* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives */
13: /* the system READY line to insert a wait-state of at */
14: /* least one cpu clock for ROM accesses */
15: /kkllt.tt!h't.ﬁﬁtﬁ'..ﬁt.l.ﬁ.t.“.lﬁit.ﬂuh'.'(..ﬁt.'ﬁﬁ../
16:
17: ORDER:
18: cpu_clk, %2, al5, %2, al4, %2,
19: all, %2, al2, %2, all, %2,
20: !memw, %2, !memr, %2, reset, %2, !oe,
21: %4, !ram csl, %2, !ram_cs0, %2, !rom_cs, %2,
22: waitl, %2, walt2, 82, ready:
23:
Simulation Results
[
c r r !
P a ar
u tlr m m O W W I
m m e _ _ ma a e
c a a a a e e s ! cc _ 11 a
111 11 1 m me o 8 3 c t t d
k 5 4 3 2 1 wr t e 1 038 1 2y
Power On Reset
0001: 0 X X X X X 1 1 1 0 H H H X X 2
Reset Flip Flops
0002: ¢ X X 1 1 0 0 H HHLL
Write 0
0003: 0 0 0 1 0 0 0 1 0 O H L H L L
Read RAMO
0004: 0 0 0 1 0 0 1 0 0 O H L HL L 2
Write RAM1
0005: 0 0 0 1 0 1 0 1 0 O L HHL L 2
Read RAM1
0006: 0 0 0 1 0 1 1 0 O O L HH L L 2
Begin ROM read
0007: 0 0 0 0 0 O 1 O 0 H HL L L L
Two clocks for wait state, Then drive READY High
0008: ¢ 0 0 [] H HL H L L
0009: ¢ 0 0 0 0 0O 1 0 0 O H H L HHH
End ROM Read
0010: 0 0 0 0 0 0 1 1 0 O H H H HH 2
End ROM Read
0011: c 0 0 0 0 0 1 1 0 O H HHL L 2

Figure U5-15. SAMPLE.SO

Compare SAMPLE.SO to the SAMPLE.SI file in Figure U5-11.
Note that vectors 8 and 9 were created as a result of the
$SREPEAT directive, and that CSIM has replaced the asterisks

Us-78

91-10145-5

CUPL Design
User Guide Examples

from SAMPLE.SI with the appropriate logic levels (H and L)
for the WAIT1, WAIT2 and READY signals.

Now that a successful simulation has been completed, test
vectors can be added to the JEDEC file created while running
CUPL (in step 6). Run the simulation again with the -j option
flag, by typing:

csim -j p16r4 sample

If WAITGEN.SI was used to perform the simulation, specify it
here instead of SAMPLE.SI.

Figure U5-16 shows the contents of SAMPLE.JED, which now
contains both programming and testing information.

91-10145-5 0690 Us-79

Design

Examples

CUPL
User Guide

SAMPLE .JED

CUPL 4.XX Serial# XX-XXX-XXXX
Device plér4 Library DLIB-d-26-11
Created Thur Aug 20 09:52:02 1990
Name Sample

Partno P9000183

Revision 02

Date 12/16/89

Designer Osann

Company ATI

Assembly PC Memory:

Location Ul106;

*QP20

*QF2048

*GO

*FO

*L00000 11111111111111111111111111111111
*L00032 10111011101111111111111110111111
*#L00256 10111011101111111111111110111111
*#L00288 11111111111111111111111011111111
*L01024 11111111111111111111111101111111
*L01056 01111111111111111111111111111111
*101088 11110111111111111111111111111111
*L01120 11111111011111111111111111111111
*L01152 11111111111111111111111111110111
*L01280 11111111111111111111111101111111
#L01312 01111111111111111111111111111111
*L01344 111101111111111121111111111111111
*L01376 11111111011111111111111111111111
*L01408 11111111111111111110111111111111
*L01536 11111111111111111111111111111111
*L01568 10111011011110110111101111111111
*L01600 10111011011110110111111110111111
*L01792 11111111111111111111111111111111
*L01824 10111011011110111011101111111111
*1,01856 10111011011110111011111110111111
*C4D50

*V0001 OXXXXX111NOHHXXXXZHN

V0002 CXXXXX11ONOHHLLXXZHN

*V0003 000100010NOLHLLXXZHN

*v0004 000100100NOLHLLXXZHN

*V0005 000101010NOHLLLXXZHN

*vV0006 000101100NOHLLLXXZHN

*V0007 000000100NOHHLLXXLLN

*V0008 C00000100NOHHLHXXLLN

*V0009 C00000100NOHHHHXXHLN

*V0010 0000001 10NOHHHHXXZHN

*V0011 C00000110N1HHLLXXZHN

*3152

U5-80

Figure U5-16. SAMPLE.JED with Test Vectors

91-10145-5

CUPL
User Guide

Design
Examples

(1 SUMMARY

This part provided the opportunities to create and compile a
CUPL source file and a CSIM test specification file. The
important points were how to:

>
>

Y

>

>

Use the template file.
Choose a PLD and make pin assignments.

Write intermediate and logic equations to describe
the design.

Run CUPL to compile a file.

Create and compile a test specification file to verify
the design.

Run CSIM to simulate a logic design.

The design examples in Part B do not provide the same step-
by-step instruction, but are provided as familiarization with
how CUPL can be used to describe different types of designs.

91-10145-5

0690 Us-81

Design CUPL
Examples User Guide

U582

PART B. SAMPLE PLD FILES

This section lists the logic description files that are included
in the CUPL package to illustrate how CUPL and CSIM
implement various designs.

FILE: GATES.PLD
DEVICES: PAL16L8, PAL16P8 , 825153
Simple use of NOT, AND, OR, and XOR gates

FILE: FLOPS.PLD
DEVICES: PAL16R8, PAL16RPS, 825159
Using D-type flip-flops to create a 2-bit counter (four ways)

FILE: SHFTCNT.PLD

DEVICES: 825105, 825159

4-bit counter/shifter using SR SHFTCNT4.PLD and JK-type
flip-flops

FILE: SHFTCNT6.PLD
DEVICES: - 825167
4-bit counter/shifter

FILE: BARREL22.PLD
DEVICES: PAL22V10
8-bit barrel shifter

FILE: HEXDISP.PLD
DEVICES: 32x8 PROM
7-segment decoder

FILE: COUNTS.PLD
DEVICES: PAL20X8 ,
8-bit counter using XOR capability

FILE: COUNTS8A.PLD
DEVICES: PAL20X8
8-bit counter using set notation

0690 91-10145-5

CUPL Design
User Guide Examples

FILE: IODECODE.PLD

DEVICES: PAL12L6 , PAL12P6, 82S153
I/0 decoder

FILE: MDECODE.PLD

DEVICES: PAL16LS8, PAL16P8 , 825153

Memory decoder

FILE: RIPPLES.PLD
DEVICES: PAL20RA10
8-bit ripple counter with asynchronous load

FILE: COUNT13.PLD
DEVICES: PAL32R16
13-bit counter using set notation with load hold and clear

FILE: IOPORT.PLD
DEVICES: PAL20RA10
7-bit parallel I/O port with hand-shake and data ready flag

FILE: DECADE.PLD

DEVICES: 825157
Decade counter uses state-machine syntax and complement
array

FILE: ADDER.PLD
DEVICES: PAL16L8, PAL16P8, 82S153
4-bit adder slice uses CUPL function calls

FILE: LOOKUP.PLD
DEVICES: 256 x 8 EPROM
Arithmetic lookup table for PROM circle perimeter

FILE: COUNT10.PLD

DEVICES: PAL16RP4, GAL16V8
Synchronous up/down counter with clear, uses state-machine
syntax

FILE: BUSARB.PLD

91-10145-5 0690 U5-83

Design CUPL
Examples User Guide

U584

DEVICES: 825105
Multiprocessor bus arbiter having two machines in one part

FILE: TCOUNTER.PLD
DEVICES: EP600
16-bit synchronous counter using toggle flip-flops

FILE: PRIORITY.PLD
DEVICES: PALR19LS
68000 priority interrupt encoder with registered inputs

FILE: DATASEP.PLD
DEVICES: EP600
Single density 8” floppy disk data separator

FILE: KEYBOARD.PLD
DEVICES: 825100
Keyboard encoder converts rows and columns to ASCII

FILE: STEPPER.PLD
DEVICES: PALT19R6
Stepper motor controller interface for 8048 microprocessor

FILE: MULTIBUS.PLD

DEVICES: PAL23S8

Simple MULTIBUS arbiter supports parallel and serial
priority

FILE: ADDER_TT.PLD
DEVICES: PAL16LS8, PAL16P8, 825153

FILE: TTL.PLD
DEVICES: PALI16L8
TTL chip representation using macros

FILE: CYP_CNT.PLD
DEVICES: CY7C330
Up/Down counter with preloadable upper and lower limits.

0690 91-10145-5

CUPL Design
User Guide Examp[es

Any of these logic description files can be viewed or printed
out, or they can be input to CUPL to generate documentation or
download files. A corresponding test specification file
(filename.SI) is also provided for each logic description file,
so that CSIM can be run to verify the designs.

The following examples describe key points of the following
designs (the logic description file for each design is shown in
parentheses):

> Simple gates (GATES.PLD)

>> TTL conversion (WGTTL.PLD)

>> Two-bit counter (FLOPS.PLD)

> Decade up/down counter using state-machine
syntax (COUNT10.PLD)

> Seven-segment display decoder (HEXDISP.PLD)

(J EXAMPLE 1. SIMPLE GATES

This example describes a design containing simple gates.
Figure U5-17 shows the design.

91-10145-5 0690 Us-85

Design
Examples

U586

il

YV QU

}. xor

Figure U5-17. Design with Simple Gates

0690

| xnor

|— and

nand

| invb

|__ inva

CUPL
User Guide

The outputs are labeled to reflect the function of their gate; for
example, the AND gate has an output labeled AND.

Figure U5-18 shows the CUPL source file (GATES.PLD
provided in the CUPL package) that describes the design.

91-10145-5

CUPL Design

User Guide Examples
GATES.PLD

Name Gates:
Partno CA0001;
Date 07/16/87:
Designer G Woolheiser:;
Company ATI:
Location San Jose, CA.;
Assembly Example;
/---annt-ntnn-na--n-----nn..-ta-t--nnta-t-atnn-nn.nnn--/
/* */
/* This is an example to demonstrate how CUPL */
/* compiles simple gates . */
/* ./

[AR AR R R R AR AR AR R RA SRR RN AR R AR R RN AR RN RR RN AR RN R AR RN RN

/* Target Devices: P16L8, P16P8, EP300, and 825153 */

/ltnntti-nttt!'-tlltlttn-t.nutltntnnlulctttttnnln-nntna,

/* Inputs: define inputs to build simple gates */
Pin 1 = a;
Pin 2 = b;

/* Outputs: define outputs as active HI levels

For PAL16L8 and PAL16LD8, De Morgan's Theorem is
applied to invert all outputs due to fixed

inverting buffer iIn the device. */

Pin 12 = inva:
Pin 13 = invb;
Pin 14 = and:
Pin 15 = nand:
Pin 16 = or:

Pin 17 = nor:
pin 18 = xor;
pPin 19 = xnor:

/* Logic: examples of simple gates expressed in CUPL */

inva = !la: /* inverters */
invb = !b;

and = a ¢ b: /* and gate ~/
nand = !(a & b): /* nand gate */
or = a# b: /* or gate */
xor = a $ b: /* nor gate */
xnor = !(a $ b): /* exclusive nor gate */

Figure U5-18. Simple Gates Source File (GATES.PLD)

The first part of the file provides archival information and a
description of the intended function of the design, including
compatible PLDs.

Pin declarations are made corresponding to the inputs and
outputs in the design diagram.

In the “Logic” section of the file, equations describe each of the
gates in the design.

91-10145-5 0690 Us-87

Design CUPL
Examples User Guide

Us5-88

For the PAL16L8 and PAL16LD8 devices, which contain fixed
inverting buffers, CUPL applies DeMorgan’s Theorem to
invert all outputs because they were all declared active-HI in
the pin list. For example, during compilation, CUPL converts
the following equation for an OR gate, on an output pin that has
been declared as active high:

or=aib;

to the following single expanded product term (as shown in the
documentation file):

or=>!a&'b

EXAMPLE 2. CONVERTING A TTL
DESIGN TO PLDs

This example shows how to use a PLD to replace existing TTL
circuitry. The conversion requires translating the gates of a
TTL logic design into equivalent Boolean logic equations,
which can then be compiled by CUPL and assigned to a PLD.

Figure U5-19 shows the TTL gate representations used in

designing logic systems and the corresponding Boolean
equation for each gate.

0690 91-10145-5

CUPL Design
User Guide Examples

]
J

C=A&B C=|(!A # 1B)

[
v

C=I(A & B) C=lA#1B

[]
y

C-A& B C=[A¥B)

[]
>

C=|(IA & IB) . C=A#B

Figure U5-19. TTL Gate Representations and Boolean
Equations

The basic conversion rules shown in Figure U5-19 are
sufficient to write equations for each gate within a system of
TTL gates when converting the logic to a PLD equivalent.
CUPL uses an expression substitution process to build larger
equations from the smaller expressions representing each
gate in the TTL schematic. Expression substitution permits
approaching a schematic one gate at a time.

Figure U5-20 shows the schematic for the TTL logic that is
converted in Example 1.

91-10145-5 0690 U5-89

Design CUPL
Examples User Guide

U5-90

o
P LS126
LS02 D [READY

CPU_CLK ‘__‘ *D D>
IMEMW L__T_J— J
IMEMR
Lsto IROM_CS

LS00

LS04
A

LS02 {
PV S—

RESET-

AV
T

@
i
8

A12 \
Lsoz] IRAM_CS1
At / Ls20 X
@
Es«

Figure U5-20. TTL Schematic

The TTL logic shown in Figure U5-20 performs the same
address decoding and wait state generation as the
WAITGEN.PLD file contained in the CUPL distribution
package. The SAMPLE.PLD file created in the sample design
session (see Part A of this chapter) is identical to
WAITGEN.PLD.

The PLD equivalent of this TTL circuit replaces five to six
packages with one device.

The first step in the conversion process is to determine from
the TTL schematic the logic that is to be placed in the PLD.
Figure U5-21 shows a PLD diagram equivalent to the TTL
schematic with a box around the logic, and PLD pin number
assignments.

0690 91-10145-5

CUPL Design
User Guide Examples

] (o READY

0
|
?
- ;

Figure U5-21. PLD Equivalent Diagram

Note that the outputs of the internal gates (those that do not
connect to the PLD output pins) are arbitrarily labeled with the
variable names, A-H, to aid in entering equations in the logic
description file.

The logic description file used to convert this design is named
WGTTL.PLD because it performs wait state generation and is
based on a TTL design. Figure U5-22 shows the contents of
WGTTL.PLD.

91-10145-5 0690 Us-91

Design CUPL

Examples User Guide
WGTTL.PLD
Name Sample:
Partno P9000183;
Date 07/16/87:
Revision 02;
Designer Osann;
Company ATI;
Assembly PC Memory;
Location U106;

Us-92

/Qlﬁ'l..ﬂ'..l.hl‘it!ntl'ﬂ!..‘!..".Q‘.ﬁﬂ‘.'..ﬁ"ﬁ‘l.t!lﬂﬁ/
/* This device generates chip select signals for one */
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives */
/* the system READY line to insert a wait-state of at ~*/
/* least one cpu clock for ROM accesses ~/
/.Q.ﬂ.t.l.tlﬁktﬂttﬂ.!ﬂﬁ‘.lltti.ﬁﬁﬂll"l'li"!.ﬁ'ki'kl'!ﬁt/

/** Inputs **/

PIN 1 = cpu_clk ; /* CPU clock */
PIN [2..6] = {al3..11] : /* CPU Address Bus */
PIN 9 = ![{memw,memr] : /* Memory Data Strobes*/
PIN 11 - loe : /* Output enable */
/** Outputs *+*/

PIN 19 - !rom_cs : /* ROM Chip Select */
PIN 18 = ready : /* CPU ready signal */
PIN 15 - waitl ; /* start wait state */
PIN 14 - wait2 : /* End wait state */
PIN [13,12] =~ ![ram_csl..0] : /* RAM chip selects */

~
»
»

Declarations and Intermediate variable Definitions #*»/

! ({imemw) # ! (!memr) :
talS & tald ;

tal3 ;

tal2z & l!all

lall ;

tal2 ¢ loe ;
!(lrom_cs ¢ reset) ;
{(!memr) :

TameoQUe
L0 I I I IO O B

~
»
»

Logic Equations **/

from_c8 = {(h & b & c):

fram c80 = !(a & b & al3 ¢ d) ;
fram_csl = !(a & b & al3 & f) ;
waitl.d = g ;

wait2.d = waitl ¢ g :

ready.oe = !({(h & b & c)) :

ready « wait2 :

Figure U5-22, WGTTL.PLD
The header information is identical to that in
WAITGEN.PLD (and SAMPLE.PLD; see Part A), because the
functionality is the same.

The pin assignments match the schematic in Figure U5-21.

0690 91-10145-5

CUPL Design
User Guide Examples

The logic equations for the internal gates are placed in the
section of the file for “Declarations and Intermediate Variable
Definitions.” The equations in this section use the output
variable names, A-H, assigned in the schematic in Figure
U5-21. For example, the AND gate LS02 is described by the
following equation:

d=1!1a12 & !all;

The equations in this section can be simplified. For example,
the double negations can be eliminated in the following
equation:

a =!(!memw) # !(!memr) ;

by entering:

a=memw # memr ;

The section of the file “Logic Equations” contains equations
that describe the output signals of the PLD. These equations
are written in terms of the intermediate equations that
describe the outputs of the internal gates. For example, the
AND gate, LS10, has 'ROM_CS as its output signal, and the
signals H, B and C as inputs. Therefore, enter the following
equation to describe LS10:

romcs=!(h&b&c);

WGTTL.PLD to WAITGEN.PLD are not exactly alike,
because the internal gates have been defined differently.
When compiled, however, they perform the same function.
This can be verified by simulating each logic description in
turn with an identical simulation source file (WGTTL.SI and
WAITGEN.SI provided in the CUPL package).

91-10145-5 0690 U5-93

Design CUPL
Examples User Guide

U5-94

When converting a TTL design to a PLD, some slight changes
in functionality are required. The asynchronous reset
capability found on TTL flip-flops like the LS74 is not found in
many of the commonly available PLDs. However, the same
reset capability can be achieved by including a RESET
variable in all product terms to ensure a synchronous reset at
the clock.

Therefore, WGTTL.PLD incorporates IRESET into the
equation for G, which is used in the equations for both WAIT1
(waitl.d = g;) and WAIT2 (wait2.d = waitl.d & g). Although
the functional nature of the synchronous reset does differ in
timing from that of the asynchronous reset, the synchronous
reset is sufficient for proper function of the device.

The simple methodology described in Example 2 allows the
conversion of many TTL designs, especially those consisting
of simple gates, to a PLD equivalent, regardless of the number
of gate delays of TTL (logic) in the original design. In most
cases, the only difference between the TTL design and the
PLD is the total propagation delay through the circuit.

0690 91-10145-5

CUPL Design
User Guide Examples

[EXAMPLE 3. TWO-BIT COUNTER

This example demonstrates the implementation of a two-bit
counter for a D-type flip-flop.

Figure U5-23 shows the timing diagram for the counter,

Two bit counler
CLOCK | I L_
| l} [} [}
q0
ql

reset

]

Figure U5-23. Two-Bit Counter Timing Diagram

As indicated by the arrows, the registers are clocked on the
rising edge of the clock signal.

Figure U5-24 shows the CUPL source file (FLOPS.PLD,
provided in the CUPL package) to describe the two-bit counter
design.

91-10145-5 0690 Us-95

Design

Examples

CUPL
User Guide

HEXDISP.PLD
Name Flops:
Partno CA0002;
Revision 02;
Date 07/16/87;
Designer G. Woolheiser:
Company ATI;
Location None:
Assembly None;
/."tt.!l!.'-'l....'hﬁl.tl.'l'.l...ﬁ..l"n"tlt..'..l.ﬁ!ﬁillﬂ/
/* */
/* This example demonstrates the use of D-type flip-flop */
/* to implement a two bit counter using the following */
/* timing diagram. */
/* */
/* clock |__ 1T d__ 0T 1T 1 il */
/* */
/* q0 7771 | | ! I */
/* */
/* ql 7770 | I__ */
/* */
/* */
/* */
/* reset | */
/* */
/n-t-a--nn-nqn-:--nn-..nn'--n--Ann-lt-un-ataa-n-a-ulnntnt---n/
/* Target Devices: PAL16R8, PAL16RP8, GAL16V8 */

SRR AR A R AR R AR AR RN A RRRARARR R AR RN R AR AN R RARR RN AR AR R AR RN RARNRR]

Pin 1 = clock:
Pin 2 = reset;

/% Outputs: define outputs and output active levels */

Pin 17 = qO0:
Pin 16 = ql;

/* Logic: two bit counter using expanded exclusive
ors with d-type flip-flop */
go.d = !reset & (!q0 & !ql
4 190 & ql);
ql.d - !reset & (!q0 & ql
4 q0 & !ql):
/* ANDed !{reset defines a synchronous register reset */

Figure U5-24. Two-Bit Counter Source File (FLOPS.PLD)

The first part of the file provides archival information and a
description of the intended function of the design, including
compatible PLDs.

Pin declarations are made corresponding to the inputs and
outputs in the design diagram.

In the “Logic” section of the file, equations are written to
implement the counter. The equation for q0 is written to define
when q0 asserts; that is, it defines the situation immediately
before the rising clock edge.

U5-96

91-10145-5

CUPL Design
User Guide Examples

The !reset term is used in the equations for both q0 and q1 to
initialize the circuit, providing a synchronous reset. At power-
on, the registers can be either high or low, as indicated by the
DON'T CARE slashes in the timing diagram (see Figure U5-
23); the reset signal is initially asserted. By ANDing Ireset
into the equation for each variable, the conditions are not met
at power-on, so the registers do not set. Because the reset signal
returns LO (false) after the power-on process is complete,
Ireset is then true and does not affect the value of the registers
at any other point in the circuit.

The .d extension in the equations specifies a D-type flip-flop.
However, when an output is used as feedback, the .d extension
is dropped. For example, if q0 is fed back to q1, an equation
could be written as:

ql.d = q0 & 'reset ;

not as:
ql.d = q0.d & lreset ;

or:
ql.d = q0.dq & 'reset ;

(J EXAMPLE 4. DECADE UP/DOWN
COUNTER

This example describes a four-bit up/down decade counter
with a synchronous clear capacity. The counter also provides
an asynchronous ripple carry output for cascading multiple
devices. The source file to implement the counter uses CUPL
state machine syntax.

Figure U5-25 shows the counter design and its state.

91-10145-5 0690 U5-97

Design CUPL

Examples User Guide
[~ p—
Carry
cr L. Q0
—]
| Lp—— |l Q2
—)

" Figure U5-25. Up/Down Counter Diagram

The input signal dir determines the direction of the count.
When dir is high, the count goes down one on each clock; when
dir is low, the count goes up one on each clock. The clr signal
performs a synchronous reset.

Figure U5-26 shows the CUPL source file (COUNT10.PLD,
provided in the CUPL package) that implements the design.

U5-98 0690 91-10145-5

CUPL Design
User Guide Examples
COUNT10.PLD
Name Count10;
Partno CA0018;
Revision 02:
Date 07/16/87;
Designer Kahl;
Company ATI:
Location None:
Assembly None:
Device plérpd;
/QQl..l'.‘..ﬁﬁ...!Q'Q.'Q'QQ...".Q.Q.'..h!t..t'.ﬁ.n.'.lin.../
/* */
/* Decade Counter */
/* This is a 4-bit up/down decade counter with */
/* synchronous clear capability. An asynchronous */
/* ripple carry output is provided for cascading «/
/* multiple devices. CUPL state machine syntax */
/* is used */
/..nn..!!.‘..-l..Q'Q!..'..n.ﬁ"'.l..‘.ﬂ..l..'.Q.li.t.‘...ﬁt./
/* Allowable Target Device Types: PAL16RP4, GAL16V8, EP300 */
/.ﬁ‘ﬁ...‘lQ"RQ.‘IQ'.t'ttt'.ttt...t.!ll'...l't..lnt'.tﬁ'ﬂl.‘ﬂ/
/** Inputs **/
Pin 1 = clk: /* counter clock ./
Pin 2 = clr; /* counter clear input */
Pin 3 = dir: /* counter direction input =/
Pin 11 = !oe: /* Reglster output enable */
/* Outputs */
Pin [14..17) = [Q3..0): /* counter outputs */
Pin 18 = carry:; /* ripple carry out */
/* Declarations and Intermediate Variable Definitions */
field count = [Q3..0]): /* declare counter bit field */
$define SO *b*0000
$define S1 'b'0001
Sdefine S2 'b'0010
$define S3 'b*0011
Sdefine S4 'b*0100
$define S5 ‘b'0101
Sdefine S6 'b'0110
$define S7 'b'0111
Sdefine S8 'b'1000
$define S9 'b'1001
field node = [clr,dir): /* declare filed node control */
up = mode:0; /* define count up mode *
down = mode:1; /* define count down mode */
clear = mode:2..3]: /* define count clear mode */
. o
Figure U5-26. Up/Down Counter Source File
(COUNT10.PLD) Sheet 1 of 2
91-10145-5 0630 U5-99

Design CUPL
Examples User Guide

/* Logic Equations */
sequence count { Al free running counter */
present SO if up next S1:
if down next S9:
if clear next S0;
present S1 if up next S2:
if down next S0:
if clear next S0:
present S2 if up next s3:
if down next S1;
if clear next SO0:
present S3 if up next S4:
if down next S2;
if clear next SO0;
present S4 if up next S5:
1f down next S3;
if clear next S0;
present S$ if up next sS6;
if down next S4; «
if clear next SO0:
present S6 if up next S7:
if down next S5;
if clear next S0;
present S7 if up next S8:
if down next S6:
if clear next SO0:
present S8 if up next S9;
if down next S7;:
if clear next S0;
present S9 if up next SO0;
if down next S8;
if clear next s0;
out carry: /* assert carry output */

Figure U5-26. Sheet 2 of 2

The first part of the file provides archival information and a
description of the intended function of the design, including
compatible PLDs.

Pin declarations are made corresponding to the inputs and
outputs in the design diagram.

The “Declarations and Intermediate Variable Definitions”
section contains declarations that simplify the notation.

The name “count” is assigned to the output variables Q3, Q2,
Q1, and QO.

The $DEFINE command is used to assign names to ten binary
states representing the state machine output. The state name
can then be used in the logic equations to represent the
corresponding binary number.

U5-100 0690 91-10145-5

CUPL Design
User Guide Examples

The FIELD keyword is used to combine the clr and dir inputs
into a set called mode. Mode is defined by the following
equations:

up = mode:0;
down = mode:1;
clear = mode [2..3]:

Mode represents the inputs clr and dir, so the three equations
above are equivalent to the following equations:

up = !clr & !dir ;
down = !clr & dir ;
clear = (clr & !'dir) # (clr & dir) ;

The three modes are defined as follows:
up - Both the dir and clr inputs are not asserted.
down - The dir input is asserted and clr is not asserted.

clear - The clr input is asserted and dir is either asserted
or not asserted.

The “Logic Equations” section contains the state machine
syntax that specifies the states in the counter. In the first line,
the SEQUENCE keyword identifies count (that is, Q3, Q2, Q1,
and QO0) as the outputs to which the state values apply.

Conditional statements have been written to specify the
transition from each possible present state to a next state, for
each of the three modes. For example, when the present state is
S4, if the mode is up, the counter goes to S5; if the mode is down
the counter goes to S3; or if the mode is clear, the counter goes to
S0. As example 4 shows, one advantage of the state machine
syntax is that it clearly documents the operation of the design.

In Example 4, state 0 (binary value 0000) is defined, because it
is the result of the clr signal. It is recommended that all
designs have a valid 0000 defined to avoid being stuck at state
0. For example, in this design, if a state that hasn't been

91-10145-5 0690 Us-101

Design CUPL
Examples User Guide

U5-102

defined occurs at power-on, such as hexadecimal A-F, none of
the conditions described in the equations is met, so the state
goes to state 0 (hex value 0000). If 0000 has not been defined as a
valid state, the counter stays at state 0.

EXAMPLE 5. SEVEN-SEGMENT
DISPLAY DECODER

This example shows a hexadecimal-to-seven-segment
decoder for driving common-anode LEDs. The design
incorporates both a ripple-blanking input to inhibit the display
of leading zeroes, and a ripple-blanking output for easy
cascading of digits

Figure U5-27 shows the segment display decoder.

0690 91-10145-5

CUPL Design
User Guide Examples

O—za

D1

D3

Figure U5-27. Seven-Segment Display Decoder

The segments in the display, labeled a-g, correspond to the
outputs in the diagram.

Figure U5-28 shows the source file HEXDISP.PLD, provided
with the CUPL package).

91-10145-5 0690 Us5-103

Design CUPL
Examples User Guide

HEXDISP.PLD

Name Hexdisp;

Partno CA0007;

Revision 02;

Date 07/16/87;

Designer T. Kahl;

Company ATI:

Location None:

Assembly None:

/ﬂﬂﬁ'ﬂﬂ'ﬂ'!...Q'.‘.Qﬁ'..'.‘ﬁ.'.'.'.'....l...!tﬁ.tl.'iﬁ.t'k!lﬁﬂ!"‘.'.ﬂﬁ/

/* */

/* a */

/* This is a hexadecimal-to-seven-segment = ===== */

/* decoder capable of driving common-anode | | */

/* LEDs. It incorporates both a ripple- fl Ib */

/* blanking input (to inhibit displaying I g ~/

/* leading zeroes) and a ripple blanking output ———— */

/* to allow for easy cascading of digits | | */

/* el lc */

/* | | */

/" ———— */

/* d */

* »

AR AR AR AR N AR RS AR R R AR AR AR A AR KRR R AN R R RN R AR AANN KRR ARARRRA RN KR AR RN R S]

/* Allowable Target Device Types: 32 x 8 PROM (825123 or

equivalent */
/ﬁtllnlﬂltl.t..utthtﬂtl'tllﬂ..l.!tt...t.‘h.hﬂ‘.liﬁ...!i.tt..ak!i"tﬁnﬁt/
/** Input group (Note this is only a comment) *f
pin [10..13]) = [DO..3}: /* data input lines to display */
pin 14 = !rbi; /* ripple blanking input ~/
/** Output Group (Note this is only a comment) an/
pin [7..1) = !{a,b,c,d,e, f,g}: /* Segment output lines */
pin 9 = !rbo; /* Ripple Blanking output */
/** Declarations and Intermediate Variable Definitions */
field data = [D3..0]: /* hexadecimal input field */
field seqment-{abcdefq), /* Display segment fleld */
$define ON 'b'l /* segment 1it when logically MON" */
$define OFF ‘b'0 /* segment dark when logically “OFF" =*/

Us5-104

Figure U5-28. Display Decoder Source File HEXDISP.PLD)
Sheet 1 0f2

0690 91-10145-5

CUPL Design
User Guide Examples

/** logic Equations #**/

. a b c d e f q */
segment =
/%0 ¢/ (ON, ON, ON, ON, ON, ON, OFF] & data:0 & !rbi
/v 1 %/ ¢ (OFF, ON, ON, OFF, OFF, OFF, OFF] & data:1
/* 2 */ ¢ [ON, ON, OFF, ON, ON, OFF, ON] & data:2
/3 %/ ¢ [ON, ON, ON, ON, OFF, OFF, ON] & data:3
/% 4 %/ + [OFF, ON, ON, OFF, OFF, ON, ON] & data:4
/%5 */ 4+ [ON, OFF, ON, ©ON, OFF, ON, ON] & data:$
/* 6 */ ¢ [ON, OFF, ON, ON, ON, ON, ON] & data:6
/7 %/ 4 [ON, ON, ON, OFF, OFF, OFF, ON] & data:?
/%8 */ ¢ (ON, ON, ON, ON, ON, ON, OFF] & data:8
/* 9/ + [ON, ON, ON, ON, OFF, ON, ON] & data:9
/* A */ 4+ [ON, ON, ON, OFF, ON, ON, ON] & data:A
/* B/ ¢+ [(OFF, OFF, ON, ON, ON, ON, ON] & data:B
/* C */ 4 [ON, OFF, OFF, ON, ON, ON, OFF] & data:C
/%D */ ¢ (OFF, ON, ON, ON, ON, OFF, ON) & data:D
/*E */ ¢ [ON, OFF, OFF, ON, ON, ON, ON] & data:E
/*F %/ ¢ [ON, OFF, OFF, OFF, ON, ON, ON] & data:F;
rbo = rbi & data:0:

Figure U5-28. Sheet2o0f2

The first part of the file provides archival information and a
description of the intended function of the design, including
compatible PLDs.

Pin declarations are made corresponding to the inputs and
outputs in the design diagram.

In the “Declarations and Intermediate Variables” section,
field assignments are made to group the input pins into a set
named data and the output pins into a set named segment. ON
and OFF are defined respectively as binary 1 and binary 0.

The logic equations are set up as a function table to describe the
segments that are lit up by each input pattern. Comments
create a header for the function table, listing the output
segments across the top and the input numbers vertically down
the side.

Each line of the table describes a decoded hex value and the
segments of the display that the hex value turns on or off. For
example, the line for an input value of 4 is written as follows:

[OFF, ON, ON, OFF, OFF, ON, ON] & data:4

91-10145-5 0690 Us-105

Design CUPL
Examples User Guide

U5-106

The function table format expresses the intent of the design
more clearly than equations; that is, the example above shows
that an input value of 4 turns segment a off, segment b on,
segment ¢ on, and so on.

0690 91-10145-5

CUPL Language 1

This chapter explains CUPL language elements and CUPL
language syntax.

(1 LANGUAGE ELEMENTS

This section describes the elements that comprise the CUPL
logic description language.

O Variables

Variables are strings of alphanumeric characters that specify
device pins, internal nodes, constants, input signals, output
signals, intermediate signals, or sets of signals. This section
explains the rules for creating variables.

Variables can start with a numeric digit, alphabet character,
or underscore, but must contain at least one alphabet
character.

Variables are case sensitive; that is, they distinguish between
uppercase and lowercase letters.

Do not use spaces within a variable name. Use the underscore
character to separate words.

Variables can contain up to 31 characters. Longer variables
are truncated to 31 characters.

Variables cannot contain any of the CUPL reserved symbols
(see Table 1-2).

91-10128-5 1090 107

CUPL

CUPL Language Reference Manual

108

Variables cannot be the same as a CUPL reserved keyword
(see Table 1-1).

Examples of some valid variable names are:

a0

A0

8250_ENABLE
Real_time_clock_interrupt
_address

Note how the use of the underscore in the above examples
makes the variable names easier to read. Also, note the
difference between uppercase and lowercase variable names.
The variable A0 is not the same as a0.

Examples of some invalid variable names are:

929 does not contain an alpha character

I/O enable contains a special character (/)

out 6a contains a space; the system reads it as two
separate variables

thl-2 contains a dash; the system reads it as two
variables.

Indexed Variables

Variable names can be used to represent a group of address
lines, data lines, or other sequentially numbered items. For
example, the following variable names could be assigned to
the eight LO-order address lines of a microprocessor:

A0 Al A2 A3 A4 A5 A6 A7

Variable names that end in a number, as shown above, are
referred to as indexed variables.

1090 91-10128-5

CUPL '
Reference Manual CUPL Language

The index numbers are always decimal numbers between 0
and 31. When used in bit field operations (see the subtopic, Bit
Field Declaration Statements in this chapter) the variable with
index number 0 is always the lowest order bit.

Examples of some valid indexed variable names are as
follows:

a23

DO7

D7
counter_bit_3

Note the difference between index variables with leading
zeroes, the variable D07 is not the same as D7.

Examples of some invalid indexed variable names are as

follows:
DOF index number is not decimal
a36 index number out of range

O Reserved Words and Symbols

CUPL uses certain character strings with predefined
meanings called keywords. These keywords cannot be used
as names in CUPL. Table 1-1 lists these keywords.

91-10128-5 1090 109

CUPL
CUPL Language Reference Manual

Table 1-1. CUPL Reserved Keywords

APPEND FORMAT PARTNO
ASSEMBLY FUNCTION PIN

ASSY FUSE PINNODE
COMPANY IF PRESENT
CONDITION JUMP REV

DATE LOC REVISION
DEFAULT LOCATION SEQUENCE
DESIGNER MACRO SEQUENCED
DEVICE MIN SEQUENCEJK
ELSE NAME SEQUENCERS
FIELD NODE SEQUENCET
FLD ouT TABLE

CUPL also reserves certain symbols for its use that cannot be
used in variable names. Table 1-2 lists these reserved
symbols.

Table 1-2. CUPL Reserved Symbols

& # «)-
* + [1/
: /* */
; , ! ' =
@ $ A

O Numbers

All operations involving numbers in the CUPL compiler are
done with 32-bit accuracy. Therefore, the numbers may have a

110 1090 91-10128-5

CUPL
Reference Manual CUPL Language

value from 0 to 232 -1, Numbers may be represented in any one
of the four common bases: binary, octal, decimal, or
hexadecimal. The default base for all numbers used in the
source file is hexadecimal, except for device pin numbers and
indexed variables, which are always decimal. Numbers for a
different base may be used by preceding them with a prefix
listed in Table 1-3.

Table 1-3. Number Base Prefixes

Base Name Base Prefix
Binary 2 'b’
Octal 8 ‘o'
Decimal 10 'd’
Hexadecimal 16 'h'

The base letter is enclosed in single quotes and can be either
uppercase or lowercase. Some examples of valid number
specifications are listed in Table 1-4.

Table 1-4. Sample Base Conversions

Number Base Decimal Value
'b'0 Binary 0

'B'1101 Binary 13

'0'663 Octal 435

'D'92 Decimal 92

'h'BA Hexadecimal 186
'0'[300..477] Octal (range) 192..314

Binary, octal, and hexadecimal numbers can have don't-care
values (“X”) and numerical values. Some examples of valid
number specifications with don't-care values are listed in
Table 1-5.

Table 1-5. Sample Don’t-Care Numbers

Number Base

91-10128-5 1090 111

CUPL

CUPL Language Reference Manual
'b'1X11 Binary
'0'0X6 Octal

'H'[3FXX..7FFF] Hexadecimal (range)

a Com:ménts

Comments are an important part of the logic description file.
They improve the readability of the code and document the
intentions, but do not significantly affect the compile time, as
they are removed by the preprocessor before any syntax
checking is done. Use the symbols /* and */ to enclose
comments; the program ignores everything between these
symbols.

Comments may span multiple lines and are not terminated by
the end of a line. Comments cannot be nested. Some examples
of valid comments are shown in Figure 1-1.

/**'k**/

/* This is one way to create a title or */

/* an information block */
/***/

/*
This is another way to create an information block
*/
outl=inl # 1in2; /* A Simple OR Function */
out2=inl & in2; /* A Simple AND Function */
out3=inl $ in2; /* A Simple XOR Function */

Figure 1-1. Sample Comments

Q List Notation

Shorthand notations are an important feature of the CUPL
language.

112 1090 91-10128-5

CUPL

Reference Manual CUPL Language

The most frequently used shorthand notation is the list. It is
commonly used in pin and node declarations, bit field
declarations, logic equations, and set operations. The list
format is as follows:

[variable, variable, ... variable]

where

[] are brackets used to delimit items in the list as a set of
variables.

Two examples of the list notation are as follows:

[UP, DOWN, LEFT, RIGHT]
[A0, A1, A2, A3, Ad, A5, A6, AT]

When all the variable names are sequentially numbered,
either from lowest to highest or vice versa, the following
format may be used:

[variablem..n]

where
m is the first index number in the list of variables.

n is the last number in the list of variables; n can be
written without the variable name.

For example, the second line from the example above could be
written as follows:

[A0..7]

Index numbers are assumed to be decimal and contiguous.
Any leading zeros in the variable index are removed from the
variable name that is created. For example:

[A00..07]

is shorthand for:

91-10128-5 1090 113

CUPL

CUPL Language Reference Manual

114

[AO, Al, A2, A3, A4, A5, A6, AT7]

not for:
[A00, A01, A02, A03, A04, A05, A06, A07]

The two forms for the list notation may be mixed in any
combination. For example, the following two list notations are
equivalent:

[A0.2, A3, A4, A5..7]
[AO, Al, A2, A3, A4, A5, A6, AT]

Template File

When a logic description source file is created using the CUPL
language, certain information must be entered, such as
header information, pin declarations, and logic equations. As
an assist, CUPL provides a template file that contains the
proper structure for the source file. Figure 1-2 shows the
contents of the template file.

1090 91-10128-5

CUPL

Reference Manual CUPL Language
Name XXXXX 7
Partno XXXXX;
Date
Revision
Designer
Company
Assembly
Location
/tti*ﬁt*iittttttt*tt*t‘tititti**itttttittttttiﬁﬂ*i!ii***kiit/
/* */
/* */
/* */
/ﬁtti.tﬁﬁttﬁt'*tlttﬂ**iitiﬁ*ﬁtk*ititttitﬁttttﬁtti.ttt*tt*ﬁttl
/* Allowable Target Device */

/i*ti*tﬁ‘iﬁt"*tktt*itt'ﬁ!'ttt*ﬁ*iﬁﬁ**ittt't*tﬁﬁtiﬁi"iii*i*/

/* Inputs */

Pin = H /* */
Pin = : /* */
Pin = H /* */
Pin = H /* */
Pin = H /* */
Pin = H /* ' */
Pin = : /* */
Pin = : /* */
Pin H /* */
Pin = H /* */
Pin = ; /* */
Pin = H /* */
Pin H /* */
Pin = H /* */
/* outputs */

Pin = ; /* */
Pin = H /* */
Pin = H /* */
Pin = H /* */
Pin = H /* */
Pin = H /* */
Pin = : /* */
Pin = H /* */

Figure 1-2, Template File

91-10128-5 1090 115

CUPL

CUPL Language Reference Manual

The template file provides the following sections:

Header Information - Keywords followed by XXXs that are
replaced with text to identify the file for archival and revision
purposes.

Title Block - Comment symbols that enclose space for
describing the function of the design and allowable target
devices.

Pin Declaration - Keywords and operators in the proper format
for input and output pin declarations and comment space to
describe the pin assignments. After pin declarations are
made, remove any extra “pin = ;” lines. Otherwise, a syntax
error will occur during compilation.

The /* Inputs */ and /* Qutputs */ are comments that provide
groupings for readability only. Assign any pin type in any
order, no matter how it is used in the logic description file.

Declaration and Intermediate Variable - Space for making
declarations, such as bit field declarations (see the subtopics,
Bit Field Declaration Statements and Node Declaration
Statements in this chapter) and for writing intermediate
equations (see the subtopic, Logic Equations in this chapter).

Logic Equation - Space for writing logic equations describing
the function of the device (see the subtopic, Logic Equations in
this chapter).

Header Information

116

The header information section of the source file identifies the
file for revision and archival purposes. Normally place it at
the beginning of the file. CUPL provides 10 keywords to use in
header information statements. Begin each statement with a
keyword which can be followed by any valid ASCII characters,

1090 91-10128-5

cuPrL
Reference Manual

CUPL Language

including spaces and special characters. End each statement
with a semicolon. Table 1-6 lists the CUPL header keywords
and the information to provide with each keyword.

Table 1-6. Header Information Keywords

[Keyword

Information

NAME

PARTNO

REVISION

DATE

DESIGNER
COMPANY

ASSEMBLY

LOCATION

91-10128-5

Normally use the source logic description
filename. Use only character strings that are
valid for the operating system. The name
specified here determines the name for any
JEDEC, ASCII - hex, or HL download files. The
NAME field accommodates filenames up to 32
characters long. When using systems such as
DOS which allow filenames of only eight
characters, the filename will be truncated.
Specify a company's proprietary part number
(usually issued by manufacturing) for a
particular PLD design. The part number is not
the type of target PLD. For GAL devices, the
first eight characters are encoded using seven-
bit ASCII in the User Signature Fuses of the
devices' fuse map.

Begin with 01 when first creating a file and
increment each time a file is altered. REV can be
used for an abbreviation.

Change to the current date each time a source
file is altered.

Specify the designer's name.

Specify the company's name for proper
documentation practice and because
specifications may be sent to semiconductor
manufacturers for high volume PLD orders.

Give the assembly name or number of the PC
board on which the PLD will be used. The
abbreviation ASSY can be used.

Indicate the PC board reference or coordinate
where the PLD is located. The abbreviation
LOC can be used.

1090 117

CUPL Language

18

DEVICE

FORMAT

CUPL
Reference Manual

Set the default device type for the compilation.
A device type specified on the command line
overrides all device types set in the source file.
For multi-device source files, DEVICE must be
used with each section if the device types are
different.

Set a download output format override for the
current logic description section. The valid
values to use for the output format are:
h produce ASCII-hex output
i produce Signetics HL output
J produce JEDEC output
FORMAT overrides any option flag on the
command line. It is useful in multi-device

source files where different parts have

incompatible output formats. More than one
format value at a time may be specified to
produce more than one type of output. The
format value must be a lowercase letter.

The template file provides all the header keywords except
DEVICE and FORMAT. An example of proper CUPL header
information is as follows:

Name
Partno
Revision
Date
Designer
Company
Assembly
Location
Device
Format

WAITGEN ;
P9000183 ;

02;

1/11/89 ;

Osann ;

Logical Devices, Inc. ;
PC Memory Board ;
U106 ;

F155;

ij;

If any header information is omitted, CUPL issues a warning
message, but continues with compilation.

109 91101285

CUPL
Reference Manual CUPL Language

Pin Declaration Statements

Pin declaration statements declare the pin numbers and
assign them symbolic variable names. The format for a pin
declaration is as follows:

PIN pin_n=[!]var;
where

PIN is a keyword to declare the pin numbers and assign them
variable names.

Pin_n is a decimal pin number or a list of pin numbers
grouped using the list notation; that is,

[pin_n 1, pin_n 2 ... pin_nn]

! is an optional exclamation point to define the polarity of the
input or output signal.

= is the assignment operator.

var is a single variable name or a list of variables grouped
using the list notation; that is,

[var, var ... var]

; is a semicolon to mark the end of the pin declaration
statement.

The template file provides a section for entering the pin
variables individually or in groups using the list notation.

Use the exclamation point (!) to define the polarity of an input
or output signal. If an input signal is active-level LO (that is,
the asserted TTL signal voltage level is 0 volts), put an
exclamation point before the variable name in the pin
declaration. The exclamation point informs the compiler to

91-10128-5 1090 119

CUPL

CUPL Language Reference Manual

120

choose the inverted sense of the signal when it is listed as
active in the logic equations.

Similarly, if an output signal is active-level LO, define the
variable with an exclamation point in the pin declaration and
write the logic equation in a logically true form. The
exclamation point permits declaring pins without regard to the
limitations of the type of target device.

If a pin declaration specifying an active-level HI output is
compiled for a target device (such as a PAL16L8) that has only
inverting outputs, CUPL automatically performs DeMorgan’s
Theorem on the logic equation to fit the function into the
device. ‘

Consider the following example. The logic description file is
written for a PAL16L8 device. All output pins are declared as
active-HI. The following equation has been written to specify
an OR function:

c=a#b;

However, because the PAL16L8 contains a fixed inverting
buffer, CUPL must perform a DeMorgan to fit the logic to the
device. CUPL generates the following product term in the
documentation file (see Documentation File Formats in
Appendix C):

c=>la&l!b

Figure 1-3 shows the process described above.

1090 91-10128-5

CUPL
Reference Manual

DeMorgan Translation

CUPL Language

c=a#b

Desired OR Function

c=>la&lb

Fixed Inverting Buffer In Device

Figure 1-3. Active-HI Pin Declaration for Inverting Buffer

If excess product terms are generated, CUPL displays an error
message and the compilation stops. The documentation file
(filename.DOC) lists the number of product terms required to
implement the logic function and the number of product terms
the device physically has for the particular output pin.

Some examples of valid pin declarations are:

pinl
pin2

pin [34]
in [5..7]

The last two
notations for the following:

pin3
pin4
pin5
pin6
pin7

91-10128-6

clock; /* Register Clock */
lenable; /* Enable I/O Port */
![stop,go]; /* Control Signals */
[a0..2]; /* (Address Bit 0-2 */

lines in the example above are shorthand

Istop; /* Control Signal */

1go;
al;
al;
az;

/* Control Signal */
/* Address Bit 0 */
/* Address Bit1 */
/* Address Bit2 */

1090 121

CUPL
CUPL Language Reference Manual

The input, output, or bi-directional nature of a device pin is not
specified in the pin declaration. The compiler infers the
nature of a pin from the way the pin variable name is used in
the logic specification. If the logic specification and the
physical characteristics of the target device are incompatible,
CUPL displays an error message denoting the improper use of
the pin.

Node Declaration Statements

Some devices contain functions that are not available on
external pins, but logic equations must be written for these
capabilities. For example, the 825105 contains both buried state
registers (flip-flops) and a mechanism for inverting any
transition term through a complement array. Before writing
equations for these flip-flops (or complement arrays), they
must be assigned variable names. Since there are no pins
associated with these functions, the PIN keyword cannot be
used. Use the NODE keyword to declare variable names for
buried functions.

The format for node declarations is as follows:
NODE [!] var;

where

NODKE is a keyword to declare a variable name for a
buried function.

! is an optional exclamation point to define the polarity of
the internal signal.

var is a single variable name or list of variables
grouped using the list notation.

; is a semicolon to mark the end of the statement.

Place node declarations in the “Declarations and
Intermediate Variables Definitions” section of the source file
provided by the template file.

12 1090 91-10128-5

CUPL
Reference Manual CUPL Language

Most internal nodes are active-level HI; therefore, the
exclamation point should not be used to define the polarity of
an internal signal as active-level LO. Using the exclamation
point almost always causes the compiler to generate a
significantly greater number of product terms. An exception
is the complement array node, which, by definition, is an
active-level LO signal.

Although no pin numbers are given in the declaration
statement, CUPL assigns the variable name to an internal
pseudo-pin number. The assignment is automatic and
determined by usage (flip-flop, complement array, and so on),
so variable order is not a concern. However, once a node
variable is declared, a logic equation must be created for the
variable, or a compilation error results.

CUPL uses the node declaration to distinguish between a logic
equation for a buried function and an intermediate
expression.

Examples of the use of the NODE keyword are:
NODE [State0..5]; /* Internal State Bits */
NODE !Invert; /*For Complement Array */

An alternative for assigning buried functions instead of
allowing CUPL to automatically assign them via the NODE
keyword, is to use the PINNODE keyword. The PINNODE
keyword is used for explicitly defining buried nodes by
assigning a node number to a symbolic variable name. This
is similar to the way the pin declaration statements work. The
format for a pinnode declaration is as follows:

PINNODE node_n = [!]var;

where

PINNODE is a keyword to declare the node numbers and
assign them variable names.

91-10128-5 1090 123

CUPL

CUPL Language Reference Manual

124

node_n is a decimal node number or a list of node
numbers grouped using the list notation; that is,

[node_nl,node_n2 ... node_nn]

! is an optional exclamation point to define the polarity of
the internal signal.

= is the assignment operator.

var is a single variable name or list of variables
grouped using the list notation; that is,

[var,var ... var]
; is a semicolon used to mark the end of the statement.

Place pinnode declarations in the “Declarations and
Intermediate Variables Definitions” section of the source file
provided by the template file.

As with node declarations, most internal nodes are active-
level HI; therefore, the exclamation point should not be used to
define the polarity of an internal signal as active level LO.
Using the exclamation point almost always causes the
compiler to generate a significantly greater number of product
terms. An exception is the complement array node, whlch by
definition is an active-level LO signal.

A list of node numbers for all devices containing internal
nodes is included in Appendix D. Please reference these node
numbers for pinnode declarations.

Examples of the use of the PINNODE keyword are:

PINNODE [29..34] = [State0..5]; /* Internal State Bits */

PINNODE 35 = !Invert; /* For Complement Array */

PINNODE 25 = Buried; /* For Buried register part */
/* of an /O macrocell with */
/* multiple feedback paths */

1090 91-10128-5

CUPL

Reference Manual CUPL Language

Bit Field Declaration Statements

A bit field declaration assigns a single variable name to a
group of bits. The format is as follows:

FIELD var = [var, var, ... var] ;

where
FIELD is a keyword.
var is any valid variable name.

[var, var, ... var] is a list of variable names in list
notation.

= is the assignment operator.
; is a semicolon used to mark the end of the statement.

D

The square brackets do not indicate optional items
but are wused to delimit items in a
list.

Note

Place bit field declarations in the “Declarations and
Intermediate Variable Definitions” section of the source file
provided by the template file.

After assigning a variable name to a group of bits, the name
can be used in an expression; the operation specified in the
expression is applied to each bit in the group. See the subtopic,
Set Operations in this chapter for a description of the

. operations allowed for FIELD statements. The example below

shows two ways to reference the eight address input bits (A0
through A7) of an I/O decoder as the single variable named
ADDRESS.

FIELD ADDRESS = [A7,A6,A5,A4,A3,A2,A1,A0] ;

91-10128-5 1090 125

CUPL

CUPL Language Reference Manual

or
FIELD ADDRESS = [A7.0] ;

MIN Declaration Stateménts

126

The MIN declaration statement overrides, for specified
variables, the minimization level specified on the command
line when running CUPL. The format is as follows:

MIN var [.ext] = level ;

where

MIN is a keyword to override the command line
minimization level.

var is a single variable declared in the file or a list of
variables grouped using the list notation; that is,

[var, var, ... var]

.ext is an optional extension that identifies the function
of the variable.

level is an integer between 0 and 4.
; is a semicolon to mark the end of the statement.

The levels 0 to 4 correspond to the option flags on the command
line, -m0 through -m4.

The MIN declaration permits specifying different levels for
different outputs in the same design, such as no reduction for
outputs requiring redundant or contained product terms (to
avoid asynchronous hazard conditions), and maximum
reduction for a state machine application.

The following are examples of valid MIN declarations.

MIN async_out =0; /*noreduction */
MIN [outa, outb] =2; [*level 2reduction */
MIN count.d =4; [*level4reduction */

1090 91-10128-5

CUPL
Reference Manual CUPL Language

Note that the last declaration in the example above uses the .d
extension to specify that the registered output variable is the
one to be reduced.

FUSE Statement

The FUSE statement provides for special cases where it is
necessary to blow TURBO or MISER bits. This statement
should be used with utmost care, as it can lead to unpredictable
results if used incorrectly.

FUSE (fusenumber, x)

where fusenumber is the fuse number corresponding to the
MISER Bit or TURBO Bit that must be blown, and x is either 0
or 1. Specify 0 if the bit must not be blown. Specify 1 to blow the
bit. Use this statement with extreme caution.

In this example, fuse 101 is a MISER Bit or TURBO Bit. This
blows fuse number 101.

example:

FUSE(101,1)

DO NOT ATTEMPT TO USE THIS STATEMENT TO
BLOW ARBITRARY FUSES!

The fuse statement was designed to blow MISER bits and
TURBO Bits only. The exact fuse number for the TURBO or
MISER Bit must be specified. Every time this statement is
used, CUPL will generate a warning. This is a reminder to
double check that the fuse number specified is correct. If a
wrong fuse number is specified, disastrous results can occur.
Be very careful using this statement. If the FUSE statement is

91-10128-5 1090 127

CUPL
CUPL Language Reference Manual

used in a design and strange results occur, check the fuse
number specified and make sure that it is a MISER or TURBO
Bit.

O Preprocessor Commands

The preprocessor portion of CUPL operates on the source file
before it is passed to the parser and other sections of the
compiler. The preprocessor commands add file inclusion,
conditional compilation, and string substitution capabilities
to the source processing features of CUPL. Table 1-7 lists the
available preprocessor commands. Each command is
described in detail in this section.

Table 1-7. Preprocessor Commands

$DEFINE $IFDEF $UNDEF
$ELSE $IFNDEF $REPEAT
$ENDIF $INCLUDE $REPEND
$MACRO $MEND

The dollar sign ($) is the first character in all preprocessor
commands and must be used in column one of the line. Any
combination of uppercase or lowercase letters may be used to
type these commands.

$DEFINE

This command replaces a character string by another
specified operator, number, or symbol. The format is as
follows:

$DEFINE argumentl argument2

where

argumentl is a variable name or special ASCII
character.

128 1090 91-10128-5

CUPL
Reference Manual CUPL Language

argument2 is a valid operator, a number, or a variable
name.

“Argumentl” is replaced by “argument2” at all locations in
the source specification after the $DEFINE command is given
(or until the preprocessor encounters an §UNDEF command).
The replacement is a literal string substitution made on the
input file before being processed by the CUPL compiler. Note
that no semicolon or equal sign is used for this command.

The $DEFINE command allows numbers or constants to be
replaced with symbolic names, for example:

$DEFINE ON 'b'1
$DEFINE OFF 'b'0
$DEFINE PORTC 'h'3F0

The $DEFINE command also allows creation of a personal set
of logical operators. For example, the following define an
alternate set of operators for logic specification:

$DEFINE { /* Alternate Start Comment
$DEFINE } */ Alternate End Comment
$DEFINE / ! Alternate Negation
$DEFINE * & Alternate AND
$DEFINE + # Alternate OR

$DEFINE ' $ Alternate XOR

D

The above definitions are contained in the
PALASM.OPR file included with the CUPL software
package. This file may be included in the source file
(see SINCLUDE command) to allow logic equations
using the PALASM set of logical operator symbeols,
as well as the standard CUPL operator
symbols.

Note

91-10128-5 1090 129

CUPL

CUPL Language Reference Manual

$UNDEF

This command reverses a $DEFINE command. The format is
as follows:

$UNDEF argument

where

argument is an argument previously used in a
$DEFINE command.

Before redefining a character string or symbol defined with
the $DEFINE command, use the $UNDEF command to undo
the previous definition.

$INCLUDE

130

This command includes a specified file in the source to be
processed by CUPL. The format is as follows:

$INCLUDE filename

where

filename is the name of a file in the current directory.

File inclusion allows standardizing a portion of a commonly
used specification. It is also useful for keeping a separate
parameter file that defines constants that are commonly used
in many source specifications. The files that are included
may also contain $INCLUDE commands, allowing for
“nested” include files. The named file is included at the
location of the $INCLUDE command.

1090 91-10128-5

CUPL
Reference Manual CUPL Language

For example, the following command includes the
PALASM.OPR file in a source file,

$INCLUDE PALASM.OPR

PALASM.OPR is included with the CUPL software and
contains $DEFINE commands that specify the following
alternate set of logical operators.

$DEFINE / ! Alternate Negation
$DEFINE * & Alternate AND
$DEFINE + # Alternate OR

$DEFINE T4 $ Altermate XOR
$DEFINE { /* Alternate Start Comment
$DEFINE } */ Alternate End Comment
$IFDEF

This command conditionally compiles sections of a source
file. The format is as follows:

$IFDEF argument

where

argument may or may not have previously been defined
with a $DEFINE command.

When the argument has previously been defined, the source
statements following the $IFDEF command are compiled
until the occurrence of an $ELSE or $ENDIF command.

When the argument has not previously been defined, the
source statements following the $IFDEF command are

91-10128-5 1090 131

CUPL

CUPL Language Reference Manual

ignored. No additional source statements are compiled until
the occurrence of an $ELSE or $ENDIF command.

One use of $IFDEF is to temporarily remove source equations
containing comments from the file. It is not possible to
“comment out” the equations because comments do not nest.
The following example illustrates this technique. NEVER is
an undefined argument.

$IFDEF NEVER

outl=inl & in2; /* A Simple AND Function */
out2=in3 #in4; /* A Simple OR Function */
$ENDIF

Because NEVER is undefined, the equations are ignored
during compilation; that is, they function as comments.

$IFNDEF

12

This command sets conditions for compiling sections of the
source file.

$IFNDEF argument

where

argument may or may not have previously been defined
with a $DEFINE command.

The $IFNDEF command works in the opposite manner of the
$IFDEF command. When the argument has not previously
been defined, the source statements following the $IFNDEF
command are compiled until the occurrence of an $ELSE or
$ENDIF command.

If the argument has previously been defined, the source
statements following the $IFNDEF command are ignored. No

1090 91-10128-5

CUPL
Reference Manual CUPL Language

additional source statements are compiled until the
occurrence of an $ELSE or $ENDIF command.

One use of SIFNDEF is to create a single source file
containing two mutually exclusive sets of equations. Using
an $IFNDEF and $ENDIF command to set off one of the sets of
equations, quick toggling is possible between the two sets of
equations by defining or not defining the argument specified
in the $IFNDEF command.

For example, some devices contain common output enable
pins that directly control all the tri-state buffers, whereas other
devices contain single product terms to enable each tri-state
buffer individually. In the following example, the argument,
COMMON_OE has not been defined, so the equations that
follow are compiled. Any equations following $ENDIF are not

compiled.
$IFNDEF COMMON_OE
pin 11 = lenable; /* input pin for OE */
[93,92,q1,q0].0e = enable; /* assign tri-state */
/¥ equation for 4 */
* outputs */
$ENDIF

If the device has common output enables, no equations are
required to describe it. Therefore, in the above example, for a
device with common output enables, define COMMON_OE so
the compiler skips the equations between $IFNDEF and
$ENDIF.

$ENDIF

This command ends a conditional compilation started with
the $IFDEF or $IFNDEF commands. The format is as follows:

$ENDIF

91-10128-5 1090 133

CUPL

CUPL Language Reference Manual

The statements following the $ENDIF command are compiled
in the same way as the statements preceding the $IFDEF or
$IFNDEF commands. Conditional compilation may be
nested, and for each level of nesting of the $SIFDEF or
$IFNDEF command, an associated $ENDIF must be used.

The following example illustrates the use of $SENDIF with
multiple levels of nesting.

$IFDEF prototype_1

pinl =set; /*Seton pin 1 */
pin2 =reset; /* Reset on pin 2 */
$IFDEF prototype_2

pin3 = enable; /* Enable on pin 3 */
pind = disable; /* Disableon pin4 */
$ENDIF

pin5 =run; /* Run on pin 5 */
pin6 = halt; /* Halt on pin 6 */
$ENDIF

$ELSE

134

This command reverses the state of conditional compilation
as defined with $IFDEF or $IFNDEF. The format is as
follows:

$ELSE

If the tested condition of the $IFDEF or $SIFNDEF commands is
true (that is, the statements following the command are
compiled), then any source statements between an $ELSE and
$ENDIF command are ignored.

If the tested condition is false, then any source statements
between the $IFDEF or $IFNDEF and $ELSE command are
ignored, and statements following $ELSE are compiled.

1090 91-10128-5

CUPL
Reference Manual CUPL Language

For example, many times the production printed circuit board
uses a different pinout than does the wire-wrap prototype. In
the following example, since Prototype has been defined, the
source statements following $IFDEF are compiled and the
statements following $ELSE are ignored.

$DEFINE Prototype X /* define Prototype */

$IFDEF Prototype

pinl = memregq; /* memory request on*/
P pin1of prototype */

pin2 = ioreq; /* /O request on */

_ f*pin 2 of prototype */

$ELSE

pinl = ioreq; /* I/0 request on */
/* pin 1 of PCB */

pin2 = memreq; /* memory request on*/
/* pin 2 of PCB */

$ENDIF

To compile the statements following $SELSE, remove the
definition of Prototype.

$REPEAT

This command is similar to the FOR statement in C language
and DO statements in FORTRAN language. It allows the user
_ to duplicate repeat body by index. The format is as follows:
$REPEAT index=[numberj,numberg,...numbern]

repeat body
$REPEND

where n can be any number in the range 0 to 1023

In preprocessing, the repeat body will be duplicated from
numberj to numberp. The index number can be written in
short form as [numberl..numbern] if the number is
consecutive. The repeat body can be any CUPL statement.

91-10128-5 1090 135

CUPL

CUPL Language Reference Manual

136

Arithmetic operations can be performed in the repeat body.
The arithmetic expression must be enclosed by braces {).

For example, design a three to eight decoder.
FIELD sel = [in2..0]
$REPEAT = [0..7]
loutfi} = sel:'h'{i} &enable;
$REPEND

Where index variable i goes from 0 to 7, so the statement
“out{i}) = sel:'h'(i} &enable;” will be repeated during
preprocessing and create the following statements:

FIELD sel = [in2..0];
lout0 = sel:'h'0 &enable;
loutl = sel:'h'l &enable;
lout2 = sel:'h'2 &enable;
lout3 = sel:'h'3 &enable;
loutd = sel:'h'4 &enable;
lout5 = sel:'h'5 &enable;
lout6 = sel:'h'6 &enable;
lout7 = sel:'h'7 &enable;

The following example shows how the arithmetic operation
addition (+) and modulus (%) are used in the repeat body.

Design a five bit counter with a control signal advance,
if advance is high, counter is increased by one.

FIELD countfout4..0]
SEQUENCE count {
$REPEAT i =[0..31]
PRESENT S{i} IF advance & !reset NEXT
S{(i+1)%(32)};
IF reset NEXT S(0};
DEFAULT NEXT S{i);
$REPEND

1090 91-10128-5

CUPL
Reference Manual CUPL Language

$REPEND

This command ends a repeat body that was started with
$REPEAT. The format is as follows:

$REPEND

The statements following the SREPEND command are
compiled in the same way as the statements preceding the
$REPEAT command. For each SREPEAT command, an
associated $REPEND command must be used.

$MACRO

This command creates user-defined macros. The format is as
follows:

$MACRO name argument] argument2..argumenty
macro function body
$MEND

When macros are invoked, the keyword NC is used to
represent no connection. Because NC is a keyword, the letters
NC should not be used as a variable elsewhere in CUPL.

The macro function body will not be compiled until the macro
name is called. The function is called by stating function
name and passing the parameters to the function.

Like the $SREPEAT command, the arithmetic operation can be
used inside the macro function body and must be enclosed in
braces.

The following example illustrates how to use the $MACRO
command.

Use the $SMACRO command to define a decoder function with
an arbitrary number of bits. This example places the macro
definition and call in the same file.

91-10128-5 1090 137

CUPL
CUPL Language Reference Manual

$MACRO decoder bits XY E;
FIELD select = [y{bits-1}..0];
$REPEAT i = [0..[2**(bits-1)}]

IX{i} = select:'h'(i} & E;
$REPEND

$MEND

«./* Other statements */
decoder(3, out, in, enable); /#macro function call*/

Calling function decoder will create the following statements
by macro expansion.

FIELD sel = [in2..0];
lout0 = sel:'h'0 &enable;
loutl = sel:'h'l &enable;
lout2 = sel:'h'2 &enable;
lout3 = sel:'h'3 &enable;
lout4 = sel:'h'4 &enable;
lout5 = sel:'h'5 &enable;
lout6 = sel:'h'6 &enable;
lout7 = sel:'h'7 &enable;

Use the flag -e when compiling the PLD file. CUPL will create
an expanded file with the same name as the PLD file, with an
extension “.mx”.

The macro definition can be stored in a separate file with a
“.m” extension. Using the $INCLUDE command, specify the
file. All the macro functions in that file will then be
accessible. The following example shows the macro definition
and calling statement stored in different files.

The macro definition of decoder is stored in the file
“macrolib.m”

$INCLUDE macrolib.m /*specify the macro library */
../* other statements */

decoder(4, out, in enable);

../* other statements */

138 1090 91-10128-5

CUPL
Reference Manual CUPL Language

More examples can be found in the example files provided on
diskette.

$MEND

This command ends a macro function body started with
$MACRO. The format is as follows:

$MEND

The statements following the $MEND command are compiled
in the same way as the statements preceding the $MACRO
command. For each $MACRO command, an associated
$MEND command.must be used.

91-10128-5 1090 139

CUPL

CUPL Language Reference Manual

1 LANGUAGE SYNTAX

140

This section describes the CUPL language syntax. It explains
how to use logic equations, truth tables, state machine syntax,
condition syntax and user-defined functions to create a PLD
design.

Logical Operators

CUPL supports the four standard logical operators used for
boolean expressions. Table 1-8 lists these operators and their
order of precedence, from highest to lowest.

Table 1-8. Precedence of Logical Operators

Operator - Example Description Precedence
! 1A NOT 1
& A&B AND 2
A#B OR 3
$ A$B XOR 4

The truth tables in Figure 1-4 list the Boolean Logic rules for
each operator.

1090 91-10128-5

cuPL
Reference Manual CUPL Language

NOT : ones complement !

OR # XOR : exclusive OR $
A B A$B
0 0 0

Figure 1-4. Truth Tables

J Arithmetic Operators

CUPL supports six standard arithmetic operators used for
arithmetic expressions. The arithmetic expressions can only
be used in the $REPEAT and $MACRO commands.
Arithmetic expressions must appear in braces {}. Table 1-9
lists these operators and their order of precedence, from
highest to lowest.

Table 1-9 Precedence of Arithmetic Operators

91-10128-5 1090 141

CUPL

CUPL Language Reference Manual
| Operator Example Description Precedence |
** 2**3 Exponentiation 1
* 2%i Multiplication 2
/ 4/2 .Division 2
% . 9%8 Modulus 2
+ 2+4 Addition 3
- 4-i Subtraction 3
O Arithmetic Function

CUPL supports one arithmetic function used for arithmetic
expressions. The arithmetic expressions can only be used in
the $SREPEAT and $MACRO commands. Table 1-10 lists the

function.

Table 1-10 Arithmetic Function

[Function Base 1

LOG2 Binary

12

LOG8 Octal
LOG16 Hexadecimal
LOG Decimal

The LOG function returns a rounded integer value. For
example:

LOG2(32) =5 <==> 2*¥*5 = 32
LOG2(33) = round(5.0444) = 6 <==> 2**6 = 64

Extensions

Extensions can be added to variable names to indicate specific
functions associated with the major nodes inside a
programmable device, including such capabilities as flip-flop
description and programmable three-state enables. Table 1-11
lists the extensions that are supported by CUPL and on which
side of the equal sign (=) they are used. The compiler checks

1090 91-10128-5

CUPL

Reference Manual

CUPL Language

the usage of the extension to determine whether it is valid for

the specified device.

Table 1-11. Extensions

Extension

bR RS“ED

Q

% %

Sp

SR
CK
OE
.CA
PR

.OBS

BYP
.DFB
LFB
.TFB
Jo

INT

91-10128-5

Side Description
Used

D input of D-type flip-flop
Dinput of transparent latch

J input of JK-type flip-flop

K input of JK-type flip-flop

S input of SR-type flip-flop

R input of SR-type flip-flop

T input of toggle flip-flop

Q output of D-type flip-flop

Q output of transparent latch
Asynchronous preset of flip-flop
Asynchronous reset of flip-flop
Synchronous preset of flip-flop
Synchronous reset of flip-flop
Programmable clock of flip-flop
Programmable output enable
Complement array
Programmable preload

CE input of enabled D-CE type flip-flop
Programmable latch enable

(o S - A B ol ol ol B ol ol

Programmable observability of buried
nodes

Programmable register bypass

D registered feedback path selection
D latched feedback path selection

T registered feedback path selection
Pin feedback path selection

Internal feedback path selection

=R

1090 143

CUPL

CUPL Language Reference Manual

.CKMUX L Clock multiplexer selection

.OEMUX L Tri-state multiplexer selection

.TEC L Technology-dependent fuse selection

IMUX L Input multiplexer selection of two pins

T1 L T1 input of 2-T flip-flop

T2 L T2 input of 2-T flip-flop

I0OD R Pin feedback path through D register

IOL R Pin feedback path through latch

JOCK L Clock for pin feedback register

JOAR L Asynchronous reset for pin feedback
register

JOAP L Asynchronous preset for pin feedback
register

JOSR L Synchronous reset for pin feedback
register

JIosp L Synchronous preset for pin feedback
register

ARMUX L Asynchronous reset multiplexer selection

APMUX L Asynchronous preset multiplexer
selection

.LEMUX L Latch enable multiplexer selection

144

Each extension provides access to a specific function. For
example, to specify an equation for output enable (on a device
that has the capability) use the .OE extension. The equation
will look as follows:

PIN 2 = A;
PIN 3 = B;
PIN 4 = C;
PIN 15 = VARNAME;
VARNAME.OE = A&B;

Note that the compiler supports only the flip-flop capabilities
that are physically implemented in the device. For example,
the compiler does not attempt to emulate a JK-type flip-flop in a
device that only has D-type registers. Any attempt to use

1090 91-10128-6

CUPL
Reference Manual CUPL Language

capabilities not present in a device will cause the compiler to
report an error.

For those devices containing bi-directional I/0 pins with
programmable output enables, CUPL automatically generates
the output enable expression according to the usage of the pin.
If the variable name is used on the left side of an equation, the
pin is assumed to be an output and is assigned binary value 1;
that is, the output enable expression is defaulted to the
following:

PIN_NAME.OE='b'l; /* Tri-state buffer ¥/
/* Always ON */

Those pins that are used only as inputs (that is, the variable
name appears only on the right side of an equation) are
assigned binary value 0; the output enable expression is
defaulted to the following:

PIN_NAME.OE = 'b'0; /* Tri-state buffer
Always OFF */

When the I/O pin is to be used as both an input and output, any
new output enable expression that the user specifies overrides
the default to enable the tri-state buffer at the desired time.

When using a JK or SR-type flip-flop, an equation must be
written for both the J and K (or S and R) inputs. If the design
does not require an equation for one of the inputs, use the
following construct to turn off the input:

COUNTO0.J='b'0 ; /*J input not used */

Control functions such as asynchronous resets and presets are
commonly connected to a group (or all) of the registers in a
device. When an equation is written for one of these control
functions, it is actually being written for all of the registers in
the group. For documentation purposes, CUPL checks for the
presence of such an equation for each register in the group and
generates a warning message for any member of the group
that does not have an identical equation. If all the control

91-10128-5 1030 145

CUPL

CUPL Language Reference Manual

functions for a given group are defined with different
equations, the compiler will generate an error since it cannot
decide which equation is the correct one. Remember that this is
a device specific issue and it is a good idea to understand the
capability of the device being used.

Figure 1-5 shows the use of extensions. Note that this figure
does not represent an actual circuit, but shows how to use
extensions to write equations for different functions in a
circuit.

OUT_VAR.CE
IN_VAR1
[e 2N —
OUT_VAR.SP
n
IN_VAR2
—>————1 FUSE OUT_VAR.D 5P

IN_VAR3.DQ ARRAY - D)—1Jpo o VAR
IN_VAR3 | OUT_VAR.CK
10 T

s OUT_VARAR
)
| I

I OUT_VAR (default feedback)
OUT_VAR.IO (alternate feedback)

146

Figure 1-5. Circuit llustrating Extensions

The figure shows an equation with a .D extension that has
been written for the output to specify it as a registered output.
Note that when feedback (OUT_VAR) is used in an equation,
it does not have an extension.

The .DQ extension is used for input pins only.

Additional equations can be written to specify other types of
controls and control points. For example, an equation for the
output enable can be written as follows:

1090 91-10128-5

CUPL
Reference Manual CUPL Language

OUT_VAR.OE = IN_VAR1 # IN_VAR2

O Feedback Extensions Usage

Certain devices can program the feedback path. For example,
the EP300 contains a multiplexer for each output that allows the
feedback path to be selected as internal, registered, or pin
feedback. Figure 1-6 shows the EP300 programmable feedback

capability.
- D
) OUT_VAR.D T o -
FUSE :
ARRAY S
r ; MUX

Figure 1-6. Programmable Feedback

CUPL automatically chooses a default feedback path
according to the usage of the output. For example, if the output
is used as a registered output, then the default feedback path
will be registered, as in Figure 1-7. This default can be
overridden by adding an extension to the feedback variables.
For example, by adding the .IO extension to the feedback
variables of a registered output, CUPL will select the pin
feedback path. Figure 1-7 shows a registered output with pin
feedback.

91-10128-5 1090 147

CUPL
Reference Manual

CUPL Language
IN_VAR1
O
OUT_VAR.D
n OUT_VAR
FUSE - O—° o
ARRAY
D>

r OUT_VAR.IO

OUT_VAR.D = IN_VAR1 & OUT_VAR.IO

Figure 1-7. Programmable Pin (I/0) Feedback

Figure 1-8 shows a combinatorial output with registered

feedback.
) ,
IN_VAR{ L/
o
OUT_VAR
FUSE H>>—<==
ARRAY L

D

I—' >
OUT_VAR.DFB
OUT_VAR = IN_VAR1 & OUT_VAR.DFB

Figure 1-8. Programmable Registered Feedback
Figure 1-9 shows a registered output with internal feedback.

148 1090 91-10128-5

CUPL
Reference Manual

CUPL Language

IN_VAR1
o

)
L/
. OUT_VARD OUT VAR
FUSE De 4{>=
ARRAY >

-

OUT_VAR.INT

OUT_VAR.D = IN_VAR1 & OUT_VAR.INT

Figure 1-9. Programmable Internal Feedback

O Multiplexer Extension Usage

Certain devices allow selection between programmable and
common control functions. For example, for each output, the

P29MA16

contains multiplexers for selecting between

common and product term clocks and output enables. Figure
1-10 shows the P29MA16 programmable clock and output
enable capability.

91-10128-5

1090 149

CUPL

CUPL Language Reference Manual
IOE
[
MUX
OUT_VAR.OE
L/
' bel-D
FUSE n OUT_VAR.D - S OUT VAR
ARRAY |7 L
a
OUT_VAR.CK >
—q MUX l
OUT_VAR
CLOCK
ja—j

150

Figure 1-10. Outpus tvith Qutput Enable and Clock
Multiplexers

If expressions are written for the .OE and .CK extensions, the
multiplexer outputs are selected as product term output enable
and clock, respectively. Otherwise, if expressions are written
for the .OEMUX and .CKMUX extensions, the multiplexer
outputs are selected as common output enable and clock,
respectively.

Expressions written for the OEMUX and .CKMUX extensions
can have only one variable and be operated on only by the
negation operator, !. This is because their inputs are not from
the fuse array, but from a common source, such as a clock pin.
This is in contrast with expressions written for the .OE and
.CK extensions, which take their inputs from the fuse array.

Figure 1-11 shows a registered output with the output enable
multiplexer output selected as Vce, output enable always
enabled, and the clock multiplexer output selected as the
common clock pin inverted, negative-edge clock.

1090 91-10128-5

CUPL

Reference Manual CUPL Language
Vee —
FUSE OUT_VAR.OE I~ VAR
I) D Q >
ARRAY s |
al—
>
l—‘ OUT_VAR
CLOCK
—
PIN 1 =CLOCK ; r* Common clock pin */
PIN 24 =Vcc; r* Vee pin ¢/
OUT _VAR.OEMUX =Vcc; /* Vec, Alwags Enabled */
OUT_VAR.CKMUX =ICLOCK; / Negative-Edge Clock */

Figure 1-11. Output with Output Enable and Clock
Multiplexers Selected

Expressions for the .OE and .OEMUX extensions are
mutually exclusive; that is, only one may be written for each
output. Likewise, expressions for the .CK and .CKMUX
extensions are mutually exclusive.

QO Boolean Logic Review

Table 1-12 lists the rules that the CUPL compiler uses for
evaluating logic expressions. These basic rules are listed for
reference purposes only.

Table 1-12. Logic Evaluation Rules

Commutative Property:
A&B=B&A
A#B=B#A
Associative Property:

91-10128-5 1090 151

CUPL

CUPL Language Reference Manual

152

A&Z(B&C)=(A&B)&C
A#B#C)=(A#B)#C
Distributive Property:
A&B#C)=(A&B)#(A &)
A#B&C)=(A#B)&(A#C)
Absorptive Property:

A& (A#B)=A
A#A&B)=A

DeMorgan’s Theorem:
A&B&C)='A#'B#!C
IA#B#C)=1A&'B&!C
XOR Identity:
A$B=(CA&B)#(A &'B)
A$B)=A$'B=!A$B

=('A & 'B) # (A& B)
Theorems:

A&0=0A&1=A

A#0=A A#1=1
A&A=AA&'A=0
A#A=A A#lA=1

Expressions

Expressions are combinations of variables and operators that
produce a single result when evaluated. An expression may be
composed of any number of sub-expressions.

Expressions are evaluated according to the precedence of the
particular operators involved. When operators with the same
precedence appear in an expression, evaluation order is taken
from left to right. Parentheses may be used to change the order
of evaluation; the expression within the innermost set of
parentheses is evaluated first.

In Table 1-13, note how the order of evaluation and use of
parentheses affect the value of the expression.

Table 1-13. Sample Expressions

1090 91-10128-5

CUPL

Reference Manual CUPL Language
Expression Result Comments
A#B&C A#
B&C
A#B)&C A&C Parentheses change order
#
B&C
A& B 'A&B
(A & B) A # !B DeMorgan’s Theorem
A#B&C#D A#
D #
B&C
A#B & (C#D) A# Parentheses change order
B&C
#
B&D

O Logic Equations

Logic equations are the building blocks of the CUPL language.
The form for logic equations is as follows:

[!] var [.ext] =exp;

where

91-10128-5

var is a single variable or a list of indexed or non-
indexed variables defined according to the rules for the
list notation (see the subtopic, List Notation in this
chapter). When a variable list is used, the expression is
assigned to each variable in the list.

.ext is an optional extension to assign a function to the
major nodes inside a programmable device (see Table 1-
11).

exp is an expression; that is, a combination of variables
and operators (see “Expressions” in this chapter).

= is the assignment operator; it assigns the value of an
expression to a variable or set of variables.

1030 153

CUPL

CUPL Language Reference Manual

154

! is the complement operator.

The complement operator can be used to express the logic
equation in negative true logic. The operator directly precedes
the variable name (no spaces) and denotes that the expression
on the right side is to be complemented before it is assigned to
the variable name. Use of the complement operator on the left
side is provided solely as a convenience. The equation may
just as easily be written by complementing the entire
expression on the right side.

Older logic design software that did not provide the automatic
DeMorgan capability (output polarity assigned according to
the pin variable declaration) required the use of the
complement operator when using devices with inverting
buffers.

Place logic equations in the “Logic Equation” section of the
source file provided by the template file.

Logic equations are not limited solely to pin (or node)
variables, but may be written for any arbitrary variable
name. A variable defined in this manner is an intermediate
variable. An intermediate variable name can be used in other
expressions to generate logic equations or additional
intermediate variables. Writing logic equations in this “top
down” manner yields a logic description file that is generally
easier to read and comprehend.

Place intermediate variables in the “Declarations and
Intermediate Variable Definitions” section of the source file.

The following are some examples of logic equations:

SEL_0=A15 & !A14; /* A simple, decoded output pin */
Q0.D=Q1 & Q2 & Q3; /* Output pin w/ D flip-flop */

1090 91-10128-5

CUPL

Reference Manual CUPL Language
Q1J=Q2#Q3; /* Output pin w/ JK flip-flop */
Q1.K=Q2 &!Q3;
" MREQ=READ # WRITE; /* Intermediate Variable */
SEL_1=MREQ & A15; /* Output intermediate var */
[DO..3] = h'FF; /* Data bits assigned to constant
*/

[DO..3]).0e = read; /* Data bits assigned to variable
*/

APPEND Statements

In standard logic equations, normally only one expression is
assigned to a variable. The APPEND statement enables
multiple expressions to be assigned to a single variable. The
format is as follows.

APPEND [!]Jvar{.ext] = expr;

where

1is the complement operator to optionally define the
polarity of the variable.

var is a single variable or a list of indexed or non-
indexed variables in standard list format.

.ext is an optional extension that defines the function of
the variable.

= is the assignment operator.
expr is a valid expression.

; 1s a semicolon to mark the end of the statement.

The expression that results from multiple APPEND
statements is the logical OR of all the APPEND statements. If
an expression has not already been assigned to the variable,
the first APPEND statement is treated as the first assignment.

The following example shows several APPEND statements.
APPEND Y = A0 & Al;

91-10128-5 1090 1%

CUPL

CUPL Language Reference Manual

156

APPEND Y=B0 & B1;
APPENDY=C0&C1;

The three statements above are equivalent to the following
equation.

Y = (A0 & Al) # (BO & B1) # (C0 & C1) ;

The APPEND statement is useful in adding additional terms
(such as reset) to state-machine variables or constructing
user-defined functions (see the subtopics, State Machine
Syntax and User-Defined Functions in this chapter).

Set Operations

All operations that are performed on a single bit of
information, for example, an input pin, a register, or an output
pin, may be applied to multiple bits of information grouped
into sets. Set operations can be performed between a set and a
variable or expression, or between two sets.

The result of an operation between a set and a single variable
(or expression) is a new set in which the operation is
performed between each element of the set and the variable (or
expression). For example

[DO, D1, D2, D3] & read

evaluates to: v
[DO & read, D1 & read, D2 & read, D3 & read]

When an operation is performed on two sets, the sets must be
the same size (that is, contain the same number of elements).
The result of an operation between two sets is a new set in
which the operation is performed between elements of each set.

For example
[A0, A1, A2, A3] & [BO, B1,B2, B3]

evaluates to:

1090 91-10128-5

CUPL

Reference Manual CUPL Language

[A0 & B0, Al & B1, A2 & B2, A3 & B3]

Bit field statements (see the subtopic, Bit Field Declaration
Statements in this chapter) may be used to group variables into
a set that can be referenced by a single variable name. For
example, group the two sets of variables in the above operation
as follows:

FIELD a_inputs = [A0, Al, A2 A3] ;
FIELD b_inputs = [B0, B1, B2, B3] ;

Then perform a set operation between the two sets, for example,
an AND operation, as follows:

a_inputs & b_inputs

When numbers are used in set operations, they are treated as
sets of binary digits. A single octal number represents a set of
three binary digits, and a single decimal or hexadecimal
number represents a set of four binary digits. Table 1-14 lists
the representation of numbers as sets.

Table 1-14. Equivalent Binary Sets

Equivalent Equivalent
Number Binary Set Number Binary Set
'0'X X, X, X] 'H'X XXX, X]
'0'0 [0,0,0] 'H'0 [0,0,0,0]
'0'1 [0,0,1] 'H'1 [0,0,0,1]
'0'2 [0, 1, 0] 'H'2 [0,0,1,0]
'0'3 [0,1,1] 'H'3 [0,0,1,1]
'0'4 [1,0,0] 'H'4 [0,1,0,0]
'0'5 [1,0,1] '‘H'5 [0,1,0,1]
'0'6 [1,1,0] 'H'6 [0,1,1,0]
'0'7 1,1,1] ‘H'7 [0,1,1,1]
'D'0 [0,0,0,0] 'H'8 [1,0,0,0]
'D'1 [0,0,0,1] 'H'9 [1,0,0,1]
'D'2 [0,0,1,0] ‘H'A [1,0,1,0]
'D'3 [0,0,1,1] 'H'B [1,0,1,1]
'‘D'4 [0,1,0,0] 'H'C [1,1,0,0]

91-10128-5 1090 157

CUPL

CUPL Language Reference Manual
'D'5 [0,1,0,1] 'H'D [1,1,0,1]

'D'6 [0,1,1,00 'H'E [1,1,10]

'D'7 [o01,1,1] 'H'F [1,1,1]1]

'D'8 [1,0,0,0]

‘D'9 [1,0,0,1] -

158

Numbers may be effectively used as “bit masks” in logic
equations using sets. An example of this application is the
following 4-bit counter.

field count =[Q3, Q2, Q1, Q0J;
count.d = 'b' 0001 & (!1Q0)
#'b' 0010 & (Q1 $ Q0)
#'D' 0100 & (Q2 $ Q1 & Q0)
#'D' 1000 & (Q3 $ Q2 & Q1 & QU);

The equivalent logic equations written without set notation are
as follows:

Q0.d =1Q0;
Ql.d = Q1 $ QO;
Q2.d=Q2$Ql & QU;
QBd=Q3$Q2& Q1 & QU;

Equality Operations

Unlike other set operations, the equality operation evaluates to
a single Boolean expression. It checks for bit equality between
a set of variables and a constant. The format for the equality
operation is as follows:

1. [var, var, ... var]: constant ;
2. bit_field_var:constant ;

where

[var, var, ... var] is a list of variables in shorthand
notation.

1090 91-10128-5

CUPL
Reference Manual CUPL Language

constant is a number (hexadecimal by default).

bit_field_var is a variable defined using a bit field
statement.

: is the equality operator.
; is a semicolon used to mark the statement end.

D

Note

Square brackets do not indicate optional items, but
delimit variables in a list.

Format 1 is used between a list of variables and a constant
value. Format 2 is used between a bit field variable and a
constant value.

The bit positions of the constant number are checked against
the corresponding positions in the set. Where the bit position is
a binary 1, the set element is unchanged. Where the bit
position is a binary 0, the set element is negated. Where the bit
position is a binary X, the set element is removed. The
resulting elements are then ANDed together to create a single
expression. In the following example, hexadecimal D (binary
1101) is checked against A3, A2, Al, and A0.

select = [A3..0]:D;

The set elements A3, A2, and A0 remain unchanged because
the corresponding bit position is positive. Set element Al is
negated because its corresponding bit position is negative.
Therefore, the above expression is equivalent to the following
expression:

select = A3 & A2 & A1 & A0 ;

91-10128-5 1090 159

CUPL
CUPL Language Reference Manual

In the following example, binary 1X0X is checked against A3,
A2, Al, A0.

select = [A3..0):'B'1X0X ;

The set element A3 remains unchanged because the
corresponding bit position is positive. Set element Al is
negated because its corresponding bit position is negative. Set
elements A2 and A0 are removed from the expression because
the corresponding bit positions are “don't-cared.” Therefore,
the above expression is equivalent to the following expression:

select = A3 & A1 ;
In addition to address decoding, the equality operator can be

used to specify a counter or state machine. For example, a 4-bit
counter can be specified using the following notation:

FIELD count = [Q0..3];

Q0.J . count:0 # count:2 # count:4 # count:6
count:8 # count:A # count:C # count:E ;

Q0K S count:l # count:3 # count:5 # count:7
count:9 # count:B # count:D # count:F;

Ql.J = count:l # count:5 # count:9 # count:D

’

Q1.K = count:3 # count:7 # count:B # count:F

H

Q2.J = count:3 # count:B ;

Q2K = count:7 # count:F ;

Q3J = count:7 ;

Q3K = count:F;
The equality operator can also be used with a set of variables

that are to be operated upon identically. The following syntax
can be used as a time-saving convenience:

160 1090 91-10128-5

CUPL
Reference Manual CUPL Language

[var, var, ... , var]:op

which is equivalent to:
var op var op ... var

where

op is the &, # or $ operator (or its equivalent if an
alternate set of operators has been defined).

var is any variable name.

For example, the following three expressions
[A3,A2,A1,A0]:&
[B3,B2,B1,B0]:#
[C3,C2,C1,C0):$

are equivalent respectively to:
A3 & A2& A1 & A0
B3 #B2 # Bl # BO
C3$C28$C1$00

The equality operation can be used with an equivalent binary
set to create a function table description of the output values.
For example, in the following Binary-to-BCD code converter,
output values are assigned by using the equality operation to
define the inputs, and equivalent binary sets to group the
output.

$DEFINE L 'b'0
$DEFINE H D'l
FIELD input = [in3..0] ;
FIELD output =[E, D, C, B, Al;
/* in3..0 ->EDCBA
*/
output = input0 & [L, L, L, L
input:l & [L, L, L, L

-

L]
Hi]

-

91-10128-5 1090 161

CUPL

CUPL Language Reference Manual
input2 & [L L, L, H, L]
input3 & [L, L, L, H, H]
input4 & [L, L, H, L, L]
input5 & [L, L, H, L, H]
input6 & [L, L, H, H, L]
input7 & [L, L, H, H, H]
input8 & [L, H, L, L, L]
input9 & [L, H, L, L, H]
input:A & [H,L, L, L, L]
inputB & [H,L, L, L, H]
input:C & [H,L, L, H, L]
inputD & [H,L, L, H, H]
inputE & [H,L, H, L, L]
inputF & [H, L, H, L, H];
Range Operations

The range operation is similar to the equality operation except
that the constant field is a range of values instead of a single
value. The check for bit equality is made for each constant
value in the range. The format for the range operation is as

follows:
1. [var, var, ... var]l:[constant_lo..constant_hi] ;
2. bit_field_var:[constant_lo..constant_hi] ;
where:

[var, var, ... var] is a list of variables in shorthand
notation.

bit_field_var is a variable that has been defined using a
bit field statement.

¢ is the equality operator.
; is a semicolon used to end the statement.

[constant_lo constant_hi] are numbers (hexadecimal by
default) that define the range operation.

12 1090 91-10128-5

CUPL
Reference Manual CUPL Language

D

Note

Square brackets do not indicate optional items, but
delimit items in a list

Format 1 specifies the range operation between a list of
variables and a range of constant values. Format 2 specifies a
range operation between a bit field variable and a range of
constant values.

All numbers greater than or equal to constant_lo and less than
or equal to constant_hi are used to create ANDed expressions
as in the equality operation. The sub-expressions are then
ORed together to create the final evaluated expression. For
example, the RANGE notation can be used to look for a decoded
hex value between 1100 and 1111 on an address bus containing
A3, A2, A1, and AOQ. First, define the address bus, as follows:

FIELD address = [A3..A0]

Then write the RANGE equation:
select = address:]C..F];

This is equivalent to the following equation:
select = address:C # address:D
address:E # address:F ;

This equation expands to:

select = A3 & A2 & !Al1 & A0
A3 & A2 & !A1 & A0
A3 & A2 & Al & A0
A3 & A2 & Al & A0;

91-10128-5 1090 163

CUPL

CUPL Language Reference Manual

164

The logic minimization capabilities within CUPL reduce the
previous equation into a single product term equivalent. The
minimization works as follows. First, lines one and two are
combined and lines three and four are combined to produce the
following equation:

select= A3 & A2 & 1Al & (1A0 # AO)
#A3 & A2 & Al & (1A0 # A0) ;

Since the expression (!A0 # A0) is always true, it can be
removed from the equation, and the equation reduces to:

select = A3 & A2 & 1A1
#A3& A2 & Al;

By the same process, the equation reduces to the following:

select = A3 & A2 & (A1 # Al);

Since the expression (Al # Al) is always true, removing it
reduces the equation to the single product term:

select = A3 & A2;

When either the equality or range operations are used with
indexed variables, the CONSTANT field must contain the
same number of significant bit locations as the highest index

1090 91-10128-5

CUPL
Reference Manual CUPL Language

number in the variable list. Index positions not in the pin list
or field declaration are DON'T CAREd in the operation.

" In the following example, pin assignments are made, an
address bus is declared, and a decoded output is asserted over
the hexadecimal memory address range 8000 through BFFF.

PIN [1.4] =[A15..12];
FIELD address =[A15..12] ;
chip_select = address:[8000.BFFF] ;

Although the variables A15, A14, A13, and A12 are the only
address inputs to the device, a full 16-bit address is used in the
range expression. The most significant bit, A15, determines
that the field is a 16-bit field. The lower order address bits (A0
through A11) are effectively DON'T CAREd in the equation,
because the variable index numbers are used to determine bit
position. Even though the lower order bits are not present in the
device, the constant value is written as though they did exist,
generating a more meaningful expression in terms of
documentation.

Consider, for example, the following application that decodes a
microprocessor address for an I/O port:
PIN [3..6] = [A7.10] ;
FIELD ioaddr = [A7.10]; /* order of field
declaration is not
important when using
indexed variables */
io_port = ioaddr:[400..6FF] ;
Since the most significant bit is A10, an 11-bit constant field is

required (although three hex digits form a 12-bit address, the
bit position for A1l is ignored).

91-10128-6 1090 165

CUPL

CUPL Language Reference Manual

166

Address bits A0 through A6 are DON'T CAREd in the
expression. Without the bit position justification, the range
equation would be written as

io_port = ioaddr:[8..D] ;

This expression doesn't clearly document the actual I/0
address range that is desired.

The original equation without the range operation could be
written as follows:

io_port= Al10 & !A9 & !A8 & !A7
Al10 & !A9 & !IA8 & A7
Al10 & A9 & A8 &!A7
Al0&!'A9 & A8 & A7
Al10 & A9 & !A8 & !A7
Al0 & A9 &!IA8 & AT;

I I = = I

CUPL reduces this equation to the following:
io_port =A10 &!A9 # A10 & A9 & !A8;

>

Note

Careless use of the range feature may result in the
generation of huge numbers of product terms,
particularly when fields are composed of variables
with large index numbers. The algorithm for the
range does a bit-by-bit comparison of the two constant
values given in the range operation, starting with
index variable 0 (whether it exists in the field or not).
If the value of the bit position for constant_lo is less
than that for constant_hi, the variable for that bit
position is not used in the generation of the ANDed
expressions. When the value of the bit position for

1090 91-10128-5

CUPL
Reference Manual CUPL Language

constant_lo is equal to or greater than that for
constant_hi, an ANDed expression is created for all
constant values between this new value and the
original constant_hi value.

For example, consider the following logic equation that uses
the range function on a 16-bit address field.

field address =[A15..12] ;
board_select = address:[A000.DFFF] ;

Figure 1-12 shows how the CUPL algorithm treats this
equation.

RANGE FUNCTION ALGORITHM

AAAAARAAAAAAAAAA

bit 111111

position -> 54 3210987654321
constant_hi 110111111111111
constant_lo 1 0 000000000000

No longer DON'T CARE

Figure 1-12. Range Function Algorithm

The algorithm ignores all bit positions lower than position 13,
because for these positions constant_lo is less than
constant_hi. Figure 1-13 shows the result.

91-10128-5 1090 167

CUPL

CUPL Language Reference Manual

168

RANGE FUNCTION ALGORITHM
AAAAAAAAAAAAAARAA
bit

11111
position => 5 4 3 2 1

987654321

constant_hi 1 1 0 x X X X X X X X X X X X
constant_1o0 1 0 1 X X X X X X X X X X X X

Figure 1-13. Range Function Results

The following two product terms are generated as a result of
the range function in Figure 1-13.

Al5 & Al4 & 1A13
Al5 & 1A14 & A13

The following equation is another example using the range
function.

board_select = address:{A000.D000] ;

Because the values of constant_lo and constant_hi match for
the least significant bits, the algorithm generates product
terms as follows:

1010 0000 0000 0000
1010 0000 0000 0001
1010 0000 0000 0010
1010 0000 0000 0011

1100 1111 1111 1111

1090 91-10128-5

CUPL
Reference Manual CUPL Language

1101 0000 0000 0000

The number of product terms generated is over twelve
thousand (4096 x 3 + 1). This number of product terms would
probably produce an “out of memory” error message because
CUPL cannot hold this many product terms in memory at one
time.

3 Truth Tables

Sometimes the clearest way to express logic descriptions is in
tables of information. CUPL provides the TABLE keyword to
create tables of information. The format for using TABLE is
as follows:

TABLE var_list_1 => var_list_2 {
input_n => output_n;

input_n => output_n;

}

where
var_list_1 defines the input variables.
var_list_2 defines the output variables.

input_n is a decoded value (hex by default) or a list of
decoded values of var_list_1.

output_n is a decoded value (hex by default) of
var_list_2.

{) are braces to begin and end the assignment block.

=> specifies a one-to-one assignment between variable
lists, and between input and output numbers.

First, define relevant input and output variable lists, and then
specify one-to-one assignments between decoded values of the

91-10128-5 1090 169

CUPL

CUPL Language Reference Manual

1720

input and output variable lists. Don't-care values are
supported for the input decode value, but not for the output
decode value.

A list of input values can be specified to make multiple
assignments in a single statement. The following block
describes a simple binary-to-BCD code converter:

FIELD input =[in3..0] ;
FIELD output =[E,D,C, B, Al;
TABLE input => output {

0=>00; 1=>01; 2=>02; 3=>03;
=>04; 5=>05; 6=>06; =>07;

8=>08; 9=>09; A=>10; B=>11;

C=>12; D=>13; E=>14; F=>15;

)

The following example illustrates the use of a list of input
numbers to do address decoding for various-sized RAM,
ROM, and I/0 devices. The address range is decoded
according to the rules (in terms of indexed variable usage) for
the range operation (see the subtopic, Range Operations in this
chapter).

PIN [1.4] =[a12..15]; /*Upper 4 address */

PIN 12 = 'RAM_sel ; /* 8K x 8 RAM */
PIN 13 = !ROM_sel ; /* 32K x 8 ROM */
PIN 14 = !timer_sel ; /* 8253 Timer */

FIELD address = [a15..12] ;

FIELD decodes = [RAM_sel,ROM_sel,timer_sel] ;
TABLE address => decodes {

[1000.2FFF] => 'b'100; /* select RAM */
[56000..CFFF] => 'b'010; /* select ROM */

F000 => 'b'001; /* select timer */

)

1090 91-10128-5

CUPL
Reference Manual CUPL Language

O State-Machine Syntax

This section describes the CUPL state machine syntax,
providing a brief overview of its use, a definition of a state
machine, and explaining in detail the CUPL state machine
syntax.

The state-machine approach used with the CUPL compiler-
based PLD language permits bypassing the gate and equation
level stage in logic design and to move directly from a
system-level description to a PLD implementation.
Additionally, unlike assembler-based approaches, the state-
machine approach allows clear documentation of design, for
future users.

O State-Machine Model

A synchronous state machine is a logic circuit with flip-flops.
Because its output can be fed back to its own or some other flip-
flop’s input, a flip-flop’s input value may depend on both its
own output and that of other flip-flops; consequently, its final
output value depends on its own previous values, as well as
those of other flip-flops.

The CUPL state-machine model, as shown in Figure 1-14, uses
six components: inputs, combinatorial logic, storage
registers, state bits, registered outputs, and non-registered
outputs.

91-10128-5 1090 171

CUPL

CUPL Language Reference Manual
Inputs
Registered Outputs
M AL STORAGE _
REGISTERS | State Bits

Figure 1-14. State Machine Model

Figure 1-15 shows the timing relationships between the state

machine components.

(Depends on state and input)

cLocK | |
STATE BIT
. |
REGISTERED OUTPUT Teo I | _—
J—Tco + pd

NON-REGISTERED OUTPUT _ ™ |
(Depends only on state)
INPUT I |

‘ T T

jg— 'co +
NON-REGISTERED —->| pd
OUTPUT Tpd —=

| S —

Figure 1-15. State Machine Timing Diagram

The following definitions refer to the timing diagram in

Figure 1-15.

Inputs - are signals entering the device that originate in some

other device.

172

1090

91-10128-5

CUPL
Reference Manual CUPL Language

Combinatorial Logic - is any combination of logic gates
(usually AND-OR) that produces an output signal that is valid
Tpd (propagation delay time) nsec after any of the signals that
drive these gates changes. Tpd is the delay between the
initiation of an input or feedback event and the occurrence of a
non-registered output.

State Bits - are storage register outputs that are fed back to
drive the combinatorial logic. They contain the present-state
information.

Storage Registers - are any flip-flop elements that receive
their inputs from the state machine's combinatorial logic.
Some registers are used for state bits: others are used for
registered outputs. The registered output is valid Tco (clock to
out time) nsec after the clock pulse occurs. Tco is the time
delay between the initiation of a clock signal and the
occurrence of a valid flip-flop output.

For the system to operate properly, the PLD’s requirements for
setup and hold times must be met. For most PLDs, the setup
time (Tsu) usually includes both the propagation delay of the
combinatorial logic and the actual setup time of the flip-flops.
Tsu is the time it takes for the result of either feedback or an
input event to appear at the input to a flip-flop. A subsequent
clock input cannot be applied until this result becomes valid at
the flip-flop's input. The flip-flops can be either D, D-CE, J- K|
S-R, or T types.

Non-registered Qutputs - are outputs that come directly from
the combinatorial logic gates. They may be functions of the
state bits and the input signals (and have asynchronous
timing), or they may be purely dependent on the current state-
bit values, in which case they become valid Tco + Tpd nsec
after an active clock edge occurs.

Registered Outputs - are outputs that come from the storage
registers but are not included in the actual state-bit field (that
is, a bit field composed of all the state bits). State- machine

91-10128-5 1090 173

CUPL

CUPL Language Reference Manual

174

theory requires that the setting or resetting of these registered
outputs depends on the transition from a present state to a next
state. This allows a registered output to be either set or reset in
a given state depending upon how the machine came to be in
that state. Thus, a registered output can assume a hold
operation mode. In the hold mode, the registered output will
remain at its last value as long as the current state transition
does not specify an operation on that registered output.

S

Note

This hold mode of operation is available only for

devices which use D-CE, J-K, or S-R type flip-flops.

Syntax

To implement the state machine model, CUPL supplies a
syntax that allows the describing of any function in the state
machine.

The SEQUENCE keyword identifies the outputs of a state
machine and is followed by statements that define the function
of the state machine. The format for the SEQUENCE syntax is
as follows:

SEQUENCE state_var_list {
PRESENT state_n0 statements ;

PRESENT state_nn statements ;
)

1090 91-10128-5

CUPL
Reference Manual CUPL Language

where

state_var_list is a list of the state bit variables used in the state
machine block. The variable list can be represented by a field
variable.

state_n is a decoded value (hex by default) of the
state_variable_list and must be unique for each PRESENT
statement.

statements are any of the conditional, next, or output
statements described in the following subsections of this
section.

; 1s a semicolon used to mark the end of a statement.

{) are braces to mark the beginning and end of the state
machine description.

Symbolic names defined with the $DEFINE command may be
used to represent state_numbers.

The SEQUENCE keyword causes the storage registers and
registered output types generated to be the default type for the
target device. For example, by using the SEQUENCE keyword
in a design with a P16R8 target device, the state storage
registers and registered outputs will be generated as D-type
flip-flops.

The storage registers for certain devices can be programmed
as more than one type. In the case of the F159 (Signetics
PLS159), they can be either D or J-K type flip-flops. By default,
using the SEQUENCE statement with a design for the F159
will cause the state storage registers and registered outputs to
be generated as J-K type flip-flops. To override this default, the
SEQUENCED keyword would be used in place of the
SEQUENCE keyword. This would cause the state registers
and registered outputs to be generated as D-type flip-flops.

91-10128-5 1090 175

'CUPL

CUPL Language Reference Manual

176

Along with the SEQUENCE and SEQUENCED keywords are
the SEQUENCEJK, SEQUENCERS, and SEQUENCET
keywords. Respectively, they cause the state registers and
registered outputs to be generated as J-K, S-R, and T-type flip-
flops.

The subsections that follow describe the types of statements that
can be written in the state-machine syntax. Statements use the
IF, NEXT, OUT and DEFAULT keywords.

Unconditional NEXT Statement

This statement describes the transition from the present state
to a specified next state. The format is:

PRESENT state_n
NEXT state_n;

where

state_n is a decoded value (default hex) of the state bit
variables that are the output of the state machine.

A symbolic name can be assigned with the $DEFINE
command to represent state_n.

Because the statement is unconditional (that is, it describes the
transition to a specific next state), there can be only one NEXT
statement for each PRESENT statement.

The following example specifies the transition from binary
state 01 to binary state 10.

PRESENT 'b'01
NEXT 'b'10 ;

Figure 1-16 shows the transition described in the example
above.

1090 91-10128-5

CUPL
Reference Manual CUPL Language

PRESENT 'b'01
NEXT 'b"10;

Figure 1-16. Unconditional NEXT Statement Diagram

For the transition described in the example and figure above,
CUPL generates the following equations, depending on the
type of flip-flop that is specified:

D-Type Flip-Flop
APPEND Q1.D
APPEND Q0D

Q1 & QO;
'b'0; /* implicitly resets */

J-K-Type Flip-Flop
APPEND Q1.J = !Q1 & QO;
APPEND Q1K = 'b'0;
APPEND Q0J = 'b'0;

APPEND QOK = !Q1 & QO;
S-R-Type Flip-Flop
APPEND Q1.S = !Q1 & QO;

APPEND Q1R = 'b'0;
APPEND Q0.S = 'b'0;
APPEND QOR = !Q1 & QO;

91-10128-5 1090 177

CUPL
CUPL Language Reference Manual

D-CE-Type Flip-Flop
' APPEND Q1D = !Q1 & Q0;
APPEND Q1.CE = !Q1 & Q0;
APPEND Q0.D = 'b'0;
APPEND QO0.CE = !Q1 & QO0;

T-Type Flip-Flop
APPEND Q1.T
APPEND QO0.T

1Q1 & QO;
1Q1 & QO;

See the subtopic, APPEND Statements in this chapter for a
description of the APPEND command.

Conditional NEXT Statement

This statement describes the transition from the present state
to a next state if the conditions in a specified input expression
are met. The format is as follows.

PRESENT state_n
IF expr NEXT state_n;

IF expr NEXT state_n;
[DEFAULT NEXT state_n;

where

state_n is a decoded value (default hex) of the state bit
variables that are the output of the state machine.

expr is any valid expression (see the subtopic, Expressions in
this chapter).

178 1090 91-10128-5

CUPL
Reference Manual CUPL Language

; is a semicolon used to mark the end of a statement.

S

Note

The square brackets indicate optional items.

The value for each state number must be unique.

More than one conditional statement can be specified for each
PRESENT statement.

The DEFAULT statement is optional. It describes the
transition from the present state to a next state if none of the
conditions in the specified conditional statements are met. In
other words, it describes the condition that is the complement of
the sum of all the conditional statements.

>

Note

Be careful when using the DEFAULT statement.
Because it is the complement of all the conditional
statements, the DEFAULT statement can generate
an expression complex enough to greatly slow CUPL
operation. In most applications, one or two
conditional statements can be specified instead of the
DEFAULT statement.

The following is an example of two conditional NEXT
statements without a DEFAULT statement.

91-10128-5 1090 179

CUPL
CUPL Language Reference Manual

PRESENT 'b'01
IF INA NEXT 'b'10;
IF !INA NEXT 'b'11;

Figure 1-17 shows the transitions described by the above
example.

INA lIINA

PRESENT 'b’'01
IF INA NEXT 'b'10;
IF lINA NEXT 'B'11;

Figure 1-17. Conditional NEXT Statement Diagram

For the transitions described in the above example and figure,
CUPL generates the following equations, depending on the
type of flip-flop that is specified:
D-Type Flip-Flop

APPEND Q1.D =!Q1 & Q0;

APPEND QO0.D =!Q1 & Q0 & !INA;

D-CE-Type Flip-Flop
APPEND Q1.D =!Q1 & Q0;
APPEND Q1.CE =!Q1 & Q0;
' APPEND Q0.D =!Q1 & Q0 & !INA;

180 1090 91-10128-5

CUPL
Reference Manual CUPL Language

APPEND QO.CE =1Q1 & Q0 & INA;

J-K-Type Flip-Flop
APPEND Q1.J =!Q1 & QO0;
APPEND Q1K = 'b'0;
APPEND QO0.J = 'b'0;
APPEND Q0K =!Q1 & Q0 & INA;

S-R-Type Flip-Flop
APPEND Q1.S =!Q1 & QO;
APPEND Q1.R ="'b"0;
APPEND QO0.S = 'b'0;
APPEND QO.R =!Q1 & Q0 & INA;

T-Type Flip-Flop
APPEND Q1.T =!Q1 & QO;
APPEND QO0.T =!Q1 & Q0 & INA;
The following is an example of two conditional statements
with a DEFAULT statement.
PRESENT 'b'01
IF INA & INB NEXT 'b'10';
IF INA & !INB NEXT 'b'11;
DEFAULT NEXT 'b'00;
Figure 1-18 shows the transitions described by the above

example. Note the equation generated by the DEFAULT
statement.

91-10128-5 1090 181

. CUPL
CUPL Language Reference Manual

I(INA & INB
#INA & !INB)

INA & INB INA & !INB

PRESENT 'b'01
IF INA NEXT 'b'10;
IF lINA NEXT 'B'11;
DEFAULT NEXT 'b'00;

Figure 1-18. Conditional NEXT Statement with Default
Diagram
For the transitions described in the above example and figure,

CUPL generates the following equations, depending on the
type of flip-flop that is specified.

D-Type Flip-Flop
APPEND Q1D = !Q1 & Q0 & INA;
APPEND Q0D = !Q1 & Q0 & INA & !INB;

D-CE-Type Flip-Flop
APPEND Q1.D = !Ql1 & Q0 & INA;
APPEND Q1.CE = !Q1 & Q0 & INA;

182 1090 91-10128-5

CUPL
Reference Manual CUPL Language

APPEND Q0.D = 'b'0;
APPEND QO0.CE = !Q1 & Q0 & !INA
!1Q1 & Q0 & INA & INB;

J-K-Type Flip-Flop
APPEND Ql1.J = 1Q1 & Q0 & INA;
APPEND Q1K = 'b'0;
APPEND Q0.J = 'b'0;
APPEND Q0K = !Q1 & Q0 & INA & INB
#1Q1 & Q0 &!INA;

S-R-Type Flip-Flop
APPEND Q1.S = !Q1 & Q0 & INA;
APPEND Q1.R = 'b'0;
APPEND Q0.S = 'b'0;
APPEND QOR = !Q1 & Q0 & INA & INB
#1Q1 & Q0 &!INA;

T-Type Flip-Flop
APPEND Q1.T = !Ql1 & Q0 & INA;
APPEND QO0.T = !Ql1 & Q0 & !INA ’
1Q1 & Q0 & INA & INB;

Unconditional Synchronous Output Statement

This statement describes a transition from the present state to
a next state, specifies a variable for the registered
(synchronous) outputs associated with the transition, and
defines whether the variable is logically asserted. The format
is as follows:

PRESENT state_n

NEXT state_n OUT [!]Jvar... OUT [!]var;

91-10128-5 1090 . 183

. CUPL
CUPL Language Reference Manual

where

state_n is a decoded value (default hex) of the state bit
variables that are the output of the state machine.

var is a variable name declared in the pin declarations.
It is not a variable from the SEQUENCE state_var_list.

! is the complement operator; use it to logically negate the
variable, or omit it to logically assert the variable.

; is a semicolon used to mark the end of a statement.

>

Note

The square brackets indicate optional items.

The PIN declaration statement (see the subtopic, Pin
Declaration Statements in this chapter) determines whether
the variable, when asserted, is active-HI or active-LO. For
example, if the variable has the negation symbol (lvar) in the
pin declaration, when it is asserted in the OUT statement, its
value is active-LO.

SN

Note

Use the negation mode only for D-CE, J-K, T or S-R
type flip-flops; D-type flip-flops implicitly reset when
assertion is not specified.

184 1090 91-10128-5

CUPL
Reference Manual CUPL Language

The following is an example of an unconditional
synchronous output statement.

PRESENT 'b'01
NEXT 'b'10 OUT Y OUT !Z;

Figure 1-19 shows the transition and output variable definition
described in the example above.

(2
PRESENT 'b'01

IF INA NEXT 'b'10 OUT Y
OouT 1Z

Figure 1-19. Unconditional Synchronous Output Diagram

For the synchronous output definitions in the example and
figure above, CUPL generates the following equations,
depending on the type of flip-flop that is specified.
D-Type Flip-Flop

APPEND YD = !Q1 & QO;

(not defined for Z output)

D-CE Type Flip-Flop

APPENDY.D = 1Q1 & QO;
APPENDY.CE = 1Q1 & QO;
APPENDZD = 'b'0;
APPENDZCE = 1Q1 A QO;

91-10128-5 109 185

CUPL
CUPL Language Reference Manual

J-K-Type Flip-Flop

APPEND YJ = Q1 & QO;
APPEND YK = 'b'0;
APPEND ZJ = b'0;

APPEND ZK = Q1 & QO;
S-R-Type Flip-Flop

APPEND Y.S = Q1 & QO;

APPEND YR = 'b'0;

APPEND ZS = 'b'0;

APPEND ZR = Q1 & QO;
T-Type Flip-Flop

APPEND Y.T = Q1 & QO;

APPEND Z.T = Q1 & QO;

Conditional Synchronous OQutput Statement

This statement describes a transition from the present state to
a next state, specifies a variable for the registered
(synchronous) outputs associated with the transition, and
defines whether the variable is logically asserted if the
conditions specified in an input expression are met. The
format is as follows:

PRESENT state_n
IF expr NEXT state_n OUT [!]var...OUT [!] var;

IF expr NEXT state_n OUT [!}var...OUT [!]var;
[DEFAULT] NEXT state_n OUT [!]var;]

where

186 1090 91-10128-5

CUPL
Reference Manual CUPL Language

state_n is a decoded value (default hex) of the state bit
variables that are the output of the state machine.

var is a variable name declared in the pin declarations.
It is not a variable from the SEQUENCE
state_variable_list.

! is the complement operator; use it to logically négate the
variable, or omit it to logically assert the variable.

s is a semicolon used to mark the end of a statement.
expr is any valid expression.

>

Note

The square brackets indicate optional items.

The PIN declaration statement (see the subtopic, Pin
Declaration Statements in this chapter) determines whether
the variable, when asserted, is active-HI or active-LO. For
example, if the variable has the negation symbol (lvar) in the
pin declaration, when it is asserted in the OUT statement, its
value is active-LO.

S

Note

Use the negation mode only for J-K or S-R-type flip-
flops; D-type flip-flops implicitly reset when
assertion is not specified.

91-10128-5 1090 187

‘cuPL

CUPL Language Reference Manual

188

. The DEFAULT statement is optional. It describes the

transition from the present state to a next state, and defines the
output variable, if none of the conditions in the specified
conditional statements are met. In other words, it describes the
condition that is the complement of the sum of all the
conditional statements.

% .

Note

Be careful when using the DEFAULT statement.
Because it is the complement of all the conditional
statements, the DEFAULT statement can generate
an expression complex enough to greatly slow CUPL
operation. In most applications, one or two
conditional statements can be specified instead of the
DEFAULT statement.

The following is an example of conditional synchronous
output statements without a DEFAULT statement.

PRESENT 'b'01
IF INA NEXT 'b'10 OUT Y;
IF !INA NEXT 'b'11 OUT Z;

Figure 1-20 shows the transitions and outputs defined by the
statements in the example above.

1090 91-10128-5

CUPL
Reference Manual CUPL Language

(Z)

PRESENT 'b'01
IF INA NEXT 'b'100OUT Y ;

IFIINANEXT'D'110UT Z;

Figure 1-20. Synchronous Conditional Qutput Diagram

For the synchronous output definitions in the example and
figure above, CUPL generates the following equations,
depending on the type of flip-flop specified:

D-Type Flip-Flop

APPEND Y.D = 1Q1 & Q0 & INA;

APPEND ZD = Q1 & Q0 & !INA;
D-CE-Type Flip-Flop

APPEND Y.D = Q1 & Q0 & INA;

APPENDY.CE = 1Q1 & Q0 & INA;

APPEND ZD = 1Q1 & Q0 & !INA;

APPENDZCE = 1Q1 & Q0 & !INA;
J-K-Type Flip-Flop

APPEND Y.J = Q1 & Q0 & INA;

APPEND Y.K = 'b'0;

APPEND Z.J = 1Q1 & Q0 & !'INA;

91-10128-5 1090 189

CUPL Language

APPEND ZK

S-R-Type Flip Flop
APPEND Y.S
APPEND Y.R
APPEND Z.S
APPEND ZR

T-Type Flip-Flop
APPEND Y.T
APPEND Z.T

CUPL
Reference Manual

lb '0;

1Q1 & Q0 & INA;
'b'0;
1Q1 & Q0 & !INA;
'b'0;

Q1 & Q0 & INA;
Q1 & Q0 & !INA;

' The following is an example of conditional output statements

with a DEFAULT statement.
PRESENT 'b'01

IF INA & INB NEXT 'b'10;
IF INA & 'INB NEXT 'b'11;
DEFAULT NEXT 'b'00 OUT Y
OUT !Z;

Figure 1-21 shows the transitions described by the above
example. Note the equation generated by the DEFAULT

statement.

19

91-10128-5

curL
Reference Manual CUPL Language

I(INA & INB
#INA & !INB)

INA & INB INA & !INB

PRESENT 'b'01
IFINA&INB NEXT 'b'10;
IFINA & !INB NEXT'B'11;
DEFAULT NEXT 'b'00 OUTY;
ouT'Z;

Figure 1-21. Synchronous Conditional Qutput with Default
Diagram

For the transitions described in the above example and figure,
CUPL generates the following equations, depending on the
type of flip-flop that is specified.

D-Type Flip-Flop

APPEND Y.D = Q1 & Q0 & !INA;
(not defined for Z output)

D-CE-Type Flip-Flop
APPEND Y.D
APPEND Y.CE

Q1 & Q0 & 'INA;
Q1 & Q0 & !'INA;

91-10128-5 1090 191

CUPL Language

APPEND ZD
APPEND Z.CE

J-K-Type Flip-Flop
APPEND YJ
APPEND YK
APPEND ZJ
APPEND ZK

S-R-Type Flip-Flop
APPEND Y.S
APPEND YR
APPEND Z.S
APPEND ZR

T-Type Flip-Flop
APPEND Y.T
APPEND Z.T

CUPL
Reference Manual

'b'0;
Q1 & Q0 & INA;

Q1 & Q0 & !INA;
'b'0;
'b'0;
Q1 & Q0 & !INA;

1Q1 & QO & !INA;
'b'O;
b'0;
Q1 & QO & !INA;

'Q1 & QO & !INA
Q1 & Q0 & INA;

Unconditional Asynchronous Output Statement

This statement specifies variables for the non-registered
(asynchronous) outputs associated with a given present state,
and defines when the variable is logically asserted. The

192

format is as follows:

PRESENT state_n

OUT var .. OUT var;

where:

state_n is a decoded value (default héx) of the state bit
variables that are the output of the state machine.

var is a variable name declared in the pin declarations.
It is not a variable from the SEQUENCE state_var_list.

91-10128-5

CUPL
Reference Manual CUPL Language

s is a semicolon used to mark the end of a statement.

The PIN declaration statement (see the subtopic, Pin
Declaration Statements in this chapter) determines whether
the variable, when asserted, is active-HI or active-LO. For
example, if the variable has the negation symbol (!var) in the
pin declaration, when it is asserted in the OUT statement, its
value is active-LO.

Negating the variable (with the complement operator) is not a
valid format for this statement.

Only one output statement can be written for each present state.
However, multiple variables can be defined using more than
one OUT keyword.

The following is an example of an wunconditional
asynchronous output statement.

PRESENT 'b'01
OUTY OUT Z;

Figure 1-22 shows the outputs defined by the statements in the
example above.

(z)

PRESENT 'b’ 01
OUTY OUT Z;

Figure 1-22, Unconditional Asynchronous Output Diagram

For the asynchronous output definitions in the example and
figure above, CUPL generates the following equations:

APPEND Y = 1Q1 & QO;

91-10128-5 1090 123

. curL
CUPL Language Reference Manual

APPEND Z = Q1 & Q0;

Conditional Asynchronous Output Statement

This statement specifies variables for the non-registered
(asynchronous) outputs associated with a given present state,
and defines when the variables are logically asserted, if the
conditions in an input expression are met. The format is as
follows:

PRESENT state_n
IF expr OUT var... OUT var;

IF expr OUT var... OUT var;
[DEFAULT OUT var... OUT var;]

where

state_n is a decoded value (default hex) of the state bit
variables that are the output of the state machine.

var is a variable name declared in the pin declarations.
It is not a variable from the SEQUENCE statement.

expr is any valid expression.
; is a semicolon used to mark the end of a statement.

D

‘Note

The square brackets indicate optional items.

The PIN declaration statement determines whether the
variable, when asserted, is active-HI or active-LO. For

194 1090 91-10128-5

CUPL
Reference Manual CUPL Language

example, if the variable has the negation symbol (lvar) in the
pin declaration, when it is asserted in the OUT statement, its
value is active-LO.

Negating the variable (with the complement operator) is not a
valid format for this statement. Multiple output statements can
be written for each present state, and define multiple variables
using the OUT keyword.

The DEFAULT statement is optional. It defines the output
variable if none of the conditions in the specified conditional
statements are met. In other words, it describes the condition
that is the complement of the sum of all the conditional
statements.

D

Note

Be careful when using the DEFAULT statement.
Because it is the complement of all the conditional
statements, the DEFAULT statement can generate
an expression complex enough to greatly slow CUPL
operation. In most applications, one or two
conditional statements can be specified instead of the *
DEFAULT statement.

The following is an example of conditional asynchronous
output statements without a default statement.

PRESENT 'b'01
IF INA OUT Y;
IF !INA OUT Z;

Figure 1-23 shows the outputs defined by the statements in the
above example.

91-10128-5 1090 - 195

CUPL
CUPL Language Reference Manual

PRESENT 'b' 01
IFINAOUTY ;

IFIINAOUT Z;

Figure 1-23. Conditional Asynchronous Output Diagram

For the asynchronous output definitions in the example and
figure above, CUPL generates the following equations:

APPEND Y = !Q1 & Q0 & INA;
APPEND Z =!Q1 & Q0 & !INA;

The following is an example of conditional asynchronous
output statements with a DEFAULT statement.

PRESENT 'b'01
IF INA & INB OUT X;
IF INA & !INB OUT Y;
DEFAULT OUT Z;

Figure 1-24 shows the transitions described by the above
example. Note the equation generated by the DEFAULT
statement.

19%6 1090 91-10128-5

CUPL
Reference Manual CUPL Language

PRESENT 'b’ 01

IF INA & INB OuUT X;
IF INA & lINB OouTY;
DEFAULT OouT z;
Figure 1-24. Conditional Asynchronous OQutput with Default

Diagram

For the transitions described in the above example and figure,
CUPL generates the following equations, depending on the
type of flip-flop that is specified.

APPEND X = !Q1 & Q0 & INA &!INB;
APPEND Y = !Q1 & Q0 & INA & INB;
APPEND Z = !Q1 & Q0 & !INA;

Sample State-Machine Syntax File

This section provides an example of a simple two-bit counter
implemented with state-machine syntax.

Figure 1-25 shows a diagram of the counter operation.

91-10128-5 1090 197

CUPL
CUPL Language Reference Manual

Figure 1-25. Simple 2-Bit Counter Diagram

The $DEFINE command assigns symbolic names to the states
of the counter, and the SEQUENCE statement defines the
transitions between states.

$DEFINE S0 0 /* assign symbolic names */

$DEFINE S1 1 /*to states */

$DEFINE S2 2

$DEFINE S3 3

FIELD count = [Q1, Q0];

/* assign field variable to statebits */

SEQUENCE count {
PRESENT SO0 NEXT S1;
PRESENT S1 NEXT S2;
PRESENT S2 NEXT S3;
PRESENT S3 NEXT S0;

L

18 1090 91-10128-5

CUPL
Reference Manual CUPL Language

See the example, Decade Up/Down Counter, in Chapter U5 for
another illustration of a state machine implementation.

O Condition Syntax

The CONDITION syntax provides a higher-level approach to
specifying logic functions than does writing standard
Boolean logic equations for combinatorial logic. The format
is as follows:

CONDITION {
IF expr0 OUT var;

IF exprp OUT var;
DEFAULT OUT var;
)

where
expr is any valid expression.

var is a variable name declared in the pin declaration.
It can also be a list of indexed or non-indexed variables
in list notation.

; is a semicolon used to mark the end of a statement.
The CONDITION syntax is equivalent to the asynchronous
conditional output statements of the state machine syntax,
except that there is no reference to any particular state. The

variable is logically asserted whenever the expression or
DEFAULT condition is met.

The variable cannot be logically negated in this format.

91-10128-5 1090 19

CUPL
CUPL Language Reference Manual

>

Note

Be careful when using the DEFAULT statement.
Because it is the complement of all the conditional
statements, the DEFAULT statement can generate
an expression complex enough to greatly slow CUPL
operation. In most applications, one or two
conditional statements may be specified instead of
the DEFAULT statement.

The following is an example of a 2 to 4 line decoder for the
CONDITION syntax. The two data inputs, A and B, select one
of four decoded outputs, YO through Y3, whenever the ENABLE
signal is asserted. The NO_MATCH output is asserted if none
of the other four outputs are true.

PIN[1,2] =[A,B] ; /*Data Inputs */
PIN 3 =!enable; /* Enable Input */
PIN [12..15] =[Y0..3]; /* Decoded Outputs */
PIN 14 = no_match ; /* Match Output */
CONDITION ({

IF enable & !B & !A out Y0;

IFenable &'B& A out Yl;

IFenable & B&'!'A out Y2;

IF enable & B & A out Y3;

)

The DEFAULT expression of the above example is equivalent
to the following logic equation

200 1090 91-10128-5

CUPL

Reference Manual CUPL Language

no_match =!(enable & B & !A)

enable & 'B & A
enable & B & 1A
enable & B & A

-e

which reduces to the following:

no_match = !enable;

O User-Defined Functions

The FUNCTION keyword permits the creating of personal
keywords by encapsulating some logic as a function and
giving it a name. This name can then be used in a logic
equation to represent the function. The format for user-
defined functions is as follows:

FUNCTION name ([parametery,....parametern])
{ body)

where

91-10128-5

name is any group of valid symbols used to reference the
function. Do not use any of the CUPL reserved
keywords.

parameter is an optional variable used to reference
variables when the function is used in a logic equation.
It cannot be an expression.

body is any combination of logic equations, truth tables,
state-machine syntax, condition syntax, or user
function.

() are parentheses used to enclose the parameter list.
{ } are braces used to enclose the body of the function.

1090 201

CUPL
CUPL Language Reference Manual

D

Note

The square brackets indicate optional items.

The statements in the body may assign an expression to the
function, or may be unrelated equations.

When using optional parameters, the number of parameters
in the function definition and in the reference must be
identical. The parameters defined in the body of the function
are substituted for the parameters referenced in the logic
equation.

For example, the following defines an exclusive OR function:
FUNCTION xor(inl, in2) {
/* inl and in2 are parameters */
xor = inl & in2 # linl & in2;
}

An xor can be used in an equation with the inputs A and B
passed as parameters, as follows:

Y = xor(AB);
The result is the following logic equation assignment for the
output variable Y:

Y=A& B #!A&B;

When a function variable is referenced in an expression, the
compiler takes the following action:

202 1090 91-10128-5

CUPL
Reference Manual CUPL Language

1. A special function invocation variable is assigned
for the function name and its arguments. This
variable name is not user accessible.

2. The rest of the expression is evaluated.

3. The function body, with the invocation parameters .
substituted, is evaluated.

4. The function invocation variable is assigned an
expression according to the body of the function. If
no assignment is made in the body statements, the
function invocation variable is assigned the value
of 'h'o.

D

Note

Functions must be defined before they may be
referenced. Functions are not recursive; that is, a
function body may not include a reference of the
function being defined.

The following example shows a user-defined function to
construct state-machine-type transitions for non-registered
devices without internal feedback (such as PROMs).

FUNCTION TRANSITION(present_state,
next_state,
input_conditions) {

APPEND state_out = state_in:present_state &
input_condition &

91-10128-5 1090 208

CUPL
CUPL Language Reference Manual

next_state;

The function defined in the example above is used in the
following example to implement a simple up/down counter as
a series of TRANSITION function references:

PIN [10,11] = [Qin0..1]; /* Registered PROM */
/* output feed */
/* back externally */
/* on input pins */
PIN [12,13] = [count(..1] ; /* Count Control */
PIN [1,2] = [Q0..1] ; /* PROM Outputs */
FIELD state_in = [Qin0..1] ;
FIELD state_out [Q0..1];
count_up = !countl & !count0 ;/* count up . */

count_dn = lcountl & count0 ;/ * count down */
hold_cnt = countl; 1* hold count */
$DEFINE STATEO 'b'00

$DEFINE STATE1 'b'01

$DEFINE STATE2 'b'10

$DEFINE STATE3 'b'11

f* (transition function definition made here) */
TRANSITION(STATEO, STATE], count_up) ;
TRANSITION(STATE1, STATEZ2, count_up) ;
TRANSITION(STATE2, STATES, count_up) ;
TRANSITION(STATE3, STATEO, count_up;
TRANSITION(STATEO, STATES, count_dn) ;
TRANSITION(STATE1, STATEO, count_dn) ;

204 1090 91-10128-5

CUPL
Reference Manual CUPL Language

TRANSITION(STATEZ2, STATE]1, count_dn) ;
TRANSITION(STATE3, STATE2, count_dn) ;
TRANSITION(STATEO, STATEO, hold_cnt) ;
TRANSITION(STATE]1, STATE]1, hold_cnt) ;
TRANSITION(STATEZ2, STATE2, hold_cnt) ;
TRANSITION(STATE3, STATE3, hold_cnt) ;

O CUPL to XILINX XNF Interface

This section describes how a CUPL source file can be
translated into an XNF netlist file. CUPL generates an
equivalent PALASM file, using the c¢ flag, which can be
used as input to PDS2XNF. PDS2XNF will translate the
PALASM file into an XNF file to be used by the
remaining XILINX XACT™ integrated software
package.

91-10128-5 1090 ’ 205

\ CUPL
CUPL Language Reference Manual

.PLD

CUPL

PDS2XNF

XNF

XNF2LCA

.LCA

Figure 1-26. CUPL Design to LCA Translation Data
Flow.

Getting an XNF File.

206 1090 91-10128-5

CUPL

Reference Manual CUPL Language

91-10128-5

Just as CUPL is run to compile a PLD design, it can be
run using the -c flag to produce an equivalent PALASM
format file. For example, entering the following:

CUPL < EXAMPLE.PLD

will create the PALASM file EXAMPLE.PDS.

Translating an Existing PLD File.

Any PLD which can be compiled by CUPL can be
translated into PALASM format. Because a device must
be specified for PLD design, a device must also be
specified when translating a CUPL file to a PALASM
format. The VIRTUAL device should be specified when
a source file is for XILINX devices. In order to preserve
the original use of the PLD source file, do not change the
device name; CUPL will translate the file based on the
devices that PALASM recognizes. A recognizable device
is translated into the PDS file using the names given in
Table 1-15. An unrecognizable or VIRTUAL device is
translated into the PDS file as USER.

Table 1-15. PALASM Device Listing

PAL6L16 PAL10HS8 PAL10L8
PAL10H20G8 PAL10H20P8 PAL12H6
PAL12L6 PAL12L10 PAL14H4
PAL1414 PAL14L8 PAL16C1
PAL16H2 PAL16L2 PAL16L6
PAL16L8 PAL16P8 PAL16R4
PAL16R6 PAL16R8 PAL16RAS

1090 . 207

CUPL
CUPL Language Reference Manual

PAL16RP4 PAL16RP6 PAL16RP8
PAL18L4 PAL20C1 PAL20L2
PAL20LS8 PAL20L10 PAL20R4
PAL20R6 PAL20RS8 PAL20RA10
PAL20RS4 PAL20RS10 PAL20S10
PAL20X4 PAL20X8 PAL20X10
PAL22RX8 PAL22V10 PAL32R16
PAL32VX10 PAL64R32 PMS14R21

Using a PALASM Device

When a PALASM device is selected, CUPL will generate
a functionally-equivalent PALASM file, which can then
be translated into an XNF file.

When a device is selected that PALASM does not
recognize, CUPL will insert USER as the device name in
the PALASM file. PDS2XNF recognizes this USER
device. Some PLD macro configurations which are not
supported by PALASM will be ignored or translated into
a PALASM equivalent. This will generate a warning
message. For example, if the extension CKMUX is used,
it is considered to be a CK extension, and a warning
message is generated. If the extension DFB is used, it is
ignored and a warning message is generated.

Source Files for XILINX Devices.

The following discusses how to create a new CUPL
source file for XILINX devices.

208 1090 91-10128-5

CUPL

Reference Manual CUPL Language

91-10128-5

L}
When a new CUPL source file is created, any device on
the CUPL device list can be specified. The imaginary
PLD9000 or the limitless VIRTUAL device can also be
specified. Refer to the device support section of the CUPL
manual for details on these devices.

The CUPL source file remains the same except for the
following few differences:

Pin numbers are not needed when using the VIRTUAL
device. The PIN keyword is still used, however, to
assign names to the pins of a device that will be used
later. For example:

pin = Input0;

The keyword NODE is not used with the VIRTUAL
device. The keyword PINNODE is, however, still used.

1090 ' 209

Using CSIM 2

This chapter explains how to use CSIM program to create test
vectors for the programmable logic device under design. Test
vectors specify the expected functional operation of a PLD by
defining the outputs as a function of the inputs. Test vectors
are used both for simulation of the device logic before
programming and for functional testing of the device once it
has been programmed. CSIM can generate JEDEC-compatible
downloadable test vectors.

O INPUT

A test specification source file (filename.SI) is the input to
CSIM. It contains a functional description of the requirements
of the device in the circuit.

The source file may be created using a standard text editor
like DOS EDLIN or WordStar in non-document mode.

The input pin stimuli and output pin test values entered in the
source file are compared to the actual values calculated from
the logic equations in the CUPL source file. These calculated
values are contained in the absolute file (filename.ABS),
which is created during CUPL operation when the -a flag on
the command line is specified. The absolute file must be
created during CUPL operation before running CSIM.

CSIM must also be able to access the device library file,
CUPL.DL, which contains a description of each of the target
devices supported in the current version of CSIM.

The library describes the physical characteristics of each
- device, including internal architecture, number of pins, and

91-10128-5 1090 210

CUPL
Reference Manual Using CSIM

type of registers available, and the logical characteristics,
including registered and non-registered pins, feedback
capabilities, register power-on state and register control
features.

Reference the target device using device mnemonics. Each
mnemonic is composed of a device family prefix and
industry-standard part number suffix. Table 2-1 lists the
device mnemonic prefixes.

Table 2-1. CSIM Device Mnemonic Prefixes

{Prefix Device Family |

Erasable Programmable Logic Device (EPLD)

Generic Array Logic (GAL)

Field Programmable Logic Array (FPLA)

Field Programmable Gate Array (FPGA)

Field Programmable Logic Sequencer (FPLS)

Field Programmable Sequence Generator

(FPSG)

Programmable Logic Array (PAL)

Programmable Logic Device (PLD)

Programmable Electrically Erasable Logic

(PEEL)

PLD P-CAD Logical Device

RA Bipolar Programmable Read-Only Memory
(PROM)

’11'11’11"10%

ja=Mla-)

For example, the device mnemonic for a PAL10LS8 is P10LS;
for an 825100 the device mnemonic is F100. For bipolar
PROMs, the suffix is the array size. For example, the device
mnemonic for a 1024 x 8 bipolar PROM is RA10P8, since there
are 10 address input pins and 8 data output pins.

91-10128-5 1090 21

" CUPL

Using CSIM Reference Manual

1 ouTtPUT

212

The simulator output is the following two files: a simhlation
listing file and an optional JEDEC downloadable fuse link
file.

A simulation listing file (filename.SO) contains the results of
the simulation. It has the same filename as the input test
specification file.

All header information is displayed in the listing file with
any header errors marked appropriately. Each complete
vector is assigned a number. Any output tests that failed are
flagged with the actual (simulator-determined) output value
displayed. Each variable in error is listed along with the
expected (user-supplied) value. Any invalid or unexpected test
values are listed along with an appropriate error message.

The simulator output listing can also be output to the screen
(using the -v option on the command line).

An optional JEDEC downloadable fuse link file
(filename.JED) contains structured test vectors. CSIM
appends the test vectors to an existing filename.JED created
during CUPL operation.

D

Note

CSIM does not support multi-device files as does
CUPL. CSIM only simulates the first device of a
multi-device file.

1090 91-10128-5

CUPL

Reference Manual

Using CSIM

(d RUNNING CSIM

Run CSIM using the following command line format:

csim [-flags] [library] [device] source

where

91-10128-5

-flags is the following set of simulator options:

-1
-J
-n

create listing file.

append test vectors to JEDEC file.

use source filename for JEDEC file.
display simulation results to terminal.
use specified library for simulation.

(MS-DOS only) simulate and display output file in
waveform.

(MS-DOS only) display an existing simulation
output file in waveform.

library is the library name and path name if the -u flag
is being used to specify a library other than the default
library.

device must be the same device mnemonic as was used
in the CUPL compilation. Specifying the device is
optional; if a device is not specified, CSIM uses the
device CUPL compiled (contained in the .ABS file).

source is the user-created ASCII test specification file
(filename.SI). The extension .SI is assumed for the
source file and may be omitted when giving the CSIM
command.

1090 213

CUPL

Using CSIM Reference Manual

214

S

Note

The square brackets indicate optional items.

Simulator Option Flags

Multiple option flags can be specified when running CSIM. A
hyphen must be used before the first flag entered, but can be
omitted for subsequent flags. Spaces may also be placed
between the flags. For example, the following two CSIM
command lines are equivalent:

csim -1 -v -j p16r4 waitgen
csim -lvj p16rd4 waitgen

CSIM can be typed without any flags, to see the command line
format and a list of the option flags. :

Table 2-2 lists descriptions of the CSIM option flags.
Table 2-2. Simulator Option Flags

{Option Flag Description

] Appends the structured test vectors generated
by the simulation onto the existing JEDEC
download file.

1 Generates a simulation listing file

(filename.SO.) The input and output values for
each variable are listed. Error messages are
listed following each vector, with the signal
name in error displayed.

1090 91-10128-5

CUPL
Reference Manual

-n

-W

91-10128-5

Using CSIM

Allows the source filename to be used as the
JEDEC filename instead of using the name in
the NAME field of the source file.

Displays the contents of the listing file to the
screen. When the simulation data begins to

appear on the screen, type - to stop

the display (and any key to start it again) or '~

- to cancel the simulation.

Overrides the default device library specified in
the environment. Specify the complete path and
library name. This option is of particular use on
systems that have special libraries created for
unique or custom devices.

(MS-DOS only) Displays an existing simulation
output file in waveform. Type , ,
@ [D B, E] keys to view the

waveform output. Type toexit.

(MS-DOS only). Generates a simulation listing
file and displays the output in waveform. Use

eEEREHEOCOBE B

keys to view the waveform output. Type to
exit.

1090 215

\ CUPL
Using CSIM Reference Manual

0 Viewing Waveform(MS-DOS)

Running CSIM with the -w or -d flag generates waveform output on
the screen. The view of the waveform can be changed by using the
following keys:

Scroll right

Scroll left

Scroll down

Scroll up

Decrease scale horizontally

Enlarge scale horizontally

Exit to DOS
Shift screen left

Shift screen right
Change signal orders

Group signals into bus

FEEEE ERERBEE00

Create Waveform Hardcopy

)
'y
(=]

Waveform Legend

Change Signal Order

The CSIM waveform display allows signal orders to be changed. To
change signals, press the F7 key. The cursor appears on the signal
window instead of the waveform window. Position the cursor over
the desired signal, and then press [Return] to select the signal. The
selected signal is indicated as <Sel: signal-name> on the lower
right portion of the screen (Refer to Figure 1). Move the cursor to the

216 1090 91-10128-5

CUPL
Reference Manual Using CSIM

desired position and press the [Insert] key. The selected signal is
inserted into the cursor position, and the signals below the cursor
are shifted one position down. As an example, refer to Figure 1.

WCSIM

Name Simulation Results—————

Numbers7 | I LI

Numbers6 N I R

NumbersS | I T | |

Numbers4 mrMe— I 1 1

Numbers3

Numbers2 I 1 | o W B

Numbers1 [| N) S

Numbers0 T L] | I

Result4 N S —J

Result3 I | I

Vector# 12 3+-4:5 6 7 8-9 10
— <Sel: Result3> Press ? for HELP

Figure 1. Moving a Signal

WCSIM .
Name Simulation Results—————
Numbers7 | I | L

Numbers6 e T D
Numbers5 I 1
Numbers4 1 - LI
Result3 -
Numbers3 L
 —|

Numbers2 | o W e |

Numbers1 [L1 —

Numbers0 I L T
Result4 LN S| L

Vectori# 1.2 .83 4.5 6 7 8.9 10
Press ? for HELP— '
Figure 2. Signal After Being Moved

In this figure, Result3 is selected. Result3 is to be placed between
Numbers3 and Numbers4. Move the cursor to Numbers4 and press

91-10128-5 1090 217

, CUPL
Using CSIM Reference Manual

[Insert). Figure 2 shows the result. To quit the change signal mode,
press [Escapel. The cursor returns to the waveform window.

Group Signals into Bus

Grouping signals into bus is another useful feature. This feature
allows the grouping of up to eight signals into a bus, and the hex
value can be displayed on the screen. Figure 4 shows the grouping of
Numbers0 to Numbers7 into a bus called INPUT_BUS.

- WCSIM
Name . Simulation Results
Numbers?7 i W LT
Numbersé ||| Group Signals as Bus==

Numbers5 ATl Bus1 INPUT
Numbers4 M1 | Bus2bb

Numbers3 s W Bus 3 cc
Numbers2]| Bus4 dd

Numbers1 I
NumbersO | an——|
Result4 L7 Press ESCkeytoexit |
Result3 . W
Vector# = - 1.2 3 4 5:6.7 8 9 10
e Press ? for HELP—

Figure 3. Making a Bus

218 1090 91-10128-5

CUPL

Reference Manual Using CSIM
WCSIM
Name Simulation Results—————
Numbers3 mJ
Numbers2 | — |y W e TR
Numbers1 " L1 I
Numbers0 T T) I
Result4 | I | L
Result3 | D T |
Result2 MR e | i
Result1 | ! I
Result0 S | LI 1
INPUT ft 47 eb aa 8d db dd 49 de
1t 1 1 1 1 1 L 1 1 !
Vector# “1 2 3 4. 5.6 7 8.9 10
Press ? for HELP—

Figure 4. Moving a Bus

To group signals, first press F8, and a bus window pops up onto the
screen (see Figure 3). Type the bus name INPUT_BUS at Busl and
press [Return]. The cursor moves to the signal window. Move the
cursor to Numbers0 and press [Return]. This signal is grouped into
bus INPUT_BUS as the least significant bit. Now move the cursor to
Numbersl and press [Return]. This becomes the second least
significant bit of INPUT_BUS. Continue this procedure until the
eighth signal, Numbers?7, is selected. After all signals are selected,
a new bus-type signal called INPUT_BUS is placed after the last
signal, as shown in Figure 4.

If fewer than eight signals are to be grouped into a bus, press [Escape]
after all the desired signals have been selected. The new bus-type
signal is placed after the last signal.

The maximum number of busses that can be created if four, and the
maximum number of signals that can be grouped into a bus is eight.

A sixteen-signal bus can be created as two busses of high-order and
low-order.

Create Waveform Hardcopy

91-10128-5 1090 . 219

CUPL
Using CSIM Reference Manual

The F9 function key does not cause an immediate print-out. When
activated, F9 creates a file with an extension .prt. This file can then
be sent to the printer. The printer must be capable of handling
extended ASCII characters.

Help Menu

The question mark (?) key can be used to bring up the help menu.
This menu provides a description of the function keys.

The following figure defines the waveforms that may appear during
view waveform. The waveform legend screen appears when the F10
key is depressed.

Waveform Legend

L LI

Logic High Logic Low
__IDL P
Don't Care Preload

High Impedance Unknown to Display
Press any key to exit

Figure. Waveform Legend

(1 TEST SPECIFICATION FILE

The test specification file (filename.SI) may be created using
a text editing program. The filename is the same as the
corresponding CUPL logic description source file. Put the
following information into the test specification file:

> Header information

220 1090 91-10128-5

CUPL

Reference Manual Using CSIM
'
> Comments
> Variable ordering
> Base sets
> Test vectors
> Simulator directives

1 Header Information

Header information which is entered must be identical to the
information in the corresponding CUPL logic description file.
If any header information is different, a warning message
appears, stating that the status of the logic equations could be
inconsistent with the current test vectors in the test
specification file. Table 2-3 lists the keywords used for header
information (see the subtopic, Header Information in Chapter

1):

Table 2-3. CSIM Header Keywords
PARTNO NAME
REVISION DATE
DESIGNER COMPANY
ASSEMBLY LOCATION
DEVICE FORMAT

When creating a test specification file, begin by copying the
contents of the corresponding CUPL source file to the test
specification file, to assure proper header information. Then
delete everything except the header information from the test
specification file.

91-10128-5 1090 221

CUPL

Using CSIM Reference Manual

Q

Comments

Comments can be placed anywhere within the test
specification file. Comments can be used to explain the
contents of the specification file or the function of certain test
vectors. A comment begins with a slash-asterisk (/*) and
ends with an asterisk-slash (*/). Comments can span
multiple lines and are not terminated by the end of a line.
However, comments cannot be nested.

Statements

CSIM provides the keywords, ORDER, BASE, and VECTORS
to write statements in the source file that determine the
simulation output and how it is displayed. The following
sections describe how to write statements with the CUPL
keywords.

ORDER Statement

Use the ORDER keyword to list the variables to be used in the
simulation table, and to define how they are displayed.
Typically, the variable names are the same as those in the
corresponding CUPL logic description file.

Place a colon after ORDER, separate each variable in the list
with a comma, and terminate the list with a semicolon. The
following is an example of an ORDER statement:

ORDER: inputA, inputB, output ;

Only those variables that are actually used in the simulation
must be listed.

The polarity of the variable name can be different than was
declared in the CUPL logic description file, allowing
simulation of active-LO outputs with an active-HI simulation
vector. The variable names can be entered in any order; CSIM

1090 91-10128-5

CUPL
Reference Manual Using CSIM

automatically creates the proper order and polarity of the
resulting vector to match the requirements of the JEDEC
download format for the device.

When indexed variables are used in the ORDER statement,
they can be expressed in list notation format. However, since
the ORDER statement is already in list form, square brackets
are not needed to delimit the ORDER set. The following is an
example of two equivalent ORDER statements; the first
statement lists all the variables, and the second is written in
list form.

ORDER: A0, A1, A2, A3, SELECT, !0UT0, !OUT1;
ORDER: A0..3, SELECT, !0UTO..1 ;

In list notation format, the polarity of the first indexed
variable (!OUTO in the above example) determines the
polarity for the entire list.

Bit fields that are declared in the CUPL logic description file
can be referenced by their single variable name. Bit fields
can also be declared in the test specification file for CSIM,
using FIELD declaration statements (see Bit Field
Declaration Statements in Chapter 2). The FIELD statement
must appear before the ORDER statement.

The ORDER statement can be used to specify the format of the
vector results in the simulator listing file (or on the screen if
screen output is specified.) By default, variable values are
displayed without spaces between columns. For example, the
following ORDER statement

ORDER: clock, input, output ;

generates the following display in the output file (using
sample values):

91-10128-5 1090 223

) CUPL
Using CSIM Reference Manual

0001: COH
0002: C1L
Spaces can be inserted between columns by using the % Symbol

and a decimal value between 1 and 80. For example, the
following ORDER statement

ORDER: clock, %2, input, %4, output ;

generates the following display in the output file:

0001:CO H
0002:C1 L
Text can be inserted into the output file by putting a character

string, enclosed by double quotes (“ ”,) into the ORDER
statement. For example, the following ORDER statement

ORDER: “Clock is ”, clock,
“and input is ”, input,
“output goes ”, output ;

produces the following result in the output file:

0001: Clock is C and input is 0 output goes H
0002: Clock is C and input is 1 output goes L

BASE Statement

In most cases, each variable in the ORDER statement (except
for FIELD variables) has a corresponding single character
test value that appears in the test vector table of the output file.
Multiple test vector values can be represented with quoted
numbers. Use single quotes for input values and double quotes
for output values. Enter a BASE statement to specify how each

24 1090 91-10128-5

CUPL
Reference Manual . Using CSIM

quoted number is expanded. The format for the BASE
statement is:

BASE: name

where
name is either octal, decimal or hex.

Follow BASE with a colon.

The default base for quoted test values is hexadecimal. The
BASE statement must appear in the file before the ORDER
statement.

If the base is decimal or hexadecimal, quoted numbers expand
to four digits; if the base is octal, they expand to three digits.
For example, a test vector entered as '7' is interpreted as
follows:

111 Base 1s octal

or
0111 Base is decimal

or
0111 Base is hex

More than one hexadecimal or octal digit may be entered
between quotes. For example, '563' expands to the following:

101 110 011 Base is octal
or

0101 0110 0011 Base is decimal
or

0101 0110 0011 Base is hex

91-10128-5 1090 225

CUPL
Using CSIM Reference Manual

Quoted values may also be used with all other test values. For
_example, if the base is set to octal

“XX” expands to XX XXX X
“LL” expandsto LLLLLL
“45” expandsto HLLHLH

Test values for FIELD variables can be expressed either
individually (for example, 001, HHLL) or with quoted values
(for example, '1', “C”). When quoted values are used, the
value is automatically expanded to the number of variables in
the field. For example, for the following address field

FIELD address = [A0..5] ;
A test value of
/ *
A A A
5 4 3 2 1 0
________________________________ * /
1 1 1 0 0 1

could be written using single test values, or
'3 9l
using quoted test values.

VECTORS Statement

Use the VECTORS keyword to prefix the test vector table.
Following the keyword, include test vectors made up of single
test values or quoted test values (see the subtopic, Base
Statement in this chapter). Each vector must be contained on a
single line. No semicolons follow the vector. Table 2-4 lists
allowable test vector values.

Table 24. Test Vector Values

26 1090 91-10128-5

CUPL
Reference Manual

Using CSIM

[Test Value

Description |

0

Drive input LO (0 volts) (negate active-HI
input)

Drive input HI (+5 volts) (assert active-HI
input)

Drive (clock) input LO, HI, LO

Drive (clock) input HI, LO, HI
Test output LO (0 volts) (active-HI output
negated)

Test output HI (+5 volts) (active-HI output
asserted)

.

Test output for high impedance
Input HI or LO, output HI or LO.

NOTE: Not all device programmers treat X on
inputs the same; some put it to 0, some allow
input to be pulled to 1, and some leave it at the
previous value.

Output not tested

Preload internal registers (value is applied to !Q
output)

Outputs only -simulator determines test value
and substitutes in vector

Enclose input values to be expanded to a
specified BASE (octal, decimal, or hex). Valid
values are 0-F and X.

Enclose output values to be expanded to a

specified BASE (octal, decimal, or hex.) Valid
values are 0-F, H, L, Z, and X.

The following is an example of a test vector table:

VECTORS:

00111'F' Z“H” /*testoutputs HI %)
01100'0'Z“L” /*test outputs LO */

Unlike many other simulators, CSIM treats the DON'T-CARE
(state X) as any other value. State X is not assumed to be 0 on

91-10128-5

1090 227

B CUPL
Using CSIM Reference Manual

input and N on the output as with PALASM. The X state allows
specific determination of which inputs affect the output value,
according to the rules listed in the truth tables in Figure 2-1.

NOT : ones complement ! AND &
A IA A B A&B
0 1 0 0 L
1 0 0 1 L
X X 0 X L
1 0 L
1 1 H
1 X X
X X X

OR# XOR : exclusive OR $
A B A$B

Figure 2-1. Vector Truth Tables
Preload

Use the P test value on the clock pin of a registered device to
preload internal registers of a state machine or counter design
to a known state, if the device does not have a dedicated TTL-
level preload pin. The device programmer uses a supervoltage
to actually load the registers. All input pins to the device are

228 1090 91-10128-5

CUPL
Reference Manual Using CSIM

ignored and hence should be defined as X. The values that
appear for registered variables are loaded into the !Q output of
the register. These values (0 or 1) are absolute levels and are
not affected by output polarity nor inverting buffers. The
following is an example of a preload sequence for an active-
LO output variable in a device with an inverting buffer
between the register Q output and device pin:

ORDER: clock, inputl, input2, loutput ;

VECTORS:

PXX1 * reset flip-flop */
*1Q goes to 1 */
/* Q goes to 0 */

0XXH /*outputis HI due to ¥/
/* inverting buffer */

>

Note

Although CSIM can simulate and generate preload
test vectors, not all PLDs are capable of preload using
a supervoltage. Some devices have dedicated preload
pins to use for this purpose. CSIM does not verify
whether the device under simulation is actually
capable of preload because parts from different
manufacturers exhibit different characteristics.
Before using the preload capability, determine
whether the device being tested is physically capable
of supervoltage preloading.

Clocks

91-10128-5 1090 229

CUPL
Using CSIM Reference Manual

Most synchronous devices (devices containing registers with
a common clock tied to an output pin) use an active-HI
(positive edge triggered) clock. To assure proper CSIM
operation for these devices, always use a C test value (not a 1 or
0) on the clock pin. For synchronous devices with an active-
LO (negative edge triggered) clock, use the K test value on the
clock pin.

Asynchronous Vectors

When writing test vectors for a circuit with asynchronous
feedback, changing two test values at once can create a spike
condition that produces anomalous results. (See Figure 2-2. It
shows the diagram for a circuit with three inputs [A, B, and C]
and an output at Y that feeds back.)

A o
B o |
C o Y

Y=A&B&C#Ca&Y
Figure 2-2, Circuit with Feedback

The equation for the output at Y is as follows:

Y=A&B&C#C&Y

The vectors table in Figure 2-3 shows an expected low output at
Y based on the specified input values.

230 1090 91-10128-5

CUPL

Reference Manual Using CSIM
ABCJ|Y
0001 0 0 O L
0002 0 1 1 |L
0003 1 0 1]|L

Figure 2-3. Vectors Table for Circuit with Feedback

Because one of the inputs is 0 in each of the vectors, the AND
gate defined by A, B, and C produces a low output. The low
value feeding back from the Y output keeps the other AND gate
low also. Therefore, the OR gate (driven by the output of the two
AND gates) and consequently the output at Y remain low for
the specified test vectors.

However, when the programmer operates on the test vectors, it
applies values serially, beginning with the first pin. Because
two test values change between vectors, the programmer
creates intermediate results (labeled “a” in Figure 2-4). ,

91-10128-5 1090 . 231

CUPL

Using CSIM Reference Manual
A B ClY
0001 0 0 O |L
ooota0 1 O |L
0002 0 1 1 |L
0002a1 1 1 |H
06003 1 0 1 |H

Figure 24. Vectors Table with Intermediate Results

The intermediate result, [0002a], produces a high value for the
output at Y. This high value feeds back and combines with the
“1” value specified for input C in vector [0003] to produce a high
output for the AND gate and consequently for the OR gate and
for the output at Y. This high value conflicts with the expected
low value specified in the third test vector, and the result is a
spike condition.

By taking care to always change only one value between test
vectors, the spike condition described above can be avoided.
Also, in the source specification file, it is possible to specify a
TRACE value of 1, 2, or 3 (rather than the default value of 0)
that instructs CSIM to display intermediate results in the
output file (see “TRACE” in the following section, Simulator
Directives).

0 Simulator Directives

CSIM provides four directives that can be placed on any row of
the file after the VECTOR statement. All directive names
begin with a dollar sign and each directive statement must
end with a semicolon. Table 2-5 lists the CSIM directives.

23 1090 91-10128-5

CUPL
Reference Manual Using CSIM

Table 2-5. CSIM Directives
$MSG $REPEAT $TRACE
$SIMOFF $SIMON $EXIT

$MSG

Use the $MSG directive to place documentation messages or
formatting information into the simulator output file. For
example, a header for the simulator function table, listing the
variable names, may be created. The format is as follows:

$MSG “any text string” ;

In the output table, the text string appears without the double
quotes.

Blank lines can be inserted into the output, for example,
between vectors, by using the following format:

$MSG “”;
$REPEAT

The $REPEAT directive causes a vector to be repeated a
specified number of times. Its format is:

$REPEAT n ;

where
n is a decimal value between 1 and 9999.

The vector following the $REPEAT directive is repeated the
specified number of times.

The $REPEAT directive is particularly useful for testing
counters and state transitions. Use the asterisk (*) to represent
output test values supplied by CSIM. The following example

91-10128-5 1090 233

'CUPL
Using CSIM Reference Manual

shows a a 2-bit counter from a CUPL source file, and a
VECTORS statement using the SREPEAT directive to test it.
From CUPL:

Q0.d =!Q0;

Q1.d=!Q1 & Q0#Ql &!Q0;

In CSIM:
ORDER: clock, input, Q1, Q0;
VECTORS:
00XX /* power-on condition */
PX11 /* reset the flip-flops */
00HH
$REPEAT 4; /* clock 4 times */
C 0 * ¥

The above file generates the following test vectors:
00XX
PX11
O00HH
COLL
COLH
COHL
COHH

CSIM supplies four sets of vector values.
$TRACE

Use the $TRACE directive to set the amount of information that
CSIM prints for the vectors during simulation. The format is

$TRACE n;

where

24 1090 91-10128-5

CUPL
Reference Manual Using CSIM -

n is a decimal value between 0 and 4.

Trace level 0 (the default) turns off any additional
information and only the resulting test vectors are printed.

When non-registered feedback is used in a design, the value
for the output feeding back is unknown for the first evaluation
pass of the vector. If the new feedback value changes any
output value, the vector is evaluated again. All outputs must be
identical for two passes before the vector is determined to be
stable.

Trace level 1 prints the intermediate results for any vector that
requires more than one evaluation pass to become stable. Any
vector that requires more than twenty evaluation passes is
considered unstable.

Trace level 2 identifies three phases of simulation for designs
using registers. The first phase is “Before the Clock,” where
intermediate vectors using non-registered feedback are
resolved. The second phase is “At the Clock,” where the values
of the registers are given immediately after the clock. The
third phase is “After the Clock,” where the outputs utilizing
feedback are resolved as in trace level 1.

Trace level 3 provides the highest level of display information
possible from CSIM. Each simulation phase of “Before Clock,”
“At Clock,” and “After Clock” is printed and the individual
product term for each variable is listed. The output value for
the AND gate is listed along with the value of the inputs to the
AND array.

Trace level 4 provides the ability to watch the logical value
before the output buffer. Using $TRACE 4, CSIM only reports
the true output pin values, and assigns a "?" to inputs and
buried nodes. For combinatorial output, trace level 4 displays
the results of the OR term. For registered outputs, trace level 4
shows the Q output of the register.

91-10128-5 1090 235

CUPL
Using CSIM Reference Manual

The following example uses a p22v10:

pin 1 = CLK:
pin 2 = IN2;
pin 3 = IN3:

pin 14 = ouT14;
pin 15 = OUT1S:

OUT 14.D = IN2;
OUT 14.AR = IN3;
OUT 14.0E = INA:

Figure 2-5. Using P22V10.

Figure 2-6 shows the simulation result file:

order CLK, IN2, IN3, IN4, . OUT14, OUT1S . :
xsarsrpefore output buffertsws«s

;'-""betore output buffers*s**w
2222 HH...
0004 C100...22

Figure 2-6. Simulation File.

Figure 2-7 shows the virtual observation points when using
trace level 4 with either a combinatorial configuration or a
register configuration.

236 1090 91-10128-6

CUPL

Reference Manual Using CSIM
OE
10
LD'— 11
00
Q 01
Q
view point in register
view point in combin- configuration
atorial configuration

Figure 2-7. Observation Points Using Trace Level 4.

$SEXIT

Use the $EXIT directive to abort the simulation at any point.
Test vectors appearing after the $EXIT directive are ignored.
This directive is useful in debugging registered designs in
which a false transition in one vector causes an error in every
vector thereafter.

Placing a $EXIT command after the vector in error directs
attention to the true problem, instead of to the many false
errors caused by the incorrect transition.

$SIMOFF

Use the $SIMOFF simulator directive to turn off test vector
evaluation. Test vectors appearing after the $SIMOFF
directive are only evaluated for invalid test values and the
correct number of test values. This directive is useful in
testing asynchronously clocked designs in which CSIM is
unable to correctly evaluate registered outputs.

$SIMON

91-10128-5 1090 237

i CUPL
Using CSIM Reference Manual

Use the $SIMON simulator directive to cancel the effects of the
. $SIMOFTF directive. Test vectors appearing after the $SIMON
directive are evaluated fully.

0 Fault Simulation

An internal fault can be simulated for any product term, to
determine fault coverage for the test vectors. The format for
this option is as follows:

STUCKL n ;
or
STUCKH n ;

where

n is the JEDEC fuse number for the first fuse in the
product term.

The documentation file (filename.DOC) fuse map lists the
fuse numbers for the first fuse in each product term in the
device.

Format 1 forces the product term to be stuck-at-0.

Format 2 forces the product term to be stuck-at-1. The STUCK
command must be placed between the ORDER and VECTORS
statements.

238 1090 91-10128-5

Using CBLD 3

CBLD permits the maintaining and personalizing of CUPL
device libraries. It can list the contents of a library and build
new libraries from existing ones.

A CUPL device library is a file containing descriptions of one
or more PLDs. CUPL and CSIM use device libraries to
determine the characteristics of target devices. CUPL provides
device libraries to describe all the PLDs instead of supplying
individual files for each PLD. The advantage of device
libraries is that they are easier to keep track of than multiple
device files and they enable quicker program operation.

The use of device libraries also resolves compatibility
problems between the compiler and device descriptions. Each
version of CUPL and its corresponding device library is given
a matching key. If a library is used that has a different key
than the CUPL compiler, an error message is generated
during compilation and the compilation is aborted. .

The library that is created when the BUILD batch file is
executed, CUPL.DL, contains descriptions for each device that
is supported by the current version of CUPL.

(d RUNNING CBLD

Run CBLD with the following command line format:
cbld [-flags] [build] [library] [devices]

91-10128-5 1090 239

CUPL
Using CBLD Reference Manual

where

-flags is the following set of options:

b generate library using build file.
-e list allowable extensions.

-1 list long contents of library.

-m list allowable macros by pin.

t list short contents of library.

-u use specified library for listings.

build is the name of a file to be used with the -b option flag

library is a device library name and path name to be used with
the -u option flag.

devices is one or more device names to be used with the -t or -1
options.

>

Note

The square brackets indicate optional items.

CBLD can be typed without any flags to see the command line
format and a list of the option flags.

CBLD provides two distinct functions: listing the contents of a
library (the -t, -1 and -u options) and building a new library
(the -b option). These two functions are described in the
following sections.

240 1090 91-10128-5

CcUPL
Reference Manual Using CBLD

[J LISTING THE CONTENTS OF A
LIBRARY

To list the contents of a device library, use one of the following
command line formats:

cbld -t [-u library] [devices]
cbld -1 [-u library] [devices]

where
library is a device library name and path name.

devices is one or more device names.

2

Note

The square brackets indicate optional items.

Use the -t flag to specify the short form, which lists only the
device names and the revision number of the library.

Use the -1 flag to specify the long form, which lists the revision
number of the library and the names of the devices, and
provides the revision number, the number of pins, the number
of fuses, and the number of product terms for each device.

By default, CBLD lists the entire contents of the library;
however, certain devices can be specified to be listed. For
example, by typing:

cbld -1 p16h8 p1618 p16hd8 p16ld8{Return]

91-10128-5 1090 241

Using CBLD

CUPL
Reference Manual

CBLD lists the characteristics of the p16h8, p1618, p16hd8 and
p161d8 devices in the CUPL.DL library as follows:

Pins

Device Rev
pl6h8 08
pl618 08
pl6hd8 06
pl61d8 06

20
20
20
20

Fuses
2048
2048
2048
2048

Pterms

64
64
64
64

Use the -u flag and a library name with either the -1 or -t flag to
list the contents of a library other than the default library
specified in the environment file.

For example, to see the contents of a library named small.dl,

type:

cbld -1 -u small.dl
[LISTING ALLOWABLE EXTENSIONS

The -e flag allows the listing of the valid extensions for

devices. For example:

chbld -e p22v10

The screen will display:

Device
P22v10

Extension

OE D AR SP

This shows that the valid extensions for the P22V10 are:

OE output enable control
D D-type register

AR asynchronous reset
SP synchronous reset

1090

91-10128-5

CUPL
Reference Manual Using CBLD

If more than one device type must be listed, specify multiple
device names. For example:

cbld -e p22v10 ep600

The screen will display:

Device Extensions '
€pb00 OE D T AR CK 10 DFB TFB
P22v10 OE D AR SP

If a particular device is not specified, CBLD will, by default,
list all the devices of the library.

(1 LISTING ALLOWABLE MACROS

When defining device logic using schematic capture, only
certain component symbols (macros) can be used on any
given device pin.

To list the macros that can be used on a device pin, use the
following command line format:
cbld -m [-u library] [devices]

where
library is a device library name and path name.
devices is one or more device names.

>

Note

The square brackets indicate optional items.

91-10128-5 1090 ' 243

CUPL
Using CBLD Reference Manual

The -m flag lists, for each device, the pin number and the
macro number.

By default, CBLD lists the entire contents of the library;
however, certain devices can be specified to be listed. For
example, by typing:

cbld -m p16L8

CBLD lists the macros for the p16L8 device in the CUPL.DL
library as follows:

Device Pin Macros

P16L8 1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

1 0

12 1246

13 01234561617
4 01234561617
15 01234561617
16 01234561617
17 01234561617
18 01234561617
19 1246

24 1090 91-10128-5

CUPL
Reference Manual Using CBLD

20

(1 BUILDING DEVICE LIBRARIES

To build a new library from an existing library, first create
an ASCII build file (filename.BLD) that specifies the name of
the new library, the name of the source library, and the devices

to use from it. Any text editor can be used, once it can produce a
standard ASCII Text file.

D

Note

The vertical line (|) separates items in the syntax
that are mutually exclusive. Do not type it in.

The build file uses the following syntax:

TARGET library
SOURCE libraryl
devices | *
SOURCE library?2
devices | *

where
TARGET is a keyword to identify the new library.
SOURCE is a keyword to identify the source libraries.

91-10128-5 1090 245

CUPL
Using CBLD Reference Manual

library is a target library name.
libraryl and library?2 are source library names.

devices are device names contained in the source
libraries.

* is a “wildcard” representing all devices in the
specified library.

When building a new library, devices from more than one
source library can be specified by using more than one
SOURCE keyword.

Ct;mments may be used in the build file. Enclose comments
between the /* and */ symbols.

To compile the build file, use the following command line
format:

cbld -b filename.bld

D

Note

There is no standard extension for build files. The
.BLD extension is for mnemonic convenience only.
When running CBLD, the entire filename,
including the extension, must be typed in.

The following example shows the contents of a build
specification file, small.bld. Small.bld specifies that a new
library, smallib.dl, be built containing the devices p22v10,
105, and p16rp8 from the cupl.dl library, and all the devices in
the biglib.dl

246 1090 , 91-10128-5

CUPL

Reference Manual Using CBLD

TARGET smallib.dl

SOURCE cupldl
p22v10
105
plerp8
SOURCE biglib.dl

*

To run CBLD and build the smallib.dl library specified in the
sample file above, type

cbld -b smallbld

91-10128-5 1090 247

Using PTOC 4

PTOC converts PALASM source files into CUPL and CSIM
source files in order to maintain existing designs and develop
new ones while using only one universal language.

Use PTOC on files that have assembled successfully with a
PALASM assembler. The output of PTOC is directly
compatible with CUPL syntax and may be compiled without
modifications.

(d RUNNING PTOC

Run PTOC with the following format:
ptoc palasm_filel palasm_file2 ...

where

palasm_filel, palasm_file2 are PALASM source files to
be translated.

There is no standard file extension for PALASM source files;
specify the full filename and extension when running PTOC.

For each input PALASM file, PTOC generates a CUPL logic
description file, filename.PLD; the filename is the same as
the input PALASM filename.

If the PALASM file contains a function table (that is, test
vector information) PTOC also generates a test specification
file, filename.SI, that can be input to CSIM. It is possible to
specify more than one file to be translated with a single PTOC
command line.

91-10128-5 1090 248

CUPL
Reference Manual Using PTOC

For example, to translate the files COUNT2 and DECADE,
type the following:

ptoc count2 decade

PTOC generates the files COUNT2.PLD and DECADE.PLD.
If the PALASM files contain test vectors, PTOC also generates
COUNT2.SI and DECADE.SI

1 PALASM SOURCE FILE FORMAT

Because of variations in PALASM assemblers, PTOC follows
the standard set by Monolithic Memories in the PAL
Handbook (Third Edition). Figure 4-1 shows a sample
PALASM source file in the format required by PTOC.

91-10128-5 1090 249

i CUPL

Using PTOC Reference Manual
PAL16R8 Line 1, col 1 - PAL part #
PART NO 1234B Line 2 - User's part #
SAMPLE Line 3 - Name of device
GYRO, SAN JOSE, CA Line 4 - Company, city, state
CLK IO I1 I2 I3 I4 IS5 I6 I7 Line 5 - Pin list (must start on
GND /OE 01 02 03 NC NC line 5), consists of 20 or 24
NC NC NC VcC symbolic names that are

consecutively assigned to pins 1
through 20 (24).

/01 := /IO*/I1*/12 + /I1*/12*/13 Equaticns

/02 := /I0*/I1%/I2 + /I1*/12%/14

/03 := /IO*/I1*/I2 + /I1*/12*/15

FUNCTION TABLE Keyword (must start in column 1)

I0 I1 12 I3 I4 IS CLK /OE 01 02 03 Function table pin list
;I0-IS CLK /OE 01-03 COMMENTS Optional comments

Dashed line (length optional)

LLLLLL C L LLL LOAD ZEROS Function table vectors,
HHHHHH C L HHH LOAD ONES one vector per line
HHHHHL C L HHH WHATEVER followed by optional comments

HHHHLL C L HHH
HHHLLL C L HHH

- Dashed line(length optional)

DESCRIPTION Keyword, optional if following
function table (must start

THIS IS A SAMPLE PALASM FILE in column 1) followed by

FOR A PAL16R8 DEVICE comment s

Figure 4-1. Sample PALASM File with Explanations

The following sections refer back to this sample file to show
how PTOC converts PALASM files to CUPL format.

(J PTOC.PLD OUTPUT FILE

PTOC generates a CUPL source file (palasm_file.PLD) for
each PALASM file that it translates. The CUPL source file is
organized into header information, pin assignments, and
equations.

250 1090 91-10128-5

CUPL
Reference Manual Using PTOC

O Header Information

PALASM header information cannot be directly translated
into CUPL header information. PTOC places dummy header
information into the CUPL source file, and puts the PALASM
header information within comments. Use a text editor to
replace the dummy header information with valid
information to maintain consistent documentation. Figure 4-
2 shows the header information created by translating the
PALASM sample file in Figure 4-1.

NAME XXXXX ;
PARTNO XXXXX ;
REV XXXXX ;
DATE XXXXX ;
DESIGNER XXXXX ;
COMPANY XXXXX ;
ASSEMBLY XXXXX ;
LOCATION XXXXX ;
/* PAL16RS */ .
/* PART NO 1234B ¥/

/* SAMPLE */

/* GYRO, SAN JOSE, CA */
Figure 4-2. Header Information Translation
O PinList

PTOC translates the PALASM pin list into CUPL pin
assignments beginning at line five in the PALASM source
file. CUPL does not translate GND, NC and VCC pins. Figure
4-3 shows the pin list translation from the sample PALASM
file in Figure 4-1.

91-10128-5 1090 251

CUPL
Using PTOC Reference Manual

PIN1= CLK;
PIN2= 10;
PIN3= I1;
PIN4d= I2;
PIN5= 1I3;
PIN6= H4;
PIN7= I5;
PIN11= !0E;
PIN12= O1;
PIN13= 02;
PIN14= O3;

Figure 4-3. Pin List Translation

a Eq_uaﬁons

PTOC translates PALASM equations into CUPL equations,
replacing symbols, and adding parentheses and variable
extensions as necessary. Figure 6-4 shows the equation
translation for the PALASM sample file shown in Figure 4-1.

'01.D = !'I0 & !'I1 & !I2 # !'I1 & 'I2 & !1I3 ;
'02.D = !'I0 & !'I1 & !'I2 # !'I1 & 'I2 & !'I4 ;
!03.D = !I0 & !'I1 & !I2 # !'I1 & 'I2 & !I5 ;

Figure 4-4. Equation Translation

PTOC replaces the *, +, and / symbols in the PALASM file
with the CUPL &, # and ! symbols respectively. PTOC
translates the assignment operator for registered outputs, :=,
by adding the .D extension to the variable name on the left side
of the assignment statement (see the subtopic, Extensions in
Chapter 1).

252 1090 91-10128-5

CUPL
Reference Manual Using PTOC

J PTOC .SI OUTPUT FILE

When PTOC translates a PALASM file containing a function
table, it generates a CSIM source file, (palasm_file.SI). This
CSIM source file is organized into header information, pin
order, and vectors, The header information is translated in
the same manner as the CUPL source file header information
(see the subtopic, Header Information in this chapter).

PTOC translates the PALASM function table pin list into a
CSIM pin order list. Figure 4-5 shows the function table pin list
translation for the PALASM sample file shown in Figure 4-1.

ORDER:
‘10, 11, 12, 13, 14, 15, CLK, !'OE, 01, 02, 03;

Figure 4-5. CSIM Pin Order List

PTOC translates the PALASM function table vectors into a
CSIM vectors list. Figure 4-6 shows the function table vectors
translation for the PALASM sample file shown in Figure 4-1.

91-10128-5 1090 253 .

CUPL

Using PTOC Reference Manual
VECTORS:
000000 C 0 LLL /* LOAD ZEROS */
111111 C 0 HHH /* LOAD ONES */
111110 C 0 HHH /* WHATEVER */
111100 Cc 0 HHH
111000 C 0 HHH

Figure 4-6. Vectors List
0 Translation Ambiguities

Because of inherent ambiguities in PALASM syntax, certain
conditions cannot be accurately translated into CUPL syntax.

Many PALASM assemblers do not verify that the correct
assignment statement, “=” for combinatorial outputs and “:="
for registered outputs, is being used. For example, source
assemblers treat the following equations in the same manner:

OUT =INA *INB
OUT :=INA *INB

PTOC translates them respectively as follows:

OUT =INA & INB
OUT.D = INA & INB

Another ambiguity concerns the use of exclusive OR devices.
PTOC requires the use of the PALASM exclusive OR symbol
“+:” to explicitly define the position of the exclusive OR in the
equation. However, some PALASM assemblers allow an
exclusive OR output to be organized by position without
explicitly defining the exclusive OR. For example, some
PALASM assemblers treat the following two equations in the
same manner:

254 1090 91-10128-5

CUPL

Reference Manual Using PTOC
OUT :=INA * INB + INC*IND + INE*INF
OUT := INA * INB + INC*IND :+:INE * INF

PTOC translates them respectively as follows:

OUT.D = INA & INB # INC & IND # INE & INF;
OUT.D = INA & INB # INC & IND $INE & INF;

The most troublesome ambiguity is in the function table of
source files with bi-directional pins. Since the same values
are used by PALASM to indicate inputs and outputs during
simulation, PTOC cannot accurately determine whether a
bidirectional pin should be treated as an input or an output. If a
PALASM source file has bidirectional pins, check the vector
table translation in the source specification file to determine
whether PTOC's interpretation is correct. '

91-10128-5 1090 25

Error Messages A

CUPL error messages are intended to be self-explanatory.
This .appendix provides additional information describing
them.

Some of the CUPL programs, such as CUPL and CSIM, are
composed of individual modules. Error messages are
numbered and listed according to the program and module in
which they occur. The suffix to the error message number
identifies the program and module.

Table A-1. Error Message Module Suffixes

[Module Suffix
CUPL processor ck
CUPLX preprocessor cx
CUPLA source file parser ca
CUPLB equation fitter cb
CUPLM minimizer cm
CUPLC fusemap generator cc
CSIM processor sk
CSIMA logic simulator sa
CBLD device library manager ba
PTOC PALASM translator pt

This appendix lists the error messages by modules in the same
order as they appear in Table A-1 above. The error messages
within each module are listed in numerical order.

CUPL provides three levels of error messages: warnings,
errors, and fatals.

91-10128-5 1090 256

CUPL
Reference Manual Error Messages

warnings — do not prevent CUPL from continuing, but
indicate a problem that should be corrected.

errors — allow CUPL to continue but must be corrected before
future compiles.

fatals — prevent CUPL from continuing and must be
corrected.

>

Note

Error messages with indexes greater than 1000 are
program errors. This section does not individually
list program errors. Possible causes for program
errors are bad data in a source file caused by disk
errors or word processors in document mode; or
previous errors continuing to propagate unexpected
circumstances. If the cause of a program error
cannot be determined, gather as much information
as possible on the conditions in effect when the error
occurred, then call CUPL support.

Error messages report the line number on which the error was
detected; however, the cause of the error may be on a previous
line. If the message doesn't seem to apply to the reported line,
look at preceeding lines for the source of the error.

(1 CUPL ERROR MESSAGES

This section describes the errors for the CUPL, CUPLX,
CUPLA, CUPLB, CUPLM, and CUPLC modules.

91-10128-5 1090 257

CUPL
Error Messages Reference Manual

 CUPL Module Error Messages

0001ck could not open: “filename”

Fatal. CUPL cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an
input.

0002ck could not execute program: “program name”

Fatal. CUPL is unable to perform the next step in the
compilation. Be sure that all of the CUPL program files
exist on the same directory or disk.

' 0003ck could not find PATH in ENVIRONMENT

Fatal. The PATH assignment has not been made in the
ENVIRONMENT.

0004ck could not find LIBCUPL in ENVIRONMENT

Fatal. The LIBCUPL assignment has not been made in
the ENVIRONMENT.

0005ck could not find program: “program name”

Fatal. CUPL is unable to locate the CUPL programs
using the PATH in the ENVIRONMENT.

0006ck insufficient memory to execute program: “filename”

Fatal. Not enough program storage available to load
and execute the program. Refer to Chapter 1,
“Introduction,” for the minimum memory requirements
for the configuration being used.

0007ck invalid flag: “option flag”

Fatal. The option flag specified is not one of the
allowable compilation flags. Verify proper command
line flags and syntax as discussed in Chapter 2, “Using
CUPL.”

258 1090 91-10128-5

CUPL
Reference Manual Error Messages :

0008ck out of memory: “condition”

Fatal. CUPL has used all available RAM memory which
has been allocated by the operating system. Check for the
existence of print spoolers, RAM disks, or other
memory-resident programs which may decrease the
amount of memory available to the CUPL application.

10xxck program error: “specifics”

Fatal. An operating system interface problem is
suspected. Contact Logical Devices, Customer Support.

O CUPLX Module Error Messages

0001cx could not open: “filename”

Fatal. CUPLX cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an
input.

0002cx could not execute program: “program name”

Fatal. CUPLX is unable to perform the next step in the
compilation. Be sure that all of the CUPL program files
exist on the same directory or disk.

0003cx no label given for command
Error. One of the preprocessor commands, $DEFINE,
$UNDEF, $IFDEF, or $IFNDEF, was used without a
succeeding label.

0004cx already defined: “label”

Error. The label was previously defined using
$DEFINE. To redefine the label, first use §UNDEF to
undefine the label, and then use $DEFINE to redefine it.

* 0005cx string error
Fatal. All preprocessor label string space has been used.

91-10128-5 1090 259

CUPL

Error Messages Reference Manual

0006¢cx $else without $ifdef
Error. An $ELSE preprocessor command was used
without being preceded by an $IFDEF or $IFNDEF
command.

0007cx $endif without $ifdef

Error. An $ENDIF preprocessor command was used
without being preceded by an $IFDEF or $IFNDEF
command.

0008cx $ifdef nesting too deep
Error. The level of $IFDEF nesting exceeded twelve.

0009cx missing $endif

Error. An $IFDEF preprocessor command was used
without being succeeded by an $ENDIF command.

0010cx invalid preprocessor command: “$command”

Error. The preprocessor command is unknown. Refer to
Preprocessor Commands in Chapter 2 for a list of valid
commands.

0011cx disk write error: “filename”

Fatal. CUPLX encountered an I/O error trying to write
the indicated file. This error usually occurs when there
is insufficient disk space.

0012cx out of memory: “condition”
Fatal. CUPLX has used all the available RAM memory
allocated by the operating system.

0013cx illegal character: “hex value”

Error. CUPLX has encountered an illegal ASCII value
in the source file. Make sure the file was created in
nondocument mode on the word processor. This error

1090 91-10128-5

CUPL
Reference Manual Error Messages

can also be caused by files which were created over a
serial modem upload/download link.

0014cx unexpected symbol:“symbol”
Fatal. CUPLX encountered a symbol that it was not
expecting. This occurs when certain symbols are
expected in a particular order and are either incorrect,
misplaced or misspelled.

0015cx Repeat nesting too deep
Fatal. The level of Repeat nesting exceeded two.

0016¢cx duplicate Macro function name:*function”

Error. The Macro function name has already been
previously defined. A duplicate Macro name will cause
confusion when they are called.

0017cx missing Macro name

Fatal. A Macro was defined without a name. This macro
will never be accessed.

0018cx incorrect number of parameters

Fatal. The number of parameters defined in the Macro
function did not equal the number of parameters in the
macro call. All parameters defined in the Macro
function must be defined in the Macro call.

0019¢cx out of range

Fatal. The index number exceeded 1023. Valid index
numbers are 0 - 1023.

0020cx internal stack overflow

Fatal. A mathematical expression was too complex for
CUPLX to handle. The expression can be reduced by
eliminating as many parenthetical expressions as-
possible. Expressions are evaluated from left to right

91-10128-5 1090 261

CUPL

Error Messages Reference Manual

using standard precedence. The user should take
advantage of this,

0021cx expression contains undefined symbol:“symbol”
Fatal. A symbol appearing in the expression has not
been defined in the source file or predefined by CUPL.
0022¢cx invalid library access key

Fatal. The version of CUPLX is not compatible with the
version of the device library file. This occurs when
either CUPLX or the device library, but not both, has been
updated.

0023cx invalid library interface

Fatal. Either the device library was not created using the
CUPL library manager, CBLD, or CUPLX and the device
library are not compatible.

0024cx bad library file: “library”
Fatal. Either the device library does not exist or the
contents of the device library have been damaged.
10xxcx program error: “specifics”

Fatal. An operating system interface problem is
suspected. Contact Logical Devices customer support.

CUPLA Module Error Messages

0001ca could not open: “filename”

Fatal. CUPLA cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an
input.

0002ca invalid number: “number”

Error. Either the number is used improperly, or a
previous syntax error caused the number to be used
improperly.

1090 91-10128-5

CUPL
Reference Manual Error Messages

0003ca invalid library access key

Fatal. The version of CUPLA is not compatible with the
version of the device library file. This occurs when
either CUPLA or the device library, but not both, has been
updated.

0004ca invalid library interface

Fatal. Either the device library was not created using the
CUPL library manager, CBLD, or CUPLA and the
device library are not compatible.

0005ca bad library file: “library”
Fatal. Either the device library does not exist or the
contents of the device library have been damaged.

0006ca device not in library: “device”
Fatal. Either the specified target device does not exist or
an entry has not been made in the device library for the
device.

0007ca invalid syntax: “symbol”

Error. Either the symbol is used improperly, or a
previous syntax error caused the symbol to be uged
improperly.

0008ca too many errors
Fatal. CUPLA has encountered more than 30 errors.

0009ca missing: “symbol”

Error. The missing symbol is required to make the
specified statement valid.

0010ca vector too wide
Fatal. A variable list has more than 50 members.

91-10128-5 1090 263

CUPL

Error Messages Reference Manual

0011ca expression already assigned to: “variable”
Error. The variable (either an intermediate or output
variable) was previously assigned an expression. Use
APPEND to make multiple expression assignments for
the same variable.

0012ca vector size mismatch

Error. The number of members in the variable list on the
left side of the equation does not match the number of
variables on the right side.

0013ca undefined function: “function”

Error. The variable name used as a function reference
has no corresponding function definition. Functions
must be defined before they can be referenced.

0014ca variable already declared: “variable”

Error. The variable which was previously assigned an
expression cannot be reassigned.

0015ca out of memory: “condition”
Fatal. CUPLA has used all available RAM memory
which has been allocated by the operating system.
Decrease the number of intermediate variables, fields,
or numbers in order to reduce the size of the symbol table.

D

Note

This error is not a result of insufficient product
terms in the device to implement a particular
expression.

1090 91-10128-5

CUPL
Reference Manual Error Messages

0016¢ca invalid number of function arguments: “number”
Error. The user has attempted to pass an incorrect
number of arguments to the user-defined function. The
number of arguments for the function reference does not
match the number in the function definition.

0017ca disk write error: “filename”
Fatal. CUPLA encountered an I/O error trying to write
the indicated file. This error usually occurs when there
is insufficient disk space.

0018ca intermediate var not assigned an expression:
‘“variable”

Error. The intermediate variable was used as an input
in an expression without having been assigned an
expression. This error often occurs when a pin or
intermediate variable in a logic expression is
misspelled.

0019ca indexed and non-indexed vars in range or match

expression
Warning. A list (or field variable) in a range or match
expression contains both indexed (variable names
ending in a number) and nonindexed variables. This
type of operation cannot produce the expected results
because of inability to hold relative bit positions in the
field. It is recommended to use all non-indexed
variables in a field for portability to future versions of
CUPL.

0020ca index too large for range or match operation

Error. The index of a variable in a list or field exceeds
the range or match values.

0021ca header item already declared
Error. One of the header statements was duplicated.

91101285 1090 %5

CUPL

Error Messages Reference Manual
0022ca missing header item(s)
Warning. At least one of the header statements is |
missing.

0023ca invalid range arguments: always true (in range)

Error. A range has been specified which will always be
true and is therefore not an actual range. CUPLA
attempts to minimize range functions and does not allow
a NULL range such as this. This happens with ranges
such as [0000..FFFF] for a 16-bit address. This error can
also be given if non-indexed list variables are used in a
range expression.

0024ca range or match number larger than variable list

Warning. The range or match number exceeds the
width of the bit field it is being applied to. Values
exceeding the width of the bit field will be ignored.

0025ca range minimization error
Error. The range reduces to always false, that is, none of
the bits in the range are active.

0026c¢a invalid table statement

Error. Input numbers cannot be mapped into more than
one output number.

0027ca invalid present state number

Error. The present state number specified is not valid.
This error can occur whenever the present state has not
been properly defined as a number using the $DEFINE
command.

0028ca invalid next state number

Error. The next state number specified is not valid. This
error can occur whenever the next state has not been

1090 91-10128-6

CUPL
Reference Manual Error Messages

properly defined as a number using the $DEFINE
command.

0029ca invalid flipflop type for sequence statement: “type”

Error. The flip-flop type for this device cannot be used for
building the requested sequential state machine.

0030ca intermediate dependent on itself: “variable”

Error. The intermediate variable was used in the
expression defining the same intermediate variable.
This error often occurs when an intermediate variable
is misspelled or an output pin expression is being
defined using feedback without declaring the output
variable as a pin.

0031ca invalid minimization level: “level”

Error. The minimization level specified is invalid.
Refer to “Running CUPL” in Chapter 2 for valid
minimization levels.

0032ca invalid next state: “hex number”

Error. The next state value is invalid. This error can
occur whenever the next state has not been properly
defined as a number using the $DEFINE command or
has not been identified as a present state using the
present command.

0033ca multiple asynchronous defaults for state: “hex
number”

Error. By definition, only one asynchronous default
expression can be assigned for any one state. The
resulting expression is the complement of all previous
conditional (if) asynchronous expressions.

0034ca multiple synchronous defaults for state: “hex number”

Error. By definition, only one synchronous default
expression can be assigned for any one state. The

91-10128-5 1090 267

CUPL
Error Messages Reference Manual

. resulting expression is the complement of all previous
conditional (if) synchronous expressions.

0035ca multiple unconditional statements for state: “hex
number”

Error. By definition, only one unconditional
synchronous statement can be given for any one state.

0036ca device does not support synchronous state machines

Fatal. The device specified for compilation cannot be
used with the sequence statement since it does not support
registered operations.

0037ca duplicate present state: “hex number”

Error. The present state number was identified in more
than one PRESENT command. This can occur when
symbolic state names are used to refer to states, but the
$DEFINE command, used to define states, assigned the
same number to more than one symbolic name.

0038ca target device not specified

Fatal. The user did not specify a target device on the
command line and the source file did not contain a
DEVICE assignment in the header information.

0039ca line exceeds maximum length

Error. The statement is greater than 256 characters
long. Break the line up into shorter statements.

0040ca invalid or duplicate header name: “name”

Fatal. The NAME field in the header information must
not be NULL. When more than one device is being
defined in a logic description file, the NAME field in the
header information must be unique.

0041ca don't care(s) not allowed for decimal number, treated
as0

268 1090 91-10128-5

CUPL

Reference Manual Error Messages

Warning. “Don't-care” values, “X”, are valid only for
binary, octal, and hexadecimal numbers,

0042ca range or match list completely don't cared, decoded as 0

Warning. The variable list in a range or match
operation has been completley “don't-cared,” leaving an
empty variable list. The empty variable list will be
decoded into a 0.

10xxca program error: “specifics”

Fatal. An operating system interface problem is
suspected. Contact Logical Devices, customer support.

CUPLB Module Error Messages

0001cb could not open: “filename”
Fatal. CUPLB cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an
input.

0002cb could not execute program: “program name”
Fatal. CUPLB is unable to perform the next step in the
compilation. Be sure that all of the CUPL program files
exist on the same directory or disk.

0003cb invalid file: “filename”
Warning. The file was not created by the current
version of CUPL.

0004cb missing or mismatched parentheses:
Error. The number of open parentheses [(] and close
parentheses [)] in the specified statement does not match.

0005cb invalid library access key

Fatal. The version of CUPLB is not compatible with the
version of the device library file. This occurs when

91-10128-5 1090 269

CUPL

Error Messages Reference Manual

either CUPLB or the device library, but not both, has been
updated.

0006¢b invalid library interface

Fatal. Either the device library was not created using the
CUPL library manager, CBLD, or CUPLB and the device
library are not compatible.

0007cb bad library file: “library”

Fatal. Either the device library does not exist or the
contents of the device library have been damaged.

0008ch device not in library: “device”

Fatal. Either the specified target device does not exist or
an entry has not been made in the device library for the
device.

0009¢b pin/node “number” redeclared: “variable”
Error. The same pin number or variable name was used
more than once in a pin declaration statement.

0010cb pin/node “number” invalid output: “variable”
Error. The variable being assigned an output expression
was previously declared for an input-only pin.

0011cb unknown extension: “extension”

Error. The extension is unknown or invalid for the
particular device. Refer to “Extensions” in Chapter 2 for
a list of valid extensions. Check to make sure the device
has the capability required.

0012¢cb pin/node “number” invalid usage: “variable”

Fatal. The pin number assigned to the variable is
invalid for the target device specified.

0013cb pin/node “number” invalid output extension or usage:
“variable”

1090 91-10128-5

CUPL
Reference Manual Error Messages :

Error. Either the extension is used improperly or it is not
valid for the assigned pin/node.

0014cb invalid input: “variable” or pin/node “number”
invalid input: “variable”
Error. The variable used as an input was previously
assigned to an output that is neither bidirectional nor
feeds back into the input array.

0015cb device not yet fully supported: “device”

Fatal. There is an entry for the device in the device
library, but the device is not fully supported by the
current version of CUPL.

0016¢b no expression assigned to: “variable”

Warning. The variable requires an output expression
assignment. This warning message is commonly
given when all outputs in a bank have the same
capability (reset, preset, and so-on) and not all the
variables have been assigned the same expression. It is
given to remind the user that all outputs will be affected.

S

Note

This warning may be suppressed by assigning the
variable to 'b'0 or 'b'1 as appropriate.

0017cb out of memory: “conditions”

Fatal. CUPLB has used all available RAM memory that
has been allocated by the operating system, typically as a
result of performing a DeMorgan or expansion operation
on a large expression. If using fixed polarity devices,
check to make sure that the pin variable declaration

91-10128-5 1090 271

CUPL
Error Messages Reference Manual

matches the polarity of the device. Also check whether an
intermediate variable which has been expressed in sum-
of-product form is being complemented.

>

Note

This error does not result from insufficient product
terms in the device to implement a particular
expression.

0018cb missing flip-flop expression for: “variable”

Error. The matching flip-flop expression for a J-K or S-
R type flip-flop is missing. Both inputs must have
expressions assigned to them. An input may be assigned
to 'b'0 or 'b'1 as appropriate.

0019cb DeMorgan's theorem invoked for: “variable”

Warning. DeMorgan's Theorem has been applied to the
expression assigned to the variable. Unlike D- or T-type
flip-flops, meaningful results are not guaranteed when
a DeMorgan equivalent expression is applied to the logic
input.

0020cb invalid mix of banked outputs: “variable”

Error. All outputs in a banked group must be used in the
same manner. An attempt was made to mix registered
and nonregistered output types.

0021cb no expression allowed for: “variable”

Error. Logic expressions are not allowed for reset and
preset nodes when the output has been specified as
asynchronous. CUPL will generate the proper defaults.

272 1090 91-10128-5

CUPL
Reference Manual Error Messages

0022¢b pin/node “number” conflicting input architectures:
“variable”

Error. A fuse-assigned input architecture must be used
consistently in all expressions. An attempt was made to
specify both fuse options in different expressions,

0023cb disk write error: “filename”

Fatal. CUPLB encountered an I/O error trying to write
the indicated file. This error usually occurs when there
is insufficient disk space.

0024cb output defined for node which does not exist: '"variable"

Error. Variable is defined for a pin or node number
which does not exist.

0025cb output mutually excluded by previous output: “variable”

Error. Variable usage is mutually excluded by a
previous usage or other output. A shared product term or
terms has been defined more than once.

0026¢b disk read error, unexpected end of file: “filename”

Fatal. CUPLB encountered an I/O error trying to read
the indicated file. This error usually occurs when the
file is being read from damaged media.

10xxchb program error: “specifics”

Fatal. An operating system interface problem is
suspected. Contact LDI customer support.

0 CUPLM Module Error Messages

0001cm could not open: “filename”

Fatal. CUPLM cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an’
input.

91-10128-5 1090 273

Q cuPL
Error Messages Reference Manual

0002cm could not execute program: “program name”

Fatal. CUPLM is unable to perform the next step in the
compilation. Be sure that all of the CUPL program files
exist on the same directory or disk.

0003cm invalid file: “filename”

Warning. The file was not created by the current
version of CUPL.

0004cm out of memory: “conditions”

Fatal. CUPLM has used all available RAM memory
which has been allocated by the operating system while
performing logic reduction.

>

Note

This error does not result from insufficient product
terms in the device to implement a particular
expression.

0005cm disk write error: “filename”

Fatal. CUPLM encountered an I/O error trying to write
the indicated file. This error usually occurs when there
is insufficient disk space.

0006cm invalid library access key

Fatal. The version of CUPLM is not compatible with the
version of the device library. This occurs when either
CUPLM or the device library, but not both, has been
updated.

274 1090 91-10128-5

CUPL
Reference Manual Error Messages

0007cm invalid library interface

Fatal. Either the device library was not created using the
CUPL library manager, CBLD or CUPLM and the device
library are not compatible.

0008cm bad library file: “library”

Fatal. Either the device library does not exist or the
contents of the device library have been damaged.

0009cm device is not in library: “device”

Fatal. Either the specified target device does not exist or
an entry has not been made in the device libary for the
device.

00010cm design too complex for this minimization level
Fatal. CUPLM has exceeded the array size allowed on
this machine while reducing a particular expression.
Specify a more efficient minimization level.

00011cm disk read error, unexpected end of file: “filename”

Fatal. CUPLM encountered an I/0O error trying to read
the indicated file. This error usually occurs when the
file is being read from damaged media. .

10xxcm program error; ifics”

Fatal. An operating system interface problem is
suspected. Contact LDI customer support.

0 CUPLC Module Error Messages

0001cc could not open: “filename”

Fatal. CUPLC cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an
input.

91-10128-5 1090 275

CUPL

Error Messages Reference Manual

0002cc invalid file: “filename”

Warning. The file was not created by the current
version of CUPL.

0003cc invalid library access key

Fatal. The version of CUPLC is not compatible with the
version of the device library. This occurs when either
CUPLC or the device library, but not both, has been
updated.

0004cc invalid library interface

Fatal. Either the device library was not created using the
CUPL library manager, CBLD, or CUPLC and the device
library are not compatible.

0005cc bad library file: “library”

Fatal. Either the device library does not exist or the
contents of the device library have been damaged.

0006¢cc excessive number of product terms: “variable”

Error. The number of product terms needed to
implement the logic expression for the given variable
exceeds the capacity of the output pin for which it was
declared.

0007ce invalid download format(s)

Warning. At least one of the download formats specified
is not available for the target device. For example, the
HL download format is not available for PALs or
PROMs.

0008cc pin can not be used as input: “variable”

Error. The pin to which the variable is assigned provides
no input or feedback capability.

1090 91-10128-5

CUPL
Reference Manual Error Messages

0009cc header name undefined, using no_name

Error. The NAME field in the header information is
missing. Since CUPLC uses this name to generate
download files, the desired file will be created as
“no_name” along with the appropriate extension.

0010cc disk write error: “filename”

Fatal. CUPLC encountered an I/O error trying to write
the indicated file. This error usually occurs when there
is insufficient disk space.

0011cc out of memory: “conditions”

Fatal. CUPLC has used all the available RAM memory
allocated by the operating system.

S

Note

This error does not result from insufficient product
terms in the device to implement a particular
expression.

0012cc disk read error, unexpected end of file: “filename”

Fatal. CUPLC encountered an I/O error trying to read
the indicated file. This error usually occurs when the
file is being read from damaged media.

0013cc conflicting usage of pinnode:'variable"

Error. Variable usage is mutually excluded by a
previous usage of the pin or pinnode. A shared product
term or terms has been defined more than once.

91-10128-5 1090 277

CUPL

Error Messages Reference Manual

10xxcc program error: “specifics”

Fatal. An operating system interface problem is
suspected. Contact Logical Devices customer support.

CSIM ERROR MESSAGES

This section describes the error messages for the CSIM and
CSIMA modules.

CSIM Module Error Messages

0001sk could not open: “filename”
Fatal. CSIM cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an
input.

0002sk could not execute program: “program name”

Fatal. CSIM is unable to perform the next step in the
simulation. Be sure that all of the CSIM program files
exist on the same directory or disk.

0003sk could not find PATH in ENVIRONMENT
Fatal. The PATH assignment has not been made in the
ENVIRONMENT.

0004sk could not find LIBCUPL in ENVIRONMENT
Fatal. The LIBCUPL assignment has not been made in
the ENVIRONMENT.

0005sk could not find program: “program name”
Fatal. CSIM is unable to locate the CSIM program using
the PATH in the ENVIRONMENT.

0006sk insufficient memory to execute program: “filename”

Fatal. Not enough program storage available to load and
execute the program. Refer to the System Overview for

1090 91-10128-5

CUPL
Reference Manual Error Messages

the minimum memory requirements for the
configuration being used.

0007sk invalid flag: “flag”

Fatal. The specified flag is not a valid option flag.
Execute CSIM without arguments to get a listing of valid
option flags.

008sk out of memory: “condition”

Fatal. CSIM has used all the available RAM memory
allocated by the operating system. Check for the
existence of print spoolers, RAM disks, or other
memory-resident programs which may decrease the
amount of memory available to the CUPL application
program.

10xxsk program error: “specifies”

Fatal. An operating system interface problem is
suspected. Contact LDI customer support.

0 CSIMA Module Error Messages

0001sa could not open: “filename”
Fatal. CSIM cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an
input.

0002sa invalid number: “number”
Error. Either the number is used improperly, or a
previous syntax error has caused the number to be used
improperly.

0003sa invalid file format: “filename”

Warning. The file was not created by a compatible
version of CUPL.

91-10128-5 1090 27

CUPL

Error Messages Reference Manual

0004sa invalid library access key

Fatal. The version of CSIMA is not compatible with the
version of the device library used in the simulation.
This occurs when either CSIMA or the device library, but
not both, has been updated.

0005sa invalid library interface

* Fatal. Either the device library was not created using the
CUPL library manager, CBLD, or CSIMA and the device
library are not compatible.

0006sa bad library file: “library”

Fatal. Either the device library does not exist or the
contents of the device library have been damaged.

0007sa device not in library: “device”

Fatal. Either the specified target device does not exist or
an entry has not been made in the device library for the
device.

0008sa invalid output format: “format”

Warning. The download format is not available for the
target device; for example, the JEDEC download format
is not available for PROMS.

0009sa invalid syntax: “symbol”

Error. Either the symbol is used improperly, or a
previous syntax error has caused the symbol to be used
improperly.

0010sa expecting device: “device”
Fatal. The target device is not the same as used when
CUPL created the absolute file.

0011sa unknown symbol: “symbol”

1090 91-10128-5

CUPL
Reference Manual Error Messages

Error. The symbol, used in the order statement, was not
previously defined in the CSIM or CUPL source files.

0012sa too many symbols:

Fatal. The number of symbols in the order statement
exceeds the number of symbols previously defined in the
CSIM and CUPL source files.

0013sa excessive test value “value”

Error. The test vector value is greater than the
maximum possible value defined in the order statement.
This error will occur when there are too many test
values.

0014sa insufficient test values

Fatal. The test vector value is less than the minimum
possible value defined in the order statement. This error
will occur when there are too few test values.

0015sa field already defined: “field”
Error. The field name was previously used in either the
CSIM or CUPL source files.

0016sa too many errors
Fatal. CSIM has encountered too many errors to
continue.

0017sa missing symbol “symbol”
Error. CSIM expected a keyword.

0018sa out of memory: “condition”

Fatal. CSIM has used all the available RAM memory
allocated by the operating system.

0019sa user expected (value) for: “variable”

Error. The test value expected by the user in the .SI file
did not match the actual value computed by CSIM.

91-10128-5 1090 281

CUPL
Error Messages Reference Manual

0020sa unstable output: “variable”

Error. The output variable did not have the same test
value for two continuous evaluation passes after the
maximum twenty passes were attempted. Check the logic
equation for an untestable design.

0021sa invalid test value; “value”

Error. Either the test value is an invalid test vector
symbol or the test value is used improperly; that is, a test
value of 0 is used for an output.

0022sa bad fault id: “jedec number”

Error. The JEDEC number, given as the fault ID, is not
the address of the beginning of a product term.

0023sa could not read file: “filename”

Fatal. CSIM could not read from the specified file. This
occurs when the contents of the file have been corrupted.

0024sa could not write file: “filename”

Fatal. CSIM could not write to the specified file. This
occurs when the file is write protected or there is no room
left on the disk.

0025sa inconsistent header information

Warning. The header information in the CSIM source
file does not match the header information in the CUPL
source file used to create the absolute file.

0026sa missing header item(s)
Warning. At least one of the header statements is
missing.

0027sa old absolute file format for “filename”

Fatal. The absolute file was created by an incompatible
version of CUPL.

282 1090 91-10128-5

CUPL

Reference Manual Error Messages

0028sa statement too long
Fatal. The statement exceeds 256 characters.

0029sa invalid trace level: “number”

Error. The trace level must be a decimal number in the
range of 0 through 4.

0030sa invalid character: “hex value”

Error. CSIMA has encountered an illegal ASCII value
in the source file. Make sure the file was created in
nondocument mode on the word processor. This error
can also be caused by files which were created over a
serial modem upload/download link.

0031sa disk read error, unexpected end of file: “filename”

Fatal. CSIMA encountered an I/O error trying to read
the indicated file. This error usually occurs when the
file is being read from damaged media.

10xxsa program error: “specifies”

Fatal. An operating system interface problem is
suspected. Contact Logical Devices customer support.

(J CBLD ERROR MESSAGES

This section describes the error messages for the single
CBLD program module.

QO CBLD Module Error Messages

0001ba invalid syntax: “statement line number”
Fatal. The specified statement contains a syntax error.

0002ba could not open: “filename”

91-10128-5 1090 283

CUPL

Error Messages Reference Manual

Fatal. CBLD cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an
input.

0003ba invalid flag: “flag”

Warning. CBLD will warn that the invalid flag cannot
be evaluated, and then continue operation. Invoke CBLD
without arguments for a list of valid flags.

0004ba invalid library access key

Warning. The version number of CBLD does not match
the version number of the device library. This occurs
when either CBLD or the device library, but not both, has
been updated. To prevent incompatibility problems, it is
important that the version numbers match.

0005ba invalid library interface

Fatal. Either the device library was not created using
CBLD, or the library and CBLD have different version
numbers causing incompatibility problems.

0006ba bad library file: “library”

Fatal. Either the device library does not exist or the
contents have been damaged.

0007ba device not in library: “device”

Warning. Either the specified target device does not
exist or an entry has not been made in the device library
for the device.

0008ba inconsistent library access key

Warning. During a build operation, the target library
and a source library have different access keys.

0009ba inconsistent library rev

Warning. During a build operation, the target library
and a source library have different revision numbers.

1090 91-10128-5

CUPL

Reference Manual Error Messages

0010ba too many devices for target library: “library”
Fatal. The device library directory is full.

0011ba device not in library: “device”

Error. Either the specified device does not exist or an
entry has not been made in the device library.

0012ba could not find LIBCUPL in ENVIRONMENT

Fatal. The LIBCUPL assignment has not been made in
the ENVIRONMENT.

0013ba too many devices on command line

Error. The user has specified too many devices on the
command for CBLD to proceed. The maximum
allowable is determined by the command line limit of
the operating system.

0014ba disk write error: “filename”

Fatal. CBLD encountered an I/O error in trying to write
the indicated file. This error usually occurs when there
is insufficient disk space.

0015ba out of memory: “condition”

Fatal. CBLD has used all the available RAM memory
allocated by the operating system. Check for the
existence of print spoolers, RAM disks, or other
memory-resident programs which may decrease the
amount of memory available to the CUPL application
progam.

10xxba program error: “specifies”

Fatal. An operating system interface problem is
suspected. Contact Logical Devices customer support.

91-10128-5 1090 285

CUPL

Error Messages Reference Manual

[J PTOC ERROR MESSAGES

This section describes the error messages for the single PTOC
program module.

PTOC Module Error Messages

0001pt invalid syntax: “statement”

Error. The specified statement contains a PALASM
syntax error.

0002pt could not open: “filename”

Fatal. PTOC cannot continue because of the failure to
open the indicated file. Be sure the file exists if it is an
input.

0003pt string too large: “string”

Error. The character string exceeds the maximum
allowed number of characters (256).

0004pt unrecognized symbol: “symbol”
Error. The symbol is not a valid PALASM symbol.

0005pt unknown variable: “variable”

Error. The variable used in the function table has not
been defined in the pin list.

0006pt unknown part: “part”
Fatal. The part is either not a valid PALASM part
number or the part number does not start at line 1,
column 1.

0007pt missing dashed line

Error. The dashed line designating the beginning or the
end of the PALASM function table is missing.

1090 91-10128-5

CUPL
Reference Manual Error Messages

0008pt disk write error: “filename”
Fatal. PTOC encountered an I/O error in trying to write

the indicated file. This error usually occurs when there
is insufficient disk space.

0009pt out of memory: “condition”
Fatal. PTOC has used all the available RAM memory
allocated by the operating system. Check for the
existence of print spoolers, RAM disks, or other
memory-resident programs which may decrease the
amount of memory available to the CUPL application
program.

10xxpt program error: “specifies”
Fatal. An operating system interface problem is
suspected. Contact LDI customer support.

O WCSIM Error Messages

0001sw could not open: “filename”

Fatal. WCSIM cannot continue because of the failure
to open the indicated file. Be sure the file exists if it is
an input. ¢

0002sw out of memory: “condition”

Fatal. WCSIM has used all the available RAM
memory allocated by the operating system. Check for
the existence of print spoolers, RAM disks, or other
memory-resident programs which may decrease the
amount of memory available to the CUPL application
program.

0003sw too many symbols

91-10128-5 1090 287

CUPL
Error Messages Reference Manual

Fatal. The number of symbols in the order statement
exceeds the number of symbols previously defined in
the CSIM source file.

0004sw index variable not matched
Fatal. A variable list was defined using incorrect list
notation. Refer to List Notation in the Using CUPL
chapter.

0005sw too many test vectors

Fatal. The number of test vectors exceeded 1024.

288 1090 91-10128-5

Device Usage Notes B

This appendix lists the programmable logic devices (PLDs)
that require special attention when being used with CUPL and
CSIM.

Device Mnemonic: P20X4, P20X8, P20X10

1. When writing logic equations for devices
containing an XOR gate, the $ operator may
not be included inside any parentheses that
change the evaluation order of the
expression.

2. When applying DeMorgan’s Theorem to an
equation involving the XOR gate, the
expression written first is the one negated.

Device Mnemonic: F155, F157, F159, F179

1. Registers may be used as either D-type or JK-
type, but not both (no dynamic conversion).

2. The output enable buffer for all registers is
always controlled by pin 11 (pin 13 for F179).

3. The load control term (for loading registers
from the output pins) is not supported.

4. The product term that drives the register
control buffer is fixed and may not be
accessed to drive the complement array.

91-10128-5 1090 289

Device Usage Notes

CUPL
Reference Manual

Device Mnemonic: EP300, P18CV$

The registered, internal combinatorial and
I/0 feedback paths can be selected by using
the .DFB, .INT and .IO extensions
respectively. If the feedback type is the same
as the output (registered feedback for
registered output), a feedback extension “.10”
is required.

Device Mnemonic: EP600, EP900

Support for registered mode of the macrocell
consists only of D-type and T-type flip-flops.
J-K and S-R flip-flops are not supported
because they don't physically exist in the
device. They must be emulated with
exclusive-or equations.

The D-type registered, T-type registered, and
I/0 feedback paths can be selected by using
the .DFB, .TFB and .IO extensions
respectively. If the feedback type is the same
as the output (D-type registered feedback for
D-type registered output), then a feedback
extension is not required.

Device Mnemonic: F501, F502

1.

Both f501 and 502 contain NAND array
architecture. The NAND gates must be
defined as complement array nodes.

Although there is only one product term for
each output pin in f501 and 502, multiple

1090 91-10128-5

CUPL
Reference Manual

Device Usage Notes

product term output can be implemented
using DeMorgan algorithm and NAND
node.

For example, to implement the following
logical function in f502:

X=(a&b)
#(c&d)
#(e &)

Define as follows:
Pin19=X;

Pinnode 81 = IX1;
Pinnode 82 = X2;
Pinnode 83 = IX3;

X = (X1 & X2 & IX3);
Xl.ca=a & b;
X2.ca=c&d;
X3.ca=e &f;

Device Mnemonic: F506

1.

The registered clock polarity is set by writing
one .CKMUX expression for all registers
used in the design. By default, the clock is
treated as positive-edge triggered.

Device Mnemonic: F507

91-10128-5

The register and counter clock polarity are
set by writing one .CKMUX expression for all

1090 " 291

Device Usage Notes

curL
Reference Manual

registers and counter inputs used in the
design. By default, the clock is treated as
positive-edge triggered.

The built-in counter input nodes are defined
using the NODE or PINNODE statements,
and the .CNT extension. The counter clear
and hold controls are defined using the
NODE or PINNODE statements and writing
either combinatorial or S-R registered
expressions.

CSIM generates the counter inputs
automatically, based on the counter control
logic.

Device Mnemonic: F16V8, F18V8Z, F20V8

These devices emulate two different PAL
architectures with their flexible output macro
configuration. If the F16V8, F18V8Z or F20V8
device mnemonic is used, the device
parameters for the proper sub-mode are
automatically selected according to the
following:

Registered Mode

Specifying any output pin as registered
invokes the registered mode (D). Specifying
any output enable term for a nonregistered
pin invokes the registered mode (D).

Mnemonic: F16V8D
F18V8ZD
F20V8D
Small Mode

If neither of the above conditions are met, the

1090 91-10128-5

CUPL
Reference Manual Device Usage Notes

device type defaults to the small mode (S).

Mnemonic: F16V8S
F18V8S
F20V8S
2. Either the automatic selection mechanism or

the device mnemonic for the specific sub-
mode may be used.

Device Mnemonic: G16V8, G20V8

1. These devices emulate three different PAL
architectures with their flexible output macro
configuration. If the G16V8 or G20V8 device
mnemonic is used, the device parameters for
the proper sub-mode are automatically
selected according to the following:

A. Medium Synchronous Mode
This mode is automatically chosen when the
PLD source file has registered output. In the
medium synchronous mode, specifying an
output enable term for a registered output pin
is not flagged as an error by the compiler or
simulator. In this mode, the output enable
control for registered pins is common to pin
11 (GAL16V8) or pin 13 (GAL20VS).

Mnemonic: G16V8MS
Input only Output only Input/Output
2,3, 4, 12,13, 14,
5,6, 17, 15,16, 17,
8,9 18,19

Pin 1 = common clock
Pin 11 = common output enable

91-10128-5 1090 293

CUPL

Device Usage Notes Reference Manual
Mnemonic: G20V8MS
Input only Output only Input/Output
2,3,4, 15, 16, 17,
5,6,7, 18, 19, 20,
8,9, 10, 21,22
11, 14,23

Pin 1 = common clock
Pin 13 = common output enable

' B. Medium Asynchronous Mode
This mode is automatically chosen when the
PLD source file has an output enable term for
a non-registered pin and/or.

Mnemonic: G16VSMA
Input only Output only Input/Output
12,3, 12,19 13, 14, 15,
4,5,6, 16,17,18
7,8,9,
1
Mnemonic: G20VS8MA
Input only Output only Input/Output
1,2,3, 15,22 16,17, 18,
4,5,6, 19, 20,21
7,8,9,
10,11, 13,
14,23

C. Small Mode (Default)

If none of the above are met, the device type
defaults to the small mode. In this mode, the
Input/Output pins are configured as either

294 1090 91-10128-5

CUPL
Reference Manual Device Usage Notes .

Input Only or Qutput only (that is, no
feedback can occur) .

Mnemonic: G16V8S
Input only Output only Input/Output
1,2,3, 15, 16 12,13, 14,
4,5,6, 17,18,19
78,9,
n
Mnemonic: G20V8S
Input only Output only Input/Output
1,23, 18,19 15, 16, 17,
4,5,6, 20, 21,22
7,8,9,
10, 11, 13,
14,23

2. Either the automatic selection mechanism or

the device mnemonic for the specific sub-
mode desired can be used.

Device Mnemonic: G6001

1. The output logic macrocell feedback paths
can be selected as internal only, I/O only, or
both, via the .INT and .IO extensions. If the
feedback type is the same as the output
(internal feedback for registered output),
then a feedback extension is not required.

2. The output logic macrocells can be treated as
buried register or combinatorial nodes,
allowing the pins to be treated as inputs. The
buried nodes must be defined in NODE or

91-10128-5 1090 295

Device Usage Notes

CUPL
Reference Manual

PINNODE statements and the input pins
defined in PIN statements.

All input pins can be configured as
registered or latched inputs via the .DQ and
.LQ extensions, respectively. Each input pin
in a group must be treated in the same
manner.

Device Mnemonic: RA10P8, RA11P8, RA12P8

1.

Active-HI chip enables are simulated as
Active-LO.

Device Mnemonic: P10P8V, P12P6V, P14P4V, P16P2V

The output macrocell for these devices is
always configured for the OR path, utilizing
double the product terms of a standard PAL.
The default bypass path (lower power) and
XOR path are not supported. '

Device Mnemonic: P16P8V, P16RP4V, P16RPG6V,

P16RP8V

The output macrocell for these devices is
always configured for the default bypass
path. The OR path (double product terms at the
expense of an output pin) and XOR path are
not supported.

Device Mnemonic: P22CV10, P22VP10, P23S8

The registered and 1/0 feedback paths can be
selected by using the .DFB and .10

1090 91-10128-5

CUPL
Reference Manual Device Usage Notes

extensions respectively. If the feedback type
is the same as the output (registered feedback
for registered output), then a feedback
extension is not required.

Device Mnemonic: P29M16

1. The output feedback paths can be selected as
registered only, latched only, I/0 only,
registered and I/O or latched and I/O via the
DFB, .LFB and .IO extensions. If the
feedback type is the same as the output
(registered feedback or registered feedback
for registered output), then a feedback
extension is not required.

2. The dual feedback outputs can be treated as
buried register or latched nodes, allowing the
pins to be treated as inputs. The buried nodes
must be defined in NODE or PINNODE
statements and the input pins defined in PIN
statements.

3. The dual feedback outputs can be treated as
registered or latched inputs, via the .DQ and
LQ extensions.

4, Individual clock control is set by writing a
.CKMUX expression. By default, the clock
control is set to clock/latch enable pinl,
positive edge triggered.

5. Individual output enable control is set by
writing either a .OEMUX expression for
common control, or a .OE expression for
banked product term control. By default, the
output enable control is set to common output
enable pin 11.

91-10128-5 1090 297

" CUPL
Device Usage Notes Reference Manual

Device Mnemonic: P29MA16

1. The output feedback paths can be selected as
registered only, latched only, I/0 only,
registered and I/O or latched and I/O via the
DFB, .LFB and .IO extensions. If the
feedback type is the same as the output
(registered feedback for registered output),
then a feedback extension is not required.

2. The dual feedback outputs can be treated as
buried register or latched nodes, allowing the
pins to be treated as inputs. The buried nodes
must be defined in NODE or PINNODE
statements and the input pins defined in PIN
statements.

3. The dual feedback outputs can be treated as
registered or latched inputs via the .DQ and
LQ extensions.

4. Individual clock or latch enable control is set
by writing either a .CKMUX expression for
synchironous control or a .CK expression for
asynchronous control. By default, the clock
control is set to clock/latch enable pin 1,
positive edge triggered.

5. Individual output enable control is set by
’ writing either a .OEMUX expression or
common control, or by a .OE expression for
banked product term control. By default, the
output enable control is set to common output
enable pin 11.

298 1090 91-10128-5

CUPL
Reference Manual Device Usage Notes

Device Mnemonic: P32VX10

1. Combinatorial outputs have active low
polarity, whereas registered outputs have
programmable polarity.

2. The output feedback paths can be selected as
registered only, I/O only, or both, via the
DFB and .IO extensions. If the feedback type
is the same as the output (registered feedback
for registered output), then a feedback
extension is not required.

3. The outputs can be treated as buried register
nodes allowing the pins to be treated as
inputs. The buried nodes must be defined in
NODE or PINNODE statements and the input
pins defined in PIN statements.

Device Mnemonic: PLX448

1. The output feedback paths can be selected as
internal only, I/O only, or both, via the .INT
and .JO extensions. If the feedback type is the
same as the output (internal feedback for
registered output), then a feedback extension
is not required.

2. The outputs can be treated as a buried register
or combinatorial nodes, allowing the pins to
be treated as inputs. The buried nodes must
be defined in NODE or PINNODE statements
and the input pins defined in PIN
statements.

91-10128-5 1090 299

Device Usage Notes

CUPL
Reference Manual

The 48mA output pins can be programmed to
behave as open collector outputs, by writing
.TEC expressions.

Device Mnemonic: V750

The output feedback paths can be selected as
registered only, I/O only, or both, via the
DFB and .IO extensions. If the feedback type
is the same as the output (registered feedback
for registered output), then a feedback
extension is not required.

The outputs can be treated as buried register
nodes allowing the pins to be treated as
inputs. The buried nodes must be defined in
the NODE or PINNODE statements and the
input pins defined in PIN statements.

When an output requires more product terms
than its sum term provides, CUPL uses the
sum term pairing capability to increase the
number of available product terms. This will
cause an incorrect fuse map to be generated if
the associated buried register is also being
used.

Device Mnemonic V2500

1.

The output feedback paths can be selected as
registered with I/O or as combinatorial.
When a registered output is specified, the .IO
extension is required for the I/O feedback.

The outputs can be treated as buried register

nodes allowing the pins to be treated as
inputs. The buried nodes must be defined in

1090 91-10128-5

CUPL

Reference Manual

Device Usage Notes

the NODE or PINNODE statements and the
input pins defined in PIN statements.

When an output requires more product terms
than its sum term provides, CUPL uses the
sum term pairing capability to increase the
number of available product terms. This will
cause an incorrect fuse map to be generated if
the associated buried register is also being
used.

Device Mnemonic: PLD9000

This is an imaginary device designed to represent a
generalized PLA. It is intended to be used for designs which
are not targeted for any particular device.

The device contains 100 pins, 45 inputs, 50 outputs, and 5
clocks. Each output has individual output enable control and
can be configured in one of four modes.: combinatorial/active
low, combinatorial/active high, D-registered/active low, or D-
registered/active high. There are no power and ground pins.
The pin organization is as follows:

91-10128-5

1.
Pin1l-

Pin 2 -

Pin 3 -

Pin4 -

Pin organization:

A common register clock input for output pins
51 -100.

A secondary common register clock input for
output pins 61 — 70.

A secondary common register clock input for
output pins 71 — 80.

A secondary common register clock input for
output pins 81 - 90.

1090 301

CUPL
Device Usage Notes Reference Manual

Pin5- A secondary common register clock input for
output pins 91 - 100.

Pins 6 - 50 - Input pins.
Pins 51 - 100 Input-Output pins.

2. Banked clock control is set by writing
.CKMUX expressions. By default the clock
control is set to clock pin 1.

3. There are 200 product terms organized in a
PLA format, so each is available to any
output.

302 1090 91-10128-5

CUPL !
Reference Manual Device Usage Notes

91-10128-5 1090 303

Download Formats C

This appendix describes downloadable file formats and the
.DOC file.

(1 DOWNLOADABLE FILE FORMATS

This section describes the JEDEC, ASCII-hex, and HL
standards for data transfer to a device programmer.

O JEDEC Format

The JEDEC JC-42.1 standard consists of a transmission that
begins with an ASCII Start-of-Text (STX) character, followed
by various fields of information: an ASCII End-of-Text (ETX)
character, and a transmission checksum. The allowed legal
characters consist of printable ASCII characters (hex 20
through 7E) and the four control characters listed in table C-1.

Table C-1. Control Characters

STX Start-of-Text hex 02
ETX End-of-Text hex 03
LF Line Feed hex 0A
CR Carriage Return hex 0D
Figure C-1 shows a sample JEDEC file created by using CUPL
and CSIM.
<STX>
Cupl 3.0 Serial # 0-00000-000
Device plér4d Library DLIB-h-24-11

91-10128-5 1090 304

CUPL Download

Reference Manual Formats
Created Tue Jul 07 15:22:33 1987
Name WAITGEN
Partno P9000183
Revision 02
Date 03/14/85
Designer Osann
Company P-CAD
Assembly PC Memory
Location U106
*QP20
*QF2048
*GO
*FO
*L00000 10110101110111111100111000110111
*C0307
*QV

*P 1234567891011 12 13 14 15 16 17 18 19 20
*V0001 CXXXXX110NOHHLLZXXHN
*<<ETX>6AAl

Figure C-1. Sample JEDEC File

The rest of this section describes the fields in the sample file in
Figure C-1.

The design specification is the first field in the format. It
includes all information between the STX and the first
asterisk (*). This information is for documentation purposes
only, and consists of the header information from the CUPL
source file along with the version number of the compiler and
device library.

Each of the fields after the design specification field begins

with one of the single character identifiers shown in Table C-
2.

91-10128-5 1090 305

Download CUPL
Formats Reference Manual

Table C-2. Field Identifiers

*

*

A N-*

B 0-*

C - Fuse check sum P - Pin Order
D - Device type Q- Value
E-* R-*

F - Default fuse state S-*

G - Security fuse T-*

H-* U-*

I-* V - Test vector
J-* W-*

K-* X-*

L - Fuse link data Y-*

M-* Z-*

*

- indicates reserved for future use

Characters that have not been defined are reserved for future
use.

Fields can be identified by multiple characters; for example,
QF to indicate a value default fuse state.

The device field (D) is no longer supported. In CUPL 1.0 the
device field contained a four-digit code that identified the
device to be programmed. However, lack of consistent support
by the device programmer manufacturers led to this field
being dropped from the JEDEC file format for CUPL 2.0 and
higher.

A value field, QP, describes the number of pins for the device;
another value field, QF, describes the total number of
programmable fuses in the device. Both values are decimal
numbers.

1090 91-10128-5

CUPL Download
Reference Manual Formats

The security fuse field (G) instructs the programmer to disable
(GO) or enable (G1) the programming of the security fuse on the
devices that contain this option. A single space follows the
number for compatibility with certain manufacturers'
equipment.

The default fuse state field (F) defines the state of the fuses that
are not explicitly defined in the L field. Since CUPL 3.0 does
not transmit all fuse states (to speed data transmission on
large designs), this field must be recognized by the device
programmer.

The fuse link field (L) contains the actual data. Each device
fuse link is assigned a decimal number, starting with 0000.
Each numbered fuse has two possible states: binary 0 specifies
a low resistance link (FUSE INTACT) and binary 1 specifies
a high resistance link (FUSE BLOWN).

D

Note

Some manufacturers specify “test fuses” for purposes
of running AC parameter tests on the device before
programming. These fuses are not part of the fuse
link data.

The L identifier begins the field and is followed by the number
of the first fuse being defined in the field. When more than
one binary value is specified, the additional values are
assigned to fuses numbered consecutively from the first fuse
number.

The next field is a fuse checksum (C) field. The checksum is a
16-bit hexadecimal value which is computed by adding 8-bit
words formed from the specified state of each fuse link in the

91-10128-6 1090 307

Download CUPL
Formats Reference Manual

device. Link number 0 is the least-significant bit (Isb) and
link number 7 is the most significant bit (msb) of word 0.
-Unspecified bits in the final 8-bit word are set to zero before
computing the checksum. In the Figure C-1 the first thirty-two
fuses generate four 8-bit words as follows:

msb Isb
wordOO 1 0 1 0 1 1 0 1 --> AD
wordOl 1 1 1 1 1 0 1 1 --> FB
word0O2 0 1 1 1 0 0 1 1 --> 3
word03 1 1 1 0 1 1 0 O --> EC

The optional test vector field (V) is created by running CSIM
with the -j option flag. It contains functional test information
for each device pin. The QV value field defines the number of
test vectors which the file contains. Test vectors are numbered
starting with 0001 and applied in numerical order to the device
being tested. Table C-3 lists the valid conditions for any pin.

Table C-3. Test Conditions

- Drive input LO (0 volts)

- Drive input HI (+5 volts)

- Drive input LO, HI, LO

- Drive input HI, LO, HI

- Test output LO (0 volts)

Test output HI (+5 volts)

- Test output for high impedance

- Input undefined, Output untested

(=]

- Power pins and Outputs not tested

w2 NI Q-

- Preload registers

Value given applied to @ of register

308 1090 91-10128-5

CUPL Download
Reference Manual Formats

The test conditions, as they appear in the vector, are applied to
the device pins according to the sequence given in the pin
order (P) field. In this example (figure C-1), the first condition
is applied to pin 1 and the last to pin 20 of a 20 pin device. The C
and K driving signals are presented after all other inputs are
stable. The L, H, and Z conditions are tested after all inputs
have been stabilized, including C and K.

The P driving signal on the clock pin is valid only for those
devices capable of preloading registers with a supervoltage.
Devices which use dedicated TTL-level preload pins must use
the C or K driving signals on these pins to preload the
registers.

The end of transmission is signified with a non-printing
ASCII ETX character followed immediately by a
transmission checksum (sum-check) of four ASCII hex
characters. The checksum is the 16-bit sum of the ASCII values
of all the transmitted characters between, and including, the
starting STX and ending ETX characters. In the sample file
(figure C-1), the transmission checksum calculates to 46C9,
when taking into account a non-printing carriage return and
line feed at the end of every line.

O ASCII-Hex Format

The ASCII-hex format is generated for PROMs only. Data in
this format is organized in sequential bytes separated by the
execute character (space). Characters immediately preceding
the execute character are interpreted as data bytes. The format
may express the data bytes as either a single hex digit (x4
PROMSs) or two hex digits (x8 PROM’s)

An ASCII STX [Ctrl]-[B] character starts the transmission. A
four-digit hexadecimal address, preceded by a $, A, and
comma ($A,) starts each line of 16 data bytes. An ASCII ETX
[Ctrl]-[C] ends the data portion of the transmission. It is
followed by forty spaces. Figure C-2 shows a sample hex file.

91-10128-5 1090 309

Download CUPL
Formats Reference Manual

310

“B

$A0000,00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
$A0010,10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
S$SA0020,20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
$A0030,30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
~C

$S07EO,

Figure C-2. Sample Hex File

HL Formats

The HL Download Format is generated for Signetics IFL
devices only. Each device has its own unique format. All
formats begin with STX [Ctrl]-[B] and end with ETX [Ctrl]-[C].
The following sections describe the format for each type of IFL
device.

825100/101 FPLA

The active-level identifier *A is followed by the states of the
active levels for F7 to F0O, where H denotes active-HI and L
denotes active-LO. The product terms are described by the *P
identifier followed by a space and the P-term number. The
input variable identifier *I is followed by the input variables
115 to 10 and then the output function identifier *F followed by
F7 to F0. Figure C-3 shows a sample file in this format.

“B

*A LHLHLHLH
*P 00 *I HHHHLLLLHHHHLLLL *F A.A.A.A.

1090 91-10128-5

CUPL Download

Reference Manual Formats
*P 47 *I LLLLLLLLLLLLLLLL *F ,...AAAA
~C
Figure C-3. Sample 825100/101 FPLA File
825103 FPGA

The product terms start with the *G identifier followed by a
space and the term number. This is followed by the active-
level identifier *A and the active-level data. The input
variable identifier *I is followed by the input variables 115 to
10. Figure C-4 shows a sample file in this format.

“B
*G 00 *A L *I HHHHLLLLHHHHLLLL

*G 47 *A H *I LLLLLLLLLLLLLLLL
~C

Figure C4. Sample 825103 FPGA File
82S105 FPLS

The preset / output enable option is entered using the *A
identifier followed by H (preset) or L (output enable). The
transition terms are described by the term identifier *T
followed by the term number. The complement array
identifier *C is followed by the value of this term. The input
variables for the term are given with the input variable
identifier *I followed by 115 to I0. The present state of the flip-
flops is given with *P followed by P5 to PO. The next state
values follow with *N and N5 to NO. The output function is
described as *F followed by F7 to F0. Figure C-5 shows a
sample file in this format.

“B
*AL

91-10128-5 1090 ‘3u

Download
Formats

*T 00 *C.*ILLLLHHHHLLLLHHH*PHHHLLL
*NHHHLLL *F HHHHHHHH

*T 47 *C A *I LL----——- *P LLLLLL
*N HHHHHH *F HHHLLL-
~C

Figure C-5. Sample 825105 FPLS File

825151 FPGA

CUPL
Reference Manual

The direction of the I/0 pins follows the *DIR identifier, and
the output polarity follows the *POL identifier. The product
terms are described by the *P identifier followed by a space
and the P-term number.

Control term numbers start with a *D and then the term
number. The input variable identifier *I is followed by the
input variables I5 to I0 and then the I/O feedback identifier *B
followed by B11 to BO. Figure C-6 shows a sample file in this
format.

“B
*DIR HHLLHHLLHLHL *POL HHHHLLLLHHLL

*P 00 *I HHLLLL *B HL--HL--LLHH

*P 11 *I LLLLLL *B HHHHLLLLHHLL
*D 02 *I ----HH *B ----LLLLLL-

*D 00 *I LLLL-~ *B HHHHHHLLLL-
~C

Figure C-6. Sample 825151 FPGA File
825153 FPLA

312

1090

91-10128-5

CUPL Download
Reference Manual Formats

The output polarity identifier * POL is followed by the states of
the active levels for outputs B9 to B0, where H denotes active-HI
and L denotes active-LO. The product terms are described by
the *P identifier followed by a space and the P-term number.
Control term numbers start with a D and then the term
number. The input variable identifier *I is followed by the
input variables 17 to 10. The feedback variables B9 to BO follow
the *BI identifier and the output functions B9 to B0 follow the
*BO identifier. Figure C-7 shows a sample file in this format.

“B

*POL HHLLHHLLHH

*P 00 *I --HH--LL *BI --HL---=--- *BO A..A..A..A
*P 31 *I ---—-- HH *BI HLHLHLHLHL *BOAA..
*P D9 *I --HHHHHH *BI ----HHHHLL

*P DO *I LLLLLLLL *BI ---=---=--
~C

Figure C-7. Sample 825153 FPLA File
82S155 FPLS

The output enable modes for groups A and B follow the *E
identifier. The flip-flop mode for each register follows an
*F/F identifier. The polarity for the output pins follows an
*POL identifier. The transition terms are described by the
term identifier *T followed by the term number. The
complement array identifier *C is followed by the value of this
term. The input variables for the term are given with the input
variable identifier *I followed by I3 to 10. The I/0 feedback
data follows the *B identifier. The present state of the flip-
flops is given with *QP followed by Q3 to Q0. The next state
values follow with *ON and O3 to O0. The preset terms for

91-10128-5 1090 313

Download CUPL
Formats Reference Manual

314

groups PB and PA follow the preset identifier *P. The reset
terms for groups RB and RA follow the reset identifier *R. The

-output function is described as *BO followed by B7 to BO. The

terms for flip-flop control, reset, preset, load, and output enable
follow. Figure C-8 shows a sample file in this format.

“B
*E AA *F/F A.A. *POL HLHLLHLH
*T 00 *C . *I HHLL *BI HL--HLHL *QP LH-
*ON LLHH *P .. *R .. *BO .A.A.A.A

*T 31 *C A *I LLHH *BI ----HLHL *QP HHLL
*QNHHHH *P .A *R .A *BO ..A.AA.A

*T FC *C . *I LLLL *BI LLLLHHHH *QP LLHH

*T LB *C . *I HLLL *BI --LL--LL *QP HHHH

*T LA *C . *I LL-- *BI LLLLHHHH *QP --LL

*T D3 *C . *I LLLL *BI LLLLLLL- *QP LLHH

*T DO *C . *I LLLL *BI LLHHHHLL *QP HLLH
~C

Figure C-8. Sample 825155 FPLS File
82S157 FPLS

The output enable modes for groups A and B follow the *E
identifier. The flip-flop mode for each register follows a *F/F
identifier. The polarity for the output pins follows a *POL
identifier. The transition terms are described by the term
identifier *T followed by the term number. The complement
array identifier *C is followed by the value of this term. The
input variables for the term are given with the the input
variable identifier *I followed by I3 to 10. The I/O feedback
data follows the *BI identifier. The present state of the flip-

1090 91-10128-5

CUPL Download
Reference Manual Formats

flops is given with *QP followed by Q5 to Q0. The next state
values follow with *QN and Q5 to Q0. The preset terms for
group PA follows the preset identifier *P. The reset terms for
group PA follows the reset identifier *R. The output function is
described as *BO followed by B5 to BO. The terms for Flip-Flop
control, reset, preset, load and output enable follow. Figure C-9
shows a sample file in this format.

~B

*E AA *F/F A.A. *POL HLHLLHLH

*T 00 *C . *I HHLL *BI HL--HL *QP LH--HL

*ON LLHHHL *P . *R . *BO .A.A.A

*T 31 *C A *I LLHH *BI --HLHL *QP HHLLHH
*QNHHHHLL *P A *R A *BO ..AA.A
*T FC *C . *I LLLL *BI LLLLHH *QP LLHHHH
*T PB *C . *I ---- *BI ----HH *QP ----LL
*T RB *C . *I HHHL *BI HHLLLL *QP HLLLHH
*T LB *C . *I HLLL *BI --L-LL *QP HHHHLL
*T LA *C . *I LL-- *BI LLLHHH *QP --LLHH
*T D3 *C . *I LLLL *BI LLLLL- *QP LLHH-

*T DO *C . *I LLLL *BI LLHHLL *QP HLLHLL
~C

Figure C-9. Sample 825157 FPLS File
82S159 FPLS

The output enable modes for groups A and B follow the *E
identifier. The flip-flop mode for each register follows a *F/F
identifier. The polarity for the output pins follows a *POL
identifier. The transition terms are described by the term
identifier. *T followed by the term number. The complement
array identifier *C is followed by the value of this term. The

91-10128-5 1090 315

Download
Formats

316

CUPL
Reference Manual

input variables for the term are given with the the input
variable identifier *I followed by I3 to 10. The I/0 feedback
data follows the *BI identifier. The present state of the flip-
flops is given with *QP followed by Q7 to Q0. The next state
values follow with *QN and Q7 to Q0. The output function is
described as *BO followed by B7 to B0. The terms for Flip-Flop
control, reset, preset, load and output enable follow . Figure C-
10 shows a sample file in this format.

“B
*E
*T

*T

*T
*T
*T
*T
*T
*T
*T
*T

*T
~C

AA *F/F A.A.A.A. *POL LHLH
*C .

00

31

FC
PB
RB
LB
PA
RA
LA
D3

DO

*C

A

*C .
*C .

*C

*I HHLL *BI HL-- *QP HHLLHH-
*QN LLHHLLHH *BO .A.A

*I LLHH *BI ---- *QP --HHHHLL
*QON LLLLHHHH *BO ...A

*I LLLL *BI LLLL *QP LLLLHHHH
*I LLLL *BI LLLL *QP LLLLHHHH

. *I LLLL *BI LLLL *QP LLLLHHHH
*C .
*C .
*C .
*C .
*C .

*C .

*I LLLL *BI LLLL *QP LLLLHHHH
*I LLLL *BI LLLL *QP LLLLHHHH
*I LLLL *BI LLLL *QP LLLLHHHH
*I LLLL *BI LLLL *QP LLLLHHHH
*I LLLL *BI LLLL *QP LLLLHHHH

*I LLLL *BI LLLL *QP LLLLHHHH

Figure C-10. Sample 825159 FPLS File
825161 FPLA

The active level identifier *A is followed by the states of the
active levels for F7 to FO, where H denotes active-HI and L
denotes active-LO. The product terms are described by the *P

1090 91-10128-6

CUPL Download
Reference Manual Formats

identifier followed by a space and the P-term number. The
input variable identifier *I is then followed by the input
variables 111 to I0 and the output function identifier *F
followed by F7 to F0. Figure C-11 shows a sample file in this
format.

“B
*A LHLHLHLH
*P 00 *I LLLLHHHHLLLL *F A.A.A.A.

*P 47 *I LLLLLLLLLLLL *FAAAA
~C

Figure C-11. Sample 825161 FPLA File
825162 FPGA

The output polarity identifier * POL is followed by the states of
the active levels for outputs F4 to F0. The product terms start
with the *G identifier followed by a space and the term
number. The input variable identifier *I is followed by the
input variables 115 to 10. Figure C-12 shows a sample file in
this format.

B
*POL HHLL
*G 00 *I HHHHLLLLHHHHLLLL

*G 04 *I LLLLLLLLLLLLLLLL
~C
Figure C-12, Sample 825162 File

82S163 FPGA

91-10128-5 1090 317

Download CUPL
Formats Reference Manual

318

The output polarity identifier *POL is followed by the states of
the active levels for outputs F8 to F0. The product terms start
with the *G identifier followed by a space and the term
number. The input variable identifier *I is followed by the
input variables I11 to I0. Figure C-13 shows a sample file in
this format.

“B

*G 00 *I HLLLHHHHLLLL

*G 08 *I LLLLLLLLLLLL
~C
Figure C-13. Sample 825163 FPGA File

825167 FPLS

The preset / output enable option is entercd using the *A
identifier followed by H (preset) or L (output enable). The
transition terms are described by the term identifier *T
followed by the term number. The complement array
identifier *C is followed by the value of this term. The input
variables for the term are given with the input variable
identifier *I followed by 113 to I0. The present state of the flip-
flops is given with *P followed by P7 to P0. The next state
values follow with *N and N7 to NO. The output function is
then described as *F followed by F3 to F0. Figure C-14 shows a
sample file in this format.

“B

*AL

*T 00 *C ,*ILLHHHHLLLLHHHH*PHHHLLLHH

*NHHHLLLLL *F HHHH

*T 47 * A *I LL-=—=-=---==- *P --LLLLLL
*N HHLLHHHH *F HL-

1090 91-10128-5

CUPL Download
Reference Manual Formats

~C
Figure C-14. Sample 825167 FPLS File

91-10128-5 1090 319

Download CUPL
Formats Reference Manual

825168 FPLS

The preset/output enable option is entered using the *A
identifier followed by H (preset) or L (output enable). The
transition terms are described by the term identifier *T
followed by the term number. The complement array
identifier *C is followed by the value of this term. The input
variables for the term are given with the input identifier *I
followed by I11 to 10. The present state of the flip-flops is given
with *P followed by P9 to P0. The next state values follow with
*N and N9 to NO. The output function is described as *F
followed by F3 to F0. Figure C-15 shows a sample file in this
format.

~B

*AL

*T 00 *C,*ILLHHHLLLHHHH*PHHHLLLHHLH

*NHHLHHLLLLL *F HHHH

*T 47 *C A *] LL-——=-——m————m *P --LLLLLL-
*N HHLLHHHH-L *F HL-
~C

Figure C-15. Sample 825168 FPLS File
825173 FPLA

The output polarity identifier *POL is followed by the states of
the active levels for outputs B9 to B0, where H denotes active-HI
and L denotes active-LO. The product terms are described by
the *P identifier followed by a space and the P-term number.
Control term numbers start with D and then the term number.
The input variable identifier *I is followed by the input
variables 111 to 10. The feedback variables B9 to B0 follow the
*B0 identifier. Figure C-16 shows a sample file in this format.

320 1090 91-10128-5

CUPL Download

Reference Manual Formats
“B
*POL HHLLHHLLHH
*P 00 *I --HH--LLHH *BI --HL------ *BO A..A..A..A
*P 31 *I LL-==--- HH *BI HLHLHLHLHL *BOAA....
*P D9 *I LL--HHHHHH *BI ----HHHHLL

*P DO *I --LLLLLLLL *BI --—-------

~C
Figure C-16. Sample 825173 FPLA File
825179 FPLS

The output enable modes for groups A and B follow the *E
identifier. The flip-flop mode for each register follows a *F/F
identifier. The polarity for the output pins follows a *POL
identifier. The transition terms are described by the term
identifier *T followed by the term number. The complement
array identifier *C is followed by the value of this term. The
input variables for the term are given with the input variable
identifier *I followed by 17 to 10. The I/O feedback data follows
the *BI identifier. The present state of the flip-flops is given
with *QP followed by Q7 to Q0. The next state values follow
with *QN and Q7 to Q0. The output function is described as
*BO followed by B7 to B0. The terms for flip-flop control, reset,
preset, load, and output enable follow. Figure C-17 shows a
sample file in this format.

“B

*E AA *F/F A.A.A.A. *POL LHLH

*T 00 *C . *I HHLLHHLH *BI HL-- *QP HHLLHH-
*ON LLHHLLHH *BO .A.A

*T 31 *C *1 LLH--LHH *BI LLLL *QP --HHHHLL
*QN LLLLHHHH *BO ...A
*T FC *C ., *1 LLLHHHHL *BI LLLL *QP LLLLHHHH

91-10128-5 1090 321

Download

Formats

*T
*T
*T
*T
*T
*T
*T

PB
RB
LB
PA
RA
LA
D3

*T DO

~C

*C
*C
*C
*C
*C
*C
*C

*C

*I
*I
*I
*I
*1
*I
*I

LLLHLHLL
LLLLLLHL
LLLHHHHL
LLLLHLHL
LLLL----
LLLL---H
LLLLLLLL

*I HHHHHHHH *BI

*BI
*BI
*BI
*BI
*BI
*BI
*BI

LLLL

LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL

*QP

Figure C-17. Sample 825179 FPLS File

1090

*QPp
*QP
*QP
*QP
*QP
*Qp
*Qp

CUPL
Reference Manual

LLLLHHHH
LLLLHHHH
LLLLHHHH
LLLLHHHH

LLLLHHHH
LLLLHHHH

LLLLHHHH

91-10128-5

curL Download
Reference Manual Formats

(1 DOCUMENTATION FILE FORMAT

This section describes the format for the documentation file
(filename DOC), including fuse plot information. A
documentation file can be generated by specifying the -x
option flag when running CUPL. Specifying the -f option
generates a fuse plot in the documentation file.

Figure C-18 shows a sample documentation file.

91-10128-5 1090 323

Download CUPL
Formats Reference Manual

WAITGEN.DOC

AR KRR AR R AR AR R RN R R R R AR KRR AR R AR R R AR N AR AR AN R AR R AR R A ANNR AR AR A AN AN

Waitgen
KA AN RR AR A AR RARAANRAR AR A ARNRRRN AR R RAR AR R AR R R R AR AR R AR R AN R Ak h
CUPL 3.0 Serial# 9-99999-999
Device
Created
Name
Partno
Revision
Date
Designer
Company
Assembly
Location

Expanded Product Terms
waitl.d =>
!memr
als
¥ al4
al3
reset

select_rom =>
'al3 & 'al4 & !al5 & memr

wait2.d =>
!memr
als
al4
al3
!waitl

memadr =>
als , al4 , al3 , al2 , all

ready =>
Iwait2

ready.oe =>

fal3 & !al4 & !'al5 & memr
rom os =>

fal3 & !al4 & !al5 & memr

memreq =>
memw
memr

Figure C-18. Sample Documentation File Sheet 1 of 5

324 1090 91-10128-5

CUPL Download
Reference Manual Formats
ram_cs0 =>
tall & !al2 & al3 & !'al4 & 'al5 & memw
] tall & !'al2 & al3 & !al4 ¢ !al5 & memr
ram_csl =>
all & 'al2 & al3 & !'al4 & !al5 & memw
all & 'al2 & al3 & !al4 & !al5 & memr
rom_cs.oe =>
1
ram_cs0.oe =>
1
ram csl.oe =>
1
Symbol Table
Pin Variable Pterms Max
Min
Pol Name Ext Pin Type Used Pterms Level
waitl 15 v - - -
waitl d 15 X 5 8 1
all 6 \' - - -
select_rom 0 I 1 -
wait2 14 v - - -
wait2 d 14 X 5 8 1
alz2 5 v - - -
al3 4 v - - -
al4 3 v - - -
als 2 v - - -
! oe 11 v - - -
! memr 8 \ - - -
memadr 0 F - - -
ready 18 v 1 7 1
ready oe 18 X 1 1 1
! memw 7 \ - - -
cpu_clk 1 v - - -
! rom_cs 19 v 1 7 1
reset 9 v - - -
memreq 0 I 2 - -
! ram_cs0 12 v 2 7 1
! ram_csl 13 v 2 7 1
rom_cs oe 19 D 1 1 0
rom_cs0 oe 12 D 1 1 0
rom_csl oe 13 D 1 1 0
LEGEND F:field D:default variable W:extended node
N:node I:intermediate variable T:function
V:variable X:extended variable U:undefined -

Figure C-18. Sheet 2 of 5

91-10128-5

1090

Download
Formats

CUPL
Reference Manual

Fuse Plot

0000
0032
0064
0096
0128
0160
0192
0224
Pin #18
0256
0258
0320
0352

Pin #19

-X-==X X

XXXXXXXXXXXXXXXXXXXXXXXXAXXXXXXX
XXXXXAXXXXKXXXXXXXXXXXXXXXKXXXXX
XXXXXXXXXXXXXKKXKKXXXXXKXXXKXXXK
KXXXXXXXXKKXKXXXXKXKXXXKKXXXXXKX
XXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXX
XXXXXXXXXXKXXXXXXXXKXXXXKXXXXXXX

=X===X===X X
X

XAXXXXXXXXXXXKXKXXXKX XXX XXX XX XXX
XXXXXXXXXXXXXKK XXX XXXXX XXX XXX XXX
XXXXXXXXXXXXXXX XXX XXX XX XXX XXXXXX
KXXXXXXXXKXXXXKKXXXXKKXX XXX XXX XXXXX
XXXXXKXXXXXKX XXX XXX XXXXX XXX XXXXXX
AXXXXXX XXX XXXXKX XXX KX XXX KX XXX XXX

KXXXXXXXXRKXXXXKX XXX XXX XXX XK XXX XXX
KXXXKXXKXXXXXXXXX XXX XXX KX XXX XXX XXX
XXKXKKKKRKKKX XXX K XK KKK KKK XXX XK XXX
XXXAXXXXXKKXXKX XXX XXX XXX XX XXX XXX
XXXXXKXXXXKXKXKXXX XXX XXX XXX KX XXX XXX
AXXXXXXXXKXAXXKXK XK XX XXX XXKXXX XXX
AXXXKXXXKXXKXXXKXKKX XX XXX XX XXX XXX XXX
AXXXKXXXXXXXXXX XXX XXX XXX XX XXX XXX

AXXKXAXXX XXX KX XXX XXX XXKKXX XXX XXX
XXXXXKXKXKXXXKXKX XXX XXX XXX KX XXX XXX
KXXXXXXXXKXXXRKX XXX XXX XXKKX XXX XXX
XXAXXXXXXKXXXKXXXKXXKKXKX XX KKK XXX XXX
XXXXXX XXX XXX XXX XK XXX XX XXX KXXKKX
XXXXXXXXXKXXXXX XXX XXX XXX XX KXXX XXX
AXXXKXX XXX KR XXKXXKXXKXRKXXXAXKX XXX XXX
XXXXXX XXX XXXAXXKXRXXXXXXXKX XXX XXX

X

X

X

X
XXXXXXXXXXKXX XK XXX XXX XXX XX XXXXXX
XXXXXXXXXXXXKXKX KKK XX XXX KX XXX XXX
XXXXXXXXXXKAXXX XXX XXX XX XXX XXKXXX

Figure C-18. Sheet 3 of 5

1090

91-10128-5

CUPL

Reference Manual

Download
Formats

1280

1664
1696
1728
1760

1792
1824
1856
1888
1920
1952
1984
2016

LEGEND

Pin #14

Pin #12

XXXKRXXKAAXRKXXRXX KK XXX XK X XXX AKX XX
KXXAXXXKXXXXRXXKX XXX XKXXX XXX X XXX XX
KEXXRXXXXXKXXKKKXKR K XX XXX KX X XK XXX XXX
KEXXXXXXXXXAXXXKXKXXXXXX XXX XXXXXX
XXXXXXXXXXXKKRXKX XX XXX XXX XXX XXX XX
AXXXXXKXXXKXXX XX XXX X KXXX XXX XXX XXX
XXXXXXXXXKXXXXKKXX XXX XXX XXX XXXXX
AAXKKXKXXXKXXXX XXX XXX KKK XX K XX XXX

XXAXXXXAXXXXX AKX XXX XXX KKK XXX XXX XX
KAKXKK XXX XXX XXX KKK KKK KKK KX KKK XXX
KXXXXRKKXKKXXXXKXX XXX XXX XX XXX KKK XXX
KEUXAXXXXX XXX XXKKXK KX XXX K XK X XXX XK
XXKXXXXXXXXXXXKX XXX XX XK KX XXX KXX XX
XXXXXXXXXXXXKXXXKXX XXX XXX XK XXX XXX
XXXXXXUXXXXXXX XXX XXX XK XXX XXX XKXXXX
XXAXXXXXXXXXX XXX XXX XXX XXX AKX XK XXX

B e S e ittt

i Sutaid St Satontnd Sobebd & S
AXXXXXXXXXXXXX XXX XXX XXXX XXX X XXX XX
XXXXXX XXX XXX XXX XXX XXX KX XXX XXXXXX
XXXAXXRAXXKAXKARK AKX KKK XXX XXX XXXXX
XXXXXXXXXXXXXRXXKXXKAXXK XXX XX AXKXXK
KXXXXKXXXXXX XXX XXX KXKXKX XXX XXX XX

X

fuse not blown
fuse blown

Figure C-18. Sheet 4 of 5

91-10128-5

1090

Download CUPL
Formats Reference Manual

Chip Diagram
LA R SR R LR S RAKKRAK AN A AN
* * * *
khkhk ok kN
cpu_clk * 1 20 * vce
LEE 2 *hkhk
* Waltgen *
LR 2] khkkk
al5 * 2 19 * lrom cs
LEE 2] L2
* *
Tk kK *h kK
alq * 3 18 * ready
LEE 22 LEE 2]
* *
LR ok kk
al3 * 4 17 *
ok hk *hkrk
* *
LR R] ARkKh
al2z * 5 16 *
LR RS LEE 22
* *
AR *hhk
all * 6 15 * waitl
KRRk LEE 2
* *
kAR LEZ 2]
!memw * 7 14 * wait2
kAR khkkh
* *
LR R LR 23
!memr * 8 13 * ram_csl
LR 2 LRSS]
* *
xhRKX LR 2
reset * 9 12 * !lram_cs0
LA 2] LA R 2]
* *
LES 2] LA S &4
GND * 10 11 * loe
L2 2] L2
* *
AARRARR AR R RN ARRRRAR A RN N AR

Figure C-18. Sheet 5 of 5
The first part of the file contains archival and revision

information that is identical to the header information in the
corresponding CUPL source file. The first part also contains

328 1090 91-10128-5

CUPL Download
Reference Manual Formats

version information about the device library and the CUPL
program, and the date and time the file was created.

The next section of the file, Expanded Product Terms,
contains the product terms generated by CUPL from the
equations contained in the logic description file.
WAITGEN.PLD, contained in the CUPL package, is the
source logic description file for the sample documentation file
in Figure C-18. Its contents can be viewed in order to compare
the original logic equations with the product terms generated
by CUPL.

CUPL generates product terms for the devices specified on the
command line when running CUPL or with the DEVICE
keyword in the logic description file. For example, some
devices, such as PAL16L8s, contain fixed inverting buffers.
In certain cases, to fit the logic to the device, CUPL performs
DeMorgan’sTheorem. For example, the logic description file
is written for a PAL16L8 device; in the pin list, all outputs have
been declared as active-HI. The following equation is written
to specify an OR function.

c=aib;

However, the PAL16L8 contains a fixed inverting buffer.
Because the inverting buffer cannot be changed, CUPL fits the
logic to the device by performing a DeMorgan on the OR
equation, which generates the following product term:

c=>!la&!b

See Pin Declaration Statements in Chapter 2 for further
information on how CUPL generates product terms for devices
with fixed inverting buffers, when the output pins are asserted
in the pin declaration statement.

The next section of the file, Symbol Table, provides
information about each variable in the logic description file,
including the pin number, extension, type of variable, number
of product terms available, number of product terms used, and
the minimization level used by CUPL.

91-10128-5 1090 329

Download CUPL
Formats Reference Manual

If the maximum available product terms for a device is
exceeded, CUPL displays an error message during
compilation, naming the pin. However, the message doesn't
indicate how much the limit was exceeded. The product term
availability and use information in the Symbol Table (see
Figure C-18) indicates if the number of available product
terms was grossly exceeded, or was just slightly over the
limit.

The next section, Fuse Plot, is generated by specifying the -f
option flag when running CUPL. This section provides more
detailed fuse information than that contained in the JEDEC
file. The four-digit beginning JEDEC number for each product
term is the number to use to reference STUCK H and STUCK L
(see Fault Simulation in Chapter 4)

The last section, Chip Diagram, provides a diagram of the
device showing the location of each variable name.

(J PDIF FILE FORMAT

This section describes the use of the PDIF (P-CAD Database
Interchange Format) file (<F59>filename.PDF) generated by
CUPL. For a detailed description of the PDIF-format file, see
the PDIF User's Manual. A PDIF-format file can be generated
by specifying the -p option flag when running CUPL.

The PDIF format is used as an interface to the P-CAD
schematic capture program PC-CAPS. This is accomplished
by translating the CUPL-generated PDIF-format file into a
PC-CAPS symbol using the PDIF-IN program. The resulting
symbol represents the logical representation of the PLD
design. This includes pin packaging information, printed
circuit board reference designator, PLD type, and design
name,

Figure C-19 showé an example of a PC-CAPS symbol
generated by PDIF-IN.

330 1090 91-10128-5

CUPL Download

Reference Manual Formats
U1
x| >CPU_CLK
___|A15
); A14
x—|A13 RAM_CS|y x
x—|A12 READY |y’
x—/ A1l WAIT1| __ y
x—0 MEMW WAIT2[

x— MEMR IRAM_CS1j5— x
x—| RESET IRAM_CSOjo— x

P16R4

Figure C-19. PC-CAPS Symbol Generated by PDIF-IN

Refer to the PDIF User’s Manual and the PC-CAPS User's
Manual for instructions on running the PDIF-IN and PC-
CAPS programs, respectively.

(1 BERKELEY PLA FILE FORMAT

This section describes the format for the Berkeley PLA file
(filename.PLA). The Berkeley PLA format is used as an
interface format for PLA logic synthesis tools, such as the
Berkeley PLA tools. A Berkeley PLA-format file can be

generated by specifying the -b option flag when running
CUPL.

Figure C-20 shows a sample Berkeley PLA-format file.

91-10128-5 1090 a31

Download
Formats

CUPL

Reference Manual

CUPL

Name

Date

FE IE I I IE I I I I I I I I I N

)
o +
o

.p 18

-00010-
-0--00-
-000101
-10-000
-01-000
-11-001
-001001
-000101
-110000
--01000
-1-1001
-01100-
-100101
-000001
-111000
~-000100
-1001--

Partno
Revision

Device
Created

Designer
Company

Assembly
Location

Inputs 1 Q0 Q1 Q2

Q3 clr dir

Outputs Q0.d Ql.d Q2.d Q3.d
carry carry.oe

100000
100000
010000
010000
010000
010000
010000
001000
001000
001000
001000
001000
000100
000100
000100
000100
000010
000001

Berkeley PLA format generated using

3.0 Serial# 9-99999-999
plérpd4 Library DLIB-g-24-15
Thu Feb 26 13:45:23 1987
Count10

CA0018

01

07/16/87

Kahl

Assisted Technology

None

None

Figure C-20. Sample Berkeley PLA-Format File

The first part of the file contains archival and revision
information. The # character indicates these are comments.
This information is identical to the header information in the
corresponding CUPL source file. There is also version
information about the device library and CUPL program, the

1090

91-10128-5

CUPL Download
Reference Manual Formats

date and time the file was created, and a list of the input and
outputs to the PLA.

The next section consists of a PLA description generated by
CUPL from the equations contained in the logic description
file, COUNT10.PLD (contained in the CUPL package). Its
contents can be viewed to compare the original logic equations
with the PLA description generated by CUPL.

The PLA description consists of fields to define the number of
inputs .i', outputs .0', product terms '.p’, and a description of
the AND and OR planes of the PLA with one line per product
term. Connections in the AND plane are represented with a '1'
for connection to the non-inverted input line and a '0' for
connection to the inverted input line. No connection to an
input line is indicated with a '-'. Connections in the OR plane
are indicated by a '1'. No connections are indicated with a '0'.
The end of the PLA description is indicated with a'.end'.

91-10128-5 1090 333

Download CUPL
Formats Reference Manual

334 1090 91-10128-5

Node Numbering D

This appendix lists the devices which contain internal nodes
supported by CUPL. Each entry contains a node number and a
reference. For example, in the case of the AmPAL29M16, the
pin number of the I/O macrocell for which the node is
contained is given along with the corresponding node
number. In the case of the AmPAL23S8, the pin on which the
node output would be seen if observability were used is
referenced. In the case of Signetics and TI FPLA’s, the logical
names used in “Signetics Programmable Logic Data Manual
1986” are used for reference.

91-10128-5 1090 235

Node
Numbering

Table D-1. Node Numbering

Device Dip

Manufacturer Package

Advanced Micro Devices
pin

AmPAL29M/MA16 3
4
9

10

15

16

21

22

obs pin

AmPAL23S8 13
14

16
17

name

PLS30K12 Qo
Q1
Q2
Q3
Q4
Q5
Q6

HOLD
LOAD

D-336

node

BIYRvVR8Y

CUPL
Reference Manual

LCC

Package
pin node
29
5 30
11 31
12 32
18 33
19 A
2 35
26 36

91-10128-5

CUPL Node
Reference Manual Numbering

Table D-1. Node Numbering

Device Dip LCC
Manufacturer Package Package

C 39
C 40

name node

PLS30S16 Q1
Q2
Q3
Q4

28R

name

PMS14R21 A5
A6
A0
Al
A2
A3
A4

CS0
CS1
CS2
CS3
CS4
CS5
XFo0
XF1

=]
BEIBRLBBREBBIRR & ¥8

91-10128-5 D-337

Node
Numbering

Table D-1. Node Numbering

Device Dip
Manufacturer Package

Altera

=
5

EP1800

SBRIIESERRRRNBBRES

Atmel
pin

V750 14

16
17

BRREBER

D-338

node

70
71

4
%
76

78
()

81

node

25,35
26,36
2727

29,39
30,40
3141
32,42
3343
34,44

CUPL

Reference Manual

LCC

Package

pin

IRRRBRBEES

node

29,39
30,40
31,41
32,42
33,43
34,4
35,45
36,46
37,47
38,49

91-10128-5

CUPL Node
Reference Manual Numbering

Table D-1. Node Numbering

Device Dip 1LCC
Manufacturer Package Package
pin node pin node
Q201 Q291
V2500 4 41,65 5 45,69
5 42,66 6 46,70 ,
6 43,67 7 41,71
7 44,68 8 48,72
8 45,69 9 49,73
9 46,70 10 50,74
11 4771 13 51,75
12 48,72 4 52,76
13 49,73 15 53,77
4 50,74 16 54,78
15 51,75 17 55,79
16 52,76 18 56,80
24 53,77 2 57,81
25 54,78 28 58,82
26 55,79 29 59,83
27 56,80 30 60,84
28 57,81 31 61,85
29 58,82 32 62,86
31 59,83 35 63,87
32 60,84 36 64,88
3 61,85 37 65,89
H 62,86 38 66,90
35 63,87 39 67,91
36 64,88 40 68,92
Cypress
pin node
P7C330 BRO 29

91-10128-5 D-339

Node CUPL
Numbering Reference Manual

Table D-1. Node Numbering

Device Dip . LCC
Manufacturer Package Package
BR1 30
BR2 31
BR3 32
28 3
21 A
26 35
25 36
p/: 37
23 38
20 39
19 40
18 41
17 42
16 43
15 44
* IMUX1 45
IMUX2 46
IMUX3 47
IMUX4 48
IMUX5 49
IMUX6 50
pin node
P7C331 28 29
27 30
26 31
25 32
4 3
23 4
20 35
19 36
18 37
17 38

D-340 91-10128-5

CUPL Node
Reference Manual Numbering

Table D-1. Node Numbering

Device Dip LCC
Manufacturer Package Package

16

15
IMUX1
IMUX2
IMUX3
IMUX4
IMUX5
IMUX6

SHRHE/ESEY

* IMUX1 is Input mux between pin 28 and pin 27, IMUX2 is
Input mux between pin 26 and 25, etc.

Intel
pin node
5AC312 2 25
11 26
14 21
15 28
16 29
17 30
18 31
19 32
20 3
21 A
22 35
23 36
pin node
5AC324 4 41
5 42
6 43
7 4

91-10128-5 D-341

Node
Numbering

Table D-1. Node Numbering

Device Dip
Manufacturer Package

9
10
1
12
4
15
16

[y
-3

ERRBVEREBIRRR

Lattice
pin

GAL6001 slmc0
slmel
slmc2
slme3
slmc4
slmeb
slmc6
slme?7

14

LAV ELLERLBRBLEEELES

node

8 &

BRR8BEYN

CUPL

Reference Manual

Package

pin

slmc0
slmel
slmc2
slme3
slmc4
slmeb
slmc6
slme?7

17

=
(=]
o
[s-]

LYERYBREY

91-10128-5

CUPL Node
Reference Manual Numbering

Table D-1. Node Numbering

Device Dip LCC
Manufacturer Package Package
15 A 18 38
16 b5 19 39
17 36 20 40
18 31 21 41
19 38 22 42
20 39 23 43
21 40 24 4
2 41 25 45
23 42 2 46
Monolithic Memories
pin node pin node
PAL32VX10 14 25 17 29
15 26 18 30
16 27 2 31
17 28 21 32
18 29 2 33
19 30 23 A
20 31 24 35
21 32 25 36
22 3 26 37
23 H 2 738
PLX Technology
pin node
PLX448 13 25
15 2
16 21
17 28
19 29
21 30
2 31

91-10128-5 D343

Node CUPL
Numbering Reference Manual

Table D-1. Node Numbering

Device Dip 1CC
Manufacturer Package Package
23 32
Signetics
pin node
PLC415 c0 37
cl 38
p0 29
pl 30
2 31
M 32
p 33
% 3
% 35
p7 36
pin node
PLC42VA12 14 25
15 26
16 27
17 28
18 29
19 30
20 31
21 32
2 3
23 H
name node
PLHS501 TO 53
T1 54
T2 55

D344 91-10128-5

CUPL Node
Reference Manual Numbering

Table D-1. Node Numbering

Device Dip LCC
Manufacturer Package Package

T3

T4

T5

T6

T7

T8

T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24
T25
T26
T27
T28
T29
T30
T31
T32
T33
T34
T35
T36

BRBIRRXBRBRBIIIFTFAIAISESBIAZIARIBB2BERIE

91-10128-5 D-345

Node CUPL
Numbering Reference Manual

Table D-1. Node Numbering

Device Dip LCC
Manufacturer Package Package
T37 90
T38 91
T39 2
T40 93
T41 A
T42 9%
T43 96
T44 97
T45 98
T46 9
T47 100
T48 101
T49 102
T50 103
T51 104
T52 105
T53 106
T54 107
T55 108
T56 109
T57 110
T58 111
T59 112
T60 113
T61 114
T62 115
T63 116
T64 117
T65 118
T66 119
T67 120
T68 121
T69 122
T70 123

D346 91-10128-5

CUPL Node
Reference Manual Numbering

Table D-1. Node Numbering

Device Dip 1LCC
Manufacturer Package Package
T71 124
name node name node
PLHS502 Qo0 69 Q0 65
Q1 70 Q1 66
Q2 T Q2 67
Q3 T2 Q3 68
Q4 3 Q4 69
Q5 74 Q5 70
Q6 75 Q6 7
Q7 76 Q7 2
Q8 Vi Q8 3
Q9 78 Q9 74
Q10 79 Q10 75
Q11 80 Q11 76
Q12 81 Q12 T
Q13 82 Q13 78
Q14 83 Qu4 79
Q15 8 Q15 80
FBO 85 FBO 81
FB1 86 FB1 8
FB2 87 FB2 83
FB3 88 FB3 84
FB4 89 FB4 85
FB5 90 FB5 86
FB6 91 FB6 87
FB7 92 FB7 88
FB8 3 FB8 89
FB9 M FB9 90
FB10 9% FB10 91
FB11 96 FB11 92
FB12 97 FB12 3]
FB13 98 FB13 M

91-10128-5 D-347

Node
Numbering

Table D-1. Node Numbering

Device Dip

Manufacturer Package

FB14
FB15
FB16
FB17
FB18
FB19
FB20
FB21
FB22
FB23
FB24
FB25
FB26
FB27
FB28
FB29
FB30
FB31
FB32
FB33
FB34
FB35
FB36
FB37
FB38
FB39
FB40
FB41
FB42
FB43
FB44
FB45
FB46
FB47

D348

101

BEERRRERERE

CUPL

Reference Manual

LCC
Package
FB14 9%
FB15 96
FB16 97
FB17 98
FB18 929
FB19 100
FB20 101
FB21 102
FB22 103
FB23 104
FB24 105
FB25 106
FB26 107
FB27 108
FB28 109
FB29 110
FB30 111
FB31 112
FB32 113
FB33 114
FB34 115
FB35 116
FB36 117
FB37 118
FB38 119
FB39 120
FB40 121
FB41 122
FB42 123
FB43 124
FB44 125
FB45 126
FB46 127
FB47 128

91-10128-5

CUPL
Reference Manual

Table D-1. Node Numbering

Device Dip

Manufacturer Package

FB48
FB49
FB50
FB51
FB52
FB53
FB54
FB55
FB56
FB57
FB58
FB59
FB60
FB61
FB62
FB63
CKFBO
CKFB1
CKFB2
CKFB3

PLS105

= =
<) ()
o 5 BREBBRED. =

PLS155

91-10128-5

EREBREEERREEER

=
B85

149

151

node

gy

node

Node

Numbering
1LCC
Package
FB48 129
FB49 130
FB50 131
FB51 132
FB52 133
FB53 134
FB54 135
FB55 136
FB56 137
FB57 138
FB58 139
FB59 140
FB60 141
FB61 142
FB62 143
FB63 144
CKFBO 145
CKFB1 146
CKFB2 147
CKFB3 148

D-349

Node CUPL
Numbering Reference Manual

Table D-1. Node Numbering

Device Dip LCC
Manufacturer Package Package
name node
PLS157 c 21
name node
PLS159 c 21
name node name node
PLS167 c 31 c 35
p2 2% P2 29
p3 26 P 30
p4 27 pd 31
129 28 033 32
6 29 6 33
p7 30 p7 A
name node name node
PLS168 c 31 c 35
pt 30 p A
o 29 933 33
o) 28 pé 32
o7 27 o7 31
p8 2% P8 30
o) 25 03] 29
name node name node
PLS179 c 25 ¢ 29

D-350 91-10128-5

CcurL Node
Reference Manual Numbering

Table D-1. Node Numbering

Device Dip LCC
Manufacturer Package Package
name node

PLS405 c0 37
cl 38
p0 29
pl 30
P2 31
8] 32
pd 33
05 A
pb 35
p7 36

Texas Instruments
name node name node

FPLS506 c0 41 c0 45
cl 42 cl4 6
p0 27 p0 31
pl 28 pl 32
p2 29 P2 33
p3 30 03] H
p4 a1 p 35
03] 32 038 36
po 3 pb 37
p7 A p7 38
p8 35 P8 39
o8] 36 M 40
plo 37 pl0 41
pll 38 pil 42
p12 39 pl12 43
pl3 40 pl3 4
pl4 26 pl4 30

91-10128-5 D-351

Node . CUPL
Numbering Reference Manual

Table D-1. Node Numbering

Device Dip LCC
Manufacturer Package Package
pl5 % pl5 2
name node name node
FPLS507 c0 33 c0 37
cl H cl 38
c2 35 c2 39
c3 36 c3 40
c4 37 cd 41
c5 38 cH 42
sclr0 39 sclr0 43
sclrl 40 scirl 4
lent/hold0 41 !cnt/hold0 45
lent/hold1 42 lent/holdl 46
po % po 2
pl 26 p130
p2 27 p2 31
P 28 p3 32
p 29 p 3
03] 30 po H
o] 31 p6 35
p7 32 p7 36

D352 91-10128-5

Trouble Shooting E

(1 HOW TO GET SUPPORT

The user of the CUPL product may need to have some questions
answered or get help with the package in some way. If
problems are encountered, LDI customer support may be
contacted. There are several ways to do this.

By Telephone (305) 974-0967
By FAX (305) 974-8531

Via Customer Support Electronic Bulletin Board Service (BBS)
(305) 974-0612

The BBS requires that a modem be attached to a terminal or a
computer. The BBS can be dialed, and messages may be left
for the customer support staff. Additionally, files may be
uploaded for review at LDI.

Baud: 300, 1200, 2400
Parity: None

Data Bits: 8

Stop Bits: 1

Password: user-defined

Special Interest Groups (SIGS) are also available; these can be
a great source of information.

If assistance is neeeded with using CUPL, it is a good idea to
contact your local dealer or distributor first, for their
suggestions as to how to proceed.

91-10128-6 1090 353

Trouble CUPL
Shooting Reference Manual

[d Contacting Customer Support

Before contacting Customer Support, make sure to collect the
following information:

Make sure that you have a semicolon at the end of each
statement. You would be surprised at the number of files we get
that contain only this problem. Examine the header section of
the PLD file in particular since a missing semicolon in this
area will often cause strange results.

Check to make sure that all comment blocks are closed. Many
times designers start a comment with /* but forget to close it
with */. What happens is that the compiler continues reading
until it finds an end of comment marker */. Everything read
is considered a comment and is therefore invisible to the
compiler.

The CUPL serial number: This enables us to know if there is a
known problem with your version.

The CUPL version number.

The device mnemonic that you were using when you
encountered the problem,

Fax a copy of the PLD file or upload the file to the BBS.
Uploading the file is better because we can test it. Make sure to
send the entire file. Sometimes, a problem will seem to be
caused by one thing but it is actually caused by something else.

354 1090 91-10128-5

Index

! symbol 119
$DEFINE 128
$ELSE 134
$ENDIF 133
$EXIT 237
$IFDEF 131
$IFNDEF 132
$INCLUDE 130
$MACRO 137
$MEND 139
$MSG 233
$REPEAT 135, 233
$REPEND 137
$SIMOFF 237
$SIMON 238
$TRACE 234
$UNDEF 130
/* symbol 116
absolute file 38
alternate operators 129
Apollo work station 18
APPEND 155
arithmetic
function 142
operators 141
ASCII format 38, 309
ASSEMBLY 117
ASSY 117
asynchronous output
conditional 194
unconditional 192
AUTOEXEC.BAT 8

91-10128-5 1090

base 225
prefixes 111
BASE keyword 222, 224
Berkeley
PLA file 38
PLA format 331
binary sets 157
bit
masks 158
positions 159
bit field statements 125, 156
equality operations 158
range operations 162
Boolean
expressions 152
logic 140, 151
review 151
rules 48
build 6, 8, 240
syntax 245
buildsmt 8
bulletin board 353
buried function 122
C-shell 18, 21
CBLD 239
allowable macros 243
building libraries 245
error messages 283
extensions 242
flags 240
library 241
running 239

Index

CK 151
CKMUX 150, 151
clock 149, 150, 230
color 11
combinatorial
logic 173
output 148
command line
options - see flag
comments 112, 222
in test spec file 222
sample 112
with $IFDEF 132
COMPANY 117
complement operator 154
CONDITION 199
conditional
asynchronous output 194, 197
NEXT 178
synchronous output 186, 191
configuration 9
buffers 9
files 9
constant number bit positions 159
conventions used vi
conversion, base 111
counters 95, 97
CSIM 210
design example 50
design simulation 32 -
error messages 278
example running 76
example source file 72
flags 214
input 210
mnemonic 211
output 212
running 213
simulator directives 232

CUPL
Reference Manual

test specification 220
CUPL
assistance 353
command options 39
compiler 36
data flow 3
design example 50
device mnemonic 37
error messages 256
example running 63
input 36
installation 6
introduction 1
key features 2
language 107
operation 36
output 38
overview 1
running 32
running using menus 46
syntax 140
to XNF 205
CUPL.BCK 22
CUPL.DL 8
data flow 3
DATE 117
decade up/down example 97
DEFAULT 179, 188, 195
default equations 181, 190, 196, 200
DeMorgan's Theorem 152
design examples 49
DESIGNER 117
DEVICE 118
EP300 290
EP600 290
EP900 290
F155 289
F157 289
F159 289

91-10128-5

CUPL
Reference Manual

F16V8 292
F179 289
F18V8Z 292
F20V8 292
F501 290
F502 290
F506 291
F507 291
G16V8 293
G20V8 293
G6001 295
P10P8V 296
P12P6V 296
P14P4V 296
P16P2V 296
P16P8V 296
P16RP4V 296
P16RP6V 296
P16RP8V 296
P18CV8 290
P20X10 289
P20X4 289
P20X8 289
P22CV10 296
P22VP10 296
P2358 296
P29M16 297
P29MA16 298
P32VX10 299
PLD9000 301
PLX448 299
RA10P8 296
RA11P8 296
RA12P8 296
V2500 300
V750 300

devices 240

choosing 59

extensions 142

91-10128-5

1090

Index

library also see library
usage notes 289
directives 232
DOC 323
documentation
file 38
format 323
DOS
installation 6
requirements 6
download formats 304
equality operations 158
bit field 158
counter 160
function table 161
equations
address decoding 56
example 56
logic 153
PTOC 252
wait state 56
error
CBLD module 283
CSIM module 278
CSIMA module 279
CUPL module 258
CUPLA module 262
CUPLB module 269
CUPLC module 275
CUPLM module 273
CUPLX module 259
list of messages 256, 257
message suffix 256
messages in list file 38
PTOC module 286
errors message 257
examples
design 49
summary 81

Index

expressions 152
extensions 142
CBLD 242
example use 146
feedback 147
multiplexer 149
table of 143
EZ editor 13
fatals 257
fault simulation 238
feedback
extensions 147
internal 149
pin 148
programmable 147
registered 148
test vectors 230
FIELD 125
fields 306
identifiers 306
file, template 114
flag
CBLD 240
compiler option 39, 41
CSIM 213,214
CUPL 39
multiple option 40
PTOC 248
simulator option 214
flip-flops 142, 171
format
ASCII 304, 309
Berkeley PLA file 331
documentation file 323
download 304
HL 304, 310
JEDEC 304
PDIF file 330
FORMAT keyword 118

1090

CUPL
Reference Manual

function
arithmetic 142
buried 122
control 145
extensions 142
table 169
user-defined 201
writing equations for 146
function keys 12
defining 48
FUNCTION keyword 201
FUSE 127
gates, designing 88
GATES.ABS 33
GATES.PLD 29
header information 116
CSIM 221
CUPL 116
in source spec file 72
keywords 116
PTOC 251
template file 114
hex download format 309
HL download file 38
HL format 310
IF 178
imaginary device 301
indexed variables 108
input, CSIM 210
INSTALL 7
installing
CUPL on Apollo 18
CUPL on DOS 6
CUPL on Sun 15
CUPL on UNIX 15
CUPL on VAX/VMS 22
procedure 7
intermediate variable 116, 154
internal nodes 335

91-10128-5

CUPL
Reference Manual

introduction iii
toCUPL 1
JEDEC
field identifiers 306
file 38
format 304
test vectors 308
keywords
CSIM 222
CUPL reserved 109
header 116, 117
preprocessor 128
user-defined 201
language
elements 107
syntax 140
LIBCUPL 8
library 240, 241
CBLD 245
CSIM 210
description of 210
listing contents of 241
list notation 112, 113
LOCATION 117
logic
description file 36
evaluation rules 151
minimization 126
minimization example 164
reduction 126
logic equation 116, 153
complement operator 154
intermediate variable 154
with APPEND 155
logical operators 140
precedence 140
machine ID 11
macros
CBLD 243

91-10128-5 1090

Index

listing 243
main menu 12
MCUPL 10, 46
MCUPL.CFG 11, 46, 48
MCUPL.EXE 46
memory map, PLD 52
menu
MCUPL described 47
running CUPL using 46
screen 12
system for MCUPL 10
MIN 126
MIN declaration 126
examples 126
minimization 126
flags 44
levels 45
MISER bit 127
mnemonic
CSIM prefix 211
CUPL prefix 37
modulus % symbol 136
multiplexer extension usage 149
NAME 117
negation 187
conditional 187
pin declaration 184
symbol 119, 129
unconditional 184
NEXT
conditional 178
unconditional 176
node
declaration 122
numbering 335
NODE keyword 122
non-registered outputs 173
notation, list 112
numbers 110

Index

base conversion 111
base prefix 111
index 113
value range 110
OE 151
OEMUX 150, 151
operation, CUPL 36
operators
alternate 129, 131
arithmetic 141
arithmetic example 135, 136
complement 154
logic rules 107, 140
modulus example 136
precedence 140
option flag - see flag
ORDER 222, 224
statement in source spec file
73
OUT 146
output
CSIM 212
CUPL 38
enable 150
PALASM 208
ambiguities 254
devices 207
format 207
in PTOC 248
operators 129
source file format 249
parentheses 152
in parameter list 201
PARTNO 117
PCAD PDIF format 330
PDIF format 330
pin
assignments 26
assignments example 61

CUPL
Reference Manual

configuration example 60
declaration 116, 119
PIN keyword 119
pin list
PTOC 251
PINNODE 123, 124
PLA
with Berkeley format 331
PLD
design example 51
file example 82
file to PALASM 207
from TTL example 88
gates example 28
output file 250
usage - see device
polarity 119
of internal signal 123
with DeMorgan 154
precedence of operators 140
preload 228
preprocessor commands 128
PRESENT 174
product terms 330
PTOC 248
equations 252
error messages 286
header information 251
pin list 251
PLD output file 250
running 248
SI output file 253
translation ambiguities 254
range
address decoding 58
function 167
operations 162
registered outputs 173
requirements

91-10128-5

CUPL
Reference Manual

DOS 6
UNIX 15
VAX/VMS 22
reserved
symbols 110
words 109
REVISION 117
SAMPLE files 64
screen color 11
SEQUENCE 174, 176
SEQUENCED 176
SEQUENCEJK 176
SEQUENCERS 176
SEQUENCET 176
set operations 156
binary equivalent 157
bit field 157
equality 158
seven segment decoder example
102
shorthand notation 112
SI output files 253
signal polarity 119
simple gates example 85
simulator
directives 232
flags 214
small.bld 246
SMT parts 8
SOURCE 245
source file 32
example 54
example creating CSIM 72
format 249
header 74
state bits 173
state machine
combinatorial logic 173
model 171

91-10128-5

1090

Index

sample 197
syntax 171, 174
storage registers 173
STUCK 238
subway turnstile example 26
Sun work station 15
symbols, CUPL reserved 110
synchronous output
conditional 186
unconditional 183
syntax 140
arithmetic function 142
arithmetic operators 141
condition 199
extensions 142
logical operators 140
state machine 171, 174
state machine sample 197
TABLE 169
tar 16
target 25
example choosing 59
mnemonic 37
TARGET keyword 245
template 25
template file 114, 116
header information 116
pin declaration 116
title block 116
test conditions 308
test specification file 33
test vector
see also vector
translated by PTOC 254
using * in 75
values 226
text editor 36
timing diagram example 95
title block 116

Index

trace levels 235
translation ambiguities 254
truth tables
CUPL 141
variable list 169
TTL to PLD example 88
TURBO bit 127
two bit counter example 95
unconditional
asynchronous output 192
NEXT 176
synchronous output 183
UNIX
environment 16, 19
installation 15
requirements 15
user-defined functions 201
variables 107
extensions 142
indexed 108
intermediate 116, 154
VAX/VMS
environment 23
installation 22
vector
asynchronous 230
clock 230
creating 75
preload 228
see also test vector
tables 231
values 226
VECTORS 222, 226
in source spec file 73
warnings 257
waveform output 34
XILINX devices 209
XNF 205

cuPrL
Reference Manual

91-10128-6

Note:

Installing CUPL MS-DOS

If the install procedure is interrupted, resume install with the disk that
was due to be installed next. For example, if disk 3 was completely
installed, resume by typing INSTALL 4. If disk 3 was partially
installed, resume by typing INSTALL 3.

Place the diskette labelled Disk 1 into drive A and type A:[Return]
and then INSTALL [Return].

Follow the prompts as they appear on the screen. If a one-character
response is requested, type in only the character; do not press the
[Return] key.

If the computer being used has more than one floppy disk drive, a
screen will appear asking which drive should be used.

When requested, input the name of the destination drive and the
directory name. Use the defaults as a guide.

After the source and target drives are selected, copying will begin.
The Message window will indicate when the next diskette should be
inserted.

If you chose not to install the example files and later wish to use them,
copy EXAMPLES.ARC from Disk 4 to your CUPL directory and type
ARCE EXAMPLES.ARC .

After copying is complete, a screen will appear asking if the SET
LIBCUPL= command should be added to the AUTOEXEC.BAT
file. Respond with either a Y for yes or an N for no.

The following screen explains what is needed to add the PATH
statement to the AUTOEXEC.BAT file. Make certain that the
environment is updated by either re-booting the computer or by
running the AUTOEXEC.BAT file.

For further details, refer to page U2-8 in the CUPL Manual.

Once the installation is complete, type BUILD [Return]. This will
combine the device libraries into one device library named
CUPL.DL. To add the SMT library, type BUILDSMT [Return] after
completing BUILD.

For further details, refer to page U2-8 in the CUPL Manual.

If the CUPL front-end menu system MCUPL is to be used, edit the
MCUPL configuration file MCUPL.CFG, and configure it as desired.
For further details, refer to page U2-1 in the CUPL Manual.

91-10145-5

CUPL
Addendum

What's New in CUPL 4.0a

The latest version of CUPL, the Universal Compiler for
Programmable Logic, is 4.0a. This version encompasses Software
Improvements, New Architecture Features, New Device
Architectures, menu support for New Devices using existing
mnemonics, and mnemonic changes and revisions.

Q Software Improvements
CUPL Executables

Increased operation speeds.

Installation

Installation has been modified to recognize the difference between
an update and a brand new copy. When the package is an update, the
install queries for original serial number. The install also queries

for company name which is displayed during compilation.

Menu

Menu operation has been modified to improve the method of moving
around the directory structure. If the directory mask is set to *.*,
the directories are displayed along with the files. Itis possible to
change to any of those directories simply by highlighting and
selecting the desired directory.

Menu operation now expects to find the INCLUDE and individual
user library files in the current working directory.

EZEDIT
The exiting procedure for EZEDIT has been improved to allow for
either highlighting the SAVE or QUIT option or typing 'S’ or 'Q". If

91-10164-5 1190 1

CUPL
Addendum

the quit option is selected, EZEDIT queries whether or not to save the
file.

Simulation

The simulation waveform displayer now displays 10 waveforms.
It can also allow the user to arbitrarily change the order of the
waveforms and combine up to 8 waveforms to form a BUS with hex

- output.

The waveform hardcopy supports additional printers.

CSIM recognizes the symbol '.' as a valid path symbol.
DOC File

The DOC file will now show the total number of product terms used in
a FPLA device.

Syntax
The OUT equations generated from a D-CE type state machine have
been corrected. This affects the GAL6001.

OUTPUT Formats
Interfacing to PCAD 4.5 is supported by CUPL PDIF files.

Virtual device supports PLA output format.

O New Architecture Features

Automatic Product Term Allocation
Automatic product term allocation is now supported. Intel's 5AC312
and 5AC324, and Altera's EP512 have this capability.

Sharable Product Terms

Some devices have sharable product terms that can be isolated for
single use by a buried register. This makes the product term
unusable by anything else. CUPL determines when these types of
product terms are being used by more than one storage component

2 0490 91-10164-5

CUPL
Addendum

and generates an error message. The best example of this is the

ATV2500.

O New Device Architectures

Manufacturer

Cypress

O New Devices

Manufacturer

Altera

AMD/MMI
Cypress

Intel
Signetics

91-10164-5

Device Device

Name Mnemonic

CY10E301/100E301 P16P8C,
P16PSCLCC

CY10E302/100E302 P16P4C,
P16P4CLCC

PLDC18G8 P18G8

XL78C800 XL78C800

850224 PC224,
PC224LCC

PAL1016C4/10016C4 P1016C4

PAL1016PE8/10016PES P1016PES

PAL1020RP4/10020RP4 P1020RP4

PHD48N22 F48N22

Device Device

Name Mnemonic

EP330 EP320

EP630 EP600

PALCE630 EP600

PAL22V10C P22V10

PAL22VP10C P22VP10

85C060 EP600

85C090 EP900

10020EVS8 P1020EVS8

10H20EVS8 P1020EVS8

0490

CUPL
Addendum

Texas Inst. EP330 EP320
TIBPAL1602 P16L8

Q Mnemonic Changes

SGS-Thomson changed the name of GAL36V18 to GAL6001.

The mnemonic PC220 was removed. Use EP320 as the mnemonic
for the Intel 85C220.

The incorrectly listed P20RP10 mnemonic was removed from the
menu.

The P1016 family can now correctly simulate the active high common
reset pin. It previously was simulated using an active low reset pin.

The G20V8A LCC and G16Z8 LCC mnemonics were added.

PA7024 support will be available on CUPL-386.

Q Mnemonic Revision Changes

Mnemonic Rev. Description

epl800 09 Corrected AR simulation for buried nodes.
synchronous Added INT for global
macrocells. Defaulted buried registers to use
synchronous Clock.Corrected polarity
definition of buried registers.

ep312 05 Corrected pin 16 combinatorial feedback
column number.

f18v8z 4 Corrected configuration bits.

20v8 03 Improved mode selection.

130s16 02 Added automatic defaulting of OE terms to
'b'l.

1273 02 Corrected total number of fuses.

4 0490 91-10164-5

CUPL
Addendum

415
g16v8
g20v8
g22v10
g6001
p1016rm4
p20cgl0
p2018lcc

91-10164-5

S KRR

&

SEER88EE8 BR B &8 B8R 8 8 &

Corrected AR and AP default. Corrected
buried node feedback.

Changed device to power-up to zero in the
registers.

Changed device to power-up to zero in the
registers.

Corrected common clock pin. Corrected DOC
file fuse map.

Corrected feedback polarity of output
registers defined as buried nodes.
Corrected clocking of registers using all
clock pins. Corrected DOC file fuse map.
Corrected definition of input only on an I/O
pin.

Corrected DOC file fuse map.

Corrected clocking of registers.

Corrected DOC file fuse map.

Changed to new specifications.

Changed to new specifications.

Exchanged pins 7(VCC) and 21(GND).
Corrected AP definition for node 31.
Corrected pin 16 registered feedback column
number.

Improved simulation for IOD.

Corrected total number of fuses.

Corrected buried node numbers. Corrected
DOC file fuse map.

Corrected fuse array number for pin nodes 51,
55, 71, 75, 76. Corrected configuration of I/O
pins for dedicated input.

Corrected pin 89 AR array number.

0490 5

10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 91-10193-S PAGE 1

DEVICE DEVICE ¢ OF ¢ OF # OF REC. VER.

CODE MNEMONIC PINS FUSES PTERMS LEVEL
ALTERA

EP1200 EP1200 40 15146 236 3.2b

EP1210 EP1200 40 15146 236 3.2b

EP1800 EP1800 68 42490 480 4.0a

EP1810 EP1800 68 42490 480 4.0a

EP300 EP300 20 2720 74

EP310 EP300 20 2720 74

EP320 EP320 20 2916 72 2.15a

EP330 EP320 20 2916 72 2.15a

EPS12 EP312 24 13713 200 4.0a

EP600 EP600 24 6482 160 3.0a

EP610 EP600 24 6482 160 3.0a

EP630 EP600 24 6482 160 3.0a

EP900 EP900 40 17402 240 3.2b

EP910 EP900 40 17402 240 3.2b
AND/MNI

AMPAL16HS Pl16HS 20 2048 64

AMPAL16HDS8 P16HDS 20 2048 64

AMPAL16L8 P16LS 20 2048 64 1.01a

AMPAL16LDS P16LD8 20 2048 64

AMPAL16R4 P16R4 20 2048 64 1.01a

AMPAL16R6 P16R6 20 2048 64 1.01a

AMPAL16R8 P16Rs8 20 2048 64 1.01a

AMPAL18P8 P18P8 20 2600 72 2.01a

AMPAL20L10 P20L10O 24 1600 40 1.01a

AMPAL20LS p20L8 24 2560 64 2.00a

AMPAL20R4 P20R4 24 2560 64 2.00a

AMPAL20R6 P20R6 24 2560 64 2.00a

AMPAL20RS P20RS 24 2560 64 2.00a

AMPAL20RP10 P20RP10A 24 3210 s0 2.11b

AMPAL20RP4 P20RP4A 24 3450 86 2.11b

AMPAL20RP6 P20RP6A 24 3370 84 2.11b

AMPAL20RPS8 P20RP8A 2a 3290 82 2.11b

AMPAL20XRP10 P20XRP10 24 3210 80 2.11¢

AMPAL20XRP4 P20XRP4 24 3450 86 2.11c

AMPAL20XRP6 P20XRP6 24 3370 84 2.11c

AMPAL20XRPS8 P20XRP8 24 3290 .82 2.11c

AMPAL22P10 P22P10A 24 3970 90 2.11b

AMPAL22V10 P22V10 24 s828 132 2.11a

AMPAL22XP10O P22XP10 24 3970 90 2.11¢c

AMPAL23S8 p23Ss8 20 6234 138 2.11a

PAL1OH/10020EGS P1020EGS 24 3616 8o 2.11b

PAL1OH/10020EV8 P1020EVs 24 3616 80 3.0a

PAL10OH20G8 P1020G8 24 1352 32 2.11b

PAL1OH20P8 P1020P8 24 1352 32

PAL1OHS pPloH8 20 320 16

PAL1OHS8-2 P1OH8 20 320 16

PAL1OLS pPioLs 20 320 16

PAL10OL8-2 P1OLS 20 320 16

PAL12H6 P12H6 20 384 16

PAL12H6-2 P12H6 20 384 16

PAL12L10 P12L10 24 480 20 1.01a

PAL12L6 P12L6 20 384 16

PAL12L6-2 P12L6 20 384 16

PAL14H4 P1aHa 20 aas 16

PAL14aH4-2 Pl14Ha 20 aas 16

PAL14L4 P14La 20 aas 16

PAL14L4-2 PiaLa 20 aa8 16

PAL14LS P14Ls 24 © 560 20

PAL16C1 P16C1 20 512 16 1.01a

PAL16C1-2 P16C1 20 512 16 1.01a

PAL16H2 P16H2 20 512 16

PAL16H2-2 P16H2 20 s12 16

PAL16L2 P16L2 20 512 16

PAL16L2-2 Pl6L2 20 512 16

10/19/90 CUPL VER.
DEVICE
CODE

AND /MNX
PAL16L6
PAL16L8
PAL16L8A
PAL16LSA-2
PAL16L8A-4
PAL16L8B
PAL16L8B-2
PAL16L8B-4
PAL16LSBP
PAL16L8D
PAL16PSA
PAL16P3B
PAL16R4
PAL16R4A
PAL16R4A-2
PAL16R4A-4
PAL16R4B
PAL16R4B-2
PAL16R4B-4
PAL16R4BP
PAL16R4D
PAL16R6
PAL16R6A
PAL16R6A-2
PAL16R6A-4
PAL16R6B
PAL16R6B-2
PAL16R6B~4
PAL16R6BP
PAL16R6D
PAL16RS
PAL16R8A
PAL16R8A~2
PAL16R8A-4
PAL16R8B
PAL16RSB-2
PAL16R8B~-4
PAL16R8BP
PAL16R8D
PAL16RAS
PAL16RP4A
PAL16RP6A
PAL16RP8A
PAL18L4
PAL20C1
PAL20L10
PAL20L10A
PAL20L2
PAL20L8
PAL20L8A
PAL20OLSA-2
PAL20L8B
PAL20OR4
PAL20R4A
PAL20R4A-2
PAL20R4B
PAL20R6
PAL20R6A
PAL20R6A-2
PAL20OR6B
PAL20ORS
PAL20ORS8A
PAL20R8A-2
PAL20RSB
PAL20RA10

4.0a

PLD DEVICE LIBRARY

DEVICE
MNEMONIC

Pl16L6
PleLs
P16L8
P16L8
Pi6Ls8
P16L8
Pl6Ls8
Pl6L8
P16L8
Pi6Ls
P16P8
P16P8
P16R4
P16R4
P16R4
P16R4
P16R4
P16R4
P16R4
P16R4
P16R4
P16R6
P16R6
P16R6
P16R6
P16R6
P16R6
P16R6
P16R6
P16R6
P1l6R8
P16R8
P16R8
P16R8
P16R8
P16R8
Pl6RS8
P16R8
P16R8
P16RAS
P16RP4
P16RP6
P16RPS8
Pl8L4
P20C1
P20L10O
P20L10O
P20L2
P20LS8
pP20L8
P20LS
pP20L8
P20OR4
P20OR4
P20OR4
P20R4
P20R6
P20OR6
P20OR6
P20OR6
P20OR8
P20ORS
P20ORS
P20R8
P20RA10

OF
PINS

24
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
24
24
24
24
24
24
24
24
24
24
24
24
24
24
248
24
24
24
24
24
24
24

91-10193-5

OF
FUSES PTERMS

640
2048
2048
2048
2048
2048
2048
2048
2048
2048
2056
2056
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
2048
20as
2048
2048
2048
2048
2048
2048
2056
2056
2056
2056

720

640
1600
1600

640
2560
2560
2560
2560
2560
2560
2560
2560
2560
2560
2560
2560
2560
2560
2560
2560
3210

OF

20

64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

64
64
64
64
64
64
64
64
64
64
20
16
40
40
16
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
80

REC.

PAGE

LEVEL

1.0l1la
1.01a
1.01a
1.01a
1.01a
1.01a
1.0l1a
1.0l1a
1.01a

1.01a
1.0l1a
1.01a
1.01a
1.01a
1.0l1a
1.0l1a
1.01a
1.01a
1.01a
1.01la
1.01a
1.01a
1.01a
1.01l1a
1.01a

1.01a

1.0l1a
1.0la
1.01a
1.01a
1.01a
1.01a
1.01a
1.0l1a
1.01a
1.01a

1.01a
1.01a

2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.02a

2

VER.

10/19/90

DEVICE
CODE

AMD/MMI
PAL20RS10
PAL2ORS4
PAL20RSS
PAL20S10
PAL20X10
PAL20X10A
PAL20X4
PAL20X4A
PAL20XS
PAL20X8A
PAL22IP6-35
PAL22RXS
PAL22RX8A
PAL24L10
PAL24R10
PAL32R16
PAL32VUX10
PAL32VX10A
PAL64R32
PAL6L16A
PALSL14A
PALC16L8Q
PALC16L82
PALC16R4Q
PALCL6R4Z
PALC16R6Q
PALC16R62
PALC16R8Q
PALCL6R82Z
PALC18US
PALC20L82Z
PALC20RA4Z
PALC20R62Z
PALC20R82
PALC22V10H
PALC22V10Q
PALCE16V8
PALCE20RA10
PALCE20VS
PALCE22V10
PALCE22V102Z
PALCE26V12H
PALCE29M16
PALCE29MAL16
PALCE630
PLS10S
PLS167A/B
PLS168A/B
PLS30K12
PLS30S16
PHS14R21

ATMEL
AT22V10
ATV2500
ATV750

CYPRESS
CY1O00E301
CY100E302
CY10E301
CY10E302
CY7Cc330
CY7C331
CY7C332

DEVICE
MNEMONIC

P20RS10
P20ORS4
P20RSS8
P20s10
P20X10
P20x10
P20X4
P20Xx4
P20X8
P20X8
P221IP6
P22RX8
P22RX8
P24L10
P24R10
P32R16
P32VX10
P32VX10
P64R32
P6L16
P8L14
P16Ls8
Pl6Ls
P16Ra
P16R4
PLE6RE
P16R6
P1l6R8
P16R8
P1sus
P20L8
P20R4
P20R6
P20RS8
P22vio
P22vi10
Glévs
P20RA10
G20vVs
P22vi0
P22v10
P26V12
P29M16
P29MAl6
EP600
F105
Fl167
Fles8
F30K12
F30816
P14R21

P22vi1o0
V2500
V750

Pl6P8C
PléePacC
Plé6P8C
PlépPacC
P7C330
P7C331
P7C332

CUPL VER. 4.0a PLD DEVICE LIBRARY

OF
PINS

24
24
23
24
24
24
24
24
24
24
24
24
24
28
28
40
24

84
24
24
20
20
20
20
20
20
20
20
20
24
24
243
24
24
24
20
24
24
24
24,
28
24
24
24
28
24
24
28
28
24

24
40
24

24
24
24
24
28
28
28

91-10193~5

OF

3338
3330
3338
3322
1600
1600
1600
1600
1600
1600
3294
3616
3616
3840
3840
8466
9738
9738
33316
192
224
2048
2048
2048
2048
2048
2048
2048
2048
2688
2560
2560
2560
2560
5828
5828
2194
3210
560
5828
5828
7848
11040
11460
6482
3553
3361
3553
7424
7236
3137

5828
71644
14394

2056
2056
2056
2056
17082
11934
9902

oF
FUSES PTERMS

8Q
80
80
80
40
40
40
40
40
40
72
82
82
80
8o
128
152
152
256
16
16
64
64
64

64
64
64
64
72
64
64
64
64
132
132

80
20
132
132
150
188
188
160
48
48
a8
72
71
86

132
416
171

32
32
32
32
258
216
194

REC.

PAGE

3

VER.

LEVEL

2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
3.0
2.15a
2.15a
4.0a
4.0a

4.0a
4.0a

2.01a
2.01a
1.01a
1.01a
1.01a
1.01a
1.01a
1.01a
1.01a
1.01a
3.0
2.00a
2.00a
2.00a
2.00a
2.11a
2.11a
4.0a
2.02a
4.0a
2.11a
2.11a
3.0
3.2b
4.0a
3.0a
2.00a
2.00a
2.10a
3.2b
4.0a
3.0

2.11a
4.0a
4.0a

10/19/90 CUPL

DEVICE
CODE

CYPRESS
PAL16L8A
PAL16L8A~-2
PAL16R3A
PAL16R4A-2
PAL16R6A
PAL16R6A-2
PAL16R8A
PAL16R8A-2
PAL22V10C
PAL22VP10OC
PALC12L10
PALC14LS8
PALC16L6
PALC16LS8
PALC16R4
PALC16R6
PALC16RS
PALC18L4
PALC20L10
PALC20L2
PALC20LS
PALC20R4
PALC20R6
PALC20RS
PALC22V10
PLDC18GS8
PLDC20G10
PLDC20RA10

EXEL
XL78C800

FAIRCHILD
932458
932459
FleLs8
F16P8
F16R4
F16R6
F16R8
F16RP4
F16RP6
F16RP8
F20pP8
F20RP4
F20RP6
F20RPS8

GAZELLE
GA22v10
GA22VP10
GA23ss8
GA23S\s

GOULD
PEEL1S53
PEEL173
PEEL18C\V8
PEEL22C.10
PEEL22C\V102
PEEL253
PEEL273

HARRIS
HPL16HS

VER.

4.0a PLD DEVICE LIBRARY

DEVICE
MNEMONIC

PleLs
Pl16L8
P16R4
P16R4
P16R6
P16R6
P16R8
P16R8
P22vi0
P22VP10
P12L10
Pl4L8
Pl6L6
P16L8
P1l6R4
P16R6
P16R8
PlsL4
P20L10
P20L2
P20LS8
P20OR4
P20R6
P20ORS
P22V10
P18Gs
P20G10
P20RA10

XL78C800

F100
Fl100
Pl6eL8
PleP8
P16R4
P16R6
P16R8
P16RP4
P16RP6
P16RP8
P20P8
P20ORP4
P20ORP6
P20RPS8

P22V10
P22VP10
P23ss
P23svs

F153
F173
Piscvs
pP22vio
P22CV102z
F253
F273

Pl6HS

OF
PINS

20
20
20
20
20
20
20
20
24
24
24
24
24
20
20
20
20
24
24
24
24
24
24
24
24
20
24
24

24

28
28
20
20
20
20
20
20
20
20

24
24
24

24
24
20
20

20
24
20
24
24
20
24

20

91-10193-5

OF

20as8
2048
2048
2048
2048
2048
2048
2048
5828
5828

480

560

640
2048
2048
2048
2048

720
1600

640
2560
2560
2560
2560
5828
2624
3990
3210

6400

1928
1928
2048
2056
2048
2048
2048
2056
2056
2056
2568
2568
2568
2568

5828
5828
6234
6242

1842
2178
2696
5828
5873
2378
2714

2048

¢ OF
FUSES PTERMS

64
€4
64
64
64
64
64
64
132
132
20
20
20
64
64
64
64
20
40
16
64
64
64
64
132
72
90
80

66

132
132
13s
135

42
42

132
132
42
42

64

REC.

PAGE

LEVEL

1.01a
1.01a
1.01a
1.01a
1.01a
1.01a
1.01a
1.01a
2.11a
2.11a
1.01a

1.01a
1.01a
1.01a
1.01a

1.01a

2.00a
2.00a
2.00a
2.00a
2.11a
4.0a

2.02a

2.00a
2.00a
1.01a

1.01a
1.01a
1.01a

2.1S5a

2.11a
2.11a
2.11a
3.0

2.15a
2.10a
2.15a
2.11a
3.2b
3.0
4.0a

4

VER.

10/19/90 CUPL VER.

DEVICE
CODE

HARRIS
HPL16L8
HPL16LCS8
HPL16P8
HPL16R4
HPL16R6
HPL16R8
HPL16RC4
HPL16RC6
HPL16RCS8
HPL77153
HPL77209
HPL77216
HPL82S153

ICT
PEEL1S53
PEEL173
PEEL18CVs
PEEL20CG10
PEEL22CV10 °
PEEL22CV102
PEEL253
PEEL273

INTEL
SAC312
SAC324
5C031
5C032
5C060
5C090
5C180
85C060
85C090
85C220
85C224
85C508

LATTICE

GAL16VS8
GAL16V8A
GALl1618
GAL18V1O0
GAL20RA10
GAL20V8
GAL20VS8A
GAL22V1O
GAL26CV12
GAL6001
RAL1OHS8
RAL1OLS
RAL1OPS8
RAL12H6
RAL12L6
RAL12P6
RAL14H4
RAL14HS8
RAL14L3
RAL14LS8
RAL14aP4
RALl4P8
RAL16C)
RAL16H2
RAL16H6
RAL16HE

4.0a PLD DEVICE LIBRARY

DEVICE
MNEMONIC

P16LS
Pl6L8
P16P8H
P16R4
P16R6
P16R8
P16RP4
P16RP6
P16RPS
F153
Pi6L8
P16P8H
F153

F153
F173
Piscvs
P20CG10
P22vi0
P22CV102
F253
F273

EP312
EP324
EP300
EP320
EP600O
EP900
EP1800
EP600
EP900
EP320
pPCc224
pPCso8

G16Vs
Gl6V8A
G168
G18V10
G20RA10
G20vs
G20V8A
G22v10
G26CV12
G6001
P1OHS8
FloLs
Pl1OPS8
P12H6
P12L6
Pl12P6
Pl14Ha
G20vVs
P14aLa
Pl4aLs8
Pl4P4
Pl4aP8
Pl16Cl
P16H2
G20vs
P16H8

OF
PINS

20
20
20
20
20

-20

20
20
20
20
20
20
20

20
24
20
24
24
24
20
248

24
40
20
20
24
40
68
24
40
20
24
28

20
20
24
20
24
24
24
24
28
24
20
20
20
20
20
20
20
24
20
24
20

20
20
24
20

91-10193-5

OF

2048
2048
2056
2048
2048
2048
2056
2056
2056
1842
2048
2056
1842

1842
2178
2696
4088
5828
5873
2378
2714

13713
47493
2720
2916
6482
17402
42490
6482
17402
2916
3204
256

2194
2194
2195
3540
3274
560
2706
5892
6432
8294
320
320
328
384
384
390
448
560
448
560
452
568
512
512
560
2048

¢ OF
FUSES PTERMS

64
64
64
64
64
64
64
64
64
42
64
64
42

42
42
74
92
132
132
42
42

200
394
74
72
160
240
480
160
240
72
72

64
64
64
96
80
20
64
132
120
75
16
16
16
16
lé
16
16
20
16
20
16
20
16
16
20
64

PAGE

LEVEL

1.01a
1.0l1a

1.01a
1.01a
1.01a

2.15a
1.01a

2.15a

2.15a
2.10a
2.15a
4.0a
2.11a
3.2b
3.0
4.0a

4.0a
4.0a

2.15a
3.0a
3.2b
4.0a
3.0a
3.2b
2.15a
4.0a
3.2a

£

REC. VER.

10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY

DEVICE
CODE

LATTICE
RAL16L2
RAL16L6
RAL16LS
RAL16P2
RAL16P6
RAL16PS
RAL16R4
RAL16R6
RAL16RS
RAL16RP4
RAL16RP6
RAL16RPS8
RAL18H4
RAL18L4
RAL18P4
RAL20H2
RAL20HS
RAL20L2
RAL20OLS
RAL20P2
RAL20PS
RAL20OR4
RAL20R6
RAL20ORS
RAL20ORP4
RAL2ORP6
RAL20ORPS

NATIOMAL
87X839
87X840
GAL16VS
GAL16VS8A
GAL20RA10
GAL20Vs
GAL20VS8A
GAL22ViO0
GAL6001
PAL10012C4
PAL100O16C4
PAL10016LD4
PAL10O16LDS8
PAL10OO16LNM4
PAL10O16P4
PAL10O16P8
PAL1OO16PES
PAL1OO16RD4
PAL1OO16RDS
PAL1OO16RN4
PAL10O20RP4
PAL1012C4
PAL10Ol16C4
PAL10O16LD4
PAL10O16LD8
PAL1O16LN4
PAL1016P4
PALl1Ol6P8
PAL1Ol6PES
PAL10O16RD4
PAL1O16RDS8
PAL10O16RM4
PAL1O20RP4
PAL1OHS
PAL1OH8/16V8
PAL1OHSA

DEVICE ? OF # OF
MNEMONIC PINS FUSES
P16L2 20 512
P16L6 24 640
P16L8 20 2048
P16P2 20 s14
P16P6 24 646
P16P8 20 2056
P16R4 20 2048
P16R6 20 2048
P16R8 20 2048
P16RP4 20 2056
P16RP6 20 2056
P16RPS 20 2056
G20vs 24 560
P18L4 24 . 720
P18P4 24 724
G20vVs 24 560
G20vVs 24 560
P20L2 24 640
P20LS 24 2560
P20P2 24 642
P20P8 24 2568
P20OR4 24 2560
P20R6 24 2560
P20ORS 24 2560
P20RP4 24 2568
P20ORP6 24 2568
P20RPS 24 2568
F839 24 1094
F839 24 1094
G16Vs 20 2194
G16V8A 20 21943
G20RA10 24 3274
G20vVs 24 560
G20VS8A 24 2706
G22V10 24 5892
G6001 24 8294
P1012C4 24 2056
P1016C4a 28 20%6
P1016LD4 24 2056
P1016LD8 24 2056
P1016LM4 24 2056
P1016P4 24 2056
P1016P8 24 2056
P1016PES 28 2056
P1016RD4 24 2056
P1016RDS 2a 2056
P1016RN4 24 2056
P1020RP4 28 2568
P1012C4 24 2056
P1016Ca 28 20s6
P1016LD4 24 2056
P1016LD8 2a 2056
P1016LM4 2a 2056
P1016P4 2a 2056
P1016P8 24 2056
P1016PES 28 2086
P1016RD4 2a 2056
P1016RDS 24 2056
P1016RM4 24 2056
P10O20RP4 28 2568
P1OHS ' 20 320
P1OHS8 20 320
P10OHS 20 320

91-10193-5

¢ OF
PTERMS

32
32
64
64
80
20
64
132
75

2
32
64

32
32
64
64

64
32
32
32
32
64

32
32
64
64

64
32
32
16
16
16

PAGE 6

REC. VER,
LEVEL

1.01a

1.01a
1.01a
1.01a

4.0a
4.0a

2.00a

2.15a
2.00a
2.00a
2.00a

2.00a
2.00a
4.0a
4.0a
3.2a
4.0a
4.0a
4.0a
4.0a
3.2a
4 .0a
4.0a
4.0a
4.0a
3.0
2.10a
4.0a
4.0a
4.0a
4.0a
4.0a
3.2a
4.0a
4.0a
4.0a
4.0a
3.0
2.10a
4.0a
4.0a
4.0a
4.0a
4.0a

10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 91-10193-5 PAGE 7

DEVICE DEVICE # OF # OF ¢ OF REC. VER.

CODE MNEMONIC PINS FUSES PTERMNS LEVEL
NATIONAL

PAL1OHB8A2 P1OHS 20 320 16

PAL1OLS P1OLS 20 320 16

PAL1OL8/16V8 P1OLS 20 320 16

PAL1OLSA P1OLS8 20 320 16

PAL1OL8A2 P1OLS 20 320 16

PAL1OP8/16V8 P1oPS 20 328 16

PAL12H6 P12H6 20 384 16

PAL12H6/16V8 P12H6 20 384 16

PAL12H6A P12H6 20 384 16

PAL12H6A2 P12H6 20 384 16

PAL12L10 P12L10 24 aso 20 1.01a

PAL12L6 P12L6 20 384 16

PAL12L6/16V8 P12L6 20 384 16

PAL12L6A P12L6 20 384 16

PAL12L6A2 P12L6 20 384 16

PAL12P6/16V8 P12P6 20 390 16

PAL14H4 P14H4 20 aas 16

PAL14H4/16V8 P14H4 20 aas 16

PAL14H4A P14H4 20 4aas 16

PAL14H4A2 P14H4 20 aas 16

PAL14HS8/20V8 G20vs 24 560 20 4.0a

PAL14L4 P14L4 20 aas 16

PAL14L4/16V8 P14L4 20 a8 .16

PAL14L4A Pl4aLa 20 4aas8 16

PAL14L4A2 P14L4 20 aas 16

PAL14LS PlaLs 24 560 20 -

PAL14L8/20V8 Pl4L8 2a 560 20

PAL14P4/16V8 P14Pa 20 as2 16

PAL14P8/20V8 P14P8 24 568 ° 20

PAL16CL P16C1 20 512 16 1.01a

PAL16C1A P16C1 20 512 16 1.01a

PAL16C1A2 P16C1 20 512 16 1.01a

PAL16H2 P16H2 20 512 16

PAL16H2/16V8 P16H2 20 512 16

PAL16H2A P16H2 20 512 16

PAL16H2A2 P16H2 20 512 16

PAL16H6/20V8 G20vs 24 560 20 4.0a

PAL16H8/16V8 P1GHS8 20 2048 64

PAL16L2 P16L2 20 s12 16

PAL16L2/16V8 P16L2 20 512 16

PAL16L2A P16L2 20 512 16

PAL16L2A2 P16L2 20 512 16

PAL16L6 P16L6 2a 640 20

PAL16L6/20VE Pl6L6 24 640 20

PAL16LS Pi6L8 20 2048 64 1.01a

PAL16L8/16V8 Pl6L8 20 2048 64 1.01a

PAL16LSA P16L8 20 2048 64 1.01a

PAL16L8A2 P16L8 20 2048 6a 1.01a

PAL16L8B P16L8 20 2048 64 1.01a

PAL16L8B2 P16L8 20 2048 6a 1.01a

PAL16LS8D PlelLs 20 2048 64 1.01a

PAL16P2/16V8 P16P2 20 514 16

PAL16P6/20V8 P16P6 24 646 20

PAL16P8 P16P8 20 2056 64

PAL16P8/16V8 P16P8 20 2056 64

PAL16R4 P16R4 20 2048 64 1.01a

PAL16R4/16V8 P16Ra 20 2048 64a 1.01a

PAL16R4A P16R4 20 2048 64 1.01a

PAL16R4A2 P16R4 20 " 2048 64 1.01a

PAL16R4B P16R4 20 2048 64 1.01a

PAL16R4B2 P16R4 20 2048 64 1.01a

PAL16R4D P16R4 20 2048 64 1.01a

PAL16R6 P16R6 20 2048 64 1.01a

PAL16R6/16V8 P16R6 20 2048 64 1.01a

PAL16R6A P16R6 20 2048 64 1.01a

10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 91-10193-5 PAGE 8

DEVICE DEVICE # OF # OF # or REC. VER.
CODE MNEMONIC PINS FUSES PTERMS LEVEL
NATIONAL
PAL16R6A2 P16R6 20 2048 64 1.0l1a
PAL16R6B Pl6R6 20 2048 64 1.01a
PAL16R6B2 Pl6R6 20 2048 64 1.01a
PAL16R6D P16R6 20 2048 64 1.01a
PAL16RS8 P16RS8 20 2048 64 1.01a
PAL16R8/16V8 P16R8 20 2048 64 1.01a
PAL16R8A P16R8 20 2048 64 1.01a
PAL16R8A2 P16R8 20 2048 64 1.01a
PAL16RS8B P16R8 20 2048 64 1.01a
PAL16R8B2 P16R8 20 2048 64 1.01a
PAL16R8D P16R8 20 2048 64 1.01a
PAL16RAS P16RAS 20 2056 64
PAL16RP4 P16RP4 20 2056 64
PAL16RP4/16V8 P16RP4 20 2056 64
PAL16RP6 P16RP6 20 2056 64
PAL16RP6/16V8 P16RP6 20 2056 64
PAL16RPS8 P16RPS 20 2056 64
PAL16RP8/16V8 P16RP8 20 2056 64
PAL18H4/20V8 G20vVs 24 560 20 4.0a
PALl18L4 Pi8La 24 720 20
PAL18L4/20V8 Pl18L4 24 720 20
PAL18P4/20V8 P18P4 24 724 20
PAL20C1 pP20C1 24 640 16
PAL20H2/20V8 G20vs 24 560 20 4.0a
PAL20H8/20V8 G20vs 24 560 20 4.0a
PAL20L1O P20L10O 24 1600 40 1.01a
PAL20L10OA P20L10O 24 1600 40 1.01a
PAL20L2 P20L2 24 640 16
PAL20L2/20V8 P20L2 24 640 16
PAL20LS8 P20L8 24 2560 64 2.00a
PAL20L8/20V8 pP20L8 24 2560 64 2.00a
PAL20OLS8A P20L8 24 2560 64 2.00a
PAL20L8B P20L8 24 2560 64 2.00a
PAL20LS8D P20L8 24 2560 64 2.00a
PAL20P2/20V8 P20P2 24 642 16
PAL20P8/20V8 p20opPs8 24 2568 64 2.15a
PAL20OR4 P20R4 24 2560 64 2.00a
PAL20R4 /20V8 P20ORA4 24 2560 64 z.00a
PAL20R4A P20OR4 24 2560 64 2.00a
PAL20R4B P20R4 24 2560 64 2.00a
PAL20OR4D P20OR4 24 2560 64 2.00a
PAL20OR6 P20OR6 24 2560 64 2.00a
PAL20R6/20V8 P20R6 24 2560 64 2.00a
PAL20R6A P20OR6 24 2560 64 2.00a
PAL20OR6B P20OR6 24 2560 64 2.00a
PAL20OR6D P20R6 24 2560 64 2.00a
PAL20ORS P20ORS8 24 2560 64 2.00a
PAL20R8/20V8 P20ORS8 24 2560 64 2.00a
PAL20ORS8A P20RS8 24 2560 64 2.00a
PAL20ORS8B P2ORS8 24 2560 64 2.00a
PAL20ORSD P20ORS 24 2560 64 2.00a
PAL20ORAlO0 P20RA10 24 3210 80 2.02a
PAL20ORP4 /20V8 P20ORP4 24 2568 64
PAL20ORP6 /20V8 P20ORP6 24 2568 64
PAL20RPB8/20V8 P20ORPS8 24 2568 64
PAL20X10 P20X10 24 1600 40 2.00a
PAL20X10A P20X10 24 1600 40 ‘2.00a
PAL20X4 P20Xa 24 1600 40 2.00a
PAL20X4A P20Xa 24 1600 40 2.00a
PAL20X8 ' P20X8 24 1600 40 2.00a
PAL20X8A P20Xx8 24 1600 40 2.00a
PLX TECH.
PLX4d48 PLXaas 24 5116 98 3.2b

PLX464 PLX4a48 24 5116 o8 3.2b

10/19/90 CUPL VER.

DEVICE
CODE

RICOH
EPL1OPSA
EPL1OP8B
EPL12P6A
EPL12P6B
EPL14P4A
EPL14P4B
EPL16P2A
EPL16P2B
EPL16P8B
EPL16RP4B
EPL16RP6B
EPL16RP8B

SANSUNG
CPL16LS
CPL16LS8L
CPL16R4
CPL16R4L
CPL16R6
CPL16R6L
CPL16RS8
CPL16RSL
CPL20L1O
CPL20OL1OL
CPL20LS
CPL20OLSL
CPL20OR4
CPL20OR4L
CPL20OR6
CPL20R6L
CPL20ORS
CPL20ORSL

SEEQ
20RA102
26V12H

SGS~THOM.
GAL16Vs8
GAL16V8A
GAL1628
GAL20Vs
GAL20VS8A
GAL6001
RAL1OHS8
RAL1OLS
RAL1OPS8
RAL12H6
RAL12L6
RAL12P6
RAL14B4
RAL14HS8
RAL14L4
RAL14LS8
RAL14P4
RAL14PS8
RAL16H2
RAL16H6
RAL16HS
RAL16L2
RAL16L6
RAL16LS
RAL16P2
RAL16P6
RAL16P8

4.0a PLD DEVICE LIBRARY

DEVICE

MNEMONIC

P1OP8V
PloP8v
P12P6V
P12P6V
P14Pav
P14P4Vv
P16P2V
P16P2V
Pl16P8V
P16RP4V
P16RP6V
P16RP8V

Pl6L8
Pl6L8
P16R4
P16R4
P16R6
P16R6
P16R8
P1l6R8
P20oL1O
P20L1O
P20L8
P20Ls8
P20OR4
P20R4
P20R6
P20OR6
P20RS8
P20RS8

P20RA10
P26V12

Glevs
G1l6V8A
Glé6zs8
G20vs
G20V8A
G6001
P1OHS8
P1oOLs8
PloP8
P12H6
P12L6
P12P6
P14H4
G20vs
Pl4aL4
Pl4aLs
P14P4
PlapPs
P16H2
G20ovs
P16HS8
P16L2
Pl16Lé
Pl6L8
P16P2
P16P6
P16P8

¢ OF
PINS

20
20
20
20
20
20
20
20
20
20
20
20

20
20
20
20
20
20
20
20
24
24
24
24
24
24
24
24
24
24

24
28

20
20
24
24
24
24
20
20
20
20
20
20
20
24
20
24
20
24
20

20
20
24
20
20
24
20

91-10193-5
s OF ¢ oF
FUSES PTERMS
664 32
664 32
786 32
786 32
908 32
908 32
1030 32
1030 32
2072 64
2072 64
2072 64
2072 64
2048 64
2048 64
2048 64
2048 64
2048 64
2048 64
2048 64
2048 64
1600 40
1600 a0
2560 64
2560 64
2560 64
2560 64
2560 6a
2560 64
2560 64
2560 64
3210 80
7848 150
2194 6a
2194 64
2195 6a
560 20
2706 64
8294 75
320 16
320 16
328 16
384 16
384 16
390 16
448 16
560 20
448 16
560 20
as2 16
568 20
512 16
S60 20
2048 64
S12 16
640 20
2048 64
S14 16
646 20
2056 64

PAGE 9

REC. VER,
LEVEL

2.10a
2.10a
2.10a
2.10a

2.10a
2.10a
2.10a
2.10a
2.10a
2.10a

1.01a
1.01a
1.01l1a
1.0l1la
1.01a
1.01a
1.01a
1.0l1a
1.0l1a
1.0l1la
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a

2.02a
3.0

4.0a

4.0a

4.0a

4.0a
4.0a

1.01la

10/19/90 CUPL VER.

DEVICE
CODE

8GS-THON.
RAL16R4
RAL16R6
RAL16R8
RAL16RP4
RAL16RP6
RAL16RPS8
RAL18H4
RAL18L4
RAL18P4
RAL20H2
RAL20OHS
RAL20L2
RAL20LS
RAL20P2
RAL20PS
RAL20OR4
RAL20OR6
RAL20ORS
RAL20ORP4
RAL2ORP6
RAL20RPS

SIGNETICS
10020EVS
10H20EVS
828100
828101
828103
828105
82S10SA
828151
828153
82S153A
828155
828157
8285159
825161
828162
828163
825167
82S167A
825168
828173
82S179
PHD16N8
PHD48N22
PLC1S53
PLC1l6VS
PLC18V82Z
PLC20VS
PLC415
PLC42VA12
PLCa73
PLHS153
PLHS16L8A
PLHS16L8B
PLHS18P8A
PLHS18P8B
PLHS473
PLHSS501
PLHSS02
PLS100
PLS101
PLS103
PLS105

4.0a PLD DEVICE LIBRARY

DEVICE

MNEMONIC

P16R4
P16R6
P16R8
P16RP4
P16RP6
P16RP8
G2o0vs
Pi18L4
P18P4
G20vs
G2ovs
P20L2
pP20L8
P20P2
pP2oP8
P20OR4
P20OR6
P20ORS
P20ORP4
P20ORP6
P20ORPS

P1020EVs
P1020EVs

F100
F100
F103
F10s
F10%
F151
F1S3
F153
F1S5S
F157
F159
F161
F162
F163
F167
F167
F168
F173
F179
P16N8
F48N22
F153
Fl6Vs
F18V82
F20Vs8
F41S
FA2VAl12
F473
F153
P16L8
P16L8
P18P8
P18P8
F4a73
FS501
FS02
F100
F100
F103
F105

OF
PINS

20
20
20
20
20
20
24
24
24
24
24
24
24
24

24
24
24
24
24
24

24
24
28
28
28
28
28
20
20
20
20
20
20
24
24
24
24
24
24
24
24
20
68
20
20
20
24
28
24
24
20
20
20
20
20
24
52
64
28
28
28
28

91-10193-5

4 OF

2048
2048
2048
2056
2056
2056
560
720
724
560
560
640
2560
642
2568
2560
2560
2560
2568
2568
2568

3616
3616
1928
1928
297
3553
3553
564
1842
1842
2108
2108
2108
1544
165
225
3361
3361
3553
2178
2452
S12
7008
1842
2617
2689
3193
5751
8994
1499
1842
2048
2048
2600
2600
1499
15780
23464
1928
1928
297
3553

¢ oF
FUSES PTERMS

64
64
64
64
64
64
20
20
20
20
20
16
64
16
64
64
64
64
64
64
64

80
80
48
48

48
48
15
a2
42
43
43
43
48

48
a8
48
a2
43
16
73
a2
72
72
72
68
10
24
42
64
64
72
72
24
112
144
48
48

48

PAGE

REC. VE

LEVEL

1.01a
1.01a
1.01a

4.0a

4.0a
4.0a

2.00a

2.15a
2.00a
2.00a
2.00a

3.0a
3.0a
2.00a
2.00a
2.00a
2.00a
2.00a
2.10a
2.15a
2.15a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.10a
2.10a
3.0a
2.50a
4.0a
2.15a
3.2b
4.0a
4.0a
4.0a
3.2b
2.15a
2.15a
1.01a
1.01la
2.0l1a
2.01a
2.15a
3.2b
3.2a
2.00a
2.00a
2.00a
2.00a

10

R.

10/19/%0 CUPL VER. 4.0a

DEVICE
CODE

SIGNETICS
PLS10SA
PLS151
PLS152
PLS153
PLS153A
PLS155
PLS157
PLS159
PLS159A
PLS161
PLS162
PLS163
PLS167
PLS167A
PLS168
PLS168A
PLS173
PLS179
PLUS10S
PLUS1S3B/D
PLUS16L8D/~7
PLUS16R4D/~7
PLUS16R6D/~7
PLUS16R8D/-7
PLUS173B/D
PLUS20L8D/-7
PLUS20R4D/-7
PLUS20R6D/~7
PLUS20R8D/~7
PLUS40S

SPRAGUE
SPL16LC8
SPL16RC4
SPL16RC6
SPL16RCS8
SPL20LCS
SPL20XC8

TI
EP1810
EP330
EP610
EP630
EP910
N82S10SA
N82S167A
PAL16L8A
PAL16R4A
PAL16R6A
PAL16R8A
PAL20LSA
PAL20R4A
PAL20OR6A
PAL20ORSA
TIB82S105A
TIB82S10SB
TIB82S167B
TIBFPGAS29
TIBPAD16N8-7.5
TIBPAD18N8-6
TIBPAL16HS8
TIBPAL16HD8
TIBPALl16L8~10
TIBPAL16L8-12/15/2%

PLD DEVICE LIBRARY

DEVICE
MNEMONIC

F105
F151
F153
F153
F153
F155
F157
F159
F159
Fl161
F162
F163
F167
F167
Fl68
Fleés
F173
F179
F105
F153
P16LS
P16R4
P16R6
P16R8
F173
P20LS8
P20OR4
P20R6
P20ORS
F405

P16L8
P16R4
P16R6
P1l6R8
P20LS8
P20Xxs8

EP1800
EP320
EP600C
EP600
EP900
F105
F167
PiéL8
P16R4
P16R6
P16RS
P20OLS8
P20OR4
P20OR6
P20ORS
F10S5
F10S
F167
F529
P16N8
Pl18N8
P16HS8
P16HDS
PleLs
PiéLs

& OF
PINS

28
20
20
20
20
20
20
20
20
24
24
24
24
24
24
24
24
24
28
20
20
20
20
20
24
24
24
24
24
28

20
20
20
20

24

68
20
24
24
40
28
24
20
20
20
20
24
24
24
24
28
28
24
20
20
20
20
20
20
20

91-10193-6

OF

3553

564
1842
1842
1842
2108
2108
2108
2108
1544

165

225
3361
3361
3553
3553
2178
2452
3553
1842
2048
2048
2048
2048
2178
2560
2560
2560
2560
5410

2048
2048
2048
2048
2560
1600

42490
2916
6482
6482

17402
3553
3361
2048
2048
2048
2048
2560
2560
2560
2560
3553
3553
3361

128
512
304
2048
2048
2048
2048

OF
FUSES PTERMS

48
15
42
42

43
43
43
43
48

48
48
48
48
42
43
48
42
64
64
64
64
442
64
64
64
64
64

64
64
64
64

40

480
72
160
160
240
48
48
64
64
64
64
64

64
64
48
48
48

16

64
64
64
64

PAGE

LEVEL

2.00a
2.10a
2.15a
2.15a
2.15a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.10a
2.10a
2.10a
3.0a

2.00a
2.15a
1.01a
1.01a
1.01a
1.0l1a
2.10a
2.00a
2.00a
2.00a
2.00a
3.0a

1.01a
1.01a
1.01a
1.01a
2.00a
2.00a

4.0a
2.15a
3.0a
3.0a
3.2b
2.00a
2.00a
1.01a
1.01a
1.01a
1.01a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.00a
2.10a
2.50a
3.0

1.01a
1.01a

11

REC. VER.

10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 91-10193~5 PAGE 12

DEVICE DEVICE # OF # OF ’ Ob REC. VER.
CODE MNENONIC PINS FUSES PTERMS LEVEL
T
TIBPAL16L8-5/7 Pl16L8 20 2048 64 1.01a
TIBPAL16LDS8 P16LD8 20 2048 64
TIBPAL1602 Ple6eLs 20 2048 64 1.01a
TIBPAL16R4~-10 Pl6R4 20 2048 64 1.01a
TIBPAL16R4-12/15/25 P16R4 20 2048 64 1.01a
TIBPAL16R4~-5/7 P16R4 20 2048 64 1.01a
TIBPAL16R6~-10 P16R6 20 2048 64 1.01a
TIBPAL16R6-12/15/25 P16R6 20 2048 64 1.01a
TIBPAL16R6-5/7 P16R6 20 2048 64 1.01a
TIBPAL16R8-10 P16R8 20 2048 64 1.01a
TIBPAL16R8-12/15/25 P16R8 20 2048 64 1.01a
TIBPAL16R8~5/7 P1l6R8 20 2048 64 1.01a
TIBPAL20L1O P20L10O 24 1600 40 1.01a
TIBPAL20L8-15/25 P2oL8 24 2560 64 2.00a
TIBPAL20R4-15/25 P20R4 24 2560 64 2.00a
TIBPAL20R6-15/25 P20R6 24 2560 64 2.00a
TIBPAL20R8~-15/25 P20ORS 24 2560 64 2.00a
TIBPAL20RSP4 P20ORSP4 24 2688 64 2.11a
TIBPAL20ORSP6 P20RSP6 24 2692 64 2.11a
TIBPAL20ORSPS P20ORSP8 24 2696 64 2.11a
TIBPAL20SP8 P20SP8 24 2680 64
TIBPAL20X10 P20X10 24 1600 40 2.00a
TIBPAL20X4 P20X4 24 1600 40 2.00a
TIBPAL20XS8 P20X8 24 1600 40 2.00a
TIBPAL22V1O /A p22vio 24 5828 132 2.11a
TIBPAL22VP10 P22vP10 24 5828 132 2.11a
TIBPALR19LS8 P19L8R 24 2443 64 2.10a
TIBPALR19R4 P19R4R 24 2443 64 2.10a
TIBPALR19R6 P19R6R 24 2443 64 2.10a
TIBPALR19RS8 P19R8R 24 2443 64 2.10a
TIBPALT19LS8 P19LS8T 24 2443 64 2.11a
TIBPALT19R4 P19RAT 24 2443 64 2.11a
TIBPALT19R6 P19R6T 24 2443 64 2.i1a
TIBPALT19RS8 P19RST 24 2443 64 2.11a
TIBPLSSO6A FS06 24 10680 98 2.15a
TIBPSGSO7A F507 24 7370 80 2.15a
TICPAL16L8-55 Pl16L8 20 2048 64 1.01a
TICPAL16R4-55 P16R4 20 2048 64 1.01a
TICPAL16R6-55 P16R6 20 2048 64 1.01a
TICPAL16R8-55 Plé6R8 20 2048 64 1.01a
TICPAL16RSP4 P16RSP4 20 2176 64 2.11b
TICPAL16RSP6 P16RSP6 20 2180 64 2.11b
TICPAL16RSP8 P16RSP8 20 2184 64 2.11b
TICPAL16SP8 Pl6spPs 20 2168 64 2.11b
TICPAL18VS Pi8vs 20 2752 74 3.0
TICPAL22V1O P22vV10 24 5828 132 2.11a
TIEPAL1OOl16ET6 P1016ETé 24 1542 a8 3.2a
TIEPAL100O16P8-6 P10O1e6P8 24 2056 64 2.10a
TIEPAL1OOl16TE6 P1O16ET6 24 1542 48 3.2a
TIEPAL1OH16ET6 P1O16ETé6 24 1542 48 3.2a
TIEPAL1OH16P8-6 P1016P8 24 2056 64 2.10a
TIEPAL1OH16TE6 P1O16ET6 24 1542 48 3.2a
TIFPLA839 F839 24 1094 32 2.00a
TIFPLA84O F839 24 1094 32 2.00a
TOSHIBA
TC9800P F9800 20 1830 a5 3.2a
TC9801P F9800 20 1830 a5 3.2a
VLSI
VP1lOP8 PioP8 20 328 16
vP12P6 P12P6 20 390 16
VP14P4 P14aP4 20 452 16
VP16P2 P16P2 20 514 16

vP16P8 P16P8 20 2056 64

10/19/90 CUPL VER. 4.0a PLD DEVICE LIBRARY 91-10193-56 PAGE 13

DEVICE DEVICE # OF # OF 4 oF REC. VER,

CODE MNEMONIC PINS FUSES PTERMS LEVEL
VLSX

VP16RP4 P16RP4 20 2056 64

VP16RP6 P16RP6 20 2056 64

VP16RP8 P16RP8 20 2056 64

VP16V8E G16Vs 20 2194 64 4.0a

VP20VSE G20Vs 24 560 20 4.0a

SUPPORT NOTES:
XILINX LCA devices are supported by CUPL in conjunction with XACT.

10/19/90 CUPL VER. 4.0a PROM DEVICE LIBRARY

DEVICE
CODE

AND/MNX
53/6300
53/6301
53/6305
53/6306
53/6308
53/6309
53/6330
53/6331
53/6348
53/6349
53/6352
53/6353
53/6380
53/63803S
53/63808
53/6381
53/6381JS
53/6381S
53/6388
53/6389
53/63S1641
53/63S1641A
53/6351681
53/63S1681A
5376353281
53/63S3281A
AM27S12
AN27S13
AN27S18
AN27S180
AN27S181
AN27S184
AN275185
AN27S519
AM275190
AM27S191
AN27S20
AN27S21
AN27S28
AN27S29
AM27S32
AM27S33
AM27S37
AN27S40
AN27S41
AM27S43
AM27549

CYPRESS
CYy7C264
CY7C282
CY7C292

HARRIS
HM7602
HM7603
HM7610
HM7610A

-HM7610B
HM7611
HHM7611A
HN7611B
HM76160
HM76161
HM76161A

DEVICE
MNEMONIC

RABP4
RA8P4
RASP4
RASP4
RABPS
RASBPS
RASPS
RASPS
RASPS
RASPS
RA10P4
RA10P4
RAlOPS
RAlOPS8
RAlOPS
RAlOPS
RAlOPS
RAlOPS
RA11P4
RA11P4
RA12P4
RAl12P4
RA11PS8
RAl11PS
RA12P8
RA12P8
RASP4
RA9P4
RASPS
RAlOPS
RAlOPS
RA11P4
RA11P4
RASPS
RA11PS8
RAl1lPS8
RAS8P4
RABP4
RASPS
RASPS
RAlO0P4
RAlOP4
RAlO0PS
RA12P4
RA12P4
RA12P8
RA13P8

RA13P8
RAlOPS
RA11P8

RASPS8
RASPS
RABP4
RABP4
RA8BP4
RASP4
RABP4
RA8P4
RA11PS8
RA11PS8
RAl1P8

NO.
PINS

16
16
16
16
20
20
16
16
20
20
is
18
24
24
24
24
24
24
18
is
20
20
24
24
24
24
16
16
16
24
24
18
18
16
24
24
16
156
20
20
is
18
24
20
20
24
24

24
24
24

16
16
16
16
16
16
16
16
24
24
24

91~-10193-5

ARRAY
8SIZE
256 X 4
256 X 4
512 X 4
512 X 4
256 X 8
256 X 8
32 x 8
32 x s
512 X 8
512 X 8
1K X 4
1K X 4
1K X 8
1K X 8
1K X 8
1K X 8
1K X 8
1K X 8
2K X 4
2K X 4
4K X a
4K X 4
2K X 8
2K X 8
4K X 8
4K X 8
512 X 4
512 X 4
32 x 8
1K X 8
1K X 8
2K X 4
2K X 4
32 x 8
2K X 8
2K X 8
256 X 4
256 X 4
$12 X 8
512 X 8
1K X 4
1K X 4
1K X 8
4K X 4
4K X 4
4K X 8
8K X 8
8K X 8
1K X 8
2K X 8
32 X 8
32 x 8
256 X 4
256 X 4
256 X 4
256 X 4
256 X 4
256 X 4
2K X 8
2K X 8
2K X 8

PAGE

3

10/19/90 CUPL VER.
DEVICE
CODE

HARRIS
HHM76161B
HM76164
HM76165
HM7620
HM7620A
HM7620B
HM7621
HM7621A
HM7621B
HM76321
HM7642
HM7642A
HM7642B
HM7643
HM7643A
HM7643B
HM7648
HM7649
HM7649A
HM76641
HM76641A
HM7680
HM7680P
HM7680R
HM7680RP
HM7681
HM7681A
HM7681P
HM7681R
AM7681RP
HM7684
HM7684P
HM7685
HM7685A
HM7685P

NATIONAL
DM74LS471
DM745188
DM74S5287
DM74S288
DM74S387
DM745472
DM74S472A
DM745472B
DM74S473
DM74S473A
DM74S570
DM74S570A
DM74S571
DM74S571A
DM74S571B
DM745572
DM74S572A
DM745573
DM74S573A
DM74S573B
DM87S180
DM87S181
DM87S181A
DM87S184
DM87S18S
DM87S185A
DH87S185B
DM87S190

4.0a PROM DEVICE LIBRARY

DEVICE
MNEMONIC

RA11P8
RAl12P4
RA12P4
RASP4

RA9SP4

RASP4

RA9P4

RA9P4

RA9P4

RA12PS8
RA1OP4
RA1OP4
RAlOP4
RAl1O0P4
RAlO0P4
RAl10P4
RASPS

RASPS8

RASPS8

RA13P8
RA13P8
RAlOPS
RAlOPS8
RAlOPS
RAlOPS
RAlOPS
RAlOPS8
RAlOPS8
RAlOPS8
RAlOPS8
RAl1Pa
RA11P4
RAl1P4
RAl11P4
RAl11P4

RABPS
RASPS8
RABP4
RASPS8
RASP4
RA9PS8
RA9PS
RA9PS8
RA9PS8
RA9SPS8
RA9P4
RA9P4
RASP4
RA9Pa
RASP4
RA10P4
RA10P4
RAlOPa
RA1OP4
RAlOP4
RAlO0PS
RAlOPS
RAlOPS
RAl11P4
RAl11P4
RA11P4
RA11P4
RAl11PS8

NO.
PINS

24
20
20
16
16
16
16
16
16
24
18
18
18
18
1s
18
20
20
20
24
24
24
24
24

24
24
24
24
24
18
18
18
18
18

20
16
16
16
16
20

20
20
20
16
16
16
16
16
18
18
18
18
18
24
24
24
18
18
18
18
24

91-10193-5

ARRAY
SIZE

2K X 8
4K X 4
4K X 4

512
512
512
512
512
512
4K
1K
1K
1K
1K
1K
1K

”® X X X X X X
bbb bbb

® X X X X X

& bbb b b

512 X 8
512 X 8
512 X 8

8K
8K
1K
1K
1K
1K
1K
1K
1K
1K
1K
2K
2K
2K
2K
2K

X o X X X X X X X X X x X X X X
S bbb oD ®O®®D®E®E®O®DO®®

256 X 8
32 % 8
256 X 4
32 x 8

256
512
512
512
512
512
512
512
512
S12
512
1K
1K
1K
1K
1K
1K
1K
1K
2K
2K
2K
2K
2K

XX M X X X M X X XK XX X
® &b b b O®®»H S L LD

KX XK X X X XX X XX

RN X

PAGE

2

10/19/90 CUPL VER. 4.0a PROM DEVICE LIBRARY 91-10193-5 PAGE 3

DEVICE DEVICE ' NO. OF ARRAY
CODE MNEMONIC PINS SIZE
NATIONAL
DM87S190A RAl11P8 24 2K X 8
DM87S190B RA11P8 24 2K X 8
DM87S191 RA11PS8 24 2K X 8
DM87S191A RA11P8 24 2K X 8
DM87S191B RAl11P8 24 2K X 8
DM87S195 . RA12P4 20 4K X 4
DM87S19SA RA12P4 20 4K X 4
DM878195B RA12P4 20 4K X 4
DM87S321 RAl12PS8 24 4K X 8
DM87S321A RA12PS 24 4K X 8
SIGMETICS
825123 RASPS 16 32 X 8
82S123A RASPS 16 32 X 8
828126 RASP4 16 256 X 4
82S126A RABP4 16 256 X 8
825129 RASP4 16 256 X 4
82S5129A RASP4 16 256 X 8
82S130 RA9P4 16 512 X 4
82S130A RA9P4 16 512 X 4
825131 RA9P4 16 512 X 4
82S131A RASP4 16 512 X &
828135 RASPS 20 256 X 8
828137 RA1OP4 18 1K X 4
82S137A RA10P4 18 1K X 4
828137B . RAlOP4e 18 1K X 4
825147 RAOPS 20 512 X 8
82S147A RA9PS 20 512 X 8
825180 RAlOPS 24 1K X 8
82s181 RAlOPS 24 1K X 8
82S181A RAl0PS 24 1K X 8
82S181B RAlOPS 24 1K X 8
825184 RAl11P4 18 2K X 4
828185 RAlL1P4 18 2K X 4
82S185A RA11P4 is 2K X 4
825185B RAllPa 18 2K X a
825191 RAl11P8 24 2K X 8
82S191A RAl1PS8 24 2K X 8
82S191B RA11PS8 24 2K X 8
825195 RA12P4 20 4K X 4
82823 RASPS8 16 32 x 8
82S23A RASPS8 r16 32 X 8
825321 - RA12PS8 24 4K X 8
825641 RA13P8 24 8K X 8
TX
TBP18S030 RASPS8 16 32 x 8
TBP18S22 RASPS 20 256 X 8
TBP18SA030 RASPS8 16 32 x 8
TBP18SA22 RASPS8 20 256 X 8
TBP24S10 RASP4 16 256 X 4
TBP24S166 RA12P8 24 4K X 4
TBP24S41 RA10P4 18 1K X 4
TBP24S81 RAl11P4 18 2K X 4
TBP24SA10 RASP4 16 256 X 4
TBP24SA166 RAl11lPS8 24 4K X a
TBP24SA41 RAl1O0P4 18 1K X 4
TBP24SA81 RAl11lP4 18 2K X a4
TBP28S166 RA11PS8 24 2K X 8
TBP28S42 RASPS8 20 512 X 8
TBP28S86A RAL10PS 24 1K X 8
TBP28SA166 RAl11PS8 24 2K X 8
TBP28SA42 RAOPS 20 512 X 8

TBP28SA86A RAlOPS 24 1K X 8

