
User’s Guide

Publication number E2493-97007
August 2001

For Safety information, Warranties, and Regulatory information, see
the pages behind the index.

© Copyright Agilent Technologies 1994-2001
All Rights Reserved

Logic Analysis Support
for the ARM7/ARM9

2

Solutions for the ARM7/ARM9—At a Glance

This book documents the ARM7/ARM9 Inverse
Assembler

The Agilent Technologies E9595A inverse assembler, in conjunction with an
Agilent Technologies logic analyzer, allows you to view ARM® assembly
instructions that are executing in your target system.

The inverse assembler is compatible with a variety of 8-bit, 16-bit or 32-bit
ARM core, AMBA (Advanced Microcontroller Bus Architecture) ASB
(Advanced System Bus) and AHB (Advanced High-performance Bus)
systems. The inverse assembler can be configured to work with the signals
that are available for probing.

The inverse assembler model number is Agilent Technologies E9595A Option
001 when ordered alone. It is identified as “Agilent Technologies E2493A” in
the Setup Assistant.

If You Purchased an Emulation Solution
The E9495A/B emulation solution lets you use an HP or Agilent Technologies
logic analysis system to debug and characterize a variety of ARM target
systems. The emulation solution is a bundled product consisting of an inverse
assembler, an emulation module (and its cables and adapters), and the Agilent
Technologies B4620B source correlation tool set. This solution is designed to
be used with an Agilent Technologies 16700-series logic analysis system.

For more information on an emulation solution

The E5900A/B Option 300 Emulation for the ARM7/ARM9 User’s Guide
describes setting up and using the emulation probe and emulation module.

Information about using the logic analysis system with the emulation probe/
module can be found in Chapter 10, “Coordinating Logic Analysis with
Processor Execution,” beginning on page 231 of this manual.

 3

Additional Equipment Included in an Emulation

Solution
Emulation Module and Emulation Probe

The emulation module plugs into your Agilent Technologies 16700-series logic
analysis system frame, and the emulation probe connects to the emulation
module and a debug port on your target system. The emulation probe lets you
use the target processor’s built-in background debugging features, including
run control and accessing registers and memory. A high-level source debugger
can use the emulation probe/module to debug code running on the target
system.

Information about using the logic analysis system with the emulation probe
can be found in Chapter 10, “Coordinating Logic Analysis with Processor
Execution,” beginning on page 231 of this manual. The Emulation for the

ARM7/ARM9 User’s Guide describes setting up and using the emulation
probe and emulation module.

Source Correlation Tool Set

The Agilent Technologies B4620B source correlation tool set lets you set up
logic analyzer triggers based on source code, and it lets you view the source
code associated with signals captured by the logic analyzer.

Emulation Solution

4

In This Book
This book documents the following products:

Related equipment
The following equipment is included in the ARM7/ARM9 emulation
solution.

Processor supported Product ordered Includes
ARM7/ARM9 Agilent Technologies

E9595A Option #001
inverse assembler only

Inverse assembler

Processor supported Product ordered Includes
ARM7/ARM9 Agilent Technologies

E9495A/B Option #001
emulation solution

Inverse assembler, emulation
probe, emulation module, and
B4620B Source Correlation
Tool Set

 5

Tips To Save You Time

Use the Setup Assistant

Use the appropriate Run button

Click here to use the Setup Assistant, the
menu-driven guide for connecting your
system. It will automatically load the
correct configuration files. See page 22.

Click here to start a measurement.

If your system includes an
emulation probe/module,
click here to run the target
microprocessor.

6

Additional Information Sources
Newer editions of this manual may be available. Contact your local
Agilent Technologies representative.

If you have a probing adapter, the instructions for connecting the probe
to your target system are in the Probing Adapter documentation.

Application notes may be available from your local Agilent
Technologies representative or on the World Wide Web at:

http://www.agilent.com/find/logicanalyzer

If you have an Agilent 16700 series logic analysis system with an
emulation probe/module, the online help for the Emulation Control
Interface has additional information on using the emulation module.
Also, see the emulation manual included with your emulation probe/
module.

The measurement examples include valuable tips for making
emulation and analysis measurements. You can find the measurement
examples under the system help in your Agilent 16700-series logic
analysis system.

Contents

 7

Additional Equipment Included in an Emulation Solution 3
Use the Setup Assistant 5
Use the appropriate Run button 5

1 Equipment and Requirements 19

Setup Checklist 21

Setup Assistant 22
Setup Flow Diagram 23

Inverse Assembler 24
Equipment supplied 24

Additional Equipment Required 25
Additional equipment supported 25

Logic Analyzer Requirements 26
To determine whether your logic analyzer is compatible 26

Logic Analyzer Descriptions 27
ARM bus system type and Agilent logic analyzer model compatibility 28
Number of logic analyzer pods available (per analyzer) 29
Number of logic analyzer pods required 30
Logic analyzer software version requirements 31

Emulation Solution 32
Emulation solution 32

8

Contents

2 Preparing the Target System for ARM Core and

AMBA ASB 33

Choosing a Connector Type 35

High-Density Connectors 37

Medium-Density Connectors 40

Signal Requirements for ARM Core or AMBA ASB Inverse
Assembly 42
Required Signals 43
Strongly Recommended Signals 45
Recommended Signals 46
Optional Signals 48
ARM7/ARM9 Core Signal Details 49
ARM7/ARM9 Core to AMBA ASB Signal Conversion 50
ARM7/ARM9 Inverse Assembler STAT Pod Signals 51

Signal-to-Connector Mappings - ARM Core 54
ARM core signal connector mappings for 8-bit bus systems 55
ARM core signal connector mappings for 8-bit bus systems (continued) 56
ARM core signal connector mappings for 8-bit bus systems (continued) 57
ARM core signal connector mappings for 8-bit bus systems (continued) 58
ARM core signal connector mappings for 16-bit bus systems (reduced address
mode) 59
ARM core signal connector mappings for 16-bit bus systems (reduced address
mode) (continued) 60
ARM core signal connector mappings for 16-bit bus systems (reduced address
mode) (continued) 61
ARM core signal connector mappings for 16-bit bus systems (reduced address
mode) (continued) 62
ARM core signal mappings for 16/32-bit bus systems 63
ARM core signal connector mappings for 16/32-bit bus systems
(continued) 64

Contents

 9

ARM core signal connector mappings for 16/32-bit bus systems
(continued) 65
ARM core signal connector mappings for 16/32-bit bus systems
(continued) 66
ARM core signal connector mappings for 16/32-bit bus systems
(continued) 67
ARM core signal connector mappings for 16/32-bit bus systems
(continued) 68

Signal-to-Connector Mappings - AMBA ASB 69
AMBA ASB signal connector mappings for 8-bit bus systems 70
AMBA ASB signal connector mappings for 8-bit bus systems (continued) 71
AMBA ASB signal connector mappings for 8-bit bus systems (continued) 72
AMBA ASB signal connector mappings for 8-bit bus systems (continued) 73
AMBA ASB signal connector mappings for 16-bit bus systems (reduced address
mode) 74
AMBA ASB signal connector mappings for 16-bit bus systems (reduced address
mode) (continued) 75
AMBA ASB signal connector mappings for 16-bit bus systems (reduced address
mode) (continued) 76
AMBA ASB signal connector mappings for 16-bit bus systems (reduced address
mode) (continued) 77
AMBA ASB signal connector mappings for 16/32-bit bus systems 78
AMBA ASB signal connector mappings for 16/32-bit bus systems
(continued) 79
AMBA ASB signal connector mappings for 16/32-bit bus systems
(continued) 80
AMBA ASB signal connector mappings for 16/32-bit bus systems
(continued) 81
AMBA ASB signal connector mappings for 16/32-bit bus systems
(continued) 82
AMBA ASB signal connector mappings for 16/32-bit bus systems
(continued) 83

Designing a JTAG Connector into Your Target System 84

10

Contents

3 Preparing the Target System for AMBA AHB 85

High-Density Connectors 87

Signal Requirements for ARM AMBA AHB Inverse Assembly 90
Single Master and Multiple Master Configurations 90

Single Master Configuration 91
Required Signals 91
Optional Signals 92
Other Signals Not Used for Inverse Assembly 92
ARM AMBA AHB Signal Details — Single Master 93

Multiple Master Configuration 95
Required Signals 95
Optional AHB Signals 96
Other AHB Signals Not Used for Inverse Assembly 96
ARM AMBA AHB Signal Details — Multiple Masters 97
ARM AMBA AHB Inverse Assembler STAT Pod Signals 100

Signal-to-Connector Mappings - AMBA AHB 102
Signal-to-Connector Mappings — Single Master Configuration 102
Signal-to-Connector Mappings — Multiple Master Configuration 107

Designing a JTAG Connector into Your Target System 112

4 Setting Up the Logic Analysis System 113

Power-on/Power-off Sequence 114
To power on Agilent 16700-series logic analysis systems 114
To power on all other logic analyzers 115
To power off 115

Contents

 11

Installing Logic Analyzer Modules 116

Installing the Emulation Module 117

Installing Software 118
Installing and loading 118
What needs to be installed 118
To install the software from CD-ROM 119

5 Probing the Target System 121

Connecting the Logic Analyzer to the Target System 122

Connecting the Logic Analyzer to the Target System 123
To connect to a 16715/16/17/18/19A or 16750/51/52A
logic analyzer (two cards) 124
To connect to a 16715/16/17/18/19A or 16750/51/52A
logic analyzer (one card) 125
To connect to a 16710/11/12A logic analyzer (two card) 126
To connect to a 16710/11/12A logic analyzer (one card) 127
To connect to a 16603A logic analyzer 128
To connect to a 16602A logic analyzer 129
To connect to a 16601A logic analyzer 130
To connect to a 16600A logic analyzer 131
To connect to a 16554/55/56/57 logic analyzer (two-card) 132
To connect to a 16554/55/56/57 analyzer (one-card) 133
To connect to a 16550A logic analyzer (two card) 134
To connect to a 16550A logic analyzer (one card) 135
To connect to a 1671A/D/E logic analyzer 136
To connect to a 1670A/D/E logic analyzer 137
To connect to a 1661A/AS/C/CS/E/ES/EP logic analyzer 138
To connect to a 1660A/AS/C/CS/E/ES/EP logic analyzer 139

12

Contents

6 Configuring the 16700-series Logic Analysis

System 141

Configuring 16700-series Logic Analysis Systems 142
To load configuration files (and the inverse assembler) from hard disk—16700-
series logic analysis systems 143
To load configuration files (and the inverse assembler) from floppy disk—
16700-series logic analysis systems 144
To list software packages that are installed
(16700-series logic analysis system) 145
ARM7 core analysis configuration files 146
ARM 7 AMBA ASB analysis configuration files 148
ARM9 AMBA ASB analysis configuration files 150
ARM AMBA AHB analysis configuration files 152

Inverse Assembler Modes of Operation 153
State mode 153
To change to timing mode 153
Disabling the cache 153

To use the Invasm menu 154
Loading the Inverse Assembler 154
Unloading the Inverse Assembler 154

Setting the Inverse Assembler Preferences 155
To set the memory map preferences — ARM core and AMBA ASB 156
Signals Dialog — ARM core and AMBA ASB 158
To set AMBA AHB memory map preferences and signal information 161

Symbols 163
Predefined ARM Symbols 164

Object File Symbols 165
Requirements 165
To use object file symbols in the 16700 166

Contents

 13

7 Configuring the

1660A/1670A/16500B/C-Series

Logic Analyzer 169

Analyzing the ARM7/ARM9 with a 1660/1670/16500B/C Logic
Analyzer 170
Configuring the Inverse Assembler 170
Making Data Measurements 170

Analyzer Modes 171

Configuring Logic Analyzer IA Menus 172

Configuring the Logic Analysis System 181
To load configuration and inverse assembler files—Agilent 16700 logic analysis
systems 182
To load configuration files—other logic analyzers 183

8 Capturing Processor Execution 185

Trigger sequence 187

Predefined trigger terms 187
To use predefined trigger terms 188
To view the definition of the trigger term 190

To Set Up Logic Analyzer Triggers 191

Triggering on Symbols and Source Code 193
To avoid triggering on prefetched instructions 193
To correlate relocatable code using the address offset 194
Triggering ARM Data on the 1660/70-series logic analyzers 195

14

Contents

Making Common Measurements Using the
Agilent 16700 Logic Analysis System 197
Example 1: Setting a trigger for a specific address 198
Example 2: Triggering on a write to a variable 199
Example 3: Triggering on a 16-bit write to variable 200
Example 4: Setting a trigger at exit of debug mode 203
Example 5: Store qualifying wait states 204

Making Common Measurements Using All Other HP/Agilent Logic
Analyzers 205
Example 1: Setting a trigger for a specific address 206
Example 2: Triggering on a write to a variable 207
Example 3: Triggering on a 16-bit write to variable 208
Example 4: Setting a trigger at exit of debug mode 212
Example 5: Store qualifying wait states 213

9 Displaying Captured Processor Execution 215

Viewing ARM Trace Data 216
Display Filtering 218
Display Filtering Dialog—ARM Core and AMBA ASB 219
Display Filtering Dialog—AMBA AHB 222

Displaying Source Code 225
Inverse Assembler Generated PC (Software Address) Label 227
Access to Source Code Files 228

Viewing ARM core or AMBA ASB Trace Data on the 1660/70-series logic
analyzers 229

Contents

 15

10 Coordinating Logic Analysis with Processor

Execution 231

What are some of the tools I can use? 232
Which assembly-level listing should I use? 233
Which source-level listing should I use? 233
Where can I find practical examples of measurements? 233

Triggering the Emulation Module from the Analyzer 234
To stop the processor when the logic analyzer triggers on a line of source code
(Source Viewer window) 234
To stop the processor when the logic analyzer triggers (Intermodule
window) 236
To minimize the "skid" effect 237
To configure the availability of DBGACK and DBGRQ 238
To stop the analyzer and view a measurement 239

Tracing until the processor halts 240
To capture a trace before the processor halts 241

Triggering the Logic Analyzer from the Emulation Module 242
The emulation module trigger signal 242
Group Run 243
Debuggers can cause triggers 245
To trigger the analyzer when the processor halts - timing mode 246
To trigger the analyzer when the processor reaches a breakpoint 248

16

Contents

11 General-Purpose ASCII (GPA) Symbol File

Format 251

General-Purpose ASCII (GPA) Symbol File Format 252
GPA Record Format Summary 254
SECTIONS 256
FUNCTIONS 257
VARIABLES 258
SOURCE LINES 259
START ADDRESS 260
Comments 260

12 Troubleshooting 261

Logic Analyzer Problems 263
Intermittent data errors 263
Unwanted triggers 264
No activity on activity indicators 264
No trace list display 264
Capacitive loading 265

Inverse Assembler Problems 266
No inverse assembly or incorrect inverse assembly 266
Inverse assembler will not load or run 267

Inverse Assembler Error Messages 268
“IA Error - Address not in memory map” 268
“IA Error - Search limited by depth” 268
“Inverse Assembler Not Found” 268
“No Configuration File Loaded” 269
“Selected File is Incompatible” 269
“Slow or Missing Clock” 269

Contents

 17

“Waiting for Trigger” 270

Understanding the Impact of ARM Signal Availability 271
LDR PC and LDM PC instructions without nMREQ 271
Problems with literal pools and no nOPC signal 272
SWP instructions without nRW, nWAIT and nMREQ 273
Missing MAS[1] and incorrect memory map entries 273
DMA accesses showing up as OPCODES or DATA 274
Store qualification not storing states needed by the inverse assembler for prop-
er operation 274

Other problem scenarios 275
The inverse assembler trace looks like there are several instructions being de-
coded for the same address 275
Some data fetches in the trace listing seem to be shown as instructions 276
A data state is immediately repeated by another data state or an instruction
fetch 277
State symbols (*) for the unused prefetch states don’t seem be correct all of
the time 277
An extra extension state for an instruction fetch is seen when using reverse
memory controller 278

Intermodule Measurement Problems 279
An event wasn’t captured by one of the modules 279
“No Configuration File Loaded” 280
“Selected File is Incompatible” 280
“Slow or Missing Clock” 280
“Waiting for Trigger” 281

13 Specifications and Characteristics 283

Glossary 285

18

Contents

19

1

Equipment and Requirements

20 Solutions for the ARM7/ARM9

Chapter 1: Equipment and Requirements

This chapter describes:

• Setup Checklist

• Setup Assistant

• Setup Flow Diagram

• Equipment supplied with the inverse assembler

• Additional equipment required

• Logic analyzer requirements

• Logic analyzer descriptions

• ARM system bus type and logic analyzer compatibility

• Number of logic analyzer pods available

• Number of logic analyzer pods required

• Logic analyzer software version requirements

• Emulation solution

Solutions for the ARM7/ARM9 21

Chapter 1: Equipment and Requirements
Setup Checklist

Setup Checklist
Follow these steps to connect your equipment:

• Check that you received all of the necessary software. See page 24.

• If you need to install an emulation module in an Agilent 16700-series logic
analysis system, see your emulation manual.

• Install the software. See page 118.

• If you have an Agilent 16700-series logic analysis system, use the Setup
Assistant to help you connect and configure your system. See page 22.

22 Solutions for the ARM7/ARM9

Chapter 1: Equipment and Requirements
Setup Assistant

Setup Assistant
The Setup Assistant is an online tool for connecting and configuring your logic
analysis system for microcontroller and bus analysis. The Setup Assistant is
available on the Agilent 16700-series logic analysis systems. You can use the
Setup Assistant in place of the connection and configuration procedures
provided in this manual.

This menu-driven tool will guide you through the connection procedures for
connecting the logic analyzer to an analysis probe, an emulation module, or
other supported equipment. It will also guide you through connecting the logic
analyzer pods to connectors on the target system.

Start the Setup Assistant by selecting in the system window.

If you ordered this product with your Agilent 16700-series logic analysis
system, the logic analysis system has the latest software installed, including
support for this product.

Solutions for the ARM7/ARM9 23

Chapter 1: Equipment and Requirements
Setup Assistant

Setup Flow Diagram

Install emulation
module

(if necessary)

Install software

Connect logic analyzer

Connect analyzer
cables to target

Load inverse
assembler

Installation done. Begin
making measurements.

Emulation
solution?

No

Connect emulation probe

Connect emulation probe
to LAN and to emulation

module

Connect emulation probe
to target

Yes

Download executable to
target

Load program symbols
into analyzer

Create executable with
symbol information

Use source
correlation?

No

Yes

E2498F02.VSD

24 Solutions for the ARM7/ARM9

Chapter 1: Equipment and Requirements
Inverse Assembler

Inverse Assembler
This section lists equipment supplied with the inverse assembler and
equipment requirements for using the inverse assembler.

Equipment supplied

The inverse assembler consists of:

• The ARM/AMBA ASB and AHB inverse assembler software (with
configuration files) on CD-ROM. Includes versions for normal and reverse
memory controllers.

• The ARM/AMBA ASB and AHB inverse assembler software (with
configuration files) on 3.5-inch logic analyzer disks. Includes versions for
normal and reverse memory controllers.

• This User’s Guide.

Solutions for the ARM7/ARM9 25

Chapter 1: Equipment and Requirements
Additional Equipment Required

Additional Equipment Required
In addition to the items listed above, the following is required to analyze an
ARM target circuit:

• Connector headers on your target system which supply signals to the logic
analyzer.

• Agilent Technologies termination adapter cables to attach your target
system to a logic analyzer.

• One of the logic analyzers listed in the table on the following page.

Additional equipment supported

Agilent Technologies B4620B Source Correlation Tool Set.

The inverse assembler may be used with the Agilent Technologies B4620B
Source Correlation Tool Set.

26 Solutions for the ARM7/ARM9

Chapter 1: Equipment and Requirements
Logic Analyzer Requirements

Logic Analyzer Requirements
Due to variations in design and implementation of ARM target systems and the
wide variety of Agilent Technologies logic analyzers available, there are
several inverse assembler configuration files. (Configuration files specify how
the logic analyzer channels connect to the target system.)

Each target system bus configuration (e.g. ARM core, ARM AMBA AHB, etc.)
requires a certain minimum number of logic analyzer pods (as listed on page
30) for meaningful inverse assembly. Also, some of the older logic analyzers
can not be used for inverse assembly on the AMBA AHB bus.

To determine whether your logic analyzer is
compatible

1 Find out the model number of your logic analyzer card (which is
installed in the mainframe) by looking at the main system window of
the logic analyzer. If you have an older logic analyzer and the model
number is not displayed in the System window, you can refer to the
table on page 27.

2 Determine whether the logic analyzer model number is compatible
using the table on page 28.

3 Check that there are enough pods available:

• Look up available pod count on page 29

• Look up number of pods required on page 30

Solutions for the ARM7/ARM9 27

Chapter 1: Equipment and Requirements
Logic Analyzer Descriptions

Logic Analyzer Descriptions
If you have a 16700-series logic analysis system, it shows logic analyzer card
model numbers in the system window; you can ignore this table. Certain older
logic analysis systems only show speed and memory depth information in the
system window. The table below can be used to determine which model logic
analyzer card is installed in older systems. Actual performance depends on
configuration.

† The 16557D state and timing speeds decrease for four- or five-card configurations.

Logic Analyzer Channel
Count

State
Speed

Timing
Speed

Memory
Depth

16752A 68/card 400 MHz 2 GHz 32 M states
16751A 68/card 400 MHz 2 GHz 16 M states
16750A 68/card 400 MHz 2 GHz 4 M states
16719A 68/card 333 MHz 2 GHz 32 M states
16718A 68/card 333 MHz 2 GHz 8 M states
16717A 68/card 333 MHz 2 GHz 2 M states
16716A 68/card 167 MHz 2 GHz 512 k states
16715A 68/card 167 MHz 2 GHz 2 M states
16712A 102/card 100 MHz 500 MHz 128 k states
16711A 102/card 100 MHz 500 MHz 32 k states
16710A 102/card 100 MHz 500 MHz 8 k states
16603A 68 100 MHz 125 MHz 64 k states
16602A 102 100 MHz 125 MHz 64 k states
16601A 136 100 MHz 125 MHz 64 k states
16600A 204 100 MHz 125 MHz 64 k states
16557D 68/card 135 MHz† 250 MHz† 2 M states
16556A 68/card 100 MHz 200 MHz 1 M states
16555D/56D 68/card 100 MHz 500/400 MHz 2 M states
16555A 68/card 110 MHz 250 MHz 1 M states
16554A 68/card 70 MHz 125 MHz 512 k states
16550A 102/card 100MHz 250 MHz 4 k states
1671A 102 70 MHz 125 MHz 64 k or 0.5 M
1670D/E 1671D/E 136/102 100 MHz 250 MHz 1 M states
1670A 136 70 MHz 125 MHz 64 k or 0.5 M
1661A/AS/C/CS/CP/E/ES/EP 102 100 MHz 250 MHz 4 k states
1660A/AS/C/CS/CP/E/ES/EP 136 100 MHz 250 MHz 4 k states

28 Solutions for the ARM7/ARM9

Chapter 1: Equipment and Requirements
Logic Analyzer Descriptions

ARM bus system type and Agilent logic analyzer model
compatibility

The following table shows whether a particular logic analyzer model is
compatible with the inverse assembler when it is used on an ARM core, AMBA
ASB, or AMBA AHB system.

Logic Analyzer ARM core and
AMBA ASB AMBA AHB

16752A Yes Yes
16751A Yes Yes
16750A Yes Yes
16719A Yes Yes
16718A Yes Yes
16717A Yes Yes
16716A Yes Yes
16715A Yes Yes
16712A Yes Yes
16711A Yes Yes
16710A Yes Yes
16603A Yes No
16602A Yes No
16601A Yes No
16600A Yes No
16557D Yes Yes
16556A Yes Yes
16555D/56D Yes Yes
16555A Yes Yes
16554A Yes Yes
16550A Yes Yes
1671A Yes No
1670D/E 1671D/E Yes No
1670A Yes No
1661A/AS/C/CS/CP/E/ES/EP Yes No
1660A/AS/C/CS/CP/E/ES/EP Yes No

Solutions for the ARM7/ARM9 29

Chapter 1: Equipment and Requirements
Logic Analyzer Descriptions

Number of logic analyzer pods available (per analyzer)

A logic analyzer mainframe system can generally house between one and five
logic analyzer cards. Each card has a number of pods. Other logic analyzers,
which are not logic analysis frame systems, have a fixed channel count and
hence a fixed number of pods.

The following table shows the number of pods available based on logic
analyzer model number and the number of cards installed (if the logic
analyzer is installed in a logic analysis system mainframe).

Logic Analyzer
Model Number

Number of
logic

analyzer
Channels

Number of
cards

installed
(if

applicable)

Number of
Pods

(Based on
number of

cards)

16750/51/52A 68/card
2

(or more)
8

(or more)
16750/51/52A 68/card 1 card 4

16715/16/17/18/19A 68/card
2

(or more)
8

(or more)
16715/16/17/18/19/A 68/card 1 card 4

16710/11/12A 102
2

(or more)
12

(or more)

16710/11/12A 102
1 card 6

16603A 68 n/a 4
16602A 102 n/a 6
16601A 136 n/a 8
16600A 204 n/a 12

16554/55/56/57 68/card
2

(or more)
8

(or more)
16554/55/56/57 68/card 1 card 4

16550A 102/card
2

(or more)
12

(or more)
16550A 102/card 1 card 6
1671A/D/E 102 n/a 6
1670A/D/E 136 n/a 8
1661A/AS/C/CS/CP/E/ES/EP 102 n/a 6
1660A/AS/C/CS/CP/E/ES/EP 136 n/a 8

30 Solutions for the ARM7/ARM9

Chapter 1: Equipment and Requirements
Logic Analyzer Descriptions

Number of logic analyzer pods required

The following table shows the number of logic analyzer pods required for
inverse assembly on various types of ARM target systems.

There are two pods per connector on a logic analyzer card.

The HRDATA and HWDATA buses can be combined in which case both read
and write transactions can be seen on the HRDATA bus. See “Setting the
Inverse Assembler Preferences” on page 155.

Target System Configuration Minimum number of pods required
ARM core or AMBA ASB
8-bit data bus 4
ARM core or AMBA ASB
16/32 bit data bus 6
ARM core or AMBA ASB
16/32 bit data bus
Reduced address mode 4
AMBA AHB single master
Separate HRDATA and HWDATA buses 8
AMBA AHB multiple master
Combine HRDATA and HWDATA to HRDATA
bus 8

Solutions for the ARM7/ARM9 31

Chapter 1: Equipment and Requirements
Logic Analyzer Descriptions

Logic analyzer software version requirements

The logic analyzers must have software with a version number greater than or
equal to those listed below to make a measurement with the inverse
assembler. You can obtain the latest software at the following web site:

http://www.agilent.com/find/logicanalyzer

If your software version is older than those listed, load new system software
with the higher version numbers before loading the inverse assembler
software.

Logic Analyzer Software Version Requirements

* The mainframes are used with the Agilent Technologies logic analyzer cards.

Agilent
Technologies

Logic Analyzer
Minimum Logic Analyzer Software Version

16600A-series The latest Agilent Technologies 16600A logic analyzer software
version is on the CD-ROM shipped with this product.

1660A/AS
Series

3.01

1660C/CS/CP/E/
ES/EP Series

A.02.01

1670A/D/E
Series

A.02.02

Mainframes*
16700-series The latest Agilent Technologies 16700 logic analyzer software

version is on the CD-ROM shipped with this product.
16500C
Mainframe

1.07

16500B
Mainframe

3.14

32 Solutions for the ARM7/ARM9

Chapter 1: Equipment and Requirements
Emulation Solution

Emulation Solution
If you ordered an emulation solution, you received an emulation probe, an
emulation module and accessories (cables and power supply) which are
described in the E5900(Aor B) Option 300 Emulation for the ARM7/ARM9

User’s Guide.

Emulation solution

The combination of an inverse assembler, an emulation module, and an
Agilent 16700-series logic analysis system lets you both view ARM assembly
instructions that are executing on your target system and use the target
processor’s built in JTAG debugging features.

You can use a debugger or the logic analysis system’s Emulation Control
Interface to configure and control the target processor and to download
program code. You can use the Agilent Technologies B4620B Source
Correlation Tool Set to analyze high-level source code using the logic analysis
system.

33

2

Preparing the Target System for ARM
Core and AMBA ASB

34 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB

This chapter describes the necessary connections between the target system
and the logic analysis system for inverse assembly on an ARM core or AMBA
ASB target system.

Because ARM circuits will vary with each design, it is important that you
design headers into your target system for connection to a logic analyzer.

If your system already contains connector headers with incompatible pinouts,
you can still connect to a logic analyzer using an adapter cable and General
Purpose probes.

• When designing a system, choose a connector type shown in “Choosing a
Connector Type” on page 35. Once you’ve decided on a connector type,
you can design your ARM circuit board to contain the connector headers.

• When your target system contains medium-density or high-density
connector headers, use Agilent Technologies cables or termination
adapters to connect your target system to a logic analyzer.

Solutions for the ARM7/ARM9 35

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Choosing a Connector Type

Choosing a Connector Type
ARM core or AMBA ASB signals on your target system connect to a logic
analyzer via connector headers that you build into the target circuit board.

NOTE: You must choose either medium-density or high-density connectors and
design your target system circuit board to contain the connector headers!

Items to consider when selecting a type of connector are:

• Board space required by the connector header

• Proper termination of the logic analyzer

• Proper connection of target signals to the logic analyzer pods

The medium-density and high-density connectors are summarized below.

• The Agilent Technologies 01650-63203 termination adapter connects a
logic analyzer pod to a medium-density connector header while providing
the proper termination.

• The Agilent Technologies E5346A is a Y-cable which connects two logic
analyzer pods to one high-density connector header while providing the
proper termination.

NOTE: If a PC board already has medium-density or high-density connector headers
attached, but the signal pinouts do not match the requirements as shown in
the signal-to-connector mappings in this chapter, you can still connect to a

Medium-Density Connector High-Density Connector

Pin
Configuration

2 rows x
10 pins

2 rows x
19 pins

Header
Part Number

3M
2520-6002

AMP
2-767004-2

Required
Termination
Adapter

Agilent Part
01650-63203

Agilent E5346A
(one for every two logic
analyzer pods)

Notes
Not recommended
above 50 MHz

Each connector
supports two
logic analyzer pods

36 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Choosing a Connector Type

logic analyzer using General Purpose probes. Medium-density connector
headers can be probed directly, and high-density connector headers can use
an adapter assembly for access to the signal pins.

Solutions for the ARM7/ARM9 37

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
High-Density Connectors

High-Density Connectors
High-density AMP MICTOR connectors are recommended for connecting the
target system to the logic analyzer because they require less board space and
provide higher signal integrity than medium-density connectors. Each
connector carries 32 signals and two clocks.

• Each 32-signal high-density connector header requires approximately
1.1” x 0.4” of PC board space.

• On-board termination is not required.

• Each MICTOR connector requires one Agilent Technologies E5346A High-
Density Termination Adapter cable to attach to the logic analyzer. This is a
Y-cable where the single end connects to the high-density connector
header, and each of the two opposite ends connects to a logic analyzer
pod.

• Any probed signal line must be able to supply a minimum of 600 mV to the
probe tip and handle a minimum loading of 90 kOhms shunted by 10 pF.
The maximum input voltage for the logic analyzer is +/- 40 volts peak.

38 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
High-Density Connectors

• A plastic shroud (Agilent part number E5346-44701) is available to secure
the mechanical connection of the high-density cable to the MICTOR
connector header.

NOTE: If a PC board already has a high-density connector header attached, but the
signal pinouts do not match the requirement, use the MICTOR adapter
assembly (Agilent part number E2476-61604) to gain access to the target
board signals. Then, use the General Purpose probes from the logic analyzer
to connect to the adapter assembly according to the tables later in this
Chapter.

Dimensions of the AMP MICTOR 2-767004-2 surface mount connector are
shown below. The holes for mounting a support shroud are off-center to allow
0.40 in (1.20 mm) centers when using multiple connectors.

Solutions for the ARM7/ARM9 39

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
High-Density Connectors

The logic analyzer signal pinouts of the high-density connector are:

Signal mapping tables listing the ARM core and AMBA ASB signals that are to
be routed to each pin of the high-density connector headers are located later
in this chapter.

More information on this connector is available by visiting our website at
www.agilent.com and searching for “E5346A” or “High Density Termination
Adapter.”

40 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Medium-Density Connectors

Medium-Density Connectors
Medium-density connectors carry 16 signals plus one clock. These connectors
are an older technology and are not recommended for system clock speeds
above 50 MHz.

• Each 16-signal medium-density connector header requires approximately
1.4” x 0.4” of PC board space.

• For each board connector, a 100 kOhm termination adapter (Agilent Part
01650-63203) is required. The termination adapter connects between the
connector header and the logic analyzer pod.

• On-board termination is not required.

• Connector pins are spaced on 0.10” centers

• Any probed signal line must be able to supply a minimum of 600 mV to the
probe tip and handle a minimum loading of 90 kOhms shunted by 10 pF.
The maximum input voltage for the logic analyzer is +/- 40 volts peak.

NOTE: If a PC board already has a connector header attached, but the signal pinouts
do not match the requirement, use the General Purpose probes to connect the
logic analyzer pods to the connector headers.

Solutions for the ARM7/ARM9 41

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Medium-Density Connectors

These are the pinouts for the medium-density connector header:

Application Note 1244-1, “Minimizing Intrusion Effects When Probing

With a Logic Analyzer” describes this connector in more detail. See More

Information at the end of this document.

Signal mapping tables listing the ARM core and AMBA ASB signals that are to
be routed to each pin of the medium-density connector headers are located
later in this chapter.

42 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

Signal Requirements for ARM Core or AMBA
ASB Inverse Assembly
The Agilent Technologies ARM inverse assembler requires a minimum set of
signals for correct operation, others are optional. In general, the presence of
optional signals will enhance the capability of the inverse assembler and
improve the triggering and storage qualification of the logic analyzer. They
may not be present due to cost, pin or space constraints. Each signal used by
the inverse assembler is listed and described below. In the case of each
optional signal, a discussion describing the impact of its presence or absence
is included.

The signals listed are signals coming from the ARM core. For systems using
AMBA ASB, the equivalent AMBA ASB signal is listed in {curly braces} after
the core signal.

• Required Signals are necessary for basic inverse assembly.

• Strongly Recommended Signals allow the inverse assembler to accurately
decode instructions. Without these, some states will be wrong.

• Recommended Signals expand the triggering and storage qualification
capability of the logic analyzer, and provide more useful information in the
inverse assembler output.

• Optional Signals allow the inverse assembler to differentiate between cycle
types and modes.

Solutions for the ARM7/ARM9 43

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

Required Signals

M_CLK {B_CLK}

MCLK is used to clock data into a logic analyzer (state mode). If MCLK is not
available, an alternate clock can be used with the limitations described in the
paragraph below. ECLK can be used if the full 32 bit data bus is provided. This
will prevent storing wait states and internal cycles which allows more of the
trace depth to be used for useful information. With an 8 or 16-bit data bus, the
ECLK signal from the core is not usable because it will not clock the extra
memory cycles required for a full word access on the reduced data bus. In a
similar way, an MCLK stretched by core wait states will not clock the extra
memory cycles for narrow memory buses. The use of a stretched MCLK is not
recommended when using data buses less than 32 bits.

An alternative logic analysis clock could be generated from MCLK and the
memory controller so that it only clocks valid memory cycles, but care must be
taken so that the address, data and status signals provided are all valid on the
appropriate edges of the clock (data and status signals nMREQ, SEQ and
nEXEC on falling edge of the clock; address, chip selects and remaining status
on rising edge of the clock).

ADDR[31:0] {B_A[31:0]}

When reduced data buses are used, the address signals A1 and A0 must be the
output signals from the memory controller, not from the core. A0 for halfword
accesses, and both A0 and A1 for word accesses, are undefined when coming
directly off the core and will not correctly inform the inverse assembler which
byte(s) is being accessed. Fortunately, the memory controller output is
usually what is coming off the chip instead of the core signals since the
address signals are required for the memory system interface.

Only the address lines actually used are required for inverse assembly. Upper
address lines that are not used do not need to be connected to the logic
analyzer. Upper address lines connected to the logic analyzer can be tied low
on the headers or left unconnected. (Unconnected inputs to the logic analyzer
are pulled low by the logic analyzer).

When using the Agilent 16700-series logic analysis system, chip select signals
may be used to regenerate missing upper address lines. This allows the
inverse assembler to display the full logical address and allows source
referencing to work correctly. (A maximum of 8 different chip selects can be
defined.) Source referencing is only supported on the Agilent 16700-series
logic analysis system.

44 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

If an internal DRAM controller is being used and RAS/CAS signals are coming
directly off the chip instead of normal address lines, custom target system
hardware must be provided to reconstruct the address bus.

Chip Selects

Chip selects are not generated by the core and are not required. However, if
they are being brought off the chip and the upper address lines are not, they
can be used by the inverse assembler to regenerate upper address lines.

The inverse assembler supports a maximum of 8 chip selects. The logic
analyzer expects the chip select lines to be active low. The lack of upper
address lines will make triggering and storage qualification more complicated
(they will have to be based on actual chip select and lower address lines
instead of logical address used by the programmer).

Either the full set of address lines used or a combination of address lines and
chip selects used are required for proper operation of the inverse assembler. If
both chip selects and a full set of address lines are available, connect the
address lines to the logic analyzer.

DATA[7:0] {B_D[7:0]}

DATA[15:0] {B_D[15:0]}

DATA[31:0] {B_D[31:0]}

The inverse assembler has been designed to operate correctly for systems
with reduced data buses. However, reduced data buses will complicate or
prevent triggering on data values that are wider than the data bus width
because the data value will appear over multiple bus cycles. Reduced data
buses will also use more trace depth for capture since each memory cycle will
generate multiple states captured by the logic analyzer. To overcome these
problems, the full 32-bit data bus can be reconstructed using custom target
hardware.

Solutions for the ARM7/ARM9 45

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

Strongly Recommended Signals

If the following signals are missing, the inverse assembler will make the best
attempt possible at decoding the bus cycles correctly, but some states will be
wrong. If at all possible, these signals should be provided.

nOPC {B_PROT0}

nOPC is used to distinguish opcode fetches from data accesses. If this signal is
missing, the inverse assembler will use the memory map to make this
determination. The method is imperfect in cases where data “literal pools”
exist in a region that otherwise contains only code. Unexecuted prefetches
will not be marked if this signal is not available. For this reason, nOPC is
strongly recommended.

MAS[1] {SIZE[1]}

MAS[1] is used to distinguish THUMB fetches from ARM fetches and 32-bit
data accesses from smaller data accesses. If this signal is missing, the inverse
assembler will use the memory map to make this determination. The memory
map requires that the user’s system have distinct memory regions that are
exclusively ARM or exclusively THUMB. The map can support a maximum of
eight distinct regions. For systems that do a lot of switching between ARM and
THUMB instructions, the MAS[1] signal should be considered a required
signal.

DMA {A_GNTx (an OR of all A_GNTx other than the

processor)}

The ARM core does not directly support DMA. Direct memory accesses
require a bus arbiter external to the core. The AMBA ASB specification
provides for a bus arbiter. To be consistent with AMBA ASB, the DMA signal
should be active high (high when any DMA device has the bus, low when core
has the bus) and valid at the rising edge of MCLK. The inverse assembler will
use this signal to distinguish DMA memory accesses from memory accesses
initiated by the ARM core. These states will be marked as such and not
decoded as opcodes or core memory accesses.If DMA is used and the cycles
are visible to the logic analyzer, this signal is required, otherwise DMA cycles
will be decoded as processor cycles and will confuse the algorithms used by
the inverse assembler.

This signal will allow these states to be store-qualified by the logic analyzer or
filtered out of the trace listing display if desired.

46 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

Recommended Signals

The following signals are useful to allow the inverse assembler to provide more
information to the user. If these signals are missing, the inverse assembler will
mark states correctly, but some information that could be provided to the user
will be missing.

In addition to their usefulness to the inverse assembler, these recommended
signals are often useful for storage qualification or triggering of the logic
analyzer.

MAS[0] {SIZE[0]}

MAS[0] is used along with MAS[1] for determining the size of data accesses.
The inverse assembler will attempt to determine size for data accesses by
matching up the data access with the instruction which initiated it. This is not
possible in all cases, particularly when storage qualification is being used. The
logic analyzer will be unable to trigger or storage qualification based on the
data access size if the MAS signals are not available.

nRW {B_WRITE}

The nRW signal is used to distinguish reads from writes. The inverse
assembler will attempt to determine read vs. write for data accesses by
matching up the data access with the instruction which initiated it. This is not
possible in all cases, particularly when store-qualify is being used. Other ASIC
specific read/write signals may be available on the target system which can be
used for trigger or store-qualify by the logic analyzer but will not be used by
the inverse assembler.

nEXEC {INSTEXEC (ARM9 only)}

The nEXEC signal is used to determine whether conditional instructions were
executed. For systems using virtually all THUMB instructions, this signal is
not very useful since the only conditional THUMB instructions are branches
which can be detected using a different mechanism. For systems with lots of
ARM code, this is a very useful signal since most instructions can be
conditional. There is no ARM7 AMBA ASB equivalent, you must use the core
signal. The ARM9 AMBA ASB equivalent is INSTEXEC.

DBGACK {no AMBA ASB equivalent, must use core

signal}

The DBGACK signal indicates if the processor is running user code or in

Solutions for the ARM7/ARM9 47

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

debug mode. This signal is not needed for correct inverse assembly though it
is used to mark debug states. However, it is extremely useful for triggering
and storage qualification so that only user code execution is captured by the
logic analyzer. This signal will also be used for run control, if available.

48 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

Optional Signals

Like the recommended signals, the following optional signals allow the inverse
assembler to provide more information to the user. If these signals are
missing, the inverse assembler will mark states correctly, but some
information that could be provided to the user will be missing.

nWAIT, nMREQ, SEQ {B_WAIT B_TRAN1 B_TRAN0}

These signals are used to determine unexecuted prefetches due to branches.
Some prefetches can be detected without these signals, but these signals are
required to detect all possible unexecuted prefetches.

nMREQ and nWAIT are used to distinguish between memory wait states and
internal cycles. Without nMREQ and nWAIT, internal cycles are marked as
wait states.

NOTE: For AMBA ASB systems that use an ARM9 core, the signals are ignored.

nTRANS {B_PROT1}

The nTRANS signal indicates whether the ARM processor is in user or
supervisor mode. If nTRANS is provided, all supervisor states will be
marked.

ABORT {B_ERROR}

The ABORT signal indicates that the current memory access is not allowed. If
this signal is included, then any ABORT states will be marked.

(no core equivalent) {B_LAST}

This signal is only useful with the AMBA ASB inverse assembler. If this signal
is available, then bus retracts will be seen.

BIGEND {no AMBA ASB equivalent}

This signal is only useful in systems that switch between big endian and little
endian on the fly (for example to access different peripherals that require
different endian modes). The inverse assembler will allow the user to select
between “Big Endian”, “Little Endian” or “Use BIGEND signal”. For the vast
majority of systems, this signal is not needed.

Solutions for the ARM7/ARM9 49

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

ARM7/ARM9 Core Signal Details

The following table lists several ARM7/ARM9 core signals and their meanings.
See pages 45, 46, and 48 for definitions of strongly recommended,
recommended, and optional signals.

Signal Name Importance Description Details
MCLK Required Clock used for sampling. clock
nOPC Strongly

Recommended
Used to distinguish instructions from data. 0=instruction

1=data
MAS [1:0] Strongly

Recommended
Indicates memory access size. 00=8-bit

01=16-bit
10=32-bit
11=undefined

DMA Strongly
Recommended

Signals a DMA transfer. 1=DMA transfer

nRW Recommended Distinguishes reads from writes. 0=read
1=write

nEXEC/INSTEXEC Recommended Signals whether a conditional instruction was
executed. This signal is valid for the instruction
that was fetched two states prior.

ARM7:
0=executed
ARM9:
1=executed

DBGACK Recommended Indicates a debug cycle. 0=normal
1=debug

nTRANS Optional Distinguishes user access from supervisor
access.

0=user
1=supervisor

nWAIT Optional Specifies a wait state. 0=wait state
nMREQ, SEQ Optional Specifies internal cycles. Valid for the next

memory cycle.
00=sequential
memory read
01=non-
sequential
memory read
10=internal cycle
11=reserved

BIGEND Optional Selects endian mode. 1=big endian
0=little endian

ABORT Optional Used to signal memory faults. 0=normal
1=memory fault

50 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

ARM7/ARM9 Core to AMBA ASB Signal Conversion

The following table shows ARM7/ARM9 core signals and their AMBA ASB
counterparts.

*Inverted version of the core signal.
** ARM9 only. No ARM7 AMBA ASB equivalent.

ARM7/ARM9 AMBA ASB
MCLK B_CLK
nOPC B_PROT [0]
MAS [1:0] B_SIZE [1:0]
nRW B_WRITE
nEXEC INSTEXEC**
DBGACK no equivalent
nTRANS B_PROT [1]
nWAIT B_WAIT*
nMREQ B_TRAN [1]
SEQ B_TRAN [0]
BIGEND no equivalent
ABORT B_ERROR
DMA no equivalent

Solutions for the ARM7/ARM9 51

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

ARM7/ARM9 Inverse Assembler STAT Pod Signals

The following table indicates the ARM7/ARM9 STAT pod order.

ARM 7 core inverse assembler status pod signals

STAT Pod Bit

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SEQ
nMREQ
nEXEC
nRW
nOPC
nTRANS
MAS [1:0]
DBGACK
nWAIT
ABORT
DMA
BIGEND
CS [7:0]

52 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

ARM7 AMBA ASB and ARM9 inverse assembler status pod signals

Additional Considerations

1. In order for the inverse assembler to properly read the incoming status
signals, the ordering of the status signals must not be modified and the
placement of the signals within the STAT label must not be modified.

2. SEQ{B_TRAN[0]}, nMREQ{B_TRAN[1]}, and nEXEC{INSTEXEC for ARM9
only} should be master clocked (with the falling edge of MCLK{B_CLK}).

STAT Pod Bit

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
B_TRAN[0]
B_TRAN[0]
INSTEXEC
B_WRITE
B_PROT[0]
B_PROT[1]
B_SIZE[1:0]
DBGACK
B_WAIT
B_ERROR
B_LAST
DMA
BIGEND
CS [7:0]

Example

To have the inverse assembler use the chip select signals to regenerate
upper address bits, all status bits to the right of the chip selects must have
a placeholder in the STAT label.

If one or more of the status signals are not present in the target system,
then the user can safely tie the signal high or low, or simply make them
“unconnected” in the Signals dialog (see page 158).

Solutions for the ARM7/ARM9 53

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal Requirements for ARM Core or AMBA ASB Inverse Assembly

3. All other status signals should be slave clocked (with the rising edge of
MCLK{B_CLK}).

4. If a status bit is not connected, there still must be a placeholder for it in the
STAT label.

5. CS [7:0] are required status bits if present on the target system.

6. Optional status bits are BIGEND, DMA, and ABORT, {B_ERROR}.

54 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

Signal-to-Connector Mappings - ARM Core
The tables on the following pages show the signal-to-connector mappings
required by the inverse assembler.

When you have chosen a target-to-logic analyzer connector type, locate the
tables on the following pages that apply to your connector type and ARM7
system type.

 For ARM systems with an 8-bit data bus:

• Two high-density connector headers are required -or-

• Four medium-density connector headers are required.

For ARM systems with a 16-bit data bus, no chip selects and a 24-bit or smaller
data bus:

• Two high-density connector headers are required -or-

• Four medium-density connector headers are required

For ARM systems with a 16-bit or 32-bit data bus:

• Three high-density connector headers are required -or-

• Six medium-density connector headers are required.

The User Defined pins can be used for any signals that you want to route to
the logic analyzer.

Solutions for the ARM7/ARM9 55

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 8-bit bus

systems

The following tables list the signal mappings from an ARM 8-bit bus system to
medium-density and high-density connectors. The logic analyzer bit used is
listed as a reference. Use these tables to route ARM signals to the connector
type you have chosen.

ARMARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C1

Hi-Density
Connector

C1-Odd
NC 1 2
NC 2 4
MCLK Clk 3 6
User Defined 15 4 8
User Defined 14 5 10
User Defined 13 6 12
User Defined 12 7 14
User Defined 11 8 16
nEXEC 10 9 18
nMREQ 9 10 20
SEQ 8 11 22
DATA 7 7 12 24
DATA 6 6 13 26
DATA 5 5 14 28
DATA 4 4 15 30
DATA 3 3 16 32
DATA 2 2 17 34
DATA 1 1 18 36
DATA 0 0 19 38
GND Gnd 20 Center

56 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 8-bit bus

systems (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C2

Hi-Density
Connector

C1-Even
NC 1 1
NC 2 3
CS6 Clk 3 5
CS5 15 4 7
CS4 14 5 9
CS3 13 6 11
CS2 12 7 13
CS1 11 8 15
CS0 10 9 17
BIGEND 9 10 19
DMA 8 11 21
ABORT 7 12 23
nWAIT 6 13 25
DBGACK 5 14 27
MAS[1] 4 15 29
MAS[0] 3 16 31
nTRANS 2 17 33
nOPC 1 18 35
nRW 0 19 37
GND Gnd 20 center

Solutions for the ARM7/ARM9 57

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 8-bit bus

systems (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C3

Hi-Density
Connector

C2-Odd
NC 1 2
NC 2 4
CS7 Clk 3 6
ADDR 15 15 4 8
ADDR 14 14 5 10
ADDR 13 13 6 12
ADDR 12 12 7 14
ADDR 11 11 8 16
ADDR 10 10 9 18
ADDR 9 9 10 20
ADDR 8 8 11 22
ADDR 7 7 12 24
ADDR 6 6 13 26
ADDR 5 5 14 28
ADDR 4 4 15 30
ADDR 3 3 16 32
ADDR 2 2 17 34
ADDR 1 1 18 36
ADDR 0 0 19 38
GND Gnd 20 Center

58 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 8-bit bus

systems (continued)

ARM Core Signal Logic Analyzer
Bit

Med-Density
Connector C4

Hi-Density
Connector

C2-Even
NC 1 1
NC 2 3
User Defined Clk 3 5
ADDR 31 15 4 7
ADDR 30 14 5 9
ADDR 29 13 6 11
ADDR 28 12 7 13
ADDR 27 11 8 15
ADDR 26 10 9 17
ADDR 25 9 10 19
ADDR 24 8 11 21
ADDR 23 7 12 23
ADDR 22 6 13 25
ADDR 21 5 14 27
ADDR 20 4 15 29
ADDR 19 3 16 31
ADDR 18 2 17 33
ADDR 17 1 18 35
ADDR 16 0 19 37
GND Gnd 20 Center

Solutions for the ARM7/ARM9 59

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 16-bit

bus systems (reduced address mode)

The three tables below list the signal mappings from an ARM 16-bit bus
system to medium-density and high-density connectors for reduced address
mode (24-bit address/16-bit data). The logic analyzer bit used is listed as a
reference. Use these tables to route ARM signals to the connector type you
have chosen.

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C1

Hi-Density
Connector

C1-Odd
NC 1 2
NC 2 4
MCLK Clk 3 6
User Defined 15 4 8
User Defined 14 5 10
User Defined 13 6 12
User Defined 12 7 14
User Defined 11 8 16
nEXEC 10 9 18
nMREQ 9 10 20
SEQ 8 11 22
DATA 7 7 12 24
DATA 6 6 13 26
DATA 5 5 14 28
DATA 4 4 15 30
DATA 3 3 16 32
DATA 2 2 17 34
DATA 1 1 18 36
DATA 0 0 19 38
GND Gnd 20 Center

60 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 16-bit

bus systems (reduced address mode) (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C2

Hi-Density
Connector

C1-Even
NC 1 1
NC 2 3
ADDR 22 Clk 3 5
ADDR 5 15 4 7
ADDR 4 14 5 9
ADDR 3 13 6 11
ADDR 2 12 7 13
ADDR 1 11 8 15
ADDR 0 10 9 17
BIGEND 9 10 19
DMA 8 11 21
ABORT 7 12 23
nWAIT 6 13 25
DBGACK 5 14 27
MAS[1] 4 15 29
MAS[0] 3 16 31
nTRANS 2 17 33
nOPC 1 18 35
nRW 0 19 37
GND Gnd 20 center

Solutions for the ARM7/ARM9 61

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 16-bit

bus systems (reduced address mode) (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C3

Hi-Density
Connector

C2-Odd
NC 1 2
NC 2 4
ADDR 23 Clk 3 6
ADDR 21 15 4 8
ADDR 20 14 5 10
ADDR 19 13 6 12
ADDR 18 12 7 14
ADDR 17 11 8 16
ADDR 16 10 9 18
ADDR 15 9 10 20
ADDR 14 8 11 22
ADDR 13 7 12 24
ADDR 12 6 13 26
ADDR 11 5 14 28
ADDR 10 4 15 30
ADDR 9 3 16 32
ADDR 8 2 17 34
ADDR 7 1 18 36
ADDR 6 0 19 38
GND Gnd 20 Center

62 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 16-bit

bus systems (reduced address mode) (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C472

Hi-Density
Connector

C2-Even
NC 1 1
NC 2 3
User Defined Clk 3 5
User Defined 15 4 7
User Defined 14 5 9
User Defined 13 6 11
User Defined 12 7 13
User Defined 11 8 15
User Defined 10 9 17
User Defined 9 10 19
User Defined 8 11 21
DATA 15 7 12 23
DATA 14 6 13 25
DATA 13 5 14 27
DATA 12 4 15 29
DATA 11 3 16 31
DATA 10 2 17 33
DATA 9 1 18 35
DATA 8 0 19 37
GND Gnd 20 Center

Solutions for the ARM7/ARM9 63

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal mappings for 16/32-bit bus

systems

The six tables below list the signal mappings from an ARM 16-bit or 32-bit bus
system to medium-density and high-density connectors. The logic analyzer bit
used is listed as a reference. Use these tables to route ARM signals to the
connector type you have chosen

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C1

Hi-Density
Connector

C1-Odd
NC 1 2
NC 2 4
MCLK Clk 3 6
DATA 15 15 4 8
DATA 14 14 5 10
DATA 13 13 6 12
DATA 12 12 7 14
DATA 11 11 8 16
DATA 10 10 9 18
DATA 9 9 10 20
DATA 8 8 11 22
DATA 7 7 12 24
DATA 6 6 13 26
DATA 5 5 14 28
DATA 4 4 15 30
DATA 3 3 16 32
DATA 2 2 17 34
DATA 1 1 18 36
DATA 0 0 19 38
GND Gnd 20 Center

64 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 16/32-bit

bus systems (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C2

Hi-Density
Connector

C1-Even
NC 1 1
NC 2 3
User Defined Clk 3 5
DATA 31 15 4 7
DATA 30 14 5 9
DATA 29 13 6 11
DATA 28 12 7 13
DATA 27 11 8 15
DATA 26 10 9 17
DATA 25 9 10 19
DATA 24 8 11 21
DATA 23 7 12 23
DATA 22 6 13 25
DATA 21 5 14 27
DATA 20 4 15 29
DATA 19 3 16 31
DATA 18 2 17 33
DATA 17 1 18 35
DATA 16 0 19 37
GND Gnd 20 Center

Solutions for the ARM7/ARM9 65

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 16/32-bit

bus systems (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C3

Hi-Density
Connector

C2-Odd
NC 1 2
NC 2 4
User Defined Clk 3 6
User Defined 15 4 8
User Defined 14 5 10
User Defined 13 6 12
User Defined 12 7 14
User Defined 11 8 16
User Defined 10 9 18
User Defined 9 10 20
User Defined 8 11 22
User Defined 7 12 24
User Defined 6 13 26
User Defined 5 14 28
User Defined 4 15 30
User Defined 3 16 32
nEXEC 2 17 34
nMREQ 1 18 36
SEQ 0 19 38
GND Gnd 20 Center

66 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 16/32-bit

bus systems (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C4

Hi-Density
Connector

C2-Even
NC 1 1
NC 2 3
CS6 Clk 3 5
CS5 15 4 7
CS4 14 5 9
CS3 13 6 11
CS2 12 7 13
CS1 11 8 15
CS0 10 9 17
BIGEND 9 10 19
DMA 8 11 21
ABORT 7 12 23
nWAIT 6 13 25
DBGACK 5 14 27
MAS[1] 4 15 29
MAS[0] 3 16 31
nTRANS 2 17 33
nOPC 1 18 35
nRW 0 19 37
GND Gnd 20 center

Solutions for the ARM7/ARM9 67

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 16/32-bit

bus systems (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C5

Hi-Density
Connector

C3-Odd
NC 1 2
NC 2 4
CS7 Clk 3 6
ADDR 15 15 4 8
ADDR 14 14 5 10
ADDR 13 13 6 12
ADDR 12 12 7 14
ADDR 11 11 8 16
ADDR 10 10 9 18
ADDR 9 9 10 20
ADDR 8 8 11 22
ADDR 7 7 12 24
ADDR 6 6 13 26
ADDR 5 5 14 28
ADDR 4 4 15 30
ADDR 3 3 16 32
ADDR 2 2 17 34
ADDR 1 1 18 36
ADDR 0 0 19 38
GND Gnd 20 Center

68 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - ARM Core

ARM core signal connector mappings for 16/32-bit

bus systems (continued)

ARM Core
Signal

Logic Analyzer
Bit

Med-Density
Connector C6

Hi-Density
Connector

C3-Even
NC 1 1
NC 2 3
User Defined Clk 3 5
ADDR 31 15 4 7
ADDR 30 14 5 9
ADDR 29 13 6 11
ADDR 28 12 7 13
ADDR 27 11 8 15
ADDR 26 10 9 17
ADDR 25 9 10 19
ADDR 24 8 11 21
ADDR 23 7 12 23
ADDR 22 6 13 25
ADDR 21 5 14 27
ADDR 20 4 15 29
ADDR 19 3 16 31
ADDR 18 2 17 33
ADDR 17 1 18 35
ADDR 16 0 19 37
GND Gnd 20 Center

Solutions for the ARM7/ARM9 69

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

Signal-to-Connector Mappings - AMBA ASB
The tables on the following pages show the signal-to-connector mappings
required by the inverse assembler.

When you have chosen a target-to-logic analyzer connector type, locate the
tables on the following pages that apply to your connector type and AMBA
ASB system type.

 For AMBA ASB systems with an 8-bit data bus:

• Two high-density connector headers are required -or-

• Four medium-density connector headers are required

For AMBA ASB systems with a 16-bit or 32-bit data bus:

• Three high-density connector headers are required -or-

• Six medium-density connector headers are required

The User Defined pins can be used for any signals that you want to route to
the logic analyzer.

70 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 8-bit

bus systems

The following tables list the signal mappings from an AMBA ASB 8-bit bus
system to medium-density and high-density connectors. The logic analyzer bit
used is listed as a reference. Use these tables to route AMBA ASB signals to
the connector type you have chosen.

AMBA ASB
Signal

Logic Analyzer
 Bit

Med-Density
Connector C1

Hi-Density
Connector

C1-Odd
NC 1 2
NC 2 4
B_CLK Clk 3 6
User Defined 15 4 8
User Defined 14 5 10
User Defined 13 6 12
User Defined 12 7 14
User Defined 11 8 16
nEXEC (ARM7) 10 9 18
INSTREXEC
(ARM9)

10 9 18

B_TRAN[1] 9 10 20
B_TRAN[0] 8 11 22
B_D 7 7 12 24
B_D 6 6 13 26
B_D 5 5 14 28
B_D 4 4 15 30
B_D 3 3 16 32
B_D 2 2 17 34
B_D 1 1 18 36
B_D 0 0 19 38
GND Gnd 20 Center

Solutions for the ARM7/ARM9 71

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 8-bit

bus systems (continued)

AMBA ASB
Signal

Logic Analyzer
Bit

Med-Density
Connector C2

Hi-Density
Connector

C1-Even
NC 1 1
NC 2 3
CS5 Clk 3 5
CS4 15 4 7
CS3 14 5 9
CS2 13 6 11
CS1 12 7 13
CS0 11 8 15
BIGEND 10 9 17
DMA 9 10 19
B_LAST 8 11 21
B_ERROR 7 12 23
B_WAIT 6 13 25
DBGACK 5 14 27
SIZE[1] 4 15 29
SIZE[0] 3 16 31
B_PROT[1] 2 17 33
B_PROT[0] 1 18 35
B_WRITE 0 19 37
GND Gnd 20 Center

72 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 8-bit

bus systems (continued)

AMBA ASB
Signal

Logic
Analyzer

Bit

Med-Density
Connector C3

Hi-Density
Connector

C2-Odd
NC 1 2
NC 2 4
CS6 Clk 3 6
B_A 15 15 4 8
B_A 14 14 5 10
B_A 13 13 6 12
B_A 12 12 7 14
B_A 11 11 8 16
B_A 10 10 9 18
B_A 9 9 10 20
B_A 8 8 11 22
B_A 7 7 12 24
B_A 6 6 13 26
B_A 5 5 14 28
B_A 4 4 15 30
B_A 3 3 16 32
B_A 2 2 17 34
B_A 1 1 18 36
B_A 0 0 19 38
GND Gnd 20 Center

Solutions for the ARM7/ARM9 73

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 8-bit

bus systems (continued)

AMBA ASB
Signal

Logic
Analyzer

Bit

Med-Density
Connector C4

Hi-Density
Connector

C2-Even
NC 1 1
NC 2 3
CS7 Clk 3 5
B_A 31 15 4 7
B_A 30 14 5 9
B_A 29 13 6 11
B_A 28 12 7 13
B_A 27 11 8 15
B_A 26 10 9 17
B_A 25 9 10 19
B_A 24 8 11 21
B_A 23 7 12 23
B_A 22 6 13 25
B_A 21 5 14 27
B_A 20 4 15 29
B_A 19 3 16 31
B_A 18 2 17 33
B_A 17 1 18 35
B_A 16 0 19 37
GND Gnd 20 Center

74 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16-bit

bus systems (reduced address mode)

The following tables list the signal mappings from an AMBA ASB 16-bit bus
system to medium-density and high-density connectors for reduced address
mode (24-bit address/16-bit data). The logic analyzer bit used is listed as a
reference. Use these tables to route AMBA ASB signals to the connector type
you have chosen.

AMBA ASB
Signal

Logic Analyzer
 Bit

Med-Density
Connector C1

Hi-Density
Connector

C1-Odd
NC 1 2
NC 2 4
B_CLK Clk 3 6
User Defined 15 4 8
User Defined 14 5 10
User Defined 13 6 12
User Defined 12 7 14
User Defined 11 8 16
nEXEC (ARM7) 10 9 18
INSTREXEC
(ARM9)

10 9 18

B_TRAN[1] 9 10 20
B_TRAN[0] 8 11 22
B_D 7 7 12 24
B_D 6 6 13 26
B_D 5 5 14 28
B_D 4 4 15 30
B_D 3 3 16 32
B_D 2 2 17 34
B_D 1 1 18 36
B_D 0 0 19 38
GND Gnd 20 Center

Solutions for the ARM7/ARM9 75

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16-bit

bus systems (reduced address mode) (continued)

AMBA ASB
Signal

Logic Analyzer
Bit

Med-Density
Connector C2

Hi-Density
Connector

C1-Even
NC 1 1
NC 2 3
B_A 22 Clk 3 5
B_A 5 15 4 7
B_A 4 14 5 9
B_A 3 13 6 11
B_A 2 12 7 13
B_A 1 11 8 15
B_A 0 10 9 17
DMA 9 10 19
B_LAST 8 11 21
B_ERROR 7 12 23
B_WAIT 6 13 25
DBGACK 5 14 27
SIZE[1] 4 15 29
SIZE[0] 3 16 31
B_PROT[1] 2 17 33
B_PROT[0] 1 18 35
B_WRITE 0 19 37
GND Gnd 20 Center

76 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16-bit

bus systems (reduced address mode) (continued)

AMBA ASB
Signal

Logic
Analyzer

Bit

Med-Density
Connector C3

Hi-Density
Connector

C2-Odd
NC 1 2
NC 2 4
B_A 23 Clk 3 6
B_A 21 15 4 8
B_A 20 14 5 10
B_A 19 13 6 12
B_A 18 12 7 14
B_A 17 11 8 16
B_A 16 10 9 18
B_A 15 9 10 20
B_A 14 8 11 22
B_A 13 7 12 24
B_A 12 6 13 26
B_A 11 5 14 28
B_A 10 4 15 30
B_A 9 3 16 32
B_A 8 2 17 34
B_A 7 1 18 36
B_A 6 0 19 38
GND Gnd 20 Center

Solutions for the ARM7/ARM9 77

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16-bit

bus systems (reduced address mode) (continued)

AMBA ASB
Signal

Logic
Analyzer

Bit

Med-Density
Connector C4

Hi-Density
Connector

C2-Even
NC 1 1
NC 2 3
User Defined Clk 3 5
User Defined 15 4 7
User Defined 14 5 9
User Defined 13 6 11
User Defined 12 7 13
User Defined 11 8 15
User Defined 10 9 17
User Defined 9 10 19
User Defined 8 11 21
B_D 15 7 12 23
B_D 14 6 13 25
B_D 13 5 14 27
B_D 12 4 15 29
B_D 11 3 16 31
B_D 10 2 17 33
B_D 9 1 18 35
B_D 8 0 19 37
GND Gnd 20 Center

78 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16/32-

bit bus systems

The six tables below list the signal mappings from an AMBA ASB 16-bit or 32-
bit bus system to medium-density and high-density connectors. The logic
analyzer bit used is listed as a reference. Use these tables to route AMBA ASB
signals to the connector type you have chosen

AMBA ASB
Signal

Logic
Analyzer

Bit

Med-Density
Connector C1

Hi-Density
Connector

C1-Odd
NC 1 2
NC 2 4
B_CLK Clk 3 6
B_D 15 15 4 8
B_D 14 14 5 10
B_D 13 13 6 12
B_D 12 12 7 14
B_D 11 11 8 16
B_D 10 10 9 18
B_D 9 9 10 20
B_D 8 8 11 22
B_D 7 7 12 24
B_D 6 6 13 26
B_D 5 5 14 28
B_D 4 4 15 30
B_D 3 3 16 32
B_D 2 2 17 34
B_D 1 1 18 36
B_D 0 0 19 38
GND Gnd 20 Center

Solutions for the ARM7/ARM9 79

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16/32-

bit bus systems (continued)

AMBA ASB
Signal

Logic
Analyzer

Bit

Med-Density
Connector C2

Hi-Density
Connector

C1-Even
NC 1 1
NC 2 3
User Defined Clk 3 5
B_D 31 15 4 7
B_D 30 14 5 9
B_D 29 13 6 11
B_D 28 12 7 13
B_D 27 11 8 15
B_D 26 10 9 17
B_D 25 9 10 19
B_D 24 8 11 21
B_D 23 7 12 23
B_D 22 6 13 25
B_D 21 5 14 27
B_D 20 4 15 29
B_D 19 3 16 31
B_D 18 2 17 33
B_D 17 1 18 35
B_D 16 0 19 37
GND Gnd 20 Center

80 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16/32-

bit bus systems (continued)

AMBA ASB
Signal

Logic
 Analyzer

Bit

Med-Density
Connector C3

Hi-Density
Connector

C2-Odd
NC 1 2
NC 2 4
User Defined Clk 3 6
User Defined 15 4 8
User Defined 14 5 10
User Defined 13 6 12
User Defined 12 7 14
User Defined 11 8 16
User Defined 10 9 18
User Defined 9 10 20
User Defined 8 11 22
User Defined 7 12 24
User Defined 6 13 26
User Defined 5 14 28
User Defined 4 15 30
User Defined 3 16 32
nEXEC (ARM7) 2 17 34
INSTREXEC
(ARM9)

2 17 34

B_TRAN[1] 1 18 36
B_TRAN[0] 0 19 38
GND Gnd 20 Center

Solutions for the ARM7/ARM9 81

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16/32-

bit bus systems (continued)

AMBA ASB
Signal

Logic
Analyzer

Bit

Med-Density
Connector C4

Hi-Density
Connector

C2-Even
NC 1 1
NC 2 3
CS5 Clk 3 5
CS4 15 4 7
CS3 14 5 9
CS2 13 6 11
CS1 12 7 13
CS0 11 8 15
BIGEND 10 9 17
DMA 9 10 19
B_LAST 8 11 21
B_ERROR 7 12 23
B_WAIT 6 13 25
DBGACK 5 14 27
SIZE[1] 4 15 29
SIZE[0] 3 16 31
B_PROT[1] 2 17 33
B_PROT[0] 1 18 35
B_WRITE 0 19 37
GND Gnd 20 Center

82 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16/32-

bit bus systems (continued)

AMBA ASB
Signal

Logic
Analyzer

Bit

Med-Density
Connector C5

Hi-Density
Connector

C3-Odd
NC 1 2
NC 2 4
CS6 Clk 3 6
B_A 15 15 4 8
B_A 14 14 5 10
B_A 13 13 6 12
B_A 12 12 7 14
B_A 11 11 8 16
B_A 10 10 9 18
B_A 9 9 10 20
B_A 8 8 11 22
B_A 7 7 12 24
B_A 6 6 13 26
B_A 5 5 14 28
B_A 4 4 15 30
B_A 3 3 16 32
B_A 2 2 17 34
B_A 1 1 18 36
B_A 0 0 19 38
GND Gnd 20 Center

Solutions for the ARM7/ARM9 83

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Signal-to-Connector Mappings - AMBA ASB

AMBA ASB signal connector mappings for 16/32-

bit bus systems (continued)

AMBA ASB
Signal

Logic
Analyzer

Bit

Med-Density
Connector C6

Hi-Density
Connector

C3-Even
NC 1 1
NC 2 3
CS7 Clk 3 5
B_A 31 or CS 7 15 4 7
B_A 30 or CS 6 14 5 9
B_A 29 or CS 5 13 6 11
B_A 28 or CS 4 12 7 13
B_A 27 or CS 3 11 8 15
B_A 26 or CS 2 10 9 17
B_A 25 or CS 1 9 10 19
B_A 24 or CS 0 8 11 21
B_A 23 7 12 23
B_A 22 6 13 25
B_A 21 5 14 27
B_A 20 4 15 29
B_A 19 3 16 31
B_A 18 2 17 33
B_A 17 1 18 35
B_A 16 0 19 37
GND Gnd 20 Center

84 Solutions for the ARM7/ARM9

Chapter 2: Preparing the Target System for ARM Core and AMBA ASB
Designing a JTAG Connector into Your Target System

Designing a JTAG Connector into Your Target
System
For information on designing a JTAG connector into your target system, see
the emulation manual supplied with your emulation probe/module.

85

3

Preparing the Target System for
AMBA AHB

86 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB

This chapter describes the necessary connections between the target system
and the logic analysis system for inverse assembly on an ARM AMBA AHB
target system.

Because ARM circuits will vary with each design, it is important that you
design headers into your target system for connection to a logic analyzer.

If your system already contains connector headers with incompatible pinouts,
you can still connect to a logic analyzer using an adapter cable and General
Purpose probes.

• When using the ARM AMBA AHB inverse assembler, design the target
system with high-density AMP MICTOR connectors to connect the target
system to the logic analysis system.

• Use Agilent Technologies cables or termination adapters to connect your
target system to a logic analyzer.

• The Agilent Technologies E5346A is a Y-cable which connects two logic
analyzer pods to one high-density connector header while providing the
proper termination.

NOTE: If a PC board already has high-density connector headers attached, but the
signal pinouts do not match the requirement, you can still connect to a logic
analyzer using General Purpose probes (or you may be able to re-order bits —
see your logic analysis system help system for details).

High
Density Connector

Pin Configuration 2 rows x 19 pins

Header Part Number AMP 2-767004-2

Required Termination
Adapter

Agilent E5346A
(one for every two logic analyzer pods)

Notes Each connector supports two logic analyzer pods

Solutions for the ARM7/ARM9 87

Chapter 3: Preparing the Target System for AMBA AHB
High-Density Connectors

High-Density Connectors
High-density MICTOR connectors are required for connecting the target
system to the logic analyzer because they require less board space and provide
higher signal integrity than medium-density connectors. Each connector
carries 32 signals and two clocks.

• Each 32-signal high-density connector header requires approximately
1.1” x 0.4” of PC board space.

• On-board termination is not required.

• Each MICTOR connector requires one Agilent Technologies E5346A High-
Density Termination Adapter cable to attach to the logic analyzer. This is a
Y-cable where the single end connects to the high-density connector
header, and each of the two opposite ends connects to a logic analyzer
pod.

• Any probed signal line must be able to supply a minimum of 600 mV to the
probe tip and handle a minimum loading of 90 kOhms shunted by 10 pF.
The maximum input voltage for the logic analyzer is +/- 40 volts peak.

88 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
High-Density Connectors

• A plastic shroud (Agilent part number E5346-44701) is available to secure
the mechanical connection of the high-density cable to the MICTOR
connector header.

NOTE: If a PC board already has a high-density connector header attached, but the
signal pinouts do not match the requirement, use the MICTOR adapter
assembly (Agilent part number E5346-60002) to gain access to the target
board signals. Then, use the General Purpose probes from the logic analyzer
to connect to the adapter assembly according to the signal connector mapping
tables in this Chapter.

Dimensions of the AMP MICTOR 2-767004-2 surface mount connector are
shown below. The holes for mounting a support shroud are off-center to allow
0.40 in (1.20 mm) centers when using multiple connectors.

Solutions for the ARM7/ARM9 89

Chapter 3: Preparing the Target System for AMBA AHB
High-Density Connectors

The logic analyzer signal pinouts of the high-density connector are:

Signal mapping tables listing the AMBA AHB signals that are to be routed to
each pin of the high-density connector headers are located later in this
chapter.

More information on this connector is available by visiting our website at
www.agilent.com and searching for “E5346A” or “High Density Termination
Adapter.”

90 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Signal Requirements for ARM AMBA AHB Inverse Assembly

Signal Requirements for ARM AMBA AHB
Inverse Assembly
The Agilent Technologies ARM inverse assembler requires a minimum set of
signals for correct operation, others are optional. In general, the presence of
optional signals will enhance the capability of the inverse assembler and
improve the triggering and storage qualification of the logic analyzer. They
may not be present due to cost, pin or space constraints. Each signal used by
the inverse assembler is listed and described below. In the case of each
optional signal, a discussion describing the impact of its presence or absence
is included.

Single Master and Multiple Master Configurations

The inverse assembler supports two connector pinouts: the single master
configuration found on the ARM966ES core module board, and the multiple
master configuration found on the ARM Integrator/AM board.

Solutions for the ARM7/ARM9 91

Chapter 3: Preparing the Target System for AMBA AHB
Single Master Configuration

Single Master Configuration

Required Signals

Each signal required by the inverse assembler is described below.

HCLK. The rising edge of the HCLK signal is used by the logic analyzer to
sample the address, data, and control signals.

HADDR[31:0]. The address lines must be present to capture accurate
software flow. The address lines specify which location is being addressed.

HRDATA[31:0]. The HRDATA signals are used by the slave to generate its
data. The HRDATA signals can also be used by the master to broadcast write
data if logic analyzer connections are limited.

HREADY. The HREADY signal indicates the completion of a transfer. When
HREADY is LOW, this signal causes wait states to be inserted into the transfer
and allows extra time for the slave to provide or sample data. When HREADY
goes HIGH, the transfer has completed.

HTRANS[1:0]. The HTRANS signals are used to classify the four different
types of transfers: IDLE, BUSY, NONSEQ, and SEQ.

HWRITE. The HWRITE signal indicates whether the transfer is a read or
write. When HWRITE is HIGH, this signal indicates a write transfer and the
master will broadcast data on the write data bus, HWDATA[31:0]. When
HWRITE is LOW, this signal indicates a read transfer and the slave must
generate data on the read data bus, HRDATA[31:0].

HSIZE[1:0]. The HSIZE indicates the size of the transfer. In this
configuration, there are three sizes: Byte, Halfword, and Word.

HRESP[1:0]. The HRESP signals indicate the response from the slave to the
master. There are four types of responses: OKAY, ERROR, RETRY, and SPLIT.

Note: If the bus is designed for AHB-Lite, the RETRY and SPLIT responses are
not used, so HRESP1 is not needed.

HPROT0. The HPROT0 signal is used to indicate if the transfer is an opcode
fetch or a data access.

92 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Single Master Configuration

Optional Signals

Optional Signals allow the inverse assembler to differentiate between cycle
types and modes.

HWDATA[31:0]. The HWDATA signals are used by the master to broadcast
its data. This connection is not required if both read and write data are
combined on the HRDATA signals. There is a user preferences button to allow
the user to inform the inverse assembler if the HWDATA signals are being used
for disassembly.

HGRANT. The HGRANT signal is generated by the arbiter and indicates
that the appropriate master is currently the highest priority master requesting
the bus, taking into account locked and split transfers. When HGRANT is
HIGH, the master has control of the bus. When HGRANT is LOW, another
master has control of the bus. This signal is used for bus control filtering.

HRESP1. If the bus is designed for AHB-Lite, this signal is not required.
There is a user preferences button to allow the user to inform the inverse
assembler if the HRESP1 signal is being used for disassembly.

Other Signals Not Used for Inverse Assembly

These signals are part of the AMBA AHB specification but are not used by the
inverse assembler.

HBURST[2:0]. The HBURST signals are used to classify the eight different
types of burst information: SINGLE, INCR, WRAP4, INCR4, WRAP8, INCR8,
WRAP16, and INCR16.

HPROT1. The HPROT1 signal is used to indicate if the transfer is a user
access or a privileged access.

HPROT2. The HPROT2 signals is used to indicate if the transfer is not
bufferable or bufferable.

HPROT3. The HPROT3 signal is used to indicate if the transfer is not
cacheable or cacheable.

HLOCK. The HLOCK signal is asserted at the same time as the bus request
signal. This indicates to the arbiter that the master is performing a number of
indivisible transfers and the arbiter must not grant any other bus master
access to the bus once the first transfer of the locked transfer has

Solutions for the ARM7/ARM9 93

Chapter 3: Preparing the Target System for AMBA AHB
Single Master Configuration

commenced.

HBUSREQ. The HBUSREQ signal is used by the bus master to request
access to the bus.

ARM AMBA AHB Signal Details — Single Master

The following table lists some ARM AMBA AHB signals and their meanings.
See “Signal Requirements for ARM AMBA AHB Inverse Assembly” beginning
on page 90 for more information,

Signal Name Importance Description Details
HCLK Required Clock used for sampling. Clock
HADDR [31:0] Required Address signals.
HRDATA [31:0] Required The read data bus and possibly the write data

bus.

HREADY Required Signals the completion of a transfer. 0=wait
1=ready

HTRANS [1:0] Required Used to classify the type of transfer. 00=idle
01=busy
10=nonseq
11=seq

HWRITE Required Indicates if the transfer is a read or write. 0=read
1=write

HSIZE [1:0] Required Indicates the size of the transfer. 00=byte
01=halfword
10=word

HRESP [1:0] Required
(Full AHB)

Indicates the response from the slave. 00=okay
01=error
10=retry
11=split

HPROT0 Required Determines whether the transfer is an opcode
fetch or a data access.

0=opcode fetch
1=data access

HWDATA[31:0] Optional The write data bus. It is optional if the write
data bus information is also routed to the
HRDATA bus.

94 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Single Master Configuration

HGRANT Optional Indicates bus control. 0=another master
has control
1=this master has
control

HRESP1 Optional
(AHB-Lite)

Not required if this is an AHB-Lite system.

HBURST[2:0] Not used for
inverse assembly

Used to classify the burst type. 000=single
001=incr
010=wrap4
011=incr4
100=wrap8
101=incr8
110=wrap8
111=incr16

HPROT1 Not used for
inverse assembly

Indicates the transfer’s access type. 0=user access
1=privilege
access

HPROT2 Not used for
inverse assembly

Indicates if the transfer is bufferable. 0=not bufferable
1=bufferable

HPROT3 Not used for
inverse assembly

Indicates if the transfer is cacheable. 0=not cacheable
1=cacheable

HLOCK Not used for
inverse assembly

Indicates if the transfer is locked. 0=not locked
1=locked

HBUSREQ Not used for
inverse assembly

Used by the bus master to request access to
the bus

0=no request
1=request access

Signal Name Importance Description Details

Solutions for the ARM7/ARM9 95

Chapter 3: Preparing the Target System for AMBA AHB
Multiple Master Configuration

Multiple Master Configuration

Required Signals

Each signal required by the inverse assembler is described below.

HCLK. The rising edge of the HCLK signal is used by the logic analyzer to
sample the address, data, and control signals.

ADDR[31:0]. The address lines must be present to capture accurate
software flow. The address lines specify which location is being addressed.
The address lines are sampled on the rising edge of the HCLK signal.

DATA[31:0]. The DATA signals are used by the slave to generate its read
data and by the master to broadcast write data.

HREADY. The HREADY signal indicates the completion of a transfer. When
HREADY is LOW, this signal causes wait states to be inserted into the transfer
and allows extra time for the slave to provide or sample data. When HREADY
goes HIGH, the transfer has completed.

HTRANS[1:0]. The HTRANS signals are used to classify the four different
types of transfers: IDLE, BUSY, NONSEQ, and SEQ.

HWRITE. The HWRITE signal indicates whether the transfer is a read or
write. When HWRITE is HIGH, this signal indicates a write transfer and the
master will broadcast data. When HWRITE is LOW, this signal indicates a read
transfer and the slave must generate data.

HSIZE[1:0]. The HSIZE indicates the size of the transfer. In this
configuration, there are three sizes: Byte, Halfword, and Word.

HRESP[1:0]. The HRESP signals indicate the response from the slave to the
master. There are four types of responses: OKAY, ERROR, RETRY, and SPLIT.

NOTE: If the bus is designed for AHB-Lite, the RETRY and SPLIT responses are not
used, so HRESP1 is not needed.

HPROT0. The HPROT0 signal is used to indicate if the transfer is an opcode
fetch or a data access.

96 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Multiple Master Configuration

Optional AHB Signals

HGRANT[3:0]. The HGRANT signal is generated by the arbiter and
indicates that the appropriate master is currently the highest priority master
requesting the bus, taking into account locked and split transfers. When
HGRANTx is HIGH, the master has control of the bus. When HGRANTx is
LOW, another master has control of the bus. These signals are used for bus
control filtering.

HRESP1. If the bus is designed for AHB-Lite, this signal is not required.
There is a user preferences button to allow the user to inform the inverse
assembler if the HRESP1 signal is being used for disassembly.

Other AHB Signals Not Used for Inverse

Assembly

These signals are part of the AMBA AHB specification but are not used by the
inverse assembler.

HBURST[2:0]. The HBURST signals are used to classify the eight different
types of burst information: SINGLE, INCR, WRAP4, INCR4, WRAP8, INCR8,
WRAP16, and INCR16.

HPROT1. The HPROT1 signal is used to indicate if the transfer is a user
access or a privileged access.

HPROT2. The HPROT2 signals is used to indicate if the transfer is not
bufferable or bufferable.

HPROT3. The HPROT3 signal is used to indicate if the transfer is not
cacheable or cacheable.

HLOCK[3:0]. The HLOCK signals is asserted at the same time as the bus
request signal. This indicates to the arbiter that the master is performing a
number of indivisible transfers and the arbiter must not grant any other bus
master access to the bus once the first transfer of the locked transfer has
commenced.

HBUSREQ[3:0]. The HBUSREQ signals is used by the bus master to
request access to the bus.

MASTER[2:0]. The arbiter indicates which master is currently granted the

Solutions for the ARM7/ARM9 97

Chapter 3: Preparing the Target System for AMBA AHB
Multiple Master Configuration

bus using the MASTER signals and this can be used to control the central
address and control multiplexor. The master number is also required by
SPLIT-capable slaves that they can indicate to the arbiter which master is able
to complete a SPLIT transfer.

HMASTLOCK. The arbiter indicates that the current transfer is part of a
locked sequence by asserting the HMASTLOCK signal, which has the same
timing as the address and control signals.

HSPLIT[5:0]. The Split Complete bus is used by a SPLIT-capable slave to
indicate which bus master can complete a SPLIT transaction. This information
is needed by the arbiter so that it can grant the master access to the bus to
complete the transfer.

ARM AMBA AHB Signal Details — Multiple Masters

The following table lists some ARM AMBA AHB signals and their meanings.
See “Signal Requirements for ARM AMBA AHB Inverse Assembly” beginning
on page 90 for more information,

Signal Name Importance Description Details
HCLK Required Clock used for sampling. Clock
ADDR[31:0] Required Address signals.
DATA[31:0] Required The read data bus and possibly the write data

bus.

HREADY Required Signals the completion of a transfer. 0=wait
1=ready

HTRANS[1:0] Required Used to classify the type of transfer. 00=idle
01=busy
10=nonseq
11=seq

HWRITE Required Indicates if the transfer is a read or write. 0=read
1=write

HSIZE[1:0] Required Indicates the size of the transfer. 00=byte
01=halfword
10=word

98 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Multiple Master Configuration

HRESP[1:0] Required
(Full AHB)

Indicates the response from the slave. 00=okay
01=error
10=retry
11=split

HPROT0 Required Determines if the transfer is an opcode fetch
or a data access.

0=opcode fetch
1=data access

HGRANT[3:0] Optional Indicates bus control. A high indicates
which master has
control.

HRESP1 Optional
(AHB-Lite)

Not required if this is an AHB-Lite system.

HBURST[2:0] Not used for
inverse assembly

Used to classify the burst type. 000=single
001=incr
010=wrap4
011=incr4
100=wrap8
101=incr8
110=wrap8
111=incr16

HPROT1 Not used for
inverse assembly

Indicates the transfer’s access type. 0=user access
1=privilege
access

HPROT2 Not used for
inverse assembly

Indicates if the transfer is bufferable. 0=not bufferable
1=bufferable

HPROT3 Not used for
inverse assembly

Indicates if the transfer is cacheable. 0=not cacheable
1=cacheable

HLOCK[3:0] Not used for
inverse assembly

Indicates if the transfer is locked. A high indicates
the master
generating the a
locked transfer.

HBUSREQ[3:0] Not used for
inverse assembly

Used by the bus master to request access to
the bus

A high indicates
the master that is
requesting the
bus.

Signal Name Importance Description Details

Solutions for the ARM7/ARM9 99

Chapter 3: Preparing the Target System for AMBA AHB
Multiple Master Configuration

MASTER[2:0] Not used for
inverse assembly

Indicates the number of the master that has
control of the bus

HMASTLOCK Not used for
inverse assembly

Indicates if the current transfer is part of a
locked sequence

0=not locked
1=locked

HSPLIT[5:0] Not used for
inverse assembly

Indicates which bus can complete a split
transaction.

A high indicates
the master can
complete a split
transaction.

Signal Name Importance Description Details

100 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Multiple Master Configuration

ARM AMBA AHB Inverse Assembler STAT Pod
Signals

The following tables indicate the ARM AMBA AHB STAT pod order for single
master configuration.

Odd STAT Pod Bit

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HTRANS [1:0]
HBURST [2:0]

Even STAT Pod Bit

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HWRITE
HPROT0
HPROT1
HSIZE [1:0]
HREADY
HRESP [1:0]
HPROT2
HPROT3
HLOCK
HGRANT
HBUSREQ

Solutions for the ARM7/ARM9 101

Chapter 3: Preparing the Target System for AMBA AHB
Multiple Master Configuration

The following tables indicate the ARM AMBA AHB STAT pod order for
multiple master configuration.

Odd STAT Pod Bit

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HTRANS [1:0]
HBURST [2:0]
HSPLIT [5:0]

Even STAT Pod Bit

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HWRITE
HPROT0
HPROT1
HSIZE [1:0]
HMASTLOCK
HREADY
HRESP [1:0]
HPROT2
HPROT3

Odd HWDATA Pod Bit

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HBUSREQ [3:0]
HLOCK [3:0]

Even HWDATA Pod Bit

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HGRANT [3:0]
MASTER [2:0]

102 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

Signal-to-Connector Mappings - AMBA AHB
The tables on the following pages show the signal-to-connector mappings
required by the inverse assembler. Connector mapping tables are given for
single master and multiple master configurations.

Four high-density connector headers are required when both HRDATA and
HWDATA buses are pinned out. When only the HRDATA bus is pinned out,
three connectors are needed.

The unused pins can be used for any signals that you want to route to the logic
analyzer.

Signal-to-Connector Mappings — Single Master
Configuration

The tables below list the signal mappings to high-density connectors for an
ARM AMBA AHB system in single master configuration. The logic analyzer bit
used is listed as a reference. Use these tables to route ARM signals to the
connector.

NOTE: The HRDATA bus can be used for both the reads and writes if the HWDATA
bus is not pinned out. To set the preference accordingly, see “HWDATA” on
page 161.

HREADY and HTRANS1 appear twice in the connector pinout definition. The
inverse assembler uses the STAT connector pin 25 for HREADY and the STAT
connector pin 36 for HTRANS1.

Solutions for the ARM7/ARM9 103

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

ADDR Signals - Single Master Configuration

LA Connector C1 Even LA Pod LA Connector C1 Odd LA Pod

ARM AMBA AHB
Signal Name

LA
Bit

MICTOR
Connector Pin

MICTOR
Connector Pin

LA
Bit

ARM AMBA AHB
Signal Name

no connect 1 2 no connect
no connect 3 4 no connect
HTRANS1 K clk 5 6 J clk HCLK
HADDR31 15 7 8 15 HADDR15
HADDR30 14 9 10 14 HADDR14
HADDR29 13 11 12 13 HADDR13
HADDR28 12 13 14 12 HADDR12
HADDR27 11 15 16 11 HADDR11
HADDR26 10 17 18 10 HADDR10
HADDR25 9 19 20 9 HADDR9
HADDR24 8 21 22 8 HADDR8
HADDR23 7 23 24 7 HADDR7
HADDR22 6 25 26 6 HADDR6
HADDR21 5 27 28 5 HADDR5
HADDR20 4 29 30 4 HADDR4
HADDR19 3 31 32 3 HADDR3
HADDR18 2 33 34 2 HADDR2
HADDR17 1 35 36 1 HADDR1
HADDR16 0 37 38 0 HADDR0

104 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

STAT Signals - Single Master Configuration

LA Connector C2 Even LA Pod LA Connector C2 Odd LA Pod

ARM AMBA AHB
Signal Name

LA
Bit

MICTOR
Connector Pin

MICTOR
Connector Pin

LA
Bit

ARM AMBA AHB
Signal Name

no connect 1 2 no connect
no connect 3 4 no connect

unused M clk 5 6 L clk unused
unused 15 7 8 15 unused
unused 14 9 10 14 unused

HBUSREQ 13 11 12 13 unused
HGRANT 12 13 14 12 unused
HLOCK 11 15 16 11 unused

HPROT3 10 17 18 10 unused
HPROT2 9 19 20 9 unused
HRESP1 8 21 22 8 unused
HRESP0 7 23 24 7 unused
HREADY 6 25 26 6 unused
unused 5 27 28 5 unused
HSIZE1 4 29 30 4 HBURST2
HSIZE0 3 31 32 3 HBURST1
HPROT1 2 33 34 2 HBURST0
HPROT0 1 35 36 1 HTRANS1
HWRITE 0 37 38 0 HTRANS0

Solutions for the ARM7/ARM9 105

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

HRDATA Signals - Single Master Configuration

LA Connector C3 Even LA Pod LA Connector C3 Odd LA Pod

ARM AMBA AHB
Signal Name

LA
Bit

MICTOR
Connector Pin

MICTOR
Connector Pin

LA
Bit

ARM AMBA AHB
Signal Name

no connect 1 2 no connect
no connect 3 4 no connect

HREADY K clk 5 6 J clk unused
HRDATA31 15 7 8 15 HRDATA15
HRDATA30 14 9 10 14 HRDATA14
HRDATA29 13 11 12 13 HRDATA13
HRDATA28 12 13 14 12 HRDATA12
HRDATA27 11 15 16 11 HRDATA11
HRDATA26 10 17 18 10 HRDATA10
HRDATA25 9 19 20 9 HRDATA9
HRDATA24 8 21 22 8 HRDATA8
HRDATA23 7 23 24 7 HRDATA7
HRDATA22 6 25 26 6 HRDATA6
HRDATA21 5 27 28 5 HRDATA5
HRDATA20 4 29 30 4 HRDATA4
HRDATA19 3 31 32 3 HRDATA3
HRDATA18 2 33 34 2 HRDATA2
HRDATA17 1 35 36 1 HRDATA1
HRDATA16 0 37 38 0 HRDATA0

106 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

HWDATA Signals - Single Master Configuration

LA Connector C4 Even LA Pod LA Connector C4 Odd LA Pod

ARM AMBA AHB
Signal Name

LA
Bit

MICTOR
Connector Pin

MICTOR
Connector Pin

LA
Bit

ARM AMBA AHB
Signal Name

no connect 1 2 no connect
no connect 3 4 no connect

unused M clk 5 6 L clk unused
HWDATA31 15 7 8 15 HWDATA15
HWDATA30 14 9 10 14 HWDATA14
HWDATA29 13 11 12 13 HWDATA13
HWDATA28 12 13 14 12 HWDATA12
HWDATA27 11 15 16 11 HWDATA11
HWDATA26 10 17 18 10 HWDATA10
HWDATA25 9 19 20 9 HWDATA9
HWDATA24 8 21 22 8 HWDATA8
HWDATA23 7 23 24 7 HWDATA7
HWDATA22 6 25 26 6 HWDATA6
HWDATA21 5 27 28 5 HWDATA5
HWDATA20 4 29 30 4 HWDATA4
HWDATA19 3 31 32 3 HWDATA3
HWDATA18 2 33 34 2 HWDATA2
HWDATA17 1 35 36 1 HWDATA1
HWDATA16 0 37 38 0 HWDATA0

Solutions for the ARM7/ARM9 107

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

Signal-to-Connector Mappings — Multiple Master
Configuration

The tables below list the signal mappings to high-density connectors for an
ARM AMBA AHB system in the multiple master configuration. The logic
analyzer bit used is listed as a reference. Use these tables to route ARM signals
to the connector.

NOTE: HREADY and HTRANS1 appear twice in the connector pinout definition. The
inverse assembler uses the STAT connector pin 25 for HREADY and the STAT
connector pin 36 for HTRANS1.

108 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

ADDR Signals - Multiple Master Configuration

LA Connector C1 Even LA Pod LA Connector C1 Odd LA Pod

ARM AMBA AHB
Signal Name

LA
Bit

MICTOR
Connector Pin

MICTOR
Connector Pin

LA
Bit

ARM AMBA AHB
Signal Name

no connect 1 2 no connect
no connect 3 4 no connect
HTRANS1 K clk 5 6 J clk HCLK
ADDR31 15 7 8 15 ADDR15
ADDR30 14 9 10 14 ADDR14
ADDR29 13 11 12 13 ADDR13
ADDR28 12 13 14 12 ADDR12
ADDR27 11 15 16 11 ADDR11
ADDR26 10 17 18 10 ADDR10
ADDR25 9 19 20 9 ADDR9
ADDR24 8 21 22 8 ADDR8
ADDR23 7 23 24 7 ADDR7
ADDR22 6 25 26 6 ADDR6
ADDR21 5 27 28 5 ADDR5
ADDR20 4 29 30 4 ADDR4
ADDR19 3 31 32 3 ADDR3
ADDR18 2 33 34 2 ADDR2
ADDR17 1 35 36 1 ADDR1
ADDR16 0 37 38 0 ADDR0

Solutions for the ARM7/ARM9 109

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

STAT Signals - Multiple Master Configuration

LA Connector C2 Even LA Pod LA Connector C2 Odd LA Pod

ARM AMBA AHB
Signal Name

LA
Bit

MICTOR
Connector Pin

MICTOR
Connector Pin

LA
Bit

ARM AMBA AHB
Signal Name

no connect 1 2 no connect
no connect 3 4 no connect

unused M clk 5 6 L clk unused
unused 15 7 8 15 unused
unused 14 9 10 14 unused
unused 13 11 12 13 unused
unused 12 13 14 12 unused
unused 11 15 16 11 unused
HPROT3 10 17 18 10 HSPLIT5
HPROT2 9 19 20 9 HSPLIT4
HRESP1 8 21 22 8 HSPLIT3
HRESP0 7 23 24 7 HSPLIT2
HREADY 6 25 26 6 HSPLIT1

HMASTLOCK 5 27 28 5 HSPLIT0
HSIZE1 4 29 30 4 HBURST2
HSIZE0 3 31 32 3 HBURST1
HPROT1 2 33 34 2 HBURST0
HPROT0 1 35 36 1 HTRANS1
HWRITE 0 37 38 0 HTRANS0

110 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

HRDATA Signals - Multiple Master Configuration

LA Connector C3 Even LA Pod LA Connector C3 Odd LA Pod

ARM AMBA AHB
Signal Name

LA
Bit

MICTOR
Connector Pin

MICTOR
Connector Pin

LA
Bit

ARM AMBA AHB
Signal Name

no connect 1 2 no connect
no connect 3 4 no connect

HREADY K clk 5 6 J clk unused
DATA31 15 7 8 15 DATA15
DATA30 14 9 10 14 DATA14
DATA29 13 11 12 13 DATA13
DATA28 12 13 14 12 DATA12
DATA27 11 15 16 11 DATA11
DATA26 10 17 18 10 DATA10
DATA25 9 19 20 9 DATA9
DATA24 8 21 22 8 DATA8
DATA23 7 23 24 7 DATA7
DATA22 6 25 26 6 DATA6
DATA21 5 27 28 5 DATA5
DATA20 4 29 30 4 DATA4
DATA19 3 31 32 3 DATA3
DATA18 2 33 34 2 DATA2
DATA17 1 35 36 1 DATA1
DATA16 0 37 38 0 DATA0

Solutions for the ARM7/ARM9 111

Chapter 3: Preparing the Target System for AMBA AHB
Signal-to-Connector Mappings - AMBA AHB

HWDATA Signals - Multiple Master Configuration

LA Connector C4 Even LA Pod LA Connector C4 Odd LA Pod

ARM AMBA AHB
Signal Name

LA
Bit

MICTOR
Connector Pin

MICTOR
Connector Pin

LA
Bit

ARM AMBA AHB
Signal Name

no connect 1 2 no connect
no connect 3 4 no connect

unused M clk 5 6 L clk unused
unused 15 7 8 15 unused
unused 14 9 10 14 unused
unused 13 11 12 13 unused
unused 12 13 14 12 unused
unused 11 15 16 11 unused
unused 10 17 18 10 unused
unused 9 19 20 9 unused
unused 8 21 22 8 unused
unused 7 23 24 7 HLOCK3

MASTER2 6 25 26 6 HLOCK2
MASTER1 5 27 28 5 HLOCK1
MASTER0 4 29 30 4 HLOCK0
HGRANT3 3 31 32 3 HBUSREQ3
HGRANT2 2 33 34 2 HBUSREQ2
HGRANT1 1 35 36 1 HBUSREQ1
HGRANT0 0 37 38 0 HBUSREQ0

112 Solutions for the ARM7/ARM9

Chapter 3: Preparing the Target System for AMBA AHB
Designing a JTAG Connector into Your Target System

Designing a JTAG Connector into Your Target
System
For information on designing a JTAG connector into your target system, see
the emulation manual supplied with your emulation probe/module.

113

4

Setting Up the Logic Analysis System

114 Solutions for the ARM7/ARM9

Chapter 4: Setting Up the Logic Analysis System
Power-on/Power-off Sequence

Power-on/Power-off Sequence
Listed below are the sequences for powering on and off a fully connected
system. Simply stated, your target system is always the last to be powered on,
and the first to be powered off.

To power on Agilent 16700-series logic analysis
systems

Ensure the target system is powered off.

1 Turn on the logic analyzer. The Setup Assistant will guide you through
the process of configuring the logic analyzer and making connections
from the logic analyzer to the target system.

2 When the logic analyzer is connected to the target system and
everything is configured, turn on your target system.

Solutions for the ARM7/ARM9 115

Chapter 4: Setting Up the Logic Analysis System
Power-on/Power-off Sequence

To power on all other logic analyzers

With all components connected, power on your system in the following order:

1 Logic analysis system.

2 Your target system.

To power off

Turn off power to your system in the following order:

1 Turn off your target system.

2 Turn off your logic analysis system.

116 Solutions for the ARM7/ARM9

Chapter 4: Setting Up the Logic Analysis System
Installing Logic Analyzer Modules

Installing Logic Analyzer Modules
You should install logic analyzer, oscilloscope, or pattern generator modules in
your logic analysis system before you install an emulation module (if
applicable) and software.

CAUTION: Electrostatic discharge (ESD) can damage electronic components. Use
appropriate ESD equipment (grounded wrist strap, etc.) and ESD-safe
procedures when you handle and install modules.

Refer to your logic analysis system’s Installation Guide for instructions on
installing logic analyzer modules.

Solutions for the ARM7/ARM9 117

Chapter 4: Setting Up the Logic Analysis System
Installing the Emulation Module

Installing the Emulation Module
If you ordered an emulation module as part of your Agilent 16700-series logic
analysis system, it is already installed in the system frame.

If you ordered your emulation module separately, then follow the instructions
provided in the Emulation for the ARM7/ARM9 user’s guide to install your
emulation module.

118 Solutions for the ARM7/ARM9

Chapter 4: Setting Up the Logic Analysis System
Installing Software

Installing Software

This section explains how to install the processor-specific software you will
need for your logic analyzer.

NOTE: If you ordered an emulation solution with your logic analysis system, the
software was installed at the factory.

Installing and loading

Installing the software will copy the files from CD-ROM to the hard disk of
your logic analysis system. Later, you will need to load some of the files into
the appropriate measurement module.

What needs to be installed

Agilent 16700-series logic analysis systems

The following files are installed when you install a processor support package
from the CD-ROM:

• Logic analysis system configuration files

• Inverse assembler (automatically loaded with the configuration files)

• Personality files for the Setup Assistant

• Emulation module firmware (for emulation solutions)

• Emulation Control Interface (for emulation solutions)

The Agilent B4620B Source Correlation Tool Set is installed with the logic
analysis system’s operating system.

CD-ROM or
flexible disk

Logic analyzer
or emulation

module
Hard Disk

Logic analysis system or logic analyzer

Install Load

Solutions for the ARM7/ARM9 119

Chapter 4: Setting Up the Logic Analysis System
Installing Software

To install the software from CD-ROM

Installing a processor support package from a CD-ROM will take just a few
minutes. If the processor support package requires an update to the Agilent
Technologies 16700 operating system, installation may take approximately 15
minutes.

If the CD-ROM drive is not connected, see the instructions printed on the CD-
ROM package.

1 Turn on the CD-ROM drive first and then turn on the logic analysis
system.

If the CD-ROM and analysis system are already turned on, be sure to save any
acquired data. The installation process may reboot the logic analysis system.

2 Insert the CD-ROM in the drive.

3 Select the System Administration icon.

4 Select the Software Install tab.

5 Select Install....

Change the media type to “CD-ROM” if necessary.

6 Select Apply.

7 From the list of types of packages, double-click “PROC-SUPPORT.”

NOTE: For touch screen systems, double select the “PROC-SUPPORT” line by quickly
touching it twice.

A list of the processor support packages on the CD-ROM will be displayed.

8 Select on the “ARM” package.

If you are unsure whether this is the correct package, select Details for
information about the contents of the package.

9 Select Install.

The Continue dialog box will appear.

10 Select Continue.

120 Solutions for the ARM7/ARM9

Chapter 4: Setting Up the Logic Analysis System
Installing Software

The Software Install dialog will display “Progress: completed successfully”
when the installation is complete.

11 If required, the system will automatically reboot. Otherwise, close the
software installation windows.

The configuration files are stored in /logic/configs/hp/arm. The inverse
assemblers are stored in /logic/ia.

See Also The instructions printed on the CD-ROM package for a summary of the
installation instructions.

The online help for more information on installing, licensing, and removing
software.

121

5

Probing the Target System

122 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

Connecting the Logic Analyzer to the Target
System
When you have chosen a connector type, and target system signals have been
routed to connector headers according to the tables in chapter 2 or chapter 3,
the target system can be connected to the logic analyzer.

NOTE: High density connectors must be used for AMBA AHB inverse assembly.
Medium density or high density connectors may be used for ARM core or
AMBA ASB inverse assembly.

Each table on the following pages corresponds to a particular logic analyzer
and contains entries for medium density and/or high density connectors. Also
listed is the configuration file that is loaded into the analyzer for a correct
mapping of target signals.

• Locate your logic analyzer on the following pages and connect your target
system to the logic analyzer pod connectors.

• Medium density connectors require Agilent Technologies 01650-63203
termination adapters.

• High density connectors require Agilent Technologies E5346A adapter
cables.

CAUTION: Be sure to power down the target system before connecting or disconnecting
cables. Otherwise, you may damage circuitry in the analyzer or target system.

Solutions for the ARM7/ARM9 123

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

Connecting the Logic Analyzer to the Target
System
If you are connecting to an Agilent 16700-series logic analysis system, and
have designed connectors into the target system as described in chapter 2 or
chapter 3, use the Setup Assistant to connect and configure your system (see
page 22). See also “Number of logic analyzer pods required” on page 30.

This section shows the connections between the connectors on your target
system and the logic analyzer pod cables. Use the appropriate page for your
logic analyzer.

If you have an Agilent 16700-series logic analysis system with a logic analyzer
card not listed here, use the Setup Assistant to connect and configure your
logic analyzer.

Logic Analyzer
Model Number

Number of
cards

installed
(if

applicable)

See
connection
diagram on

page

16750/51/52A 2+ cards 124
16750/51/52A 1 card 125
16715/16/17/18/19A 2+ cards 124
16715/16/17/18/19/A 1 card 125
16710/11/12A 2+ cards 126
16710/11/12A 1 card 127
16603A n/a 128
16602A n/a 129
16601A n/a 130
16600A n/a 131
16554/55/56/57 2 cards 132
16554/55/56/57 1 card 133
16550A 2+ cards 134
16550A 1 card 135
1671A/D/E n/a 136
1670A/D/E n/a 137
1661A/AS/C/CS/CP/E/ES/EP n/a 138
1660A/AS/C/CS/CP/E/ES/EP n/a 139

124 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16715/16/17/18/19A or 16750/51/52A
logic analyzer (two cards)

Use this table to connect cables from your target system headers to the
analyzer. The tables are oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core, page 63 for AMBA ASB
and page 102 for AMBA AHB. You can install additional cards if you want to
analyze additional signals.

Expansion Card Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector

User
Defined

User
Defined C6 C5

High Density
Connector

C4-
Even

C4-
Odd

C3-
Even

C3-
Odd

Master Card Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector C4 C3 C2 C1

High Density
Connector

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

Solutions for the ARM7/ARM9 125

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16715/16/17/18/19A or 16750/51/52A
logic analyzer (one card)

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

NOTE: ARM core or AMBA ASB inverse assembly can be performed with four pods if
the target processor is using an 8-bit data bus or reduced address mode.
In reduced address mode 24 address bits and 16 data bits are available for
analysis. Reduced address mode uses a pinout which is different from other
configurations.

Logic Analyzer Card Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector C4 C3 C2 C1

High Density
Connector

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

126 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16710/11/12A logic analyzer (two card)

Use this table to connect cables from your target system headers to the
analyzer. The tables are oriented similar to the analyzer’s back panel.

The connector numbers (C1 Even, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 102 for AMBA AHB. You can install
additional cards if you want to analyze additional signals.

Expansion Card Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

High Density
Connector

User
Defined

User
Defined

User
Defined

User
Defined

C4-
Even

C4-
Odd

Master Card Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

High Density
Connector

C1-
Odd

C1-
Even

C2-
Odd

C2-
Even

C3-
Odd

C3-
Even

Solutions for the ARM7/ARM9 127

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16710/11/12A logic analyzer (one card)

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

Logic Analyzer Card Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector C6 C5 C4 C3 C2 C1

High Density
Connector

C6-
Even

C5-
Odd

C4-
Even

C3-
Odd

C2-
Even

C1-
Odd

128 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16603A logic analyzer

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

NOTE: ARM core or AMBA ASB inverse assembly can be performed with four pods if
the target processor is using an 8-bit data bus or reduced address mode.
In reduced address mode 24 address bits and 16 data bits are available for
analysis. Reduced address mode uses a pinout which is different from other
configurations.

16603A Pod Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector C4 C3 C2 C1

High Density
Connector

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

Solutions for the ARM7/ARM9 129

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16602A logic analyzer

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

16602A Pod Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector C6 C5 C4 C3 C2 C1

High Density
Connector

C3-
Even

C3-
Odd

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

130 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16601A logic analyzer

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

16601A Pod Pod 8 Pod 7 Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector

Not
Used

Not
Used C6 C5 C4 C3 C2 C1

High Density
Connector

C4-
Even

C4-
Odd

C3-
Even

C3-
Odd

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

Solutions for the ARM7/ARM9 131

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16600A logic analyzer

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

16600A Pod Pods
9-12 Pod 8 Pod 7 Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector

Not
Used

Not
Used

Not
Used C6 C5 C4 C3 C2 C1

High Density
Connector

Not
Used

C4-
Even

C4-
Odd

C3-
Even

C3-
Odd

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

132 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16554/55/56/57 logic analyzer (two-
card)

Use these tables to connect cables from your target system headers to the
analyzer. The tables are oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core, page 63 for AMBA ASB
and page 102 for AMBA AHB. You can install additional cards if you want to
analyze additional signals.

Expansion Card Pod 4 Pod 3 Pod 2 Pod1

Medium Density
Connector

Not
Used

Not
Used C6 C5

High Density
Connector

C4-
Even

C4-
Odd

C3-
Even

C3-
Odd

Master Card Pod 4 Pod 3 Pod 2 Pod1

Medium Density
Connector C4 C3 C2 C1

High Density
Connector

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

Solutions for the ARM7/ARM9 133

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16554/55/56/57 analyzer (one-card)

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

NOTE: ARM core or AMBA ASB inverse assembly can be performed with four pods if
the target processor is using an 8-bit data bus or reduced address mode.
In reduced address mode 24 address bits and 16 data bits are available for
analysis. Reduced address mode uses a pinout which is different from other
configurations.

16554/55/56/57
Master Card Pod Pod 4 Pod 3 Pod 2 Pod1

Medium Density
Connector C4 C3 C2 C1

High Density
Connector

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

134 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16550A logic analyzer (two card)

Use these tables to connect cables from your target system headers to the
analyzer. The tables are oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core, page 63 for AMBA ASB
and page 102 for AMBA AHB. You can install additional cards if you want to
analyze additional signals.

16550A Pod Pod 6 Pod 5 Pod 9 Pod 3 Pod 2 Pod 1

Medium Density
Connector

Not
Used

Not
Used

Not
Used

Not
Used C8 C7

High Density
Connector

Not
Used

Not
Used

Not
Used

Not
Used

C4-
Even

C4-
Odd

16550A Pod Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector C6 C5 C4 C3 C2 C1

High Density
Connector

C3-
Even

C3-
Odd

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

Solutions for the ARM7/ARM9 135

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 16550A logic analyzer (one card)

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2 Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

16550A Pod Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector C6 C5 C4 C3 C2 C1

High Density
Connector

C3-
Even

C3-
Odd

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

136 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 1671A/D/E logic analyzer

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

1671 Pod Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Medium Density
Connector C6 C5 C4 C3 C2 C1

High Density
Connector

C3-
Even

C3-
Odd

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

Solutions for the ARM7/ARM9 137

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 1670A/D/E logic analyzer

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

1670 Pod Pod 8 Pod 7 Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Medium
Density
Connector

User
Defined

User
Defined C6 C5 C4 C3 C2 C1

High Density
Connector

User
Defined

User
Defined

C3-
Even

C3-
Odd

C2-
Even

C2-
Odd

C1-
Even

C1-
Odd

138 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 1661A/AS/C/CS/E/ES/EP logic analyzer

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

1661 Pod Pod 1 Pod 2 Pod 3 Pod 4 Pod 5 Pod 6

Medium Density
Connector C1 C2 C3 C4 C5 C6

High Density
Connector

C1-
Odd

C1-
Even

C2-
Odd

C2-
Even

C3-
Odd

C3-
Even

Solutions for the ARM7/ARM9 139

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

To connect to a 1660A/AS/C/CS/E/ES/EP logic analyzer

Use this table to connect cables from your target system headers to the
analyzer. The table is oriented similar to the analyzer’s back panel.

The connector numbers (C1, C2-Odd, etc.) correspond to the signal-to-
connector mappings starting on page 49 for ARM core or page 63 for AMBA
ASB. You can install additional cards if you want to analyze additional signals.

1660 Pod Pod 1 Pod 2 Pod 3 Pod 4 Pod 5 Pod 6 Pod 7 Pod 8

Medium
Density
Connector

C1 C2 C3 C4 C5 C6 User
Defined

User
Defined

High Density
Connector

C1-
Odd

C1-
Even

C2-
Odd

C2-
Even

C3-
Odd

C3-
Even

User
Defined

User
Defined

140 Solutions for the ARM7/ARM9

Chapter 5: Probing the Target System
Connecting the Logic Analyzer to the Target System

141

6

Configuring the 16700-series Logic
Analysis System

142 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

The sections of this chapter describe setting up and using the ARM inverse
assembler. Because your ARM target system is designed uniquely according to
your needs, it is important that you specify the available signals and memory
regions to the inverse assembler.

The information in this chapter is presented in the following sections:

• Loading the configuration file and the inverse assembler

• Tables showing configuration file names

• Inverse assembler modes of operation

• Using the Invasm menu

• Setting the inverse assembler preferences

• Symbols

• Compilers

Configuring 16700-series Logic Analysis
Systems
You configure the logic analyzer by loading a configuration file. Normally this
is done using the Setup Assistant (see page 22). If you did not use the Setup
Assistant, you can load the configuration and inverse assembler files from the
logic analysis system hard disk.

The information in the configuration file includes:

• Label names and channel assignments for the logic analyzer

• Inverse assembler file name

The configuration file you use is determined by the logic analyzer you are
using, and whether you are performing state or timing analysis.

The procedures for loading a configuration file depend on the type of logic
analyzer you are using. This chapter describes configuration of Agilent 16700-
series logic analysis systems. See Chapter 7, “Configuring the 1660A/1670A/
16500B/C-Series Logic Analyzer,” beginning on page 169, for information
about setting up 1660/1670/16500-series logic analyzers.

Solutions for the ARM7/ARM9 143

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

To load configuration files (and the inverse assembler)
from hard disk—16700-series logic analysis systems

If you use Setup Assistant, it will load configuration files and the inverse
assembler for you. This is the preferred method. If you did not use Setup
Assistant, you can load the configuration and inverse assembler files from the
logic analysis system hard disk.

1 Select the File Manager icon. Use File Manager to ensure that the
subdirectory /hplogic/configs/hp/arm/ exists.

If the above directory does not exist, you need to install the ARM Processor
Support Package. Close File Manager, then use the procedure on the CD-ROM
jacket to install the ARM Processor Support Package before you continue. See
“Installing Software” on page 118 for details.

2 Using File Manager, select the configuration file you want to load in the
/hplogic/configs/hp/arm/ directory, then select Load. If you have more
than one logic analyzer installed in your logic analysis system, use the
Target field to select the machine you want to load.

The logic analyzer is configured for ARM analysis by loading the appropriate
ARM configuration file. Loading the indicated file also automatically loads the
inverse assembler. The configuration file names are shown in the following
table.

3 Close File Manager.

144 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

To load configuration files (and the inverse assembler)
from floppy disk—16700-series logic analysis systems

If you use Setup Assistant, it will load configuration files and the inverse
assembler for you. This is the preferred method. If you did not use Setup
Assistant, you can load the configuration and inverse assembler files from the
logic analysis system hard disk or floppy disk; however, the preferred method
is to install this functionality from the CD-ROM onto the hard disk and load
from the hard disk.

To install a configuration and inverse assembler file from a floppy disk:

1 Insert the floppy disk in the floppy drive on the Agilent 16700-series
logic analysis system mainframe.

2 In the logic analysis System window, select the File Manager icon.

3 In the File Manager window:

• Set Current Disk to Flexible Disk.

• Set Target to the analyzer you wish to configure.

• Select the name of the desired configuration file in the Contents frame.
The Contents frame lists the configuration files and inverse assembler files
available on the floppy disk. These may be either DOS or LIF format files.
Either format can be loaded directly into the appropriate logic analyzers.

Note that the logic analyzers read both DOS and LIF formats. However, only
DOS formatted floppy disks can be used to store configurations and data. LIF
format floppy disks are read-only.

4 Select Load.

The configuration file you choose will set up the logic analyzer and associated
tools. You may see Information, Error, and Warning dialogs that say your
configuration has been loaded, and advise you about making proper
connections.

5 Select the Workspace window icon to see the arrangement of analysis
tools in your configuration.

6 Right-click the logic analyzer icon in your configuration and choose its
Setup button to see the way your configuration file defined the Config,
Format, and Trigger options.

Solutions for the ARM7/ARM9 145

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

NOTE: Under the Format tab, buses are labeled, and bits included in each bus are
identified by an asterisk "*".

This procedure restores the configuration that was in effect when the
configuration file was saved. Because the file was not saved using your system,
you may receive error messages about loading the enhanced inverse
assembler or about pods that were truncated. Select the Config, Format, and
Trigger tabs and modify the configuration to satisfy your measurement
desires. Then you can save your customized configuration to DOS format
using the File→Save Configuration selection in any of your tool windows, or
selecting the Save tab in the File Manager. For details about how to save
configuration files, open the Help window.

To list software packages that are installed
(16700-series logic analysis system)

• In the System Administration Tools window, select List....

146 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

ARM7 core analysis configuration files

Memory Controller

Analyzer
Model
Number

Analyzer
Module
Description

ARM 8-bit
Normal
Analysis

ARM 8-bit
Reverse
Analysis

ARM 16/32-bit
Normal
Analysis

ARM16/32-bit
Reverse
Analysis

16750/51/52
(1 card)

400 MHz STATE
2 GHz TIMING ZOOM

CARM7L_1 CARM7ML_1 CARM7L_5* CARM7ML_5*

16717/18/19
(1 card)

333 MHz STATE
2 GHz TIMING ZOOM

CARM7L_1 CARM7ML_1 CARM7L_5* CARM7ML_5*

16716
(1 card)

167 MHz STATE
2 GHz TIMING ZOOM

CARM7L_1 CARM7ML_1 CARM7L_5* CARM7ML_5*

16715
(1 card)

167 MHz STATE
667 MHz TIMING
ZOOM

CARM7L_1 CARM7ML_1 CARM7L_5* CARM7ML_5*

16750/51/52
(2 or more cards)

400 MHz STATE
2 GHz TIMING ZOOM

CARM7L_1 CARM7ML_1 CARM7L_2 CARM7ML_2

16717/18/19
(2 or more cards)

333 MHz STATE
2 GHz TIMING ZOOM

CARM7L_1 CARM7ML_1 CARM7L_2 CARM7ML_2

16716
(2 or more cards)

167 MHz STATE
2 GHz TIMING ZOOM

CARM7L_1 CARM7ML_1 CARM7L_2 CARM7ML_2

16715
(2 or more cards)

167 MHz STATE
667 MHz TIMING
ZOOM

CARM7L_1 CARM7ML_1 CARM7L_2 CARM7ML_2

16710/11/12
(1 or more cards)

100 MHz STATE
250 MHz TIMING

CARM7_4 CARM7M_4 CARM7_3 CARM7M_3

16600A n/a CARM7_4 CARM7M_4 CARM7_3 CARM7M_3
16601A n/a CARM7_4 CARM7M_4 CARM7_3 CARM7M_3
16602A n/a CARM7_4 CARM7M_4 CARM7_3 CARM7M_3
16603A n/a CARM7_4 CARM7M_4 CARM7_5* CARM7M_5*
16550A
(1 or more cards)

100 MHz STATE
250 MHz TIMING

CARM7_4 CARM7M_4 CARM7_3 CARM7M_3

16554A
(1 card)

0.5 M SAMPLE
70/250 MHz LA

CARM7_1 CARM7M_1 CARM7_5* CARM7M_5*

16555A/D
(1 card)

1.0 M SAMPLE
110/250 MHz LA

CARM7_1 CARM7M_1 CARM7_5* CARM7M_5*

16556A/D
(1 card)

1.0 M SAMPLE
100/400 MHz LA

CARM7_1 CARM7M_1 CARM7_5* CARM7M_5*

Solutions for the ARM7/ARM9 147

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

*Reduced address mode

16557D
(1 card)

2.0 M SAMPLE
135/250 MHz LA

CARM7_1 CARM7M_1 CARM7_5* CARM7M_5*

16554A
(2 or more cards)

0.5 M SAMPLE
70/250 MHz LA

CARM7_1 CARM7M_1 CARM7_2 CARM7M_2

16555A/D
(2 or more cards)

1.0 M SAMPLE
110/250 MHz LA

CARM7_1 CARM7M_1 CARM7_2 CARM7M_2

16556A/D
(2 or more cards)

1.0 M SAMPLE
100/400 MHz LA

CARM7_1 CARM7M_1 CARM7_2 CARM7M_2

16557D
(2 or more cards)

2.0 M SAMPLE
135/250 MHz LA

CARM7_1 CARM7M_1 CARM7_2 CARM7M_2

1660/70/71 n/a CARM7_4 CARM7M_4 CARM7_3 CARM7M_3

Memory Controller

Analyzer
Model
Number

Analyzer
Module
Description

ARM 8-bit
Normal
Analysis

ARM 8-bit
Reverse
Analysis

ARM 16/32-bit
Normal
Analysis

ARM16/32-bit
Reverse
Analysis

148 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

ARM 7 AMBA ASB analysis configuration files

Memory Controller

Analyzer
Model
Number

Analyzer
Module
Description

ARM 8-bit
Normal
Analysis

ARM 8-bit
Reverse
Analysis

ARM 16/32-bit
Normal
Analysis

ARM16/32-bit
Reverse
Analysis

16750/51/52
(1 card)

400 MHz STATE
2 GHz TIMING ZOOM

CAMBAL_1 CAMBAML_1 CAMBAL_5* CAMBAML_5*

16717/18/19
(1 card)

333 MHz STATE
2 GHz TIMING ZOOM

CAMBAL_1 CAMBAML_1 CAMBAL_5* CAMBAML_5*

16716
(1 card)

167 MHz STATE
2 GHz TIMING ZOOM

CAMBAL_1 CAMBAML_1 CAMBAL_5* CAMBAML_5*

16715
(1 card)

167 MHz STATE
667 MHz TIMING
ZOOM

CAMBAL_1 CAMBAML_1 CAMBAL_5* CAMBAML_5*

16750/51/52
(2 or more cards)

400 MHz STATE
2 GHz TIMING ZOOM

CAMBAL_1 CAMBAML_1 CAMBAL_2 CAMBAML_2

16717/18/19
(2 or more cards)

333 MHz STATE
2 GHz TIMING ZOOM

CAMBAL_1 CAMBAML_1 CAMBAL_2 CAMBAML_2

16716
(2 or more cards)

167 MHz STATE
2 GHz TIMING ZOOM

CAMBAL_1 CAMBAML_1 CAMBAL_2 CAMBAML_2

16715
(2 or more cards)

167 MHz STATE
667 MHz TIMING
ZOOM

CAMBAL_1 CAMBAML_1 CAMBAL_2 CAMBAML_2

16710/11/12
(1 or more cards)

100 MHz STATE
250 MHz TIMING

CAMBA_4 CAMBAM_4 CAMBA_3 CAMBAM_3

16600A n/a CAMBA_4 CAMBAM_4 CAMBA_3 CAMBAM_3
16601A n/a CAMBA_4 CAMBAM_4 CAMBA_3 CAMBAM_3
16602A n/a CAMBA_4 CAMBAM_4 CAMBA_3 CAMBAM_3
16603A n/a CAMBA_4 CAMBAM_4 CAMBA_5* CAMBAM_5*
16550A
(1 or more cards)

100 MHz STATE
250 MHz TIMING

CAMBA_4 CAMBAM_4 CAMBA_3 CAMBAM_3

16554A
(1 card)

0.5 M SAMPLE
70/250 MHz LA

CAMBA_1 CAMBAM_1 CAMBA_5* CAMBAM_5*

16555A/D
(1 card)

1.0 M SAMPLE
110/250 MHz LA

CAMBA_1 CAMBAM_1 CAMBA_5* CAMBAM_5*

16556A/D
(1 card)

1.0 M SAMPLE
100/400 MHz LA

CAMBA_1 CAMBAM_1 CAMBA_5* CAMBAM_5*

Solutions for the ARM7/ARM9 149

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

*Reduced address mode

16557D
(1 card)

2.0 M SAMPLE
135/250 MHz LA

CAMBA_1 CAMBAM_1 CAMBA_5* CAMBAM_5*

16554A
(2 or more cards)

0.5 M SAMPLE
70/250 MHz LA

CAMBA_1 CAMBAM_1 CAMBA_2 CAMBAM_2

16555A/D
(2 or more cards)

1.0 M SAMPLE
110/250 MHz LA

CAMBA_1 CAMBAM_1 CAMBA_2 CAMBAM_2

16556A/D
(2 or more cards)

1.0 M SAMPLE
100/400 MHz LA

CAMBA_1 CAMBAM_1 CAMBA_2 CAMBAM_2

16557D
(2 or more cards)

2.0 M SAMPLE
135/250 MHz LA

CAMBA_1 CAMBAM_1 CAMBA_2 CAMBAM_2

1660/70/71 n/a CAMBA_4 CAMBAM_4 CAMBA_3 CAMBAM_3

Memory Controller

Analyzer
Model
Number

Analyzer
Module
Description

ARM 8-bit
Normal
Analysis

ARM 8-bit
Reverse
Analysis

ARM 16/32-bit
Normal
Analysis

ARM16/32-bit
Reverse
Analysis

150 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

ARM9 AMBA ASB analysis configuration files

Memory Controller

Analyzer
Model
Number

Analyzer
Module
Description

ARM 8-bit
Analysis

ARM 16/32-bit
Analysis

16750/51/52
(1 card)

400 MHz STATE
2 GHz TIMING ZOOM

CAMBA9L_1 CAMBA9L_5*

16717/18/19
(1 card)

333 MHz STATE
2 GHz TIMING ZOOM

CAMBA9L_1 CAMBA9L_5*

16716
(1 card)

167 MHz STATE
2 GHz TIMING ZOOM

CAMBA9L_1 CAMBA9L_5*

16715
(1 card)

167 MHz STATE
667 MHz TIMING
ZOOM

CAMBA9L_1 CAMBA9L_5*

16750/51/52
(2 or more cards)

400 MHz STATE
2 GHz TIMING ZOOM

CAMBA9L_1 CAMBA9L_2

16717/18/19
(2 or more cards)

333 MHz STATE
2 GHz TIMING ZOOM

CAMBA9L_1 CAMBA9L_2

16716
(2 or more cards)

167 MHz STATE
2 GHz TIMING ZOOM

CAMBA9L_1 CAMBA9L_2

16715
(2 or more cards)

167 MHz STATE
667 MHz TIMING
ZOOM

CAMBA9L_1 CAMBA9L_2

16710/11/12
(1 or more cards)

100 MHz STATE
250 MHz TIMING

CAMBA9_4 CAMBA9_3

16600A n/a CAMBA9_4 CAMBA9_3
16601A n/a CAMBA9_4 CAMBA9_3
16602A n/a CAMBA9_4 CAMBA9_3
16603A n/a CAMBA9_4 CAMBA9_5*
16550A
(1 or more cards)

100 MHz STATE
250 MHz TIMING

CAMBA9_4 CAMBA9_3

16554A
(1 card)

0.5 M SAMPLE
70/250 MHz LA

CAMBA9_1 CAMBA9_5*

16555A/D
(1 card)

1.0 M SAMPLE
110/250 MHz LA

CAMBA9_1 CAMBA9_5*

16556A/D
(1 card)

1.0 M SAMPLE
100/400 MHz LA

CAMBA9_1 CAMBA9_5*

Solutions for the ARM7/ARM9 151

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

*Reduced address mode

16557D
(1 card)

2.0 M SAMPLE
135/250 MHz LA

CAMBA9_1 CAMBA9_5*

16554A
(2 or more cards)

0.5 M SAMPLE
70/250 MHz LA

CAMBA9_1 CAMBA9_2

16555A/D
(2 or more cards)

1.0 M SAMPLE
110/250 MHz LA

CAMBA9_1 CAMBA9_2

16556A/D
(2 or more cards)

1.0 M SAMPLE
100/400 MHz LA

CAMBA9_1 CAMBA9_2

16557D
(2 or more cards)

2.0 M SAMPLE
135/250 MHz LA

CAMBA9_1 CAMBA9_2

1660/70/71 n/a CAMBA9_4 CAMBA9_3

Memory Controller

Analyzer
Model
Number

Analyzer
Module
Description

ARM 8-bit
Analysis

ARM 16/32-bit
Analysis

152 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Configuring 16700-series Logic Analysis Systems

ARM AMBA AHB analysis configuration files

Memory Controller

Analyzer
Model
Number

Analyzer
Module
Description

Single Master
Configuration

Multiple Master
Configuration

16750/51/52
(2 or more cards)

400 MHz STATE
2 GHz TIMING ZOOM

CARMAHB_3 CARMAHB_4

16717/18/19
(2 or more cards)

333 MHz STATE
2 GHz TIMING ZOOM

CARMAHB_3 CARMAHB_4

16716
(2 or more cards)

167 MHz STATE
2 GHz TIMING ZOOM

CARMAHB_3 CARMAHB_4

16715
(2 or more cards)

167 MHz STATE
667 MHz TIMING
ZOOM

CARMAHB_3 CARMAHB_4

16710/11/12
(2 or more cards)

100 MHz STATE
250 MHz TIMING

CARMAHB_5 CARMAHB_6

16557D
(2 or more cards)

2.0 M SAMPLE
135/250 MHz LA

CARMAHB_1 CARMAHB_2

16556A/D
(2 or more cards)

1.0 M SAMPLE
100/400 MHz LA

CARMAHB_1 CARMAHB_2

16555A/D
(2 or more cards)

1.0 M SAMPLE
110/250 MHz LA

CARMAHB_1 CARMAHB_2

16554A
(2 or more cards)

0.5 M SAMPLE
70/250 MHz LA

CARMAHB_1 CARMAHB_2

16550A
(2 or more cards)

100 MHz STATE
250 MHz TIMING

CARMAHB_5 CARMAHB_6

Solutions for the ARM7/ARM9 153

Chapter 6: Configuring the 16700-series Logic Analysis System
Inverse Assembler Modes of Operation

Inverse Assembler Modes of Operation
The logic analyzer can be configured to capture target system data in either
state or timing mode.

State mode

This is the default mode which is set up by the configuration files.

In state mode, the logic analyzer uses the MCLK (or BCLK) signal from the
ARM target system to capture data synchronously. This mode allows inverse
assembly of ARM instructions.

To change to timing mode

In Timing mode, the logic analyzer samples the incoming signals
asynchronously. Inverse assembly is not available in timing mode. To
configure your logic analyzer for timing analysis:

1 Select the logic analyzer icon.

2 Select “Setup...” from the menu. The “Sampling” tab will be active on the
window that appears.

3 Select the Timing Mode button.

Disabling the cache

NOTE: Instructions executed in ARM cache will not be subject to inverse assembly.

Certain versions of the ARM core may have internal cache. When the cache is
enabled, many ARM instructions do not appear on the external bus. To get an
execution trace on the bus (or device pins), the cache can be disabled. The
accomplishment of this will vary based on your system’s design.

154 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
To use the Invasm menu

To use the Invasm menu
The Invasm menu provides four choices: Load, Preferences, Filter, and
Options. Access the Invasm menu in the listing window.

You must use the Preferences dialog to configure the inverse assembler to
match the microprocessor memory controller configuration. The Filter and
Options dialogs assist in analyzing and displaying data.

Loading the Inverse Assembler

The Load dialog lets you load a different inverse assembler and apply it to the
data in the Listing window. In some cases you may have acquired raw data;
you can use the Load dialog to apply an inverse assembler to that data.

Unloading the Inverse Assembler

If desired, the inverse assembler can be unloaded by selecting Invasm, Unload
in the Listing window. However, if you want to load a different inverse
assembler, unloading the current inverse assembler is not necessary. Simply
load a new configuration file or use the Setup Assistant to load the new
configuration. The Unload option is primarily for diagnostic purposes.

Solutions for the ARM7/ARM9 155

Chapter 6: Configuring the 16700-series Logic Analysis System
Setting the Inverse Assembler Preferences

Setting the Inverse Assembler Preferences

Why the configuration is necessary

The number and type of status signals available for probing is unique to each
ARM custom application. To provide the best possible decoding, this
information must be supplied to the inverse assembler software.

Because critical information about what type of data is being accessed
through a memory bank (memory region) is stored in internal registers, the
inverse assembler needs to be given information about how the memory
system is set up.

The memory controller operates by mapping every address to one of eight
memory banks. Each memory bank can be set up to drive different external
signals, to have different write permissions, etc. The memory banks are
numbered from 0 to 7. Memory bank 0 has the highest priority and bank 7 has
the lowest.

Each memory bank has values that describe the width of the memory
accessed through that bank, the type of data, and the addresses that will be
accessed through that bank. Since this information is not given on external
signals, the inverse assembler provides a preferences window to enter this
information so that the data decode can be as accurate as possible.

After configuring the inverse assembler using the dialogs on the following
pages, set up a trigger and run the logic analyzer to capture a data trace.

NOTE: To capture meaningful data, the inverse assembler preferences must be set up
before running the logic analyzer.

156 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Setting the Inverse Assembler Preferences

To set the memory map preferences — ARM core and
AMBA ASB

The Memory Map dialog allows you to configure the inverse assembler to
match the ARM memory configuration regarding bus widths and the type of
data in each memory region.

A memory region is a logical block of memory with a homogeneous

set of characteristics. A memory region does not equate to a

physical memory device; a single physical memory device can

contain several memory regions for code and data space.

An ARM system may not always provide signals to distinguish instruction
reads from data reads or ARM instructions from Thumb instructions. Also,
there are no standard signals for specifying the width of the memory bus.
When decoding a given address, the ARM inverse assembler uses the mapping
information in the Memory Map dialog to determine the access type and
memory bus width.

AMBA ASB Preferences Dialog

Describe your target circuit memory regions as follows:

• For up to 8 memory regions in your target system, indicate the Base
Address, End Address, data bus Width and Type of instruction.

Solutions for the ARM7/ARM9 157

Chapter 6: Configuring the 16700-series Logic Analysis System
Setting the Inverse Assembler Preferences

• Types of memory accesses are: Inst. ARM, Inst. THUMB, and Data.

• If nOPC and MAS[1] are supplied by your system, the Type field is not
required to determine the instruction type and is ignored.

• The inverse assembler assumes all memory regions are valid, so lower-
numbered regions should be used before higher-numbered regions. Region
0 has the highest priority, and Region 7 has the lowest priority.

• If the inverse assembler returns “IA Error: Address not in map” then the
address did not meet the specifications for any of the memory regions.

NOTE: Regardless of the number of status bits available, the memory width must
always be specified.

158 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Setting the Inverse Assembler Preferences

Signals Dialog — ARM core and AMBA ASB

Use the Signals Dialog to tell the inverse assembler which target signals are
available and connected to the logic analyzer. (To control which states are
displayed see “Display Filtering” on page 218.) The signals listed in the dialog
will differ based on whether you selected ARM Core or AMBA Bus (ASB)
system when using the Setup Assistant. From the Invasm menu, select
Preferences and scroll down.

Signals Dialog for an ARM core system

• Based on whether these signals are connected to the logic analyzer, select
Connected or Unconnected for: nOPC, MAS[1], MAS[0], nRW, nEXEC,
DBGACK, nTRANS, nMREQ, SEQ, nWAIT.

• Based on whether chip selects are used and connected to the logic
analyzer, select Connected or Unconnected for each one, and indicate the
base address to which the chip select refers.

• Indicate whether memory is little endian or big endian, or whether the
BIGEND signal is being used.

• Indicate whether the nWAIT signal is inverted.

Solutions for the ARM7/ARM9 159

Chapter 6: Configuring the 16700-series Logic Analysis System
Setting the Inverse Assembler Preferences

Signals Dialog for an AMBA ASB bus system

• Based on whether these signals are connected to the logic analyzer, select
Connected or Unconnected for: B_PROT[0], B_SIZ[1], B_SIZ[0], B_WRITE,
INSTREXEC, DBGACK, B_PROT[1], B_TRAN[1], B_TRAN[0], B_WAIT.

• Based on whether chip selects are used and connected to the logic
analyzer, select Connected or Unconnected for each one, and indicate the
base address to which the chip select refers.

• Indicate whether memory is Little endian or Big endian, or whether the
BIGEND signal is being used.

• Indicate whether the B_WAIT signal is active high.

• For AMBA9 systems, the ARM equivalent, nEXEC signal is INSTREXEC.

160 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Setting the Inverse Assembler Preferences

Notes on the Signals Dialog

Chip Selects. This portion of the Signals Dialog provides information about
chip select signals if they are available. The chip select signals allow the
inverse assembler to regenerate upper address lines that are not connected.
The logic analyzer expects the chip select lines to be active low.

Endian Selection. This option allows you to select between little endian
and big endian memory configurations. Systems that switch between little
endian and big endian for different memory devices must use the BIGEND
signal to differentiate between these cases.

Wait Signals. For the ARM Core inverse assembler, the nWAIT signal is
specified by ARM to be active low. However, some target systems use an
active high wait signal. If your target has an active high wait signal, then
nWAIT is being inverted. For this reason, select Yes in the “Is nWAIT
inverted?” field.

For the AMBA ASB inverse assembler, the wait signal B_WAIT is specified by
ARM to be active high. If your target system has an active low wait signal,
then select No in the “Is B_WAIT active high?” field. (The default value of this
field is Yes.)

ABORT and DMA Signals. The inverse assembler can use two signals
that do not appear in the Signals Dialog list: ABORT and DMA. These signals
are Active High, and, if connected, will be recognized by the logic analyzer and
used by the inverse assembler. If they are not connected, the logic analyzer
inputs will remain at logic Low, and the analyzer/inverse assembler will not use
them.

Solutions for the ARM7/ARM9 161

Chapter 6: Configuring the 16700-series Logic Analysis System
Setting the Inverse Assembler Preferences

To set AMBA AHB memory map preferences and signal
information

Memory Map Information

The Memory Map dialog allows you to configure the inverse assembler to
match the type of data in each memory region.

A memory region is a logical block of memory with a homogeneous

set of characteristics. A memory region does not equate to a

physical memory device; a single physical memory device can

contain several memory regions for code and data space.

Describe your target circuit memory regions as follows:

• For up to 8 memory regions in your target system, indicate the Base
Address, End Address, and Type of instruction.

• Types of memory accesses are: Inst. ARM, Inst. THUMB, and Data if
HPROT0 is set to Unconnected.

• The inverse assembler assumes all memory regions are valid, so lower-
numbered regions should be used before higher-numbered regions. Region
0 has the highest priority, and Region 7 has the lowest priority.

• If the inverse assembler returns “IA Error: Address not in map” then the
address did not meet the specifications for any of the memory regions.

Signal Information

HPROT0. Decides whether the state is an opcode or data. When HPROT0 is
set to Connected, the inverse assembler uses the HPROT0 signal to determine
the state type. When HPROT0 is set to Unconnected, the state information is
taken from the Type column in the Memory Map Information.

HWDATA. Single Master: Determines the source of the write data. When
HWDATA is set to Connected the inverse assembler gets write data from
HWDATA bus. When HWDATA is set to Unconnected, the inverse assembler
gets write data from the HRDATA bus. Multiple Masters: The HWDATA
selection has no effect.

HRESP1. Set to Connected to use the HRESP1 signal for the response type.
If using the AHB-Lite bus specification, set to unconnected because the
HRESP1 signal is not used.

162 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Setting the Inverse Assembler Preferences

Endian Mode. Selects little endian or big endian mode.

Connector Pinout. Select whether the target is designed for single master
or multiple master configuration. See “Single Master and Multiple Master
Configurations” on page 90.

AMBA AHB Preferences Dialog

Solutions for the ARM7/ARM9 163

Chapter 6: Configuring the 16700-series Logic Analysis System
Symbols

Symbols
Symbols are more easily recognized than hexadecimal address values in logic
analyzer trace displays, and they are easier to remember when setting up
triggers.

HP logic analyzers let you assign user-defined symbol names to particular
label values.

Also, you can download symbols from certain object file formats into HP logic
analyzers.

When source file line number symbols are downloaded to the logic analyzer,
you can set up triggers on source lines. The HP B4620B Source Correlation
Tool Set also lets you display the high-level source code associated with
captured data.

User-defined symbols are symbols you create from within the logic analyzer
user interface by assigning symbol names to label values. Typically, you assign
symbol names to address label values, but you can define symbols for data,
status, or other label values as well.

The User-Defined Symbols Dialog is shown in the next figure. Use this dialog
to create your own symbols.

User-defined symbols are saved with the logic analyzer configuration.

164 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Symbols

User-Defined Symbols Dialog

Predefined ARM Symbols

The logic analyzer configuration files include predefined symbols.

These symbols appear along with the other user-defined symbols in the logic
analyzer.

Solutions for the ARM7/ARM9 165

Chapter 6: Configuring the 16700-series Logic Analysis System
Object File Symbols

Object File Symbols
The most common way to load program symbols into the logic analyzer is from
an object file that is created when the program is compiled.

Requirements

In order for object file symbols and source code to be accurately assigned to
address values captured by the logic analyzer, you need:

An accurate bus trace

An Agilent Technologies logic analyzer is used to capture the microcontroller
data.

An inverse assembler

The ARM inverse assembler decodes captured data into program counter
(PC) addresses (also known as software addresses) and assembly language
mnemonics.

A symbol file

You need an object file containing symbolic debug information in a format the
logic analyzer understands.

Alternatively, you can use a General Purpose ASCII (GPA) symbol file (see
Chapter 11, “General-Purpose ASCII (GPA) Symbol File Format,” beginning
on page 251).

166 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Object File Symbols

To use object file symbols in the 16700

To load symbols in the Agilent 16700-series logic analysis system, open the
logic analyzer module’s Setup window and select the Symbol tab; then, select
the Object File tab. Make sure the label is ADDR. From this dialog you can
select object files and load their symbol information.

When you load object file symbols into a logic analyzer, a database of symbol/
line number to address assignments is generated from the object file. The
Symbol Selector dialog allows you to use a symbol in place of a hexadecimal
value when defining trigger patterns, trigger ranges, and so on.

If your compiler generates files in a format that the logic analyzer doesn’t
understand, you can use a General-Purpose ASCII (GPA) symbol file. See
Chapter 11, “General-Purpose ASCII (GPA) Symbol File Format,” on page 251.

Solutions for the ARM7/ARM9 167

Chapter 6: Configuring the 16700-series Logic Analysis System
Object File Symbols

See Also If you have an Agilent 16700-series logic analysis system, see the online help
for more information on how to load symbols.

If you have another logic analyzer refer to your logic analyzer documentation
for information on how to load symbol files.

168 Solutions for the ARM7/ARM9

Chapter 6: Configuring the 16700-series Logic Analysis System
Object File Symbols

169

7

Configuring the
1660A/1670A/16500B/C-Series
Logic Analyzer

170 Solutions for the ARM7/ARM9

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Analyzing the ARM7/ARM9 with a 1660/1670/16500B/C Logic Analyzer

Analyzing the ARM7/ARM9 with a 1660/1670/
16500B/C Logic Analyzer
The sections of this chapter describe setting up and using the ARM
inverse assembler. Because your ARM target system is designed
uniquely according to your needs, it is important that you specify the
available signals and memory regions to the inverse assembler.

NOTE: The 1660/1670/16500B/C logic analyzers do not support AMBA AHB.

Configuring the Inverse Assembler

• See “Configuring Logic Analyzer IA Menus” on page 172 to set up inverse
assembler preferences on a standalone logic analyzer.

Making Data Measurements

• See Chapter 8, “Capturing Processor Execution,” beginning on page 185 to
instruct the logic analyzer to store the data you are interested in.

• See Chapter 9, “Displaying Captured Processor Execution,” beginning on
page 215 to interpret the inverse assembly results.

• See “Making Common Measurements Using the Agilent 16700 Logic
Analysis System” on page 197 or “Making Common Measurements Using
All Other HP/Agilent Logic Analyzers” on page 205 for examples of
common measurements.

Solutions for the ARM7/ARM9 171

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Analyzer Modes

Analyzer Modes
The logic analyzer can be configured to capture target system data in
either state or timing mode.

State Mode

In state mode, the logic analyzer uses the MCLK (or BCLK) signal from
the ARM target system to capture data synchronously. This mode
allows inverse assembly of ARM instructions and is the default mode
set up by the configuration files.

Timing Mode

In timing mode, the logic analyzer samples the incoming signals
asynchronously, typically with 4 ns resolution. Inverse assembly is not

available in timing mode.

The analyzer mode is set in the logic analyzer configuration menu.

172 Solutions for the ARM7/ARM9

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring Logic Analyzer IA Menus

Configuring Logic Analyzer IA Menus
Within the ARM inverse assembler on your logic analyzer, three menus
allow you to set up your preferences and the specifics of your target
circuit implementation. Visit each of these menus before running a
trace.

• Signals Menu - Tells the inverse assembler about the availability and
polarity of certain ARM/AMBA ASB signals. Based upon the signals that
are connected in this menu, the inverse assembler will choose the
algorithm that will produce the best inverse assembly output.

• Memory Map Menu - Tells the inverse assembler about data bus widths and
the type of data in each memory region. The inverse assembler will use the
values in the memory map to reconstruct missing status signals.

• Filter Menu - Tells the inverse assembler to show or suppress certain
memory states.

After configuring your preferences in these menus, proceed to set up a
trigger and run a data trace.

Solutions for the ARM7/ARM9 173

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring Logic Analyzer IA Menus

Signals Menu

Use the Signals Menu to tell the inverse assembler which target signals
are available and connected to the logic analyzer.

For an ARM system:

• Based on whether these signals are connected to the logic analyzer, select
Connected or Unconnected for: nOPC, MAS[1], MAS[0], nRW, nEXEC,
DBGACK, nTRANS, nMREQ, SEQ, nWAIT.

• Based on whether chip selects are used and connected to the logic
analyzer, select Connected or Unconnected for each one, and indicate the
base address to which the chip select refers.

• Indicate whether memory is Little endian or Big endian, or whether the
BIGEND signal is being used.

• Indicate whether the nWAIT signal is inverted.

174 Solutions for the ARM7/ARM9

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring Logic Analyzer IA Menus

For an AMBA ASB system:

• Based on whether these signals are connected to the logic analyzer, select
Connected or Unconnected for: B_PROT[0], B_SIZ[1], B_SIZ[0], B_WRITE,
nEXEC, DBGACK, B_PROT[1], B_TRAN[1], B_TRAN[0], B_WAIT.

• Based on whether chip selects are used and connected to the logic
analyzer, select Connected or Unconnected for each one, and indicate the
base address to which the chip select refers.

• Indicate whether memory is Little endian or Big endian, or whether the
BIGEND signal is being used.

• Indicate whether the B_WAIT signal is active high.

• For AMBA9 systems, the ARM equivalent, nEXEC signal is INSTREXEC.

Solutions for the ARM7/ARM9 175

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring Logic Analyzer IA Menus

Notes on the Signals Menu

Chip Selects. This portion of the Signals Menu provides information
about chip select signals if they are available. The chip select signals
allow the inverse assembler to regenerate upper address lines that are
not connected. The logic analyzer expects the chip select lines to be
active low.

On a 16500 or portable logic analyzer, the value of the chip select base
address will be added to the current address. The resulting address will
be compared to the addresses in the memory map and the appropriate
region will be selected. Source line referencing is not available in this
case.

Endian Selection. This option allows you to select between little

endian and big endian memory configurations. Systems that switch
between little endian and big endian for different memory devices
must use the BIGEND signal to differentiate between these cases.

Wait Signals. For the ARM Core inverse assembler, the nWAIT signal
is specified by ARM to be active low. However, some target systems
use an active high wait signal. If your target has an active high wait
signal, then nWAIT is being inverted. For this reason, enter ‘Yes’ in the
“Is nWAIT inverted?” field.

For the AMBA ASB inverse assembler, the wait signal B_WAIT is
specified by ARM to be active high. If your target system has an active

low wait signal, then enter ‘No’ in the “Is B_WAIT active high?” field.
(The default value of this field is ‘Yes’.)

ABORT and DMA Signals. The inverse assembler can use two
signals that do not appear in the Signals Menu list: ABORT and DMA.
These signals are Active High, and, if connected, will be recognized by
the logic analyzer and used by the inverse assembler. If they are not
connected, the logic analyzer inputs will remain at logic Low, and the
analyzer/inverse assembler will not use them.

176 Solutions for the ARM7/ARM9

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring Logic Analyzer IA Menus

Memory Map Menu

The Memory Map menu allows you to configure the inverse assembler
to match the ARM memory configuration regarding bus widths and the
type of data in each memory region.

A memory region is a logical block of memory with a homogeneous

set of characteristics. A memory region does not equate to a

physical memory device; a single physical memory device can

contain several memory regions for code and data space.

An ARM system may not always provide signals to distinguish
instruction reads from data reads or ARM instructions from Thumb
instructions. Also, there are no standard signals for specifying the
width of the memory bus.When decoding a given address, the ARM
inverse assembler uses the mapping information in the Memory Map
menu to determine the access type and memory bus width.

Solutions for the ARM7/ARM9 177

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring Logic Analyzer IA Menus

Describe your target circuit memory regions as follows:

• For up to 8 memory regions in your target system, indicate the Base
Address, End Address, data bus Width and Type of instruction.

• Types of memory accesses are: Inst. ARM, Inst. THUMB, and Data.

• If nOPC and MAS[1] are supplied by your system, the Type field is not
required to determine the instruction type and is ignored.

NOTE: Regardless of the number of status bits available, the memory Width must
always be specified.

The inverse assembler assumes all memory regions are valid, so lower-
numbered regions should be used before higher-numbered regions. Region 0
has the highest priority, and Region 7 has the lowest priority.

If the inverse assembler returns “IA Error: Address not in map” then the
address did not meet the specifications for any of the memory regions.

178 Solutions for the ARM7/ARM9

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring Logic Analyzer IA Menus

Filter Menu

The inverse assembler allows you to show or suppress several types of
states using a function called display filtering. States can be filtered
according to their cycle type (e.g. wait or read) or according to which
memory region was accessed for the cycle.

The Show/Suppress settings do not affect the data that is stored by the
logic analyzer, only whether the data is displayed. For different
analysis requirements, the same data can be examined with different
settings.

Display filtering allows faster analysis in two ways:

1 Unneeded information can be filtered out of the display. For
example, suppressing Wait/Internal states will show only states in
which an instruction or data fetch appears.

2 Particular operations can be isolated by suppressing all others.
For example, quick analysis of branches can be shown by
suppressing all other states.

Solutions for the ARM7/ARM9 179

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring Logic Analyzer IA Menus

• Show or Suppress each of the memory regions configured in the Memory
Map menu.

• Show or Suppress other instructions based on their type:

• Wait/Internal States - Wait states can be filtered with or without
nWAIT. The inverse assembler will not mark any states as internal
cycles without both nWAIT and nMREQ.

• Coprocessor States - In order for these states to be filtered, nMREQ
and SEQ must be connected. A coprocessor state is defined when
nMREQ = 1 and SEQ = 1.

• Extension states - States that have been used to build up instructions
or data fetches in systems with 8 or 16-bit data buses.

• cc Failed Inst. - These are instructions that have a condition code that
did not pass. These instructions are marked with a ‘-’. nEXEC is
required to mark any states as “cc Failed Inst”.

• Unexecuted Inst. - These are instructions that were not executed due
to a pipeline flush. These instructions are marked with a ‘*’. nOPC is
required to mark any state as “Unexecuted Inst.”.

• Branch Instructions - These can be any instruction that alters the flow
of a program. Examples are loads to the PC, conditional branches,
moves to the PC, software interrupts, etc.

• Other Instructions - This category is for all other instructions that do
not fall into any of the above categories.

• Data Reads/Writes - These states include DMA reads/writes as well as
normal core reads/writes.

180 Solutions for the ARM7/ARM9

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring Logic Analyzer IA Menus

Memory region filters have precedence over Cycle type filters.

The Agilent 16700-series logic analysis systems provide one additional
feature for analyzer data. In addition to showing or suppressing states,
the selected states can also be shown in color. Color can be used for
either cycle types or memory regions, but not both at the same time

NOTE: Color can be used for distinguishing either memory region accesses or cycle
types, but not both at the same time.

NOTE: For proper operation of the software analyzer (SWA), all unexecuted
instructions due to pipeline flush should be filtered out.

Solutions for the ARM7/ARM9 181

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring the Logic Analysis System

Configuring the Logic Analysis System
You configure the logic analyzer by loading a configuration file. The
information in the configuration file includes:

• Label names and channel assignments for the logic analyzer

• Inverse assembler file name

The configuration file you use is determined by the logic analyzer you
are using, and whether you are performing state or timing analysis.

The procedures for loading a configuration file depend on the type of
logic analyzer you are using. There is one procedure for the Agilent
16600/16700 series logic analysis system, and another procedure for
the HP 1660-series, HP 1670-series, and logic analyzer modules in an
HP 16500B/C mainframe. Use the appropriate procedures for your
analyzer.

182 Solutions for the ARM7/ARM9

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring the Logic Analysis System

To load configuration and inverse assembler files—
Agilent 16700 logic analysis systems

If you did not use Setup Assistant, you can load the configuration and
inverse assembler files from the logic analysis system hard disk.

1 Click on the File Manager icon. Use File Manager to ensure that
the subdirectory /hplogic/configs/hp exists.

2 Using File Manager, select the configuration file you want to load
in the /hplogic/configs/hp directory, then select Load. If you have
more than one logic analyzer installed in your logic analysis
system, use the Target field to select the machine you want to
load.

The logic analyzer is configured for ARM analysis by loading the
appropriate configuration file. Loading the indicated state file also
automatically loads the inverse assembler. The configuration file you
use is determined by the logic analyzer you are using, and whether you
are performing state analysis or timing analysis.

3 Close File Manager.

If the above directory does not exist, you need to install the ARM
Package. Close File Manager, then use the procedure on the CD-
ROM jacket to install the ARM Package before you continue.

Solutions for the ARM7/ARM9 183

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring the Logic Analysis System

To load configuration files—other logic analyzers

If you have an HP 1660-series, HP 1670-series, or logic analyzer
modules in an HP 16500B/C mainframe use these procedures to load
the configuration file and inverse assembler.

The first time you set up the logic analyzer, make a duplicate copy of
the flexible disk. For information on duplicating disks, refer to the
reference manual for your logic analyzer.

For logic analyzers that have a hard disk, you might want to create a
directory such as ARM on the hard drive and copy the contents of the
floppy onto the hard drive. You can then use the hard drive for loading
files.

Configuring the logic analyzer consists of loading the software by
inserting the floppy disk into the logic analyzer disk drive and loading
the proper configuration file.

1 Insert the floppy disk in the front disk drive of the logic analyzer.

2 Go to the Flexible Disk menu.

3 Configure the menu to load.

4 Use the knob to select the appropriate configuration file.

The configuration file you use is determined by the logic analyzer you
are using, and whether you are performing state analysis or timing
analysis.

5 Select the appropriate analyzer on the menu.

6 Execute the load operation on the menu to load the file into the
logic analyzer.

The logic analyzer is configured for ARM analysis by loading the
appropriate configuration file. Loading a state configuration file also
automatically loads the inverse assembler.

184 Solutions for the ARM7/ARM9

Chapter 7: Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
Configuring the Logic Analysis System

185

8

Capturing Processor Execution

186 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution

The normal steps in using the logic analyzer are:

1. Configure the logic analyzer.

2. Format labels for the logic analyzer channels (that is, mapping logic
analyzer channels to target system signal names).

3. Load symbols from the program’s object file.

4. Set up the trigger, and run the measurement.

5. Display the captured data.

The logic analyzer is configured and labels are created (formatted) for the
logic analysis channels when configuration files are loaded. See “Configuring
the 16700-series Logic Analysis System” on page 141 or “Configuring the
1660A/1670A/16500B/C-Series Logic Analyzer” on page 169.

You can load program object file symbols into the logic analyzer when
configuring it. See “Object File Symbols” on page 165.

This chapter describes setting up logic analyzer triggers when using the
inverse assembler and B4620B source correlation tool set.

See Chapter 9, “Displaying Captured Processor Execution,” beginning on page
215 for information on displaying captured data.

Solutions for the ARM7/ARM9 187

Chapter 8: Capturing Processor Execution
Trigger sequence

Trigger sequence
The Trigger sequence is set up by the software to store all states.

Triggering allows the logic analyzer to store only the data states that you want
to see, ensuring quicker analysis of the stored data.

NOTE: If you modify the trigger sequence to store only selected bus cycles, incorrect
or incomplete disassembly may be displayed.

Some systems may be limited in their ability to trigger on data values or
certain opcodes due to smaller data bus widths. For example, a system with an
8-bit data bus will need at least a four level trigger sequence to trigger on an
ARM opcode.

Predefined trigger terms
Included in the logic analyzer configuration files are several predefined trigger
terms to simplify trigger setup.

The terms are:

• i fetch - Instruction fetch (Requires nOPC)

• d fetch - Data fetch (Requires nOPC)

• d read - Data read (Requires nOPC and nRW)

• d write - Data write (Requires nOPC and nRW)

• address

• data

• debug (Requires DBGACK)

• wait (Requires nWAIT)

NOTE: In order for these trigger terms to work correctly, the associated status signals
listed above must be connected and an ARM configuration file must be loaded.

188 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Predefined trigger terms

To use predefined trigger terms

NOTE: A configuration file for an ARM processor must be loaded. You can load an
ARM configuration file using the Setup Assistant (see page 22).

1 From the System window, select the Select tab for the logic analyzer.
Select Setup and Trigger... from the menu that appears.

2 Select the logic analyzer’s Trigger tab, then select the Trigger Functions
tab.

3 Scroll down and select Advanced If/Then, and then select the Replace
button.

Solutions for the ARM7/ARM9 189

Chapter 8: Capturing Processor Execution
Predefined trigger terms

4 In the Trigger Sequence box, select the ADDR button.

5 Select Insert EVENT before (AND/OR).

6 Select Named event.... The Named Event dialog box will appear.

7 Choose a predefined trigger term.

190 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Predefined trigger terms

To view the definition of the trigger term

From the Trigger tab, select the named event (the cursor is pointing to it in the
picture below). A menu will appear. Select Expand event from the menu.

The event will be expanded, and the terms of the trigger event will be shown.
The picture below shows the terms of the d fetch trigger event.

Solutions for the ARM7/ARM9 191

Chapter 8: Capturing Processor Execution
To Set Up Logic Analyzer Triggers

To Set Up Logic Analyzer Triggers

1 Open the logic analyzer’s Setup window.

2 Select the Trigger tab.

3 Select the trigger function that will be used in the logic analysis
measurement.

192 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
To Set Up Logic Analyzer Triggers

4 Set up the trigger sequence.

5 Run the measurement.

See Also See the Agilent 16700-series logic analysis system’s on-line help for
more information on setting up logic analyzer triggers.

Solutions for the ARM7/ARM9 193

Chapter 8: Capturing Processor Execution
Triggering on Symbols and Source Code

Triggering on Symbols and Source Code
When setting up trigger specifications to capture processor execution:

• Use the logic analyzer trigger alignment to avoid missed triggers.

• Use the logic analyzer address offset to compensate for relocated code.

• Use the logic analyzer storage qualification to capture the software
execution you’re interested in and filter out library code execution (whose
source file lookups can take a long time if the library source code is not
available).

To avoid triggering on prefetched instructions

An ARM microcontroller may prefetch two instructions following a
taken branch. The inverse assembler does not filter these prefetches.
This means that the prefetched states will be collected by the analyzer,
and that a trigger set to the address of the prefetched instruction will
cause a false trigger on the prefetch.

The recommended way to avoid false triggering for an ARM device (32-
bit data bus) in this case is to offset the address of the trigger by 8. An
offset field is provided in the symbolic trigger menu to allow offsetting
the symbol address.

Note that this is not a foolproof scheme, since this may result in an
inappropriate trigger if the offset address is a point where control
transfers (branch destination). Be aware of prefetches and adjust your
triggering to compensate for it as you gain experience with the
processor and your code.

194 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Triggering on Symbols and Source Code

To correlate relocatable code using the address offset

You need to adjust the source correlation tool set to compensate for
relocatable code segments or memory management units that produce
fixed code offsets.

The offset field in the trigger menu allows you to offset the symbol
address. Entering the appropriate address offset will cause the source
correlation tool set to reference the correct symbol information for the
relocatable or offset code.

To adjust for prefetches, use a trigger offset of 8 (prefetch queue
depth) to avoid triggering on prefetched instructions. This is not a
foolproof scheme, since this may result in a missed trigger if a branch
takes place between the base address and the offset address. For the
ARM, an offset of 8 is large enough to overcome the prefetch queue.

Example

A common example of this is setting a trigger on the source line
following a loop, for instance:

 Line # Addr C source Assembly Source
 ====== ====== ===================== ==============================

 100 1000 for (i=0;i<10;i++)
 1000 MOVEQ #0,D3
 101 1002 {
 1002 forLoop1:
 102 1002 foo = foo + 100;
 1002 ADD.L #100,D2
 103 1008 }
 1008 ADDQ.L #1,D3
 100A CMP.L #10,D3
 1010 BLT forLoop1
 104 1012 printf("%d\n", foo);
 1012 -MOVEA.L D2,A0

The instruction at 1012 will be prefetched following the BLT at
address 1010. So, setting a trigger on line #104 (address 1012)
will result in a premature trigger.

Solutions for the ARM7/ARM9 195

Chapter 8: Capturing Processor Execution
Triggering on Symbols and Source Code

Triggering ARM Data on the 1660/70-series logic
analyzers

Triggering allows the logic analyzer to store only the data states that
you want to see, ensuring quicker analysis of the stored data.

Some systems may be limited in their ability to trigger on data values or
certain opcodes due to smaller data bus widths. For example, a system
with an 8-bit data bus will need at least a four level trigger sequence to
trigger on an ARM opcode.

A sample logic analyzer trigger window is shown here:

196 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Triggering on Symbols and Source Code

Included in the logic analyzer configuration files are several predefined
trigger terms to simplify trigger setup.

The terms are:

• i fetch - Instruction fetch (Requires nOPC)

• d fetch - Data fetch (Requires nOPC)

• d read - Data read (Requires nOPC and nRW)

• d write - Data write (Requires nOPC and nRW)

• address

• data

• debug (Requires DBGACK)

• wait (Requires nWAIT)

NOTE: In order for these trigger terms to work correctly, the associated status signals
listed above must be connected.

Solutions for the ARM7/ARM9 197

Chapter 8: Capturing Processor Execution
Making Common Measurements Using the Agilent 16700 Logic Analysis System

Making Common Measurements Using the
Agilent 16700 Logic Analysis System
This section provides several examples of common trigger setups for
the Agilent 16700 logic analysis systems.

198 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Making Common Measurements Using the Agilent 16700 Logic Analysis System

Example 1: Setting a trigger for a specific address

This trigger is useful when a particular function or variable may be
causing a problem. By triggering on the address at the start of a
function or on the address of a particular variable, debug time can be
minimized significantly since the logic analyzer trace will contain only
the trigger states that are related to that function or variable.

1 In the Trigger tab, select Clear, and then All from the menu bar.

2 Select trigger level 1, and then Edit...

3 Select TRIGGER on to ‘address’ then Close. Scroll down to the
pattern ‘address’.

4 Next to the ADDR label, enter the address you want to trigger n
for the ‘address’ pattern. (You may have to “don’t care” the two
least significant address bits for the 32-bit data bus systems if
they are not valid on your system.)

5 The trigger is complete. Select the Run button to begin looking
for the trigger condition.

Solutions for the ARM7/ARM9 199

Chapter 8: Capturing Processor Execution
Making Common Measurements Using the Agilent 16700 Logic Analysis System

Example 2: Triggering on a write to a variable

If you suspect a problem when writing to a pointer variable, set up the
logic analyzer to trigger on a write to the variable. For this example,
assume that the address location is 0x08002400 and the value we are
writing is 0x08002600.

For a 32-bit data bus system:

1 In the Trigger tab, select Clear, and then All from the menu bar.

2 Select trigger level 1, and then Edit... Since we want to view trace
data before and after the trigger has occurred, set the While
storing field to ‘Anystate’.

3 Set the TRIGGER on field to ‘d write’ and then select Done.

4 Locate the “d write” term at the bottom of the Trigger menu, set
the ADDR field to “08002400” and the DATA field to “08002600”.

The trigger is complete. Select the Run button to begin looking
for the trigger condition.

200 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Making Common Measurements Using the Agilent 16700 Logic Analysis System

Example 3: Triggering on a 16-bit write to variable

Assume that there is a 4-byte counter variable at address 08002402 in a
program that keeps a count of the number of times an operation has
been performed. However, there seems to be a problem with the
system after the counter reaches 0x05236400. In order to determine
what happens after the counter reaches that number, a properly
designed trigger is needed.

1 In the Trigger tab, select Clear, and then All from the menu bar.

2 Select trigger level 1, then Insert before...

3 Select the default trigger macro (User level custom
combinations, loops), select OK, and then Close.

4 Select trigger level 1, then Edit...

5 In the While storing field, select ‘no state’.

6 In the Find field, select ‘d write’.

7 In the Else on field, select ‘no state’, then Done.

8 Select trigger level 2, then Edit...

9 In the While storing field, select ‘anystate’.

10 In the TRIGGER on field, select ‘Combination’.
In the combination window:

• Select ‘d fetch -> ON’ and ‘wait -> NEGATE’.

• Select the operator between these two terms to be AND.
(See the screen shot on the following page)

• The current qualifier should appear as “d fetch . ! =wait”. Select OK.

11 In the trigger level 2 Else on field, select ‘No state’, then Close.

12 Select trigger level 3, then Edit...

13 In the Store field, select ‘anystate’, then Close.

Solutions for the ARM7/ARM9 201

Chapter 8: Capturing Processor Execution
Making Common Measurements Using the Agilent 16700 Logic Analysis System

14 For the “d fetch” term, place 08002402 under the ADDR label
and XXXX0523 under the DATA label.

15 For the “d write” term at the bottom of the menu, place
08002400 under the ADDR label and XXXX6400 under the DATA
label.

16 The trigger is complete, select the Run button to begin looking
for the trigger condition.

202 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Making Common Measurements Using the Agilent 16700 Logic Analysis System

Example 3 Notes

This setup only works for little endian systems. For big endian systems,
d write and d fetch will need to be swapped.

A few interesting things should be mentioned with this trigger setup.
Since the data bus is only 16 bits wide, the memory controller naturally
asserts the nWAIT line until all of the data for a 32-bit request has been
received. For this reason, wait states must be taken into account when
working with data bus sizes smaller than 32-bits. Since wait states
aren’t being ignored by the logic analyzer in this case, a wait state will
most likely trigger the logic analyzer. In order to capture all of the
useful data, the logic analyzer stores all of the data between the first
two levels.

This creates the possibility of a false trigger since the logic analyzer is
basing its trigger on 2 pieces of 16-bit data. For example, perhaps there
were 3 writes to the variable location at 08002400. The three writes
had values of 05216400, 05226400, and 05236400. Since 05216400
appeared on the bus first, the logic analyzer would have started storing
data when the first write occurred. The logic analyzer will have stored
all of the data starting with the first write of 05216400 and ending with
the second half of the write 05236400.

An easier way of triggering on two or more data cycles would be to use
the ARM debugger to set an internal hardware breakpoint on the data
in question. Refer to the ARM debugger manuals for more information.

Solutions for the ARM7/ARM9 203

Chapter 8: Capturing Processor Execution
Making Common Measurements Using the Agilent 16700 Logic Analysis System

Example 4: Setting a trigger at exit of debug mode

This trigger is most useful when a debugger is being used in
conjunction with an emulation probe/module. This setup prevents the
logic analyzer from storing any data until the probe/module starts
execution of the target processor. Without this trigger, the logic
analyzer would begin storing states while the target processor is still in
debug mode which would fill up the logic analyzer with useless data.

Note: DBGACK is required for this trigger to work correctly.

1 In the Trigger tab, select Clear, and then All from the menu bar.

2 Select trigger level 1, then Edit...

3 Set While storing to ‘!= DEBUG’ and set TRIGGER on to
‘!= DEBUG’.

4 Select trigger level 2, then Edit...

5 Set Store to ‘anystate’.

204 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Making Common Measurements Using the Agilent 16700 Logic Analysis System

Example 5: Store qualifying wait states

This setup is useful for systems that have memory devices that require
several wait states for each access. This measurement will only store
non-wait states. This has the positive effect of saving logic analyzer
memory for states that might be more useful for debugging.

Note: nWAIT/B_WAIT is required for correct operation, and can only be
used with 32-bit data bus systems. (nWAIT is asserted during the extra
cycles used to make up the full core memory bus in 8 or 16-bit data bus
systems) Store qualifying on nWAIT/B_WAIT will prevent capturing
needed data bus cycles. (Use filtering instead for 8 or 16-bit data

bus systems.)

1 In the Trigger tab, select Clear, and then All from the menu bar.

2 Select trigger level 2, then Edit...

3 Set the Store field to ‘!= WAIT’.

4 An alternate method:

5 Go to the Format tab of logic analyzer.

6 Connect the nWAIT signal to an unused clock bit.

7 Go to the Master Clock menu.

8 If nWAIT is active-low, for the qualifier Q1, select ‘clock letter’
high.

9 If nWAIT is active-high, for the qualifier Q1, select ‘clock letter’
low.

10 Repeat for the Slave Clock menu.

Solutions for the ARM7/ARM9 205

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

Making Common Measurements Using All Other
HP/Agilent Logic Analyzers
This section provides several examples of common trigger setups for
the HP 16500 and HP/Agilent portable logic analyzers.

206 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

Example 1: Setting a trigger for a specific address

This trigger is useful when a particular function or variable may be
causing a problem. By triggering on the address at the start of a
function or on the address of a particular variable, debug time can be
minimized significantly since the logic analyzer trace will contain only
the trigger states that are related to that function or variable.

1 In the Trigger menu, clear any previous triggers by selecting
‘Modify Trigger->Clear Trigger->Sequence Levels’.

2 Select trigger level 1.

3 Select TRIGGER on to ‘address’, then Done. Scroll down to the
trigger term ‘address’.

4 Under the ADDR label, enter the address you want to trigger on
for the ‘address’ term. (You may have to “don’t care” the two least

significant address bits for 32-bit data bus systems if they are not valid on your

system.)

5 The trigger is complete, press Run to begin looking for the trigger
condition.

Solutions for the ARM7/ARM9 207

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

Example 2: Triggering on a write to a variable

If you suspect a problem when writing to a pointer variable, set up the
logic analyzer to trigger on a write to the variable. For this example,
assume that the address location is 0x08002400 and the value we are
writing is 0x08002600.

For a 32-bit data bus system:

1 In the Trigger menu, clear any previous triggers by selecting
‘Modify Trigger -> Clear Trigger -> Sequence Levels’.

2 Select trigger level 1. Since we want to view trace data before
and after the trigger has occurred, set the While storing field to
‘anystate’.

3 Set the TRIGGER on field to ‘d write’ and then select Done.

4 Locate the “d write” term at the bottom of the Trigger menu, set
the ADDR field to “08002400” and the DATA field to “08002600”.

5 The trigger is complete, press Run to begin looking for the trigger
condition.
Here is a Trigger menu containing the above setup:

208 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

Example 3: Triggering on a 16-bit write to variable

Assume that there is a 4-byte counter variable at address 08002402 in a
program that keeps a count of the number of times an operation has
been performed. However, there seems to be a problem with the
system after the counter reaches 0x05236400. In order to determine
what happens after the counter reaches that number, a properly
designed trigger is needed.

1 In the Trigger menu, clear any previous triggers by selecting
‘Modify Trigger -> Clear Trigger -> Sequence Levels’.

2 Select trigger level 1, select TRIGGER on to ‘anystate’, then
‘Insert Level -> Before’.

3 Select the default trigger macro (User level custom
combinations, loops), then Done.

4 In the While storing field, select ‘no state’.

5 In the Find field, select ‘d write’.

6 In the Else on field, select ‘no state’, then Done.

7 Select trigger level 2. In the While storing field, select ‘anystate’.

8 In the TRIGGER on field, select ‘Combination’.
In the combination window:

• Select ‘d fetch -> ON’ and ‘wait -> NEGATE’.

• Select the operator between these two terms to be AND.
(See the screen shot on the following page)

• The current qualifier should appear as “d fetch . ! =wait”. Select Done.

9 In the trigger level 2 Else on field, select ‘no state’, then Done.

10 Select trigger level 3. In the Store field, select ‘anystate’, then
Done.

11 For the “d fetch” term, place 08002402 under the ADDR label
and XXXX0523 under the DATA label.

Solutions for the ARM7/ARM9 209

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

12 For the “d write” term at the bottom of the menu, place
08002400 under the ADDR label and XXXX6400 under the
DATA label.

13 The trigger is complete, press Run to begin looking for the trigger
condition.

Here is a Trigger menu containing the above setup:

210 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

Here is the set up of terms in the Combination menu:

Solutions for the ARM7/ARM9 211

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

Example 3 Notes

This setup only works for little endian systems. For big endian systems,
d write and d fetch will need to be swapped.

A few interesting things should be mentioned with this trigger setup.
Since the data bus is only 16 bits wide, the memory controller naturally
asserts the nWAIT line until all of the data for a 32-bit request has been
received. For this reason, wait states must be taken into account when
working with data bus sizes smaller than 32-bits. Since wait states
aren’t being ignored by the logic analyzer in this case, a wait state will
most likely trigger the logic analyzer. In order to capture all of the
useful data, the logic analyzer stores all of the data between the first
two levels.

This creates the possibility of a false trigger since the logic analyzer is
basing its trigger on 2 pieces of 16-bit data. For example, perhaps there
were 3 writes to the variable location at 08002400. The three writes
had values of 05216400, 05226400, and 05236400. Since 05216400
appeared on the bus first, the logic analyzer would have started storing
data when the first write occurred. The logic analyzer will have stored
all of the data starting with the first write of 05216400 and ending with
the second half of the write 05236400.

An easier way of triggering on two or more data cycles would be to use
the ARM debugger to set an internal hardware breakpoint on the data
in question. Refer to the ARM debugger manuals for more information.

212 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

Example 4: Setting a trigger at exit of debug mode

This trigger is most useful when a debugger is being used in
conjunction with an emulation probe/module. This setup prevents the
logic analyzer from storing any data until the probe/module starts
execution of the target processor. Without this trigger, the logic
analyzer would begin storing states while the target processor is still in
debug mode which would fill up the logic analyzer with useless data.

Note: DBGACK is required for this trigger to work correctly.

1 In the Trigger menu, clear any previous triggers by selecting
‘Modify Trigger -> Clear Trigger -> Sequence Levels’.

2 Select trigger level 1, then While storing to ‘!= DEBUG’.

3 In trigger level 1, set TRIGGER on to ‘!= DEBUG’.

4 Select trigger level 2, then Store to ‘anystate’.

Here is a Trigger menu containing the above setup:

Solutions for the ARM7/ARM9 213

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

Example 5: Store qualifying wait states

This setup is useful for systems that have memory devices that require
several wait states for each access. This measurement will only store
non-wait states. This has the positive effect of saving logic analyzer
memory for states that might be more useful for debugging.

Note: nWAIT/B_WAIT is required for correct operation, and can only be
used with 32-bit data bus systems. (nWAIT is asserted during the extra
cycles used to make up the full core memory bus in 8 or 16-bit data bus
systems) Store qualifying on nWAIT/B_WAIT will prevent capturing
needed data bus cycles. (Use filtering instead for 8 or 16-bit data

bus systems.)

1 In the Trigger menu, clear any previous triggers by selecting
‘Modify Trigger -> Clear Trigger -> Sequence Levels’.

2 Select trigger level 2, then the Store field to ‘!= WAIT’.

3 An alternate method:

4 Go to the Format menu of logic analyzer.

5 Connect the nWAIT signal to an unused clock bit.

6 Go to the Master Clock menu.

7 If nWAIT is active-low, for the qualifier Q1, select ‘clock letter’

high.

8 If nWAIT is active-high, for the qualifier Q1, select ‘clock letter’

low.

9 Repeat for the Slave Clock menu.

214 Solutions for the ARM7/ARM9

Chapter 8: Capturing Processor Execution
Making Common Measurements Using All Other HP/Agilent Logic Analyzers

This menu shows the results of the previous setup:

215

9

Displaying Captured Processor
Execution

216 Solutions for the ARM7/ARM9

Chapter 9: Displaying Captured Processor Execution
Viewing ARM Trace Data

Viewing ARM Trace Data
This section discusses the general output format of the inverse assembler and
processor-specific information.

To display captured state data:

• If you are using an Agilent 16700-series logic analysis system, select the
analyzer you are using, and then choose Listing... from the pop-up menu.

• For all other analyzers, select the listing menu

• Set the base for the DATA label to Invasm.

Typical AMBA ASB Listing

Solutions for the ARM7/ARM9 217

Chapter 9: Displaying Captured Processor Execution
Viewing ARM Trace Data

To distinguish between ARM and Thumb instructions, a T[15:0], T[31:16], or
THUMB notation will appear at the right end of the Invasm field for THUMB
instructions. T[15:0] and T[31:16] will appear only with a 32-bit data bus.

Typical AMBH AHB Listing

218 Solutions for the ARM7/ARM9

Chapter 9: Displaying Captured Processor Execution
Viewing ARM Trace Data

Display Filtering

The inverse assembler allows you to show or suppress several types of states
using a function called display filtering. States can be filtered according to
their cycle type (e.g. wait or read) or according to which memory region was
accessed for the cycle.

NOTE: By default, all types of cycles (states) are shown in the listing window. To
suppress a cycle (state) of a certain type, un-select its button by clicking it.

The Invasm Filter settings do not affect the data that is stored by the logic
analyzer, only whether the data is displayed. For different analysis
requirements, the same data can be examined with different settings.

Display filtering allows faster analysis in two ways:

1. Unneeded information can be filtered out of the display. For example,
suppressing Wait/Internal states will show only states in which an
instruction or data fetch appears.

2. Particular operations can be isolated by suppressing all others. For
example, quick analysis of branches can be shown by suppressing all other
states.

Solutions for the ARM7/ARM9 219

Chapter 9: Displaying Captured Processor Execution
Viewing ARM Trace Data

Display Filtering Dialog—ARM Core and AMBA ASB

“Show access to” section

Memory Region. Select or un-select the check box to the left of Memory
Region 0 through Memory Region 7 to show or suppress display of each of the
memory regions configured in the Memory Map dialog.

Use color for memory regions. Select the Use color for memory regions
check box to apply color to states in which memory regions are accessed. Use
the Color... button to choose a different color.

220 Solutions for the ARM7/ARM9

Chapter 9: Displaying Captured Processor Execution
Viewing ARM Trace Data

“Show cycles of type” section

This section provides control over which types of cycles are displayed. Select
or unselect the associated check box to show or supress display of cycles.

Wait/Internal States. Wait states can be filtered with or without nWAIT
(B_WAIT). The inverse assembler will not mark any states as internal cycles
without both nWAIT (B_WAIT) and nMREQ (B_TRAN[1]).

Coprocessor States. In order for these states to be filtered, nMREQ
(B_TRAN[1]) and SEQ (B_TRAN[0]) must be connected. A coprocessor state
is defined when nMREQ = 1 and SEQ = 1.

Extension words. States that have been used to build up instructions or
data fetches in systems with 8 or 16-bit data buses.

Branch Instructions. These can be any instruction that alters the flow of
a program. Examples are loads to the PC, conditional branches, moves to the
PC, software interrupts, etc.

cc Failed Instructions. These are instructions that have a condition code
that did not pass. These instructions are marked with a ‘-’. nEXEC
(INSTEXEC) is required to mark any states as “cc Failed Inst”.

Unexecuted Instructions. These are instructions that were not executed
due to a pipeline flush. These instructions are marked with a ‘*’. nOPC
(B_PROT[0]) is required to mark any state as “Unexecuted Inst.”.

Other Instructions. This category is for all other instructions that do not
fall into any of the above categories.

Data Reads, Data Writes. These states include DMA reads/writes as well
as normal core reads/writes.

NOTE: Memory region filters have precedence over Cycle type filters.

The Agilent 16700-series logic analysis systems provide an additional feature
for analyzer data. In addition to showing or suppressing states, the selected
states can be shown in color. Color can be used for distinguishing either
memory region accesses or cycle types, but not both at the same time.

NOTE: For proper operation of the software analyzer (SWA), all unexecuted
instructions due to pipeline flush should be filtered out.

Solutions for the ARM7/ARM9 221

Chapter 9: Displaying Captured Processor Execution
Viewing ARM Trace Data

State Symbols—ARM Core and AMBA ASB

A column to the left of the ARM instruction in the listing window can contain a
symbol which provides further explanation of the signal.

Several of these symbols are shown only if the associated status signal is
attached.

There is an additional symbol for the AMBA ASB inverse assembler only:

NOTE: This symbol is only visible with the B_LAST signal.

State Symbols

+ Executed instruction due to condition code passed

- Unexecuted instruction due to condition code failed

* Unexecuted instruction due to pipeline flush

. Supervisor mode instruction

! Memory abort cycle

D Debug state

@ Unaligned data transfer

Note: a ‘*” symbol will overwrite a ‘+’ or a ‘-’ symbol

* requires the nOPC signal (B_PROT[0] for AMBA ASB)

+ or - requires the nEXEC signal (INSTEXEC for ARM9 AMBA ASB)

. requires the nTRANS signal (B_PROT[1] for AMBA ASB)

! requires the ABORT signal (B_ERROR for AMBA ASB)

D requires the DBGACK signal

R The current cycle has been completed, but retracted.

222 Solutions for the ARM7/ARM9

Chapter 9: Displaying Captured Processor Execution
Viewing ARM Trace Data

Display Filtering Dialog—AMBA AHB

“Show access to” section

Memory Region. Select or un-select the check box to the left of Memory
Region 0 through Memory Region 7 to show or suppress display of each of the
memory regions configured in the Memory Map dialog.

Use color for memory regions. Select the Use color for memory regions
check box to apply color to states in which memory regions are accessed. Use
the Color... button to choose a different color.

Solutions for the ARM7/ARM9 223

Chapter 9: Displaying Captured Processor Execution
Viewing ARM Trace Data

AMBA AHB Show Bus Control

Operation depends upon whether the inverse assembler preference (shown
on page 162) is set to Single Master or Multiple Master configuration.

• Single Master Configuration

When the master associated with the HGRANT signal (asserted high) has
control of the bus, the HGRANT0 button is active. States of this type can be
shown or hidden by selecting or unselecting the HGRANT0 button.

When the master associated with the HGRANT signal (low) does not have
control of the bus, the Other button is active. States of this type can be shown
or hidden by selecting or unselecting the Other button.

HGRANT [3:1] have no effect.

• Multiple Master Configuration

HGRANT [3:0] are associated with their respective processors. Other is
associated with states in which processors 3 through 0 do not have control of
the bus. Select or unselect the respective check box to show or supress
display of these cycle types.

Use color for bus control. Select the Use color for bus control check box
to apply color to states in which bus control occurs. Use the Color... button to
choose a different color.

“Show states of type” section

This section provides control over which types of states are displayed. Select
or unselect the associated check box to show or supress display of states.

Wait States. The slave holds the HREADY line low while it is processing
information. The slave asserts HREADY high when the transfer can complete.

Idle States. Indicates that no data transfer is required.

Busy States. Indicate that the next transfer can not take place immediately.

Start of Transfers. Indicates the start of a transfer of a burst or a signal
transfer.

Error Responses. An error condition is signaled to the bus master so that
it is aware the transfer has been unsuccessful.

224 Solutions for the ARM7/ARM9

Chapter 9: Displaying Captured Processor Execution
Viewing ARM Trace Data

Retry Responses. The RETRY response shows that the transfer has not
yet completed. The bus master should retry the transfer.

Split Responses. The transfer has not yet completed successfully. The bus
master must retry the transfer when it is next granted access to the bus.

Branch Instructions. These can be any instruction that alters the flow of
a program. Examples are loads to the PC, conditional branches, moves to the
PC, software interrupts, etc.

Coprocessor Instructions. Includes all instructions issued from the
system processor to the coprocessor.

Unexecuted Instructions. These are instructions that were not executed
due to a pipeline flush. These instructions are marked with a minus sign (-).

Other Instructions. This category is for all other instructions that do not
fall into any of the above categories.

Data Reads, Data Writes. These states include DMA reads/writes as well
as normal core reads/writes.

Use color for state types. Select the Use color for memory regions check
box to apply color to states in which memory regions are accessed. Use the
Color... button to change the color choice.

NOTE: Memory region filters have precedence over state type filters.

The Agilent 16700-series logic analysis systems provide an additional feature
for analyzer data. In addition to showing or suppressing states, the selected
states can be shown in color. Color can be used for distinguishing either
memory region accesses or state types, but not both at the same time.

NOTE: For proper operation of the software analyzer (SWA), all unexecuted
instructions due to pipeline flush should be filtered out.

State Symbols—AMBA AHB

A minus sign (-) in the column to the left of the ARM instruction in the listing
window indicates an instruction that was not executed due to a pipeline flush.

Solutions for the ARM7/ARM9 225

Chapter 9: Displaying Captured Processor Execution
Displaying Source Code

Displaying Source Code
The Agilent B4620B Source Correlation Tool Set lets you:

• View the high-level source code associated with captured data.

• Set up triggers based on source code.

The source correlation tool set correlates the logic analyzer’s address label
with a line of high-level source code whose address, symbol name, file name,
and line numbers are described in a symbol file downloaded to the logic
analyzer.

To display the Source Viewer window, select the logic analyzer module icon in
the System window, and choose Source Viewer....

The first time you display the Source Viewer window, it will probably be blank.
To see the source code select the Browse Source tab and choose a file to
display. To see source code that corresponds to a particular state in the listing,
select that state in the Listing window.

If you purchased a solution, the Agilent B4620B Source Correlation Tool Set
was included. Otherwise, the source correlation tool set is available as an add-
on product for the Agilent 16700-series logic analysis system and must be
licensed before you can use it (see the System Admin dialogs for information
on licensing).

See Also More information on configuring and using the source correlation tool set can
be found in the online help for your logic analysis system.

226 Solutions for the ARM7/ARM9

Chapter 9: Displaying Captured Processor Execution
Displaying Source Code

Requirements for source correlation

The source correlation tool set works with many microprocessors and their
embedded software development environments.

However, the overall effectiveness of the source correlation tool set will vary
to some degree depending on the specific development environment it is
being used in. The following areas affect the performance of the source
correlation tool set for different development environments:

• Probing connections and inverse assembler.

All the information needed to reconstruct the complete address bus of the
target system must be acquired by the logic analyzer.

The logic analyzer’s inverse assembler may need to reconstruct any
incomplete address bus information and/or filter out any unexecuted
instructions.

When displaying the next or previous instances of a source line, the Source
Viewer display uses the PC or SW_ADDR (Software Address) label
generated by the inverse assembler.

• Object file symbols.

The source correlation tool set requires that symbols be loaded into the
logic analyzer (refer to the "Object File Symbols" section earlier in this
chapter).

The compiler needs to produce an object file format that is readable by the
logic analyzer; otherwise; a general-purpose ASCII (GPA) format file needs
to be generated.

• Access to source code files.

The source correlation tool set requires that you give the logic analysis
system access to your program’s high-level source files (either by NFS
mounting the file system that contains the source files or by copying
source files to the logic analysis system disk).

Solutions for the ARM7/ARM9 227

Chapter 9: Displaying Captured Processor Execution
Displaying Source Code

Inverse Assembler Generated PC (Software Address)
Label

In the Agilent 16700-series logic analysis system, the inverse assembler
generates a “SW_ADDR” label. The SW_ADDR label is displayed as another
column in the Listing tool. This label is also known as the Software Address
generated by the inverse assembler.

The “Goto this line in listing” commands in the Agilent 16700-series logic
analysis system perform a pattern search on the SW_ADDR label in the Listing
display (when an inverse assembler is loaded). Because the inverse assembler
is called for each line that is searched, the search can be slow, especially with
a deep memory logic analyzer.

Also, a single source code line will generate many assembly instructions. The
“Goto this line in listing” commands will not find a given source code line
unless the first assembly instruction generated from the source line has been
acquired by the logic analyzer.

For example, if the compiler unrolls a loop in the source code, the trace could
begin after the first assembly instruction of the loop has been executed. A
“Goto this line in listing” command would not find the source line.

228 Solutions for the ARM7/ARM9

Chapter 9: Displaying Captured Processor Execution
Displaying Source Code

Access to Source Code Files

The source correlation tool set must be able to access the high-level source
code files referenced by the symbol information so that these source files can
be displayed next to and correlated with the logic analyzer’s execution trace
acquisition. This requires you to be aware of a number of issues.

Source File Search Path

Verify that the correct file search paths for the source code have been entered
into the source correlation tool set. The Agilent B4620B Source Correlation
Tool Set can often read and access the correct source code file from
information contained in the symbol file, if the source code files have not been
moved since they were compiled.

Network Access to Source Files

If source code files are being referenced across a network, the Agilent logic
analyzer networking must be compatible with the user’s network environment.
Agilent logic analyzers currently support Ethernet networks running a TCP/IP
protocol and support ftp, telnet, NFS client/server and X-Window client/server
applications. Some PC networks may require extensions to the normal LAN
protocols to support the TCP/IP protocol and/or these networking
applications. Users should contact their LAN system administrators to help
setup the logic analyzer on their network.

Source File Version Control

If the source code files are under a source code or version control utility,
check the file names and paths carefully. These utilities can change source
code file paths and file names. If these names are changed from the
information contained in the symbol file, the source correlation tool set will
not be able to find the proper source code file. These version control utilities
usually provide an “export” command that creates a set of source code files
with unmodified names. The source correlation tool set can then be given the
correct path to these files.

Solutions for the ARM7/ARM9 229

Chapter 9: Displaying Captured Processor Execution
Viewing ARM core or AMBA ASB Trace Data on the 1660/70-series logic analyzers

Viewing ARM core or AMBA ASB Trace Data on
the 1660/70-series logic analyzers
This section discusses the general output format of the inverse assembler and
processor-specific information.

To display captured state data:

• If you are using an Agilent 16700 logic analysis system, select the analyzer
you are using, and then choose Listing... from the pop-up menu.

For all other analyzers, select the listing menu

• Set the base for the DATA label to Invasm.

Here is a typical listing menu:

To distinguish between ARM and Thumb instructions, a T[15:0], T[31:16], or
THUMB notation will appear at the right end of the Invasm field for THUMB
instructions. T[15:0] and T[31:16] will appear only with a 32-bit data bus.

230 Solutions for the ARM7/ARM9

Chapter 9: Displaying Captured Processor Execution
Viewing ARM core or AMBA ASB Trace Data on the 1660/70-series logic analyzers

231

10

Coordinating Logic Analysis with
Processor Execution

232 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution

This chapter describes how to use the emulation and analysis features of your
Agilent 16700 logic analysis system to gain insight into your target system.

What are some of the tools I can use?

You can use a combination of all of the following tools to control and measure
the behavior of your target system:

• Your logic analyzer, to acquire data from the processor bus while it is
running full-speed.

• An emulation module, to control the execution of your target processor
and to examine the state of the processor and of the target system.

• The Emulation Control Interface, to control and configure the emulation
module, and to display or change target registers and memory.

• Display tools including the Listing tool, Chart tool, and System
Performance Analyzer tool to make sense of the data collected using the
logic analyzer.

• Your debugger, to control your target system using the emulation module.
Do not use the debugger at the same time as the Emulation Control
Interface.

• The Agilent B4620B Source Correlation Tool Set, to relate the analysis
trace to your high-level source code.

Solutions for the ARM7/ARM9 233

Chapter 10: Coordinating Logic Analysis with Processor Execution

Which assembly-level listing should I use?

Several windows display assembly language instructions. Be careful to use to
the correct window for your purposes:

• The Listing tool shows processor states that were captured during a "Run"
of the logic analyzer. Those states are disassembled and displayed in the
Listing window.

• The Emulation Control Interface shows the disassembled contents of a
section of memory in the Memory Disassembly window.

• Your debugger shows your program as it was actually assembled, and (if it
supports the emulation module) shows which line of assembly code
corresponds to the value of the program counter on your target system.

Which source-level listing should I use?

Different tools display source code for different uses:

• The Source Viewer window allows you to follow how the processor
executed code as the analyzer captured a trace. Use the Source Viewer to
set analyzer triggers. The Source Viewer window is available only if you
have licensed the Agilent B4620B Source Correlation Tool Set.

• Your debugger shows which line of code corresponds to the current value
of the program counter on your target system. Use your debugger to set
breakpoints.

Where can I find practical examples of

measurements?

The Measurement Examples section in the online help contains examples of
measurements which will save you time throughout the phases of system
development: hardware turn-on, firmware development, software
development, and system integration.

A few of the many things you can learn from the measurement examples are:

• How to find glitches.

• How to find NULL pointer de-references.

• How to profile system performance.

To find the measurement examples, select the Help icon in the logic analysis
system window, then select "Measurement Examples."

234 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Emulation Module from the Analyzer

Triggering the Emulation Module from the
Analyzer
The logic analyzer may be used to signal the emulation module to stop (break)
the target processor. This is done from either the Source Viewer window or
the Intermodule window. If you are using the Agilent B4620B Source
Correlation Tool Set, using the Source Viewer window is the easiest method.

To stop the processor when the logic analyzer triggers
on a line of source code (Source Viewer window)

If you have the Agilent B4620B Source Correlation Tool Set, you can easily
stop the processor when a particular line of code is reached.

1 Click on the logic analyzer module icon in the System window, and
choose Source Viewer....

2 In the Source Viewer window, select the line of source code where you
want to set the trigger, then select Trace about this line.

The logic analyzer trigger is now set.

Solutions for the ARM7/ARM9 235

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Emulation Module from the Analyzer

3 Select Trace→Enable - Break Emulator On Trigger.

The emulation module is now set to halt the processor after receiving a trigger
from the logic analyzer.

To disable the processor stop on trigger, select Trace→Disable - Break
Emulator On Trigger.

4 Click Group Run in the Source window (or other logic analyzer
window).

5 If your target system is not already running, select Run in the emulation
Run Control window to start your target.

236 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Emulation Module from the Analyzer

To stop the processor when the logic analyzer triggers
(Intermodule window)

Use the Intermodule window if you do not have the Agilent B4620B Source
Correlation Tool Set or if you need to use a more sophisticated trigger than is
possible in the Source Viewer window.

1 Create a logic analyzer trigger.

2 Click on the Intermodule icon in the System window.

3 In the Intermodule window, select the emulation module icon, then
select the analyzer which is intended to trigger it.

Solutions for the ARM7/ARM9 237

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Emulation Module from the Analyzer

The emulation module is now set to stop the processor when the logic
analyzer triggers.

4 Click Group Run in the Source window (or other logic analyzer
window).

5 If your target system is not already running, select Run in the emulation
Run Control window to start your target.

See Also See the online help for your logic analysis system for more information on
setting triggers.

To minimize the "skid" effect

There is a finite amount of time between when the logic analyzer triggers, and
when the processor actually stops. During this time, the processor will
continue to execute instructions. This latency is referred to as the skid effect.

Skid is greatly increased when the processor is stopped using the JTAG
scan chains. Using the DBGRQ and DBGACK signals reduces the “skid"
process because the process uses hardware connections instead of
software connections.

To minimize the skid effect:

1 In the Emulation Control Interface, open the Configuration window.

2 Set processor clock speed to the maximum value that your target can
support.

3 Enable the DBGRQ signal.

The amount of skid will depend on the processor’s execution speed and
whether code is executing from the cache.

See the E5900A/B Option 300 Emulation for the ARM7/ARM9 User’s Guide

for information on how to configure the clock speed.

To configure the availability of DBGACK and DBGRQ, see page 238.

For more information on the recommended signals, see page 38.

238 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Emulation Module from the Analyzer

To configure the availability of DBGACK and DBGRQ

The emulation probe will make use of the DBGACK and DBGRQ signals
if they are available on the debug port connector.

The DBGACK signal allows the emulator to quickly detect entry or exit
from debug mode. Also, the emulator is able to start or stop the logic
analyzer through the “TRIGGER OUT” of the emulator.

The DBGRQ signal is used to quickly enter debug mode after receiving
a “BREAK IN” signal from the logic analyzer. This allows the logic
analyzer triggering capability to be used for complex breakpoints.

To make use of these signals, the emulator must be configured
correctly. The following cf commands allow the specification of
whether each signal is connected or not.

Processor Configured for Built-in command

yes The corresponding signal is
connected and will be used.

cf dbgack=yes
cf dbgreq=yes

no The corresponding signal is
not connected and will not be
used. (Default)

cf dbgack=no
cf dbgreq=no

Solutions for the ARM7/ARM9 239

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Emulation Module from the Analyzer

To stop the analyzer and view a measurement

• To view an analysis measurement you may have to select Stop after the
trigger occurs.

NOTE: When the target processor stops it may cause the analyzer qualified clock to
stop. Therefore most intermodule measurements will have to be stopped to
see the measurement.

Example An intermodule measurement has been set up where the analyzer is triggering
the emulation module. The following sequence could occur:

1 The analyzer triggers.

2 The trigger ("Break In") is sent to the emulation module.

3 The emulation module stops the user program which is running on the
target processor. The processor enters a background debug monitor.

4 Because the processor has stopped, the analyzer stops receiving a
qualified clock signal.

5 If the trigger position is "End", the measurement will be completed.

6 If the trigger position is not "End", the analyzer may continue waiting
for more states.

7 The user selects Stop in a logic analyzer window, which tells the logic
analyzer to stop waiting, and to display the trace.

240 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution
Tracing until the processor halts

Tracing until the processor halts
If you are using a state analyzer, you can begin a trace, run the processor, then
manually end the trace when the processor has halted.

To halt the processor, you can set a breakpoint using the Emulation Control
Interface or a debugger.

Some possible uses for this measurement are:

• To store and display processor bus activity leading up to a system crash.

• To capture processor activity before a breakpoint.

• To determine why a function is being called. To do this, you could set a
breakpoint at the start of the function then use this measurement to see
how the function is getting called.

NOTE: This kind of measurement is easier than setting up an intermodule
measurement trigger.

If you have already set up an intermodule measurement, you must “undo” it by
setting all components in the intermodule window to run independently.

Solutions for the ARM7/ARM9 241

Chapter 10: Coordinating Logic Analysis with Processor Execution
Tracing until the processor halts

To capture a trace before the processor halts

1 Set the sampling to state mode and the trigger condition to
Run until user stop.

Now proceed to step 2 under “All Agilent logic analysis systems”.

1 In the configuration dialog, set the machine type to state, and set the
logic analyzer to trigger on nostate.

Now proceed to step 2 under “All Agilent logic analysis systems”.

2 Set the trigger point (position) to End.

3 In a logic analyzer window, select Run.

4 In the Emulation Control Interface or debugger select Run.

5 When the target processor halts, select Stop in the logic analyzer
window to complete the measurement.

NOTE: This is the recommended method to do state analysis of the processor bus
when the processor halts.

If you need to capture the interaction of another bus when the processor halts
or you need to make a timing or oscilloscope measurement you will need to
trigger the logic analyzer from the emulation module (described in the next
section).

242 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Logic Analyzer from the Emulation Module

Triggering the Logic Analyzer from the
Emulation Module
You can create an intermodule measurement which will allow the emulation
module to trigger another module such as a timing analyzer or oscilloscope.

If you are only using a state analyzer to capture the processor bus then it will
be much simpler to use “Tracing until processor halts” as described on page
241.

Before you trigger a logic analyzer (or another module) from the emulation
module, you should understand a few things about the emulation module
trigger:

The emulation module trigger signal

The trigger signal coming from the emulation module is an "In Background
Debug Monitor" (In Monitor) signal. This may cause confusion because a
variety of conditions could cause this signal and falsely trigger your analyzer.

The In Monitor trigger signal can be caused by:

• The most common method to generate the signal is to select Run and then
select Break in the Emulation Control Interface. Going from Run
(Running User Program) to Break (In Monitor) generates the trigger
signal.

• Another method to generate the In Monitor signal is to select Reset and
then select Break. Going from the reset state of the processor to the In
Monitor state will generate the signal.

• In addition, an In Monitor signal is generated any time a debugger or other
user interface reads a register, reads memory, sets breakpoints or steps.
Care must be taken to not falsely trigger the logic analyzers that are
listening to the In Monitor signal.

Solutions for the ARM7/ARM9 243

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Logic Analyzer from the Emulation Module

Group Run

The intermodule bus signals can still be active even

without a Group Run.

The following setups can operate independently of Group Run:

• Port In connected to an emulation module

• Emulation modules connected in series

• Emulation module connected to Port Out

Here are some examples:

• If Group Run is armed from Port In and an emulation module is connected
to Group Run, then any Port In signal will cause the emulation module to
go into monitor. The Group Run button does not have to be selected for
this to operate.

• If two emulation modules are connected together so that one triggers
another, then the first one going into monitor will cause the second one to
go into monitor.

• If an emulation module is connected to Port Out, then the state of the
emulation module will be sent out the Port Out without regard to Group
Run.

The current emulation module state (Running or In Monitor) should be
monitored closely when they are part of a Group Run measurement so that
valid measurements are obtained.

244 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Logic Analyzer from the Emulation Module

Group Run into an emulation module does not mean that

the Group Run will Run the emulation module.

The emulation module Run, Break, Step, and Reset are independent of the
Group Run of the analyzers.

For example, suppose you have the following intermodule measurement set
up:

Clicking the Group Run button (at the very top of the Intermodule window or a
logic analyzer window) will start the analyzer running. The analyzer will then
wait for an arm signal. Now when the emulation module transitions into
Monitor from Running (or from Reset), it will send the arm signal to the
analyzer. If the emulation module is In Monitor when you select Group Run, you
will then have to go to the emulation module or your debugger interface and
manually start it running.

Solutions for the ARM7/ARM9 245

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Logic Analyzer from the Emulation Module

Debuggers can cause triggers

Emulation module user interfaces may introduce additional states into your
analysis measurement and in some cases falsely trigger your analysis
measurement.

When a debugger causes your target to break into monitor it will typically read
memory around the program stack and around the current program counter.
This will generate additional states that appear in the listing.

You can often distinguish these additional states because the time tags will be
in the µs and ms range. You can use the time tag information to determine
when the processor went into monitor. Typically the time between states will
be in the nanoseconds while the processor is running and will be in the µs and
ms range when the debugger has halted the processor and is reading memory.

Note also that some debugger commands may cause the processor to break
temporarily to read registers and memory. These states that the debugger
introduces will also show up in the trace listing.

If you define a trigger on some state and the debugger happens to read the
same state, then you may falsely trigger your analyzer measurement.

In summary, when you are making an analysis measurement be aware that the
debugger could be impacting your measurement.

246 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Logic Analyzer from the Emulation Module

To trigger the analyzer when the processor halts -
timing mode

If your processor halts unexpectedly, and you would like to see timing
information on your bus prior to the halt, set up this measurement.

The following example shows how to set up an HP/Agilent 16700-series logic
analysis system with VisiTrigger. This measurement can also be set up using
HP/Agilent 16700-series logic analysis systems without VisiTrigger, and HP/
Agilent 1660/1670/16500-series logic analysis systems.

NOTE: If you only need state information leading up to a processor halt, and timing
information is not important, use the procedure called “To capture a trace
before the processor halts” on page 241. It is much simpler.

1 In the Intermodule window, select the logic analyzer you want to
trigger and select the emulation module. A picture (similar to the one
shown below) will appear in the intermodule window. This sets the
logic analyzer to trigger when the processor halts.

Now continue to step 2.

Solutions for the ARM7/ARM9 247

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Logic Analyzer from the Emulation Module

2 Set the sampling mode to timing and set the trigger as shown below:

3 Set the trigger position to end.

4 Click Group Run to start the analyzer(s).

5 Click Run in the Emulation Control Interface or use your debugger to
start the target processor running.

Clicking Group Run will not start the emulation module. The emulation module
run, break, step, reset are independent of the Group Run of the analyzers.

6 Wait for the Run Control window in the Emulation Control Interface or
the status display in your debugger to show that the processor has
halted.

The logic analyzer will store states until the processor halts.

248 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Logic Analyzer from the Emulation Module

To trigger the analyzer when the processor reaches a
breakpoint

This measurement is exactly like the one on the previous page, but with the
one additional complexity of setting breakpoints. Be aware that setting
breakpoints may cause a false trigger and that the breakpoints set may not be
valid after a reset.

NOTE: If you are only using a state analyzer to capture the processor bus then it will
be much simpler to use “Tracing until processor halts” as described on page
241.

1 Set the logic analyzer to trigger on anystate.

2 Set the trigger point to center or end.

3 In the Intermodule window, select the logic analyzer you want to
trigger and select the emulation module.

The logic analyzer is now set to trigger on a processor halt.

4 Set the breakpoint.

If you are going to run the emulation module from Reset you must do a Reset
followed by Break to properly set the breakpoints. The Reset will clear all on-
chip hardware breakpoint registers. The Break command will then reinitialize
the breakpoint registers. If you are using software breakpoints that insert an
illegal instruction into your program at the breakpoint location you will not
need to do the Reset, Break sequence. Instead you must take care to properly
insert your software breakpoint in your RAM program location.

5 Click Group Run to start the analyzer(s).

Solutions for the ARM7/ARM9 249

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Logic Analyzer from the Emulation Module

6 Click Run in the Emulation Control Interface or use your debugger to
start the target processor running.

Clicking Group Run will not start the emulation module. The emulation module
run, break, step, reset are independent of the Group Run of the analyzers.

7 Wait for the Run Control window in the Emulation Control Interface or
the status display in your debugger to show that the processor has
stopped.

The logic analyzer will store states until the processor stops, but may continue
running.

You may or may not see a "slow clock" error message. In fact, if you are using a
state analyzer on the processor bus the status may never change upon
receiving the emulation module trigger (analysis arm). This occurs because
the qualified processor clock needed to switch the state analyzer to the next
state is stopped. For example, the state analyzer before the arm event may
have a status of "Occurrences Remaining in Level 1: 1" and after the arm event it
may have the same status of "Occurrences Remaining in Level 1: 1"

8 If necessary, in the logic analyzer window, select Stop to complete the
measurement.

If you are using a timing analyzer or oscilloscope the measurement should
complete automatically when the processor halts. If you are using a state
analyzer, select Stop if needed to complete the measurement.

250 Solutions for the ARM7/ARM9

Chapter 10: Coordinating Logic Analysis with Processor Execution
Triggering the Logic Analyzer from the Emulation Module

251

11

General-Purpose ASCII (GPA) Symbol
File Format

252 Solutions for the ARM7/ARM9

Chapter 11: General-Purpose ASCII (GPA) Symbol File Format
General-Purpose ASCII (GPA) Symbol File Format

General-Purpose ASCII (GPA) Symbol File
Format
General-purpose ASCII (GPA) format files are loaded into a logic analyzer just
like other object files, but they are usually created differently.

If your compiler does not include symbol information in the output, or if you
want to define a symbol which is not in the object file, you can create an ASCII
format symbol file.

Typically, ASCII format symbol files are created using text processing tools to
convert compiler or linker map file output that has symbolic information into
the proper format.

You can typically get symbol table information from a linker map file to create
a General-Purpose ASCII (GPA) symbol file.

Various kinds of symbols are defined in different records in the GPA file.
Record headers are enclosed in square brackets; for example, [VARIABLES].
For a summary of GPA file records and associated symbol definition syntax,
refer to the “GPA Record Format Summary” that follows.

Each entry in the symbol file must consist of a symbol name followed by an
address or address range.

While symbol names can be very long, the logic analyzer only uses the first 16
characters.

The address or address range corresponding to a given symbol appears as a
hexadecimal number. The address or address range must immediately follow
the symbol name, appear on the same line, and be separated from the symbol
name by one or more blank spaces or tabs. Ensure that address ranges are in
the following format:

beginning address..ending address

Example

main 00001000..00001009
test 00001010..0000101F
var1 00001E22 #this is a variable

This example defines two symbols that correspond to address ranges and
one point symbol that corresponds to a single address.

Solutions for the ARM7/ARM9 253

Chapter 11: General-Purpose ASCII (GPA) Symbol File Format
General-Purpose ASCII (GPA) Symbol File Format

For more detailed descriptions of GPA file records and associated symbol
definition syntax, refer to these topics that follow:

• SECTIONS

• FUNCTIONS

• VARIABLES

• SOURCE LINES

• START ADDRESS

• Comments

254 Solutions for the ARM7/ARM9

Chapter 11: General-Purpose ASCII (GPA) Symbol File Format
General-Purpose ASCII (GPA) Symbol File Format

GPA Record Format Summary

[SECTIONS]
section_name start..end attribute

[FUNCTIONS]
func_name start..end

[VARIABLES]
var_name start [size]
var_name start..end

[SOURCE LINES]
File: file_name
line# address

[START ADDRESS]
address

#Comments

If no record header is specified, [VARIABLES] is assumed. Lines without a
preceding header are assumed to be symbol definitions in one of the
VARIABLES formats.

Solutions for the ARM7/ARM9 255

Chapter 11: General-Purpose ASCII (GPA) Symbol File Format
General-Purpose ASCII (GPA) Symbol File Format

Example

This is an example GPA file that contains several different kinds of
records:

[SECTIONS]
prog 00001000..0000101F
data 40002000..40009FFF
common FFFF0000..FFFF1000

[FUNCTIONS]
main 00001000..00001009
test 00001010..0000101F

[VARIABLES]
total 40002000 4
value 40008000 4

[SOURCE LINES]
File: main.c
10 00001000
11 00001002
14 0000100A
22 0000101E

File: test.c
 5 00001010
 7 00001012
11 0000101A

256 Solutions for the ARM7/ARM9

Chapter 11: General-Purpose ASCII (GPA) Symbol File Format
General-Purpose ASCII (GPA) Symbol File Format

SECTIONS

[SECTIONS]
section_name start..end attribute

Use SECTIONS to define symbols for regions of memory, such as sections,
segments, or classes.

section_name A symbol representing the name of the section.

start The first address of the section, in hexadecimal.

end The last address of the section, in hexadecimal.

attribute This is optional, and may be one of the following:

• NORMAL (default)—The section is a normal, relocatable section, such as
code or data.

• NONRELOC—The section contains variables or code that cannot be
relocated; this is an absolute segment.

If you use section definitions in a GPA symbol file, any subsequent function or
variable definitions must be within the address ranges of one of the defined
sections. Functions and variables that are not within the range are ignored.

Define sections first

To enable section relocation, section definitions must appear before any other
definitions in the file.

Example

[SECTIONS]
prog 00001000..00001FFF
data 00002000..00003FFF
display_io 00008000..0000801F NONRELOC

Solutions for the ARM7/ARM9 257

Chapter 11: General-Purpose ASCII (GPA) Symbol File Format
General-Purpose ASCII (GPA) Symbol File Format

FUNCTIONS

[FUNCTIONS]
func_name start..end

Use FUNCTIONS to define symbols for program functions, procedures, or
subroutines.

func_name A symbol representing the function name.

start The first address of the function, in hexadecimal.

end The last address of the function, in hexadecimal.

Example

[FUNCTIONS]
main 00001000..00001009
test 00001010..0000101F

258 Solutions for the ARM7/ARM9

Chapter 11: General-Purpose ASCII (GPA) Symbol File Format
General-Purpose ASCII (GPA) Symbol File Format

VARIABLES

[VARIABLES]
var_name start [size]
var_name start..end

You can specify symbols for variables either by using the address of the
variable, the address and the size of the variable, or a range of addresses
occupied by the variable. If you specify only the address of a variable, the size
is assumed to be one byte.

var_name A symbol representing the variable name.

start The first address of the variable, in hexadecimal.

end The last address of the variable, in hexadecimal.

size This is optional, and indicates the size of the variable, in bytes, in decimal.

Example

[VARIABLES]
subtotal 40002000 4
total 40002004 4
data_array 40003000..4000302F
status_char 40002345

Solutions for the ARM7/ARM9 259

Chapter 11: General-Purpose ASCII (GPA) Symbol File Format
General-Purpose ASCII (GPA) Symbol File Format

SOURCE LINES

[SOURCE LINES]
File: file_name
line# address

Use SOURCE LINES to associate addresses with lines in your source files.

file_name The name of a file.

line# The number of a line in the file, in decimal.

address The address of the source line, in hexadecimal.

Example

[SOURCE LINES]
File: main.c
10 00001000
11 00001002
14 0000100A
22 0000101E

260 Solutions for the ARM7/ARM9

Chapter 11: General-Purpose ASCII (GPA) Symbol File Format
General-Purpose ASCII (GPA) Symbol File Format

START ADDRESS

[START ADDRESS]
address

address The address of the program entry point, in hexadecimal.

Comments

#comment text

Use the # character to include comments in a file. Any text following the #
character is ignored. You can put comments on a line alone or on the same line
following a symbol entry.

Example

[START ADDRESS]
00001000

Example

#This is a comment.

261

12

Troubleshooting

262 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting

If you encounter difficulties while making measurements, use this chapter to
guide you through some possible solutions. Each heading lists a problem you
may encounter, along with some possible solutions.

If you still have difficulty using the analyzer after trying the suggestions in this
chapter, please contact your local Agilent Technologies service center.

CAUTION: Be sure to power down the target system before connecting or disconnecting
cables. Otherwise, you may damage circuitry in the analyzer or target system.

Solutions for the ARM7/ARM9 263

Chapter 12: Troubleshooting
Logic Analyzer Problems

Logic Analyzer Problems
This section lists general problems that you might encounter while using the
logic analyzer.

Intermittent data errors

This problem is usually caused by poor connections, incorrect signal levels, or
marginal timing.

❏ Remove and re-seat all cables and probes, ensuring that there are no
bent pins or poor probe connections.

❏ Adjust the threshold level of the data pod to match the logic levels in
the system under test.

❏ Use an oscilloscope to check the signal integrity of the data lines.

Clock signals for the state analyzer must meet particular pulse shape and
timing requirements. Data inputs for the analyzer must meet pulse shape and
setup and hold time requirements.

See Also See “Capacitive loading” on page 265 for information on other sources of
intermittent data errors.

264 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Logic Analyzer Problems

Unwanted triggers

Unwanted triggers can be caused by instructions that were fetched but not
executed.

❏ Add the prefetch queue or pipeline depth to the trigger address to
avoid this problem.

The logic analyzer captures prefetches, even if they are not executed. When
you are specifying a trigger condition or a storage qualification that follows an
instruction that may cause branching, an unused prefetch may generate an
unwanted trigger.

No activity on activity indicators

❏ Check for loose cables.

❏ Check for poor connections to the target system.

No trace list display

If there is no trace list display, it may be that your trigger specification is not
correct for the data you want to capture, or that the trace memory is only
partially filled.

❏ Check your trigger sequence to ensure that it will capture the events of
interest.

❏ Try stopping the analyzer; if the trace list is partially filled, this should
display the contents of trace memory.

Solutions for the ARM7/ARM9 265

Chapter 12: Troubleshooting
Logic Analyzer Problems

Capacitive loading

Excessive capacitive loading can degrade signals, resulting in incorrect
capture by the logic analyzer, or system lockup in the microprocessor.

Careful layout of your target system can minimize loading problems and result
in better margins for your design. This is especially important for systems that
are running at frequencies greater than 50 MHz.

❏ Remove as many pin protectors, extenders, and adapters as possible.

❏ If multiple interface solutions are available, use one with lower
capacitive loading.

266 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Inverse Assembler Problems

Inverse Assembler Problems
This section lists problems that you might encounter while using the
inverse assembler.

When you obtain incorrect inverse assembly results, it may be unclear
whether the problem is in the inverse assembler or in your target
system. If you follow the suggestions in this section to ensure that you
are using the inverse assembler correctly, you can proceed with
confidence in debugging your target system.

No inverse assembly or incorrect inverse assembly

This problem may be due to incorrect synchronization, modified
configuration, incorrect connections, or a hardware problem in the
target system.A locked status line can cause incorrect or incomplete
inverse assembly.

❏ Ensure that each logic analyzer pod is connected to the correct signals.

There is not always a one-to-one correspondence between analyzer
pod numbers and cable numbers. Target systems must supply address
(ADDR), data (DATA), and status (STAT) information to the analyzer
in a predefined order. Thus, one target system might require that you
connect cable 2 to analyzer pod 2, while another will require you to
connect cable 5 to analyzer pod 2. See Chapter 1 for connection
information.

❏ Check the activity indicators for status lines locked in a high or low
state.

❏ Verify that the STAT, DATA, and ADDR format labels have not been
modified from their default values.

These labels must remain as they are configured by the configuration file. Do
not change the names of these labels or the bit assignments within the labels.

❏ Verify that all microprocessor caches and memory managers have been

Solutions for the ARM7/ARM9 267

Chapter 12: Troubleshooting
Inverse Assembler Problems

disabled.

In most cases, if the microprocessor caches and memory managers
remain enabled you should still get inverse assembly. It may be
incorrect because a portion of the execution trace was not visible to
the logic analyzer.

❏ Verify that storage qualification has not excluded storage of all the
needed opcodes and operands.

Inverse assembler will not load or run

You need to ensure that you have the correct system software loaded
on your analyzer.

❏ Ensure that the inverse assembler is on the same disk as the
configuration files you are loading.

Configuration files for the state analyzer contain a pointer to the name
of the corresponding inverse assembler. If you delete the inverse
assembler or rename it, the configuration process will fail to load the
inverse assembler.

268 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Inverse Assembler Error Messages

Inverse Assembler Error Messages

“IA Error - Address not in memory map”

This error means that the current address does not fall within any of
the memory ranges specified in the memory map. In order for the
inverse assembler to work properly, the current address must fall
within one of the regions in the memory map. A good way to prevent
this message from appearing is to create a “default” memory range. The
inverse assembler starts comparing at region 0 and continues
downward until a region matches. By placing a base address of 0 and an
end address of FFFFFFFF in the last region (region 7), a “catch-all”
region is created and any address that does not match with any of the
previous 7 regions will match the last one.

“IA Error - Search limited by depth”

This error should only occur when certain status signals are missing.
The error occurs because the inverse assembler is either looking
forward or backward in the trace data to try to reconstruct the status
signals. However, if there isn’t enough trace data to determine what a
signal should be, then the error is emitted.

“Inverse Assembler Not Found”

This error occurs if you rename or delete the inverse assembler file
that is attached to the configuration file.

❏ Ensure that the inverse assembler file is not renamed or deleted, and
that it is located in the same directory as the configuration file.

Solutions for the ARM7/ARM9 269

Chapter 12: Troubleshooting
Inverse Assembler Error Messages

“No Configuration File Loaded”

This is usually caused by trying to load a configuration file for one type
of module/system into a different type of module/system.

❏ Verify that the appropriate module has been selected from the Load
{module} from File {file name} in the Agilent Technologies 16500A/B disk
operation menu. Selecting Load {All} will cause incorrect operation
when loading most configuration files.

“Selected File is Incompatible”

This occurs when you try to load a configuration file for the wrong
module.

❏ Ensure you are loading the appropriate configuration file for your
analyzer.

❏ Ensure that you have selected the correct destination machine.

“Slow or Missing Clock”

❏ This error message might occur if the logic analyzer cards are not
firmly seated in the Agilent Technologies frame. Ensure that the cards
are firmly seated.

❏ This error might occur if the target system is not running properly.
Ensure that the target system is on and operating properly.

❏ Ensure there is activity on the selected clock.

❏ If the error message persists, check that the logic analyzer pods are
connected to the proper connectors.

270 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Inverse Assembler Error Messages

“Waiting for Trigger”

If a trigger pattern is specified, this message indicates that the specified
trigger pattern has not occurred. Verify that the triggering pattern is correctly
set.

❏ Setting a trigger can be very complex.

❏ Consider how many address lines from the ARM core are pinned out.

❏ The processor instruction mode (ARM or THUMB) affects word width.

❏ You may need to set one or more least significant trigger address bits to
“don’t care” because all instruction fetches are word (ARM) or half-
word (THUMB) aligned, and the processor core ignores the two least
significant bits in ARM mode and the least significant bit in THUMB
mode.

❏ The data bus width of the target system may be different from the
width of the data operation. You need to know where the data will
appear across the width of the data bus. For example: the data
operation could be 8-bit and the target’s bus could be 32-bit, so the
data could appear in one of four places on the data bus.

Solutions for the ARM7/ARM9 271

Chapter 12: Troubleshooting
Understanding the Impact of ARM Signal Availability

Understanding the Impact of ARM Signal
Availability
The inverse assembler does the best job it can with limited status
signals available. However, in a few cases, the inverse assembler will
display states incorrectly if a necessary status signal is missing. The
following are some examples of the problems.

LDR PC and LDM PC instructions without nMREQ

After a LDR or LDM instruction where the PC is loaded (this is used for
a branch or subroutine return), the ARM core adds an internal cycle.
The address driven on the address bus during this cycle is the address
of the next instruction that would be fetched if the branch did not take
place. Without nMREQ, the inverse assembler cannot detect internal
cycles, but in all other cases will decode internal cycles as wait states.
In the LDR PC and LDM PC case, the inverse assembler will decode the
internal cycle as an opcode fetch or data access (depending on signals
available and the state of the core). In the following example, the
internal cycle is displayed as a READ WORD in state 34.

272 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Understanding the Impact of ARM Signal Availability

Problems with literal pools and no nOPC signal

The ARM processor can only provide a limited set of immediate values
directly. To load other values, these values are stored in “literal pools”
and are loaded indirectly. The literal pools are usually placed in
between functions in regions that are otherwise only code. Without the
nOPC signal, the inverse assembler will decode these literal pool data
reads as instructions. These incorrectly decoded instructions also
confuse the algorithms that determine unexecuted prefetches. For this
reason, marking of unexecuted prefetches is disabled without the
nOPC signal. The SWA tool will indicate inaccurate sequences of
source references since it uses all instructions marked as executed,
which will include the literal pool data accesses and unexecuted
prefetches.

These extra “instructions” that are really data accesses can cause the
algorithms used by the inverse assembler to determine size and read/
write of data accesses to pick one of these incorrect instructions for a
data access and display the size and read/write status incorrectly.

To determine what is really going on, a memory map entry can be
added to look at the trace display around a particular literal pool (there
are not enough memory map entries to handle all literal pools and the
pools will move as code is modified and recompiled). A
recommendation is to reserve the first memory map entry for literal
pools since it has higher priority than later entries in the memory map,
and will overlay ranges specified in later entries so that they will not
have to be modified to work correctly.

Solutions for the ARM7/ARM9 273

Chapter 12: Troubleshooting
Understanding the Impact of ARM Signal Availability

SWP instructions without nRW, nWAIT and nMREQ

In order to properly detect the read access of a SWP instruction, the
inverse assembler requires nRW, nWAIT and nMREQ. If one or more of
these signals is missing, the read data access of the SWP instruction
will be incorrectly decoded as a wait state as in the following display,
state 340 should be displayed as READ WORD].

Missing MAS[1] and incorrect memory map entries

The inverse assembler will use the memory map entries to determine if
an instruction is ARM or THUMB if the MAS[1] signal is not connected.
The regions of ARM vs. THUMB code can move as new code is being
written. If the memory map entries are not kept up to date, the inverse
assembler will incorrectly decode ARM vs. THUMB instructions.

274 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Understanding the Impact of ARM Signal Availability

DMA accesses showing up as OPCODES or DATA

If the target system uses DMA and does not provide the DMA signal,
the logic analyzer will incorrectly display DMA cycles as code or data.
This will cause many problems for the algorithms used by the inverse
assembler. The DMA signal is required for systems using DMA.

Store qualification not storing states needed by the
inverse assembler for proper operation

For systems with less than 32-bit data buses, the memory controller
places the ARM core in a wait state until the complete data bus is
fetched from the target system. If wait states are not stored by the logic
analyzer, only the last cycle of each memory operation will be stored.
This is not enough information for the inverse assembler to operate
correctly. Any inverse assembly produced will not be correct. Do not
set up the logic analyzer to store only non-wait states with systems that
use 8 or 16 bit data buses.

The inverse assembler looks backward in the trace buffer to determine
nRW and MAS signals for data accesses if these signals are not
connected. If the instructions which caused the data access or any
instructions between these two states are not stored, the inverse
assembler may decode these status lines incorrectly.

Solutions for the ARM7/ARM9 275

Chapter 12: Troubleshooting
Other problem scenarios

Other problem scenarios

The inverse assembler trace looks like there are
several instructions being decoded for the same
address

This may be caused by the inversion of the wait bit. Make sure that the
menu option in the signals menu is correct. For active low wait signals,
the inversion choice should be ‘No’. For active high wait signals, the
inversion choice should be ‘Yes’.

276 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Other problem scenarios

Some data fetches in the trace listing seem to be shown
as instructions

This is the most common problem that occurs when the nOPC signal is
not connected. When a program is being compiled the compiler
attempts to internally create the immediate data for instructions that
require it. However, there are cases when the compiler can’t create the
required immediate data values.

As a result, the compiler places a literal pool close to the instruction
that requires the immediate data. This literal pool contains the
immediate value that is needed by the instruction. This has the
unpleasant effect of having segmented code and data regions that are
difficult to find by the user. An example of this behavior is shown
below. In order to determine where literal pools exist, use the ARM
Project Manager to view the object files created by the compiler

Solutions for the ARM7/ARM9 277

Chapter 12: Troubleshooting
Other problem scenarios

The memory map menu setup for this segment of code would be:

A data state is immediately repeated by another data
state or an instruction fetch

If nMREQ is unavailable, internal cycles may be masked over by data states or
instruction states.

State symbols (*) for the unused prefetch states don’t
seem be correct all of the time

In order to have 100% correct marking of all unused prefetch states,
nOPC, nRW, nMREQ, nWAIT, and SEQ must be connected. Otherwise,
using heuristics, the IA attempts to determine where a branch has
occurred. This method may not always work. In cases when there is a
branch over two instructions, the IA will not mark the unused
instructions correctly. Any marking of unexecuted prefetches requires
the nOPC signal.

278 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Other problem scenarios

An extra extension state for an instruction fetch is seen
when using reverse memory controller

The memory controller will output an extra decode cycle when a non-
sequential access has occurred. This extra extension state is simply the
extra decode cycle.

Solutions for the ARM7/ARM9 279

Chapter 12: Troubleshooting
Intermodule Measurement Problems

Intermodule Measurement Problems
Some problems occur only when you are trying to make a measurement
involving multiple modules.

An event wasn’t captured by one of the modules

If you are trying to capture an event that occurs very shortly after the event
that arms one of the measurement modules, it may be missed due to internal
analyzer delays. For example, suppose you set an oscilloscope module to
trigger upon receiving a trigger signal from the logic analyzer because you are
trying to capture a pulse that occurs right after the analyzer’s trigger state. If
the pulse occurs too soon after the analyzer’s trigger state, the oscilloscope
will miss the pulse.

❏ Adjust the skew in the Intermodule menu.

You may be able to specify a skew value that enables the event to be captured.

❏ Change the trigger specification for modules upstream of the one with
the problem.

If you are using a logic analyzer to trigger an oscilloscope module, try
specifying a trigger state one state before the one you are using. This may be
more difficult than working with the skew because the prior state may occur
more often and not always be related to the event you are trying to capture
with the oscilloscope.

280 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Intermodule Measurement Problems

“No Configuration File Loaded”

This is usually caused by trying to load a configuration file for one type of
module/system into a different type of module/system.

❏ Verify that the appropriate module has been selected when you load
the configuration file. Selecting Load {All} will cause incorrect
operation when loading most configuration files.

See Also See “To load configuration files (and the inverse assembler) from hard disk—
16700-series logic analysis systems” on page 143 or “To load configuration and
inverse assembler files—Agilent 16700 logic analysis systems” on page 182.

“Selected File is Incompatible”

This occurs when you try to load a configuration file for the wrong module.

❏ Ensure that you are loading the appropriate configuration file for your
logic analyzer.

“Slow or Missing Clock”

❏ This error message might occur if the logic analyzer cards are not
firmly seated in the logic analysis system frame. Ensure that the cards
are firmly seated.

❏ This error might occur if the target system is not running properly.
Ensure that the target system is on and operating properly.

❏ If the error message persists, check that the logic analyzer pods are
connected to the proper connectors on the target system.

NOTE: See Chapter 5, “Probing the Target System,” beginning on page 121, to
determine the proper connections.

Solutions for the ARM7/ARM9 281

Chapter 12: Troubleshooting
Intermodule Measurement Problems

“Waiting for Trigger”

If a trigger pattern is specified, this message indicates that the specified
trigger pattern has not occurred. Verify that the triggering pattern is correctly
set.

❏ Setting a trigger can be very complex.

❏ Consider how many address lines from the ARM core are pinned out.

❏ The processor instruction mode (ARM or THUMB) affects word width.

❏ You may need to set one or more least significant trigger address bits to
“don’t care” because all instruction fetches are word (ARM) or half-
word (THUMB) aligned, and the processor core ignores the two least
significant bits in ARM mode and the least significant bit in THUMB
mode.

❏ The data bus width of the target system may be different from the
width of the data operation. You need to know where the data will
appear across the width of the data bus. For example: the data
operation could be 8-bit and the target’s bus could be 32-bit, so the
data could appear in one of four places on the data bus.

282 Solutions for the ARM7/ARM9

Chapter 12: Troubleshooting
Intermodule Measurement Problems

283

13

Specifications and Characteristics

284 Solutions for the ARM7/ARM9

Chapter 13: Specifications and Characteristics

This chapter contains specifications and characteristics for the inverse
assembler.

The following operating characteristics are not specifications, but are
typical operating characteristics for the Agilent Technologies E2493A
ARM inverse assembler.

Operating Characteristics — Inverse Assembler

Microprocessor/bus

Compatibility

For inverse Assembly: ARM6, ARM7XX, and ARM9
(ARM9 in AMBA mode only).

Clock Speed Maximum clock speed depends upon the analyzer
module installed in the logic analysis system. Here
are two examples of maximum clock speeds:
16557D - Maximum clock speed is 140 MHz for 1-4
modules; 100 MHz for 5 modules.
16719A - Maximum clock speed is 333 MHz, with
some trade-offs in features. See specification sheet
for details.

Probes Required 8-bit bus systems require four 16-channel probes
16/32-bit bus systems require six 16-channel
probes

Signal Line Loading Typically 100 k ohm, plus 10 pF

Setup/Hold

Requirement

Data must be valid for a 3.5 ns window with respect
to the logic analyzer clock.

 285

Glossary

Analysis Probe A probing solution
connected to the target
microprocessor. It provides an
interface between the signals of the
target microprocessor and the inputs
of the logic analyzer. Formerly called
a “preprocessor.”

Background Debug Monitor Also
called Debug Mode, In Background,
and In Monitor. The normal processor
execution is suspended and the
processor waits for commands from
the debug port. The debug port
commands include the ability to read
and write memory, read and write
registers, set breakpoints and start
the processor running (exit the
Background Debug Monitor).

Debug Mode See Background

Debug Monitor.

Debug Port A hardware interface
designed into a microprocessor that
allows developers to control
microprocessor execution, set
breakpoints, and access
microprocessor registers or target
system memory using a tool like the
emulation probe.

Elastomeric Probe Adapter A
connector that is fastened on top of a
target microprocessor using a
retainer and knurled nut. The
conductive elastomer on the bottom

of the probe adapter makes contact
with pins of the target
microprocessor and delivers their
signals to connection points on top of
the probe adapter.

Emulation Migration The
hardware and software required to
use an emulation probe with a new
processor family.

Emulation Module An emulation
module is installed within the
mainframe of a logic analysis system.
An E5901A emulation module is used
with a target interface module
(TIM) or an analysis probe. An
E5901B emulation module is used
with an E5900B emulation probe
and does not use a TIM.

Emulation Probe An emulation
probe is a standalone instrument
connected via LAN to the mainframe
of a logic analyzer or to a host
computer. It provides run control
within an emulation and analysis test
setup. Formerly called a "processor
probe" or "software probe."

Emulator An emulation module or
an emulation probe.

Extender A part whose only
function is to provide connections
from one location to another. One or
more extenders might be stacked to

286

Glossary

raise a probe above a target
microprocessor to avoid mechanical
contact with other components
installed close to the target
microprocessor. Sometimes called a
"connector board."

Flexible Adapter Two connection
devices coupled with a flexible cable.
Used for connecting probing
hardware on the target
microprocessor to the analysis probe.

Gateway Address An IP address
entered in integer dot notation. The
default gateway address is 0.0.0.0,
which allows all connections on the
local network or subnet. If
connections are to be made across
networks or subnets, this address
must be set to the address of the
gateway machine.

General-Purpose Flexible

Adapter A cable assembly that
connects the signals from an
elastomeric probe adapter to an
analysis probe. Normally, a male-to-
male header or transition board
makes the connections from the
general-purpose flexible adapter to
the analysis probe.

High-Density Adapter Cable A
cable assembly that delivers signals
from an analysis probe hardware
interface to the logic analyzer pod

cables. A high-density adapter cable
has a single MICTOR connector that
is installed into the analysis probe,
and two cables that are connected to
corresponding odd and even logic
analyzer pod cables.

High-Density Termination

Adapter Cable Same as a High-
Density Adapter Cable, except it has
a termination in the MICTOR

connector.

In Background, In Monitor See
Background Debug Monitor.

Inverse Assembler Software that
displays captured bus activity as
assembly language mnemonics. In
addition, inverse assemblers may
show execution history or decode
control busses.

IP address Also called Internet
Protocol address or Internet address.
A 32-bit network address. It is usually
represented as decimal numbers
separated by periods; for example,
192.35.12.6.

Jumper Moveable direct electrical
connection between two points.

JTAG (OnCE) port See debug

port.

Label Labels are used to group and

 287

Glossary

identify logic analyzer channels. A
label consists of a name and an
associated bit or group of bits.

Link-Level Address The unique
address of the LAN interface. This
value is set at the factory and cannot
be changed. The link-level address of
a particular piece of equipment is
often printed on a label above the
LAN connector. An example of a link-
level address in hexadecimal:
0800090012AB. Also known as an
LLA, Ethernet address, hardware
address, physical address, or MAC
address.

Mainframe Logic Analyzer A logic
analyzer that resides on one or more
board assemblies installed in a 16500,
1660-series, or 16600/700-series
mainframe.

Male-to-male Header A board
assembly that makes point-to-point
connections between the female pins
of a flexible adapter or transition
board and the female pins of an
analysis probe.

MICTOR Connector A high-density
matched impedance connector
manufactured by AMP Corporation.
High-density adapter cables can be
used to connect the logic analyzer to
MICTOR connectors on the target
system.

Monitor, In See Background

Debug Monitor.

Pod A collection of logic analyzer
channels associated with a single
cable and connector.

Preprocessor See Analysis Probe.

Preprocessor Interface See
Analysis Probe.

Probe Adapter See Elastomeric

Probe Adapter.

Processor Probe See Emulation

Probe.

Run Control Probe See
Emulation Probe and Emulation

Module.

Setup Assistant Wizard software
program which guides a user through
the process of connecting and
configuring a logic analyzer to make
measurements on a specific
microprocessor. The setup assistant
icon is located in the main system
window.

Shunt Connector. See Jumper.

Solution A set of tools for debugging
your target system. A solution
includes probing, inverse assembly,
the B4620B Source Correlation Tool

288

Glossary

Set, and an emulation module.

Stand-Alone Logic Analyzer A
standalone logic analyzer has a
predefined set of hardware
components which provide a specific
set of capabilities. A standalone logic
analyzer differs from a mainframe
logic analyzer in that it does not offer
card slots for installation of additional
capabilities, and its specifications are
not modified based upon selection
from a set of optional hardware
boards that may be installed within
its frame.

State Analysis A mode of logic
analysis in which the logic analyzer is
configured to capture data
synchronously with a clock signal in
the target system.

Subnet Mask A subnet mask blocks
out part of an IP address so the
networking software can determine
whether the destination host is on a
local or remote network. It is usually
represented as decimal numbers
separated by periods; for example,
255.255.255.0.

Symbol Symbols represent patterns
and ranges of values found on labeled
sets of bits. Two kinds of symbols are
available:
1) Object file symbols — Symbols
from your source code, and symbols

generated by your compiler. Object
file symbols may represent global
variables, functions, labels, and
source line numbers.
2) User-defined symbols — Symbols
you create.

Target Board Adapter A daughter
board inside the E5900B emulation
probe which customizes the
emulation probe for a particular
microprocessor family. The target
board adapter provides an interface
to the ribbon cable which connects to
the debug port on the target system.

Target Control Port An 8-bit, TTL
port on a logic analysis system that
you can use to send signals to your
target system. It does not function
like a pattern generator or emulation
module, but more like a remote
control for the target’s switches.

Target Interface Module A small
circuit board which connects the 50-
pin cable from an E5901A emulation
module or E5900A emulation probe
to signals from the debug port on a
target system. Not used with the
E5900B emulation probe.

TIM See Target Interface Module.

Timing Analysis A mode of logic
analysis in which the logic analyzer is
configured to capture data at a rate

 289

Glossary

determined by an internal sample
rate clock, asynchronous to signals in
the target system.

Transition Board A board
assembly that obtains signals
connected to one side and rearranges
them in a different order for delivery
at the other side of the board.

Trigger Specification A set of
conditions that must be true before
the instrument triggers. See the
printed or online documentation of
your logic analyzer for details.

1/4-Flexible Adapter An adapter
that obtains one-quarter of the
signals from an elastomeric probe
adapter (one side of a target
microprocessor) and makes them
available for probing.

290

Glossary

Index

 291

A

ABORT signal, 160
addresses

offset, 194
PC label, 227

Agilent Technologies B4620B
source correlation tool set, 3

Agilent Technologies E9495A
emulation solution, 2

analysis probe
definition, 285

analyzer modes, 153, 171
analyzer problems, 263

capacitive loading, 265
intermittent data errors, 263
unwanted triggers, 264

ASCII format (GPA), 252
assistant

See setup assistant

B

B4620B source correlation tool set,
3

background debug monitor, 285
branches, displaying, 218
breakpoints

tracing until, 248
bus control, AHB, 223

C

CD-ROM, installing software from,
119

characteristics, 283
inverse assembler, 284

checklist
setup, 21

chip selects, 160
clocks

qualified, and emulator, 239
slow, 247, 249, 280

colors, 218
comments, in GPA files, 260

configuration
checklist, 21

configuration files
loading, 183

configuring menus-logic analyzer,
155, 172

configuring the logic analyzer, 141,
142, 169, 181

connecting-to logic analyzer, 122
connecting-to target, 34, 86
connection

emulation module, 117
setup checklist, 21

connections, logic analyzer, 124
connector

JTAG, designing, 84, 112
connector board, 285
connector, MICTOR, 37, 87
connector-choosing a, 35, 86
connector-high density, 37, 87
connector-medium density, 40, 90
creating GPA symbol files, 252
custom probing

designing connectors, 121

D

debug mode, 285
debug mode-example, 203, 212
debug port, 285

definition, 285
directories

configuration files, 143, 182
source code, 228

display
bus control, 223

display filtering, 218
DMA signal, 160

E

elastomeric probe adapter
definition, 285

Emulation Control Interface

when to use, 232
emulation migration

definition, 285
emulation module

definition, 285
product numbers, 4

emulation probe
definition, 285

emulation solution, 2
See solution

endian mode, 160
enhanced inverse assembler

logic analyzer requirements, 31
equipment required, 25
equipment supplied

emulation module, 32
ordering information, 4
overview, 4

examples, measurement, 233
extender, 285

F

files
loading vs. installing, 118

filter
bus control, 223

filtering, display, 218
flexible adapter

definition, 286
floppy disks

duplicating, 183
flowchart

setup, 21
full solution, 2
FUNCTIONS in GPA format, 257

G

gateway address
definition, 286

General-Purpose ASCII format, 252
address format, 252
comments, 260

292

Index

FUNCTIONS, 257
record format summary, 254
record headers, 252
SECTIONS, 256
simple form, 252
SOURCE LINES, 259
START ADDRESS, 260
VARIABLES, 258

general-purpose flexible adapter
definition, 286

H

high-density adapter cable
definition, 286

high-density termination adapter
definition, 286

I

information sources, 6
installation, software, 113
intermodule measurement

creating, 236
intermodule measurement

problems, 279
an event wasn’t captured, 279
analyzer doesn’t stop, 239

Invasm menu, 154
inverse assembler

definition, 286
loading, 154
loading files, 143, 144, 182, 183
microprocessors supported, 284
operating characteristics, 284
probing for "IA-only", 121
requirements for enhanced, 31
unloading, 154

inverse assembly
displays, 233

IP address
definition, 286

J

JTAG
designing connector, 84, 112

jumper, definition, 286

L

labels
definition, 286

link-level address
definition, 287

listing window, 216
listing windows, 233
Load menu, 154
loading configurations, vs.

installing, 118, 143
logic analyzer

trigger setup, 191
logic analyzers

16600A and 16700-series, 22
configuring, 143, 144, 182, 183
software version requirements,

31
logic analyzers-compatible, 25

M

mainframe logic analyzer
definition, 287

male-to-male header
definition, 287

measurement examples, 233
measurements-making common,

197
memory map, 156
microprocessors supported, 4
MICTOR, 37, 87
MICTOR connector, definition, 287
minus sign in listing, 224
monitor, background debug, 285

O

object module file symbols, 165
offset, address, 194
online configuration help, 22
operating characteristics

inverse assembler, 284

P

passive probing, 121
path, source file, 228
PC label

see software addresses
pods, logic analyzer, 287
power on/power off sequence, 114
predefined triggers, 187
preprocessor

See analysis probe
preprocessor interface

See analysis probe

problems
inverse assembler, 261
logic analyzer, 261
triggering, 261

processor support package, 119
processors supported, 4
program symbols, 165

R

record format, General-Purpose
ASCII, 254

record headers, 252
references, 6
run control tool

See emulation control interface

S

Section Format, 252
SECTIONS in GPA format, 256
Setting Up the Logic Analysis

System, 113
setup assistant, 22

Index

 293

definition, 287
setup checklist, 21
show states of type, 223
signal availability-impact of, 271
signal requirements-for ARM

inverse assembly, 42, 90
signal-to-connector mappings-

ARM, 54, 102
signal-to-connector mappings-

AMBA, 69
skid, reducing, 237
slow clock message, 247, 249
software

installing, 113
list of installed, 145
requirements, 31

software addresses, 227
software analyzer, 220, 224
software requirements, 31
solution

definition, 287
solutions

equipment required, 32
product numbers, 4

source code
displays, 233

source correlation, 25
using, 225

source correlation tool set, 3
source file search path, 228
SOURCE LINES in GPA format,

259
Source Viewer window

blank, 225
see also source correlation, 225

stand-alone logic analyzer
definition, 288

START ADDRESS in GPA format,
260

state analysis, 288
definition, 288

state symbols, 221, 224

store qualify wait states-example,
204, 213

subnet mask
definition, 288

symbol files
creating, 252

symbols, 163
definition, 288
object file, 165
object module file, 165
predefined, 164
program, 165

T

target board adapter
definition, 288

target control port, 288
target interface module (TIM)

definition, 288
target system

power sequence, 114
The, 22
timing analysis, 288

definition, 288
timing, mode of operation, 153
trace

missing display, 264
transition board

definition, 289
trigger

emulation module, 234
on break, 242
predefined, 187
predefined, viewing, 190
sequence, 187
source code, 193
unwanted, 264

trigger function, 191
trigger sequence, 192
trigger specification

definition, 289

trigger-example of setting, 198,
206

triggering
ARM data, 191

triggering-ARM data, 195
troubleshooting-inverse assembler,

266

V

variable write-16-bit example, 200,
208

variable write-example, 207
VARIABLES in GPA format, 258
versions

logic analyzer software, 31
viewing-ARM data, 216, 229

W

WAIT signal, 160
web sites

Agilent logic analyzers, 6
See Also under debugger names

wizard
See setup assistant

294

Index

Agilent Technologies
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

© Copyright Agilent Technologies
Company 1994-2001
All Rights Reserved.

Reproduction, adaptation, or
translation without prior written
permission is prohibited, except
as allowed under the copyright
laws.

Restricted Rights Legend

Use, duplication, or disclosure by
the U.S. Government is subject to
restrictions set forth in
subparagraph (C) (1) (ii) of the
Rights in Technical Data and
Computer Software Clause in
DFARS 252.227-7013.
Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94303-0870 U.S.A.
Rights for non-DOD U.S.
Government Departments and
Agencies are set forth in FAR
52.227-19 (c) (1,2).

Document Warranty

The information contained in this
document is subject to change
without notice.

Agilent Technologies makes

no warranty of any kind with

regard to this material,

including, but not limited to,

the implied warranties of

merchantability or fitness for

a particular purpose.

Agilent Technologies shall not be
liable for errors contained herein
or for damages in connection with
the furnishing, performance, or
use of this material.

Safety

This apparatus has been designed
and tested in accordance with
IEC Publication 1010, Safety
Requirements for Measuring
Apparatus, and has been supplied
in a safe condition. This is a
Safety Class I instrument
(provided with terminal for
protective earthing). Before
applying power, verify that the
correct safety precautions are
taken (see the following
warnings). In addition, note the
external markings on the
instrument that are described
under "Safety Symbols."

Warning

• Before turning on the
instrument, you must connect the
protective earth terminal of the
instrument to the protective
conductor of the (mains) power
cord. The mains plug shall only be
inserted in a socket outlet
provided with a protective earth
contact. You must not negate the
protective action by using an
extension cord (power cable)
without a protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient protection.

• Only fuses with the required
rated current, voltage, and
specified type (normal blow, time
delay, etc.) should be used. Do
not use repaired fuses or short-
circuited fuseholders. To do so
could cause a shock of fire hazard.

• Service instructions are for
trained service personnel. To
avoid dangerous electric shock,
do not perform any service unless
qualified to do so. Do not attempt
internal service or adjustment
unless another person, capable of
rendering first aid and
resuscitation, is present.

• If you energize this instrument
by an auto transformer (for
voltage reduction), make sure the
common terminal is connected to
the earth terminal of the power
source.

• Whenever it is likely that the
ground protection is impaired,
you must make the instrument
inoperative and secure it against
any unintended operation.

• Do not operate the instrument
in the presence of flammable
gasses or fumes. Operation of any
electrical instrument in such an
environment constitutes a definite
safety hazard.

• Do not install substitute parts or
perform any unauthorized
modification to the instrument.

• Capacitors inside the
instrument may retain a charge
even if the instrument is
disconnected from its source of
supply.

Safety Symbols

Instruction manual symbol: the
product is marked with this
symbol when it is necessary for
you to refer to the instruction
manual in order to protect against
damage to the product.

Hazardous voltage symbol.

Earth terminal symbol: Used to
indicate a circuit common
connected to grounded chassis.

WARNING

The Warning sign denotes a
hazard. It calls attention to a
procedure, practice, or the like,
which, if not correctly performed
or adhered to, could result in
personal injury. Do not proceed
beyond a Warning sign until the
indicated conditions are fully
understood and met.

CAUTION

The Caution sign denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like, which, if not correctly
performed or adhered to, could
result in damage to or destruction
of part or all of the product. Do
not proceed beyond a Caution
symbol until the indicated
conditions are fully understood or
met.

!

Product Warranty

This Agilent Technologies
product has a warranty against
defects in material and
workmanship for a period of one
year from date of shipment.
During the warranty period,
Agilent Technologies will, at its
option, either repair or replace
products that prove to be
defective.

For warranty service or repair,
this product must be returned to
a service facility designated by
Agilent Technologies.

For products returned to Agilent
Technologies for warranty
service, the Buyer shall prepay
shipping charges to Agilent
Technologies and Agilent
Technologies shall pay shipping
charges to return the product to
the Buyer. However, the Buyer
shall pay all shipping charges,
duties, and taxes for products
returned to Agilent Technologies
from another country.

Agilent Technologies warrants
that its software and firmware
designated by Agilent
Technologies for use with an
instrument will execute its
programming instructions when
properly installed on that
instrument. Agilent Technologies
does not warrant that the
operation of the instrument
software, or firmware will be
uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not
apply to defects resulting from
improper or inadequate
maintenance by the Buyer,
Buyer- supplied software or
interfacing, unauthorized
modification or misuse, operation
outside of the environmental
specifications for the product, or
improper site preparation or
maintenance.

No other warranty is

expressed or implied. Agilent

Technologies specifically

disclaims the implied

warranties of merchantability

or fitness for a particular

purpose.

Exclusive Remedies

The remedies provided herein are
the buyer’s sole and exclusive
remedies. Agilent Technologies
shall not be liable for any direct,
indirect, special, incidental, or
consequential damages, whether
based on contract, tort, or any
other legal theory.

Assistance

Product maintenance agreements
and other customer assistance
agreements are available for
Agilent Technologies products.
For any assistance, contact your
nearest Agilent Technologies
Sales Office.

Certification

Agilent Technologies certifies that
this product met its published
specifications at the time of
shipment from the factory.
Agilent Technologies further
certifies that its calibration
measurements are traceable to
the United States National
Institute of Standards and
Technology, to the extent allowed
by the Institute’s calibration
facility, and to the calibration
facilities of other International
Standards Organization members.

About this edition

This is the Logic Analysis

Support for the ARM7/ARM9

User’s Guide.

Publication number
E2493-97007, August 2001
Printed in USA.

The information in this manual
previously appeared in

E2493-97006, May 2001
E2493-97005, August 2000
Printed in USA.

Many product updates do not
require manual changes, and
manual corrections may be done
without accompanying product
changes. Therefore, do not expect
a one-to-one correspondence
between product updates and
manual updates.

ARM and ARM7TDMI are
registered trademarks of ARM
Limited.

	Logic Analysis Support for the ARM7/ARM9
	Solutions for the ARM7/ARM9—At a Glance
	This book documents the ARM7/ARM9 Inverse Assembler
	If You Purchased an Emulation Solution
	For more information on an emulation solution
	Additional Equipment Included in an Emulation Solution
	Emulation Module and Emulation Probe
	Source Correlation Tool Set

	In This Book
	Related equipment
	Tips To Save You Time
	Use the Setup Assistant
	Use the appropriate Run button

	Additional Information Sources
	Equipment and Requirements
	Setup Checklist
	Setup Assistant
	Setup Flow Diagram

	Inverse Assembler
	Equipment supplied

	Additional Equipment Required
	Additional equipment supported

	Logic Analyzer Requirements
	To determine whether your logic analyzer is compatible

	Logic Analyzer Descriptions
	ARM bus system type and Agilent logic analyzer model compatibility
	Number of logic analyzer pods available (per analyzer)
	Number of logic analyzer pods required
	Logic analyzer software version requirements

	Emulation Solution
	Emulation solution

	Preparing the Target System for ARM Core and AMBA ASB
	Choosing a Connector Type
	High-Density Connectors
	Medium-Density Connectors
	Signal Requirements for ARM Core or AMBA ASB Inverse Assembly
	Required Signals
	M_CLK {B_CLK}
	ADDR[31:0] {B_A[31:0]}
	Chip Selects
	DATA[7:0] {B_D[7:0]}
	DATA[15:0] {B_D[15:0]}
	DATA[31:0] {B_D[31:0]}

	Strongly Recommended Signals
	nOPC {B_PROT0}
	MAS[1] {SIZE[1]}
	DMA {A_GNTx (an OR of all A_GNTx other than the processor)}

	Recommended Signals
	MAS[0] {SIZE[0]}
	nRW {B_WRITE}
	nEXEC {INSTEXEC (ARM9 only)}
	DBGACK {no AMBA ASB equivalent, must use core signal}

	Optional Signals
	nWAIT, nMREQ, SEQ {B_WAIT B_TRAN1 B_TRAN0}
	nTRANS {B_PROT1}
	ABORT {B_ERROR}
	(no core equivalent) {B_LAST}
	BIGEND {no AMBA ASB equivalent}

	ARM7/ARM9 Core Signal Details
	ARM7/ARM9 Core to AMBA ASB Signal Conversion
	ARM7/ARM9 Inverse Assembler STAT Pod Signals
	Additional Considerations

	Signal-to-Connector Mappings - ARM Core
	ARM core signal connector mappings for 8-bit bus systems
	ARM core signal connector mappings for 8-bit bus systems (continued)
	ARM core signal connector mappings for 8-bit bus systems (continued)
	ARM core signal connector mappings for 8-bit bus systems (continued)
	ARM core signal connector mappings for 16-bit bus systems (reduced address mode)
	ARM core signal connector mappings for 16-bit bus systems (reduced address mode) (continued)
	ARM core signal connector mappings for 16-bit bus systems (reduced address mode) (continued)
	ARM core signal connector mappings for 16-bit bus systems (reduced address mode) (continued)
	ARM core signal mappings for 16/32-bit bus systems
	ARM core signal connector mappings for 16/32-bit bus systems (continued)
	ARM core signal connector mappings for 16/32-bit bus systems (continued)
	ARM core signal connector mappings for 16/32-bit bus systems (continued)
	ARM core signal connector mappings for 16/32-bit bus systems (continued)
	ARM core signal connector mappings for 16/32-bit bus systems (continued)

	Signal-to-Connector Mappings - AMBA ASB
	AMBA ASB signal connector mappings for 8-bit bus systems
	AMBA ASB signal connector mappings for 8-bit bus systems (continued)
	AMBA ASB signal connector mappings for 8-bit bus systems (continued)
	AMBA ASB signal connector mappings for 8-bit bus systems (continued)
	AMBA ASB signal connector mappings for 16-bit bus systems (reduced address mode)
	AMBA ASB signal connector mappings for 16-bit bus systems (reduced address mode) (continued)
	AMBA ASB signal connector mappings for 16-bit bus systems (reduced address mode) (continued)
	AMBA ASB signal connector mappings for 16-bit bus systems (reduced address mode) (continued)
	AMBA ASB signal connector mappings for 16/32- bit bus systems
	AMBA ASB signal connector mappings for 16/32- bit bus systems (continued)
	AMBA ASB signal connector mappings for 16/32- bit bus systems (continued)
	AMBA ASB signal connector mappings for 16/32- bit bus systems (continued)
	AMBA ASB signal connector mappings for 16/32- bit bus systems (continued)
	AMBA ASB signal connector mappings for 16/32- bit bus systems (continued)

	Designing a JTAG Connector into Your Target System

	Preparing the Target System for AMBA AHB
	High-Density Connectors
	Signal Requirements for ARM AMBA AHB Inverse Assembly
	Single Master and Multiple Master Configurations

	Single Master Configuration
	Required Signals
	Optional Signals
	Other Signals Not Used for Inverse Assembly
	ARM AMBA AHB Signal Details — Single Master

	Multiple Master Configuration
	Required Signals
	Optional AHB Signals
	Other AHB Signals Not Used for Inverse Assembly
	ARM AMBA AHB Signal Details — Multiple Masters
	ARM AMBA AHB Inverse Assembler STAT Pod Signals

	Signal-to-Connector Mappings - AMBA AHB
	Signal-to-Connector Mappings — Single Master Configuration
	Signal-to-Connector Mappings — Multiple Master Configuration

	Designing a JTAG Connector into Your Target System

	Setting Up the Logic Analysis System
	Power-on/Power-off Sequence
	To power on Agilent 16700-series logic analysis systems
	To power on all other logic analyzers
	To power off

	Installing Logic Analyzer Modules
	Installing the Emulation Module
	Installing Software
	Installing and loading
	What needs to be installed
	Agilent 16700-series logic analysis systems

	To install the software from CD-ROM

	Probing the Target System
	Connecting the Logic Analyzer to the Target System
	Connecting the Logic Analyzer to the Target System
	To connect to a 16715/16/17/18/19A or 16750/51/52A logic analyzer (two cards)
	To connect to a 16715/16/17/18/19A or 16750/51/52A logic analyzer (one card)
	To connect to a 16710/11/12A logic analyzer (two card)
	To connect to a 16710/11/12A logic analyzer (one card)
	To connect to a 16603A logic analyzer
	To connect to a 16602A logic analyzer
	To connect to a 16601A logic analyzer
	To connect to a 16600A logic analyzer
	To connect to a 16554/55/56/57 logic analyzer (two- card)
	To connect to a 16554/55/56/57 analyzer (one-card)
	To connect to a 16550A logic analyzer (two card)
	To connect to a 16550A logic analyzer (one card)
	To connect to a 1671A/D/E logic analyzer
	To connect to a 1670A/D/E logic analyzer
	To connect to a 1661A/AS/C/CS/E/ES/EP logic analyzer
	To connect to a 1660A/AS/C/CS/E/ES/EP logic analyzer

	Configuring the 16700-series Logic Analysis System
	Configuring 16700-series Logic Analysis Systems
	To load configuration files (and the inverse assembler) from hard disk—16700-series logic analysi...
	To load configuration files (and the inverse assembler) from floppy disk—16700-series logic analy...
	To list software packages that are installed (16700-series logic analysis system)
	ARM7 core analysis configuration files
	ARM 7 AMBA ASB analysis configuration files
	ARM9 AMBA ASB analysis configuration files
	ARM AMBA AHB analysis configuration files

	Inverse Assembler Modes of Operation
	State mode
	To change to timing mode
	Disabling the cache

	To use the Invasm menu
	Loading the Inverse Assembler
	Unloading the Inverse Assembler

	Setting the Inverse Assembler Preferences
	Why the configuration is necessary
	To set the memory map preferences — ARM core and AMBA ASB
	Signals Dialog — ARM core and AMBA ASB
	Notes on the Signals Dialog

	To set AMBA AHB memory map preferences and signal information
	Memory Map Information
	Signal Information

	Symbols
	Predefined ARM Symbols

	Object File Symbols
	Requirements
	An accurate bus trace
	An inverse assembler
	A symbol file

	To use object file symbols in the 16700

	Configuring the 1660A/1670A/16500B/C-Series Logic Analyzer
	Analyzing the ARM7/ARM9 with a 1660/1670/ 16500B/C Logic Analyzer
	Configuring the Inverse Assembler
	Making Data Measurements

	Analyzer Modes
	State Mode
	Timing Mode

	Configuring Logic Analyzer IA Menus
	Signals Menu
	Notes on the Signals Menu
	Memory Map Menu
	Filter Menu

	Configuring the Logic Analysis System
	To load configuration and inverse assembler files— Agilent 16700 logic analysis systems
	To load configuration files—other logic analyzers

	Capturing Processor Execution
	Trigger sequence
	Predefined trigger terms
	To use predefined trigger terms
	To view the definition of the trigger term

	To Set Up Logic Analyzer Triggers
	Triggering on Symbols and Source Code
	To avoid triggering on prefetched instructions
	To correlate relocatable code using the address offset
	Triggering ARM Data on the 1660/70-series logic analyzers

	Making Common Measurements Using the Agilent 16700 Logic Analysis System
	Example 1: Setting a trigger for a specific address
	Example 2: Triggering on a write to a variable
	Example 3: Triggering on a 16-bit write to variable
	Example 3 Notes

	Example 4: Setting a trigger at exit of debug mode
	Example 5: Store qualifying wait states

	Making Common Measurements Using All Other HP/Agilent Logic Analyzers
	Example 1: Setting a trigger for a specific address
	Example 2: Triggering on a write to a variable
	Example 3: Triggering on a 16-bit write to variable
	Example 3 Notes

	Example 4: Setting a trigger at exit of debug mode
	Example 5: Store qualifying wait states

	Displaying Captured Processor Execution
	Viewing ARM Trace Data
	Display Filtering
	Display Filtering Dialog—ARM Core and AMBA ASB
	“Show access to” section
	“Show cycles of type” section
	State Symbols—ARM Core and AMBA ASB

	Display Filtering Dialog—AMBA AHB
	“Show access to” section
	AMBA AHB Show Bus Control
	“Show states of type” section
	State Symbols—AMBA AHB
	A minus sign (-) in the column to the left of the ARM instruction in the listing window indicates...

	Displaying Source Code
	Requirements for source correlation
	Inverse Assembler Generated PC (Software Address) Label
	Access to Source Code Files
	Source File Search Path
	Network Access to Source Files
	Source File Version Control

	Viewing ARM core or AMBA ASB Trace Data on the 1660/70-series logic analyzers

	Coordinating Logic Analysis with Processor Execution
	What are some of the tools I can use?
	Which assembly-level listing should I use?
	Which source-level listing should I use?
	Where can I find practical examples of measurements?
	Triggering the Emulation Module from the Analyzer
	To stop the processor when the logic analyzer triggers on a line of source code (Source Viewer wi...
	To stop the processor when the logic analyzer triggers (Intermodule window)
	To minimize the "skid" effect
	To configure the availability of DBGACK and DBGRQ
	To stop the analyzer and view a measurement

	Tracing until the processor halts
	To capture a trace before the processor halts

	Triggering the Logic Analyzer from the Emulation Module
	The emulation module trigger signal
	Group Run
	The intermodule bus signals can still be active even without a Group Run.
	Group Run into an emulation module does not mean that the Group Run will Run the emulation module.

	Debuggers can cause triggers
	To trigger the analyzer when the processor halts - timing mode
	To trigger the analyzer when the processor reaches a breakpoint

	General-Purpose ASCII (GPA) Symbol File Format
	General-Purpose ASCII (GPA) Symbol File Format
	GPA Record Format Summary
	SECTIONS
	FUNCTIONS
	VARIABLES
	SOURCE LINES
	START ADDRESS
	Comments

	Troubleshooting
	Logic Analyzer Problems
	Intermittent data errors
	Unwanted triggers
	No activity on activity indicators
	No trace list display
	Capacitive loading

	Inverse Assembler Problems
	No inverse assembly or incorrect inverse assembly
	Inverse assembler will not load or run

	Inverse Assembler Error Messages
	“IA Error - Address not in memory map”
	“IA Error - Search limited by depth”
	“Inverse Assembler Not Found”
	“No Configuration File Loaded”
	“Selected File is Incompatible”
	“Slow or Missing Clock”
	“Waiting for Trigger”

	Understanding the Impact of ARM Signal Availability
	LDR PC and LDM PC instructions without nMREQ
	Problems with literal pools and no nOPC signal
	SWP instructions without nRW, nWAIT and nMREQ
	Missing MAS[1] and incorrect memory map entries
	DMA accesses showing up as OPCODES or DATA
	Store qualification not storing states needed by the inverse assembler for proper operation

	Other problem scenarios
	The inverse assembler trace looks like there are several instructions being decoded for the same ...
	Some data fetches in the trace listing seem to be shown as instructions
	A data state is immediately repeated by another data state or an instruction fetch
	State symbols (*) for the unused prefetch states don’t seem be correct all of the time
	An extra extension state for an instruction fetch is seen when using reverse memory controller

	Intermodule Measurement Problems
	An event wasn’t captured by one of the modules
	“No Configuration File Loaded”
	“Selected File is Incompatible”
	“Slow or Missing Clock”
	“Waiting for Trigger”

	Specifications and Characteristics

	Glossary

