HEWLETT-PACKARD

HP 4951C Protocol Analyzer

HP 4951C Protocol Analyzer

Operating Manual

Manual Part Number: 04951-90753 Microfiche Part Number: 04951-90754 Printed in U.S.A. MARCH 1988

Warranty

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, HP will, at its options, either repair or replace products which prove to be defective.

For Warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterruped or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance. No other warranty is expressed or implied. HP specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

EXCLUSIVE REMEDIES

The remedies provided herein are buyer's sole and exclusive remedies. HP shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products. For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety Class

The HP 4951C is a Safety Class 1 instrument, provided with a protective earth terminal.

Safety Summary

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of this instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet international Electrotechnical Commission (EC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjust unless another person, capable of rendering first aid and resuscitation, is present.

USE CAUTION WHEN EXPOSING OR HANDLING THE CRT

Breakage of the Cathode-ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent CRT implosion, avoid rough handling or jarring of the instrument. Handling of the CRT shall be done only by qualified maintenance personnel using approved safety mask and gloves.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification of the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

Table of Contents

Chapter 1. Introducing the HP 4951C Protocol Analyzer

- 1-2 How To Use This Manual
- 1-3 Before You Get Started
- 1-4 Power Up and Installation
- **1-6** Front Panel Controls
- 1-8 The Top Level Menu
- 1-10 Rear Panel Features

Chapter 2. The Three Instrument Functions

- 2-1 Introduction
- 2-1 Things To Remember
- 2-3 I. Monitoring
- 2-4 Hookup
- 2-5 Setup
- **2-7** Setting Up Triggers
- **2-8** Running the Test
- 2-9 II. Simulating
- 2-10 Hookup
- **2-11** Setup
- **2-12** Simulate Menu Selctions
- **2-13** Running the Test
- 2-14 III. Bit Error Rate Tests

Chapter 3. Self Demonstration

- 3-1 Introduction
- 3-2 Hook Up to the Pod
- 3-3 Setup
- 3-4 Program the Simulate Menu
- 3-5 Run the Simulate Program
- 3-6 Observe the Buffer

- 3-7 Running a Monitor Program
- 3-8 Observing the DTE Channel

Chapter 4. Auto Configure

- 4-1 How To Use Auto Configure
- 4-2 Auto Configure as a Starting Point
- 4-3 Bit Oriented Protocols
- 4-4 Character Oriented Protocols
- 4-5 IPARS
- 4-7 Auto Configure Assumptions
- 4-8 Auto Configure Error Messages
- 4-9 Auto Configure Operating Characteristics

Chapter 5. The Setup Menus

- 5-1 How Setup Controls Other Menu selections
- 5-3 The Bit Oriented Menus
- 5-13 The BSC Menu
- 5-16 The Char ASYNC/SYNC Menu
- 5-18 Char Async/Sync Definitions
- 5-19 Using Char ASYNC/SYNC
- 5-22 Capturing Unknown Data
- 5-25 Unusual Protocol Settings

Chapter 6. The Monitor and Simulate Menus

- 6-1 Differences Between Monitor and Simulate Menus
- 6-2 Programming
- 6-3 Triggering
- 6-4 Triggering on Characters
- 6-8 Triggering on Errors, Leads, Timers
- 6-10 Combining Triggers
- 6-12 Measuring Time Between Triggers
- 6-14 Counting Events -- <INC CTR>
- 6-15 Testing Status -- <IF>
- 6-17 Marking Trigger Events
- 6-21 Transmitting Characters -- <SEND>

- 6-29 Delaying Output -- <WAIT>
- 6-30 Error Messages Status Messages

Chapter 7. The Run Menu

- 7-1 Monitoring On-Line
- 7-2 Monitoring From Buffer
- 7-3 Running Simulation Running BERT
- 7-4 Run-Time Softkeys
- 7-5 Run-Time Messages
- 7-6 Displaying Data

Chapter 8. The Examine Data Menu

- 8-1 Viewing the Buffer
- 8-2 Uses for the Examine Data Menu
- 8-4 Softkeys
- 8-5 Displaying Data
- 8-6 X.25 in Frame & Packet Display Format
- 8-8 Finding Unknown Protocols
- 8-11 Error Messages

Chapter 9. Bit Error Rate Tests (BERT)

- 9-1 Definitions
- 9-2 BERT Menu Softkeys
- 9-3 BERT Menu Selections
- 9-4 Running a BERT Test
- 9-5 Data Display Definitions
- 9-6 Requirements
- 9-6 Error Messages
- 9-7 Examples

Chapter 10. The Remote Menu

- **10-1 Remote Operations**
- 10-2 Using the HP 5951C as a Controller
- 10-4 Using the HP 4951C as a Slave
- **10-6 Ending Remote Operations**
- **10-7** Handshaking Requirements
- **10-8 Slave Error Messages**

Chapter 11. Mass Storage

- **11-1** How to use the Disc Drive
- 11-5 The Mass Store Menu
- 11-8 How to load data into the Buffer
- **11-8** Loading file larger than the Buffer
- 11-9 AUTOAPPLIC
- 11-9 What you can store on Disc
- **11-9** How to store to Disc
- **11-10 Storing to Disc directly from the line**

Chapter 12. Reset and Self Test

- 12-1 The Reset Softkey
- 12-2 Setup Menu Defaults
- 12-4 The Self Test Menu

Chapter 13. ASCII Printer Output

- 13-1 Introduction
- 13-2 Hookup
- **13-3** Loading The Application
- 13-4 Setup
- 13-7 Execution
- 13-8 Error Messages
- **13-9** How the Printer Displays Characters
- 13-11 Examples Of Printed Output

Chapter 14. Examples

- 14-1 Measuring a single RTS-CTS Delay
- 14-2 Monitoring a DCE Monitoring a DTE
- 14-3 FOX Message
- 14-4 Counting Parity errors
- 14-5 Measuring more than one RTS-CTS Delay
- 14-7 Simulating RTS-CTS Delay
- 14-9 Loopback
- 14-11 End-To-End: Transmit First
- 14-13 End-To-End: Receive First

Chapter 15. The Interface

- 15-1 Introduction
- 15-3 Pod Installation
- 15-5 The HP 18179A Interface Pod
- 15-8 The HP 18180A
- 15-11 The HP 18174A
- 15-13 The HP 18177A/G

Chapter 16. JIS Option

- 16-1 Using the JIS Option
- 16-1 The Setup Menu
- 16-2 Monitor/Simulate Menu
- 16-2 Run Menu and Examine Data
- 16-3 Auto Configure
- 16-4 JIS-7 Character Conversion Table
- 16-8 JIS-8 Character Conversion Table
- **16-12 EBCDIK Character Conversion Table**

Chapter 17. Async Terminal Emulator

- 17-1 Equipment Supplied Applications
- 17-2 Features
- 17-3 Specifications
- 17-4 Getting Started
- 17-5 Terminal Setup
- 17-7 Operation
- 17-8 Making A Working Copy
- 17-10 Hardware Handshake Software Handshake

Appendix A. Error Messages

Appendix B. Specifications

B-3 Operating Characteristics

Appendix C. Accessories

- C-1 Accessories Supplied
- C-2 Accessories Available Options

Appendix D. OSI Level 2 and 3 Tables

- D-1 Level 2: The Data Link Interface
- D-2 Types of BOP Frames
- D-3 Unnumbered Format Commands Unnumbered Format Responses
- D-4 Sample Monitor Menu Triggers
- D-5 Level 3
- D-6 Data Packets

Appendix E. Service Information

- E-2 Power Cable
- E-4 Adjustments Performance Verification
- E-5 Disc I/O Test
- E-7 Keyboard Test
- E-8 Interface Pod Test
- E-9 Display Test
- E-10 Packaging

Appendix F. External Video Output

F-1 What is RS-170? Useage Recommended Video Monitors

Appendix G. Data Code Tables

- G-2 ASCII Character Conversion Table
- G-5 EBCDIC Character Conversion Table
- G-11 Baudot Character Conversion Table
- G-12 EBCD Character Conversion Table
- G-14 Transcode Character Conversion Table
- G-15 IPARS Character Conversion Table

Index

Printing History

Each new edition of this manual incorporates all material updated since the previous edition. Manual change sheets are issued between editions, allowing you to correct or insert information in the current edition.

The part number on the back cover changes only when each new edition is published. Minor corrections or additions may be made as the manual is reprinted between editions

First Edition......May 1987

Introducing the HP 4951C Protocol Analyzer

The HP 4951C is a portable, data communications protocol analyzer that contains the essential features required to install, maintain and design data networks up to 19.2 kbps. Here are some unique features:

Auto Configure. Automatically determine line parameters and begin monitoring.

Post-Processing. Use captured data repeatedly for new measurements.

Softkey guided measurements. Simplifies setup and programming.

Full ASCII keyboard. Enter all control or hex characters.

Nonvolatile memory. 32 Kbytes for storing data line information. Additional 8 Kbytes for storing menus and programs.

Five display formats. DTE Only, DCE Only, Two Line (DTE and DCE), Data & State (DTE and DCE with lead transitions), Frame & Packet (decoding of level 2 and 3).

Remote. Transfer data, setups, monitor and simulate menus, timers and counters over a data link.

BERT. Measure bit error rates, block errors, and percent error free seconds.

Disc Storage. Mass storage of data, setups, programs, and measurements.

Printer Output. Print data, monitor and simulate programs, setup and test results. Access printer from rear panel RS-232 port or interface pod.

External Video Driver. Display real time data, buffer data, menus and programs on external monitor using rear RS-170 port.

This manual is in two parts. **Part I** tells how to operate the HP 4951C: Use this part on the first day. **Part II** describes the menus in detail; Use this part after you are familiar with Part 1.

PART I GETTING STARTED

- Chapter 1 Learning the Controls -- Describes the HP 4951C controls including power up and installation, front panel controls, the top level menu, and rear panel features.
- Chapter 2 **The Three Instrument Functions --** Shows you how to perform the three HP 4951C functions: **Monitoring**, **Simulation**, and **Bit Error Rate Tests -** (BERT tests).
- Chapter 3 A Self Demonstration -- You learn by actual operation.

PART II THE MENUS

Chapters 4 through 12 explain each menu in detail by following the order of the **Top Level** softkeys. The Top Level Menu (page 1-8) accesses all instrument functions. To access the Top Level Menu at any time, press EXIT.

MANUAL CONVENTIONS

Softkeys are enclosed by <> . Hardkeys are capitalized.

Before You Get Started

Initial Inspection. Inspect the analyzer and accessories for any physical damage sustained in transit. Ensure that you have received all the items that should accompany the analyzer (Refer to Accessories Supplied in Appendix C). If accessories are missing or if the unit is received in a damaged condition, notify the nearest HP Sales and Support Office and file a claim with the carrier.

Line Voltage Selection. Before connecting any ac power, be sure the line voltage for your area is between 100 - 240 Vac +-10% at 48 to 66 Hz. There is **no** line voltage selection. To change the fuse, refer to Appendix E.

Grounding Requirements. The HP 4951C is equipped with a three-conductor power cable which, when connected to an appropriate power outlet, grounds the analyzer. To preserve this protection, do not operate the analyzer from a line power outlet that has no ground protection.

Power Cord. The power cord packaged with each analyzer depends on its destination. Appendix E has a chart of power cord plugs matched to different areas. If the analyzer has the wrong power cord for the area, contact your HP Sales and Support Office.

Shipment. Refer to Appendix E for packaging information. If your analyzer is being returned for service, contact the nearest HP Field Repair Center or Sales and Support office for complete shipping instructions.

Introduction

Power Up and Installation

TURNING THE HP 4951C ON

WARNING

Do not plug in the instrument until you are sure the line voltage is correct: 100/240 VAC +-10% at 48/66 Hz.

Connect the ac power cord to the HP 4951C power cord connector and then to the ac line connector. Set the power switch on the rear panel to the on (1) position.

Self Tests. If your instrument displays the Top Level Menu after power-on, you can be confident that internal circuits (except disc drive and interface pod) are working correctly. Refer to Appendix E for complete information on performance verification procedures.

CONNECTING THE POD

CAUTION

Always turn the instrument off before connecting or disconnecting the pod.

Connect the interface pod cable to the interface pod connector on the rear panel (See Figure 1-3). Tighten the connector screws so that the cable will not pull off during operation.

TURNING THE HP 4951C OFF

CAUTION

Always go to the top level menu before turning the instrument off.

Set the power switch on the rear panel to the off (0) position.

The HP 4951C contains a battery for maintaining current data and menu setups after turn off. However, if you turn off the analyzer at certain times (e.g., during a run)

data or setups may be destroyed. A message to this effect then appears, and the analyzer resets itself automatically. To ensure that menus and setups are saved after turn off, always go to the Top Level Menu before turning the analyzer off. If you do not wish to save the menus and data, press <Reset> in the Top Level Menu to clear the memory and return to default settings. See Chapter 12.

HOOKUP

Hookup directions for monitoring, simulating and BERT are given in Chapter 2. BERT hookup is also shown in Chapter 9.

Front Panel Controls

KEYBOARD

The HP 4951C has a full ASCII keyboard. The following keys have special functions (See Figure 1-1):

SOFTKEYS The six function keys directly under the display. The label of each key, shown at the bottom of the display, changes for each menu and field. Except when entering keyboard characters, use the softkeys to enter all parameter selections. CURSOR KEYS The four arrow keys which move the cursor. EXIT Accesses the Top Level Menu. During a run, EXIT is a halt key. In some menus like BERT and Mass Store, you must press EXIT twice. MORE Accesses additional softkeys whenever more are available. SHIFT Selects lower-case characters when pressed with another key. CNTL Selects a control character (upper label on keycaps) when pressed with another key. **BTN** Moves the cursor to the next lower field (same as cursor down). DISPLAY The 5 inch display shows 16 lines of 32 characters. Softkey labels occupy the bottom two lines.

Learning the Controls

Figure 1-1. Front Panel Controls

The Top Level Menu

The Top Level Menu (Figure 1-2) accesses all instrument functions. The Top Level Menu is displayed whenever the instrument is turned on. Press EXIT to access the Top Level Menu. Press MORE to see the other Top Level softkeys. Top Level softkeys are described below.

Auto Conf	Automatically configure to line parameters (when monitoring on-line).		
Set Up	Manually configure to line parameters.		
Monitor	Select monitoring measurements and triggers to analyze data.		
Simulate	Select simulation measurements, triggers and send data.		
Run Menu	Run monitor tests, simulation tests, or BERT tests.		
Examine Data	Display data stored in the buffer or on disc.		
Bert Menu	Configure Bit Error Rate Test parameters.		
Remote	Transmit and receive menus and data to another HP 4951, or to a 4955A or a 4953A.		
Mass Store	Control disc functions.		
Reset	Reset all menus to their default conditions and clear the buffer.		
Self Test	Perform self-test procedures.		

Learning the Controls

4951
Protcol Analyzer
Rev. X.X ©hp 1986
Auto Conf Up itor Late Menu Data E

>	Auto-	Setup	Monitor	Simulate	Run	Examine	- >
1	Config				Menu	Data	1
[MORE]						[MORE]	
1	BERT	Remote	Mass		Reset	Self	1
<	Menu		Store			Test	• < • •

Figure 1-2. The Top Level Menu

Rear Panel Features

Here is a description of the HP 4951C rear panel features.

LINE SWITCH Press the side of the line switch to turn the instrument on. Press the other side of the line switch to turn the instrument off.

REMOTE/PRINTER Use this connector to connect the HP 4951C in Remote Mode either as a controller or a slave unit. Refer to Chapter 10.

Also use this connector to connect an ASCII printer through which you can print display data. Refer to Chapter 13.

INTERFACE POD The interface pods are connected to this connector.

EXT VIDEO This connector lets you connect an external video monitor to the HP 4951C. The video output follows RS-170 conventions. Refer to Appendix F.

Figure 1-3. Rear Panel Features

Three Instrument Functions

The Three Instrument Functions

Introduction

This chapter describes the three basic functions of the instrument: **Monitoring**, **Simulating**, and **Bit Error Rate Tests**. For more information on these topics, or on any Top Level softkey, go to the chapter by that title.

After looking over this chapter, you may want to go right on to Chapter 3, which leads you through monitoring and simulating exercises with the instrument.

Things To Remember

The Top Level Menu accesses all other menus. EXIT will access the Top Level Menu at any time. In some menus you must press EXIT twice.

EXIT acts like a halt key during program execution. EXIT stops execution and accesses the Top Level softkeys.

Press MORE to see any additional softkeys in any menu. A small vertical "more" at the lower right of the display prompts you whenever there is another softkey set in any menu.

Always go to the Top Level Menu before turning the analyzer off. This ensures that setups, data, and programs are saved in non-volatile memory.

Always turn the analyzer off before connecting and disconnecting the pod.

THE THREE INSTRUMENT FUNCTIONS

I. Monitoring

On-Line. Using Auto Configure or the correct manual setup, you can bridge into most data lines and begin observing the activity.

From Buffer. After having monitored the line for a few seconds, you will have captured data in the buffer memory. Once you have data in the buffer, you can repeatedly run any monitoring measurements, just as if you were monitoring on-line. You can also load the buffer from disc. This "Post-processing" lets you try many different measurements on the same data.

II. Simulation

You can substitute the HP 4951C for any DTE (Data Terminal Equipment) or DCE (Data Communications Equipment) on the line, performing measurements while you transmit and receive strings of data characters. The HP 4951C continuously monitors both channels while monitoring on-line or simulating.

III. Bit Error Rate Tests (BERT)

This function lets you determine the data link quality. You can find bit and block errors, error seconds, and percent error free seconds.

I. Monitoring

The HP 4951C is a "window" through which you can observe the activity on a data link. The HP 4951C lets you trigger on events and make measurements either on-line, or from the buffer memory. By monitoring from buffer memory, you can repeatedly post-process/review data after a run. This can be especially advantageous for "glitch" or "after hours" type problems that do not occur "on demand".

SUMMARY OF MONITORING STEPS (Described on the following pages)

1.	Hookup	Bridge the HP 4951C into line to be monitored.
2.	Setup	Using either Auto Configure or the Setup Menus, configure the HP 4951C to the line.
3.	Triggering	Set up any triggers or test conditions using the Monitor Menu. You need make no entries in the Moni- tor Menu. If you don't use the Monitor Menu, go directly to step 4.
4.	Running	Begin monitoring by accessing the Run Menu. The HP 4951C begins non-selectively displaying line data as soon as you enter the Run Mode.

STEP 1: HOOKUP

Bridge the HP 4951C into the line, <u>using the correct pod</u> (e.g., RS-232C/V.24, V.35, or RS-449) and cables, as shown below. If you already have data in the buffer from a previous run or via disc, you can monitor from buffer; and no pod is necessary. Always turn off the analyzer before connecting or disconnecting the interface pod.

Figure 2-1. Hookup for Line Monitoring

STEP 2: SETUP

Prior to monitoring, you must configure the HP 4951C for the line. You should do this first, because setup selections affect the ability to capture meaningful data from the line. Also, setup selections determine the available choices in other menus.

You can use either Auto Configure or the Setup Menus. Using Auto Configure, the HP 4951C automatically configures to the line and begins monitoring. You may also use the Setup Menus and then go to the Run Menu.

Using Auto Configure for Setup

Press <Auto Configure>, the HP 4951C identifies line parameters and begins monitoring.

At slow data rates, often times there is not enough data present for the HP 4951C to identify what's going on. Nor to allow the instrument to "lock onto" the setup for the line being monitored.

Two things can be done:

- 1: Have a large file sent on the line from the host device.
- 2: Hold the return key down on a terminal on the line being monitored to cause more data to be sent over the line.

To change the display format, or to modify any setup parameters, halt the run by pressing EXIT, and go to the Setup Menus (See Chapter 5).

In some nonstandard protocols, the HP 4951C may not be able to identify all the parameters. In that case, halt the run and modify the setup in the Setup Menus.

Using the Setup Menus for Setup

To manually configure the HP 4951C, or to modify Auto Configure results, press <Setup> on the Top Level Menu.

- 1. Select the appropriate protocol.
- 2. Change any parameter by moving the cursor to that field and pressing the desired softkey. See Chapter 5 for more details.
- 3. To begin monitoring, press EXIT and then <Run Menu>. Then press <Monitor Line>. The HP 4951C begins filling the buffer and displaying data.

What to Do When the Protocol is Nonstandard

If you have trouble configuring the analyzer because of a nonstandard protocol, or because of a defective line, use the following procedure.

- 1. Use Auto Configure to give you a starting point. See Chapter 4 for limitations.
- 2. Change the data code, or other parameters in the appropriate Setup Menu. See Chapter 5 if you need more details.
- 3. If some of the line data is still not meaningful, use the Char Async/Sync Setup Menu, as described in Chapters 5 and 8.

STEP 3: SETTING UP TRIGGERS

Optional Entry

You need make no entries in the Monitor Menu. You can go right to the Run Menu and begin monitoring.

Measurements in the Monitor Menu

If you just want to look at the data, you can go right to the Run Menu and begin monitoring. However, if you want to perform tests and analyze the data, the Monitor Menu gives you that capability. It might help to think of the Menu choices as a "logical programming language" for the HP 4951C which lets you control the manner in which the HP 4951C monitors the data.

Here's a summary of what the Monitor Menu can do:

Triggering	Define triggers with the <when> statement, enabling you to "look for" up to 63 events simultaneously. The HP 4951C will branch to another action upon finding a trigger.</when>	
Timing	Five timers measure intervals between triggers with 1 millisecond resolution.	
Counting	The HP 4951Cs' five counters can each count up to 9999 events.	
Conditional Actions	The <lf> statement performs actions conditionally, depending on the status of a counter or a lead at the time of the last trigger.</lf>	

To access the Monitor Menu, press <Monitor> in the Top Level Menu. Then utilize the softkeys to modify or "build" a custom menu.

STEP 4: RUNNING THE TEST

In Auto Configure, the HP 4951C automatically goes into the run mode and begins monitoring. Once Auto Configure has established the setup you can monitor the line or buffer on subsequent trials from the Run Menu.

If you are not using Auto Configure, press <Run Menu> on the Top Level Menu. To monitor on-line data, press <Monitor Line>. If data is already in the buffer from a previous run or from disc, press <Monitor Buffer> to do post processing. Monitoring on-line and monitoring from buffer are essentially the same processes.

When monitoring starts,

- 1. All counters and timers are reset to zero.
- 2. Any programs in the Monitor Menu begin executing.
- 3. Buffer data is displayed starting at data block 1.

STEP 5: HALTING THE RUN

Press EXIT to stop the test. The most recent data is displayed. You can freeze the display without halting the test by pressing <Stop Display>.

Changing Display Formats

To choose a different display format, halt the run and change the display format field in the Setup Menu. In HDLC, SDLC, and X.25, five formats are available: DTE, DCE, Two-Line, Data & State, and Frame & Packet. In the BSC and Char Async/Sync Menus, the Frame and Packet format is not available. See Chapters 7, and 8.

II. Simulating

The HP 4951C can take the place of either a DTE (Data Terminal Equipment) or DCE (Data Circuit-Terminating Equipment), by supplying clocks, data, and error checks in the selected data code and protocol.

SUMMARY OF SIMULATING STEPS (Described on the following pages)

1.	Hookup	Substitute	e the HP 4951C for either the DTE or DCE.
2.	Setup	Using eit configure	her Auto Configure or the Setup Menus, the HP 4951C to the line.
3.	Data, Triggers	Using the	Simulate Menu:
		a.	Select the device to be simulated: DTE or DCE.
		b.	Configure the interface, using the <set Lead> softkey.</set
		с.	Transmit the desired characters, using the <send> softkey.</send>
		d.	Use triggers, timers, etc., as in the monitor menu.
4.	Running	To begin chronous provided clocks are DCE.	simulating enter the Run Menu. In syn- setups, the ETC clock is automatically when simulating a DTE. The TC and RC e automatically provided when simulating a

STEP 1: HOOKUP

Disconnect the line and substitute the HP 4951C for the device (DTE or DCE) being simulated.

NOTE

Always turn off the analyzer before connecting or disconnecting the interface pod.

Remember that non-volatile memory saves setups, menus and data while the HP 4951C is turned off. Be sure to use the correct pod (RS-232C/V.24, V.35, or RS-449) and cables as shown below.

Figure 2-2. Simulation Hookup

STEP 2: SETUP

Use the Setup Menus to configure the HP 4951C to your system.

What If You Don't Know the Setup ?

You must know your system in order to simulate. However, you can find some parameters by observing the data line during monitor operation.

- 1. Hook up the HP 4951C for monitoring.
- 2. Use Auto Configure to find system parameters.
- 3. After monitoring for a few moments, go to the Examine Data Menu and look at the buffer data. To see the setup, press the <Timer & Counter> softkey.
- 4. Auto Configure selects SDLC for bit oriented protocols, and Char Async/ Sync for character oriented protocols. You must observe the data in the buffer to find the exact Level 2 and Level 3 protocol on your line.

Setup Notes

- If DTE clock, Bits/sec, and Sync/Async (Char Async/Sync Menu) selections are incorrect, no data can be received or displayed.
- Protocol, data code, and error checking must be correct to ensure response by the device at the other end.

STEP 3: SIMULATE MENU SELECTIONS (Data and Triggers)

Make the following entries in the Simulate Menu.

Select DTE or DCE

Determine whether the HP 4951C is to be a DTE or a DCE. The HP 4951C sends data on pin 2 for simulating a DTE and sends data on pin 3 for simulating a DCE.

Handshaking

Determine the handshaking requirements on the leads. Use the <Set Lead> softkey to turn the leads on or off at the desired time. The HP 4951C normally sets all leads "off" before a test. The device at the other end may not respond if the appropriate control leads are not turned on or off at the proper times.

Transmitting Data

Use the <Send> softkey to enter the characters to be transmitted, otherwise the HP 4951C only sends idles. You must know the protocol and polling sequences being used on your line to ensure correct responses.

Other Entries

You can also set triggers, count events, measure time intervals, etc., in the Simulate Menu (See Chapter 6).

STEP 4: RUNNING THE TEST

To execute a simulation program, use the Run Menu: Press <Run> on the Top Level Menu and select <Simulate>.

When simulation starts,

- 1. All counters and timers are reset to zero.
- 2. The HP 4951C turns on or off the leads as specified. Observe the pod LCDs or LEDs for lead activity, or use the Data & State display format.
- 3. The HP 4951C, acting like a DTE or DCE, sends out the specified data. Observe the pod LCDs or LEDs and the display.
- 4. In synchronous setups, the ETC clock is automatically provided when simulating a DTE. The TC and RC clocks are automatically provided when simulating a DCE. You must make the correct **clock source** setup selection to monitor the DTE line.
- 5. Line data and lead activity, from the HP 4951C and the other transmitting device, is stored in memory.
- 6. The display shows the data as it is stored in memory.

Press EXIT to stop the test. The last data loaded into memory is displayed. To execute the program again, press <Run Menu> on the Top Level Menu, and then <Simulate>.
III. Bit Error Rate Tests

Bit error rate tests measure the number of bit errors on a line: how often are "highs" changed to "lows", and vice versa. For more detailed descriptions see Chapter 9.

BERT STEPS

1. Hookup

- a. End-to-End. Substitute an HP 4951C for the DTE at both ends of the line. (Figure 2-3).
- b. Loopback. Substitute an HP 4951C for only one DTE and "loopback" the modem or terminal at the other end of the line. (Figure 2-4).

2. Setup

Press <BERT> on the Top Level Menu and make the appropriate selections. NOTE: Select EXT for bits/sec and no framing on synchronous systems.

3. Running

Press <Run Menu> on the Top Level Menu. In the Run Menu, press <BERT>. The HP 4951C begins transmitting and receiving, and the display shows test status. Press EXIT to halt the test.

"QUICK BROWN FOX" AND STARTUP TESTS

Use the Simulation Menu to perform these tests. See the examples in Chapter 14.

Figure 2-3. End-to-End BERT Hookup

Figure 2-4. Loopback BERT Hookup

The Three Instrument Functions

Self Demonstration

Introduction

This chapter is for those who learn best by doing. In this chapter you will use the Setup, Monitor, Simulate, and Examine Data Menus. Follow the steps to become familiar with your HP 4951C.

This chapter is optional. The HP 4951C with Auto Configure is easy to operate. Just hook it up to the line, press Auto Configure and begin monitoring. To make any measurement or change any setup, just press a softkey. The softkey labels prompt you with the next choice.

SUMMARY OF STEPS

- 1. Connect the HP 4951C to the Interface Pod.
- 2. Set up the HP 4951C for protocol, data code, and bit rate.
- 3. Simulate a DCE: Control the interface leads and transmit strings.
- 4. Run the simulate program.
- 5. Observe the captured, looped-back data in the buffer.
- 6. Run a monitor program from buffer.

STEP 1: HOOK UP TO THE POD

Turn off the HP 4951C. Connect the analyzer to the interface pod, as shown in Figure 3-1 below.

CAUTION

Always turn off the analyzer before connecting and disconnecting the pod.

Figure 3-1. Hooking Up An Interface Pod

STEP 2: SETUP

Switch the HP 4951C on. Press <More>. Press <Reset> in the Top Level Menu, this sets all menus to their default parameters. You do not normally need to do this. Most of the time, you will want to take advantage of the HP 4951C's nonvolatile memory, which saves setups and buffer data after turn-off. Use <Reset> here to ensure a common starting setup.

Press <Setup> in the Top Level Menu. Select **Char Async/Sync** as the Setup Menu by pressing <Char>. Use the cursor and return keys to change fields. Make sure your setup has the following parameter entries:

Code: ASCII 8	Bits/sec: <u>1200</u>
Mode: <u>Synchronous</u>	Display mode: <u>Data & State</u>
DTE clock: <u>DCE</u>	Suppress: <u>None</u>
Sync on: 1 ₆ 1 ₆	Err chk: None

STEP 3: PROGRAM THE SIMULATE MENU

In this step you program the analyzer to transmit characters and to turn on interface leads at the right time. In normal simulation, the correct leads must be set on and off, or the terminal on the other end of the line might not accept the message.

Press <Simulate> in the Top Level Menu. Use the cursor and return keys to change fields. Select **<DCE>** as the device to simulate.

Enter the following program.

Block 1:	Set Lead	<u>CD</u> <u>On</u>	This program causes the HP
	and then		4951C to repeatedly turn on
	Send S _Y S _Y S _X /	ABCDEE _X	lead CD and send the character
	and then		string ABCDE. The 200
	Wait	200	millisecond delay makes it
	and then		easier to see CD transitions.
	Set Lead	<u>CD</u> Off	
	and then		
	Wait	200	
	and then		
	Goto Block 1	1	

In character oriented protocols, you must explicitly enter the sync characters, such as ${}^{s}{}_{\gamma} {}^{s}{}_{\gamma}$, to ensure that the receiving device accepts the message. Use the CNTL key to enter control characters: CNTL "V" for ${}^{s}{}_{\gamma}$, CNTL "B" for ${}^{s}{}_{\chi}$, CNTL "C" for ${}^{E}{}_{\chi}$, etc.

STEP 4: RUN THE SIMULATE PROGRAM

Press <Run Menu> in the Top Level Menu, then <Simulate>. The HP 4951C begins transmitting the character string, displaying what it is transmitting, and then storing it in the buffer. The data appears as if it were coming from the line. Note the following features:

Pod with LCD Indicators (18174A, 18180A)

Four interface pod LCD indicators should be blinking: TC, RC, RD, and CD. If you were simulating a DTE (with DTE as clock source), the ETC, TD (DTE), and RTS leads would blink if programmed.

Pod with LED Indicators (18177A, 18179A Superpod)

Indicators for CD (a mark and a space) should alternate. TC and RC should be on. DCE space should flash when the message is "transmitted". CTS and DSR should have their mark indicators on.

DCE and DTE Displays

The Data & State display format shows both DTE and DCE data, as well as timing relationships on four interface leads. DCE data appears in inverse video and DTE data appears in regular video. Try changing display formats in the Setup Menu.

The <Summary> and <Stop Display> Softkeys

Press <Summary>. Without stopping the run, you can at any time review the setup and observe timer and counter activity. Press <Stop Disp>. This freezes the display, but does not halt the run.

Block Numbers

The buffer block numbers increase to 16 and then start over at 1. The buffer is a "circular buffer" and stores the last 16 blocks of information received. Once filled (16 blocks), it starts storing new information in block 1 again. A "block" of memory holds 2 K bytes of information (data, timing information, and lead status).

STEP 5: OBSERVE THE BUFFER

During a run, data is constantly being loaded into the buffer. Press EXIT to halt the run. Press <Exam Data> in the Top Level Menu to observe the buffer. Remember that the buffer only holds the last 16 blocks of information. Note the following features:

Display Format

Go to the Setup Menu at any time to change the display format.

Character Decoding

Move the cursor through the characters. Each character is decoded in binary, hex, and octal, and its parity bit is displayed.

Bit Shifting

Note "shift = 0" at the top of the display. Press MORE to show the
 shift> softkey. Because this is a character oriented protocol, you can shift bits up to one less than the size of the data code (e.g., six places in ASCII 7) while observing the change in the characters. This is useful in finding the correct character framing in unknown protocols.

Timer and Counter Display

Press <Timer & Cntr>. This shows you the setup and the state of the timers and counters at the end of the run.

STEP 6: RUNNING A MONITOR PROGRAM

Now that you have data in the buffer, you can repeatedly run monitor programs from buffer. Press <Monitor> in the Top Level Menu. Enter the following program:

Block	1:	When DCE <u>A</u>
		then goto Block 2
Block	2:	Start timer 1
		When DCE <u>G</u>
		then goto Block 3
Block	3:	Stop timer 1

This program measures the time interval between the start of the data string and the end.

Each timer statement is tied to the <When> trigger statement preceding it. This is the correct way to measure time. Time measurements must be referenced to a specific event with a preceding <When> trigger statement.

In Block 3 you could use "Stop Tests", which also stops the timer.

Go to the Run Menu and press <Monitor Buffer>. Data is now displayed, just as if you were running on-line.

In the Examine Data Menu press <Timers & Counters>. Timer 1 should show 40 msec (+/- 1 msec).

OBSERVING THE DTE CHANNEL

Up to now you have been able to observe what you are sending on the DCE channel because the HP 4951C always displays what it is sending.

To observe both channels, you can loop the DCE channel to the DTE channel. Use one of the small jumper wires supplied with the instrument to connect pin TD (DTE) on the interface pod to pin RD (DCE). Press <Run Menu> and then <Simulate>. You should now see DTE data (regular video) mixed with DCE data (inverse video).

4

Auto Configure

How To Use Auto Configure

Hook up the analyzer to the line for monitoring (Refer to Figure 2-1 for 'hook up' instructions). Press the <Auto Configure> softkey on the Top Level Menu. It's as simple as that!

The HP 4951C briefly displays its parameter selections in either the SDLC or the Char Asyn/Syn Setup Menu. Then it automatically goes into the Run Mode and begins monitoring. You may at anytime press the <Summary> softkey to review the Setup results.

To change the display format, or any other setup parameter, halt the run by pressing EXIT, and then go back and modify the setup in the Setup Menu. Go to the Run Menu to again start the run.

NOTE

Auto Configure alters the Setup Menu and the buffer data; so if you need the present setup and buffer data, save them on disc.

If unable to autoconfigure, the HP 4951C may not have seen enough data to make a good decision as to what's going on. Try these two suggestions to enable the HP 4951C to "lock on":

Have a large file sent from the host device to the device being monitored.

Hold the return key down on the terminal or device being monitored.

Auto Configure as a Starting Point

Auto Configure works on most lines, with most protocols and data codes. Sometimes, however, there are nonstandard protocols where Auto Configure is unable to find all the parameters. The Setup Summary that appears before monitoring in Auto Configure tells you the missing parameters. You can then go to the appropriate Setup Menu and select the correct parameters, using the procedure on page 8-8. If Auto Configure has found all the parameters, but the data does not make sense, try another data code of the same size (e.g., substitute ASCII 8 for EBCDIC). Even in the case of nonstandard protocols, Auto Configure gives you a starting point to capture data. See pages 5-22 and 8-8.

	Auto Configure Mode
Protocol	
Code	Err chk
Mode	Bits/sec
	Disp mode
Exit	Re-
	start

Figure 4-1. Auto Configure Display (before monitoring)

Bit Oriented Protocols

Auto Configure always selects SDLC for bit oriented protocols. Monitoring is always correct except in some cases of X.25, or HDLC with extended address and control. In these cases, the selected data code may be incorrect. Follow the procedures below.

Extended Address and Control in HDLC

To observe extended address and control on HDLC lines, go to the Setup Menu and change the protocol to HDLC. Turn on Extended Address and/or Extended Control, and change the display format to Frame & Packet. If the data does not make sense, try another data code.

Decoding Packets in X.25

To decode packet information on X.25 lines, monitor the line for a few moments to capture data in the buffer, or load the data from disc (Chapter 11). Then go to the Setup Menu and change the protocol to X.25. Change the display format to Frame & Packet. Go to the Examine Data Menu and observe the buffer data. If the data does not make sense, try another data code.

Packet information is automatically decoded in the Examine Data Menu using the Frame & Packet display format. See page 8-6.

Character Oriented Protocols

Auto Configure always selects Char Asyn/Sync for character oriented protocols. The HP 4951C finds the sync characters, data code, bit rate, etc., of most character oriented protocols.

Auto Configure and BSC

Because Auto Configure always selects Char Asyn/Syn for all character oriented protocols, you must determine the exact protocol from the parameters displayed. For example, standard BSC using EBCDIC data code would look like Figure 4-2.

Unlike standard BSC, Char Async/Sync allows full duplex operation. You can determine whether the line is standard, half duplex BSC by looking at the run-time or Examine Data display. Full duplex data looks like Figure 7-7; half duplex data looks like Figure 7-8.

Monitor/Simulate Parameter Setup

Protocol <u>Char Async/Sync</u>	
Bit order <u>LSB first</u>	Bit sense <u>Normal</u>
Code <u>EBCDIC</u>	Error Check <u>CRC 16</u>
Parity <u>None</u>	Start on S _H S _X Stop on E _X E _B E _X E _B
Transparent text char <u>None</u>	DTE clock <u>DCE</u>
Mode <u>Sync</u>	Bits/sec <u>9600</u>
Sync on 3 ₂ 3 ₂	Display mode <u>Data & State</u>
Drop sync <u>1</u> chrs after F _F F _F F _F F _F F _F F _F	Suppress <u>None</u>

Figure 4-2. Standard BSC Setup Determined by Auto Configure

IPARS -- Inverted Passenger Airline Reservation System

The Autoconfigure menu will not obtain all the parameters for IPARS. After Autoconfigure is complete go to the Setup menu and fill in the parameters that autoconfigure missed. See figure 4-3.

Note that Auto Configure does not always 'lock onto' the correct drop sync characters.

The most frequently used Drop sync characters used are ${}^{0}0^{3}F$. You may have to place those in the setup initially found by Auto Configure. An example setup menu is shown on the next page.

On standard IPARS, the bit sense is inverted (1's are changed to 0's and vice versa), and the bit order is reversed (MSB is sent first). When Auto Configure recognizes an IPARS protocol, it automatically inverts the bit sense and reverses the bit order before storing the data in buffer memory. Thus, the data can be easily read when it appears on the display.

In most IPARS protocols the data has a different bit order and bit sense than the sync characters. Auto Configure always sets the bit sense and order so the sync characters are ${}^{3}F^{3}E$ on the display. Thus, Auto Configure correctly captures and frames the data, but the displayed data may not make sense. Go to the Char Async/Sync setup menu and change the bit sense and/or bit order. Then look at the data again.

Monitor/Simulate Parameter Setup

Protocol <u>Char Async/Sync</u>	
Bit order <u>MSB</u>	Bit sense <u>Invrt</u>
Code IPARSO	Error Check <u>CRC 6</u>
Parity <u>None</u>	Start on $3_E^{} 3_E^{}$ (HEX)
	Stop on $0_D 1_D 2_D 3_D$ (HEX)
Transparent text char <u>None</u>	DTE clock <u>DCE</u>
Mode <u>Sync</u>	Bits/sec <u>2400</u>
Sync on 3 _F 3 _E (HEX)	Display mode <u>2 LINE</u>
Drop sync <u>0</u> chrs after 0 ₀ $3_F F_F F_F F_F F_F$	Suppress <u>None</u>

Figure 4-3. IPARS Setup Determined by Auto Configure

Figure 4-3 is a set up menu for three major airlines. The bits-per-second selection will vary for each of the networks. The same set up is used for simulation except that the data code should be set for **IPARS1** when the line idles in **1's** or **IPARS0** when the line idles in **0's**. Either of these selections may be used when monitoring this protocol.

Auto Configure Assumptions

Auto Configure makes the following assumptions. If one or more of the following requirements are violated, Auto Configure may select IPARS as the data code. If you know that your line does not use IPARS, check that your line data satisfies these requirements.

- 1. Both data and idle conditions must be present. Asynchronous protocols must have a minimum of two idle characters between messages.
- 2. A transmit (TC or ETC) clock (x1) must be present for synchronous data. In synchronous NRZI mode, the clock must be encoded with the data.
- 3. Synchronous character oriented protocols must have sync characters present at least once in a 50 to 100 character sequence; and the sync pattern must be preceded by two idle characters.
- 4. Auto Configure requires a variety of alphanumeric, control, and binary characters in the data. There must be non-repetitive data of different types for Auto Configure to make an identification. For example, if only lower case ASCII characters are sent, EBCD code might be selected.
- 5. There must be at least one "0" bit preceded and followed by a "1" bit, and one "1" bit preceded and followed by a "0" bit, in a 50 to 100 character sequence.
- 6. In bit oriented protocols, there must be at least one good Frame Check Sequence (FCS).
- 7. In bit oriented protocols, at least one frame must be less than 255 characters in length.

Auto Configure Error Messages

No data present: There is no line data. Both data and idle conditions must be present.

No Idles: There are insufficient idles on the line. Both data and idles must be present. Asynchronous protocols must have a minimum of two idle characters between messages.

No pod attached: The pod is not attached.

No Sync Characters: Could not find any of the sync characters listed on page 4-10.

Nonstandard Baud Rate: The bit rate is not within 5% of those listed on page 4-9.

Baud rate > 19200 bps: Auto Configure may work at higher rates.

Framing error: Could not find a "1" stop bit in an asynchronous protocol. This error may occur because a transmit clock (TC or ETC) is missing in a synchronous protocol. The HP 4951C assumes an asynchronous protocol, but cannot then find the stop bit.

Auto Configure Operating Characteristics

	BIT ORIENTED (SDLC)	CHARACTER (Synchronous)	CHARACTER (Async)
Mode	Sync, NRZI		Async (1 stop bit needed)
Code	ASCII 8, EBCDIC	ASCII 7, ASCII 8, EBCDIC, EBCDIC, Hex,6,7,8; IPARS (0 idle), IPARS (1 idle), Transcode	ASCII 7, ASCII 8, EBCD, Baudot
Parity		None, Odd, Even, Ignore	None, Odd, Even, Ignore
Err Chk	CRC-CCITT	None, CRC-6, CRC-12, CRC-16, LRC, (IPARS: CRC-6 only) (Hex: no error checking)	None, CRC-6, CRC-12, CRC-16, LRC
DTE Clock Source	DTE, DCE	DTE, DCE	
Speed (Wi	thin +/- 5 % , NRZI	within +/- 0.5%)	
	50, 75, 110, 134.5 150, 200, 300, 600, 1200, 1800, *2000, 2400, 3200, 3600, 4800, 7200, 9600, *12k, 14.4k, *16k, 19.2k (* not NRZI)	50, 75, 110, 134.5 150, 200, 300, 600, 1200, 1800, 2000, 2400, 3200, 3600, 4800, 7200, 9600, 12k, 14.4k, 16k, 19.2k	50, 75, 110, 134.5 150, 200, 300 600, 1200, 1800 2000, 2400, 3200 3600, 4800, 7200 9600, 19.2k

Auto Configure

	BIT ORIENTED (SDLC)	CHARACTER (Synchronous)	CHARACTER (Async)
Sync Chars	Flags (7E)	EBCDIC: 32 32 ASCII: 16 16 IPARS: 3F 3E Transcode: 3A 3A Hex: LSB of sync char must = 0 and both sync chars must be the same	
Transparent Text		EBCDIC: DL (10) ASCII: DL (10) Transcode: DL (1F) None	(Same as Synchronous)
Start BCC		EBCDIC: SX (02) or SH (01) ASCII: SX (02) or SH (01) Transcode: SX (0A) or SH (00)	(Same as Synchronous)
Stop BCC		EBCDIC: EX (03) or EB (26) ASCII: EX (03) or EB (17) Transcode: EX (2E) or EB (0F) Will not support ITB	(Same as Synchronous)
Bit Order	LSB 1st	LSB 1st,IPARS: MSB 1st	LSB 1st
Bit Sense	Normal	Normal, IPARS: Inverted	Normal
Idle Char	7E	FF, IPARS: FF or OO	FF

5

The Setup Menus

How Setup Controls Other Menu Selections

Setup, whether performed manually or via Auto Configure, determines some choices in the other menus. For example, error checking is performed during monitoring according to the current setup. The appropriate error checking characters are automatically appended to Send strings. Data is displayed in the Examine Data or Run Menus according to the current setup. See Chapter 7.

THE FIVE SETUP MENUS

Press <Setup> on the Top Level Menu to access the Setup Menus. Move the cursor to the Protocol field and select one of the following:

HDLC (bit oriented)	Allows extended address and control fields.
SDLC (bit oriented)	Allows NRZI synchronizing. This setup is always selected when Auto Configure recognizes a bit oriented protocol.
X.25 (bit oriented)	Packet information is decoded in the Examine Data Menu
BSC (character oriented)	Supports standard half duplex, character oriented BSC.
CHAR ASYNC/SYNC	May be used to configure to most protocols. This setup is always selected when Auto Configure recognizes a character oriented protocol.

WHEN TO USE THE SETUP MENUS

When monitoring on-line, Auto Configure can automatically configure the HP 4951C to most lines. Generally, however, use the Setup Menus for the following:

KNOWN LINE PARAMETERS. If you know what the line parameters are, manually configuring may be faster and more accurate than Auto Configure.

MONITORING FROM BUFFER. For post-processing, use the setup menus. You can of course, use an "auto configured" setup from a previous run. Setups remain even after power off, unless you press <Reset>.

CHANGING DISPLAY FORMATS. Auto Configure always uses the display format currently selected in the Setup Menu. Use the Setup Menus to change display formats.

SUPPLEMENTING AUTO CONFIGURE. Use the Setup Menus to modify any parameters after initial setup with Auto Configure.

SIMULATING. Use the Setup Menus to determine send string format.

SAVING SETUPS

NONVOLATILE MEMORY. To save menu setups and buffer data, turn off the power only when in the Top Level Menu. Otherwise, some settings may be destroyed.

DISC STORAGE. You can store Menus, or both Menus & Data, to disc. All menus except BERT are saved. See Chapter 11.

The Bit Oriented Menus

The three Bit Oriented Setup Menus are HDLC, SDLC, and X.25. Press <Setup> on the Top Level Menu and select HDLC, SDLC, or X.25.

To decode frames in bit oriented protocols, use Frame & Packet display mode. To decode X.25 packets, use the Examine Data Menu in frame & packet format.

The Bit Oriented Setup Menu, and the softkey options, are shown on page 5-5. Asterisks indicate differences between the three protocols. The default parameter selections, which appear after <Reset>, are listed in Chapter 12.

In Bit Oriented Setup, the HP 4951C performs automatic zero bit insertion/extraction.

HDLC and SDLC PROTOCOLS

Except for the following differences, HDLC and SDLC have the same format.

- 1. HDLC allows Extended Address and Control fields.
- 2. SDLC allows either normal Sync Mode or NRZI Sync.

X.25 PROTOCOL

X.25 is the same as HDLC except for allowing ISO Level 3 (network) data to be placed in the information field of Information Frames. Use the X.25 menu when monitoring or simulating X.25 lines. The Examine Data Menu decodes packets in Frame & Packet display format. See Chapter 8.

Monitor/Simulate Parameter Setup Protocol SDLC Code ASCII 8 Err chk CCITT Parity None Mode Sync DTE clock DCE Bits/sec 9600 Disp mode D & S HDLC SDLC X.25 BSC Char

Figure 5-1. SDLC Setup Menu

BIT ORIENTED PROTOCOL SETUP MENUS

(* used only in HDLC) (** used only in SDLC)

Protocol [HDLC] [SDLC] [X.25]		
* Ext Addr [Off] [On]	* Ext Ctrl	[Off] [On]
Code [ASCII 8] [Hex 8] [EBCDIC]	Err chk	CCITT
Parity None	DTE clock	[DCE] [DTE]
Mode Sync ** [Sync NRZI]	Bits/sec	[19200] [3600] [200] [16000] [9600] [3200] [150] [14400] [7200] [2000] [134.5] [12000] [4800] [1800] [110] [Teletext] [2400] [600] [75] [1200] [300] [50]
	Disp mode	[Two Line] [Data & State] [DTE only] [Frame & Packet] [DCE only]

BIT ORIENTED MENU DEFINITIONS

- EXT ADDR (HDLC) HDLC allows an extended address field. When an additional address octet (byte) is to follow, the first or least significant bit of the address octet is set to 0. The last address octet in a series has the LSB set to 1.
- EXT CTRL (HDLC) HDLC allows a 16-bit control field to handle larger N(S) and N(R) counts.
- CODE The bit-oriented menus allow ASCII 8, EBCDIC or, using Hex 8, any 8-bit code.
- MODE All bit-oriented protocols are synchronous: the data is transmitted with a clock. In NRZI (SDLC only) the clock is encoded within the data.
- DTE CLOCK DTE data can be synchronized to either a DCE or DTE clock. If this selection is incorrect, only DCE data will be displayed.
- DISP MODE All five display formats are available for the bit oriented menus. The Frame & Packet format decodes all control field bits. In addition, when viewing the buffer in this format, packet information is also decoded. See Chapters 7 and 8 for examples of the different types of displays.
- BITS/SEC Except for NRZI, all the selections shown on page 5-5 are supported. NRZI may not work at 16000, 12000, and 2000 bps. In Teletext, the DTE sends at 75 bps, and the DCE sends at 1200 bps.

HINTS FOR SETTING UP BIT ORIENTED LINES

Observe the Pod

The pod LCDs or LEDs marked DTE and DCE should be flashing. Except in the case of NRZI sync, there should also be clock activity.

Use Auto Configure

Use Auto Configure for initial setup. If the data is bit oriented, Auto Configure always selects SDLC as the protocol. You will have to change protocols in the following cases.

1. HDLC with Extended Address or Control. Change the protocol to HDLC with the following setup:

Ext Addr and/or Ext Ctrl: On Disp mode: Frame & Packet

2. X.25 Packets. If the protocol is X.25, change the setup to the following. After capturing data, use the Examine Data Menu to observe packet decoding.

Protocol: <u>X.25</u>

Disp mode: Frame & Packet

Choose the Appropriate Display Format

In the bit oriented menus, you can use any of the five display formats. For frame decoding, use Frame & Packet, as described on the following pages.

DECODING FRAMES WITH FRAME AND PACKET DISPLAY FORMAT

During run-time, the Frame & Packet display format decodes Level 2 frame information in HDLC, SDLC, or X.25. The frame information described below is decoded. See Figure 5-2.

After run-time, for HDLC or SDLC, the Frame & Packet display looks the same when observing the buffer in the Examine Data Menu, except that up to 57 data characters can be shown at the top of the display. See Figure 5-3.

- ADDRESS Hex address of the secondary channel. Extended addresses can be seen when HDLC with extended address is being used.
- TYPE Identifies the type of frame from the Control Field.
- N(S) Send Sequence Number of the frame. Normally modulo 8; but becomes modulo 128 when HDLC with extended control is being used.
- P/F Poll/Final Bit. In the command mode this bit is a P-bit and is normally "0". If the primary requires an immediate response from the secondary, it sets the P-bit to a "1". The subsequent response is identified, since the Final bit is set to a "1".
- N(R) Receive Sequence Number of the frame. Normally modulo 8; but becomes modulo 128 when HDLC with extended control is being used.
- Data Displays the first nine characters of the information field.
- FCS Indicates the status of the Frame Check Sequence (CRC-CCITT) as either good (GG), bad (BB), or indicates an aborted frame (AA).

Ĥ	TYPE	NS	F	NR	DATA		FCS
2	INFO	e	0	0	Eanstan	1325 <u>5</u> 301	5 0
2	INFO	e	0	0	<u> </u>	<u>}</u> s× <u>}</u> h	ξG
2	INFO	e	0	0	50.50	151550	56
2	INFO	e e	0	0	፟፟፟፝፟፟፟፝፟፟፟፟፟፝ጜኯኯ	159T 34	ξG
2	INFO	e	0	0	Ea No Fand	10 <u>555</u> 0	46
2	INFO	e	0	0	ፍለዓላ	₽₹Tŝ'n	4 G
2	INFO	e	0	0	Ea No Fand	15-15-51	46
2	INFO	(1) (1) (2) (2) (2)	0	0	<u></u> ፍለሌያ	155T 20	5 G
2	INFO	e	0 (0	50.05.0	1955 <u>5</u> 301	5 G
2	INFO	E	9 0	0	ፍለማ	FsqTSh	5 G
2	INFO	6	9 0	0	E N.S.N	145230	56
2	INFO	e e	9 0	0	ጜላዮል	, ₩_5 Ť\$\	5 G
Au	to S	et Mor	n - 🛛	Sim	- Ru	n E×	amo
Co	nf	Up ita	or	ula	te Me	nu Da	ta
		Stand Transie				Inca Cana	

Figure 5-2. HDLC in Frame & Packet Display Format (run-time)

14DCE : 51	12 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C	131922	<u>5t 78785</u> ,e	e 5. 10 2. 1
<u> </u>	, NPFJES2	N S		
A TYPE	NS PF	NR	DATA	FCS
S INFO	00	0	Fallin Fall	3 <u>5</u> N G
S INFO	0 0	0	⁵ ∿%‰F₅q1	<u> </u>
S INFO	00	0	502404 <u>5</u> 5	230 G
S INFO	0 0	0	<u>ጜለନጽት፻</u> ፺	<u> </u>
S_ INFO	0 0	0	54423=5	334 8
<u>9</u> INFO	0 0	0	<u> </u>	<u> </u>
S_ INFO	0 0	0	588285	330 G
<u><u></u>INFO</u>	0 0	0	<u>ጜጜኯኯኯኯ</u>	5 K G
S_ INFO	0 0	0	50% ND 55	<u>2</u> 2010 G
S INFO	00	0	ጜ _፝ ኯኯኯኯ	<u> </u>
S_ INFO	0 0	0	ฟลพรรร	33N G
Roll	Roll	Next	Prev	imer
Hex Up	Down	Page	Page 8	Cntr

Figure 5-3. HDLC in Frame & Packet Display Format (Examine Data Menu)

DECODING X.25 PACKETS IN THE EXAMINE DATA MENU

X.25 looks the same as HDLC or SDLC when running in the frame and packet display format. After capturing data, however, the Examine Data Menu shows both frame decoding and packet decoding. As shown on the next page, packet information at the cursor location is decoded at the top of the display. The top of the display contains the following information.

Origin	DTE or DCE.
Q-Bit	Qualifier Bit.
D-Bit	Delivery Confirmation Bit.
MOD	Modulo 8 or 128.
LCN	Logical Channel Number.
ТҮРЕ	Type of packet.
P(S)	Packet Send Sequence Number.
M-Bit	More Data Mark.
P(R)	Packet Receive Sequence Number.
Data	Displays the first five characters of the data field.

	1DT	Ε:	QD	1	lod L	CN	PS	М	PR
Do	ata		00	1	28 D	00	000	0	005
Ĥ	TYP	E	NS	P _F	NR	DAT	Ĥ		FCS
2	INF	D	0	0	0	<u> ድ</u> ሌላ	ያምሌትና	\$\$\$N	G
01	INF	0	0	0	0	2109	4444	N_XR	G
<u>_</u> 1	INF	0	0	0	0	2109	4884	182 B	G
<u>_</u>	INF)	0	0	0	2109	1004	19 EH	G
2	INF	D	0	0	0	300	ትሆሉ	ም ፍ	G
2	INF	D	0	0	0	300	ኯኯኯ	. <mark>.</mark> ዲህ	G
2	INF	D	0	0	0	B⊳NJN	ኯኯኯ	335	G
91	INF	0	0	0	0	209	WN5	420	G
2	INF	0	0	0	0	200	ኯኯኯ	38N	G
91	INF	0	0	0	0	Ea No	LNJT -	53N	G
2	INF	0	0	0	0	N.51	រូឡ_T −	T SN	G
		Roll	Roll		Next	Pr	ev	Tim	er
He	ex	Up	Dowr	1	Page	Po	qe	&Cn	tr
A CONTRACTOR	Langenter .		Salar				and the second second	alex and the	

Figure 5-4. X.25 in Frame & Packet Display Format (Examine Data Menu)

The BSC Menu

The BSC Menu and available softkey selections are shown on the following page.

PARITY BSC specifies odd parity for ASCII 7. There is no parity check for EBCDIC or Transcode. The HP 4951C automatically sets the parity condition for the chosen code. In simulate mode, BSC is transmitted with the correct parity.

Note: If "Send" or "When" characters are specified in hex, the parity bit is not changed to conform to the parity setup selection.

- MODE BSC is synchronous.
- SYNC ON The HP 4951C automatically chooses the correct sync characters for each data code. The sync characters are: ${}^{3}_{2}$ (EBCDIC), ${}^{1}_{6}$ (ASCII), or ${}^{3}_{A}$ (Transcode). The HP 4951C requires at least two sync characters for proper framing.
- ERR CHK Select LRC or CRC-16 for ASCII or EBCDIC, and select LRC or CRC-12 for Transcode.
- BITS/SEC The bit rates for BSC are the same as the bit oriented protocols.
- DISP MODE Frame & Packet display format is not used in BSC.
- SUPPRESS The BSC Menu lets you suppress almost any combination of text and control characters from the display. However, suppressed characters are not deleted from the buffer. Note that idle characters are assumed to be FF in BSC.

BSC SETUP MENU

Protocol [BSC]

Code [ASCII 7] [LRC] Err chk [Transcode] [CRC 12] [EBCDIC] [CRC 16] Parity Odd (ASCII 7) DTE clock [DCE] None (Transcode) [DTE] None (EBCDIC) Bits/sec [19200] [3600] [200] [16000] [9600] [3200] [150] [14400] [7200] [2000] [134.5] [12000] 16 16 (ASCII 7) Sync on [4800] [1800] [110] [Teletext] 3A 3A (Transcode) [2400] [600] [75] 32 32 (EBCDIC) [1200] [300] [50 j Disp mode [Two Line] [DCE Only] [DTE Only] [Data & State] Suppress [None] [Idle & Ctl] [Idle] [Idle & Txt] [Null] [Null & Ctl] [Control] [Null & Txt]] [Id & Nu & Ctl] [Text [Idles & Null] [Id & Nu & Txt]

Figure 5-5. BSC in Data & State Display Format
The Char ASYNC/SYNC Menu

Shown on the next page is the Char Async/Sync Menu and its softkey selections. This Menu is a general purpose setup menu. You can use it to capture most protocols: synchronous or asynchronous.

Configuring to Any Data Code

Note the large number of codes available with this menu. In the Char Async/Sync Menu, you select all the parameters to go with your data code. This menu lets you to tailor the analyzer to many different codes with standard or nonstandard characteristics.

The HP 4951C does not perform zero bit insertion or extraction for bit oriented protocols when in Char Async/Sync setup.

When to Use the Char Async/Sync Menu

- 1. For asynchronous lines.
- 2. For full-duplex, character-oriented protocols.
- 3. To see all line activity, including line idles (See page 5-22).
- 4. For nonstandard protocols, such as asynchronous BSC.

CHAR ASYNC/SYNC SETUP MENU (* indicates synchronous mode only) Bit order [LSB first] [MSB first] Bit sense [Normal] [Inverted] Code [ASCII 8] [Hex 6] [IPARS idle 0] Err [CRC 6] [CRC 16] [Hex 8] [EBCDIC] [IPARS idle 1] chk [LRC] [CRC 12] [ASCII 7] [Transcode] [Baudot] [None] [Hex 7] [Hex 5] [EBCD] * Start on/Stop on [Use keyboard] Parity [None] [Even] [Odd] [Ignore] * DTE clock [DCE] [DTE] Transparent [None] Bits/sec [19200] [3600] [150] [16000] text char [Use keyboard] [9600] [3200] [134.5] [14400] Mode [Asyn 1] [Asyn 2] [Asyn 1.5] [Sync] [2400] [600] [50] [200] [1200] [300] [Teletxt] Disp mode [Two Line] [DCE Only] * Sync on [Idles] [Use keyboard] [DIE Only] [Data & State] * Drop sync [Use keyboard] chrs Suppress [None] [Idle & Ctl 1 after [Use keyboard] [None] [Idle] [Idle & Txt 1 [Null] [Null & Ctl 1 [Control] [Null & Txt] [Text] [Id & Nu & Ctl] [Idles & Null] [Id & Nu & Txt]

Char ASYNC/SYNC Definitions

Bit Order/Sense. Normally, the least significant bit is sent first, and data is not inverted. Some protocols (e.g., IPARS) may be different. These selections affect only incoming and outgoing run-time data. Incoming data is changed at the input interface before processing. When simulating, data is changed at the output interface. Buffer data is not changed.

Start on/Stop on. Determines error checking bounds. Error checking starts on the character immediately after the Start On character; however, the Stop On character is included in the BCC. This selection does not appear if Error chk is None. See page 5-19 for hex entry.

Transparent Text. This character delimits the boundaries of a field, inside of which all control characters are to be treated as data. This is the same as the DLE character in BSC protocol. See page 5-19 for hex entry.

Mode. Synchronous, or Asynchronous (1, 1.5, 2 stop bits). The HP 4951C needs only one stop bit for asynchronous monitoring, even if more are present.

Sync on. Synchronous mode only. Selects the sync characters for proper framing. The HP 4951C requires at least two sync characters. The HP 4951C must see at least two of these characters to capture data when monitoring or simulating character oriented protocols. See page 5-19 for hex entry.

Drop sync after. Synchronous mode only. Tells the analyzer to "drop" sync (stop bringing in data) and start looking for sync characters again. See page 5-19 for hex entry.

DTE Clock. Synchronous mode only. Specifies the DTE transmit clock source.

Using Char ASYNC/SYNC

There are several fields in the Char Async/Sync Menu which let you make hex entries: **sync on**, **drop sync**, **transparent text**, and **start on/stop on**. Each is detailed in the following paragraphs.

HEX ENTRIES and PARITY

When making hexadecimal entries, the resulting parity bit might not conform to the parity setup selection. For example, with ASCII 7 and even parity, the sync characters should be ${}^{9}_{6}$ ${}^{9}_{6}$, rather than ${}^{1}_{6}$ ${}^{1}_{6}$. Of course, your line may still use ${}^{1}_{6}$ ${}^{1}_{6}$, even though this would result in the wrong parity for sync characters. If your line satisfies the requirements on page 4-7, you can use Auto Configure to find the correct sync characters.

For hexadecimal entries, the resulting parity bit conforms to the following rules:

- 1. For data codes of 7 bits or less (e.g., ASCII 7, Baudot) the parity bit is not changed to conform with setup selection.
- 2. For 8-bit data codes (e.g., ASCII 8, EBCDIC) the parity bit always conforms to parity setup selection.

For 8-bit data codes with parity, the selected sync characters must be the same as the last 16 bits to enter the analyzer before non-sync data. For example, in EBCDIC the normal sync pattern is 3_2 3_2 . With even parity, the binary pattern would be 100110010 100110010, or 18 bits. But only the last 16 bits are used by the analyzer as the sync pattern. Because least significant bits are sent first, the two bits in brackets are excluded from the sync pattern: 1001100[10] 100110010. Thus, you must enter 4_c 9_g for the analyzer to accept data. Of course, Auto Configure will find the correct sync characters for you.

The Setup Menus

The **sync on** selection determines what sync characters the analyzer looks for. Unless the sync pattern is correct, the HP 4951C will not capture data. The HP 4951C requires at least two sync characters (i.e., the correct 16-bit pattern) to capture data when monitoring and simulating.

When you do not know the sync characters, use Auto Configure. You can also select Sync on Idles. This allows you to load line data even without the correct sync characters.

The HP 4951C assumes that all character oriented protocols idle in FF. If your line uses some other condition, you must Sync on that condition.

DROP SYNC CHARACTERS (Synchronous mode only)

The Drop sync entry determines where the analyzer drops sync and begins looking again for the sync characters. If the analyzer did not drop sync, it would bring in all activity on the line, including idles.

Select seven characters on which to drop sync. The first character is the "within text" character. The analyzer only looks for this character if you have chosen error checking. Thus, if you start on STX and stop on ETX, the analyzer looks for the "within text" character between STX and ETX.

Normally, the HP 4951C does not store idles. This is to prevent the buffer from being filled inefficiently.

To store all data, including idles, enter **Drop sync** $\underline{0}$ **chrs after** None. The analyzer never drops sync, and brings in all line data, including idles.

Drop Sync and Error Checking

The Drop sync selection interacts with the Error check selection in the following ways.

- 1. The first drop sync character specifies "within text". The analyzer looks for this character between the start on and stop on error checking limits. When error checking is "none", all text is outside, and the analyzer does not look for the first character.
- 2. The last six drop sync characters specify "outside text". The analyzer looks for these characters outside the start on and stop on error checking limits. The six "outside text" characters are ORed: the analyzer drops sync on any one of them that occurs outside the error checking limits.
- 3. The first, or "within text", character takes precedence over the six "outside text" characters. If the same character occurs both inside and outside the start on and stop on limits, the analyzer drops sync within text.
- 4. With error checking, the analyzer always drops sync after the BCC character(s) if it cannot find a "within text" character. For example, if you select CRC-16 error checking, with Start on STX and Stop on ETX, the analyzer drops sync after the two characters following ETX.

For example, **Drop sync** <u>1</u> chrs after ${}^{B}_{B}$ ${}^{F}_{F}$ ${}^{F}_{F}$ ${}^{F}_{D}$ ${}^{A}_{4}$ ${}^{B}_{3}$ causes the analyzer to drop sync one character after the first ${}^{B}_{B}$ character within the specified error checking limits. If the analyzer does not find the specified "within text" character, it drops sync either after the BCC character(s) or after one of the six "outside text" characters, whichever appears first.

Capturing Unknown Data

The following methodologies are presented to aid when the user does not know all the details of the data to be monitored. Consider each one in respect to what is known and utilize as applicable.

CAPTURING THE DATA

For nonstandard protocols in which Auto Configure may not work, perform the following procedure.

- 1. For unknown data codes, try an 8-bit code first. Select <u>no</u> parity and no error checking.
- 2. To load line data for study when you do not know the sync character, select Sync on idles.

The HP 4951C assumes that all character oriented protocols idle in ${}^{F}_{F}$. If your line uses some other idle character, you must sync on that character.

3. To store all data for study, including idles, enter **Drop sync** <u>0</u> **chrs after** <u>None</u>. The analyzer never drops sync and brings in all data, including idles.

Normally, idles are not stored to make efficient use of the buffer.

- 4. After making the above selections in the Char Async/Sync Menu, go to the Run Menu and <Monitor from Line> for a few moments to fill the buffer with data for study.
- 5. Go to the Examine Data Menu to view the data in buffer.

The buffer data will probably be meaningless because of incorrect character framing since the analyzer does not know where each character begins or ends. Now you need to find the correct sync pattern.

FINDING THE CORRECT FRAMING

Bit Shifting (BSC and Char Async/Sync only)

Bit shifting does not work when data is brought in Most Significant Bit (MSB) first.

Even if you do succeed in bringing in data by synchronizing on idles, the displayed information will probably be meaningless because of incorrect framing. To make the data meaningful, go to the Examine Data Menu and <Bit Shift> the captured data.

The HP 4951C does not shift through the parity bit. Unless you use a code with no parity you must use trial and error to find the correct framing.

If part of the data still does not become meaningful while bit shifting, change the data code to one without parity. When the data becomes meaningful, you can determine the correct sync characters. Change the Sync on selection to these characters.

ELIMINATING SUPERFLUOUS DATA

Dropping Sync (Synchronous mode only)

Once you find the correct framing through the above procedure, you can eliminate idles. Otherwise the buffer is mostly filled with idles. To eliminate idles, enter **Drop** sync <u>0</u> chars after ${}^{F}_{F}$. If the line idles in a character other than ${}^{F}_{F}$, enter that character instead.

The Setup Menus

Data Code	No Parity	Even or Odd Parity	Ignore Parity
Hex 5	5 bits	6 bits	6 bits
Baudot	(no parity bit)	(including parity bit)	* (parity bit = 0)
Hex 6	6 bits	7 bits	7 bits
EBCD	(no parity bit)	(including parity bit)	* (parity bit = 0)
IPARS			
Transcode			
Hex 7	7 bits	8 bits	8 bits
ASCII 7	(no parity bit)	(including parity bit)	* (parity bit = 0)
Hex 8	8 bits	9 bits	9 bits
ASCII 8 EBCDIC	(no parity bit)	(including parity bit)	* (parity bit = odd)

(* these settings are forced in Simulate)

Figure 5-6. Character Frame Sizes vs Data Code

Unusual Protocol Settings

This is the build-your-own menu for Character oriented protocols. Select <Char> in the Setup menu. Then per protocol given in the left column below, enter the settings given to the right of the protocol.

Protocol	Code	Parity	Err Chk	Sync Char	Transparent Text Char	Mode
Burroughs BASIC	ASCII 7	odd	VRC	1 1 6 6	d l	Sync, Async I
Burroughs Poll-Sel	ASCII 7	odd, SYNC even, ASYNC	LRC	1 1 6 6	None	Sync (or Async), Async I
HASP	EBCDIC	None	CRC-16	3 3 2 2	d l	Sync
IPARS	IPARS	None	CRC-6	3 3 F E	None	Sync Bit sense - Invert Bit order - MSB First
MODE 4c	ASCII 7	odd	LRC	1 1 6 6	d	Sync
UNISCOPE	ASCII 7	odd, SYNC even, ASYNC	LRC	1 1 6 6	d l	Sync, Async I
VIP7700	ASCII 7	odd, SYNC	LRC	1 1 6 6	d	Sync

The Setup Menus

IPARS SETUP

The IPARS Data Code has specific settings which you must select. These settings are given below.

Protocol	Char
Bit order	MSB
Code	IPARS0 or IPARS1. The 0 or 1 refers to the idle state transmitted for normal bit sense. IPARS0 will leave the line idling in 1's when transmitting if "Bit sense = Inverted". IPARS1 will idle the line in 0's if "Bit sense = Inverted".
Parity	None
Transparent text char	None
Mode	Sync
Sync on	3 _F 3 _E
Drop sync	Up to you (usually 0)
after	${}^{0}0{}^{3}{}_{F}{}^{F}{}_{F}{}^{F}{}_{F}{}^{F}{}_{F}{}^{F}{}_{F}$. This field is used to specify other conditions that the HP 4951C will use to go out of sync and begin searching for sync.
Err chk	CRC 6
Start on	${}^{3}E^{3}E$. Each IPARS message begins with a sequence ${}^{3}F^{3}E$. In this field, the HP 4951C wants two individual start characters, not a sequence. For IPARS both of the characters should be ${}^{3}E$ which is the last character of the only valid start sequence for IPARS.

Setup Menus

- Stop on ${}^{0}{}_{D}{}^{1}{}_{D}{}^{2}{}_{D}{}^{3}{}_{D}$. This field is used to specify end-of-message characters. When the HP 4951C sees one of these characters, it will stop accumulating CRC and will expect the total CRC count. As in the "Start on" field, these four characters are individual stop characters, not a sequence.
- Bit sense Most commonly set to Inverted.
- Bits/sec Line Speed.
- Display Choose the display format that is best for your needs.
- Suppress Depends on your needs.

The Setup Menus

6

The Monitor and Simulate Menus

This chapter explains how to make measurements. Because the HP 4951C uses triggering for all measurements, this chapter tells you how to tie your programs to trigger statements. Press <Monitor> on the Top Level Menu to access the monitor menu. Press <Simulate> to access the simulate menu.

Differences Between Monitor and Simulate Menus

Monitoring has no effect on the line: it is passive and non-interactive. Simulation is active: the HP 4951C takes the place of a DTE or DCE on the data line. There are five differences between the Monitor and Simulate Menus:

- 1. In Simulate, you must specify either DTE or DCE simulation.
- 2. In Simulate Menu, you can transmit characters with the <Send> softkey.
- 3. In Simulate, you must program the interface with the <Set Lead> softkey.
- 4. In Simulate, you can delay output (Send, Set Lead) with the <Wait> statement.
- 5. In Simulate, clocks are automatically provided on the interface: ETC is provided when simulating a DTE; TC and RC are provided when simulating a DCE.
- 6. In Simulate, when transmitting "Send" strings in bit oriented protocols, frame error checking is automatically supplied.

Programming

Always Do Setup First. If you change the setup menu after entering a program or change DTE to DCE (or vice versa) within a program, the program may have blinking entry fields indicating those entries are inappropriate for the setup. If you change the setup data code or protocol after entering a character string, you must retype the string (see pages 6-6, 6-25). The program will fail unless you change either the setup or the program.

Softkey Programming. The softkeys display only appropriate choices. Press one of the softkeys in the Monitor or Simulate Menu. Other choices will appear, leading you through the program. For example, pressing <Start> causes the new softkey choices <Display>, <Disc>, and <Timer> to appear.

Block Structure. Programs are organized in blocks. A maximum of 31 blocks is allowed. Blocks provide "reference spots" for looping back or jumping ahead.

Editing Programs. Use the third set of softkeys on the Monitor or Simulate Menu and the cursor keys. The third set of softkeys can be accessed by the MORE key when you are at the beginning of a line. Blocks cannot be inserted or deleted. It's a good idea to leave empty blocks between used blocks for future editing.

Running Programs. After the program is developed, press <Run Menu> on the Top Level Menu. Select either <Monitor> or <Simulate>, depending on whether your program is in the Monitor or the Simulate Menu. Select either <Monitor Line> or <Monitor Buffer>, depending on whether you want to monitor "on-line" or do post-processing on data already in the non-volatile buffer. The HP 4951C lets you run programs over and over on the data in its nonvolatile buffer.

Triggering

The HP 4951C stores all line data in its buffer. You can trigger on any line event. With triggering, you can selectively analyze only events of interest.

"WHEN" DEFINES TRIGGERS

"When" is the only statement that can define a trigger. Each character in a "When" string constitutes one trigger. For example, "When DTE abcd" uses four triggers. A trigger "counter" in the display shows how many triggers are left. "When Timer" statements are not included in the trigger counter.

THINGS TO REMEMBER

- 1. The HP 4951C can "look for" up to 63 trigger events simultaneously.
- 2. The HP 4951C can branch to any action as a result of a trigger. You must provide a block for the analyzer to branch to (e.g., then goto Block 4).
- 3. All monitor/simulate measurements must be tied to a preceding trigger statement. For example, when starting and stopping a timer, a "When" statement must precede the Start" and "Stop" statements. Thus, START, STOP, BEEP, HIGHLIGHT, and IF all refer to preceding "When" statements.
- 4. The program does not move out of a block containing a "When" statement until the statement is satisfied.
- 5. Once a trigger is satisfied, the trigger search mechanism is positioned in the buffer immediately after where the trigger was found. Thus, the next trigger does not miss any data.

SELECTING CHARACTERS

Use the <Text> softkey for keyboard characters. The SHIFT key accesses lower-case characters, and the CNTL key accesses control characters. You can see the binary or hex value by positioning the cursor over that character and pressing <Hex> or <Binary>.

Editing Character Strings

Use the cursor keys or the <Delete> and <Insert> softkeys to edit a string. Press MORE to access these softkeys when the cursor is positioned in the string.

Changing the Setup after Typing a String

If you change the data code or protocol in the Setup Menu after typing a character string, you must retype the string to avoid sending or triggering on the wrong characters. Characters in one code may not have the same meaning in another code. When you move the cursor to that character, the HP 4951C shows "?" if it cannot find the hex or text equivalent in the new code. The binary value of the character can always be viewed by pressing the <Binary> softkey.

When a Character is not on the Keyboard

EBCDIC and some other data codes have control characters which are not on the keyboard. Go to the data code tables in Appendix B and find the hexadecimal equivalent. Press the <Hex> or <Binary> softkey and enter that character from the keyboard.

Binary and Hex Characters

Use the <Hex> or <Binary> softkeys to enter hexadecimal characters or binary strings. Two hex numbers occupy each character position, requiring two keyboard entries. Hex characters are underlined to differentiate them from text control characters with the same abbreviation. When you press <Binary>, eight binary bits are displayed, allowing you to enter a 1 or 0 in any bit position from the softkeys. Once you move the cursor out of the binary string, it collapses to its hex equivalent; but it is underlined to indicate it was entered in binary.

If the data code selected in the Setup Menu is less than eight bits (e.g., Baudot or Transcode), the appropriate number of higher order bits are disregarded.

Masking out Characters

Use <Don't Care> to mask out string characters or bits of no interest. "Don't Care" characters are denoted by a boxed "X". If any bit in a binary string is designated as "don't care", the compressed character is denoted by "?". See Figure 6-1.

Excluding Characters

To trigger on "anything but" a particular character, use <Not>. "Not" characters are overlined. Observe the "3" and "5" in Figure 6-1.

Flags and Frame Check Characters

Unlike <Send> strings, flags and frame check characters are not automatically appended for <When Trig> strings. You can enter these characters using the MORE key. The MORE key accesses the "End Frame" characters (the FCS characters and the last flag). End Frame characters may be useful if you wish to trigger on Bad FCS or Abort Characters. Triggers for FCS errors or abort characters can only be programmed when a bit oriented protocol is selected on the setup menu.

Parity

When triggering on a character, the HP 4951C ignores the parity bit. You can see this by expanding the specified trigger character in binary when the setup is ASCII 7. The most significant (left) bit is designated "don't care" by a boxed "X". You can explicitly define this character by entering a 1 or 0 in binary. This overrides the Setup Menu. Triggers for parity errors can only be programmed when a character oriented protocol is selected in the setup menu.

Figure 6-1. Triggering on Characters

Triggering on Errors, Leads, Timers

Leads. Only the RS-232C/V.24 leads are shown above. If a different pod, such as RS-449, is connected, those leads appear as softkey choices.

Types of Errors. BCC (Block Check Characters) and Parity errors are used only with character protocols. FCS (Frame Check Sequence) is used only with bit oriented protocols. Framing Errors appear only in asynchronous setup (Char Async/Sync Menu). The error softkeys appear automatically, according to the current Setup.

```
Monitor
Block 1
When Lead
             RTS
                  goes
                        0 n
     or
When Error
             FCS
                  on DTE
     or
When Timer 1 >
                  1000
     then goto Block 2
Block 2
63 trigs left
          Inc If
Start Stop
                      When
           Ctr
                      Trig
```

Figure 6-2. Triggering on Errors, Leads, Timers

Combining Triggers

<When Trig> statements within the same block are ORed: the analyzer looks for them all simultaneously. If two are satisfied simultaneously, the first one listed takes priority. To sequence <When Trig> statements, put them in separate blocks.

HOW TO "OR" TRIGGERS

The <When Trig> statements in this example are ORed. The analyzer looks for all four simultaneously. Once a trigger is found, all other triggers in that block are disabled. If two <When Trig> statements are satisfied simultaneously, only the first one in the block is recognized. Note: You must have a character oriented protocol selected in the setup menu for this example.

Block	1:	When DTE <u>abcd</u>
		then goto Block 2
		When Error Parity on DTE
		or
		When Error Parity on DCE
		then goto Block 3
		When Lead <u>RTS</u> goes <u>On</u>
		then goto Block 4

HOW TO SEQUENCE TRIGGERS

In this example, the HP 4951C must find the string "abcd" before it can look for string "efgh". To get to block 5, the analyzer must find both strings in order.

Block	1:	When DTE	abcd
		then	goto Block 2
Block	2:	When DTE then gote	<u>efgh</u> Block 5

OVERLAPPING TRIGGERS

For overlapping triggers, the trigger found first disables the other triggers.

In this example "ab" is always found first and then disable the first <When Trig> statement.

Block 1: When DTE <u>abc</u> then goto Block 2 When DTE <u>ab</u> then goto Block 3

In this example if the data is "yabc", only the first <When Trig> is satisfied. If the data is "ybc" only the second <When Trig> is satisfied. If the data is "yc", only the third <When Trig> is satisfied. The first <When Trig> to be satisfied disables the others.

Block 1: When DTE <u>abc</u> then goto Block 2 When DTE <u>bc</u> then goto Block 3 When DTE <u>c</u> then goto Block 4

In this example if the data is "ybc", only the trigger "c" is found.

Block 1: When DTE <u>c</u> then goto Block 2 When DTE <u>bc</u> then goto Block 3

Measuring Time Between Triggers

The HP 4951C has five timers which can each measure up to 65,535 milliseconds. Timers are always reset to zero at the beginning of a run (i.e., when you press <Run Menu>). Timers are reset under program control with <Reset>. Timers are stopped under program control with <Stop Timer> or <Stop Tests>. In bit oriented protocols, the start flag and address of a string have the same time mark. This is also true of the last character and the end flag.

As shown in the following examples, statements using timers or leads relate to the status of the line at the time of the last trigger. You should always make sure statements relating to line status are tied to a preceding trigger statement.

INCORRECT WAY TO MEASURE TIME

Timer 1 now starts when the run begins, rather than when RTS goes on. Timer 1 stops when RTS goes off. You are not measuring the time between trigger events.

Block 1:	Start Timer 1
	When RTS goes <u>On</u>
	then goto Block 2
Block 2:	Stop Timer 1
	When CTS goes <u>On</u>
	then goto Block

CORRECT WAY TO MEASURE TIME

This example shows the correct way to measure the time interval between two trigger conditions. The starting and stopping of the timer is entirely dependent upon the occurrence of the two trigger conditions.

Block	1:	When Lead <u>RTS</u> goes <u>On</u>
		then goto Block 2
Block	2:	Start Timer 1
Block	3:	When Lead CTS goes On
		then goto Block 4
Block	4:	Stop Timer 1

USING TIMERS IN SIMULATE

These simulate examples illustrate the same principles described above.

This example is NOT correct. It is not known when Timer 1 will start. Timing measurements should always reference a trigger

Block 1:	Set Lead <u>RTS</u> <u>On</u>
Block 2:	Start Timer <u>1</u>
	When Lead <u>CTS</u> goes <u>On</u>
	Then goto Block 3
Block 3:	Stop Timer 1

Simulate DTE. This example is correct. Timer 1 does not start or stop until the preceding <When Trig> statement is satisfied

Block	1:	Set Lead <u>RTS</u> <u>On</u>
		When Lead <u>RTS</u> goes <u>On</u>
		then goto Block 2
Block	2:	Start Timer 1
		When Lead CTS goes On
		then goto Block 3
Block	3:	Stop Timer 1

Counting Events -- INC CTR

Use the <Inc Ctr> statement for counting events. The HP 4951C has five counters, which let you count five different events simultaneously. "Events" may be characters or character strings occurring on the line, lead changes, timer changes, counter changes, or program loops; almost any action the analyzer performs can be counted. To use the counters effectively, place the increment counter statement directly after the event of interest.

Maximum Count. Each counter counts to 9,999 and then starts over from zero. By having one counter increment whenever a second counter overflows, you can count up to nearly 10,000 times 10,000. You can cascade all five counters this way.

Reset. Counters and timers are always reset to zero at the beginning of a run; i.e., when you press <Run>. Counters or timers may also be reset under program control with the <Reset> statement. When they are reset during a program, they go to zero and do not restart unless you start them again.

Examples. The first example below counts the number of parity errors on the DTE line.

Block 1:	When <u>Error Parity on DTE</u>
	then goto Block 2
Block 2:	Increment Counter 1
	and then goto Block 1

The second example counts the number of times RTS goes on.

Note: You must have a character oriented protocol selected in the setup menu for this example.

Block	1:	When <u>Lead RTS goes On</u>
		then goto Block 2
Block	2:	Increment Counter 2
		and then goto Block 1

Testing Status -- IF

The <If> statement tests current counter or lead status. For leads, "current" means at the time of the last trigger. Counters are independent of line status.

HOW <IF> AND <WHEN TRIG> ARE DIFFERENT

Only <When Trig> defines a trigger. "When" causes the analyzer to look for events or transitions starting from the point where the last trigger was satisfied. <If> is concerned only with current states. Unlike <If>, program flow stops until <When Trig> is satisfied.

COMBINING <IF> STATEMENTS

Just as with <When Trig> statements, <If> statements within the same block are "ORed". The first statement satisfied controls the branch.

USING <IF> WITH COUNTERS

Counters run independently of line status. Therefore, an <lf> statement testing counter status need not be preceded by a <When Trig> trigger statement.

This example counts the number of times RTS goes on. When RTS goes on 100 times, the test stops.

Block	1:	When RTS goes On
		then goto Block 2
Block	2:	Increment Counter 1
		If Counter $1 > 99$
		then goto Block 4
Block	3:	Goto Block 1
Block	4:	Stop Tests

USING <IF> WITH LEADS

Line status can only be checked by a <When Trig> trigger statement. Therefore, an <If> statement testing a lead condition always refers to the line status at the time of the last trigger.

In this example, Block 2 tests CTS when the <When Trig> statement in Block 1 is satisfied.

Block 1:	When Lead RTS goes On
	then goto Block 2
Block 2:	If Lead CTS is On
	then goto Block 4

Marking Trigger Events

By using the Start, Stop, Beep, and Highlight commands, you can have the HP 4951C notify you when it has found a particular event (Events are defined by triggers.). As discussed previously in this chapter, timers and lead status must be tied to a preceding <When Trig> statement. The same is true of Start, Stop, Beep and Highlight. For example, whenever you "Start" an action, always provide a reference to some line event with a preceding <When Trig> statement.

The <Wait> statement should not be used with any of these commands. Use <Wait> only with <Send> and <Set Lead> to delay output.

<START> AND <STOP>

The <Start> and <Stop> statements can be used to filter events of interest: you let the HP 4951C do the watching for you. Define an event of interest in a preceding <When Trig> statement, and then "start" or "stop" the display, disc, or timers when that event occurs. Of course, no data is actually lost; line data is continuously filling the buffer.

Stop Display

The <Stop Display> statement freezes the display after the occurrence of some trigger event. That trigger event and the immediately preceding data, are displayed on the screen. Note that the run is not stopped: the buffer is continually being filled with new data. To stop the run after the event, use <Stop Tests>.

Start & Stop Disc

The disc can be started and stopped only once during a program.

Start & Stop Timer

Timers measure intervals between trigger events. Always precede <Start> and <Stop> timer statements with a <When Trig> statement defining the event. Otherwise, your time measurements may not be accurate.

Stop Tests

The <Stop Tests> statement causes the analyzer to halt. No new data is loaded into the buffer or displayed, the disc stops, and any active timers stop. You can use this statement within a program to have the analyzer immediately stop upon finding some event.

Examples of Start and Stop

The first example below stops the run if there is a Negative Acknowledgment on the DTE line. Note that you enter the "NAK" by pressing the CNTL and "U" keys at the same time as indicated by the keycap.

Block	1:	When	DTE	NA	<u><</u>	
		th	ien go	to	Block	2
Block	2:	Stop 1	ſests			

The second example freezes the display if there is a Frame Check Sequence error on the the DTE line.

Block	1:	When Error	FCS	on	DTE
		then got	o Bl	ock	2
Block	2:	Stop Display	,		

BEEP

The <Beep> statement provides an audible sound for some specified condition. You can have the analyzer beep anytime, and as often as desired.

HIGHLIGHT

Use <Highlight> after a <When Trig> statement to mark trigger events in memory: characters, errors, lead or timer transitions. Highlighted characters appear in halfbright video both during run-time and when looking at the buffer in <Exam Data> mode. Lead and timer transitions appear in the DCE line in <Exam Data> if you are not using the <Data & State> display. The HP 4951C "remembers" only the last 64 highlights in the buffer. Only the last character of a character string is highlighted. Highlight examples are shown in Figure 6-3. Note that the clock timeout highlight is denoted by a small clock face symbol.

Examples of Highlight and Beep

This example highlights the "z" in the "xyz" string whenever it occurs on the DCE line.

Block	1:	When DCE	xyz		
		then	goto	Block	2
Block	2:	Highligh	t		
		then	goto	Block	1

This example causes a continuous beep whenever the string "abc" occurs on the DTE line.

Block	1:	When DTE <u>abc</u>
		then goto Block 2
Block	2:	Веер
		and then goto Block 1

The Monitor and Simulate Menus

Figure 6-3. Highlights in the Buffer (Examine Data Menu)

Figure 6-4. Portion of Program Producing the Display in Figure 6-3.

Transmitting Characters -- SEND (Simulate only)

Using <Send>, you can simulate a DTE or DCE by sending any bit or character sequence in any of the codes supported by the HP 4951C. Maximum length for each string is 255 characters.

HANDSHAKING REQUIREMENTS ON THE INTERFACE

Determine which interface leads must be set on or off before sending data. Otherwise, the receiving equipment may not accept the data.

The HP 4951C does not need to set control leads before sending data. However, the receiving equipment may require control signals before accepting the data you are sending. See page 6-27 for discussion of the <Set Lead> statement.

Figure 6-5. Sending Characters in Simulate

SELECTING SEND CHARACTERS

Use the <Text> softkey for keyboard characters. The SHIFT key accesses lower-case characters and the CNTL key accesses control characters. You can see the binary or hex value by positioning the cursor over that character and pressing <Hex> or <Binary>.

In character oriented protocols you must explicitly enter sync characters such as ${}^{s}_{\gamma} {}^{s}_{\gamma}$. Otherwise, the receiving device does not recognize the message.

When a Character is not on the Keyboard

EBCDIC and some other data codes have control characters which are not on the keyboard. Go to the data code tables in Appendix B to find the hexadecimal equivalent. Press the <Hex> or <Binary> softkey and enter that character from the keyboard.

Binary and Hex Characters

Use the <Hex> or <Binary> softkeys to enter hexadecimal characters or binary strings. Two numbers occupy each hex character position, requiring two keyboard entries. When you press <Binary>, eight binary bits are displayed, this lets you enter a 1 or 0 in any BIT position from the softkeys. Once you move the cursor out of the binary string, it collapses to its hex equivalent.

Editing Strings

Use the <Delete> and <Insert> softkeys to edit a string. Press MORE to access these softkeys when the cursor is positioned in the string.
Sending Idles

During simulation, the HP 4951C continuously sends idles when not sending data. This is also true when using <Wait> to delay output. You can explicitly enter idles within text when simulating, but otherwise they are not stored in the buffer during normal monitoring or simulating.

Block Check Characters (BCC)

In character oriented protocols, the HP 4951C automatically appends the correct block check characters to <Send> strings. You can see these characters at run-time or in the buffer after a run. In Char Async/Sync setup you can select the characters on which error checking is to start and stop. **Start on** <u>character</u> starts error checking on the character following the designated character. **Stop on** <u>character</u> includes the designated character in the error check.

Flags and Frame Check Characters

Flags and frame check sequence (FCS) characters are automatically added whenever a bit oriented protocol (HDLC, SDLC, X.25) is selected in the Setup Menu. The HP 4951C does not show you the actual frame check character. For received data, GG, BB, or AA are displayed to indicate "good FCS", "bad FCS", or "abort". For Send strings, good FCS characters (GG) are automatically selected; but you may choose Bad FCS (BB) characters or Abort (AA) characters, either by moving the cursor to the frame check characters, or by pressing MORE and then the <End Frame> softkey. Flags and frame check characters disappear if you change the Setup to a character oriented protocol and again move the cursor into the string.

Parity Bits

In <Text> mode the current setup determines the parity bit. In <Hex> or <Binary> mode the current setup also determines the setup for 8-bit data codes (e.g., ASCII 8, EBCDIC). For data codes less than 8-bits (e.g., ASCII 7, Baudot), the parity bit is determined by the hex or binary entry.

For example, assume the setup is ASCII 7 with odd parity. In the <Text> mode, if you enter an "E" in the send string, the transmitted binary code will be 01000101. The parity is 0 (left-most bit). To change the parity bit to 1, use <Binary> or <Hex> and enter 11000101 or C5.

NOTE: The run-time and Examine Data displays ignore the parity bit on transmitted data. In the above example, the run-time and examine data displays show an "E" even when you send C5. However, parity errors are detected on received data. When receiving a C5 with odd parity, the C5 appears as a blinking "E" in both displays and the parity bit indicated in the examine data menu is 1.

Zero Bit Insertion

In bit oriented protocols, the HP 4951C automatically inserts a 0 after five consecutive 1's before transmitting non-flag characters (invisible to the user). When receiving, it automatically removes any 0 bits inserted by the transmitter. This is not true in Char Async/Sync setup.

Changing the Setup After Typing the String

If the data code or protocol are changed in the Setup Menu after typing a character string, you must retype the string. Characters in one code may not have the same meaning in another code. When you move the cursor to that character the HP 4951C shows "?" if it cannot find the hex or text equivalent in the new code. The binary value of the character can always be viewed by pressing the
binary> softkey.

USING TIMERS WITH <SEND>

As always, timers measure intervals between trigger events. Each line event is "time stamped" as it is placed in the buffer. Timers are always referenced to the last preceding <When Trig> trigger statement.

As shown in the following examples, sync characters must be explicitly entered in character oriented protocols. Otherwise, the receiver does not accept the message.

The next example is the correct way to measure the time it takes to send the string. The timer is activated by the preceding <When Trig> statement.

Block 1:	Send <u>SY SY SX abcdefghijk EX</u>
	and then goto Block 2
Block 2:	When <u>DTE a</u>
	then goto Block 3
Block 3:	Start Timer 1
	When <u>DTE k</u>
	then goto Block4
Block 4:	Stop Timer 1

The next example is incorrect because the timer is not tied to a <When Trig> trigger statement. You can not measure the time it takes to send a string.

Block	1:	Start	Tin	ner	1		
Block	2:	Send	SY	SY	SX	abcdefghijk	ΕX
		ar	nd t	her	ı		
		Stop '	Time	er '	1		

Controlling Interface Leads -- SET LEAD (Simulate only)

In Simulate Mode, <Set Lead> turns on or off one of the RS-232C/V.24 or RS-449 leads. The HP 4951C always knows which pod is attached and displays the correct softkeys. With a RS-232C/V.24 interface, a lead is "on" when the voltage is high; it is "off" when the voltage is low. When simulating a DTE, you cannot control DCE leads, and vice versa; only the appropriate lead softkeys are displayed, as shown below (* indicates RS 449-leads). See Chapter 15 for more information.

DTE

DCE

Set Lead	RTS (*RS) DTR (*TR)	Set Lead	CTS (*CS) DSR (*DM)
			CD (*RR)

LEAD STATUS DURING SIMULATION

Determine which interface leads must be set on or off before sending data. Otherwise, the receiving equipment may not accept the data.

The HP 4951C must be programmed to control the leads in the simulate mode (this is the only time the HP 4951C controls the interface leads). At the beginning of a simulation run, the HP 4951C sets all the interface leads listed above off. You must turn these leads on with the <Set Lead> statement in order to do handshaking with a receiving device.

LEAD STATUS WHEN NOT SIMULATING

Lead status is independent of the HP 4951C except when it is simulating. Remember this when you use <If Lead> statement in a monitor program.

SET LEAD EXAMPLES

Because the HP 4951C always sets all five leads (DTR, RTS, DSR, CTS, CD) off at the beginning of the simulation run, <Set Lead> statements are needed to turn the appropriate leads back on before sending data. If this is not done, the receiving device might not accept data from the HP 4951C. You must know the handshaking requirements on your system in order to simulate correctly.

Simulate DTE

Block 1:	Set Lead <u>DTR On</u>
	and then goto Block 2
Block 2:	Wait <u>1000</u>
	and then
	Set Lead <u>RTS On</u>
Block 3:	When Lead <u>CTS</u> goes <u>On</u>
	then goto Block 4
Block 4:	Send <u>abcd</u>
	and then
	Set Lead <u>RTS Off</u>
Simulate <u>DCE</u>	
Block 1:	When Lead <u>RTS</u> goes <u>On</u>
	then goto Block 2
Block 2:	Wait <u>100</u>
	and then
	Set Lead <u>CTS On</u>
	and then
	Set Lead <u>CD On</u>
	and then
	Send <u>abcd</u>

Delaying Output -- WAIT

(Simulate only)

The <Wait> statement controls <u>output</u> only. Use <Wait> <u>only with <Send> and <Set</u> <u>Lead></u> statements. <Wait> has no effect on program flow or timers.

DELAYING STRINGS OR LEADS

The <Wait> command can be set in 1 millisecond increments to cause delays of up to 65,535 milliseconds. In combination with counters, very long delays can be set up.

The following example repeatedly sends a string of numbers and then waits 50 milliseconds.

Block 1: Send <u>1234567</u> and then Wait 50 msec and then goto Block 1

Error Messages

Max Length. This message appears if you attempt to specify more than 255 characters in a single string.

Max Strings. Appears if the Monitor and Simulate Menus combined contain strings which have a total of more than 2000 characters.

Menu Full. Appears if the Monitor and Simulate Menus combined contain more than 143 steps.

Invalid Mon/Sim Menu. This may occur if you enter "When DTE/DCE" without completing the trigger branching instruction.

Status Messages (Current Mode of Entering Data)

Text. Enter a single keyboard character.

Hex. Enter two digits for each hex character.

Binary. Enter eight bits from softkeys. If the Setup data code is less than eight bits, the most significant bits are ignored.

End Frame. Enter the FCS character (good, bad, abort, don't care).

7

The Run Menu

Except in Auto Configure, where the HP 4951C automatically goes into the run mode, use the Run Menu to execute all tests. After pressing <Run Menu>, the following softkey choices appear.

Mon	itor	Sim-	BERT
Line	Buffer	ulate	

Monitoring On-Line

For a detailed description of monitoring on-line, see Chapters 2 and 6.

1. Hookup

Connect the HP 4951C to the line to be monitored. See Chapter 2.

2. Setup

Use Auto Configure, or the Setup Menus. See Chapters 4 and 5.

3. Program the Monitor Menu

This step is optional. Go to the Monitor Menu and program any measurements you want the analyzer to make. See Chapter 6.

4. Run Menu

In the Run Menu press <Monitor Line>. The HP 4951C displays the line data. Use the Setup Menus to change the display format.

Monitoring From Buffer

Running from Buffer is almost the same as running on-line.

1. Hookup

The HP 4951C need not be connected to the pod to monitor from buffer.

2. Load the Buffer

Load the buffer with data, either from the disc, or by running on-line. With the nonvolatile memory, previously loaded data can be used.

3. Setup

Use the Setup Menus. With the nonvolatile memory, previous setups are saved and can be used.

4. Program the Monitor Menu

This step is optional: you may go right to the Run Menu. But one of the advantages of monitoring from buffer is that you can program the HP 4951C to run measurements over and over on the data in the nonvolatile buffer.

5. Run Menu

In the Run Menu press <Monitor Buffer>. The HP 4951C begins displaying buffer data and running any measurements you may have setup in the Monitor Menu.

Running Simulation

1. Hookup

Substitute the HP 4951C for the DTE or DCE. See Chapter 2.

2. Setup

Use the Setup Menus. See Chapter 5.

3. Program the Simulate Menu

In the Simulate Menu, select either DTE or DCE. Using the softkeys, select the operations (e.g., Sending or Setting Leads) you want the HP 4951C to simulate. See Chapter 6.

4. Run Menu

In the Run Menu press <Simulate>. To change the display format, go back to the Setup Menus.

Running BERT

Hook up the HP 4951C as a DTE. After the appropriate selections in the BERT menu, perform the BERT test by going to the Run Menu and pressing <BERT>. See Chapters 2 and 9.

Run-Time Softkeys

Softkeys and messages shown at the bottom of the display during run-time are:

Hex Stop Block = n Summary Disp

Hex/Text. Pressing <Hex> converts all subsequent displayed data to hex format. The softkey label then changes to <Text> for changing the display back to the current data code.

Stop Display/Start Display. The <Stop Display> softkey alternates with <Start Display>. The <Stop Display> softkey freezes the display, and <Start Display> causes the most recent incoming data to be displayed. These do not affect the run, but the continuity of the run-time display may be lost.

Block = n. Message indicating which 2 Kbyte block of memory (1 to 16) is being displayed. When memory wraparound occurs, the next 2 Kbyte block to be loaded becomes Block 1. When viewing the buffer after run-time with Examine Data, the oldest data becomes Block 1. In Examine Data, block numbers may go as high as 128 if the buffer data has been loaded from disc.

Summary/Data Display. These alternate to show either data or the Setup Summary. Press <Summary> at anytime, without affecting the run, to review the current setup and observe the counters and timers (see Figure 7-1). The summary tracks the current Setup Menu. Timers are updated whenever a trigger is found. Counters are updated every half second. Counters automatically roll over at 9999 to 0. Press <Data> to return to the data display.

Run-Time Messages

Running. Message indicating data is being processed.

No Pod Attached. An interface pod must be attached in order to run BERT, Auto Configure, Simulation, and Monitor on-line. No pod is necessary to Monitor from Buffer.

Buffer Overflow. Data has filled the buffer (16 blocks) and will begin to overwrite data (in block 1) that has not yet been processed. This can occur when storing data directly from the line to disc, or when incoming speed is higher than specified.

Receiver Overrun. The hardware capability to process serial input is being exceeded. Typically, this may occur at line speeds greater than 30 Kbps per second in character oriented protocols, and speeds greater than 64 Kbps per second in bit oriented protocols.

Invalid Monitor/Simulate Menu. This occurs because of incomplete <When> or <If> statements. For example, if you do not finish the statement "When DTE".

Protocol	HDLC		
Ext Addr OF	F	Ext Ctrl	Off
Code AS	6 C I I · 8	Errchk	ССІТТ
Parity	None		
Mode	Sync	DTEclock	DCE
		Bits/sec	9600
		Dispmode	F&P
Counter 1 =	11	Timer 1 =	0
Counter 2 =	0	Timer 2 =	83
Counter 3 =	0	Timer 3 =	0
Counter 4 =	0	Timer 4 =	0
Counter 5 =	0	Timer 5 =	0
			Data
			Disp

Displaying Data

Five display formats are available. Use the Setup Menus to change the display format. Figures 7-2 to 7-6 show examples of each format.

DTE	DTE data only. Displayed in regular video.
DCE	DCE data only, Displayed in inverse video.
Two Line	DTE over DCE. DCE data is displayed in inverse video.
Data & State	DTE over DCE data, and timing diagrams of four interface leads.
Frame & Packet	Decodes bit oriented frames. Decodes X.25 packets in the Examine Data Menu (see Chapter 8 for a definition of terms).

FULL DUPLEX AND HALF DUPLEX DATA

See Figures 7-7 and 7-8 for examples of full duplex and half duplex data. On half duplex data, the HP 4951C displays complete DTE messages alternating with complete DCE messages. On full duplex data, the HP 4951C displays the individual characters according to the timing order in which they are received.

BLINKING CHARACTERS

Blinking characters indicate failed error checks: BCC, FCS, parity, or framing errors resulting from incorrect setup or loss of synchronization. See Chapter 8.

Figure 7-2. DTE Display Format

Figure 7-3. DCE Display Format

The Run Menu

DISPLAY IN REGUL
SPLAY IN REGULAR
ARVI DEOGGI 1DT E
VIDEOGO IDT EDA
DATA IS DISPLAY
TA IS DISPLAY IN
IN REGULAR VI DE
REGULAR VIDEOGG
OGGM ADT E DATA IS
1DT E DATA IS DI
DISPLAY I
SPLAY IN
Hex Start Block = 2 Sum-
Disp

Figure 7-4. Two Line Display Format

No.	14DCE	: 50N	ND 55	300	ประมห			
Ĥ	TYPE		NS	FF	NR	DATA	F	FCS.
9	INFO		0	0	0	546244	- <u>Fesson</u>	G
2	INFO		0	0	0	<u> </u>	- <u>5</u> ∎T <u>\$</u> N	G
2	INFO		0	0	0	5 N & N 3	5 <u>5</u> <u>6</u> N	8
2	INFO	(Margarette	0	0	0	<u> </u>	i≥×30	G
2	INFO	1	0	0	0	5 N & N 5	555N	G
2	INFO	1	0	0	0	<u> </u>	Ֆ⊺ՖԽ	G
9	INFO		0	0	0	Mr.ND	555N	G
3	INFO		. 0	0	0	_የ	5T 2N	G
9	INFO)	0	0	0	50 N 54 N 53	552N	G
2	INFO)	0	0	0	ጜላለኯ፟፟፟፝፝፝፞፞	ST SN	G
91	INFO)	0	0	0	50 N 54 N 3	E-5-5N	G
	F	2011	Roll	1	Next	Prev	Time	r
н	ex	Up	Down	n	Page	Page	&Cnt	rE
Steam						Sufer Links		And the second second

Figure 7-6. Frame & Packet Display Format (See Chapters 5 and 8 for definitions)

ATA ANDGG					
	1DCE	DATA	IN A	тыо	LIN
影响自己的思想。	1 D 1	TE DA	TÃ AN	DGGP	
E DISPLAYG	Gł				1 D C E
	NE TO AN				10
DATA IN A	тмо	LINE	DISP	LAYG	Gł
TE DATA AN	DGGF				
		IDCE I	DATA	IN A	TWO
		1 D T I	E DAT	A AN	DGGP
LINE DISP	LAYG	G₽			
的情况和科学的研究的					
1DCE D					
Hex Start		Block		6 S	u m -
Disp			Runn	ingm	ary
And the second s			Treas to Table		

Figure 7-8. How Half Duplex Data Looks (See page 7-6)

8

The Examine Data Menu

Viewing the Buffer

Press <Exam Data> on the Top Level Menu to look at the buffer after run-time. Note how this differs from Monitoring On-line, Monitoring From Buffer, or Simulating. In all these, you are looking at the buffer during run-time. You can stop the display, but you cannot go backward. The Examine Data Menu lets you scroll through the entire 32 Kbyte buffer.

WHAT IS STORED IN THE BUFFER

Most line activity is stored in the buffer. This is what makes it possible for the HP 4951C to post-process data from the buffer). The following items are stored:

- 1. DTE and DCE characters.
- 2. Lead changes on the five interface leads. Select Data & State display format or use the highlight feature in the Monitor and Simulate Menus.
- 3. Errors, such as parity, BCC, and FCS.
- 4. Frame markers and packet markers.
- 5. Time marks and lead status.

HOW TO LOAD THE BUFFER

The buffer is continually being loaded with data when monitoring on-line or simulating. The buffer can also be loaded from disc.

Uses for the Examine Data Menu

Viewing Timers and Counters after a run. The Examine Data Menu lets you look at the final state of the timers and counters after a run. The timers and counters are only reset if (1) another run is started, (2) <Reset> is pressed, or (3) before loading data from disc.

Viewing the Entire Buffer. During run time you can stop the display, but you can't go back and look at what you've missed. The Examine Data Menu lets you go back after a run and scroll through the buffer.

Bit Shifting. If the framing is off because the sync characters are unknown, use the bit shift softkey in the Examine Data Menu to realign the bits until the data becomes meaningful. See page 8-9.

Decoding Characters. Move the cursor to any character and observe the binary, hex, and octal equivalents at the top of the display. You can also see the parity bit for any character.

Decoding Packets. In X.25 setup and Frame & Packet display format, the HP 4951C decodes packet headers simultaneously with control field information in the Examine Data Menu. See page 8-6 for a description.

Decoding High Level Protocols. If the data contains other higher level protocol information (e.g., ISO levels 4-7, or SNA), the relevant fields can be read from the hex/ octal/binary decoding at the top of the display.

Hex	Roll Up	Roll Down	Next Page	Prev Page	Timer &Cntr
MORE					
Spec. Block	Next Hilit				Bit Shift

Figure 8-1. Buffer Display in Examine Data Menu (Data & State Display Format)

Softkeys

Hex/Text. Displays buffer data in either the code selected in the Setup Menu, or in hexadecimal.

Roll Up/Roll Down. Lets you move the displayed buffer data up or down one line at a time.

Next Page/Prev Page. Moves from one display-full of data to another. A page is one full display of information.

Timers & Counters. You can at any time look at a summary of the Setup parameters, as well as the status of the timers and counters at the end of the last run.

Specify Block. For specifying a particular two Kbyte block. The block number indicates the first character's position in the buffer. Some buffer information, like time marks, is not displayed, so <Next Page> may cause the block number to jump by several numbers. Buffer data loaded from disc may have block numbers as high as 308.

Next Highlight. The <Highlight> softkey in the Monitor or Simulate Menus lets you mark trigger events. This softkey lets you move to the next highlighted event.

Next Segmt/Prev Segmt. With this feature you can examine the disc like the buffer. These softkeys load either the next or the previous 16 Kbytes of data from disc into the buffer for observation. This choice appears only when you have loaded a disc file.

Bit Shift. Shifts framing of the displayed characters one bit at a time. Use this softkey to find the correct framing of unknown protocols (see page 8-9). The parity bit is not shifted. This choice appears only in character oriented setups.

Displaying Data

The same five display formats available during run-time are available in examine data. See Figures 7-2 to 7-6.

DTE	DTE data only. Displayed in regular video.
DCE	DCE data only, Displayed in inverse video.
Two Line	DTE over DCE. DCE data is displayed in inverse video.
Data & State	DTE over DCE data, and timing diagrams of four interface leads.
Frame & Packet	Decodes bit oriented frames. In the Examine Data Menu only, decodes X.25 packets. See page 8-6.

HOW SETUP AFFECTS DISPLAY

In some display formats you may not be able to observe the buffer data. For example, with frame & packet format, you cannot see BSC data. Data & State format always shows any data in the buffer, even when it consists only of lead transitions.

BLINKING CHARACTERS

Blinking characters indicate failed error checks: BCC, FCS, parity, or framing errors resulting from incorrect setup or loss of synchronization. See page 8-8.

X.25 in Frame & Packet Display Format

X.25 looks the same as HDLC or SDLC when <u>running</u> in the frame and packet display format. After capturing data, however, the Examine Data Menu shows both frame decoding and packet decoding. As shown on the next page, packet information at the cursor location is decoded at the top of the display. The following packet information is displayed. See Appendix C for more details.

Q-Bit	Qualifier Bit.
D-Bit	Delivery Confirmation Bit.
MOD	Modulo 8 or 128.
LCN	Logical Channel Number.
ТҮРЕ	Type of packet. Displayed below DTC or DCE.
P(S)	Packet Send Sequence Number.
M-Bit	More Data Mark.
P(R)	Packet Receive Sequence Number.
Data	Displays the first five characters of the data field.

					en douber		
1DTE:	QD	۲	lod	LCN	PS	М	PR
Data	00	1	28	D00	000	0	005
A TYPE	NS	F	NR	DA	TA		FCS
S_ INFO	0	0	0	اللا	ዸ፟፟፟፝፝፝፟፝ጜ፞፟ጜ	TSN	5 G
S INFO	0	0	0	EaN	MNGE	<u>5</u> 50h	5 G
S INFO	0	0	0	Fa NJ	Ⴘᠷᢎᢄ	ΤŜή	5 G
S INFO	0	0	0	- ZN:	ኯኯኯኯ	430	5 G
<u>9</u> INFO	0	0	0	<u>ም</u>	ኯኯኯ	<u>16</u> £	5 G
S INFO	0	0	0	- ZN:	in un di	5.27	5 G
S INFO	0	0	0	- ZN:	<u>፟</u> ኯ፝፝፝ኯኯኯ	NRN	5 G
S INFO	0	0	0	2N	<u>ች የ</u> ለ የ	FL Sh	5 G
S INFO	0	0	0	- ድሌ	ፚ፟፟፟፟ጜኯ	i⊂ \$1	յն
S₁ INFO	0	0	0	1 3 N	ዾ፟፟፟፟፟፟ጜኯ፝ጜ፞፟፟፟፟	<mark>ົ</mark> ዱዒስ	h G
<u>9 INFO</u>	0	0	0	_ ₽N	<u> </u>	339	G
Roll	Roll		Nex	t Pi	rev	Tim	er
Hex Up	Down		Pag	e Po	age	&Cn	trE
				No. of Street,	ALC: NO	99 E	

Figure 8-2. Decoding X.25 Packets with Frame & Packet Format

Finding Unknown Protocols

Use the Examine Data Menu in conjunction with the Char Asyn/Syn Menu to determine the parameters of unknown protocols.

Use Auto Configure as a Starting Point

Use Auto Configure to find at least some of the parameters and give you a starting point.

Set up the Char Async/Sync Menu

Set up the Char Asyn/Syn Menu to capture all the data on the line, including idles.

- 1. If you know the data code, **Sync on** <u>idles</u>. Otherwise, sync on <u>FF</u> or <u>00</u>. Most character oriented protocols idle in <u>FF</u>. Some IPARS circuits idle in <u>00</u>.
- 2. Drop sync <u>0</u> chrs after <u>none</u>. Now you never drop sync and thus take in all the data.
- 3. If you do not know the data code, initially use a data code with no parity of the same character frame size as was found by Auto Configure. See page 8-10.

Use the Examine Data Menu

Monitor the line to capture some data in the buffer.

- 1. In the Examine Data Menu, try bit shifting. If the data still does not make sense, go back to the Setup Menu and try another data code with no parity of the same character frame size. Because the HP 4951C does not shift through the parity bit, select a data code with no parity (see page 8-10).
- 2. Try data codes of a different size.
- 3. When you are able to identify the idles, change the **Sync on** to the two sync characters immediately following the idles. Change **Drop sync after** to the idle character.
- 4. If **bit sense** is inverted or **bit order** reversed (e.g., IPARS), you may need to go back and capture some new data with these two parameters changed.
- 5. Parity, block check, and frame check errors are indicated by blinking characters. Character frame length is affected both by the data code and the error checking. For example, ASCII 7 with odd parity uses an 8-bit character frame, whereas ASCII 8 with odd parity uses a 9-bit frame. See page 8-10.

Data Code	No Parity	Even or Odd Parity	Ignore Parity
Hex 5 Baudot	5 bits (no parity bit)	6 bits (including parity bit)	6 bits (parity bit = 0)
Hex 6 EBCD IPARS Transcode	6 bits (no parity bit)	7 bits (including parity bit)	7 bits (parity bit = 0)
Hex 7 ASCII 7	7 bits (no parity bit)	8 bits (including parity bit)	8 bits (parity bit = 0)
Hex 8 ASCII 8 EBCDIC	8 bits (no parity bit)	9 bits (including parity bit)	9 bits (parity bit = odd)

Figure 8-3. Frame Sizes vs Data Codes

Error Messages

No data in buffer -- Use EXIT key to exit. This occurs if the buffer is empty when you go to the Examine Data Menu. Monitor On-Line, or load from the disc to fill the buffer.

No displayable data in buffer for the selected display format. This indicates that the buffer contains non-displayable data, such as lead transitions. Use Data & State display format to see the lead transitions.

Disc removed during a Read operation. When you remove the disc during a load operation, the buffer data is invalid. Use the EXIT key to exit. Try loading the data again.

Disc read error: buffer data invalid. This may be caused by a broken disc controller, or by a worn out disc. Use the EXIT key to exit. Try another disc to help isolate the problem.

End of valid data. When you scroll to the end of buffer data.

Start of valid data. When you scroll to the beginning of buffer data.

No more highlights. When you press the <Next Hilit> key and there are no more highlights.

End of disc file. When you specify a block number beyond the last block on disc.

The Examine Data Menu

Bit Error Rate Tests (BERT)

Definitions

Bit Error Rate Tests (BERT) measure digital noise: how often "highs" are changed to "lows", and vice versa

PRBS (Pseudo Random Bit Sequence). A BERT tester generates pseudo random bit sequences from a shift register of length L, where the sequence length equals 2^{L} - 1 bits. A PRBS may be of any length, but certain pattern lengths have become standard. The HP 4951C uses PRBS lengths of 63, 511, or 2047.

Bit Error Rate. The number of bit errors divided by the number of bits received.

Blocks. Bit error rate does not give any idea of error distribution. For example, if most errors occur within a few moments of each other, it might indicate that the line was all right, but had perhaps been affected by a lightning hit or path switch. For this reason, bits are grouped in blocks for measuring block error rate.

BERT "blocks" are not to be confused with the blocks used in other HP 4951C menus.

Block Error Rate. The number of block errors divided by the number of blocks received. Whether there is one error or ten errors in a block, it is still counted as one block error.

Block Sizes. The Bell system uses a block size of 1000 bits. CCITT, the world-wide standard, uses a block size equal to the pattern size. For example, if the PRBS pattern is 511 bits, then the block size would also be 511 bits.

BERT Menu Softkeys

Press BERT on the Top Level Menu. The BERT Menu selections are shown on the next page.

Pattern. Three PRBS pattern lengths are available: 2047, 511, and 63 bits.

Block Size. Two selections are available: 1000 bits and CCITT specification. The 1000-bit block size is used in the US and CCITT is used in other countries. When CCITT is selected, block size is always the same as pattern size.

Duration. You can select the length of the test either as a time interval or as the number of bits sent. For later comparison, test durations must be the same.

Bits/Sec. Notice the Bits/Sec selections are different from the other menus.

Framing. Framing means that you send standard asynchronous characters with one start bit and two stop bits. Thus, the frame size is equal to the start and stop bits, plus an optional parity bit, plus the selected character size. To select framing, choose the size of the data character (5, 6, 7, or 8 bits). An optional parity bit may be added immediately after the data character, before the two stop bits. Each frame alternates with an idle (high) time which is the same length as the frame. If you don't want framing, press <None>.

Parity. If you select framing, three new softkey choices appear. You can select odd or even parity, or have no parity bit at all.

9-3

BERT Menu Selections

Pattern	[2047]		
	[511]		
	[63]		
Block Size	[1000 bits]	Framir	g [None]
	[CCITT spec]		[5 bits]
			[6 bits]
Duration	[10^4] [10^9]	[7 bits]
	[10^5] [5 min]	[8 bits]
	[10^6] [10 min]	
	[10^7] [15 min] Parity	[None]
	[10^8] [Cont]	[0dd]
			[Even]
Bits/sec	[19200] []	3600] [20)]
	[9600] []	3200] [134.	5]
	[7200] [*2	2000] [11)]
	[4800] [1800] [7	5]
	[2400] [600] [5)]
	[1200] [300] [EX	r j

* 2000 works only with framing

Running a BERT Test

Run Menu. After you have entered the test parameters in the BERT Menu, press <Run Menu>. In the Run Menu press <BERT>.

Data Screen. When you press <BERT> in the Run Menu, a run-time data screen continuously displays test progress. The data screen shows elapsed seconds since synchronization, number of bits and blocks sent, number of errors found, and the number of errored seconds.

Completion of a Test. When a receiving BERT tester receives all the bits required for the test, or when you press EXIT, the receiver stops the test. The transmitter continues to transmit, ensuring that the other receiver gets all needed test bits.

% Error-free Seconds. When the receiver is finished, or when you press EXIT, the % error-free seconds is computed.

Exit Key. EXIT halts reception. Press EXIT again to return to the Top Level.

Setup Summary. During a test, press <Summary> to look at the setup parameters without stopping the test. To change any of the setup parameters, stop the test by pressing EXIT twice and re-enter the BERT Menu.

Data Display Definitions

Elapsed Seconds. Elapsed time since receiver synchronization.

Errored Seconds. Tells how many of the elapsed seconds had error occurrences.

% Error-Free Seconds. Errored Seconds divided by Elapsed Seconds. Displayed at the end of the test.

Block Count. Tells how many blocks have been sent thus far in the test.

Block Errors. Tells how many blocks had at least one error. Divide block errors by block count to get Block Error Rate.

Bit Count. The number of actual data bits sent since synchronization (excluding framing, start, stop, and parity bits).

Bit Errors. Divide bit errors by bit count to get Bit Error Rate.

Inject Error. Press <Inject Error> at any time during the test. The receiver at the other end should indicate one bit error. This function can be used at the beginning of the test to check for proper hookup.

Inject 10 Errors. This is a way of sending a burst of errors. The receiver at the other end should have counted ten bit errors, one or two block errors, and one or two errored seconds.

Requirements

Sychronization and handshaking requirements must be met to properly perform accurate BERT testing and are detailed in the following paragraphs.

SYNCHRONIZATION

Unless the BERT receiver is synchronized to the transmitter at the other end, the receiver has no way of knowing whether the next bit in the received PRBS pattern is correct. You should use BERT testers equivalent to the 4925 which have the following characteristics:

- (1) For unframed patterns, the speed of the clock generating the transmitter pattern must be within 1% of the clock generating the receiver pattern.
- (2) With framing, the clocks should be within 5% of each other.

HANDSHAKING

For BERT testing the HP 4951C simulates a DTE. At the beginning of the test the HP 4951C sets the RTS and DTR interface leads "on". For RS-449 interfaces, it sets RS and DS on.

Error Messages

There are two possible error messages (both faults are automatically recoverable).

Out of lock -- data fault: The tester couldn't synchronize at the beginning of the test because of a wrong pattern, or the absence of data.

Out of lock -- sync loss: The tester lost synchronization during the test.

Examples

EXAMPLE 1: End-to-End Testing

Two BERT testers are connected to opposite ends of the line. Each BERT tester contains both a transmitter and a receiver, making it possible to check both send and receive channels simultaneously. The transmitter at each end is essentially a PRBS generator; the receivers are pattern checkers.

Figure 9-1. End-to-End Testing
Bit Error Rate Tests

If you have only one BERT tester, you can loop back at the other end. The BERT tester sends on one channel, and receive its own transmission on the other channel. Remember, if you loop back, you will be adding together the errors on both the send and receive channels: one channel may contain many more errors than the other channel.

Figure 9-2. Loopback Testing

OTHER TESTS

Some BERT testers (such as the HP 4925) perform the following character error checking besides BERT tests.

Quick Brown Fox Tests

The "Quick Brown Fox" message (or any message) tests the ability of terminals to receive messages. Use the Simulate Menu to run this test. The HP 4951C also checks parity errors. See example 4 in Chapter 14.

Startup Tests

The HP 4951C does many types of start-up tests, such as RTS - CTS delay. Use the Simulate Menu. See Chapter 14.

BERT CONFIGURATION MODES

The Bit Error Rate Parameter Setup menu is where you select the specific BERT configuration for your application. BERT can be configured to run in Asynchronous, Synchronous, or Isochronous mode.

The Bit Error Rate Parameter Setup menu fields "Pattern", "Block Size", and "Duration" have no effect on the mode of transmission. Only the fields Bits/sec and Framing effect the transmission mode. The different setups that determine transmission are listed below.

Asynchronous: Bits/sec = Other than Ext; Framing = ON (other than none)

Synchronous: Bits/sec = Ext; Framing = None

Isochronous: Bits/sec = Ext; Framing = On (other than none)

Bit Error Rate Tests

9-10

10

The Remote Menu

Remote Operations

The HP 4951C can transmit and receive menus and buffer memory remotely to an HP 4951A/B/C, an HP 4955A, or an HP 4953A. The menus and/or buffer data must currently be in the HP 4951C memory to be available for transmission. Once transmitted, the menus or buffer data should be saved on mass storage for future use or reference (the next remote transfer could inadvertently overwrite and destroy the menu or buffer data downloaded). For remote operations, the HP 4951C must be executing in the Remote Menu. The controller must successfully execute the Slave's ID operation before remote transfers can begin.

PROCEDURE

- 1. Connect both slave and controller to asynchronous modems via the Remote/ Printer (RS-232/V.24) connector on the rear panel. The units can also be connected without modems by using the interface pods. See page 10-7 if you are not using modems.
- 2. At both sites go to the Remote Menu and select one as <Controller> and the other as <Slave>.
- 3. Select the same Bits/sec for both slave and controller. When using an HP 4955A or HP 4953A as a controller, select the same address for slave and controller.
- 4. Select <Slave's I.D.> operation at the controller.
- 5. Press <Execute> at the slave, and then at the controller.
- 6. After establishing modem communication, at the controller site again <Execute> the <Slave's ID> operation. This is necessary to synchronize remote transfers.

Using the HP 4951C as a Controller

As a Controller, the HP 4951C downloads menus and data to the Slave. The HP 4951C can also receive uploaded information from the Slave.

Upload Menus. Receives setup, monitor, simulate, and run menus from the slave.

Upload Data. Receives buffer data from the slave. You must specify the correct block limits in the slave: Start Block n1, End Block n2.

Upload Appl. Receives an application program from the slave's Application Memory.

Download Menus. Transmits setup, monitor, simulate, and run menus to the slave.

Download Data. Transmits buffer data to the slave.

Download Appl. Transmits an application program from its application memory to that of the slave.

Slave Status. Requests the slave to transmit its current status.

Slave ID. Necessary to initiate and synchronize remote transfers after hookup. The slave transmits "HP 4951C".

REMOTE MENU -- CONTROLLER CONFIGURATION

Configuration	Controller			
Operation	[Upload Menus	3	Start Blk	[] End Blk []
-	[Upload Data			
	[Upload Appl	3		
	[Slave Status	3		
	[Slave ID	3		
	[Download Menus	1		
	[Download Data	J		
	[Download Appl	1		
Interface	[Pod] or [Remote	Port]		
Bits/sec	[9600]	[4800]		
	[2400]	[1200]		
	[600]	[300]		
	[200]			

The following status messages appear during execution.

Status Operation executing Operation successful Slave rejected operation Slave not responding

Using the HP 4951C as a Slave

A slave HP 4951C responds to any of the commands from a controller HP 4951C (See the operation list on the previous page). When in the remote menu, a slave HP 4951C transmits or receives menus, data, or application programs to the controller. Also, any error condition which occurred during the transfer can be obtained by the controller's Slave Status command.

HP 4955A AND HP 4953A CONTROLLER COMMANDS

Application programs cannot be transferred between an HP 4955A or HP 4953A and a HP 4951C. Other than this exception, an HP 4951C responds to all the commands from a Controller HP 4955A or HP 4953A (See the operation list on the previous page).

The following operations are different when an HP 4955A or HP 4953A controls a HP 4951C Slave.

Upload Timers & Counters

Upon receiving this command from an HP 4955A or HP 4953A controller, a slave HP 4951C uploads the status of its timers and counters.

Address

The HP 4955A or HP 4953A specifies an address in all controller commands. The slave address must be selected to be the same. The address does not matter in operations between two HP 4951C's.

REMOTE MENU -- SLAVE CONFIGURATION

Configuration	Slave
Slave Addr #	[Use Keyboard] (Only HP 4955A's or HP 4953A's can request an address)
Interface	[Pod] or [Remote Port]
Bits/sec	[9600] [4800] [2400] [1200] [600] [300] [200] The following status messages appear during execution.
Status	Operation executing Operation successful Slave rejected operation Slave not responding

Ending Remote Operations

To stop execution of any remote operation, press EXIT. If you press EXIT again the HP 4951C displays the following message:

To Disconnect the Remote Link, press the HANG UP softkey, otherwise press EXIT

Pressing EXIT returns you to the Top Level Menu. You can then go back to the Remote Menu at any time and perform any operation.

Pressing <Hang Up> turns off DTR.

If you press <Hang Up>, you must re-enter the Remote Menu and again press <Execute> at both ends of the line to raise DTR.

Handshaking Requirements

OPERATIONS WITH ASYNCHRONOUS MODEMS

NOTE: Only asynchronous modems can be used for remote transfers.

In remote operations, the HP 4951C is configured as a DTE. The following handshaking convention is used.

- 1. DTR is turned on when you press <Execute>. You must press <Execute> at both ends of the line. The HP 4951C then waits for DSR to go on.
- 2. The HP 4951C then sets RTS on and waits for CTS and CD to go on.

OPERATIONS WITHOUT MODEMS

The HP 4951C is configured as a DTE for remote operations. If two units are connected directly without modems, one unit must be configured as a DCE. For applications with no modem, use a modem eliminator cable such as the RS-232C/V.24 printer cable M/M (HP # 13242G). You may also open all the breakout switches except pin 1 on one of the pods, and jumper the following pins: 2 to 3, 4 to 8, and 5 to 6 and 20.

Slave Error Messages

Buffer Size Too Small. The controller is trying to download too much.

Start block# must = first. The controller has not specified the first block in the slave buffer. Note that the first block may not be "1" if the buffer data has been loaded from disc.

No data in requested blks. The controller has requested data from empty blocks.

Buffer empty. The slave buffer is empty.

Conversion error: menus reset. This might occur if the menus being transferred are invalid.

Menus incompatible with HP 4951C. This might occur for certain menus created by a HP 4955A or HP 4953A.

Modem handshake fails. The controller RTS, CTS handshaking has failed

Invalid Mon/Sim Menu. This can occur if you say "When DTE/DCE" and then do not specify a trigger.

Operation not valid for HP 4951C. The operation is one that only an HP 4955A can perform.

Issue ID request to enable slave. You must always <Execute> this operation immediately after establishing phone communication in order to synchronize remote transfers.

11

Mass Storage

ΝΟΤΕ

The Continuous Store to Disc feature puts an additional demand on the disc drive. It is especially important to follow the "CARE AND HANDLING OF DISCS" instructions on the next page. Avoid prolonged use in a harsh environment, and consider cleaning the drive heads periodically.

Because of the versatile triggering capability of the HP 4951C, you can usually find data communication problems before using all the memory. However, the disc drive has several advantages:

- 1. Store data directly from the line onto disc; this increases your buffer memory to the size of the space on the disc.
- 2. Save all the menus and the buffer data for future reference. In the BERT Menu only the setup (not the results) is saved.
- 3. Use the disc like a large buffer. The HP 4951C nonvolatile buffer memory holds 32 K bytes of data. A disc holds up to 618 K bytes. Using the <Next Disc Segmt> and <Prev Disc Segmt> commands in the examine data menu, you can scroll through the disc.
- 4. Load application programs using the disc.

How to Use the Disc Drive

Always install the transportation disc in the disc drive when transporting or shipping the IIP 4951C from place to place. The transportation disc helps prevent damage to the disc drive from bumps and vibration that may occur. The warranty may be voided if the transportation disc is not used during transit.

TYPE OF DISCS

The HP 4951C disc drive uses 3 1/2 inch, double-sided, double-density flexible discs. Specify part number HP 92192A to order a set of ten discs.

CARE AND HANDLING OF DISCS

Discs require a clean, dust-free environment. To avoid damaging your discs and losing information, follow these rules for handling and caring for your flexible discs.

- 1. Make certain the shutter (the metal guard) is closed when the disc is not in use. The shutter protects the disc from dirt, fingerprints, and scratches.
- 2. Use discs in a clean environment. Avoid getting smoke, dust, eraser particles, salt air, food crumbs, hair, or fingerprints on your discs. Dust and dirt particles can scratch the disc surface which may cause loss of information.
- 3. Keep discs stored upright in a cool, dry place. The storage temperature range for discs is 4°C to 53°C (39.2°F to 127.4°F) with a relative humidity between 8% and 90%. Heat and moisture can damage your discs.
- 4. To avoid losing important information, copy and backup your discs frequently.
- 5. Do not put discs near anything that generates a magnetic field, such as a telephone, magnetic paper clip holders, or appliances with motors.
- 6. Do not touch the disc surface. Scratches or contaminants can reduce the life of your disc.
- 7. Do not try to clean the disc. The plastic jacket contains its own cleaning device. Other cleaning methods can damage the disc.

INSERTING DISCS

Hold the disc in your hand with the label side up and the metal shutter pointing towards the drive. Your fingers should be on the edge of the disc that has the paper label on it, and not the metal shutter. You do not need to open the shutter, it will open automatically in the disc drive slot. Insert the disc firmly but gently into the disc slot until the disc touches the back of the slot. Continue pressing until you hear a click and the disc is pulled down into the drive.

REMOVING A DISC

To remove a disc from the disc drive, press the gray button just below the drive. The disc will pop out part of the way. Pull the disc straight out. Check to see that the metal shutter is closed before you put the disc away.

WRITE-PROTECTING THE DISC

You can protect data on a disc to ensure that no one can inadvertently write over or delete the information on the disc. To write-protect a disc, use the following procedure.

- 1. Turn the disc over so you are looking at the back.
- 2. Place the tip of a pen in the small hole at the top of the write protect tab.
- 3. Slide the tab downward until it locks into place. The tab will no longer be visible from the front of the disc.

You can load (read) from the disc with the protect tab in either position.

2-456-070-01

The Mass Store Menu

The Mass Store Menu is used for disc operations. You cannot use this menu if you have the delete disc drive option installed. The following softkeys appear when you press <Mass Store> in the Top Level Menu:

	Dir	Load	Store	Del-	Re-
				ete	cover
For	Pack	Con-	Print	Re-	
mat	Disc	vert	Appl	name	

<DIR> - DIRECTORY

The directory (<Dir>) operation displays the disc contents giving File Name, File Type, and a Comment field. Five defined file types are possible:

MENU & DATA	Both buffer data and menus (setup, monitor, simulate, BERT).
MENU	Consists of menus only (setup, monitor, simulate, BERT).
DATA	Buffer data only.
APPLIC	Only HP 4951C application files can be loaded.
EXTRUNDAT	Created during a continuous store capture from line during run-time.

Identical file names may coexist if the file types are different. Notice that only three types of files are generated by the HP 4951C: DATA, MENU and MENU & DATA. Data type files always contain ONLY data. Menu type files contain only menus.

The Comment field is 32 characters long, with all characters displayed on the file the cursor is highlighting.

Mass Storage

The cursor keys can be used to "scroll" through the files on the directory. The "<----" key acts as a **previous page** for long directories. The "--->" key acts as a **next page** for long directories.

	Function Name	Directory Type	Sectors			
•	Self_Demo	Menu	33			
	X25_DECODE	Applic	97			
	SNA	Applic	97			
	SNA_DATA	Menu & Data	556			
	Space Available =	1669 Sectors				

1

Figure 11-1. A Directory Listing

<FORMAT>

Erases the disc directory and places a new format on every track of the disc. This must always be used for blank discs. This process of formatting should take approximately 45 seconds.

<LOAD>

Allows files to be loaded from the disc. File names may be entered via the keyboard or by 'scrolling' to the file name using the cursor arrow keys before pressing the <LOAD> key.

<STORE>

Allows files to be stored to the disc. File names may be entered via the keyboard or by 'scrolling' to the file name using the cursor arrow keys before modifying the name and then pressing the <Store> key. File type must be specified and a comment is allowed to aid in file identification.

<DELETE>

Allows files to be marked for removal from the disc. File names may be entered via the keyboard **or** by 'scrolling' to the file name utilizing the cursor movement arrows **before** pressing the <Delete> key. The file is marked for deletion in the directory (a **Del** in the right most columns) but actually not deleted until a <pack disc> or <store> writes over the data.

<RECOVER>

Allows files marked for removal from the disc to be 're-stored' as valid active files in the directory. Only files created on a HP 4951 disc series protocol analyzer may be recovered. Each file name must be entered via the keyboard or by 'scrolling' to the file name using the cursor arrow keys before pressing the <Recover> key and then modifying the name. This can only be done before the disc has been packed.

<PACK DISC>

Lets the directory regain use of disc space lost when files are deleted and when 'run-time' files are created.

Once pack disc has been completed there is no way for the HP 4951C to recover the purged files.

<RENAME>

Allows a file to be renamed or the comment associated with a file to be changed.

<CONVERT>

Converts the ExtRunDat file type to a Menu & Data file type so that other Hewlett-Packard protocol analyzers can read the data file. Only ExtRunDat file types may be converted.

PRINT APPL>

Loads the Printer Application stored in firmware into the Application RAM. Any application currently loaded will be overwritten.

HOW TO LOAD DATA INTO THE BUFFER

Insert the disc into the disc slot. Press <Dir> in the Mass Store Menu to see how the file is listed on the disc. Cursor to the file name or type in the file name as it is listed in the catalog. Press <Load> and then <Execute> to load the file into the memory.

Do not perform the load operation if you want to save present menu setups.

The HP 4951C menu setups are changed by the load operation. The Setup, Monitor, Simulate, and BERT setups are all modified to the new values. You must first store these menus to another disc if you want to save them.

LOADING FILES LARGER THAN THE BUFFER

When loading a disc file that is too large for the buffer the softkeys <Next Disc Segmt> and <Prev Disc Segmt> are automatically displayed in the <Exam Data> menu. You can scroll through the rest of the file by using these softkeys. These softkeys scroll through the file in 16 Kbyte segments (1/2 the buffer size). Use these softkeys when running monitor programs on data files that are too large for the buffer.

AUTOAPPLIC

You can rename any **application** file to AUTOAPPLIC and have it automatically loaded when the HP 4951C is switched on. Just insert the disc with the "autoapplic" file into a 4951C and switch the power on. This should be used with caution as it conceivably could result in a menu or data being written over when the application is loaded. Always save data or menu files to disc that might possibly need to be re-used.

WHAT YOU CAN STORE ON DISC

Store both "Menus and Data", or "Menus" only. Menus saved are Setup, Monitor, Simulate, and BERT (setups only). Highlights are not saved on disc, only data and timing information.

HOW TO STORE TO DISC

Insert a disc and format the disc if it is blank. Press <Store>, enter the file name, the file type, and an optional comment; then press <Execute>. If the disc has insufficient room for a file, "Disc Full" is displayed.

STORING DIRECTLY TO THE DISC FROM THE LINE

To store directly to disc while monitoring or simulating on line, the <Start disc> command must be placed in the Monitor or Simulate program.

For example:

Monitor

Block 1 Start DisC

ΝΟΤΕ

You can only start and stop the disc once by program control.

The actual storing of data from the line to disc occurs when Monitor Line or Simulate is executed. To execute either of these commands, first press <Run Menu> in the top level menu. Then either select <Monitor Line> or <Simulate>, then <Execute>. If the Start disc command is present in your Monitor or Simulate program, you will be prompted to give the disc file name (File Name) and mode of storing to disc (Run Mode).

There are two modes of storing to disc. These are: Continuous Loop (Cont Loop), and Until Full.

Continuous Loop Versus Until Full When Storing from Line

Cont Loop. The Continuous Loop command instructs the HP 4951C to continue storing to the disc even after the disc is full. The HP 4951C will continue to store to disc until the [EXIT] key is pressed. The data on the disc will be overwritten in a circular fashion. The most recently stored data will be on the disc after the [EXIT] key is pressed.

The created disc file type will be "ExtRunDat" if data from the line actually wraps around and overwrites data on the disc. If the data does not wrap around, then the created file type will be "Menu&Data".

The file type "ExtRunDat" (Extended Run Data) is compatible with the HP 4954A "Ext. run data" file, with the two instruments being able to read each others' files.

NOTE

An HP 4954A formatted disc is not optimized for high speed capture on the HP 4951C, and should not be used to capture data on a HP 4951C. The disc should be first reformatted by an HP 4951C.

ExtRunDat files can not be read by an HP 4952A (or an HP 4951C with less than REV 5.0 firmware) without first being "Converted".

Until Full. The Until Full command fills the disc with data until it is full, after which the disc stops, and the message "Disc Full" is displayed. The file type created on the disc will be "Menu&Data".

Convert Command. The "Convert" command converts an ExtRunData file to a Menu&Data file type. The <Convert> key is located in the second row of softkeys in the Mass Store menu. It will only convert ExtRunDat files.

Disc Capture Capabilities. The disc can typically keep up at line bit rates of 9600 bps full duplex and 19.2 kbps half duplex. The disc is able to keep up at higher line bit rates if line utilization (percentage of data to idles) is low. If the disc cannot keep up, "Buffer Overflow" is displayed.

Mass Storage

12

Reset and Self Test

The Reset Softkey

The <Reset> softkey lets you clear the memory and go back to default entries in the Setup, Monitor, and Simulate Menus.

WHEN SETUPS AND BUFFER ARE NOT SAVED

Because the HP 4951C has a battery powered back-up memory, menu setups and buffer memory data are saved after turn off. The menus saved are: Setup, Monitor, and Simulate. However, setups and buffer data cannot be guaranteed in the following cases:

- 1. The instrument was not in the Top Level Menu when it was turned off.
- 2. The battery has completely run down. This should never happen unless the instrument has been stored for more than a week in a very hot environment (or six months at room temperature).

In these cases the following message appears when you go to the monitor, simulate, or setup menus.

MENUS CORRUPT; MENUS HAVE BEEN RESET TO THE DEFAULT CONDITION

The analyzer has been reset automatically: the buffer has been cleared, and setups return to their default values. Always press EXIT and go to the Top Level Menu before turning the instrument off.

Setup Menu Defaults

The following tables list default entries for the five Setup Menus: HDLC, SDLC, X.25, BSC, and Char Async/Sync. Whenever you press <Reset> on the Top Level Menu, these entries appear in each menu. Otherwise, the entries are whatever you had selected before you turned the power off.

	X.25 PROTOCOL			
Code <u>ASCII 8</u>	Code <u>ASCII 8</u>			
Mode <u>Sync</u>				
DTE clock <u>DCE</u>	DTE clock <u>DCE</u>			
Bits/sec <u>9600</u>	Bits/sec <u>9600</u>			
Display mode	Display mode			
	Code <u>ASCII 8</u> Mode <u>Sync</u> DTE clock <u>DCE</u> Bits/sec <u>9600</u> Display mode <u>Data & State</u>			

Reset and Self Test

Norm

BSC PROTOCOL	CHAR ASYNC/SYNC								
	Bit order LSB 1st Bit sense								
Code ASCII 7	Code ASCII 7								
Error check <u>LRC</u>	Error check <u>LRC</u>								
	Parity <u>None</u>								
	Transparent text char <u>None</u>								
Sync on <u>16</u> 16	Mode <u>Sync</u> Sync on <u>32</u> <u>32</u> Drop sync <u>10</u> characters after <u>2D 2D 37</u> <u>3D</u> <u>70</u> <u>7F</u> <u>FF</u>								
DTE clock <u>DCE</u> Bits/sec <u>9600</u>	DTE clock <u>DCE</u> Bits/sec <u>9600</u>								
Display mode <u>Data & State</u>	Display mode <u>Data & State</u>								
Suppress <u>None</u>	Suppress <u>None</u>								

When you select any error checking in Character Async/Sync following a <Reset> the HP 4951C defaults to start on <u>SOH STX</u> and Stop on <u>& ETX NUL NUL</u>. These start and stop characters also appear if you first go to the BSC menu and then to Character Async/Sync after a <Reset>.

The Self Test Menu

Whenever you turn on the HP 4951C it first goes through a self-test. After approximately six seconds, it then displays the Top Level Menu. You can run the self-test at any time by pressing the <Self Test> softkey in the Top Level Menu. If you then press <Loop>, the analyzer goes through a self test cycle and displays failure information for specific tests. See Appendix E for more information on the Self Test Menu.

13

ASCII Printer Output

Introduction

The ASCII printer output application (supplied internally with the HP 4951C) lets you print buffer data, monitor and simulate menus, timer and counter results, and disc directories. HP 4951C display information can be sent to a printer via the Remote/Printer (RS-232C/V.24) connector on the rear panel or via the Interface Pod connector using the RS-232C/V.24 interface pod.

ITEMS REQUIRED

To use this feature, you need to access the Printer Output application under the Mass Store menu. Use an ASCII Printer such as the HP 2601A, HP 2934A or ThinkJet Printer (HP 2225D).

If you use the Remote/Printer connector on the rear panel, you need a modem eliminator cable (HP 13242G).

If you use the Interface Pod connector on the rear panel, you need an RS-232C/V.24 interface pod such as the HP 18179A or HP 18180A.

SUMMARY OF PRINTER OPERATION

Hookup. Connect the ASCII printer to the Remote/Printer connector on the rear panel or to the RS-232C/V.24 pod.

Loading. Load the printer output application program from the Mass Store Menu.

Setup. In the Top Level Menu, select Printer Menu and make the desired selections. The default conditions will work with a ThinkJet (HP 2225D) with all the back switches <u>down</u>.

Execution. Press <Execute> when the cursor is in any printer menu field (except the last).

Halting. Press EXIT to halt printing at any time and return to the printer menu.

Hookup

Connect the ASCII printer to the Printer/Remote connector on the rear panel using the HP 13242G cable, or to the RS-232C/V.24 interface pod, using the Y-ribbon cable supplied with the pod. See Figure 13-1 below.

Figure 13-1. Connecting the Printer

Loading The Application

- 1. Press the More key in the top level menu.
- 2. Press the <Mass Store> softkey in the Top Level Menu.
- 3. Press the More key.
- 4. Press the <Print Appl> softkey.
- 5. Press <Execute> to load the printer application program.
- 6. The <Print> softkey should now appear on the top level menu softkeys (press MORE to see this selection).

Setup

Use the Printer Output Menu (Figure 13-2), which appears in the top level menu after loading the application, to configure for printing. You must know the correct settings for your ASCII printer.

Print Information

Select any of the displays shown on the softkeys. If you select <data buffer>, specify which buffer section is to be printed: the beginning of the buffer is displayed, with the following softkeys:

Print All Start Here Hex/Text

The default is "Text"; press <Hex> to represent the data in hex. The <Print All> softkey prints the entire buffer. To print only part of the buffer, move the cursor to the desired position and press <Start Here>. The following softkeys appear:

To End End Here Hex/Text

Press <To End> to print the buffer contents from the starting position to the end of the buffer. Otherwise move the cursor to the desired ending position. Press <End Here> to print the buffer from the starting position to the position indicated by the cursor.

Port

Select the connection you are using; either the interface pod (pod) or the Remote/ Printer connector (RS-232 Port).

Bits/sec

You can send data to the printer at any one of the speeds shown in Figure 13-2.

Character Code

Select either ASCII 8 or ASCII 7.

Parity

Select none, even, or odd.

4951C Mode

Determines whether the HP 4951C behaves as a Data Termination Equipment (DTE) or as Data Communication Equipment (DCE).

When using the pod's Y-ribbon cable for printer connection, the HP 4951C should be configured as a DCE.

Handshake

Determines the printer handshake method. You can specify ENQ, ACK, XON, or XOFF characters by typing in the characters from the keyboard. Type in control characters, shown on the keycaps, by pressing CNTL simultaneously with the control character.

Line Terminators

Type in the line termination characters expected by the printer. Two characters may be specified, blanks are ignored. The standard sequence of a carriage return and line feed is the default.

Carriage Return Delay

Sets the delay after a carriage return in milliseconds. This field defaults to zero, but some printers require a delay to avoid a loss of characters. NOTE: The <Execute> key is not available in this field.

Print Information:	[[[[Data I Setup Monito Simula Run Su	Buff or ate umma	'eı	4]]]]		[BER [Rem [Cat [Pri	IT M Note alc nt	len ;)g Me	u]]] nu]	
Port:	Re	emote	or	F	Pod							
Bits/sec.:	[[[[19200 9600 3600 1200 300]]]	C C C C	7200 4800 2400 600 110]]]	[[[[3200 2000 1800 150 75]]]]	[[[[1600 14400 12000 134.5 50]]]]
Character Code	Ľ	ASCII	8]		[AS(C I I	7	1				
Parity	[N	lone]	C	E١	/en]	C	00	dd]				
4951C Mode	E	DTE]	٢	D	CE]							
Handshake	C	XON/X) F F	נ	[EN	1Q/A	CI	<]	[C	trl	Lead]
XON (ENQ) Character XOFF (ACK) Character	[[keyboa keyboa	ard ard	er er	ntry] ntry]	t L						
Line Terminator	C	keyboa	ard	er	ntry]	l						
Carriage Return Delay	[keyboa	ard	er	ntry]	ms						

Figure 13-2. The Printer Output Menu

Execution

After filling out the printer output menu, press the <Execute> softkey. The <Execute> softkey appears when the cursor is in any field (except Carriage Return Delay) of the print menu. Pressing <Execute> initiates the printing process using the menu values that are currently displayed. Print menu parameters are saved, thus when you enter the print menu the next time, the fields will have the same values used for the previous print operation.

Press EXIT to halt printing at any time and return to the printer menu.

Printer Handshaking

Your printer will use one or more of the following types of handshaking. You must determine which one, and configure the analyzer printer menu appropriately.

Hardware Handshaking

The CTS and DTR leads are used for hardware handshaking. CTS is monitored by the HP 4951C when it is in the DTE mode. In the DCE mode the HP 4951C monitors DTR. If another line is to be used, the appropriate connections must be made via the interface pod breakout box. In order to print, the lead being used must be high. If the lead goes low, printing pauses until the lead goes high again.

Enquire/Acknowledge (ENQ/ACK) Handshaking

In ENQ/ACK handshaking the HP 4951C inquires whether the printer is ready to receive characters. The HP 4951C sends an ENQ character (usually 05 hex) to the printer after each block of 40 characters. The printer must acknowledge the enquiry in order for printing to proceed. The printer does not respond to an ENQ until it is able to accept more characters into its buffer. When it is ready, the printer responds by sending an ACK character (usually 06 hex) to the HP 4951C. The ENQ and ACK characters may be different for various printers. You can specify the characters to be used in the Printer Menu.

XOn/XOff Handshaking

XOn/XOff handshaking is initiated by the printer. When the printer is unable to continue receiving characters, it sends an XOff character (usually 13 hex) to the HP 4951C. The HP 4951C then suspends transmission until the printer sends an XOn character (usually 11 hex). Some printers use a second XOff character (usually 15 hex). One XOn character, and two XOff characters can be specified in the printer menu.

Error Messages

The following messages may appear at the bottom of the display. Press the EXIT key to return to the printer menu and halt printing.

- **1.** No pod attached. No pod is attached to the HP 4951C.
- 2. No Lead Change. With hardware handshaking, no enabling lead has been detected for more than 60 seconds. The HP 4951C waits for an enabling lead from the printer.
- **3.** No XON after XOFF. With XOn/XOff handshaking, the printer sent an XOff and has not sent an XOn for more than 60 seconds. The HP 4951C waits for the XOn character from the printer.
- 4. No ACK after ENQ. While using ENQ/ACK handshaking, the printer has not responded with an ACK for more than 60 seconds after the HP 4951C sent an ENQ. The HP 4951C waits for the ACK character from the printer.
- 5. No Transmission occurring. Check hardware connections.

To return to the printer menu after one of the above messages, press the EXIT key. Check the printer if handshaking is not acknowledged.

How The Printer Displays Characters

The output format for the ASCII printer is essentially the same as for the HP 4951C display, except as described below.

All hex codes are in upper case. All ASCII control characters are in lower case. All other sequences are: top character upper case, and lower character lower case.

All characters that have no ASCII representation are printed in hexadecimal mode.

HEXADECIMAL characters are printed in upper case, with the most significant digit over the least significant digit. For example, B7 hex is printed as:

В 7

ASCII control characters are printed in lower case with the same mnemonics as displayed except they are printed on two lines. For example, and ASCII acknowledge is printed as:

a k

For data and state displays, after DTE, DCE, and lead level information is printed across the page, a blank line is left before the next group of lines is printed.
ASCII Printer

SPECIAL CHARACTERS

Don't Care	x x	Undefined Character	? ?
Start Flag	S f	End Flag	Ę
Good FCS	G G 9 9	Bad FCS	ВВ ББ
Abort	AA aa	Don't Care FCS	XX XX
Highlighted Timer	H	Discontinuity	D c

LEAD LEVELS

Lead levels that are displayed are printed as follows:

High = 1 Low = 0 Transition (rising or indeterminate) / Transition (falling or indeterminate) \

Examples Of Printed Output

EXAMPLE OF DATA & STATE DISPLAY

DTE:	8 A B C D EGGE Sd e e	
	0 B C D E fggf f1 b q	
DCE:	8 A B C D EGGE Sde	е
	OBCDE fggf f1b	q
RTS:	000000000000000000000000000000000000000	0
CTS:	0000000000000000/11111111	1
DSR:	000000000000000000000000000000000000000	0
CD :	000000000000000000000000000000000000000	0
DTE:	ddenhsdneufrs	d
	24 m k t i l u c s s s h i	3
DCE:	ddenhsdneufrs	
	24 m k t i l u c s s s h	
RTS:	000000000000000000000000000000000000000	
CTS:	11111111111111111111111111111111	
DSR:	000000000000000000000000000000000000000	
CD :	000000000000000000000000000000000000000	

ASCII Printer

EXAMPLE OF FRAME & PACKET OUTPUT

Block	1												
	A	Туре	NS	ΡS	NR	Data	FCS		QD	Mod	LCN	PS M	PR
DCE:	0	INFO	0	0	0	UUd	G	Clear Request	01	8	555		
	0					3	g						
DCE:	0	INFO	0	0	0	DDv	G	Call Request	01	8	444		
	0					t	g						
DCE:	0	INFO	0	0	0	UUd	G	Clear Request	01	8	555		
	0					3	g						
DCE:	0	INFO	0	0	0	DDv	G	Call Request	01	8	444		
	0					t	g						

EXAMPLE OF RUN SUMMARY

Protocol		Char Async/Sync		
Bit orde	r	LSB 1st	Bit Sense	Norm.
Code		ASCII 8	Err chk	None
Parity		None		
Transpar		None		
Mode		Async 1		
			Bits/sec	9600
			Disp mode	D & S
			Suppress	None
Counter	1 =	0	Timer 1 =	0
Counter	2 =	0	Timer 2 =	0
Counter	3 =	0	Timer 3 =	0
Counter	4 =	0	Timer 4 =	0
Counter	5 =	0	Timer 5 =	0

Examples

EXAMPLE 1 MEASURING A SINGLE RTS-CTS DELAY

This test measures the time from when RTS goes on until CTS goes on. Use the <Monitor> menu for this example.

To view the timers and counters, press <Summary> during run-time, or <Timer & Cntr> in the Examine Data Menu after run-time.

Note that timer measurements must be referenced to a preceding trigger for accurate measurements.

Block 1:	When Lead <u>RTS</u> goes <u>On</u>	
	[.] then goto Block <u>2</u>	
Block 2:	Start Timer 1	Timer 1 indicates RTS-CTS
		delay.
	When Lead <u>CTS</u> goes <u>On</u>	Note that Start and Stop
	then goto Block <u>3</u>	statements must be preceded
		by When statements for
		accurate timing.
Block 3:	Stop Tests	

EXAMPLE 2 MONITORING A DCE

In this example, you monitor a DCE by simulating the DTE through the <Simulate> menu. When simulating a DTE, the HP 4951C supplies the ETC clock. Upon receiving the proper clocks and lead commands, the DCE begins sending data, which the HP 4951C automatically stores and displays while in the simulate mode.

Simulate <u>DTE</u>

Block 1: Set Lead <u>DTR</u> <u>On</u> and then Set Lead RTS On

EXAMPLE 3 MONITORING A DTE

In this example, you monitor a DTE by simulating a DCE. When simulating a DCE, the HP 4951C automatically supplies both the TC and RC clocks. Upon receiving the proper clocks and lead commands, the DTE begins sending data, which the HP 4951C automatically stores and displays while in the simulate mode.

Simulate <u>DCE</u> Block 1: Set Lead <u>DSR On</u> and then Set Lead <u>CD On</u> and then Set Lead CTS On

EXAMPLE 4 FOX MESSAGE

This test checks the ability of asynchronous terminals and printers to receive and display data. The "FOX" message is transmitted to the terminal using the <Simulate> menu and then the echo from the terminal is checked for parity errors.

Simulate DCE

- Block 1: Send <u>THE QUICK BROWN FOX</u> JUMPS OVER A LAZY DOG 012 <u>3456789</u>. Block 2: When Error <u>Parity on DTE</u> then goto Block <u>3</u> When DCE <u>.</u> then goto Block <u>1</u> Block 3: Increment Counter <u>1</u>
- Block 3: Increment Counter <u>1</u> and then Goto Block <u>2</u>

The two "When" statements are ORed together.

EXAMPLE 5 COUNTING PARITY ERRORS

This program uses the <Monitor> menu to count the number of parity errors on both the DTE and DCE lines and keep track of the number of minutes of the test.

Block 1:	When DTE <u>X</u> or When DCE <u>X</u> then goto Block 2	Timer 5 starts when any character is sent on the DTE or DCE line. ("X" = don't care.)
Block 2:	Start Timer <u>5</u>	Timer 5 counts milliseconds up to one minute.
Block 3:	When Error <u>Parity on DTE</u> then goto Block <u>4</u> When Error <u>Parity on DCE</u> then goto Block <u>5</u> When Timer <u>5</u> is > <u>59999</u> then goto Block <u>6</u>	The three "When" statements are ORed together.
Block 4:	Increment Counter <u>1</u> and then Goto Block <u>3</u>	Counter 1 indicates DTE errors.
Block 5:	Increment Counter <u>2</u> and then Goto Block <u>3</u>	Counter 2 indicates DCE errors.
Block 6:	Increment Counter <u>5</u> and then Reset Timer <u>5</u> and then Goto Block 2	Counter 5 keeps track of the number of minutes into the test.

EXAMPLE 6 MEASURING MORE THAN ONE RTS-CTS DELAY

This test measures RTS-CTS delays until stopped. Use the <Monitor> Menu for this example.

Timer 1 and Timer 2 measure alternate delays. If only one timer were used, you would not have had enough time to see the timer before it was reset.

To view the timers and counters press <Summary> in the Run Menu during run-time. After run-time press <Timer & Counter> in the Examine Data Menu.

When Lead <u>RTS</u> goes <u>On</u> then goto Block 2	
Reset Timer <u>1</u> and then Start Timer <u>1</u>	Timer 1 measures the first RTS-CTS delay.
When Lead <u>CTS</u> goes <u>On</u> then goto Block <u>3</u> When Lead <u>RTS</u> goes <u>Off</u> then goto Block <u>6</u>	The two "When" statements are ORed together.
Stop Timer <u>1</u>	
When Lead <u>RTS</u> goes <u>On</u> then goto Block <u>4</u>	You can now view timer 1 while the analyzer finds the next delay.
	<pre>When Lead <u>RTS</u> goes <u>On</u> then goto Block 2 Reset Timer <u>1</u> and then Start Timer <u>1</u> When Lead <u>CTS</u> goes <u>On</u> then goto Block <u>3</u> When Lead <u>RTS</u> goes <u>Off</u> then goto Block <u>6</u> Stop Timer <u>1</u> When Lead <u>RTS</u> goes <u>On</u> then goto Block <u>4</u></pre>

Block 4:	Reset Timer <u>2</u> and then Start Timer 2	Blocks 3-5 duplicate blocks 1-2. Timer 2 now measures the
		next RTS-CTS delay. Thus,
	When Lead <u>CTS</u> goes <u>On</u>	the user has time to view
	then goto Block $\frac{5}{=}$	timer 1 before it is reset.
	When Lead <u>RTS</u> goes <u>Off</u>	The two "When" statements
	then goto Block <u>6</u>	are ORed.
Block 5:	Stop Timer <u>2</u>	Control is looped back to
	and then	Block 1.
	Goto Block <u>1</u>	
Block 6:	Reset Timer <u>1</u>	If RTS goes off before CTS
	and then	goes on the timers are
	Reset Timer <u>2</u>	reset and an alarm "beep"
	and then	occurs.
	Веер	
	and then	
	Goto Block <u>1</u>	

EXAMPLE 7 SIMULATING RTS-CTS DELAY

In this test, you substitute the HP 4951C for the DTE. Thus, you can test the modem in isolation.

Timer 1 measures the time it takes for the modem to respond with CTS on.

Simulate DTE Set Lead RTS On Block 1: When Lead RTS goes On then goto Block 2 Timer 1 is reset because the Block 2: Reset Timer 1 program later loops back to and then Start Timer 1 this block. and then Start Timer 5 Timer 1 shows CTS response time. When Lead CTS goes On The two "When" statements then goto Block 3 are ORed together. When Timer 5 > 2000 Timer 5 causes the instruthen goto Block 4 ment to beep if CTS does not go on within 2 seconds

Block 3:	Reset Timer <u>5</u> and then
	Stop Timer <u>1</u> and then
	Set Lead <u>RTS Off</u> and then Wait <u>29999</u>
	and then Goto Block <u>1</u>
Block (1	Decet Timon 5

Block 4:

Wait <u>29999</u>
and then
Goto Block <u>1</u>
Reset Timer <u>5</u>
and then
Reset Timer <u>1</u>
and then
Веер
and then
Set Lead <u>RTS</u> Off
and then
Wait <u>250</u>
and then
Goto Block <u>1</u>

RTS is now turned off and the test begun again after 30 seconds. (You can change this delay.)

Block 4 is the "error block". If CTS does not go on two seconds after RTS goes on, the analyzer beeps and restarts the test.

EXAMPLE 8 LOOPBACK

In this test, the local modem is looped back. The HP 4951C is substituted for the DTE and sends the "Quick Brown Fox" message 100 times. The modem is checked for proper handshaking and echo response.

Simulate DTE

Block 1:	Set Lead <u>RTS On</u> and then Start Timer <u>5</u>	
	When Lead <u>CTS</u> goes <u>On</u> then goto Block 2	The modem is checked for correct handshaking response.
		The two "When" statements are ORed together.
	When Timer <u>5</u> is > <u>2000</u> then goto Block <u>8</u>	Timer 5 indicates whether the modem responds within 2 seconds.
Block 2:	Reset Timer <u>5</u> and then	Timer 5 is reset for the next loop.
	Send THE QUICK BROWN FOX	The message is sent to the
	JUMPS OVER A LAZY DOG 012	modem.
	3456789.	
	and then	
	Set lead <u>RTS</u> <u>Off</u>	

Block 3:	When DCE <u>THE QUICK BROWN</u> FOX JUMPS OVER A LAZY DOG 0123456789 then goto Block 5	The modem is checked to see whether it echoes back each character.
	When Lead <u>CTS</u> goes <u>Off</u> then goto Block <u>4</u>	Because the two "when" statements are ORed, every character must be received before CTS goes off.
Block 4:	Increment Counter <u>2</u>	Counter 2 indicates the number of times this does not happen.
Block 5:	Increment Counter <u>1</u> If Counter <u>1</u> is > <u>99</u> then goto Block <u>7</u>	Counter 1 shows the total number of transactions up to 100.
Block 6:	Goto Block <u>1</u>	The test starts over.
Block 7:	Stop Tests	
Block 8:	Reset Timer <u>5</u> and then Beep and then	An alarm "beep" indicates a lack of modem response.
	Goto Block <u>1</u>	

EXAMPLE 9 END-TO-END: TRANSMIT FIRST (HP 4925B Compatible)

The End-to-End test consists of the two programs described in Examples 9 and 10.

In the End-to-End Test, two HP 4951C's (or an HP 4951C and an HP 4925B) are substituted for the DTE's at both ends of a line. Handshaking and messages are performed and checked 100 times. Except for the fact that one DTE transmits first, and the other DTE receives first, both programs are identical. There are two sections to this program: In blocks 5-6 this DTE is transmitting; in blocks 1-4 this DTE is receiving. Counter 1 indicates how many times the test failed. Counter 2 indicates the total number of transactions.

NOTE: The "receive first" unit must be started first.

The proper setup is necessary for this test. Use the Char Async/Sync Menu with all the default selections (Chapter 12) except the following:

```
Data Code Hex 8
            Sync on F<sub>E</sub> 9<sub>3</sub>
Simulate DTE
Block 1:
            Goto Block 6
                                            The program immediately
                                            jumps to the transmit
                                            section.
Block 2:
             Set Lead DTR On
             If Lead CD is On
                                            The If and When statements
               then goto Block 3
                                            are ORed.
             When Lead CD goes On
               then goto Block 3
```

Block 3:	When Lead <u>CD</u> goes <u>Off</u> then goto Block 4 When DCE 7 B F 4 When goto Block <u>5</u>	The two When statements are ORed: If CD goes off before the message is received, then the error counter is incremented. The DCE characters are the same as those sent by the HP 4925B
Block 4:	Beep and then Increment Counter <u>1</u>	
Block 5:	Increment Counter <u>2</u>	Counter 2 tells total transactions.
Block 6:	Wait <u>100</u> msec and then	The transmit section of the program begins.
	Set Lead <u>RTS</u> <u>On</u>	
	If Lead <u>CTS</u> is <u>On</u> then goto Block <u>7</u> When Lead <u>CTS</u> goes <u>On</u> then goto Block <u>7</u>	
Block 7:	Send F 9 7 B F 4 1 F 3 6 3 A 1 8 When DTE $\frac{1}{8}$ then goto Block <u>8</u>	This is the same message sent by a HP 4925B
Block 8:	Set Lead <u>RTS</u> <u>Off</u>	
	If Counter <u>2</u> > <u>99</u> then goto Block <u>10</u>	When Counter 2 reaches 100, the test is ended.
Block 9:	Goto Block <u>2</u>	
Block 10:	Stop Tests	

l

EXAMPLE 10 END-TO-END: RECEIVE FIRST (HP 4925B Compatible)

This is the part of the END-TO-END TEST for the DTE which receives first. There are two sections to the program: In blocks 1-4 the DTE is transmitting; in blocks 5-6 the DTE is receiving. Counter 2 tells how many times the test failed. Counter 1 keeps track of the total number of transactions.

NOTE: The "receive first" unit must be started first.

Block 1:

Use the Char Async/Sync Menu for the setup. Use all the default selections (see Chapter 12) except the following:

Data Code Hex 8 Sync on $F_{F} = 9_{3}$ Simulate DTE Set Lead DTR On This is the Receive portion

another failure.

of the End-to-End test. If Lead CD is On then goto Block 2 The "If" and "When" When Lead CD goes On statements are ORed. then goto Block 2 together. Block 2: When Lead CD goes Off These two When statements then goto Block 3 are Ored. If CD goes off When DCE $\begin{array}{c} 7 & \text{B} & \text{F} & 4 \\ 6 & 3 & \text{A} & 1 \end{array}$ before this DIE has then goto Block 4 received the message, Counter 1 will indicate

Block 3:	Beep and then Increment Counter <u>1</u>	
Block 4:	Increment Counter <u>2</u>	Counter 2 indicates another transaction.
Block 5:	Wait <u>100</u> msec and then	
	Set Lead <u>RTS</u> <u>On</u>	The transmit section of the program begins.
	If Lead <u>CTS</u> is <u>On</u>	
	then goto Block <u>6</u>	The "If" and "When"
	When Lead <u>CTS</u> goes <u>On</u>	statements are ORed
	then goto Block <u>6</u>	together.
Block 6:	Send F 9 7 B F 4 1 F 3 6 3 A 1 8 When DTE $\frac{1}{8}$ then goto Block <u>7</u>	This is the same message as that sent by an HP 4925B
Block 7:	Set Lead <u>RTS</u> <u>Off</u>	
	If Counter <u>2</u> > <u>99</u> then goto Block <u>9</u>	When the total transactions = 100 the test is ended.
Block 8:	Goto Block <u>1</u>	
Block 9:	Stop Tests	

15

The Interface

Introduction

An interface pod is required to connect the HP 4951C to the data line. The interface pod also forms the cover of the instrument. Interface pods are available for the RS-232C/V.24, RS-449, and V.35 interfaces.

RS-232C/V.24 Interfaces

HP 18179A This interface pod uses LEDs for showing all three conditions of the line: marks, spaces, and high impedance. Because it has a complete breakout box, this pod is useful for level 1 troubleshooting.
HP 18180A This interface pod contains both a EIA RS-232C / CCITT V.24 interface and an RS-449/422A/423A interface.
The RS-232C is compatible with MIL-188C. Ten switches are provided for line isolation. LCD indicators indicate only line activity on: TD, RD, TC, RC, DTR, DSR, RTS, CTS, CD. A manually connected MARK/SPACE monitor is available.
The RS-449 interface utilizes balanced RS-422A drivers. LCD indicators indicate only line activity on: SD, RD, ST, RT, RS, CS,

are only fi

TR, DM, RR.

HP 18180A This interface pod contains both a EIA RS-232C / CCITT V.24 interface and an RS-449/422A/423A interface.

The RS-449 interface utilizes balanced RS-422A drivers. LCD indicators indicate only line activity on: SD₁ RD, ST, RT, RS, CS, TR, DM, RR.

The RS-232C is compatible with MIL-188C. Ten switches are provided for line isolation. LCD indicators indicate only line activity on: TD, RD, TC, RC, DTR, DSR, RTS, CTS, CD. A manually connected MARK/SPACE monitor is available.

V.35 Interface

HP 18177A/G This pod contains hardware for the V.35 interface. This interface pod uses LEDs for showing all three conditions of the line: marks, spaces, and high impedance. The lines monitored are: DTE, DCE, SCE, SCT, SCR, RS, DTR, CS, DSR, CD.

Pod Installation

To connect the Interface Pod to the IIP 4951C Protocol Analyzer, set the HP 4951C power switch to off and attach the interface pod cable to the Interface Pod connector on the rear panel. Tighten the connector screws to ensure that the cable will not pull off during operation.

CAUTION

Turn off the Protocol Analyzer before connecting or disconnecting any Interface Pod.

The pod can be secured to the top of the analyzer's pouch by using the strap provided on the pouch.

Pod Installation

To connect the Interface Pod to the HP 4951C Protocol Analyzer, set the HP 4951C power switch to off and attach the interface pod cable to the Interface Pod connector on the rear panel. Tighten the connector screws to ensure that the cable will not pull off during operation.

CAUTION

Turn off the Protocol Analyzer before connecting or disconnecting any Interface Pod.

The pod can be secured to the top of the analyzer's pouch by using the strap provided on the pouch.

Figure 15-1. Interface Pod Connection

Figure 15-2. The HP 18179A Interface Pod

The HP 18179A Interface Pod (RS-232C/V.24)

The HP 18179A is an RS-232C/V.24 interface pod which connects the HP 4951C to the DTE or DCE. The HP 18179A is compatible with CCITT V.24 and EIA RS-232C electrical, mechanical, functional, and procedural specifications.

The HP 18179A can be used for complete level 1 troubleshooting on RS-232C/V.24 interfaces. It contains 10 pairs of real-time LEDs which monitor data, clocks, and major control line activity.

The LEDs show all three possible line states. The green LEDs indicate "on" states, or valid spaces. The red LEDs indicate "off" states, or valid marks. The high impedance state is indicated when both the red and the green LEDs on a line are not lit. The LEDs also indicate real-time activity; that is they show actual transitions.

The HP 18179A also contains a complete breakout with switches for interrupting each of the the 25 conductors. Access to all 25 pins is provided by a complete set of 25 pins on each side of the switches, allowing you to connect any interface pin to any other.

In the DTE and DCE simulate modes RS-232C/V.24 drivers are switched into the appropriate lead by latching relays. If monitor mode is selected all RS-232C/V.24 drivers are disconnected from the line.

LEDs

The 3-state indicators indicate activity on the interface pins. The high impedance state is indicated when both LEDs are off.

green: space (logic '0', positive voltage) turns on at >2.75 V, turns off at <0.25 V

red: mark (logic '1', negative voltage) turns on at < -3.0 V, turns off at > -3.0 V

Disconnect Switches

Pins 2, 3, 4, 5, 6, 8, 15, 17, 20, and 24 may be individually disconnected from the data link by switches. This lets you isolate non-driven interface lines from the HP 4951C. Non-driven lines may develop cross talk noise which can be mistaken by the analyzer for transitions.

Connectors for RS-232C/V.24 Y-Cable

These connectors connect the Interface Pod to the line for monitoring or simulation. Connect the Y-cable to the top connector to include the breakout box in series with the line. Connect the Y-cable to the bottom connector to by-pass the breakout box.

Full Breakout Box

The Breakout Box provides cross-patching, line-forcing, and monitoring capabilities for all of the RS-232C/V.24 lines. The miniature switches isolate lines. Connect the Y-cable to the top connector to use the breakout box.

Jumper Pins

All 25 pins of the RS-232C/V.24 connector are brought out for jumpering on both sides of the breakout switches. If your network cable has different pin assignments from the interface standard, you can use the supplied jumper wires to connect the interface lines to the desired pin on your cable.

+/-12 V Source Pins

The Source Pins supply +12 volts and - 12 volts. You may set any signal line on or off by jumpering that line to the Source Pins.

Mark/Space Indicator

The Mark/Space Indicator lets you check the level of any signal line. Jumper any pin to this indicator to find its state.

Instrument Cable Connector

This connector connects the Interface Pod to the HP 4951C via the Pod-Instrument cable supplied with the instrument.

RS-232/V.24 INTERFACE (HP18179A, and 18180A)

Pin	Circuit	Function	EIA	CCITT Source
1	GND	Protective Ground	AA	101
2	TD	Transmitted Data	BA	103 DTE
3	RD	Received Data	BB	104 DCE
4	RTS	Request To Send	CA	105 DTE
5	CTS	Clear To Send	CD	106 DCE
6	DSR	Data Set Ready	CC	107 DCE
7	GND	Ground Signal	AB	102
8	CD	Carrier Detect	CF	109 DCE
9-11		unassigned		
12	SCD	Sec Carrier Detect	SCF	122 DCE
13	SCS	Sec Clear To Send	SCB	121 DCE
14	STX	Sec Transmitted Data	SBA	118 DTE
15	TC	Transmit Clock	DB	114 DCE
16	SRD	Sec Received Data	SBB	119 DCE
17	RC	Received Clock	DD	115 DCE
18		unassigned		
19	SRS	Sec Request to Send	SCA	120 DTE
20	DTR	Data Terminal Ready	CD	108.2 DTE
21	SQ	Signal Quality	CG	110 DCE
22	RI	Ring Indicator	CE	125 DCE
23	DRS	Data Rate Selector	СН	111 DTE
			CI	112 DCE
24	ETC	Ext Transmit Clock	DA	113 DTE
25		unassigned		••••

The HP 18180A (Combination RS-232C/V.24 and RS-449)

The HP 18180A is an RS-232C/V.24 interface pod as well as RS-449/422A/423A. The HP 18180A has slightly less capability than the HP 18179A pod. Its LCD indicators show only "on" or space states. Also, unlike the HP 18179A, the HP 18180A does not contain a full breakout box.

Connectors

The top connector, labeled PROTOCOL ANALYZER, connects the interface pod to the HP 4951C via the Pod-Instrument cable supplied with the instrument. The bottom connector, labeled RS-232C/V.24 connects the Interface to the line for monitoring or simulation (see Chapter 2 for Hookup).

Jumper Pins

All 25 pins of the bottom connector are brought out for jumpering. If your network cable has different pin assignments from the interface standard, you can use the supplied jumper wires to connect the interface lines to the desired pin on your cable. Pins 2, 3, 4, 5, 6, 8, 15, 17, 20, and 24 are also brought out on the other side of the breakout switches for jumpering.

Source Pins

The six Source Pins supply +12 volts and -12 volts. You may set any signal line on or off by jumpering that line to the Source Pins.

Disconnect (breakout) Switches

Pins 2, 3, 4, 5, 6, 8, 15, 17, 20, and 24 may be individually disconnected from the data link by means of switches. This lets you isolate non-driven interface lines from the HP 4951C.

LCD Indicators

The LCD indicator for a signal line is dark when that line is On or Spacing. The LCD indicator is blank when a line is Off, Marking, or in tri-state. For the indicator to be dark the voltage on that line must be greater than +2.75 volts. Once the indicator is dark, it will not go blank until the voltage becomes less than +0.25 volts. Therefore, the LCD for individual lines do not distinguish Marking and tri-state. Use the Mark/ Space Monitor to do this.

LCD Indicator	Interface Line
Dark	Logical "0" (Space, On, positive voltage)
Blank	Logical "1" (Mark, Off, negative voltage, tri- state)

Mark/Space Monitor

Use the Mark/Space Monitor Pin to check the level of any signal line. Jumper this pin to any signal pin and observe the ON/OFF LCD indicators. The On indicator is darkened for levels greater than +3 volts; the Off indicator is darkened for levels less than -3 volts. The other LCD indicators do not distinguish between Marking and tristate conditions (they are blank below +0.25 volts). The Mark/Space Monitor lets you check these lines, or any other signal lines for mark/space levels.

The Interface

67	18174A IN HEWLETT	NTERFACE				PROTOCOL ANALYZER
PIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15	CIRCUIT SHELD Shere Sola Sola Sola Ros Ros Ros Ros Ros Ros Ros Ros Ros Ros	FUNCTION Signating Rate Indicator Send Data (a) Send Data (a) Receiver Data (a) Receiver Taxing (a) Ceter to Send (a) Logical Loopback Data Moode (a) Receiver Ready (a) Ready (a) Send (c) Cound	PIN 73 72 72 72 72 72 72 72 72 72 72 72 72 72	CIRCUIT RC Some SDP RDS RTP RDS RTP RDS RTP RDS RTP RDS RTP RDS RTP RDS SC	FUNCTION Receive Common Send Data Bi Send Taming Bi Receive Data Bi Receive Data Bi Receive Taming Bi Clear to Send Bi Territhal Receive Bi Receive Receive Bi Receive Receive Bi Receive Receive Bi Standby Signal Verminal Davidy Signal Constity New Signal Standby Indicator Bend Common	RS-449

Figure 15-4. The HP 18174A (RS-449 Interface)

The HP 18174A (RS-449)

The HP 18174A follows the EIA RS-449/422A/423A standard. The RS-449 was intended by the Standards Committees as a replacement and enhancement for the RS-232C/V.24 interface and can be used for both low and high-speed applications. RS-449 is made up of two electrical standards, RS-423A and RS-422A.

The RS-422A uses a balanced signal lead configuration for data and clocks to enable high speed operation. RS-423A uses an unbalanced signal lead configuration. Because the HP 4951C implements RS-422A electrical standards for all category I circuits, it can also support RS-423A circuits.

The 18174A interface does not have an integral breakout box for disconnecting and jumpering lines. Selected pins are, however, monitored by LCD indicators. For the LCD indicators to transition, the unbalanced or differential A-B voltage must be greater than 0.2 volts.

The RS-449 Interface

Pin	Circuit	Function	Pin	Circuit	Function
1	SHIELD		20	RC	ReceiveCommon
2	SI	Signaling Rate Indicator	21	Spare	
3	Spare		22	SD	b Send Data (b)
4	SDa	Send Data (a)	23	STb	Send Timing (b)
5	STa	Send Timing (a)	24	RDb	Receive Data (b)
6	RDa	Receive Data (a)	25	RSb	Request Send (b)
7	RSa	Request to Send (a)	26	RTb	Receive Timing
8	RTa	Receive Timing (a)	27	CSb	Clear to Send
9	CSa	Clear to Send (a)	28	IS	Terminal in
10	LL	Local Loopback			Service
11	DMa	Data Mode (a)	29	DMb	Data Mode (b)
12	TRa	Terminal Ready (a)	30	TRb	Terminal Ready (b)
13	RRa	Receiver Ready (a)	31	RRb	Receiver Ready (b)
14	RL	Remote Loopback	32	SS	Select Standby
15	IC	Incoming Call	33	SQ	Signal Quality
16	SF/SR	Select Frequency/rate	34	NS	New Signal
17	TTa	Terminal Timing (a)	35	TT	Terminal Timing
18	ΤM	Test Mode	36	SB	Standby Indicator
19	SG	Signal Ground	37	SC	Send Common

The HP 18177A/G (V.35 Interface)

This pod is a V.35 interface. The HP 18177A/G follows V.28/V.35 electrical specifications, V.24 functional specifications, and ISO 2593 mechanical specifications.

The mark/space LEDS can indicate a Mark or a Space. If both are off at the same time the indication is that no signal is present on the line.

The HP 18177A/G specifies a differential voltage resolution on Mark/Space detect of .55 volts +-30% for Data and Clock lines.

The V.28 control lines are specified as follows:

OFF LED on indicates < -2.8 volts on the line. ON LED on indicates > .25 volts on the line. Neither LED on indicates -2,8 < volts < .25 on the line.

The outputs of the control lines RS, DTR, CS, DSR, RLSD conform to the CCITT V.28 electrical standard (same as RS-232C). This entails -12 volts for a mark (1, off) and +12 volts for a space (0, on).

Figure 15-5. The HP 18177A/G (Interface)

The Interface

æ. 1

ŵe.

When you select DCE in a Simulate program (in the HP 4951C Simulate menu) as the type of device you are simulating, you must connect the network to the "Simulate DCE" connector on the HP 18160A/G pod. No signal traffic will occur on the "Simulate DTE" connector in the above state. The opposite is true when you are writing a program to simulate a DTE (use the "Simulate DTE" connector).

When you are monitoring, you can use either the "Simulate DTE" or "Simulate DCE" connector.

LEDs

The 3-state indicators indicate activity on the interface pins. The high impedance state is indicated when both LEDs are off.

During V.35 operation, these LEDs indicate the following condition on the V.35 data and clock lines:

Red (Mark)	is ON when	(B) > (A) + 0.175^* volts
Green (Space)	is ON when	$(A) > (B) + 0.175^*$ volts

* NOTE

CCITT V.35 specifications call for a transmitting differential voltage of 0.55 volts +- 20%. The HP 18160A/G is specified to 0.55 volts +- 30%.

During RS-232C/V.24 operation, these LEDs indicate the following conditions on the RS-232C/V.24 data and clock lines.

Red (Mark)	logic 1, negative voltage turned ON at < -3.0 volts, turned OFF at > -3.0 volts.
Green (Space)	logic 0, positive voltage turned ON at > 2.75 volts, turned OFF at < .25 volts.

Interface Select Switch (RS-232C/V.24 or V.35)

Pod Configuration for RS-232C/V.24

For Both Monitor and Simulate Modes

In this configuration you will not have to disconnect the cables to monitor and simulate. Additional "Y" cables can be ordered as HP part number 18173-61602

Figure 15-7. RS-232C/V.24 Pod Configuration - Monitor/Simulate

Pod Configuration for RS-232C/V.24

Monitor Mode Using the Simulate DCE Connector.

Both Simulate DCE and Simulate DTE connectors are physically connected when running a Monitor program. Therefore, it does not matter which connector you use during the Monitor mode of operation.

Pod Configuration for V.35 Monitor Mode

Figure 15-9. V.35 Pod Configuration - Monitor Mode Only

Pod Configuration for V.35 Simulating a DTE

Pod Configuration for V.35

Simulating a DCE

Figure 15-11. V.35 Pod Configuration - Simulating a DCE

16

JIS Option

Introduction

The JIS option for the HP 4951C lets you display the JIS-7, JIS-8 or EBCDIK Katakana Data Codes during protocol analysis. This is a ROM replacement option which provides a character ROM for the Katakana character dot patterns and four System Code ROMs. See the HP 4951C Service Manual for more information.

The Setup Menu

The HP 4951C functions normally in all respects with this option except that Data Code field choices EBCD, Transcode and IPARS are replaced with JIS-8, JIS-7 and EBCDIK. Thus, the JIS Option modifies the Setup menu depending on the protocol.

The HDLC, SDLC and X.25 protocol menus add the choice of JIS-8 and EBCDIK to the choices of HEX-8, EBCDIC and ASCII-8 to the Data Code field.

The Character Async/Sync menu replaces the EBCD, IPARS0, IPARS1 and Transcode Data Field choices with the JIS-7, JIS-8 and EBCDIK choices.

The BSC menu replaces the Transcode Data Code choice with the JIS-8 and EBCDIK choices. Also, the defaults for Sync Chars and Parity are set to ${}^{1}_{6}$ ${}^{1}_{6}$ and <u>None</u> for JIS-8, and ${}^{3}_{2}$ ${}^{3}_{2}$ and <u>None</u> for EBCDIK.
Monitor/Simulate Menu

Trigger strings and Send strings both function in a similar manner. ASCII control and text characters may be entered from the keyboard for JIS-8 and JIS-7. JIS-8 characters must be entered in hex code. A Katakana character can be viewed by moving the cursor to the character and pressing the <Text> softkey.

JIS-7 characters should be entered in binary with the 8th bit set to "one" and then converted back to Text mode in order to be displayed in Simulate or Monitor menu strings. Setting this parity bit triggers the IIP 4951C to display the JIS-7 character instead of displaying the ASCII-7 character. No matter how the JIS-7 character strings are entered in the menus, you must precede the JIS-7 strings with a Shift In (SI) character, and end the JIS-7 string with a Shift Out (SO) character.

Control and text characters in EBCDIK (excluding lower case) may be entered from the keyboard in Text mode. Katakana characters should be entered in Hex mode and converted as above. Some Katakana characters can be entered by typing lower case letters in Text mode.

Character conversion tables for JIS-7, JIS-8 and EBCDIK start on the next page.

Run Menu and Examine Data

Data containing Katakana characters is displayed when any operation except BERT is selected in the Run Menu and in Examine Data. JIS-8 and EBCDIK characters are displayed automatically and corresponding Hex values are displayed as described above. JIS-7 characters are displayed by looking for SHIFT IN (SI) and SHIFT OUT (SO) characters as the data is entering the box and keeping track of which mode the data is in. If the data is in the shifted mode the eighth bit of the data is set before being stored in the buffer. The JIS-7 data now appears as JIS-8 data except for codes ${}^{8}_{0}$ to ${}^{9}_{F}$ which appear as the ASCII control characters. If the Hex format is selected in either the Run Menu or Examine Data, the eighth bit is masked out and the correct Hex value for JIS-7 is displayed. Parity is checked but not stored.

Auto Configure

Using Auto Configure causes JIS-8 to be selected instead of ASCII-8, JIS-7 instead of ASCII-7, and EBCDIK instead of EBCDIC for the system Data Code.

Character conversion tables for JIS-7, JIS-8 and EBCDIK start on the next page.

Dec Value	Binary	Hex	Displayed Character	Dec Value	Binary	Hex	Displayed Character
0 1 2 3 4	000 0000 000 0001 000 0010 000 0011 000 0110	00 01 02 03 04	NU SH SX EX ET	45 46 47 48 49	010 1101 010 1110 010 1111 011 0000 011 0001	2D 2E 2F 30 31	ב = יי ד
5 6 7 8 9	000 0101 000 0110 000 0111 000 1000 000 1001	05 06 07 08 09	EQ AK BL BS HT	50 51 52 53 54	011 0010 011 0011 011 0100 011 0101 011 0110	32 33 34 35 36	イ ウエオ カ
10 11 12 13 14	000 1010 000 1011 000 1100 000 1101 000 1110	0A 0B 0C 0D 0E	LF VT FF CR SO	55 56 57 58 59	011 0111 011 1000 011 1001 011 1010 011 1011	37 38 39 3A 3B	キクケコサ
15 16 17 18 19	000 1111 001 0000 001 0001 001 0010 001 0011	0F 10 11 12 13	SI DL D1 D2 D3	60 61 62 63 64	011 1100 011 1101 011 1110 011 1111 100 0000	3C 3D 3E 3F 40	シスセソタ
20 21 22 23 24	001 0100 001 0101 001 0110 001 0111 001 1000	14 15 16 17 18	D4 NK SY EB CN	65 66 67 68 69	100 0001 100 0010 100 0011 100 0100 100 0101	41 42 43 44 45	チツテトナ
25 26 27 28 29	001 1001 001 1010 001 1011 001 1100 001 1101	19 1A 1B 1C 1D	EM SB EC FS GS	70 71 72 73 74	100 0110 100 0111 100 1000 100 1001 100 1010	46 47 48 49 4A	ニヌネノハ
30 31 32 33 34	001 1110 001 1111 010 0000 010 0001 010 0010	1E 1F 20 21 22	RS US space	75 76 77 78 79	100 1011 100 1100 100 1101 100 1110 100 1111	4B 4C 4D 4E 4F	ヒフヘホマ
35 36 37 38 39	010 0011 010 0100 010 0101 010 0110 010 0111	23 24 25 26 27	י י ד ד	80 81 82 83 84	101 0000 101 0001 101 0010 101 0011 101 0100	50 51 52 53 54	ミムメモヤ
40 41 42 43 44	010 1000 010 1001 010 1010 010 1011 010 1110	28 29 2A 2B 2C	イウエオヤ	85 86 87 88 89	101 0101 101 0110 101 0111 101 1000 101 1001	55 56 57 58 59	ユヨラリル

JIS-7 Character Conversion Table

Dec Value	Binary	Hex	Displayed Character
90 91 92 93 94	101 1010 101 1011 101 1100 101 1100 101 1101 101 1110	5A 5B 5C 5D 5E	レロワン、
95	101 1111	5F	<pre> hext hext hext hext hext hext hext </pre>
96	110 0000	60	
97	110 0001	61	
98	110 0010	62	
99	110 0011	63	
100	110 0100	64	<pre>(hex) (hex) (hex) (hex) (hex) (hex)</pre>
101	110 0101	65	
102	110 0110	66	
103	110 0111	67	
104	110 1000	68	
105 106 107 108 109	110 1001 110 1010 110 1011 110 1100 110 1101	69 6A 6B 6C 6D	hex hex hex hex hex hex
110	110 1110	6E	(hex)
111	110 1111	6F	(hex)
112	111 0000	70	(hex)
113	111 0001	71	(hex)
114	111 0010	72	(hex)
115	111 0011	73	(hex)
116	111 0100	74	(hex)
117	111 0101	75	(hex)
118	111 0110	76	(hex)
119	111 0111	77	(hex)
120 121 122 123 124	111 1000 111 1001 111 1010 111 1010 111 1011 111 1100	78 79 7A 7B 7C	hex hex hex hex hex hex
125	111 1101	7D	hex
126	111 1110	7E	hex
127	111 1111	7F	hex

JIS-7 Character Conversion Table (cont.)

Dec Value	Binary	Hex	Displayed Character	Dec Value	Binary	Hex	Displayed Character
0 1 2 3 4	000 0000 000 0001 000 0010 000 0011 000 0100	00 01 02 03 04	NU SH SX EX ET	45 46 47 48 49	010 1101 010 1110 010 1111 011 0000 011 0001	2D 2E 2F 30 31	- / 0 1
5 6 7 8 9	000 0101 000 0110 000 0111 000 1000 000 1001	05 06 07 08 09	EQ AK BL BS HT	50 51 52 53 54	011 0010 011 0011 011 0100 011 0101 011 0110	32 33 34 35 36	2 3 4 5 6
10 11 12 13 14	000 1010 000 1011 000 1100 000 1101 000 1110	0A 0B 0C 0D 0E	LF VT FF CR SO	55 56 57 58 59	011 0111 011 1000 011 1001 011 1010 011 1011	37 38 39 3A 3B	7 8 9 : :
15 16 17 18 19	000 1111 001 0000 001 0001 001 0010 001 0011	0F 10 11 12 13	SI DL D1 D2 D3	60 61 62 63 64	011 1100 011 1101 011 1110 011 1111 100 0000	3C 3D 3E 3F 40	< = ? @
20 21 22 23 24	001 0100 001 0101 001 0110 001 0111 001 1000	14 15 16 17 18	D4 NK SY EB CN	65 66 67 68 69	100 0001 100 0010 100 0011 100 0100 100 0101	41 42 43 44 45	A B C D E
25 26 27 28 29	001 1001 001 1010 001 1011 001 1100 001 1101	19 1A 1B 1C 1D	EM SB EC FS GS	70 71 72 73 74	100 0110 100 0111 100 1000 100 1001 100 1010	46 47 48 49 4A	F G H J
30 31 32 33 34	001 1110 001 1111 010 0000 010 0001 010 0010	1E 1F 20 21 22	RS US space !	75 76 77 78 79	100 1011 100 1100 100 1101 100 1110 100 1111	4B 4C 4D 4E 4F	K L N O
35 36 37 38 39	010 0011 010 0100 010 0101 010 0110 010 0111	23 24 25 26 27	# \$ &	80 81 82 83 84	101 0000 101 0001 101 0010 101 0011 101 0100	50 51 52 53 54	P Q R S T
40 41 42 43 44	010 1000 010 1001 010 1010 010 1011 010 11100	28 29 2A 2B 2C	() + ,	85 86 87 88 89	101 0101 101 0110 101 0111 101 1000 101 1001	55 56 57 58 59	U V W X Y

JIS-8 Character Conversion Table

Dec Value	Binary	Hex	Displayed Character	Dec Value	Binary	Hex	Displayed Character
90 91 92 93 94	101 1010 101 1011 101 1100 101 1101 101 1101 101 1110	5A 5B 5C 5D 5E	Z ¥ ∧	135 136 137 138 139	1000 0111 1000 1000 1000 1001 1000 1010 1000 1011	87 88 89 8A 8B	(hex) (hex) (hex) (hex) (hex)
95 96 97 98 99	101 1111 110 0000 110 0001 110 0010 110 0011	5F 60 61 62 63	- a b c	140 141 142 143 144	1000 1100 1000 1101 1000 1110 1000 1111 1001 0000	8C 8D 8E 8F 90	(hex) (hex) (hex) (hex) (hex)
100 101 102 103 104	110 0100 110 0101 110 0110 110 0111 110 1000	64 65 66 67 68	d e f g h	145 146 147 148 149	1001 0001 1001 0010 1001 0011 1001 0100 1001 0101	91 92 93 94 95	(hex) (hex) (hex) (hex) (hex)
105 106 107 108 109	110 1001 110 1010 110 1011 110 1100 110 1101	69 6A 6B 6C 6D	i j k I m	150 151 152 153 154	1001 0110 1001 0111 1001 1000 1001 1001 1001 1010	96 97 98 99 9A	(hex) (hex) (hex) (hex) (hex)
110 111 112 113 114	110 1110 110 1111 111 0000 111 0001 111 0010	6E 6F 70 71 72	n o p q r	155 156 157 158 159	1001 1011 1001 1100 1001 1101 1001 1110 1001 1110	9B 9C 9D 9E 9F	(hex) (hex) (hex) (hex) (hex)
115 116 117 118 119	111 0011 111 0100 111 0101 111 0110 111 0111	73 74 75 76 77	s t u v w	160 161 162 163 164	1010 0000 1010 0001 1010 0010 1010 0011 1010 0011 1010 0100	A0 A1 A2 A3 A4	(hex) r J
120 121 122 123 124	111 1000 111 1001 111 1010 111 1011 111 1011 111 1100	78 79 7A 7B 7C	x y z {	165 166 167 168 169	1010 0101 1010 0110 1010 0111 1010 1000 1010 1001	A5 A6 A7 A8 A9	・ ヲ ア イ ウ
125 126 127 128 129	111 1101 111 1110 111 1111 1000 0000 1000 0001	7D 7E 7F 80 81	_} (hex) (hex)	170 171 172 173 174	1010 1010 1010 1011 1010 1100 1010 1101 1010 1110	AA AB AC AD AE	エ オ ヤ ユ ヨ
130 131 132 133 134	1000 0010 1000 0011 1000 0100 1000 0101 1000 0110	82 83 84 85 86	(hex) (hex) (hex) (hex) (hex)	175 176 177 178 179	1010 1111 1011 0000 1011 0001 1011 0010 1011 0101	AF B0 B1 B2 B3	ッ ア イ ウ

JIS-8 Character Conversion Table (cont.)

Dec Value	Binary	Hex	Displayed Character	Dec Value	Binary	Hex	Displayed Character
180	1011 0100	B4	Т	218	1101 1010	DA	V
181	1011 0101	B5	オ	219	1101 1011	DB	
182	1011 0110	B6	カ	220	1101 1100	DC	ワ
183	1011 0111	B7	+	221	1101 1101	DD	ン
184	1011 1000	B8	ク	222	1101 1110	DE	*
185	1011 1001	B9	ケ	223	1101 1111	DF	0
186	1011 1010	BA	1	224	1110 0000	E0	(hex)
187	1011 1011	BB	サ	225	1110 0001	E1	(hex)
188	1011 1100	BC	シ	226	1110 0010	E2	(hex)
189	1011 1101	BD	ス	227	1110 0011	E3	(hex)
190	1011 1110	BE	セ	228	1110 0100	E4	(hex)
191	1011 1111	BF	ソ	229	1110 0101	E5	(hex)
192	1100 0000	CO	タ	230	1110 0110	E6	(hex)
193	1100 0001	C1	チ	231	1110 0111	E7	(hex)
194	1100 0010	C2	ッ	232	1110 1000	E8	(hex)
195	1100 0011	C3	テ	233	1110 1001	E9	(hex)
196	1100 0100	C4	۲ ۲	234	1110 1010	EA	(hex)
197	1100 0101	C5	ナ	235	1110 1011	EB	(hex)
198	1100 0110	C6	_	236	1110 1100	EC	(hex)
199	1100 0111	C7	ヌ	237	1110 1101	ED	(hex)
200	1100 1000	C8	ネ	238	1110 1110	EE	(hex)
201	1100 1001	C9)	239	1110 1111	EF	(hex)
202	1100 1010	CA	ハ	240	1111 0000	F0	(hex)
203	1100 1011	СВ	Ľ	241	1111 0001	F1	(hex)
204	1100 1100	СС	フ	242	1111 0010	F2	(hex)
205	1100 1101	CD	~	243	1111 0011	F3	(hex)
206	1100 1110	CE	ホ	244	1111 0100	F4	(hex)
207	1100 1111	CF	ব	245	1111 0101	F5	(hex)
208	1101 0000	D0	1	246	1111 0110	F6	(hex)
209	1101 0001	D1	Д	247	1111 0111	F7	(hex)
210	1101 0010	D2	×	248	1111 1000	F8	(hex)
211	1101 0011	D3	モ	249	1111 1001	F9	(hex)
212	1101 0100	D4	7	250	1111 1010	FA	(hex)
213	1101 0101	D5	ュ	251	1111 1011	FB	(hex)
214	1101 0100	D6	E	252	1111 1100	FC	(hex)
215	1101 0111	D7	ラ	253	1111 1101	FD	(hex)
216	1101 1000	D8	U U	254	1111 1110	FE	(hex)
217	1101 1001	D9	ル	255	1111 1111	FF	(hex)

JIS-8 Character Conversion Table (cont.)

JIS Option

EBCDIK Character C	conversion	Table
--------------------	------------	-------

Dec Value	Binary	Hex	Displayed Character	Dec Value	I
0 1 2 3 4	0000 0000 0000 0001 0000 0000 0000 0011 0000 0100	00 01 02 03 04	NU SH SX EX PF	45 46 47 48 49	00 00 00 00
5 6 7 8 9	0000 0101 0000 0110 0000 0111 0000 1000 0000 1001	05 06 07 08 09	HT LC (hex) RF	50 51 52 53 54	00 00 00 00 00
10	0000 1010	0A	SM	55	00
11	0000 1011	0B	VT	56	00
12	0000 1100	0C	FF	57	00
13	0000 1101	0D	CR	58	00
14	0000 1110	0E	SO	59	00
15	0000 1111	0F	SI	60	00
16	0001 0000	10	DL	61	00
17	0001 0001	11	D1	62	00
18	0001 0010	12	D2	63	00
19	0001 0011	13	D3	64	01
20	0001 0100	14	RE	65	01
21	0001 0101	15	NL	66	01
22	0001 0110	16	BS	67	01
23	0001 0111	17	IL	68	01
24	0001 1000	18	CN	69	01
25	0001 1001	19	EM	70	01
26	0001 1010	1A	CC	71	01
27	0001 1011	1B	C1	72	01
28	0001 1100	1C	FS	73	01
29	0001 1101	1D	GS	74	01
30	0001 1110	1E	RS	75	01
31	0001 1111	1F	US	76	01
32	0010 0000	20	DS	77	01
33	0010 0001	21	SS	78	01
34	0010 0010	22	FS	79	01
35	0010 0011	23	⊧hex	80	01
36	0010 0100	24	BP	81	01
37	0010 0101	25	LF	82	01
38	0010 0110	26	EB	83	01
39	0010 0111	27	EC	84	01
40	0010 1000	28	(hex)	85	01
41	0010 1001	29	(hex)	86	01
42	0010 1010	2A	SM	87	01
43	0010 1011	2B	C2	88	01
44	0010 1011	2C	(hex)	89	01

Dec Value	Binary	Hex	Displayed Character
45	0010 110	1 2D	EQ
46	0010 111	0 2E	AK
47	0010 111	1 2F	BL
48	0011 000	0 30	(hex)
49	0011 000	1 31	(hex)
50 51 52 53 54	0011 001 0011 001 0011 010 0011 010 0011 011	0 32 1 33 0 34 1 35 0 36	SY PN RS UC
55 56 57 58 59	0011 011 0011 100 0011 100 0011 101 0011 101	1 37 0 38 1 39 0 3A 1 3B	ET hex hex C3
60	0011 110	0 3C	D4
61	0011 110	1 3D	NK
62	0011 111	0 3E	hex
63	0011 111	1 3F	SB
64	0100 000	0 40	space
65	0100 000	1 41	hex
66	0100 001	0 42	hex
67	0100 001	1 43	hex
68	0100 010	0 44	hex
69	0100 010	1 45	hex
70 71 72 73 74	0100 011 0100 011 0100 100 0100 100 0100 101	0 46 1 47 0 48 1 49 0 4A	ヲ アイ ウ
75	0100 101	1 4B	-
76	0100 110	0 4C	-
77	0100 110	1 4D	-
78	0100 111	0 4E	-
79	0100 111	1 4F	-
80	0101 000	0 50	&
81	0101 000	1 51	エ
82	0101 001	0 52	オ
83	0101 001	1 53	ヤ
84	0101 010	0 54	ユ
85	0101 010	1 55	∃
86	0101 011	0 56	bex
87	0101 011	1 57	hex
88	0101 100	0 58	hex
89	0101 100	1 59	hex

JIS Option

EBCDIK Character Conversion Table (cont.)

90	0101 1010		Character	Value	
91 92 93 94	0101 1011 0101 1100 0101 1101 0101 1110	5A 5B 5C 5D 5E] ¥	135 136 137 138 139	1 1 1 1
95 96 97 98 99	0101 1111 0110 0000 0110 0001 0110 0010 0110 0011	5F 60 61 62 63		140 141 142 143 144	1 1 1 1
100 101 102 103 104	0110 0100 0110 0101 0110 0110 0110 0111 0110 1000	64 65 66 67 68	hex hex hex hex hex hex	145 146 147 148 149	1 1 1 1
105 106 107 108 109	0110 1001 0110 1010 0110 1011 0110 1100 0110 1101	69 6A 6B 6C 6D	hex hex , % -	150 151 152 153 154	1 1 1 1
110 111 112 113 114	0110 1110 0110 1111 0111 0000 0111 0001 0111 0010	6E 6F 70 71 72	> hex hex hex	155 156 157 158 159	1 1 1 1
115 116 117 118 119	0111 0011 0111 0100 0111 0101 0111 0101 0111 0110 0111 0111	73 74 75 76 77	hex hex hex hex	160 161 162 163 164	1 1 1 1
120 121 122 123 124	0111 1000 0111 1001 0111 1010 0111 1010 0111 1011 0111 1100	78 79 7A 7B 7C	hex hex # @	165 166 167 168 169	1 1 1 1
125 126 127 128 129	0111 1101 0111 1110 0111 1111 1000 0000 1000 0001	7D 7E 7F 80 81	= hex T	170 171 172 173 174	1 1 1 1
130 131 132 133 134	1000 0010 1000 0011 1000 0100 1000 0101 1000 0110	82 83 84 85 86	イウエオカ	175 176 177 178 179	1 1 1 1

Dec Value	Binary	Hex	Displayed Character
135 136 137 138 139	1000 0111 1000 1000 1000 1001 1000 1010 1000 1011	87 88 89 8A 8B	キクケコ hex
140 141 142 143 144	1000 1100 1000 1101 1000 1110 1000 1111 1001 0000	8C 8D 8E 8F 90	サシスセソ
145 146 147 148 149	1001 0001 1001 0010 1001 0011 1001 0100 1001 0101	91 92 93 94 95	タチツテト
150 151 152 153 154	1001 0110 1001 0111 1001 1000 1001 1001 1001 1010	96 97 98 99 99	ナニヌネノ
155 156 157 158 159	1001 1011 1001 1100 1001 1101 1001 1110 1001 1111	9B 9C 9D 9E 9F	hex hex ハ ヒ フ
160 161 162 163 164	1010 0000 1010 0001 1010 0010 1010 0011 1010 0100	A0 A1 A2 A3 A4	hex hex hex ホ マ
165 166 167 168 169	1010 0101 1010 0110 1010 0111 1010 1000 1010 1001	A5 A6 A7 A8 A9	ミムメモヤ
170 171 172 173 174	1010 1010 1010 1011 1010 1100 1010 1101 1010 1110	AA AB AC AD AE	ユ hex ヨ ラ リ
175 176 177 178 179	1010 1111 1011 0000 1011 0001 1011 0010 1011 0101	AF B0 B1 B2 B3	ル hex hex hex hex

JIS Option

JIS Option

EBCDIK Character Conversion Table (cont.)

Dec Value	Binary	Hex	Displayed Character
180 181 182 183 184	1011 0100 1011 0101 1011 0110 1011 0110 1011 0111 1011 1000	B4 B5 B6 B7 B8	(hex) (hex) (hex) (hex) (hex)
185 186 187 188 189	1011 1001 1011 1010 1011 1011 1011 1011 1011 1100 1011 1101	B9 BA BB BC BD	(hex) レ ロ ワ ン
190 191 192 193 194	1011 1110 1011 1111 1100 0000 1100 0001 1100 0010	BE BF C0 C1 C2	n hex A B
195 196 197 198 199	1100 0011 1100 0100 1100 0101 1100 0110 1100 0111	C3 C4 C5 C6 C7	C D E F G
200 201 202 203 204	1100 1000 1100 1001 1100 1010 1100 1011 1100 1011	C8 C9 CA CB CC	H (hex) (hex) (hex)
205 206 207 208 209	1100 1101 1100 1110 1100 1111 1101 0000 1101 0001	CD CE CF D0 D1	(hex) (hex) (hex) (hex) J
210 211 212 213 214	1101 0010 1101 0011 1101 0100 1101 0101 1101 0100	D2 D3 D4 D5 D6	K L M N O
215 216 217 218 219	1101 0111 1101 1000 1101 1001 1101 1010 1101 1011	D7 D8 D9 DA DB	P Q R (hex) (hex)
220 221 222 223 224	1101 1100 1101 1101 1101 1110 1101 1110 1101 1111 1110 0000	DC DD DE DF E0	(hex) (hex) (hex) (hex) \$

Dec Value	Binary	Hex	Displayed Character
225	1110 0001	E1	i hex
226	1110 0010	E2	S
227	1110 0011	E3	T
228	1110 0100	E4	U
229	1110 0101	E5	V
230	1110 0110	E6	W
231	1110 0111	E7	X
232	1110 1000	E8	Y
233	1110 1001	E9	Z
234	1110 1010	EA	(hex)
235 236 237 238 239	1110 1011 1110 1100 1110 1101 1110 1101 1110 1110 1110 1111	EB EC ED EE EF	(hex) (hex) (hex) (hex) (hex)
240	1111 0000	F0	0
241	1111 0001	F1	1
242	1111 0010	F2	2
243	1111 0011	F3	3
244	1111 0100	F4	4
245	1111 0101	F5	5
246	1111 0110	F6	6
247	1111 0111	F7	7
248	1111 1000	F8	8
249	1111 1001	F9	9
250 251 252 253 254 255	1111 1010 1111 1011 1111 1100 1111 1100 1111 1101 1111 1110 1111 1111	FA FB FC FD FE FF	(hex) (hex) (hex) (hex) (hex) (hex)

JIS Option

17

Async Terminal Emulator

The Asynchronous Terminal Emulator application lets you use the HP Model 4951C as an asynchronous terminal. After the application is loaded into the HP 4951C, a new menu is supplied which allows the instrument to be be configured as an asynchronous terminal. You can now send and receive information over a datacomm link asynchronously using the HP 4951C keyboard and display.

Equipment Supplied

The Async Terminal Emulator is included with the HP 4951C. A utility disc contains the Async Terminal Emulator application program. A second disc is provided so that you save a master copy as a backup. This chapter provides reference information on use of the Async Terminal Emulator.

Before making a working copy, read the section in this chapter titled "Getting Started". That section describes how to change the terminal default parameters before the application is stored to the working disc.

Applications

The Async Terminal Emulator application is very useful in the field service environment where you must now carry a protocol analyzer and a terminal. The application allows the HP 4951C to perform just like an asynchronous terminal so that you can send and receive electronic mail from the main office computer, check terminal problems, and configure intelligent devices without the need for a terminal. Often field service technicians have the need to download daily trouble reports or read the day's computer mail while `in the field. The Async Terminal Emulator application allows the office computer to be accessed from the field without the need for a separate terminal.

The Async Terminal Emulator application can also be used to pinpoint problems to a terminal. When a problem is suspected with an asynchronous terminal, the HP 4951C can replace the terminal to verify it as the faulty component.

Often intelligent devices must be configured with an asynchronous terminal. For example, some statistical multiplexers must be configured through an asynchronous terminal connected to them. The Async Terminal Emulator application is very useful for this purpose.

Features

DTE or DCE - The HP 4951C can be configured as a DTE (Data Terminal Equipment) or DCE (Data Communications Equipment) to avoid the need for a modem eliminator. A modem eliminator is a cable or connector which allows one DTE to transmit data directly to another DTE.

TWO HANDSHAKES - Two types of handshaking can be used: ENQ/ACK or NONE.

HDX or FDX - The terminal emulator can be used in either Half- or Full-duplex environments. (see page 17-13 for limits on the specific protocol handshake.

LOCAL ECHO - A local echo is available for systems in which the main office computer does not have remote echo.

BELL - A bell in the HP 4951C can be enabled or disabled to respond to a Bell character coming from the main office computer of the datacomm link.

BREAK - A Break key is available on a softkey to send a Break.

SEND, RECEIVE DATA VIEWED SIMULTANEOUSLY - Data sent and received are shown simultaneously on the HP 4951C display.

Specifications

Physical Interface	-	RS-232C/V.24
Data Codes	-	ASCII 7, ASCII 8
Parity	-	Odd, Even, None
Error Handling	-	None
Stop Bits	-	Transmit - 2 Receive - at least 1 bit
Data Rates	-	to 19.2 kbps

Getting Started

To load the application do the following:

- 1. Insert the HP 4951C PROTOCOL ANALYZER UTILTIY Disc into the disc drive of HP 4951C.
- 2. Press the 'MORE' key until <Mass Store> softkey appears.
- 3. Press the <Mass Store> softkey.
- 4. Place the cursor on "TERMINAL" and press <Load> -

- OR -

Use the keyboard and type in a file name such as "**TERMINAL**" for file name, if the application has been modified and given a new name and then press <Load>.

- 5. Press <Execute> softkey to load Async Terminal Emulator application program.
- 6. If the application loaded properly the HP 4951C shows the main Async Terminal Emulator display.

Terminal Setup

After the application is loaded, a new softkey appears in the top level menu (by pressing the MORE key) called <Term Setup>. This softkey accesses the Terminal Setup menu where the terminal parameters can be set. Shown below is the Terminal Setup menu with the parameters set to the default values.

Data code	*ASCII 8*
Parity	[None]
Bits/sec	[9600]
Mode	[DTE]
Handshake	[None]
Line terminator	[CR]
Local echo	[Off]
Bell	[Enabled]
* * _	currently selected parameter
[]-	inverse video

There are several system parameters which must be known before the Async Terminal Emulator can be used effectively. If these parameters are unknown they can usually be obtained from the data communications manager at the main office computer location. Wrong parameter choices will not result in damage to the system, only the inability to use the Async Terminal Emulator. To change the parameters, use the up and down cursor keys and then press the softkey to choose the appropriate system parameters.

Data Code Field

The softkey labels for the Data Code field are ASCII 7 and ASCII 8.

Parity Field

The softkey labels for the Parity field are None, Even, and Odd.

Async Terminal Emulator

Bits/sec Field

The softkey labels for the Bits/sec field are as follows:

19200	9600	3600	1200	300
7200	4800	2400	600	110
3200	2000	1800	150	75
200	134.5	50		

Mode Field

The HP 4951C can be put into the DTE (Data Terminal Equipment) or DCE (Data Communication Equipment) mode. This removes the need for a modem eliminator.

Handshake Field

Two types of software handshakes are available. For more information on handshaking, refer to "Software Handshake" on page 17-11. The softkey labels for the Handshake field are as None, and ENQ/ACK.

The ENQ and ACK characters can be entered in Text or Hex.

Handshake	[ENQ/ACK]	
ENQ character ACK character	EQ AK	entry

Line Terminator Field

The line terminator can be set at CR or CR/LF. Usually when the main office computer receives a CR it echoes back a CR/LF. The only time CR/LF need be chosen as the line terminator is when the CPU does not echo a CR/LF for a CR.

Local Echo Field

The HP 4951C can be configured with or without local echo. If the main computer in the system echoes back each character received (remote echo), the local echo should be turned Off or double characters will appear on the HP 4951C display.

Bell Field

When the system CPU sends a Bell character (BEL) the HP 4951C can be set to beep or disregard the character.

Operation

Pressing the <Execute> softkey (which is always the right-most softkey in the Terminal Setup menu) causes the HP 4951C to go into the terminal mode. The display is cleared and the cursor is placed in the "home" position. The "home" position is the top row, far left column. Two softkeys appear at the bottom of the display. The first softkey is the <CAPS LOCK> key. An "*" in this label indicates that the CAPS LOCK key is ON. To set the CAPS LOCK to OFF, press <CAP LOCK> softkey. The sixth softkey (softkeys two through five are not used) is the <BREAK> key. A BREAK is a signal used to interrupt computer operations. It is a space condition (logical 0). A break is sent as long as this softkey is held down. The shortest break possible is 6 milliseconds.

If local echo or remote echo (echo from main office computer) is in effect, characters appear on the display as they are typed. Pressing the left cursor key causes a backspace character (08H) to be transmitted and the cursor moves one space to the left on the HP 4951C display. Typing a CNTL H also results in a backspace. The terminal has a 14-line by 32-column display. When a line exceeds 32 columns it wraps around to the next line. When the display is full it scrolls up and a new line appears at the bottom.

When operating in the terminal mode, the HP 4951C functions as a "dumb" terminal, meaning that when a character is typed, it is immediately transmitted. The terminal is designed to receive one or more stop bits and to transmit two stop bits, making it compatible with all asynchronous devices.

Control characters can be sent by simultaneously holding down the CONTROL (CNTL) key and striking the desired character key. Hexadecimal characters cannot be entered. The terminal ignores most control characters and does not display them. Control characters that the terminal does respond to (but not displayed) are as follows:

ASCII	Hex	Response
BEL	07	Beep
BS	08	Backspace
НТ	09	Tab one space
LF	0A	Line feed
CR	0D	Carriage return
ENQ	User Defn	Transmit ACK (User Defn. in ENQ/ACK)

Pressing EXIT in the terminal mode returns the HP 4951C to the Terminal Setup menu where you can change any of the parameters. Pressing the <Execute> softkey puts the HP 4951C back in the terminal mode of operation and the last terminal session appears on the display. This arrangement lets you switch to the Terminal Setup menu for a quick parameter change and then return to the terminal mode to continue the current terminal mode session. Pressing EXIT in the Terminal Setup menu returns the HP 4951C to the top level menu. All normal HP 4951C menus remain as they were before the terminal session was entered.

Making A Working Copy

If you are not familiar with the basic features of the HP 4951C, use the following procedure to copy the menu for a particular terminal application:

1. Load application from utility disc.

If you want to store a Terminal Setup menu with parameters other than the default parameters, follow steps 2 through 4. If not, go to step 5.

- 2. Press MORE until <Term Setup> softkey appears.
- 3. Press <Term Setup> softkey.
- 4. Change desired parameters.
- 5. Replace master disc in HP 4951C disc drive with blank formatted disc.

Make sure the WRITE PROTECT TAB on the on blank disc is placed in the position to close the hole made for the tab in the disc; otherwise, a write protect error occurs when you attempt to store data.

- 6. Press EXIT to return to top level menu.
- 7. Press MORE until <Mass Store> softkey appears.
- 8. Press <Mass Store> softkey.
- 9. Press *<*Store*>* softkey.
- 10. Type in desired File Name. You may assign the file any name desired, e.g. 'Term' or 'T'. A suggestion might be the terminal manufacturer and or model number or a subset of each e.g. HP2628.
- 11. Press cursor key. Press <Applic Progm> softkey to insure the correct File Type (application).
- 12. Press cursor key and type in a comment if desired. A comment is highly reccomended to allow the identification of files at a later date.
- 13. Press <Execute> softkey.
- 14. A working copy has now been made. Return the WRITE PROTECT TAB on disc to write protected position (push in direction to OPEN the hole in the disc for the write protect tab).

Hardware Handshake

The hardware handshake is the electronic handshake that occurs at the physical level of the communications link before data is transferred across the link.

When using the application in DTE mode, the DATA TERMINAL READY (DTR) and the REQUEST TO SEND (RTS) leads are set ON to ensure communications; however, the Async Terminal Emulator Application will transmit despite the state of DATA SET READY (DSR), CLEAR TO SEND (CTS), and CARRIER DETECT (CD) from the other device. When using the application in DCE mode, the DSR, CTS, and CD leads are set ON but the Async Terminal Emulator Application will transmit despite the state of DTR and RTS from the other device.

Software Handshake

The software handshake is different than the hardware handshake. It controls the flow of data between devices so that overflows do not occur. Although very few "dumb" terminals are designed to handle software handshaking, the Async Terminal Emulator Application supports ENQ/ACK and NONE.

ENQ/ACK Handshake

ENQ/ACK is initiated by the main office computer in the system. The computer is set up to send a specified number of characters (e.g., 80) followed by an ENQ character (usually 05H). When the terminal has processed all the transmitted characters and is ready to receive more, it sends an ACK character (usually 06H). To handle this type of software handshake choose ENQ/ACK in the Terminal Setup menu. When ENQ/ACK is selected for the handshake parameter, two new parameters appear which allow you to select the ENQ character and the ACK character. These characters are entered in Text or Hex using the keyboard.

Terminal Emulator

"NONE" Handshake

If the system uses no handshake or some mode of handshaking other than ENQ/ACK, select NONE in the Terminal Setup menu. When the terminal is in the NONE handshake mode, all characters received are placed into an 8 kbyte buffer. If the buffer becomes full, the HP 4951C stops receiving data and an error message appears at the bottom of the display indicating the buffer has overflowed. A softkey labeled <Continue> also appears at the bottom of the display. Pressing this key resumes data flow into the buffer. The overflow message then disappears. If you expect a large file from the CPU, manual flow control should be used in order to view all of the data.

Manual Flow Control.

In the terminal mode of operation, if a main office computer downloads a file of data which is larger than that which can be displayed on the HP 4951C, you can manually control the data flow using the Xon and Xoff characters. To stop the flow of data, transmit an Xoff signal (usually press CNTL S). To resume the flow of data, transmit an Xon signal (usually press CNTL Q). This method of flow control can be used with either ENQ/ACK or NONE handshaking.

Async Terminal Emulator

Error Messages

Application Denied

CAUSE This occurs when an attempt is made to load or rename an illegal application. This might be an application copied on another device other than another HP 4951C.

ACTION Use only working copies of applications made on an HP 4951C.

Application Not Copiable

- **CAUSE** This occurs when an attempt is made to store an application that is not copiable.
- **ACTION** Reload the application from the master disc before attempting to make a working copy.

Bad Disc

CAUSE The disc will not format due to having one or more bad tracks.

ACTION Use another disc.

Baud rate > 19200 bps

- **CAUSE** Auto Configure may work at higher rates.
- **ACTION** Reduce the system bit rate to <= 19200 bps.

Error Messages

Buffer empty

CAUSE The slave buffer is empty.

ACTION Check the content of the slave buffer with examine data. Retry the upload.

Buffer Overflow

Cause Data is coming into the instrument faster than it can be processed. Storing data to disc faster than it can output to display.

Action Possible Monitor or Simulate menu error.

Buffer Size Too Small

CAUSE The controller is trying to download too much.

ACTION Reduce the size of the buffer being sent over the remote link to the slave 4951C.

Checksum error

- **CAUSE** Bit errors have occurred. A bad CRC check occurred when attempting to read or write a file on the disc. Data is assumed to be corrupt when this error occurs.
- **ACTION** Retry the operation. Disc may no longer be useable. Try another disc to help isolate the problem.

Controller Error

- **CAUSE** The disc controller is not working properly.
- ACTION Run disc self test to verify disc controller error. Call your nearest Hewlett-Packard Sales/Service Office for repair.

Conversion error: menus reset

CAUSE	This might occur if the menus being transferred are invalid.								
ACTION	Check menu compatibility. Retry menu transfer.								
Drive Error									
CAUSE	The disc drive is not working properly, a hardware failure has occurred.								
ACTION	Run disc self test to verify disc controller error. Call your nearest Hewlett-Packard Sales/Service Office for repairs.								
Directory F	uli								
CAUSE	The directory on the disc is full, and no other files can be written onto the disc. The directory can contain eighty files maximum.								
ACTION	Reduce the number of file names.								
Disc Full									
CAUSE	The disc is full of data and no more will fit. This error occurs during write operations.								
ACTION	You can "pack" the disc using the <pack disc=""> softkey to possibly make enough space for the new file to fit.</pack>								

Disc	not	form	atted
0100			auca

CAUSE The disc has not been formatted.

ACTION The disc must be formatted before you can use it in the HP 4951C.

Disc option not installed or malfunctioning

CAUSE Disc randu sen test	CA	US	Έ	Disc	fai	led	self	test.
---------------------------	----	-----------	---	------	-----	-----	------	-------

ACTION Re-run self test. Call your nearest sales service office for repair.

Disc Out

CAUSE The disc is out at the beginning of a disc operation, or the disc is taken out during a disc operation.

ACTION Make sure a disc is properly installed in the disc drive. Press <Dir>.

Disc removed during a Read operation

CAUSE When you remove the disc during a load operation, the buffer data is invalid.

ACTION Use the EXIT key to exit. Try loading the data again.

Disc read error: buffer data invalid

CAUSE This may be caused by, checkrun error, a record not found, a corrupt file on disc, a broken disc controller, or by a worn out disc.

ACTION Use the EXIT key to exit. Try another disc to help isolate the problem.

Brror Messages

Directory too large

CAUSE	The disc has a directory that is too large. Disc is formated ten sectors for 80 entries for the directory.							
ACTION	Reformat the disc on an HP 4951C or use another one.							
EOF error								
CAUSE	An attempt was made to read more records than exist in the file. The End Of File was found before the read completed.							
ACTION	RETRY, if it fails again - retry on a different disc. If the error persists, suspect a disc controller failure.							

End of disc file

CAUSE	When	you specify a	block	number	beyond	the	last	block	on d	lisc.
-------	------	---------------	-------	--------	--------	-----	------	-------	------	-------

ACTION Correct the block number specified so as to specify a block number on the disc.

End of valid data

CAUSE When you scroll to the end of buffer data.

ACTION Scroll backward.

File cannot be stored

CAUSE Tried to store file as an ExtRunDat file type. ExtRunDat file type can only be created during run time using the <Cont Loop> command.

ACTION Change file type to legal file type, i.e., Menu, Menu&Data, Data, etc.

File does not exist

- **CAUSE** Attempt to load a file that does not exist or has been deleted.
- **ACTION** Recheck the directory for the file name or use the <recover> function of mass store menu to try to replace the file into the directory so that it may be accessed.

File is not recoverable

CAUSE Attempt to recover a file that is not recoverable. Probably a file created on an instrument other than an HP 4951C,

ACTION Recheck the file and insure it's compatibility to the HP 4951C.

File already exists

- **CAUSE** Attempt to store or convert a file with a name and type that already exists.
- **ACTION** Recheck the name and/or type to insure either the name or the type is different from existing files.

File Not Compatible

- **CAUSE** Attempt to load a file that is not compatible with the HP 4951. This file could have the correct type but perhaps might be an application not compatible with the HP 4951C.
- **ACTION** Recheck the file and insure it's compatibility to the HP 4951C.

File type must be ExtRunDat

CAUSE The Convert command can only convert ExtRunDat files to Menu&Data files.

Error Messages

Framing error

- **CAUSE** Could not find a "1" stop bit in an asynchronous protocol. This error may occur because a transmit clock (TC or ETC) is missing in a synchronous protocol. The HP 4951C assumes an asynchronous protocol, but cannot then find the stop bit.
- **ACTION** Check transmit clock indicators on the pod. Check protoclo setup. Retry the transmission.

Improper format

CAUSE The disc format is not compatible with the HP 4951C for runtime use. The disc format is LIF but not formatted on a HP 4951C and will not work at runtime for writing to the disc.

ACTION Format the disc on an HP 4951C.

Invalid File Name

- **CAUSE** Attempt to enter an invalid file name.
- **ACTION** Correct the file name. Allowable characters are A Z, numbers, and the underscore character. The file name must start with a capitol alpha character.

Invalid File Type

- **CAUSE** Attempt to load or store a file with a file type that is not valid on a HP 4951C.
- **ACTION** Correct the file type to match with a compatible file type on the HP 4951C.

Invalid Mon/Sim Menu

- **CAUSE** This may occur if you enter "When DTE/DCE" without completing the trigger branching instruction.
- **ACTION** Examine monitor/simulate menu for incorrect parameter. Correct the error and retry.

Issue ID request to enable slave

CAUSE Failure to issue ID request to enable slave.

ACTION You must always <Execute> this operation immediately after establishing phone communication in order to synchronize remote transfers.

Max Length

- **CAUSE** This message appears if you attempt to specify more than 255 characters in a single string.
- **ACTION** Reduce the number of characters in the string.

Max Strings

CAUSE Appears if the Monitor and Simulate Menus combined contain strings which have a total of more than 2000 characters.

ACTION Reduce the number of characters in the string.

Media Wear Protected

CAUSE The disc is write protected because of excess wear on the disc. This prevents you from writing on a disc surface that is marginal.

ACTION Use another disc and copy this to that new disc as soon as possible.

Menu Full

CAUSE Appears if the Monitor and Simulate Menus combined contain more than 143 steps.

ACTION Reduce the number of steps.

Menus incompatible or corrupt

CAUSE	This might occur for certain menus created by an HP 4952A.
ACTION	It may be possible to modify the existing menu to run on the HP 4951C. Examine the menu for any illegal parameters, correct and retry.

Modem handshake fails

- **CAUSE** The controller RTS, CTS handshaking has failed
- **ACTION** Retry, while monitoring RTS & CTS line activity to help isolate the problem.

New name already exsits

CAUSE Attempt to rename a file with a name and type that already exsists.

ACTION Recheck the name and/or type to insure either the name or the type is different from existing files.

No application loaded

- **CAUSE** Attempt to store an application when no application was loaded in the application portion of RAM.
- **ACTION** Load the application desired into the HP 4951C before trying to store it.

No data in buffer -- Use EXIT key to exit

- **CAUSE** This occurs if the buffer is empty when you go to the Examine Data Menu.
- **ACTION** Monitor On-Line, or load from the disc to fill the buffer.

No data in capture buffer

- **CAUSE** This occurs if the buffer is empty when you try to store a menus & data file or a data file.
- **ACTION** Monitor On-Line, or load from the disc to fill the buffer.

No disc drive

- **CAUSE** This indicates that a monitor or simulate menu was attempted to be executed with a "Start Disc" command and a disc drive is either not installed or is malfunctioning.
- **ACTION** Use the self test mode to insure proper disc operation and/or insure that a disc drive is installed.

No displayable data in buffer for the selected display format

CAUSE	This indicates that	the	buffer	contains	non-displayable	data,	such	as	lead
	transitions.								

ACTION Use Data & State display format to see the lead transitions.

No data in requested blks

CAUSE The controller has requested data from empty blocks.

ACTION Adjust the blocks requested.

No data present

CAUSE There is no line data.

ACTION Both data and idle conditions must be present.

No Idles

CAUSE There are insufficient idles on the line.

ACTION Both data and idles must be present. Asynchronous protocols must have a minimum of two idle characters between messages.

No pod attached

CAUSE The pod is not attached.

ACTION Be sure to turn off the power before connecting the interface pod.

CAUSE Could not find any of the sync characters listed on page 4-9.

ACTION Try to sync on idles to capture all the data on the line and then check the data with examine data menu for the presence of sync charaters.

Non LIF format

CAUSE The disc has been formatted, but the format is not the LIF format used by the HP 4951C.

ACTION Format the disc on a HP 4951C.

Nonstandard Baud Rate

CAUSE The bit rate is not within 5% of those listed on page 4-9.

ACTION Adjust bit rate of system the HP 4951C is attached to for monitoring/ simulating.

No more highlights

CAUSE When you press the <Next Hilit> key and there are no more highlights.

ACTION View highlights again by returning to start of buffer (use <Spec Block>) and then <Next Hilit>.

Out of lock -- data fault

CAUSE The tester couldn't synchronize at the beginning of the test because of a wrong pattern, or the absence of data.

ACTION Modify the Setup Menu and/or insure data is being sent over the line.

Out of lock -- sync loss

CAUSE The tester lost synchronization during the test.

ACTION Check the set up for sync characters and try again.

Operation not valid for HP 4951C

CAUSE The operation is one that only an HP 4955A or HP 4953A can perform.

ACTION Amend operation to comply with HP 4951C capabilities.

Record Not Found

CAUSE A track or sector was not found during a disc operation which could indicate a corrupt format on the disc or a worn disc.

ACTION Re-try the read or write operation.

Single sided disc

CAUSE The disc has been formatted as a single-sided disc.

ACTION Reformat the disc or use another one.

Seek error

- **CAUSE** The disc controller can not find a location on the disc that it expects to find.
- **ACTION** Retry the operation. Retry the operation on another disc. If the error persists, destroy the disk the failure occurred on and use another. Call your nearest Hewlett-Packard Sales/Service Office for repair.
Start block# must = first

- **CAUSE** The controller has not specified the first block in the slave buffer.
- **ACTION** Note that the first block may not be "1" if the buffer data has been loaded from disc.

Start of valid data

CAUSE When you scroll to the beginning of buffer data.

ACTION Scroll forward.

Write Protected

- **CAUSE** The disc "write protect" tab is in the "protect" position. The tab will not be visible and a physical hole will exist in that portion of the disc case.
- **ACTION** To store information on a write protected disc, slide the protect tab to the opposite position.

Specifications

Radio Frequency Interference

HP guarantees the HP 4951C will comply with applicable EMI regulations while operating with all detachable probes, leads and cables disconnected.

The user is responsible for insuring that emissions from equipment operating with connected test probes/cables do not exceed the EMI limits at the border of their property.

Weight

Net: 6.7 kg. (14.8 lbs.) Shipping: 12.2 kg. (27 lbs.)

Size

Height: 16 cm, width 27.9 cm, depth 34.3 cm. (6.3 x 11 x 13.5 in.)

Temperature (with media inserted)

Operating: $0^{\circ}C$ to $+55^{\circ}C$ $(+32^{\circ}F$ to $+131^{\circ}F$) ** Storage: $-20^{\circ}C$ to $+75^{\circ}C$ $(-20^{\circ}F$ to $+167^{\circ}F)$

** The disc drive should only be operated from $+5^{\circ}C$ to $+50^{\circ}C$ ($+41^{\circ}F$ to $+122^{\circ}F$) due to media limitations. The drive shouldn't be stored beyond $4^{\circ}C$ to $53^{\circ}C$ ($39^{\circ}F$ to $127^{\circ}F$) at 8% to 80% humidity when media is inserted.

Power Requirements

100 to 240 Vac, -10% to +10%; 48 to 66 Hz single phase. Typical less than 15 VA, maximum less than 35 VA.

Altitude

Operation to 15,000 ft. Storage to 50,000 ft.

Electromagnetic Capability

Complies with the VDE 0871/6.78 Limit B, and is licensed per FTZ 1046/84.

Clock Accuracy

.01% at all supported speeds except 2 kHz, 12 kHz, and 16 kHz. Equivalent accuracies can be achieved at 2 kHz, 12 kHz and 16 kHz through the use of an externally provided clock.

Operating Characteristics

Protocols

X.25, HDLC, SDLC (NRZI), BSC, and most character asynchronous or synchronous protocols.

Data Transfer Rates (bps)

50, 75, 100, 134.5, 150, 200, 300, 600, 1200, 1800, 2000, 2400, 3200, 3600, 4800, 7200, 9600, 12000, 14400, 16000, 19200, teletext 1200/75, and EXTERNAL up to 19200 full duplex for monitoring, simulation, triggering, and BERT tests.

Higher line utilization and/or the number of triggers specified will cause degradation of the data transfer rate at which the HP 4951C can operate.

The HP 4951C can capture a complete buffer full of data at line speeds up to 64 kbps. (Bit oriented protocols only).

Data Codes

ASCII, EBCDIC, Baudot, Six Bit Transcode, IPARS, and EBCD.

Mass Storage Memory

32 kbytes of RAM stores data characters, timing, and lead status information.

Optional disc drive: Up to 512 kbytes for storing data, timing information, menu configurations, and application programs. Write to disc: 9600 bps full duplex, 19200 bps half duplex.

Lead Status

The status of five control leads are stored for each interface. They are RTS, CTS, DTR, DSR, and CD for RS-232C/V.24, and CS, RS, RR, TR, and DM for RS-449.

Highlights

Highlight the last 63 triggers.

Character Framing

5, 6, 7, or 8 information bits, plus parity. For asynchronous systems select 1, 1.5, or 2 stop bits per character.

Error Checking

CRC-CCITT, CRC-16, CRC-12, CRC-6, LRC, and parity.

Triggers

63 triggers consisting of characters, errors, interface lead transitions, or timer values. All be simultaneously active up to 19200 bps.

Timers

Five timers, each of which has a maximum count of 65565 msec. Resolution 1 msec.

Counters

Five counters, each of which can be incremented up to 9999.

Keyboard

Full ASCII keyboard with six softkeys and cursor control.

Specifications

Display

12.7 cm (5 in.) diagonal with 16 lines and 32 characters per line.

Display Formats

Five: DTE only, DCE only, DTE over DCE, Data and State, and Frame and Packet.

Send Strings

255 characters per string maximum, 1750 characters total.

Remote Capability

Over the RS-232C/V.24 link: transfer data, setups, and programs.

Self Test

Extensive self test and verification routines for isolating failures to a functional component group. Built-in signature analysis permits fault isolation to the component level.

Bit Error Rate Testing

Simultaneously measure bit errors, block errors, error seconds, and percent error free seconds.

Block Size: 63, 511, 1000, or 2047 bits.

Patterns: 63, 511, or 2047 bit pseudo random sequence.

Character Framing: Select 5, 6, 7, 8 bits per character and parity, or none (continuous). Select odd or even parity with character framing, or none with no framing.

Inject Errors: Inject single errors or bursts of errors.

Additional Characteristics

Auto-configuration of all setup parameters.

Auto-Load of applications programs by renaming them "autoapplic".

Battery maintained RAM for all setups, data, and menus.

Select bit order as LSB or MSB first and select bit sense as inverted or normal.

С

Accessories

Accessories Supplied

Asynchronous Terminal Emulator Software Package	
Power Cord	(See Appendix E)
Pod-Instrument Cable (for all pods)	HP 04951-61618
Operating Manual	HP 04951-90753
Getting Started	HP 04951-90755
Jumper Cable	HP 8120-4218
Y Jumper Cable	HP 8120-4219
Transportation Disc	HP 5060-7177

Interface pods, listed below, are not supplied and must be ordered separately.

Accessories Available

18174A	RS-449 Interface Pod
18177A/G	V.35 Interface Pod (to 19.2 Kbps.)
18179A	RS-232C/V.24 Interface Pod with Breakout Box and 3-state LEDs
18180A	Combination RS-232C/V.24 and RS-449 Interface Pod
18190A	Soft Vinyl Carrying Case
18192A	Soft vinyl carrying case for extra pods
18331D	Advance Protocol Analysis (SNA, DDCMP, X.25)
18332D	"3270" Installation and Maintenance
18333D	SNA and X.25 Link Level Performance Analysis
18347A	HP 4951C Customer Training - One day - Intensive
92192A	Set of 10 blank discs
9211-1290	Hard transit case.
2225D	RS-232/V.24 ThinkJet Printer
82913A	12-inch RS-170 Video Monitor

One of the cables listed below is included with the appropriate interface. RS-232C/V.24 Y-Ribbon Cable HP 18173-61602 RS-449 Y-Ribbon Cable HP 18174-61601 Extra HP 18177-61601

V.35 Y Cable

Options

Option 002	Delete Integral Disc Drive
Option 003	Katakana (JIS 7, JIS 8, EBCDIK) datacodes
Option 101	Adds accessory 18174A
Option 102	Adds accessory 18180A
Option 103	Adds accessory 18179A
Option 105	Adds accessory 18177A/G
Option 500	Japanese Operating Manual
Option 501	French Operating Manual
Option 502	German Operating Manual
Option 908	Rack Mount Kit
W30	Three Year extended hardware support. Provides two additional years of return-to-HP hardware support (for 2 nd and 3 rd years).

Interface Accessories

HP 18174A, HP 18179A, HP 18177A/G, HP 18180A, and HP 18160A. Each interface is supplied with the appropriate 1.5 meter "Y" cable.

HP 18174A (RS-449) Interface

Nine dedicated activity indicators: SD - Send Data, RD - Receive Data, ST - Send Timing, RT - Receive Timing, RS - Request to Send, CS - Clear to Send, TR - Terminal Ready, DM - Data Mode, and RR - Receiver Ready.

Interface Activity Indicators: These turn on when the differential voltage is greater than 0.2 volts.

Weight: 0.6 kg (1.3 lb).

HP 18179A (RS-232C/V.24) Interface

Full Breakout Box with 25 miniature switches provides access to all 25 conductors.

MARK/SPACE Monitor for user patching to any line.

Ten 3-state LEDs monitor primary interface signals at the source. DTE - Transmit Data, DCE - Receive Data, TC - Transmit Clock, RC - Receive Clock, DTR - Data Terminal Ready, DSR - Data Set Ready, RTS - Request to Send, CTS - Clear to Send, CD - Carrier Detect, and ETC - External Transmit Clock.

LED Indicators: Green -- Space (On). Red -- Mark (Off).

Input Voltage: +/- 25V as per EIA RS-232C or CCITT V.24 specifications.

Weight: 0.8 kg (1.8 lb).

HP 18177A/G (V.35) Interface

Ten dedicated activity indicators: DCE, SCE, RS, DTR, DCE, SCT, SCR, CS, DSR, and CD.

The outputs of control lines RS, DTR, CS, DSR, RLSD conform to CCITT V.28 electrical standard (same as RS-232C). This entails -12 volts for a mark (1, off), and +12 volts for a space (0, on).

The HP 18177A/G specifies a differential voltage resolution on Mark/Space detect of .55 volts +-30% for Data and Clock lines.

Weight: 0.6 kg (1.3 lb).

HP 18180A (Combination RS-232C/V.24 and RS-449 Interfaces).

Weight: 0.7 kg (1.5 lb).

OSI Level 2 and 3 Tables

Level 2: The Data Link Interface

CHARACTER ORIENTED PROTOCOLS: BSC

ITB | SYN | SYN | SOH | Header | STX | Text | ETX | BCC | BCC | ETB

BIT ORIENTED PROTOCOLS

| Flag | Address | Control | Data | FCS | FCS | Flag |

Flags: Flags (7E) act as frame delimiters

Address Field: Command frames contain receiving station's address. Response frames contain sending station's address.

Control Field: Identifies function and purpose of the frame. Contains commands, responses, and sequence numbers.

Information Field: Any number of bits, typically in multiples of 8 (octets).

FCS: Frame Checking Sequence for Error Detection.

TYPES OF BOP FRAMES (Indicated by the following control fields)

1. Information (I) Frames: For transferring information.

| N(R) | P/F | N(S) | 0 |

2. Supervisory (S) Frames: To acknowledge I frames, request re-transmission of I frames, and to communicate status (busy, ready).

Receive Ready (RR)

| N(R) | P/F | 00 | 01 |

Reject (REJ)

| N(R) | P/F | 10 | 01 |

Receive Not Ready (RNR)

| N(R) | P/F | 01 | 01 |

Selective Reject (SREJ)

| N(R) | P/F | 1 1 | 0 1 |

3. Unnumbered (U) Frames: To issue commands and responses.

|Type | P/F | Type | 1 1 |

UNNUMBERED FORMAT COMMANDS (P=Poll, F=Final)

Control Field	d Bits M	Inemonic	Name
msb	lsb		
100P001	1	SNRM	Set Normal Response Mode
000P111	1	SARM	Set Asynchronous Response Mode
001 P 1 1 1	1	SABM	Set Asynchronous Balanced Mode
110P111	1	SNRME	Set Normal Response Mode Extended
010 P 1 1 1	1	SARME	Set Asynchronous Response Mode Extended
011 P111	1	SABME	Set Asynchronous Balanced Mode Extended
000P011	1	SIM	Set Initialization Mode
010 P 0 0 1	1	DISC	Disconnect
000P001	1	UI	Unnumbered Information
001 P001	1	UP	Unnumbered Poll
100P111	1	RSET	Reset
101P111	1	XID	Exchange Identification

UNNUMBERED FORMAT RESPONSES

0 F 0 0	UA	Unnumbered Acknowledgement
000F1111	DM	Disconnected Mode
000F0111	RIM	Request Initialization Mode
000F0011	UI	Unnumbered Information
100F0111	FRMR	Frame Reject
101F1111	XID	Exchange Identification
010F0011	RD	Request Disconnect

OSI Level 2 and 3 Tables

SAMPLE MONITOR MENU TRIGGERS ("x" = don't care)

When DTE	Trigger on data from the DTE
When DTE (flag) 0_1	Address (second byte)
When DTE (flag) $0_1 xxxxxxx$	Control Field, don't cares (3rd byte)
When DTE (flag) ⁰ 1 xxxxx11	U-Frame
When DTE (flag) ⁰ 100x0011	Type of U-Frame = SNRM
When DTE (flag) ⁰ 1 10010011	Poll bit set to 1
When DTE (flag) $^{0}_{3}$ xxxx0001	S-Frame
When DTE (flag) 0_3 10110001	S-Frame, Type=RR, N(R)=5, P/F=1
When DTE (flag) 0_3 00100010	I-Frame, N(R)=1, N(S)=1, P/F=0 (This is an I-Frame)

Level 3

PACKET CONSTRUCTION (MODULO 8)

msb	lsb		Packet Types RRR=	N(R), $SSS=N(S)$
GFI	LCGN]	Data	msb lsb R R R MSSS0
011	Leon	Octet 1	Call Request	00001011
Q D 0 1	1		Call Accepted	00001111
		1	Clear Request	00010011
			Clear Confirmation	00010111
LCN		Octet 2	Interrupt Conf 001000	
		1	Interrupt Cont.	
		0.1.12	Receive Ready	
РАСКЕГТҮРЕ		Octet 3	Receive Not Ready	
		1	Reject Reset Request	00011011
USER DATA			Reset Confirmation	00011111
	/ \ 1 / \		Restart Request	11111011
L		J	Restart Conf.	11111111
			Diagnostic	11110001

LCGN = Logical Channel Group Number LCN = Logical Channel Number Logical Channel Identifier = LCN + LCGN P(R) = Next Receive Packet Expected P(S) = Packet Send Sequence Number M-bit = More Data Bit Q-bit = Data Qualifier Bit D-bit = Delivery Confirmation Bit

DATA PACKETS

MODULO 8

MODULO 128

Octet 1 Octet 2 Octet 3

Octet 4

msb	lsb			
GFI	LCGN			
Q D 1 0				
LCN				
P(S)	0			
P(R)	М			
USER DATA				

CALL REQUEST/ INCOMING CALL PACKET

GFI		LCGN	Octet 1
	LCN	7	Octet 2
0 0	001	011	Octet 3
Callin DTE Addre Lengt	ig ess h	Octet 4	
Cal	lled D	Octet 5	
Cal	lling D	TE Address	Octet 6
0 0	Faci Fiel	Octet 7	
Fac and	cility C 1 Para	Octet 8	
Cal	ll User		

CALL ACCEPTED/ CALL CONNECTED PACKET

GF	I	LCGN			
	LC	N			
(0001	111			
Cal DT Ado Ler	ling E dress igth	Called DTE Address Length			
(Called DTE Address				
(Calling DTE Address				
0 0	Facility 0 0 Field Length				
I	Facilities				

OSI Level 2 and 3 Tables

Service Information

WARNING

Before connecting the HP 4951C to any line voltage, be sure the correct fuse is installed. Damage to the instrument may occur if the wrong fuse is installed. See the next page for procedures to replace the fuse.

WARNING

Before connecting the HP 4951C to any line voltage, the protective earth terminal of the instrument must be connected to the protective conductor of the line power cable. The line plug must be inserted in an outlet provided with a protective earth contact. The protective conductor must not be negated by the use of an extension cord without a protective grounding conductor. Grounding one conductor of a two-conductor outlet does not provide an instrument ground.

Power Cable

The HP 4951C power cable has three wires. When connected to an appropriate power receptacle, this cable grounds the instrument chassis. The type of power cable shipped with each instrument depends on the country of destination (see Table E-1). If the appropriate power cable is not included with the instrument, notify the nearest Hewlett-Packard Sales and Service office for a replacement.

Line Voltage Selection

The line voltage selector is not available on the HP 4951C as the line voltage is not selectable.

Changing Fuses

The fuse is located behind the same back panel cover as the voltage selector cam. The fuse (HP #2110-0758) is a Time Delay fuse rated at .6A, 250V. To change the fuse:

- 1. Unplug the instrument and remove the line cord from the instrument.
- 2. Insert a small screwdriver into the slot at the top of the cover. Pry out the cover from the top.
- 3. Pull out the light gray fuse holder located under the voltage selector cam. Replace the fuse.
- 4. Re-insert the fuse holder with the arrow facing in the same direction as the two arrows on the cover.
- 5. Close the cover. Make sure the desired voltage is still visible in the window.

Plug Type	Cable HP Part Number	C D	Plug Description	Cable Length (inches)	Cable Color	For Use In Country
250V	8120-1351 8120-1703	06	Straught *BS1363A 90°	90 90	Mint Gray Mint Gray	United Kingdom, Cyprus, Nigeria, Rhodesia, Singapore
250V	8120-1369 8120-0696	0 4	Straight *NZSS198 ASC112 90°	79 87	Gray Gray	Australia, New Zealand
250V	8120-1689 8120-1692	7 2	Straight *CEE7.Y11 90°	79 79	Mint Gray Mint Gray	East and West Europe, Saudi Arabia, Egypt, So: Africa, India unpolarized in many nations
1250	8120-1348 8120-1398 8120-1754 8120-1378 8120-1521 8120-1676	5 5 7 1 6 2	Straight *NEMA5-15P 90° Straight *NEMA5-15P Straight *NEMA5-15P 90° Straight *NEMA5-15P	80 80 36 80 80 36	Black Black Black Jade Gray Jade Gray Jade Gray	United States, Canada, Japan -100V or 200V , Mexico Philippines, Taiwan
250V	8120-2104	3	Straight *SEV1011 1959 24507 Type 12	79	Gray	Switzerland
250V	8120-0698	6	Straight 'NEMA6 15P			United States Canada
2200	8120-1957 8120-2956	2 3	Straight *DHCK 107 90°	79 79	Gray Gray	Denmark
250V	8120-1860	6	Straight *CEE22-VI Systems Cabinet use-			
250V	8120-4600 8120-4211	8 7	Straight BS 546/SABS 164 90°	98 98	Black Black	So Africa. India
Part number shown for plug is industry identifier for plug only. Number shown for cable is HP Part Number for complete cable including plug. E = Earth Ground; L = Line, N = Neutral.						

Table E-1. Power Cable Part Numbers

Service

Adjustments

There are no operator adjustments for the HP 4951C. Any internal adjustments must be made by a qualified service person.

Performance Verification

Every time you turn the instrument on, self tests are automatically performed. These tests are completed in about 10 seconds. When the self tests are complete, the Top Level Menu is displayed. If the instrument comes up in the Top Level Menu, functional operation of 95% of the analyzer is verified. If there is a failure, the instrument does not come up in the Top Level Menu; instead it displays the failures that occurred during the self-test sequence.

The automatic turn-on self test checks everything in the analyzer except the following:

- 1. Keyboard. Use the keyboard test on page E-7.
- 2. Disc drive. Use the disc I/O test on page E-5.
- 3. Interface pod. Use the interface pod test on page E-8.

Disc I/O Test

Disc controller and drive failures are not displayed after the automatic self test. However, if files can be loaded and stored correctly, the proper functioning of the disc mechanism is verified. To detect a disc failure, merely store data or menus onto disc, press <Reset> to re-initialize the menus and clear memory, and then load the same file back into the instrument. The menus and data should be the same as when they were stored. A typical procedure would be like the following two checks.

Disc Drive Check

- 1. Insert a blank disc into the disc slot.
- 2. Press <Mass Store> on the Top Level Menu
- 3. You should be using a blank disc, or one that does not contain files you wish to keep. In the mass store menu, press <Format> and then <Execute>.
- 4. The disc should initialize properly.

Disc Read/Write Check

To check the disc I/O circuits, modify one of the menus, store the menus to disc, re-initialize the menus, and then load the menus back into the instrument. In this example, the simulate menu is modified.

- 1. In the simulate menu, press <DTE> and then <Send>. Type in some message, such as "The quick brown fox jumped over the lazy dog". Press EXIT to return to the Top Level Menu.
- 2. In the mass store menu, press <Format> and then <Execute>. Do not initialize the disc if it contains files you wish to keep.
- 3. In the mass store menu, press <Store>, type in a file name, and select <Menus> for the file type. Press <Execute>.
- 4. Once the menus are stored on disc, press <Reset> on the Top Level Menu to erase your previous simulate menu entries.
- 5. In the mass store menu, press <Load>, type in the file name you used when storing, and press <Execute>.
- 6. The simulate menu should contain your previous entries.

Keyboard Test

The keyboard test verifies that the HP 4951C correctly identifies each key pressed.

Setup

- 1. Turn on the HP 4951C
- 2. Press MORE
- 3. Press the <Self Test> softkey in the Top Level Menu.
- 4. Press <KBD Test>.

Procedure

- 1. Press any key on the keyboard.
- 2. The display should read: LAST KEY PRESSED: "(name of key is displayed)".

Note: The RETURN key effectively performs the same operation as "cursor down". When the RETURN key is pressed, CURSOR DOWN is displayed.

3. Press EXIT to end the test and display the self-test menu.

Interface Pod Test

This test checks the DLC (data link controller), the interface cable from the instrument to the pod, and the interface pod itself. It does not check the LCD (or LED) indicators and their drivers.

Setup

- 1. Press MORE in the Top Level Menu.
- 2. Press the <Self Test> softkey.
- 3. Press <Ext DLC>.

Procedure

When the <Ext DLC> softkey is pressed, the Interface Pod test is automatically performed. If the test passes, then "DLC Test Passed" is displayed. Otherwise one of the following messages appears:

No pod attached DTE failed DCE failed

Press EXIT to return to the Self Test Menu.

Service

Display Test

Press <Self Test> in the Top Level Menu. Select <CRT Tests> and then <Test Ptrn>. The test pattern should look like the following:

Figure E-1. Display Test Pattern

Packaging

If the instrument is returned to Hewlett-Packard for service, complete one of the blue repair tags located in the pouch and attach it to the instrument.

CAUTION

Always install the transportation disc in the disc drive when transporting or shipping the HP 4951C.

Original Packaging

Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for service, attach a tag indicating the type of service required, return address, model number, and full serial number. Mark the container FRAGILE to ensure careful handling. In correspondence, refer to the instrument by model number and full serial number.

Other Packaging

Wrap the instrument in heavy paper or plastic. Use a strong shipping container: a double-walled carton made of 350-pound test material is suitable. Use a layer of shock-absorbing material 70-to 100mm (3 to 4 inches) thick around the sides of the instrument to provide firm cushioning and to prevent movement inside the container. Seal the container securely. Mark shipping container FRAGILE to ensure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

F

External Video Output

The external video output is located on the rear panel of the HP 4951C. It is utilized for displaying the internal CRT monitor on an external monitor.

What is RS-170?

This strange sounding specification is really the electrical characteristic for the video signal on monochrome video monitors. The HP 4951C utilizes this specification to display the internal CRT monitor on an external monitor. An example monitor is the HP 82913A which utilizes this standard.

RS-170 specifies the following: 525 lines per frame, 60 Hz refresh rate, a horizontal scan rate of 15.75 KHz.

Useage

The HP 4951C does not work well with standard television monitors. The reason for this is that standard television monitors are designed to overscan the picture/frame displayed. This means that standard television monitors are not designed to display the **edges** of the frame received (approximately 10% of the frame is not shown). The HP 4951C does display 100% of the frame and therefore the frame displayed on a standard television **would not show** the 10% of the edges of the frame shown on the internal HP 4951C monitor screen.

The physical connector on the back of the HP4951C is a 75 ohm BNC type connector.

Recommended Video Monitors

Europe	82913A opt. 1	12" screen	& cable	5061-6533
U.S.	82913A	12" screen	& cable	8120-4703

External Video Output

٩

1

١

G

Data Code Tables

ASCII Character Conversion Table	G-2
EBCDIC Character Conversion Table	G-5
Baudot Character Conversion Table	G-11
EBCD Character Conversion Table	G-12
Transcode Character Conversion Table	G-14
IPARS Character Conversion Table	G-15

ASCII Character Conversion Table

Dec Value	Binary	Hex	Displayed Character	Keyboard Mnemonic	Description
0	000 0000	00	NU	NUL	Null
1	000 0001	01	SH	SOH	Start of Header
2	000 0010	02	SX	STX	Start of Text
3	000 0011	03	EX	ETX	End of Text
4	000 0110	04	ET	EOT	End of Transmission
5	000 0101	05	EQ	ENQ	Enquiry
6	000 0110	06	AK	ACK	Positive Acknowledge
7	000 0111	07	BL	BEL	Bell
8	000 1000	08	BS	BS	Back Space
9	000 1001	09	HT	HT	Horizontal Tab
10	000 1010	0A	LF	LF	Line Feed
11	000 1011	0B	VT	VT	Vertical Tab
12	000 1100	0C	FF	FF	Form Feed
13	000 1101	0D	CR	CR	Carriage Return
14	000 1110	0E	SO	SO	Shift Out
15	000 1111	0F	SI	SI	Shift In
16	001 0000	10	DL	DLE	Data Link Escape
17	001 0001	11	D1	DC1	Device Control 1
18	001 0010	12	D2	DC2	Device Control 2
19	001 0011	13	D3	DC3	Device Control 3
20	001 0100	14	D4	DC4	Device Control 4
21	001 0101	15	NK	NAK	Negative Acknowledge
22	001 0110	16	SY	SYN	Synchronous Idle
23	001 0111	17	EB	ETB	End of Transmission Block
24	001 1000	18	CN	CAN	Cancel
25	001 1001	19	EM	EM	End of Medium
26	001 1010	1A	SB	SUB	Substitute
27	001 1011	1B	EC	ESC	Escape
28	001 1100	1C	FS	FS	File Separator
29	001 1101	1D	GS	GS	Group Separator
30 31 32 33 34	001 1110 001 1111 010 0000 010 0001 010 0010	1E 1F 20 21 22	RS US (space) !	RS US	Record Separator Unit Separator
35 36 37 38 39	010 0011 010 0100 010 0101 010 0110 010 0111	23 24 25 26 27	# \$ &		
40 41 42 43 44	010 1000 010 1001 010 1010 010 1011 010 1011 010 1100	28 29 2A 2B 2C	() + ,		

Data Code Tables

Dec Value	Binary	Hex	Displayed Character	Keyboard Mnemonic	Description
45 46 47 48 49	010 1101 010 1110 010 1111 011 0000 011 0001	2D 2E 2F 30 31	- / 0 1		
50 51 52 53 54	011 0010 011 0011 011 0100 011 0101 011 0110	32 33 34 35 36	2 3 4 5 6		
55 56 57 58 59	011 0111 011 1000 011 1001 011 1010 011 1011	37 38 39 3A 3B	7 8 9 : ;		
60 61 62 63 64	011 1100 011 1101 011 1110 011 1111 100 0000	3C 3D 3E 3F 40	< = ? @		
65 66 67 68 69	100 0001 100 0010 100 0011 100 0100 100 0101	41 42 43 44 45	A B C D E		
70 71 72 73 74	100 0110 100 0111 100 1000 100 1001 100 1010	46 47 48 49 4A	F G H I J		
75 76 77 78 79	100 1011 100 1100 100 1101 100 1110 100 1111	4B 4C 4D 4E 4F	K L M N O		
80 81 82 83 84	101 0000 101 0001 101 0010 101 0011 101 0100	50 51 52 53 54	P Q R S T		
85 86 87 88 89	101 0101 101 0110 101 0111 101 1000 101 1001	55 56 57 58 59	U V W X Y		

ASCII Character Conversion Table (Cont'd)

ł

ASCII Character Conversion Table (Cont'd)

Dec Value	Binary	Hex	Displayed Character	Keyboard Mnemonic	Description
90 91 92 93 94	101 1010 101 1011 101 1100 101 1101 101 1101	5A 5B 5C 5D 5E	Z [`]		
95 96 97 98 99	101 1111 110 0000 110 0001 110 0010 110 0011	5F 60 61 62 63	– a b c		
100 101 102 103 104	110 0100 110 0101 110 0110 110 0111 110 1000	64 65 66 67 68	d e f g h		
105 106 107 108 109	110 1001 110 1010 110 1011 110 1100 110 1101	69 6A 6B 6C 6D	i j k I m		
110 111 112 113 114	110 1110 110 1111 111 0000 111 0001 111 0010	6E 6F 70 71 72	n o p q r		
115 116 117 118 119	111 0011 111 0100 111 0101 111 0110 111 0111	73 74 75 76 77	s t u v w		
120 121 122 123 124	111 1000 111 1001 111 1010 111 1011 111 1011 111 1100	78 79 7A 7B 7C	x y z {		
125 126 127	111 1101 111 1110 111 1111	7D 7E 7F	} %/	DEL	Delete

EBCDIC Character Conversion Table

Dec Value	Binary	Hex	Displayed Character	Standard Mnemonic	Keyboard Entry If Other Than Standard	Description
0 1 2 3 4	0000 0000 0000 0001 0000 0000 0000 0011 0000 0100	00 01 02 03 04	NU SH SX EX PF	NUL SOH STX ETX PF	(hex)	Null Start of Header Start of Text End of Text Punch Off
5 6 7 8 9	0000 0101 0000 0110 0000 0111 0000 1000 0000 1001	05 06 07 08 09	HT LC (hex) RF	HT LC DEL RLF	(hex) (hex)	Horizontal Tab Lower Case Delete
10 11 12 13 14	0000 1010 0000 1011 0000 1100 0000 1101 0000 1110	0A 0B 0C 0D 0E	SM VT FF CR SO	SMM VT FF CR SO	(hex)	Start Manual Message Vertical Tab Form Feed Carriage Return Shift Out
15 16 17 18 19	0000 1111 0001 0000 0001 0001 0001 0010 0001 0011	0F 10 11 12 13	SI DL D1 D2 D3	SI DLE DC1 DC2 DC3		Shift In Data Link Escape Device Control 1 Device Control 2 Device Control 3
20 21 22 23 24	0001 0100 0001 0101 0001 0110 0001 0111 0001 1000	14 15 16 17 18	RE NL BS IL CN	RES NL BS IL CAN	(hex) (hex) (hex)	Restore New Line Back Space Idle Cancel
25 26 27 28 29	0001 1001 0001 1010 0001 1011 0001 1100 0001 1101	19 1A 1B 1C 1D	EM CC C1 FS GS	EM CC CU1 IFS IGS	(hex) (hex) FS GS	End of Medium Cursor Control Information File Separator Information Group Separator
30 31 32 33 34	0001 1110 0001 1111 0010 0000 0010 0001 0010 0010	1 E 1F 20 21 22	RS US DS SS FS	IRS IUS DS SOS FS	RS US (hex) (hex)	Information Record Separator Information Unit Separator Digit Select Start of Significance Field Separator
35 36 37 38 39	0010 0011 0010 0100 0010 0101 0010 0110 0010 0111	23 24 25 26 27	chex BP LF EB EC	BYP LF ETB ESC	(hex)	Bypass Line Feed End of Transmission Block Escape
40 41 42 43 44	0010 1000 0010 1001 0010 1010 0010 1011 0010 1011	28 29 2A 2B 2C	hex (hex) SM C2 (hex)	SM CU2	(hex) (hex)	Set Mode
EBCDIC Character Conversion Table (Cont'd)

Dec Value	Binary	Hex	Displayed Character	Standard Mnemonic	Keyboard Entry If Other Than Standard	Description
45 46 47 48 49	0010 1101 0010 1110 0010 1111 0011 0000 0011 0001	2D 2E 2F 30 31	EQ AK BL (hex) (hex)	ENQ ACK BEL		Enquiry Positive Acknowledge Bell
50 51 52 53 54	0011 0010 0011 0011 0011 0100 0011 0101 0011 0110	32 33 34 35 36	SY (hex) PN RS UC	SYN PN RS UC	(hex) (hex) (hex)	Synchronous Idle Punch On Reader Stop Upper Case
55 56 57 58 59	0011 0111 0011 1000 0011 1001 0011 1010 0011 1011	37 38 39 3A 3B	ET (hex) (hex) (hex) C3	EOT CU3	(hex)	End of Transmission
60 61 62 63 64	0011 1100 0011 1101 0011 1110 0011 1111 0100 0000	3C 3D 3E 3F 40	D4 NK (hex) SB (space)	DC4 NAK SUB		Device Control 4 Negative Acknowledge Substitute
65 66 67 68 69	0100 0001 0100 0010 0100 0011 0100 0100 0100 0101	41 42 43 44 45	(hex) (hex) (hex) (hex) (hex)			
70 71 72 73 74	0100 0110 0100 0111 0100 1000 0100 1001 0100 1010	46 47 48 49 4A	(hex) (hex) (hex) (hex) ¢		ſ	
75 76 77 78 79	0100 1011 0100 1100 0100 1101 0100 1110 0100 1110 0100 1111	4B 4C 4D 4E 4F	• < (+ 1]	
80 81 82 83 84	0101 0000 0101 0001 0101 0010 0101 0011 0101 0100	50 51 52 53 54	& (hex) (hex) (hex) (hex)			
85 86 87 88 89	0101 0101 0101 0110 0101 0111 0101 1000 0101 1001	55 56 57 58 59	(hex) (hex) (hex) (hex) (hex)			

Data Code Tables

EBCDIC Character Conversion Table (Cont	' d)	
---	--------------	--

Dec Value	Binary	Hex	Displayed Character	Standard Mnemonic	Keyboard Entry If Other Than Standard	Description
90 91 92 93 94	0101 1010 0101 1011 0101 1100 0101 1101 0101 1101	5A 5B 5C 5D 5E	! \$;			
95 96 97 98 99	0101 1111 0110 0000 0110 0001 0110 0010 0110 0011	5F 60 61 62 63	- / (hex) (hex)		٨	
100 101 102 103 104	0110 0100 0110 0101 0110 0110 0110 0111 0110 1000	64 65 66 67 68	(hex) (hex) (hex) (hex) (hex)			
105 106 107 108 109	0110 1001 0110 1010 0110 1011 0110 1011 0110 1100 0110 1101	69 6A 6B 6C 6D	(hex) ; % -			
110 111 112 113 114	0110 1110 0110 1111 0111 0000 0111 0001 0111 0010	6E 6F 70 71 72	> ? (hex) (hex) (hex)			
115 116 117 118 119	0111 0011 0111 0100 0111 0101 0111 0110 0111 0110	73 74 75 76 77	(hex) (hex) (hex) (hex) (hex)			
120 121 122 123 124	0111 1000 0111 1001 0111 1010 0111 1010 0111 1011 0111 1100	78 79 7A 7B 7C	(hex) : # @			
125 126 127 128 129	0111 1101 0111 1110 0111 1111 1000 0000 1000 0001	7D 7E 7F 80 81	, = " (hex) a			
130 131 132 133 134	1000 0010 1000 0011 1000 0100 1000 0101 1000 0110	82 83 84 85 86	b c d f			

EBCDIC Character Conversion Table (Cont'd)

Dec Value	Binary	Hex	Displayed Character	Standard Mnemonic	Keyboard Entry If Other Than Standard	Description
135 136 137 138 139	1000 0111 1000 1000 1000 1001 1000 1010 1000 1011	87 88 89 8A 8B	g h (hex) (hex)			
140 141 142 143 144	1000 1100 1000 1101 1000 1110 1000 1111 1001 0000	8C 8D 8E 8F 90	(hex) (hex) (hex) (hex) (hex)			
145 146 147 148 149	1001 0001 1001 0010 1001 0011 1001 0100 1001 0101	91 92 93 94 95	j k I m n			
150 151 152 153 154	1001 0110 1001 0111 1001 1000 1001 1001 1001 1010	96 97 98 99 99	o p q r (hex)			
155 156 157 158 .159	1001 1011 1001 1100 1001 1101 1001 1110 1001 1111	9B 9C 9D 9E 9F	(hex) (hex) (hex) (hex) (hex)			
160 161 162 163 164	1010 0000 1010 0001 1010 0010 1010 0011 1010 0100	A0 A1 A2 A3 A4	(hex) ∼ s t u			
165 166 167 168 169	1010 0101 1010 0110 1010 0111 1010 1000 1010 1001	A5 A6 A7 A8 A9	v w x y z			
170 171 172 173 174	1010 1010 1010 1011 1010 1100 1010 1100 1010 1110	AA AB AC AD AE	(hex) (hex) (hex) (hex) (hex)			
175 176 177 178 179	1010 1111 1011 0000 1011 0001 1011 0010 1011 0101	AF B0 B1 B2 B3	(hex) (hex) (hex) (hex) (hex)			

Data Code Tables

EBCDIC Character Conversion Table (Cont'd)

Dec Value	Binary	Hex	Displayed Character	Standard Mnemonic	Keyboard Entry If Other Than Standard	Description
180 181 182 183 184	1011 0100 1011 0101 1011 0110 1011 0110 1011 0111 1011 1000	B4 B5 B6 B7 B8	(hex) (hex) (hex) (hex) (hex)			
185 186 187 188 189	1011 1001 1011 1010 1011 1011 1011 1011 1011 1100 1011 1101	B9 BA BB BC BD	(hex) (hex) (hex) (hex) (hex)			
190 191 192 193 194	1011 1110 1011 1111 1100 0000 1100 0001 1100 0010	BE BF C0 C1 C2	(hex) (hex) { A B			
195 196 197 198 199	1100 0011 1100 0100 1100 0101 1100 0110 1100 0111	C3 C4 C5 C6 C7	C D E F G			
200 201 202 203 204	1100 1000 1100 1001 1100 1010 1100 1011 1100 1011	C8 C9 CA CB CC	H I (hex) (hex)			
205 206 207 208 209	1100 1101 1100 1110 1100 1111 1101 0000 1101 0001	CD CE CF D0 D1	(hex) Y (hex) } J		:•	
210 211 212 213 214	1101 0010 1101 0011 1101 0100 1101 0101 1101 0100	D2 D3 D4 D5 D6	ĸĿĦĦŎ			
215 216 217 218 219	1101 0111 1101 1000 1101 1001 1101 1010 1101 1011	D7 D8 D9 DA DB	P Q R (hex) (hex)			
220 221 222 223 224	1101 1100 1101 1101 1101 1110 1101 1110 1101 1111 1110 0000	DC DD DE DF E0	(hex) (hex) (hex) (hex) (

EBCDIC Character Conversion Table (Cont'd)

Dec Value	Binary	Hex	Displayed Character	Standard Mnemonic	Keyboard Entry If Other Than Standard	Description
225 226 227 228 229	1110 0001 1110 0010 1110 0011 1110 0100 1110 0101	E1 E2 E3 E4 E5	(hex) S T U V			
230 231 232 233 234	1110 0110 1110 0111 1110 1000 1110 1001 1110 1010	E6 E7 E8 E9 EA	W X Y Z (hex)			
235 236 237 238 239	1110 1011 1110 1100 1110 1101 1110 1101 1110 1110 1110 1111	EB EC ED EE EF	(hex) (hex) (hex) (hex)		-*	
240 241 242 243 244	1111 0000 1111 0001 1111 0010 1111 0011 1111 0100	F0 F1 F2 F3 F4	0 1 2 3 4			
245 246 247 248 249	1111 0101 1111 0110 1111 0111 1111 0111 1111 1000 11111 1001	F5 F6 F7 F8 F9	5 6 7 8 9			
250 251 252 253 254 255	1111 1010 1111 1011 1111 1100 1111 1100 1111 1101 1111 1110 1111 1111	FA FB FC FD FE FF	 (hex) (hex) (hex) (hex) (hex)		/*	

*Use CNTL Key in conjunction with symbol.

G - 10

Baudot Character Conversio	n Table
-----------------------------------	---------

Dec Value	Binary	Hex	Unshifted Characters (letters)	Shifted Characters (figures)
0 1 2 3	0 0000 0 0001 0 0010 0 0011	00 01 02 03	NU E LF A	NU 3 LF -
4 5 6 7	0 0100 0 0101 0 0110 0 0111	04 05 06 07	(space) S I U	(space) 8 7
8 9 10 11	0 0100 0 1001 0 1010 0 1011	08 09 0A 0B	CR D R J	CR \$ 4 BL
12 13 14 15	0 1100 0 1101 0 1110 0 1111	OC OD OE OF	N F C K	! :
16 17 18 19	1 0000 1 0001 1 0010 1 0011	10 11 12 13	T Z L W	5 ;; 2
20 21 22 23	1 0100 1 0101 1 0110 1 0111	14 15 16 17	H Y P Q	# 6 0 1
24 25 26 27	1 1000 1 1001 1 1010 1 1011	18 19 1A 1B (figs)	O B G SO (shift out)	9 ? & SO (shift out)
28 29 30 31	1 1100 1 1101 1 1110 1 1111	1C 1D 1E 1F (LTRS)	M X V SL(shift in)	∙ ; SL(shift in)

EBCD Character Conversion Table

Dec Value	Binary	Hex	Unshifted Characters	Shifted Characters
0 1 2 3	00 0000 00 0001 00 0010 00 0011	00 01 02 03	(space) - @ &	(space) (hex) (¢) +
4	00 0100	04	8	•
5	00 0101	05	9	Q
6	00 0110	06	9	Y
7	00 0111	07	h	H
8	00 1000	08	4	:
9	00 1001	09	m	M
10	00 1010	0A	u	U
11	00 1011	0B	d	D
12	00 1100	OC	(hex) (PN)	(hex) (PN)
13	00 1101	OD	(hex) (RES)	(hex) (RES)
14	00 1110	OE	(hex) (BYP)	(hex) (BYP)
15	00 1111	OF	(hex) (PF)	(hex) (PF)
16	01 0000	10	2	<
17	01 0001	11	k	K
18	01 0010	12	s	S
19	01 0011	13	b	B
20	01 0100	14	O)
21	01 0101	15	VT	VT
22	01 0110	16	FF	FF
23	01 0111	17	(hex)	(hex)
24	01 1000	18	6	,
25	01 1001	19	o	O
26	01 1010	1A	w	W
27	01 1011	1B	f	F
28	01 1100	1C (UC)	SO (shift out)	SO (shift out)
29	01 1101	1D	BS	BS
30	01 1110	1E	EB	EB
31	01 1111	1F (LC)	SI (shift in)	SI (shift in)
32	10 0000	20	1	=
33	10 0001	21	j	J
34	10 0010	22	/	?
35	10 0011	23	a	A
36 37 38 39	10 0100 10 0101 10 0110 10 0111	24 25 26 27	9 r z i	R Z I
40	10 1000	28	5	%
41	10 1001	29	n	N
42	10 1010	2A	v	V
43	10 1011	2B	e	E

Dec Value	Binary	Hex	Unshifted Characters	Shifted Characters
44 45 46 47 48 49 50 51 51 52 53 54 55 55 56	10 1100 10 1101 10 1110 10 1111 11 0000 11 0001 11 0010 11 0011 11 0101 11 0101 11 0110 11 0111 11 0110	2C 2D 2E 2F 30 31 32 33 34 35 36 37 38	RS CR LF HT 3 I t c # \$	RS CR LF HT C
57 58 59 60 61 62 63	11 1001 11 1010 11 1011 11 1010 11 1101 11 1101 11 1110 11 1111	39 3A 3B 3C 3D 3E 3F	p x g ET (hex) (IL) ESC (DEL)	P X G ET (hex) (IL) ESC (DEL)

EBCD Character Conversion Table (Cont'd)

Transcode Character Conversion Table

Dec Value	Binary	Hex	Displayed Characters	Keyboard Mnemonic
0	00 0000	00	SH	SOH
1	00 0001	01	A	
2	00 0010	02	B	
3	00 0011	03	C	
4	00 0100	04	D	
5	00 0101	05	E	
6	00 0110	06	F	
7	00 0111	07	G	
8 9 10 11	00 1000 00 1001 00 1010 00 1011	08 09 0A 0B	H I SX	STX
12 13 14 15	00 1100 00 1101 00 1110 00 1111	OC OD OE OF	< BL SB EB	BEL SUB ETB
16	01 0000	10	&	
17	01 0001	11	J	
18	01 0010	12	K	
19	01 0011	13	L	
20	01 0100	14	M	
21	01 0101	15	N	
22	01 0110	16	O	
23	01 0111	17	P	
24	01 1000	18	Q	
25	01 1001	19	R	
26	01 1010	1A	(space)	
27	01 1011	1B	\$	
28 29 30 31	01 1100 01 1101 01 1110 01 1111	1C 1D 1E 1F	• US ET DL	US EOT DLE
32	10 0000	20	-	
33	10 0001	21	/	
34	10 0010	22	S	
35	10 0011	23	T	
36	10 0100	24	U	
37	10 0101	25	V	
38	10 0110	26	W	
39	10 0111	27	X	
40 41 42 43	10 1000 10 1001 10 1010 10 1011	28 29 2A 2B	Y Z EC	ESC

Data Coue Tables

Dec Value	Binary	Hex	Displayed Characters	Keyboard Mnemonic
44	10 1100	2C	%	
45	10 1101	2D	EQ	ENQ
46	10 1110	2E	EX	ETX
47	10 1111	2F	нт	нт
48	11 0000	30	0	
49	11 0001	31	1	
50	11 0010	32	2	
51	11 0011	33	3	
52	11 0100	34	4	
53	11 0101	35	5	
54	11 0110	36	6	
55	11 0111	37	7	
56	11 1000	38	8	
57	11 1001	39	9	
58	11 1010	3A	SY SY	SYN
59	11 1011	3B	#	
60	11 1100	3C	@	
61	11 1101	3D	NK	NAK
62	11 1110	3E	EM	EM
63	11 1111	3F		DEL

Transcode Character Conversion Table (Cont'd)

IPARS Character Conversion Table

Dec Value	Binary	Hex	Displayed Character	Keyboard Function
0 1 2	00 0000 00 0001 00 0010	00 01 02	(hex) 1 2	
4	00 0011	03 04	3 4	
5 6 7 8	00 0101 00 0110 00 0111 00 1000	05 06 07 08	5 6 7 8	
9 10	00 1001 00 1010	09 0A	9	
11 12 13 14	00 1011 00 1100 00 1101 00 1110	OB OD OE	CR El	Return End of Medium, Incomplete Sense

G - 15

Dec Value	Binary	Hex	Displayed Character	Keyboard Function
15 16 17 18 19	00 1111 01 0000 01 0001 01 0010 01 0011	OF 10 11 12 13	(hex) (hex) / S T	Go-Ahead Write Erase∕Write
20 21 22 23 24	01 0100 01 0101 01 0110 01 0111 01 1000	14 15 16 17 18	U V W X Y	
25 26 27 28 29	01 1001 01 1010 01 1011 01 1100 01 1101	19 1A 1B 1C 1D	Z - (space) EC	End of Medium, Complete
30 31	01 1110 01 1111	1E 1F	C	Start
32 33 34	10 0000 10 0001 10 0010	20 21 22	@ J K	
35 36 37 38 39	10 0011 10 0100 10 0101 10 0110 10 0111	23 24 25 26 27	L M O P	
40 41 42 43 44 45	10 1000 10 1001 10 1010 10 1011 10 1100 10 1101	28 29 2A 2B 2C 2D	Q R 	UMSG End of Medium, Unsolicited
46 47 48 49 50 51	10 1110 10 1111 11 0000 11 0001 11 0010 11 0011	2E 2F 30 31 32 33	s A B C	
52 53 54 55 56 57	11 0100 11 0101 11 0110 11 0111 11 1000 11 1001	34 35 36 37 38 39	D E F G H -	
58 59 60 61 62 63 N	11 1010 11 1011 11 1100 11 1101 11 1110 11 1111 ote: The SYN	3A 3B 3C 3D 3E 3F keycap	? EP S2 S1 maps to the	End of Medium, Push Button Sync 2 Sync 1, Reset Sync 2, hex 3E character.

Index

Α

6-4, 6-8
Appendix C
Chapter 13
13-8
13-9
13-7, 13-8
13-2
13-3
13-4~5
Chapter 4
Chapter 4
5-2, 5-7
1-8

В

<bcc dte=""> or <bcc dce=""></bcc></bcc>	6-8
<beep></beep>	6-19
<bert menu=""></bert>	
in the top level menu	1-8
running	7-3,4
block check characters (BCC)	
blinking	7-6, 8-5
triggering on errors	6-8
block numbers	3-5, 7-4
block (in BERT)	9-1, 9-3

block error rate (in BERT)	9-1
bit error rate tests (BERT)	Chapter 9
error messages	9-6, Appendix A
examples	9-7~9
function	2-2, 2-14
bit error rate tests (BERT)	Chapter 9
handshaking	9-6
running	7-3, 9-4
synchronization	9-6
bit oriented protocols	5-3~7
using autoconfigure	4-3, 4-8~10
setup menu	5-5
<bit shift=""></bit>	
observing data	3-6, 8-4
setup menu requirements	5-23
BSC	
autoconfigure	4-4
setup menu	5-1, 5-13~15
buffer	
examine data menu	8-1~5
use with mass storage	11-1
effect of <reset></reset>	12-1

С

care of discs	11-2
catalog (of disc files)	11-5
capturing data	5-22
char async/sync	
autoconfigure	4-4
determining unknown protocol	8-8
setup menu	3-3, 5-1, 5-16~21
character frame	5-23~24
character oriented protocols	
autoconfigure	4-4
CNTL key	1-6
cursor keys	1-6

D

data codes	Appendix G
directory (of disc files)	11-5
disc information	Chapter 11
disc	
capacity	Appendix B-3
directory (of files)	11-5
drive use	11-1~4
error messages	Appendix A
file types	11-5
format	11-6
loading from	11-6,8
saving setups	5-2
storing to	11-7,9
start and stop	6-17
tests	E-5,6
displaying data	7-6~10, 8-5

Ε

error messages	Appendix A
autoconfigure	4-8
BERT	9-6
examine data	8-11
monitor and simulate	6-30
printer	13-8
remote operation	10-8
<exam data=""></exam>	Chapter 8
in top level menu	1-8
error messages	8-11
example	3-6
examples	Chapter 14
BERT	9-7,8
counting parity errors	14-4
end-to-end: receive first	14-13
end-to-end: transmit first	14-11

fox message	14-3, 14-9, 14-10
measuring RTS-CTS delay	14-1, 14-5
MODEM loopback	14-9
monitor menu	3-7
monitoring a DTE	14-2
monitoring a DCE	14-2
printed output	13-9~12
setup menu	3-3
simulate menu	3-4
simulating RTS-CTS delay	14-7
EXIT (HALT) key	1-6, 2-1
extended address and control	4-3
external video	1-1, 1-10, Appendix F

F

FCS	
setup menu	5-8
triggering on	6-8
blinking	7-6, 8-5
filtering data	6-17,18
flags	
trigger on errors	6-8
formatting a disc	11-6
frame check characters	
trigger on errors	6-8
frame & packet display	
autoconfigure	4-3
setup menu	5-3, 5-7~8, 5-11~12
examine data	7-9, 8-6
full duplex data	7-9
fuses	E-2

G

grounding	1-3, E-	-1
grounding	1-3, E-	·l

Η

half duplex data	7-6, 7-10
handshaking	
BERT	9-6
when simulating	6-21
remote operation	10-7
HDLC	
autoconfigure	4-3
setup menu	5-1, 5-3, 5-8~10
<hex></hex>	7-4, 8-4
<highlight></highlight>	6-19,20

idles	6-24
<if> statement</if>	6-15
combining	6-15
with counters	6-16
with leads	6-16
<inc ctr=""></inc>	6-14
interface pod	Chapter 15
accessories	C-2,3
connecting, hook up	2-4, 2-10, 2-15, 3-2
HP 18174A (RS-449/422A)	15-11,12
HP 18177A/G (V.35)	15-13
HP 18179A (RS-232C/V.24 & RS-449)	15-5~7
HP 18180A (RS-232C/V.24 & RS-449)	15-8,9
installation	15-3
jumpers	3-8
LCD, LED indicators	3-5, 5-7
tests	E-8
IPARS	4-5,6, 5-26

J

Chapter 16

Κ

keyboard	
tests	E-7
use	1-6

L

level 2 and 3 (OSI)	Appendix D
line	
fuse	E-2
switch	1-4, 1-10
voltage	1-3, E-1, E-2
loading files (from disc)	11-6

Μ

<beep>6-19<highlight>6-19<mass store="">Chapter 11error messagesAppendix Ain top level menu1-8<monitor>Chapter 6buffer5-2, 7-2examples14-1DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4</monitor></mass></highlight></beep>	marking triggers	6-17
<highlight>6-19<mass store="">Chapter 11error messagesAppendix Ain top level menu1-8<monitor>Chapter 6buffer5-2, 7-2examples14-1DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4</monitor></mass></highlight>	<beep></beep>	6-19
<mass store="">Chapter 11error messagesAppendix Ain top level menu1-8<monitor>Chapter 6buffer5-2, 7-2examples14-1DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4</monitor></mass>	<highlight></highlight>	6-19
error messagesAppendix Ain top level menu1-8 <monitor>Chapter 6buffer5-2, 7-2examples14-1DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4</monitor>	<mass store=""></mass>	Chapter 11
in top level menu1-8 <monitor>Chapter 6buffer5-2, 7-2examples14-1DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4</monitor>	error messages	Appendix A
<monitor>Chapter 6buffer5-2, 7-2examples14-1DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4</monitor>	in top level menu	1-8
buffer5-2, 7-2examples14-1DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4	<monitor></monitor>	Chapter 6
examples14-1RTS-CTS delay14-1DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4	buffer	5-2, 7-2
RTS-CTS delay14-1DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4	examples	
DCE/DTE14-2parity errors14-4using timers3-7function2-2halting2-8hookup2-4	RTS-CTS delay	14-1
parity errors14-4using timers3-7function2-2halting2-8hookup2-4	DCE/DTE	14-2
using timers3-7function2-2halting2-8hookup2-4	parity errors	14-4
function2-2halting2-8hookup2-4	using timers	3-7
halting2-8hookup2-4	function	2-2
hookup 2-4	halting	2-8
	hookup	2-4

in top level menu	1-8
on-line	7-1
running	2-8, 6-2
<monitor></monitor>	
setup	2-5
triggering	2-7, 6-3~13
using autoconfigure	2-5
MORE key	1-6, 2-1

Ν

0

OSI level 2 and 3

Appendix D

Ρ

packaging	E-10
parity	
errors	6-8
simulation	6-25
performance verification	
general	E-4
interface pod	E-8
keyboard	E-7
disc	E-5
podsee interface pod	
power	
cord	1-3, E-3
fuses	E-2
printer output, ASCII	Chapter 13

programming (monitor, simulate)	6-2
counters	6-14
status (if statement)	6-15
timers	6-12
triggering (when statement)	6-4
protocol	
determining unknown type	8-8

R

<remote> menu</remote>	Chapter 10
controller	10-2~3
ending	10-6
error messages	10-8, Appendix A
handshaking	10-7
in top level menu	1-8
Remote/Printer connection	1-10
slave	10-4~5
<reset></reset>	Chapter 12
examine data	8-2
in top level menu	1-8
RTN key	1-6
<run menu=""></run>	Chapter 7
in top level menu	1-8
monitor on-line	7-1
monitor buffer	7-2
run-time messages	7-5

S

SDLC	
autoconfigure	4-3
setup menu	5-1, 5-3, 5-4, 5-8
<self test=""></self>	1-8, 12-4

<send></send>	
transmitting characters (simulation)	
	6-21~26
using timers	6-26
service information	Appendix E
<set lead=""></set>	6-27,28
<set up=""></set>	Chapter 5
bit oriented protocol	5-3, 5-5~7
BSC	5-13~15
Char Async/Sync	3-3, 5-16, 8-8
defaults	12-2,3
displaying data	8-5
in top level menu	1-8
Saving (in memory)	5-2
Saving (to disc)	5-2
SDLC	5-3~4
when programming monitor, simulate	6-2
SHIFT key	1-6
shipping	E-11
<simulate></simulate>	Chapter 6
block check characters	6-24
delaying output	6-29
error messages	6-30, Appendix A
examples	
DCE, character protocol	3-4
delaying output	6-29
setting leads	6-28
using timers	6-26
flags	6-24
frame check characters	6-24
function	2-2
handshaking	2-12, 6-21
hookup	2-10
in top level menu	1-8
leads	6-27
parity bits	6-25
running	2-13, 3-5, 7-4

C' 1	
<simulate></simulate>	Chapter 6
selecting DTE or DCE	2-12
sending idles	2-12, 6-24
setup	2-11, 5-2
sync characters	6-23
transmitting data	2-12
using timers	6-26
zero bit insertion	6-25
softkeys	1-6
specifications	Appendix A
status messages	6-30
<start></start>	
display	6-17
timer	6-18
<stop></stop>	
display	6-17
tests	6-18
timer	6-18
storing (to disc)	11-7
from the line	11-9
menus	5-2, 11-9
menus & data	5-2, 11-7,9
<stop disp=""></stop>	3-5
<summary></summary>	3-5
sync characters	6-23

Т

<text></text>	7-4
<timer &="" cntr=""></timer>	
observing the buffer (examine data) 3-6, 8-2	
use with <send></send>	6-26
top level menu	1-8
transmitting (simulation)	2-12, 6-23

triggering <when trig=""></when>	6-4, 6-10
on abort characters	6-8
on block check characters	6-8
on <dce> or <dte></dte></dce>	6-4
on characters	6-5~7
on <error></error>	6-8,9
on flags	6-8
on frame check	6-8
on <lead></lead>	6-8
on <not></not>	6-6
on parity	6-6
on <parity dce="" on=""></parity>	6-10
on <parity dte="" on=""></parity>	6-10
on <timer></timer>	6-12
triggers	
combining	6-10
overlapping	6-11
sequential	6-10
time between	6-12
turning on the analyzer	1-4
turning off the analyzer	1-4

V

1-1, 1-10, Appendix F

W

<wait></wait>	6-17, 6-29
when statement <when trig=""></when>	6-4

X

X.25	
autoconfigure	4-3
examine data	8-6
setup menu	5-1, 5-3, 5-7~8, 5-11

Ζ

zero bit insertion

6-25

Product Line Sales/Support Key **Key Product Line**

- A Analytical
- CM Components
- C Computer Systems
- Electronic Instruments & Measurement Systems F
- м Medical Products
- Personal Computation Products P
- Sales only for specific product line
- •• Support only for specific product line

IMPORTANT: These symbols designate general product line capability. They do not insure sales or support availability for all products within a line, at all locations. Contact your local sales office for information regarding locations where HP support is available for specific products.

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these

headquarters offices.

ASIA

Hewlett-Packard Asia Ltd. 47/F. 26 Harbour Rd. Wanchai, HONG KONG G.P.O. Box 863, Hong Kong Tel: 5-8330833 Telex: 76793 HPA HX Cable: HPASIAL TD

CANADA

Hewlett-Packard (Canada) Ltd 6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (416) 678-9430 Telex: 069-8644

EASTERN EUROPE

Hewlett-Packard Ges.m.b.h. Liebloasse 1 P.O.Box 72 A-1222 VIENNA, Austria Tel: (222) 2500-0 Telex: 1 3 4425 HEPA A NORTHERN EUROPE

Hewlett-Packard S.A. V. D. Hooplaan 241 P O Box 999 NL-118 LN 15 AMSTELVEEN The Netherlands Tel: 20 5479999 Telex: 18919 hpner

SOUTH EAST EUROPE

Hewlett-Packard S A World Trade Center 110 Avenue Louis-Casai 1215 Cointrin, GENEVA, Switzerland Tel: (022) 98 96 51 Telex: 27225 hpser Mail Address: P O Box CH-1217 Meyrin 1 GENEVA Switzerland MIDDLE EAST

AND CENTRAL AFRICA Cable: HEWPACK

Hewlett-Packard S.A. Middle Fast/Central Africa Sales H.Q. 7 rue du Bois-du-Lan P.O. Box 364 CH-1217 Meyrin 1 GENEVA Switzerland Tel: (022) 83 12 12 Telex: 27835 hmea ch Telefax: (022) 83 15 35

UNITED KINGDOM Hewlett-Packard Ltd.

Nine Mile Ride WOKINGHAM Berkshire, RG113LL Tel: 0344 773100 Telex: 848805/848814/848912 UNITED STATES OF

AMERICA

Customer Information Center (800) 752-0900 6:00 AM to 5 PM Pacific Time EASTERN USA

Hewlett-Packard Co 4 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 948-6370

MIDWESTERN USA Hewlett-Packard Co 5201 Tollview Drive ROLLING MEADOWS, IL 60008 Tel: (312) 255-9800

SOUTHERN USA

Hewlett-Packard Co. 2000 South Park Place ATLANTA, GA 30339 Tel: (404) 955-1500

WESTERN USA

Hewlett-Packard Co. 5161 Lankershim Blvd NORTH HOLLYWOOD, CA 91601 Tel: (818) 505-5600 OTHER INTERNATIONAL AREAS Hewlett-Packard Co. Intercontinental Headquarters 3495 Deer Creek Road PALO ALTO, CA 94304 Tel: (415) 857-1501

Telex: 034-8300 ALGERIA

Hewlett-Packard Trading S.A. Bureau de Liaison Alger Villa des Lions 9 Hai Galloul DZ-BORDJ EL BAHRI Tel: 76 03 36 Telev: 63343 dlion dz

ANGOLA Telectra Angola LDA

Empresa Técnica de Equipamentos 16 rue Cons. Julio de Vilhema LUANDA Tel: 35515.35516 Telex: 3134 FΡ

ARGENTINA

Hewlett-Packard Argentina S.A. Montaneses 2140/50 1428 BUENOS AIRES Tel: 541-11-1441 Telex: 22796 HEW PAC-AR A.C.E.P Biotron S.A.C.I.M.e.I. Av. Paso Colon 221, Piso 9 1399 BUENOS AIRES Tel: 541-333-490 541-322-587 Telex: 17595 BIONAR

Laboratorio Rodriguez Corswant S.R.L. Misiones, 1156 - 1876 Bernal, Oeste **BUENOS AIRES** Tel: 252-3958 252-4991

Intermaco S.B.L Florida 537/71 Galeria Jardin - Local 28 1005 BUENOS AIRES Tel: 393-4471/1928 Telex: 22796 HEW PAC-AR P (Calculators) Argentina Esanco S.R.L. A/ASCO 2328 1416 BUENOS AIRES Tel: 541-58-1981, 541-59-2767 Telex: 22796 HEW PAC-AR

All Computers S.A. Montaneses 2140/50 5 Piso 1428 BUENOS AIRES Tel: 781-4030/4039/783-4886 Telex: 18148 Ocme

AUSTRALIA Adelaide, South

Australia Office Hewlett-Packard Australia Ltd. 153 Greenhill Road PARKSIDE, S.A. 5063 Tel: 61-8-272-5911 Telex: 82536 Cable: HEWPARD Adelaide A* C CM F P

Brisbane, Queensland

SALES & SUPPORT OFFICES

Office Hewlett-Packard Australia Ltd. 10 Payne Road THE GAP, Queensland 4061 Tel: 61-7-300-4133 Telex: 42133 Cable: HEWPARD Brisbane A.C.CM.E.M.P

Canberra, Australia **Capital Territory**

Office

Hewlett-Packard Australia Ltd. Thynne Street, Fern Hill Park BRUCE, A.C.T. 2617 P.O. Box 257 JAMISON, A.C.T. 2614 Tel: 61-62-80-4244 Telex: 62650 Cable: HEWPARD Canberra C CM F.P

Melbourne, Victoria Office

Hewlett-Packard Australia Ltd. 31-41 Joseph Street P.O. Box 221 BLACKBURN, Victoria 3130 Tel: 61-3-895-2895 Telex: 31-024 Cable: HEWPARD Melbourne A,C,CM,E,M,P

Perth, Western Australia

Office Hewlett-Packard Australia Ltd. Herdsman Business Park CLAREMONT, W.A. 6010 Tel: 61-9-383-2188 Telex: 93859 Cable: HEWPARD Perth C CM E P

Sydney, New South Wales Office

Hewlett-Packard Australia I td 17-23 Talavera Road P.O. Box 308 NORTH RYDE, N.S.W. 2113 Tel: 61-2-888-4444 Telex: 21561 Cable: HEWPARD Sydney A,C,CM,E,M,P

AUSTRIA

Hewlett-Packard Ges.m.b.h. Verkaufsbuero Graz Grottenhofstrasse 94 A-8052 GRAZ Tel: 43-316-291-5660 Telex: 312375

C.E Hewlett-Packard Ges.m.b.h.

Lieblgasse 1 P O Box 72 A-1222 VIENNA Tel: 43-222-2500

Telex: 134425 HEPA A A.C.CM.E.M.P

BAHRAIN Green Salon

P.O. Box 557 MANAMA Tel: 255503-250950 Telex: 84419 P

P.O. Box 648 MANAMA Tel: 256123 Telex: 8550 WAEL BN EM Zayani Computer Systems 218 Shaik Mubarak Building Government Avenue P.O. Box 5918 MANAMA Tel: 276278 Telex: 9015 plans bn

BELGIUM

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal B-1200 BRUSSELS Tel: (02) 32-2-761-31-11 Telex: 23494 hewpac A.C.CM.E.M.P

BERMUDA

Applied Computer Technologies Atlantic House Building P.O. Box HM 2091 Par-La-Ville Road HAMILTON 5 Tel: 295-1616 Telex: 380 3589/ACT BA

BOLIVIA

Arrellano I tda Av. 20 de Octubre #2125 Casilla 1383 I A PAZ Tel: 368541 м

BRAZIL

Hewlett-Packard do Brasil S A Alameda Rio Negro, 750-I. AND. ALPHAVILLE 06400 Barueri SP Tel: (011) 421 1311 Telex: (011) 71351 HPBR BR Cable: HEWPACK Sao Paulo CM.F Hewlett-Packard do Brasil S.A. Praia de Botafago 228-A-614 6. AND.-CONJ. 601 Edificio Argentina - Ala A 22250 RIO DE JANEIRO, RJ Tel: (02I) 552-6422 Telex: 21905 HPBR BR Cable: HEWPACK Rio de Janeiro Van Den Cientifica Ltda. Rua Jose Bonifacio, 458 Todos os Santos 20771 RIO DE JANEIRO, RJ Tel: (021) 593-8223 Telex: 33487 EGLB BR

ANAMED I.C.E.I. Ltda. Rua Verqueiro, 360 04012 SÃO PAULO, SP Tel: (011) 572-1106 Telex: 24720 HPBR BR ...

Datatronix Electronica I tda Av. Pacaembu 746-C11 SAO PAULO, SP Tel: (118) 260111 CM

Arranged alphabetically by country

Wael Pharmacy

BRUNEI

Komputer Wisman Sdn Bhd G6, Chandrawaseh Cmpix, Jalan Tutono P.O. Box 1297. BANDAR SERI BEGAWAN NEGARA BRUNI DARUSSALAM Tel: 673-2-2000-70/26711 CEP

CAMEROON

Beriac B P 23 DOUAL A Tel: 420153 Telex: 5351 C.P

CANADA Alberta

Hewlett-Packard (Canada) Ltd. 3030 3rd Avenue N E CALGARY, Alberta T2A 6T7 Tel: (403) 235-3100 A,C,CM,E*,M,P* Hewlett-Packard (Canada) Ltd. 11120-178th Street

EDMONTON, Alberta T5S 1P2 Tel: (403) 486-6666 A,C,CM,E,M,P

British Columbia Hewlett-Packard (Canada) Ltd.

10691 Shellbridge Way RICHMOND. British Columbia V6X 2W8

Tel: (604) 270-2277 Telex: 610-922-5059 A.C.CM.E*.M.P*

Hewlett-Packard (Canada) Ltd. 121 - 3350 Douglas Street VICTORIA, British Columbia V8Z 3L1 Tel: (604) 381-6616 C

Manitoba

Hewlett-Packard (Canada) Ltd. 1825 Inkster Blvd. WINNIPEG, Manitoba R2X 1R3 Tel: (204) 694-2777 A C CM F M P

New Brunswick Hewlett-Packard (Canada) Ltd. 814 Main Street MONCTON, New Brunswick E1C 1E6 Tel: (506) 855-2841

Nova Scotia Hewlett-Packard (Canada) Ltd. Suite 111 900 Windmill Road DARTMOUTH, Nova Scotia B3B 1P7 Tel: (902) 469-7820

C.CM.E* M.P* Ontario Hewlett-Packard (Canada) Ltd 3325 N. Service Rd., Unit W03 BURLINGTON, Ontario L7N 3G2 Tel: (416) 335-8644 C.M

Hewiett-Packard (Canada) Ltd. 552 Newbold Street LONDON, Ontario N6E 2S5 Tel: (519) 686-9181 A,C,CM,E*,M,P*

6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (416) 678-9430 Telex: 069-83644 A,C,CM,E,M,P Hewlett-Packard (Canada) Ltd. 2670 Queensview Dr. OTTAWA, Ontario K2B 8K1 Tel: (613) 820-6483 A,C,CM,E*,M,P* Hewlett-Packard (Canada) Ltd. 3790 Victoria Park Ave WILLOWDALE, Ontario M2H 3H7 Tel: (416) 499-2550 C.E

Hewlett-Packard (Canada) Ltd.

Quebec

Hewlett-Packard (Canada) Ltd. 17500 Trans Canada Highway South Service Road KIRKLAND, Quebec H9J 2X8 Tel: (514) 697-4232 Telex: 058-21521 A.C.CM.F.M.P* Hewlett-Packard (Canada) Ltd. 1150 rue Claire Fontaine QUEBEC CITY, Quebec G1R 5G4 Tel: (418) 648-0726 с

Hewlett-Packard (Canada) Ltd. 130 Robin Crescent SASKATOON, Saskatchewan S7L 6M7 Tel: (306) 242-3702 С

CHILE ASC Ltda.

Austria 2041 SANTIAGO Tel: 223-5946, 223-6148 Telex: 392-340192 ASC CK CP

Jorge Calcagni y Cia Av. Italia 634 Santiago Casilla 16475 SANTIAGO 9 Tel: 9-011-562-222-0222 Telex: 392440283 JCYCL CZ CM,E,M Metrolab S.A. Monjitas 454 of, 206 SANTIAGO Tel: 395752 398296 Telex: 340866 METLAB CK A

Olympia (Chile) Ltda. Av. Rodrigo de Araya 1045 Casilla 256-V SANTIAGO 21 Tel: 225-5044 Telex: 340892 OLYMP Cable: Olympiachile Santiagochile C,P

CHINA, People's Republic of

China Hewlett-Packard Co., Ltd. 47/F China Resources Bldg. 26 Harbour Boad HONG KONG Tel: 5-8330833 Telex: 76793 HPA HX Cable: HP ASIA LTD A*.M*

China Hewlett-Packard Co., Ltd. P.O. Box 9610, Beijing 4th Floor, 2nd Watch Factory Main Shuang Yu Shou, Bei San Huan Road Hai Dian District BEIJING Tel: 33-1947 33-7426 Telex: 22601 CTSHP CN Cable: 1920 Beijing ACCMEMP China Hewlett-Packard Co., Ltd. CHP Shanghai Branch 23/F Shanghai Union Building 100 Yan An Rd. East SHANG-HAI Tel: 265550 Telex: 33571 CHPSB CN Cable: 3416 Shanghai A C CM E M P

COLOMBIA

Instrumentación H. A. Langebaek & Kier S.A. Carrerra 4A No. 52A-26 Apartado Aereo 6287 ROGOTA 1 D F Tel: 212-1466 Telex: 44400 INST CO Cable: AARIS Bogota CM.E.M Nefromedicas I tda Calle 123 No. 9B-31 Apartado Aereo 100-958 BOGOTA D.E., 10 Tel: 213-5267, 213-1615 Telex: 43415 HEGAS CO

Compumundo Avenida 15 # 107-80 BOGOTA D.E. Tel: 57-214-4458 Telex: 39645466 MARCO

Carvajal, S.A. Calle 29 Norte No. 6A-40 Apartado Aereo 46 CALL Tel: 9-011-57-3-621888 Telex: 39655650 CUJCL CO CEP

CONGO

Seric-Congo B P 2105 **BRAZZAVILLE** Tel: 815034 Telex: 5262

COSTA RICA Cientifica Costarricense S.A. Avenida 2, Calle 5 San Pedro de Montes de Oca Apartado 10159

SAN JOSÉ Tel: 9-011-506-243-820 Telex: 3032367 GALGUR CR CM,E,M O. Fischel R. Y. Cia, S.A. Apartados 434-10174 SAN JOSE Tel: 23-72-44 Telex: 2379

Cable: OFIR

۵

CYPRUS

Telerexa Ltd. P.O. Box 1152 Valentine House 8 Stassandrou St NICOSIA Tel: 45 628, 62 698 Telex: 5845 tirx cy E.M.P

DENMARK

Hewlett-Packard A/S Kongevejen 25 DK-3460 BIRKEROD Tel: 45-02-81-6640 Telex: 37409 hpas dk A,C,CM,E,M,P Hewlett-Packard A/S Rolighedsvej 32 DK-8240 RISSKOV, Aarhus Tel: 45-06-17-6000 Telex: 37409 hpas dk CE

DOMINICAN REPUBLIC

Microprog S.A Juan Tomás Meiía v Cotes No. 60 Arrovo Hondo SANTO DOMINGO Tel: 565-6268 Telex: 4510 ARENTA DR (RCA)

ECUADOR

CYEDE Cia. Ltda. Avenida Eloy Alfaro 1749 y Belgica Casilla 6423 CCI QUITO Tel: 9-011-593-2-450975 Telex: 39322548 CYEDE ED FΡ Medtronics Valladolid 524 Madrid P.O. 9171, QUITO Tel: 2-238-951 Telex: 2298 ECUAME ED Hospitalar S.A. Robles 625 Casilla 3590 ουιτο Tel: 545-250, 545-122 Telex: 2485 HOSPTL ED Cable: HOSPITALAR-Quito м Ecuador Overseas Agencies C.A. Calle 9 de Octubre #818 P.O. Box 1296, Guayaquil QUITO Tel: 306022 Telex: 3361 PBCGYE ED м EGYPT

Sakrco Enterprises P.O. Box 259 AL EXANDRIA Tel: 802908, 808020, 805302 Telex: 54333 С

International Engineering Associates 6 El Gamea Street Agouza CAIRO Tel: 71-21-68134-80-940 Telex: 93830 IEA UN Cable: INTEGASSO Sakrco Enterprises 70 Mossadak Street Dokki Giza CAIRO Tel: 706 440, 701 087

Telex: 9337 С S.S.C. Medical 40 Gezerat El Arab Street Mohandessin CAIRO Tel: 803844, 805998, 810263 Telex: 20503 SSC UN

EL SALVADOR

IPESA de El Salvador S.A. 29 Avenida Norte 1223 SAN SALVADOR Tel: 9-011-503-266-858 Telex: 301 20539 IPESA SAL ACCMEP

ETHIOPIA

Seric-Ethiopia P.O. Box 2764 ADDIS ABABA Tel: 185114 Telex: 21150 CP

FINLAND

Hewlett-Packard Finland Field Ov Niittylanpolku IO 00620 HELSINKI Tel: (90) 757-1011 Telex: 122022 Field SF СМ Hewlett-Packard Oy Piispankalliontie 17 02200 ESPOO Tel: (90) 887-21 Telex: 121563 HEWPA SF A. C. E. M. P FRANCE

Hewlett-Packard France Z.I. Mercure B. Rue Berthelot 13763 Les Milles Cedex AIX-EN-PROVENCE Tel: 33-42-59-4102 Telex: 410770F A,C,E,M Hewlett-Packard France 64, Rue Marchand Saillant E-61000 ALENCON Tel: (33) 29 04 42 C** Hewlett-Packard France Batiment Levitan 2585, route de Grasse Bretelle Autoroute 06600 ANTIBES Tel: (93) 74-59-19 С

SALES & SUPPORT OFFICES

Hewlett-Packard GmbH

Arranged alphabetically by country

FRANCE (Cont'd)

Hewlett-Packard France 28 Rue de la République Boite Postale 503 25026 BESANÇON CEDEX, FRANCE Tel: (81) 83-16-22 Telex: 361157 C F* Hewlett-Packard France ZA Kergaradec **Rue Fernand Forest** F-29239 GOUEESNOU Tel: (98) 41-87-90 F Hewlett-Packard France Chemin des Mouilles Boite Postale 162 69131 ECULLY Cedex (Lyon) Tel: 33-78-33-8125 Telex: 310617E A.C.E.M.P* Hewlett-Packard France Parc d'activités du Bois Briard 2 Avenue du Lac F-91040 EVRY Cedex Tel: 3311/6077 9660 Telex: 692315F C Hewlett-Packard France Application Center 5. avenue Raymond Chanas 38320 EYBENS (Grenoble) Tel: (76) 62-57-98 Telex: 980124 HP GRENOB EYBE Hewlett-Packard France **Bue Fernand** Forest Z.A. Kergaradec 29239 GOUESNOU Tel: (98) 41-87-90 Hewlett-Packard France Parc Club des Tanneries Batiment 84 4, Rue de la Faisanderie 67381 LINCOLSHEIM (Strasbourg) Tel: (88) 76-15-00 Telex: 890141F C,E*,M*,P* Hewlett-Packard France Centre d'affaires Paris-Nord Bâtiment Ampère Rue de la Commune de Paris **Boite Postale 300** 93153 LE BLANC-MESNIL Tel: (1) 865-44-52 Telex: 211032F CEM Hewlett-Packard France Parc d'activités Cadéra Quartier Jean-Mermoz Avenue du Président JF Kennedy 33700 MÉRIGNAC (Bordeaux) Tel: 33-56-34-0084 Telex: 550105F C,E,M

Hewlett-Packard France 3, Rue Graham Bell **BP 5149** 57074 METZ Cedex Tel: (87) 36-13-31 Telex: 860602F C.E Hewlett-Packard France Miniparc-7IBST Chemin du Vieux Chêne 38240 MEYLAN (Grenoble) Tel: (76) 90-38-40 980124 HP Grenobe C Hewlett-Packard France Bureau vert du Bois Briand Cheman de la Garde - CP 212 212 44085 NANTES Cedex Tel: (40) 50-32-22 Telex: 711085F A,C,E,CM*,P Hewlett-Packard France 125, Rue du Faubourg Bannier 45000 ORLÉANS Tel: 33-38-62-2031 F P* Hewlett-Packard France Zone Industrielle de Courtaboeuf Avenue des Tropiques 91947 LES ULIS Cedex (Orsav) Tel: 33-6-907 7825 Telex: 600048F A,C,CM,E,M,P** Hewlett-Packard France 15, Avenue de L'Amiral-Bruix 75782 PARIS Cedex 16 Tel: 33-15-02-1220 Telex: 613663F C P* Hewlett-Packard France 242 Ter, Ave J Mermoz 64000 PAU Tel: 33-59-80-3802 Telex: 550365F C E Hewlett-Packard France 6 Place Sainte Croix 86000 POITIERS Tel: 33-49-41-2707 Telex: 792335F C. E Hewlett-Packard France 47. Rue de Chativesle 51100 REIMS Tel: 33-26-88-6919 C P Hewlett-Packard France Parc d'activités de la Poterie Rue Louis Kerautel-Botmel 35000 RENNES Tel: 33-99-51-4244 Telex: 740912F A" CEMP Hewlett-Packard France 98 Avenue de Bretagne 76100 ROUEN Tel: 33-35-63-5766 Telex: 770035E

C.E

Hewlett-Packard France 4. Rue Thomas-Mann Boite Postale 56 67033 STRASBOURG Cedex Tel: (88) 28-56-46 Telex: 890141F C.E.M.P* Hewlett-Packard France Le Péripole III 3. Chemin du Pigeonnier de la Cépière 31081 TOULOUSE Cedex Tel: 33-61-40-1112 Telex: 531639F A.C.E.M.P Hewlett-Packard France Les Cardoulines Batiment B2 Route des Dolines Parc d'activite de Valbonne Sophia Antipolis 06560 VALBONNE (Nice) Tel: (93) 65-39-40 С Hewlett-Packard France 9. Rue Baudin 26000 VALENCE Tel: 33-75-42-7616 C** Hewlett-Packard France Carolor ZAC de Bois Briand 57640 VIGY (Metz) Tel: (8) 771 20 22 Hewlett-Packard France Parc d'activité des Prés 1. Bue Panin Cedex 59658 VILLENEUVE D'ASCO Tel: 33-20-91-4125 Telex: 160124F CEMP Hewlett-Packard France Parc d'activités Paris-Nord 11 Boite Postale 60020 95971 Roissy Charles de Gaulle VILLEPINTE Tel: (1) 48 63 80 80 Telex: 211032F C,E,M,P* GABON Sho Gabon P.O. Box 89 LIBREVILLE Tel: 721 484 Telex: 5230 GERMAN FEDERAL REPUBLIC Hewlett-Packard GmbH Vertriebszentrum Mitte Hewlett-Packard-Strasso D-6380 BAD HOMBURG Tel: (06172) 400-0 Telex: 410 844 hpbha A,C,E,M.P Hewlett-Packard GmbH Geschäftsstelle Keithstrasse 2-4 D-1000 BERLIN 30 Tel: (030) 21 99 04-0 Telex: 018 3405 hpbln d A.C.E.M.P

Verbindungsstelle Bonn Friedrich-Ebert-Allee 26 5300 BONN Tel: (0228) 234001 Telex: 8869421 Hewlett-Packard GmbH Vertriebszentrun Südwest Schickardstrasse 2 D-7030 BÖBLINGEN Postfach 1427 Tel: (07031) 645-0 Telex: 7265 743 hep A,C,CM,E,M,P Hewlett-Packard GmbH Zeneralbereich Mktg Herrenberger Strasse 130 D-7030 BÖBLINGEN Tel: (07331) 14-0 Telex: 7265739 hep Hewlett-Packard GmbH Geschäftsstelle Schleefstr. 28a D-4600 DORTMUND-41 Tel: (0231) 45001 Telex: 822858 hepdod A.C.E Hewlett-Packard ombH Reparaturzentrum Frankfurt Berner Strasse 117 6000 FRANKFURT/MAIN 60 Tel: (069) 500001-0 Telex: 413249 hpffm Hewlett-Packard GmbH Vertriebszentrum Nord Kapstadtring 5 D-2000 HAMBURG 60 Tel: 49-40-63-804-0 Telex: 021 63 032 hphh d ACEMP Hewlett-Packard GmbH Geschäftsstelk Heidering 37-39 D-3000 HANNOVER 61 Tel: (0511) 5706-0 Telex: 092 3259 hphan A,C,CM,E,M,P Hewlett-Packard GmbH Geschäftsstelle Rosslauer Weg 2-4 D-6800 MANNHEIM Tel: 49-0621-70-05-0 Telex: 0462105 hpmhm A.C.E Hewlett-Packard GmbH Geschäftsstelle Messerschmittstrasse 7 D-7910 NEU ULM Tel: 49-0731-70-73-0 Telex: 0712816 HP ULM-D A.C.E* Hewlett-Packard GmbH Geschäftsstelle Emmericher Strasse 13 D-8500 NÜRNBERG 10 Tel: (0911) 5205-0 Telex: 0623 860 hpnbg C,CM,E,M,P

Hewlett-Packard GmbH Vertriebszentrum Ratingen Berliner Strasse 111 D-4030 RATINGEN 4 Postfach 31 12 Tel: (02102) 494-0 Telex: 589 070 horad A.C.E.M.P Hewlett-Packard GmbH Vertriebszentrum Muchen Eschenstrasse 5 D-8028 TAUFKIRCHEN Tel: 49-89-61-2070 Telex: 0524985 hpmch A,C,CM,E,M,P Hewlett-Packard GmbH Geschäftsstelle Ermlisallee 7517 WALDBRONN 2 Postfach 1251 Tel: (07243) 602-0 Telex: 782 838 hepk A.C.E GREAT BRITAIN See United Kingdom GREECE Hewlett-Packard A.E. 178. Kifissias Avenue 6th Floor Halandri-ATHENS Greece Tel: 301116473 360, 301116726 090 Telex: 221 286 HPHLGR A,C,CM**,E,M,P Kostas Karaynnis S.A. 8. Omirou Street ATHENS 133 Tel: 32 30 303 32 37 371 Telex: 215962 RKAR GR A.C*.CM.E Impexin Intelect Div. 209 Mesogion 11525 ATHENS Tel: 6474481/2 Telex: 216286 Haril Company 38, Mihalakopoulou ATHENS 612 Tel: 7236071 Telex: 218767 м٠ Hellamco P.O. Box 87528 18507 PIRAEUS Tel: 4827049 Telex: 241441 **GUATEMALA** IPESA DE GUATEMALA

IPESA DE GUATEMALA Avenida Reforma 3-48, Zona 9 GUATEMALA CITY Tel: 316627, 317853,66471/5 9-011-502-2-316627 Telex: 3055765 IPESA GU A,C,CM,E.M,P

HONG KONG

Hewlett-Packard Hong Kong, Ltd. G.P.O. Box 795 5th Floor, Sun Hung Kai Centre 30 Harbour Road, Wan Chai HONG KONG Tel: 852-5-832-3211 Telex: 66678 HEWPA HX Cable: HEWPACK HONG KONG F.C.P CET Ltd 10th Floor, Hua Asia Bldg. 64-66 Gloucester Road HONG KONG Tel: (5) 200922 Telex: 85148 CET HX CM Schmidt & Co. (Hong Kong) Ltd. 18th Floor, Great Eagle Centre 23 Harbour Road, Wanchai HONG KONG Tel: 5-8330222 Telex: 74766 SCHMC HX ΔМ ICELAND Hewlett-Packard Iceland Hoefdabakka 9 112 REYKJAVIK Tel: 354-1-67-1000 Telex: 37409 A,C,CM,E,M,P INDIA Computer products are sold through Blue Star Ltd.All computer repairs and maintenance service is done through Computer Maintenance Corp. Blue Star Ltd. B D Patel House Near Sardar Patel Colony AHMEDABAD 380 014 Tel: 403531, 403532 Telex: 0121-234 Cable: BLUE FROST A.C.CM.E Blue Star Ltd. 40/4 Lavelle Road BANGALORE 560 001 Tel: 57881, 867780 Telex: 0845-430 BSLBIN Cable: BLUESTAR A.C*.CM.E Blue Star Ltd. Band Box House Prabhadevi BOMBAY 400 025 Tel: 4933101, 4933222 Telex: 011-71051 Cable: BLUESTAR A.M Blue Star Ltd. Sahas

414/2 Vir Savarkar Marg Prabhadevi BOMBAY 400 025 Tel: 422-6155 Telex: 011-71193 BSSS IN Cable: FROSTBLUE A CM F M Blue Star Ltd Kalyan, 19 Vishwas Colony Alkapuri, BORODA, 390 005 Tel: 65235, 65236 Cable: BI UE STAR

A

7 Hare Street P.O. Box 506 CALCUTTA 700 001 Tel: 230131, 230132 Telex: 031-61120 BSNF IN Cable: BLUESTAR A,M,C,E Blue Star Ltd. 133 Kodambakkam High Road MADRAS 600 G34 Tel: 472056, 470238 Telex: 041-379 Cable: BLUESTAR A,M Blue Star Ltd. 13 Community Center New Friends Colony **NEW DELHI** 110 065 Tel: 682547 Telex: 031-2463 Cable: BI LIFEROST A.C*,CM.E.M Blue Star Ltd 15/16 C Wellesley Rd. PUNE 411 011 Tel: 22775 Cable: BLUE STAR Blue Star Ltd. 2-2-47/1108 Bolarum Rd. SECUNDERABAD 500 003 Tel: 72057 72058 Telex: 0155-459 Cable: BLUEFROST ACF Blue Star Ltd T.C. 7/603 Poornima Maruthunkuzhi **TRIVANDRUM** 695 013 Tel: 65799, 65820 Telex: 0884-259 Cable: BLUESTAR F Computer Maintenance Corporation Ltd. 115, Sarojini Devi Road SECUNDERABAD 500 003 Tel: 310-184, 345-774 Telex: 031-2960 C** INDONESIA BERCA Indonesia P.T. P.O.Box 496/Jkt. JI Abdul Muis 62 JAKARTA Tel: 21-373009 Telex: 46748 BERSAL IA Cable: BERSAL JAKARTA BERCA Indonesia P.T. P.O.Box 2497/Jkt Antara Bldg., 12th Floor JI. Medan Merdeka Selatan 17

Blue Star I td

IRAO

BAGHDAD

Tel: 551-49-73

IRELAND

Tel: 88/333/99

Telex: 30439

C.E.P

Service Operation

Al Mansoor City 9B/3/7

Hewlett-Packard Trading S.A.

Telex: 212-455 HEPAIRAQ IK

Hewlett-Packard Ireland Ltd.

Temple House, Temple Road

Blackrock, Co. DUBLIN

JAKARTA-PUSAT Tel: 21-340417 Telex: 46748 BERSAL IA A.C.E.M.P BERCA Indonesia P.T. Jalan Kutai 24 SURABAYA Tel: 67118 Telex: 31146 BERSAL SB Cable: BERSAL-SURABAYA

A*,E,M,P

C.E

Hewlett-Packard Ltd. 75 Belfast Rd. Carrickferous Belfast BT38 8PH NORTHERN IRELAND Tel: 09603-67333 Telex: 747626 ISRAEL Eldan Electronic Instrument Ltd. P.O.Box 1270 JERUSALEM 91000 16. Ohaliav St JERUSALEM 94467 Tel: 533 221, 553 242 Telex: 25231 AB/PAKRD IL AM Computation and Measurement Systems (CMS) Ltd. 11 Masad Street 67060 TEL-AVIV Tel: 388 388 Telex: 33569 Motil IL COMEP ITALY Hewlett-Packard Italiana S.p.A Traversa 99C Via Giulio Petroni, 19 1-70124 BARI Tel: (080) 41-07-44 C.M Hewlett-Packard Italiana S.p.A. Via Emilia, 51/C I-40011 BOLOGNA Anzola Dell'Emilia Tel: 39-051-731061 Telex: 511630 C,E,M Hewlett-Packard Italiana S.p.A. Via Principe Nicola 43G/C I-95126 CATANIA Tel: (095) 37-10-87 Telex: 970291 Hewlett-Packard Italiana S.p.A. Via G. di Vittorio 10 20094 CORSICO (Milano) Tel: 39-02-4408351 Hewlett-Packard Italiana S.p.A Viale Brigata Bisagno 2 16129 GENOVA Tel: 39-10-541141 Telex: 215238 Hewlett-Packard Italiana S.p.A. Viale G. Modugno 33 I-16156 GENOVA PEGLI Tel: (010) 68-37-07 Telex: 215238

Hewlett-Packard Italiana S.p.A. Via G. di Vittorio 9 1-20063 CERNUSCO SUL NAVIGLIO (Milano) Tel: (02) 923691 Telex: 334632 A,C,CM,E,M,P Hewlett-Packard Italiana S.p.A. Via Nuova Rivoltana 95 20090 LIMITO (Milano) Tel: 02-92761 Hewlett-Packard Italiana S.p.A. Via Nuova San Rocco a Capodimonte, 62/A 1-80131 NAPOLI Tel: (081) 7413544 Telex: 710698 A**,C,E,M Hewlett-Packard Italiana S.p.A. Via Orazio 16 80122 NAPOLI Tel: (081) 7611444 Telex: 710698 Hewlett-Packard Italiana S.p.A. Via Pellizzo 15 35128 PADOVA Tel: 39-49-664-888 Telex: 430315 A,C,E,M Hewlett-Packard Italiana S.p.A. Viale C. Pavese 340 1-00144 ROMA EUR Tel: 39-65-48-31 Telex: 610514 A,C,E,M,P* Hewlett-Packard Italiana S.p.A. Via di Casellina 57/C 500518 SCANDICCI-FIRENZE Tel: 39-55-753863 C.E.M Hewlett-Packard Italiana S.p.A. Corso Svizzera, 185 I-10144 TORINO Tel: 39-11-74-4044 Telex: 221079 A*.C.E **IVORY COAST** SITEL Societe Ivoirienne de Telecommunications Bd. Giscard d'Estaing Carrefour Marcory Zone 4.A. Boite postale 2580 ABIDJAN 01 Tel: 353600 Telex: 43175 SILT Immeuble "Le General" Av. du General de Gaulle 01 BP 161 ABIDJAN 01 Tel: 321227 Telex: 22149 CP JAPAN Yokogawa-Hewiett-Packard Ltd. 152-1 Onna

ATSUGI, Kanagawa, 243

Tel: (0462) 25-0031

C,CM,E

Yokogawa-Hewlett-Packard Ltd. Meiji-Seimei Bldg, 6F 3-1 Motochiba-Cho CHIBA, 280 Tel: (0472) 25 7701 C,E Yokogawa-Hewiett-Packard Ltd. Yasuda-Seimei Hiroshima Bldg. 6-11. Hon-dori, Naka-ku HIROSHIMA, 730 Tel: (082) 241-0611 Yokogawa-Hewlett-Packard Ltd. Towa Building 2-2-3 Kaigan-dori, Chuo-ku KOBE, 650 Tel: (078) 392-4791 CF Yokogawa-Hewlett-Packard Ltd. Kumagaya Asahi 82 Bldg. 3-4 Tsukuba KUMAGAYA, Saitama 360 Tel: (0485) 24-6563 C.CM.E Yokogawa-Hewlett-Packard Ltd. Asahi Shinbun Daiichi Seimei Bldo. 4-7, Hanabata-cho KUMAMOTO, 860 Tel: 96-354-7311 C F Yokogawa-Hewlett-Packard Ltd. Shin-Kyoto Center Bldg. 614. Higashi-Shiokoji-cho Karasuma-Nishiiru **KYOTO**, 600 Tel: 075-343-0921 C.E Yokogawa-Hewiett-Packard Ltd. Mito Mitsui Bldg. 1-4-73, Sanno-maru MITO, Ibaraki 310 Tel: (0292) 25-7470 C,CM,E Yokogawa-Hewlett-Packard Ltd. Meiji-Seimei Kokubun Bldg. 7-8 Kokubun, 1 Chome, Sendai MIYAGI 980 Tel: (0222) 25-1011 C.E Yokogawa-Hewlett-Packard Ltd. Gohda Bldg. 2F 1-2-10 Gonda Okava-Shi Okava-Shi **NAGANO**, 394 Tel: (0266) 23 0851 C.E Yokogawa-Hewlett-Packard Ltd. Nagoya Kokusai Center Building 1-47-1, Nagono, Nakamura-ku NAGOYA, AICHI 450 Tel: (052) 571-5171 C,CM,E,M Yokogawa-Hewlett-Packard Ltd. Sai-Kyo-Ren Building 1-2 Dote-cho OOMIYA-SHI SAITAMA 330 Tel: (0486) 45-8031

SALES & SUPPORT OFFICES

SA de CV

Condominio Kadereyta

Monti Morelos No. 299

GUADALAJARA, Jalisco

Telex: 0684 186 ECOME

Microcomputadoras

Hewlett-Packard, S.A.

LOS LOMAS, Mexico, D.F.

Monte Pelvoux No. 115

Monti Pelvoux 115

Tel: 520-9127

S.A. de C.V.

MEXICO, D.F.

Tel: 520-9127

Tel: 36-31-48-00

Tel: 463-6-02-71

S.A. de C.V.

Arranged alphabetically by country

JAPAN (Cont'd)

Yokogawa-Hewlett-Packard Ltd. Chuo Bldg., 5-4-20 Nishi-Nakajima 4-20 Nishinakajima, 5 Chome, Yodogawa-ku **OSAKA.** 532 Tel: (06) 304-6021 Telex: YHPOSA 523-3624 C.CM.E.M.P* Yokogawa-Hewlett-Packard Ltd. 1-27-15, Yabe SAGAMIHARA Kanagawa, 229 Tel: 0427 59-1311 Yokogawa-Hewlett-Packard Ltd. Hamamtsu Motoshiro-Cho Daichi Seimei Bldg 219-21, Motoshiro-Cho Hamamatsu-shi SHIZUOKA, 430 Tel: (0534) 56 1771 C.E Yokogawa-Hewlett-Packard Ltd. Shiniuku Daiichi Seimei Bldo 2-7-1, Nishi Shinjuku Shinjuku-ku, TOKYO 163 Tel: 03-348-4611 CEM Yokogawa Hewlett-Packard Ltd. 9-1. Takakura-cho Hachioji-shi, TOKYO, 192 Tel: 81-426-42-1231 C.E Yokogawa-Hewlett-Packard Ltd. 3-29-21 Takaido-Higashi, 3 Chome Suginami-ku TOKYO 168 Tel: (03) 331-6111 Telex: 232-2024 YHPTOK C.CM.E.P* Yokogawa Hokushin Electric Corporation Shinjuku-NS Bldg. 10F 4-1 Nishi-Shinjuku 2-Chome Shinjuku-ku **TOKYO**, 163 Tel: (03) 349-1859 Telex: J27584 Yokogawa Hokushin Electric Corp. 9-32 Nokacho 2 Chome Musashino-shi TOKYO, 180 Tel: (0422) 54-1111 Telex: 02822-421 YEW MTK J A Yokogawa-Hewlett-Packard Ltd. Meiji-Seimei Utsunomiya Odori Building 1-5 Odori, 2 Chome UTSUNOMIYA, Tochigi 320 Tel: (0286) 33-1153 C.E Yokogawa-Hewlett-Packard Ltd.

Yasuda Seimei Nishiguchi Bldg. 30-4 Tsuruya-cho, 3 Chome Kanagawa-ku, YOKOHAMA 221 Tel: (045) 312-1252 C.CM.E

JORDAN Scientific and Medical Supplies Co.

P.O. Box 1387 Tel: 24907, 39907 Telex: 21456 SABCO JO CEMP

KENYA ADCOM Ltd., Inc., Kenya P O Box 30070

NAIROBI Tel: 331955 Telex: 22639 FM

KOREA

Samsung Hewlett-Packard Co. Ltd. Dongbang Yeoeuido Building 12-16th Floors 36-1 Yeoeuido-Dong Youngdeungpo-Ku SEOUL Tel: 784-4666, 784-2666 Telex: 25166 SAMSAN K C.CM.E.M.P Young In Scientific Co., Ltd. Youngwha Building 547 Shinsa Dong, Kangnam-Ku SEOUL 135 Tel: 546-7771 Telex: K23457 GINSCO Α Dongbang Healthcare Products Co. 1 td Suite 301 Medical Supply Center Bidg. 1-31 Dongsungdong Jong Ro-gu, SEOUL Tel: 764-1171, 741-1641 Telex: K25706 TKBKO Cable: TKBEEPKO

KUWAIT

Al-Khaldiya Trading & Contracting P.O. Box 830 SAFAT Tel: 424910, 411726 Telex: 22481 AREEG KT Cable: VISCOUNT E.M.A Gulf Computing Systems P.O. Box 25125 SAFAT Tel: 435969 Telex: 23648

Photo & Cine Equipment P.O. Box 270 SAFAT Tel: 2445111 Telex: 22247 MATIN KT Cable: MATIN KUWAIT W.J. Towell Computer Services P.O. Box 5897 SAFAT Tel: 2462640/1

Telex: 30336 TOWELL KT С

LEBANON

Computer Information Systems S.A.L. Chammas Building P.O. Box 11-6274 Dora BEIRUT Tel: 89 40 73 Telex: 42309 chacis le CEMP

LIBERIA

Unichemicals Inc. P.O. Box 4509 MONROVIA Tel: 224282 Telex: 4509 F

LUXEMBOURG

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluweda B-1200 BRUSSELS Tel: (02) 762-32-00 Telex: 23-494 paloben bru ACCMEMP

MADAGASCAR

Technique et Precision 12, rue de Nice P.O. Box 1227 101 ANTANANARIVO Tel: 22090 Telex: 22255 Þ

MALAYSIA

Hewlett-Packard Sales (Malaysia) Sdn Bhd 9th Floor Chung Khiaw Bank Building 46 Jalan Raia Laut 50736 KUALA LUMPUR, MALAYSIA Tel: 03-2986555 Telex: 31011 HPSM MA A.C.E.M.P* Protel Engineering P.O.Box 1917 Lot 6624, Section 64 23/4 Pending Road Kuching, SARAWAK Tel: 36299 Telex: 70904 PROMAL MA Cable: PROTELENG A.E.M

MALTA

Philip Toledo I td Kirkirkara P.O. Box 11 Notabile Rd. MRIEHEL Tel: 447 47, 455 66, 4915 25 Telex: Media MW 649 E,M,P

MAURITIUS

Blanche Birger Co. Ltd. 18, Jules Koenig Street PORT LOUIS Tel: 20828 Telex: 4296

MEXICO

Hewlett-Packard de Mexico, SA de C.V. Rio Nio No. 4049 Desp. 12 Fracc. Cordoba JUAREZ Tel: 161-3-15-62

Hewlett-Packard de Mexico MOROCCO 81 rue Karatchi Circuito del Mezon No. 186 Desp. 6 B.P. 11133 COL. DEL PRADO - 76030 Qro. CASABLANCA Tel: 3041-82, 3068-38 Telex: 23051, 22822 Hewlett-Packard de Mexico, Gerep 2, rue Agadir Fraccionamiento Loma Bonita 45060 Boite Postale 156 CASABLANCA 01 Tel: 272093, 272095 Telex: 23 739 Sema-Maroc Dent Seric 6, rue Lapebie CASABLANCA Tel: 260980 Telex: 21641 Microcomputadoras Hewlett-Packard. C.P NETHERLANDS Lomas de Chapultepec, 11000 Startbaan 16 P.O. Box 667

Hewlett-Packard de Mexico, S.A. de C.V. Monte Pelvoux No. 111 Lomas de Chapultepec 11000 MEXICO, D.F. Tel: 5-40-62-28, 72-66, 50-25 Telex: 17-74-507 HEWPACK MEX A,C,CM,E,M,P Hewlett-Packard De Mexico (Polanco) Avenida Ejercito Nacional #579 2^{da}y3^{er} piso Colonia Granada 11560 MEXICO D.F. Tel: 254-4433

Hewlett-Packard de Mexico, S.A. de C.V. Czda. del Valle 409 Ote. 4th Piso Colonia del Valle Municipio de Garza Garcia Nuevo Leon 66220 MONTERREY, Nuevo León Tel: 83-78-42-40 Telex: 382410 HPMY c Infograficas y Sistemas del Noreste, S.A. Rio Orinoco #171 Oriente Despacho 2001 Colonia Del Valle MONTERREY Tel: 559-4415, 575-3837 Telex: 483164 A,E Hewlett-Packard de Mexico, S.A. de C.V. Blvd. Independencia No. 2000 Ote Col Estrella TORREON, COAH. Tel: 171-18-21-99 Ρ

Etablissement Hubert Dolbeau & Fils

Hewlett-Packard Nederland B.V. NL-1187 XR AMSTELVEEN NL-1180 AR AMSTELVEEN Tel: (020) 547-6911 Telev: 13 216 HEPA NI A,C,CM,E,M,P Hewlett-Packard Nederland B.V. Bongerd 2 P.O. Box 41 NL 2900AA CAPELLE A/D IJSSEL Tel: 31-20-51-6444 Telex: 21261 HEPAC NL C.E Hewlett-Packard Nederland B.V. Pastoor Petersstraat 134-136 P O Box 2342 NL 5600 CH EINDHOVEN Tel: 31-40-32-6911 Telex: 51484 hense ni CFP

NEW ZEALAND

Hewlett-Packard (N.Z.) Ltd. 5 Owens Road P.O. Box 26-189 Epsom, AUCKLAND Tel: 64-9-687-159 Cable: HEWPAK Auckland C.CM.F.P Hewlett-Packard (N.Z.) Ltd. 184-190 Willis Street WELLINGTON P.O. Box 9443 Courtenay Place, WELLINGTON 3 Tel: 64-4-887-199 Cable: HEWPACK Wellington COMEP Northrop instruments & Systems Ltd. 369 Khyber Pass Road P.O. Box 8602 AUCKLAND Tel: 794-091 Telex: 60605 AM

Northrop Instruments & Systems Ltd. Mushko & Company Ltd. 110 Mandeville St. P.O. Box 8388 CHRISTCHURCH Tel: 488-873 Telex: 4203 A.M Northrop Instruments & Systems Ltd. Sturdee House 85-87 Ghuznee Street P.O. Box 2406 WELLINGTON Tel: 850-091 Telex: NZ 3380 AM NIGERIA

Elmeco Nigeria Ltd. 45 Saka Tirubu St Victoria Island LAGOS

Tel: 61-98-94 Telex: 20-117

NORTHERN IRELAND See United Kinadom

NORWAY

Hewlett-Packard Norge A/S Folke Bernadottes vei 50 P.O. Box 3558 N-5033 FYLLINGSDALEN (Bergen) Tel: 0047/5/16 55 40 Telex: 76621 hpnas n C.E.M Hewlett-Packard Norge A/S Osterndalen 16-18 P.O. Box 34 N-1345 OESTERAAS Tel: 47-2-17-1180 Telex: 76621 hpnas n A.C.CM.E.M.P Hewlett-Packard Norge A/S Boehmergt. 42 Box 2470 N-5037 SOLHEIMSVIK Tel: 0047/5/29 00 90

OMAN

Khimjil Ramdas P.O. Box 19 **MUSCAT/SULTANATE OF OMAN** Tel: 795 901 Telex: 3489 BROKER MB MUSCAT Suhail & Saud Bahwan P.O.Box 169 MUSCAT/SULTANATE OF OMAN Tel: 734 201-3 Telex: 5274 BAHWAN MB Е Imtac LLC P.O. Box 9196 MINA AL FAHAL/SULTANATE OF OMAN Tel: 70-77-27, 70-77-23 Telex: 3865 Tawoos On A,C,M

PAKISTAN

Mushko & Company Ltd. House No. 16, Street No. 16 Sector E-6/3 ISLAMABAD Tel: 824545 Telex: 54001 Muski Pk Cable: FEMUS Islamabad A.E.P*

Oosman Chambers Abdullah Haroon Boad KARACHI 0302 Tel: 524131, 524132 Telex: 2894 MUSKO PK Cable: COOPERATOR Karachi A.E.P*

PANAMA

Electronico Balboa, S.A. Calle Samuel Lewis, Ed. Alfa Apartado 4929 PANAMA CITY Tel: 9-011-507-636613 Telex: 368 3483 ELECTRON PG CM,E,M,P

PERU

Cía Electro Médica S.A. Los Flamencos 145. Ofc. 301/2 San Isidro Casilla 1030 LIMA 1 Tel: 9-011-511-4-414325, 41-3705 Telex: 39425257 PE PB SIS CM,E,M,P SAMS S.A. Arenida Republica de Panama 3534 San Isidro LIMA Tel: 9-011-511-4-229332/413984/ 413226 Telex: 39420450 PE LIBERTAD A,C,P

PHILIPPINES

The Online Advanced Systems Corp. 2nd Floor, Electra House 115-117 Esteban Street P.O. Box 1510 Legaspi Village, Makati Metro MANILA Tel: 815-38-10 (up to 16) Telex: 63274 ONLINE PN A.C.E.M.P PORTUGAL

Mundinter Intercambio Mundial de Comércio S A B L Av. Antonio Augusto Aguiar 138 Apartado 2761 LISBON Tel: (19) 53-21-31, 53-21-37 Telex: 16691 munter p м Soquimica Av. da Liberdade, 220-2 1298 LISBOA Codex Tel: 56-21-82 Telex: 13316 SABASA Telectra-Empresa Técnica de Equipmentos Eléctricos S.A.R.L. Rua Rodrigo da Fonseca 103 P.O. Box 2531 LISBON 1 Tel: (19) 68-60-72 Telex: 12598 CM.E CPCSI Rua de Costa Cabral 575 4200 PORTO Tel: 499174/495173 Telex: 26054 C,P

PUERTO RICO

Hewlett-Packard Puerto Rico 101 Muńoz Rivera Av Esu. Calle Ochoa HATO REY, Puerto Rico 00918 Tel: (809) 754-7800 A,C,CM,M,E,P QATAR

Computer Arabia P.O. Box 2750 DOHA Tel: 428555 Telex: 4806 CHPARB

Nasser Trading & Contracting P.O.Box 1563 DOHA Tel: 422170 Telex: 4439 NASSER DH м

SAUDI ARABIA

Modern Electronics Establishment Hewlett-Packard Division P.O. Box 281 Thuobah AL-KHOBAR 31952 Tel: 895-1760, 895-1764 Telex: 671 106 HPMEEK SJ Cable: ELECTA AL-KHOBAR C.E.M Modern Electronics Establishment Hewlett-Packard Division P.O. Box 1228 Redec Plaza, 6th Floor JEDDAH Tel: 644 96 28 Telex: 4027 12 FARNAS SJ Cable: ELECTA JEDDAH ACCMEMP Modern Electronics Establishment Hewlett-Packard Division P O Box 22015 **RIYADH** 11495 Tel: 491-97 15, 491-63 87 Telex: 202049 MEERYD SJ CEM Abdul Ghani El Ajou Corp. P.O. Box 78 RIYADH Tel: 40 41 717 Telex: 200 932 EL AJOU SCOTLAND

See United Kingdom SENEGAL

Societe Hussein Ayad & Cie. 76, Avenue Georges Pompidou B.P. 305 DAKAR Tel: 32339 Cable: AYAD-Dakar Moneger Distribution S.A. 1 Rue Parent **BP 148** DAKAR Tel: 215 671 Telex: 587 Systeme Service Conseil (SSC) 14, Avenue du Parachois DAKAR ETOILE Tel: 219976 Telex: 577 C.P

SINGAPORE

Hewlett-Packard Singapore (Sales) Pte. Ltd. 1150 Depot Road SINGAPORE, 0410 . Tel: 4731788 Telex: 34209 HPSGSO RS Cable: HEWPACK, Singapore A.C.E.M.P Dynamar International Ltd. Unit 05-11 Block 6 Kolam Ayer Industrial Estate SINGAPORE 1334 Tel: 747-6188 Telex: 26283 RS CM SOUTH AFRICA Hewlett-Packard So Africa (Pty.) Ltd.

P.O. Box 120 Howard Place, CAPE PROVINCE 7450 South Africa Tel: 27 121153-7954 Telex: 57-20006 A.C.CM.E.M.P Hewlett-Packard So Africa (Ptv.) Ltd. 2nd Floor Juniper House 92 Overport Drive DURBAN 4067 Tel: 27-31-28-4178 Telex: 6-22954 С Hewlett-Packard So Africa (Pty.) Ltd Shop 6 Linton Arcade 511 Cape Road Linton Grange PORT ELIZABETH 6001

Tel: 27141130 1201 Telex: 24-2916 C

Hewlett-Packard So Africa (Ptv.) Ltd. Fountain Center Kalkoen Str Monument Park Ext 2 PRETORIA 0105 Tel: (012) 45 5725 Telex: 32163 CF

Hewlett-Packard So Africa (Pty.) Ltd. Private Bag Wendywood SANDTON 2144 Tel: 27-11-802-5111, 27-11-802-5125 Telex: 4-20877 SA Cable: HEWPACK Johannesburg A,C,CM,E,M,P

SPAIN

Hewlett-Packard Española, S.A. Calle Entenza, 321 E.-BARCELONA 29 Tel: 3/322 24 51, 321 73 54 Telex: 52603 hpbee A,C,E,M,P Hewlett-Packard Española, S.A. Calle San Vicente S/N Edificio Albia II-7B 48001 BILBAO Tel: 4/423 83 06 ACEM Hewlett-Packard Española, S.A. Crta. N-VI, Km. 16, 400 Las Rozas E-MADRID Tel: (1) 637.00.11 Telex: 23515 HPE C.M

Avda, S. Francisco Javier, S/N Planta 10. Edificio Sevilla 2 E-SEVILLA 5, SPAIN Tel: 54/64 44 54 Telex: 72933 A.C.M.P Hewiett-Packard Española, S.A. isabel La Catolica, 8 E-46004 VALENCIA Tel: 34-6-361 1354 Telex: 63435 CР Hewlett-Packard Española, S.A. Av de Zugazarte 8 Las Arenas-Guecho E-48930 VIZCAYA VIZCAYA Tel: 34-423-83 06 Telex: 33032 SWEDEN Hewlett-Packard Sverige AB Östra Tullgatan 3 S-20011 MALMÖ Box 6132 Tel: 46-40-702-70 Telex: (854) 17886 (via Spånga office) C.P Hewlett-Packard Sverige AB Elementvagen 16 S-7022 7 ÖREBRO Tel: 49-019-10-4820 Telex: (854) 17886 (via Spånga office) C Hewlett-Packard Sverige AB Skalholtsgatan 9, Kista P.O. Box 19 S-16393 SPANGA Tel: (08) 750-2000 Telex: (854) 17886 Telefax: (08) 7527781 A.C.CM.E.M.P Hewlett-Packard Sverige AB Box 266 Topasgatan 1A S-42123 VÄSTRA-FRÖLUNDA (Gothenburg) Tel: 46-031-89-1000

Hewlett-Packard Española, S.A.

Telex: (854) 17886 (via Spånga office) A,C,CM,E,M,P

SUDAN

Mediterranean Engineering & Trading Co. Ltd. P.O. Box 1025 KHARTOUM Tel: 41184 Telex: 24052 CP

SWITZERLAND

Hewlett-Packard (Schweiz) AG Clarastrasse 12 CH-4058 BASEL Tel: 41-61-33-5920 ACEP Hewlett-Packard (Schweiz) AG 7. rue du Bois-du-Lan Case postale 365-1366 CH-1217 MEYRIN 1 Tel: (0041) 22-83-11-11 Telex:27333 HPAG CH A,C,CM,E,M,P

SALES & SUPPORT OFFICES

Arranged alphabetically by country

SWITZERLAND (Cont'd) TOGO

Hewlett-Packard (Schweiz) AG Alimend 2 CH-8967 WIDEN Tel: 41-57-31-2111 Telex: 53933 hpag ch Cable: HPAG CH A.C.CM.E.M.P Hewlett-Packard (Schweiz) AG Schwarnendingenstrasse 10 CH-8050 ZURICH Tel: 41-1-315-8181 Telex: 823 537 HPAG CH CP SYRIA General Electronic Inc.

Nuri Basha Ahnaf Ebn Kays Street P.O. Box 5781 DAMASCUS Tel: 33-24-87 Teley: 44-19-88 Cable: ELECTROBOR DAMASCUS Middle East Electronics P O Box 2308 Abu Rumaneh DAMASCUS Tel: 33 45 92 Telex: 411 771 Meesy

TAIWAN

Hewlett-Packard Taiwan Ltd. THM Office 2 Huan Nan Road CHUNG LI, Taoyuan Tel: (034) 929-666 C Hewlett-Packard Taiwan Ltd. Kaohsiung Office 11/F, 456, Chung Hsiao 1st Road KAOHSIUNG Tel: (07) 2412318 C.E Hewlett-Packard Taiwan I td 8th Floor, Hewlett-Packard Building 337 Fu Hsing North Road TAIDEI Tel: (02) 712-0404 Telex: 24439 HEWPACK Cable:HEWPACK Taipei A.C.CM.E.M.P Ing Lih Trading Co. 3rd Floor, No. 7, Sect. 2 Jen Ai Road TAIPEI 100 Tel: (02) 394-8191 Telex: 22894 SANKWANG THAILAND Unimesa Co. Ltd. 30 Patpong Ave., Suriwong BANGKOK 5 Tel: 235-5727, 234-0991/3 Telex: 84439 Simonco TH Cable: UNIMESA Banokok A.C.E.M Bangkok Business Equipment Ltd. 5/5-6 Deio Road BANGKOK

Tel: 234-8670, 234-8671

Ρ

Telex: 87699-BEQUIPT TH

Cable: BUSIQUIPT Bangkok

Societe Africaine De Promotion Immeuble Sageb Rue d'Atakpame P.O. Box 4150 LOME Tel: 21-62-88 Telex: 5357 **TRINIDAD & TOBAGO** Caribbean Telecoms Ltd. Corner McAllister Street & Eastern Main Road, Laventille P.O. Box 732 PORT-OF-SPAIN Tel: 624-4213 Telex: 22561 CARTEL WG

Cable: CARTEL, PORT OF SPAIN CMEMP Computer and Controls Ltd. P.O. Box 51 1 Taylor Street PORT-OF-SPAIN Tel: (809) 622-77 19/622-7985 Telex: 38722798 COMCON WG LOOGO AGENCY 1264 A,P Feral Assoc. 8 Fitzgerald Lane PORT-OF-SPAIN Tel: 62-36864, 62-39255 Telex: 22432 FERALCO Cable: FERALCO

TUNISIA

Tunisie Electronique S.A.R.L. 31 Avenue de la Liberte TUNIS Tel: 280-144 C.E.P Tunisie Electronique S.A.R.L. 94, Av. Jugurtha, Mutuelleville 1002 TUNIS-BELVEDERE Tel: 280144 Telex: 13238 C,E,P Corema S.A 1 ter. Av. de Carthage TUNIS Tel: 253-821 Telex: 12319 CABAM TN 14 TURKEY

E.M.A Mediha Eldem Sokak No. 41/6 Yenisehir ANKARA Tel: 319175 Telex: 42321 KTX TR Cable: EMATRADE ANKARA м Teknim Company Ltd. Iran Caddesi No. 7

Karaklidere ANKARA Tel: 275800 Telex: 42155 TKNM TR C.E Kurt & Kurt A.S. Mithatpasa Caddesi No. 75 Kat 4 Kizilav ANKARA Tel: 318875/6/7/8 Telex: 42490 MESR TR

Saniva Bilgisayar Sistemleri A.S. Buyukdere Caddesi 103/6 Gayrettepe ISTANBUI Tel: 1673180 Telex: 26345 SANI TR C.P Best Inc. Esentepe, Gazeteciler Sitesi Keskin Kalem Sokak 6/3, Gavrettepe ISTANBUL Tel: 172 1328 173 3344 Telex: 42490 UNITED ARAB EMIRATES Emitac Ltd P.O. Box 1641 SHARJAH Tel: 591181

Telex: 68136 EMITAC EM Cable: EMITAC SHARJAH E.C.M.P.A Emitac Ltd. P.O. Box 2711 ABU DHABI Tel: 820419-20 Cable: EMITACH ABUDHABI Emitac Ltd. P.O. Box 8391 DUBAI. Tel: 377591 Emitac Ltd. P.O. Box 473 RAS AL KHAIMAH Tel: 28133_21270

UNITED KINGDOM ENGLAND

Hewlett-Packard Ltd. Miller House The Ring, BRACKNELL Berks RG12 1XN Tel: 44/344/424-898 Telex: 848733

Hewlett-Packard Ltd. Elstree House, Elstree Way BOREHAMWOOD, Herts WD6 1SG Tel: 01 207 5000 Telex: 8952716 CF Hewlett-Packard Ltd Oakfield House, Oakfield Grove Clifton BRISTOL, Avon BS8 2BN Tel: 44-272-736 806 Telex: 444302 CEP Hewlett-Packard I td 9 Bridewell Place LONDON EC4V 6BS Tel: 44-01-583-6565 Telex: 298163 C.P Hewlett-Packard I td Pontefract Road

C.P

CE NORMANTON, West Yorkshire WF6 1RN Tel: 44/924/895 566 Telex: 557355

Hewlett-Packard Ltd. The Quadrangle 106-118 Station Road REDHILL, Surrey RH1 1PS Tel: 44-737-686-55 Telex: 947234 CEP Hewlett-Packard I td. Avon House 435 Stratford Road Shirley, SOLIHULL, West Midlands B90 4BL Tel: 44-21-745-8800 Telex: 339105 C.E.P Hewlett-Packard Ltd. Heathside Park Road Cheadle Heath, Stockport SK3 ORB. United Kingdom Tel: 44-061-428-0828 Telex: 668068 A,C,E,M,P Hewlett-Packard Ltd. Harmon House No. 1 George Street UXBRIDGE, Middlesex UX8 1YH Tel: 895 720 20 Telex: 893134/5 COMEMP Hewlett-Packard Ltd King Street Lane Winnersh, WOKINGHAM Berkshire RG11 5AR Tel: 44/734/784774 Teiex: 8471789 A,C,E,M,P

NORTHERN IRELAND

Hewlett-Packard (Ireland) Ltd. Carrickfergus Industrial Centre 75 Belfast Road, Carrickfergus CO. ANTRIM BT38 8PM Tel: 09603 67333 CF Cardiac Services Company 95A Finaghy Road South BELFAST, BT 10 OBY Tel: 0232-625566 Telex: 747626 SCOTLAND

Hewlett-Packard Ltd.

1/3 Springburn Place College Milton North EAST KILBRIDE, G74 5NU Tel: 041-332-6232 Telex: 779615

Hewlett-Packard Ltd. SOUTH QUEENSFERRY West Lothian, EH30 9TG Tel: 031 331 1188 Telex: 72682 HPSOFYG C,CM,E,M,P

UNITED STATES

Hewlett-Packard Co. Customer Information Center Tel: (800) 752-0900 Hours: 6:00 AM to 5:00 PM Pacific Time

Alabama

Hewlett-Packard Co 2100 Riverchase Center Building 100 - Suite 118 BIRMINGHAM, AL 35244 Tel: (205) 988-0547 A,C,M,P* Hewlett-Packard Co. 420 Wynn Drive HUNTSVILLE. AL 35805 Tel: (205) 830-2000 C,CM,E,M* Alaska Hewlett-Packard Co. 4000 Old Seward Highway Suite 101 ANCHORAGE, AK 99503 Tel: (907) 563-8855 C F Arizona Hewlett-Packard Co. 8080 Pointe Parkway West PHOENIX, AZ 85044 Tel: (602) 273-8000 A C CM F M P Hewlett-Packard Co. 3400 East Britannia Dr. Bido C Suite 124 TUCSON, AZ 85706 Tel: (602) 573-7400 C.E.M** California Hewlett-Packard Co. 99 South Hill Dr. BRISBANE, CA 94005 Tel: (415) 330-2500 C Hewlett-Packard Co. 1907 North Gateway Blvd. FRESNO, CA 93727 Tel: (209) 252-9652 C.M Hewlett-Packard Co. 1421 S. Manhattan Av. FULLERTON, CA 92631 Tel: (714) 999-6700 COMEM Hewlett-Packard Co. 7408 Hollister Ave. #A **GOLETA**, CA 93117 Tel: (805) 685-6100 C.E Hewlett-Packard Co. 2525 Grand Avenue LONG BEACH, CA 90815 Tel: (213) 498-1111 0 Hewlett-Packard Co. 5651 West Manchester Ave. LOS ANGELES, CA 90045 Tel: (213) 337-8000 Hewlett-Packard Co. 3155 Porter Drive

PALO ALTO, CA 94304 Tel: (415) 857-8000

CF

Hewlett-Packard Co. 5725 W. Las Positas Blvd PLEASANTON, CA 94566 Tel: (415) 460-0282 Hewlett-Packard Co. 4244 So. Market Court, Suite A SACRAMENTO CA 95834 Tel: (916) 929-7222 A'CEM Hewlett-Packard Co. 9606 Aero Drive SAN DIEGO, CA 92123 Tel: (619) 279-3200 C,CM,E,M Hewlett-Packard Co. 3003 Scott Boulevard SANTA CLARA, CA 95054 Tel: (408) 988-7000 Telex: 910-338-0586 A.C.CM.E Hewlett-Packard Co. 2150 W. Hillcrest Dr THOUSAND OAKS, CA 91320 (805) 373-7000 C.CM.E Colorado Hewlett-Packard Co. 2945 Center Green Court South Suite A BOULDER, CO 80301 Tel: (303) 499-6655 A.C.E Hewlett-Packard Co. 24 Inverness Place, East ENGLEWOOD, CO 80112 Tel: (303) 649-5000 A.C.CM.E.M Connecticut Hewlett-Packard Co. 500 Sylvan Av BRIDGEPORT, CT 06606 Tel: (203) 371-6454 C.E Hewlett-Packard Co. 47 Barnes Industrial Road South WALLINGFORD, CT 06492 Tel: (203) 265-7801 A,C,CM,E,M Florida Hewlett-Packard Co. 2901 N.W. 62nd Street FORT LAUDERDALE, FL 33309 Tel: (305) 973-2600 C.E.M.P* Hewlett-Packard Co. 6800 South Point Parkway Suite 301 JACKSONVILLE, FL 32216 Tel: (904) 636-9955 C* M** Hewlett-Packard Co. 255 East Drive Suite B MELBOURNE, FL 32901 Tel: (305) 729-0704 CM,E Hewlett-Packard Co. 6177 Lake Ellenor Drive ORI ANDO EL 32809 Tel: (305) 859-2900

A.C.CM,E.P*

4700 Bayou Blvd Building 5 PENSACOLA, FL 32503 Tel: (904) 476-8422 A.C.M Hewlett-Packard Co. 5550 W. Idlewild, #150 TAMPA, FL 33614 Tel: (813) 884-3282 C.E.M.P Georgia Hewlett-Packard Co. 2015 South Park Place ATLANTA GA 30339 Tel: (404) 955-1500 Telex: 810-766-4890 A.C.CM.E.M.P* Hewlett-Packard Co 3607 Parkway Lane Suite 300 NORCROSS, GA 30092 Tel: (404) 448-1894 CEP Hawaii Hewlett-Packard Co. Pacific Tower 1001 Bishon St Suite 2400 HONOLULU, HI 96813 Tel: (808) 526-1555 A,C,E.M Idaho Hewlett-Packard Co 11309 Chinden Blvd. BOISE, ID 83714 Tel: (208) 323-2700 C Illinois Hewlett-Packard Co. 2205 E. Empire St. P.O. Box 1607 BLOOMINGTON IL 61702-1607 Tel: (309) 662-9411 A.C.F.M** Hewlett-Packard Co. 525 W. Monroe. #1308 CHICAGO, IL 60606 Tel: (312) 930-0010 С Hewlett-Packard Co. 1200 East Diehl Road NAPERVILLE IL 60566 Tel: (312) 357-8800 С Hewlett-Packard Co 5201 Tollview Drive ROLLING MEADOWS, IL 60008 Tel: (312) 255-9800 Telex: 910-687-1066 A.C.CM.E.M Indiana Hewlett-Packard Co. 11911 N. Meridian St. **CARMEL. IN 46032** Tel: (317) 844-4100 A,C,CM,E,M Hewlett-Packard Co. 111 E. Ludwig Road Suite 108 FT. WAYNE, IN 46825 Tel: (219) 482-4283 CF

Hewlett-Packard Co.

lowa

Hewlett-Packard Co. 4070 22nd Av. SW CEDAR RAPIDS, IA 52404 Tel: (319) 390-4250 C.E.M Hewlett-Packard Co. 4201 Corporate Dr. WEST DES MOINES, IA 50265 Tel: (515) 224-1435 A**,C,M** Kansas Hewlett-Packard Co. North Rock Business Park 3450 N. Rock Rd. Suite 300 WICHITA, KS 67226 Tel: (316) 684-8491 C,E Kentucky Hewlett-Packard Co. 305 N. Hurstbourne Lane. Suite 100 LOUISVILLE, KY 40223 Tel: (502) 426-0100 ACM Louisiana Hewlett-Packard Co 160 James Drive East ST. ROSE, 1 A 70087 P.O. Box 1449 **KENNER, LA 70063** Tel: (504) 467-4100 A.C.E.M.P Maryland Hewlett-Packard Co 3701 Koppers Street BALTIMORE MD 21227 Tel: (301) 644-5800 Telex: 710-862-1943 A C CM F M Hewlett-Packard Co. 2 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 948-6370 A.C.CM.E.M Massachusetts Hewlett-Packard Co. 1775 Minuteman Road ANDOVER, MA 01810 Tel: (617) 682-1500 A.C.CM.E.M.P* Hewlett-Packard Co. 29 Burlington Mall Rd BURLINGTON, MA 01803-4514 Tel: (617) 270-7000 CE Michigan Hewlett-Packard Co. 4326 Cascade Boad S E GRAND RAPIDS, MI 49506 Tel: (616) 957-1970 C.M Hewlett-Packard Co. 39550 Orchard Hill Place Drive NOVI, MI 48050 Tel: (313) 349-9200 A.C.E.M Hewlett-Packard Co. 560 Kirts Rd. Suite 101 TROY, MI 48084 Tel: (313) 362-5180 C

Minnesota Hewlett-Packard Co 2025 W. Larpenteur Ave. ST. PAUL, MN 55113 Tel: (612) 644-1100 A C CM F M Missouri Hewlett-Packard Co. 1001 E. 101st Terrace Suite 120 KANSAS CITY, MO 64131-3368 Tel: (816) 941-0411 A C.CM.E.M Hewlett-Packard Co. 13001 Hollenberg Drive BRIDGETON, MO 63044 Tel: (314) 344-5100 A.C.E.M Nebraska Hewlett-Packard 11626 Nicholas St. OMAHA, NE 68154 Tel: (402) 493-0300 C.E.M **New Jersey** Hewlett-Packard Co. 120 W. Century Road PARAMUS, NJ 07652 Tel: (201) 265-5000 A,C,CM,E,M Hewlett-Packard Co. 20 New England Av. West PISCATAWAY, NJ 08854 Tel: (201) 562-6100 A.C.CM.E New Mexico Hewlett-Packard Co. 7801 Jefferson N.E. ALBUQUERQUE, NM 87109 Tel: (505) 823-6100 C.E.M Hewlett-Packard Co. 1362-C Trinity Dr LOS ALAMOS, NM 87544 Tel: (505) 662-6700 CF New York Hewlett-Packard Co 5 Computer Drive South ALBANY, NY 12205 Tel: (518) 458-1550 A,C,E,M Hewlett-Packard Co. 9600 Main Street CLARENCE, NY 14031 Tel: (716) 759-8621 CEM Hewlett-Packard Co. 200 Cross Keys Office Park FAIRPORT, NY 14450 Tel: (716) 223-9950 ACCMEM Hewlett-Packard Co. 7641 Henry Clay Blvd. LIVERPOOL, NY 13088 Tel: (315) 451-1820 A,C,CM,E,M Hewlett-Packard Co. No. 1 Pennsylvania Plaza 55th Floor 34th Street & 7th Avenue MANHATTAN NY 10119 Tel: (212) 971-0800 C M'

Hewlett-Packard Co. 15 Myers Corner Rd. Hollowbrook Park, Suite 2D WAPPINGERS FALLS, NY 12590 Tel: (914) 298-9125 CM F Hewlett-Packard Co. 2975 Westchester Ave PURCHASE, NY 10577 Tel: (914) 935-6300 C CM F Hewlett-Packard Co. 3 Crosswavs Park West WOODBURY, NY 11797 Tel: (516) 682-7800 A,C,CM,E,M North Carolina Hewlett-Packard Co. 305 Greason Dr. CARY, NC 27511 Tel: (919) 467-6600 C.CM.E.M.P* Hewlett-Packard Co. 9401 Arrow Point Blvd Suite 100 CHARLOTTE, NC 28217 Tel: (704) 527-8780 C. Hewlett-Packard Co. 5605 Roanne Way GREENSBORO, NC 27420 Tel: (919) 852-1800 A.C.CM.E.M.P* Ohio Hewlett-Packard Co. 2717 S. Arlington Road AKRON, OH 44312 Tel: (216) 644-2270 CF Hewiett-Packard Co. 4501 Erskine Road CINCINNATI OH 45242 Tel: (513) 891-9870 C.M Hewlett-Packard Co. 15885 Sprague Road CLEVELAND, OH 44136 Tel: (216) 243-7300 A.C.CM.F.M Hewlett-Packard Co. 9080 Springboro Pike MIAMISBURG, OH 45342 Tel: (513) 433-2223 A.C.CM.E*.M Hewlett-Packard Co. One Maritime Plaza, 5th Floor 720 Water Street TOLEDO, OH 43604 Tel: (419) 242-2200 С Hewlett-Packard Co. 675 Brooksedge Blvd. WESTERVILLE, OH 43081 Tel: (614) 891-3344 C CM F* Oklahoma Hewlett-Packard Co 3525 N.W. 56th St. Suite C-100 OKLAHOMA CITY, OK 73112 Tel: (405) 946-9499

C.E*.M

c

UNITED STATES (Cont'd)

Hewlett-Packard Co. 6655 South Lewis, Suite 105 TULSA. OK 74136 Tel: (918) 481-6700 A**,C,E,M*,P*

Oregon

Hewlett-Packard Co. 9255 S. W. Pioneer Court WILSONVILLE OR 97070 Tel: (503) 682-8000 A.C.E*.M

Pennsylvania

Hewlett-Packard Co. Heatherwood Industrial Park 50 Dorchester Rd. Route 22 HARRISBURG, PA 17112-2799 Tel: (717) 657-5900 С Hewlett-Packard Co. 111 Zeta Drive PITTSBURGH, PA 15238 Tel: (412) 782-0400 A,C,E,M Hewlett-Packard Co. 2750 Monroe Boulevard VALLEY FORGE, PA 19482 Tel: (215) 666-9000 A,C,CM,E,M South Carolina Hewlett-Packard Co. Brookside Park, Suite 122 1 Harbison Way COLUMBIA, SC 29212 Tel: (803) 732-0400 C.M Hewlett-Packard Co. 545 N. Pleasantburg Dr. Suite 100 GREENVILLE, SC 29607 Tel: (803) 232-8002 c Tennessee

Hewlett-Packard Co. One Energy Centr. Suite 200 Pellissippi Pkwy. KNOXVILLE, TN 37932 Tel: (615) 966-4747 A.C.E.M.P Hewlett-Packard Co. 3070 Directors Row Directors Square MEMPHIS, TN 38131 Tel: (901) 346-8370 A,C,E,M Hewlett-Packard Co. 44 Vantage Way, Suite 160 NASHVILLE, TN 37228 Tel: (615) 255-1271 A,C,E,M,P

Texas

Hewlett-Packard Co. 1826-P Kramer Lane AUSTIN. TX 78758 Tel: (512) 835-6771 C F P* Hewlett-Packard Co. 5700 Cromo Dr EL PASO, TX 79912 Tel: (915) 833-4400 C.E*.M** Hewlett-Packard Co. 3952 Sandshell Drive FORT WORTH, TX 76137 Tel: (817) 232-9500

С Hewlett-Packard Co. 10535 Harwin Drive HOUSTON, TX 77036 Tel: (713) 776-6400 A.C.E.M.P* Hewlett-Packard Co. 3301 West Royal Lane IRVING TX 75063 Tel: (214) 869-3377 CF Hewlett-Packard Co. 109 E. Toronto, Suite 100 MCALLEN, TX 78501 Tel: (512) 630-3030 c

Hewlett-Packard Co. 930 E. Campbell Rd. RICHARDSON, TX 75081 Tel: (214) 231-6101 A,C,CM,E,M,P* Hewlett-Packard Co. 1020 Central Parkway South SAN ANTONIO, TX 78232 Tel: (512) 494-9336 ACEMP Utah Hewlett-Packard Co. 3530 W. 2100 South St SALT LAKE CITY, UT 84119 Tel: (801) 974-1700 A.C.E.M Virginia Hewlett-Packard Co. 840 Greenbrier Circle Suite 101 CHESAPEAKE, VA 23320 Tel: (804) 424-7105 C.E.M Hewlett-Packard Co. 4305 Cox Road GLEN ALLEN, VA 23060

Tel: (804) 747-7750

ACEMP*

Tanglewood West Bldg Suite 240 3959 Electric Road ROANOKE, VA 24018 Tel: (703) 774-3444 C.E.P

Hewlett-Packard Co.

Washington

Hewlett-Packard Co. 15815 S.E. 37th Street BELLEVUE, WA 98006 Tel: (206) 643-4004 A,C,CM,E,M Hewlett-Packard Co. 1225 Argonne Rd SPOKANE, WA 99212 Tel: (509) 922-7000 С

West Virginia

Hewlett-Packard Co. 501 56th Street CHARLESTON, WV 25304 Tel: (304) 925-0492 ACM

Wisconsin

Hewlett-Packard Co. 275 N. Corporate Dr. BROOKFIELD, WI 53005 Tei: (414) 784-8800 A.C.E*.M

URUGUAY Pablo Ferrando S A C. e I

Avenida Italia 2877 Casilla de Correo 370 MONTEVIDEO Tel: 59-82-802-586 Telex: 398802586 A.CM.E.M Olympia de Uruguay S.A. Maquines de Oficina Avda. del Libertador 1997 Casilla de Correos 6644 MONTEVIDEO Tel: 91-1809, 98-3807

Telex: 6342 OROU UY

VENEZUELA Hewlett-Packard de Venezuela C.A.

3A Transversal Los Ruices Norte Edificio Segre 2 & 3 Anartado 50933 CARACAS 1050 Tel: (582) 239-4133 Telex: 251046 HEWPACK A.C.CM.E.M.P

Hewlett-Packard de Venezuela, C.A. Centro Ciudad Comercial Tamanaco Nivel C-2 (Nueva Etapa) Local 53H05 Chuao, CARACAS Tel: 928291

SALES & SUPPORT OFFICES

Arranged alphabetically by country

Do Hermes

Celovska 73

Albis Venezolana S.R.L. Av. Las Marias, Ota. Alix, El Pedregal Apartado 81025 CARACAS 1080A Tel: 747984, 742146 Telex: 24009 ALBIS VC Tecnologica Medica del Caribe, C.A. Multicentro Empresarial del Este Ave Libertador Edif. Libertador Nucleo "C" - Oficina 51-52 CARACAS Tel: 339867/333780 м Hewlett-Packard de Venezuela C.A. Residencias Tia Betty Local 1

Avenida 3 y con Calle 75 MARACAIBO, Estado Zulia Apartado 2646 Tel: 58-2-617-5669 Telex: 62464 HPMAR C,E* Hewlett-Packard de Venezuela C.A. Urb. Lomas de Este Torre Trebol - Piso 11 VALENCIA, Estado Carabobo Apartado 3347 Tel: (5841) 222992 C.P

YUGOSLAVIA

Do Hermes General Zdanova 4 YU-11000 BEOGRAD Tel: (011) 342 641 Telex: 11433 A,C,E,M,P

YU-61000 LJUBLJANA Tel: (061) 553 170 Telex: 31583 A.C.E.M P Elektrotehna Titova 51 YU-61000 LJUBLJANA СМ Do Hermes Kralja Tomislava 1 YU-71000 SARAJEVO Tel: (071) 35 859 Telex: 41634 C** P ZAIRE

Computer & Industrial Engineering 25, Avenue de la Justice B.P. 12797 KINSHASA, Gombe Tel: 32063 Telex: 21552 C P

ZAMBIA

R.J. Tilbury (Zambia) Ltd. P.O. Box 32792 LUSAKA Tel: 215590 Telex: 40128

ZIMBABWE

Field Technical Sales (Private) Limited 45, Kelvin Road North P.O. Box 3458 SALISBURY Tel: 705 231 Telex: 4-122 RH FΡ

September 1987

04951-90753E0388

Manual Part Number 04951-90753E0388 Printed in the U.S.A. March 1988

