

1. Learn the parts of a 2ax0 system and the acronyms associated with them.
?. Wnderstand the princtples of electrostaticedischarge and demonstrate the ability to follow Fisb prevention practices at all times.
2. Demonstrate the ability to use over a/2 of the MCX and MCL. commande.
3. Understand the correct wiring technigues and averaging routines to make good analog measurements.
G. Demonstrate the procedure to imput and output digitad signala to morritor and control an external. device.
4. Develop the ability to recognize a correct self-atest sequence and find the status of the 2550 .
". Develop proficiency in troubleshooting the 2ewo using the diagnostic hardware and software.

5. Demonstrate the procedures to malibrate the amalog boards in the zeso.
1.0. Acquire the ability to take a jogical problemenoluing approach to any 2玉б0 problem.
6. Fstablish communications between the exso and the host computer. If the host canot communicate with the 2 a an, check the cables and select codes. Replace the HF-IB board if needed.
7. If communications between the host and the owso is estabished, send a command to some of the $2 x 50$ function boards. Jf none of the boards operate, the MCI or the BllF boards should be replaced.
8. If all function boards operate except one, that board should be replaced. If the replecement board does not work, check the backplane and its connectors.
9. If digital function boards are not reading jriputs or outputting correct voltages, check the programming. Some digital boards invert the input and output signals. If this does not correct the problem, replace the signal conditioning module on that channel.
10. If analog function boards are not reading inputs correctly, check the input signal. Jnsure that the signal is large enough to be sensed by the function card and low enough to prevent overflow Also check the voltage for variance and common mode. If the signal is correct, replace the multiplexer function board. If this does not correct the problem, replace the ADC board.
11. If thermocouple measurements are not correct, verify that the thermocouple reference connector is receiuing power from the function board. Tnsure that the thermocouple is outputting the correct voltage for that temperature. Read the reference temperature of the TRC. Double-check the programming. If all of these steps do not correct the problem, change the TRC. If this fails to correct the problem, change the function board.
12. Use the status registers to follow the operation of a task. Many "hardware fajlures" are actually a result of incorrect software. Always check the following iteme in addition to the harduare.

Programming code (gains, interrupts, results storage, results format, status, etc)
Function card configuration (read confjouration registers) Incoming or outgoing signal at the function board Signal Conditionjing Module application

THE STATUS LTGHTS ARE THE FTRST CLUE OF WHICH OESO BOARD TO REPLACE. USE
THE: ENCLOSED TABLE TO TRACK HARDWARE: FAILURES.
2250 HARDWARE MAINTENANCE SEMINAR
Coctober 24 - October 28)
Morning 8:30-12:00 Afternoon 1:00-5:00
Day I (7:30 A.M. - Ereakfast) MHRK ESD review
Introductions Hardware
System Introduction centio
hardware familiarization
system block diagram measurement \& control uni
Data Acquisition \& Control Review
thermocouples
guarding/CMR
analog-to-digital converters
control techniques
Day II
Software
introduction
MCXMeasurement \& Control Lang
Measurement \& Control Language with FortranSelftestInstrument StatusDay IVDiagnostic SoftwareWarranty Policy
DSP
Day U Installation Evaluation
Calibration Service Notes
Grol $<$ Plant Tour (optional)

PURPDSE: This lab is designed to familiarize you with MCX commands. MCX is probably the most powerful means of developing and debugging your application program. Without proper understanding of mCX's importance and flexibility, you may find the understanding of MCL/50 programing harder than it really is. MCX gives you the capability of interrogating your tasks that are running in the 2250. You can also simulate the interraction of the host computer program gathering data and controlifing the 2250 . And, of course, you can use MCX as a virtual front panel to the 2250 so that analog and digital points can be tested after hookup.

EQUIPIAENT REQUIRED:

```
2250 configured to use the demo consolete
HP 1000 or 9816/26/36 Desktop computer
MCX software disc for Desktop computer
```

OVERVIEW: Your instructor has provided you with both an MCX and NCL/50 Language Reference guide. Although the MCX Language Reference guide will be primarily used during this lab, you may find it useful to have the MCL/50 Lang. Ref. guide handy. This orings up a point. During the explanation of $4 C X$ commands, it will be necessary to use MCL/50 commands that have not been covered yet in your lecture. Don't be alarmed: inis lab is structered such that the MCL/50 examples provide a stimulas or condition in the 2250 so that MCX can interrogate those conditions.

The MCX Lang. Ref. is essentially a printout of all the helpfile sumaries available when running mCX. These sumaries have been printed out and organized for your convenience. This is especially helpful if you have a terminal without much memory for displaying several commands at one time.

Please take the time right now to look over the MCX Lang. Ref sc that you will be familiar with the location of command summaries during the rest of this lah.

I - Invoking MCX
Your instructor has assigned you to a particular 2250 and its associated Host computer. If you are using a desktop computer, you will have the HP-IB interface select code and the $2250 \mathrm{HP}-\mathrm{IB}$ address defined, and you will have a copy of MCX on disc which you will load in the following manner:

> LUAD "MCX26"

If you are using the $H P$ 1000, you will have a LOG-nN name given you with whicn to access the system, and you will be given the $L U$ of the 2250 . MCX will be available via the disc cartridge that has been allocated for you. Please LOG-ON at this time.

The next step for either user is to run MCX:

$$
R U, M C X
$$

$$
\text { HP } 1000
$$

- you will be prompted to enter the LU(HP1000) or the HP-IB interface select code and instrument address. Do so at this time. Be sure the 2250 is turned $O N$ and the $H P-I B$ cables are properly installed is you have problems at this point.

II - : MCX Help Sumaries
As stated previously, the $M C X$ program provides command summaries ;inile it is running. Let's cause a couple of these summaries to be output to the screen.

NOTE
During the course of this lab, you will be asked to "enter in the following: ". When asked this, simply type in the given text and press RETURN (HP1000) or ENTER (9816/26/36), unless otherwise told. Also note that you should enter in exactiy what is given for each MCX command in this lab unless you are familiar with the abbreviations for MCX commands.

Please enter in the following:
? HELP (MCX command)

- a summary of MCX commands will be output to your screen just like the printout given in your MCX Lang. Ref. guide.

As you already have noticed, each command can also be summarized by using the "?" symbol and the command name. Enter in the following:

> ? READ (MCX command)

- a summary of the MCX command READ will be output to your screen.

Now see that you can also get summary descriptions of the different MCL/50 commands. Enter in the following:
? AI (MCX command)

- a command summary of the $A I$ command will be given. This is very limited as far as important information being made avalable. It is suggested that you use your yCL/50 Lang. Ref. instead so that special considerations when using commands together can be noted.

Try a few more commands if you so desire. All but the individual MCL command summaries are given in you MCX Lang. Ref. guide.

The LOG command is very useful when you need to get a hard copy of of all the lines entered and data results returned when running MCX. This can most important when developing your application programs or tasks because every input you make and every data result you get can be output to a disc file or printer. The default condition when $A C X$ is invoked is no log device. Instead, every input you make and every result you get is already returned to the screen. Unless you have the cooperation of the other $H P 1000$ system users, it is best to leave the log mode as it is. Otherwise, there will be conflicts when more than one MCX program tries to use the only printer on the system. If you do need a hard copy, the $L U$ of the printer is 6. For desktop users, the LOG $0 N$ address of the printer will be 700. You would enable logging to the printer in the following way:

$$
\begin{array}{lll}
\text { LOG ON } 6 & \text { - HP } 1000 \text { Users } & \text { (MCX command) } \\
\text { LOG ON } 700 & \text { - Desktop Users } & \text { (MCX command) }
\end{array}
$$

Please check with everyone else first and don't leave your MCX program linked to the printer after your done...use the LOG OFF command.

What if you want to know what cards are present in your 225u. Enter in the following:

CARDS
(MCX command)

- this will give you a list of the cards in each MCU present in your 2250. It may also inform you of cards that are not working properly. Also note that the cards are positioned such that analog cards start from slot 1 and move upwards in slot numbers; digital cards start at slot 8 and move downwards in slot numbers. This maintains isolation between the two different types of cards.

If you desire, you can get a listing of the cards in your 2250 by using the LOG ON 6 command. But please turn logging OFF right away when others are on your system.

There are commands that set up the MCX program to read and display results in a cerain way. The following is a list of the SET command defaults for MCX:
A.

SET RESULTS UN
(Default condition; MCX command)

- All data output to the primary address (LU or HP-IB address) will be read immediately, if present, following the task terminator (!). This means that MCX issues a READ statement to the primary address of the 2250. For example, enter in the following:

$$
A I(1,1) \quad!
$$

MCL/50 Command

- This command informs the 2250 to make a voltage measurement on channel 1 of the $A D C$ in slot 1 and return the result in millivolts. The result data output to the primary address because no provisions were made to store the data locally in the 2250. With SET RESULTS ON, MCX picks up the result data immediately and
displays it on the screen. If LOG ON 6 or LOG ON 700 is in effect, the result also goes to the printer.
B.

SET POLLING ON 10
C Default condition, MCX omar

- This command informs MCX to poll the 2250 continuously to see if any data is available. If not, another MCX prompt is issued to the screen after 10 seconds. If polling is OFF and result data is read using the READ command when there is no data available, MCX will hang until the HP-IB times out.

SET MODE INTEGER
(Default condition, MCX command)

- All data results returned from the 2250 are in integer format (-32768 to 32767).
(Default condition, MCX command)
- If any runtime, CDA, or communication errors occur, meX flags you of such and gives you the chance to abort the current operation. This is typically used when you are downloading an MCL/50 command file to the 2250 and a compile error has been found. Obviously, you would want to stop the transfer and correct the error before downloading the file again.

SET ECHO ON
C Default condition, MC X common

- When downloading an MCL/50 and/or NCX command file, all commands in the file are echoed to the screen which are found in the file.

All except the SET MODE command are typically left in their default state. The SET MODE command lets you display the received data in either Integer, octal, or REAL format. For example, enter in the following;

$$
\operatorname{AIR}(1,1)!\quad(M C L / 50 \text { command) }
$$

example result: 167737682

- The result data is two integer words with SET MODE INTEGER. The data needs to be converted before you can understand the results. Enter in the following:

$$
\begin{array}{ll}
\text { SET MODE REAL } & (\text { MCX command }) \\
\operatorname{AIR}(1,1)! & (M C L / 50 \text { command })
\end{array}
$$

example result: 1.0274999

- The result data is now a single reading in REAL format. Note that this command is used with the AIR command only or when obtaining results from downloaded subroutines.

The other SET MODE command sets up the result data in octal format.
This
becomes useful when you write octal values to digital cards and would like to read octal values back instead integer format. For example, enter in the following:

$$
\begin{array}{ll}
\text { SET MODE OCTAL } & (\text { MCX command }) \\
\text { FO }(6,1) \% 17! & (M C L / 50 \text { command }) \\
\operatorname{RFO}(6,1)! & (M C L / 50 \text { command })
\end{array}
$$

result: 000017

- Note that the result is the same as the output value. If integer mode was still in effect, the result would have been: 15.

Now return $H C X$ to SET MODE INTEGER before proceeding onto the next section.

IV - MCX Read, Write, and Status Commands
The READ, WRITE, and STATUS commands will be used more than any other commands in maX. They provide you with stimulus (WRITE) and response (READ and STATUS) when analyzing tasks. The READ and WRITE are used most often to readlalter the values of variables or buffers that are present in a task. They can also be used to read the data present at the 2250 secondary addresses. The following is a printout of the secondary address assignments found in your MCX Lang. Ref.:

2250 Secondary addresses:

```
read 1: system status
read 2: main task status
write 3: task to tell about
read 3: resident task status
read 4: interrupt status
write 5: write buffers
write 6: buffer, length to send back
read 6: read buffers
write 7: write variables
write 8: variable, count to send back
read 8: read variables
write 9: download subroutines
read 11: port A
read 12: port B
read 13: port C
read 14: port D
```

The following examples will use prewritten MCL/50 tasks to illustrate the accessing of buffers, variable, ports, and secondary addresses. The INCLUDE command will be used to download the MCL tasks to the 2250 . You are not expected to understand exactly how each task works. Only the fact that the task is changing the values of variables and buffers and whether or not the variables and buffers are to be output to the host is of your concern. Later, when you conduct further labs, you.
will remember the capabilities of these commands and will be able to use them to aid in program development.

Enter in the following:

INCLUDE LABO1 (HCX command)

```
- This tells MCX to access the file named LABOi and download that file to the 2250. If no errors are found in compilation, the task will be executed as soon as it is compiled. The task LAB01 is listed below with a brief explanation of each MCL command:
```

* MCX LAB TASK \#1

CLEAR $<-=$ MCX CLEAR command to get 2250° s attention for MCL commands.

* The following are all MCL/50 commands

RESET! <-- MCL RESET command which returns 2250 to turn on state. DIMENSION $(10,2,10,20)<-=$ Dimension 10 variables, Vi to V10, and 2 buffers of 10 elements each.

$\mathrm{V} 1=1$	<-- Variable assignments.
$\mathrm{V} 2=2$	-
V $3=3$	"
V10=10	"
B1 (1) $=10$	<-- Buffer element assignments.
B1 (2) $=20$,
B1(3) $=30$	"

B1 $(10)=100$ "
IN(B2) <-- Specify buffer $B 2$ as an output buffer to store readings. BLOCK $A I(1,1,10)<-=$ Set $u p 10$ analog voltage readings to be taken on channel 1.
RELEASE ($82, A$) <-- Send the data found in buffer b2 to port A. The voltage readings will be output to Port A.
!

```
<-- Terminate the task.
```

- Note that the text including and folloing the arrows is not a part of the LABOi file. These were added to clarify the example.

Now let's use the READ command to look at the values of variables and buffer elements that have just been assigned. Enter in the following:

READ VARIABLE 110 (MCX command)

- this command specifies that starting with variable Vi, read 10 consecutive variables (i.e. variables Vi to V10 will be displayed). You will note the first 3 elements are 1,2 , and 3 , corresponding to the assignments in the task. The elements $V 4$ to Vg are garbage because they were not assigned in the task. Vio is 10.

These variables can also be read from secondary addresses. When using the secondary addressing, you are essentially simulating the operation of your fortrain or BaSIC program statements. Enter in the following:

- This command specifies that 2 words (1 and 10) should be written to secondary address 8. MCX would transform this command into something similar to the following output commands from the particular Host you are using:

WRITE (LU2250:8) 1,10 FORTRAN 4X
I I-_ Release 10 variables starting with Vi. I- Starting with variable Vi.
or
OUTPUT 70508 USING "\#,N";1,10
Series 200 BASIC

This is essentially saying that you want 10 variables released to secondary address 8 starting with variable 1.

When the following READ command is issued, the 10 variables starting with variable 1 will be output to the display:

READ SECONDARY 8
(MCX command)
These statements read 10 elements from secondary 8 :
READ (LU2250:8) ITEM1.....ITEM10 FORTRAN 4X
ENTER 70508 USING "\%,W"; Itemi,.....Itemio HP Series 200

You can also change the value of variables with either wRITE VARIABLE or WRITE SECONDARY. Enter in the following sequence of commands and note the results given:

WRITE VARIABLE 4135
(MCX command)
READ VARIABLE 110 (MCX command)

- The WRITE command will change the value of variable v4 to 35. The READ command then gives you all 10 variables for display. These commands are being transformed into Host computer statements in a similar manner to the following:

WRITE (LU2250:7) 4,1,35
Fortran 4X
WRITE (LU2250:8) 1.10
READ (LU2250:8) ITEM1,....ITEM10
or
QUTPUT 70507 USING "\#,W";4,1,35 HP Series 200
OUTPUT 70508 USING "\#,W";1.10
ENTER 70508 USING "\%,W"; Item1,....Item10

- Hotice that the same series of commands are necessary to fetch the variable values from secondary 8.
- This time variable v4 is given the value of 40 . The WRITE command specifies secondary address 7 is to receive 3 words. when the 3 words are received, the 2250 knows that variable v4 and only V4 (according to the 1 specification) is to receive the value of 40 .

Now, let's move on to the buffers. Similar results will occur. There are different secondary addresses and the sort. The following commands should be entered and the results noted:

READ BUFFER 110
(MCX command)

- This reads the values of elements 1 to 10 of buffer B1. You will note again that all elements not expressiy assigned values will be garbage. Elements B1(1) to B1(3) are 10,20, and 30. B1(10) is 100. You can issue the same command from a Host computer by using the following commands:

- In this case, you have to tell secondary address 6 which buffer you want to read from and how many elements, beginning with the first always, are to be released. The READ or ENTER statement then reads in as many values as were specified.

```
WRITE BUFFER 1 2 5 6 (MCX command)
READ BUFFER 1 10 (MCX command)
```

- This command sequence changes the values of $B 1(1)$ and $B 1(2)$ to 5 and 6. The 1 specifies buffer B1, the 2 specifies two consecutive elements, and the 5 and 6 are the values to be written.

```
NRITE SECONDARY 5 4 1 2 6 5 (MCX command)
NRITE SECONDARY 6 2 1 10 (MCX command)
READ SECONDARY 6 (MCX command)
```

- This set of commands performs the same function as the previous set except that the buffer elements B1(1) and B1(2) are 6 and 5 , respectively. The first WRITE specifies secondary address 5 , 4 words to be written, buffer Bi designated, 2 elements written to, and the values of 6 and 5 written. The second WRITE addresses secondary address 6 to inform the 2250 that it wants buffer 1 and 10 elements available. (The 2 specifies that 2 data elements follow.) Then, the READ specifies that all available elements at secondary address 6 should be read. These commands will be implemented in Host I / J commands in a similar manner to the following:

I I I_I_ Elements to be written
 I I_ First two elements to be changed I_ Buffer B1

WRITE (LU2250:6) 1.10
I I- Release first 10 elements Buffer Bl

READ (L U2250:6) ITEM1,.....ITEM10

OUTPUT 70506 USING "\#,W":1.10
ENTER 70506 USING "\%,Wn;Item1,....,Item10

Now that buffer $B 1$ has been read, it is a simple matter to read the the voltage readings from buffer B2. Enter in the following:

READ BUFFER 210
(MCX command)
or

WRITE (L U2250:6) 2,10
READ (L U2250:6) ITEM1,....ITEM10 FORTRAN $4 X$
Or
OUTPUT 70506 USING $\# \#, W^{n} ; 2.10 \quad$ HP Series 200
ENTER 70506 USING "q,W";Item1,....Item10

- This gives the 10 voltage readings from channel in slot 1 .

READ PORT A MEX
or
READ (L U2250:11) ITEM1,....ITEM10 FORTRAN AX
or
ENTER 70511 USING "qt"; Item1,....Item10 HP Series 200

- This also retrieves the 10 voltage readings that were released to port A. Notice that the readings are identical to those just read. Also note that you can only do this once. Trying to read from Port A again will cause an HP-IB timeout. You can read from secondary 6 as often as you want. Also note that when using the READ or ENTER statements, you have to know how many items are to be read. Otherwise, you will hang on the input statments.

Now let's move on to the STATUS commands. Enter the following:

- This downloads the file LABO2 to the 2250 for compilation. If no errors are found, the series of tasks will be executed. The following is a commented version of LABO2:

Don't worry if you don't understand LABO2. It is considerably rore advanced than LAB01. However, it does exercise the STATUS commands, which is our main concern right now. You will probably refer to this example later after some more labs and lectures.

LABO2 is now executing down in the 2250. It has configured the 2250 to generate an interrupt when you press the flashing switch, switch \# 1 . ** Please don't press the red button yet **
When the interrupt occurs, the 2250 will take 10 voltage readings from channel 1 , slot 1 , and release them to port A. It will then turn on the Red lamp indicating that the data is ready at Port A. The 2250 will then suspend the execution of the task until you read the data from Port A. when the data is read, the Red lamp will be turned off and task execution will terminate.

Before pressing the flashing switch, let's interrogate the 2250 with STATUS commands. Enter in the following:

STATUS SYSTEM
(MCX command)

- The results should be that task $\|_{2}$ is executing and no data is present at any of the ports. Neither is there any interrupts pending. This MCX command is implemented similar to the following on your Host:

READ (LU2250:1) ISTAT1,....ISTAT8 FORTRAN 4X
or
ENTER 70501 USING "\%,W"; Item1,.....Item8 HP Series 200

- Data from secondary 1 will give you the following information:

Word Decrtiption

1. Current running task
2. System error code
3. SRQ interrupt flag
4. Main result word count
5. Word count at port a
6. Word count at port E
7. Word count at port C
8. Word count at port D

STATUS INTERRUPTS (MCX command)

- The results should be that no interrupts have occurred. This information cones from secondary address 4. Your Host would access this information in a similar manner to the following:

$$
\text { READ (LU2250:4) ITEM1,....ITEM16 FURTRAN } 4 X
$$

- The results should be that task \#1 is an the idle state. It will not run until an interrupt has occurred.

STATUS TASK 2 (MCX command)

- The results should indicate that task \#2 is executing at some line at which the status check was intitiated. Task status can be found by accessing secondary 2 or 3 . If you only want main task information, there are 8 words available from secondary 2. If you want status of a task other than a main task, you get that information from secondary 3 by first writing the task number and then reading the 8 status words. Here is how to read from secondary 3: (Secondary 2 is accessed just by reading, not by writing the task number also.)

FORTRAN AX
READ (LU2250:3) ITEM1,.....ITEM8
or
OUTPUT 70503 USING "\#,Wn;1 HP Series 200
ENTER 70503 USING "\%,W";Item1,.....Item8

- More specific error information is available from secondary 2 or 3. Refer to Appendix A of the Programmer's Reference Manual for more information on secondary 2 if you so desire.

Now press the flashing switch and enter in the following sequence of commands:

Status system

- Now the status should read that task \#1 is running and that interrupts are pending and data is available at port A.

STATUS INTERRUPTS

- The results now should indicate that an interrupt has occurred on point 1 , slot 6 , and that an SRQ was initiated. The SR Q command issued a value of 1 to secondary address 4. When you invoke the STATUS INTERRUPTS command, secondary address data goes away. This means that reading secondary 4 clears interrupts.

READ PORT A

- Now the data at Port A will be displayed on the screen, and the 2250 tasks will terminate.

It is recommended that you spend as much time as necessary to fully understand $M C X$ on your Host computer. Some of the MCX commands that were more appropriate.

PURPGSE: The purpose of this 3 ab is to gain experience in using the MCl. © ommands presented in the lecture.

PROCEDURE: Run MCX on the host and use MCl commands to accomplish the following:
A. Place a short across channel 6, slot $\{$ on the FWA (field wiring assembly).
f. Calibrate the 2550. ADC board
2. Set the range on slot i channel b to i volt (Verify this by reading back the gain)
3. Read channel 6 on the ADC card using the varjous analog input commands(AI, AIM, ATR, ATC, ATD) - whe result should be near zero. In some cases it may be out of range-change the gain if needed. In other cases, it will be hard to decipher--change the mode if needed.
4. Read the channel 100 times at the free run speed-you should note a considerable variation in readings. THTS IS NOTSE!!
5. Read the entire second field on the Digital input board. (There are two different ways to do this)
6. Light up switeh \#16 on the consolet.
7. Set meter \#i to 5 volts.
3. Light all of the lights on the consolet.
9. Set the mode to octal and read the value set on the thumbwheel switches.
10. Put a current through the pot and read the voltage across it. Verify by changing the pot position.
E. FOR THOSE OF YOU WHO ARE AMBITIOUS-...-Set up a task to take a temperature measurement. Follow the flow chart procedure listed in the seminar training manual.

LAB A

WRTTTNG MCL TASKS

PURPOSE: The purpose of this lab is to gain experience in witing MCl..

PROCEDURE: Using EDTT on the 1000 , create include files to do the following
A. Take 20 temperature readings from one channel. Store the readings in buffer E 2 . Average the readings and store the result in variable ve.

Use the flowchart in the Seminar Training Manual to properly set up the temperature measurements.

Use pacing to minimize the noise in the readings.
Display the averaged result.
B. Write a task that lights the consolet lights one at a time in sequence at a rate of one light each half eecond. Note that only one light should be on at any time.

Place thas task in an infinite loop. How can you interrupt this 100p?
C. Using the above two tasks as resident tasks, write a majn task that will start the task in A (task i) if button \#i. is pushed or start the task in B (task 2) $i f$ button \#2 is pushed.

PURPOSE: The purpose of this Jab is to send MCL commands to the 2 ago and get back the results through a FORTRAN program in the host.

FROCEDURE:
A. Write an MCL task that will read ablock of io0 readings from a shorted channel on the 2550 . Use MCX to verify the program.

Place the MCl.. task in a FORTRAN program that will send this task to the swe and return the 100 readings to the terminal.

Compile the program, link this program, and run it. Verify the results with MCX.
E. FOR THOSE OF YOU WHO ARE AMBTTTOUS....HOW AEOUT A DOWN SUER OUTTNE?

Follow the steps for down-loading a subroutine found in the training manual. Use the source file \&SuBd for the subroutine. Copy this file into file of your own Compile it and run I. INKR.

Yo down load the mubroutine, use MCX. Before downdoading, do a reset and clear out memory for the subroutine with the command NTASKS(0)!

Use the include file PRGA to run a task that will call thise subroutine.

SEMTNAR HARDWARE CONFIGURATION RECORD

$610 t$	bard
1.	2550
2	25502
3	$250+4$
4	2510
6	25514
6	2516
7	2513

251

c. onfaguration
no SCM's, no configuration no sCM's, no configuration
channel. i. .- unipolar voltace chanmel z unipolar voltage channed 3 ... unipolar current channel 4 … no matter
 no strobe SCM's
 25537 R (25537-60003) SCM's on input channels a... ab no strobe SCM's 25543N (25543-60001) SCM' $\#$ on whanne1. it no strobe SCM $=$
no SCM's, no configuration

The eve receaves mol comands in the form of fisbll strings sent to it by the controller. When using a desktop as a controlles, you must suppress CR and LF berause the $2 e 50$ does not recognize these as terminators. It expects an EOI at the end of each string and the "!" at the end of each 2050 task.

GENDING MCL COMMANDS TO THE 2250
To send a short main task to the 22s0, use the following form.

Where "\#, K" suppresses CR, LF and outputs the string an
compact form "ETD" Eencis an EOL at the end of the
string.
To send long strings to the $2 e 50$, set them up the commands
in string variables.

DATAEt ="CPA(0, 200) REF (10) WPA DO (6, 16) 1 WFA DO(6, 16)0 !"
OUTFUT 70̇. USTNG "\#,K";DATAis \& DATAE中 END

FECEZUING DATA FROM THE 2250

To read back data from the $2 \boldsymbol{z} 50$ main result buffer, you would utie the 2eso primery address. It is best to designate the l/o path usjng an assion stetement. Turn the format off. Allow time for any $2 \boldsymbol{f} \boldsymbol{f} \boldsymbol{f}$ commands to compile and execute before you try to read the results. Remember, the first word that returns trom the mein result buffer is the conditan code.

OPTTON BASE 1
INTEGER CODE,RELT(100)
ASSIGN EMO TO 704; FORMAT
ENTER EBO; CODE,RSLT(*)
The I/O path is asmigned to 70. where 7 is the HPJB address and ut js the primary address of the 2250 . The condition code is put into the variable "code" and the results are put into an array "rsit". You can then print or display the results.
at you want to read another buffer, a 2 abo variable, a porty or a status register; you must read these through a zewo secondary addre: \%. For example, to read the status of a main task from secondary adrese

FNTER 70 UQ USING "\%, W"; ST (*)
The "\%, w" demands two bytes dowbit two's complement in dgem and an EOT世euses an immediate termination. Theresults areput anto the artay "6T".

MNALOG TNPUT COMMANDS
There $i s$ an $A D C$ board in siot 1. Take anallog readings on chancls gwo by typing in the following task in MCX.

AT($1,9,8)!$
MCX automaticaly returns the results to your terminal wereen. since there are no connections to these chanmels, the resulte are nosse in millivolts.

Measure the voltage on channels forio.

ANALOG OUTPUT COMMANDS

Send a voltage to meter fe on the consolet. This meter is hooked up to the DAC in slot 4 . You can send 5 volte to the meter with the following command.

V0(4,2) 5000 !
Return the meter to a volt.

GTGTTAL TUPUT COMmANDS
The mutifunction board in wlot 6 has ib inputs and fo outputs. The inputs are connected to the switches on the consolet. The following comand reads the input value on all ib input channel.s.
D. ($\left.6, \frac{1}{2}, 6\right)$!

The results should all be zero. Tf you hold down one or more buttons on the concolet and try the command agan, you will see a result of "A" for each button you hold down.

GTGTAL OUTPUT COMMANDS

The 16 output channels of the multifunction board in slot bare comected to the light bulbe in the consolet. You can turn on afight by the following command.

You can rum the light off with the following command.
DO (6,1\rangle (0 (A "0" specifies "opf")
More than one light can be turned on with the following command.

Up to this point, ald wommanos sent to the eeso by mox have been
 pace in e250 memory with the following commands.

```
NTASkS (3)
(Thi ereserves memory for 3 tseke)
```



```
and two a00whor wuffers)
```

 i. $\%$ best to use an include file. Greete a file in the atoo with the following commend.

RU, EDTT
Type in the following resident taske into an include fale. Do not
 and are not executed in the eeso.

```
* Task 非 is a resmdent task that widu compile immediately but
* it memains in memory untid it iE mtamted by a majm task.
* The taEk कets a curremt through the potentiometer on
* the eonsolet. (The DAG bomfa in Elot 4 is conmeeted
* to this pot.) It then reads the voltage gemerated
* acroses this pot usimg chmmmel & of the board in slot f.
* 50 readimg% are teken amd averaged. These readinge are
* stored in a e%50 butfer whilme the mumrage ise कtored im
* yarimble vi. bughts #t and #e are turned on when the
* readimg% are findyhed.
*
TASK(1)
TN(ES)
REW(B4)
CO(4,3) 500
EHOCK
AT(4,5,50)
MAU(EA,50,V的
DO(b,\mp@code{e%)4 4!}
*
```



```
* ta flash.
*
TMकK(2)
U0(4,a) 6000
PACE(0,200)
REP(20)
WPACE
O0(6,56) 1
WPACE
00(6,0.6)
NEXT
V!(4,1) 0 !
```

 *
 * The third task wattefor button th to be pushed. When thas
 * octurs, the Iights will sequence until button we is pushed.
 *
 TASK (3)
 TN(U5)
 REP(0)
 DT (6, 1)
 TF V":
 THEN
 GOTO (10)
 ENDTF
 PAUSE
 \(\mathrm{NE}: \mathrm{XT}\)
 LABEL (10)
 v7: \(=1\)
 TN(VG)
 OUT (U7)
 CPACE (0, 00)
 REP(0)
 WPACE:
 \(\mathrm{FO}(6,1)\)
 U7: U7 ROT 4
 DT(6, B\()\)
 TF Ub=1
 THEN
 Q0T0 (20)
 ENDTE
 PAUSE
 NEXT
 LAREI. (20)
 \(\mathrm{FO}(6,4, \%) 001\)
 When you are finimhed typing in this lab, do a control o. After
the / prompt type in the following.
$E C, x \times x \times x \times$ (where $x \times 8 \times x \times$ i.s the fite name)
To rum this program, type in the followhog after the mox prompt.
TNGIUDE $x \times x \times \times x \times$

 read back the results. To get back the values in the buftem, you must typa in the following MCX comman.
READ BUFFER 150
To get back the calculated average; you must semo the following MCX command.
READ VARTABLE 4
 taske remain in memory until the $2 \boldsymbol{c} 50$ is shut off or given a RESET! command. You may run them as often as you wish.


```
M001
|0|s क
0004 El#a%
000% %%%%+!
0006 *
0007 m+ask<z>)
0008 *
0009 * potemtammeter autput on mete% 2
0010 ta=k(1)
0011 (%0(4,3)2000
001% rep(0)
0043 in(vi) out(yd)
0014 ai<t,f)
```



```
0016 af vi<0 then goto(t) emdif
001% vo(4,2)
005B T, bel(a)
005% р#05%
00%0% mext
00%1 !
002e %
```



```
0024 task(e)
002% f0(6, 1,2)%1977%7,4%7%
0026 rep(0)
002% in(v3) out(4A)
|0%e fi(E,A)
00% v4=:ल% v%
0030 v%=04 m0t --6
00S1 fo(6, ,, %)
003E * क; red buttam, then wtop test
003S it v3<0 then meset endif
0034 pa0%%
0035 mext
0036 !
003% %
```



```
0039 taEk(3)
0040 rep(0)
0044 an(us) out (v.%)
004e F%(%,\)
0043 vewyt ard %i%
0044 v%=ण# * 20
0045 v\:#vi rot --4
0046 v3=0% and %a"
0047 v%=03 % 100
004B vA=W1 rot --6
0049 vi&=04 and %17
0050 v4##4 尔 4000
005% v5=ve * v%
005% v5=05 + v4
0053 if v% > 10000 then goto (a) endif
0054 if ve< 0 then goto (t) wndif
005% vo(4, 1)
0056 \abe!(t)
0057 pau%%
005% mex+
005% !
```

```
\%MO
                T:%0004 TS Mm CR 000&% UकTNG 0000e ELKS R=0000
                                    5:39 PM WED., % JUNE.
                                    1964
00! प&##E
00% ए%क!
000% NTAS(<E, %)!
0004 TN,04
005 TN,0%
0006 TN,0S
00% TN,04
0006 JN,0¢
000% %%(4)
0010 TTAक( (6,46,4)
0014 TTAकर (6,5, 1)
0012 TTAकK(6, 1t,%)
0013 कENकE(b,A)ड
0014 कENSE(6,5)4
0055 SWMSE(6,4,1)1
00t6 कOUEN(6,G)0
0017 SOणER(6, 6%)0
001, कीपसR(b, La)0
0019 TNTERRUPT (6, A6) 1
0020 TNTERRUPT(6,:
002E TNTERRUPT(G,tA)A
002e क्TART(1)
40% कSTART (%)
0024 与TART(%)
00%5 क5TART (4)
00% START(%)
00%% %
```

000 TASK《
0002 DTMENGTON(50, 5,100)

0004 कणN =ANALOT TNPUT vOLTAGE
0005 אपе ANALOL OUTPUT VOLTAGE
0006 ETTMER
0007 U1 $=0$
0006 ण $=0$
000% *REPEAT TNOEFTNTTELY
0010 सEP (0)
0011 *CURRENT OUTPUT, 200 UAMPS
$001 \omega \quad \mathrm{CO}(4,3) \% 00$

0044 TN(V1)
001Φ AT (A, A)
0016 REWCES)
00A7 *PUT THE VALUE OF THE CLOCK TNTO BUFFER BA. RCL (READ GLGCK) HAS A DATA
001 TN (EA)
0019 \$2FAD THE WOCK
00 O 0 KTTMER

002\% पЗ=20-2A (2)

U02 क क SBTRAET THE VALUE OF THE GLOCK FROM OO, TO DECREMENT THE METER .

00ES \&IF THE UALUE TO BE OUTPUT TO THE METER TS GREATER THAN 0000 MVOL TS, MA
0029 कשQUAL TO 10000 MUOL TS
0030 TF Uе>10000 THEN U2=\{0000 ENDRF

U032 TF प2<0 THEN पe: 0 ENDTF

003π पय (Q)
0036 पب(4, \%)

003 अभUकE
प0S\% WEXT!

0001 TASK（
000 TTASK（ $0,1,2$ ）
$000 \mathrm{DTM}(50,6,100)$
0004 REP（a）
000% AABEL（100）
0006 REW（BO）

001」 FTT（0，0，＂5）；NEXT

0014 ＊AFTER STORTNG THE DATA 60 YOU GAN REFERENCE THAT BLOCK GF DATA TUST RE

0016 णड1＝1．
$0019 \quad$ प12 $=1$
$0020 \quad$ V13 $=0$
$00 \% \mathrm{BEP}(4)$

00．5 NEXT
0026 प1 $=6$
005% णை $=1$
002 b ソ1 $\frac{1}{2}=0$
$002 \mathrm{REF}(A)$

00इ2 ण12＝ण1\％क
0033 NEXT

003 REF （4）

0037 Unt＝UStat

0039 NEXT
$0040 \quad$ V14 $=\mathrm{W} 44$ 事 10
$0041 . \quad \cup 5=\cup 15 * 100$
$0042 \quad$ U19 $=013+414$
0043 U16＝Us $9+415$
0044 U16＝U16\＄10

0046 सTO SLOT $4, \mathrm{HANNELA}$ OF THE DAG WHTCH DTSPLAYS THE UALUE ON TME LETG MET
0047 Oण（Ut6）
0048 ण0（4，$)$
0049 NexT！

```
000% TASK(3)
000% DTMENSTON (50,5,100)
0003 ve1:=%000100
0004 ve%=%000004
0005 ण%4=0
0006 *REP(1)
000% &ABEL, (%0)
000S FAUSE
0009 TN(U40);DT(6,6)
```



```
001A TN(U2,) RFO(b,A) TN(UQ&) RFO(%,分
00Ae TN(U2e); FI(b,A)
00\S veGツण%% TOR v%{
0014 ve%Wथक TOR ve%
```



```
00^6 TH णकе<>Ve& GOTO (W0) FNDTF
00\% TF U%4>=6 COTO (60) ENDTF
```



```
0019 6&5E U2% (%000400, 100) (%000200, 100) (%000400,200) (%004000,200)
00е% G&कE v%2 (%040000,400) (%0%0000,400) (%010000, 300) (%001000, 300)
00शक कणT0(%0)
002% L.ABL(60); V2A=424+5
002% TF UEA=1& THEN UEA=0 ENDTF
0024 САकЕ प%% (%000400, 200) (%000200,400) (%000400,400) (%004000, 300)
00%5 लककE U2%(%040000, 300) (%020000, 500) (%010000, 100) (%001000,%00)
00%6 कOT0(%0)
```



```
00% 60TO(50)
```



```
00$0 कOTO(60)
```



```
00%% कOTC(50)
```



```
0034 लOTO (50)
00%% 
```

0001 TASK (4, 55)

$0004 \mathrm{REP}(10) ; 00(6,16,1) 1 ; W N O 4(0,0,350) ; D 0(6,6,4) 0 ; W N O 6(0,0,350)$
0006 START(5)
0006 РलUSE
0007 NEXT!

```
GS T=00004 TS OR QR 000\% USTNG 00004 E!kक R=0000
                                    : 40 PM WEO, b TUNE, 19%A
0001. TASK(S)
000% REP(0);DO(6,3)A (6,4)0 (6,A)0 (6,2) 人
000% CTHMEE FTTMER(0,0,3S0)
0004 00(6, 6)0 (6,4) ( (6,1) 1 (6,2)0
0005 CTTMER FTTMEQ (0,0, %%0)
0006 NEXT!
```


SYSTEM BLOCK

AN OVERVIEW
OF THE OPERATION
OF THE 2250 HARDWARE
'WHAT A 2250 CAN LOOK LIKE

COMPONENTS OF THE 2250

- 2104 is an L-series computer with dedicated firmware
- 2250 has plug-in capabilities for another L series

9826, 9836

- 9835, 9845 software support available, as well as HP 1000
- HP-IB only
- capabilities of 7 additional MCU's

2250 COMPONENTS

2250 GENERAL BLOCK

2250 BLOCK DIAGRAM

2250

CONFIGURATIONS

BIF Backplane Interface card - card plugged into the left most slot in a 2251 card cage. It buffers the communication between the MCI card in the 2104 processor unit and I/O cords in the 2251.

CDA Continuous Data Acquisition - software that allows data transfer directly from I / O card to host computer disk memory at rates up to 50,000 samples per second. Part of the HP 1000 Automation Library.

CJC Cold Junction Compensation - correcting thermocouple measurements for errors caused by joining the thermocouple wire to copper wire at the voltmeter. Can be done via hardware or software.

DDL Diagnostic Design Language - a Basic-like computer language in which the 2250 diagnostics are written.

DSP Diagnostic Support Package - a suitcase sized device, along with some software, a manual and some cables, that provides external stimuli for I / O card verifcation.

FWA Field Wiring Assembly - a bundle of cables with a connector on one end and a terminal strip on the other. This is the part of a 2250 system that provides the interconnect between I/O cards and customer wiring.

MCI Measurement and Control Interface card - card placed just to the left of the CPU card in the 2104 processor unit. This card serves as an interface between the CPU and the I/O cards. It also provides a clock for system measurement timing.

MCL Measurement \& Control Language - the language of the 2250 as opposed to Basic or FORTRAN. All commands to the 2250 must be written in MCL. MCL is a compiled language.

MCU Measurement and Control Unit - the card cage that contains the I/O and BIF cards. Also called a 2251.

MCX Measurement and Control Exerciser - a program, written in Basic or FORTRAN that runs on the host computer. This program provides interactive communication with the 2250 without having to write a complete application program. Part of the Automation Library.

PID Proportional Integral Differential control - an advanced method of process control that utilizes an error signal, it's integral and it's derivative for dynamic system control.

SCM Signal Conditioning Module - small printed circuit assemblies that mount on to I/O cards. These pca's transform customer signal levels to levels compatible with I/O card output circuitry.

TASK term used to describe a sequence of operations to be performed by a 2250. Tasks are written in MCL and are downloaded from the host computer to the 2250 where they are compiled and executed. Tasks can be main tasks or resident tasks.

TRC Thermocouple Reference Connector - a FWA with a special terminal blor for connecting thermocouples. The terminal block contains a temperat measuring circuit that provides cold junction temperature information for software compensated thermocouple measurements.

VCP Virtual Control Panel - an operational mode for L and A series computers where a terminal acts as a front panel. Used for executing 2250
diagnostics.

I. What is it ?
A. Measurement and control box

1. Providing digital output
2. Providing digital input
3. Analog output
a. -10 to +10 volts dc
4. Analog input
a. 0 to 230 volts
5. Can detect state change of a digital signal
6. Can provide relay closures
B. It is an instrument on the HPIB
7. Sold by 02 Sales
8. Sold by 01 sales
9. Repaired by 02 service
10. Calibrated on a time and materials basis by PT 11
11. Up to 14 on one HPIB
C. Microprocessor controlled device
12. Using L or XL processor boards
D. Device has own internal language and compiler
13. MCL/50
a. Essentially a translator language
E. Uses Host software like MCX
a. needs Automation library in 1000 system
II. What sections does it have ?
A. 2104A processor/controller
B. Measurement Control Unit (MCU) 2251A
14. Box provides the digital points
15. Also provides the analog channels
III. General information about the processor (2104A)
A. Contained in a separate metal box
16. Especially made for the 2250
a. Resembles a 2146 L system backplane
b. Can also have a separate L for DS control
B. Uses the L power supply
17. Powers the processor cards
18. Powers the MCU
a. Up to 2 MCUs with a 2104
b. Up to 3 MCUs without the 2104 .
C. Consists of 4 half sized cards for a minimum setup
19. I/0
a. L HPIB card
b. MCI card
1). Measure and control interface
2). Made-by Roseville not DSD
20. L / XL processor card
21. RRack card
a. Rơseville memory card
b. Has 16k of ROM
c. Has 16k of RAM
d. Implements the mapped stack architecture
22. For diagnostics must add other parts
a. ASIC card
b. Special modem cable
c. All availible in PSP
23. For power fail backup of 2104 only add battery board
a. Gives 30 minutes of backup for 2104 only
D. Communications with the external world
24. Talks HPIB to Host controller
a. Host may be 1000 system
b. Host may be desktop
1). this configuration limits the data rate between host and 2250
2) 2250 is not limited by this configuration
c. Host may be Brand X
2. Talks out the 2104 to the MCUs via the MCI card
a. Up to 8 total MCUs
3. Uses the lights on front status panel
a. Shows the different modes while running
b. Shows fatal and non fatal errors
1). Fatal error is a parity error
2). Non fatal type is a compiler error
E. Fits into 2 types of cabinets
4. Standard HP 19" rack
5. Nema 12 cabinet
F Has built in self test features
IV. Each part of the 2104A processor
A. HPIB 12009A
6. Standard L HPIB card
7. Uses normal settling time for data transfers
8. Main communication with the external world
B. MCI 12070A
9. Special I/O card for the 2250
10. Provides data transfers to and from the MCUs
11. Provides timing clocks for itself and software
a. Time of day
b. Watch dog timer
c. Pacing
d. Timeout interrupts
12. Provides clock pulses to MCU
a. 2 Mhz is the main clock
13. Drives MCI bus
a. Up to 8 total MCU
b. Bus is ground true
c. Bus runs at 100 kHzd. Connects to the Bus Interface Function card (BIF)
e. Multiplexes data and address on the same lines
f. CMOS drivers for the MCI bus
1). Electronically quiet
2). Low power
C. Processor card 12001 A/B
14. Is an L XL
15. Provides the standard processor functions
a. Instruction decode
b. Backplane arbitration
c. Volitile registers
D. RRack Card (ROM / RAM / Stack card)
16. Special memory card
17. Has 16 k of RAM
a. From Ok to 15 k
18. Has 16 k of ROM
19. Stack architecture implemented by this hardware
a. Uses 0-377 octal for stacks
b. Special RAM / ROM chips for stack
c. Does special instruction decodes/maps for stack
d. Converts some instructions to the equivalent of Pushs and Pops
20. Extends the memory cycle time be $\frac{1}{2}$ when needed by the stack
21. Provides the ROM operating system
a. Also contains tables for some measurement linearizations
b. Thermocouples use the tables
E. Power supply
22. It is a 12035 A
23. Standard L/ XL as of $3 / 25 / 81$
a. Point is it may change
24. Provides 2104 power
a. + 5 volts
b. ± 12 volts
25. Supplies 27 volts at 25 kHz chopped to the MCUs
a. Isolated and converted by the BIFs
1). Gives $\stackrel{\star}{\underset{\epsilon}{*}} 9$ volts for each card to convert to +5
2). Gives ± 17 volts for each card to convert to 12 volts
V. MCU - 2251
A. Essentially a PC backplane
26. Has four busses
a. Top is power
b. Middle 2 are the data and digital control
c. Bottom one is for analog
B. Requires a BIF card in the first slot
27. Buffers data
28. Makes 9 volts and 17 volts for distribution
29. Resynchronizes clocks for use within the MCUs ?
C. 8 maximum
D. Function cards are really the MCU
E. Function Cards
30. 16 channel analog in (ADC)
31. 32 channel high level multiplexer
32. 32 channel low level multiplexer
33. 16 pointrelay
34. 32 point digital input
35. 32 point digital output
36. 16 point multifunction
37. 4 channel counter
38. 4 channel pulse generator
39. 4 channel DAC
F. Function cards : generalized inputs and outputs where SCMs provide user interface
40. Isolated in/out
a. Digital
b. Analog
41. Non isolated
a. Digital
b. Analog
G. Can have different SCMs on the same card
H. Connects to the user wiring via FWAs (Field wiring assemblies)
42. The goal is to isolate the sophisticated parts from non - adept users
43. CE is responsibile for the FWA failures if they are HP provided
VI. Testing the 2250 (2104 - 2251)
A. Processor
44. Built in self tests
45. Off line diagnostics
46. Using MCX / MCL
B. MCU and processor
47. Off line diagnostics
48. The GH H (Digital interface unit)
a. Is a self contained stimulus response tool
b. Is $1 / 3$ of the neede tools for a repair.
1). $P S P$
2). FSI blue stripe parts
3). BI Z
C. The SCMs are the users responsibility to replace and to stock.

Now, we will use an A to D (Analog to Digital) converter to change the analog dc level into digital information that can be used by a computer.

The A to D converter only operates over a single dc voltage range. The signal conditioner must therefore convert all signals to this range whether those signals are transducer signals or power supply voltages.

The speed of the measurement and the ability to reject noise are determined by the A to D converter section. Here you will see a speed vs. noise rejection tradeoff.

The noise we are concerned about is called Normal Mode Noise, It is typically ac noise, often power line related.

I'm trying to measure this battery. There's a noise voltage source in series with it. If the A/D has perfect noise rejection, all we will see on the display is a dc voltage reading. If the dispay changes constantly, we say the A / D has
poor normal mode rejection; that is, it doesn't do a good job of suppressing the noise.

The way we do the A to D conversion has a signficant bearing upon how much noise we reject. From a noise standpoint, there

NBTODS
a Non-integratig: - Integrating

Gitods: SNONHTGEARIING

- Successive approximation

are two basic types of A to D : Integrating and non-integrating.

Generally, the application will dictate the type of A / D we choose.

Let's take a look at the most popular nonintegrating technique.

Successive approximation is a digital A/D technique typically used for dynamic measurements.

An example of a dynamic signal is the vibration on a jet engine.

A strain gage signal is put through an amplifier and then into the successive Approximation A / D converter.

Successive Approximation works by comparing successively larger voltages to the input, one BCD bit at a time. Here just 4 tries and you have the first digit. At only 4 comparisons per digit, an S.A. A/D can go at Megahertz reading rates.

Typically, for 12 to 14 bit accuracy the number is closer to 50 KHz . But that's still very fast.

It's a very fast technique, but if there's any noise on the signal . . .
the noise will destroy the integrity of the reading.

We must hold the input voltage constant before making the A / D conversion. That implies a gooc sample hold circuit in front of the A / D.

Now look at an A to D technique that has some built-in noise rejection, it's called dual slope and it is an integrating A to D technique.

An integrating A / D can help us get rid of the superimposed noise as long as the noise frequency is related to sample time.

A great deal of the noise we encounter is related to the power distribution network, i.e., the line voltage.

The integrating converter is useful in situations such as this where you need very high line-noise rejection.

Here's a typical cycle of the AC line. Notice the top and bottom areas are equal. In other words, if we could integrate this noise', the effect of the noise would be totally eliminated.

But we have to be careful to choose a whole number of cycles, otherwise the integration does no good.

A very simple device called the Miller Integrator is used in most lower cost and pre-1980 dvms.

First, we'11 charge the capacitor for a given time. That time will either be one line cycle or multiples of one line cycle.

Then we'11 discharge it using a reference current. As we start the discharge, we'll send clock pulses to a counter, stopping them when the voltage crosses zero. That gives us the reading.

Because the run-up slope changes with input voltage and because the run-down slope is constant, the run-down time is directly related to the input.

The dual slope converter is self-correcting in á lot of respects. The same clock determines all timing, so it need be only stable in the short term.

With the integration time equal to one period of the noise, dual slope speed is limited to a few readings/second because of a long run down time. but, you get infinite normal mode rejection at line frequencies.

There's an improved technique called "multislope" that's faster than dual slope. Yet, you do not sacrifice noise rejection. All of our newer dvms use multislope.

There's another kind of noise that interferes with out measurement, but we can do something about it before it gets to the A / D.

Suppose you're annealing the rotor in a jet engine.

The annealing furance might look like this:
You want very accurate temperature measurement in the presence of a considerable noise voltage.

You try to measure the temperature at the center of the furnace. The furnace impresses a common mode voltage on the thermocouple.

The common mode signal gets its name from the fact that it is in common with both the high and low terminals.

The normal mode signal is what we are actually trying to measure.

These two frogs are in "common mode."

If we use a grounded A / D or voltmeter, we'll probably destroy the voltmeter as well as the thermocouple.

That large "ground current" makes a common mo voltage. Look at the voltmeter terminals. are they measuring? That common mode noise hi promptly turned into a normal mode noise, i.e it appears directly across the dvm input terminals.

A much better measurement can be made with a "floating" voltmeter which has a high impedanc between low and earth ground.

The impedance acts as a voltage divider have a 100 yolt source with $1 K_{\Omega}$ lead resistanc and Z is 10Ω then we have only 1 mV of normal mode noise.

Now let's investigate another terminal called guard.

Many of our more expensive dvms and prec ${ }^{-}$on dvms have a guard terminal.

Physically, the guard is a sheet metal box th contains all of the analog circuits.

The guard is isolated from low and from chass ground of the instrument.

A guard is a relatively expensive technique t incorporate, because it involves isolated pow supplies and isolation of signals between inguard and outguard.

When connected in this fashion, the guard acts as a second voltage divider, giving us another two decades of noise rejection.

We have to be careful where we connect this third "guard" terminal.

If we don't have a need for guard, we can simply connect it to low at the voltmeter. That's the same as having a floating voltmeter.

Here's something to avoid. The breakdown voltage from guard to earth is much higher than that from guard to low. So if you make this connection, you defeat the break-down protection of the box.

That connection may cause damage to the instrument.

If you know exactly where the common mode source is, you can make this connection.

But if you don't, this is the safest and most noise-free connection.

The result of all this is a specification known as common mode rejection. Notice both noise and error are specified in the same units: peak vol tage.

CMR is usually specified with a 1 K\& resistor in the low lead. Since CMR is a function of the isolation resistance, it is also a function of the $1 \mathrm{~K}_{\Omega}$ resistor.

In fact, these two specifications are identical. Many A to D^{\prime} s are specified with 1 ohm of unbalance.

Remember the sheet metal box? It makes a fine capacitor. If the frequency of the noise source goes up, the capacitive impedance decreases, so CMR goes down.

Net result is a CMR that decreases with increasing frequency.

But remember that the common mode noise voltage is converted to a normal mode noise voltage and then read by the DVM.

So the normal mode rejection of the voltmeter helps get rid of this common mode error.

Here is the NMR plot for an integrating dvm.

The combination or the sum of the two effects is what we actually measure.

It's called effective common mode rejection.

The 3478A has an excellent ECMR spec without the use of a guard terminal. For comparison, the 3456A has an ECMR of 150 dB and 160 dB with the filter. The guard provides extra noise rejection capability, but costs more money.

Now, we are going to cover some specifics of transducer measurements. Many of the techniques discussed in the basic measurement section will apply. Even though HP doesn't sell these transducer devices, you need to understand what customers are connecting to our equipment.

The 3456A dvm also has the capability to store up to 350 readings for this type of distributed processing. It also has the capability to store a program string in memory.

Many of our products have some hardware input/output signals that provide speed enhancements such as voltmeter complete outputs and external trigger inputs.

The voltmeter complete output is used to increment a scanner to the next channel without computer intervention. This signal comes after the reading is complete. The 3456A outputs $V M$ complete before ramp down where-as the 3497A Option 001 VM outputs VM complete at the end ramp down. As a result, scanning can be done roughly twice as fast with the 3456A voltmeter.

Well, we're finally in control.

Control can be partitioned into the hardware used to do the actual control, the cards used to drive this hardware and the software logic to determine what control is needed.

Many applications involve providing some control signals for a process.

Our data acquisition and control units make several types of control possible. Included are: analog current or voltage outputs, switch closures and digital logic outputs.

There are two choices for D/A's on the 3497A either a current card or a voltage card.

The current D/A card provides two outputs that can be configured for $0-20$ or $4-20 \mathrm{~mA}$ operation. They are isolated from one another and from ground, so you minimize ground loops. Typically, they are used to transmit control. signals.

Valves and other devices operate on 20mA current loops. (The $4-20 \mathrm{~mA}$ scheme lets you detect an open circuit which is 0 mA).

You can use the current D/A to control this valve, for example.

The voltage D/A card provides two individually programmable 0 to +10 Volt sources. They are isolated so you could stack them on each other to provide +20 volts. Typically, they are usi as a test stimulus or to control voltage operated devices such as VCO's or power supplies.

This card would be useful in production testing to supply power to a device under test.

An actuator is nothing more than a relay. It typically can handle a great deal more current than a multiplexer relay. Its primary purpose is to switch control devices such as valves or alarms. It can switch relatively high currents, say 1 or 2 amps, and can be energized randomly Unlike the multiplexer switch, several actuat. may be on at the same time. Sometimes, actuators are used as digital outputs.

The 3497A has two different options for actuators. The lower voltage option has 16 channels/card and is useful for matrix switching, ac switching with quality and as digital outputs. The high voltage option will switch line voltage safely to small motors, alarm bells, lights and motor starters or solenoids.

A resistive pull-up is connected from +5 to one actuator terminal, and the other terminal is grounded.

This can easily be done with the low voltage option with mercury-wetted relays, to insure no contact bounce.

Digital outputs are used for programming nonstandard interfaceable products. Handshake and flag lines are provided, also.

The high voltage actuator option is typically used for switching higher current devices such as motor starters, solenoids, bells and whistles.

Having examined ways to drive control hardware, we will now look at logic techniques for determining what control is appropriate.

A popular and powerful control algorithm is called PID control. This stands for. proportional-integral-differential control.

Let's examine a typical control system. If we want to control the level of liquid in a tank ts some desired level, we might adjust the positior of a control valve that allows liquid to leave the tank. The level is then measured and compared with the desired level to see if an errort exists and further adjustment of the control valve is necessary.

In terms of classical control theory, this is usually shown with a bunch of transfer functions.

The error signal is often processed in some clever manner to improve the control of the valve. Let's look at some of these processes.

Proportional control is the simplest type of control. The error signal is scaled as necessary and then drives the control valve directly.

As shown, the error signal and the signal that drives the control valves are directly proportional.

There is a disadvantage to proportional control. If there is a small residual error in the system (due perhaps to friction), the drive voltage will never be large enough to remove that error.

Integral control is another useful type of control. Here the error signal is integrated to develop the signal that drives the control valves.

Integrating produces a control signal that is related to the area under the error curve, i.e., the longer an error has existed the larger the control signal will become.

The advantage of integral control is that it will always force the error to zero. Its disadvantage is that it tends to produce oscillations. The correction signal may still be large when the error signal reaches zero, thus causing the error signal to pass right through zero.

A third type of control is differential control. Here the control signal is the derivitive of the error signal.

Differential control produces a control signal that follows the rate of change of the error. this allows very quick response to changes in tank level.

The advantage of differential control is its quick response to changes. It has a major disadvantage in that a steady state error wir not be forced to zero.

We have now examined three types of control. Put them together and what have we got? Dib-edy-dob-edy-glue!

Let's try that again. If we use all three types of control and sum their outputs, we get some of the advantages of all three types. This is called PID control.

These advantages are: quick response to sudden changes and zero error in steady state conditions. The disadvantage is the system complexity.

PID can be implemented in software or hardware. Software takes about 12 lines of BASIC code. Hardware loops are available for several hundred dollars each.

As mentioned earlier, this can be implemented in hardware or in software. The diagram we have seen represents a hardware implementation. Let's now examine a software implementation using BASIC.

This line calculates the error by comparing the desired value with the signal received from a sensor, (the actual value). For example, think of a water tank with a desired and actual water 1 evel.

If the error becomes too large, we may want to increase its impact on the control device. This can be done using a non-linear gain curve.

These 5 lines calculate the non-linear error (N) based upon the non-linear gain curve. If statements determine which segment of the curve is appropriate, then the correct straight line formula is used.

We can now calculate the integral part of the error. A constant, called Reset Limit (Q1), is used to keep the integral from getting infinitely large in cases where the error does not actually go to zero..

The integral is calculated and limited to the Reset Limit in one line of code. In the formula, N is the error, P7 is the time increment and $P 7 * N$ is the area under the curve, the integral. This is added to I; the area under the curve up to this point in time.

We now find the derivitive of the non-linear gain (N) and add it to the integral and proportional parts. This line also normalizes the result so that it falls between zero and one. Finally, the non-linear error (N) is saved for use the next time the derivitive is computed.

The PID signal is scaled to provide the proper output control signal magnitude. For example, if a $4-20 \mathrm{~mA}$ current loop is used to drive the control device, the signal must be scaled into this range.

The actual control device is driven by an analog voltage or current. This line sets the $34 \cap 7 \mathrm{~A}$ D/A card in slot S and channel C to output the correct control voltage or current. (The 3497A has a dual voltage D/A card and a dual current D/A card).

That's it. If we want to control multiple PID loops we simply add a FOR-NEXT loop and use matrix variables.

ESD

WHAT IT IS and WHAT IT DOES
$==>E S D$ is insidious and it is everywhere $<==$
$\Rightarrow=>$ To be effective, a prevention program must be universal<==

REVIEW OF FUNDAMENTALS

ESD GENERATOR MODELS

ESD FAILURE MODES

MODES and MODELS COMPARED

SOME MYTHS

REVIEW OF FUNDAMENTALS

* ESD (electrostatic discharge):

- THE REDISTRIBUTION OF STATIONARY CHARGE

* CAPACITOR EQUATIONS:

capacitance
Q=CV coulombs
energy in a capacitor $W=1 / 2 C V^{2}$ joules
capacitance of parallel plates $C=\varepsilon a / d$ farads
current-voltage relationship $\quad \mathrm{I}=\mathrm{Cdv} / \mathrm{dt}$ amperes * METHODS OF CHARGE GENERATION
piezoelectric - flexing certain materials
inductive - charge induced from an electrostatic field
capacitive - charged body movement
triboelectric - rapidly separating two different materials

ESD GENERATOR MODELS

* FIELD INDUCED
 ladles

* CHARGED BODY
bipolar

* HUMAN BODY

HP

mos

* ESD STATISTICS

rise times
peak voltages

$$
1-10 \text { pec }
$$

pulse widths
average power
sensation
$10^{\prime} \leqslant K V$
100^{\prime} s nsec
10^{\prime} s $K W$
$1-3$ KV
common potentials

volts
walking on linoleum floor $\quad 250-12 \mathrm{~K}$
walking on carpeted floor $1.5 \mathrm{~K}-35 \mathrm{~K}$
working at bench
100-6K
sliding plastic box on carpeted bench 1.5K-18K
solder remover
$1 K-8 K$
freon circuit spray
$5 K-15 K$
sliding on foam padded chair
$1.5 K-18 K$

ESD FAILURE MODES

* GENERAL
voltage, current, energy, polarity
vaporization
melting
secondary breakdown
dielectric breakdown
* ESD DAMAGE LEVELS

CMOS inverter (leakage current)
TTL inverter (leakage current)
STTL inverter (leakage current)
LSTTL inverter (leakage current)

volts

210
760

ECL RAM (leakage current)
250

NPN (beta shift)
PNP (beta shift)

135

JFET (pinch-off voltage)
Schottky diode (leakage current) 250

* NOTES

400
450
protection diodes are not always effective CMOS and ECL are primarily voltage sensitive
TTL is primarily energy sensitive degredation can be cumulative
1 u joule is required to vaporize a 6 um creator in silicon
MOS dielectrics breakdown at 80 to 120 volts for $1000 \AA$ thick devices will only get more dense in the future

MODES and MODELS COMPARED

SOME MYTHS

1) only CMOS, MOS, and JFETS are suseptible to ESD
2) it won't happen to me
3) it didn't happen this time so it won't happen next time
4) it doesn't happen every time so it must not be ESD
5) I didn't see it or feel it so I didn't do it
6) it works now so it will work forever
7) if it's in a po board, it's safe
8) it's OK as long as you don't touch it
9) using antistatic tools will prevent ESD damage

2250
HARD WARE

2104 PROCESSOR UNIT

- HP-IB/fiber optic/link (37203 on a card)
- External pacing or triggering is done on MCl
- Status panel lights are copy of lights on cpu caro No LONGR USEX - REI EMISSIONS

2104 PROCESSOR UNIT

HP $2104 A N$ and HP $2104 A R$ Processor Units

MCI CARD FEATURES

ANALOS RATE LMMIED 5OK Zwordes/Awalog RcAsing

- 100K Words/Second Maximum Transfer Rate. MCt ro 3 If
- Scanning sequence and special card control information is controlled by self-configuring DMA transfers.

NO SORTWARE COMMANUSS
Dofe mombo HRUPBOCE5JOR
$\mathrm{BIF} \rightarrow \mathrm{MCI} \rightarrow \mathrm{RRACL}$

- Hardware time of day clock.
- Watchdog interrupt for Watchdog Timer - STARTS ATASK IF host is
- Watchdog interrupt for Watchdog Timer. - Not HEARD from
- Timeout interrupt for function card transfers. \rightarrow
- Hardware pacing timer.

POWER SUPPLY

Each power supply has the capability of running 3 units
The first power supply runs the 2104 , and two 2251 MCU's
Add one supply for each additional pair of MCU's


```
    8%-126Vac
```


$M C U$

HP 2251 MEASUREMENT AND CONTROL UNIT (Rack and Panel Mount)
 Product Number 2251AR/AN

WARNING!

Do not touch the back of MCl or BIF cards. They have CMOS drivers and are sensitive.
ALWAYS WEAR A GROUNDED WRIST STRAP WHEN HANDLING ANY 2250 PC BOARD ASSEMBLY/

BIF CARD FEATURES

- Demultiplexes addresses and data on MCl bus.
- Decodes MCU and slot portion of the address information.
- Contains an interrupt register that can be polled to determine if any function cards in the MCU have interrupted.
- Converts 27 volts RMS, 25 khz power to $28,12,5 \mathrm{LCl}$ for the MCU backplane. p.3-25 HRM

EACH FUNCTION GARD WAS ITS OWN POWER SUPPLY CONVERTS 3, 17,9VAC TO I I2VDG, FVDC ON EACH BOARD

Card to Card Communication in the 2250 (Physical Configuration)

Card to Card Communication in the 2250
(Electrical Configuration)

FUNCTION CARD BACKPLANE

The MCl and the function cards cannot drive 64 . other cards on the same bus.

The backplane interface card (BIF) was introduced to provide additional buffering. No card of any type drives more than 8 other cards.

The printed circuit assembly which interconnects the BIF and 8 function cards is called the Measurement and Control Unit (MCU) backplane.

A daisy chain connection is used between BIFS so that no BIF sees any additional propagation delay due to the buffering on other BIFS.

This daisy chain connection is called the MCl bus.

FUNCTION CARDS

ANALOG FUNCTION CARDS

INPUT CARDS	DESCRIPTION
HP 25501A	16-Channel High-Speed Analog Input Card (ADC)
HP 25502A	32-Channel High-Level Multiplexer Card (HLMUX)
HP 25503A	32-Channel Low-Level Multiplexer Card (LLMUX)
HP 25504A	16-Channel Relay Multiplexer Card (RELMUX)

HP 2250 DIGITAL FUNCTION CARDS

PRODUCT	DESCRIPTION
255/0A	4-Channel V/I Analog output
25511A	32-Point Digital Input
25512A	4-Channel Counter Input
25513A	32-Point Digital Output
25514A	16-Point Relay Output
25515A	4-Channel Pulse Output
25516 A	16-Point In/16-Point Digital Multifunction

25501A 16-CHANNEL HIGH SPEED ANALOG INPUT

- 16 addressable input channels
- Max 240 channels via multiplexer cards ($\begin{gathered}32 \mathrm{cu} \in A C H \\ 7 \mathrm{MUX} \text { CARDS })\end{gathered}$
- Max 50 KHz pacing
- auto ranging capability
- 14 bit resolution
- Input range $\pm 1.25 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$
COMMON MODE + DIFF. MODE INPUT TO ADC MUST BE K=IOV.
GAIN RANGE FOAUTORANGING CAUSES LOSS OF I SIGNIFICANT
1

25502A 32-CHANNEL HIGH-LEVEL MULTIPLEXER

- Unity gain \rightarrow goes into add to comment
- Sampling Rate is 50 KHz either scanning or single channel
- Common mode rejection 80 dB
- Range $\pm 1.25 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$
- Different input signal conditioning available
- Data register associated with each channel for calibrate command, and others

Putting digital cards between adc and mux cards ADDS NOISE TO SYSTEM - DONG DO IT

25503A
 32-CHANNEL LOW-LEVEL MULTIPLEXER

- Range $\pm 12.5 \mathrm{mV}$ to $\pm 10 \mathrm{~V}$
- Signal conditioning modules
- Sampling rate of 50 KHz on a single channel or 20 KHz scanning on multiple channels

Z Due To setting time in need en because of

- Programmable gains: 1

10
$100 \times 8=$ MAX GAIN OF 800

7	
$A D C$	

25504A

16 CHANNEL RELAY MUX

* RANGE $\pm 12.5 \mathrm{MV}$ TO $\pm 100 \mathrm{~V}$
* $\pm 350^{225 \mathrm{kms}}$ volt common mode range 110 db rejection
* Programmable open sensor detect * 14 bit resolution
* Sampling rate of 500 Hz scanning or single channel AT 10 KHz
* Programmable Gains: . 1 ($\times \operatorname{ADC} \operatorname{GAIN}=1,2,4,8$)

See service note for
filtering above io range
1
(REMOVE CAPS.) (SN 2250-12)

ADC/MUX INTERFACE

ANALOG INPUTS

25510A
 4-CHANNEL VOLTAGE/CURRENT ANALOG OUTPUT

- 12-bit resolution
- Range Voltage

Bipolar $\pm 10 \mathrm{~V} @ 20 \mathrm{~mA}$ Unipolar 0 to $10 @ 20 \mathrm{~mA}$ Current 0 to $20 \mathrm{~mA} @ 20 \mathrm{~V}$

- Max data rate is 32 KHz
- Settling time (worst case)

Voltage Mode Current Mode mine

	CAL (ADJ.)	
	OFFSET	GAIN
UNIPOLAR	OV	$+10.237$
BIPOLAR	$-10.240 \mathrm{~V}$	$+10.235 v$
Curnent	0 mA	20.475 ma

25511A
 32-POINT DIGITAL INPUT
 32-puints

- Two 16-point fields
- Interrupt detection (NOT REALTIME) Proceson must notive
- Min puise width $16 \mu \mathrm{sec}$
- Max speed 24 K points/fieldsper second
- Status, field and point register (sense, sense overide, unmasked, interrupt register)
- Internal or external strobe

25512A 4-CHANNEL COUNTER

- 400 KHz maximum input rate
- 2 inputs per channel $\frac{A}{B}$
- Totalize (2 counts per channel) 號
- Extended totalize (0 to 4×10^{9})
- Up-down count
- Period
- Time interval

PHRES O A FULS:

- Frequency
- Ratio
- 5 programmable interrupts per channel

25513A 32-POINT DIGITAL OUTPUT

- Signal conditioning modules available
- External strobe
- Maximum sequential speed is 32 KHz
- Field register

Status, Configuration
Read
Write

A "ONE" OUTPUT = ZERO OHMS (CLOSED SWITCH)

25514A 16-POINT RELAY OUTPUT

- C relay output (SPDT)
- Rated for switching 250 VAC 1.5a 125VAC 3.0a 30VDC 2.0a
- External strobe
- SCM available, but not Required
- Maximum digital update rate from buffer $24 \mu \mathrm{~s} / \mathrm{write}$
- Maximum operate time 15 msec
- 100 uv thermal offset
- max demanareleo - os oz

25515A 4-CHANNEL PULSE OUTPUT

(USed Mainly with stepper motors)

- (4) Independent output channels
- Programmable pulses (0 to 32767)

Pulse rate
Acceleration
Final pulse rate
Pulse width

- External limit switch inputs
- (2) Output lines per channel
- Input and output SCMs available

25516A 16-POINT DIGITAL MULTIFUNCTION

- 16 dígital input
- 16 digital output
- 2 Struz.
- Two ranks of storage ${ }^{\text {|n| }}$
- Event counter (8 bit counter per point)
- Minimum detectable input

Pulse width (external strobe) $1 \mu \mathrm{sec}$ Pulse width (other inputs) $16 \mu \mathrm{sec}$

- Event detection register

RECOMMENDED FUNCTION CARD POSITIONS

SLOT \#	PREFERRED POSITION	DIGITAL CARD
8	Highest	25514A 16-Channel Relay Output
7		25513A 32-Channel Digital Output
6		25516A 16-Channel Digital Mult.
5		25511A 32-Channel Digital Input
4		25512A 4-Channel Counter
3		25515A 4-Channel Pulse Output
2	Lowest	25510A 4-Channel V/I Analog Output
SLOT \#	PREFERRED POSITION	ANALOG CARD
1	Highest	25501A 16-Channel HS Analog Input
2		32-Channel Low-Level MUX
3		16-Channel Relay MUX
4	Lowest	32-Channel High-Level MUX

SCM

and

Interfacing

OVERVIEW

Signal Conditioning Modules

 are provided for both the Analog \& Digital Function Cards.

4 CHANNEL ISOLATED OUTPUT SCM

Product number 25543 N

ANALOG SCM's

INPUTI
FOUR DIFFERENT TYPES OF ANALOG SCM's ARE PROVIDED:
25540 A

1. Blank SCM - To be used by customer for custom designs.

25540 B
2. Filter SCM - Provides two pole filter for use with high or low level multiplex cards.
25540 C
3. Current Loop termination - Provides standard termination for 4.20 mA loops.

25540 D
4. Filter and current loop SCM - Provides functions 2 and 3.

ANALOG INPUT CARD SIGNAL CONDITIONING MODULES

ANALOG CARD	SCM	DESCRIPTION
HP 25501A	None	ADC Card (signal conditioning components can be added to the card).
HP 25502A	A,B,C,D*	HLMUX Card
HP 25503A	A,B,C,D*	LLMUX Card
HP 25504A	None	RELMUX Card (capacitors can be added to the plug-in relay circuits to provide input signal conditioning)
*A,B,C, and D are the SCM suffixes relating to the SCM NUMBER listed below.		
SCM NUMBER	CHANNELS PER SCM	DESCRIPTION
25540A	8	Blank (User supplies components)
25540B	8	Passive Filter Network Capacitors
25540C	8	Passive Filter Network Current-Loop Resistors
25540D	8	Passive Filter Network Current-Loop Resistors and Filter Capacitors

ANALOG FILTER SCM's

PROVIDE TWO POLE RESPONSE

- Pole frequency varies according to the card used
- Lowest pole frequencies are 6.9 and 47 Hz with high level MUX
- High pole frequencies are 11 and 64 Hz with low level MLX

Analog SCM's Circuitry Diagram

(without protection)

High Level MUX

DIGITAL SCM SELECTION GUIDE

PRODUCT REFERENCE			
fUNCTION CARD	CROSS REFEREN SCM NUMBER		DESCRIPTION
	$1 \& 2^{*}, 3 \&$ 3 and 4 1 \& 2*, 5,6,7 1 \& 2*, 8 XXXX 1 \& 2*, 3,4,7	432-Poi 4-Cha $32-P o i$ 16-Ch 4-Cha 32-Poi	It Digital Input nel Counter Input Digital Output nnel Relay Output nel Pulse Output Multifunction
*Single Channel SCM for External Strobe Input			
SCM CROSS REFERENCE GUIDE			
SCM NO.	PRODUCT NO.	CHANNELS	DESCRIPTION
1	25531-Series 25531B 25531C 25531D 25531 E 25531 K 25531 L	1	Non-Isolated Digital Input 5 VDC Range 12 VDC Range 24 VDC Range 48 VDC Range 5 VDC Range, Sink Inputs 12 VDC Range, Sink Inputs

DIGITAL SCM SELECTION GUIDE

(continued)

SCM CROSS REFERENCE GUIDE

SCM NO.	PRODUCT NO.	CHANNELS	DESCRIPTION
2	$\begin{gathered} \hline \text { 25533-Series } \\ 25533 B \\ 25533 \mathrm{C} \\ 25533 \mathrm{D} \\ 25533 \mathrm{E} \\ 25533 \mathrm{~F} \\ 25533 \mathrm{G} \\ 25533 \mathrm{H} \\ 25533 \mathrm{I} \end{gathered}$	1	Isolated Digital Input 5 VDC Range 12 VDC Range 24 VDC (16 VAC) Range 48 VDC Range 72 VDC Range 120 VDC (72VAC) Range 115 VAC Range 230 VAC Range
3	$\begin{gathered} \text { 25535-Series } \\ 25535 B \\ 25535 \mathrm{C} \\ 25535 \mathrm{D} \\ 25535 \mathrm{E} \\ 25535 \mathrm{~K} \\ 25535 \mathrm{~L} \end{gathered}$	4	Non-Isolated Digital Input 5 VDC Range 12 VDC Range 24 VDC Range 48 VDC Range 5 VDC Range, Sink Inputs 12 VDC Range, Sink Inputs
4	$\begin{gathered} 25537-\text { Series } \\ 25537 B \\ 25537 \mathrm{C} \\ 25537 \mathrm{D} \\ 25537 \mathrm{E} \\ 25537 \mathrm{~F} \\ 25537 \mathrm{G} \\ 25537 \mathrm{H} \\ 25537 \mathrm{I} \end{gathered}$	4	Isolated Digital Input 5 VDC Range 12 VDC Range 24 VDC (16 VAC) Range 48 VDC Range 78 VDC Range 120 VDC (72VAC) Range 115 VAC Range 230 VAC Range
5	25543 A	4	Isolated Digital Output, VMOS Solid-State Circuit.
6	$\begin{gathered} \text { 25544-Series } \\ 25544 \mathrm{~A} \\ 25544 \mathrm{~B} \\ 25544 \mathrm{C} \end{gathered}$	4	Non-Isolated Digital Output Open Drain Circuit 5 VDC Range 12 VDC Range
7	25545A	2	Solid-State Relay Output (Reduces usable points by 2).

DIGITAL SCM SELECTION GUIDE

(continued)

SCM CROSS REFERENCE GUIDE			
SCM NO.	PRODUCT NO.	CHANNELS	DESCRIPTION
8	$25539-S e r i e s ~$	4	Arc Suppression Circuits
	25539 A		For user added components
	25539 B		0 to 30 VDC Range
	25539 G		24 VAC Range
	25539 H		115 VAC Range
	255391		230 VAC Range

2卫SO SEM CFQSS REFEREMCE GUIDE

255i1B <2 25513E (2 25514B (1 25516B (1
$25531 K$ 255311

25533 E
25533 C
25533-60002
25533-60003
1 chan $24 u d e$
chan, 48ude,
1 chan, 120 ude/72vac,
1 chan, 230 vac,
w w

25535E	25535-60001	4	chan, Sudc,	non-isolated input, source	255118
25535C	25535-60002	4	chan, i2ude,	"	25512B
25535D	25535-60003	4	chan, 24udc,	"	25515E
25535 E	25535-60004	4	chan, 48 udc,	"	255168
25535K	25535-60005	4	chan, 5udc,	non-isolated input, sink	
25535 L	25535-60006	4	chan, izudc,	"	
25536E	25536-60001	4	chan, Sudc,	non-isolated input, source	
25536 K	25536-60005	4	chan, Sude,	non-isolated input, sink	
25537 P	25537-60001	4	chan, Sudc,	isolated input, source	
25537Q	25537-60002	4	chan, 12ude,	"	
25537 R	25537-60003	4	chan, 24udc,	1	
255375	25537-60004	4	chan, 48ude,	"	*
25537 T	25537-60005	4	chan, 72udc,	"	
25537 U	25537-60006	4	chan, 120ude,	"	
25537 V	25537-60007	4	chan, i15uac,	"	
25537W	25537-60008	4	chan, 230vac,	"	

25543N 25543-60001 4 chan, 60ude, arin isolated output
25544 A
25544-6000i 4 chan, open drain, non-isolated output
25544 A
25544-60002 4 chan, 5 vde,
25544C 25544-60003 4 chan, 12ude,
25545P 25545-60001 2chan,i15vac, isolated output
25546E 25546-60001 4 chan, 5udc, non-isolated output

Digital Input SCM's

Sink-type - 2250 sumplat

Source Type -

- Isolated

Optocoupler

Problems with

Isolated Input SCM's

- Isolated Input SCM's cannot be used for switch closure applications, unless an external power supply is provided.
- Isolated power is not provided by the card.
- Speed is restricted by the opto-isolator.
- Debounce capacitor must be removed to increase speed.
- Need up to 4 mA current input to operate coupler.

Digital Output SCM's

- Isolated

- Non-Isolated

AC Switching

- Triac Switch
- Conducts on positive and negative going slopes
- Zero crossing reduces EMI and RFI

25594A THERMOCOUPLE REFERENCE CONNECTOR

- 15 thermocouple connection J, K, T, E, R, S, B (M|XFD)
- Reference output provides $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ (channal 16)
- Accuracy of Reference Output

0 to $70^{\circ} \mathrm{C} \quad \pm 0.35^{\circ} \mathrm{C}$
0 to $50^{\circ} \mathrm{C} \quad \pm 0.25^{\circ} \mathrm{C}$

- 15 input channels per TRC
$25594 A$ Functional BLOCK Diagram

FWA's

CABLING AND FIELD WIRING ASSEMBLY

THERMO COUPLE REFERENC E CONNECTOR (TRC)

The 2250 is composed of an HP 2104 processor unit, from one to eight HP 2251 Measurement and Control units, and up to $64 \mathrm{I} / 0$ or function cards which send and receive measurement and control signals to external sensors and actuators. The function cards are wired to the external process through field wiring assemblies (FWA's). There can be up to 210 FWA's.

2250 PHYSICAL DESCRIPTION

The HP 1000 Measurement and Control processor (2250) consists of an $H P$ 2104 processor and at least one HP 2251 Measurement and Control Unit (MCU). There can be up to 8 MCU's each having space for eight function cards. The type of enclosure is identified by model number, and the automation requirements of your own application determine what function cards are included.

2250 CONTROLLER

The 2250 controller includes four half-size cards that supply HP-IB interface, measurement and control processing and memory.

The HP 2250 measurement and control processor is a programmable interface between a computer and an external measurement and control system. The 2250 can service thousands of sensors and actuators in an
:ternal system with little participation on the part of the computer.
The external system is typically a factory process or laboratory experiment.

The function of the computer is mainly to send instructions to the 2250, and to send and receive data. As a result no particular computer or programming language is specified for communications with the 2250 .

Control of all function cards is handed completely by the 2250 programming language, $\mathrm{MCL} / 50$.

The analog and digital input and output measurement and control functions are implemented by the function cards that are installed in any particular system.

The $H P-I B$ interface is the communication path to the computer.
The measurement and control interface translates between processor protocol and function-card protocol.

The 2250 firmware is stored in read only memory (ROM) on the memory card. There is also read and write memory on the memory card. This RAM is for storing the instructions that implement a particular measurement and control system, and for storing data resulting from the instructions.

The HP $25572 \mathrm{~A} / \mathrm{B}$ power supply consists of an HP 12035A power supply and the mounting hardware required to install it. The HP 2g572A is for the rack mounting and the $H P 25572 B$ is for panel mounting. The power supply provides the processor unit backplane with DC voltages and a 25 $k H z$ voltage source to the MCU's via the backplane interface (BIF) card.

The HP 2251 Measurement and Control Unit (MCU) contains a card frome which holds the backplane interface card and up to eight function cards. There can be up to eight MCU's in an HP 2250 system.

HP 12013A BATTERY BACKUP CARD
The 12013 A battery backup card protects memory contents up to 30 minutes if power fails.

The HP 12001 A processor compiles and executes requests from the HP-IB bus and converts measurement and control data resulting from these requests.

The processor card operates from programs running in an external computer, and provides control of the HP 2250 and its function cards by executing instruction sets stored in the memory card ROM. The processor card also controls data transfers (including DMA), processes
10 interrupts, provides self-test instructions, and performs all \&ecessary computations. The major component on the processor card is a 64-pin SOS integrated circuit which contains much of the processor logic. This IC is called the CPU chip.

THE INTERFACE BUS

The $H P-I B$ is a standard method of communication for HP computers and HP-IB bus compatible instruments. Since the HP 2250 is a HP-IB bus compatible instrument, we use the $H P-I B$ method of communication.

The interface bus consists of an $H P-I B$ interface card (I/O Card) in the computer and a cable connecting the computer interface card with the 2250. This arrangement takes care of devices that are within a few meters of each other. For longer distances between the 2250 and the computer, an optical or coaxial HP-IB replaces the standard cable.

The $H P-I B$ transfers data according to a standard protocol, and provides addressing and interrupt-handing facilities so devices can operate in parallel on the bus without interference. Thus, more than one 2250 can be connected to the bus, and other devices, such as printers, can be included. If other devices are on the bus, the computer can communicate with them, since each device has its own unique bus address.

HP 37203L HP-IB LINK

- he $37203 \mathrm{~A} H P-I B$ link extends the transmission distance of the HP-IB bus to remote locations via coaxial cable or fibre optic cable. The maximum distance is 1000 metres (3280 feet).

HP 12009A HP-IB INTERFACE CARD
There are two DIP switches on the HP-IB card.
The select-code switch (U1) is on the front of the card, and must be set to octal 130 when the card is used in the 2250 controller section.

The HP-IB address switch (U16) is on the left side of the card. This switch determines HP-IB address of the 2250, related by system tables, in the host computer, to the logical unit number you use when writing programs for the HP 1000 computer. The HP-IB address can be set to any number below octal 37.

The 12009 A HP-IB interface card connects to an HP-IB cable which carries control signals and data to and from a host computer (controller). Up to 15 other HP-IB devices can also be connected to the HP-IB bus cable to the $H P-I B$ devices or system controller which may or may not be a HP computer. To the processor unit, this card is an $I / 0$ card and is under the processor card's control at all times.
mhe HP-IB card has the capability of handing its own DMA and of əcoding its own instructions from the processor unit. These features
are performed by an $I / 0$ master chip located on the $H P-I B$ card.
All interfaces to the processor unit backplane and to the HP-IB devices are provided by two integrated circuit chips. The first chip, the $I / 0$ processor (IOP) chip, manages all I/O functions of the backplane. The second chip, the PHI (Processor to HP-IB Interface) chip performs all data and control signal interactions with the HP-IB devices. Thru the use of these two chips, the HP 12009A interface relieves the processor of most of the HP-IB protocol processing.

In the case of the 2250, the external computer is the system controller. The $H P-I B$ card plugs into a single slot of the processor unit card frame and is assigned only one select code. The HP-IB card is connected by cable to the $H P-I B$ devices or system controller which may or may not be a HP computer. To the processor unit, this card is an I / O card and is under the processor card's control at all times.

The HP 12070A memory contains read only memory (ROM) chips, and Random Access Memory (RAM) chips. The HP 2250 firmware is stored on the ROM chips. The RAM chips contain user memory, which is used to store instructions that implement a particular measurement and control function, and to store the data resulting from the instructions.

The firmware also includes utility routines: engineering-unit onversion, thermocouple linearization, and a fail-safe "Watchdog" , imer that can initiate special actions if the 2250 does not hear from the computer for a designated length of time. The ROM integrated circuits that contain the firmware are inserted into sockets in the memory card.

The RAM storage area is temporary memory, lost when power is off, unless the 2250 has a battery backup card. This area of memory essentially belongs to the MCL tasks you write. The processor reserves about 2 K words for storing its own management data. The actual number of words used depends on the number and type of function cards in the system. This leaves about 14 K words for compiled tasks and data, including down-loaded subroutines as well as input and output data in transit to or from the computer.

The memory card provides ROM memory for the HP 2250 firmware and RAM user memory for application programs. The ROM word size is 16 bits and the RAM memory is 17 bits (it has an additional bit for parity). The 16-bit wide memory corresponds with the HP 12001A processor requirements. The parity bit provides a means to maintain integrity of data in the RAMs.

The HP12071A Measurement and Control Interface (MCI) provides interface between the processor unit backplane and the Measurement and Control Unit (MCU) backplane. The MCU backplane connects to the function cards which provide the input/output capability for measurement and control.

The HP 12071 A Measurement and Control Interface (MCI) card performs the following function:

Generates address words with address control signals which are used to select or scan input or output channels or points on the function cards.

Provides timing. The MCI card has internal timers for various measurement pacing modes. The internal timers are supplemented by an external pacing line to precisely control the rate at which measurement and control events occur, independently of processor timing. Internal and external pacing assures that the proper data passes thru the card's data register at the right time, transferring between the MCU and processor backplanes.
anages its own controller backplane $I / 0$, responding to its firmware -nstructions, and from these it provides the required MCU backplane control signals to the function cards. It also receives function card handshake signals, function card interrupts, and function card data from the MCU backplane.

Interprets processor control instructions eg. DMA word transfers.
An I/O master chip on the MCI card processes I/O instructions and DMA operations independently for that card, relieving the computer of this function. This arrangement eliminates restrictions on the number or the type of devices or interfaces using DMA.

The $I / 0$ master detects the card's select code in address words from the computer independently of the card's position in the backplane. This is possible because the card's address is stored in a global register contained in the I / O master. The select code is entered via a set of switches on the card.

Priority of I / O interrupts and DMA backplane access is established by the I/O card's position in the processor unit. The slot next to the processor card has the highest $I / 0$ priority. From this slot the $I / 0$ interrupt priority numbers successfully increase (less priority) as the slot numbers increment. Therefore, due to the MCI card's location, it has the highest $I / 0$ card priority of the controller rection.

The addressing circuits on the card consist of an address latch for the upper-eight address word bits, an address counter latch for the lower-eight address word bits, an address decoder for MCI card internal registers, and an address buffer for channel or point addresses to be transferred onto the MCU bus.

Input and output data transfers are passed through a bidirectional data register.

The Measurement and Control Interface (MCI) bus connects the MCI to one or more BIF's, depending on the number of the MCU's in the HP 2250 (each MCU contains one BIF). The BIF's connect to the function cards thru a backplane.

The card frame containing a BIF and the function cards it serves also contains the function card backplane. Together these items (card frame, BIF function cards, and function card backplane) comprise an MCU. Nine card slots in the card frame have physical designations from 0 thru 8 .

The BIF is always in the first slot (Slot 0) of the MCU. The mainframe card group (function cards and BIF) is physically "MCU A". The first additional MCU is usually "MCU 里" etc. The MCU address is set by a thumbwheel switch on the front edge of the BIF MCU addresses do not have to agree with the physical location of the MCU. The BIF can communicate with up to 8 MCU's for a maximum of 64 function cards.

The last BIF must be terminated by a terminator connector.
pair of LED indicators on each BIF shows various conditions. One ED is green and indicates that the BIF has power and is connected to the MCI bus and the 25 kHz supply bus. The other LED is red and indicates abnormal operation which is most likely one of the following conditions:
A. 25 kHz power is not connected to the BIF but the control cable is connected and the MCI power is on.
B. The "Daisy Chain" of the control cable is broken somewhere between the BIF and the MCI, but 25 kHz power is connected to the BIF.
C. +12 V supply on the $B I F$ is not operating correctly.
D. Clock circuits on the BIF are not operating correctly.
E. Clock circuits on the $M C I$ are not operating correctly.

If both indicators are off, then either the system power is off, or both the power cable and the 50-line control cable to the BIF are disconnected at some point in the chain.

The HP 25574 A backplane interface (BIF) provides the function cards with signal buffering, partial address decoding, interrupt masking, and 25 kHz power. In a system consisting of more than one MCU, each MCU contains one BIF card, and the MCI bus connects through each BIF to the succeeding (or "downstream") MCU's in a daisy chain fashion.

The thumbwheel switch on the BIF card selects the slot addresses of the function cards within the card frame. Normal procedure is to set the switch on the card in the mainframe to "O", and to set the switches in each MCU to sequential numbers. Take care that no two BIF switches are set to the same number. The 2250 cannot detect this error, therefore it produces unpredictable results.

If your 2250 has only one Measurement and Control Unit (MCU), and the BIF selector switch in that MCU is set to zero, then the slot numbers are 1 thru 8, with slot 1 nearest the BIF card. If there is more than one MCU, the slot numbers are the sum of the BIF switch setting multiplied by eight, plus the slot number within the MCU (1 thru 8).

System slot number $=$ BIF number $x 8+M C U$ slot number
The function cards can be plugged into any slot but the recommended placement is: analog cards start at slot one and digital cards start t slot eight and decrease in order. This is because the analog . ighest priority slot is one and the digital highest priority slot is eight.

The power supply on comes from a small powered from the 27 power supply. The 25 it to downstream BIFs A full-wave rectifier
the BIF is energized from 17 VRMs/25kHz which transformer on the card. The transformer is VRMs/25kHz lines originating in the HP 12035A kHz power connects to the BIF on J12, and thru on J13 (or the opposite order of J13 and J12). circuit is used in the BIF supply, providing a DC input to an IC regulator giving an output of +12 V .

A line designated MDPWR on the MCI bus carries 12 VDC continuously. If the BIF supply fails, the voltage (called DPR on the BIF) maintains power on the BIF clock resynchronizer and data bus drivers. MDPWR becomes DPWR in the BIF and connects thru P2 to the function card backplane to enerfizes the function card bus drivers of any cards having a power supply failure.

The power for the BIF cards is distributed as an AC voltage of 27 VRMs 25 kHz from the HP 12035A power supply or from an additional power supply if additional MCUs are added to the system. The high frequency allows the use of small sized components to provide DC voltage for the card circuitry. the 27 VRMs enters each BIF of J12 or J13 thru a 3-conductor cable, and is "Daisy-chained" to the next BIF thru another -qble connected to J13 or J12.

Several DC voltages of $15 \mathrm{~V}, 12 \mathrm{~V}$, and 5 V are required on the function cards, the BIF originates AC voltages for distribution on the function card MCI bus to the function card rectifier/filter/regulator circuits on the cards. A BIF supply transformer provides the following AC voltages to give the DC requirements; 21 VRMs center-tapped, 17 VRMs center-tapped, and 9 VRMs center-tapped all at 25 kHz . The 25 kHz voltages connect to the function card to the function card MCI bus thru P1.

Function cards match the type of sensor or actuator in the external process. The principal function card type are analog input, analog output, digital input, digital output, counter, pulse output, and multiplexer cards (which allow several input/output cards to be connected to the same set of internal lines and "multiplex" the signals for these cards).

A function card can accomodate up to 32 external points (depending on card type) and occupies one slot in the MCU card frame.

The high-speed analog input card provides the 2250 with basic analog-to-digital conversion capability. This card converts readings at a 50 $k H z$ rate with 14-bit resolution, equivalent to one part in 16, 383 , or approximately 0.006% resolution.

The HP 25501 A has 16 differential input channels with full-scale ranges of $1.25,2.5,5$ and 10 volts, positive or negative. Your MCL program can select the range, or select autoranging across the four ranges. Autoranging means that the analog input card can select its own gain by powers of 2 (within a 1 to 8 range) based on the signal input level. There is now speed penalty for using autoranging.

The number of input channels using a single 25501 A card, can be expanded up to 240, buy sqing up to multiplexer function cards. The multiplexer cards connect through the multiplexer backplane to a special differential input on the $H p 25501 \mathrm{~A}$, so that none of the differential input channels is used for connecting multiplexers.

HP 25502A 32-CHANNEL HIGH-LEVEL MULTIPLEXER

ae HP 25502A function card is a high-level solid-state analog signal multiplexer, providing 32 channels of differential analog input multiplexed to one differential channel, which connects to a special input on the analog input card. The HP 25502 A has unity gain therefore, used with the 25501 A analog input card, signal gain and autoranging characteristics are the same as thosde of the 25501 A . The sampling rate is 50 kHz .

HP 25503A 32-CHANNEL LOW-LEVEL MULTIPLEXER
The HP 25503A provides low-level input and channel expansion for the HP 25501A analog input card, down to 12.5 millivolts full scale. Used with the HP 25501 A , there are 12 programmable ranges, with the 25501 A autoranging over four ranges. The sampling rate is 30 kHz .

HP 25504A 16-CHANNEL RELAY MULTIPLEXER

The relay multiplexer function card provides fully isolated channel expansion for the $H P 25501 \mathrm{~A}$ analog input card, with 16 differential input channels per multiplexer card. There are 16 programmable ranges, from 12.5 millivolts to 100 volts, with 25501 A autoranging over four ranges. The sampling rate is 4 如相.

The HP 25510A provides digital-to-analog output capability for the 2250, with 12-bit resolution and voltage or current output. The voltage range is 10 volts, positive or negative. The current range is 20 milliamperes, with 20-volt compliance. The maximum analog output rate is 37 kHz .

HP 25511A 32-POINT DIGITAL INPUT
The HP 25511A digital input card provides 32 digital input points to the 2250. Signal conditioning options interface with a wide range of AC and DC voltages. You can read the input state of any individual point or of a field of 16 points.

You can program individual point to interrupt either the 2250 or the computer. Event interrupt enable and transition direction are programmable. Also, the card can be programmed for strobed input, permitting an external strobe signal to determine when the point or field read shall take place.

HP 25513A 32-POINT DIGITAL OUTPUT
he HP 25513A digital output card provides solid-state switching to 32 utput points. Signal conditioning options interface with a variety of $A C$ and $D C$ control actuators.

You can program the output points independently or as two 16-point fields. Data in the output registers is maintained until new data is programmed to the card or until an external strobe signal is received by the card from the external system. The card can be programmed to change outputs upon receipts of either an internal 2250 control signal or an external strobe signal.

HP 25514A 16-POINT RELAY OUTPUT
The HP 22514 A card provides Form C relay output. The 16 channels can be programmed as independent points or a 16 -point field. The card can be programmed to change outputs upon receipt of either an internal 2250 control signal or an external strobe signal.

HP 25515A 4-ChANNEL PULSE OUTPUT
The HP 25515 A pulse output card generates a programmable number of pulses independently on each of four channels. The initial pulse rate, acceleration, final pulse rate, and the pulse width are also programmable. Alternatively, you can put the card in frequency-generator mode to provide pulses for an indefinte length of +ime. Two limit inputs can be programmed to stop the train of pulses , ien, for example, a mechanical stop switch is reached.

The HP 25516 A multifunction card provides 16 channel digital input points and 16 digital output points for the 2250 .

Each input point on the multifunction card has a presettable event counter with a maximum count of 255. Each counter can be programmed to prescale (automatically repeat counting upwards from the preset value) or to totalize (automatically continue counting from zero after the preset number of counts).

An event is defined for each point by enabling the point to interrupt, and programming the sense and sense override, which specify the desired direction of transition.

$$
2250
$$

So FTwREE

2250
SOFTWARE GNDERSTANDING

HOST PROGRAMS - RESIDE IN HOST COMPUTER MEMORY - WRITTEN IN COMmON COMPUTER - CONTAINS MC IMBEDDED
IN WRITE STATEMENTS

MAIN TASK

- DOWNLOADED FROM HOST TO 2250 - ENTIRELY MEL

RESIDENT TASK - DOWNLOADED FROM HOST TO 2250 - ENTIRELY ML
COMPILES - ExEcution DELAYED

DOWNLOADED SUBROUTINE

- Downloaded from host to 2250 - absolute compiled fortran - contains - called from main or resident task

2250 MEMORY MAP

MAIN TASK STATE DIAGRAM

In the state diagram, the paths from State 7 to State 0 labeled READ and WRITE refer to the fact that either a READ or a WRITE addressed to the 2250 deletes all existing result data and the main task error code from the main result buffer.
Note: Reset! won 4 clear a main task because IT IS: A TASK ITSELF. USE HP-IS 'CLEAR'

RESIDENT TASK STATUS

WHO EXECUTES NEXT?

If tasks of equal priority:

Assume a main task of:

$$
\begin{aligned}
& \text { START (1), START (2), START (3), START (4), } \\
& \text { START (5), START (6)! }
\end{aligned}
$$

RULES TO REMEMBER

1) The MAIN task always has the highest priority.
2) A task (MAIN or RESIDENT) cannot execute until the currently executing task completes or pauses or is aborted!
(Therefore, not multitasking)
3) Round-robin execution applies to tasks of equal priority only.
4) Resources such as buffers and variables for resident tasks are shared. (Except BO)
5) A resident task cannot store results into the main task result buffer (BO).
6) Before a main task executes there is an implicit $\operatorname{IN}(B O) O U T(B O)$ executed.
7) A resident task must assume that $I N$ and OUT may have been altered by another task during a pause.

USING THE HP MEASUREMENT \& CONTROL EXERCISOR

USER SOFTWARE INTERFACE TO THE 2250 AND THE MCL/50 FIRMWARE

TO INVOKE MCX

:RU, MCX [,lu] [,infile]

lu $=2250$ logical unit number
infile $=$ file NAMR of file containing MCL and/or MCX commands to be executed by MCX.

MCX PROGRAM COMMANDS

Command Type	MCX Command		
Read Commands	READ READ BUEFER buffer count READ PORTMEY Sotrtname READ REVISION READ SECONDARY address READ VARIABLES startvar numvar		
Write Commands	WRITE VARIABLES WRITE BUFFER WRITE SECONDARY WRITE SUBROUTINE	startvar numvar buffer count address subfile	data1 . . . dataN data1 . . . dataN data1 . . . dataN
Status Commands	STATUS SYSTEM STATUS MAIN STATUS TASK STATUS INTERRUPTS	number	
Set Commands	SET RESULTS ON SET RESULTS OFF SET MODE INTEGER SET MODE OCTAL SET MODE REAL	SET ECHO SET STOP	
	SET POLLING ON time SET POLLING OFF		
File Commands	INCLUDE LOG ON LOG OfF	file namr file namr	repeat count
HP-IB Commands	$\begin{aligned} & \text { CLEAR } \\ & \text { TRIGGER } \end{aligned}$		
System Configuration	CARDS		
Misc.	*		
	$\begin{aligned} & \text { HELP or ?? ? } \\ & \text { QUIT } \\ & \text { / } \end{aligned}$		LU LOCK UNLOCK RUn,[program,[data]]

Notes on MCX Syntax Rules

Commands are entered after the MCX prompt MCX:

Either MCX or MCL commands can be entered after the prompt. Upper or lower case is allowed, or a mixture of both.

MCX commands can be abridged to any length, down to one letter per word, as long as all the words in the command are represented.

EXAMPLE:

SYSTEM STATUS = SYS STAT $=S S=s, s$

Blanks or commas are legal delimiters.

READ COMMANDS

READ

Reads the main result buffer from the 2250 primary address.

READ BUFFER buffer count

Reads data from elements in the designated buffer, starting with the first element and continuing for count.

READ MEMORY startadd numwords

Reads the 2250 memory starting at address startadd and will read numwords words. If startadd is less than 400B, an error results.

READ PORT portname

Reads data from the desigated port portname. All words, up to 500, will be read from the port (A, B, C, or D).

READ REVISION

Displays the current firmware and MCX revision dates to the current log device or file.

MCX READ COMMANDS

(continued)

READ SECONDARY address
Reads from the specified secondary address. Secondaries 1-15 are allowed, and if address is ommited, secondary 1 will be read.

READ VARIABLES startvar numvar

Reads 2250 variables from the designated variables starting with startvar and reading for numvar.

1) Read the result at the primary address after a main task of RAM!
```
MCX : READ
```

No error: result data:
1: ± 4019
14909
2) Read variables 10 through 20 .

```
MCX : READ VAR 10 11
```

```
Variables 10 to 20
    10: 
```

3) Read first 50 words of buffer 5 .

MCX : R BUFFER 5,50

4) Read port B that should contain 36 words.

MCX : READ PORT B								
Data from port	B							
1:	0	1	1	1	2	2	3	3
$9:$	4	4	4	5	5	6	6	7
$17:$	7	7	8	8	9	9	10	10
$25:$	10	11	11	12	12	13	13	13
$33:$	14	14	15	15				

5) Read secondary 1 (system status),

MCX : R SEC 1

$1:$	-1	0	1	0	0	0	0	0

6) Read secondary 4 (interrupt status).

MCX : READ SEC 4
1: 1 5
9: 99127
24
0
33
44
56
84
87
0
7) Read secondary 2 (main task status).
$M C X: R S 2$
$\begin{array}{lllllllll}1: & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 4\end{array}$
8) Reads words 256 through 270 of 2250 memory.

$M C X:$	read mem	256	15
$000400 /$	000400	256.	
$000401 /$	000401	257.	
$000402 /$	000402	258.	
$000403 /$	000403	259.	
$000404 /$	000404	260.	
$000405 /$	000405	261.	
$000406 /$	000406	262.	
$000407 /$	000407	263.	
$000410 /$	000410	264.	
$000411 /$	000411	265.	
$000412 /$	000412	266.	
$000413 /$	000413	267.	
$000414 /$	000414	268.	
$000415 /$	000415	269.	
$000416 /$	000416	270.	

9) Read 10 words of 2250 memory starting at word 2000 .

MCX : Read memory 1024,10 -

```
002000/ 002000 1024.
002001/ 002001 1025.
002002/ 002002 1026.
002003/ 002003 1027.
002004/ 002004 1028.
002005/ 002005 1029.
002006/ 002006 1030.
002007/ 002007 1031.
002010/ 002010 1032.
002011/ 002011 1033.
```

10) Read the 2250 firmware and the MCX revision codes.

MCX: READ REVISION
Firmware rev. \quad MCX rev. 2113 2108

WRITE COMMANDS

WRITE VARIABLES startvar numvar data1 . . . dataN

Sends data (data1 . . . dataN) to the specified variables starting with startvar and writing for numvar.

WRITE BUFFER buffer count data1 . . . dataN

Sends data to elements in the designated buffer, starting with the first element and continuing until data1 to dataN have been written.

WRITE SECONDARY address data1 . . . dataN

Sends data (data $1 .$. . dataN) to the designated secondary address.

WRITE SUBROUTINE subfile

Writes a subroutine file (subfile) that has been generated by LINKR to the 2250 , through secondary 9.

1) Write digital data to variables 1 - 16 .

MAX: WRITE VAR 116
Enter 16 data items: 1111100000111110000 Status code is ok. Data Written.
2) Write voltages in molts to elements 1 - 20 of buffer 1 .

MAX: W B 120
Enter 20 data items: 500500500500400400500500500200200200
Enter 8 data items: 100100100100120120
Enter 2 data items: 120120
Status code is ok.
Data written
3) Write to secondary 6 to set up secondary 6 read to read buffer elements from buffer 3 .

MCX: write secondary 613 米
4) Send limit checking FORTRAN subroutine, LIMIT to the 2250 .

MAX : WRITE SUBROUTINE LIMIT:AH:AH Done
MCX: W V
Start variable number? 1
Number of variable? 5
Enter 5 data items: 1,2,3,4,5
Data written.
MCX: R V
Start variable number? 1
Number of variables? 5
Variables 1 to 5
1: $1 \begin{array}{llll} & 2 & 3\end{array}$ 5
MCX: W B
Buffer number? 1
Number of items? 3
Enter 3 data items: 1,2,3
Communications error 42: invalid buffer bounds
MCX: $\operatorname{DIM}(10,1,10)!$
No error; no results returned.
MCX: W B
Buffer number? 1
Number of items? 3
Enter 3 data items: 1,2,3
Data written.
R B 13
Buffer data: buffer \# 1 first 3 items:
1: 12 3

MCX STATUS COMMANDS

STATUS SYSTEM

Interprets the system status that is obtained from secondary address 1 and returns a system status message.

STATUS MAIN

Interprets the status of the main task by reading secondary address 2 , and returns a main task status message.

STATUS TASK tasknum

Interprets the status of a resident task by reading secondary address 3, and returns a resident task status message.

STATUS INTERRUPT

Interprets the status of interrupts that have occurred in the 2250 by reading secondary address 4 , and returns an interrupt status message.

MCX Status Command Examples

1) Obtain the 2250 system status.

MCX: STATUS STSTEM

System status:
Task number I is running: Port data is available: A: 0 B: 0 C: 0 D: 10 .
2) Obtain the main task status.

```
MCX: S MAIN
```

Main task status:
The task is undefined.
3) Obtain the status of task aumber 1 .

MCX: STAT TASR 1
Task 1 status:
The task is running at command 2.
4) Obtain the interrupt status of the 2250 .

> MCX: STATUS INTERRUPT

Interfupt status:
Programmed srq 1
Programmed srq 30
Programmed srq 127

MCX SET COMMANDS

SET RESULTS ON / OFF

Used to determine when MCX will read results from the 2250 . ON specifies read results immediately, while OFF disables reading of the main task result.

SET POLLING OFF / ON time

Used to determine if results are available before MCX attempts to read from the primary address. When ON, MCX will poll the 2250 for length of time to determine if result is available. OFF disables polling.

SET MODE INTEGER / OCTAL / REAL

Determines the output format of the results returned from main result buffer, secondaries, variables, buffers, and ports.

FILE COMMANDS

INCLUDE infile

Specifies that the MCX program is to take its input from a disc file rather than from the terminal. Either MCL/50 or MCX commands can be included in the infile.

LOG ON

Used to specify that all output sent to the log device will be copied to a disc file. The logfile will include all lines sent to the 2250 , as well as all results and messages. OFF disables the logging feature.

1) Include MCX file NUMBER to be shipped to the 2250 .

MCX: INCLUDE NUMBER: : AH
$\mathrm{VI}=\% 22$ ROT 8
$\mathrm{V} 2=\% 75$ ROT 8
$V 3=\% 67$ ROT 8
V4 $=\% 123$ ROT 8
$V 5=\% 147$ ROT 8
!
No error; no results returned.
2) Log all input to file LOGFIL:AH:AH. Resulting logfile is as follows:
log on LOGFIL:AH:AH
CLEAR

IN TASK1

TASK (1)
OUT (VI) FO (8, 1)
REPEAT (256) DO (7,1) 1 WNOW $(0,0,50)$ DO(7,1) 0 WNOW $(0,0,50)$
NEXT
!
Run-time error 33 (task not ready to run) occurred at command 1 .

S S

System status:
Task number $\quad 1$ is running;
Port data is available A: 0 B: 0 C: 0 D: 10
QUIT

BUS CONTROL COMMANDS

CLEAR

Sends the clear message to the HP-IB aborting all 2250 processing.

TRIGGER

Sets the HP-IB bus trigger flag (BT) in the 2250 to " 1 ".

SYSTEM CONFIGURATION CARDS

Request: CARDS

	Box	0				Box	1		
Slot	Card		In	Out	Slot	Card		In	Out
8	Relay output			16	16	Relay output			16
7	Digital output			32	15	Digital output			32
6	Multifunction		16	16	14	Multifunction		16	16
5	- - - -				13	Digital input		32	
4	DAC			4	12	DAC			4
3	- - - -				11	- - - -			
2	- - - -				10	Multifunction		16	16
1	High speed ADC		16		9	- - - -			
	Box	7							
Slot	Card		In	Out					
$\begin{aligned} & 64 \\ & 63 \end{aligned}$	- - - -								
$\begin{aligned} & 62 \\ & 61 \end{aligned}$	-----								
60	- - - -								
59	Lowlevel mux		32						
58	Lowlevel mux		32						
57	High speed ADC		16						

Notes on the CARDS Command

The CARDS command sends an $\operatorname{ID}(1,128)$! to the Model 2250 .

Only card types 1 through 16 and empty slots will be interpreted by MCX.

2250 Systems with several 2251 MCUs (more than 4) may not be able to include their total card configuration into the terminal memory. In this case, you should use the LOG command to log the configuration into a file.

MISCELLANEOUS MCX COMMANDS

HELP OR?

Prints the list of commands and their parameters to the log device.

QUIT

Exit from MCX.

* (Asterisk)

Denotes a comment to follow, and ignore the line. Used mainly for including comments in include files.

/ (Slash)

Causes the last 10 commands entered to MCX to be displayed on the screen for editing of one line and resending of that line.

RUn [program [program parameters]]
Allows user to run a program with out exiting
$M C X$. Useful for editing include files and reviewing LOg files.

1) Display the last 10 commands entered to MCX and position cursor below the last line displayed.

MCX: 1
---Requests---
Set mode octal
Set results off
BLOCK AI ($1,1,160$) !
READ
INCLUDE BEGIN:AH:AH
SYS STAT
READ
\READ (5,1,177)!
READ
Set re on
\ll Cursor positioned at this line
2) Display the last line entered only and position the cursor at that line.

MCX: //
---Requests---
SET RE ON

* < Cursor positioned at this line

MCX Command Stack Examples Continued

3) Display the last 5 lines entered to MCX, and position the cursor at the first line displayed.
MCX : //////N or MCX: /5
---Requests---
SYS STAT << Cursor positioned at this line READ
委READ (5,1,177) !
READ
SET RE ON

MCX: CLEAR
HP-IB device clear sent.
MCX: S S
System status:
No results or port data available.
MCX: DI(6,1,4)!
No error: result data:
1: 00000
MCX: DO(6,1,4) 1111 !
No error; no results returned.
MCX: RDO $(6,1,4)$!
No error; result data:
1: $\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$
MCX: /
-- -Requests- -
CLEAR
S S
$\mathrm{DI}(6,1,4)$!
DO(6,1,4) 1111 !
RDO(6,1,4)!
MCX: RAM!
No Error; resúlt data:
1: 14916
MCX: RAM
line sent
MCX: !
No error; result data:
1: 14916
MCX: ECHO(5) 1,2 3;4, , ,5!
No error; result data:
1: $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$ 5
MCX: CARDS

Box 0			
Slot	Card	InOut 8	Relay output
7	Digital output		16
6	Multifunction	16	16
5	Multifunction	16	16
4	DAC		4
3	Highlevel mux	32	
2	Lowlevel mux	32	
1	High speed ADC	16	

MCX: $\operatorname{DIM}(100,10,100)$!
No error; no results returned.
MCX: $\operatorname{IN}(B 1)$ ECHO(10) 1,2,3,4,5,6,7,8,9,10 !
No error; no results returned.
MCX: REW(B1) OUT(B1) IN(B0) ECHO(10)!
No error; result data:

1:	1	2	3	4	5	6	7	8
$9:$	9	10						

MCX: V1=1 REP(10) B0(V1)=V1 V1=V1+1 NEXT !
No error; no results returned.
MCX: V1=1 REP(10) B0(V1)=V1 V1=V1+1 NEXT SKIP (B0,10)!
No error; result data:

1:	1	2	3	4	5	6	7	8
$9:$	9	10						

MCX: RANGE(2,16) $1000 \operatorname{CLB}(2) \operatorname{REW}(B 1) \operatorname{IN}(B 1) \operatorname{AIT}(2,16)$!
No error; no results returned.
MCX R B 11
Buffer data: buffer \# 1 first 1 items:
1: 240
MCX: $\operatorname{AIT}(2,16)$!
No error; result data:
1: 240
MCl． 60 बतल MCX WNकTRU世TR\＆कURE
T．
A，What $=$ M\％ $\% 0 ?$

A．ABGTG output From a program running in the howe computem（क世木 ExAmplem Pragham in handouta）

T．Mएi ME / m
A，कetting Etanterआ \％．

A．Gommand 3 ave
cee handoutc for each inctaucton
a．Eलम
or \quad ：
：．，RM
d．र世काढ
e． E Y
F ：क世 \％OK
9．民もLOせK
e，Gommand a utax\％T．．．
a momand mame we handoute Tor attadis
：Commano parameter group
©，Deltimitom
d，Jn＂－ane data
e Extended command parameter group
F：（BANG）Ta世k terminator
 St．De
a．Point：
a，bT \cdots bigital input
b．DO－－Dfoital output
． Fi El m
a，$\overline{\mathrm{F}} \mathrm{T}$ … ield imputW，FO \cdots Fiele output
\％，Wutput register：S．W\％：
a．RDO … Read aigitad output
？：RFO … Reod Fielo output

```
        4. Wxamp%%% ... =1.de%
        @ณ%:
    C, Bawi" amajog commances
    1. maolog output कee handoute
    a, vo -- voltage output, in milutivolta
    B, पठ -.. Gumremt 0utput, in m, Crommperes
    e, mпo#og input
    a, Fowmbamt of evente Fow Amatog Tmput
    b, Determbme ramoe of mhammed
    *. Get gain
        A) Got RANGE (For MUX cord); AON (optamal for ADO)
```



```
        d, Ganibrate usbng Cl.# command
        *, Yodtage Input
            A) AT... rerurne min#ivogts
        *"% AMM\cdots retumme microvolt:
Optionay ( उ) ATR". return% HP {000 read format
Materimb / 4) ATC.. returne row format, integer paire
```



```
        %... %nc; f uणo!t umite
```



```
    बाल%
    A, Flow of evemts usimg Host womputer progrom (not MaX)
    %...%
```



```
    4, Proghom is exemuteo im most momputep
```



```
        STwamgs are MCl/50 commonds t0 %ew0
```



```
    B, ANtermate Metmod ... MCX
    A, Wmyode MGX
```



```
        b, Use interactivueby
        2, EDET EOMmamG etrang
        3, Tramsper wontwod to command file ushmg TNG|ume ammand
```


©. MCx

A, muokhng … wee quick referemee guide thamdout
2. Syntax

handout

a. Frompt (MलX:)

.. . Ommamds may be aboreviated
3. Qumanad:
S. m

Sane, hamdodt
Gt TDE , handous
का. गफE, heroobs
GLabE, haneout
¢ गणш:
आ木DE, आandout
世 TOE
फा..
documented mux tasks.

Tope w whan may me encountered durdng discussion ot max:

These tophes may be further expounded upon at the diseretant

 For aiseuswion

Tremuded here are sone tabs which may me used por thas purpose. Some exmmphe MCX treks, whilow to the output desired of the lobs, are proviced as reference for the labs,

The coneolette provided with the traindig systen wit moke these mabemuch simplem to mplement:

Dightad output whondo be direwted to mat b with a felo of ponnte trom it to bis.

Anatog output (vortage Output) mhouid be dinected to s.ot 4 , שhommmele a amd/or e to mondtom voltage output on the meters of the consolette,

INTRODUCTION

TO

HP-MCL/50

MEASUREMENT AND CONTROL
LANGUAGE

Features

- Local intelligence with over 100 application-oriented commands
- Real-time operation decoupled from the computer to provide predictable performance
- Multi-task environment
- local storage and execution of compiled tasks
- tasks scheduled by external events or the host computer or time and time interval
- Builtin data reduction and decision making capabilities
- data automatically converted to engineering units
- thermocouple linearization and conversion to ${ }^{\circ} \mathrm{C}$
- arithmetic, boolean, logical operations on user data
- decision making based on both analog and digital limit conditions
- high-level control structures for program branching and looping
- Downloaded HP-1000 FORTRAN or Assembler subroutines for customized data reduction, filtering, and controll algorithms
- Continuous data acquisition up to 50,000 samples per second, with local buffering
- Accurate, hardware-controlled synchronization and pacing of analog and digital inputs and outputs
- Built-in time-of-day clock and watchdog timer for system integrity
- History data acquisition up to 50,000 samples/second
- Flexible management of 28 K bytes of user memory for tasks and data buffers

- Built-in processor self-test
- Computer independent programming for compatibility with a wide variety of computers

Applications

HP-MCL50 allows the user to easily program the 2250 to perform the specific automation tasks required for an application. With HP-MCL/50, the timing of 2250 tasks can be completely decoupled from that of the computer. This leaves the host computer free to perform other operations, thus increasing total system throughput.

Description

HP-MCL/50 is a high level Measurement and Control Language designed for use with the 2250 . With HP MCL 50 , the 2250 is microprogrammed to accept complete tasks from the computer, compile the commands, and then execute those tasks in the real-time environment of the user's system. Tasks may include such functions as periodically gathering a group of measurements, converting the data to engineering units (volts, amps., ${ }^{\circ} \mathrm{C}$), starting a control sequence at a specified time or time interval, and decision-making for closed-loop control. The 2250 is also capable of executing stored FORTRAN digital filtering or control algorithms that were previously compiled and prepared on an HP 1000 computer. All data is transferred in binary format.

The speed of measurements and control operations may be internally or externally paced on a scan or channel level. A high-speed, continuous acquisition mode allows simultane-

ous buffered data gathering and transmission. Multiple tasks may be compiled and stored locally for later execution. Tasks may be scheduled upon interrupt from a function card or on command from another request or task. Other capabilities include history data acquisition, analog offset correction, time-of-day clock, and built-in processor self-test.
The firmware to implement HP-MCL 50° is stored in 16 K words of ROM on the 2250 memory card.

Summary of HP-MCL/50 capabilities

- Analog/digital I/O commands
- Easy to recognize, applications oriented
- Separation of commands and data for convenient updating of output variables
- Programmable analog gains
- Parallel measurement and control operations
- User selectable computer data formats
- Synchronizing, timing, and pacing commands
- Time-of-day clock
- Programmable internal pacing of all function cards
- Synchronizaion with computer or external events
- Built-in application utilities
- Automatic engineering unit conversions
- Thermocouple linearization/conversion to ${ }^{\circ} \mathrm{C}$ (includes reference junction compensation)
- Watchdog timer to determine system integrity
- Application task development/control/ supervision commands
- Looping (REPEAT-NEXT)
- IF...THEN...ELSE structures for decision making
- Analog limit checking ($>,<$, etc.)
- Flexible internal buffer management
- Arithmetic capabilities:,,$+- \times, \div$
- Logical and Boolean operations AND, NOT, XOR, etc.
- Bit manipulation routines
- Multi-task capabilities

Local storage of compiled tasks task execution initiated by:

- HP-MCL50 GOSUB command
- External interrupt (from function card or computer)
- Automatic background task scheduling
- Watchdog timer alarm
- Optional execution of customized downloaded FORTRAN subroutines
- For data reduction, filtering and digital control algorithms
- Callable from HP-MCL50 task
- Includes library calls such as $\operatorname{SORT}(X)$ and $\operatorname{SIN}(X)$
- FORTRAN or HP 1000 ASSEMBLY LANGUAGE
- Computation using real numbers
- System level control and data handling structures
- Optional user defined variables and buffers
- Direct access to variables/buffers from the host computer, for updating control values without affecting the current task
- Multiple communications ports for complex data handling applications (memory exchange)
- Hardware configuration, status, control, test, and verification commands

- Flexible error handling and recovery

Summary of HP-MCL/50 commands

Command and Description

- AAVERAGE

ABORT

- Al
- AIC
- AID
- AIM
- AIR
- AIT

AND

- AOFF
- AON
- BLOCK

CALL

- CASE

CBUFFER CCONTROL CFN

- CLB

CLR CMP CNUM
-CO CONVERT COUNT

- CPACE
- CTIMER CTL DCOUNT
- DI
- DIMENSION
-DO DREAD DWRITE EFCN
- ECHO

EOFF EON EXECUTE

- EXIT FCI
- FI
- FO
- GAIN GOSUB
-GOTO
- ID
- IF
- IN INTERRUPT IOR ITASK
- LABEL MOD
- NTASKS ONERROR
- OUT
- PACE
- PAUSE PCONTROL PNUMBER POC PRATE PRESET
- PTIMER
- RAM
- RANGE
average analog buffer enable task abort
analog input
analog input card format
double word analog input
microvolt analog input
real analog input
read reference temperature
bit masking operator
autorange off
autorange on
permit multiple reading from one point
call subroutine
multi-path branching
declare CONVERT data source and destination
counter card control
counter card configuration
calibrate analog input
clear bit logical operator
logical bit complement operator
set counter card average mode
output analog current
convert raw data to engineering units
read multifunction card counter
set channel mode pacing
clear task timer
write card configuration register
read double word count
read digital input point
declare variables and buffers digital point output
double word read from register
double word write to register
counter card configuration
verify communications
disable immediate-execute mode
resume normal execution of commands
trigger delayed data transfer
exit a repeat loop
function card interrupt
read digital input field
digital field output
set analog gain
run subtask
unconditional branch
MCU and function card identification
relational branching
store define where input is to go
enable or disable function card interrupt
bit masking operator
assign interrupt handling task
program control label
remaindering operator define number of tasks
go to LABEL upon error
take output data from specified location
set scan mode pacing

suspend task

pulse channel control
set pulse number
pulse channel configuration
pulse rate configuration
preset multifunction card counters
pause for task timer
read amount of available memory
set analog range

Command	nd Description	- SCLOCK	set clock
RBIT	read card register bits	SENSE	define interrupt transition sense
RCFN	read counter card configuration	SKIP	set bit logical operator
- RCLOCK	read time of day clock	SOVERRIDE	override transition sense for interrupts
RCNUM	read counter card average	- SRQ	request service from computer
$\begin{aligned} & \text { RCOUNT } \\ & \text { RCS } \end{aligned}$	read single word count with re-start read card status	- START	schedule task
RDCOUNT	read double word count with re-start	- STOP	stop task
- RDO	read digital output configuration	- SYN - TASK	system normalize define resident task
READ	single word read	- TTEMP	read thermocouples
- REF - RELEASE	read and set reference temperature release stored data to port	TRANSFER	set up for input or output of unchanged data
- REPEAT	repeat a sequence of commands	TSTAT	thermocouple reference temperature
- RESET	system reset	- Vo	output integer voltage
- RFO	rewind buffer read digital output field configur	- WATCHDOG	set watchdog timer
- RGAIN	read analog gain	WBIT	write card register bits
RINTERRUPT	read interrupt configuration	WEXT	wait for external strobe
ROLL	set multifunction counter rollover	WNOW	wait now
ROT	logical rotate operator	WPOINT	㖪ait for pace pulse
RPRESET	read multifunction counter preset	WRITE	single word write
RPREM	read number of remaining pulses	- WTIMER	wait for task timer
- RTIMER		XOR	bit masking operator

HP-MCL/50 Example

```
PACE (1, 20,.0)
IN(B1)
WEXT; AI(1,1,16)
REPEAT (0)
    REWIND (B1); IN(B1)
    WPACE
    Al(1,1,16)
    IN(B2); JTEMP(1,17)
    RCLOCK
    CALL GRAD(B1,B2)
    RELEASE(B2,A)
    IF B2(1) < 2000 THEN
        V2 = B2(1) - V1
        V2 = V2/12
        OUT(V2); CO(5,1)
    ELSE
        DO(6,1,4) 1,1,1,1
        SRQ(1)
        GOTO(5)
    ENDIF
    IF V9=1 THEN EXIT
    ENDIF
NEXT
LABEL(5)
GOSUB(3)
START(4)!
```

Set Internal Pacer $=1.020000 \mathrm{sec}$.
Place data in buffer B1.
Synchronize with an external trigger, using a dummy READ.
Repeat indefinitely.
Prepare buffer for data.
Wait for internal pace signal.
Store 16 analog inputs (pressures) in B1.
Read temp. from J-type thermocouple and
Read time-of-day clock into Buffer B2.
Call downloaded FORTRAN pressure gradient routine and put coefficients into B2.
Return temperature, time-of-day and gradient coefficients to the computer using 2250 Port A.

Limit check temperature - if $<200^{\circ}$ then compute a new valve position and output the current (mA.) stored in V2.
If $>=200$ then turn on 4 display lights. Alert the computer of the Alarm Condition by sending an interrupt \#1.

Goto Label (5).

Watch for computer to terminate the task by asynchronously setting $\vee 9$ to 1. Then exit to LABEL(5).

Run shutdown task 3 immediately.
Schedule background monitoring task \#4.

TASK CONTROL

SPECIFY NUMBER OF TASKS

NTASKS (maxnum ,maxlinks)
maxnum - number of resident tasks
maxlinks - number of interrupt tasks

DEFINE A RESIDENT TASK

TASK (task number[, priority[, type]])
task number number that the task will be referenced with.
priority determines the execution priority of the task. Lower the number the higher the priority. (default is 99)
type $\quad 0=$ no special characteristics. (default) $1=$ task will execute upon auto restart.

START (tAsk number)
SCHEDULES A TASK FOR EXECUTION

STOP [(task number)]
unschedules a task

2250 COMMAND SYNTAX

AI (1,2,3); VO[5,3,2) 100,200 (5,3,2) 300,400!

AI $(1,2,3) ; \underline{V O}(5,3,2) 100,200(5,3,2) 300,400!$

All MCL commands start with a command name, with some commands consisting of the name and nothing else.

The 2250 accepts upper case or lower case letters, and requires only the first three of those letters.

Commands that are documented as having only two letters, however, must be written as specified (such as the DI and VO commands).

Legal Characters and Delimiters

Illegal Characters

```
" $ & . ? @ \ 0 v 1 ~
```

Nonprinting control characters (except CR and LF)

Numbers and Their Formats

```
Numbers sent to the 2250 primary address must be integer with
character type ASCII.
```

Any fixed point numbers will be rounded to the nearest integer value $(3.5=4$ and $3.4=3)$ and floating point numbers (3.5E3) will not be accepted.

Numbers sent to any secondary addresses must be formatted in $2^{\prime} s$ compliment binary integer.

Numbers returned from the primary or secondary addresses are generally $2^{\circ} s$ compliment binary integer.

The AIR command will return HP 1000 real-formatted data. These values can be read from the primary or secondary addresses using unformatted FORTRAN READ statements into a real variable.

AI (1,2,3); VO (5,3,2) $100,200(5,3,2) 300,400$!

Command parameters can be, for example, the slot number, starting channel, and number of channels of an input or output command, or the hours, seconds and milliseconds of a timing command.

The command parameter string must follow the command name (except for extendable commands), and must be enclosed in parentheses, brackets, or braces.

Most command parameters must be constants except where the command description states differently.

Delimitors are required between parameters (commas are used for legibility).

Some parameters are optional and therefore may be ommitted. The command description will state the default value for the parameter.

AI (1,2,3); VO(5,3,2) $100,200(5,3,2) 300,400!$

Legal delimeters are: ([\{)] \} * ; blank

In most cases, multiple general purpose delimitors may be used any number of times, except between letters of command names or between digits of a data item. The 2250 will store the extra delimitors into the main task buffer, but will throw them out at compilation time.

Example:
Legal:
AI (1, 2, 3)
AI ($1,2,3$): :: : : AI ($2,1,2$)
AI ($\left.\begin{array}{lll}1 & 2 & 3\end{array}\right)$
AI (1,,,, 3:::::3)

Illegal:
A $\operatorname{I}(1,2,3)$
AI ($(1,2,3))$

AI $(1,2,3) ; \operatorname{VO}(5,3,2) \underline{100,200}(5,3,2) \underline{300,400}!$

If a command directs the 2250 to put signals on output channels, the signal data can be sent in the form of in-line data items appended to the command.

Data items must have delimiters between them. Commas or blanks will do, but commas are more legible.

No delimiter is required after the parameter string (5, 3, 2) because the closing parenthesis is recognized as a delimiter.

Extendable Commands

AI $(1,2,3) ; \operatorname{VO}(5,3,2) 100,200(5,3,2) 300,400!$

Many MCL commands are extendable, meaning that when a command is to be used again for a different slot or channel and they are not sequential, for example, the command parameter group and data can be specified without providing the command again.

The above example shows two voltages output to slot 5 , channels 3 and 4. The first voltage output is 100 and 200 millivolts. The second voltage output is 300 and 400 millivolts.

The commands could have been provided as follows:

Vo (5,3,2)100,200; Vo (5,3,2) 300,400

Extendable commands can be extended indefinitely and there is no limit to the number of extensions acceptable after a command name, as long as no other command name intervenes.

Extendable commands are faster and occupy less memory; therefore, the extended form of the command is the preferred form.

Task Terminator

AI (1,2,3); Vo (5,3,2) $100,200(5,3,2) 300,400!$

The task terminator (sometimes referred to as "The BȦN") marks the end of every task. The 2250 starts compiling the task as soon as it receives the terminator.

The BANG must be the last significant character of a task sent to the 2250. Blanks and control characters (CR and LF) are not significant. The EOI signal must be set true to indicate that the message has been completed.

The HP 1000 will assert the EOI line automatically. Desktop computers, however, must use the EOI command to direct the desktop to assert the EOI line after the 2250 message has been sent.

If there are two tasks with terminators in one data message, the 2250 will accept the entire message, but will compile and run only the task preceding the first terminator.

EXAMPLE:

$\operatorname{AI}(1,2,3) ; \operatorname{VO}(5,3,2) 100,200!\operatorname{VO}(5,3,2) 300,400!$
EOI Asserted
Everything before the first BANG is compiled and executed, and
everything between the first and last BANG will not be compiled at
all.

COMMAND MODFIERS

Command modifiers change the meaning of parameters or the manner in which a command executes.

EXAMPLE:

Al $[1,2,3) \quad$ reads channels 2,3 , and 4 .
Number of sequential channels
Starting channel number
BLOCK: AI $(1,2,3)$ reads channel 2 , three times. \uparrow Number of readings for the channel Channel number to read

EXAMPLE:

BLOCK: AI (1, 2, 12); AI (1, 4, 12)

 reads channel 2 , twelve times \& read channels 4 through 15.
TRANSMISSION TERMINATION

- ! "the Bang" marks the end of a task
- CR and LF are not significant
- EOI must be set true to indicate the completion of the message
- HP 1000 asserts EOI automatically
- Desktops must be programmed to assert the EOI command. This does not happen automatically.

GETTING STARTED WITH MCL

Use the ECHO command to verify communications on the interface bus.
ECHO (number of items) item1, item2, ... itemn
Use the command ID to verify what types of function cards are present in the 2250 system.
ID (starting slot [, number of slots]]

Use command RAM to return the amount of user memory remaining for compiling tasks and storing tasks and data.
RAM

Use the command RESET to initialize the 2250 by executing the self-test and resetting the state of the function cards to their power-on state.
RESET

Use the command SYN to deliver a normalize signal to all function cards, and therefore set all cards to their power-on condition.
SYN

Use the SCLOCK and RCLOCK commands to set and read the time of day clock.
SCLOCK (hours[, seconds[, milliseconds]]) RCLOCK

basic IIgital Commañs

Read sequential single point digital inputs.
미 (start slot, start point, [,number of points])

Write the least significant bit of output data to sequential single point digital outputs.

DO [start slot, start point, [number of points])

Read sequential 16 point fields of digital input.
Fl [start slot, start field [,number of fields]]

Write sequential fields of 16 digital output data.
FO [start slot, start field [,number of fields])

BASIC DIGITAL COMMANDS
 [Continued]

Read current output state of sequential points.
RDO [start slot, start point [,number of points]]

Read current output state of sequential fields.
RFO [start slot, start field [,number of fields]]

DIGITAL POINTS AND FIELDS

External System of Digital Inputs or Outputs

Point Number>	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Bit Number >	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

1 Field of 16 Points

BINARY
0000000001101111

$$
\begin{aligned}
& \frac{\text { OCTAL }}{157} \\
& \frac{\text { DECIMAL }}{111}
\end{aligned}
$$

2250DIIITAL//OEXAMPLES

1) To set points 1 and 16 in slot 6 of MCU \varnothing

DO (6,1) 1; DO(6,16) 1 !
or
$D 0(6,1) 1(6,16) 1$!
or
FO $(6,1) \%$ \% 100001 !
2) To determine the state of points 17-24 of a digital input card in slot 7 of MCU 1

DI ($15,17,8$) ! or
Fl $(15,2) \quad$!
3) To read the state of digital points for the 25511A in slots 1-3 and for the 25516A in slot 4 of MCU 7

DI $(57,1,112)$! (uses 112 words of memory) or
Fl $(57,1,7) \quad!\quad$ (uses 7 words of memory)

READ ANALOG INPUT

Al (start slot, start channel, [\# of channels])
Return voltages from the specified channels in millivolts.

AIM (start slot, start channel [,\# of channels])
Return voltages from the specified channels in microvolts.

AIR (start slot, start channel [,\# of channels])
Return voltages from the specified channels in HP 1000 Real Format.

AAV (firs tword, numwords, average)
Computes the average of two or more single word input readings (AI, AIM, T TEMP, or AIT) and stores that average in the variable average.

READ ANALOG INPUT (continued)

AID (start slot, start channel, [,\# of channels]) (useful for high accuracy and large magnitude voltages) Return voltages from the specified channels in integer pairs.
Word $1 \quad$ Voltage in units of 25 millivolts

$$
\text { Word } 2 \text { Remainder in units of } 1 \text { microvolts }
$$

VOLTS = WORD 1 * 25000 + WORD 2 microvolts

READ ANALOG INPUT

(continued)

AIC (start slot, start channel [\# of channels])
Return voltages in raw card format from the specified channels in integer pairs.

Bit $7=1$ if out of range

Word 2 \begin{tabular}{l}
(reserved for future)

| LSB's of Data | | | ADC Gain |
| :--- | :--- | :--- | :--- |

\hline

\hline
\end{tabular}

$\mathrm{N}=$ IAND (17B, ISHFT (Word2, -3)
$M=$ IAND (7B, WORD2)
VOLTS $=\left(\right.$ WORD1* $256.0+\operatorname{ISHFT}(\text { WORD2,-8) })^{*}\left(0.5^{* *}(\mathrm{~N}+1)\right)^{*}\left(0.1^{* *} \mathrm{M}\right)$

ANALOG INPUT

SET ANALOG RANGE

RANGE (start slot, start chan. [,\# of channels]) range 1 . . . rangen
Setting the range amounts to setting the range of each input channel (in millivolts) to the highest level you expect to encounter on that channel.

GAIN (start slot, start chan. [,\# of channels]) gaincode 1...gaincode n.
Setting analog input gain for a given input voltage range.

RGAIN (start slot, start chan. [,\# of channels]) will read the current setting of analog gain.

$$
" 1250 "
$$

Analog Input Function Card	MUX Gain	Input Ranges (Volts)			
HP 22501A 16-Channel High-Speed ADC	-	1.25	2.5	5.0	10.0
HP 22502A 32-Channel High-Level MUX	1.0	1.25	2.5	5.0	10.0
HP 22503A 32-Channel Low-Level MUX	100.	0.0125	0.025	0.05	0.1
	10.	0.125	0.25	0.5	1.0
	1.0	1.25	2.5	5.0	10.0
HP 22504A 16-Channel Relay MUX	100.	0.0125	0.025	0.05	0.1
	10.	0.125	0.25	0.5	1.0
	1.0	1.25	2.5	5.0	10.0
	0.1	12.5	25.0	50.00	100.0
ADC gain for each range shown above		8	4	2	1

DIRECT ANALOG INPUT

GAIN (start slot, start channel, L, \# of channels」) gaincode1...gaincoden

Using the gain code allows you to directly program one or several channels to specified gain or to autorange one or several channels. This command applies to any MUX or ADC card.

The GAIN command is faster than the RANGE command and uses less memory than the RANGE command, but is not as convenient as the ANGE command from a programmers point of view.

All error checking is done for RANGE at compile time but not for the GAIN command.

ANALOG INPUT RANGES AND GAIN CODES

CALIBRATE
 ANALOG INPUT
 (0) - whole
 CLB (slot number of ADC or MUX card)

The calibrate command updates the correction factors for all input channels on the specified card and stores the calibration constants into 2250 memory.

CLB (0) will calibrate all analog input channels.
It is a good idea to issue the CLB command about every 15 minutes for high accuracy. Issue it immediately before taking a reading at maximum accuracy.

Autorange all ADC channels on the ADC card and for any multiplexer that uses the ADC card, regardless of the programmed gain.

AON allows the ADC to change its gain to 1, 2, 4, or 8 .
The RANGE command affects the gain of the ADC and MUX cards, while the AON command affects only the ADC gain, i.e. MUX cards don't autorange.

AOFF (slot number of ADC card) will cancel ADC autoranging.

ANALOG OUTPUT COMMANDS

Voltage Out
VO (start slot, start channel [,\# channels]) mvolts1,...,mvoltsn

Current Out

CO (start slot, start channel [,\# channels]) uamps1,...,uampsn

READING TEMPERATURES

Before using any of the thermocouple temperature reading commands, you must first establish a reference temperature with either the REF or TREF command.

REF (slot, channel)

Establishes the reference temperature for all thermocouples connected to the same isothermal block.

TREF (temperature in tenths of a degree Celcius)
If using a known reference temperature from an ice-bath oroven, use the TREF command to establish the temperature.

You may have to issue the REF command more than once, as each isothermal block has room for only 15 connections.

AIT (slot, channel)
Reads the TRC reference output in tenths of a degree Celcius.

READING TEMPERATURES (continued)

$$
\begin{aligned}
& \text { xTEMP (start slot, start channel [,\# of channels]) } \\
& \qquad x=B, E, J, K, R, S \text {, or } T
\end{aligned}
$$

The commands perform linerarization of thermocouple readings, returning the temperatures in tenths of a degree Celcius.

The last temperature set with the REF or TREF command determines the reference temperature used by the linearization routines.

READINGS WITH NO PACING

READINGS WITH PACING

NON-PACED READINGS \rightarrow NOISE OFFSET
PACED READINGS \rightarrow NOISE CAN BE AVERAGED OUT

BY USING AVERAGING, NOISE IS REDUCED BY $1 / \sqrt{N}$ WHERE $N=$ NUMBER OF READINGS
[USE PACING WHEN AVERAGING READINGS]

VARIABLE AND BUFFER NAMES

Variable Names

Vn $n=a$ number equal to or less than the number of variables declared in the DIM command.

Buffer Names

Bn $\quad n=a$ buffer number within the declared DIM command limit.
$B V m \quad V m=$ an $M C L$ variable containing the number n.

INITIALIZING BUFFERS AND VARIABLES DIMENSION COMMAND

DIM [(\#variables, \#buffers, buffer size [.,.buffern size]]]

Clears and reconfigures user memory, sets the number of variables available, an declares the number of buffers and their size
\# variables ≥ 10

ECHO IS A GOOD WAY TO INITIALIZE BUFFERS $\operatorname{IN}\left(B_{3}\right)$ ECHO (5) $1,2,3,4,5$!
INITALIZES THE FIRST FIVE WORDS OF BY to 1,2,3,4,5 Respectively

DIMENSION COMMAND EXAMPLES

1) DIM !

Define 10 variables and no buffers.

2) DIM $(20,10,100,100,10)$!

Allocates memory for 20 variables, and 10 buffers. Buffers 1 and 2 will be 100 words each, and buffers 3 through 10 will be 10 words each.

3) $\operatorname{DIM}(5,10,10)$!

Will not compile and will return a compile error of 2 . Why?

4) DIM (0) !

What will this task do?

BUFFER MANAGEMENT COMMANDS

REWIND

Moves the current location pointer back to the start of the buffer (location zero). The buffer will not be cleared.

SKIP

Moves the current location pointer past the specified number of words in the specified buffer.

RELEASE
 Releases the buffer contents to a port for transmission to the host computer.

IN
Data for the following input commands will be read from the measurement cards and written into the specified buffer.

OUT
Date for the following output commands will be read from the specified buffer and written to the addressed measurement cards, unless in-line data is appended to the command.

BUFFER INDEXING

Bk(i)$\mathrm{i}=\mathrm{a}$ number which, when added to the position of the buffer IN/OUT pointer, references a buffer element within the bounds set by the DIM command.

BVK[i] $\quad \mathrm{kk}=$ an MCL variable containing buffer number k .

Bk[V])
$\mathrm{Vj}=\mathrm{a}$ variable containing index number
Or BVk(Vi])

BUFFER POINTERS AND INDEX NUMBERS

Buffer state after a DIM REWIND, or RELEASE command.

Buffer n

Pointer \rightarrow| Word 1 | $\operatorname{Bn}(-3)$ |
| :---: | :---: |
| Word 2 | $\operatorname{Bn}(-2)$ |
| Word 3 | $\operatorname{Bn}(-1)$ |
| Word 4 | $\operatorname{Bn}(0)$ |
| Word 5 | $\operatorname{Bn}(1)$ |
| \vdots | \vdots |
| \vdots | \vdots |
| Word n | $\operatorname{Bn}(\mathrm{n}-4)$ |

Buffer state after an IN or OUT of 4 words

BUFFER MANAGEMENT EXAMPLES

Assume DIM $(10,10,100,10)$ for examples 1 through 4.

1) REWIND (B1)

IN (B1) AI $(6,1,16) \quad$ Read 16 voltages into buffer 1 RELEASE ($\mathrm{B} 1, \mathrm{~A}$) ! Release the buffer to port A
2) $\mathbb{N}($ V1)

Read 5 voltages into variables
AI $(6,1,5)$!
1 through 5.
3) \mathbb{N} (V5)

RCLOCK! What will happen?
4) REWIND (B2)
in (V1)
A run-time error of 27 will occur.
AI $(6,1,5)$
B2(1) $=\mathrm{V}_{1}$
$\mathrm{B} 2(2)=\mathrm{V} 2$
$\mathrm{B} 2(3)=\mathrm{V} 3$ Why?

B2(4) $=V_{4}$
RELEASE (B2,D) !

BUFFER "GOTTCHAS"

1. Buffer indexing is relative to current buffer position.
2. Be careful converting analog output from buffers. OUT (B1)
vo $(4,1,3)$
REWIND (BT) convers data to internal format before doing output

VO $(4,1,3) —$ gets error - data in wrong format
OUT (B1)
VO $(4,1,3)$
REWIND (BT)
TRANS VO $(4,1,3)$ no conversion, so OK
3. Buffer must be twice as large to do an Al IN (B1)
Al $(1,1,2)$
$B 7$

V_{m}	$\mathrm{V}_{\mathrm{m}_{1}}$	X
converted	X	

4. RCLOCK modifies 6 words in the buffer, although it returns 4 words.

ARITHMETIC AND LOGICAL OPERATIONS

In MCL tasks, arithmetic and logical operations can be performed on data contained in MCL variables or indexed buffer elements

Result $=$ Operand1 operator Operand2

+ Add operand1 to operand2
- \quad Subtract operand2 from operand1
* Multiply operand1 by operand2
/ Divide operand1 by operand2

AND Bit-by-bit logical "and"
IOR Bit-by-bit inclusive "or"
XOR Bit-by-bit exclusive "or"
ROT Rotate operand1 left or right by operand2 value
BIT Obtain operand1 bit value specified by operand2
SET Result becomes operand1 value with bit \#operand2 set to 1
CLR Result becomes operand2 value with bit \#operand2 cleared to 0
CMP Bit-by-bit logical complement of operand2 (16 bit 1's complement) yo, ar- 2,4
NOT Complement of Isb in operand2 and set all other bits to 0
MOD Remainder of integer divide of operand1 by operand2

CONTROL STRUCTURES

The MCL/50 firmware allows setting up control structures that branch (or loop) depending on arithmetic comparisons, a test for HP-IB trigger, or tests of external conditions.

IF operand1 relation operand2[THEN]*** [ELSE ***] ENDIF CASE operand (\#, label) ... (\#, label)

GOTO (label \#)

LABEL (label \#)
REPEAT (\#times) *** NEXT EXIT

CONTROL STRUCTURE EXAMPLES

1) Copy buffer 2 to buffer 1

V1 = 1
REPEAT (100)
$\mathrm{B} 1(\mathrm{~V} 1)=\mathrm{B} 2(\mathrm{~V} 1)$
$\mathrm{V} 1=\mathrm{V} 1+1$
NEXT
!
2) Constantly test the current state of digital input point 16 in slot 5 . If set to 1 , then set channels 1 through 8 of the digital output card in slot 7.
REPEAT(0)
$\operatorname{IN}(V 1) \mathrm{D}(5,16)$
IF V1 = 1
THEN
DO(7,1,8) 11111111
GOTO (9999)
ELSE
ENDIF
NEXT
LABEL (9999)
!

CONTROL STRUCTURE

EXAMPLES (continued)

3) Assume variable 10 (V10) is a flag set by either the host computer or a previous task such that the value of the flag signifies what type operation should be performed by the task. V10 will be set as follows:
-1 Take no action
Wait for a value
1 Set bit 1 of digital output card in slot 7
2 Set bit 2 of digital output card in slot 7
3 Set bits 17-25 of digital out card in slot 7
>3 Error condition
```
LABEL (10)
IF V10 =0
    THEN GOTO (10)
    ELSE
    IF V.10=-1
        THEN GOTO (9999)
        ELSE
        |F V10 = 1
            THEN DO(7,1) 1 GOTO (9999)
            ELSE
            |F V10 = 2
                THEN DO (7,2) 1 GOTO (9999)
            ELSE
            IF V10 = 3
                THEN FO(7,2) %777 GOTO(9999)
                    ELSE
                        V1 = -1
                ENDIF
            ENDIF
            ENDIF
            ENDIF
ENDIF
LABEL(9999)
    V10 = 0
!
```


CONTROL STRUCTURE EXAMPLES armana

```
LABEL (10)
CASE V10 (0,10) (-1,9999) (1,100) (2,200) (3,300)
GOTO (8888)
    LABEL (100) DO(7,1) 1 GOTO (9999)
    LABEL (200) DO(7,2) 1 GOTO (9999)
    LABEL (300) FO(7,2) %777 GOTO (9999)
LABEL (8888)
    V1 = -1
LABEL(9999)
    VIO=0
!
```


NESTING OF CONTROL STRUCTURES

Nesting is allowed up to 10 levels and each control construct must completely contain any higher level nesting.

Legal Nesting

$$
\begin{gathered}
\text { IF VI }=\mathrm{V} 2 \text { THEN REPEAT (10) ... NEXT ELSE REPEAT (10) ...NEXT ENDIF } \\
\mid \text {-Second Level-| } \mid \text { Second Level- } \mid
\end{gathered}
$$

IF V1=V2 THEN IF V2=V3 THEN REPEAT (10) ... NEXT ENDIF ENDIF
\mid-Third Level-|

Illegal Nesting

REPEAT (5) ... IF V1=V2 THEN ... NEXT ... ENDIF

BUS TRIGGER FLAG (BT)

The bus trigger flag BT is accessible for testing only by the IF command. The flag will read " 1 " if the host computer has sent a trigger message.

EXAMPLE:

LABEL (1)
IF BT <> 1 Test if trigger sent from host computer.
GOTO (1) If not set, loop and test again.
ENDIF
AI $(1,1,16)$ When flag is set, take analog reading.

PACING

PACING

Pacing provides the user with a way to accurately space a series of I/O operations.

Pacing Interval

Pacing Timer Round Off Value

$0 \mathrm{~ms}-65.5 \mathrm{~ms}$		2 us
$65.5 \mathrm{~ms}-327 \mathrm{~ms}$	-	10 us
$327 \mathrm{~ms}-3.27 \mathrm{~ms}$	100 us	
3.27 s	-32.7 s	1 ms
32.7 s	-327 s	-
327 s	-819 s	
		25 ms

MODES OF PACING

SCAN MODE

Execute I/O at free run speed upon each pace pulse.

CHANNEL MODE

SET AND ACTIVATE SCAN MODE PACING PACE \& WPACE

PACE (seconds [,milliseconds [,microseconds]]) WPACE

PACE sets up scan mode pacing, while WPACE (wait for pace) causes the next I/O operation to delay until pace pulse is encountered.

EXAMPLES OF SCAN MODE PACING

\author{

1) $\operatorname{TASK}(1)$
 PACE $(0,500,0)$
 REPEAT (5)
 WPACE
 AI $(1,1,5)$
 NEXT
 !
}
WPACE
500 ms

Pacing

Read channels 1-5 upon each pace pulse at free run speed.

SET AND ACTIVATE CHANNEL MODE PACING CPACE \& WPACE

CPACE (seconds [,milliseconds [,microseconds]]) WPACE

CPACE and WPACE work just like scan mode pacing, except:
CPACE sets up pacing time for channel mode. Therefore, all I/O will execute on a pace pulse.

EXAMPLES OF CHANNEL MODE PACING

1) TASK (1)
 CPACE $(0,500)$ BLOCK
 WPACE
 $$
\mathrm{Al}(1,1,10)
$$
 !

Execute 10 analog readings at channel 1; each per pace pulse.

ANALOG INPUT
DIMENSION
IN()
GAIN()
LB()
CPACE ()
REF ()
WACE
BLOCK; \times TEMP () ${ }^{\circ}$
ADV ()

This is a standard format for making analog inputs.

- Substitute an appropriate analog command here.

AVERAGIN

SET GAIN
 CALIBRATE
 USE PACING
 AVERAGE READINGS

EXAMPLE:

DIM $(10,1,200)$
in (B)
GAIN $(2,1) 124$
CLB (2)
CPACE $(0,0,22)$
WPACE
BLOCK
AIM ($2,1,100$)
REW (BI)
AAV ($B 1,100, V I)$

Dimension 10 variables, I Buffer Designate B1 as input buffer
Set gain to lowest range
calibrate ll mux card
SET CHANNEL MODE PACING
TO 22μ SECONDS
WAIT FOR PACE PULSE
TAKE A BLOCK READING ON CHANNEL 1 (IOO TIMES)

REWIND THE BUFFER
TAKE THE AVERAGE OF 100 READINGS in buffer 1. place average in variable 1.

SYSTEM CLOCK

Precision Maximum Interval
8 microseconds
3260 Hours

Commands That Use System Clock

CTIMER	RTIMER
PTIMER	SCLOCK
RCLOCK	WNOW
WTIMER	

SCLOCK (hours [,seconds[,milliseconds]])
Set time-of-day clock
RCLOCK
Read time-of-day clock
CTIMER
Clear resident task elapsed time timer
RTIMER
Read resident task elapsed time timer
WNOW (hours [,seconds,[milliseconds]])
Wait the specified length of time.
PTIMER (hours [, seconds [, milliseconds]])
Pause with timer
WTIMER (hours $[$, seconds \mathcal{L}, milliseconds]\}) Wait for tais timer

PAUSE WITH TIMER

PTIMER (hours [,seconds [,milliseconds]])

WAIT FOR TASK TIMER

WTIMER (hours [,seconds [,milliseconds]])

TASK CONTROL BLOCK

PAUSE COMMAND

PAUSE

Causes a backgroud task to be suspended if other background tasks of equal or higher priority are waiting to execute, or if a main task is waiting to be accepted by the 2250 at the primary address.

WATCHDOG TIMER WATCHDOG (seconds, task number)

The watchdog timer allows you to set a maximum time that communications between the 2250 and the host computer is allowed not to exist.

INTERRUPTS

The 2250 can signal the host computer with.the SRQ message.

There are 2 ways of generating an SRQ.

- Programmatically, with the SRQ command
- In response to an external event, by configuring a function card to interrupt. (And not assigning a resident task to the interrupt.)

BE WARY

SRQ IS:

1) An MCL Command
2) A message sent from the 2250 to the host computer.
and
3) The name of a subroutine, on the HP 1000 , that assigns a service program to the SRQ message.

Will send a service request and put SRQ number in interrupt status.
$0<S R Q$ number ≤ 126
SRQ(0) will not affect interrupt status.
(The host is signaled)

USING THE SRQ COMMAND

SRQ (SR NUMBER)!
Will send a service request and put SRQ number in interrupt status.
$0<S R Q$ number ≤ 126
SRQ(0) will not affect interrupt status. (The host is signaled)

can rot tell how many finns save inti has geared

INTERRUPT STATUS

A read from secondary 4 will return 16 words of interrupt status information.

- The interrupt conditions are returned in ascending numerical order. If an interrupt occurred twice, it will still only be reported once.
- If all sixteen words are nonzero, then you should read interrupt status again. There are probably more interrupt conditions to report.
- Interrupt codes 127 and 128 are used to report fatal errors and card polling errors, respectively.
- Interrupt codes above 128 are used to report function card interrupts.

127- interrupt from a card that is net supposed to generate inter rats 128. If so interrupts have been gemerateor but

$$
M C L
$$

w/ Fortran

SENONG TASKS TO THE 2250

The main task is sent to the 2250 via the HP-IB primary address of the 2250 as an ASCII string

For example, using FORTRAN 4X

FTN4X,L

PROGRAM PACNG
MAC $=22$
WRITE (MAC, 100)
100 FORMAT (
C SET SCAN MODE PACING, ONE SECOND
C PACE INTERVAL
*" PACE (1) "/
*" IN (B2) "/
C REPEAT 100 TIMES, A SCANNED INPUT
C TO 2250 BUFFER 2 OF
C ANALOG AND DIGITAL DATA

*" REPEAT (100)	$" /$
*" WPACE	$" /$
*" AI (1,3,10)	$" /$
*" DI ($5,3,2)$,	$" /$
*" NEXT !	")

END

$$
\begin{aligned}
& \text { WRITE FORTRAN PROGRAM } \\
& \text { SOURCE CODE } \\
& \text { ¢FILE } 1 \\
& \text { RU, EDIT, } 6 \text { FILE } 1 \\
& \text { COMPILE PROGRAM } \\
& \text { RELOCATABLE CODE \%FILE } 1 \\
& \text { RU, FTN 4X, dFILE 1, ,- } \\
& \text { LINK LIBRARIES } \\
& \begin{array}{l}
\text { EXECUTABLE CODE } \\
\text { RU, LOADR, , \% FILE } 1
\end{array} \\
& \text { 'FILE! } \\
& \text { RUN PROGRAM } \\
& \text { RU, PROG1 }
\end{aligned}
$$

SEND MCL COMMANDS

 READ MAIN RESULT BUFFER WRITE OUT RESULTSFTN 4X, L
PROGRAM RESLT
INTEGER STATUS, DATA (16)
$L U=31$
WRITE (LU, 10)
10 FORMAT ("AI $(1,1,16)$!")
READ (LL) STATUS, DATA
WRITE $(1,20)$ DATA
20 FORMAT (8I7/,8I7) STOP
END

SENIING TASKS TO THE 2250

 (continued)Main tasks, in the form of command strings can be constructed by any convenient method, as long as all constants and variables are type"character"so the 2250 receives an ASCll string.

```
FTN4X,L
    PROGRAM DIGIO
    INTEGER POINTS (5)
    CALL RMPAR (POINTS)
    C WRITE DIGITAL DATA TO POINTS 1 THROUGH 5.
    MAC = 22
    WRITE (MAC,100) POINTS
100 FORMAT (" DO (3,1,5)" 517 "!")
\bullet
\bullet
\bullet
END
```


SENDING LONG TASKS

FORTRAN has a formatting buffer of 134 characters for storing the ASCII characters for a WRITE statement. Therefore, when you need to send long tasks to the 2250, you will have to adjust the formatting of the task in one of the following ways:

A) MULTIPLE WRITE AND FORMAT STATEMENTS

	WRITE (MAC,100)
	WRITE (MAC,200)
	WRITE (MAC,300)
	\bullet
	\bullet
	WRITE (MAC, 1000)
100	FORMAT(" TASK(1)")
200	FORMAT(" CLB(1)")
300	FORMAT(" REPEAT (1000)")
	\bullet
	\bullet
1000	FORMAT(" NEXT! ")

SENDING LONG TASKS (continued)

B) USING LINEFEED CHARACTER IN FORMAT STATEMENT

C) INCREASING THE FORMATTERS BUFFER SIZE

```
    INTEGER BUFFER (500)
    CALL LGBUF(BUFFER,500)
    WRITE (MAC,100)
    *" TASK(1)
    * CLB(1)
    * REPEAT(1000)
        \bullet
        \bullet
        .
    * NEXT!")
```

100 FORMAT

OBTAINING RESULTS FROM THE MAIN TASK AND RESULT BUFFER

1) If an error occurred at the 2250 :
or
If no error occurred, but no data to send back: Host Computer -CONDITION CODE -2250
2) If no error occurred and data to be sent back:

Host Computer -CONDITION CODE, DATA1, DATA 2, ...,DATAn -2250

EOl will be asserted by the 2250 upon the last byte of data.

READING THE MAIN RESULT

Using FORTRAN 4X, the result can be read as follows:
0001 FTN4X,L
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

PROGRAM RESLT
INTEGER CCODE,DATA(3)

C SEND TASK TO 2250 TO INPUT DIGITAL DATA FROM SLOT 3,
C CHANNELS 1, 3 AND 5
MAC $=22$
WRITE (MAC,100)
100 FORMAT (" DI(3,1) (3.3) (3.5)!")
C read the condition code and the integer result from the
C PRIMARY ADDRESS USING AN UNFORMATTED READ.
READ (MAC,IOSTAT = ERROR) CCODE,DATA
C CHECK FOR FORTRAN READ ERROR
IF(ERROR.NE.O.AND.ERROR.NE.496) GOTO 9000
C CHECK FOR 2250 ERROR
IF(CCODE.NE.O) THEN
WRITE $(1,200)$ CCODE
FORMAT(" ERROR — CONDITION CODE = " I7)
STOP 1
ELSE
WRITE (1,300) DATA
FORMAT(" DIGITAL POINTS 1, 3, \& $5=$ " 3I7)
STOP 0
ENDIF
C DETERMINE FORTRAN READ ERROR
9000 •
\bullet
\bullet
END

HP 1000 FORTRAN IV OR IVX

Reading Results:
CALL EXEC (1, MAC, IBUF,IBUFL)
CALL ABREG (ISTAT, IIOG)
IBUF - Integer buffer where data will be put. First word will be in 2250 status.
IBUFL - Length of IBUF in words. Should be at least as large as the maximum data you are expecting.
ISTAT — DVR37 status. Ignore this.
ILOG - Actual number of words returned to you in IBUF.

ADDRESS

0

2
3
4
5
6
7
8
ϑ
10
11-14

TYPE

MAIN RESULT BUFFER SYSTEM STATUS WORDS MAIN TASK STATUS RESIDENT TASK STATUS INTERRUPT STATUS WORDS WRITE TO BUFFERS READ BUFFERS WRITE TO VARIABLES READ VARIABLES DOWN-LOADED SUBROUTINES --- ---
READ PORTS A-D

USING SECONDARY ADDRESSING WITH THE 2250

How to read or write secondary information:

FORTRAN 4X

READ (2250lu : secondary address) data buffer
WRITE(2250lu : secondary address) data buffer

FORTRAN IV

CALL SECR (2250lu, secondary address, data buffer, length)
CALL SECW (2250lu, secondary address, data buffer, length)

HP 1000 BASIC

Call SECR (2250lu, secondary address, data buffer, length)
CALL SECRR (2250lu, secondary address, data buffer, length)
CALL SECW (2250lu, secondary address, data buffer, length)

2250 Secondary Addresses and Data Transferred

Address	Function	Data Transferred
0	Read	Main result buffer
1	Read	System status
2	Read	Main task status
3	Write Read	Task number Resident task status
4	Read	Interrupt status
5	Write	Buffer number, number of data items, data items
6	Write Read	Buffer number, number of data items Data items
7	Write	Starting variable, number of variables, data items
8	Write Read	Starting variable, number of variables Data items
9	Write	Down-loaded subroutines
10	--	Not assigned
11-14	Read	Ports A through D

SECONDARY ADDRESSING

Writing to Buffers-Secondary Address 5

Word 1	Buffer number
Word 2	Number of data items to be written to buffer
Word 3	Data item for the first buffer element
Word 4	Data item for the second buffer element
-	
-	

Word $n+2$ Data for the nth buffer element

SECONDARY ADDRESSING WITH BUFFERS AND VARIABLES

EXAMPLES

Assume a FORTRAN integer buffer VAR(100) with values initially of 1 through 20 in words 1 through 20.

1) Write words $1-20$ of buffer VAR to 2250 variables 1 through 20. WRITE (MAC:7, IOSTAT $=$ ERROR $) 1,20$, VAR
2) Write $\operatorname{VAR}(1)$ through $\operatorname{VAR}(10)$ to 2250 variables 10 through 20. WRITE (MAC:7, IOSTAT = ERROR) 10,10, VAR
3) Write the buffer VAR to 2250 buffer 3 that is dimensioned to 100 words WRITE (MAC:5, IOSTAT = ERROR) 3,100,VAR

SECONDARY ADDRESSING

Reading From Buffers-Secondary Address 6

Write Word 1 Buffer number to access.
Word 2 Number of data items to read.

Read Word 1 Contents of first buffer element.
Word 2 Contents of second buffer element.

Word n Contents of last buffer element.

SECONDARY ADDRESSING WITH BUFFERS AND VARIABLES

EXAMPLES
 (continued)

Assume 2250 variables 1 through 20 contain digital data, and buffer 4 (dimensioned to 100 words) contains analog data as a result of an AIR $(6,1,50)$ commard
4) Read variables 1 through 20 into $\operatorname{VAR}(1)$ through $\operatorname{VAR}(20)$. WRITE(MAC:8) 1,20 READ (MAC:8,IOSTAT=ERROR) VAR
5) Read 2250 variables 10 through 20 into $\operatorname{VAR}(1)$ through $\operatorname{VAR}(10)$. WRITE(MAC:8) 10,10 READ (MAC:8,IOSTAT=ERROR) VAR
6) Read, using BASIC, the real analog data in buffer 4.
$I(1)=4$
$I(2)=100$
CALL SECW (MAC,6,I,2)
CALL SECRR (MAC,6,BUFFER,100)

SECONDARY ADDRESSING FOR TRANSFERRING DATA TO AND FROM THE 2250

Writing to Variables-Secondary Address 7
Word 1 Starting variable number to receive first data item
Word 2 Number of sequential variables to receive data
Word 3 First data item for the first variable described by word 1

Word $n+2 \pi$ th data item for the last variable

SECONDARY ADDRESSING FOR TRANSFERRING DATA

Reading From Variables-Secondary Address 8

Write Word 1 Starting variable number Word 2 Number of sequential variables

Read Word 1 Contents of first variable Word 2 Contents of second variable :
Word n Contents of last variable

ACCESSING PORT DATA SECONDARIES

11 THROUGH 14

The RELEASE command makes buffer data available at a port. As soon as the task executes the command, your computer program can find out how many words are available and can read the data.

EXAMPLE:

To release the data to a port
IN (B1); DI(2,1,10); RELEASE (B1,A)
IN (B2); DII(3,1,16); RELEASE (B2,B)

To receive the data in a computer program
INTEgER DATA1(100), DATA2(100),
READ (MAC:11, IOSTAT=ERROR) DATAI
READ (MAC:12, IOSTAT=ERROR) DATA2

HOST COMPUTER / 2250 VARIABLE AND BUFFER FLOW

DOWNLOADED

 SUBROUTINES
DOWNLOADING SUBROUTINES PROCESS OVERVIEW

LINKR COMMANDS

LINKR COMMAND	COMMAND MEANING
ABORT	$\begin{array}{l}\text { Clean up and abort immediately. } \\ \text { Display any unsatisfied externals. } \\ \text { End, if all externals can be satisfied, and } \\ \text { create output file. }\end{array}$
HELP	$\begin{array}{l}\text { Display a command summary. } \\ \text { SIBRARY, filenamr } \\ \text { Search filenamr (multiple passes if } \\ \text { needed) when first MCL command is } \\ \text { given. } \\ \text { MSEARCH, filenamr }\end{array}$
Make this subroutine name accessible to	
the MCL/50 CALL command.	
Perform multiple searches of filenamr to	
satisfy any undefined externals.	
When a library is searched, the sub-	
routine called subroutine name will be	
relocated automatically from the library.	
Good for relocating a subroutine out of a	
file, instead of relocating the entire file.	

RELOC, filenamr

SEARCH, filenamr

satisfy undefined externals.\end{array}\right\}\)

RULES TO FOLLOW WHEN PROGRAMMING

- Subroutine names must be alpha-numeric with first character alphabetic.
- NAM record must declare SUBROUTINE; Not PROGRAM or FUNCTION.
- STOP or PAUSE statements not allowed. Must return control to point of call.
- EXEC calls not allowed, and therefore FORTRAN READ and WRITE statements not allowed.
- Named COMMON allowed but not SYSTEM COMMON.
- Maximum number of parameters allowed to be passed to or from subroutine is 20 .
- When using library functions like SQRT, a 2250 subroutine must be written and linked that performs the actual call to SQRT.

FTN4X,L
SUBROUTINE CHKLM (BUFFIN, SIZE, LOW, HIGH, BUFOUT, ERRCHT)
C ROUTINE TO CHECK THE LIMITS OF VALUES IN A BUFFER OF
C UNKNOWN SIZE.
C
C BUFFIN = NAME OF BUFFER CONTAINING VALUES.
C SIZE = SIZE OF BUFFER IN WORDS.
C LOW = LOWER LIMIT VALUE.
C HIGH = HIGH LIMIT VALUE.
C BUFOUT = BUFFER TO STORE LIMIT INDICATION. $-1=$ BELOW LOWER LIMIT.
$0=$ WITHIN LIMITS.
1 = ABOVE HIGHER LIMIT.
C ERRCNT = VARIABLE CONTAINING NUMBER OF BAD LIMIT VALUES.
INTEGER BUFFIN (SIZE),

* BUFOUT (SIZE),
* ERRCNT,
* LOW,
* HIGH,
* SIZE
$\mathrm{ERRCNT}=0$
DO $1001=1$, SIZE
IF (BUFFIN (I).LT.LOW) THEN
BUFOUT(I) $=-1$
ERRCNT = ERRCNT + 1
ELSE
IF (BUFFIN (I).GT.HIGH) THEN
$\operatorname{BUFOUT}(\mathrm{I})=1$
ERRCNT = ERRCNT + 1
ELSE
$\operatorname{BUFOUT}(I)=0$
ENDIF
ENDIF
100 CONTINUE
RETURN
END

PROCEDURE TO DOWNLOAD A SUBROUTINE TO THE 2250

1. WRITE A FORTRAN SUBROUTINE

FTN $4 X, L$
SUBROUTINE CHKLM (PARMI, PARM2..)
RETURN
2. COMPILE THE SOURCE FILE

RU, FTN4X, ह́CHECK, -
3. CONVERT TO DLD FORMAT (RTE-A ONLY) RU, OLDRE, \% CHECK
4. RUN LINKR ROUTINE TO LINK LIBRARIES TO THE COMPILED FILE
RU, LINKR, , !CHECK, "CHECK
LINKR: LIB, $\#$ QLIB
LIB, MMLIB1
LIB, \#MLIB2
RIB, MMLIB3
PEL, \%CHECK
MCL, CHKLM
END
5. DOWNLOAD INTO THE 2250 (USE FORTRAN

MCX: WR SUB !CHECK
6. CALL SUBROUTINE IN A 2250 TASK
© CALL CHKLM (PARMI, PARM 2,...) !

HP2250 AUTOMATION LIBRARY

* MCX--MEASUREMENT AND CONTROL EXERCISER

EXECUTES ON HOST RELOCATAZLE FILE

* LINKA--SUBROUTINE LINKER

EXECUTES ON HOST
fielocataele file

* MCLIO--I/O FROM SUBROUTINES

EXECUTES ON 2250
FILE IN GLIB-MUST BE LINKR'D

* CDA--CONTINUOUS DATA ACQUISITION

EXECUTES ON 2250
TYPE 7 FILE

* GRAB AND GRAB2--WORK WITH CDA

EXECUTE ON HOST
RElocatatue Files

CDA DATA FLOW

SUMMARY OF AVAILABLE STATUS INFORMATION

Main Task Error Code ($\operatorname{\omega ord} \#_{2}$)
A one word item that tells what kind of error the main task has experienced.

Status Secondary 1 (System Status)
8 words of data that tell you:

- Which task is executing
- What communication or system error has occurred
- How much data is available at main address and at ports A-D

Status Secondary 2 (main task) and 3 (other tasks)
8 words of data that tell you:

- The current state of the task
- What kind of error occurred
- Where the error occurred

Status Secondary 4 (interrupt status)
16 words of data that tell you:

- What programmed interrupts have occurred
- Which function cards have interrupted

WHAT HAPPENED TO THE TASK I SENT?

MCX STATUS COMMANDS

STATUS SYSTEM

Interprets the system status that is obtained from secondary address 1 and returns a system status message.

STATUS MAIN

Interprets the status of the main task by reading secondary address 2 , and returns a main task status message.

STATUS TASK tasknum

Interprets the status of a resident task by reading secondary address 3 , and returns a resident task status message.

STATUS INTERRUPT

Interprets the status of interrupts that have occurred in the 2250 by reading secondary address 4 , and returns an interrupt status message.

MCX Status Command Examples

1) Obtain the 2250 system status.

MCX: STATUS SyStem
System status:
Task number $\quad 1$ is running:
Port data is available: A: 0 B: 0 C: 0 D: 10 .
2) Obtain the main task status.

MCX: S MAIN
Main task status:
The task is undefined.
3) Obtain the status of task number 1 .

MCX: STAT TASK 1
Task \quad status:
The task is running at command 2 .
4) Obtain the interrupt status of the 2250 .

MCX: STATUS INTERRUPT
Interrupt status:
Programmed srq 1
Programmed srq 30
Programmed srq 127

SYSTEM STATUS

System status, available through secondary address 1 , contains status information not related to a particular task. The meaning of each status word is as follows:

2250 System Status Secondary Address 1

Word Number	Meaning
1	Current running task number (-1 if no task executing)
2	System error code
3	SRQ interrupt flag
4	Main result word count (includes condition code)
5	Word count at port A
6	Word count at port B
7	Word count at port C
8	Word count at port D

System Error Codes Word 2 of System Status (40-59)

Code Meaning
40 Invalid secondary address given
41 Secondary transaction aborted
42
Non-existent buffer referenced (secondary 5 or 6)
43 Non-existent variable referenced (secondary 7 or 8)
44 Checksum error on downloaded subroutine (secondary 9)
45 Attempted download on occupied memory (secondary 9)
46
Attempted download to insufficient memory (secondary 9)
47-49 Undefined
50-54 Are defined as fatal errors
55-59 Undefined

MAIN TASK STATUS

The main task status provides the current state of the main task and the nature of any error condition that may exist.

Main Task Status - Secondary Address 2

Word Number	Meaning
1	Task state
2	Task error code (same as condition code)
3	Command number of error
4	Slot or task number of error
5	Parameter group or command number
6	Item number of error
7	Task number (always zero for main task)
8	Status lights (copy of 2104 status panel lights)

For Words 4,5,6;
slot number
parameter group item number

command number 0

Corresponds to a compile time (word $2 \leq 19$) error

Corresponds to a run time error

TASK STATE

Task State: Secondary Address 2 —— Word 1

Code	State	ConditionS
0	Task does not exist	
1	Task is arriving on the interface bus	main task only
2	Task is compiling	main task only
3	Task is queued, ready to run	resident tasks only
4	Task is executing	
5	Task is idle	resident tasks only
6	Task is idle due to an error	
7	Task is complete with result ready	main task only

MAIN TASK ERROR CODE (CONDITION CODE)

Main Task Error Code: Compiler Errors (1-19) SECONDARY ADDRESS 2 WORD 2

Code	Meaning
1	Illegal command keyword
2	Illegal command parameter
3	Illegal in-line data
4	Illegal control structure syntax
5	Command illegal for first slot in sequence
6	Command illegal for slot after first in sequence
7	Empty slot included in sequence
8	Memory overflow
9	CALL command refers to non-existent subroutine
10	Reference to undefined label
11	Illegal use of modifying command
$12-19$	Undefined

Main Task Error Code: RunTime Errors (20-39]

 SECONDARY ADDRESS 2 WORD 2| Code | Meaning |
| :---: | :--- |
| 20 | Undefined |
| 21 | Parameter invalid or out of range |
| 22 | Output data invalid or out of range |
| 23 | A non-existent variable was referenced |
| 24 | A non-existent buffer was referenced |
| 25 | Buffer overflow or index out of range |
| 26 | Insufficient memory to complete command |
| 27 | Operation on empty buffer |
| 28 | Card configuration error |
| 29 | Function card 1/0 error |
| 30 | Undefined |
| 31 | Illegal task number |
| 32 | Task recursion |
| 33 | Illegal use of task |
| $34-49$ | Undefined |

Main Task Error Code: CDA Errors (60-63)

SECONDARY ADDRESS 2 WORD 2

Code	Meaning
60	CDA terminated due to memory overflow
61	CDA terminated due to function card interrupt
62	CDA terminated due to HP-IB bus trigger
63	CDA terminated because of firmware error (Contact SE)

STATUS LIGHTS

Status Lights: Secondary Address 2 —— Word 8

Bit Number	Meaning When Lit
0	SRQ interrupt(s) pending (check secondary address 4)
1	Resident task running (task number at sec. 1, word1)
2	Main result available from the primary address
3	Main task executing
4	Inbound task arriving at primary address
5	Main task error has occurred
6	Clear for successful self-test
7	Clear for successful self-test

INTERRUPT STATUS

A read from secondary 4 will return 16 words of interrupt status information.

- The interrupt conditions are returned in ascending numerical order. If an interrupt occurred twice, it will still only be reported once.
- If all sixteen words are nonzero, then you should read interrupt status again. There are probably more interrupt conditions to report.
- Interrupt codes 127 and 128 are used to report fatal errors and card polling errors, respectively.
- Interrupt codes above 128 are used to report function card interrupts.

Function card Registers

To the 2250 firmware, a function card appears as a set of registers.

- Any input operation is implimented by reading a function card register. (Ditto for output operations.)
- To perform a configuration opeation like changing the gain of an analog multiplexer, a write to a special register is performed.
- To get function card status, a read from a certain register is performed.

PRIMITIVE MCL COMMANDS

READ (start slot, start register[,\#of registers]) Read single word function card registers

DREAD (start slot, start register[.\#०f registers]) Read double word function card registers

WRITE (start slot,start register[\# of registers])data1,...datan Write single word data to function card registers

DWRITE (start slot,start register[,\#of registers])data1,...data $2 n$
Write double word data to function card registers
RBIT (slot,register, start bit[;\#of bits])
Read bits from function card register
WBIT (slot, register, start bit[,\#of bits])data $1, \ldots$ datan Write bits to function card register

ANALOG INPUT CARDS REGISTER ASSIGNMENTS BANK 1

Page 1	
DATA1	GAIN1
DATA2	GAIN2
DATA3	GAIN3
DATA4	GAIN4
DATA5	GAIN5
DATA6	GAIN6
DATA7	GAIN7
DATA8	GAIN8
DATA9	GAIN9
DATA10	GAIN10
DATA11	GAIN11
DATA12	GAIN12
DATA13	GAIN13
DATA14	GAIN14
DATA15	GAIN15
DATA16	GAIN16

	Page 2	
17	DATA17	GAIN17
18	DATA18	GAIN18
19	DATA19	GAIN19
20	DATA20	GAIN20
21	DATA21	GAIN21
22	DATA22	GAIN22
23	DATA23	GAIN23
24	DATA24	GAIN24
25	DATA25	GAIN25
26	DATA26	GAIN26
27	DATA27	GAIN27
28	DATA28	GAIN28
29	DATA29	GAIN29
30	DATA30	GAIN30
31	DATA31	GAIN31
32	DATA32	GAIN32

	Page 3
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	

	Page 4
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	

ANALOG INPUT CARDS REGISTER ASSIGNMENTS
 BANK 2

ANALOG INPUT CARDS REGISTER ASSIGNMENTS

 BANK 3| | Page 9 | |
| :--- | :--- | :--- |
| 129 | ZERO1 | GAIN1 |
| 130 | ZERO2 | GAIN2 |
| 131 | ZERO3 | GAIN3 |
| 132 | ZERO4 | GAIN4 |
| 133 | ZERO5 | GAIN5 |
| 134 | ZERO6 | GAIN6 |
| 135 | ZERO7 | GAIN7 |
| 136 | ZERO8 | GAING |
| 137 | ZERO9 | GAIN9 |
| 138 | ZERO10 | GAIN10 |
| 139 | ZERO11 | GAIN11 |
| 140 | ZERO12 | GAIN12 |
| 141 | ZERO13 | GAIN13 |
| 142 | ZERO14 | GAIN14 |
| 143 | ZERO15 | GAIN15 |
| 144 | ZERO16 | GAIN16 |
| | | |

	Page 10	
145	ZERO17	GAIN17
146	ZERO18	GAIN18
147	ZERO19	GAIN19
148	ZERO20	GAIN20
149	ZERO21	GAIN21
150	ZERO22	GAIN22
151	ZERO23	GAIN23
152	ZERO24	GAIN24
153	ZERO25	GAIN25
154	ZERO26	GAIN26
155	ZERO27	GAIN27
156	ZERO28	GAIN28
157	ZERO29	GAIN29
158	ZERO30	GAIN30
159	ZERO31	GAIN31
160	ZERO32	GAIN32

161	Page 11
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	

	Page 12
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	

ANALOG INPUT CARDS REGISTER ASSIGNMENTS BANK 4

	Page 13
193	GAIN1
194	GAIN2
195	GAIN3
196	GAIN4
197	GAIN5
198	GAIN6
199	GAIN7
200	GAIN8
201	GAIN9
202	GAIN10
203	GAIN11
204	GAIN12
205	GAIN13
206	GAIN14
207	GAIN15
208	GAIN16

[^0]| Page 14 |
| :--- |
| GAIN17 |
| GAIN18 |
| GAIN19 |
| GAIN20 |
| GAIN21 |
| GAIN22 |
| GAIN23 |
| GAIN24 |
| GAIN25 |
| GAIN26 |
| GAIN27 |
| GAIN28 |
| GAIN29 |
| GAIN30 |
| GAIN31 |
| GAIN32 |

	Page 15
225	
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	

	Page 16
241	
242	
243	
244	
245	
246	
247	
248	
249	CARD CONFIGURA.
250	0
251	CARD STATUS
252	0
253	CARD ID REGISTER
254	0
255	0
256	BIF

DIGITAL INPUT CARDS REGISTER ASSIGNMENTS BANK 1

Page 1
POINT1
POINT2
POINT3
POINT4
POINT5
POINT6
POINT7
POINT8
POINT9
POINT10
POINT11
POINT12
POINT13
POINT14
POINT15
POINT16

Page 2
POINT17
POINT18
POINT19
POINT20
POINT21
POINT22
POINT23
POINT24
POINT25
POINT26
POINT27
POINT28
POINT29
POINT30
POINT31
POINT32

	Page 3
33	
34	
35	
36	
36	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	

DIGITAL INPUT CARDS REGISTER ASSIGNMENTS

 BANK 2| Page 5 | | Page 6 |
| :---: | :---: | :---: |
| 65 | 81 | |
| 66 | 82 | |
| 67 | 83 | |
| 68 | 84 | |
| 69 | 85 | |
| 70 | 86 | |
| 71 | 87 | |
| 72 | 88 | |
| 73 | 89 | |
| 74 | 90 | |
| 75 | 91 | |
| 76 | 92 | |
| 77 | 93 | |
| 78 | 94 | |
| 79 | 95 | |
| 80 | 96 | |

	Page 7
98	
99	
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	

Page 8

DIGITAL INPUT CARDS REGISTER ASSIGNMENTS

BANK 3

	Page 9		Page 10
129		145	
130		146	
131		147	
132		148	
133		149	
134		150	
135		151	
136		152	
137		153	
138		154	
139		155	
140		156	
141		157	
142		158	
143		159	
144		160	

	Page 11
161	FIELD 1
162	FIELD 2
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	

	Page 12
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	

DIGITAL INPUT CARDS REGISTER ASSIGNMENTS BANK 4

	Page 15		Page 16
225	WNWMCt?	241	INTERRUPTS 1
226		242	INTERRUPTS 2
227		243	
228		244	
229		245	
230		246	
231		247	
232		248	
233		249	CARD CONFIGURA.
234.		250	0
235		251	CARD STATUS
236		252	0
237		253	CARD ID REGISTER
238		254	0
239		255	0
240		256	BIF

SELF TEST

SELF TEST

- Executed on power on or pressing reset button on status panel
- Errors in Appendix A (attached)

L PROCESSOR SELF TEST

- Address and data lines
(data path check, Is LED off if pass)
- Basic instruction set
of CPU
- Processor card
interrupt fiance time base generator, LIA/B instructions :
- RAM memory
non destructive; if no back up, RAM is cleared
- I/O Data transfer and DMA
of each I\% IC

2250 SELF TEST

- Executes automatically after successful completion of processor self test
- RAM test (16K words) destructive; skipped if memory backed up
- Base register and stack (skipped if memory backed up)
- ROM checksum and position (check sum on each $4 k$)
- SYSTEm con FIG URATION-select codes, interrupts, stacks cleared
- MCI, BIF and HPIB configuration check.

MCI - internal timers, registers sOMA transfers BIF-interrupt status and data registers checked $A P-I B$ - $P H I$ chip, card control registers \{D mA transfers

- firmware initialization
- and leo off

APPENDIX A SELF TEST ERROR MESSAGES

sb at bottom of panel

Table $A-1$. Self-Test Error Codes

Table A-1. Self-Test Error Codes (continued)

$\begin{gathered} \text { LED Error } \\ \text { Code } \end{gathered}$	DESCRIPTION ($1=0 \mathrm{~N}, 0=0 \mathrm{FF}$)
01111100	OOxxxxx = None of the above. This is the select code of an I / O card that failed. (The select code is displayed in inverted logic: lit LED is logic 0, unlit LED is logic 1.)
01111011	Executing Loader
01111010	Loader Error
01111001	Loader Error
01111000	Executing Virtual Control Panel (VCP)
	Self-Test, RAM Tests
01110011	Fill RaM With Post-Inc Base Register Function
01110010	Test RAM With Pre-Dec Base Register Function
01110001	Fill Base Register Offset Table
01110000	Test Base Register Offsets
	Self-Test, ROM Tests
01101111	Position Check, ROM Locations 40000 thru 47777
01101110	Checksum Test, ROM Locations 40000 thru 47777
01101101	Position Check, ROM Locations 50000 thru 57777
01101100	Checksum Test, ROM Locations 50000 thru 57777
01101011	Position Check, ROM Locations 60000 thru 67777
01101010	Checksum Test, ROM Locations 60000 thru 67777
01101001	Position Check, ROM Locations 70000 thru 77777
01101000	Checksum Test, ROM Locations 70000 thru 77777 Self-Test, Configuration and MCI Tests
01100111	No MCI Card Found
01100110	No HP-IB Card Found
01100101	Trap Cells
	continued

Table A-1. Self-Test Error Codes (Continued)

$\begin{gathered} \text { LED Error } \\ \text { Code } \end{gathered}$	DESCRIPTION ($1=0 \mathrm{~N}, \mathrm{O}=0 \mathrm{FF}$)
	Self-Test, MCI Errors
01100100	Initialize and Last Control Word Interrupt
01100011	MCI Internal Registers
01100010	Time of Day Clock
01100001	Watchdog Timer
01100000	Timeout Inter rupt
	Self-Test, BIF Tests
01011111	Box 0
01011110	Box 1
01011101	Box 2
01011100	Box 3
01011011	Box 4
01011010	Box 5
01011001	Box 6
01011000	Box 7
01010111	Box 8
01010110	Box 9
01010101	Box 10
01010100	Box 11
01010011	Box 12
01010010	Box 13
01010001	Box 14
01010000	Box 15
	Self-Test, HP-IB Tests
01001111	HP-IB Initialization, Clear
01001110	HP-IB Data Bus
01001101	PHI Initialize, Flush FIFOS
01001100	Output Data Transfer, Interrupts
01001011	Input data Transfer
01000000	Firmware initialization
00xxxxxx	Self-Test Passed (xxxxxx = don't care)

DIAG NOSTIC SOETWARE

2250 DIAGNOSTIC OVERVIEW

A SELF TEST
B KERNEL
C RRACK
D $\mathrm{MCl} / \mathrm{BIF}$
$E H P-I B$
F function cards levell

HP 2250 Test Configuration

LEVEL I DIAGNOSTICS

DIAGNOQSTICS

- Are available on mini-cartridge only
- Presently used with 264X AND HP 85

KERNEL

- Standard L series stand-alone diagnostic
- Tests CPU, RAM and I/O

MCI/BIF

- Checks MCl registers, timers and state machine.
- Checks BIF cards, interrupt circuitry

RRACK

- Checks base registers, stack, RAM and ROM.

HP-IB DIAGNOSTIC

- Requires DDL to be loaded
- Tests PHI chip, DMA circuitry and data paths.

FUNCTION CARD LEVEL 1

- Tests 85% of digital cards and 35% of analog cards
- Requires DDL to be loaded in memory
- To be run on installation
- Can be set to loop
- Are not interactive
- Error messages in Appendix B.

DS P

Overview of Diagnostic Service Package

Operation of Level II Software Diagnostics

D.S.P. Hardware

DIAGNOSTIC OPERATION

Menu Driven
\section*{Uniform Operation}

Real Time Displays

Data in Engineering Units

A-SERIES COMPATABILITY

source code compatable

HP 2250 cannot use A-series DDL interpreter (with DCS)

current L-series DDL must be supported for HP 2250

HP 2250 Test Configuration

diagnostic service package

Level II Software

7 diagnostic programs
written in DDL
750-1600 lines of code (each)
designed to operate with
HP 85 or HP 264x terminal
provide $1 / 0$ testing of all
255xx M\&C function cards

EXECUTING A DIAGNOSTIC
 (example)

LEVEL II Anälog Input Diagnostic Do you wish to test all cards Enter Y or N

If response is Y, then the diagnostic automatically selects a function card for testing. If response is N, then the diagnostic will prompt for a slot number.

Enter slot number of test card <response>

Select channels to be tested 1. Channels 1 to 8
2. Channels 9 to 16
3. Channels 17 to 24
4. Channels 25 to 32

Enter $1,2,3,4$, or return to select new card.
<response>

Select type of test
A. Input test
B. Autorange test
C. Delayed Execution test
D. Alignment test
E. Open sensor detect

Enter A,B,C,D,E, or return to select new chan.

Attach analog test fixture to channels 1 through 8 Press return when ready

SLOT 225503 LOW LEVEL MUX Input Test
Channel Mvolts
Errs

1	1252
2	.007
3	1249
4	.010
5	50
6	-10001
7	49
8	-9998

0
0
0
0
0
0
0
0
Autoranging OFF
Press space bar for next menu

Digital Output SCM's 4-pt: 25543(s),25544(s), 25545(s),25546(s)

SCM type	Product No Suffix(s)	Part No. Suffix(s)
internally	25544B	60002
pulled up	25544C	60003
	25546B	60001
open drain	25543N	60001
	25544A	60001
solid state	25545P	60001
$\begin{aligned} & \text { Strobe Input SCM's } \\ & 1-\mathrm{pt}: 25531(\mathrm{~s}), 25533(\mathrm{~s}) \end{aligned}$		

SCM type	$\begin{aligned} & \text { Product No. } \\ & \text { Suffix(s) } \\ & \hline \end{aligned}$	Part No. Suffix(s)
Isolated	33(B-H,J)	60001-60008
Source	$31(\mathrm{~B}-\mathrm{E})$	60001-60004
Sink	31(K,L)	60005,60006

*** DISABLE VOLTAGE SOURCE *** Set CARD TYPE to DIGITAL OUT Select MODE2 to test pts. 5-8 If strobe input SCM's are mounted on card being tested, set correct STROBE SCM type. Set OUTPUT SCM type. ** ENABLE VOLTAGE SOURCE ** Attach digital out test module to points 5 through 8 using digital card cables. Press return when ready

SLOT 525513 DIGITAL OUTPUT Output Test Point State

Errs

1	Low (0)
2	High (1)
3	Low (0)
4	High (1)

0
0
0
0

Press 1,2,3,4 to change state Press 0 to change all states Press space bar for next menu

If you are using the Relay Mux (22504) to measure input signals greater than 10 volts the $0.14 f$ input filter capacitor must be removed.

The Relay Mux (25504 A) has relay modules (25504-60002) mounted on the board. These relay modules contain the reed relays that switch or multiplex the input signals to the gain amplifier on the Relay Mux. The relay modules also have a o.luf filter capacitor tied between the differential inputs to reduce noise induced on the input. This filter capacitor has a voltage rating compatible to the 10 v voltage range or less. When a voltage greater than 14 v is applied across the capacitor it shorts out causing a low resistance load on the 100 ohm input resistors. The input resistors wattage rating is then exceeded due to the high current flow and the resistors burn out.

The 0.1uf input capacitor should be removed on those channels where the 10 volt range will be exceeded. Removing this capacitor will eliminate the over-voltage input shorting problem and increase the lifetime of the relays when switching input voltages greater than 10 v .

The input capacitor can be identified using the diagram below. The removal of this capacitor is also described in the Hardware Reference Manual (02250-90001) page 7-17.

SERVICENOTE

Supersedes:

APPLIES TO:	All Uniss x	Ony Units on Agreement $=$	
PERFORM:	Immediately x^{0} On Fallure a	Al PM/Normal Call intormation Oniy $=$	
WARRANTY:	EXTENDED	NORMAL	NONE
PARTS: X travel: X			
SERVICE INVENTORY	Retur	ruodate = r saivage \square	Use
WARRANTY EXTENDED UNTIL: July 1, 1982			

A problem has been discovered with the backplane of the 2251AN/AR unit associated with 2250 M \& C System. Stresses applied to the backplane can cause failure of the unit. A brace, Part No. 02251-60008, has been designed to eliminate these stresses. All units, shipped prior to 01 July 81, must be retrofied with the brace immediately.

Warranty will be extended for one year to cover travel and $1 / 2$ hour of labor. Orders for the brace can be placed by calling Roseville Division order processing.

Dave Pratt
(916) 786-2001

Instructions for installation are included with the part.

PCO No. 52-0190

Supersedes:

(INFORMATION ONLY)

PROBLEM: The PDU wiring diagram in the Hardware Reference Manual (02250-90001 pg. vi March 1982 update) and Installation and Start-up Manual ($02250-90012 \mathrm{pg}$. vi March 9982 update) is incorrect. The diagram shows the on/off switch shorts out the high and neutral lines when turned on.

CORRECTION: Note the following diagram, it reflects the correct configuration of the PDU. This corrected diagram will be included in the next set of manual updates in july 1932.

PCO; N/A

Noise Histograms
for Analog Input
Cards on 2250

We have had several requests from the field regarding noise and how to evaluate if a particular 2250 system is exhibiting excessive noise on it's analog input cards. We have made available to the field via DSD "SEAS" a program called HIST that will provide a statistical analysis or histogram of readings taken on an individual channel. HIST provides the user with the spread, average, standard deviation, etc. on a finite number of readings taken "on channel". The information gathered can help determine whether a system is within specification or not. To use this program first gain access to DSD "SEAS" and retrieve $\& H I S T . ~ L o a d ~ \& H I S T$ onto the host 1000 of the 2250 under test. Compile it using the Fortran compiler in the system. It requires a large background (LB) option. Once compiled and loaded use MCX to set the gain of the channel to be scanned to 800. Now run HIST. Follow the sample below. User inputs are underlined.

$: M C X .4 .3$

```
Usina LU 43 as the 2250 LU.
Use ? for help, Quit to exit.
```

MCX: GAIN(2.30)124!
No error: no results repurned.
MCX: 0
$\frac{\text { HISTI }}{\text { LUOF THE } 2250743}$
SLOT IN DUESTION? 2
CHANNEL OF OPERATION? 30
HISTOGRAM SPECIFICATIONS

HOW MANY READINGS? 1000
MILLI-SECONDS BETWEEN READINGS? 0 micro seconds between readings? 20 PACE1= 0 PACE2= 20

BUCKET WIDTH (VOLTS RTO)?. 00001

UALUE NUMBER OF READINGS

-. 0000250	17
-. 0000150	385
-. 0000050	570
.0000050	28
Avernae valum is	-. 0000087
T00\% . 00001	
Bottomm - 10002	

Standard deviation is . 0000051
WHAT NEXT ?
REPEAT..
REPEAT WITH NEW HISTOGRAM SPECO.
REPEAT WITH NEW HISTOGRAN CHANNEL SPECB.. 1
HALT PROGRAM NF CARD AND CHANNEL SPECS.. 2
The above data was retrieved while shorting the input on slot 2 channel 30 with a shorting block (25595-60010). The shorting block will short eight (8) channels at a time and can be found in the DIU package (02250-67801) or ordered from CPC.

If you determine that the noise specification is not met by the 2250 being tested refer to Service Notes 2250-04 and 2250-05. If these Service Notes are properly executed the noise in the 2250 should be reduced with-in the specification.

NOTE: The HIST program will only run on a 1000 that has a large background partition. HIST can be run on other systems with modification. If you are working on a Desktop Computer or require help in modifying the program call Roseville Division for help.

Supersedes：


```
\begin{tabular}{|ccc|}
\hline SERVICE & Return for uDcate \(a\) & \begin{tabular}{l} 
Use as is \(a\) \\
INVENTORY
\end{tabular} \\
\hline SARTUR for salvage \(a\) & See cext \(X\) \\
\hline WARRANTY EXTENDED UNTIL： & \(n / a\) \\
\hline
\end{tabular}
Problem：The 25503 LLMUX may exhibit high levels of noise．This noise can be exhibited by shorting the input to the LLMUX，setting the LLMUX gain to 800 ，and taking a number of readings．The spread of the readings＂on channel＂should be less than 70 microvolts（uv）．The standard deviation of those readings should be less than 10uv．＊
Cause：The 12035 power supply provides 25 kHz ， 30 volt power to the Measurement and Control Unit（ 2251 MCU ）．The Backplane Interface Card．（BIF）receives this power through a front connector，steps the 30 volts down to several voltages and distributes the lower voltages onto the backplane to power the function cards．The BIF provides a 100 kHz sync signal to the 12035 power supply．The 12035 divides the 100 kHz signal by four（4）to provide a 25 kHz sync signal to lock on to．This is important，as the sync signal locks the power supply frequency to the system clock on the MCI card．The power supply＇s phase lock loop（PLL）is designed to only lock onto frequencies greater than it＇s own center frequency．If the PLL center frequency is greater than the 25 kHz sync signal（ie． 26.5 kHz ）then the sync signal will be ignored and the power supply frequency will free run at it＇s own center frequency \((26.5 \mathrm{kHz}\) in this case）．All power supplies tested to date on systems or 2104＇s shipped before July 1982 have exhibited center frequencies greater than 25 kHz ．Those power supplies that are set above 25 kHz are free running at frequencies greater than 25 kHz and are not synchronized to the 2250 system．
Solution：The／center frequency of the power supply requires adjustment to 23.75 kHz ．This setting will allow the 100 kHz sync signal（divided by four）to synchronize and lock the 12035 power supply frequency to the 2250 system clock．
REQUIRED EQUIPMENT：Frequency counter
Shorting block 25590－60010（in PS kit） Program HIST＊
PROCEED AS FOLLOWS
```

1) Check the frequency of the power supply at pins 1 and 2 of the 25 kHz 30 volt output.
a) Check with the 100 kHz sync signal plugged in. Should be 25 kHz plus or minus $10-15 \mathrm{~Hz}$
b) Check with the 100 kHz sync signal disconnected.
(small 2 pin connector on front of BIF or small 9 pin connector on front of 12035 power supply) Should be less than $24,700 \mathrm{~Hz}$

If reading 1 b is not less than $24,700 \mathrm{~Hz}$ proceed to step 2 to adjust power supply center frequency.
If 1 b is OX and 1 a is not then you may have a defective power supply, power cable (12035-BIF), BIF, or MCI card.

If the power supply requires adjustment proceed as follows:
2) REMOVE POWER
3) Remove 12035 from 2104 or rack.
4) Remove top cover (eight screws) WARNING HIGH VOLTAGE MAY BE PRESENT
5) Locate center frequency pot (see diagram) Secondary plug in card closest to center of power supply pot on edge of card

Top view of 12035 power supply with cover off.
6) Plug in power cord WARNING HIGH VOLTAGE PRESENT
7) Reconnect frequency counter to 25 kHz output of power supply pins 1 and 2.
8) Adjust pot CCW to reduce frequency to $23,750 \mathrm{~Hz}$.
9) Power OFF.
10) Reassemble power supply and reinstall.
11) Check 25 kHz 30 volt output with sync line plugged in. Frequency should be 25 kHz plus or minus $10-15 \mathrm{~Hz}$.
12) Check if noise has been reduced below 70 uv spread and 10uv standard deviation.* If there are more than two (2) MCU's in the system there will be more than one (1) 12035 power supply. All power supplies must be adjusted in the system.
13) If the noise has not been reduced below the spec the BIF card may require replacement.**

NOTE: This adjustment should only be made on conplaint of the customer. The manifestation of this noise problem is seen only on the 25503 LLMUX and when that card's gain is set to 800. Therefore it affects only a small number of systems. FSI should be checked and adjusted locally. All new and exchange 12035's shipped after 1 July 1982 have been readjusted. No part number change or date code change is required since this is an adjustment.

* A noise histogram program is available to automatically determine the spread, average, and standard deviation of a finite number of readings taken 'on channel'. \&HIST is available at DSD on "SEAS": Refer to SN 2250-03 for more information on HIST.
** Refer to SN 2250-05 for more information on BIF/25503 noise problems.


```
Supersedes:
```



```
Problem: The 25503 LLMUX may exhibit high levels of noise. This noise can be exhibited by shorting the input of the LLMUX, setting the LLMUX gain to 800 , and taking a number of readings. The spread of the readings "on channel" should be less than 70 microvolts(uv). The standard deviation should be less than 10uv.*
NOTE: SN 2250-04 must be performed before proceeding with this service note.
Cause: The 12035 power supply provides \(25 \mathrm{kHz}, 30\) volt power to the Measurement and Control Unit ( 2251 MCU ). The Backplane Interface Card (BIF) receives this power through a front connector, steps the 30 volts down to several voltages and distributes the lower voltages onto the backplane to power the function cards. The two (2) transformers on the BIF must have their primary windings wound opposite of each other, otherwise the Electromagnetic radiation (EMI) emmitted by the two (2) transformers is increased considerably, causing excessive noise on the LLMUX.
Solution: The only effective way to test for excessive noise is to run HIST.* If there is excessive noise replace the BIF. The spread should be less than \(70 u v\) and the standard deviation should be less than 10 uv.
All 25574-69001 boards in field inventory should be retuned to CSD for credit. A 25574-69002 will be the replacement for the 2557469001. If a noisy BIF is found at a customer site, replace the \(255746 \times 001\) with a 25574-69002. All 25574-6x002 boards are known good boards with matched transformers and tested for noise.
OLD BIF 25574-6x001 NEW BIF 25574-6x002
NOTE: This board exchange should only be made on customer complaint. The manifestation of this noise problem is seen only on the 25503 LLMUX and when that cards gain is set to 800. Therefore it affects only a small number of customers. Less than one third (1/3) of all BIF's shipped have miss matched transformers, so not all customers with LLMUX's will even have this problem.
* A noise histogram program "Hist" is available to automatically determine the spead, average, and standard deviation of a finite number of readings taken on channel'. \&HIST is available at DSD on "SEAS". Refer to SN 2250-03 for more information on HIST.
```

Supersecies:

APOL!ES TO:	All Linis =	Oniv	-igreem
PEAFORM:	immearaterya On Fallure p		$\begin{aligned} & \text { Normat Ca } \\ & \text { mation On } \end{aligned}$
WARRANTY:	EXTENDED	NORMAL	NONE
LABOR:		X	
PARTS:		X	
PRAVEL:		X	
SERVICE INVENTORY		or vocare 8 or salvac̣e	Use as See cex
WARAANTY EXTENDED UNTIL: 1 NOV. 1983			

Problem: The 25503-6x001 has exibited a high level of noise when it is set at a gain of 800. After executing the two previous service notes 2250-04 (12035/2250 LLMUX Noise) and 2250-05 (Bif/LIMUX Noise) the noise exibited on those LLMUX's in slots 2 and 3 in the MCU may be as high as gouv of spread (SP) and 15 uv of standard deviation (SD)on some cards. The specifications call for a maximum of $70 \mathrm{uv} S P$ and 10 uv SD.

Cause: There are two problems that need to be addressed. First is the spread (SP) being out of specification. The problem is a first reading offset caused by an unstable driven ground power supply. The manifestation of the problem is that when a new channel is addressed, the floating ground of the amplifier strip oscillates during the first one or two readings on that channel. The oscillation of the driven or floating ground causes the input signal to look different than it actually is (ie. it is offset by 30-50uv). The feedback loop in the driven ground amplifier circuit was modified to eliminate the oscillation problem.

The second problem of the SD being out of specification was caused by the 25 kHz power distributed to the function cards being coupled.into the first stage amplifier on the LLMUX. This coupled noise was then amplified by a gain of 100 on the LLMUX and caused the the distribution of the readings taken on channel to be excessively wide. Shields were added above and below the amplifier strip on the LLMUX to reduce the amount of 25 kHz noise coupled into the input.

Solution: The 25503-6X001 has been replaced by the 25503-6 0002 . The new board includes the power supply change and the shields. The specifications of $70 u v$ SP and 10uv SD will be met by the 25503 at any pacing rate when using 'HIST' *.

All boards in field service inventory should be returned to CSD for credit. A 25503-69002 will be the replacement for the 2550360001. Replace or fix on failure only.

OLD LLMUX 25503-6X001
NEW LLMUX 25503-6X002
NOTE: Contact RVD Tech Marketing to obtain the proper ordering and billing information. Orders greater than two (2) cards will not be accepted without prior authorization from RVD.

Service notes 2250-04 and 2250-05 must be implemented either prior to or concurrent to this service note.

* HIST is available on SEAS. A description on the use and operation is provided in service note 2250-03.

SE•RVICENOTE

Supersedes:

APPLIES TO:	All Units =	Oniv Unics in megreement ${ }^{\text {a }}$	
PERFORM:	immeariatiy $=$ On Fallure $=$	Al FM, Normal Call C intormation Oniv x	
WARRANTY:	Extenoed	NOAMAL	NONE
LABOR:			
PARTS:			
travel:			
seavice	Rerurn for vocate 8		Use
Inventory	Return for salvage $\mathrm{C}_{\text {a }}$		See 1
WIRRANTY EXTENOED UNTIL: N/A			

Problem: When an input voltage is 110% or greater than the specified range set up via software, the 25504 Relay Mux latches up into a nonrecoverable state. The only way to recover is to power the MCU down and power it back up again.

Cause: The Relay Mux will latch-up if the input voltage exceeds 110% of the programmed range. If the card was set to a gain of ol or a range of 100 volts and the input exceeded $1: 0$ volts differential mode (ie.across the high and low inputs) the card will latch-up. The over-voltage flip-flop would set causing all the input relays to open and protect the card. The only way to reset the filip-fiop was to remove the suspect input signal and power the Relay Mux down.

Solution: The over voltage flip-flop configuration was changed to reset every time the card changes from channel to channel to eliminate this problem. The new date code that reflects this change is 2230. FSI should be updated with the new date code. Customer boards should be replaced on failure only since this is an enhancement to the product.

Note: This service note is for information only and no warranty is available since it only latches-up due to customer error (over voltage on the input for the programmed range).

25594B Relay Mux
TRC power cable miswired

SERVICE	=eturn ior uocate $=$	use as is $=$
InVENTOAY		See rex 7

WARRANTY EXTENOED UNTIL I ilovember 1983

Problem: The power cable portion of the Relay Mux TRC cable was miswired. The TRC will not return the proper ambient temperature of the TRC isothermal block.

Cause: The +12 volt and common wires on the TRC end of the cable were reversed causing the TRC to malfunction.

Solution: The two wires should be reversed so that the TaC is powered correctly. The +12 volt wire (red) should be connected $=0$ pin j, the -12 volt wire (green or white) should be connected 50 i. 2 , and the common or ground wire (black) should be connected to pin 1. This can be accomplished by removing the red wire trom pin 1 and the black wire from pin 3. To remove the pins from che plastic connecter use a small blade screw driver to depress the retaining clip on the pin and slide the pin out. Do replace the pins just slide the pin with the red wire into position 3 of the plastic connecter and the pin with the black wire into position 1 of the plastic connecter (ie. just swap pins 1 and 3).

| GND BLACK | $\overline{P I N} 1$ |
| :--- | :--- | :--- |
| $-12 v$ GRN or WHI:PIN 2 | |
| $+12 v$ RED | PIN 3 |

TRC END OF
CABLE

Do not check unless there is a customer complaint. The above modification should only be made if the TRC does not return the proper ambient temperature.

This repair can be performed on the customer site. One half (0.5) hour is provided to perform the fix , and standard travel. There is no FSI to update or replace.

HEWLETT

(over for diagrams)

Fan Assembly

SERVVICENOTE

Supersedes:

APPLIES TO:	All Uniss -	Only Units on doreement X	
PERFORM:	immea;atery : On Fallure :	At PM/Normal Call X iniormation Oniv =	
WARRANTY:	EXTENDED	NORMAL	NONE
LABOR: PARTS: travel:	2 hours	X	X
SERVICE	Return ror vocate :		$=$
inventory	2eturn ior salvage $=$		

When the 2250 systems were originally introduced the sales literature indicatd that a system could be upgraded to a 2162 Automation Processor if the customer chose to do so after taking delivery of the 2250 system. Some additional engineering changes were required to maintain the high reliability expected of the product.

Problem: $2250^{\prime} R^{\prime}$ systems with a date code less than 2210 can not be upgraded to a 2162 without modification in the field.

Cause: The $2250^{\prime} R^{\prime}$ with a date code less than 2210 requires a backplane power cable with larger gauge wire to provide greater current carrying capacity for the additional "L"series boards and a new power distribution unit with a line filter to reduce radiated emmisions onto the power lines.

Solution: Replace the present backplane power cable (25570-60009) with the new 'Y' type cable (25572-60004), and replace the old PDU with the new PDU with the line filter ($02250-60007$).

```
            Backplane power cable 25572-60004
```

Power distribution unit 02250-60007

Order the above parts from CPC. Two (2) hours of installation is provided plus parts mentioned above. No travel is included as this upgrade should be done concurrent to the 2162 upgrade. The sales order of the "L"series used to upgrade the 2250 system to a 2162 must accompany any billing for this service note.

NOTE: Any 2250'R' with a date code of 2210 or greater may upgraded to a 2162 by just adding the necessary "L"series cards into the right side of the 2104 AR card cage. Those units that are not upgraded to a 2162 do not require the modifications described in this service note.

CAUTION: Presently none of the 'standard' 2250 systems or components provide for upgrading with any "A"series processor or component.
(over for diagrams)

To back of 12035 power supply

-	$S E$	${ }_{1}^{S N}$	-11	0
New MCI-BIF cable for RFI requiements	Suparsedes:			
	APPLIES TO:	nits $=$	Onivunis on mereement f	
	PERFORM:	lety 0	\cdots	
	WARRANTY:	ED	RMAL	NONE
	LABCR: PARTS:		$X$$X$$X$$X$	
	TRAVEL:			
	SERVICE	Recurn	ate	Use as
	inventory	Return	бฺ̣е $=$	Stee cex
	WARRANTY EXTENOED UNTIL: N/A			

The old MCI-BIF cable (25570-60004) flat ribbon cable contributed to the 2250 systems' radiated emmisions causing the 2250 to not meet RFI regulations.

The old flat ribbon cable (25570-60004) was not shielded and contributed to EMI emmisions of the product.

A new shielded MCI-BIF cable (12071-60003) has been created to reduce the radiated emmisions of the 2250 system.

New MCI-BIF cable Old MCI-BIF cable
12071-60003
flat ribbon type

$$
25570-60004
$$

This is an 'information only' service note, there are no suggested or required updates to be performed for this service note.

APPLIES TO:	All Units $=\quad$ Eniv unus on -ubeemene $X 1$	
PERFORM:	$\begin{array}{r} \text { immecialeiy }= \\ \text { On Falure } \end{array}$	$\begin{array}{r\|} \hline \text { A1 }=4 \text { normal Gail } \\ \text { nermatnon Univ } X \end{array}$
WARRANTY:	EXTENOED	VONE
LABOR:	X	
PARTS:	X	
TRAVEL	x	
SEAVICE	Return :or vocate $=$	Use as
INVENTCRY	Return :or saivace =	Ste tex
WARRANTY EXTENDED UNTIL: N / A		

Problem: When a voltage greater than 14 volts is inout into the differential input of the Relay Mux (25504 A), the input is becomes shorted after a short period of time. This causes the 100 ohm input resistors to burn up, and the 2250 to give erroneous readings. The Relay Mux is rated to handle inputs up to 100 volts.

Cause:
The Relay Mux (25504A) has relay modules (25504-60002) mounted on the board. These relay modules contaln the reed relays that switch or multiplex the input signals to the gain amplifier on the Relay Mux. The relay modules also have a o.luffilter capacitor tied between the differential inputs to peduce ioise induced on the input. This filter capacitor has a voltage rating compatible to the 10 v voltage range or less. when a voltage greater than 14 v is applied across the capacitor it shorts out causing a low resistance load on the 100 ohm input resisiors. The input resistors wattage rating is then exceeded due to the high current flow and the resistors burn out.

Solution: The 0.1uf input capacitor should be removed on chose channels where the 10 volt range will be exceeded. Removing this capacitor will eliminate the over-voltage input shopting problem and increase the lifetime of the relays when switching input voltages greater than 10 v .

The input filter capacitor is provided for customer convenience and is not necessary for the operation of the Relay Mux card.

The input capacitor can be identified using the diagram below. The removal of this capacitor is also described in the Hardware Reference Manual (02250-90001) page 7-17.

This is an 'Information Only' service note and no warranty is included.

Supersedes:

Problem: MCLIO is a 2250 downloaded subroutine which can be used to collect input data, average the data, and convert the average to engineering units. However, in the current revision (2101) of MCLIO, the averaging routine does not always return correct results.

Cause: The MCLIO averaging routine does not always use every sample read to compute the average, thus giving an invalid average result. Also, if the data collected and averaged by MCLIO does not all have the same gain code, MCLIO may use the wrong zero-offset factor to correct the average for drift.

Solution: These 2 bugs in the MCLIO averaging routine have been fixed, and the corrected version of \$QLIB (which contains MCLIO) is now available. The new revision code is 2240, and the corrected version of \$QLIB is available on SEAS at DSD. The new version of MCLIO should not be used with autoranging because if all the data to be averaged do not have the same gain code, MCLIO will return an out-of= range result as the average.

Note: In addition to fixing the averaging algorithm, the new version of MCLIO adds a new feature. Now MCLIO can be used to set up scan or channel mode pacing (equivalent to the PACE and CPACE commands in MCL/50). This will be documented in an update to the Automation Library Manual, part number 25581-90001.

HIGH "OFF" SIGNAL LEAKAGE CURRENT IN SIGNAL CONDITIONING MODULES (25543N, 25544A, 25544B, 25544C)

APPLIES TO:	All Units X Only Units on Agreement =		
PERFORM:	Immediately = On Failure X	At PM/Normal Call Information Only \qquad	
WARRANTY:	EXTENDED	NORMAL	NONE
LABOR: PARTS: TRAVEL:	X		$\begin{aligned} & x \\ & x \end{aligned}$
SERVICE INVENTORY	Return for update \square Return for salvage \qquad		Use as is = See text $\overline{\text { Z }}$
WARRANTY EX	ED UNTIL:	ber 1	

Problem: \quad The $25543 \mathrm{~N}, 25544 \mathrm{~A}, 25544 \mathrm{~B}$, and 25544 C Signal Conditioning Modules each contain four VMOS field-effect transistors (FET's) that are used as output switches. The FET's switch on and off normally. However, when switched off, some of these FET's have a leakage current that is greater than the $10 \mu \mathrm{amp}$ specification. If the leakage current is large enough, it can cause the customer's circuitry to turn on. Often, the customer's external circuitry provides the only indication that the FET is malfunctioning.

Cause: \quad FET's (P/N 1855-0431) with date codes 8113,8120 , and 8125 have a bad die that results in premature breakdown. This causes a high leakage current when the FET is off.

Solution: \quad All FET's (P/N 1855-0431) with date codes of 8113, 8120, and 8125 have the bad die. New FET's will be used on the $25543 \mathrm{~N}, 25544 \mathrm{~A}, 25544 \mathrm{~B}$, and 25544C SCM's. These new FET's have had a die change which should prevent their early breakdown and eliminate their high leakage current.

Until September 1984, any existing 25543N, 25544A, 25544B and 25544C SCM's that have FET's (P / N 1855-0431) with date codes of 8113,8120 , and 8125 can be replaced under warranty IF THEY FAIL. The date code is a four-digit number that is labeled on the FET. New FET's have a dot between the first two digits and the last two (i.e. 82.37). Old FET's have the four-digit number with no dot.

The old SCM's should be discarded when they fail. They should be replaced with a new SCM that contains the new FET's. The SCM part numbers are as follows:

25543 N	$25543-60001$
25544 A	$25544-60001$
25544 B	$25544-60002$
25544 C	$25544-60003$

HP 2250 MEASUREMENT AND CONTROL PROCESSOR

Installation and Start Up

HP 2250
 SITE ENVIRONMENTAL MANUAL

MAY 1982

SECTION 1 INTRODUCTICN GENERAL INFORMATION

This manual provides information regarding the environmental requirements of the Hewlett-Packard 2250. This includes operating and non-operating (storage, transport or power down) requirements. Section II provides a generic description of each environmental item. Appendix A contains the specific environmental requirements, operational specifications and operational characteristics for each specific HP 2250.

Note: T'nis manual applies only to the HP 2250's listed in Appendix A.

The environmental requirements cover both the actual physical location of the HP 2250 and the associated area. While Hewlett-Packara provides consultation on the site environment requirements, the scheduling, planning, preparation and verification of a site environment suitable for installation of a Hewlett-Packard 2250 is the customer's responsibility. Hewlett-Packard Sales and Support Personnel are available during the pre-installation period to assist the customer.

The information in this manual covers only the Hewlett-Packard 2250's and accessories. The customer is responsible for meeting the site environmental requirements for the rest of the system components. If the HP 2250 is to be installed on Hewlett-Packard computer equipment, appropriate site preparation documentation, including environmentel requirements will be provided for each system component.

Environmental requirements are those items required to ensure that the HP 2250 will meet the published operational characteristics. Each environmental item has a specific measurable parameter or information that affects the operational characteristics of the HP 2250. Continual operation of the HP 2250 at the limits of the environmental requirements may result in degradation of HP 2250 operation. The following items are considered environmental requirements.

*Temperature	*Electromagnetic Susceptibility
*Humidity	*Contaminants
*Shock	*Cooling Requirements
*Vibration	*Altitude

Chemical contaminants that can corrode components are presently being researched by hewlett-Packard. Operating a Hewlett-Packard 2250 in an environment known to contain significant amounts of the listed contaminants will lead to malfunctions requiring extensive servicing. Hewlett-Packard therefore recommends to our customers that HP components not be stored or operated in areas that contain the contaminants listed under corrosive contaminants.

SECTION II ENVIRONMENTAL REQUIREMENTS

Introduction

The quality and reliability of a product must be developed in the product design stage and carried through the manufacturing process. Hewlett-Packard seeks to design and build the finest quality into our products starting at the bread-board stage.

At each design stage, a randomly selected number of products are put through the environmental test sequence. This random selection of products is referred to as "type testing".

Due to the length of testing time and in some cases the increased stress levels applied to the product, it is not possible to test each and every product manufactured. In addition to the type of testing, certain tests are performed on each product as it is completes the manufacturing cycle. This testing further ensures that the product sold is as good as the product that was environmentally tested.

Effects of Climate
All HP 2250's can operate in an environment suitable for human occupancy as long as moisture will not condense within the environment and room air does not contain chemical contaminants which may degrade 2250 components. Along with the environment in which the 2250 operates, the effects of outside temperature, humidity, altitude and other regional characteristics must be taken into consideration. For instance:

* At higher altitudes, the efficency of a cooling fan decreases because of reduced air density. Consider keeping the 2250 enclosure at a lower temperature to compensate for the reduced air density at the 2250 air intake vents.
* In locations where extremes of temperature and humidity prevail, consider the effects of such conditions on the 2250 enclosure when the main power is shut down. For instance in northern regions, the effects of winter nighttime temperatures should be considered when the main power is shut off.
* In warm, humid regions, a fungus growth prevention program should be considered.
* In shoreline installations, the 2250 site may require special air conditioners, dehumidifiers, and other items to reduce high humidity and corrosive salt in the air.

Reliability is at its maximum when operated within the optimum temperature and humidity range. See temperature and relative humidity requirements in Appendix A.

Vibration and Shock

Vibration can cause. slow degradation of mechanical parts and, when severe, can cause data errors hence it should be avoided or controlled. Also, mechanical connections such as PCA connectors, cable connectors, and processor backplane wiring may be affected. The best preventative measure is to build the site away from vibration-generating sources, such as heavy industrial machinery (stamp mills, etc.). Care in handling the 2250 will also avoid problems resulting from sudden shock. See vibration and shock requirements in Appendix A.

Altitude

Altitude must be considered for the conditions: operating and nonoperating. In the operating environment, the lack of adequate air density at extremely high altitudes may cause cooling problems. See altutude requirements in Appendix A.

Electromagnetic Susceptibility
Introduction
In order to establish and maintain the correct electromagnetic environment it may be necessary to take unique steps. This may include but not be limited to the following:

* Improved grounding techniques
* Placing the 2250 in a grounded screen enclosure
* Placing grounded copper screens on all windows.
* Placing the 2250 in a NEMA cabinet.

Radiated Interference Susceptibility
Electronic equipment, including 2250's, may exhibit unacceptable behavior if operation is attempted in environments where electromagnetic fields exist, such as near radio and TV transmitting towers, or near radar installations as found at airports. If radiated electromagnet fields are suspected, or verified (such as by direct measurement using spectrum analyzers or field strength meters), precautions should be taken to shield the $H P$ products from the electromagnetic field.

Conducted Interference Susceptibility
Radio frequency noise may be introduced into a 2250 from the ac power line as wectric field. Power line conditioners and line filters are very effective in eliminating conducted radio frequency interference (RFI).

Electrostatic Discharge

Electrostatic discharge, commonly. known as static electricity, may cause alteration of data, improper operation or electronic failure. Carpeting, low humidity, and leather-soled shoes may all contribute to unacceptable electrostatic fields. If static discharges are detected (as when touching door knobs, or metallic objects). humidifiers, anti-static mats and other anti-static procedures should be implemented.

Power Line Irregularities

In some geographic areas, available power that is used for the 2250 may experience excessive voltage sags, surges, transients, outages, or other irregularities that are unacceptable for reliable 2250 operation. Therefore, a power quality survey must be conducted. The results of the survey should be analyzed for correct voltage, current, phase, the absence of detrimental power line transients, and conducted interference that can cause a malfunction to occur as a 2250 out-of-specification operation. If any item does not meet $H P 2250$ requirements, corrective action must be taken to correct the situation. power line irregularities may be divided into the following categories.
a. Line Dropout. The power distribution network may lose power for short periods of time. The HP 2250 will recover gracefully from short duration line dropouts. To insure that long duration power line dropouts will not not affect the constant operation of any electrical device, an uninteruptable power supply (UPS) would be required. Line conditioners and regulators will not help in this situation.
b. Over or Under Voltage. Fluctuations From the nominal line voltage are experienced as the result of equipment being turned on or off both within the immediate vicinity and also over the entire power network. A power failure many miles away may cause voltage fluctuations. In a worst case situation, "brown out" only a UPS will provide uninterupted power.
c. Line Transients. Just as radio frequency noise may be transmitted over the ac power line, electrical noise may also be experienced at the ac power outlet. Line trinsients may result in interupted operation, blown fuses, or electrical failure. The surge wave forms used to test the HP 2250 power line transient response are shown in figure 4 . The waveforms are described in the IEEE "Guide on Surge Vin AC Circuits up to 600V Final Draft."
d. Neutral to Ground Noise. This is noise exibited between the neutral to ground lines.
e. Ground to Ground Noise. This is noise exhibited between the HP 2250 ground and earth ground.

f. Power Line Distortion. This is an undesired change in the original signal waveform that results in an unfaithful representation of the desired waveform. Waveform clipping is one example of this type of distortion. Noise in the form of extraneous signals superimposed on the desired waveform is not defined as distortion.

Power line conditioners may be helpful in regulating and conditioning (removing transients) ac power. Problems associated with power line irregularities are often very difficult to diagnose due to the unpredictable and intermittent nature of the problem.

Corrosive Contaminants

Corrosion is a complex form of material deterioration and is generally defined as the destruction of material by chemical or electrochemical reaction with its environment. Some effects of corrosion in HP 2250's are the deterioration of plastics used in the equipment and general degradation of conformal coatings on printed circuit assemblies (PCA's). Many common problems can be avoided by isolating the 2250 from contaminant producing machinery. Examples of this type are office copiers, milling machines, and equipment that produce corrosive vapors or particulates. However, in areas where the atmosphere contains large amounts of various corrosive contaminants, more drastic measures must be taken to ensure clean air in the environment where the 2250 is used. Most environments are corrosive to some degree. Examples are air and moisture; fresh, distilled, or salt water; urban and industrial atmospheres; steam and other gases such as chlorine, ammonia, hydrogen sulfide, sulfur dioxide, and fuel gases; mineral acids such as hydrochloric sulfuric, and nitric. In general, inorganic materials are more corrosive than organic. For example, corrosion in the petroleum industry is due more to sodium chloride, sulfur, hydrochioric and sulfuric acids, and water than to oil, naptha, or gasoline.

Modern chemical process industries utilize higher temperatures and pressures, making possible new processes to obtain better yields, greater speeds, or lower costs of production. However, these higher temperatures and pressures unfortunately involve more severe corrosive environments.

Corrosive environments such as that found in steel, acid, and paper manufacturing industries usually preclude the use of filtered ambient air for forced convection cooling. Corrosives generally connot be filtered out by normal filtration methods, and the techniques that must be used are complex and costly. in these cases, the 2250 must be enclosed in a highly controlled environment.

Although the term "environment" as used here refers only to atmospheric contaminants, there is a strong link between corrosion rates and temperature and humidity conditions. Many

corrosion processes (film thickness buildup, etc.) accelerate rapidly at high humidities and tomperatures. This means that corrosive environments that possess high temperatures and humidities should be of particular concern. The following are typical corrosive contaminants.

* Total Hydrocarbons. Hydrocarbon vapors are known to be very corrosive to precious metal contacts used in computer equipment. A typical example is the contacts on PCA's which employ gold in many instances.
* Sulfer Dioxide. Sulfur is generally considered the most corrosive of the contaminant gases. In combination with water, it forms sulfuric acid mist, an active and rapidly corrosive compound. It is known to produce molecular separation in polymers, and to cause spots on microfilm materials. This acid is found in industrial environments and causes deterioration of equipment surfaces.
* Oxides of Nitrogen. Cxides of nitrogen cause nitrate-stress cracking in electrical contacts, and the absorbed gases react to form nitric acid on component surfaces. Also, small amounts of nitrogen oxide causes deterioration in polymers.
* Total Oxidants. The presence of oxidizing gases in the atmosphere, particularly the ozone, is known to be potentially harmful to any organic material. The damaging effects most often encountered are the cross linking of elastomers, the cracking of stressed rubber, and the oxidation of silver.
* Hydrogen Sulfide. Hydrogen sulfide is a rapid corrosive agent, particularly to copper and silver. Hydrogen sulfide is a common atmospheric contaminant found near oil fields, sulfer springs, and marshy areas, and occasionally is emitted from industrial or sewage treatment activities.
* Ammonia. In sufficient concentrations, ammonia has been found to cause cracking of stressed brass, decrease insulation resistance, and increase loss factor in certain insulators.
* Halogens. Halogens are five chemical elements that form salts by direct union with metals. The five halogens are: fluorine, bromine, clorine, iodine and astatine. Halogens react strongly with metals and hydrogen to form halides. The metal halides are solid water-soluable salts such as table salt (sodium chloride). When hydrogen halides are in a water solution, they from strong acids such as hydrochloric acid. Halogens are both poisonous and corrosive and usually occur in salt deposits and sea water environments. Halogens (and their. compounds) are widely used in medicine, photographic films, sanitation processes, disinfectants, insecticides, some textile processes, paints, bleaches and plastics.

Cooling Requirements

The fans on the 2250 provide adequate ventilation when the 2250 is operated in the appropriate environment. To obtain maximum efficiency, allow the required clearances between the front and rear of the 2250. Air conditioning may be required to maintain the correct temperature. Install required air conditioning before installation of a HP 2250. See temperature requirements in Appendix A.

Safety
Factory Mutual System approved. IEC 348 CSA (pending) VDE waived in \mathfrak{w}. Germany for 2250 N

Power Characteristics
115 VAC (standard HP 2250) Range 86 to 127 VRms 230 VAC (option
-015) Range 195 to 253 Vrms at 47 to 66 Hz

Physical Characteristics
HP 2250M (MOBILE) Height: $94.6 \mathrm{~cm}(37.25$ in.) width: 62.2 cm (24.5 in.$)$ Depth: $81.3 \mathrm{~cm}(32.0 \mathrm{in}$. Weight: $\quad 100 \mathrm{~kg}$ (220 lbs) Packaging: Mounted in cabinet (similar to L-Series Lo-boy cabinet) on casters (system is mobile).

Power cord, connector plug, and receptacle are the customer's responsibility.

HP 2250N (NEMA) Height: $182.88 \mathrm{~cm}(72.0$ in.) Width: 127.0 cm (50.0 in.$)$ Depth: 53.3 cm (21.0 in.) Weight: $\quad 175.9 \mathrm{~kg}(387 \mathrm{lbs})$ Packaging: Mounted in a NEMA Type-12 moisture and dust resistant cabinet.

Power cord, connector plug, and receptacle are the customer's responsibility.

HP 2250R (RACK) Height:
$163.2 \mathrm{~cm}(64.25 \mathrm{in}$.$) Width:$ 53.3 cm (21.0 in.) Depth: $99.1 \mathrm{~cm}(30.0 \mathrm{in}$. Weight: $130 \mathrm{~kg}(286 \mathrm{lbs})$ Packaging: Mounted in a standard 19-inch rack. System may be expanded with an HP 25575C Measurement and Control Expansion Cabinet and and HP 25575B Field Wiring Assembly Cabinet via options 001, 002, and 003 (001; 016, 017 for European power)

Power cord, connector plug, and receptacle are the customer's responsibility.

Ambient Temperature
HP 2250N (NEMA cabinet system) Operating: 0 to 50 degrees C (32 to 122 degrees. F) Non-Operating: -40 to 75 degrees C (-40 to 167 degrees F)

HP 2250N and HP 2250 R (Mobile and Rack-mount systems) Operating: 0 to 40 degrees C (32 to 104 degrees F) Non-Operating: -40 to 75 degrees C (-40 to 167 degrees F)

Relative Humidity
5% to 95% at 40 degrees $C(104$ degrees $F)$ without condensation.
Altitude Operating: $\quad-100$ metres (-325 feet) to 4,600 metres (15,000 feet) Non-Operating:-100 metres (-325 feet) to 15,300 metres (50,000 feet)

Power Requirements

Vkms
115 VAC (Standard HP 2250) Range 86 to 127 VAC (Option -015) Range 195 to 253 Vrms at 47 to 66 Hz
4. CLASS II

A oeneralefacility modified to sudoort the operation of computer equipment. tynically associated with a designated or partitioned area of a lab, office or liant industrial/manufactur $=$ ing area.
o Tyoically a small or medium size multi-user system or large measurement and control/data aquisition system with limited terminal and peripheral capability.
o HP site predaration and installation visits.

- Exaroles: HF 3000 series 40 , 250 model 30 and 35 . HD 1000 rotel 45 and 65.2250 K (1000 system based)

4.1 SPECIFICATIONS

Products installed in class II environments snallexnibit sustained reliable operation over the followina specification ranges.
4.1.1 Temperature

- Optimut ranoe: $15-30$ dea $C+1=5$ dea $(59-86 \mathrm{~F})$
- Maximum range: $5-40$ tea $C+1010$ dea $C(41-104 \mathrm{~F})$ ue to 24 hours maximum but no more than 20% of the total oneratina time (no hardware or media damade)
4.1.2 Humidity
- ODtimum range: $30-70$ wet bulb <26 dẹ C
- Maximum range: $20-80$ * wet bulb <30 deg C ud to 24 hnurs but no rore than 20% of the total operatina tire (no hardware or media damage)
4.1.3 AC Power (same as class T)

Equidment shall continue or resume normal operation under the followina conditions:


```
            O Normal mode transient noise: (to be determined)
                    O Common mode transient noise: (to be determined)
                    O Voltage surae: (to te determinet)
4.1.4 Electric field (same as class I)
            O Radiated: 2.5 volts/meter (0.5-10n0 mhz)
            O Conductert: (to be determined)
4.1.5 Magnetic field
            O (to be determined)
4.1.6 Electrostatic discharoe
            O (to be determined)
                    4.1.7 Airborne darticulates (dust) (same as class I)
                            o nptimum ranoe: lon microorams/cubic meter or less
                    o Maximum range: 200 nicroqrams/cubic meter or less
                        ub to 48 nours maximum but no more than 30% of the
                total oneratina time (no nariware or media damaqe)
4.1.8 Corrosive aasses
            O (to be determined)
4.1.9 Vibration and shock
            O (to be determined)
                    4.2 SITE MODIFICATIONS
4.2.1 Requireत
                            Desioning products to eliminate the following reauirements has
been determined unfeasible from a cost standpoint. Exceptions must
be approved by the local HP service organization.
    O Dedicated AC branch circuit for system orocessor and
        all Derionerals.
            o Isolated power ground for system processor and all
        peripherals.
            o Temperature and numidity control for general area.
4.2.2 Ootional
    The followina is encouraded to further ensure sustained
relaible operation.
```

- AC power conditionina unit for systen: and all peripherals.
o Jemnerature activated 'shuntetrip" switen set to 45 deo C (110 deq F)
- Temperature and humidity recordino device installed permanentiy on site. See section 2.6.1.
o Removal of all carpet within in foot radius of the system. Anti-static mats (such as HP 92176 type) installed at alj entrances (where cardet ends). See section for ouidelines on cardeted facilities.

Facilities which exceed specifications for EMI, dust, air= horne contanination ard vibration reoulre additional modifications to be evaluated by CSD.

A deneral facility without substantial modifications to suddort the operation of computer equiprent. Typically installed in a nome, lah, office, or liant industrial/manufacturina facility.

- Tupically a sinale user desktop system or small measurement and control/data acquisition system.
o. Phone-in site preparation and customer installation.
- Examples: HP \&5, 9R26, 9R45, 250 model 20,1000 model 5, $2250 M$ (9845 system based)

5.1 SPECIFICATIONS

Products installed in Class III environments snall exhibit sustained rellable oderation over the following specification ranges.

Note: Special attention must be oiven devices with sensitive media installed in Class III environments (see Section 2.4).
5.1.1 Temcerature

- Optimum range: $5-40$ deg $C+/=10 \mathrm{deg} C / n r(41-104 \mathrm{~F})$
- Maximum range: 0-55 deq $C+/-15$ deg $C / n r$ (32-131f) up to 12 hours maximum but no more than 10% of the total oderating time (no nardware or media damace)
5.1.2 Humidity
- Optimum range: 20-80 wet bulh <30 deg C
- Maximut ranae: 10-90 \% wet bulb < 30 deg C up to 12 hours maximum but no more that 10 of the total oderatina time (no hardware or media damage)
5.1.3 AC Power MORE LHENT/NOT NS GRTRAL

Eauipment shall continue or resume normal operation under the following conditions:

- Voltage variation: 100,120 volts nominal $+15 /-20$ \% 200, 208, 22n, 240 volts nominal $+15 /-20$ \%
- Frequency variation: $50 / 60 \mathrm{~Hz}+/-5 \%$
o. Total narmonic distortion: 10 or less
- Momentary Dower fallure: $40 \mathrm{msec}(2.4$ cycles or less)
- Normal mode transient noise: (to be determined)
- Common mode transient noise: (to be determinej)
- Voltade surae: (to be determined)
5.1.4. Electricefeld
O Radiated: 5.0 volts/meter or less ($0.5-1000 \mathrm{Mnz})$
- Conducted: (to be determined)
5.1.5 magnetic field
(to he determined)
5.1.6 Electrostatic discharae
(to be determined)
5.1.7 Airborne particulates (dust)
o Cotimum range: 200 micrograms/cubic meter or dess
- Maximum range: 300 micrograms/cubic meter or less
up to 24 hours maximum but no more than 20% of the
total operatina time (no nardware or media damage)
5.1.8 Corrosive aasses
(to be determined)
5.1.9 Vibration and shock
(to be determined)

5.2 SITE MODIFICATIONS

5.2.1 Reouired

The onlv requirement for Class III products is a arounded, 3-Drong electrical recedtacle connectes to a commercial or resdentlal grade power source.
5.2.2 Optional
The following is encouraged to further ensure sustairied reliable operation.
o AC power transient protection device
o If carpet within 10 feet install grounded static

```
control mat' (such as HP 92175) in front of system or
device.
```

Facilities which exceed specifications for EMI, dust, airborne contamination and vibration realire additional modificarions to be evaluated by CSD.

6. CLASS S

A severe environment with no major modifications to sudoort the oderation of computer eouiprent. Typically associated with heavy industrial or manufacturing area.
o Typically a process and control/data acquisition system or data entry terminal packaoed specifically for harsn environments.

- HP installation of larger systems.
- Examples: HP 2250 N (Nema 12 cabinet)

6.1 SPECIFICATIONS

Products installed in Class s environments snall exnibit sustained reliable operation over the followina soecification ranoes.

Note: Special attention must be qiven devices with sesitive media installed in Class senvironments (see section 2.4).
5.1.1 Temoerature MORE VARIANCE

O ODtimum ranop: $0-55$ dea $C+1=15$ dea $C / n y(32-131 f)$
 ud to 12 hours maximum but no more than 10% of the total operatino time (no hardware or media damaqe)
5.1.2 Humidity

```
o Odtimur ranoe: 10-90 \% wet bulb < 30 oieg \(C\)
- Maximur range: 5-100 wet buib < 30 deg \(C\) uf to 12 nours maximum but no more that 1 ng of the total oderatino time (no hardware or media damaẹ)
```

5.1.3 AC Power (same as class III)

Equidrent shall continue or resume normal oferation under the following conditions:
n Voltace variation: 100, 120 volts nominal $+15 /-20$ \% 200, 208, 220, 240 volts nominal $+15 /-20$ \%

- Frequency variation: $50 / 60 \mathrm{~Hz}+/-5 \%$
- Total narmonic distortion: 10% or less
o momentary dower fallure: $40 \mathrm{msec}(2.4$ cycles or less)

```
    O Normal mode transient nosse: (to be determined)
    O Common mode transient noise: (to be determines)
    O Voltage surae: (to be determined)
6.1.4 F.lectric field (same as class III)
    O Radiated: 5.0 volts/meter or less (0.5-1000 mhz)
    O Conducted: (to be deterrined)
6.1.5 Magnetic field
    (to be determined)
6.1.6 Electrostatic discharae
    - (tc be determined)
6.1.7 Alrborne oarticulates (dust)
    O Optimum ranqe: 350 nifrograms/cubic meter or less
    o Maximum ranqe: 750 microqrams/cutic meter or less
        uf to 12 nours maximum but no more than 10% of the
        total operating time (no hardware or media damage)
6.1.8 Corrosive qasses
    (to be retermined)
6.1.9 vibration and shock
    (to be determined)
6.2 SITE MODIFICATJONS
6.2.1 Requifed
    Tne onlv reouirement for Class S products is a grounded.
3-Drono electrical recentacle connected to a commercial or resident-
1al grade dower source.
6.2.2 notional
    The followina is encouraded to further ensure sustained
reliable oderation.
    O AC power transient protection device
```

Facilities which exceed specifications for EMI, dust, airborne contamination and vibration require additional rotifications to be evaluated by CSD.

One of the most difficult classes of problems to deal with is system interruption due to electrostatic discharge. Such static induced failures can manifest itself in several ways. All digital circuits can err as a result of interpreting static induced voltages as valid signals. The result is erratic behavior.

Static charges are transferred to nonconductive surfaces as contact between two parts is broken. For example, as the print wires of a dot matrix printer (such as the HP 2631A) strike the paper, they transfer a charge to the paper. Since this happens thousands of times per sheet, a surprisingly high charge can be transferred to each sheet. In a low humidity area, it is easy to leave 500 volts on each sheet. As the sheets stack up, it is not uncommon to build up 20,000 volts on the paper stack. A high static charge may also build up on personnel as they walk around the room.

Static discharges typically affect digital circuits by inducing voltages on the signal lines. To avoid static induced failures, a device must either tolerate or prevent discharges. Preventing discharges is preferred since a static discharge may upset any component in the computer system. This solution is very difficult to implement. Hence, most solutions try to handle static both ways.

- PRevmmon-lan moun

1
Static control involves providing some form of conductive path to ground so that charges cannot build up. There are several ways to provide a ground path. They include conductive mats, antistatic sprays, ionizers, humidifiers, tinsel strips (on printers), and corona discharge devices. 2.

Static hardening of a device involves shielding the electronics from static discharge noise. This is typically done by enclosing the circuits in a grounded metal box. Such shielding can be defeated by attaching unshielded signal cables to the unit. An unshielded cable acts as an antenna to pick up noise and route it to the electronics.

Proper system ground is critical to preventing static discharges. Incorrectly wired wall sockets and improper grounds particularly aggravate static problems since there is no good path for electrostatic charges to be drained. Because of this, any site that continues to fail erratically should have a thorough power and ground analysis.

A qualified electrician must provide an adequate source of power for the computer system. The computer system will consist of one or more equipment bays (depending on the model and options purchased), plus a number of freestanding items such as terminals, discs, line printers, and magnetic tape units. Whether you modify existing electrical facilities or develop an entirely new facility, plan to:

- Estimate total power requirements for the computer area.
o Install the power distribution panels that will supply the new system.
。
o Fabricate and connect the input power cable to the CPU Bay Power Control Module (50 Hz sites or multiple bay configurations).
o Provide convenience outlets.
- Plan for electrical safety.
o Ensure that all wiring conforms to local codes.
As you plan and install electrical facilities, maintain close liaison with the Site Coordinator. Check with him if questions arise or you need assistance. He will either provide the help you need or contact an HP Customer Engineer for further assistance.

4.1 DETERMINING POWER REQUIREMENTS

To calculate the power requirements at your site, complete the Power Requirements Form provided in Table 4-1. Use the the following guidelines.

SYSTEM REQUIREMENTS
Refer to the System Component Table, available from the Site Coordinator, to calculate the current (in amps) required by the HP 1000 Computer System. If the HP 1000 Computer System is included as part of an HP Automatic Test System, add the
current required by the instrumentation, switches and accessories to the system requirements. Note that the total current figure should include the equipment ordered for the initial system plus any additional equipment planned for future system expansion. Enter the total opposite the System Requirements heading in Table 4-1.

If the current requirements are not available for a particular device, the worst case maximum average current can be calculated from the maximum power (in watts) or maximum apparent power (in volt-amperes) as follows:

```
Max Current = (Max Power)(1.3)/(Rated Voltage)
Max Current = (Max Volt-Amperes)/(Rated Voltage)
```

SITE VARIABLES
To fully account for all requirements, calculate the total current (in amps) as follows:
o Plan the current required by auxiliary equipment that is not part of the HP supplied system, such as modems, electric typewriters, and electronic instruments. For these values, consult the data sheets of each manufacturer. Enter the total current opposite the Interface/Auxiliary Equipment sub-heading in Table 4-1.
o Estimate the current required for site illumination and enter the total opposite the Lights sub-heading in Table 4-1. Power for lighting should not be supplied from the computer system panel.
o Confer with the environmental specialist to determine what equipment is planned. Calculate the amperes required and enter the value in Table $4-1$. Note that power for these devices should not be taken from the dedicated power line to the computer system.
o Make allowance for power used by items (other than HP equipment) that might be added to the computer area in the future. Enter the total current in the table.

- Calculate any additional requirements not considered above. If any equipment is currently in use at the site, a clip-on ammeter can be used to determine its approximate current demand. Enter the value in the table.

Add the values in Table $4-1$ and enter the sum.

Table 4-1. Current Requirements Form

4.2 SERVICE VOLTAGE

There are several acceptable configurations that may be used to supply AC power to the computer system. Proper layout of the system power mains is essential for proper and reliable operation of the system. Guidelines for recommended power circuit specifications are outlined below. They should be implemented in accordance with local electrical codes.
o Install the recommended isolated/insulated ground in accordance with Section 4.9.
o Install a dedicated power line for the computer system and associated peripheral devices. Ensure that the required voltages are available.
o Ensure that ground leakage current conforms to local electrical codes.

Figure 4-1 illustrates a typical building electrical distribution system. Figures 4-2, 4-3, 4-4, and 4-5 illustrate some typical system power layouts.

Figure 4-1 Typical Building Electrical Distribution System

Figure 4-2 120 volt, 60 Hz , Single-phase Power Layout

Figure 4-3 230 volt, 50 Hz , Single-phase Power Layout

Figure 4-4 208Y/120 voit, 60 Hz , three-phase Power Layout

Figure 4-5 $120 / 240$ volt 60 Hz , Split-phase Power Layout

4.3

VOLTAGE LIMITS

At all sites, the steady-state line-to-neutral voltage should be maintained within +5 or -10 percent of the normal rated voltage as measured at the input power side of the computer system when it is powered on. For HP 1000 Computer Systems, the normal rated voltages are 120 V , $240 \mathrm{~V}, 220 \mathrm{~V}$, and 100 V . However, some peripherals do not support all of these rated voltages. Consult the HP 1000 Site Planning Workbook.

The steady-state line-to-neutral voltage can be measured with a true RMS reading digital voltmeter. Power line specifications must ultimately be met as measured at the computer power supply terminals with the system powered on.

4.4 FREQUENCY LIMITS

The line frequency variation must be maintained at $+/-2.0 \%$ for both 50 and 60 Hertz sites as measured at the input power side of the computer when it is powered on.

4.5 HARMONIC CONTENT

The maximum total harmonic content of the computer system feeder should not exceed 5 percent as measured at the input power side of the computer system when it is powered-on.

4.6 POWER NOISE

HP 1000 Computer Systems have been designed to withstand a reasonable amount of input power noise. However, there are many electrical noise sources over which electric power utilities and HP have no control. The major source of this electrical noise is produced by other electrical equipment (e.g., motors, solenoids, SCRs, and X-ray machines) located near the computer site.

4.6.1 Noise Supression

To suppress electrical noise from existing or future electrical equipment, it is strongly recommended that a dedicated feeder between the main power panel and the computer system branch circuit panel be installed. If objectionable transients still exist after installation of a dedicated feeder, a device which will reduce input power noise may be required. Refer to Section 4.7 for information regarding power line treatment devices.

4.6.2 Power Line Disturbances

Input power noise which disturbs the output of power supplies or causes disturbances in signal lines in the computer system can cause computer system" malfunctions. These input disturbances can be categorized as surges, sags, and impulses.

Surges and sags are sudden positive or negative changes in the level of the input voltage having a duration between 5 milliseconds and 5 seconds. Generally, a sag or surge should not exceed about $+/-15 \%$ of the normal rated voltage and should return to the steady-state condition within $1 / 2$ second (within 3 cycles for disc based systems).

Transients are sudden positive or negative changes in the input voltage having a duration between 1 nanosecond and 5 milliseconds. A transient greater than 50% of the normal rated voltage (depending upon its energy content) may produce computer system malfunctions.

A power line disturbance monitor is useful in identifying poor quality input power and characterizing disturbances. Since power line disturbances can vary hourly, daily, and weekly, it is recommended that this monitor be connected for at least one week. Do not consider the results as absolute since disturbances can change seasonally.

If objectionable transients still exist after installation of a dedicated feeder and dedicated ground, the installation of a device which will reduce input power line disturbances may be required. There are basically four devices which can be utilized to accomplish this task. They are:

- isolation transformer
o line conditioner
o motor-generator set
o uninterruptible power system
The line treatment device should be sized according to present and future requirements. Hewlett-Packard recommends a minimum rating of 5 KVA to allow for present needs and future expansion.

4.7.1 Isolation Transformer

isolation transformers attenuate common-mode noise. They also attenuate differential (normal) mode noise to some degree. These noise voltages are measurable concurrently between the noise can be generated by lightning, motors, induction furnaces, SCRs, X-ray machines, and radio and TV stations. Proper installation of an isolation transformer can eliminate such input power problems. The isolation transformer should attenuate common-mode noise about 140 dB and have less than 0.001 pf of coupling capacitance.

4.7.2 Line Conditioner

A line conditioner can attenuate both common-mode noise and normal-mode noise. Normal-mode noise voltages are measurable between the hot line and neutral. They may be alleviated but cannot be eliminated by an isolation transformer. Such noise can be generated by devices in other equipment on the same circuit (such as SCRs, relays, and motors). Proper installation of a line conditioner can eliminate such input power problems and help regulate the line voltage. A ferroresonant line conditioner should attenuate common-mode noise and normal-mode noise about 140 dB with less than 0.001 pf of coupling capacitance. An electronic'line conditioner
with SCR tap switching should attenuate common-mode noise about 140 dB and normal-mode noise about 60 dB with less than 0.001 pf of coupling capacitance.

4.7.3 Motor-Generator Set

A motor-generator set consists of a synchronous AC motor connected to a synchronous AC generator, usually with a flywheel for energy storage. Both common-mode noise and normal-mode noise can be eliminated by this device. Voltage regulation is provided by automatic control of the generator. The flywheel can provide for limited loss of power (typically a few cycles) before the generator frequency drops below tolerance because of flywheel run down.

4.7.7. Uninterruptable Power System

An Uninterruptable Power System (UPS) protects against electrical noise, brown-outs (low voltage), and black-outs (loss of voltage). During normal operation, line power supplies power to the recitfier. The rectifier powers the inverter and keeps the batteries charged. The computer is connected to the output of the inverter. In the event of a brown out or blackout, the batteries will supply power to the inverter and keep the computer on line.

Unless the duration of a black-out exceeds the time that the batteries can supply power to the computer system, the computer will operate normally. Due to high cost, battery vault, and spare parts required, a UPS should be considered only for applications where black-outs, brown-outs, serious frequency variations, or severe transients could cause expensive downtime on a critical system. If the input power to the computer system does not include severe transients but suffers from brown-outs, a voltage regulator could provide a solution.

4.7.5 Reliability

Engineering judgements between installing a more expensive power line conditioning system and the resulting increase in system reliability must be made for each installation. A computer system operating at the extremes of its operating specifications is not as reliable as one operating under its typical design conditions.
4.8 POWER TURN-ON SURGE 225

The power supply circuit should be capable of handling a 400 percent over-current inrush when equipment is turned on. Select circuit breakers for the branch circuit power distribution panel that can withstand this surge current. Thermal-trip circuit breakers are recommended.

4.9 GROUNDING

Proper system ground connections are vitally important to the safe and reliable operation of the system. Generally, existing electrical ground lines are not adequate for proper computer system operation. In addition to conforming to local electrical codes, the computer system ground must also meet two additional requirements. First, it must serve as a current return path in case of a short circuit between the power line and the computer mainframe. Second, it must serve as a ground reference for the computer power system and data cables.

4.9.1 Dedicated Ground

HP strongly recommends installing a dedicated ground conductor between the main power panel and the computer system branch circuit panel along with the dedicated feeder. If installation of a dedicated feeder is not economically feasible, use another code approved method. A dedicated isolated/insulated ground should still be installed. Use of an isolated ground rod is not acceptable.

An isolated/insulated ground conductor should be bonded to the ground bus in the building main power panel, and run with the circuit conductors. This ground should pass through panelboards without being connected to the panelboard grounding terminal bar. An isolated ground bus constructed from a terminal block kit can be installed on the panelboards to connect the isolated ground conductor. To avoid connecting the isolated ground to the conduit at the power outlet, use an isolated ground recepticle such as a Hubble IG-5362 (See Figure 4-6). The isolated ground conductor is noted in the National Electrical Code, Section 250-74, Exception 4.

Figure 4-6 Isolated Ground Recepticle
In Section $250-51$, the National Electrial Code states that the path to ground from circuits, equipment, and conductor enclosures shall (a) be permanent and continuous, (b) have capacity to conduct safely any fault current likely to be imposed on it, and (c) have sufficiently low impedance to limit the voltage to ground and facilitate the operation of the circuit protective devices in the circuit.

Satisfing this statement requires a resistance of 2.1 ohms or less. If the. resistance is too high, several items should be investigated. If a
line treatment device and dedicated ground are not being used, the neutral-to-ground ($N-G$) bonding at the building service main power panel should be checked. If a line treatment device is being used, the $N-G$ bonding at the line treatment device secondary should be checked. If an existing $N-G$ bond has been installed in an improper location, it should be removed and replaced since undesirable current in a portion of the grounding conductor can result.

When a line treatment device is installed in a multi-story building, it is necessary to connect the line treatment device case to the building structural steel for a low noise ground. One end of the ground wire should be bolted to the case of the line treatment device and the other welded to the nearest available vertical structural steel member. Connecting the ground to structural steel in a multi-story building is better than running a wire down to a separate ground rod in the basement. A water pipe should not be used as a ground. An isolated ground rod is never an acceptable ground.

4.9.2 Measuring Ground Quality

The following measurements can be made to determine the quality of a ground. With the power switched off at the computer system branch circuit panel, measure the resistance between the neutral and ground conductors at the computer input power terminals. This measurement should be made using a ground impedance tester. A reading greater than 2.1 ohms between neutral and ground indicates a dangerous situation.

The continuity of the grounding conductor should be verified. If the size of the grounding conductor is smaller than the circuit conductors or if the grounding conductor is uninsulated, the grounding conductor must be replaced with an insulated conductor equal in size to the circuit conductors.

Several specialized devices are commercially available for determining the quality of a grounding system. Ground check devices which induce current in the ground line for testing purposes and indicates ground quality (via lights or a scale calibrated in ohms) and an earth ground tester which measures earth resistance of ground rods and grid systems are among the devices available.

```
Balancing electrical loads in three-phase and split-phase systems is
important because it:
o reduces the severity of externally generated sags and surges to equipment driven from a separate transformer.
o improves, performance of isolation transformers.
o increases transformer lifetime.
```

Unbalanced loads will cause a voltage differential between neutral and ground. This voltage measurement can be used to verify proper load balancing.

A clip-on ammeter should be used to balance electrical loads. Measure the current in each phase, disconnect power from the computer system branch circuit panel, rearrange the loads, and repeat the meaurements. Repeat this procedure until the neutral current is minimized.

Measurement of the voltage differential between neutral and ground can also be used to verify proper load balancing. With the computer power on, measure the voltage differential between the neutral and ground conductors at the computer input power terminals using an oscilloscope. The ground clip attached to the oscilloscope probe should be as short as possible. Disconnect power from the computer system branch circuit panel, rearrange the loads, and repeat the measurements. Continue this procedure until the neutral-to-ground voltage is minimized.

The neutral-to-ground voltage may be further reduced by balancing other loads on the feeder or increasing the wire size of the feeder. If the neutral-to-ground voltage is too high at the computer system branch circuit panel, install a dedicated feeder from the main power panel.

Historically, computer systems with neutral-to-ground voltages greater than 5 volts peak-to-peak have experienced intermittent problems.

4.11 LIGHTNING PROTECTION

In areas where electrical storms pose a real danger, HP recommends that the customer install a lightning protection system to guard against damage to electronic equipment and to protect personnel. A primary site protection system is designed to prevent damage from direct lightning strikes and a resulting fire. The system consists of lightning masts or rods (air terminals) spaced on or around the facility. The rods should be connected by welded joints to a buried earth ground girdle. Alternately, overhead conductors may span the facility and connect to earth ground rods. In most commercial power distribution systems, line surge protection is normally provided, but secondary precautions at the site should not be overlooked. This is particularly true where primary power is supplied by overhead lines. Lightning protectors can be installed in the computer system primary power lines as protection against damage to electronic components and as a fire prevention measure for the system and building.

A secondary type of protection system is designed to prevent metal parts of the building or building contents from accumulating static electrical charges that can cause sparking. In particular, this may be necessary at high altitude locations or in dry climates. The system consists of a buried earth ground girdle to which all metal parts, including the reinforcing steel of the building, are connected. An interior grounding bus may be utilized for grounding building contents. The earth ground girdle can consist of a $2 / 0$ AWG bare copper cable completely surrounding the facility with its ends connected to form a closed loop. It should be buried not less than 46 centimeters (about 18 inches) below grade outside the structural foundation. Electrical contractors in your area should be contacted to provide specific details.

The susceptibility of data lines to transients produced by lightning can be reduced by practicing simple cabling techniques. Burying shielded cables in conduit can eliminate 70% of the transients if the area does not experience a direct strike to the ground.

Routing data cables inside buildings must be performed as cautiously as outdoor routing. A data line running along an $A C$ power line is susceptible to transients and crosstalk.

Many transient suppression devices have been developed for protecting data communication facilities. The most effective means of protection against transients has been the combination of a gas discharge tube and a special zener diode. During low-level transients, the special zener diode provides the necessary protection. As the limit of the zener is approached, the gas-tube fires and suppresses the transient. Such devises are marketed under the trade name of TransZorbs (TM).

Several cables which offer terminal protection from lightning-induced transients on data communications line are available from Hewlett-Packard. They are for hardwired applications only. The only signals carried by the cables are Data In, Data Out, and Ground. These cables are listed on Table 4-2.

PRODUCT	PART	RS-232C	APPROPRIATE	HP 1000	LENGTH
NUMBER	NUMBER	CONNECTOR	TERMINAL	COMPUTER	SUBSYSTEM

Table 4-2. HP Electromagnetic Pulse Protect Cables

4.12 PLANNING CABLE LAYOUT AND FABRICATION

The Electrical Specialist is responsible for fabricating and installing the following cables:

- Cables that supply power to multi-bay system configurations.
o Cables that supply power to additional disc drives. This is required for 50 Hertz operation only.
- Cables that provide power to the freestanding peripheral devices. This is required for 50 Hertz operation only.
o Wiring to supply power to convenience outlets.
- Wiring for lights, heating, ventilating, and air conditioning equipment.

Cable fabrication should be discussed with the HP Customer Engineer at the Site Preparation meeting. Cable routing and receptacle placement should be sketched on the Site Floor Plan.

WARNING

Do not connect any devices to the main power source during site construction. Make this connection as the final step of system installation. This precaution minimizes the hazard created by accidentally closing the main power switch while work is being performed and injuring personnel or damaging the computer. Hewlett-Packard is not responsible for equipment damaged by applying power to the system before it is installed.

4.12.1 Equipment Connections

The power cables and plugs for all HP components are selected according to the country of origin of the sale. If it appears that a power cable and/or plug are not correct, contact your local HP Customer Engineer. Power plug configurations are listed in Figure 4-7.

Figure 4-7 HP Power Cable Plugs

Special tools needed:
9/íg-inch universal socket with minimum of 18-inch extension.

Place 2i04 card cage on threaded studs jn NEMA cabinet, al igning bottom first, then top. Secure to cabinet with washers and nuts on threaded studs.

1 E. Install fan assembly on 2104 card cage. Connect. AC line cord to fan. Install fan grille.
3. Align power supply with the rails at the left side of the 2304 card cage and slide rearward until the connector is just about to mate. Sight between the power supply and card cage to ensure that the male and female connectors ame aligned before completing the rearward movement of the power supply.
4. Install 2 screws to secure the power supply to the card cage.

7 S. Lift in the 22si card cage and place on the four threaded studs. Align the holes first at the bottom, fhen at the top.
6. Secure the 225i. in place by placing a washer and nut on erach of the four thrended studs.

5 R. Install the fan assembly on the 225i. Connect the AC line cord to the fan. Install the fan grille.
8. Repeat steps 5 through 7 , above, if a second $225 i$ is to be installed in the cabinet. Install the second $225 i$ on the upper four threaded studs.
9. If necessary, install cards in 2i04 card cage.
1.0. If necessary, install Function cards in 225i. (ETF always in siot 0 , $A D C$ cards next, analog cards next, then digitai cards.)
11. On either side of cabinet, install FWA (Field Wiring Assembly) for erach card.
a. Using labels provided, affix a label to each FWA card connector to identify $225 i$ box number, slot number, and connector number. For example, the lower $235 i$ is always box 0. A card in slot 4 of box 0 might have four connector assemblies. These assemblies would be marked $0-4-1$, 0-4-2, $0-4-3$, $0-4-4$, Card connector assemblios are numbered from bottom to top.
b. At field wiring end, affix a label on the cover of the FWA to identify the function card to which it is conneeted by type and jocation, Use the same marking sequence as indicated in e, above.

```
            C. One at a time, route the cables through the cut-out on
                either side of the cabinet. Connect the card connector
        end to the appropriate card connector and install the
        screw terminal assembly on the mounting plate as follows:
        (1) At screw terminal end, align base of standoffs with
                the detents in the mounting plate and install 2 mounting
                serews to hold terminal assembly in place.
            (2) Install cover assembly, securing to standoffs wjoth 2
        screws.
12. Interconnect the processor and 225i by installing thefflat casce
    Tibobmeable between the MCI card in the processor and the
        EIF card in 225i Eox 0. If a second 225i is used, interconnect
        the 225is.
13. Connect 25 kHz power cable between power supply and 2こ5i Fox 0.
14. Connect ac line power to power supply and the, fan assemblies
        for the processor and 225i card cages. Self-test begins to
        operate at power-up.
:5. Perform Level I and Level II Diagnostics proredures.
```

```
2104 REMOUAL (Continued)
```



```
5. Remove the fan grille.
6. Remove 2 screws and slide out the fan assembly. Disconnect
        the AC line cord from the fan assembly.
7. Remove nuts and washers from the two threaded studs which secure
    the bottom of the card cage to the cabinet.
B. Remove nuts and washers from the two thrended studs which serure
        the top of the card cage to the cabinet.
9. Slide the card cage forward off the threaded studs and lift out
    of the cabinet.
FIELD WIRING ASSEMELTES
```



```
i. Remove 2 screws. Remove cover.
2. Remove 2 more serews. Remove FWA.
```


NOTES FOR THE CE


```
1. To change the fan on the 2104 card eage, the power Supply must first be removed as in the above procedure.
2. The Power Supply must be removed to ginin aceess to the transorbs.
```

Special tools needed:
9/ib-inch universal socket with minimum 18-inch extension

2251 Remounl

1. Disconnect field wiring cables from card connectors. Moue cables toward side of cabinet to prevent damage during disassembly.
2. Disconnect any cables that interconnect the 235j and other assemblies in the cabinet. (Processor, power supply, second 2251.)
3. Remove fan grille from fan.
4. Remove 2 screws and slide out fan assembly, Disconnect the $A C$ line cord from the fan assembl.y.
5. Remove the 2 nuts and washers from the threaded studs at the bottom of the $225 i$ assembly.
6. Remove the 2 nuts and washers from the threaded studs at the top of the 2s5i assembly.
7. Slide the 225i forward off the threaded studs and Iift out of cabinet.

こi04 REMOUAL

1. If the 2104 is being removed alang with the 225i, perform the steps above and then continue with this procedure. It the $2 i u 4$ is being removed separately, first perform the following:
a. Remove from the card connectors of the $225 i$ all.field wiring cables that are routed to the left side of the cabinet. Positjon these cables to the side so that they will. not interfere with the disassembly.
b. Disconnect the cables that interconnects the eio4 MCT card and the EIF card in the 225i.
c. Disconnect the $25 \cdot k K z$ power cable from the ETF card in the E25i.
2. Disconnect AC Iine cord from the power supply.
3. Remove 2 screws that secure the power supply to the card cage.
4. Remove the power supply by first sliding it forward untij. j.t is off its mounting rails, then lift it up, back, and out of the cabinet.

H.

Cable Labels

Function Card Label

ALL WIRING IS \#18 AWG
APIB

McI

CPU

IUMPER CONFIGURATIONS

RRACK CARD 12070-60001

JUMPER CONFIGURATIONS

(continued)

Procesor Card 12001-60001

100 Octal

U1 (front edge of card)
Set to 101 octal for VCP after break for diagnostic use.
[SWITCH 8 WOHLD BE UP FOR BATTERY BACKUD]

MCI Card 12071-60001

Select code 31

JUMPER CONFIGURATION

(continued)

HP I B CARD 12009-60001

Select code 130 SW 2 is open for normal settling time.

U1 (front of card)

U 16 (left rear of card)
(shows address 5)
any address below • 37B is OK)

JUMPER CONFIGURATIONS

(continued)

HP 12013A Battery Backup Card

Set as you would for L-Series except REMOTE is not used.

Power Supply

Verify that label plate matches what was ordered.
i.e. 115 VAC

7A MAX
47.5-66HZ

FUSE: 7A

BIF

Set thumbwheel switch to desired MCU \# (i.e. first $M C U=0$)

WARNING!

Function cards may be damaged by static discharge.
Handle by edges only.
WEAR A GROUNDED WRIST STRAP /

RECOMMENDED FUNCTION CARD POSITIONS

SLOT \#	PREFERRED POSITION	DIGITAL CARD
8	Highest	25514A
7		26-Channel Relay Output
7		25513A

PREFERRED

SLOT \# . POSITION
ANALOG CARD

1 Highest 25501A 16-Channel HS Analog Input
32-Channel Low-Level MUX
3
16-Channel Relay MUX
4 Lowest 32-Channel High-Level MUX

START UP PROCEDURE

1. Insure all cables and switches are properly installed and configured.
2. Apply line power
3. Observe power supply LED's. TWO green LED's for normal operation.
4. Observe self test status LED's on STATUS panel. Should end in "Data Available" state.
5. Green LED on RRACK card should remain on.
6. Perform Level I diagnostics.
7. USE max to do spot functional check.

ANALOG FUNCTION CARDS

INPUT CARDS	DESCRIPTION
HP 25501A	16-Channel High-Speed Analog Input Card (ADC)
HP 25502A	32-Channel High-Level Multiplexer Card (HLMUX)
HP 25503A	32-Channel Low-Level Multiplexer Card (LLMUX)

HP 2250 DIGITAL FUNCTION CARDS

PRODUCT	DESCRIPTION
255/0A	4-Channel Ana log Output
25511 A	32-Point Digital Input
25512 A	4-Channel Counter Input
25513 A	32-Point Digital Output
25514 A	16-Point Relay Output
25515 A	4-Channel Pulse Output
25516 A	16-Point In/16-Point Digital Multifunction
25517 A	Breadboard (for user designed functions)

ANALOG INPUT CARD SIGNAL CONDITIONING MODULES

ANALOG CARD	SCM	DESCRIPTION
HP 25501A	None	ADC Card (signal conditioning components can be added to the card).
HP 25502A	A,B,C,D*	HLMUX Card
HP 25503A	A,B,C,D*	LLMUX Card
HP 25504A	None	RELMUX Card (capacitors can be added to the plug-in relay circuits to provide input signal conditioning)
*A,B,C, and D are the SCM suffixes relating to the SCM NUMBER listed below.		
SCM NUMBER	CHANNELS PER SCM	DESCRIPTION
25540A	8	Blank (User supplies components)
255406	8	Passive Filter Network Capacitors
25540C	8	Passive Filter Network Current-Loop Resistors
25540D	8	Passive Filter Network Current-Loop Resistors and Filter Capacitors

DIGITAL SCM SELECTION GUIDE

PRODUCT REFERENCE			
FUNCTION CARD	CROSS REFERENCE SCM NUMBER		DESCRIPTION
	$\begin{aligned} & 1 \& 2^{*}, 3 \& 4 \\ & 3 \text { and } 4 \\ & 1 \& 2^{*}, 5,6,7 \\ & 1 \& 2^{*}, 8 \\ & X X X X \\ & 1 \& 2^{*}, 3,4,7 \end{aligned}$	$4 \begin{aligned} & \text { 32-Poi } \\ & \text { 4-Chan } \\ & \text { 32-Poi } \\ & \text { 16-Chan } \\ & \text { 4-Chan } \\ & \text { 32-Poi }\end{aligned}$	nt Digital Input nel Counter Input in Digital Output nnel Relay Output nel Pulse Output Multifunction
*Single Channel SCM for External Strobe Input			
SCM CROSS REFERENCE GUIDE			
SCM NO.	PRODUCT NO.	ChanNels	DESCRIPTION
1	$\begin{gathered} \text { 25531-Series } \\ 25531 \mathrm{~B} \\ 25531 \mathrm{C} \\ 25531 \mathrm{D} \\ 25531 \mathrm{E} \\ 25531 \mathrm{~K} \\ 25531 \mathrm{~L} \end{gathered}$	1	Non-Isolated Digital Input 5 VDC Range 12 VDC Range 24 VDC Range 48 VDC Range 5 VDC Range, Sink Inputs 12 VDC Range, Sink Inputs

DIGITAL SCM SELECTION GUIDE

(continued)

SCM CROSS REFERENCE GUIDE			
SCM NO.	PRODUCT NO.	CHANNELS	DESCRIPTION
2	25533-Series 25533B 25533 C 25533 D 25533 E 25533 F 25533 G 25533 H 255331	1	Isolated Digital Input 5 VDC Range 12 VDC Range 24 VDC (16 VAC) Range 48 VDC Range 72 VDC Range 120 VDC (72VAC) Range 115 VAC Range 230 VAC Range
3	$\begin{gathered} \text { 25535-Series } \\ 25535 B \\ 25535 C \\ 25535 D \\ 25535 E \\ 25535 K \\ 25535 \text { L } \end{gathered}$	4	Non-Isolated Digital Input 5 VDC Range 12 VDC Range 24 VDC Range 48 VDC Range 5 VDC Range, Sink Inputs 12 VDC Range, Sink Inputs
4	$\begin{gathered} \text { 25537-Series } \\ 25537 B \\ 25537 \mathrm{C} \\ 25537 \mathrm{D} \\ 25537 \mathrm{E} \\ 25537 \mathrm{~F} \\ 25537 \mathrm{G} \\ 25537 \mathrm{H} \\ 25537 \mathrm{I} \end{gathered}$	4	Isolated Digital Input 5 VDC Range 12 VDC Range 24 VDC (16 VAC) Range 48 VDC Range 78 VDC Range 120 VDC (72VAC) Range 115 VAC Range 230 VAC Range
5	25543A	4	Isolated Digital Output, VMOX Solid-State Circuit.
6	$\begin{gathered} \text { 25544-Series } \\ 25544 \mathrm{~A} \\ 25544 \mathrm{~B} \\ 25544 \mathrm{C} \end{gathered}$	4	Non-Isolated Digital Output Open Drain Circuit 5 VDC Range 12 VDC Range
7	25545A	2	Solid-State Relay Output (Reduces usable points by 2).

DIGITAL SCM SELECTION GUIDE

(continued)

SCM CROSS REFERENCE GUIDE			
SCM NO.	PRODUCT NO.	CHANNELS	DESCRIPTION
8	$25539-S e r i e s ~$	4	Arc Suppression Circuits
	$25539 A$		For user added components
	$25539 B$		0 to 30 VDC Range
	$25539 G$		24 VAC Range
	$25539 H$		115 VAC Range
	255391		230 VAC Range

25535E	25535-60001	4	chan, 50	non-isolated input, source	
25535C	25535-60002	4	chan, izude,		
25535D	25535-60003	4	chan, E4ude,		
25535E	25535-60004	4	chan, 48ude,		
25535K	25535-80005	4	chan, Sude,	non-isolated	ed input, sink
25535L	25535-60006	4	chan, i2ude,		
25536 ${ }^{\text {E }}$	25536-60001	4	chan, 5ude,	non-isolated	ed input, source
25536K	25536-60005	4	chan, 5ude,	non-isolated	ed input, sink
25537P	25537-60001	4	chan, 5ude	isolated in	input, source
25537Q	25537-60002	4	chan, izude		
25537R	25537-60003	4	chan, $24 u d{ }^{\text {c }}$		"
255375	25537-60004	4	chan, 48ude		"
25537T	25537-60005	4	chan, 7eude		"
25537 U	25537-60006	4	chan, 120 ude		"
25537 V	25537-60007	4	chan, i15uac		"
25537 W	25537-60008		chan, 230 a		"

**

25539A	25539-80001	4	chan, blank, rel	ay ar	supression	55
25539E	25539-60005	4	chan, 3ovde,		"	
25539 G	25539-60007	4	chan, 24vac,		"	
25539 H	25539-60008	4	chan, ifisuac,		"	
25539 J	25539-60009	4	chan, 230vac,		11	
25540 A	5081-0106	8	chan, blank,	analog	input	25502 B
25540 B	25540-60001	8	chan, filter,		11	25503E
25540 C	25540-60002	8	chan, loop,		"	25503 C
25540 D	25540-60003	8	chan, loopzfilter		"	

 The TB TS MNL Y TO BE USED AS NOTES, YOU ARE EXPEQTEO TQ EXPANO

```
!!
THTS कשCTTON WT&L कTSQUSE THE CONWTURATTONE AND TNSTALLATTON
अROEDURES
!!!
```



```
    #NO POWER GTRTPG TN ETTHER CABTMET
    3)FWA &&E FOUND TN कTBES OF NEMA CAETNET
    A)FWA ARE IN BACK OF RAOK GAB, OR TM GECOND CAE TF USTNG KAGKG,
!!
```



```
            AMAX OF TWO MCU'S TN ONE NEHA GABTNET.
```



```
!!!
A) MU जTPME MUL`G ARE CONNEGTED TOGETHER WTTH OATSY GNAMN
    TYE C&B|.E.
```



```
                CABLE, MAX LENGTH OF ONE GAELE AA FT, NAX LENCTH OF
            EMTTRE कT&TNG उe FT.
            3) FRMTNATOR ON ,.,AST ETF?
1!!
A) कLNOE कमOW& FRONT EDGE GONNEOTOR OF FUNCTTON GARD
    3)कрECMAL कLOCK / GABLE / FWA ARE PROVTDEO BY FAOTORY,
```



```
    3) CONNEQTMN TO प|TOME EMLTQMENT TS THE QUSTOMERE
```



```
1!
A) ULUETRATHON O% FMA,
    !!
```



```
                        ON EERTARN GONWTOURATRONG.
1!
Aे WHEN YOU कET SYQTEM A GON#TGURATTON CHORT STMRLAR TO THE
    ONE SHOWM wTLI.. BE SUPPLTED BY THE FकQTORY,
    3) THTS CHAET कNOWS 世ABLTNG CONFTO,
    2) DEMONSTRATE USE OF THE GH&RT:
        A......" =. MCU # ... काढT # ... B#OCK #
```


MTNT TATMW
111

$1!$
TA !n!

111
M
$1!1$

$i!$

1!

1 1

1! !

$1!1$

$1!$

$!!$

CARDS.
$1!1$
PREFERED SLOT ACSTONmWNT FOR ANALOG AND DTGTTAL FUNCTTON GARDS.

1. 1

4)

! ! !
WARNTNG ABOUT HANDITNG OF FUNCTTON GARDS BEFORE WE BREAR TNTO IAE And DESTROY MACHTNE.

AXY पUESTONS FROM CE'S ON THTS SECTON GF LECTURE???
 FOLLOU THTS WTTH DTAGNOSTTC SECTOON TO SEE WHAT WE BROKE,
CALIBRATION

25501

4.8 CALIBRATION PROCEDURE

If the $A D C$ card is not operating according to its specifications, calibration may be required. After calibration, the overall operation of the $A D C$ card can be verified by performing the verification tests described in the HP 2250 Diagnostics and Verification Manual, part no. 25595-90001. Specific instructions for calibrating the ADC card are contained in the following paragraphs.

4.8.1 EQUIPMENT REQUIRED

The following is a list of equipment required for calibration:

EQUIPMENT USE
HP 3455A Digital Voltmeter
*
HP 3310A Function Generator

HP 180A Oscilloscope, with
HP 1806A Low-Frequency
Differential Plug-In

Accurate DC voltage source.
Electronic Development Corp.
Model 501 J , or equivalent
Extender Card

Reference voltages, zero, and gain adjustments.

Common Mode Rejection adjustment.

Common Mode Rejection adjustment, and Sample to Hold pedestal adjustment.

PGA Gain adjustment, and ADC calibration

Provides access to the HP 25501A

4.8.2 PRELIMINARY PROCEDURES

a. Turn the HP 2250 system power OFF.

CAUTION

The ADC card contains static-sensitive components. Be sure to use appropriate anti-static procedures when you handle the card. (The pages on "Safety Considerations" at the beginning of this manual describe the anti-static procedures that you should follow.) Failure to follow these procedures may result-in damage to the card.
b. Using the appropriate anti-static procedures, remove the HP HP 25501 -card from its slot and insert the extender card in its place. Then insert the HP 25501A card into the extender card.
c. Turn on power to the HP 2250 system and ensure that it passes self-test.
d. At the controller you are using (HP 1000, HP 9826, etc.), call the HP 2250 exerciser program (MCX, for example) and issue the command:

$$
\operatorname{ID}(1, n)!
$$

where " n " is the number of function card slots in your HP 2250 system. The ID codes of the function cards installed in the HP 2250 system should be returned, and the ID code of 1 should be returned from the slot that the HP 25501A is in.
e. From the exerciser program, issue the following command:

AI(adc slot,1)!
f. Two items should be returned:

1. A condition code of 0 , indicating that the command executed correctly.
2. The data from the conversion on channel 1, which should should be any integer between -32768 and +32767 . Because no data was put into the card, you can't expect to know what the the data should be. All that is being determined with the command is whether the card will perform a conversion.
g. If step f. was successful (an integer between -32768 and +32767 was returned), the calibration can be started.

4.8.3 COMMON MODE REJECTION ADJUSTMENT

Perform the following steps:

a. From the exerciser program, issue the command:

AI(adc slot,1)!
b. Set the output of the 3310A function generator to the following: Frequency: $\quad 100 \mathrm{~Hz}$

Function: Sine wave
Amplitude: $\quad 10$ volts peak (20 volts peak-to-peak)
DC offset: Zero
c. Connect the function generator to the input of the HP 25501A as shown below:

d. Connect the + input of the $H P 1806 \mathrm{ACH}$ A plug to the D/SE TEST POINT on the HP 25501A.
e. Connect the - input of the HP 1806A CH B plug to the PGA GND TEST POINT on the HP 25501A.
f. Connect the ground clips of both probes to the PGA GND TEST POINT on the HP 25501A.
g. Set the scope vertical sensitivity to $5 \mathrm{~V} / \mathrm{div}$, the time base to 5msec/div, the trigger mode to internal, $A C$, and + slope. (Experiment to get a clear picture.)
h. Verify that there is a 20 volt peak-to-peak sine wave coming out of the $D / S E$ amplifier (the test point that the + probe is connected to.
i. If there is a $20 \mathrm{v} \mathrm{p}-\mathrm{p}$ sine wave at this point, then you are ready to perform the Common Mode Rejection adjustment. If the $20 \mathrm{v} p-\mathrm{p}$ sine wave is not present, the HP 25501A card is defective.
j. Connect the output of the 3310A to the input of the HP 255501A as shown below:

k. Increase the sensitivity of the scope to approximately $5 \mathrm{mV} / \mathrm{div}$. You should see a sine wave with an amplitude of from $1 \mathrm{mV} \mathrm{p}-\mathrm{p}$ to 10 mV p-p.

1. Adjust R103 on the HP 25501 A for a minimum output as viewed on the scope. (Anything below $1 \mathrm{mV} \mathrm{p}-\mathrm{p}$ is acceptable, as this corresponds to $>80 \mathrm{db}$ of common mode rejection.) Use the BANDWIDTH LIMIT switch on the scope, if necessary to eliminate noise on the display.
m. If the output cannot be adjusted for < 1 mV p-p, the HP 25501A card is defective.

4.8.4 SAMPLE-TO-HOLD DYNAMIC OFFSET ADJUSTMENT

Perform the following:
a. Disconnect the 3310A function generator from the HP 25501A.
b. Short the high and low inputs on the HP 25501 A to its ground as shown below:

c. From the exerciser program, issue the following command: REP(0); REW(BO); BLOCK READ(adc slot,1, 10000); NEXT!

This command sets up a high speed AI loop; no data will be returned. The HP 25501A is taking readings with a short pause after every 10000 readings.
d. Move the + probe of the scope from the D/SE TEST POINT (from the previous test) to the S/H TEST POINT. Leave the - probe on the PGA GND TEST POINT.
e. Set the scope vertical sensitivity to $20 \mathrm{mV} / \mathrm{div}$, AC coupled, and the time base to 5 usec/div.
f. A square, or similar, wave should appear on the scope. Adjust R66 (JUMP) on the HP 25501A so that the amplitude of the square wave decreases. Increase the scope sensitivity as necessary until it is in the $5 \mathrm{mV} / \mathrm{div}$ scale. MAKE SURE THAT THE BANDWIDTH LIMIT SWITCH IS IN THE 500 kHz POSITION FOR THIS TEST!
g. You should observe a waveform"similar to that shown below:

52A-0638
h. Continue to adjust R66 until the line between sample and hold is as straight as possible (< 1 mV).
i. The test is now complete. Remove the + and - scope probes and ground clips from their respective test points.
j. Issue the HPIB CLEAR message (CLEAR n on an HP 9826 desktop computer, where "n" is the interface number of the HP-IB interface, or CL from the MCX exerciser program on the HP 1000).

4.8.5 AUTORANGING REFERENCE VOLTAGE ADJUSTMENT

Perform the following:
a. Connect the digital voltmeter - lead to the PGA GND test point and the + lead to the +10 V TEST POINT on the HP 25501A.
b. Ensure that the digital voltmeter is in DC volts, autorange.
c. Adjust R92 (+10 REF) on the HP 25501 A until the voltmeter reads +10.070 volts, plus or minus 2 mV .
d. Move the voltmeter + lead to the -10 V TEST POINT.
e. Adjust R98 (-10 REF) on the HP 25501 A until the voltmeter reads - -10.070 volts, plus or minus 2 mv .

4.8.6 PGA AND SUMMING AMPLIFIER OFFSET ADJUST

Perform the following:
a. Remove any test equipment still connected from the previous test.
b. Connect the input of the HP 25501A Channel 1 as shown below:

c. From the exerciser program, issue the following command:

GAIN(adc slot,l)122 DREAD(adc slot,l)!
Three data items should be returned:

1. A zero condition condition code.
2. Any value, which should be ignored.
3. 122, which is the gain code for a PGA gain of 8 .
d. Connect the + lead of the digital voltmeter to the PGA TEST POINT, and the - lead to the PGA GND TEST POINT on the HP 25501A.
e. The digital voltmeter should read between $+/-100 \mathrm{mV}$.
f. Adjust R82 (PGA ZERO) on the HP 25501 A until the voltmeter reads zero, plus or minus 0.4 mV .
g. From the exerciser program, issue the following command:

GAIN(adc slot,l)98 DREAD(adc slot,l)!
The first returned data item should be 0 , ignore the second data item returned, and the third data item should be 98, which is the PGA gain code for unity gain.
h. Connect the + lead of the voltmeter to the ADC TEST POINT, and the - lead to the AGND TEST POINT on the HP 25501A.
i. Set SWl (CALIB) as follows:

```
1 -- CLOSED
2 -- CLOSED
3 -- CLOSED
4 -- .. OPEN
```

j. The digital voltmeter should read between plus and minus 30 mV .
k. Adjust R37 (INO) on the HP 25501A until the voltmeter reads plus or minus 0.2 mV .

1. Set SWl to OPEN, CLOSED, CLOSED, OPEN.

4.8.7 PGA GAIN ADJUST

Perform the following:

a. Remove any test equipment still connected from the previous test.
b. Connect the voltage source to the input of the HP 25501A as shown below:

c. Connect the + lead of the voltmeter to the PGA TEST-POINT and the lead to the PGA GND TEST POINT.
d. From the exerciser program, issue the following command:

GAIN(adc slot,l)98 AI(adc slot,l)!
e. Switch the voltage source between plus and minus 10 volts and verify that the digital voltmeter reads plus or minus 10 volts, respectively, with a tolerance of $+/-2 \mathrm{mV}$.
f. Set the voltage source to +5 volts, and then issue the following command:

GAIN(adc slot,l)106 AI(adc slot,l)!
This sets the PGA gain to 2.
g. Adjust R95 ($G=2$) on the HP 25501A until the voltmeter reads +10 volts, $+/-0.5 \mathrm{mV}$.
h. Set the voltage source to +2.5 volts, and issue the following command:

GAIN(adc slot,l)ll4 AI(adc slot,1)!
This sets the PGA gain to 4.
i. Adjust $\mathrm{R} 90(\mathrm{G}=4)$ on the HP 25501 A until the voltmeter reads +10 volts, $+/-0.5 \mathrm{mV}$.
j. Set the voltage source to +1.25 volts, and issue the following command:

GAIN(adc slot,l)122 AI(adc slot,l)!
This sets the PGA gain to 8.
k. Adjust R84 ($G=8$) on the HP 25501 A until the voltmeter reads +10 volts, +/- 0.5 mV .

1. Issue the command RES! to complete this test.

4.8.8 ADC GAIN ADJUST

Perform the following:
a. Remove any test equipment still connected from the previous test.
b. Issue the following command:

CPA $(0,0,20) ;$ WPA; BLOCK AID(adc slot, 1,50)!
This sets the HP 25501 A to pace at 20 usec, and requests 50 analog double word readings. These readings should be processed as shown in the following example program:

```
    LUTERM=LOGLU(SLU) .- !Get terminal LU
```

 READ (LU2250) CC
 IF (CC .NE. O)CALL ERROR
 READ (LU2250) (V(I), I=1,100)
 SUM \(=0\)
 DO 10 I = 1,99,2
 SUM \(=\) SUM \(+(V(I) * 0.025)+(V(I+1) * 0.000001)\)
 10 CONTINUE
AVERGE $=$ SUM/50 !Calculate average of
WRITE (LUTERM,20) AVERGE
20 FORMAT("Average = "F9.5,"volts")
GOTO XXXX
!Read condition code
!Go to error handler
if problem
!Gather the 100 data
items
!DO loop to sum the
50 readings
50 readings
!Display average
! Repeat
c. Connect the voltage source to the input of the HP 25501A as shown below:

d. Set the value of the voltage source to 0 volts DC.
e. Set SWl (CALIB) to CLOSED, CLOSED, CLOSED, OPEN.
f. Start the program running. You should observe a reading of approximately -0.06 volts.
g. Be sure power has been applied to the card for at least 5 minutes before proceeding.
h. On the HP 25501A, adjust the potentiometer marked ZERO until the display reads $0.00000,+/-0.000500$ volts. (An occasional noise jump outside the range may occur, this is normal.)
i. Set the voltage source to +5 volts.
j. On the HP 25501A, adjust the potentiometer marked +5VOLT until the display reads +5.00000, +/- 0.000500 .
k. Set SWl on the HP 25501A to OPEN, CLOSED, CLOSED, OPEN.

1. Set the voltage source to +10 volts.
m. On the HP 25501 A , adjust the potentiometer marked +loVOLT until the display reads $+10.00000,+/-0.000500$.
n. Set the voltage source to -10 volts.
o. On the HP 255501A, adjust the potentiometer marked -l0VOLT until the display reads $-10.00000,+/-0.000500$.
p. Set the voltage source to $+10,+5,0,-5$, and -10 and determine that the display corresponds with the above voltages plus or minus 1.25 mV . If not, recalibrate the card from step d.

25503

6.8 CALIBRATION

If the LLMUX card is not operating according to specifications, you may need to calibrate it. After calibration, you can verify the overall operation of the card by performing the tests described in the HP 2250 Measurement and Control Processor Diagnostic and Verification Manual, part number 25595-90001. The following paragraphs contain specific instructions for calibrating the LLMUX card.

6.8.1 EQUIPMENT REQUIRED

You will need the following equipment for calibrating the LLMUX card:

1) HP 3455 A digital voltmeter.
2) Extender card, part number 25591-60001, as shown in figure 6-3.
3) Shorting connector, part number 25590-60010, as shown in figure 6-4.

Figure 6-3. Extender card

Figure 6-4. Shorting connector

6.8.2 PRELIMINÀRY PROCEDURE

1) Turn the power to the. HP 2250 system OFF.
2) Remove the field wiring assemblies (FWAs) from the HP 25503A LLMUX card.
3) Remove the LLMUX card from its slot and insert the extender card in its place. Insert the LLMUX card into the extender card. Leave the FWAs disconnected.

CAUTION

The LLMUX card contains static-sensitive components. Be sure to use appropriate anti-static procedures when you handle the card. (The pages on "Safety Considerations" at the beginning of this manual describe the anti-static procedures that you should follow.) Failure to follow these procedures may result in damage to the card.
4) Turn power to the HP 2250 system $O N$ and make sure that the system passes self-test.
5) Allow the LLMUX card to reach normal operating temperature. This warm-up period usually takes 15 minutes; if, however, the card was already at operating temperature before you turned the power off, and if the power was not off for more than 30 seconds, you can go ahead with the calibration procedure.
6) At the controller you are using (HP 1000, HP 9826, HP-85, etc.) issue the command

ID $(1, n)!$
to the HP 2250, where n is the number of function card slots in your HP 2250 system. (If you are using the MCX exerciser program, just type in "CARDS".) This will cause the ID codes of the function cards in your system to be returned, and an ID code of 3 should be returned for the slot that contains the HP 25503A LLMUX card.
7) Issue the following command from controller to the HP 2250:
AI (slot,l)
where "slot" is the slot number of the LLMUX card. This will cause the HP 2250 to make an analog reading of channel 1 of the LLMUX card. Two values should be returned:
a) A condition code of 0 , indicating that the command executed correctly.
b) The datum from the conversion on channel l; this should be any integer in the range of -32768 to 32767 . (Since channel 1 is not connected to a known voltage, there is no way of knowing what the "correct" reading should be. All that you are doing here is verifying that the card is able to take a reading.)
8) If step 7 was successful (that is, if an integer between -32768 and 32767 was returned), you are ready to proceed with the calibration.

6.8.3 OFFSET VOLTAGE ADJUSTMENT

There are three adjustments to be made in calibrating the HP 25503 A LLMUX card; they are all adjustments of operational amplifier offset voltages. Do the following:

1) Short the inputs of the first channel of the LLMUX card. This involves connecting the HIGH, LOW, and GROUND pins of the channel. This is most easily done with the shorting connector (part number 25590-60010) shown in figure 6-4. Connect the shorting connector to the first block of eight channels on the card, just as though you were connecting a field wiring cable. (You don't have to use the shorting connector if you don't want to, but we have found that using the connector is easier than trying to run wires between all those little pins.)

CAUTION

> If you do try to connect the pins with individual wires, be careful not to make contact with the fourth row of pins. These pins carry power for the thermocouple reference connectors, and an accidental connection between these pins and the other pins could damage the card. We recommend. that you use the shorting connector.
2) Issue the following command to the HP 2250:

```
AI(slot,1)
```

where "slot" is the number of the slot that contains the LLMUX card.
3) Set the voltmeter to the lowest voltage range and connect it between points A and C (shown in figure 6-5) on the LLMUX card.
4) Adjust potentiometer R60l (on the front edge of the card) until you get a reading of zero on the voltmeter.

Figure 6-5. LLMUX Test Points and Adjustments
5) Connect the voltmeter between points B and C (shown in figure 6-5).
6) Adjust potentiometer $R 602$ (on the front edge of the card) until you get a reading of zero on the voltmeter.
7) Connect the voltmeter between test points HIGH and LOW on the front edge of the card.
8) Adjust potentiometer R603 (on the front edge of the card) until you get a reading of zero on the voltmeter.
9) Calibration of the LLMUX card is now complete. To return to norma operation:
a) Turn power to the HP 2250 system OFF.
b) Remove the LLMUX card from the extender card.

CAUTION

The LLMUX card contains static-sensitive components. Be sure to use appropriate anti-static procedures when you handle the card. (The pages on "Safety Considerations" at the beginning of this manual describe the anti-static procedures that you should follow.) Failure to follow these procedures may result in damage to the card.
c) Remove the extender card from its slot and insert the LLMUX card in its place.
d) Connect the FWAs to the Llmux card.
e) Turn power on.

The HP 2250 system is now ready to go.

25510

8.7 CALIBRATION

The HP 25510 analog output card (DAC card) should be calibrated any time that you change the operating mode (unipolar voltage, bipolar voltage, or unipolar current output) of a channel, or after every nine months of operation under normal conditions. After calibration, you can verify the overall operation of the card by performing the tests described in the HP 2250 Measurement and Control Processor Diagnostic and Verification Manual, part number 25595-90001.

The following paragraphs contain specific instructions for calibrating the DAC card.

8.7.1 EQUIPMENT REQUIRED

To calibrate the DAC card you need the following equipment:

1) HP 3465 A digital multimeter

OR
2) a) HP 3455 A digital voltmeter
and
b) a . 25 W 100 ohm resistor

The multimeter is slightly easier to use.

The following paragraphs contain specific instructions for calibrating the DAC card.

8.7.1 EQUIPMENT REQUIRED

To calibrate the DAC card you need the following equipment:

1) HP 3466A digital multimeter

OR
2) a) HP 3455 A digital voltmeter
and
b) a . 25 W 100 ohm resistor

The multimeter is slightly easier to use.

8.7.2 PRELIMINARY PROCEDURE

1) Turn the power to the HP 2250 system OFF.
2) Remove the field wiring assemblies (FWAs) from the HP 25510A DAC card.
3) Remove the DAC card from its slot in the backplane and set the mode switches for each DAC channel to the desired mode of operation (unipolar voltage, bipolar voltage, or unipolar current output). The mode switches (one pair per channel) are located near the front edge of the card.

Note that bipolar current output is not a legal option, and that such a switch setting will prevent the card from identifying itself following a power on cycle.
4) Insert the card into its slot and turn power to the HP 2250 system ON. Make sure that the system passes self-test.
5) Allow the card to reach normal operating temperature. This warm-up period is generally 15 minutes, but it can be shorter if the card was at operating temperature before you turned off the system power. If power was off for 30 seconds or less you don't need to allow any extra warm-up time.
6) At the controller you are using (HP 1000, HP 9826, HP-85, etc.) issue the command

ID $(1, n)!$
to the HP 2250, where n is the number of function card slots in your HP 2250 system. (If you are using the MCX exerciser program,
you can enter "CARDS".) This will cause the ID codes of the function cards in your system to be returned, and an ID code of 10
 card.
 to make special arcangements ifsyon:oare using avolemetererrathey than a multimeter) and if any of your channels is set for current output. This can be done easily asing a .25 W .000 ohth shunt resistor and Ohm's Law.

: obeforenyoa makemany currentsmeasurementsyoset your voatmeter to s.at measure ohms and measure thes valuesofthe. resistory for this ef. measarement, connect the resistor directly across the ohms input; that way you will avoid including the resqstance of the test leads in your measurement. We will refer to the measured resistance

When you measure the current output from a DAC channel, set the
Te.t voltmeter to measure volts andeontectheresistor dreetlyacross the volts inpat. 7 Connect theqtest leads to the cuerent output. The test leads and the resistor thus become part of the circuit, and the voltmeter makes a direct reading of the voltage drop across the shunt resistor. This volfage dropsiswequal to the product of athe measuredmresistanceand the eurrentoucput; thatisymaf IR. (Clever, eh?) The tables below indicate acceptable ranges for the voltages being: measured.

87.3 VOLTAGE AND CURRENT ADJUSTMENTS

Each channel of the DAC card needs to be adjusted according to the output mode selegted, for that ehannel. adjustment arermade for each channel. Do the following:

12 Makeatbe zero adjustment:
a) Set up the multimeter/voltmeter to measure voltage or current, as is appropriaterg to the output mode of the channeloyou are calibrating. $\operatorname{Selectr}$ a range compatible with the valuesin table $8-2$ p below: Attachisthe zest leads of the meter to the appropriate output points.
b) Using the exerciser program (MCX, for example) issue the appropriate command to the DAC card, as listed in table 8-2.
(c) Adjust the zero potentiometer forothe channel until the meter reading is in the rangespecified by the table.

Tables8-2ma Zero Calibration Values

2) Make the full scale adjustment:
a) Make sure that the multimeterfoltmeter is set to a range compatible with the valuesfin table $8-3$ b below. w
b) Using the exerciser program, issue the appropriate command as listedin table 8-3.
c) Adjust the qain potentiometer until the meter reading is in the range specified iñ the table.

Table 8-3. Full Scale Calipration Values

3) Repeat steps 1 and 2 for each channel.
4) After all channels have been calibrated, use the exersiseryprogram to issue commands to set outputs for all channelsat normarailevels.
5) Reconnect the field wiring and resume narmalroperatiop. . .

[^0]: 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224

