The HP 1660-Series Benchtop Logic Analyzers ## **Technical Data** # Finding the cause of difficult problems fast. There is little room for error in the schedules for design projects today. You need test equipment that can locate the cause of a problem quickly and with certainty. The HP 1660-series logic analyzers help you rapidly troubleshoot elusive hardware failures, verify proper bus operation, and debug software during real-time execution. Choose a model with 34, 68, 102 or 136 logic analyzer channels. They all have enough timing and state analysis speed to handle even high-performance applications. Then consider adding a built-in, 2-channel oscilloscope to show signal parametrics – especially when the logic analyzer locates a failure. We think you will agree that these logic analyzers have the right combination of performance, flexibility, and ease of use to help you solve difficult problems fast. - Graphical menus are displayed on a gray-scale CRT - Front-panel keypad, mouse and optional keyboard human interfaces - 3.5 inch high-density flexible disk drive supports LIF and DOS formats - New, advanced inverse assemblers - Store data as ASCII files and screen images in TIFF, PCX and PostScriptTM formats - New, graphical trigger macros make trigger setup easier - Fully programmable $\label{eq:postScript} PostScript^{TM} \ is \ a \ trademark \ of \ Adobe \\ Systems \ Incorporated.$ # **Product Specifications and Characteristics** Figure 1 #### **Logic Analyzer Key Specifications and Characteristics** | Model Number | HP 1660A,AS | HP 1661A,AS | HP 1662A,AS | HP 1663A,AS | HP 1664A | |------------------------------|---|-------------|------------------|--------------|----------| | State and Timing
Channels | 136 | 102 | 68 | 34 | 34 | | Timing Analysis | Conventional: 250 MHz all channels, 500 MHz half channels
Transitional: 125 MHz all channels, 250 MHz half channels
Glitch: 125 MHz half channels | | | | | | State Analysis
Speed | 100 MHz, all channels 50 Mi | | | | 50 MHz | | State Clocks/
Qualifiers | 6 | 6 | 4 | 2 | 2 | | Memory Depth
per Channel | | 4K per chai | nnel, 8K in half | -channel mod | es | ## Oscilloscope Key Specifications and Characteristics | Model Number | HP 1660AS, HP 1661AS,
HP 1662AS & HP 1663AS | |-----------------------------|--| | Channels | 2 | | Maximum Sample
Rate | 1 GSa/s per channel | | Bandwidth | dc to 250 MHz
(dc coupled) | | Rise Time | 1.4 ns | | Vertical Resolution | 8 bits | | Memory Depth per
Channel | 8k samples | drive supports LIF and DOS An image file of any display screen can be stored to disk via the display's Print field. Black & white TIFF, PCX, PostScript, and mats are available. gray-scale TIFF file for- formats. Screen Image Files displayed timing and oscil-loscope signals are built into the operating system. Additional correction for unit-by-unit variation can be made using the *Skew* value affects the next (not the present) acquisition display. field. An entered skew #### **HP 1660-Series General Product** Information puter via HP-IB and RS-232 connections. This feature is standard on all models HP 1664A programmability. except the HP 1664A. Order option 020 for | Model Numb | er Logic Ar
Chan | | Built-in, 2-Channel
Oscilloscope | ASCII Data
Files | State or timing listings can be stored as ASCII files | | | |----------------------|--|-----------------|---|--|--|--------------|---| | HP 1660A | 13 | | No | THES | on a flexible disk via the dis- | | | | HP 1660AS | 13 | | Yes | | play's Print field. These files | | | | HP 1661A | | | No | | are equivalent in character | | | | HP 1661AS | 10. | | Yes | | width and line length to hard- | | | | HP 1662A | 68 | | No | | copy listings printed via the <i>Print All</i> selection. | | | | HP 1662AS | 68 | | Yes | Configuration | | | | | HP 1663A | 34 | | No. | | Logic analyzer and oscillo- | | | | HP 1663AS | 34 | | Yes | and Data
Files | scope files that include configuration and data infor- | | | | HP 1664A | 34 | | No | 11103 | mation (if present) are encod | | | | | L | | | | ed in a binary format. They can be stored to or loaded | | | | Human In | тегтасе
 | HP
- Printer | Printers which use the
HP Printer Control | | from a flexible disk. | | | | Front Panel Mouse | A knob and keypads ma
up the front-panel huma
interface. Keys include
control, menu, display n
igation, and alpha-nume
entry functions. An HIL, 3-button mouse |)
V- | Language (PCL) and have
an HP-IB, RS-232 or paral-
lel* interface are support-
ed: HP DeskJet, LaserJet,
QuietJet, PaintJet, and
ThinkJet models.
* HP 1664A only | Recording of
Acquisition and
Storage Times | Binary format
configuration/data files are
stored with the time of
acquisition and the time of
storage for all models except
the HP 1664A, which does no
have a real-time clock. | | | | iviouse | (HP p/n A2838A) is shipp | | | | Acquisition Arming | | | | | as standard equipment. It provides full instrument control. Knob functionality is replicated by holding | | MX80 printers with an RS-232 interface are supported in the Epson 8-bit graphics mode. | Initiation | Arming is started by <i>Run, Group Run,</i> or the Port In BNC. | | | | | down the center button and moving the mouse lor right. | Output - | Output printed in black and whit from all menus using the | | printed in black and white from all menus using the | Cross Arming | Analyzer machines and the oscilloscope can crossarm each other. | | Keyboard | The logic analyzer can a be operated using an HI keyboard. Order the HP | | Print field. State or timing listings can be also be printed in full or part (start- | Output | An output signal is provided at the Port Out BNC. | | | | | Logic Analyzer Keyboar
Kit, model number E2427 | | ing from center screen) using the <i>Print All</i> selection. | Port In/Out | | | | | | out/Output, Control,
d Printing | | Mass Storage Files and Software | | Port In is a standard BNC connection. The input operates at TTL logic | | | | I/O Ports | The HP 1664A ships with parallel (Centronics) pri | t- Operating | 115 4//44 11 | | signal levels. Rising edges are valid input signals. | | | | | er port as standard equi
ment; RS-232 and HP-IB
ports are optional. All ot
models ship with RS-232
and HP-IB as standard | C your | system resides in Flash
ROM and can be updated
from the flexible disk drive.
The HP 1664A boots from | PORT OUT
Signal and
Connection | Port Out is a standard BNO
connection with TTL logic
signal levels. A rising edge
is asserted as a valid output | | | | | equipment but do not ha
a parallel port. | /e
 | disk and requires only a disk change to update the operating system. | | stment
 Times | | | | Program-
mability | Each instrument is fully programmable from a conductor via HP-IB and RS- | | le A high density (1.44-
Mbyte), 3.5" flexible disk | Skew
Adjustment | Correction factors for nominal skew between | | | State Analysis #### HP 1660-series Logic Analyzer Specifications and Characteristics | PORT IN Arms
Logic
Analyzer [1] | 15 ns typical delay from signal input to a <i>don't care</i> logic analyzer trigger. | EMC CISPR 11:1990/EN 55011 (1991): Group 1 Class A IEC 801-2:1991/EN 50082-1 (1992): 4kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1 (1992): 3 V/m IEC 801-4:1988/EN 50082-1 (1992): 1kV Logic Analyzer Probes | | | | |--|--|---|---|--|--| | PORT IN Arms
Oscilloscope | 40 ns typical delay from signal input to an <i>immediate</i> oscilloscope trigger; not available when oscillo- | | | | | | | scope is in time-qualified pattern triggering mode. | Input
Resistance | 100 kΩ ±2% | | | | Logic Analyzer
Arms PORT
OUT [1] | 120 ns typical delay from logic analyzer trigger to signal output. | Input
Capacitance | approx. 8 pF (see figure) | | | | Oscilloscope
Arms PORT
OUT | 60 ns typical delay from oscilloscope trigger to signal output. | ₽ Pr | = 250Ω | | | | Operating E | invironment | | $P = \begin{cases} R_{IN} = 100k\Omega & Z_0 = 150\Omega \end{cases}$ | | | | Power | 115 Vac or 230 Vac, –22% to
+10%, single phase, 48-66
Hz, 320 VA max | | 150Ω Value of the second t | | | | Temperature | Instrument, 0° to 50° C
(+32° to 122° F). Disk media,
10° to 40° C (+50° to 104° F).
Probes and cables, 0° to | Minimum Input
Voltage Swing | 500 mV peak-to-peak | | | | Humidity | 65° C (+32° to 149° F) Instrument, up to 95%, | Minimum Input
Overdrive | 250 mV or 30% of input amplitude, whichever is greater | | | | | relative humidity at +40° C (+140° F). Disk media, 8% to 80% relative humidity. | Threshold
Range | -6.0 V to +6.0 V in 50-mV increments | | | | Altitude | To 460 m (15,000 ft) | Threshold | Threshold levels may be | | | | Vibration:
Operating | Random vibrations 5-500Hz,
10 minute per axis, | Setting | defined for pods
(17-channel groups) on ar
individual basis | | | | Vibration: Non Operating | ~ 0.3 g (rms). Random vibrations 5-500Hz, 10 minutes per axis,~ 2.41 g | Threshold
Accuracy* | ± (100 mV +3% of
threshold setting) | | | | Non Operating | (rms); and swept sine resonant search, 5-500 Hz, | Input Dynamic
Range | ± 10 V about the threshold | | | | | 0.75 g (0-peak), 5 minute
resonant dwell @ 4 reso-
nances per axis. | | ± 40 V peak | | | | Physical Factor | ors | +5 V Accessory
Current | 1/3 amp maximum per pod | | | | Weight | 26 lbs (11.8 kg) | Channel | Each group of 34 channels | | | | Dimensions | See figure 1 on pg. 1 | Assignment | (a pod pair) can be assigned to Analyzer 1, | | | | Safety | IEC 348/ HD 401,
UL 1244, and
CSA Standard C22.2 | | Analyzer 2 or remain unassigned. | | | Maximum State 100 MHz all models except Speed* HP 1664A, which is 50 MHz Channel Count HP 1660A, AS 136/68 HP 1661A, AS 102/51 [1] HP 1662A, AS 68/34 HP 1663A, AS 34/17 HP 1664A 34/17 Memory Depth 4096/8192 samples per Channel [1] State Clocks HP 1660A, AS 6 clocks HP 1661A, AS 6 clocks HP 1662A, AS 4 clocks HP 1663A, AS 2 clocks HP 1664A 2 clocks Clocks can be used by either one or two state analyzers at any time, except for the 1663A, 1663AS, and 1664A models, which can have only one state or timing analyzer. Clock edges can be ORed together and operate in single phase, two-phase demultiplexing, or two-phase mixed mode. Clock edge is selectable as positive, negative, or both edges for each clock. **State Clock** The high or low of up to 4 Qualifier of the 6 clocks can be ANDed or ORed with the clock specification. Setup/Hold* [2] one clock, 3.5/0 ns to 0/3.5 ns one edge (in 0.5 ns increments) one clock, 4.0/0 ns to 0/4.0 ns both edges (in 0.5 ns increments) 4.5/0 ns to 0/4.5 ns multi-clock, multi-edge (in 0.5 ns increments) Minimum 3.5 ns State Clock Pulse Width* [2] Minimum 10.0 ns Master to Master Clock Time* [2] Minimum 10.0 ns Slave to Slave Clock Time [2] Minimum 0.0 ns Master to Slave Clock Time [2] No. 231 (series M-89) ^[1] Time may vary depending upon the mode of logic analyzer operation. ^{*} Warranted Specification | | | | | | Time Interval | Accuracy | |---|--|---|---|--------------------------|---|---| | Minimum
Slave to Maste
Clock Time [2] | 4.0 ns
r | Transitional
Timing | Sample is stored in sition memory only the data changes. A | when
Atime | Sample Period
Accuracy | ± 0.01% | | Clock
Qualifiers | 4.0/0 ns (fixed) | | tag stored with each
sample allows reco
tion of waveform dis | nstruc- | Channel-to-
Channel Skew | 2 ns typical,
3 ns maximum | | Setup/Hold [3] State Tagging [3] | Counts the number of qualified states between | | Time covered by a f
memory acquisition
with the number of changes in the data | ull
varies
pattern | Time Interval
Accuracy | ± (Sample Period
+ channel-to-channel
skew + 0.01% of time
interval reading) | | | each stored state. Measurement can be shown relative to the previous state or relative to trigger. Max. count is 4.29 × 10 ⁹ . | Timing Speed [1
Channel | HP 1660A, AS | 136/68 | Maximum
Delay
After
Triggering | Sample Period 2-8 ns:
8.389 ms
Sample Period > 8 ns:
1,048,575 × sample period | | State Tag
Count | 0 to 4.29×10^9 (± 0 counts) | Count [1] | HP 1661A, AS
HP 1662A, AS
HP 1663A, AS | 102/51
68/34
34/17 | Trigger Spe | ecifications | | State Tag
Resolution | 1 count | Sample | HP 1664A
8 ns/4 ns | 34/17 | Trigger Macros | Trigger setups can be
selected from a catego-
rized list of trigger | | Time | Measures the time between | Period [1] | 0 113/4 113 | | | macros. Each macro is shown in graphical form | | Tagging [3] | stored states, relative to either the previous state or to the trigger. Max. time | Time Covered
by Data [1] | 16.3 µs minimum,
9.7 hrs./6.5 hrs. max | imum | | and has a written description. Macros can be chained together to | | | between states is 34.4 sec.
Min. time between states is
8 ns. | Maximum Time
Between | 34.3 s | | | create a custom trigger sequence. | | Time Tag
Count | 8 ns to 34.4 seconds
± (8 ns + 0.01% of time tag
value) | Transitions Number of Captured Transitions [1] | 1023-2047/682-4094
Depending on input | signals | Pattern
Recognizers | Each recognizer is the AND combination of bit (0,1, or X) patterns in each label. | | Time Tag
Resolution | 8 ns or 0.1%
(whichever is greater) | Glitch
Capture Mode | Data sample and gli
information is stored | | Pattern
Recognizers | 10 | | Timing Ana | lysis | | sample period | | Pattern Width (in channels) | HP 1660A, AS 136
HP 1661A, AS 102 | | Conventional
Timing | Data stored at selected sample rate across all | Maximum
Timing Speed | 125 MHz | | (iii chailleis) | HP 1662A, AS 68
HP 1663A, AS 34 | | | timing channels. | Channel Count | HP 1660A, AS
HP 1661A, AS | 68
51 | Minimum | HP 1664A 34 | | Maximum
Timing Speed [| 250 MHz / 500 MHz
1] | | HP 1662A, AS
HP 1663A, AS
HP 1664A | 34
17
17 | Pattern and Range | 250 MHz and 500 MHz
Timing Modes: 13 ns +
channel-to-channel | | Channel
Count [1] | HP 1660A, AS 136/68
HP 1661A, AS 102/51
HP 1662A, AS 68/34
HP 1663A, AS 34/17 | Sample Period | 8 ns minimum, 8.38 maximum | | Recognizer
Pulse Width | skew ≤ 125 MHz Timing
Modes : 1 sample period
+ 1 ns + channel-to-chan-
nel skew + 0.01% | | Sample | HP 1664A 34/17
4 ns/2 ns minimum, | Minimum Glitch
Width* | 3.5 ns | | Range
Recognizers | Recognize data which is numerically between or on | | Period [1] | 8.38 ms maximum | Maximum
Glitch Width | Sample Period – 1 n | IS | | two specified patterns (ANDed combination of zeros and/or ones). | | Memory Depth
per Channel [1] | 4096/8192 samples | Memory Depth | 2048 samples | | Dange | · | | Time Covered | Sample period × memory | per Channel | 20 10 301116103 | | Range
Recognizers | 2 | | by Data [1] | depth 16.3 µs min,
34.3 sec/68.6 sec max | Time Covered
by Data | Sample Period × 204
16.3 µs minimum,
17.1 sec maximum | 48: | Range Width | 32 channels | | Edge/Glitch
Recognizers | Trigger on glitch or edge
on any channel. Edge can
be specified as rising,
falling or either. | Storage
Qualification
(state only) | Each sequence level has a storage qualifier that specifies the states that are to be stored. | Trace Mode | Single mode acquires
data once per trace spec-
ification; repetitive mode
repeats single mode | | |---------------------------------------|--|--|--|------------------------------------|--|--| | Edge/Glitch
Recognizers | 2 (in timing mode only) | Maximum
Sequencer
Speed | 125 MHz | | acquisitions until Stop is
pressed or until pattern
time interval or compare
stop criteria are met. | | | Edge/Glitch
Width (in
channels) | HP 1660A, AS 136
HP 1661A, AS 102
HP 1662A, AS 68
HP 1663A, AS 34 | State Sequence
Levels | : 12 | Trigger | Displayed as a vertical dashed line in the timing waveform, state wave- | | | Edgo/Clitch | HP 1664A 34 | Timing
Sequence Level | | | form and X-Y chart dis-
plays and as line 0 in the
state listing and state | | | Edge/Glitch
Recovery Time | Sample Period 2-8 ns: 28 ns
Sample Period > 8 ns:
20 ns + sample period | Timers | Timers may be Started,
Paused, or Continued at
entry into any sequence | Activity | compare displays. Provided in the | | | Greater than
Duration | Sample period 2-8 ns:
8 ns to 8.389 ms. Accuracy | Time a wa | level after the first. | Indicators | Configuration, State
Format, and Timing | | | (timing only) | is -2 ns to $+10$ ns
Sample period > 8 ns
$(1 \text{ to } 2 \times 10^2 \text{ 20}) \times \text{sample}$ | Timers Timer Range | 2
400 ns to 500 seconds | | Format menus for moni-
toring device-under-test
activity while setting up | | | | period. Accuracy is –2 ns
+ sample period + 2 ns ±
0.01% | Timer
Resolution | 16 ns or 0.1% whichever is greater |
Labels | the analyzer. Channels may be grouped | | | Less than Duration | Less than Sample period 2-8 ns: 8 ns to 8.389 ms. Accuracy is -2 ns to +10 ns. Sample period > 8 ns: (1 to $2\times10^{\circ}20)$ × sample period. | Timer
Accuracy | ± 32 ns or ± 0.1%,
whichever is greater | | together and given a
6-character name called a
label. Up to 126 labels in
each analyzer may be | | | (tilling offiy) | | Timer Recovery | 70 ns | assigned with up channels per labe | assigned with up to 32
channels per label. Trigger
terms may be given an | | | Qualifier | Accuracy is 2 ns + sample period – 2 ns ± 0.01% A user-specified term that | Data In to
Trigger Out
BNC Port | 110 ns typical | | 8-character name. | | | can be any state, no state, | | | , Measurement | | | | | | any recognizer, (pattern,
ranges or edge/glitch), any
timer, or the logical combi- | | Functions | Markers | Two markers (x and o) are shown as dashed lines in the display. | | | Branching | nation (NOT, AND, NAND, OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a | Arming | Each analyzer can be
armed by the Run key, the
other analyzer, the oscillo-
scope (AS models only), or
the Port In. | Time
Intervals | The x and o markers
measure the time interval
between events occur-
ring on one or more | | | g | branching qualifier. When satisfied, the analyzer will branch to the sequence | | Starts acquisition of data in specified trace mode. | ta av | waveforms or states (only available when time tagging is on). | | | Occurrence
Counters | level specified. Stop ence Sequence qualifier may be | Stop | In single trace mode or
the first run of a repetitive
acquisition, Stop halts
acquisition and displays
the current acquisition
data. For subsequent runs
in repetitive mode, Stop
halts acquisition of data | Delta States | The x and o markers measure the number of tagged states between any two states. | | | | advancing to the next level.
Each sequence level has
its own counter. | | | Patterns | The x or o marker can be used to locate the nth occurrence of a specified | | | Maximum
Occurrence
Count | 1,048,575 | | and does not change current display. | | pattern before or after
trigger, or after the begin-
ning of data. The o marker
can also find the nth | | | | | | | | occurrence of a pattern
before or after the x
marker. | | | Statistics | x to o marker statistics are calculated for repetitive | Data Entry/Dis | a Entry/Display | | Waveform display is not erased between successive acquisitions. Multiple channels can be displayed on one waveform display line. When waveform size set to large, the value represented by each waveform is displayed inside the waveform in the selected base. | |---|--|---|--|--|--| | acquisitions. Patterns must be specified for both markers, and statistics are kept only when both patterns can be found in an acquisition. Statistics are minimum x to o time, maximum x to o time, average x to o time, and ratio of valid runs to total runs. | Display Modes | State Listing, State Waveforms, State Chart, State Compare Listing, Compare Difference Listing, Timing Waveforms, Timing Listing, interleaved time-correlated listing of two state analyzers (time tags on), and time-corre- lated State Listing with Timing Waveforms on the | Overlay Mode | | | | Compare
Mode
Functions | Performs post-processing bit-by-bit comparison of the acquired state data and Compare Image data. | State X-Y Chart Display Plots value of a specification (on y-axis) versus states or another laber | | Displayed
Waveforms | 24 lines maximum on one screen. Up to 96 lines may be specified and scrolled through. | | Compare
Image | Created by copying a state acquisition into the compare image buffer. Allows editing of any bit in the Compare Image to a 1, x or o. | Markers | x-axis). Both axes can be scaled. Correlated to State Listing, State Compare, and State Waveform displays. Available as pattern, time. | Bases | Binary, Octal, Decimal,
Hexadecimal, ASCII (dis-
play only), User-defined
symbols, two's compli-
ment. | | Compare Image Boundaries Each channel (column) in the compare image can be enabled or disabled via bit masks in the Compare Image. Upper and lower ranges of states (rows) in the compare image can be specified. Any data bits that do not fall within the enabled channels and the | Accumulate | Available as pattern, time, or statistics (with time counting) and states (with state counting on). Chart display is not erased between successive acquisitions. | Symbols mnemonic for the bit pattern of a law When data disp SYMBOL, mnem | User can define a
mnemonic for the specific
bit pattern of a label.
When data display is
SYMBOL, mnemonic is | | | | State Waveform
Display | n Displays state acquisitions in waveform format. | Range | displayed where the bit pattern occurs. User can define a | | | | specified range are not compared. | States/division | 1 to 1000 states. | Symbols | mnemonic covering a range of values. When | | Stop
Measurement | Repetitive acquisitions
may be halted when the
comparison between the
current state acquisition
and the current Compare | Delay
Accumulate | 8191 to + 8192 states. Waveform display is not erased between successive acquisitions. | | data display is SYMBOL,
values within the speci-
fied range are displayed
as mnemonic + offset
from base of range. | | Compare | Image is equal or not equal. Compare Listing display | Overlay Mode | Multiple channels can be displayed on one wave- | Number of
Symbols | 1000 maximum. | | Mode
Displays | shows the Compare Image and bit masks; Difference | Diamlayed | form display line. | [1] Full Channel /Half Channel Modes | | | (| Listing display highlights differences between the current state acquisition and the Compare Image. | Displayed
Waveforms | 24 lines maximum on one screen. Up to 96 lines may be specified and scrolled through. | | r an input signal VH= – 0.9V,
slew rate = 1V/ns, and
–1.3V | | | | Timing
Waveform
Display | | [3] Time or-state-tagging (Count Time
Count State) is available in the ful
channel state mode. There is no s | | | | | | 1 ns to 1000 s; 0.01% resolution. | when time ounless a poo | ag use. Memory is halved
or state tags are used
d pair (34-channel group) | | | | Delay | - 2,500 s to + 2,500 s | remains unassigned in the Configuration menu. | | # **HP 1660-Series Oscilloscope Specifications and Characteristics** | General Info | ormation | Horizontal | | |---|---|----------------------------------|----------------| | Model
Numbers | HP 1660AS, 1661AS,
1662AS, 1663AS | Time Base
Range | 1 | | Number of
Channels | 2 | Time Base
Resolution | 20 | | Maximum
Sample Rate | 1 GSa/s per channel | Maximum | S(| | Bandwidth
[1] [5] | dc to 250 MHz
(real time, dc coupled) | Negative
Acquisition
Delay | (c | | Rise Time
[2] [5] | 1.4 ns | Maximum Positive | 10 | | Vertical
Resolution | 8 bits | Acquisition
Delay | (c
Si | | Memory Depth | 8k samples | Time Interval | ± | | Oscilloscop | e Probing | Measurement
Accuracy [4] [5] | + | | Input Coupling | 1 M Ω : ac,dc 50 Ω : dc only | Oscilloscop | е | | Input R [5] | 1MΩ ± 1%
50Ω ± 1% | Trigger Level
Range | B
d | | Input C | ~ 7pF | Trigger
Sensitivity [5] | d
0.
50 | | Probes
Included | Two HP 10430A probes;
10:1, 1 MΩ 6.5 pF | | 0. | | Vertical (at | BNC) | Trigger Modes | | | Maximum Safe
Input Voltage | 1 MΩ : ±250 V
50 Ω : 5 V rms | Immediate | Tı
a | | Vertical
Sensitivity
Range
(1:1 Probe) | 1 MΩ: ±250 V
(ac + dc, <10 kHz)
50 Ω: 5 V rms | | (A
Si
Si | | Probe Factors | Any integer ratio from 1:1 to 1000:1 | Edge | Ti
e | | Vertical (dc)
Gain | ± 1.25% of full scale | Pattern | Ti
e: | | Accuracy [3] | | | S
1 | | dc Offset
Range
(1:1 probe) | ± 2V to ± 250V
(depending on the
vertical sensitivity) | | lo
W | | dc Offset
Accuracy [5] | ± [1.0% of channel offset
+ 2.0% of full scale] | | se
m
> | | Voltage
Measurement
Accuracy [5] | ± [1.25% of full scale
+ offset accuracy
+ 0.016 V/div] | | re | | Channel-to-
Channel
Isolation | dc to 50 MHz – 40 dB
50 MHz to 250 MHz – 30 dB | | | | Horizontal | | Time-Qualified | Triggers on the exiting | | | |---|--|---|--|--|--| | Time Base
Range | 1 ns/div to 5 s/div | Pattern | edge of a pattern which
meets the user-specified
duration criterion. Greater | | | | Time Base
Resolution | 20 ps \pm [(0.005% of Δ t)
+ (2 × 10 ⁻⁶ × delay
setting) + 150 ps] | | than, less than, or within
range duration criterion
can be used. Duration
range is 20 ns to 160 ns. | | | | Maximum
Negative
Acquisition
Delay | - 4 µs to - 40 s
(depending on the
sample rate) | | Recovery time after valid patterns with invalid duration is <12 ns. | | | | Maximum Positive Acquisition Delay | 16.7 ms to 2.5 ks
(depending on
sample rate) | Events Delay | Triggers on the nth edge or pattern as specified by the user. Time-qualification is applied only to the 1st of n patterns. | | | | Time Interval
Measurement
Accuracy [4] [5] | ± [(0.005% of Δt)
+ (2×10 - 6 × delay setting)
+ 150 ps] | Auto-Trigger Self-triggers if no tr
condition is found -
after arming. | | | | | | be Triggering | Measureme | ent Functions | | | | Trigger Level
Range | Bounded within channel display window | Time Markers | Two markers (x and o) measure time intervals manually, or automatically | | | | Trigger
Sensitivity [5] | dc to 50 MHz:
0.063 × Full Scale
50 MHz to 250 MHz:
0.125 × Full Scale | Voltage
Markers | with statistics. Two markers (a and b) measure voltage and voltage differences. | | | | Trigger Modes | | Automatic | Period, frequency, | | | | Immediate | Triggers immediately after
arming condition is met.
(Arming condition is Run,
Group Run, cross arming | Measurements | rise time, fall time, +width,
-width, peak-to-peak
voltage, overshoot, and
undershoot. | | | | | signal, or Port In BNC signal). | [1] Upper bandwidth reduces by 2.5 MHz for every degree C above 35°C. | | | | | Edge | Triggers on rising or falling edge from channel 1 or 2. | [2] Rise time calculated as $t_r = \frac{0.3}{\text{bandy}}$ | | | | | Pattern | Triggers on entering or
exiting logical pattern
specified across channels
1 or 2. Each channel can | [3] Vertical gain accuracy decreases 0.08% per degree C from software calibra tion temperature. | | | | | be specified as high (H), low (L), or don't care (X) with respect to the level settings in the edge trigger menu. Patterns must be >1.75 ns in duration to be recognized. | | sampling rate. A ps in the formul | n applies at the maximum
At lower rates, replace 150
a with (0.15 × sample
sample interval is defined
e. | | | | | | [5] Specifications (valid within \pm 10°C of auto-calibration temperature) | | | | ### **Ordering Information** HP 1660A 136-channel benchtop logic analyzer **HP 1660AS** 136-channel analyzer with a built-in, 2-channel oscilloscope 102-channel benchtop logic analyzer **HP 1661AS** 102-channel analyzer with a built-in, 2-channel oscilloscope HP 1662A 68-channel benchtop logic analyzer **HP 1662AS** 68-channel analyzer with a built-in, 2 channel oscilloscope **HP 1663A** 34-channel benchtop logic analyzer **HP 1663AS** 34-channel analyzer with a built-in, 2-channel oscilloscope Value-priced 34-channel benchtop logic analyzer Option 020* RS-232 and HP-IB interfaces with programming manual Option 0B5* **Quick-Start Training Kit** Option 0B3 Service Manual Option 908 or 1CM Rackmount Kit **Option UK9** Front panel cover Option W30 Three-year extended repair service HP E2427A HIL Keyboard for logic analyzers HP E2460AS, E2460B, E2461B and E2462B Hewlett-Packard-installed upgrade kits (add an oscilloscope or more channels to selected models) HP 1180B Testmobile HP 35183A Work Surface Attaches to HP 1180B Testmobile as a platform for mouse operation For more information, call your local HP sales office listed in your telephone directory, or an HP regional office listed below for the location of your nearest sales office. **United States:** **Hewlett-Packard Company** Test and Measurement Organization 5301 Stevens Creek Blvd. Bldg. 51L-SC Santa Clara, CA 95052-8059 1 800 452 4844 Canada: Hewlett-Packard Canada Ltd. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 (905) 206 4725 **Europe:** Hewlett-Packard European Marketing Centre P.O. Box 999 1180 AZ Amstelveen The Netherlands **Japan:** Yokogawa-Hewlett-Packard Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192, Japan (81) 426 48 0722 **Latin America:** Hewlett-Packard Latin American Region Headquarters 5200 Blue Lagoon Drive 9th Floor Miami, Florida 33126 U.S.A. (305) 267 4245/4220 Australia/New Zealand: Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 Australia Melbourne Caller 272 2555 (008) 13 1347 **Asia Pacific:** Hewlett-Packard Asia Pacific Ltd. 17-21/F Shell Tower, Time Square, 1 Matherson Street, Causeway Bay, Hong Kong (852) 599 7070 Technical information in this document is subject to change without notice. 5963-2172 E Printed in the U.S.A. 10/94 ^{*} This option is standard equipment on all models except the HP 1664A.