

ABELM 3.1

January 1989

096-0037-002

January 1989 096-0037-002

This document contains the latest information available at the time of

preparation. Therefore, it may contain descriptions of functions not implemented

at distribution time.

Data 1/0 Corporation provides this manual "as is," without warranty of any kind,

either expressed or implied. Data 1/0 reserves the right to make improvements

and/or changes in this document or in the product and/or program(s) described

herein at any time. Information on these changes will be incorporated in new

editions of this publication.

Data 1/0 Corporation

10525 Willows Road N.E.

Redmond, Washington 98073-9746 USA

206 881-6444

Data 1/0 and FutureNet are registered trademarks of Data 1/0 Corporation.

Data 1/0 acknowledges the trademarks of other organizations for their respective

products or services identified in this document.

Copyright 1987, 1988, 1989 Data 1/0 Corporation. All rights reserved.

Table of Contents

1. Introduction

1.1 More About ABEL Features 1-6
I. I. I Design Checking 1-6
1.1.2 Logic Reduction 1-6
I .1.3 Simulation 1-6
1.1.4 Functional Device Testing 1-6
1.1.5 Standard JEDEC Format Programmer Load File 1-7
1.2 System Requirements 1-7
1.3 Contents of the ABEL Package 1-8
1.4 Documentation 1-10
1.4.1 The ABEL Manual 1-10
1.4.2 System Specific Information 1-11
1.4.3 Logic Diagrams 1- I I
1.5 Design Example Files 1-11
l.6 Notation Conventions 1-12
1.7 Software Update Service 1-14
l.8 Field Customer Support 1-14
1.9 License Agreement and Warranty I-15
1.9.1 License 1-15
1.9.2 Term 1-16
1.9.3 Limited Warranty 1-16
1.9.4 Limitation of Remedies 1-17
1.9.5 General 1-17
1.10 Ordering 1-19

2. Installation

111

Table of Contents

3. ABEL Source Files

3 .1 Elements of the ABEL Source File
3 .2 Examining an Example ABEL Source File
3.2.1 Purpose of the Address Decoder
3.2.2 The MODULE Statement
3.2.3 The FLAG Statement
3.2.4 The TITLE Statement
3.2.5 The DEVICE Declaration
3.2.6 PIN and NODE Declarations
3.2. 7 CONST ANT Declarations
3.2.8 EQUATIONS Statements
3.2.9 Test Vectors
3.3 Processing an ABEL Source File
3.3.1 Entering the Command Line
3.3.2 New Files Created
3.4 Downloading the Programmer Load File

4. The ABEL Language Processor

3-2
3-6
3-7
3-7
3-8
3-8
3-8
3-9
3-9
3-10
3-11
3-12
3-12
3-14
3-15

4.1 ABEL Batch Processing 4-3
4.1.1 ABEL Libraries 4-5
4.1.2 Generated Output Files 4-6
4.1.3 Creating Your Own Batch or Command Files 4-8
4.2 PARSE 4-9
4.2.1 PARSE Listing File 4-13
4.3 TRANSFOR 4-16
4.4 REDUCE 4-18
4.4.1 Level 0 Reduction 4-19
4.4.2 Level I Reduction 4-19
4.4.3 Level 2 Reduction 4-20
4.4.4 Level 3 Reduction 4-20
4.4.5 Level 4 Reduction 4-21
4.5 FUSEMAP 4-22
4.6 SIMULATE 4-27
4.6.1 Input Files 4-33
4.6.2 SIMULATE Program Operation 4-34
4.6.3 Devices with Clock Inputs 4-36
4.6.4 SIMULA TE Output File, Trace Level 0 4-38
4.6.5 SIMULA TE Output File, Trace Level I 4-39

lV

Table of Contents

4.6.6 SIMULA TE Output File, Trace Level 2 4-42
4.6.7 SIMULATE Output File, Trace Level 3 4-43
4.6.8 SIMULA TE Output File, Trace Level 4 4-47
4.6.9 SIMULA TE Output File, Trace Level 5 4-49
4.6.10 SIMULATE Output File, Two Trace Levels 4-51
4.6.11 Simulation and Designs With Buffered Outputs 4-52
4.6.12 Simulation and Unspecified Inputs 4-52
4.6.13 Simulation for Designs With Feedback 4-53
4.6.14 EZSIM - A Batch File for Re-simulation of

a Design 4-60
4.7 DOCUMENT 4-61

5. Transferring the Programmer Load File

5.1 Downloading to a Model 29 with LogicPak
5.2 Downloading to a Unisite Programmer
5.3 PROM Download (Model 29 /UniPak2)

6. ABEL Utilities

6.1 TOABEL, PALASM to ABEL Converter
6.2 IFLDOC
6.3 ABELLIB, Library Manager
6.4 Library File Usage
6.5 JEDABEL, JEDEC File to Equations

7. Language Elements

7.1 Basic Syntax
7 .2 Valid ASCII Characters
7 .3 Identifiers
7 .3.1 Reserved Identifiers
7 .3.2 Choosing Identifiers
7.4 Strings
7 .5 Comments
7.6 Numbers

5-2
5-5
5-5

6-1
6-2
6-4
6-5
6-6

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8

v

Table of Contents

7. 7 Special Constants
7 .8 Operators, Expressions, and Equations
7 .8.1 Logical Operators
7 .8.2 Arithmetic Operators
7.8.3 Relational Operators
7 .8.4 Assignment Operators
7 .8.5 Expressions
7.8.6 Equations
7.9 Sets
7.9.l Set Operations
7.9.2 Set Assignment and Comparison
7.9.3 Set Evaluation
7 .9 .4 Limitations/Restrictions on Sets
7.10 Blocks
7 .11 Arguments and Argument Substitution

8. Language Structure

7-11
7-12
7-13
7-14
7-15
7-17
7-17
7-20
7-23
7-24
7-26
7-28
7-30
7-32
7-33

8.1 Basic Structure 8-1
8.2 MODULE Statement and Structure 8-3
8.3 FLAG Statement 8-6
8.4 TITLE Statement 8- 7
8.5 Declarations 8-8
8.5.1 Device Declaration Statement 8-9
8.5.2 Pin Declaration Statement 8-10
8.5.3 Node Declaration Statement 8-12
8.5.4 Constant Declaration Statement 8-14
8.5.5 Macro Declaration Statement and Macro Expansion 8-16
8.5.6 ISTYPE Statement 8-19
8.5.7 LIBRARY Statement 8-24
8.6 Equations Statement 8-25
8.7 Truth Table Statement 8-26
8.7.l Truth Table Header Syntax 8-26
8.7.2 Truth Table Format 8-28
8.7.3 Programmable Polarity Registers 8-29
8.8 State Diagrams 8-30
8.8.1 STATE DIAGRAM Statement 8-31
8.8.2 IF-THEN-ELSE Statement 8-34
8.8.3 Chained IF-THEN-ELSE Statements 8-35

vi

8.8.4 CASE Statement
8.8.5 GOTO Statement
8.8.6 WITH-ENDWITH Statement
8.9 Fuses Section
8.10 Test Vectors

9. Directives

Table of Contents

8-36
8-38
8-39
8-40
8-42

9.1 @ALTERNATE Directive 9-2
9.2 @CONST (Constant) Directive 9-3
9.3 @EXIT Directive 9-4
9.4 @EXPR (Expression) Directive 9-4
9.5 @IF Directive 9-5
9.6 @IFB (If Blank) Directive 9-6
9.7 @IFDEF (If Defined) Directive 9-7
9.8 @IFIDEN (If Identical) Directive 9-8
9.9 @IFNB (If Not Blank) Directive 9-9
9.10 @IFNDEF (If Not Defined) Directive 9-10
9.11 @IFNIDEN (If Not Identical) Directive 9-11
9.12 @INCLUDE Directive 9-12
9.13 @IRP (Indefinite Repeat) Directive 9-13
9.14 @IRPC (Indefinite Repeat, Character) Directive 9-15
9.15 @MESSAGE Directive 9-16
9.16 @PAGE Directive 9-16
9.17 @RADIX Directive 9-17
9.18 @REPEAT Directive 9-18
9.19 @STANDARD Directive 9-19

10. Design Examples

10.1 6809 Memory Address Decoder
10.1.1 Design Specification
10.1.2 Design Method
10.1.3 Test Vectors
10.2 12 to 4 Multiplexer
10.2.1 Design Specification
10.2.2 Design Method

10-5
10-5
10-6
10-8
10-9
10-9
10-10

vii

Table of Contents

10.2.3 Test Vectors
10.3 1 to 8 Demultiplexer
10.3.1 Design Specification
10.3.2 Design Method
10.3.3 Test Vectors
10.4 4-Bit Counter/Multiplexer
10.4.1 Design Specification
I 0.4.2 Design Method
10.4.3 Test Vectors
10.4.4 Multiple Assignments to the Same Signal
10.5 Three-State Sequencer
10.5.1 Design Specification
10.5.2 Design Method
10.5.3 Test Vectors
10.6 8-Bit Barrel Shifter
I 0.6.1 Design Specification
I 0.6. l Design Method
10.6.3 Test Vectors
10.7 7-Segment Display Decoder
I 0. 7. I Design Specification
10.7.2 Design Method
10.7.3 Test Vectors
10.8 4-Bit Comparator
10.8.l Design Specification
10.8.2 Design Method
10.8.3 Test Vectors
10.9 Bi-Directional Three-State Buffer
10.9.1 Design Specification
10.9.2 Design Method
10.10 Blackjack Machine
10.10.1 Design Specification - MUXXADD
10.10.2 Design Method - MUXADD
10.10.3 Test Vectors - MUXADD
10.10.4 Design Specification - BINBCD
10.10.5 Design Method - BINBCD
10.10.6 Test Vectors - BINBCD
10.10.7 Design Specification - BJACK
10.10.8 Design Method - BJACK
10.10.9 Test Vectors - BJACK

Vlll

10-11
10-13
10-13
10-14
10-15
10-17
10-17
10-19
10-21
10-24
10-27
10-27
10-27
10-29
10-31
10-31
10-32
10-34
10-36
10-36
10-36
10-39
10-40
10-41
10-42
10-45
10-46
10-46
10-47
10-49
10-52
10-53
10-54
10-56
10-56
10-57
10-61
10-61
10-64

Table of Contents

11. Design Considerations

11.1 Using State Machines
11.1.1 Use Identifiers Rather Than N um be rs for States
11.1.2 "Power On" Register States
11.1.3 Designing With Programmable Polarity Outputs
11.1.4 Unsatisfied Transition Conditions,

D-TypeFlip-Flops
11.1.5 Unsatisfied Transition Conditions,

Other Flip-Flops
11.1.6 Number Adjacent States for One-Bit Changes
11.1.7 Use State Register Outputs To Identify States
11.2 Solving Timing Problems with REDUCE
11.3 Passing Arguments from the Command Line
11.4 Effect of Equation Polarity on Reduction Speed

12. Simulation

12.1 Test Vectors and Simulation
12.2 Trace Levels and Breakpoints
12.3 Debugging State Machines
12.4 Multiple Test Vector Tables
12.5 Using Macros and Directives to Create Test Vectors
12.6 Don't Cares in Simulation
12. 7 Preset and Preload Registers
12. 7 .1 Special Preset Considerations
12. 7 .2 TTL Preload
12. 7 .3 Supervoltage Pre load
12.7.4 Preset/Reset Controlled by Product Term
12. 7 .5 Preset/Reset Controlled by Pin
12. 7 .6 Power-Up States
12.8 Asychronous Circuits

11-2
11-3
11-5
11-5

11-5

11-6
11-7
11-9
11-10
11-13
11-17

12-2
12-3
12-5
12-6
12-8
12-14
12-17
12-18
12-21
12-23
12-28
12-30
12-30
12-31

ix

Table of Contents

13. Using Features of Advanced Devices

13.1 Output Enables
13.l.l Pin Controlled Output Enable
13.l.2 Term Controlled Output Enable
13.l.3 Configurable Output Enable
13.2 Output Macro Cell Control with ISTYPE
13.2.l Controlling Macro Cell Polarity
13.2.2 Controlling Macro Cell Feedback Point
13.2.3 Selecting or Bypassing Device Registers
13.2.4 Controlling Register Type
13.3 Controlling Device Nodes
13.3.1 Using Node Numbers
13.3.2 Using Dot Extension Notation
13.4 More On Feedback
13.4.1 Selectable Feedback Type
13.4.2 Multiple Feedback Paths
13.4.3 The .Q Dot Extension
13.5 Using Select Multiplexers
13.6 Using Selectable Register Types
13.7 4-Bit Shifter/Counter Design
13.7.1 The Fl59 Logic Diagram
13.7.2 Examination of the Source File
13.7.3 Combining Equations
13.7.4 Specifying the Flip-Flop Inputs
13.7.5 Test Vectors
13.8 Using Complement Arrays
13.9 Equations for XOR PALs
13.10 JK Flip-Flop Emulations

Appendix A. Error Messages

A.1 General Error Messages
A. I. I Command Line Errors
A.1.2 Fatal Errors
A.1.3 Intermediate File Errors
A.1.4 Logical Errors
A.1.5 Preprocessor Errors
A.1.6 Syntax Errors
A.1.7 Device File/Internal Errors

x

13-1
13-1
13-2
13-4
13-6
13-6
13-8
13-11
13-12
13-13
13-13
13-15
13-17
13-17
13-19
13-21
13-23
13-25
13-26
13-26
13-28
13-31
13-31
13-33
13-37
13-42
13-42

A-2
A-2
A-3
A-6
A-8
A-14
A-15
A-21

Table of Contents

A.2 Non-Fatal Simulation Errors
A.3 TOABEL Error Messages
A.4 IFLDOC Errors
A.4.1 Command Line Errors
A.4.2 Diagnostic Errors
A.4.3 JEDEC Input File Errors
A.5 IFLDOC Warning Messages
A.6 ABELLIB Error Messages
A. 7 JED ABEL Error Messages

Appendix B. JEDEC Standard Number 3A

A-22
A-24
A-25
A-25
A-26
A-26
A-28
A-32
A-33

B.l Introduction B-1
B.2 Summary of Programming and Testing Fields B-3
B.3 Special Notations and Definitions B-4
B.3.1 Notation Conventions B-4
B.3.2 BNF Rules and Definitions B-5
B.4 Transitional Protocol B-7
B.4.1 Protocol Syntax B-7
B.4.2 Computing the Checksum B-7
B.4.3 Disabling the Transition Checksum B-8
B.5 Data Fields B-9
B.5.1 General Field Syntax B-9
B.5.2 Field Identifiers B-9
B.6 Comment and Defintion Fields B-11
B.6.1 Design Specification Field B-11
B.6.2 Note Field (N) B-11
B.6.3 Device Definition Field (D) (Obsolete) B-12
B.6.4 Value Field (QF,QP,QV) B-12
B. 7 Device Programming Fields B-14
B.7.1 Syntax and Overview B-14
B.7.2 Fuse Default States B-15
B.7.3 Fuse List Field B-15
B. 7.4 Fuse Checksum Field B-16
B.8 Device Testing Fields B-18
B.8.1 Syntax and Overview B-18
B.8.2 Default Test Condition Field (X) B-19
B.8.3 Test Vectors B-20

Xl

Table of Contents

B.8.4 Pin Sequence
B.8.5 Test Conditions
B.8.6 Register Preload
B.9 Programmer/Tester Options
B.9.1 Security Fuse (G)
B.9.2 Signature Analysis Test (S,R,T)
B.9.3 Access Time (A)
B.10 Data File Example

Appendix C. Programmable Logic Device
Information

C.1 ABEL Support for Specific Devices
C.1.1 PROM Support
C.1.2 Devices Supported by TOABEL
C.1.3 Devices Supported by IFLDOC
C.2 Specific Device Information
C.2.1 Altera and Intel EPLDs
C.2.2 AMD
C.2.3 Exel 78C800
C.2.4 Lattices GALs
C.2.5 MMI P20RAIO and Pl6RA8
C.2.6 MMI P32VXIO and P22RX8
C.2.7 MMI Pl6X4/Pl6A4
C.2.8 Ricoh and VTI EP ALs
C.2.9 Signetics
C.2.10 F405C and F405D
C.3 Device Nodes

Appendix D. Syntax Diagrams

D.1 How to Read Syntax Diagrams
D.2 ABEL Syntax Diagrams

Appendix E. ASCII Table

xii

B-21
B-21
B-23
B-25
B-25
B-25
B-26
B-26

C-1
C-1
C-2
C-2
C-3
C-3
C-4
C-4
C-5
C-6
C-6
C-6
C-7
C-7
C-9
C-9

D-1
D-3

Table of Contents

List of Figures

1-1. Logic Design Steps with ABEL 1-5
3-1. Source File Template 3-4
3-2. Block Diagram; 6809 Memory Address Decoder 3-6
4-1. Processing Flow of the Language Processor 4-2
4-2. SIMULA TE Processing Flow Diagram 4-35
4-3. Trace Level 3 Simulation Output 4-46
4-4. Synchronous Feedback Circuit 4-54
4-5. Asynchronous Feedback Circuit 4-57
5-1. Cable Configuration for Transfer Between an

IBM-XT and a Data 1/0 Programmer 5-3
5-2. Cable Configuration for Transfer Between an

IBM-AT and a Data 1/0 Programmer 5-4
6-1. Sample Output File From IFLDOC 5-3
8-1. Structure of an ABEL Source File 6-2
8-2. Feedback Paths for an E0310 8-23
8-3. Pictorial State Diagram 8-33
10-1. Block Diagram: 6809 Memory Address Decoder 10-5
10-2. Simplified Block Diagram: 6809 Memory Address

Decoder 10-8
10-3. Block Diagram: 12 to 4 Multiplexer 10-9
10-4. Simplified Block Diagram: 12 to 4 Multiplexer 10-10
10-5. Block Diagram: 1 to 8 Demultiplexer 10-13
10-6. Simplified Block Diagram: Demultiplexer 10-14
10-7. Block Diagram: 4-Bit Counter With 2 Input

Multiplexer 10-17
10-8. Simplified Block Diagram: 4 -Bit Counter With

2 Input Multiplexer 10-19
10-9. State Machine Bubble Diagram 10-28
10-10. Block Diagram: 8-Bit Barrel Shifter 10-31
10-11. Simplified Block Diagram: 8-Bit Barrel Shifter 10-32
10-12. Block Diagram: 7 -Segment Display Decoder 10-37
10-13. Simplified Block Diagram: 7-Segment Display

Decoder 10-37
10-14. Block Diagram: 4-Bit Comparator 10-40
10-15. Simplified Block Diagram: 4-bit Comparator 10-41
10-16. Block Diagram: Bidirectional Tri-State Buffer 10-46
10-17. Simplified Block Diagram: Tri-State Buffer 10-47

Xlll

Table of Contents

10-18. Schematic: Blackjack Machine
10-19. Pictorial State Diagram: Blackjack Machine
11-1. D-Type Register with False Inputs
11-2. Circuit Using an Input and Its Complement
11-3. Timing Diagram for F = B & !C #!A & C
12-1. Timing Diagram Showing Test Vector Action
12-2. Internal Register of the Fl59
12-3. A Cross-Coupled Flip-Flop
13-1. Output Enable Controlled by Device Pin
13-2. Output Enable Controlled by Product Term
13-3. Typical Multiplexer for Output Enable Modes
13-4. Controlling Macro Cells with ISTYPE
13-5. Macro Cell, Configurable to Combinatorial

or Registered Output
13-6. Registered and Combinatorial Feedback (PI6R4)
13-7. Selectable Feedback Paths (E0310)
13-8. Configurable Macro Cell (32VXIO)
13-9. Location of the Q Signal in Registered Devices
13-10. Output Macro-Cell for the El800
13-11. Logic Diagram of the F 159 FPLS (partial)
13-12. Flip-Flop Input Notation Examples
13-13. Abbreviated F105 Schematic
13-14. JK Flip-Flop Emulation Using T Flip-Flop
13-15. T Flip-Flop Emulation Using D Flip-Flop
13-16. JK Flip-Flop Emulation, D Flip-Flop with XOR

XIV

10-50
10-63
11-6
11-10
11-12
12-20
12-21
12-32
13-2
13-3
13-5
13-7

13-11
13-17
13-18
13-19
13-21
13-24
13-27
13-33
13-41
13-42
13-43
13-43

Table of Contents

List of Tables

1-1. Files Supplied with ABEL
1-2. Notation Conventions
4-1. Data Translation Format Codes and File Extensions
4-2. Notation Used in Simulation Output Files
7-1. Number Representation in Different Bases
7-2. Special Constant Values
7-3. Logical Operators
7-4. Arithmetic Operators
7-5. Relational Operators
7 -6. Assignment Operators
7-7. Summary of Operators and Priorities
7-8. Valid Set Operations
9-1. Directives
9-2. Alternate Operator Set
10-1. Design Examples Supplied with ABEL
10-2. Address Ranges for the 6809 Controller
10-3. Counter Modes
10-4. Devices Used in the Blackjack Machine
10-5. States of the Blackjack State Machine

1-9
1-12
4-26
4-44
7-9
7-11
7-13
7-14
7-15
7-17
7-18
7-27
9-1
9-2
10-2
10-6
10-18
10-52
10-62

xv

Table of Contents

Listings

3-1. Source File Describing an Address Decoder 3-5
3-2. Messages Displayed During Processing 3-13
4-1. PARSE Listing File with Errors from

M6809ERR.ABL 4-14
4-2. Corrected Source File, M6809A.ABL 4-15
4-3. Clock Inputs, Trace Level 2 Output 4-37
4-4. Trace Level 0 Output for M6809A.ABL 4-38
4-5. Test Vectors Used to Create Simulation Error 4-39
4-6. Level l Simulation Output, All Vectors 4-40
4-7. Level l Simulation Output, Single Vector 4-41
4-8. Level 2 Simulation Output, Single Vector 4-42
4-9. Trace Level 4 Simulation Output 4-47
4-10. Trace Level 4 Simulation Output 4-48
4-11. Trace Level 5 Simulation Output 4-50
4-12. Trace Levels 4 and 5 in the Same Output 4-51
4-13. Source File: Synchronous Feedback Circuit 4-54
4-14. Simulation Output, Trace Level l:

Synchronous Feedback Circuit 4-55
4-15. Simulation Output (partial), Trace Level 2

Synchronous Feedback Circuit 4-56
4-16. Source File: Async. Feedback Circuit 4-58
4-17. Simulation Output, Trace Level l: Asynchronous

Feedback Circuit 4-58
4-18. Simulation Output, Trace Level 2: Asynchronous

Feedback Circuit 4-59
4-19. Documentation Output for M6809A.ABL 4-64
6-1. "Source" File Generated by JEDABEL 6-7
10-1. Source File: Memory Address Decoder 10-7
10-2. Source File: 12 to 4 Multiplexer 10-11
10-3. 1 to 8 Demultiplexer 10-15
10-4. Source file: 4-bit Counter with 2 Input 10-22
10-5. Multiple Equations Sections, 4-Bit Counter 10-25
10-6. Source File: Three-State Sequencer 10-30
10-7. Source File: 8-Bit Barrel Shifter 10-35
1 (\ 0 Source File: 7-Segment Display Decoder i0-38 1v-o.

10-9. Source File: 4-Bit Comparator 10-44
10-10. Source File: Tri-State Bi-Directional 10-48
l 0-11. Source File: Multiplexer/ Adder /Comparator 10-55

xvi

Table of Contents

10-12. Source File: Binary to BCD Converter 10-59
10-13. Source File: State Machine (Controller) 10-65
11-1. Source File: State Machine 11-4
11-2. Device Type Passed From Command Line, Memory

Address Decoder 11-16
12-1. Source File With Multiple Test Vectors Sections 12-7
12-2. Test Vectors Described With a Macro and @IF

and @IRP Directives 12-9
12-3. PARSE Output Showing Expanded Output for a

Macro and @IF and @IRP Directives 12-11
12-4. Test Vectors Described With a Macro, @CONST

and @REPEAT Directives 12-12
12-5. PARSE Output with Expanded Output for a Macro

and @CONST, @REPEAT Directives 12-13
12-6. Assignment of Don't Care Value (.x.) to Design

Outputs 12-15
12-7. SIMULA TE Results with Outputs Specified as

Don't Care 12-16
12-8. Test Vectors for Special Preset Conditions 12-19
12-9. Invoking the TTL Preload Function 12-22
12-10. The Illegal States Defined 12-25
12-11. Test Vectors for Illegal States 12-25
12-12. Using Test Vectors to Preload A State Machine 12-28
12-13. Controlling Reset/Preset by Product Term 12-29
12-14. Using the Input Side of the Test Vector 12-32
13-1. Controlling Macro Cells with ISTYPE 13-9
13-2. Using Node Numbers for Reset/Preset Functions 13-14
13-3. Using Dot Extensions for Reset/Preset Functions 13-16
13-4. Output Configurations for a P32VX10 13-20
13-5. A Shifter/Counter in an Fl59 13-29
13-6. SIMULATE Output for the Shifter/Counter 13-35
13-7. Transition Equations for a Decade Counter 13-39

xvii

Table of Contents

xviii

Preface

Data 1/0 Device Support Policy /Liability

1. Data 1/0 strives to achieve more device support
verification from semiconductor manufacturers than
any other software developer.

2. Every effort is made to program an adequate number
of samples according to the manufacturer-supplied
specification. We verify the device with test vectors
which we apply when programming the device.

3. The objective of Data 1/0 is to seek and obtain
verification on all devices.

4. Data 1/0 has made every attempt to ensure that the
device information (as provided by the device
manufacturer) contained in our software and
documentation is accurate and complete. However,
Data 1/0 assumes no liability for errors, or for any
damages, whether direct, indirect, consequential or
incidental, that result from use of documents provided
with the software, regardless of whether or not Data
1/0 has been advised of the possibility of such loss or
damage.

xix

Preface

Technical Questions?

If you have technical questions, contact the Customer
Resource Center at the following telephone numbers:

USA
Outside Washington state
Inside Washington state

FAX Numbers

International
Data I/0 Japan
Data I/0 Europe
Data I/O Canada
Data I/O Intercontinental

Bulletin Board Number
(for new information on
Data I/O products)

800-247-5700
206-867-6899

206-881-2215
206-882-1043

(03) 432-6991
+31 (0)20 6622866
416-678-0761
206-881-6444

206-882-3211
(1200/2400 baud, 8 bits,

no parity, 1 stop bit)

You may also contact the Customer Resource Center by
sending your written inquiries to:

Data I/0 Corporation
Customer Resource Center
10525 Willows Road N.E.
Redmond, WA 98073-9746 USA

Sales/Service Questions?

xx

For questions regarding sales and update service
agreements, refer to the list of telephone numbers on the
facing page.

Telephone numbers are subject to change without notice.

Preface

U.S. Sales Offices

1-800-247-5700
Dept. 1000

Data 1/0 Corporation
10525 Willows Road N.E.
P. 0. Box 97046
Redmond, WA 98073-9746
U.S.A.

International Sales Offices
and Representatives

INTERNATIONAL SALES OFFICES

EUROPE.
CANADA.
JAPAN.

+ 31 (0)20-622866
. (416) 678-0761

(03) 432-6991

INTERNATIONAL
REPRESENTATIVES
ARGENTINA
Reycom Electronica.
AUSTRALIA (Anitech)
Adelaide ..
Brisbane
Melbourne.
Sydney.
Perth.
AUSTRIA
Ing. Ernst Steiner.
BELGIUM
Simac Electronics.
BRAZIL (Sistronics)

.01 701-4462

08356-7333
. 07 275-1766

. .. 03 795-90 11
. . 02 648-1711

. .. 09 277-7000

. 0222 827474

. . 022192451

Sao Paulo 011 247-5588
RiodeJaneiro 021 284-1248
CHINA (Dorado Company)

~~~~~ong. . . ........ · 3~ 115~~6~~ 
U.S.A.. . ...... (206) 583-0000 
DENMARK 
ITT Multikomponent . ..... 02 456645 

FINLAND 
lnstrumentarium 
Elektroniikka. . .. 90 5284312 
FRANCE 
M.B. Electronique. 13 9568131 
GERMANY, FEDERAL REPUBLIC OF 
lnstrumatic Electronic 
Systems GmbH. 089 85802-0 
GREECE 
Eltronics Ltd.. 01 7249511 
HONGKONG 
Eurotherm (Far East) Ltd ... 5-546391 
INDIA (Transmarketing Private Ltd.) 
Bombay. . . 022 4938585 
Bangalore. . 0812 564389 
ISRAEL 
Telsys Ltd. 03 494891 
ITALY (Sistrel) 
Milan............. . 026181893 
Rome. . .. 06 5040273 
KOREA 
Elcom Systems Inc. 02 555-5222 
MEXICO 
Christensen. . 905 595-7594 
NETHERLANDS 
Simac Electronics. . .. 040 582911 
NEW ZEALAND 
Warburton Franki. 0444-2645 

NORWAY 
Teleinstrument. 02 789460 
PORTUGAL 
Decada . . . 01 4103420 
SINGAPORE/MALAYSIA 
GEA Technology. 2729412 
SOUTH AFRICA 
Electronic Building 
Elements. 012 46-9221 
SPAIN 
Unitronics. 01 242-5204 
SWEDEN 
Teleinstrument. 08 380370 
SWITZERLAND (lnstrumatic) 
Thalwil. . 01 7231410 
Geneva. . . 022 360830 
TAIWAN 
Sertek International . .... 02 5010055 
THAILAND 
Dynamic Supply 
Engineering . 02 3925313 
UNITED KINGDOM 
Microsystem Services . ... 0494 41661 

xxi 



Preface 

xx ii 



1. Introduction 

ABEL™ is a complete logic design tool that lets you easily 
describe and implement programmable logic designs in 
PLDs, and PROMs. ABEL consists of a special-purpose, 
high-level language that is used to describe logic designs, 
and a language processor that converts logic descriptions to 
programmer load files. Programmer load files contain the 
information necessary to program and test programmable 
logic devices. ABEL may be used with other Data 1/0-
FutureNet design development tools such as: 

PLDtest™; an automatic test vector generator that 
allows 100% testing of programmed logic parts 

PLD-CADAT™; a program that allows integration of 
PLDs into a CADA T logic simulation. CADA T can 
then simulate the PLD as if it were a standard off-the
shelf part. 

PLD-Linx™; a schematic diagram interface that 
converts schematic designs to ABEL source files 

PROMlink ™; a program that permits control of and 
communication with Data 1/0 TM programmers by means 
of a personal computer. 

1-1 



User's Guide 

1-2 

Features of the ABEL design language are: 

• Universal syntax for all programmable logic types 

• High-level, structured design language 

• Flexible forms for describing logic: 
Boolean Equations 
Truth Tables 
State I>iagrams 

• Test Vectors for simulation and testing 

• Time-Saving Macros and I>irectives 

The ABEL language processor also has many powerful 
features: 

• Syntax Checking 

• Verification that a design can be implemented with a 
chosen part 

• Logic Reduction 

• I>esign Simulation 

• Automatic design documentation 

• Creation of programmer load files in JEI>EC and 
PROM format 



Introduction 

Together, the ABEL design language and language 
processor make it easy to design and test logic functions 
that are to be implemented with programmable logic 
devices. For example, you can design a three-input AND 
function with the inputs A, B, and C and the output Y 
using a truth table like this: 

truth_table "3-input AND gate" 

( [ A, B, C l · > Y) 

[ o,.x.,.x.i ·> o ; 
[.X., 0, .X.J ·> 0 ; 

[.X., .X., OJ ·> 0 ; 

[ 1, 1 • 1J -> 1 i 

The ".X."s in the table indicate "don't care" conditions, and 
the output Y is set to 1 only when all three inputs equal 1. 
You also could have specified the output Yin terms of 
simple Boolean operators and have achieved the same result. 
This is done here, where "&" is the logical AND operator: 

Y=A&B&C; 

ABEL lets you choose the type of description that is best 
suited to the logic being described, or the type of 
description you feel most comfortable with. And, in most 
cases, the same description can be used for many different 
devices simply by changing the device specification. ABEL 
enters the design process in a way that reduces errors and 
saves time. You can think about designs in a logical, 
functional way, describe them in that fashion, and then test 
your design to see that it operates as expected, all without 
worrying about which fuses should be blown or left intact. 

1-3 



User's Guide 

1-4 

Figure 1-1 shows the logic design process and the role 
ABEL takes in it. Beginning with the design concept, the 
designer creates the ABEL source file required by the 
language processor in order for it to generate the 
programmer load file. The source file is written by you and 
contains a complete description of your logic design. You 
can create the source file manually be means of a text 
editor (or word processor) that generates ASCII files, or you 
can use PLD-Linx to convert a DASH-generated schematic 
of the design to an ABEL source file. 

The source file is presented to the ABEL language processor 
which performs several functions to produce a programmer 
load file (in JEDEC format) and design documentation. 
The first ABEL function, PARSE, checks the syntax of the 
source file and flags any errors. TRANSFORM converts 
the logic description to an intermediate form. REDUCE 
performs logic reduction, and FUSEMAP creates the 
programmer load file. The programmer load file can then 
be downloaded to the logic programmer to program parts, 
or can be first transmitted to PLDtest, an automatic test 
vector generator. The SIMULATE function tests the design 
of the part against your test vectors contained in the source 
file and reports any functional failure of the design. The 
DOCUMENT function generates a listing of the source file, 
a drawing of the logic device pin assignments, and a listing 
of the programmer load file. 



TEXT EDITOR 

JED EC 
FILE 

PLDTEST 
TEST VEC

TOR 
GENERA

TION 

DESIGN CONCEPT 

ABEL 
SOURCE FILE 

LOGIC 
PROGRAMMER 

Introduction 

DASH 
SCHEMATIC 

CAPTURE 

DASH-ABEL 

SIMULA
TION 

RESULTS 

DESIGN 
DOCUMEN

TATION 

Figure 1-1. Logic Design Steps with ABEL 

1-5 



User's Guide 

1.1 More About ABEL Features 

1.1.1 Design Checking 

The language processor checks your logic design for correct 
language syntax and explicitly tells you where an error 
occurs and what the error is. The language processor also 
checks your design to see if it can be implemented on the 
chosen device. For example, if a device input pin is used as 
an output in an equation, the language processor detects and 
reports the error. 

1.1.2 Logic Reduction 

The language processor reduces your logic design to a near 
minimal form, so that you do not have to perform the 
tedious task of logic reduction by traditional methods such 
as Karnaugh maps. You may choose different levels of 
reduction based on the design and the device. 

1.1.3 Simulation 

Simulation of a design is performed after a logic design has 
been reduced and converted to a programmer load file. The 
simulation facility uses device characteristics, a fuse map, 
and test vectors to simulate the actual operation of the 
device. The fuse map and test vectors used for simulation 
are the same as those that will be used to program and test 
the real device. 

1.1.4 Functional Device Testing 

1-6 

If test vectors are specified in a source file, the programmer 
load file created by the language processor contains these 
vectors in a form that can be used to test a programmed 
device with a logic programmer. 



Introduction 

1.1.5 Standard JEDEC Format Programmer Load File 

The standard programmer load file created by the language 
processor conforms with the JEDEC standard No. 3A for 
data transfer to logic programmers. JEDEC format files are 
used to transfer designs to the logic programmer. Other 
formats for PROM programmers are supported. 

1.2 System Requirements 

ABEL presently runs on the following computers and 
operating systems. Versions for additional systems are 
under development. 

® ® 0 ® "b IBM /AT /XT /PS2 and MS- D S com pa ti les 
VAX™/VMSTM 
VAXTM;unix™ 
Sun TM 
Daisy TM 
Apollo /Mentor Graphics TM 
Apple®Macintosh®n or Ilx 

The configuration information and installation instructions 
for ABEL differ for each type of system. To install ABEL 
in your particular system, refer to the System Specific 
Information supplied with your ABEL package. In addition 
to ABEL, you will need an editor or word processor with 
which to create ABEL source files. This may be any editor 
of your choice as long as it produces a standard ASCII file. 

1-7 



User's Guide 

For downloading programmer load files to a logic 
programmer, you will need: 

• An RS232 port and a cable to connect to the 
programmer. 

• Cable and programmer configuration are discussed in 
Section 5 of this User's Guide. 

1.3 Contents of the ABEL Package 

1-8 

The ABEL software package consists of the following: 

• Floppy disks or magnetic tape 

• A manual consisting of: 

User's Guide 
Language Reference 
Applications Guide 

• Logic Diagrams 

• System Specific Information. 

If any of the above items is missing, please contact your 
FutureNet representative. Table 1-1 lists the files residing 
on the disks or magnetic tape that are common to all 
versions of ABEL. Additional files that accompany your 
particular version are listed in the System Specific 
Information. 



Introduction 

Table 1-1. Files Supplied with ABEL 

File Name 

ABEL 
PARSE 
TRANSFOR 
REDUCE 
FUSE MAP 
DOCUMENT 
IFLDOC 

TO ABEL 
SIMULATE 
ESPRESSO 

ABELLIB 
ABEL3LIB.DEV 
* .ABL 
EXAMPLES.TXT 

JED ABEL 
ABEL3LIB.INC 
DEVICES.TXT 
FIND DEV 

EZSIM 
CLEANUP 
PSF 

Description 

Batch file for a complete ABEL run 
Language parser 
Equation transformation program 
Equation reduction program 
Programmer load file generator 
Documentation generator 
Program that converts JEDEC-format 
files to FPLA program tables for 
documentation purposes 
P ALASM to ABEL Converter 
Simulation facility 
Equation reduction program used by 
REDUCE 
Device library librarian 
Device file library 
Logic design examples 
Describes the logic design examples 
included on the disk 
JEDEC file to ABEL translator 
Library of include macros 
Data base of ABEL supported devices 
Searches the device data base for a 
specified device 
Quick simulator program 
Removes files created by ABEL 
Menu system to run ABEL 

1-9 



User's Guide 

1.4 Documentation 

1.4.1 The ABEL Manual 

The ABEL manual is divided into three major sections: 
User's Guide, Language Reference, and Applications 
Guide. The User's Guide describes how to use the ABEL 
language processor to create source files that contain logic 
descriptions, and convert the files to programmer load files. 
All processor options are described in detail and the output 
files are explained. The procedure for downloading 
programmer load files is also described. 

The Language Reference contains a complete definition of 
the ABEL design language and is intended for use as both a 
quick reference and a general introduction to the ABEL 
design language. 

The Applications Guide presents information and examples 
to help you use ABEL. Specifications, design methods, and 
complete source files are given for typical programmable 
logic designs. Advanced designs are also given, as well as 
suggestions and tips concerning the use of ABEL. 

1.4.2 System Specific Information 

1-10 

This document describes how to install ABEL on your 
system in preparation for logic design. It also contains 
information regarding supplied software and files that can 
be run specifically on your system. 



Introduction 

1.4.3 User Notes 

User notes are provided to insert the latest device 
information into the manual, plus any other information 
that may be useful but was not available at the time the 
manual was printed. 

1.4.4 Logic Diagrams 

A set of device logic diagrams is provided for reference. 
Logic diagrams for most supported devices are included in 
the set. 

1.5 Design Example Files 

The ABEL manual shows complete logic designs described 
with ABEL and discusses general topics that you will find 
useful as you use ABEL. All the logic designs and design 
features discussed in this manual are contained on the 
Design Examples disk or tape you received with the ABEL 
package. The design examples are listed in table 10-1. 

You can process these design examples with ABEL, either 
as they stand, or with your own modifications, to create 
programmer load files. Many of the design examples listed 
in table 10-1 are described in detail within this manual. 
Design examples not described in the manual, but listed in 
table 10-1, can be examined as necessary. 

1-11 



User's Guide 

1.6 Notation Conventions 

Table 1-2 lists notation conventions used in the definitions 
and syntax descriptions contained in this manual. 

Table 1-2. Notation Conventions 

Notation 

italics 

quotation 
marks(') 

UPPER-CASE 

lower-case 

square 
brackets [ ] 

ellipsis ( ... ) 

all other 
punctuation 

1-12 

Usage 

Indicates references by name to items 
contained in examples, figures, listings 
and tables. 

Surround italicized items when the 
italicized reference contains spaces. 

In syntax descriptions and diagrams, 
indicates a keyword that must be entered 
in full. The entry may be either upper
case, lower-case, or mixed-case. 

In syntax descriptions and diagrams, 
indicates that a value or name is supplied 
by the user. The user-supplied value can 
be entered in either upper-case, lower
case, or mixed-case. 

Surround optional entries that can be 
supplied or omitted as necessary. 

Indicates that the preceding item can be 
repeated as necessary. 

Apostrophes, exclamation points, 
parentheses, quotes and commas must be 
entered exactly as shown. 



Introduction 

An example of italics used in text: 

In table 1-2, the word ellipsis refers to three periods in 
a row. 

An example of quotation marks used in text: 

The file specification, "m6809a /us", is incorrect 
because a space separates the filename from the 
extension. The correct specification is m6809a.fus. 

An example of upper-case, lower-case, square brackets, and 
ellipsis as used in a syntax description: 

PARSE [-Iin_file] [-Aarg] ... 

The command, PARSE, must be entered, but it can be 
entered in either upper-case, lower-case, or mixed-case. 
An input file can be (but does not have to be) specified 
with the -I parameter by typing -I in either upper-case or 
lower-case followed by a file specification in place of 
in_file. Arguments can be supplied following the -A 
parameter. The -A parameter is typed in either upper-case 
or lower-case. An argument is supplied by the user in 
place of arg. As many arguments as desired can be entered, 
but each requires that a new -A parameter be used. The 
following would be a valid user entry: 

parse -Apl6r4 -aGND 

1-13 



User's Guide 

1. 7 Software Update Service 

The first year of software update service is included with 
your ABEL purchase. This service supplies you with 
software updates, "bug-fixes," and application ideas. To 
renew this update service, ref er to the list of telephone 
numbers in the Preface. 

1.8 Field Customer Support 

FutureNet has Product Support Engineers who can provide 
you with additional assistance in using this product. The 
Product Support Engineer can be reached at 800-247-5700 
within the Continental U.S. For assistance at other 
locations, call your nearest Data 1/0 Sales Office. 

1-14 



Introduction 

1.9 License Agreement and Warranty 

The user should completely and carefully read the following 
terms and conditions before accepting delivery of this 
product. Possession of this software product indicates the 
user's acceptance of these terms and conditions. If the user 
does not agree with them, the user should promptly return 
the product and the purchase price will be refunded to the 
original purchaser of this product. Data 1/0 Corporation, 
licensor, provides this set of software programs and licenses 
their use. The user assumes the responsibility for the 
selection of the programs to achieve the user's intended 
results, and for the installation, use, and results obtained 
from said program(s). 

1.9.1 License 

l. The user may use the licensed program on any single 
machine. 

2. The user may copy the licensed program into any 
machine readable or printed form for backup or 
archival purposes in support of the user's use of the 
program on the single machine. 

3. The user recognizes the proprietary nature of the 
licensed programs and materials and agrees to preserve 
and protect Data 1/0 Corporation's interest therein. 
All information relating to the licensed programs and 
materials provided to the user shall be retained by the 
user and shall not be used or disclosed except for the 
purpose of meeting the user's own internal use. 

1-15 



User's Guide 

1.9.2 Term 

The license is effective until terminated. The user may 
terminate the license at any time by destroying the licensed 
program and materials together with all copies. The license 
will also terminate if the user fails to comply with any term 
or condition of this agreement. The user agrees upon such 
termination to destroy the licensed program and materials 
together with all copies in whatever form. Within 30 days 
after termination, the user shall certify in writing that 
through its best efforts and to the best of its knowledge all 
copies, in part or in whole, of the terminated and/or 
discontinued licensed programs and materials relating 
thereto have been destroyed. 

1.9.3 Limited Warranty 

1. The ABEL Software programs are provided by Data 
1/0 Corporation "AS IS" without warranty of any kind, 
including but not limited to, the warranties of 
merchantability and fitness for a particular purpose. 
Data 1/0 Corporation will not be liable to the user of 
the ABEL software programs for any damages, 
including lost profits, lost savings, loss of use or other 
incidental or consequential damages arising out of the 
use, or inability to use, the provided software 
programs, even if Data 1/0 Corporation has been 
advised of the possibility of such damages, or for any 
other claims brought by any other party. 

2. Some states do not allow the limitation or exclusion of 
liability for incidental or consequential damages so the 
above limitation or exclusion may not apply to the user. 

1-16 

3. Data 1/0 Corporation does not warrant that the func
tions contained in the licensed program(s) will meet the 
user's requirements or that the operation of the licensed 
program(s) will be uninterrupted or error free. 



Introduction 

4. Data 1/0 Corporation warrants the diskette (s) or 
magnetic tape or cassette (s) on which the programs are 
furnished, to be free from defects in materials and 
workmanship under normal use for a period of ninety 
(90) days from the date of shipment to the user as 
evidenced by a copy of the packing slip. 

1.9.4 Limitation of Remedies 

Data 1/0 Corporation's entire liability and the user's 
exclusive remedy shall be as follows: 

1. The replacement of any diskette (s) or magnetic tape or 
cassette (s) not meeting Data 1/0 Corporation's limited 
warranty, and which materials are returned to Data 1/0 
Corporation or an authorized Data 1/0 representative 
with a copy of the packing slip, or 

2. If Data 1/0 Corporation or a representative is unable to 
deliver a replacement diskette (s), magnetic tape or 
cassette (s), which is/are free of defects in materials or 
workmanship, you may terminate this agreement by 
returning the programs and their related materials and 
your money will be refunded. 

1.9 .5 General 

1. The user acknowledges that the user has read this 
agreement, understands it, and agrees to be bound by 
its terms and conditions. The user further agrees that 
it is the complete and exclusive statement of the 
agreement between the user and Data 1/0 Corporation, 
which agreement supersedes any proposal or prior 

1-17 



User's Guide 

agreement, whether oral or written, and any other 
communications between the user and Data 1/0 
Corporation relating to the subject matter of this 
agreement. 

2. This license and agreement shall be governed by the 
laws of the State of Washington. 

3. The user may not sub-license, assign, or transfer the 
licensed program (s) except as expressly provided in 
this agreement. Any attempt to do otherwise, to sub
license, assign or transfer any of the rights, duties or 
obligations hereunder is void, except that Data 1/0 
Corporation may assign this license as a part of an 
assignment of all software assets of its business. 

4. The provisions of this agreement are severable and if 
any one or more of such provisions are judicially 
determined to be illegal or otherwise unenforceable, 
whether in whole or in part, those remaining provisions 
or portions of the license unaffected by such 
determination shall be binding on and enforceable by 
and between the licensee, user, and Data 1/0 
Corporation. 

5. In the event it becomes necessary to retain the services 
of an attorney to enforce any provisions of this license 
agreement, the non-prevailing party to such legal 
action and/or litigation agrees to pay the prevailing 
party's costs, including a reasonable attorney's fee, and 
court costs, if any. 

1-18 



Introduction 

1.10 Ordering 

To place an order for software, contact your Data I/O 
representative. Orders for shipment must include the 
following: 

• Description of the software (see latest Data I/O price 
list or contact your sales representative for product 
numbers). 

• Purchase order number 

• Desired method of shipment 

• Quantity of each item ordered 

• Shipping and billing address of firm, including zip 
code 

• Name of person ordering software 

1-19 



User's Guide 

1-20 



2. Installation 

The procedure for installing ABEL in your system 
depends on the system (IBM-PC, VAX/VMS, etc.) to be 
used. Refer to the System Specific Information supplied 
with the ABEL package for details regarding installation 
of ABEL on your particular system. 

2-1 



User's Guide 

2-2 



3. ABEL Source Files 

In order for the ABEL Language Processor to convert 
logic descriptions to programmer load files, the logic 
descriptions must be contained in an source file. That is, 
before you can create a load file that contains the fusemap 
of a particular logic design, you must create an ABEL 
source file that reflects that logic design. The ABEL 
source file is an ASCII text file that is written according 
to the requirements of the ABEL Language Processor. 
These requirements are described in detail in the 
Language Reference portion of the manual. 

3-1 



User's Guide 

3.1 Elements of the ABEL Source File 

3-2 

You can write an ABEL source file using any word 
processor or text editor that produces ASCII files. The 
elements of the ABEL source file are shown in the 
template in Figure 3-1. Figure 3-1 shows the basic 
element of the ABEL source file, the module. A source 
may contain any number of modules, each of which 
contain a different logic description. 

Figure 3-1 shows that the source file module (or complete 
source file in this case) is made up of several elements. 
These elements are illustrated in listing 3-1, a source file 
for an address decoder that is to be placed in a Pl4L4. 

The elements of the ABEL source file are: 

MODULE ST A TEMENT - This names the module and 
also indicates whether any dummy arguments are used. 
Ref er to section 8.2 for additional details. 

FLAG- This can be used to control processing of the 
source file by the language processor, and is optional. 
Refer to section 8.3 for additional details. 

TITLE- The title is optional and is used to describe the 
module. The text entered will be used as a header for the 
ABEL output files (see section 8.4 for additional details). 

DEVICE DECLARATIONS- The device declaration 
associates one or more device identifiers with specific 
programmable logic devices. Refer to section 8.5.1 for 
additional details. 

PIN DECLARATIONS- This defines the pins of the 
programmable logic device with identifiers used in the 
source file. Refer to section 8.5.2 for addtional details. 



ABEL Source Files 

NODE DECLARATIONS- If nodes exist on the 
programmable logic device, they are defined here. Refer 
section 8.5.4 for additional details. 

CONST ANT DECLARATIONS- Refer to section 8.5.4 for 
details. 

MACRO DEFINITIONS- Refer to section 8.5.5 for 
details. 

The above source file elements are completed as necessary 
and can exist in any order, provided no symbol (identifier) 
is referenced before it has been defined. 

EQUATIONS- Contains the Boolean equations required to 
describe the logic design. (You can also express the design 
by means of truth tables or state diagram.) Refer to 
section 8.6 for details on the Equations section. 

TRUTH TABLE- Contains the truth tables required to 
describe the logic design. (You can also express the design 
by means of Boolean equations or state diagrams.) Refer 
to section 8.7 for details on the Truth Table section of the 
source file. 

ST A TE DIAGRAM- Contains the state diagrams required 
to describe the logic design. (You can also express the 
design by means of Boolean equations or truth tables.) 
Refer to section 8.8 for details on the State Diagram 
section of the source file. 

TEST VECTORS- Contains the optional test vectors that 
you write to verify the functionality of the logic design. 
Refer to section 8.9 for additional details. Test vectors 
can be used in conjunction with PLDtest, which 
functionally tests the programmed device. 

END ST A TEMENT - Ends the module. 

3-3 



User's Guide 

3-4 

module ••••I 

flag• ••.•••.•• •; 
title'·····························' 

"device declaration 
11 name DEVICE 
II device 

'device type' ; 
I • 

I 

"pin and node declarations 
11 names PIN pin #s ; 
11 names NOOE node #s ; 

• • •I • • •I • • pin • • I• •I • • i 
.,.,., .. ,. 
• • •I • • I • • • 

pin ... , .. , .. , .. , .. ; 
node •• , •• , •. ; 

"constant declarations 
H,L,X 1,0,.X. 
.. , .. • •I • •I 

• • I 

equations 
II name = expression 

• • • I 

enable = • • ••I 

! : ••••I 

test vectors([ ••• , ••• ] ·> ••. ) 
"inputs outputs 

[•I.] ·> [••I • • I • • I • •I 

[•I •] ·> [ • • I • •I • • I • •I 

['I •] ·> [.,I • •I ' •I • •I 

end • • • •I 

• • I • •I .. ] ; 
• • I • •I .. ] ; 
• • I • •I .. ] ; 

Figure 3-1. Source File Template 



ABEL Source Files 

module m6809a 
title 16809 memory decode 
Jean Designer FutureNet Redmond WA 24 Feb 1987 1 

U09a device 'P14L4'; 
A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6; 
ROM1,IO,ROM2,DRAM pin 14, 15, 16, 17; 

H,L,X 1,0,.X.; 
Address= [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,XJ; 

equations 
!DRAM 

! JO 

!ROM2 

!ROM1 

test vectors 

end m6809a 

(Address <= AhDFFF); 

(Address >= AhEOOO) & (Address <= AhE7FF); 

(Address >= AhFOOO) & (Address <= AhF7FF); 

(Address >= AhF800); 

(Address ·> [ROM1,Rr:x-l2,IO,DRAM]) 
AhOOOO ·> [ H, H, H, L ] ; 
Ah4000 ·> [ H, H, H, L ] ; 
Ah8000 ·> [ H, H, H, L ] ; 
AhCOOO ·> [ H, H, H, L ] ; 
AhEOOO ·> [ H, H, L, H ] ; 
AhE800 ·> [ H, H, H, H ] ; 
AhFOOO ·> [ H, L, H, H ] i 
AhF800 ·> [ L, H, H, H ] ; 

Listing 3-1. Source File Describing an Address Decoder 

3-5 



User's Guide 

3.2 Examining an Example ABEL Source File 

As previously stated, you must write a source file that 
reflects the design of the circuit to be programmed into 
the programmable logic device before ABEL can generate 
the required programmer load file. In order to write a 
meaningful source file, you must be familiar with its 
make-up and content. 

A15 _,,, 
-~ 

_,,, ROM1 
A14 ___. 

_,,, 
ROM2 

A13 ~ 

_,,, 
10 

A12 ~-

._DRAM 
A11 _,., 

_,,, A10 -~ 

IROM11ROM2. 1/0 DRAM ~ 
FFFF F800 F000 E800 E000 0000 

Figure 3-2. Block Diagram; 6809 Memory Address Decoder 

3-6 

To familiarize you with the ABEL source file, the 
following paragraphs provide an examination of the source 
file shown in listing 3-1, which describes the address 
decoder shown in the block diagram, Figure 3-2. This 
source file is typical of that used with the ABEL language 
processor to produce a programmer load file for 
downloading to a logic programmer. 



ABEL Source Files 

The source file shown in listing 3- l is typical of that used 
with the language processor and does not illustrate all the 
features of ABEL; nor does it show examples of source 
file syntax rules. For complete source file details, refer to 
the Language Reference and Applications Guide. 

3.2.1 Purpose of the Address Decoder 

An address decoder is a logic design problem that is easily 
solved with programmable logic. In the address decoder 
of Figure 3-2 the high-order six lines of an address bus 
are decoded into one of four active-low outputs. The 
ROMl output is low for addresses in the range of F800 to 
FFFF; the ROM2 output is low for addresses in the range 
of FOOO to F7FF; the I/0 output is low for addresses in 
the range of EOOO to EFFF; and the DRAM output is low 
for addresses in the range of 0000 to DFFF. The outputs 
will be applied to read-only memory, I/O ports, and 
dynamic RAM within the target environment to enable 
these functions when the applicable address appears on the 
address bus. 

3.2.2 The MODULE Statement 

The MODULE statement is a required element of the 
ABEL source file. It defines the beginning of the module 
(since a source file may contain several modules) and must 
be paired with an END statement. In listing 3-1, the 
MODULE statement is module m6809a. The keyword is 
module. The identifier m6809a distinguishes the module 
from any others in the source file. Refer to section 8.2 
for a complete description of the MODULE statement. 

3-7 



User's Guide 

3.2.3 The FLAG Statement 

The address decoder example in listing 3-1 does not use 
the FLAG statement. The source file template in Figure 
3-1 shows the location of the FLAG statement when used. 
Refer to section 8.3 for information on the FLAG 
statement usage. 

3.2.4 The TITLE Statement 

The TITLE statement may be inserted in the source file to 
give a title to a module. Although the title is not acted on 
by the language processor, it will appear as a header in 
both the programmer load file and documentation file 
created by the language processor. 

The TITLE statement consists of the keyword title 
followed by a string, which is the desired title for the 
module. The string is opened and closed by an 
apostrophe. In listing 3-1, the title is: 

'6809 memory decode 
Jean Designer FutureNet Redmond WA 24 Feb 1987' 

Ref er to section 8.4 for details on the TITLE statement. 

3.2.5 The DEVICE Declaration 

3-8 

The DEVICE declaration is used to associate the name of 
the device with the type of programmable logic device 
into which the logic design will be programmed. The 
name of the device in listing 3-1 is U09, which is the 
schematic reference in this case. The type of 
programmable logic device is specified as 'P 14L4'. The 
device name and device type are located on the same line 
of the source file but separated by device, the keyword of 
the DEVICE declaration. Refer also to section 8.5.1. 



ABEL Source Files 

3.2.6 PIN and NODE Declarations 

In listing 3-1, the two lines immediately following the 
DEVICE declaration are the PIN declarations. Two lines 
are used since there is insufficent horizontal space on an 
80-column display to arrange the declaration on a single 
line. You can use as many lines as necessary to make the 
pin declarations. 

The PIN declaration associates pin identifiers used in the 
module to actual pin numbers on the target programmable 
logic device. The first PIN declaration statement 
associates address line Al5 with pin 1 of the Pl4L4 
device, Al4 with pin 2, and so on. The second PIN 
declaration identifies pin 14 of the Pl4L4 as the ROMI 
output, pin 15 as the I/O output, etc. 

Attributes can also be assigned to pins, although none are 
required in this memory decoder example. Refer to 
section 8.5.2 for complete PIN declaration details. 

There are no NODES to be declared in this example since 
the Pl4L4 logic device contains no internal signals that are 
not accessible at the external pins. Refer to section 8.5.3 
for information on device nodes. 

3.2.7 CONSTANT Declarations 

A constant, described fully in section 8.5.4, is an 
identifier that retains a constant value through a module. 
CONST ANT declarations are placed with the PIN and 
NODE declarations in the source file and use the = sign 
for their keyword. In listing 3-1, the declaration H,L,X = 
1,0,.X.; tells the language processor to substitute a logic I 
whenever an upper-case H is encountered, a logic 0 
whenever an upper-case L is encountered, and a "don't 
care" value whenever an upper-case X is encountered. 
The H, L, and X identifiers are used in subsequent test 

3-9 



User's Guide 

vectors. (.X. is a special constant used to denote a don't 
care condition. Refer to section 7.7.) 

The second CONST ANT declaration equates the identifier 
Address with a set consisting of Al5, Al4, Al3, Al2, 
All, AIO, and ten don't care values; i.e., AJS, A14, Al3, 
AJ2, All, AJO, X, etc. (The X's are used to account for 
the low-order address lines, since the "equations" and "test 
vectors" sections of the source file relate the constant 
address to all 16 address lines.) 

3.2.8 EQUATIONS Statements 

The EQUATIONS statement defines the beginning of a 
group of equations that specify the logic functions of a 
device. The actual equations, written in high-level 
Boolean equations, follow the EQUATIONS statement. In 
listing 3-1, there are four equations, one for each of the 
address decoder outputs. These four equations describe 
the logic function of the address decoder shown in Figure 
3-2. Identifiers, defined in the declaration statements, are 
used in place of Pl4L4 pin numbers. 

The first equation, !DRAM= (Address<= hDFFF); 
equates the active-low DRAM output (pin 17 of the 
Pl4L4) with the address lines set to any address equal to 
or above DFFF (hex). For the sake of brevity, 
hexadecimal notation is used to specify the address input 
conditions. ABEL cross-references the identifier Address 
back to the Pl4L4 pin numbers by means of the preceding 
CONST ANT and PIN declaration statements. The second 
equation equates pin 15 (the active-low I/O output) with 
the address lines set to any address in the range of EOOO to 
E7FFF. Again, identifiers defined in the declaration 
statements are used to simplify the equation. The third 
and fourth equations are written in a similar fashion to 
define the remaining two address decoder outputs. 

3-10 



ABEL Source Files 

3.2.9 Test Vectors 

Test vectors specify the expected functional operation of a 
logic device by defining its outputs as a function of its 
inputs. (Refer to section 8.9 for more detailed 
information on test vectors.) Listing 3-1 shows a typical 
set of test vectors and how they are arranged in a table. 
The form of the test vector table is determined by the 
header. In listing 3-1, the test vector header is 

test_vectors (Address - > [ROMJ,ROM2,/0,DRAM}) 

The left side of the test vector table specifies the state of 
the device inputs. Hexadecimal notation is used as a 
means of simplifying the writing of the vector; all 16 
address lines could be indicated individually by l's and O's 
or H's and L's. The right side of the test vector table 
specifies the state of the device outputs. The H and L 
identifiers are used to indicate the expected state of each 
output for the corresponding inputs. 

Sufficient test vectors should be included to enable the 
simulator within ABEL to test the intended function of 
the design. The test vectors provided in listing 3-1 enable 
testing of the design at several, but not all possible, 
addresses. The test vectors are sufficient to verify the 
operation of each output at its lowest address, except for 
the pin 17 (DRAM) output which is tested at four 
different addresses. 

Some devices power up with registers set to l, some set to 
0 and some set to random value. The first test vector 
should place the device in a known state. The ABEL 
simulator assumes D, JK, and T registers power up to 0 
and RS registers power up to 1. Some devices have 
functions (enables or presets) directly connected to pins. 
Be sure to include this function in the test vectors or 
simulation errors may occur. 

3-11 



User's Guide 

3.3 Processing an ABEL Source File 

Once ABEL is installed on your system as described in the 
accompanying System-Specific Information, you can 
process a source file to create a programmer load file and, 
if you wish, download the load file to your logic 
programmer. This section describes how to process a 
source file and explains the different processes ABEL 
executes in order to achieve the load file and 
accompanying documentation. The following procedures 
use the address decoder source file previously described 
and shown in listing 3-1. 

3.3.1 Entering the Command Line 

The ABEL command line consists of 

ABEL filename [parameters] 

ABEL (in the command line) is a batch file (or command 
script) that contains commands to run all six steps of the 
language processor automatically (although each step can 
be executed individually on specified files). The filename 
(without the extension) specifies the input file, which is 
the source file to be processed into a programmer load 
file. The allowable parameters, plus a detailed description 
of the ABEL batch processing, are presented in section 4 
of this manual. 

The source file for the address decoder is m6809a.abl and 
is provided on your Design Examples disk or tape supplied 
as part of the ABEL package. Since this file is provided 
for you, it is not necessary for you to create this source 
file. It is necessary however, for you to copy this file, 
M6809A.ABL, from the examples directory to the current 
directory in preparation for processing by ABEL. 

3-12 



ABEL Source Files 

To enter the command line to process the address decoder 
example, type (.abl file extension not required): 

abel m6809a 

If you followed the above procedure, you have started the 
language processor. Listing 3-2 shows the processing 
statistics for each step of the language processor's 
operation. Processing times vary between systems. 

echo off 
+abel m6809a 

PARSE ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet 
module m6809a 
PARSE complete. Time: 3 seconds 

TRANSFOR ABELCtm) Version 3.00 Copyright(C) 1983-1987 FutureNet 
module m6809a 

TRANSFOR complete. Time: 2 seconds 

REDUCE ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet 
module m6809a 
device U09a 

REDUCE complete. Time: 3 seconds 

FUSEMAP ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet 
module m6809a 'P14L4 
device U09a 

-6 of 16 terms used 
PLDMAP complete. Time: 3 seconds 

SIMULATE ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet 
module m6809a 'P14L4 

8 of 8 vectors in U09a passed 
SIMULATE complete. Time: 2 seconds 

DOCUMENT ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet 
module m6809a 
_device U09 
DOCUMENT complete. Time 2 seconds 

Listing 3-2. Messages Displayed During Processing 

3-13 



User's Guide 

3.3.2 New Files Created 

When the processing is complete, several new files are 
created. These files are: 

filename.ext 

M6809A.LST 

U09.JED 

M6809A.SIM 

M6809A.DOC 

M6809A.OUT 

Description 

Listing from PARSE, used to check 
syntax 

Programmer load file for design 
transfer and input to PLDtest 

Simulation output file for error 
checking 

Documentation file for design 

Intermediate file for SIMULA TE, 
DOCUMENT, and PLDtest. 

The name, U09, of the programmer load file is taken from 
the device identifier in the source file. You may want to 
look at the listing, plus the simulation (.SIM) and 
documentation (.DOC) files to see what the language 
processor creates. Each of these files is discussed fully in 
section 4. 

3-14 



ABEL Source Files 

3.4 Downloading the Programmer Load File 

Downloading the programmer load file differs for each 
system used to run ABEL, and also for the model of logic 
programmer used. In general, you must set up your 
system to transmit the *.JED file, via a serial I/O port, to 
the programmer. The programmer must be set up to 
receive the load file before the system begins transmission 
of the load file. The mechanics of establishing the 
communications link between the system and the 
programmer depend upon your hardware. For MS-DOS 
systems, PROMlink provides a convenient way to 
download programmer load files to your Data I/O 
programmer. Additional information on downloading 
programmer load files for your particular system is 
contained in the System-Specific Information provided 
with the ABEL package and also in Chapter 5 of this 
manual. 

3-15 



User's Guide 

3-16 



4. The ABEL Language Processor 

The ABEL language processor converts logic descriptions to 
programmer load files that can be downloaded to a logic 
programmer. The language processor checks your logic 
description, performs logic reduction, simulates the 
operation of the programmed device, and creates design 
documentation. Processing an ABEL source file is a six
step process: 

1. PARSE: Reads the source file, checks for correct 
syntax, expands macros, and acts on 
directives. 

2. TRANSFOR: Converts the description to an 
intermediate form. 

3. REDUCE: Performs logic reduction. 

4. FUSEMAP: Creates the programmer load file. 

5. SIMULATE: Simulates the function of a design. 

6. DOCUMENT: Creates design documentation. 

In chapter 3, you saw how the ABEL command can be used 
to process a source file. The ABEL command is simply a 
batch file or command script that invokes all six steps of 
the language processor. You can either run the batch file to 
process a design, or you can run each step of the language 
processor separately. The following subsections discuss 
both of these choices. Section 4.1 describes the batch file in 
detail. Sections 4.2 through 4. 7 describe the individual 
steps of the language processor, their options, and how to 
invoke them. Figure 4-1 shows the processing flow of the 
language processor. 

4-1 



User's Guide 

Simulation Output 
File 

Source File 

PARSE Listing File 

parsed source text 

TRANS FOR 

transformed equations 

REDUCE 

reduced equations 

FUSEMAP Programmer Load File 

Documentation 
File 

indicates batch file processing 

____. indicates data flow 

Figure 4-1. Processing Flow of the Language Processor 

4-2 



The ABEL Language Processor 

4.1 ABEL Batch Processing 

ABEL filename [ parameters ] 

filename the name of an ABEL source file. The file 
extension must be ".ABL" but is not entered. 

parameters any of the parameters associated with the 
individual steps of the language processor 
(except -1, -0, and - B), as described in 
sections 4-2 through 4-7. Separate parameters 
with spaces. 

ABEL is a batch file that contains the commands needed to 
run all six steps of the language processor automatically. 
The input file that you specify with filename must be a 
valid source file. Any devices specified within the source 
file must have the corresponding device specification file in 
your library of device specification files. Refer to section 
4.1.1, ABEL Libraries. 

Any of the parameters associated with the six steps of the 
language processor, except for -1, -0, and -B, can be 
entered on the command line to control how a source file is 
processed. The parameters are discussed in sections 4-2 
through 4-7. 

4-3 



User's Guide 

4-4 

If you do not specify any parameters, default values take 
effect and the following actions are performed: 

• A parsed listing file is created. Text included with the 
@INCLUDE directive is shown. Macros, if used, are 
shown expanded. 

• Level 1 logic reduction is performed. 

• Programmer load files are created according to the 
JEDEC standard. 

• Level 0 simulation (that shows only simulation errors) 
is performed. 

• Design documentation is created. 

• Processing status, statistics and error messages are 
displayed on the screen. 

When any of the ABEL programs are run individually 
(without being invoked by the ABEL.BAT batch file), using 
of -i or -o without a file name will cause the ABEL passes 
to suppress prompting for input and output file names. This 
is useful for 'piping' program inputs and outputs. 

The SIMULA TE program assumes a default file extension 
of .OUT for the infile file name. 

If the JEDEC file contains the name of the device, the -n 
flag need not be used with either SIMULA TE or IFLDOC. 
The device name will be included as the default at the 
device prompt. To accept the default device, press return 
and processing will continue. 



The ABEL Language Processor 

4.1.1 ABEL Libraries 

Device specification files are provided in a single library 
file (abel3lib.dev) that contains specifications on all 
supported devices. You can obtain individual device 
(*.DEV) files from the library file as described on page 6-4. 
By extracting individual device files from the library, you 
can load only those files you need instead of loading the 
entire library file each time you use ABEL. 

When ABEL is invoked, it will attempt to find a *.DEV 
device file that corresponds to each device referenced in the 
source file. However, if you have included the device 
library abel3lib.dev in the abel3dev directory, ABEL will 
look for the device specifications in the abel3lib.dev library 
if no appropriate *.DEV file is found. 

The device library file should be located in the "abel3dev" 
directory on your system. Refer to the System Specific 
Information provided with your ABEL package for 
information on installing the device library file. 

ABEL "include" files may also be contained in a library. 
When ABEL requires an "include" file (a file that has been 
referenced in a @INCLUDE or LIBRARY statement), it 
will attempt to find the required file. If the file is not 
found, ABEL will look for the library "abel3lib.inc" and try 
to find the file within it. 

Refer to section 5.3 for information on libraries and for 
information on the library manager utility (used to add to 
and delete files from "abel3lib.dev" and "abel3lib.inc"). 

4-5 



User's Guide 

4.1.2 Generated Output Files 

Five types of output files are created during execution of 
ABEL: 

filename.LST 

device.JED 

filename.SIM 

filename.DOC 

filename.OUT 

parser listing file 

programmer load files (JEDEC 
format) 

simulation output 

design documentation 

intermediate file used by 
SIMULA TE and DOCUMENT 

CAUTION 

During processing, ABEL creates several temporary 
files. File with the same filename as the input source 
file and extensions .TMl, .TM2, and .TM3 are 
generated; and files named FUSE IN. TMP and 
FUSEOUT.TMP may be generated. Any files with a 
filename and extension identical to those of a 
temporary file will be overwritten. 

Parser Listing File. 

4-6 

Contains the source code, error messages, and the effect of 
@INCLUDE directives. (See chapters 8 and 9 for 
information on macros and directives.) A complete 
description of the parser listing file is given in section 4.2. 



The ABEL Language Processor 

Programmer Load File. 

Contains the fuse states, test vectors and other design 
information as defined by the JEDEC standard. This file is 
loaded into a logic programmer to program and test a 
programmable logic device. (The programmer load file may 
also be applied to PLDtest.) One programmer load file is 
created for each device specified in the source file. 
Complete specification of the JEDEC standard format is 
given in appendix B. 

Simulation Output File. 

Output from the simulation step indicating whether 
simulation was completed successfully, and if not, where 
predicted and actual results differed. See section 4.6 for 
more information. 

Design Documentation File. 

Contains a chip diagram, reduced logic equations and other 
design information. This file is created by the 
DOCUMENT step of the language processor. 

Intermediate File. 

The language processor creates a file named filename.OUT 
that contains intermediate output data created by 
FUSEMAP. This intermediate file can be used as input to 
SIMULATE and DOCUMENT (see sections 4.6 and 4.7). 

4-7 



User's Guide 

4.1.3 Creating Your Own Batch or Command Files 

4-8 

The ABEL batch or command file executes all steps of the 
language processor. You may find that you want to create 
your own batch file that invokes only some of the steps in 
the language processor. Or, you may want to run the 
language processor with special parameter settings at each 
step. For example, you could write a batch file that runs 
PARSE, TRANSFOR, REDUCE and FUSEMAP to create a 
programmer load file without generating design 
documentation, and without running a simulation. 

You can write your own custom batch file by following the 
rules governing batch files as described in your operating 
system manual. Combine the individual language processor 
steps in the way that best suits your application. 



The ABEL Language Processor 

4.2 Parse 

PARSE [-Iin_file] [-Oout_file] [-Llistfile] [-E] [-P] 
[-Aarg] ... [-Hpath] [-Ypath] 

- Iin file ABEL source file is in in file 

-Oout file intermediate file output from the parser is 
written to out file. The intermediate file is 
used as input to TRANSFOR. 

-Llistfile write the listing file to the file specified by 
listfile (standard filename.ext format) 

-E display expanded output resulting from macro 
expansions and directives as part of the parser 
listing 

-P display expanded output resulting from macro 
expansions and directives and show the 
directive that added code to the source as part 
of the parser listing 

-Aarg the argument following -A is passed to the 
PARSE program to be substituted for dummy 
arguments in the source file 

- Hpath files included in the source with the 
@INCLUDE directive are located in the 
directory specified by path 

-Ypath any device specification files needed are 
found in the directory specified by path 

4-9 



User's Guide 

PARSE reads the source file, converts state diagrams and 
truth tables to Boolean equations, translates test vectors, 
expands macros, and checks for correct syntax. If any 
syntax errors are found, the approximate place at which the 
error occurs and the type of error are displayed on your 
monitor. Error messages are also written to a listing file if 
one is being created ( - L ). An intermediate file is written to 
out_file if -0 is specified. This intermediate file provides 
input to TRANSFOR. 

All parameters are optional. If the -I and/or -0 parameters 
are omitted (no file specified), you will be prompted for the 
input and/or output file names. 

Consider the following example command line (with default 
file extensions named): 

parse -aP14L4 -aGND -im6809a.abl -om6809a.tm 
-lm6809a.lst -e 

This command (entered on a single line to the operating 
system) invokes PARSE to process the source file 
m6809a.abl which contains the logic description for the 
address decoder described in section 3. The output is 
written to the file, m6809a. tm 1, and a listing file named 
m6809a.lst is created. Expanded output is shown in the 
listing because the - E parameter is included. Two 
arguments, Pl4L4, and GND, are passed to the processor 
for argument substitution. 

Note that the command can be entered in lower-case 
characters and that the parameters can be specified in any 
order. Each parameter is discussed in detail below. 

4-10 



The ABEL Language Processor 

- I : Specify Input File 

Use -I to specify the file containing your source file. If no 
input file is specified, the input is assumed to come from 
your standard input device (usually the keyboard). 

-0 : Specify Output File 

Use -0 to specify the name of the output file. If no output 
file is specified, output will go to your standard output 
device (usually the monitor). The output file contains the 
parsed source code and is used as input to the TRANSFOR 
processor (section 4.3). 

- L : Create a Listing File 

- L indicates that a listing file is to be created. The file 
containing the listing is specified directly after the -L 
parameter. A listing file contains the parsed source code 
with error messages (if there are any) and with macro 
expansions and inclusion of code due to directives if the -E 
parameter was specified. If the -P parameter is specified, 
the listing also shows the directive that caused the inclusion 
of code. If -L is not used, no listing file will be created. 

- E : Write Expanded Output 

The - E parameter causes the parsed and expanded source 
code to be written to the listing file. Text included by 
macros and directives is shown. If -E is not specified, the 
listing contains the source file as it was before processing 
plus error messages: expanded text is not shown. If no 
listing file is specified (the -L parameter is omitted), 
expanded output will be displayed at your terminal. 

4-11 



User's Guide 

- P : Display Expanded Output 

In addition to the listing information provided by -E, -P 
lists the directives that caused code to be added to the 
source. If the - L parameter is not included to produce a 
listing file, the directive and the expanded output will be 
displayed at your terminal. 

-A: Pass Arguments to Source 

The -A parameter lets you pass arguments to a source file. 
These arguments are substituted for dummy arguments in 
the source. As many arguments as are needed can be 
specified, but each argument must be preceded by the -A 
parameter. Argument substitution is discussed further in 
chapter 7. 

-H: Specify Path for Included Files 

The @INCLUDE directive, described in chapter 9, lets you 
include source text from one file in another source file. By 
default, the included file is assumed to be in the default 
directory; -Hallows you to override that default value and 
explicitly specify where included files are to be found. 
Specify a drive and path immediately after -H. For 
example, the following specifies that include files are to be 
found in the directory named examples: 

-H/examples 

See your operating system manual for more information 
about path and drive specifications. 

4-12 



The ABEL Language Processor 

-Y : Specify Path for Device Specification Files 

The language processor uses device specification files in 
conjunction with your source file to properly process a 
design. The - Y parameter lets you specify which drive and 
directory contains the device files. Specify a path 
immediately after -Y. 

For example, 

-Y/devices 

indicates that device specification files are in a system 
subdirectory, /devices. If - Y is not used, device files are 
assumed to be in the default directory. See your operating 
system manual for more information about path and drive 
specifications. 

4.2.1 PARSE Listing File 

Listing 4-1 shows a listing file created by the PARSE step 
of the language processor. This listing was created by 
running PARSE on an altered version of the M6809A.ABL 
source file described in section 3. Syntax errors were 
introduced into the M6809A.ABL source file to create the 
file M6809ERR.ABL, also provided with the design 
examples. M6809ERR.ABL contains two syntax errors. 

The first error is a missing semicolon in the equation: 

!DRAM= (Address<= AhDFFF) 

The second error is a missing left parenthesis in the truth 
table header: 

test_vectors Address-> [ROM1,ROM2,IO,DRAM]) 

4-13 



User's Guide 

These two errors are displayed at your monitor and shown 
in the listing file. The approximate places at which the 
error occur are indicated by circumflexes. The type of 
error is also indicated. 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 

!module m6809err 
!title 16809 memory decode 
!Jean Designer FutureNet Rednond IJA 
I 
I U09 device 'P14L4'; 

I A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6; 
ROM1, IO,ROM2,DRAM pin 14, 15, 16, 17; 

I H,L,X = 1,0,.X.; 

24 Feb 1987' 

I Address= [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,Xl; 
I 
jequations 
I !DRAM = (Address <= AhDFFF) 

I ! IO = (Address >= AhEOOO) & (Address <= AhE7FF); 

? Syntax error: ';' expected 

0016 
0017 
0018 
0019 
0020 
0021 

I 

I 
I 

!ROM2 

!ROM1 

jtest_vectors 

? Syntax error: I (I 

0022 I 
0023 I 
0024 I 
0025 I 
0026 I 
0027 I 
0028 I 
0029 I 
0030 lend m6809err 

= (Address >= AhFOOO) & (Address <= AhF7FF); 

= (Address >= AhF800); 

Address·> [ROM1,ROM2,IO,DRAM]) 

expected 

AhOOOO ·> H, H, H, L l; 
Ah4000 ·> H, H, H, L l; 
Ah8000 ·> H, H, H, L l; 
AhCOOO ·> H, H, H, L l; 
AhEOOO ·> H, H, L, H l; 
AhE800 ·> H, H, H, H l; 
AhFOOO -> H, L, H, H l; 
AhF800 -> L, H, H, H l; 

Listing 4-1. PARSE Listing File with Errors from 
M6809ERR.ABL 

4-14 



The ABEL Language Processor 

Listing 4-2 shows the corrected source file with the proper 
semicolon and left parenthesis added. 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 

!module m6809a 
!title 16809 memory decode 
!Jean Designer FutureNet Rednond WA 
I 

I 
I 

U09a device 'P14L4'; 
A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6; 
RG11,IO,ROM2,DRAM pin 14, 15, 16, 17; 

I H,L,X = 1,0,.X.; 

24 Feb 1987 1 

I Address= CA15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,X]; 
I I equations 
I !DRAM = (Address <= AhDFFF); 
I 

I 
I 
I 

! IO (Address >= AhEOOO) & (Address <= AhE7FF); 

!ROM2 (Address >= AhFOOO) & (Address <= AhF7FF); 

!RG11 = (Address >= AhF800); 

ltest_vectors (Address ·> 
I AhOOOO ·> [ 
I Ah4000 ·> [ 
I Ah8000 ·> [ 
I AhCOOO ·> [ 
I AhEOOO ·> [ 
I AhE800 ·> [ 
I AhFOOO ·> [ 
I AhF800 ·> [ 
lend m6809a 

[ROM1,ROM2,IO,DRAM]) 
H, H, H, L ] ; 
H, H, H, L ] ; 
H, H, H, L ] ; 
H, H, H, L ] ; 
H, H, L, H ] ; 
H, H, H, H ] ; 
H, L, H, H ] ; 
L, H, H, H ] ; 

Listing 4-2. Corrected Source File, M6809A.ABL 

4-15 



User's Guide 

4.3 TRANSFOR 

TRANSFOR [-Iin_file] [-Oout_file] 

-Iin file in_ file is an intermediate output file created 
by PARSE. 

-Oout file output from TRANSFOR is written to 
out file 

TRANSFOR reads the equations generated by PARSE and 
manipulates them to: 

1. Replace sets with equivalent equations without sets. 

2. Replace all operators with equivalent operations using 
only NOTs, ANDs, ORs and XORs. 

3. OR together equations that cause multiple assignments 
to the same identifier. 

4. Perform logic reduction based on the following rules: 

Rule Description 

A & 1 A A AND 1 =A 
A&O = 0 A ANDO =0 
A#l 1 A OR 1 = 1 
A# 0 = A AORO =A 
A$ 1 !A A XOR 1 =NOTA 
A$ 0 A AXORO =A 
A!$ 1 A A XNOR 1 =A 
A!$ 0 !A A XNOR 0 =NOTA 

4-16 



The ABEL Language Processor 

The transformed equations can then be reduced by the 
REDUCE program. The file specifications given for 
in _file and out_file must be valid file specifications per 
your operating system. (Note that you can assign any legal 
file extension to the input and output file names.) 

Example: 

TRANSFOR -im6809a -om6809a.tm2 

This command transforms the parsed source code contained 
in m6809a.tml (created by PARSE) and creates an output 
file named m6809a.tm2. (If you do not assign a file 
extension to the output file name, TRANSFOR will assign 
"tm2" as the file extension. 

4-17 



User's Guide 

4.4 REDUCE 

REDUCE [-Iin_file] [-Oout_file] [-Rn] 

-Iin file in_file is an intermediate file created by 
TRANSFOR. 

-Oout file output from REDUCE is written to out_file 

-Rn n = 0, 1, 2, 3, or 4, indicating the level of 
reduction to be performed (default= I): 

n=O : no reduction 
n= 1 : simple reduction 
n=2 : simple and PRESTO reduction 
n=3 : simple and PRESTO reduction by pin 
n=4 : simple and ESPRESSO reduction 

REDUCE reduces your logic description so that fewer 
product terms are used in the programmable logic device. 
REDUCE reduces the Boolean equations in in _file and 
writes the reduced equations to the file specified by 
out file. The equations in in file must be in the form 
produced by TRANSFOR. If in file is not specified, the 
input is assumed to come from your standard input device 
(usually your keyboard). If out_file is not specified the 
output is written to your standard output device (usually 
your monitor). 

4-18 

You may choose one of five levels of reduction: 0, 1, 2, 3, 
or 4. If you do not explicitly choose a reduction level with 
-R, level one reduction is performed. 

When using exclusive-OR parts, such as P20X8, P20X4, 
etc., and exclusive-OR conditions are encountered in the 
input file to REDUCE, REDUCE will leave the exclusive-



The ABEL Language Processor 

OR operator intact for that output. If more than one 
exclusive -OR condition is encountered for one output, 
only the first will utilize the exclusive-OR operator; others 
will be converted to multiple ANDs and ORs. 

If a T-type flip-flop is being emulated in a D-type 
registered device, all exclusive-OR operators for that 
output will be expanded to multiple ANDs and ORs. 

4.4.1 Level 0 Reduction. 

No reduction is performed for level 0 reduction. The 
transformed equations are checked for valid outputs for the 
specified device and written to the output file. 

4.4.2 Level 1 Reduction. 

If you choose level 1 reduction (-RI), the logic equations 
are expanded to a sum of products form and then reduced 
according to the following basic rules of Boolean algebra: 

Rule Description 

!0 1 NOTO 1 
! 1 0 NOT 1 0 

A & 0 0 A ANDO 0 
A & I A A AND I A 
A# 0 = A A ORO A 
A# 1 = 1 A OR 1 I 
A#A = A AORA A 
A&A A AANDA A 
A& !A 0 A AND (NOT A) = 0 
A#!A I A OR (NOT A) I 

Level I reduction is the default if no level is explicitly 
chosen with the -R parameter. 

4-19 



User's Guide 

4.4.3 Level 2 Reduction. 

Level 2 reduction should be used whenever the number of 
product terms used to implement a function is near to or 
more than the number of product terms available in the 
device. If you choose level 2 reduction (-r2), both level I 
and PRESTO logic reduction are performed. 

The following command line performs simple and PRESTO 
reduction on the transformed equations contained in 
m6809a.tm2 (created by TRANSFOR) and writes the 
reduced equations to the file named m6809a.tm3. (Note 
that you can assign any legal file extension to the input and 
output file names.) 

REDUCE -r2 -im6809a.tm2 -om6809a.tm3 

4.4.4 Level 3 Reduction. 

Level 3 reduction reduces logic associated with each pin in 
a device on a pin-by-pin basis. There are two major 
advantages to pin reduction. First, reduction by pin is 
faster than normal PRESTO reduction. Second, this type of 
reduction is well-suited to PALs which do not share terms 
among the outputs. 

As mentioned, reduce levels 2 and 3 utilize the PRESTO 
method. PRESTO is a logic reduction technique that 
reduces the number of inputs and product terms. In the 
PRESTO method, two functions are formed. The functions 
are designated F and FDC and are tabular representations 
of the original equations. During the operation of ABEL, F 
and FDC are identical at the beginning of term 
minimization. 

4-20 



The ABEL Language Processor 

PRESTO tries to eliminate each input literal for each 
product term by temporarily omitting it from F and 
checking to see if the result is still covered by FDC. If 
covered, the literal term is deleted from F. After all input 
literals have been processed, all output literals are similarly 
processed, only the literal is temporarily omitted from FDC 
and then checked for coverage by F. If all output literals 
are eliminated from a given term, the term is removed. 
The process is repeated until F stabilizes and represents the 
minimized function. 

4.4.5 Level 4 Reduction. 

Level 4 reduction uses the ESPRESSO reduction method. 
Espresso is a heuristic reduction algorithm developed at the 
University of California, Berkeley. ESPRESSO's main 
advantage over PRESTO is its speed, which makes it the 
best choice for large designs. In some cases, it will also 
produce better reduction than PRESTO. 

4-21 



User's Guide 

4.5 FUSEMAP 

FUSEMAP [-Iin_file] [-Oout_file] [-Jpath] [-Cn] 
[-Dn] [-Kq] 

-Iin file intermediate file created by REDUCE. 

-Oout file intermediate output from FUSEMAP is 
written to out file 

-Jpath drive and path specification for programmer 
load file output 

-Cn checksum parameter. n can be: 

-Dn 

-Kq 

Q=Y 

Q=N 

4-22 

0 omit STX, ETX, and transmission 
checksum from the programmer load file 

1 include STX, ETX, and a dummy 
transmission checksum in the load file 

2 include full STX, ETX, and transmission 
checksum (default) 

programmer load file format specification, 
where n can be either 0, indicating a standard 
JEDEC format programmer load file, or any 
of the microprocessor formats defined in table 
4-1. JEDEC format is the default. 

unused fuses in an FPLA OR array will be 
disconnected or left connected according to 
the value of q 

leave unused fuses connected (default) 

disconnect unused fuses 



The ABEL Language Processor 

FUSEMAP processes the output of REDUCE and creates: 

• an intermediate output file (*.out) for input to 
SIMULA TE and DOCUMENT. 

• programmer load files that are loaded into a logic 
programmer to program and test devices. 

One programmer load file is created for each device 
specified in the original source file. A load file contains 
fuse states for programming the device and test vectors to 
test it once it has been programmed. FUSEMAP creates a 
JEDEC format load file unless you specify a different 
format with the -D parameter. 

The filename of each load file is the name of the device for 
which the file contains a fuse map. The file extension is 
"JED" for JEDEC format programmer load files and ".Pxx" 
for all other load file formats, where xx corresponds to the 
number specified with the -D parameter. The load file is 
written to the path specified by Jpath:, or to the default 
path if no drive is specified. 

Example: 

FUSEMAP -im6809a -om6809a.out 

This command invokes FUSEMAP. The file m6809a.tm3 
(output of REDUCE) is read, one programmer load file 
(U09.JED) is created for device U09 in the source file (see 
listing 4-2 for naming of the programable logic device), and 
the output file m6809a.out is created. 

4-23 



User's Guide 

If multiple devices are named in a source file, then multiple 
programmer load files will be created by FUSEMAP. For 
example, if a source file has three devices named 
DEVICE!, DEVICE2, and DEVICE3, FUSEMAP would 
create the programmer load files: 

DEVICEl .JED 
DEVICE2.JED 
DEVICE3.JED 

Each file is a programmer load file (conforming with the 
JEDEC standard) that describes the logic and test functions 
to be programmed into the device. These files can be 
processed by PLDtest to generate.a full set of device test 
vectors. 

-J: Specify drive and path for programmer load file output 

The -J parameter allows you to indicate where the 
programmer load file is written. Specify the desired drive 
and/or path after -J. 

-C : Checksum parameter 

Normally, STX is placed at the beginning of the 
programmer load file and ETX and a checksum are placed 
at the end of the file in accordance with the JEDEC 
standard. The -C parameter allows you to control whether 
and how STX, ETX, and the checksum are written. -CO 
omits the STX, ETX, and checksum from the programmer 
load file. -Cl causes STX and ETX to be written to the 
programmer load file as usual, but writes a dummy 
checksum, 0000, thereby disabling checksum checking. -C2 
is the default and causes the full STX, ETX, and valid 
checksum to be written. 

4-24 



The ABEL Language Processor 

-D: Specify Programmer Load File Format 

The - D parameter specifies the format of the programmer 
load file. -DO is the default and indicates that the 
programmer load file is to be in the JEDEC format. Other 
formats can be specified by following - D with the 
appropriate microprocessor format code (-d83, for 
example). Supported microprocessor formats, their codes, 
and the file extension given to the programmer load files 
are given in table 4-1. 

NOTE: Non-JEDEC programmer load file formats do not 
contain test vectors, even if test vectors were specified in 
the source file. 

-K: Unused Fuses parameter 

Unused fuses in an IFL or FPLA OR array can either be 
left connected or disconnected. Leaving unused fuses 
connected allows the addition of logic functions to the 
device, alteration of an existing design in the device, and 
may improve programming yield. However, some speed 
and power improvements are achieved by disconnecting all 
unused fuses. Disconnecting the fuses prevents any future 
modifications to the device. 

The -K parameter lets you specify what to do with unused 
fuses. -Ky leaves the fuses connected. -Kn disconnects 
unused fuses. If - K is not specified, the unused fuses are 
left connected. 

4-25 



User's Guide 

4-26 

Table 4-1. Data Translation Format Codes and File 
Extensions 

Format 

Motorola Exorciser 
Intel Intellec 8/MDS 
Motorola Exormax 
Intel MCS-86 Hexadecimal Object 

Code 

82 
83 
87 
88 

Extension 

.P82 

.P83 

.P87 

.P88 



The ABEL Language Processor 

4.6 SIMULATE 

SIMULATE [-Iin_file] [-Oout_file] [-To] [-Ndevice] 
[-Bnl,n2[,n3]] [-Xn] [-Zn] [-Wn,n .. n] [-Un] 

-Iin file infile is either an intermediate output file 
created by FUSEMAP or a programmer load 
file in JEDEC format 

-Oout file simulation output file 

- Tn n is the simulation trace level, where the trace 
levels are: 

0 : show errors only 
1 : show output and test vectors 
2 : show output and test vectors, all steps 
3 : show complete device internals 
4 : show waveform on specified pins 
5 : show logic levels on specified pins 

default is trace level 0, errors always shown. 

-Ndevice industry part number for device; for 
simulation performed independently of ABEL. 

-Bnl ,n2[,n3] set breakpoints nl and n2 between which a 
new trace level n3 is in effect. nl and n2 are 
inclusive. 

-Xn set the logical value used for ".X." in load file 
test vectors. n can be 1,0,H,L. Default is 0. 

-Zn set the logical value used for ".Z." in load file 
test vectors. n can be 1,0,H,L. Default is 1. 

-Wn,n,n .. n specify which device pins to "watch" during 
simulation with trace levels 3, 4, and 5. 

4-27 



User's Guide 

-Un specify whether registers in a registered 
device are to be set to 0 or 1 at power on. 

If the -I and/or -0 parameters are omitted (no file 
specified), <filename>.OUT is the default input file and 
you will be prompted for the output file names. Also, if 
the device part number (-Ndevice) is not specified, you will 
be prompted. Refer also to section "Input Files" in this 
section. 

The output created by SIMULA TE is written to the file 
specified with the -0 parameter, or to the standard output 
device if no output file is given. The contents of this file 
will vary depending on the trace level set with the - T 
parameter. See the examples on the following pages for 
more information on the simulation output. 

- T : Set Trace Level 

4-28 

- T determines the level of information that is provided by 
SIMULA TE. The trace level can be 0, 1, 2, 3, 4, or 5. 
Errors are listed regardless of the trace level. By choosing 
the appropriate trace level, you can see only the final 
outputs for registered devices, or the outputs before and 
after the clock pulse. 

Level 0 shows the final output (after the outputs have 
stabilized) and test vectors for errors only. 

Trace level 1 shows final output (not the output for each 
simulate iteration) and test vectors for the device. 

Trace level 2 shows the outputs after each iteration of the 
simulator and the test vectors. For registered parts, the 
outputs are shown before and after each clock pulse. For 
designs with feedback, the outputs are shown for each 
iteration until the outputs stabilize. 



The ABEL Language Processor 

Trace level 3 shows the internal nodes and the device 
outputs for each iteration plus the test vectors. Use level 3 
for the most help with determining where and why 
simulation errors occur. 

Trace level 4 shows the output level that appears on each 
specified device pin during the simulation process. The 
output pin voltages are shown as a waveform in the output 
file that contains a trace for each pin. Each trace 
represents the logic high and logic low output levels for 
each test vector. If no input or output pins are specified by 
means of the -W parameter, the first 14 outputs will appear 
in the output file by default. 

Trace level 5 is similar to trace level 4 except that the 
waveform is replaced by H, L, and Z for logic high, logic 
low, and high-impedance state. 

-N : Specify a device type to be used for simulation 

If a programmer load file is used for simulation input 
rather than FUSEMAP output, no device-specific 
information is available. (If the programmer load file was 
generated by ABEL or GATES, the SIMULA TE program 
can extract the device type from a string in the file header.) 
- N specifies the device associated with the load file, and 
the device information is read from the appropriate device 
specification file on the distribution disk. The device must 
be supported by ABEL, and is specified by an industry part 
number following -N. 

Example: 

simulate -iU09.jed -om6809a.sim -nP14L4 

The above example invokes the simulator with the file 
named U09.jed as input, m6809a.sim as the output file, and 
Pl4L4.DEV as the device specification file. If Pl4L4.DEV 

4-29 



User's Guide 

cannot be found, an error message is issued. 

NOTE: -N and JEDEC files cannot be used to simulate 
PRO Ms. 

-Bnl,n2[,n3) : Set breakpoints 

It may be useful, particularly in large designs, to view 
simulation output for only some of the test vectors. -B 
allows this type of selective tracing. A beginning and an 
ending breakpoint must be specified. A breakpoint is 
specified with the number of the test vector at which the 
break is to occur. The new trace level is set at the 
beginning break point. The trace level is returned to its 
original value after the ending breakpoint. 

NOTE: On some versions of MS-DOS, the use of commas 
to separate breakpoint values will cause an error. If this 
occurs, periods may be substituted. 

The new trace level can be specified explicitly with n3. If 
the new trace level is not specified, the trace level between 
breakpoints will be one level higher than before the break 
occurred. 

4-30 

Example: 

simulate -im6809a.out -om6809a.sim -B5,8,3 

This invokes the simulator with the default trace level 0. 
At the fifth test vector, the trace level is set to 3 and 
remains there until after vector 8, when the trace level is 
reset to level 0. 

Example: 

simulate -tl -im6809a.out -om6809a.sim -b5,8 



The ABEL Language Processor 

In this case, the breakpoints are again vectors 5 and 8. But 
the initial trace level is set to level I by the - T parameter 
and no new trace level is specified with the breakpoints. 
Thus, the new trace level between vectors 5 and 8 
(inclusive) is level 2 (one level higher than I). 

-X and -Z: Set values for "don't care" and "high impedance" 

Don't care and high impedance values encountered in test 
vectors must be given some value during simulation. The 
-X and -Z parameters allow you to override the default 
values. As a default, anytime a ".X." is encountered in a 
test vector the logical value L is substituted for it. As a 
default, His substituted for a ".Z." value. You can specify 
default values of 0, I, L, or H for ".X." or ".Z.". The 
default values are substituted only when ".X." or ".Z." are 
inputs to a design or outputs that are fed back as inputs. 
Outputs that are not fed back are shown in simulation 
output as they exist in the source file, with ".X."s and ".Z."s 
intact. 

The simulator checks the design with a single voltage level 
for the don't care inputs, while the target circuit may place 
other levels of the input during actual operations. For 
complete simulation, it is recommended that you run the 
SIMULATE operation with the don't-cares set to 0 (flag
XO), and then again with them set to I (flag-XI). Refer 
also to Don't Cares in Simulation located in chapter 12. 

- Un : Set Register Power-Up State 

The power-up state of all registers in a device can be set by 
means of the - U flag. - Uh sets all registers to I, while - Ul 
sets all registers to 0. If no - U parameter is specified, 
registers are set to the default state specified in the device 
file. 

4-31 



User's Guide 

-Wn,n .. n, ...• : Specify which device pins to "watch" during 
simulation with trace levels 3, 4, and 5 

When trace level 3, 4, or 5 is specified, the -W parameters 
may be used to specify the device pins to be "watched" 
during the simulation process. Each specified pin number 
is separated by a comma when using the -W parameter; or a 
range of pins can be specified by separating the pin 
numbers with an ellipsis. 

Example: 

simulate -t4 -im6809a.out -om6809a.sim -wl..6,14 .. 17 

The above example invokes the simulator with the file 
named m6809a.out as the input file and m6809a.sim as the 
output file, with device pins 1 through 6 and 14 through 17 
specified for inclusion in the output file. The order in 
which the pin numbers are entered on the command line 
determines the order of the data (by pin number) in the 
output file. For example, to list pin 1 through 6 in the 
reverse order, enter: 

-w6 .. l,14 .. 17 

on the command line. Also, although the device pin 
numbers are entered on the command line, the listing from 
the output file indicates the pins by their identifiers named 
in the pin declarations of the ABEL source file. 

You can also insert a blank column in the trace level 4 and 
5 printouts by entering any number greater than the 
number of pins and nodes in the particular device (such as 
999) as a -w parameter. For example, to insert a blank 
column between pins 1 and 14, enter: 

-w6 .. l,999,14 .. 17 

4-32 



The ABEL Language Processor 

4.6.1 Input Files 

SIMULA TE uses design and device information to simulate 
the operation of a programmable device. SIMULA TE can 
use either the design information created by FUSEMAP or 
any programmer load file conforming with the JEDEC 
standard to simulate the operation of P ALs, FPL As, and 
FPLSs. FUSEMAP intermediate file output must be used to 
simulate PROMs. 

SIMULA TE does not execute Boolean equations or apply 
inputs to ABEL truth tables or state diagrams; it simulates 
the operation of a device as though it were already 
programmed with the information contained in the input 
file. If a programmer load file is used as the input to 
SIMULA TE, part number information must be provided by 
using the -N parameter. If the output file from FUSEMAP 
(specified with -0 at invocation of FUSEMAP) is used for 
simulation, the part number information is already available 
and - N is not needed. 

Furthermore, if a programmer load file is used as input to 
SIMULA TE, the operation of the one device associated 
with that load file will be simulated. If the output from 
FUSEMAP is used as input, the operation of all devices 
initially specified in the source file will be simulated. 

4-33 



User's Guide 

4.6.2 SIMULATE Program Operation 

Figure 4-2 shows a flow diagram that depicts SIMULATE 
operation when evaluating the inputs to the output. 
SIMULA TE gets the first test vector and performs any 
setup of internal registers (within the PLD) that results 
from the vector applied to the inputs. SIMULA TE then 
calculates the product terms that result from the test vector, 
the OR outputs that result from the product terms, any 
macrocell outputs that result from the OR outputs, and then 
any feedback functions. As indicated in figure 4-2, the 
results of the SIMULA TE calculations are written to the 
*.SIM file whenever trace level 2 or trace level 3 are 
specified. 

The outputs of devices with feedback cannot always be 
determined by one evaluation of the input-to-output 
function, but may require several successive evaluations 
until the outputs stabilize. This is further explained in 
section 4.6.11 and the asynchronous feedback circuit. 
SIMULA TE uses an iterative method to compute the 
outputs. After the feedback paths have been calculated, 
SIMULATE checks to see if any changes have occured with 
the device since the product terms were last calculated. If 
changes have occured due to feedback functions, the 
calculations are again repeated. This iterative process 
continues until no changes are detected, or until 20 
iterations have taken place. If 20 iterations take place, the 
design is determined to he unstable and an error is reported. 
More detailed information on simulating devices with 
feedback is presented in section 4.6.11. 

4-34 



The ABEL Language Processor 

NO 

GET VECTOR 

SETUP INTERNAL 
REGISTERS 

CALCULATE 
PRODUCT TERMS 

CALCULATE 
OR OUTPUTS 

CALCULATE 
MACRO CELLS 

CALCULATE 
FDBK. FUNCTIONS 

#JV 
20 YES CHANGE 

ITERATIONS ,,.__ ___ , IN PRODUCT 
YET? TERMS? 

YES 

REPORT 
ERROR 

NO 

TRACELEVEL1 
OUTPUT 

TRACE LEVEL 
2AND3 
OUTPUT 

Figure 4-2. SIMULATE Processing Flow Diagram 

4-35 



User's Guide 

4.6.3 Devices with Clock Inputs 

Since devices with registered outputs must be clocked 
before the outputs reflect any change in inputs, a clock 
pulse must be specified as one of the inputs in the test 
vectors for such devices. A clock input is indicated by a C 
in the test vector for a low-high-low pulse, and a K for a 
high-low-high pulse. The clock input in the test vector 
causes SIMULA TE to evaluate the inputs to the outputs 
prior to the first clock pulse transition (low-to-high or 
high-to-low depending on the polarity of the clock signal). 
The evaluation consists of the iterative steps described in 
section 4.6.2. The inputs to outputs are then evaluated with 
the clock input at its active state, and then again with the 
clock input at its inactive state. 

When running SIMULA TE with trace levels 2 or 3, 
simulation data will be written to the *.SIM file for all three 
evaluations. That is, internal test vectors are generated to 
evaluate the design before the first clock transition, after 
the first clock transition, and after the second clock 
transition, thus effectively expanding the number of test 
vectors. An example of SIMULA TE output for a device 
with a clock input, and using a single test vector, is shown 
in listing 4-3. This output was generated by the command 
simulate regfb -bl,1,2 -w14 which invokes SIMULATE 
with test vector I, trace level 2, and output pin 14 of the 
source file regfb.abl. 

In listing 4-3, the clock input is represented by the Con 
the Vector In line. On the four subsequent Device In lines, 
the C input goes from 0 to I and back to 0 to provide one 
complete clock pulse. (Note that the first two Device 
In/ Device Out lines of the listing are identical. This is a 
result of SIMULA TE evaluating the outputs against the 
inputs twice to insure that the first evaluation did not alter 
functions internal to the the device, and thus affect the 
outputs. See section 4.6.2.) 

4-36 



The ABEL Language Processor 

Sinl..llate ABEL(tm) 3.xx 

Operation of the simulator on devices with feedback 
FutureNet 24 Feb 1987 

File:'regfb.out' Module: 1 regfb 1 Device: 1 FB2' Part:'P16R4' 

Vector 
Vector In [C0111 •.••• 0 •........ l 

Device In [001110000000111110001 
Device Out [ ..••..•.••. ZHHHHHZZ.] 

Device In [001110000000111110001 
Device Out [ •••••.....• ZHHHHHZZ.] 

Device In [10111000000011111000] 
Device Out [ ......•.•.. ZHHHHHZZ.l 

Device In [001110000000111110001 
Device Out [ •••.•.••••• ZHHHHHZZ.l 
Vector Out [. ••...•.••.• HH •••••. l 

4 out of 4 vectors passed. 

Listing 4-3. Clock Inputs Shown in Trace Level 2 Output 

4-37 



User's Guide 

4.6.4 SIMULATE Output File, Trace Level 0 

Listing 4-4 shows the output of SIMULA TE created during 
processing of M6809A.ABL (listing 4-2), with pointers to 
the various parts of the output. For the purposes of this 
description, one of the test vectors was changed to produce 
an error, and simulation was run at trace level 0 (only errors 
are shown). Listing 4-5 shows the test vectors used to 
create the simulation error, in which the fourth vector has 
been changed. If the original test vectors shown in listing 
4-2 were used, no simulation errors would occur. 

The simulation output for trace level 0 lists the number of 
the vector that failed, the name and number of the failed 
output, and the nature of the failure. In this example, 
vector 4 failed at pin 14 (ROMI) which produced an 
active-high output instead of an active-low as expected by 
the test vector. 

Si11J.Jlate ABEL(tm) 3.xx 

6809 memory decode 
Jean Designer FutureNet Rednond WA 24 Feb 1987 

File: 1m6809er.out' Module:•m6809er' Device:'U09er' Part:'P14L4' 

Vector 4 
ROM1 14, 'H' found 'L' expected 

7 out of 8 vectors passed. 

Listing 4-4. Trace Level 0 Output for M6809A.ABL 

4-38 



The ABEL Language Processor 

test vectors (Address -> [ROM1,ROM2,IO,DRAMl) 
- "hOOOO -> [ H, H, H, L l ; 

"h4000 -> [ H, H, H, L l ; 
"h8000 ·> [ H, H, H, L l; 
"hCOOO -> [ L, H, H, L l; 
"hEOOO -> [ H, H, L, H l; 
"hE800 • > [ H, H, H, H l ; 
"hFOOO -> [ H, L, H, H l; 
"hF800 ·> [ L, H, H, H l; 

Listing 4-5. Test Vectors Used to Create Simulation Error 

4.6.5 SIMULATE Output File, Trace Level 1 

Listing 4-6 shows a trace level 1 simulation output for the 
same the same source file (including the incorrect vector) 
that produced listing 4-4. Another example of trace level 1 
output is shown in listing 4-7. Listing 4-7 was created 
using the command simulate add5 -b5,5,1 -w19 to produce 
an output for test vector 5 while "watching" output pin 19 
of the F159 device. 

The trace level 1 output shows the actual signal outputs and 
the test vectors used to perform the simulation. The actual 
output associated with each test vector is shown on one line 
followed by the input portion of the test vector, Vector In, 
on the next line. The output portion of the test vector; i.e., 
the expected output of the device appears on the Vector Out 
line below the actual output. 

4-39 



User's Guide 

Sinulate ABELCtm) 3.xx 

6809 memory decode 
File:'m6809a.out' Module: 1m6809a 1 Device:'U09a' Part:'P14L4' 

Vector 1 
Vector In [000000 ••..••••...•.. ] 
Device Out [ •••••••••.••• HHHL ••• ] 
Vector Out [ •••••••••..•• HHHL ••• ] 

Vector 2 
Vector In [010000 ••..•..•••.... ] 
Device Out [ ••••••••••••• HHHL ••• ] 
Vector Out [ •••••••••••.. HHHL ••• ] 

Vector 3 
Vector In [100000 •••••..••••••• ] 
Device Out [ ••••••••••••• HHHL ••• ] 
Vector Out [ •••••......•• HHHL ••• ] 

Vector 4 
Vector In [110000 •••••••••••••• ] 
Device Out [ ••.•.••••••.. HHHL •.• ] 
Vector Out [ ••••••••••••• LHHL .•. ] 

Vector 4 
ROM1 14, 'H' found 'L' expected 

Vector 5 
Vector In [111000 •••••••••••••• ] 
Device Out [ ••••••••••••• HLHH ••• ] 
Vector Out [ ••••••••••••• HLHH ••• ] 

Vector 6 
Vector In [111010 •••••••••••••• ] 
Device Out [ .•.•.••••••.. HHHH .•. ] 
Vector Out [ ••••••••••••• HHHH ••• ] 

Vector 7 
Vector In [111100 •••••••••••••• ] 
Device Out [ ••••••••••••• HHLH ••• ] 
Vector Out [ .•••..•.••••• HHLH ... ] 

Vector 8 
Vector In [111110 •••••••••••••• ] 
Device Out [ ••••••••••••• LHHH ••• ] 
Vector Out [ ••••••••••••• LHHH ••• ] 

7 out of 8 vectors passed. 

Listing 4-6. Level 1 Simulation Output, All Vectors 

4-40 



The ABEL Language Processor 

Silll.llate ABEL(tm) 3.xx 

S·bit ripple adder 

File: 1 addS.out 1 Module: 'ADDS' Device: 1 BJ2A 1 Part:'F159' 

Vector 5 
Vector In [C00001 •••• 0 •...••...•...••••.•••..•.•.•••..•••.••••. ] 
Device Out [ ••••• ZLLL •. HLLLLHHH.LLLLLLLL ••...... LLLLLLLLLHHHLHLL] 
Vector Out [ ••.••••••••• LLLLH ••.•••••••••••••.•.•••...•••••.••.• ] 

10 out of 10 vectors passed. 

Listing 4-7. Level 1 Simulation Output, Single Vector 

4-41 



User's Guide 

4.6.6 SIMULATE Output File, Trace Level 2 

Trace level 2 provides information similar to that described 
for level 1, except that level 2 output shows the device 
inputs and outputs for each iteration of the simulator 
(described in section 4.6.2). Listing 4-8 shows the level 2 
output for the same source file used to generate listing 4-7. 
The command used to the produce listing 4-8 is simulate 
add5 -b5,5,2 -w19. Note that the output is expanded over 
that shown in listing 4- 7 to show each interation of the 
simulate operation (see also section 4.6.11) that takes place 
to stabilize the device output at pin 19. 

Silll.Jlate ABEL(tm) 3.xx 

5·bit ripple adder 

File:'add5.out' Module:'ADD5' Device: 1 BJ2A 1 Part:'F159' 

Vector 5 
Vector In [C00001 •••• 0 •••••••••••••••••.....••.•••••••.••••..•• ] 

Device In [0000010000000000000000000000000000000000000001111000] 
Device Out [ ••••• ZLLL .• LLLLLLLL.LLLLLLLL •..••••. LLLLLLLLLHHHHLLL] 

Device In [0000010000000000000000000000000000000000000001111000] 
Device Out [ ••••• ZLLL •• LLLLLLLL.LLLLLLLL ••.••••. LLLLLLLLLHHHHLLL] 

Device In [1000010000010000111000000000000000000000000001111000] 
Device Out [ ••••• ZLLL •• HLLLLHHH.LLLLLLLL ..•••••• LLLLLLLLLHHHHLLLl 

Device In [1000010000010000111000000000000000000000000001110100] 
Device Out [ .•••• ZLLL •• HLLLLHHH.LLLLLLLL •••••••• LLLLLLLLLHHHLHLL] 

Device In [1000010000010000111000000000000000000000000001110100] 
Device Out [ ••••• ZLLL •• HLLLLHHH.LLLLLLLL ••.••••. LLLLLLLLLHHHLHLLl 

Device In [0000010000010000111000000000000000000000000001110100] 
Device Out [ .••.. ZLLL .• HLLLLHHH.LLLLLLLL .•••...• LLLLLLLLLHHHLHLL] 
Vector Out [ •••.•••••••• LLLLH ••••.•••.•.•••••.•••.••••..•••.•••• l 

10 out of 10 vectors passed. 

Listing 4-8. Level 2 Simulation Output, Single Vector 

4-42 



The ABEL Language Processor 

4.6.7 SIMULATE Output File, Trace Level 3 

Trace level 3 simulation provides all trace level 2 
information, plus internal device information such as OR
gate outputs, register outputs, and the final outputs. 
Figure 4-3 shows one section of a trace level 3 listing with 
pointers to its various parts and a section of the 
corresponding logic diagram. Only a portion of the trace 
level 3 simulation output is shown since level 3 output files 
can be quite large. 

Fuse and node numbers shown on the table are numbers 
assigned by FutureNet to the fuses in the device and are 
shown in the Logic Diagrams provided with the ABEL 
package. The OR-gate and register outputs shown in the 
simulation output are internal signals not available as pin 
outputs that can be very useful for debugging designs. 

The large size of trace level 3 simulation files is due not 
only to the complete listing of all device internals, but also 
due to expanded test vectors caused by clock inputs (see 
section 4.6.3), and the numerous iterations of the simulator 
required to stabilize the outputs of some designs (see section 
4.6.11 ). Trace level 3 may be used with a breakpoint to 
specify a limited number of test vectors, and the -W 
argument to limit the number of outputs included in the 
simulation output file. 

In figure 4-3, the product term line shows the state of 33 
product terms. This is because a Fl59 is used in this 
example, and the input array has 33 possible terms. (Refer 
to the Fl59 logic diagram included with your Logic 
Diagram Package as part of the ABEL product for details 
on the Fl59.) The product terms line is followed by the 
states of various nodes, input pins, and product terms that 
exist for indicated states on the product terms line. 

Table 4-2 defines the notation used in the simulation output 
files to identify product terms and nodes. 

4-43 



User's Guide 

Table 4-2. Notation Used in Simulation Output Files 

4-44 

Notation 

Current Nodes 
OE 

AR 
SR 
AP 
SP 
LD 
CK 
FC 
OR 

IN1 
IN2 

OR Node Types 
PTnnnn 

LOW 
HIGH 
Pin nn 
Node nn 
Pin nn & nn 
Pin nn # nn 
PROM nn 

Description 

Output enable 
Asynchronous Reset 
Synchronous Reset 
Asynchronous Preset 
Synchronous Preset 
Register Load 
Register Clock 
Flip/Flop Mode control (F159 or P32VX10) 
Normal output OR gate 
First input to a Flip/Flop C"J") 

Second input to a Flip/Flop C"K 11 ) 

One or more product term, PAL or FPLS 
(nnnnn = First Fuse) 
Always logic level 0 
Always logic level 1 
Input from pin 
Input or feedback from a internal node 
The AND of two pins 
The OR of two pins 
Bit nn of a prom output 



The ABEL Language Processor 

Table 4-2. (continued) 

Notation Description 

PRODUCT Term Display 
Pin nn [1 Logic level from a pin or 

node 
Pin nn [0 Logic level 0 from a pin or 

node 
nn & nn [0 & 1 Logic level 0 from a pin or 

node 
PTnnnnn [TTFFTT Multiple product terms 
PTnnnnn [TT $ FT XOR of two groups of product 

terms 
PTnnnnn [TT # FT OR of two groups of product 

terms 
PTnnnnn [T & ! 1 AND of product term and 

inverted pin (P20RA10) 
PTnnnnn [T-FF-T Shared product terms 

('-' term not connected) 

PTnnnnn [TTTTT FTFTTT FF FFTTFl Multiple line display of Large OR 
[TFFFFFFTTF ] 

4-45 



User's Guide 

Vector 1 
Vector In 

(LOGIC TERMS) (CONTROL TERMS) 
P R L D 

PT input[101 1010 0101 0101 0101 0101 1001 
HIGH [T l EN=H -----\-"+-+---'<-----
Node 23 [Q l AR=L ----..--
Node 22 [1 l AP=L ---"' 
Node 26 [0 ] LD=L ----~--' 
Pin 1 [Q l CK=L -----
PT 2058 [F l FC=L 
PT 0 [ · · · · · · · · · · · · · · · · · · · · · · · · l 

[· · · · · · · · l IN1=L 
PT 0 [ · · • • • • • • • · · • • • • • • • • • • • • • l 

[· · · · • • • • ] IN2=L Q=L Pin19=H Vee=. 

Figure 4-3. Trace Level 3 Simulation Output 

4-46 



The ABEL Language Processor 

4.6.8 SIMULATE Output File, Trace Level 4 

Trace level 4 provides a waveform representation of the 
inputs and/or outputs of the device for each of the 
specified test vectors. The - B flag (breakpoints) can be 
used to specify vectors to be used and the -W flag can be 
used to specify which inputs and outputs are to appear in 
the output file. Up to 14 pins can be specified as long as 
no blank columns are inserted (by means of the "999" in the 
-w parameter) in the output. If no-Wis used, SIMULATE 
automatically generates the signals appearing at the first 14 
output pins. 

Listing 4-9 shows the waveform generated by running the 
same souce file used in listings 4-4 and 4-6 (address 
decoder, m6809a.abl). The command simulate m6809a -t4 
-wl..6,999,17 was used to generate a trace level 4 
waveform of pins 1 through 6, and 17 of the address 
decoder. Each of the specified pins is shown with the logic 
high and low levels for each of the eight test vectors. 

SilllJlate ABEL(tm) 3.xx 

6809 memory decode 

File:'m6809a.out' Module:'m6809a' Device:'U09a' Part:'P14L4' 

D 
A A A A A A R 
1 1 1 1 1 1 A High 5 4 3 2 1 0 M 

Level 
V0001 I I_ I I I 1 /Log;c V0002 I_ _I I I I 
V0003 I L I I I 
V0004 I I I_ I I l_I V0005 I I I I L 
V0006 I I I I_ _I 
V0007 I I I I I_ I 
V0008 I I I I I I 
8 out of 8 vectors passed. 

Listing 4-9. Trace Level 4 Simulation Output 

4-47 



User's Guide 

Listing 4-10 shows another example of trace level 4. The 
waveform was generated by simulating the same souce file 
used in listings 4-7 and 4-8 (add5.abl). The command 
simulate shiftcnt -bl4,30,4 -wl..5,999,12 .. 15 was used to 
generate a waveform of the signals appearing at pins 1 
through 5, and 12 through 15 for test vectors 14 through 30. 

Silllllate ABEL(tm) 3.xx 

universal counter / shift register 

File: 1shiftcnt.out 1 Module:'shiftcnt' Device: 1 IFL4' Part: 1 F159 1 

***** Shift left ***** 

c J 
l K 
k D 

I I 
2 3 

V0014 1-
V0015 

L 1_=- I J 
_I _I L I 

V0016 l
V0017 l
V0018 l
V0019 I-

I I I I 
I I I I 

***** Count up ***** 

c J 
l K 
k D 

I I 
2 3 

V0020 1- L I_ J 
~~~~~ I: I I I 
V0023 11-- II II I
V0024 I

~~~~! I : I I 
1
1 

V0027 11-_ II II 
V0028 

~~~~~ I : I I I I 
36 out of 36 vectors passed.

F F F F
0 1 2 3

F F F F
0 1 2 3

Listing 4-10. Trace Level 4 Simulation Output

4-48

The ABEL Language Processor

4.6.9 SIMULATE Output File, Trace Level 5

Trace level 5 is similar to level 4 except that instead of a
pictoral waveform representation of the specified pins, the
signal levels are represented by H, L, and Z for logic high,
logic low, and high-impedance state. Since the output
produced by trace level 5 is more compact that that of trace
level 4, it allows specification of more device pins than
trace level 4.

Listing 4-11 shows the level 5 output for the same
shifter/counter shown in Listing 4-10. The command used
to generate this report is simulate shiftcnt -b14,30,5
-wl..9,11,999,12 .. 15,999,16 .. 21. Note that more pins can
be shown with level 5 than can with level 4. Also, pins that
do not have declared signal names are name simply by their
pin numbers and a "P" prefix, such as for pins 6 through 9
and 16 through 19.

4-49

User's Guide

Sirrulate ABELCtm) 3.xx

universal counter I shift register

File:'shiftcnt.out' Module:'shiftcnt' Device:'IFL4' Part:'F159'

***** Count Up and Shift Left *****

***** Shift right *****

Pin Numbers

***** Shift left *****
~ Pin Identifiers

p p p p p p p p p
c J
l K I I I 0 0 0 0 0 F F F F 1 1 1 1 2 F
k D 1 2 3 6 7 8 9 E 0 1 2 3 67890C

V0014 c 0 0 0 1 z z z z 0 H H H H Z Z Z Z 0 L
V0015 c 1 1 0 0 z z z z 0 L H H H Z Z Z Z 0 H
V0016 c 0 0 1 0 z z z z 0 H L H H Z Z Z Z 0 L
V0017 c 0 0 1 0 z z z z 0 H H L H Z Z Z Z 0 L
V0018 c 0 0 1 0 z z z z 0 H H H L Z Z Z Z 0 L
V0019 c 0 0 1 0 z z z z 0 L H H H Z Z Z Z 0 L

***** Count up *****

p p p p p p p p p
c J
l K I I I 0 0 0 0 0 F F F F 1 1 1 1 2 F
k D 1 2 3 6 7 8 9 E 0 1 2 3 67890C

V0020 c 0 0 0 1 z z z z 0 H H H H Z Z Z Z 0 L
V0021 c 1 1 0 0 z z z z 0 L H H H Z Z Z Z 0 H
V0022 c 1 1 0 0 z z z z 0 H L H H Z Z Z Z 0 H
V0023 c 1 1 0 0 z z z z 0 L L H H Z Z Z Z 0 H
V0024 c 1 1 0 0 z z z z 0 H H L H Z Z Z Z 0 H
V0025 c 1 1 0 0 z z z z 0 L H L H Z Z Z Z 0 H
V0026 c 1 1 0 0 z z z z 0 H L L H Z Z Z Z 0 H
V0027 c 1 1 0 0 z z z z 0 L L L H Z Z Z Z 0 H
V0028 c 1 1 0 0 z z z z 0 H H H L Z Z Z Z 0 H
V0029 c 1 1 0 0 z z z z 0 L H H L Z Z Z Z 0 H
V0030 c 1 1 0 0 z z z z 0 H L H L Z Z Z Z 0 H
36 out of 36 vectors passed.

Listing 4-11. Trace Level 5 Simulation Output

4-50

The ABEL Language Processor

4.6.10 SIMULATE Output File, Two Trace Levels

As shown in the preceding examples, you can use - b
(breakpoints) to change trace levels at specific test vectors.
In many of the preceding examples, the default trace level 0
was used to a certain test vector, such as in section 4.6.8
where trace level 5 was invoked at test vector 14. Listing
4-12 shows the result of changing from level 4 to level 5 at
vector 5. The command used to generate this listing is
simulate m6809a -t4 -bS,8,5 -wl .. 6,999,14 .. 17.

Si1TUlate ABEL(tm) 3.xx

6809 memory decode
Jean Designer Data 1/0 Corp Redmond WA 24 Feb 1984

File:'m6809a.out' Module:'m6809a' Device:'U09a' Part:'P14L4'

R R D
A A A A A A 0 0 R
1 1 1 1 1 1 M I M A
5 4 3 2 1 0 1 0 2 M

V0001 I L I I r r r
V0002 I_ _I I I I I I
V0003 I L I I I I I
V0004 I I I I I I I

R RD
AAAAAA 0 0 R
111111 M I M A
5 4 3 2 1 0 1 0 2 M

vooos 111000 H L H H
V0006 111010 H H H H
V0007 111100 H H L H
V0008 111110 L H H H
8 out of 8 vectors passed.

Listing 4-12. Trace Levels 4 and 5 in the Same Output File

4-51

User's Guide

4.6.11 Simulation and Designs With Buffered Outputs

When a design with 3-state buffered outputs is simulated
with trace levels 4 and/or 5, the states of the outputs are
reported as H, L, l, 0, Z, or X, depending on the test
vectors used, whether or not the pin is bidirectional, and
whether the output buff er is enabled or not.

With Simulation trace level 5, device pins that are output
only, or are bidirectional and configured as outputs, the
output will be reported as follows (in order of significance):

if the buffer is enabled, the active state (H or L) of the
output (that results from the levels applied at the input
pins by the input test vector)

or

if the buffer is not enabled, the same value (1, 0, Z, or
X) applied to that output by the input test vector

or

Z if the output is not enabled and no l or 0 is applied
to that output by the input test vector.

4.6.12 Simulation and Unspecified Inputs

4-52

When the input test vector does not specify a logic level to
be applied to a particular input, or set of inputs, simulation
uses the default value assigned by the -X parameter. Using
don't cares (X's) in the input test vector can cause the
input(s) to be unspecified.

The ABEL Language Processor

4.6.13 Simulation for Designs With Feedback

Logic designs containing feedback present a unique
simulation problem because the current output on one or
more gates in the design depends on the outputs of other
gates. Thus, determining the outputs of a design with
feedback is not a simple input-to-output determination.
Propagation delays, the number of gates in the feedback
path, and, in synchronous feedback circuits, clock inputs
must be taken into account. When an input to the design
changes, the outputs may not assume their new state
(stabilize) immediately. Synchronous circuits must be
clocked before the outputs reflect changes in the inputs.

SIMULA TE determines the final outputs of feedback
circuits through iteration, calculating and monitoring the
outputs until they stabilize or are clocked out to give the
final outputs. (If outputs do not stabilize after 20
iterations, an error message is given.) The iterations, final
outputs and the states of the internal register are provided
in the simulation output file depending on the trace level
you choose to simulate under. Figure 4-4 shows a simple
synchronous circuit with feedback. One clock pulse is
required after the inputs change to cause a corresponding
change in the outputs. The source file describing this
circuit and the simulation output for trace levels 1 and 2 are
shown in listings 4-13 through 4-15.

Trace level l output shows the test vectors and the final
outputs after the clock pulse. Trace level 2 shows the test
vectors and the value of the cutputs before and after the
clock. Trace level 3 results in a large simulation output file.
If you wish to examine the trace level output for this
circuit, you can run ABEL on "regfb.abl" with trace level 3
and examine the "regfb.sim" file.

4-53

User's Guide

INIT----4

DI-----<

03-----1

Figure 4-4. Synchronous Feedback Circuit

module regfb
title 'Operation of the silllJlator on devices with feedback

FutureNet 24 Feb 1987'

FB2 device 'P16R4';

Clk,OE
INIT,01,02,03
F1,F2

pin 1, 11;
pin 2,3,4,5,;
pin 14, 13;

equations
!F1
!F2

:= 01 & !NIT;
= 02 & ! F1;

ENABLE F2 = 03;

test_ vectors

end regfb

([Clk,OE, INIT ,01 ,02,03] ·> [F1 I F2])
[.C., 0, 0 I 1, 1, 1] ·> [1, 1 l;
[.C., 1, 0 I 0, 0, 0] ·> [.Z., .Z.];
[.C., 1, 1 I 1, 1, 1] ·> [.Z., 0 l;
[0 I 0 I 0 I 0 I 0 I 0] • > [0 I • z •] ;

Listing 4-13. Source File: Synchronous Feedback Circuit

4-54

The ABEL Language Processor

Silll.Jlate ABEL(tm) 3.xx

Operation of the simulator on devices with feedback
FutureNet 24 Feb 1987

File:'regfb.out' Module:'regfb' Device:'FB2' Part:'P16R4'

Vector 1
Vector In [C0111 ..••. 0 .•••....•]
Device Out [.......•... ZHHHHHZZ.]
Vector Out [•..•••.•.•.• HH ••••••]

Vector 2
Vector In [COOOO 1 ..••..•..]
Device Out [•....•••.•. ZZZZZZZZ.]
Vector Out [•••••..••..• ZZ ••..••]

Vector 3
Vector In [C1111 ••... 1 .••..••.•]
Device Out [.••..••.••• ZLZZZZZZ.]
Vector Out [•••••••••••• LZ •••.••]

Vector 4
Vector In [00000 •••.. 0 •.•.•••••]
Device Out [••.•••••••• ZZLHHHZZ.]
Vector Out [•••••••••••• ZL •••••• l

4 out of 4 vectors passed.

Listing 4-14. Simulation Output, Trace Level 1:
Synchronous Feedback Circuit

4-55

User's Guide

Silll.Jlate ABEL(tm) 3.xx

Operation of the simulator on devices with feedback
FutureNet 24 Feb 1987

File:•regfb.out' Module:'regfb' Device:'FB2' Part:'P16R4'

Vector
Vector In [C0111 •••.. 0 •.•••••.• J

Device In [00111000000011111000]
Device Out [••••••••..• ZHHHHHZZ.]

Device In [00111000000011111000]
Device Out [••..•••.•.. ZHHHHHZZ.]

Device In [10111000000011111000]
Device Out [•.••..••.•• ZHHHHHZZ.]

Device In [00111000000011111000]
Device Out [••..•..••.. ZHHHHHZZ.]
Vector Out [•••.•••.•.•• HH ••••••]

Vector 4
Vector In [00000 .•••. 0 •••••••••]

Device In [00000000000000111000]
Device Out [•••••••••.• ZZLHHHZZ.]

Device In [00000000000000111000]
Device Out [.••••••.••• ZZLHHHZZ.]
Vector Out [•.....••.••. ZL •..•••]

4 out of 4 vectors passed.

Listing 4-15. Simulation Output (partial), Trace Level 2:
Synchronous Feedback Circuit

4-56

The ABEL Language Processor

As a second feedback example, figure 4-5 shows an
asynchronous circuit that requires more than one simulation
iteration before the outputs stabilize. Listing 4-16 shows
the source file describing the circuit and listings 4-17 and
4-18 shows the simulation output for trace levels I through
3. Trace level 0 output is not shown since there are no
simulation errors in this design and level zero only reports
errors.

Trace level I shows the final outputs after they have
stabilized, and also the test vectors. Trace level 2 shows the
output values at the different iterations as the outputs
stabilize, as well as the final outputs and the test vectors.
Notice that for the inputs provided in vector 2, three
iterations are needed before the outputs stabilize. Vector I
requires only one iteration to provide stable outputs. Trace
level 3 output is not shown but can be generated by running
ABEL with "feedback.abl" to generate the "feedback.sim"
file shown in listing 4-12.

F1

02 F2

03 F3

Figure 4-5. Asynchronous Feedback Circuit

4-57

User's Guide

module feedback
title
'Operation of the silllJlator on devices with feedback

FB1 device 'P16HD8';

D1 ,D2,D3
F1,F2,F3

pin 1,2,3;
pin 13, 14, 15;

equations

F1 = D1;
F2 = D2 & F1;
F3 = D3 & F2;

test vectors ([01 ,D2,D3] ·> [F1 I F2, F3])
[0 I 0 I 0] · > [0 I 0 I 0] ;
[1, 1, 1] ·> [1, 1, 1];

end feedback

Listing 4-16. Source File: Asynchronous Feedback Circuit

SilllJlate ABEL(tm) 3.xx

Operation of the simulator on devices with feedback

File:'feedback.out' Module:'feedback' Device:'FB1' Part:'P16HD8'

Vector 1
Vector In [000]
Device Out [•••.••••••• LLLLLLLL.]
Vector Out [••••••.•.••• LLL •••••]

Vector 2
Vector In [111 •••••••..••••••••]
Device Out [•••.••••••• LHHHLLLL.]
Vector Out [•••••••..••. HHH •••••]

2 out of 2 vectors passed.

Listing 4-17. Simulation Output, Trace Level 1:
Asynchronous Feedback Circuit

4-58

The ABEL Language Processor

Sirrulate ABEL(tm) 3.xx

Operation of the simulator on devices with feedback
FutureNet 24 Feb 1987

File:'feedback.out' Module:'feedback' Device:'FB1'
Part:'P16HD8'

Vector 1
Vector In [000 .••••••.•........ J

Device In [00000000000000000000)
Device Out [•..•.•...•• LLLLLLLL.]

Device In [00000000000000000000)
Device Out [•••.•..•... LLLLLLLL.J
Vector Out [...••....••• LLL. J

Vector 2
Vector In [111 ••.••••••••••••.. J

Device In [11100000000010000000)
Device Out [...•••...•• LHLLLLLL.J

Device In [11100000000011000000)
Device Out [.......•... LHHLLLLL.]

Device In [11100000000011100000)
Device Out [••..••..... LHHHLLLL.]

Device In [11100000000011100000)
Device Out [••••••••.•• LHHHLLLL.]
Vector Out [••••••..•••• HHH .•••. J

2 out of 2 vectors passed.

Listing 4-18. Simulation Output, Trace Level 2:
Asynchronous Feedback Circuit

4-59

User's Guide

4.6.14 EZSIM - A Batch File for Re-Simulation of a Design

EZSIM is a batch file that invokes PARSE, TRANSFOR,
and SIMULATE only; and omits REDUCE and FUSEMAP.
EZSIM allows for simulation on a design that has previously
been run through ABEL and further testing is required by
changing the test vectors in the source file. Since only the
test vectors in the source file are being changed, there is no
need to perform the REDUCE and FUSEMAP operations.

EZSIM takes the test vectors from the *.TM2 file generated
by TRANSFOR and the fuse information from the *.JED
file, generated during a previous run of FUSEMAP, to run
SIMULA TE on the design. Performing simulation with
EZSIM is faster than rerunning ABEL on the design and
allows you to alter test vectors in the source file and run
SIMULA TE again with no time lost to REDUCE and
FUSEMAP.

4-60

The ABEL Language Processor

4.7 DOCUMENT

DOCUMENT [-Iin_fileJ [-Oout_fileJ [-VJ [-FnJ [-GJ [-SJ
[-QwxyzJ ..•

-Iin file infile is an intermediate output file from
FUSE MAP

-Oout file design documentation file

- V list the test vectors

-Fn list the fuse map and/or terms

-G
-Gn

-S

-Qxyz

n=O list the fuse map and the device
utilization information

n= I list only the device utilization information

n=2 brief fuse map

list the default chip diagram
n=O : DIP diagram
n= I : PLCC package diagram

list the symbol table

select equations to be listed, where w, x, y,
and z can be any combination of the
following:

0 : list original equations
1 : list transformed equations
2 : list reduced equations
3 : create the output file in PALASM format

4-61

User's Guide

DOCUMENT creates design documentation from
information provided by previous steps of the language
processor. The documentation is written to the file
specified by the -0 parameter or to the standard output
device in the event that no output file is specified. If the
-I and/or -0 parameters are omitted (no file specified), you
will be prompted for the input and/or output file names.

The design documentation contains the following
information for each device in the source file if the
appropriate parameter is set:

Symbol table

Reduced
equations

Transformed
equations

Equations

Test vectors

Fuse map

Chip Diagram

constant, pin, node, module and macro
identifiers listed alphabetically.

equations produced by REDUCE.

equations produced by TRANSFOR.

original equations from the source file
and equations generated by PARSE from
truth tables and state diagrams.

test vectors described as inputs and
outputs, taken from the PARSE
intermediate output file.

graphical representation of the fuse states
from the programmer load file.

a diagram showing the device pinouts and
the identifiers assigned to each pin.

If no parameters are supplied in the DOCUMENT
invocation, no documentation listing will be generated.

4-62

The ABEL Language Processor

-Q : List Equations Parameter

The -Q parameter controls which equations, if any, appear
in the documentation output file. Up to three numbers (0,
1, or 2) can be specified following -Q, or the -Q flag can
be repeated with a different number for each type of
equations listing desired. For example, both "-q02" and "-qO
-q2" cause the original and reduced equations to be
included as part of the documentation output file.

-F: List Fuse Map and Terms Utilization

The -F parameter controls the listing of fuse maps and
terms. - FO lists a complete fuse map, the number of terms
used, and the utilization of each term with respect to the
outputs (utilization report). -Fl lists only the number of
terms used and the utilization report. -F2 or -F lists an
abbreviated fuse map, where fuse rows that have all their
fuses intact are not shown. -F2 eliminates showing many
rows of intact fuses in devices where only a small portion
of the product terms are used in the design.

Listing 4-19 shows output from DOCUMENT. This output
was created by processing the source file, M6809A.ABL
(listing 4-2) using the parameters -V, -F, -G, -S, and -Q2.
The listing contains a symbol table, the reduced equations, a
chip diagram, a fuse map, and the test vectors. In the fuse
map, intact connections are shown as "X"s, and blown fuses
(no connection) are shown as dashes. The test vector inputs
are shown on the left side of the"->" symbol; outputs
appear on the right side.

4-63

User's Guide

Page 1
ABEL(tm) Version 3.00 · Document Generator 18·Sep-87 12:34PM
6809 memory decode
Jean Designer FutureNet Redmond WA 24 Feb 1987
Synbol list for Module m6809a

A10 Pin 6 pos, com
A11 Pin 5 pos, com
A12 Pin 4 pos, com
A13 Pin 3 pos, com
A14 Pin 2 pos, com
A15 Pin 1 pos, com
Address ([A15,A14,A13,A12,A11,A10,.X.,.x.,.x.,

.X., .X., .X., .X., .X., .X., .X.])
DRAM Pin 17 neg, com
H (1)
IO Pin 15 neg, com
L (0)
ROM1 Pin 14 neg, com
ROM2 Pin 16 neg, com
U09a device P14L4
x (.x.)
m6809a Module Name

Page 2
ABEL(tm) Version 3.00 - Document Generator 18-Sep-87 12:34PM
6809 memory decode
Jean Designer FutureNet Corp Redmond WA 24 Feb 1987
Equations for Module m6809a

Device U09a

4-64

Reduced Equations:

DRAM= !(!A13 # !A14 # !A15);

IO= !(!A11 & !A12 & A13 & A14 & A15);

ROM2 = !(!A11 & A12 & A13 & A14 & A15);

ROM1 = !(A11 & A12 & A13 & A14 & A15);

Listing 4-19. Documentation Output for M6809A.ABL
(continued on next page)

The ABEL Language Processor

Page 3
ABEL(tm) Version 3.00 · Document Generator 18·Sep-87 12:34PM
6809 memory decode
Jean Designer FutureNet Redmond WA 24 Feb 1987
Chip diagram for Module m6809a

Device U09a

P14L4

----------\ /---------
I \ I
I

A15 I 20 Vee

A14 2 19

A13 3 18

A12 4 17 DRAM

A11 5 16 ROM2

A10 6 15 IO

7 14 ROM1

8 13

9 12

GND 10 11

Listing 4-19. Continued.

4-65

User's Guide

Page 4
ABEL(tm) Version 3.00 · Document Generator 18·Sep·87 12:34PM
6809 memory decode
Jean Designer FutureNet Redmond WA 24 Feb 1987
Fuse Map for Module m6809a

Device U09a

4-66

0 10 20
0: x..

28: ·X·
56: · · ·X·
84: xxxxxxxxxx xxxxxxxxxx xxxxxxxx

112: X·X·X···X· ···X······ ········
140: xxxxxxxxxx xxxxxxxxxx xxxxxxxx
168: xxxxxxxxxx xxxxxxxxxx xxxxxxxx
196: xxxxxxxxxx xxxxxxxxxx xxxxxxxx
224: X·X·X····X ···X······ ········
252: xxxxxxxxxx xxxxxxxxxx xxxxxxxx
280: xxxxxxxxxx xxxxxxxxxx xxxxxxxx
308: xxxxxxxxxx xxxxxxxxxx xxxxxxxx
336: X·X·X···X· ··X······· ········
364: xxxxxxxxxx xxxxxxxxxx xxxxxxxx
392: xxxxxxxxxx xxxxxxxxxx xxxxxxxx
420: xxxxxxxxxx xxxxxxxxxx xxxxxxxx

Listing 4-19. Continued.

The ABEL Language Processor

Page 5
ABEL(tm) Version 3.00 · Document Generator 18-Sep-87 12:34PM
6809 memory decode
Jean Designer FutureNet Rednond WA 24 Feb 1987
for Module m6809a

Device U09a

Device Type: P14L4

Pin # I Name

1 A15
2 A14
3 A13
4 A12
5 A11
6 A10
7
8
9

10 GND
11
12
13
14 ROM1
15 IO
16 ROM2
17 DRAM
18
19
20 Vee

Terms Used: 6 out of 16

Terms
Used I Max I Term Type I Pin Type

1 4 Normal
1 4 Normal
1 4 Normal
3 4 Normal

Listing 4-19. Continued.

Input
Input
Input
Input
Input
Input
Input
Input
Input
GND
Input
Input
Input
Output
Output
Output
Output
Input
Input
vcc

4-67

User's Guide

Page 6
ABEL(tm) Version 3.00 · Document Generator 18·Sep·87 12:34PM
6809 memory decode
Jean Designer FutureNet Rednond WA 24 Feb 1987
Test Vectors for Module m6809a

Device U09a

1 [0000 00- -] ·> [....
2 [0100 00·.] ·> [....
3 [1000 00·.] ·> [....
4 [1100 00·.] ·> [....
5 [1110 00··] ·> [....
6 [1110 10·. . . -.] ·> [....
7 [1111 00·.] ·> [....
8 [1111 10··] ·> [....

end of module m6809a

Listing 4-19. (continued)

4-68

·HHH l···];
·HHH L···];
·HHH L···];
·HHHL···];
·HLH H···];
·HHH H···];
·HHL H···];
·LHH H···];

5. Transferring the Programmer Load File

When you have completed the processing of an ABEL
source file, a file named filename.JED will exist in your
working directory. This file is the programmer load file,
and contains the data necessary for a logic programmer to
program a logic device with your design. Transferring the
programmer load file amounts to downloading it from your
system to the logic programmer over an RS232-compatible
communications link. Data I/O's PROMlink, version 2.0 or
greater, can be used to transfer programmer load files from
MS-DOS systems. IF PROMlink is used, refer to the
PROMlink manual for details.

5-1

User's Guide

5.1 Downloading to a Model 29 with LogicPak

5-2

The following steps are necessary to transfer a programmer
load file from an IBM PC/XT/AT (or compatible) to a Data
I/O Model 29 programmer with a LogicPak installed. If
you are operating with a system other than an IBM
PC/XT /AT or compatible, refer to the System Specific
Information provided with your ABEL package for
variations in the downloading procedure.

1. Connect the cable (see Figures 5-1 and 5-2) to the
COMl: port on the IBM PC and to the serial interface
of the Model 29.

2. Configure the Model 29 for 4800 baud with no parity
(see the Model 29 manual). Parity should be set with
the power off.

3. Configure the IBM PC for 4800 baud (9600 baud could
also be used) with no parity by issuing the following
command at the DOS prompt on the PC:

MODE COM1:4800,n,8

4. Enter the family code and pinout code of the device to
be programmed into the Model 29 as follows:

VERIFY RAM DEVICE ST ART XXXX

where XXXX is the 4-digit family and pinout code. A
list of these codes may be found in the LogicPak
manual or on the Data I/O Wallchart of Programmable
Devices.

5. Prepare the Model 29 to receive the load file. Enter
the following at the 29:

SELECT E B ST ART

Transferring the Programmer Load File

The Model 29 will display a stationary action symbol.

6. At the PC, execute the command:

COPY d:filename.ext COMl:

where d is the drive specification, and filename and ext
are the filename and extension of the programmer load
file. The load file extension is ".JED". The Model 29
action symbol should rotate when the file is being
transferred.

7. When the transfer is complete, the Model 29 will
display the fuse checksum signifying that the
programmer load file is now resident in programmer
memory.

IBM
25-Pin Female

Programmer:
25-Pin Male

~~~~~~~-~~~~~ 

:~ 
7~~~~~~~~~~~~~~7 

6 

20=:J 
NOTE The 25-pin male connector is also known as DB25P, the 
female is a 08255. 

Figure 5-1. Cable Configuration for Transfer Between an 
IBM-XT and a Data 1/0 Programmer 

5-3 



User's Guide 

IBM: 9-pin 
Female 

Programmer: 25-pin 
Male 

2-------------~2 

3 3 

D ------7 

Figure 5-2. Cable Configuration for Transfer Between an 
IBM-AT and a Data 1/0 Programmer 

5-4 



Transferring the Programmer Load File 

5.2 Downloading to a UniSite™ Universal 
Programmer 

Refer to Chapter 2 of your UniSite Operator's Manual for a 
complete sample procedure. 

5.3 PROM Download (Model 29/UniPak2) 

Unless you are using PROMlink, the following steps are 
necessary to transfer a programmer load file from the IBM 
PC to a DATA 1/0 Model 29 programmer with a UniPak2: 

1. Connect the cable (see Figure 5-1) to the COMl: port 
on the IBM PC and to the serial interface of the Model 
29. 

2. Configure the Model 29 for 4800 baud with no parity 
(see the Model 29 manual). Parity should be set with 
the power off. 

3. Configure the IBM PC for 4800 baud with no parity by 
issuing the following command at the DOS prompt on 
the PC: 

MODE COM1:4800,n,8 

4. Select the microprocessor transfer format of the load 
file. A list of supported microprocessor formats may 
be found in in table 4-1. For example, the code for 
the Motorola Exorciser format is 82. To select this 
format enter the following at the 29: 

SELECT 8 2 START START 

5-5 



User's Guide 

5-6 

5. Prepare the Model 29 to receive the load file. Enter 
the following at the 29: 

COPY PORT RAM START 

The Model 29 will display a stationary action symbol. 

6. At the PC, execute the command: 

COPY d:filename.ext COMl: 

where d is the drive specification, and filename and ext 
are the filename and extension of the programmer load 
file. The load file extension for PROMs is .Pxx where 
xx is the format code (see table 4-1 ). The Model 29 
action symbol should rotate when the file is being 
transferred. 

7. When the transfer is complete, the Model 29 will 
display the the fuse RAM sumcheck. 



6. ABEL Utilities 

This section describes the utilities provided in addition to 
the ABEL software. 

6.1 TOABEL, PALASM to ABEL Converter 

TOABEL -Iinfile -Ooutfile 

[-Iin_file] 

[-Oout_file] 

P ALASM input file 

ABEL output file 

TOABEL is a conversion utility that you can use to convert 
PALASM (version 1.0 only) logic descriptions to ABEL 
logic descriptions. TOABEL creates an ABEL source file 
that can be processed normally with the ABEL language 
processor. This means that the design can be reduced, 
simulated (if test vectors are supplied), documented and 
loaded into a logic programmer just as with any other 
ABEL source file. Note that test vectors for devices with 
programmable inputs and outputs (i.e., Pl6L8) may require 
editing because TOABEL cannot determine whether a pin is 
an input or an output. 

6-1 



User's Guide 

6.2 IFLDOC 

6-2 

IFLDOC [-Iin_file] [-Oout_file] [-Ndevice_type] 

-Jin file JEDEC-format input is in in_file 

-Oout file output in a Signetics program table 
format is written to out file 

-Ndevice_type device_type indicates the type of device 
described by in_file 

IFLDOC is a conversion program that converts JEDEC
format files to listing files in a format similar to Signetic 
Program Logic tables. The listing file created is for 
documentation purposes only; it will not drive any device 
programmer. 

JEDEC-format input contained in in file is converted to 
the Signetics-like form and written toout_file. The device 
type described by the JEDEC file must be explicitly 
specified with the -N parameter. If in file and out file 
are not specified, input and output are received and sent 
from the standard input and output devices. A device type 
must be specified; there is no default value. (If the 
programmer load file was generated by ABEL or GA TES, 
the IFLDOC program can extract the device type from a 
string in the file header.) 

For devices with programmable flip-flop types, IFLDOC 
assumes that the flip-flops are J-K flip-flops unless the Fe 
line is programmed and the individual FF mode is set to A. 
(Refer to IFL logic diagrams for the function and 
placement of these lines.) 



ABEL Utilities 

Example: 

ifldoc -Iifl2.jed -Oifl2.tab -nf82sl05 

This command invokes IFLDOC to convert the JEDEC
format data contained in ifl2.jed to a program table format 
written to ifl2.tab . The -N parameter specifies that the 
device described by ifl2.jed is an F82s105. The output file 
resulting from this command is shown in Figure 6-1. 

Input file: ifl2.jed 
: OPTION( P/E): L 

T[ : 82S105 AND : OR 
E: : INPUTS (Im) :PRESENT :NEXT STATE : OUTPUT (Fr) 
R:c: 1 1 1 , 1 1 : STATE (Ps): (Ns): 
M: : 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 o: 5 4 3 2 1 o: 5 4 3 2 1 Ol 7 6 5 4 3 2 1 0 

0\-: - - - - - - - - - - - - L H L Ll 
1:-: - - - - - - - - - - - - LL H L: 
2\-: - - - - - - - - - - - - L H L H: 
3l-: - - - - - - - - - - - - L L H H: 
IJ:-: - - - - - - - - - - - - H - - -\ 
5:-: - - - - - - - - - - - - L H L Ll 
6:-: - - - - - - - - - - - - L L H L: 
7:-: - - - - - - - - - - - - L H L H: 
B:-: - - - - - - - - - - - - L L H H: 
9:-: - - - - - - - - - - - - L H L Ll 

10:-: - - - - - - - - - - - - L L H L: 
11i-:· - - - - - - - - - - - - L H L H: 
12:-: - - - - - - - - - - - - L L H H: 
13:-: - - - - - - - - - - - - L H LL: 
14:-: - - - - - - - - - - - - LL H L: 
15:-: - - - - - - - - - - - - L H L H: 
16:-l - - - - - - - - - - - - L L H H: 
11:-: - - - - - - - - - - - - L H LL: 
18:-: - - - - - - - - - - - - L L H L: 
19:-1 - - - - - - - - - - - - L H L H: 
20: - : - - - - - - - - - - - - L L H H: 
21:-: - - - - - - - - - - - - L H LL: 
22: - : - - - - - - - - - - - - L L H L: 
23: - : - - - - - - - - - - - - L H L H: 
24: - : - - - - - - - - - - - - L L H H: 
25: - : - - - - - - - - - - - - L H L L: 
26: - : - - - - - - - - - - - - L L H L: 
271-: - - - - - - - - - - - - L H L H: 
28: -: - - - - - - - - - - - - L L H H: 
29: - ; - - - - - - - - - - - - L H L L: 
30: - : - - - - - - - - - - - - L L H L: 
31l-: - - - - - - - - - - - - L H L Hl 
32 t - : - - - - - - - - - - - - L L H H: 
33:.: 0000000000000000: 
34:. : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 
35:.: 0 0 0 0 0 0 0 0 0 0 0 o. 0 0 0 0: 
36:. : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 
37:.: o o o o o o o o o o o o o a a OJ 
38:. : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 
39:. : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 
110:.: o o o o o o o o o o o o o o o o: 
ll11.: o o o o o o o o o o o o o o o o: 
112:.: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o: 
ll3:. J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o: 
4ll:.: 000·0000000000000: 
ll5:. : o o o o a o a a o a o o o o o o: 
116:. : o o o o o o o o o o o o o o o o: 
111:. : o o o o o o o o o o o o o o o o: 

--H---: 
----H-: 
- - - - - L: 
-----L: 
::t:::I 
----L-: 
-----H: 
-----H: 
-----H: 
---H--: 
- - - - L L: 
----LHi 
- - - - - L: 
---L--: 
----HL: 
----HH: 
- - - - H -\ 
--H---: 
---LLL: 
---LHH: 
----L-: 
--L---: 
- - - H L L: 
---HHH: 
- - - H - -: 
- - - - - H: 
--LLLL1 
--LHHH: 
- - - L - -: 
-----L: 
--HLLLi 
--HHHH: 
0 0 0 0 0 o: 
000000: 
o o o o o o: 
000000: 
0 0 0 0 0 o: 
000000: 
0 0 0 0 0 o: 
000000: 
0 0 0 0 0 o: 
000000: 
a o o o o o: 
000000: 
000000: 
000000: 
o o o o o o: 

- - - - - Hl -------H 
-----Hl -------H 
- - - - - H: - - - - - - - H 
- - - - - H: -------H 
- - L L L L: ----LLLL 
-----L: -------L 
- - - - - L: -------L 
-----L: -------L - - - - - L: -------L 
----H-: ------H-
- - - - H -' - - - - - - H -
- - - - H ------H-
- - - - H ------H-
- - - - L - L -
- - - - L - - - - - - L -
- - - - L ------L-
- - - - L - - - - - - L -
- - - H - -----H--
- - - H - - - - - - H - -
- - - H - -----H--
- - - H - - - - - - H - -
- - - L - -----L--
- - - L - -----L--
- - - L - -----L--
- - - L - -----L--
- - H - - ----H---
- - H - - ----H---
- - H - - ----H---
- - H - - ----H---
- - L - - ----L---
- - L - - ----L---
- - L - - ----L---
- - L - - - - - - L - - -

Figure 6-1. Sample Output File From IFLDOC 

6-3 



User's Guide 

6.3 ABELLIB, Library Manager 

6-4 

ABELLIB [library] [command] { files } 

ABELLIB is used to maintain the ABEL library files. The 
device library (abel3lib.dev) is a single file that contains all 
specifications for all devices currently supported by the 
ABEL software package. The "include" library (abel3lib.inc) 
is a single file that contains text files that may be included 
in an ABEL source file via the LIBRARY statement. 

The ABELLIB library manager is useful in cases where disk 
space is at a premium. This program allows you to extract 
individual device files and/or edit the libraries so that 
unused device files or "include" files are eliminated from 
the libraries. 

With ABELLIB, you can add, delete, replace, and extract 
files from a library as well as list its contents. The 
command flags available are: 

-a add files to the library 
-d delete files from the library 
-e extract files from the library 
-1 list the contents of the library 

When using ABELLIB, you must specify the full path and 
file name of the library file to be examined and modified, 
unless the file is in your current directory. 

The default library file name is abel3lib.dev. If you do not 
specify a library name on the command line, this file is 
referenced by ABELLIB. If no commands are specified on 
the command line, you will be prompted for the function 
desired. 



ABEL Utilities 

The suggested procedure to extract device specifications 
from a library into one or more individual device (*.DEV) 
files is: 

I. Make the directory that contains the library the current 
directory. For MS-DOS systems, use the command: 

cd c:\dataio\lib3 

2. Create a device file, such as one for the Pl6R8, with 
the following command: 

abellib abel3lib.dev -e pl6r8.dev 

where abe/3/ib.dev is the name of the library and p16r8 
is the name of the new device file. 

3. Repeat step 2 as necessary to extract the desired 
devices from the library. Newly created *.DEV files 
will be contained in the current directory. 

The suggested procedure to create a device library that 
contains only those device you will use is: 

I. Make the directory that contains the device files the 
current directory. 

2. Create a device library, such as one named new/ib, with 
the following command: 

abellib newlib.dev -a pl6r8.dev 

where pl 6r8 is the name of the device file to be placed 
in the library. 

3. Repeat step 2 as necessary to add the desired device 
files to the library. The newly created library will be 
contained in the current directory. 

6-5 



User's Guide 

4. Since ABEL looks for "abel3lib.dev" for device 
specifications, you must rename any existing 
"abel3lib.dev" library file, then rename your new 
library "abel3lib.dev." For example, MS-DOS users can 
use the commands: 

ren abel3lib.dev oldlib.dev 
ren newlib.dev abel3lib.dev 

to ensure that ABEL accesses the newly created library. 

6.4 Library File Usage 

6-6 

When an external file is required to process your ABEL 
design, such as a device or "include" file, ABEL will first 
search for the required file, and then if it is not found, will 
attempt to find the file in a library. This search will be 
repeated for each of the following directories, and in the 
listed order: 

a. The current directory 

b. The directory indicated in the ABEL3DEV 
environment variable 

c. Directories indicated in the PATH environment 
variable 



ABEL Utilities 

6.5 JEDABEL, JEDEC File to Equations 
Converter 

JEDABEL (-Iinfile) (-Ndevice) (-Ooutfile) 

-Infile *.JED file in JEDEC Standard 3A format 

-Ndevice device number (Pl4L4, Pl6L8, etc.) 

-Ooutfile output file name; you can use .ABL as the file 
extension in preparation for ABEL processing. 

-Mmapfile map output file name; the default file 
extension is .MAP. 

JEDABEL allows you to convert the fuse information in a 
standard JEDEC file to a set of equations that reflect the 
design contained in the file. This utility may be used when 
a previously designed part is to be updated or modified and 
no ABEL source file exists that was used to create the part. 
Since the JEDEC file contains no signal name information, 
the equations generated by JEDABEL use the device pin 
numbers for names of the inputs and outputs. JEDABEL 
also produces a detailed report that helps you to determine 
the precise configuration of the programmed device. Any 
equations file generated by JEDABEL will require some 
editing in order to achieve a working ABEL source file. 
However, the basis for the source file is provided. Listing 
6-1 shows a "source" file generated by JEDABEL from the 
file U09A.JED. (This file U09A.JED is created by running 
M6809A.ABL on ABEL.) You can compare the equations 
in listing 6-1 with the original equations shown back in 
listing 4-2. While the equations in each listing are in a 
different form, the designs expressed by the equations are 
the same. Running the source file shown in listing 6-1 
through ABEL will result in a fusemap in the JEDEC file 
functionally equivalent to that contained in U09A.JED. 

6-7 



User's Guide 

module u09a 
"Created by JEDABEL Ver 1.00 on Thu Oct 01 16:31:51 1987 

title 
'ABELCtm) Version 3.00 FutureNet/Data I/0 Corp. JEDEC file for: 
P14L4 
Created on: 01·0ct·87 11:17 AM 
6809 memory decode 
Jean Designer FutureNet Corp Redmond WA 24 Feb 19871 

u09a device 'P14l4 1 ; 

"Pin Declarations 
PIN01, PIN02, PIN03, PIN04 
PIN05, PIN06, PIN07, PIN08 
PIN09, PIN10, PIN11, PIN12 
PIN13, PIN14, PIN15, PIN16 
PIN17, PIN18, PIN19, PIN20 

"Node Declarations 
PIN14,PIN15,PIN16,PIN17 IsType 'Neg•; 
PIN14,PIN15,PIN16,PIN17 IsType 'Com'; 

"Feedback nodes 
X,Z,C,P = .x., .z., .c., .p.; 

EQUATIONS 

Pin 1, 2, 3, 4; 
Pin 5, 6, 7, 8; 
Pin 9,10,11,12; 
Pin 13, 14, 15, 16; 
Pin 17, 18, 19,20; 

!PIN14 

!PIN15 = 
!PIN16 

PIN02 & PIN01 & PIN03 & PIN04 & PIN05 ); 

PIN02 & PIN01 & PIN03 & !PIN04 & !PIN05 ); 

PIN02 & PIN01 & PIN03 & PIN04 & !PIN05 ); 

!PIN17 (!PIN03 # !PIN02 # !PIN01 ); 

TEST VECTORS 
([PIN01,PIN02,PIN03,PIN04,PIN05,PIN06J·>[PIN14,PIN15,PIN16,PIN17J) 

[0,0,0,0,0,0J·>[1,1,1,0J; 

END 

6-8 

[0 I 1 I 0 I 0 I 0 I OJ . > [ 1 I 1 I 1 I OJ ; 
[1,0,0,0,0,0J·>[1,1,1,0J; 
c1, 1,o,o,o,oJ·>c1, 1, 1,0J; 
[1,1,1,0,0,0J·>[1,0,1,1J; 
[1, 1, 1,0, 1,0J·>[1, 1, 1, 1J; 
C1,1,1,1,0,0J·>C1,1,0,1J; 
[1,1,1,1,1,0J·>[0,1,1,1]; 

Listing 6-1. "Source" File Generated by JEDABEL 



7. Language Elements 

This section describes the various elements of the ABEL 
design language. These language elements are combined 
according to the structure described in section 3 to create 
ABEL logic descriptions. Each element is presented on the 
following pages. The organization is from the most basic to 
the most complex topics. 

7.1 Basic Syntax 

Each line in an ABEL source file must conform with the 
following syntax rules and restrictions: 

1. A line may be up to 131 characters long. 

2. Lines are ended by a line feed character (hex OA), by a 
vertical tab (hex OB), or by a form feed (hex OC). 
Carriage returns in a line will be ignored, thus 
accommodating common end-of-line sequences, such 
as carriage return/line feed. On most computers, an 
input line is ended simply by pressing the RETURN or 
ENTER key. 

3. Keywords, identifiers, and numbers must be separated 
from each other by at least one space. Exceptions to 
this rule are in lists of identifiers separated by commas, 
in expressions where identifiers or numbers are 
separated by operators, or in places where parentheses 
provide the separation. 

7-1 



Language Reference 

4. Spaces cannot be imbedded in the middle of keywords, 
numbers, operators or identifiers. Spaces can appear in 
strings, comments, blocks and actual arguments. For 
example, if the keyword MODULE is entered as 
"MODULE", it will be interpreted as two identifiers, 
MOD and ULE. Similarly, if you enter "102 05" 
(instead of 10205), it will be interpreted as two 
numbers, 102 and 5. 

5. Keywords (words defined as part of the language and 
that have specific uses) can be typed in either upper
case or lower-case with no difference in effect. 

6. Identifiers (user-supplied names and labels) can be 
typed in either upper-case, lower-case, or mixed- case, 
but are case-sensitive: the identifier output, typed in 
all lower-case letters, is not the same as the identifier 
Output with an upper-case "O". 

7 .2 Valid ASCII Characters 

7-2 

All upper-case and lower-case alphabetic characters and 
most other characters on common keyboards are valid. 
Valid characters are listed or shown below. 

a - z 
A-Z 
0 - 9 
space 

(lower-case alphabet) 
(upper-case alphabet) 
(digits) 

tab 
!@#$?+&*() 

+ [ { } 

\I,<> /? 



Language Elements 

7 .3 Identifiers 

Identifiers are names that identify devices, device pins or 
nodes, sets, input or output signals, constants, macros, and 
dummy arguments. All of these items are defined later in 
section 8. The rules and restrictions for identifiers are the 
same regardless of what the identifier describes. 

The rules governing identifiers are: 

1. Identifiers must begin with an alphabetic character or 
with an underscore. 

2. Identifiers may be up to 31 characters long. Anything 
longer than 31 characters is considered an error and is 
flagged by the language processor. 

3. Other than the first character (see rule l ), identifiers 
may contain upper-case and lower-case alphabetic 
characters, digits and underscores. 

4. Spaces cannot be used in an identifier. Use 
underscores to provide separation between words. 

5. Identifiers are case-sensitive: upper-case letters and 
lower-case letters are not the same. 

Some valid identifiers are: 

HELLO hello 
_K5input P h 
This_ is_ a_ long_ identifier 

Note the use of underscores to separate words. Note also 
that lower-case letters are not the same as upper-case 
letters. Thus hello is a different identifier than HELLO. 
Use different cases to make your source file easy to read. 

7-3 



Language Reference 

Some invalid identifiers are: 

7 
$4 
REL.LO 
b6 kj 

Does not begin with a letter or underscore 
Does not begin with a letter or underscore 
Contains a period 
Contains a space 

Note that the last of these invalid identifiers will be seen by 
the language processor as two identifiers, b6 and kj. 

7 .3.1 Reserved Identifiers 

7-4 

Keywords, listed below, are reserved identifiers that are 
part of the ABEL Design Language, and cannot be used to 
name devices, pins, nodes, constants, sets, macros or signals. 
When a keyword is used, it refers only to the function of 
that keyword. If a keyword is used in the wrong context, 
an error is flagged by the language processor. Note that 
WHEN is new to this version of software, and existing 
ABEL source files should be checked for inadvertent use of 
this keyword. 

CASE 
DEVICE 
ELSE 
ENABLE 
END 
ENDCASE 
END WITH 
EQUATIONS 
FLAG 

FUSES 
GOTO 
IF 
IN 
IS TYPE 
LIBRARY 
MACRO 
MODULE 
NODE 

PIN 
STATE 
ST A TE DIAGRAM 
TEST VECTORS 
THEN 
TITLE 
TRUTH TABLE 
WHEN 
WITH 



Language Elements 

7 .3.2 Choosing Identifiers 

The right choice in identifiers can make a source file easy 
to read and understand. This is especially important in an 
environment where more than one person may work on the 
same project, or where one designer will take up another's 
earlier work. The following suggestions are given to help 
make logic descriptions self -explanatory, thus eliminating 
the need for extensive documentation. 

• Choose identifiers that match the function of that 
which they describe. For example, the pin to be used 
as the carry-in on an adder could be named Carry _In. 
For a simple OR gate, the two input pins might be 
given the identifiers IN 1 and IN2, and the output 
might be named OR. 

• A void large numbers of similar identifiers. For 
example, do not name the outputs of a 16 bit adder: 

ADDER OUTPUT BIT 1 - - -
ADDER OUTPUT BIT 2 

and so on. Such grouping of names makes the source 
file difficult to read. 

• Use underscores to separate words in your identifier. 
THIS IS AN IDENTIFIER is much easier to read - - -
than THISISANIDENTIFIER. 

• Mixed-case identifiers can help make your source file 
readable; for example, Carryin 

7-5 



Language Reference 

7.4 Strings 

7-6 

Strings are series of ASCII characters enclosed by single 
quotes (apostrophes). Strings are used in the TITLE, 
MODULE and FLAG statements, and in pin, node, and 
attribute declarations. Spaces are allowed in strings. 

Valid strings: 

'Hello' 
' Text with a space in front' , , 

'The preceding line is an empty string' 
'Punctuation? is even allowed !!' 

A single quote can be included in a string by preceding it 
with a backslash, "\". 

'It\'s easy to use ABEL' 

is the string, " It's easy to use ABEL". 

Backslashes can be put in a string by using two of them in 
succession. 

'He\ \she can use backslashes in a string' 

becomes the string: 

"He\she can use backslashes in a string" 

NOTE: Back-quotes (')are also accepted as string delimiters 
and can be used interchangeably with the forward quote ('). 



Language Elements 

7.5 Comments 

Comments are another way to make a source file easy to 
understand. Comments explain what is not readily apparent 
from the source code itself. Comments do not affect the 
meaning of the code. 

A comment begins with a double quotation mark, ", and 
ends with either another double quotation mark or the end 
of line, whichever comes first. The text of the comment 
follows the opening quotation mark. 

Comments cannot be imbedded within keywords. 

Valid comments (shown in boldface): 

MODULE Basic_ Logic; "gives the module a name 
TITLE 'ABEL design example: simple gates'; "title 

"declaration section" 
IC4 device 'PlOL8'; "declare IC4 to be a P10L8 
IC5 "decoder PAL" device 'PlOH8'; 

Note that the information inside single quotation marks 
(apostrophes) is not a comment but is part of the statement. 

7-7 



Language Reference 

7.6 Numbers 

7-8 

All operations in ABEL involving numeric values are done 
with 32-bit accuracy. Thus, valid numeric values fall in 
the range 0 to 232 - 1. Numbers are represented in any of 
five forms. The four most common forms represent 
numbers in different bases. The fifth form uses alphabetic 
characters to represent a numeric value. 

When one of the four bases other than the default base is 
chosen to represent a number, the base used is indicated by 
a symbol preceding the number. Table 7-1 gives the four 
bases supported by ABEL and their accompanying symbols. 
The base symbols can be typed in upper-case or lower-case. 

When a number is specified and is not preceded by a base 
symbol, it is assumed to be in the default base numbering 
system. The normal default base is base 10, so numbers are 
represented in decimal form unless preceded by a symbol 
indicating that another base is to be used. 

For special applications, the default base can be changed. 
See "@RADIX," in chapter 9 for more information. 

/ 
I 
\ 



Language Elements 

Table 7-1. Number Representation in Different Bases 

Base Name Base Symbol 

binary 2 "b 

octal 8 "o 

decimal 10 "d 

hexadecimal 16 "h 

Here are some examples of valid number specifications. 
The default base is base ten. 

Specification Decimal 
Value 

75 75 

"h75 117 

"blOl 5 

"ol7 15 

"hOF 15 

The circumflex, """, must be entered as a character from 
the keyboard. It does not represent a control key sequence 
as in some other popular software. 

Numbers may also be specified by alphabetic characters. In 
this case, the numeric ASCII code of the letter is used as 
the numeric value. For example, the character "a" is 

7-9 



Language Reference 

decimal 97, and hexadecimal 61 in ASCII coding. The 
decimal value 97 would be used if "a" were specified as a 
number. 

Sequences of alphabetic characters are first converted to 
their binary ASCII values, and then are concatenated to 
form numbers (usually large). Some examples of numbers 
specified with characters are given below: 

Specification Hex Value Decimal Value 

'a' "h61 97 

'b' "h62 98 

'abc' "h616263 6382203 

7-10 



Language Elements 

7. 7 Special Constants 

Constant. non-changing values can be used in ABEL logic 
descriptions. Constant values are used in assignment 
statements. truth tables and test vectors and are sometimes 
assigned to an identifier that then denotes that value 
throughout a module (see "Declarations," section 8.5. and 
"Module Statement," section 8.2). Constant values may be 
either numeric or one of the non-numeric special constant 
values. The special values are listed in table 7-2. 

Table 7-2. Special Constant Values 

Value Description 

.C. clocked input (low-high-low transition) 

.F. floating input or output signal 

.K. clocked input (high-low-high transition) 

.P. register preload 

.SVn. n = 2 through 9. Drive the input to super 
voltage 2 through 9 . 

. X. don't care condition 

.Z. test input or output for high impedance 

When one of the special constants is used. it must be 
entered as shown in table 7-2 with surrounding periods. 
The periods indicate that a special constant is being used; 
without the periods, .C. would appear to be an identifier 
named C. Special constants can be entered in either upper
case or lower-case. 

7-11 



Language Reference 

7 .8 Operators, Expressions, and Equations 

Items such as constants and signal names can be brought 
together in expressions. Expressions combine, compare or 
perform operations on the items they include to produce a 
single result. The operations to be performed (addition and 
logical AND are just two examples) are indicated by 
operators within the expression. 

ABEL operators are divided into four basic types: logical, 
arithmetic, relational, and assignment. Each of these types 
is discussed separately below, followed by a description of 
how they are combined into expressions. Following the 
descriptions is a summary of all the operators and the rules 
governing them, and finally an explanation of how 
equations utilize expressions. 

7-12 



Language Elements 

7 .8.1 Logical Operators 

Logical operators are used in Boolean expressions. ABEL 
incorporates the standard logical operators used in most 
logic designs; these operators are listed in table 7-3. 
Logical operations involving operands of more than one bit 
are performed bit by bit. Thus, 2 minus 4 equals 6. For 
alternate operators, ref er to the @ALTERNATE Directive 
section in this Language Reference manual. 

Table 7-3. Logical Operators 

Operator Example Description 

!A NOT: ones complement 

& A&B AND 

# A#B OR 

$ A$B XOR: exclusive OR 

!$ A!$ B XNOR: exclusive NOR 

7-13 



Language Reference 

7 .8.2 Arithmetic Operators 

Arithmetic operators define arithmetic relationships 
between items in an expression. The shift operators are 
included in this class because each left shift of one bit is 
equivalent to multiplication by 2 and a right shift of one bit 
is the same as division by 2. Table 7-4 lists the arithmetic 
operators. 

Note that a minus sign has a different significance 
depending on its usage. When used with one operand, it 
indicates that the twos complement of the operand is to be 
formed. When the minus sign is found between two 
operands, the twos complements of the second operand is 
added to the first. 

Table 7-4. Arithmetic Operators 

Operator Example Description 

-A twos complement 

A-B subtraction 

+ A+B addition 

* A*B multiplication 

I A/B unsigned integer division 

% A%B modulus: remainder from / 

<< A<< B shift A left by B bits 

>> A>> B shift A right by B bits 

7-14 



Language Elements 

Division is unsigned integer division: the result of division 
is a positive integer. The remainder of a division can be 
obtained by using the modulus operator, "%". The shift 
operators perform logical unsigned shifts. Zeros are shifted 
in from the left during right shifts and in from the right 
during left shifts. 

7 .8.3 Relational Operators 

Relational operators are used to compare two items in an 
expression. Expressions formed with relational operators 
produce a Boolean true or false value. Table 7-5 lists the 
relational operators. 

Table 7-S. Relational Operators 

Operator Example Description 

A== B equal 

!= A !=B not equal 

< A<B less than 

<= A<=B less than or equal 

> A>B greater than 

>= A>=B greater than or equal 

All relational operations are unsigned. For example, the 
expression -1 > 4 is true since the twos complement of 1 is 
1111, which is 15 in unsigned binary, and 15 is greater than 
4. For the purpose of this example, a four-bit 
representation was assumed; in actual use,-1, the twos 
complement of 1, is 32 bits all set to 1. 

7-15 



Language Reference 

Some examples of relational operators in expressions follow: 

Expression Value 

2 == 3 false 

2 != 3 true 

3 < 5 true 

-1 > 2 true 

The logical values, true and false, are represented internally 
by numbers. Logical true is -1 in twos complement: all 32 
bits are set to 1. Logical false is 0 in twos complement so 
all 32 bits are set to 0. This implies that an expression 
producing a true or false value (a relational expression) can 
be used anywhere a number or numeric expression could be 
used and -1 or 0 will be substituted in the expression 
depending on the logical result. 

For example: 

A = D $ (B == C); 

means that: 

A will equal the complement of D if B equals C 

A will equal D if B does not equal C. 

7-16 

~ 



Language Elements 

7 .8 .4 Assignment Operators 

Assignment operators are a special class of operators used in 
equations rather than in expressions. Equations assign the 
value of an expression to output signals. See section 7.8.6 
for a complete discussion of equations. There are two 
assignment operators, unclocked and clocked. Unclocked or 
immediate assignment occurs without any delay as soon as 
the equation is evaluated. Clocked assignment occurs at the 
next clock pulse from the clock associated with the output. 
Table 7-6 shows the assignment operators. 

Table 7-6. Assignment Operators 

Operator Description 

Unclocked assignment (combinatorial outputs) 

Clocked assignment (registered outputs) 

7 .8.5 Expressions 

Expressions are combinations of identifiers and operators 
that produce one result when evaluated. Any logical, 
arithmetic or relational operators may be used in 
expressions. 

Expressions are evaluated according to the particular 
operators involved. Some operators take precedence over 
others, and their operation will be performed first. Each 
operator has been assigned a priority that determines the 
order of evaluation. Priority 1 is the highest priority, and 
priority 4 is the lowest. 

Table 7-7 summarizes the logical, arithmetic and relational 
operators, presented in groups according to their priority. 

7-17 



Language Reference 

Table 7-7. Summary of Operators and Priorities 

Priority Operator Description 

negate, twos complement 
1 NOT, ones complement 
2 & AND 
2 << shift left 
2 >> shift right 
2 * multiply 
2 I unsigned division 
2 % modulus, remainder from / 
3 + add 
3 subtract 
3 # OR 
3 $ XOR: exclusive OR 
3 !$ XNOR: exclusive NOR 
4 equal 
4 != not equal 
4 < less than 
4 <= less than or equal 
4 > greater than 
4 >= greater than or equal 

When operations of the same priority exist in the same 
expression, they are performed in the order found from left 
to right in that expression. Parentheses may be used as in 
normal mathematics to change the order of evaluation, with 
the operation in the innermost set of parentheses performed 
first. Some examples of valid expressions are given on the 
following page. Note how the order of operations and the 
use of parentheses affect the evaluated result. 

7-18 



Language Elements 

Expression Result Comments 

2 * 3/2 3 operators with same priority 

2 * 3 ! 2 3 spaces are OK 

2 * (3/2) 2 fraction is truncated 

2+3*4 14 

2#4$2 4 

2#(4$2) 6 

2 ==AHA 0 false 

14 == AHE -1 true 

7-19 



Language Reference 

7 .8.6 Equations 

[WHEN condition THEN][!]... [ ENABLE ] element 
= expression; [ELSE equation) 

or 
[WHEN condition THEN)[!]... [ENABLE ] element 

:= expression; [ELSE equation] 

condition any valid expression 

element an identifier naming a signal or set of signals, 
or an actual set, to which the value of 
expression will be assigned 

expression any valid expression 

= and := unclocked and clocked assignment operators 

Equations assign the value of an expression to a signal or set 
of signals in a logic description. The identifier and 
expression must follow the rules already established for 
those elements. 

Equations use the two assignment operators "=" (unclocked) 
and ":=" (clocked) described in section 7 .8.4. 

The keyword, ENABLE, is used to enable tri-state output 
buffers. The identifier must be a tri-state type output, and 
the value assignment applies only to the buff er enable 
rather than to the signal itself. 

The complement operator, "!", can be used to express 
negative logic. The complement operator precedes the 
signal name and implies that the expression on the right of 
the equation is to be complemented before it is assigned to 
the signal. Use of the complement operator on the left side 
of equations is provided as an option; equations for negative 

7-20 



Language Elements 

logic parts can just as easily be expressed by complementing 
the expression on the right side of the equation. 

Examples of equations: 

X"' A & B; " unclocked assignment to X 

ENABLE Y = C # D; " Y is enabled if C or D is true 

Y: =A & B; " clocked assignment to Y 

!A= B & C # D; "same as A= !(B & C # D); 

WHEN B THEN A=B; ELSE A=C; 

Multiple Assignments to the Same Identifier 

When an identifier appears on the left side of more than 
one equation, the expressions being assigned to the 
identifier are first ORed together and then the assignment 
is made. If the identifier on the left side of the equation is 
complemented, the complement is performed after all the 
expressions have been ORed. 

7-21 



Language Reference 

Examples: 

Equations 
Found 

A= B; 
A= C; 

A= B; 
A= C & D; 

A= !B; 
A= !C; 

!A= B; 
!A= C; 

!A= B; 
A= !C; 

!A= B; 
!A= C; 
A= !D; 
A= !E; 

Equivalent 
Equation 

A= B # C; 

A= B # ( C & D ); 

A= !B # !C; 

A= !(B # C); 

A= !C #!B; 

A = !D # !E # !(B # C); 

Note that when the complement operator appears on the left 
side of multiple assignment equations, the right-hand sides 
are ORed first and then the complement is applied. 

7-22 



Language Elements 

7.9 Sets 

A set is a collection of signals and constants that is operated 
on as one unit. Any operation applied to a set is applied to 
each element in the set. Sets simplify ABEL logic 
descriptions and test vectors by allowing groups of signals 
to be referenced with one name. 

For example, the outputs BO-B7 of an eight-bit multiplexer 
could be collected into the set named MULTOUT. The 
three selection lines might be collected in the set, SELECT. 
The multiplexer could then be defined in terms of 
MUL TOUT and SELECT rather than being defined by all 
the input and output bits individually specified. 

A set is represented by a list of constants and signals 
separated by commas, or the range operator( .. ), and 
surrounded by square brackets. For example: 

Sample Set Description 

[BO,Bl ,B2,B3,B4,B5,B6,B7] 
[SO,Sl ,S2] 

outputs (MUL TOUT) 
select lines (SELECT) 

The above sets could also be expressed by using the range 
operator; for example: 

[BO .. B7] 
[SO .. S2] 

Identifiers, used to delimit a range, must have compatible 
names; they must begin with the same alphabetical prefix 
and have a numerical suffix. Range identifiers can also 
delimit a decrementing range or a range which appears as 
one element of a larger set; for example: 

[A 7 .. AO] decrementing range 
[.X.,.X.,.X.,.X.,.X.,AlO .. A 7] range within a larger set 

7-23 



Language Reference 

Note that for set specifications the square brackets do not 
denote optional items. The brackets are required to delimit 
the set. Note also that ABEL sets are not mathematical sets. 

7.9.1 Set Operations 

Most operators can be applied to sets. In general, this 
means that the operation is performed on each element of 
the set, sometimes individually and sometimes according to 
the rules of Boolean algebra. Table 7-8 lists the operators 
that may be used with sets. Appendix F describes how 
these operators are applied to sets. 

For operations involving two or more sets, the sets must 
have the same number of elements. The expression, 
"[a,b]+[c,d,e]", is invalid because the sets have different 
numbers of elements. 

Some examples of set usage are given here. 

The Boolean equation, 

7-24 

Chip_Sel = Al5 & !Al4 & Al3; 

represents an address decoder where Al5, Al4 and Al3 are 
the three high-order bits of a 16-bit address. The decoder 
can easily be implemented with set operations. First, a 
constant set that holds the address lines is defined so that 
the set can be referenced by name. This definition is done 
in the constant declaration section of a module (described in 
chapter 8). 

The declaration is: 

Addr = [Al5,Al4,Al3]; 

which declares the constant set Addr. The equation, 



Language Elements 

Chip_Sel = Addr == [l,0,1]; 

is functionally equivalent to: 

Chip_Sel = Al5 & !Al4 & Al3; 

If Addr is equal to [1,0,l], meaning that A15 = 1, A14 = 0 
and A13 = 1, then Chip_Sel is set to true. Note that the set 
equation could also have been written as: 

Chip_ Set = Addr == 5; 

because 101 binary equals 5 decimal. 

In the example above, a special set with the high-order bits 
of the 16-bit address was declared and used in the set 
operation. The full address could have been used and the 
same function arrived at in other ways, as shown below. 

Example 1: 

" declare some constants in declaration section 
Addr = [a15 .. a0]; X = .X.; 
"simplify notation for don't care constant 
Chip_Sel = Addr == [l,0,1,X,X,X,X,X,X,X,X,X,X,X,X); 

Example 2: 

" declare some constants in declaration section 
Addr = [al 5 .. aO]; X =.X.; 
Chip_Sel = (Addr >= "HAOOO) & (Addr <= "HBFFF); 

Both of the solutions presented in these final two examples 
are functionally equivalent to the original Boolean equation 
and to the first solution in which only the high order bits 
are specified as elements of the set (Addr = [a15, a14, a13]). 

7-25 



Language Reference 

7 .9.2 Set Assignment and Comparison 

7-26 

Values and sets of values can be assigned and compared to a 
set. For example, 

sigset = [l,1,0] & [0,1,1]; 

results in sigset being assigned the value, [0,1,0]. 

Numbers in any representation can be assigned or compared 
to a set. The preceding set equation could have been 
written as 

sigset = 6 & 3; 

When numbers are used for set assignment or comparison, 
the number is converted to its binary representation and the 
following two rules apply: 

1. If the number of significant bits in the binary 
representation of a number is greater than the number 
of elements in a set, the bits are truncated on the left. 

2. If the number of significant bits in the binary 
representation of a number is less than the number of 
elements in a set, the number is padded on the left 
with leading zeroes. 

Thus, the following two assignments are equivalent: 

[a,b] = "Bl0101 l; 
[a,b] = "Bl l; 

And so are these two: 

[d,c] = "BOl; 
[d,c] ="Bl; 



Language Elements 

The set assignment, 

[a,b] = c & d; 

is the same as the two assignments: 

a=c&d; 
b=c&d; 

Table 7-8. Valid Set Operations 

Operator Example Description 

A= 5 assignment 
·- A: = [1,0,l] clocked assignment .-

!A NOT: ones complement 
& A&B AND 
# A#B OR 
$ A$B XOR: exclusive OR 
!$ A!$ B XNOR: exclusive NOR 

-A negate, twos complement 
A-B subtraction 

+ A+B addition 
A== B equal 

!= A!= B not equal 
< A<B less than 
<= A<= B less than or equal 
> A>B greater than 
>= A>= B greater than or equal 

7-27 



Language Reference 

7 .9.3 Set Evaluation 

How each operator will act when used with sets depends 
upon the types of its arguments. 

When a set is written out: 

[a, b, c, d] 

"a" is the MOST significant bit and "d" is the LEAST 
significant bit. 

The result, when most operators are applied to a set, will be 
another set. Note that the result of the relational operators 
(==, !=, >, >=, <, <=) is a value: TRUE (all one's) or FALSE 
(all zero's), which will be truncated to as many bits as are 
needed. The width of the result is determined by the 
context of the relational operator, not by the width of the 
arguments. See examples below. 

7-28 

The different contexts of the AND(&) operator and the 
semantics of each usage are described below. 

SIGNAL & SIGNAL example: a & b 

This is the most straightforward usage. The expression is 
TRUE if both signals are TRUE. 

SIGNAL & NUMBER example: a & 4 

The number will be converted to binary and the least 
significant bit will be used, so this becomes a & 0, which 
will be reduced to simply 0, or FALSE. 

SIGNAL & SET example: a & [x, y, z] 



Language Elements 

The signal will be distributed over the elements of the set to 
become [a & x, a & y, a & z] 

SET & SET example: [a, b] & [x, y] 

The sets will be bit-wise ANDed resulting in: [a & x, b & 
y]. An error will be displayed if the set widths do not 
match. 

SET & NUMBER example: [a, b, c] & 5 

The number will be converted to binary and truncated or 
padded with zeros as needed to match the width of the set. 
The sequence of transformations will be: 

[a, b, c] & [I, 0, I] 
=[a & I, b & 0, c & I] 
= [a, 0, c] 

NUMBER & NUMBER example: 9 & 5 

The number will be converted to binary and the least 
significant bit will be used, so this becomes 1 & 1, which 
will be reduced to simply 1, or TRUE. 

Some example equations: 

select= [al5 .. a0] == "H80FF 

select (signal) will be TRUE when the 16-bit address bus 
has the hex value 80FF. 

[sell, selO] = [a3 .. a0] > 2 

Both sell and sel2 will be true when the value of the four 
"a" lines (taken as a binary number) are greater than 2. 
Note that the width of the "sel" set and the "a" set are 
different. The "2" will be expanded to four bits (of binary) 
to match the size of the "a" set. The result of the 

7-29 



Language Reference 

comparison (which will be all ones or all zeros) will then be 
truncated to two bits to match the size of the "sel" set. 

(out3 .. out0] = [in3 . .in0] & enable 

If enable is TRUE, then the values on "inO" through 11in311 

will be seen on the 11outO" through 11out311 outputs. If enable 
is FALSE, then the outputs will all be FALSE. 

7 .9.4 Limitations/Restrictions on Sets 

7-30 

Since the widths of expression arguments are determined 
from context, there are some cases where the results are not 
as you might expect. For example let's define a count as a 
3-bit set: 

count = [a,b,c] 

Then the following expression has a width of one: 

9 & (count == 0) 

It will be expanded as follows: 

9 & ( !a & !b & !c ) 
1 & !a & !b & !c 

There are also cases where an operator may not be 
commutative and associative because the results of its 
evaluation depend upon the context. Consider the 
following two equations. In the first, the constant 11 111 will 
be converted to a set; in the second, the 11 l" will be treated 
as a single bit. 



[ x I , y I ] = [a, b] & I & d 
= ([a, b] & I ) & d 
=([a, b] & [O, I]) & d 
= ([a & 0, b & I]) & d 

[O, b]&d 
[O, b] & [b, d] 
[O & d, b & d] 
[O, b & d] 

Language Elements 

[x2,y2] = I & d & [a, b] 
= (I & d) & [a, b] 

d & [a, b] 
[d, a] & [d, b] 
[d & a, d & b] 

xl = 0 
yl = b & d 

x2=a&d 
y2 = b & d 

If you are unsure about the interpretation of an equation, 
try the following hints: 

I. Fully parenthesize your equation. Most errors are 
simply caused by ignoring the precedence rules in 
table 5.1. 

2. Write out numbers as sets of ls and Os instead of 
as decimal numbers. If the width is not what you 
expected, you will get an error message. 

The following restriction applies to sets: 

Because set assignment is applied to all elements of a set, 
sets with mixed combinational and registered outputs cannot 
be used on the left side of an equation. Assignments are 
either clocked (combinational) or unclocked (registered) 
according to the assignment operator used ( = or :=) and a 
clocked assignment to a combinational output or an 
unclocked assignment to a registered output constitutes an 
error and will be flagged by the language processor. 

7-31 



Language Reference 

7.10 Blocks 

7-32 

Blocks are sections of ASCII text enclosed in braces, "{" and 
"}". Blocks are used in macros and directives. The text 
contained in a block can be all on one line or can span 
many lines. Some examples of blocks follow. 

{ this is a block } 
{ 
this is also a block, and it 
spans more than one line. 
} 

{A= B # C; 
D = [0, 1] + [ 1, O]; 
} 

Blocks can be nested within other blocks, as shown below, 
where the block { D = A } is nested within a larger block: 

{A= B $ C; 
{ D =A;} 
E = C; 
} 

Blocks and nesting of blocks can be useful in macros and 
when used with directives. (See "Macro Declarations" in 
Chapter 8, and "Directives" in Chapter 9.) 

If either a right or left brace is needed as a character in a 
block but does not denote the start or end of a nested block, 
it is preceded by a backslash. Thus, 

{ \{ \} } 

is the block containing the characters " { } ", with the spaces 
included. 



Language Elements 

7 .11 Arguments and Argument Substitution 

Variable values can be used in macros, modules and 
directives. These values are called the arguments of the 
construct that uses them. In ABEL, a distinction must be 
made between two types of arguments: actual and dummy. 
Their definitions are given here. 

dummy 
argument 

actual 
argument 

an identifier that is used to indicate 
where an actual argument is to be 
substituted in the macro, module, or 
directive. 

the argument (value) used in the macro, 
directive or module. The actual argument 
is substituted for the dummy argument. 
An actual argument can be any text, 
including identifiers, numbers, strings, 
operators, sets, or any other element of 
ABEL. 

Dummy arguments are specified in macro declarations and 
in the bodies of macros, modules and directives. The 
dummy argument is preceded by a question mark in the 
places where an actual argument is to be substituted. The 
question mark distinguishes the dummy arguments from 
other ABEL identifiers occurring in the source file. 

Take for example, the following macro declaration 
arguments (macros are discussed fully in Chapter 8 and an 
example of usage is presented in the design example file 
MACRO.ABL): 

OR EM MACRO (a,b,c) { ?a# ?b # ?c }; 

This defines a macro named OR EM that is the logical OR 
of three arguments. These arguments are represented in the 
definition of the macro by the dummy arguments, a, b, and 

7-33 



Language Reference 

7-34 

c. In the body of the macro, which is surrounded by 
braces, the dummy arguments are preceded by question 
marks to indicate that an actual argument will be 
substituted. 

The equation: 

D = OR_EM (x,y,z&l); 

invokes the OR_ EM macro with the actual arguments, x, y, 
and z&l. This results in the equation: 

D = x # y # z&l; 

Spaces (blanks) are significant in actual arguments. Actual 
arguments are substituted exactly as they appear. Note that 
in the example above, the actual argument z&l contains no 
spaces in the equation referring to OR_ EM, and that in the 
expanded equation the argument appears again without 
spaces. Had the argument been specified as "z & I" (note 
the spaces), the resulting equation would have contained 
those spaces. For example, the equation, 

D = OR_EM (x,y,z & l) 

results in the equation: 

D = x # y # z & I; 

Argument substitution occurs before the source file is 
checked for syntactic or logical correctness. This means 
that the code is checked for correctness with the actual 
arguments in place. Thus, if an actual argument violates a 
syntactic or logical rule, the parser will detect and report 
the error. 



Language Elements 

In review: 

Dummy arguments are place holders for actual 
arguments. 

A question mark preceding the dummy argument 
indicates that an actual argument is to be substituted. 

Actual arguments replace dummy arguments before the 
source file is checked for correctness. 

Spaces are significant in actual arguments. 

Further discussion and examples of argument usage are 
given in the Applications Guide, in the explanations of 
modules and macros in Chapter 8, and also in Chapter 9. 

7-35 



Language Reference 

7-36 



8. Language Structure 

This section describes the structure of a complete ABEL 
design description. The language elements described in 
chapter 7 are combined within the proper structures to 
define Boolean equations, state machines and truth tables. 
The device or devices being described must be indicated 
and initial declarations must be made. Definitions of 
expected output from simulation of the device may also be 
made. 

8.1 Basic Structure 

ABEL source files can be broken into independent parts 
called modules. Each module contains one or more 
complete logic descriptions. At the simplest level, an input 
file to the ABEL language processor consists of only one 
module; at the most complex level, an indefinite number of 
modules may be combined into one source file and 
processed at the same time. 

Every module consists of several different sections, each 
with its own unique function. These sections are: 

Declarations of devices, pins, nodes, constants, 
attributes, and macros 

Boolean logic equations 
Truth tables 
State diagrams 
Explicit fuse declarations 
Test vectors 

8-1 



Language Reference 

8-2 

Some or all of these parts of a module may exist for any 
given application. Declarations must always be made. 
Figure 8-1 shows the structure of an ABEL source file. 
Because a source file is a collection of one or more modules, 
each with its own beginning and end, different source files 
can be combined to form complete system designs in one 
source file. 

1st Module Start 
Flags 
Title 
Declarations 

Constant Declarations 
Macro Definitions 
Device Declarations 
Pin and Node Assigl'lllents 
Attribute Declarations 
Library References 

Boolean Equations 
Truth Tables 
State Diagrams 
Fuse Declarations 
Test Vectors 

1st Module End 
2nd Module Start 

2nd Module End 

Figure 8-1. Structure of an ABEL Source File 



Language Structure 

8.2 MODULE Statement and Structure 

MODULE modname I ( dummy_arg (, dummy_arg] ... ) ] 
I FLAG statement ] ... 
I TITLE statement ] 
declarations 
I EQUATIONS] ... 
( TRUTH_TABLE] ... 
( STATE_DIAGRAM ] ... 
I TEST_ VECTORS ] ... 

END I modname ] I ; ] 

modname 

dummy_arg 

FLAG 

TITLE 

declarations 

EQUATIONS 

TRUTH TABLE 

a valid identifier naming the module 

a dummy argument 

defines processing parameters to be 
passed to the language processor 

defines the title of the module 

declarations section of the module in 
which pin, node, device, attribute, 
and constant declarations are made 

Boolean logic equations section 

truth table specification 

ST A TE DIAGRAM state machine specification 

FUSES 

TEST VECTORS 

explicit fuse declarations 

specification of simulation test 
vectors 

8-3 



Language Reference 

8-4 

The module statement defines the beginning of a module 
and must be paired with an END statement that defines the 
module's end. 

Each module in a source file should have a unique name. 
The module contains the different declarations, equations, 
truth tables, state diagrams and simulation tables necessary 
to complete the logic description(s). The following three 
rules apply to module structure: 

1. If the FLAG statement is used, it must be the first 
keyword used after the MODULE statement. 

2. If the TITLE statement is used, it must be the first 
keyword used after the FLAG statement (if one exists). 
If FLAG is not used, the TITLE statement must be the 
first keyword used after the MODULE statement. 

3. One declarations section must exist in a module. All 
other sections can occur in the module as many times 
as needed and in any order. 

The optional dummy arguments in the module statement 
allow the actual arguments to be passed to the module when 
it is processed by the language processor. The dummy 
argument provides a name to refer to within the module. 
Anywhere in the module where a dummy argument is 
found preceded by a "?", the actual argument value will be 
substituted by the parser. 

For example: 
MODULE MY_ EXAMPLE (A,B) 

C = ?B +?A 

END 



Language Structure 

In the module named MY_ EXAMPLE, C will take on the 
value of "A+ B" where A and B contain actual arguments 
passed to the module when the language processor is 
invoked. For further information about dummy arguments, 
see section 7 .11. 

8-5 



Language Reference 

8.3 FLAG Statement 

8-6 

FLAG parameter[, parameter) ... 

parameter a string containing valid command line 
parameters, excepting -I, -0, -N, and all 
PARSE parameters 

The FLAG statement provides an alternate method of 
defining processing parameters that affect the way in which 
the source file is processed by the language processor. 
These parameters are normally passed from the command 
line or from a batch file when the language processor is 
invoked. FLAG allows the explicit statement of processing 
parameters directly in the source file. Parameters entered 
from the command line override parameters specified with 
the FLAG statement. PARSE parameters, and the - I, -0, 
and -N parameters are not allowed. Complete information 
on command line parameters is contained in Chapter 9. 

FLAG is useful when a source file requires a specific type 
or level of processing for that processing to be successful. 
For example, a design may be large or complex enough that 
it will generate too many product terms for the specified 
device unless the PRESTO reduction algorithm is used in 
the reduction step of the processing. You might also want 
to simulate the design at trace level 3. This is done with 
the following command: 

flag '-r2,-t3' 



Language Structure 

8.4 TITLE Statement 

TITLE string 

The title statement is used to give a module a title that will 
appear as a header in both the programmer load file and 
documentation file created by the language processor. The 
title is specified in the string following the keyword, 
TITLE. 

Use of the title statement is optional 

If asterisks are found in the title string, they will not appear 
in the programmer load file header in order to conform 
with the JEDEC standard. 

An example of a title statement that spans three lines and 
describes the logic design follows: 

module m6809a 
title '6809 memory decode 
Jean Designer 
Data 1/0 Corp Redmond WA 23 Jan 1987' 

8-7 



Language Reference 

8.5 Declarations 

8-8 

The declarations section of a module specifies the device 
being described and the correspondence between the names 
used in a module and the pins and nodes of the device. 
Constants, attributes, and macros are also defined in the 
declarations section. Declarations stay in effect only in the 
module in which they are defined. Each module must have 
its own declarations section. There are six types of 
declaration statements: 

Attribute 
Constant 
Device 
Library 
Macro 
Node 
Pin 

The syntax and use of each of these types is presented in 
the subsections that follow. 



Language Structure 

8.5.1 Device Declaration Statement 

device_id [, device_id] ... DEVICE real_device; 

device id an identifier used in a module for 
references to a device 

real device a string describing the industry part 
number of the real device represented 
by device_id 

The device declaration statement associates device names 
used in a module with actual programmable logic devices on 
which designs are implemented. The device name used in 
the logic description is specified with device _id. Device 
identifiers used in device declarations should be valid file 
names since JEDEC files are created by appending the 
extension ".JED" to the identifier. The industry part 
number of the programmable logic device is indicated by 
the string, real_ device. 

These are the only devices that can be specified by 
real device. 

The ending semicolon is required. 

The following example specifies two device names, ul4 and 
ul5, that represent Fl59 IFLs: 

ul4, ul5 device 'Fl59'; 

8-9 



Language Reference 

8.5.2 Pin Declaration Statement 

[!]pin_id [, [!]pin_id[ ... PIN [IN device_id] 
pin#[ ='attr[ ,attr) ... '] [,pin#[ ='attr[,attr] ... ']] ... 

pin _id an identifier used to refer to a pin 
throughout a module 

device id a declared device name identifier indicating 
the device associated with these pins 

pin # the pin number on the real device 

attr a string that specifies pin attributes for 
devices with programmable pins. Valid 
strings are: 

8-10 

pos 
neg 
reg 
reg d 
reg_g 
reg_jk 
reg_ rs 
reg_t 
reg_jkd 
com 
latch 
feed pin 
feed_reg 
feed or 

positive polarity 
negative polarity 
registered signal 
D-type register 
G-type (clock enabled) register 
JK-type register 
RS-type register 
T-type register 
JK/D controllable register 
combinational signal 
latch input pin 
feedback from pin 
feedback from register 
feedback from OR-gate 

The pin declaration statement indicates the correspondence 
between identifiers used in a module and the pins on a real 
device. The declaration can also specify pin attributes for 
devices with programmable pin characteristics. 



Language Structure 

When lists of pin_ids and pin #s are used in one pin 
declaration statement, there is a one-to-one correspondence 
between the identifiers and numbers given. There must be 
one pin number associated with each identifier listed. 

When more than one device is declared in one module, the 
optional IN portion of the pin declaration must be used so 
that the pins are associated with the proper device. A 
device declaration must be made before the pin 
declarations. The ending semicolon is required. An 
example of a simple pin declaration follows: 

!Clock, Reset, SI PIN IN UI2 I2,I5,3 ; 

This pin declaration assigns the pin names, Clock, to pin I2 
of device Ul2, Reset to pin 15, and SI to pin 3. 

The use of the "!' operator in pin declarations indicates that 
the pin is active-low, and will be automatically negated 
when processed by the language processor. 

The pin attribute, attr, specifies pin attributes. Attributes 
can be defined in this way or with the ISTYPE statement. 
The ISTYPE statement and attributes are discussed in 
section 8.5.6. The pin declaration, 

FO pin I 3 = 'neg, reg'; 

specifies that equations for FO, which corresponds to pin 
13, should be optimized for a negative polarity registered 
output. 

8-11 



Language Reference 

8.5.3 Node Declaration Statement 

[!]node_id [,[!)node_id) ... NODE [IN device_id) node# 
[= 'attr[,attr) ... ')[,node#[= 'attr[,attr) .. .')) ... 

node id 

device id 

node# 

attr 

an identifier used for reference to a node in 
a logic design 

a declared device name identifier indicating 
the device associated with these nodes 

the node number on the real device 

a string that specifies node attributes for 
devices with programmable nodes. Valid 
strings are: 

pos 
neg 
reg 
reg_d 
reg_g 
reg_jk 
reg_rs 
reg_t 
reg_jkd 
com 
latch 
feed pin 
feed_reg 
feed or 
fuse 
pin 
eqn 

positive polarity 
negative polarity 
registered signal 
D-type register 
G-type (clock enabled) register 
JK-type register 
RS-type register 
T -type register 
JK/D controllable register 
combinational signal 
latch input pin 
feedback from pin 
feedback from register 
feedback from OR-gate 
single fuse node 
pin controlled node 
array controlled node 

The node declaration statement indicates the correspon
dence between identifiers used in a module and the internal 
nodes of a real device. Nodes are "pseudo-pins": internal 

8-12 



Language Structure 

signals that are not accessible on the device's external pins, 
but that are needed to program otherwise inaccessible fuses. 
The device nodes supported by ABEL are listed in appendix 
C. The declaration can also specify node attributes for 
devices with programmable node characteristics. 

When lists of node ids and node #s are used in one node 
declaration statement, there is a one-to-one correspondence 
between the identifiers and numbers given. There must be 
one node number associated with each identifier listed. 

When more than one device is declared in one module, the 
optional IN portion of the node declaration must be used so 
that the nodes are associated with the proper device. 

A device declaration must be made before the node 
declarations. The ending semicolon is required. The 
following example declares three nodes A, B, and C in the 
device Ul5. 

A, B, C NODE IN Ul5 21,22,23; 

The node attribute string, attr, specifies node attributes. 
Attributes can be defined in this way or with the ISTYPE 
statement. The ISTYPE statement and attributes are 
discussed in section 8.5.6. 

The node declaration, 

B NODE 22 = 'pos,com' ; 

specifies that node 22 has positive polarity and is a 
combinational node. 

If shorthand notation is used to refer to internal device 
nodes, it is not necessary to declare the node in a 
declaration statement. For examples of shorthand notation 
of nodes, refer to Chapter 13. Appendix C lists the 
shorthand notation for all supported nodes. 

8-13 



Language Reference 

8.5.4 Constant Declaration Statement 

id [, id]... = expr [, expr]... ; 

id an identifier naming a constant to be used 
within a module 

expr an expression defining the constant value 

The constant declaration statement defines constants to be 
used within a module. A constant is an identifier that 
retains a constant value throughout a module. 

The identifiers listed on the left side of the equals sign in 
the constant declaration statement are assigned the values 
listed on the right side of the equals sign. 

There is a one-to-one correspondence between the 
identifiers and the expressions listed and there must be one 
expression for each identifier. 

The ending semicolon is required. 

Constants are useful when a value must be used many times 
throughout a module and especially when the value is used 
many times but might need to be changed during the logic 
design process. Rather than changing the value throughout 
the module, the value can be changed once in the 
declaration of the constant. 

8-14 

( 
\ 



Language Structure 

Constant declarations may not be self -referencing; for 
example: 

X = X; 

will cause errors, as will the declarations 

a= b; 
b =a; 

Some examples of valid constant declarations follow: 

ABC= 3 * 17; 11 ABC is assigned the value 51 

Y ='Be'; II y = + H4263; 

X =. X.; 11 X means 'don't care' 

ADDR = [l,0,15]; 11 ADDR is a set with 3 elements 

A,B,C = 5,[1,0],6; 11 3 constants declared here 

D pin 6; 11 see next line 

E = [5 * 7,D]; " signal names can be included 

G = [l,2]+[3,4]; 11 set operations are legal 

A= B & C; 11 operations on identifiers are valid 

A= [!B,C]; 11 set and identifiers on right 

8-15 



Language Reference 

8.5.5 Macro Declaration Statement and Macro Expansion 

macro _id MACRO [ ( dummy_ arg 
[,dummy_arg) .•. ) I block; 

macro id an identifier naming the macro 

dummy_arg a dummy argument 

block a block (see chapter 7) 

The macro declaration statement defines a macro. Macros 
are used to include ABEL code in a source file without 
typing or copying the code everywhere it is needed. A 
macro is defined once in the declarations section of a 
module and then used anywhere within the module as 
frequently as needed. Macros can be used only within the 
module in which they are declared. 

Wherever the macro _id occurs, the text in the block 
associated with that macro will be substituted. With the 
exception of dummy arguments, all text in the block 
(including spaces, end-of-lines, etc.) is substituted exactly 
as it appears in the block. 

When debugging your source file, you can use the -E and 
-P flags to examine macro statements. The -E parameter 
causes the parsed and expanded source code to be written to 
the listing file (or to the display if the -L flag is omitted). 
In addition to the listing information provided by the -E 
flag, the - P flag lists the directives that caused code to be 
added to the source. 

8-16 

The dummy arguments used in the declaration of the macro 
allow different actual arguments to be used in the macro 
each time it is invoked in the module. Within the macro, 



Language Structure 

dummy arguments are preceded by a "?" to indicate that an 
actual argument will be substituted for the dummy by the 
ABEL parser. This is best shown by example. 

The equation, 

NAND3 MACRO (A,B,C) { !(?A & ?B & ?C) } ; 

declares a macro named NAND3 with the dummy 
arguments A, B and C. The macro defines a three-input 
NAND gate. When the macro identifier occurs in the 
source, actual arguments for A, B and C will be supplied. 

For example, the equation, 

D = NAND3 (Clock,Hello,Busy); 

brings the text in the block associated with NAND3 into the 
code, with Clock substituted for ? A, Hello for ?B and Busy 
for ?C. This results in: 

D = !( Clock & Hello & Busy ) ; 

which is the three-input NAND. 

The macro NAND3 has been specified by a Boolean 
equation, but it could have been specified using another 
ABEL construct, such as the truth table shown here: 

NAND3 MACRO (A,B,C,Y) 

{ TRUTH_TABLE ( [?A,?B,?C] -> ?Y) 

[ 0 ,.X.,.X.] -> 1 ; 
[.X., 0 ,.X.] -> 1 ; 
[.X.,.X., 0 ] -> 1 ; 
[ 1 ' 1 ' 1 ] -> 0 ; } ; 

8-17 



Language Reference 

In this case, the line, 

NAND3 (Clock,Hello,Busy ,D) 

causes the text, 

TRUTH_ TABLE ( [Clock,Hello,Busy) -> D ) 
[ 0 ,.X.,.X.] -> I ; 
[.X., 0 ,.X.] -> I ; 
[.X.,.X., 0 ] -> I ; 
[ I , I , I ) -> 0 ; 

to be substituted into the code. This text is a truth table 
definition of D, specified as the function of three inputs, 
Clock, Hello and Busy. This is the same function as that 
given by the Boolean equation, above. The truth table 
format is discussed in section 8.7. 

Other examples of macros: 

A macro { W = SI & s2 & s3 ; } ; 
"macro w/no dummy args 

B MACRO (d) { !?d}; "macro w I dummy argument 

and when they occur in logic descriptions: 

A 
X = W + B (inp) ; 
Y = W + B( )C ; "note the blank actual argument 

resulting in: 

"note leading space from block in A 
W = SI & S2 & S3 ; 
X = W + ! inp; 
Y=W+!C; 

8-18 



Language Structure 

Circular macro references (when a macro refers to itself 
within its own definition) cause the PARSE program to 
terminate abnormally with errors. This error can often be 
detected by examining the PARSE listing file. If errors 
appear after the first use of a macro, and the errors cannot 
be easily explained otherwise, check for a circular macro 
reference. 

8.5.6 ISTYPE Statement 

signal [,signal] ... ISTYPE [IN device_id) 'attr [,attr] ... '; 

signal 

device id 

attr 

a pin or node identifier 

a declared device name identifier indicating 
the device associated with these nodes 

pos 
neg 
reg 
reg_d 
reg_g 
reg_jk 
reg_ rs 
reg_t 
reg_jkd 
com 
latch 
feed pin 
feed_reg 
feed or 
pin 
eqn 
fuse 
share 

positive polarity 
negative polarity 
registered signal 
D- type register 
G-type (clock enabled) register 
JK-type register 
RS-type register 
T-type register 
JK/D controllable register 
combinational signal 
latch input signal 
feedback from pin 
feedback from register 
feedback from OR-gate 
select node from pin 
select node from equation 
select node from fuse 
product term sharing 

8-19 



Language Reference 

The ISTYPE statement defines attributes or characteristics 
of pins and nodes for devices with programmable 
characteristics. The attributes are used to form correct 
logic for the device and to optimize equations for the 
device. If no attributres are defined for a device with 
programmable characteristics the device defaults are 
applied. If attributes are defined for a device without 
programmable characteristics, an error is reported by the 
language processor. An example of ISTYPE statement 
usage is presented in the design example file 
AL TERA.AHL. 

When more than one signal is listed on the left side of the 
ISTYPE statements, the attributes listed on the right side of 
the ISTYPE statement are applied to those signals. 

When more than one device is declared in one module, the 
optional IN DEVICE _id portion of the ISTYPE must be 
used so the signals (pins or nodes) are associated with the 
correct device. A device declaration must be made before 
the ISTYPE statement appears in the source file. 
Declarations of the pin and node names used in the ISTYPE 
statement must be made before the ISTYPE statement. 

An example of the ISTYPE statement follows: 

FO, A istype 'neg, latch' ; 

This declaration statement defines F 0 and A as negative 
polarity latches. Both F 0 and A had to have been defined 
previously in the module. 

Definitions of each of the attributes follows: 

8-20 



Language Structure 

Pos (Positive Polarity) 

Pos indicates that the associated input or output has positive 
polarity. The device will be programmed to reflect this 
condition and any equations associated with this signal will 
be optimized for that polarity. Pos may be entered in 
upper-, lower-, or mixed-case letters. 

Neg (Negative Polarity) 

Neg indicates that the associated input or output has 
negative polarity. The device will be programmed to reflect 
this condition and any equations associated with this signal 
will be optimized for negative polarity. Neg may be 
entered in upper-, lower-, or mixed-case letters. 

Reg (Registered Signal) 

Reg indicates that the associated input or output is 
registered rather than combinational. The device will be 
programmed for this condition, and the signal will change 
on application of the clock. 

Reg (type) (Registered Type) 

This attribute indicates the type of register to use for a 
signal that has programmable register types. The device 
will be programmed for the indicated register type. 

Com (Combinational Signal) 

Com indicates that the associated input or output is a 
combinational or combinatorial signal. The device will be 
programmed for this condition. 

8-21 



Language Reference 

Latch 

The latch attribute indicates that the associated input or 
output is latched. Latches have an enable line and operate 
as follows: 

1. If the enable is high, the input signal to the latch is 
passed through to the output. 

2. If the enable is low, the last value present on the input 
line before the high-to-low transition of the enable is 
held on the output line. 

Feed_pin, Feed_reg, and Feed_or 
(Feedback Specifications) 

Some available devices allow definition of the internal 
feedback paths. Feedback can occur from the output pin, 
the output of an internal register, or from the OR-gate 
output, as shown in figure 8-2. 

The feed_pin, feed_reg, or feed_or attributes specify 
which feedback path to use: from the pin, the register 
output, or the OR-gate, respectively. Only one of the 
feedback attributes can be in effect at any given time; if 
more than one feedback attribute is specified for the same 
signal, the last attribute specified takes effect. Also, 
feedback attributes are valid only for devices with feedback 
paths that can be defined by the user. Feedback attributes 
are valid only for outputs. The attribute may be specified 
in upper-, lower-, or mixed- case characters. 

8-22 

( 

( 



Language Structure 

OE 

• 
• 
• 

CK 

PRODUCT 
TERMS 

FEEDBACK 

SP 

AR 

OUTPUT 
SELECT 

FEEDBACK PATH 
SELECTION 

F 1. feedback from OR-gate; selected by Feed_or 
F2, feedback from register; selected by Feed_reg 
F3, feedback from output pin; selected by Feed_pin 

Figure 8-2. Feedback Paths for an E0310 

Pin, Eqn, or Fuse 
(selectable node type) 

Some devices allow internal device features, such as output 
enables or clocks to be configured in one of several ways. 
The Pin, Eqn, and Fuse attributes specify which type of 
feature is desired for the indicated node. For example. 

QO.oe istype pin 

specifies that the output enable is pin controlled. 

8-23 



Language Reference 

8.5.7 LIBRARY Statement 

LIBRARY 'name' 

Name a string that specifies the name of file, excluding 
the file extension 

The LIBRARY statement causes the contents of the 
indicated file to be inserted in the ABEL source file. The 
insertion begins at the point where the LIBRARY statement 
is located. 

The file extension of '.inc' is appended to the name 
specified, and the resulting file name is searched for. If no 
file is found, ABEL will attempt to find the file in the 
abel3lib.inc library file. Refer to sections 6.3 and 6.4 for 
more information on libraries. 

8-24 



Language Structure 

8.6 Equations Statement 

EQUATIONS I IN device_id I 

device id a previously declared device identifier 
that indicates the device associated with 
these equations 

The equations statement defines the beginning of a group of 
equations associated with a device. Equations specify logic 
functions with Boolean algebra. 

The equations statement is followed by the equations 
associated with the device indicated by the device 
identifier. In modules with only one device, the device 
identifier is optional; in all other cases it must be specified 
so that the equations will be applied toward the correct 
device. 

The equations following the equation statement are any 
valid ABEL equations as described in section 2.8.6. 

A sample equations section follows: 

EQUATIONS IN IC13 
A=B&C#A; 
[W,Y] = 3 ; 
!F = B == C; 

8-25 



Language Reference 

8.7 Truth Table Statement 

Truth tables are another way to describe logic designs with ( 
ABEL and may be used in lieu of, or in addition to, 
Boolean equations and state diagrams. Truth tables specify 
outputs as functions of different input combinations in a 
tabular form. A truth table is specified with a header 
describing the format of the table and with the table itself. 

8.7.1 Truth Table Header Syntax 

TRUTH TABLE [IN device id] ( inputs -> outputs ) - -

or 

TRUTH TABLE [IN device id] (inputs:> reg outs) - - -

or 

TRUTH_TABLE [IN device_id] (inputs:> reg_outs -> 
outputs) 

device id an identifier naming the device associated 
with the truth table 

inputs the inputs to the logic function 

outputs the outputs from the logic function 

reg_outs the registered (clocked) outputs 

-> indicates the input to output function for 
combinational outputs. 

indicates the input to output function for 
registered outputs. 

8-26 

( 



Language Structure 

The truth table header can have one of the three forms 
shown above, depending on whether the device has 
registered or combinational outputs or both. 

In all three forms, the device identifier is required when 
more than one device is declared in a module. An example 
of truth table usage is presented in the design example file 
LED7.ABL. 

The inputs and outputs (both registered and combinational) 
of a truth table are either single signals, or, more 
frequently, sets of signals. If only one signal is used as 
either the input or output, its name is specified. Sets of 
signals used as inputs or outputs are specified in the normal 
set notation with the signals surrounded by square brackets 
and separated by commas (see section 7.9). 

The syntax shown in the first form defines the format of a 
truth table with simple combinational outputs. The values 
of the inputs determine the values of the outputs. 

The second form describes a format for a truth table with 
registered outputs. The symbol ":>" preceding the outputs 
distinguishes these outputs from the combinational ones. 
Again the values of the inputs determine the values of the 
outputs, but now the outputs are registered or clocked: they 
will contain the new value (as determined by the inputs) 
after the next clock pulse. 

The third form is more complex, defining a table with both 
combinational and registered outputs. It is important in this 
format to make sure the different specification characters 
"->" and ":>" are used for the different types of outputs. 

Examples of headers along with their accompanying truth 
tables are given after the format of the table is discussed. 

8-27 



Language Reference 

8.7.2 Truth Table Format 

The actual truth table (as opposed to the header) is ( 
specified according to the form described within the 
parentheses in the header. The truth table is a list of input 
combinations and resulting outputs. All or some of the 
possible input combinations may be listed. 

As an example, the following truth table defines an 
exclusive-OR function with two inputs (A and B), one 
enable (en), and one output (C): 

TRUTH TABLE IN IC16 ( [en,A,B] -> C) 

[O,.X.,.X.] -> .X.;" don't care w/ enable off 
[ 1, 0 , 0 ] -> 0 ; 
[l, 0 , 1 ] -> 1 ; 
[ 1, 1 , 0 ] -> 1 ; 
[ l, 1 , 1 ] -> 0 ; 

All values specified in the table must be constants, either 
declared, numeric, or the special constant, ".X.". Each line 
of the table (each input/output listing) must end with a 
semicolon. 

Whereas the header defines the names of the inputs and 
outputs, the table defines the values of inputs and the 
resulting output values. 

The following example shows a truth table description of a 
simple state machine with four states and one output. The 
current state is described by signals A and B, which are put 
into a set. The next state is described by the registered 
outi;:>uts C and D, which are also collected into a set. The 
single combinational output is signal E. The machine 

( 

simply counts through the different states, driving the ( 
output E low when A equals 1 and B equals 0. 

8-28 



Language Structure 

TRUTH_ TABLE IN IC17 ( [A,B] :> [C,D] -> E) 

0 :> 1 -> 1 ; 
1 :> 2 -> 0 ; 
2 :> 3 -> 1 ; 
3 :> 0 -> 1 ; 

Note that the input and output combinations are specified 
by a single constant value rather than by set notation. This 
is equivalent to: 

[0,0] :> [0,1] -> 1 ; 
[0,1] :> [1,0] -> 0; 
[1,0] :> [1,1] -> 1 ; 
[l,l] :> [0,0] -> 1 ; 

8.7 .3 Programmable Polarity Registers 

When using state diagrams and truth tables for 
programmable polarity devices, the default polarity used by 
ABEL (if no polarity is specified via the ISTYPE statement) 
is now negative, rather than positive. Existing ABEL source 
files that assume positive polarity for these devices may 
require the addition of an ISTYPE statement to force 
positive polarity. See example LEDI.ABL. 

8-29 



Language Reference 

8.8 State Diagrams 

An alternative to describing logic with Boolean equations 
and truth tables is to use a state diagram. The state diagram 
easily describes the operation of a sequential state machine 
implemented with programmable logic. 

The specification of a state diagram requires the use of the 
STATE_DIAGRAM construct, which defines the state 
machine, and the IF-THEN-ELSE, CASE, and GOTO 
statements which determine the operation of the state 
machine. 

The STATE_DIAGRAM construct is discussed first, and 
then the syntaxes of the IF-THEN-ELSE, CASE, and 
GOTO statements are presented. 

Syntax of the WITH-ENDWITH statement, which permits 
the specification of equations in terms of transitions, is also 
presented. 

8-30 



Language Structure 

8.8.1 STATE DIAGRAM Statement 

STATE_DIAGRAM (IN device_id] state_reg 
[-> state_ out] 

[STATE state_exp: [equation] 
[equation] 

trans stmt ... ] 

device id an identifier specifying the associated device 

state _reg an identifier or set of identifiers specifying 
the signals that determine the current state of 
the machine. 

state out an identifier or set of identifiers that 
determine the next state of the machine (for 
designs with external registers) 

state_ exp an expression giving the current state 

equation a valid equation that defines the state machine 
outputs 

trans stmt an IF-THEN-ELSE, CASE or GOTO 
statement, optionally followed by 
WITH_ENDWITH transition equations. 

The ST A TE DIAGRAM construct defines a state machine 
associated with a device in a module. The state machine 
starts in one of the states indicated by state_ exp. The 
equations listed after that state_ exp are evaluated, and the 
transition statement (trans_stmt) is evaluated after the next 
clock, causing the machine to advance to the next state. 

8-31 



Language Reference 

Equations associated with a state are optional. Each state 
must have a transition statement. If none of the transition 
conditions for a state is met, the next state is undefined. 
(For some devices, undefined state transitions cause a 
transition to the cleared register state.) As many states as 
are needed can be specified. 

When there is more than one device declared in a module, 
the "IN device _id" section is required. 

Following is an example of a simple state machine that 
advances from one state to the next, setting the output to 
the current state, and then starting over again. Note that 
the states do not need to be specified in any particular 
order. Note also that state 2 is identified by an expression 
rather than by a constant. The state register is composed of 
the signals a and b. 

state_diagram in ul5 [a,b] 
state 3 : y = 3 ; 

goto 0 ; 
state 1 : y = 1 ; 

goto 2 ; 
state 0 : y = 0 ; 

goto 1 ; 
state 1 + 1 : y = 2 ; 

goto 3 ; 

The next state diagram specifies a more complex state 
machine where the state reg is specified with a constant set 
containing the signals a and b. Assuming that the state 
machine starts in state 1 (a = O,b = 1 ), the sequence of states 
will be 1,4,2,3,2,4, 1,4,2,3,2,4, 1 ... 

8-32 



Language Structure 

current_state = [a, b] "constant declaration 
ST A TE DIAGRAM current state 

state 1: w = 1 ; 
y = 1; GOTO 4; 

state 2 : IF y==3 THEN 3 
ELSE 4; 

state 3 : w = 2 ; 
y = w; 
GOTO 2; 

state 4 : y = 3 ; 
CASE W== 1: 2; 

W==2: l; 
ENDCASE; 

Figure 8-3 shows the pictorial state diagram for this same 
state machine. 

W==2 

W==1 

v==3 

Figure 8-3. Pictorial State Diagram 

8-33 



Language Reference 

8.8.2 IF-THEN-ELSE Statement 

IF expression THEN state_exp [ELSE state_exp] ; 

expression any valid expression 

state_ exp an expression identifying the next state, 
optionally followed by WITH_ END WITH 
transition equations. 

The IF-THEN-ELSE statement is an easy way to describe 
the progression from one state to another in a state 
machine. The expression following the IF keyword is 
evaluated, and if the result is true, the machine goes to the 
state indicated by the state_ exp following the THEN 
keyword. If the result of the expression is false, the 
machine advances to the state indicated by the ELSE 
keyword. 

8-34 

Any number of IF statements may be used in a given state, 
and the use of the ELSE clause is optional. 

Examples: 

if A==B then 2 ; "if A equals B goto state 2 
if x-y then j else k; "if x-y is not 0 goto j, else goto k 
if A then b*c; "if A is true (non-zero) goto state b*c 



Language Structure 

8.8.3 Chained IF-THEN-ELSE Statements 

IF expression THEN state_ expression 
ELSE 

IF expression THEN state_ expression 
ELSE 

IF expression THEN state_expression 
ELSE state_expression; 

Additional IF-THEN-ELSE statements can be chained to 
the ELSE clause of an IF-THEN-ELSE statement. Any 
number of IF-THEN-ELSE statements can be chained, but 
the final statement must end with a semicolon. An example 
of chained IF-THEN-ELSE statements follows: 

if a then 1 
else 

if b then 2 
else 

if c then 3 
else 0 ; 

Often, chains of mutually exclusive IF-THEN-ELSE 
statements can be more clearly expressed with a CASE 
statement. The chained IF-THEN-ELSE statement is 
intended for situations (such as the preceding example) 
where the conditions are not mutually exclusive. 

See section 8.8.1 for examples of IF-THEN-ELSE usage as 
they are used in a state diagram. 

8-35 



Language Reference 

8.8.4 CASE Statement 

CASE [ expression : state_ exp; ] 
[ expression : state_exp; ] 
[ expression : state_ exp; ] 

ENDCASE; 

expression any valid ABEL expression 

state_exp an expression identifying the next state, 
optionally followed by WITH-ENDWITH 
transition equations. 

The CASE statement is an easy way to indicate the 
transitions of a state machine when there are multiple 
possible conditions that affect the state transitions. 

The expressions contained within the CASE-ENDCASE 
keywords must be mutually exclusive, meaning that only 
one of the expressions can be true at any given time. If two 
or more expressions within the same CASE statement are 
true, the resulting equations are undefined. 

8-36 

The state machine will advance to the state indicated by the 
state_exp following the expression that produces a true 
value. If no expression is true, the result is undefined, and 
the resulting action depends on the device being used. (For 
devices with D flip-flops, the next state will be the cleared 
register state.) For this reason; you should be sure to cover 
all possible conditions in the CASE statement expressions. 
If the expression produces a numeric rather than a logical 
value, 0 is false, and any non-zero value is true. 



Example: 

case a == 0 : 1 ; 
a== 1 : 2; 
a== 2: 3; 
a== 3 : 0; 

endcase; 

Language Structure 

More CASE statement examples are presented in section 
8.8.1. 

8-37 



Language Reference 

8.8.5 GOTO Statement 

GOTO state_exp; 

state_exp an expression identifying the next state, 
optionally followed by WITH_ END WITH 
transition equations. 

The GOTO statement causes an unconditional transition to 
the state indicated by state_ exp. 

Example: 

GOTO 0 ; "goto state 0 
GOTO x+y ; "goto the state x + y 

8-38 



Language Structure 

8.8.6 WITH-ENDWITH Statement 

transition_stmt state_exp WITH equation 

[equation] 

ENDWITH; 

transition stmt IF, ELSE, or CASE statement 

state_ exp the next state 

equation an equation for state machine outputs 

The WITH-ENDWITH statement, when used in conjunction 
with the IF-THEN or CASE statement, allows output 
equations to be written in terms of transitions; for example: 

state 5 : IF a == 1 then 1 
WITH x: =I; 

y: = 0; 
END WITH; 

ELSE 2 WITH 
x: = 0; 
y: = I ; 

ENDWITH; 

8-39 



Language Reference 

8.9 Fuses Section 

FUSES [IN del'ice _id] 

fuse_ number = fuse l'alue ; 

or 

fuse_number_set = fuse l'alue ; 

8-40 

device id 

fuse number 

fuse number set - -

fuse value 

identifier specifying associated 
device 

fuse number obtained from logic 
diagram of device 

set of fuse numbers contained in 
square brackets 

number indicating state of fuse(s) 

The FUSES section of the source file provides a means for 
explicitly declaring the state of any fuse in the associated 
device. For example: 

FUSES 
3552 = I ; 
[3478 ... 3491] = "Hff; 

See also examples ORXOR.ABL and CNTIOROM. 

Fuse values appearing on the right side of the = symbol can 
be any number. In the case of only a single fuse number 



Language Structure 

being specified on the left side of the = symbol, the least 
significant (LSB) bit of the fuse value is assigned to the 
fuse; a 0 indicates a fuse intact, and a 1 indicates a fuse 
blown. In the case of multiple fuse numbers, the fuse value 
is expanded to a binary number and truncated or given 
leading zeros to obtain fuse values for each fuse number. 

When fuse states are specified using the FUSES-section 
syntax, the resulting fuse values supercede the fuse values 
obtained through the use of equations, truth tables and state 
diagrams, and will effect device simulation accordingly. 
While a high number of fuses can be specified in the 
FUSES section (typically over 2,000) there is some limit. 
The maximum number of fuses you can specify varies but 
is well beyond what is practical when using the FUSES 
section. 

The PC/MS-DOS versions have a limit of 15 fuses per 
statement (e.g. FUSES[I000 .. 1015] = O;). 

8-41 



Language Reference 

8.10 Test Vectors 

TEST_ VECTORS (IN device_id] (note] (inputs-> 
outputs) 

(invalues -> outvalues;] 

device id an identifier indicating the device associated 
with this table 

note a string used to describe the test vectors 

inputs identifier or set of identifiers specifying the 
names of the input signals to the device, or 
feedback output signals 

outputs identifier or set of identifiers specifying the 
output signals from the device 

invalues input value or set of input values 

outvalues output value or set of output values resulting 
from the given inputs 

Test vectors specify the expected functional operation of a 
logic device by explicitly defining the device outputs as 
functions of the inputs. Test vectors are used for 
simulation of an internal model of the device and functional 
testing of the real programmed device. 

8-42 



Language Structure 

A special simulation utility, SIMULA TE, is provided as 
part of the ABEL software package. SIMULA TE simulates 
the operation of the device model by applying the inputs 
specified in the test vectors to the fuse states created by the 
language processor. SIMULATE is discussed further in 
chapter 4. 

Functional testing of the real device is performed by a logic 
programmer after a device has been programmed. This can 
be done because the test vectors become part of the 
programmer load file that is loaded into the logic 
programmer. 

Test vectors are written for each different device in the 
module, so that the different characteristics of each device 
can be taken into account separately during simulation. 

Test vectors for a device are specified in a table. The table 
consists of a header and the vectors themselves. The header 
indicates that test vectors are to follow and defines the 
format of the table. The vectors specify the input-to
output function. 

The form of the test vectors is determined by the header. 
Each vector is specified in the format described within the 
parentheses in the header statement. An optional note 
string can be specified in the header. This note string is 
often used to describe what the vectors test, and is included 
as output in the simulation output file, the document output 
file, and the JEDEC programmer load file. 

The table lists input combinations and their resulting 
outputs. All or some of the possible input combinations can 
be listed. 

All values specified in the table must be constants, either 
declared, numeric or the special constant, ".X.". Each line 
of the table (each input/output listing) must end with a 
semicolon. 

8-43 



Language Reference 

Following is a simple test vectors table: 

TEST_VECTORS 
( CA,Bl ·> CC, DJ ) 

[0,0] ·> [1,1] 

[0,1] ·> [1,0] 

[1,0] ·> [0, 1l 

[1, 1] ·> [0,0] 

The following test vector table is equivalent to the table 
specified above because values for sets can be specified 
with numeric constants. 

TEST_VECTORS 
C CA,Bl ·> [C,Dl 

0 ·> 3 ; 
1 ·> 2 ; 

2 ·> 1 ; 
3 ·> 0 ; 

If the signal identifiers used in the test vector header were 
declared as active-low in the declaration section, then 
constant values specified in the test vectors will be inverted 
accordingly. 

8-44 



9. Directives 

Directives provide many options that can affect the contents 
of a source file when it is processed. Sections of ABEL 
source code can be included conditionally, code can be 
brought into a source file from another file, and messages 
can be printed during the processing of a source file. 

Directives are for the designer who understands the basics 
of ABEL and who wants to use more complex structures. 
Table 9-1 lists the available directives, which are described 
in detail in later subsections. Examples of directive usage 
to create test vectors are given in chapter 12. 

Some of the directives take arguments that are used to 
determine conditions. When this is the case, the argument 
can be an actual argument, or it can be a dummy argument 
preceded by a question mark. The rules applying to actual 
and dummy arguments are presented in section 7.11. 

When debugging your source file, you can use the -E and 
-P flags to examine statements. The -E parameter causes 
the parsed and expanded source code to be written to the 
listing file (or to the display if the -L flag is omitted). Text 
included by directives is written (or displayed). In addition 
to the listing information provided by the -E flag, the -P 
flag lists the directives that caused code to be added to the 
source file. 

Table 9-1. Directives 

@ALTERNATE @IFDEF 
@CONST @IFIDEN 
@EXPR @IFNB 
@EXIT @IFNDEF 
@IF @IFNIDEN 
@IFB 

@INCLUDE 
@IRP 
@IRPC 
@MESSAGE 
@PAGE 

@RADIX 
@REPEAT 
@STANDARD 

9-1 



Language Reference 

9.1 @ALTERNATE Directive 

9-2 

@ALTERNATE 

@AL TERNA TE brings an alternate set of operators into 
effect that duplicate the normal ABEL operators. This is 
for users who feel more comfortable with the alternate set 
because of their familiarity with operators used in other 
languages. 

The alternate operators remain in effect until the 
@STANDARD directive is issued or the end of the 
module is reached. 

The alternate operator set is listed in table 9-2. 

Table 9-2. Alternate Operator Set 

ABEL Operator Alternate Operator Description 

I NOT 
& * AND 
# + OR 
$ : +: XOR 
!$ . *. XNOR 

Note that the use of the alternate operator set precludes 
use of the ABEL addition, multiplication and division 
operators because they represent the OR, AND and NOT 
logical operators in the alternate set. 



Directives 

9.2 @CONST {Constant) Directive 

@CONST id = expression ; 

id a valid identifier 

expression a valid expression 

@CONST allows new constant declarations to be made in a 
source file outside the normal (and required) declarations 
section. 

The @CONST directive is intended to be used inside 
macros so that they can define their own internal 
constants. Constants defined with @CONST override any 
previous constant declarations. Declaring an identifier as 
a constant in this manner constitutes an error if the 
identifier was used earlier in the source file as something 
other than a constant (i.e., a macro, pin, device). 

Example: 

@CONST count= count+ l; 

9-3 



Language Reference 

9.3 @EXIT Directive 

@EXIT 

The @EXIT directive causes PARSE to abort processing 
of the source file with error bits set. (Error bits allow the 
operating system to determine that a processing error has 
occurred.) 

9.4 @EXPR (Expression) Directive 

9-4 

@EXPR [ block I expression ; 

block a block 

expression a valid expression 

@EXPR evaluates the given expression, and converts it to 
a string of digits in the default base numbering system. 
This string and the block are then inserted into the source 
file at the point at which the @EXPR directive occurs. 
The expression must produce a valid number. 

Example: 

@expr {ABC} "Bl 1 ; 

Assuming that the default base is base ten, this example 
causes the text ABC3 to be inserted into the source file. 



9.5 @IF Directive 

@IF expression block 

expression 

block 

Directives 

a valid expression that produces a 
numeric value 

a valid block of text as described in 
section 2 

@IF is used to include sections of ABEL source code 
based on the value resulting from an expression. If the 
expression is non-zero (logical true), the block of code is 
included as part of the source. 

Dummy argument substitution is valid in the expression. 

Example: 

@IF (A > 17) { C = D $ F ; } 

9-5 



Language Reference 

9.6 @IFB (If Blank} Directive 

9-6 

@IFB (arg) block 

arg either an actual argument or a dummy 
argument preceded by a "?" 

block a valid block of text 

@IFB includes the text contained within the block if the 
argument is blank (has 0 characters). 

Examples: 

@IFB () 
{ text here will be included 
with the rest of the source file. 
} 

@IFB ( hello ) 
{ this text will not be included } 

@IFB (?A) 
{ this text will be included if no value is substituted 
for A. } 



Directives 

9. 7 @IFDEF {If Defined) Directive 

@IFDEF id block 

id an identifier 

block a valid block of text 

@IFDEF includes the text contained within the block if 
the identifier is defined. 

Examples: 

A pin 5; 
@if def A { Base = "hEOOO ; } 
"the above assignment is made because A was defined 

9-7 



Language Reference 

9.8 @IFIDEN {If Identical} Directive 

9-8 

@IFIDEN (argl,arg2) block 

argl,2 

block 

either an actual argument, or a dummy 
argument name preceded by a "?" 

a valid block of text 

The text in the block is included in the source file if argl 
and arg2 are identical. 

Example: 

@ifiden (? A,abcd) { ? A device 'Pl 6R4'; } 

A device declaration for a Pl 6R4 is made if the actual 
argument substituted for A is identical to abed. 



Directives 

9.9 @IFNB (If Not Blank) Directive 

@IFNB (arg) block 

arg arg either an actual argument, or a dummy 
argument name preceded by a "?" 

block a valid block of text 

@IFNB includes the text contained within the block if the 
argument is not blank, meaning that it has more than 0 
characters. 

Examples: 

@IFNB () 
{ ABEL source here will not be included 
with the rest of the source file. 
} 
@IFNB ( hello ) 
{ this text will be included } 
@IFNB (?A) 
{ this text will be included if a value is 
substituted for A} 

9-9 



Language Reference 

9.10 @IFNDEF (If Not Defined) Directive 

@IFNDEF id block 

id an identifier 

block a valid block of text 

@IFNDEF includes the text contained within the block if 
the identifier is undefined. Thus, if no declaration (pin, 
node, device, macro or constant) has been made for the 
identifier, the text in the block will be inserted into the 
source file. 

Example: 

@ifndef A{Base=""hEOOO;} 
"if A is not defined, the block is inserted in the text 

9-10 



Directives 

9.11 @IFNIDEN (If Not Identical) Directive 

@IFNIDEN (argl ,arg2) block 

argl,2 

block 

either an actual argument, or a dummy 
argument name preceded by a "?" 

a valid block of text 

The text in the block is included in the source file if argl 
and arg2 are not identical. 

Example: 

@ifniden (?A,abcd) { ?A device 'Pl6R8'; } 

A device declaration for a Pl6R8 is made if the actual 
argument substituted for A is not identical to abed. 

9-11 



Language Reference 

9.12 @INCLUDE Directive 

@INCLUDE filespec 

filespec a string specifying the name of a file, where 
the specification follows the rules of the 
operating system being used 

@INCLUDE causes the contents of the file identified by 
the file specification to be placed in the ABEL source file. 
The inclusion will begin at the location of the 
@INCLUDE directive. The file specification can include 
an explicit drive or path specification that indicates where 
the file is to be found. If no drive or path specification is 
given, the file is expected to be on either the default drive 
or path, or on the drive or path specified by the -H 
parameter. 

Example: 

@INCLUDE 'macros.abl' "file specification 

9-12 



Directives 

9.13 @IRP {Indefinite Repeat) Directive 

@IRP dummy_arg ( arg (,arg] ... ) block 

dummy_ arg a dummy argument 

arg 

block 

either an actual argument, or a dummy 
argument name preceded by a "?" 

a block of text 

@IRP causes the block to be repeated in the source file n 
times, where n equals the number of arguments contained 
in the parentheses. Each time the block is repeated, the 
dummy argument takes on the value of the next successive 
argument. 

For example: 

@IRP A (1, "HOA,O) 
{B =?A; 
} 

results in: 

B = 1 ; 
B ="HOA; 
B = 0; 

which is inserted into the source file at the location of the 
@IRP directive. Multiple assignments to the same 
identifier cause an implicit OR to occur (see section 2.8.6). 

9-13 



Language Reference 

Note that if the directive is specified like this: 

@IRP A (l,"HOA,O) 
{B = ?A;} 

the resulting text would be: 

B = l ; B = "HOA ; B = 0 ; 

The text appears all on one line because the block in the 
@IRP definition contains no end-of-lines. Remember 
that end-of-lines and spaces are significant in blocks. 

9-14 



Directives 

9.14 @~RP~ (Indefinite Repeat, Character) 
D1rect1ve 

@IRPC dummy_arg (arg) block 

dummy_ arg a dummy argument 

arg 

block 

either an actual argument, or a dummy 
argument name preceded by a "?" 

a block 

@IRPC causes the block to be repeated in the source file n 
times, where n equals the number of characters contained 
in arg. Each time the block is repeated, the dummy 
argument takes on the value of the next successive 
character. 

For example: 

@IRPC A (Cat) 
{B =?A; 
} 

results in: 

B = C; 
B =a; 
B = t; 

which is inserted into the source file at the location of the 
@IRPC directive. 

9-15 



Language Reference 

9.15 @MESSAGE Directive 

@MESSAGE 

string string any valid string 

@MESSAGE prints a message specified in string at the 
terminal. This can be used to monitor the progress of the 
PARSE step of the language processor. 

Example: 

@message 'Includes completed' 

9.16 @PAGE Directive 

@PAGE 

Send a form feed to the parser listing file. If no listing is 
being created, @PAGE has no effect. 

9-16 



Directives 

9.17 @RADIX Directive 

@RADIX expr ; 

expr a valid expression that produces the number 2, 8, 
IO or 16 to indicate a new default base 
numbering. 

@RADIX is used to change the default base numbering 
system. The normal default is base IO (decimal). This 
directive is useful when many numbers need to be 
specified in a base other than IO, say base 2. The 
@RADIX directive can be issued and all numbers that do 
not have their base explicitly stated are assumed to be in 
the new base, in this case, base 2. (See section 7 .6.) 

The newly specified default base stays in effect until 
another @RADIX directive is issued or until the end of 
the module is reached. 

When the default base is set to 16, all numbers in that base 
that begin with an alphabetic character must begin with 
leading zeroes. 

Examples: 

@radix 2 ; "change default base to binary 
@radix 11011/11 + 1 ; "change back to decimal 

9-17 



Language Reference 

9.18 @REPEAT Directive 

@REPEAT expr block 

ex pr a valid expression that produces a number 

block a block 

@REPEAT causes the block to be repeated n times, where 
n is specified by the constant expression. 

The following use of the repeat directive, 

@repeat 5 {H,} 

results in the text "H,H,H,H,H," being inserted into the 
source file. The @REPEAT directive is useful in 
generating long truth tables and sets of test vectors. 
Examples of @REPEAT usage can be found in the 
Applications Guide. 

9-18 

( 



Directives 

9.19 @STANDARD Directive 

@STANDARD 

@STANDARD switches the operators in effect back to the 
ABEL standard operators from the alternate set. The 
alternate set is chosen with the @AL TERNA TE directive. 

9-19 



Language Reference 

9-20 



10. Design Examples 

The logic designs and design features discussed in the 
following sections are contained on the Design Examples 
disk or tape you received with the ABEL package; and are 
listed in table 10-1. 

You can process these design examples with ABEL, either 
as they stand, or with your own modifications, to create 
programmer load files. Many of the design examples listed 
in table 10-1 are described in detail within this manual, and 
the section reference is given for these design examples. 
Design examples not described in the manual, but listed in 
table 10-1, can be examined as the need arises. 

Table 10-1 lists the design examples alphabetically by 
filename of the ABEL source file and contains columns for: 

• THE NAME OF THE SOURCE FILE. The source file 
uses the .ABL file extension (e.g., ADDS is 
ADD5.ABL). The ABEL batch file requires that the 
file extension not be entered for the source file. The 
command line for any of individual programs defaults 
to .ABL for a source file extension. 

• PROGRAMMABLE LOGIC DEVICE TYPE. The type 
of programmable logic device type used in the design 
example is listed to assist you in locating meaningful 
design examples. 

• SECTION REFERENCE. Where applicable, a 
reference to a specific section in this manual is given 
that provides some detailed information. 

• TYPE OF EXAMPLE. A brief description of the 
design example. 

10-1 



Applications Guide 

Table 10-1. Design Examples Supplied with ABEL 

Section 
Filename Device Refer-
(*.ABL) Type ence. Type of Example 

ADDS FlS9 4.6 Simulation trace levels 
ALARM Pl6R4 N/A Macros (state diagram) 
BARREL P20R8 10.6 Sets 
BCD7PAL Pl6L8 N/A P ALASM example for 

TO ABEL 
BCD7ROM RASPS 10.7 Truth table 
BGATES Pl2H6 N/A ABEL version of P ALASM 

basic gates 
BGEQN FlOO N/A @repeat directive used 

w I equations 
BINBCD Pl6L8 10.10 Truth table 
BJ ACK Pl6R6 10.10 State machine 
BUFFER FlS3 10.9 Three-state output control 
COMP4A FlS3 10.8 Relational operators 
COUNT4 Pl6R4 10.4 Equations 
COUNT4A Pl6R4 10.4 Multiple equations for one 

output 
DECADE Fl OS 13.S Transition equations 

complement array 
DEM01800 ElSOO Macro cell control 
DMUXlTS Pl6LS 10.3 Sets 
FEEDBACK Pl6R4 4.6 Simulator example 
FPLS Fl57 N/A Logic sequencer features 
GALS 16U8 Selection of GAL models 
GATES Pl2H6 N/A PALASM example for 

TO ABEL 
LCUCROM RASPS N/A Macros, compiler directives 
MACROCEL E0310 13.2 Output macro cells 
M6S09A Pl4L4 10.1 Sets, relational operators 
M6S09B Pl4L4 12.S Macros with test vectors 
M6S09C Pl4L4 12.5 Macros with test vectors 
M6S09D Pl6LS 11.3 Device type from command 

line 

10-2 



Design Examples 

Table 1-1. (cont.) 
Section 

Filename Device Refer-
(*.ABL) Type ence. Type of Example 

M6809ER Pl4L4 4.6 Demonstrates simulation 
error 

M6809ERR Pl4L4 4.2 Demonstrates syntax error 
MUXADD P22V10 10.10 Ripple adder 
MUX12T4 Pl4H4 10.2 Sets 
OCTAL P20X8 N/A Exclusive OR equations 
REGFB Pl6R4 4.6 Simulator example 
SHIFT40 32Rl6 N/A 84-pin PAL example 
TllSHOT Pl9R8 N/A Input registers 
TRAFFIC Fl67 N/A State machine RS flip/flops 
SEQUENCE Pl6R4 10.5 State Diagram 
SHIFTCNT Fl59 13.2 Controls JK & D flip-flops 

*This table represents a partial list of design examples available at the time 

of printing. To verify the design examples provided on your ABEL disk or 

tape, use the operating system to print the file named EXAMPLES.TXT. 

10-3 



Applications Guide 

The following logic design examples are believed to be 
representative of typical programmable logic applications. 
These serve to illustrate significant ABEL features. Use 
them to learn more about ABEL and to start designing with 
ABEL. We encourage you to use these examples directly by 
modifying them to suit your needs, or by incorporating 
them into larger system designs. 

The titles of the designs indicate the logic design problem 
being solved, the major features of ABEL used to solve the 
problem, and the type of programmable logic device used. 
Each design has accompanying block diagrams and source 
file listings. 

All the examples presented in this section are included on 
your ABEL distribution disk or tape. Additional examples 
not explained here are also included. A list and brief 
description of all examples distributed with ABEL can be 
found in the file named EXAMPLES.TXT on your 
distribution disk or tape; and also in table 1-1. You can use 
the operating system to display the list of design examples 
contained in EXAMPLES.TXT. 

10-4 



Design Examples 

10.1 6809 Memory Address Decoder 
(Equations P14L4) 

Address decoding is a typical application of programmable 
logic devices, and the following describes the ABEL 
implementation of such a design. 

A15 
ROM1 

ROM2 
A13 

10 
A12 

A11 

A10 

FFFF F800 F000 E800 E000 0000 

Figure 10-1. Block Diagram: 6809 Memory Address Decoder 

10.1.1 Design Specification 

Figure 10-1 shows the block diagram for this design and a 
continuous block of memory divided into sections 
containing dynamic RAM (DRAM), 1/0 (IO), and two 
sections of ROM (ROM I and ROM2). The purpose of this 
decoder is to monitor the 6 high-order bits (AJ5-AJO) of a 
sixteen-bit address bus and select the correct section of 
memory based on the value of these address bits. To 
perform this function, a simple decoder with six inputs and 
four outputs is designed with a Pl4L4 PAL. 

10-5 



Applications Guide 

Table 10-2 shows the address ranges associated with each 
section of memory. These address ranges can also be seen 
in figure 10-1. 

Table 10-2. Address Ranges for the 6809 Controller 

Memory Section 

DRAM 
1/0 
ROM2 
RO Ml 

10.1.2 Design Method 

Address Range (hex) 

0000-DFFF 
EOOO-E7FF 
FOOO-F7FF 
F800-FFFF 

Figure 10-2 shows a simplified block diagram for the 
address decoder. The address decoder is implemented with 
simple Boolean equations employing both relational and 
logical operators as shown in listing 10-1. A significant 
amount of simplification is achieved by grouping the 
address bits into a set named Address. The lower-order ten 
address bits that are not used for the address decode are 
given "don't care" values in the address set. In this way, the 
designer indicates that the address in the overall design 
(that beyond the decoder) contains sixteen bits, but that bits 
0-9 do not affect the decode of that address. This is 
opposed to simply defining the set as 

Address= [Al5,Al4,Al3,Al2,All,Al0] 

which ignores the existence of the lower-order bits. 
Specifying all 16 address lines as members of the address set 
also allows full 16-bit comparisons of the address value 
against the ranges shown in table 10-2. 

10-6 



Design Examples 

module m6809a 
title 16809 memory decode 
Jean Designer Data 1/0 

U09a 
A15,A14,A13,A12,A11,A10 
ROM1,IO,ROM2,DRAM 

H,L,X 1,0,.X.; 

Rectnond YA 24 Feb 1987 1 

device 'P14L4'; 
pin 1,2,3,4,5,6; 
pin 14,15,16,17; 

Address [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,Xl; 

equations 
!DRAM (Address <= "hDFFF); 

!IO (Address>= "hEOOO) & (Address<= "hE7FF); 

!ROM2 (Address >= "hFOOO) & (Address <= "hF7FF); 

!ROM1 (Address >= "hF800); 

test vectors (Address -> [ROM1,ROM2,IO,DRAMl) 
"hOOOO -> [ H, H, H, L l; 
"h4000 -> [ H, H, H, L l; 
"h8000 -> [ H, H, H, L l; 
"hCOOO -> [ H, H, H, L l; 
"hEOOO -> [ H, H, L, H l; 
"hE800 -> [ H, H, H, H l; 
"hFOOO -> [ H, L, H, H l; 
"hF800 -> [ L, H, H, H l; 

end m6809a 

Listing 10-1. Source File: 6809 Memory Address Decoder 

10-7 



Applications Guide 

Address 

Figure 10-2. Simplified Block Diagram: 6809 Memory 
Address Decoder 

10.1.3 Test Vectors 

In this design, the test vectors are a straightforward listing 
of the values that must appear on the output lines for 
specific address values. The address values are specified in 
hexadecimal notation. 

10-8 



Design Examples 

10.2 12 to 4 Multjplexer 
(Equations/P14H4} 

Following is a description of a 12-input to 4-output 
multiplexer implemented with one Boolean equation. 

10.2.1 Design Specification 

Figure 10-3 shows the block diagram for this design. The 
multiplexer selects one of three sets of four inputs and 
routes that set to the outputs. The inputs are a0-a3, b0-b3, 
and c0-c3. The outputs are y0-y3. The routing of inputs to 
outputs is straightforward: aO or bO or cO is routed to the 
output yO, al or bl or cl is routed to the output yl, and so 
on with the remaining outputs. 

b0 
b1 

b2 
b3 

c3 

y0 
...... .__ __ y1 

.·.···r-~y2 

y3 

s1 s0 

Figure 10-3. Block Diagram: 12 to 4 Multiplexer 

10-9 



Applications Guide 

10.2.2 Design Method 

Figure 10-4 shows a block diagram for the same 
multiplexer after sets have been used to group the signals. 
All of the inputs have been grouped into the sets a, b, and 
c; the outputs and select lines are grouped into the sets, y 
and select, respectively. This grouping of signals into sets 
takes place in the declaration section of the source file 
listed in listing 10-2. 

select 

Figure 10-4. Simplified Block Diagram: 12 to 4 Multiplexer 

Once the sets have been declared, specification of the 
design is made by means of the following four equations 
that use WHILE-THEN statements. 

10-10 

when (select== 0) then y =a; 
when (select == I) then y = b; 
when (select == 2) then y = c; 
when (select== 3) then y = c; 



Design Examples 

The relational expression inside the parentheses produces an 
expression that evaluates to true or false value depending on 
the values of sl and sO. In the first equation, this 
expression is then ANDed with the set a which contains the 
four bits, a0-a3, and could be written as 

y = (select == 0) & a 

Assume that select is equal to 0 (sl = 0 and sO = 0) so that a 
true value is produced. The true is then ANDed with the 
set a on a bit by bit basis, which in effect sets the product 
term to a. If select were not equal to 0, the relational 
expression inside the parentheses would produce a false 
value, which when ANDed with anything, would give all 
zeroes. The other product terms in the equation work in 
the same manner. Because select takes on only one value at 
a time, only one of the product terms passes the value of an 
input set along to the output set; the others contribute 0 bits 
to the ORs. 

10.2.3 Test Vectors 

The test vectors for this design are specified in terms of the 
input, output and select sets. Note that the values for a set 
can be specified by decimal numbers and by other sets. 
The constants H and L used in the test vectors were 
declared as four bit sets containing all ones or all zeroes. 

10-11 



Applications Guide 

module rrux12t4 
title 112 to 4 multiplexer 11 Nov 1987 
Charles Olivier & Dave Pellerin Data 1/0 Corp. Redmond WA' 

rrux12t4 

a0,a1,a2,a3 
b0,b1,b2,b3 
c0,c1,c2,c3 
s1,s0 
y0,y1,y2,y3 

H 
L 
x 
select 
y 
a 
b 
c 

equations 

device 1 P14H4 1 ; 

pin 1,2,3,4; 
pin 5,6,7,8; 
pin 9, 11,12,13; 
pin 18, 19; 
pin 14,15,16,17; 

[1,1,1,11; 
C0,0,0,0]; 
.x.; 
[s1, sOl; 
[y3. y2 'y1 'yO] ; 
[a3, a2,a1, aOl; 
[b3,b2,b1 ,bO]; 
[c3, c2, c 1 , cOl ; 

when (select == 0) then y = a; 
when (select == 1) then y = b; 
when (select == 2) then y = c; 
when (select == 3) then y = c; 

test vectors 
([select, a, b, C] -> y) 

co . 1, x, Xl -> 1; "select 
[0 ,10, H, Ll -> 10; 
co • 5' H, Ll -> 5· 

' 
[1 , H, 3, Hl -> 3· 

' 
"select 

[1 ,10, 7, Hl -> 7· 
' [1 , L, 15, Ll ·> 15; 

[2 L, L, 8] -> 8; "select 
[2 ' H, H, 9] -> 9; 
[2 , L, L, 1] -> 1; 

0, gates lines a to output 

1, gates lines b to output 

2, gates lines c to output 

[3 , H, H, 0] -> O· 
' 

"select= 3, gates Lines c to output 
[3 , L, L, 9] -> 9; 
[3 , H, L, 0] -> O; 

end _mux12t4 

Listing 10-2. Source File: 12 to 4 Multiplexer 

10-12 



10.3 1 to 8 DemultiP-lexer 
(Equations/P16L8) 

Design Examples 

Following is the design for a simple one line to eight line 
demultiplexer with an enable. The design is implemented 
with Boolean equations and a Pl6L8 PAL. 

y0 
data 

y1 

s0 y2 

y3 

y4 

y5 

y6 

y7 

Figure 10-5. Block Diagram: 1 to 8 Demultiplexer 

10.3.1 Design Specification 

Figure 10-5 shows a block diagram for a one line to eight 
line demultiplexer with active low outputs, a one bit input, 
three select lines and an enable. The demultiplexer routes 
the input named data to one of the eight output lines, y0-
y7, according to the value present on the select lines, s0-s2. 
Because the outputs are inverted, they show the inverse of 
the input line. The select lines carry a three bit binary 
number whose value ranges from 0 to 7, thus selecting one 

10-13 



Applications Guide 

of the outputs. enb is an enable line. When enb is low (0), 
the outputs go to high impedance. When enb is high, the 
outputs are determined by the demultiplexing function. 

---------------------------~ 

Figure 10-6. Simplified Block Diagram: Demultiplexer 

10.3.2 Design Method 

Figure 10-6 shows a simplified block diagram of the 
demultiplexer. The select lines and outputs are collected 
into sets named select and outputs to simplify the Boolean 
equations with which the demultiplexing function is 
described. The ABEL description of this logic is shown in 
listing 10-3. Each output is determined by ANDing the 
data line with a relational expression that checks for 
equivalence between the select lines and one of the eight 
possible select values. Because select can have only one 
value at any given time, only one of the outputs is selected 
for an AND with the data value. The selected output shows 
the inverse of the data line. 

The enable function is implemented with a separate 
equation using the set outputs along with the ENABLE 
keyword. Thus the equation, 

enable outputs = enb ; 

assigns the enables on each of the output lines to the input, 
enb. 

10-14 



Design Examples 

10.3.3 Test Vectors 

The test vectors for this design first select each of the 
outputs with the data input and enable high, then they 
select each of the outputs with the data input low and the 
enable high. Finally, the enable is checked by setting it 
low; all the outputs go to high impedance. 

10-15 



Applications Guide 

module drux1t8 
title 1 1 to 8 line demultiplexer 
Mark Kuenster FurureNet Division, Data 1/0 Corp. 19 Nov 1987 1 

DM1 device 'P16L8'; 

y0,y1,y2,y3,y4,y5,y6,y7 pin 
s0,s1,s2,data,enb pin 

12,13,14,15,16,17, 18, 19; 
1,2,3,4,5; 

1,0, .Z.; 
[s2, s1, sOl; 

H,L,Z 
select 
outputs [y7, y6, y5, y4, y3, y2, y1, yOl; 

equations 
!yO 
!y1 
!y2 
!y3 
!y4 
!y5 
!y6 
!y7 

(select --
= (select -

(select 
(select 
(select 
(select 
(select 
(select 

0) & data; 
1) & data; 
2) & data; 
3) & data; 
4) & data; 
5) & data; 
6) & data; 
7) & data; 

enable outputs = enb; 

test vectors 'Test the deruliplexer with a high input• 
([enb,select,data] ·> [y7,y6,y5,y4,y3,y2,y1,y0]) 

[ H I 0 H ] -> [HI HI HI HI HI HI HI Ll ; 
[ H I 1 H ] -> [HI HI HI HI HI HI LI H] ; 
[ H 2 H ] -> [HI HI HI HI HI LI HI H] ; 
[ H I 3 H ] -> [HI HI HI HI LI HI HI Hl ; 
[ H 4 H ] -> [HI HI HI LI HI HI HI Hl ; 
[ H 5 H ] -> [HI HI LI HI HI HI HI Hl ; 
[ H I 6 H ] -> [HI LI HI HI HI HI HI H] ; 
[ H 7 H ] -> [LI HI HI H I HI HI HI H] ; 
r L , o H 1 -> rz, z, z, z, z, z, z, z1 ; 

test vectors 'Test the deruliplexer with a low input' 
([enb,select,data] -> [y7,y6,y5,y4,y3,y2,y1,y0]) 

[ H 0 L l -> [H, H, H, H, H, H, H, Hl; 
[ H 1 L l -> [H, H, H, H, H, H, H, Hl; 
[ H I 2 L ] -> [H, H, H, H, H, H, H, HJ; 
[ H 3 L J -> [H, H, H, H, H, H, H, HJ; 
[ H 4 L l -> CH, H, H, H, H, H, H, HJ; 
[ H 5 I L J -> [HI HI HI HI HI HI HI HJ ; 
[ H 6 L J -> [H, H, H, H, H, H, H, HJ; 
r H 7 L 1 -> rn, H, H, H, H, H, H, HJ ; 
r L o L 1 -> rz, z, z, z, z, z, z, zJ; 

end dnux1t8 

Listing 10-3. 1 to 8 Demultiplexer 

10-16 

"Select yO 
"Select y1 
"Select y2 
"Select y3 
"Select y4 
"Select y5 
"Select y6 
"Select y7 

"Select yO 
"Select y1 
"Select y2 
"Select y3 
"Select y4 
"Select y5 
"Select y6 
"Select y7 



10.4 4-Bit Counter/Multiplexer 
{Equations/P16R4} 

Design Examples 

Following is a design for a 4-bit synchronous counter 
implemented with a Pl6R4. Counter features include 
carry-in and carry-out, 2 input multiplexing and a hold 
state. The counter is described by Boolean equations. 

83 82 81 80 A3 A2 A1 A0 

03 02 01 00 

Figure 10-7. Block Diagram: 4-Bit Counter With 2 Input 
Multiplexer 

10.4.1 Design Specification 

Figure 10-7 shows the counter and its signals. The outputs, 
QO, Q 1, Q2, and Q3 show the current count, with QO being 
the low-order bit and Q3 being the high-order bit. The 
counter has four different modes of operation: hold, load A, 
load B, and increment. The modes are selected by the 
inputs, IO and I1, as indicated in table 10-3. In the hold 
mode, the current count is retained regardless of clocking. 
When in load A mode, the counter loads the values on AO
A3 on the next clock pulse. Similarly, the BO-B3 inputs are 
loaded into the counter on the next clock pulse when the 
mode is load B. In increment mode, the count is increased 

10-17 



Applications Guide 

by the value on the carry-in line CI on a clock pulse. If 
the count overflows from 15 (hex F) to 0, the carry-out line 
CO, goes to I. The output control, OC, enables the outputs 
when low (QC =0) and forces the outputs to high impedance 
when high (OC= 1). 

Table 10-3. Counter Modes 

Mode II IO Description 

Hold 0 0 count remains unchanged 
Load A 0 I load AO-A3 into the count 

registers 
Load B 0 load BO-B3 into the count 

registers 
Increment I increment the count by I on 

clock pulse 

The carry-in and carry-out lines operate such that two or 
more of the counters can be chained together to form a 
wider counter. To do this, the carry-out of one counter is 
connected to the carry in of the next counter. Thus, when 
the first counter counts to 16, it is cleared to 0 and its 
carry-out bit is one, causing the next counter's increment to 
be one. 

10-18 



Design Examples 

Input B Input A 

Clk 
......................• ...,....-oc 

L.i.22..i....l.2,µLL.2±2.i2.d 

Output 

Figure 10-8. Simplified Block Diagram: 4 -Bit Counter 
With 2 Input Multiplexer 

10.4.2 Design Method 

The counter is described with Boolean equations. Figure 
10-8 shows the simplified block diagram corresponding to 
the ABEL implementation of the counter design. Listing 
10-4 shows the source file. 

The design is simplified by grouping the input bits, output 
bits and mode selectors into sets, so that they can be 
referenced by name. The inputs AO-A3 are assigned to the 
set lnputA, the inputs BO-B3 to the set lnputB, the outputs 
QO-Q3 and CO to the set Output, and the mode selectors IO 
and I1 to the set Mode. 

Notation in the source file can be further simplified by 
some simple constant assignments. H represents a 1, L 
represents a 0, X represents the special constant .X., and so 
on. The four possible modes are also assigned as constants: 
Hold=O, LoadA=l, LoadB=2, and Incr=3. These 

10-19 



Applications Guide 

assignments correspond to the decimal equivalent of the two 
bit binary number formed of I 1 and IO, as already shown in 
table 10-2. Note also that this two bit binary number is the 
set Mode. 

Thus, in the equations section of the source file, the set 
Mode is compared to the different possible modes -- by 
name. Take for example, the expression: 

Mode==LoadA 

This is equivalent to: 

[11,IO]==l 

And this is equivalent to: 

(11==0) & (IO ==l) 

which can be written as: 

!II & IO 

This means "if 11 is low and IO is high." By using sets and 
constant assignments, the source file becomes more 
meaningful. The expression, Mode==LoadA, can be 
read as, "if the mode is LoadA." 

The equations section of the source file simply describes the 
Boolean equations for a 4-bit adder with carry-in, carry
out and multiplexed load. 

10-20 



Design Examples 

10.4.3 Test Vectors 

The advantages of set notation become even more apparent 
in the test vectors section of the source file. In the test 
vectors section, it is necessary to show the required output 
for various given inputs. Rather than listing the outputs 
and inputs bit by bit, advantage is taken of sets, constants, 
and hexadecimal notation to simplify the vectors. 

For example, because LoadA was assigned the constant 
value, I, the name, LoadA, can be used directly in the test 
vectors as a value for Mode. Thus, it is unnecessary to 
remember that Mode is made up of I I and /2 and that 
LoadA corresponds to Il=O, IO=l. 

The test vectors shown in listing 10-4 test for proper 
loading of InputA and InputB, for increments after loads, 
for hold states, for correct operation of the carry-out, and 
for normal increment mode. Refer to the comments beside 
the test vectors for examples of each type of test. 

The PAL 16R4 and many other devices have a dedicated 
output enable pin. This pin must be held at the proper 
level (0 or 1) to observe the outputs. The test vectors in 
listing 10-4 include the output enable pin (OC). 

10-21 



Applications Guide 

module count4 
title 14-bit counter with 2 input Ill.IX 19 Nov 1987 
based on an example by Birkner/Coli in the MMI PAL Handbook 
Dan Burrier & Mike McGee FutureNet Division, Data I/0 Corp.' 

P7022 device 'P16R4'; 

Clk,OC,CO,I1,IO,CI pin 1,11,12,13, 18,19; 
AO,A1,A2,A3,BO,B1,B2,B3 pin 2,3,4,5,6,7,8,9; 
03,02,01 ,QO pin 14, 15, 16, 17; 
H,L,X,Z,C = 1,0, .X., .z., .C.; 
lnputA [A3,A2,A1,A0l; 
lnput8 = [83,82,81,801; 
Output = [C0,03,02,01 ,00]; 
Mode = [11, 10]; 
Hold,LoadA,LoadB,lncr = 0, 1,2,3; "define Modes 

equations 
!QO 

!Q1 

!Q2 

!Q3 

:= CMode==Hold ) & !QO 
# (Mode==LoadA) & !AO 
# CMode==LoadB) & !BO 
# (Mode==lncr > & !Cl & !QO 
# (Mode==lncr ) & Cl & QO 

:= CMode==Hold ) & !Q1 
# CMode==LoadA) & !A1 
# (Mode==Load8) & !81 
# (Mode==lncr ) & !Cl & !Q1 
# (Mode==lncr ) & !QO & !01 
# (Mode==lncr ) & CI & QO & Q1 

:= (Mode==Hold ) & !Q2 
# (Mode==LoadA) & !A2 
# (Mode==Load8) & !82 
# (Mode==lncr ) & !CI & !Q2 
# (Mode==lncr ) & !QO & !Q2 
# (Mode==lncr ) & !Q1 & !Q2 
# (Mode==Incr ) & Cl & QO & Q1 & 

:= (Mode==Hold ) & !03 
# CMode==LoadA) & !A3 
# (Mode==LoadB) & !B3 
# (Mode==Incr ) & !CI & !Q3 
# CMode==Incr ) & !QO & !Q3 
# CMode==lncr ) & !Q1 & !Q3 
# (Mode==Incr ) & !Q2 & !Q3 
# (Mode==Incr ) & Cl & QO & Q1 & 

!CO = !Cl # !QO # !Q1 # !Q2 # !Q3 ; 

"Hold if no carry 

"Hold if no carry 
"Hold if QO=L 

"Hold if no carry 
"Hold if QO=L 
"Hold if Q1=L 
Q2 ; 

"Hold if no carry 
"Hold if QO=L 
"Hold if Q1=L 
"Hold if Q2=L 
Q2 & Q3 ; 

Listing 10-4. Source file: 4-bit Counter with 2 Input Mux 
(continued on next page) 

10-22 



Design Examples 

@page 
test vectors I test Load A and B' 

([Clk,OC, Mode, InputA, InputB,CI ] -> Output) 
[ c, L, LoadA, "hO "hF ,x ] -> "hO; 
[ c, L. LoadB, "hO "hF ,L ] -> "hF; 
[ C, L, LoadA, "h1 "h7 ,x ] -> "h1; 
[ c, L, LoadB, "h1 "h7 ,x ] -> "h7; 
[ c, L, LoadA, "h2 "hB ,x ] -> "h2; 
[ c, L, LoadB, "h2 "hB ,x ] -> "hB; 
[ c, L, LoadA, "h4 "hD ,X ] -> "h4; 
[ c, L, LoadB, "h4 "hD ,x ] -> "hD; 
[ c, L, LoadA, "h8 "hE ,x ] -> "h8; 
[ c, L, LoadB, "h8 "hE ,X ] -> "hE; 
[ c, L, LoadA, "hO "hF ,x ] -> "hO; 
[ c, L, LoadB, "hO "hF ,L ] -> "hF; 

test vectors I test increment' 
([Clk,OC, Mode, InputA, InputB,CI ] -> Output) 
[ c, L, LoadB, x "h1 ,x ] -> "h1; 
[ c, L, Iner , x x ,H ] -> "h2; 
[ c, L, LoadB, x "h3 ,x ] -> "h3; 
[ c, L, Iner , x x ,H ] -> "h4; 
[ c, L, LoadA, "h7 x ,x ] -> "h7; 
[ c, L, Iner , x x ,H ] -> "h8; 
[ c, L, LoadA, "hF x ,L ] -> "hF; 
[ c, L, Iner , x x ,H ] -> "hO; "roll over 
[ c, L, LoadB, x "hC ,x ] -> "hC; 
[ c, L, Iner , x x ,H ] -> "hD; 
[ c, L, Hold , x x ,H ] -> "hD; 

test vectors I test carry' 
([Clk,OC, Mode, InputA, InputB,CI ] -> Output) 

[ C, L, Iner x x ,H ] -> "hE; 
[ c, L, Iner x x ,H ] -> "h1F; "carry out 
[ C, L, Iner x x ,H ] -> "hO; "roll over 
[ C, L, Iner x x ,H ] -> "h1; 
[ c, L, Iner x x ,L ] -> "h1; "no carry in 
[ C, L, Iner x x ,H ] -> "h2; 
[ L, H, Hold x x ,x ] -> [X, Z, Z, Z, Zl; 

end count4 

Listing 10-4. (continued) 

10-23 



Applications Guide 

10.4.4 Multiple Assignments to the Same Signal 

When a signal (output pin or node) name appears on the left 
side of more than one equation, the two equations are ORed 
together to produce an equation that fully describes the 
logic function. You can use this ORing of equations to split 
a design description into functional pieces, each of which 
describes a distinct part of the design; these individual 
pieces are ORed together to describe the whole design. 

Listing 10-5 shows the same 4-bit counter with 2-input 
multiplexer, but described by two separate equations 
sections. (Equations sections are begun by the keyword 
EQUATIONS.) The first equations section describes the 
multiplexing function, and the second describes the count 
function. Notice, however, that both groups of equations 
are written for the same outputs, QO-Q3. The multiplexing 
equations for QO are ORed with the count equations for QO, 
and together they describe the total function for that 
output. The same operation is performed for the other 
outputs to completely describe the design. 

This is the same 4-bit counter described in section I 0.4, but 
in that section the count and multiplexing functions are 
described together in one equations section. The function 
of each counter is identical, and the same equations are 
produced regardless of the method of description chosen. 

10-24 



Design Examples 

module count4a 
title 14-bit counter with 2 input rrux 19 Nov 1987 
based on an example by Birkner/Coli in the MM! PAL Handbook 
Dan Burrier & Mike McGee FutureNet Division, Data 1/0 Corp.• 

P7022A device 'P16R4'; 

Clk,OC,C0,11,10,CI pin 1,11,12,13,18,19; 
A0,A1,A2,A3,BO,B1,B2,B3 pin 2,3,4,5,6,7,8,9; 
Q3,Q2,Q1 ,QO pin 14, 15, 16, 17; 

H,L,X,Z,C 
InputA 
InputB 
Output 
Mode 
Hold,LoadA,LoadB,Incr 

1,0, .x.,.z.,.c.; 
[A3,A2,A1 ,AO]; 
[B3,B2,B1 ,BOl; 
[CO,C3,Q2,C1,COJ; 
[11,!0l; 

= 0,1,2,3; 11 define Modes 

equations 11 input rrultiplexer 

!CO := (Mode==Hold ) & !CO 
# (Mode==LoadA) & !AO 
# (Mode==LoadB) & !BO; 

!Q1 := (Mode==Hold ) & !Q1 
# CMode==LoadA) & !A1 
# (Mode==LoadB) & !B1; 

!C2 := (Mode==Hold ) & !C2 
# (Mode==LoadA) & !A2 
# (Mode==LoadB) & !B2; 

!Q3 := (Mode==Hold ) & !Q3 

!CO 

!Q1 

!Q2 

# (Mode==LoadA) & !A3 
# (Mode==LoadB) & !B3; 

11 4 bit counter 

:= (Mode==Incr ) & !Cl & !QO 
# (Mode==Incr ) & CI & QO 

:= (Mode==Incr ) & !CI & !C1 
# (Mode==Incr ) & !QO & !Q1 
# (Mode==Incr ) & Cl & QO & C1 

:= (Mode==lncr ) & !CI & !Q2 
# (Mode==Incr ) & !QO & !C2 
# (Mode==Incr ) & !Q1 & !Q2 
# (Mode==Incr ) & Cl & QO & C1 & 

"Hold if no carry 

"Hold if no carry 
"Hold if QO=L 

"Hold if no carry 
"Hold if QO=L 
"Hold if Q1=L 

Q2 ; 

Listing 10-5. Multiple Equations Sections, 4-Bit Counter 
(continued on next page) 

10-25 



Applications Guide 

@page 
!Q3 := CMode==Incr ) & !CI & !Q3 "Hold if no carry 

# CMode==Incr ) & !QO & !Q3 "Hold if QO=L 
# CMode==Incr ) & !Q1 & !Q3 "Hold if Q1=L 
# CMode==Incr ) & !Q2 & !Q3 "Hold if Q2=L 
# (Mode==Incr ) & Cl & QO & Q1 & Q2 & Q3 ; 

!CO = !CI # !QO # !Q1 # !Q2 # !Q3 ; 

test vectors I test Load A and B' 
([Clk,OC, Mode, InputA, InputB,CI -> Output) 
[ c, L, LoadA, "hO "hF ,x -> "hO; 
[ c, L, LoadB, "hO "hF ,L -> "hF; 
[ c I L, LoadA, "h1 "h7 ,x -> "h1; 
[ c, L, LoadB, "h1 "h7 ,x -> "h7; 
[ c I L, LoadA, "h2 "hB ,x -> "h2; 
[ c I L, LoadB, "h2 "hB ,X -> "hB; 
[ c I L, LoadA, "h4 "hD ,x -> "h4; 
[ c, L, LoadB, "h4 "hD ,x -> "hD; 
[ c, L, LoadA, "h8 "hE ,x -> "h8; 
[ c, L, LoadB, "h8 "hE ,x -> "hE; 
[ c I L, LoadA, "hO "hF ,x -> "hO; 
[ c I L, LoadB, "hO "hF ,L -> "hF; 

test vectors I test increment' - ([Clk,OC, Mode, InputA, InputB,CI ] -> Output) 
[ c I L, LoadB, x "h1 ,x ] -> "h1; 
[ c, L, Iner , x x ,H ] -> "h2; 
[ c, L, LoadB, x "h3 ,X ] -> "h3; 
[ c, L, Iner , x x ,H ] -> "h4; 
[ c, L, LoadA, "h7 x ,x ] -> "h7; 
[ c, L, Iner , x x ,H ] -> "h8; 
[ c' L, LoadA, "hF x ,L ] -> "hF; 
[ c, L, Iner , x x ,H ] -> "hO; "roll over 
[ c, L, LoadB, x "hC ,x ] -> "hC; 
[ c, L, Iner , x x ,H ] -> "hD; 
[ c, L, Hold , x x ,H ] -> "hD; 

test _vectors I test carry' 
([Clk,OC, Mode, InputA, InputB,CI ] -> Output) 

[ C, L, Iner x x ,H ] -> "hE; 
[ C, L, Iner x x ,H ] -> "h1F; "carry out 
[ c I L, Iner x x ,H ] -> "hO; "roll over 
[ c, L, Iner x x ,H ] -> "h1; 
[ c, L, Iner x x ,L ] -> "h1; "no carry in 
[ c, L, Iner x x ,H ] -> "h2; 
[ L, H, Hold x x ,x ] -> [X,Z,Z,Z,Zl; 

end count4a 

Listing 10-5. (continued) 

10-26 



10.5 Three-State Sequencer 
{State Diagram/16R4) 

Design Examples 

The following design is a simple sequencer that 
demonstrates the use of ABEL state diagrams. The design is 
implemented in a Pl6R4 device. There is no exact limit on 
number of State Diagram states that can be processed by 
ABEL, but depends on the number of transitions and the 
path of the transitions. For example, a 64 state counter uses 
fewer terms (and smaller equations) than a 63 state counter. 
For larger counter designs, use the syntax countA:= countA + 1 

to create a counter rather than using a state machine. See 
also example COUNT! 16.ABL for further information on 
counter implementation. 

10.5.1 Design Specification 

Figure 10-9 shows the sequencer design, with a bubble 
diagram showing the transitions and desired outputs. The 
state machine starts in state A and remains in that state 
until the 'start' input becomes high. It then sequences from 
state A to state B, from state B to state C, and back to state 
A. It remains in state A until the 'start' input is high again. 
If the 'reset' input is high, the state machine returns to state 
A at the next clock cycle. If this reset to state A occurs 
during state B, an 'abort' synchronous output goes high, and 
remains high until the machine is again started. 

During states B and C, asynchronous outputs 'in_B' and 
'in_C' become high to indicate the current state. Activation 
of the 'hold' input will cause the machine to hold in state B 
or C until 'hold' is no longer high, or 'reset' becomes high. 

10.5.2 Design Method 

The sequencer is described by using a ST A TE DIAGRAM 
section in the ABEL source file. Listing 10-6 shows the 

10-27 



Applications Guide 

ABEL source file for the sequencer. In the source file, the 
design is given a title, the device type is specified, and pin 
declarations are made. The FLAG statement is used to 
select level 3 reduction. Constants are declared to simplify 
the state diagram notation. The two state registers are 
grouped into a set called 'sreg'. The three states A, B, and C 
are declared with appropriate values specified for each. 

default with abort= o 

hold & !reset 
with abort: = o 

default withabort=O 

hold & !reset 
with abort: = o 

Figure 10-9. State Machine Bubble Diagram 

State values have been chosen for this design that allow the 
use of register preload to ensure that the machine starts in 
state A. For larger state machines with more state bits, 
careful numbering of states can dramatically reduce the 
logic required to implement the design. Using constant 
declarations to specify state values saves time when later 
changes to these values are made. 

The state diagram begins with the STATE_DIAGRAM 
statement that names the set of signals to be used for the 

10-28 



Design Examples 

state register. The set to be used is 'sreg'. 

Within the STATE_DIAGRAM, IF-THEN-ELSE 
statements are used to indicate the transitions between 
states, and the input conditions that cause each transition. 
In addition, equations are written in each state that indicate 
the outputs required for each state or transition. 

For example, state A reads: 

State A: 
in_B = O; 
in_C = O; 
if (start & !reset) then B with abort := O; 
else A with abort := abort; 

This means that if the machine is in state A and 'start' is 
high, but 'reset' is low, then the machine will advance to 
state B, but in any other input condition the machine will 
remain in state A. 

The equations for in_B and in C indicate the those outputs 
should remain low while the machine is in state A, while 
the equations for 'abort', specified with the 'with' keyword, 
indicate that 'abort' should go low if the machine transitions 
to state B, but should remain at it's previous value if the 
machine stays in state A. 

10.5.3 Test Vectors 

The specification of the test vectors for this design is 
similar to other synchronous designs. The first vector is a 
preload vector, to put the machine into a known state (state 
A), and the following vectors excercise the functions of the 
machine. The A, B, and C constants are used in the vectors 
to indicate the value of the current state, improving the 
readability of the vectors. 

10-29 



Applications Guide 

module sequence flag 1 -r3 1 

title 'State machine exarrple D. B. Pellerin - FutureNet'; 

d1 device 1p16r4 1 ; 

q1 ,qO 
clock,enab,start,hold,reset 
abort 
in_B,in_C 
sreg 

A = O; B = 1; 

pin 14,15; 
pin 1,11,4,2,3; 
pin 17; 
pin 12, 13; 

Cq1 ,qOl; 

C = 2; "State Values 

state_diagram sreg; 
State A: 11 Hold in state A until start is active 

in_B = O; 
in c = O· 
IF-Cstart & !reset) THEN B WITH abort := O; 
ELSE A WITH abort := abort; 

State B: 11 Advance to state C unless reset 
in B = 1; 11 or hold is active. Turn on abort 
in-C = O· 11 indicator if reset. 
IF-Creset) THEN A WITH abort := 1; 
ELSE IF (hold) THEN B WITH abort := O; 
ELSE C WITH abort := O; 

State C: 
in B = O· 

- I 

11 Go back to A unless hold is active 
11 Reset overrides hold. 

in C = 1· 
IF-Chold1 & !reset) THEN C WITH abort := 0; 
ELSE A WITH abort := O; 

test_vectorsCCclock,enab,start,reset,holdl->Csreg,abort,in_B,in_Cl) 
[ .p. I 0 0 0 0 ]->[ A I 0 0 0 l; 
[ .c. 0 0 0 0 l -> [ A 0 0 0 l; 
[ .c. 0 1 0 0 ]->[ B I 0 1 0 l; 
[ oCo 0 0 0 0 ]->[ c I 0 I 0 1 l; 

.c. 0 1 0 0 ] -> [ A 0 0 0 l; 

.c. 0 1 0 0 ] -> [ B 0 1 0 l; 

.c. 0 0 1 0 ] -> [ A 1 0 0 ] ; 

.c. 0 I 0 0 0 ] -> [ A I 1 0 0 l; 

.c. 0 1 0 0 ] -> [ B I 0 1 0 ] ; 

.c. 0 0 0 1 ] -> [ B 0 1 0 l; 

.c. 0 0 0 1 ] -> [ B 0 1 0 l; 

.c. 0 0 0 0 ]->[ c 0 0 1 ] ; 
end 

Listing 10-6. Source File: Three-State Sequencer 

10-30 



10.6 8-Bit Barrel Shifter 
(Equations/P20R8) 

Design Examples 

This design for an 8-bit barrel shifter includes a shift 
amount selector, an output control, and a device enable. 
The design is specified with one Boolean equation for a 
P20R8. 

07 06 05 04 03 02 01 00 

12 E 

11-...i·················•// : 

10 

07 06 05 04 03 02 01 00 

Figure 10-10. Block Diagram: 8-Bit Barrel Shifter 

10.6.1 Design Specification 

Figure 10-10 shows a block diagram for the barrel shifter. 
The shifter has eight inputs ( DO-D7 ), eight outputs (QO-
Q7 ), three select lines ( 10-/2), a clock (Clk), an output 
control (OC), and an enable (E). On each clock pulse when 
E is high, the outputs show the inputs shifted by n bits to 
the right, where n is specified by the select lines. The bit 
shifted out of the barrel shifter on the right is shifted in on 
the left, actually performing a rotate. When E is low, the 
shifter outputs are preset to 1. 

10-31 



Applications Guide 

The output control, when high, sets all outputs to high 
impedance, without affecting the shift. This means that if 
a shift is selected while the output control is high, the shift 
still occurs, but it is not seen at the outputs. If the OC is 
then set low, the shifted data will appear on the outputs. 

Input 

Sel 

Output 

Figure 10-11. Simplified Block Diagram: 8-Bit Barrel 
Shifter 

10.6.2 Design Method 

Figure 10-11 and listing 10-7 show the simplified block 
diagram and the source file listing for this design. Pins are 
assigned so that the shifter outputs are associated with the 
registered outputs on the PAL. The inputs, outputs, and 
select lines are then assigned to sets to simplify notation. 

One Boolean equation is used to describe the entire function 
of the barrel shifter. The equation is expressed in sum of 
products form and assigns a value to the output set. Each 
product in the equation corresponds to one of the possible 
shifts and defines the outputs for that shift. Thus, the 
product term, 

10-32 



Design Examples 

(Sel == 0) & ![D7 ,D6,D5,D4,D3,D2,D l ,DO] 

defines that for a shift of 0, the inputs are transferred 
without a shift directly to the outputs. Similarly, the 
product term, 

(Sel == 5) & ![D4,D3,D2,Dl,DO,D7,D6,D5] 

defines that for a shift of 5, output Q7 gets the value of 
input D4, Q6 gets the value of D3, and so on, corresponding 
to the correct shift of 5 places. Notice that the low-order 
input bits have been "wrapped around," shifted out of the 
right side and into the left side. 

Sel can have only one value at a time, thus only one of the 
"Sel == " relational statements can be true at a given time, 
and only one of the product terms contributes to the sum of 
products. The OR of all the product terms is ANDed with 
the enable E so that when E is low, all the outputs are 
preset to 1. 

Both the output set on the left side of the equation and the 
inputs on the right side of the equation are expressed as 
negative logic, which, in effect, gives active high logic. 
This is done to compensate for the P20R8's inverted 
outputs. The inverse of the inputs is available on the 
device. 

10-33 



Applications Guide 

10.6.3 Test Vectors 

The test vectors are written to check the shift, enable and 
output control functions of the barrel shifter. To test the 
shift function, OC is set low, E is set high, the clock is 
applied and different Sel values are chosen. The shift is 
first tested with one input bit set high and the rest of the 
inputs set low. Then, as a further test, one input bit is set 
low and the remaining inputs are set high. In both cases, 
the bits are shifted through one full cycle plus one 
additional shift so that the wrap-around shift from QO to 
Q7 is tested. 

The preset is tested by setting E low; all inputs should go 
high. The output control is tested by setting OC high; all 
outputs should go to high impedance. The single Z in the 
last test vector expands to cover all outputs. That is, the Z 
becomes [Z,Z,Z,Z,Z,Z,Z,Z] to cover all eight outputs. 

10-34 



Design Examples 

module barrel 
title 18-bit barrel shifter 
Gerrit Barrere Data I/0 Corp Redmond WA 17 Oct 1987' 

P7095 device 1 P20R8 1 ; 

D7,D6,D5,D4,D3,D2,D1,DO 
Q7,Q6,Q5,Q4,Q3,Q2,Q1,QO 
Clk,OC,E,12,11,10 

Pin 2,3,4,5,6,7,8,9; 
Pin 15, 16, 17, 18, 19,20,21,22; 
Pin 1,13,23,10,11,14; 

Input 
Output 
Sel 
H,L,C,Z 

[D7,D6,D5,D4,D3,D2,D1,DOl; 
[Q7,Q6,Q5,Q4,Q3,Q2,Q1,QOl; 
[12,11,IOl; 
1,0, .C., .Z.; 

equations 
Enable Output = !OC; 

!Output := E & ( (Sel == 0) & ! [D7,D6,D5,D4,D3,D2,D1,DOl 
# (Sel == 1) & ! [D0,D7,D6,D5,D4,D3,D2,D1l 
# (Sel == 2) & ! [D1,DO,D7,D6,D5,D4,D3,D2l 
# (Sel == 3) & ! [D2,D1,DO,D7,D6,D5,D4,D3l 
# (Sel == 4) & ! [D3,D2,D1,DO,D7,D6,D5,D4l 
# (Sel == 5) & ! [D4,D3,D2,D1,DO,D7,D6,D5l 
# (Sel == 6) & ! [D5,D4,D3,D2,D1,DO,D7,D6] 
# (Sel == 7) & ! [06,D5,D4,D3,D2,D1,DO,Dn) 

test_vectors 
([Clk,OC, E, Sel, Input] -> Output) 
[ c, L, H, 0 I Ab10000000] -> Ab10000000; Shift 0 
[ c I L, H, 1, Ab10000000] -> AbQ1000000; Shift 1 
[ c, L, H, 2, Ab10000000] -> AbQ0100000; Shift 2 
[ c, L, H, 3 1 Ab10000000] -> AbQ0010000; Shift 3 
[ c, L, H, 4 I Ab10000000] -> AbQ0001000; Shift 4 
[ c I L, H, 5 I Ab10000000] -> AbQ0000100; Shift 5 
[ c, L, H, 6 1 Ab10000000] -> AbQOOOOO 10; Shift 6 
[ c I L, H, 7 I Ab10000000] -> AbQ0000001; Shift 7 

[ c, L, H, 0, AbQ1111111l ·> AbQ1111111; II Shift 0 
[ c, L, H, 1, AbQ1111111l ·> Ab10111111; II Shift 1 
[ c, L, H, 3, Ab01111111l ·> Ab11101111; II Shift 3 
[ c, L, H, 7, Ab01111111] ·> Ab11111110; II Shift 7 

[ c, L, H, 1 I AbQOOOOOO 1] ·> Ab10000000; 11 Shift 1/Wrap 
[ c, L, H, 1, Ab11111110] •> Ab01111111; 11 Shift 1/Wrap 
[ c, L, L, 0 I AbQOOOOOOO] "> Ab11111111 ; 11 Preset 
[ c, H, H, 0, AbQOOOOOOO] -> z· I 11 Test High Z 

end 

Listing 10-7. Source File: 8-Bit Barrel Shifter 

10-35 



Applications Guide 

10. 7 7-Segment Di~lq Decoder 
(Truth Table/RA5P8) 

This display decoder decodes a four-bit binary number to 
display the decimal equivalent on a seven segment LED 
display. The design incorporates a truth table. 

10.7.1 Design Specification 

Figure 10-12 shows a block diagram for the design of a 7 -
segment display decoder and a drawing of the display with 
each of the seven segments labeled to correspond to the 
decoder outputs. To light up any one of the segments, the 
corresponding line must be driven low. Four input lines 
DO-D3 are decoded to drive the correct output lines. The 
outputs are named a, b, c, d, e, /, and g corresponding to 
the display segments. All outputs are active low. An 
enable, ena, is provided. When ena is low, the decoder is 
enabled; when ena is high, all outputs are driven to high 
impedance. 

10.7.2 Design Method 

Figure 10-13 and listing 10-8 show the simplified block 
diagram and the source file for the ABEL implementation 
of the display decoder. The FLAG statement is used to 
make sure that the programmer load file is in the Motorola 
Exorciser format. The binary inputs and the decoded 
outputs are grouped into the sets bed and led to simplify 
notation. The constants ON and OFF are declared so that 
the design can be described in terms of turning a segment 
on or off. To turn a segment on, the appropriate line must 
be driven low, thus we declare ON as 0 and OFF as I. 

10-36 



Design Examples 

ena 

a 

b a 

00 
f I lb c 

g 
01 --

d 
e I I c 02 

e d 

g 

Figure 10-12. Block Diagram: 7-Segment Display Decoder 

ena 

Figure 10-13. Simplified Block Diagram: 7-Segment 
Display Decoder 

The design is described in two sections, an equations section 
and a truth table section. The decoding function is 
described with a truth table that specifies the outputs 

10-37 



Applications Guide 

module bcd7rom flag '-d82' 
title 'seven segment display decoder 16 Mar 1987 
\Jalter Bright FutureNet Division Data 1/0 Corp Redmond IJA' 
II a 
II BCD-to-seven-segment decoder similar to the 7449 
II fl g lb 
II segment identification 
II el d le 
II 

U6 device 'RA5P8'; 

D3,D2,D1,DO pin 10, 11, 12, 13; 
a,b,c,d,e,f,g pin 1,2,3,4,5,6,7; 
ena pin 15; 

bed = [D3,D2,D1 ,DO]; 
led [a,b,c,d,e, f ,gl; 
ON,OFF 0,1; 11 for common anode LEDs 
L,H,X,Z 0,1,.X.,.Z.; 

truth_table (bed -> led) 
II a b c d e f g 

0 -> [ ON, ON, ON, ON, ON, ON, OFF]; 
1 -> [OFF, ON, ON, OFF I OFF, OFF, OFF]; 
2 -> [ ON, ON, OFF, ON, ON, OFF, ONl; 
3 -> [ ON, ON, ON, ON, OFF, OFF, ONl; 
4 -> [OFF I ON, ON, OFF, OFF, ON, ON]; 
5 -> [ ON, OFF, ON, ON, OFF, ON, ONl; 
6 -> [ ON, OFF, ON, ON, ON, ON, ON]; 
7 -> [ ON, ON, ON, OFF, OFF, OFF, OFF]; 
8 -> [ ON, ON, ON, ON, ON, ON, ONl; 
9 -> [ ON, ON, ON, ON, OFF I ON, ONl; 

test_vectors ([ena,bcdl -> led) 
II a b c d e f g 

[L, 1l -> [OFF I ON, ON, OFF I OFF, OFF, OFF]; 
[L ,2] -> [ ON, ON, OFF, ON, ON, OFF, ONl; 
[L,3] -> [ ON, ON, ON, ON, OFF, OFF I ONl; 
[L,41 -> [OFF I ON, ON, OFF, OFF, ON, ON]; 
[L ,51 -> C ON, OFF, ON, ON, OFF, ON, ONl; 
[L,6] -> [ ON, OFF, ON, ON, ON, ON, ON]; 
[L, 7] -> [ ON, ON, ON, OFF, OFF, OFF, OFF]; 
[L,8] -> [ ON, ON, ON, ON, ON, ON, ON]; 
[L,9] -> [ ON, ON, ON, ON, OFF, ON, ON]; 
[L, 0] -> [ ON, ON, ON, ON, ON, ON, OFF]; 
CH,51 -> [ z, z, z, z, z, z, Zl; 

end bcd7rom 

Listing 10-8. Source File: 7-Segment Display Decoder 

10-38 



Design Examples 

required for each combination of inputs. The truth table 
header names the inputs and outputs. In this example, the 
inputs are contained in the set named bed and the outputs 
are in led. The body of the truth table defines the input to 
output function. Because the design decodes a number to a 
seven segment display, values for bed are expressed as 
decimal numbers, and values for led are expressed with the 
constants ON and OFF that were defined in the declarations 
section of the source file. This makes the truth table easy 
to read and understand; the incoming value is a number and 
the outputs are on and off signals to the LED. 

The input and output values could have just as easily been 
described in another form. Take for example the line in 
the truth table: 

5 -> [ON, OFF, ON, ON, OFF, ON, ON] 

This could have been written in the equivalent form: 

[ 0, 1, 0, 1 ] -> 36 

In this second form, 5 was simply expressed as a set 
containing binary values, and the LED set was converted to 
decimal. (Remember that ON was defined as 0 and OFF 
was defined as 1.) Either of the two forms is valid, but the 
first is more appropriate for this design. The first form can 
be read as, "the number five turns on the first segment, 
turns off the second, . . ." whereas the second form cannot 
be so easily translated into terms meaningful for this design. 

10.7.3 Test Vectors 

The test vectors for this design test the decoder outputs for 
the ten valid combinations of input bits. The enable is also 
tested by setting ena high for the different combinations. 
All outputs should be at high impedance whenever ena is 
high. 

10-39 



Applications Guide 

10.8 4-Bit Com_parator 
(Macros, Equations/F153) 

This is a design for a 4-bit comparator that provides an 
output for "equal to", "less than", "not equal to", and "greater 
than", as well as intermediate outputs. The design is 
implemented with Boolean equations. 

A1 

A2 

A3 

A_EQ_B 

B1 

A_NE_B 

B3 

Figure 10-14. Block Diagram: 4-Bit Comparator 

10-40 

I 
I 

\ 



Design Examples 

10.8.1 Design Specification 

The comparator, as shown in figure 10-14, compares the 
values of two four-bit inputs (AO-A3 and BO-B3) and 
determines whether A is equal to, not equal to, less than, or 
greater than B. The result of the comparison is shown on 
the output lines, A_EQ_B, A_GT _B, A_NE_B, and 
A LT B. 

A__. 

....,. A_EO_B 

- A_GT_B 

B__,. er \ .... A _NE_B 

rt )f ,,_ 
A_LT_B 

Figure 10-15. Simplified Block Diagram: 4-bit 
Comparator 

10-41 



Applications Guide 

10.8.2 Design Method 

Figure I 0-15 and listing I 0-9 show the simplified block 
diagram and source file listing for the comparator. The 
inputs AO-A3 and BO-B3 are grouped into the sets A and B. 
YES and NO are defined as I and 0, to be used in the test 
vectors. 

The equations section of the source file contains the 
following equations: 

A_EQ_B = A== B; 
A_NE_B =!(A== B); 
A_GT_B = A> B; 
A LT B = !((A > B) # (A == B)); 

You could also use the following equations for the design of 
this comparator, however, many more product terms are 
used in the FPLA: 

10-42 

A_EQ_B 
A NE B 

- -
A GT B - -
A LT B 

A== B; 
A!= B; 
A> B; 
A< B; 



Design Examples 

The first set of equations takes advantage of product term 
sharing within the target FPLA, while the latter set 
requires a different set of product terms for,each equation. 
For example, the equation 

A_NE_B = !(A== B); 

uses the same 16 product terms as the equation 

A_EQ_B = A== B; 

thereby reducing the number of product terms. In a similar 
manner, the equation 

A_LT_B =!((A> B) #(A== B)); 

uses the same product terms as equations 

A_EQ_B 
A GT B 

A== B; 
A> B; 

whereas the equation 

A_LT_B = A< B; 

in the second set of equations requires the use of additional 
product terms. Sharing product terms in devices that allow 
this type of design architecture can serve to fit designs into 
smaller and less expensive logic devices. 

10-43 



Applications Guide 

module _c~a flag 1 ·r4' 
title 14·bit look-ahead C0111Jarator 16 Nov 1987 
Steve Weil & Gary Thomas FutureNet Division, Data 1/0 Corp.' 

c~a device 1 F153'; 

A3,A2,A1,AO 
B3,B2,B1,BO 

pin 1,2,3,4; 
pin 5,6,7,8; 

A_NE_B,A_EQ_B,A_GT_B,A_LT_B 

No,Yes =0,1; 

A = CA3,A2,A1 ,AO]; 
B = CB3,B2,B1,B0l; 

pin 14, 15, 16, 17; 

equations 
A EQ B A == B; 

A_NE_B = !CA== B); 

A_GT_B A > B; 

A_LT_B !((A> B) #CA== B)); 

test_vectors 'test for A = B' 
([A, Bl ·> CA_EQ_B, A_GT_B, A_LT_B, A_NE_B]) 

C 0, Ol ·> C Yes No No No l; 
C 1 , 1 l · > C Yes No No No l ; 
C 2, 2l ·> C Yes No No No l; 
C 5, 5] ·> C Yes No No No l; 
C 8, 8] ·> C Yes No No No l; 
[10, 10] ·> C Yes No No No l; 
C15,15l ·> C Yes No , No No l; 

test_vectors 'test for A > B' 
( C A, Bl ·> CA EQ B, A GT B, A LT B, A NE Bl) 

C 1, Ol ·> C -No- , Yes- -No- Yes- l; 
C 2, 1] ·> C No , Yes No Yes l; 
C 4, 3] ·> C No Yes No Yes l; 
C 8, 7l ·> C No Yes No Yes l; 
C15,14l ·> C No Yes No Yes l; 
C 6, 2] ·> C No Yes No Yes l; 
C 5, Ol ·> C No Yes No Yes l; 

test vectors 'test for A < B' 
( C A, Bl ·> CA EQ B, A GT B, 

C 3, 9] ·> C -No- -No-
C14, 15] ·> C No No 
C 7, 8] ·> C No No 
C 3, 4] ·> C No No 
C 2, 8] ·> C No No 

A_LT_B, A_NE_Bl) 
Yes Yes l; 
Yes Yes l; 
Yes Yes l; 
Yes Yes l; 
Yes Yes l; 

end comp4a 
- Listing 10-9. Source File: 4-Bit Comparator 

10-44 



Design Examples 

10.8.3 Test Vectors 

Three separate test vectors sections are written to test 
three of the four possible conditions. (The fourth and 
untested condition of NOT EQUAL TO is simply the 
inverse of EQUAL TO.) Each test vectors table 
includes a test vector message that helps make output 
from the documentation generator (DOCUMENT) and 
the simulator (SIMULA TE) easier to read. The three 
tested conditions are not mutually exclusive, so one or 
more of them can be met by a given A and B. In the 
test vectors table, the constants YES and NO are used 
rather than 1 and 0, just for ease of reading. YES and 
NO are declared in the declaration section of the source 
file. 

10-45 



Applications Guide 

10.9 Bi-Directional Three-State Buffer 
(F153) 

A four-bit bidirectional buff er with 3-state outputs is 
presented here. The design is implemented in an Fl53 
FPLA with bidirectional inputs/outputs and programmable 
output polarity. Simple Boolean equations are used to 
describe the function. 

10.9.1 Design Specification 

Figure 10-16 shows a block diagram for this four-bit 
buffer. Signals AO-A3 and BO-B3 function both as inputs 
and outputs depending on the value on the select lines, SO
S I. When the select value (the value on the select lines) is 
1, AO-A3 are enabled as outputs. When the select value is 
2, BO-B3 are enabled as outputs. (The choice of 1 and 2 for 
select values is arbitrary.) For any other values of the select 
lines, both the A and B outputs are at high impedance. 
Output polarity for this design is positive. 

S1 S0 

83 82 81 80 A3 A2 A1 A0 

Figure 10-16. Block Diagram: Bidirectional Tri-State 
Buffer 

10-46 



Design Examples 

Select 

B A 

Figure 10-17. Simplified Block Diagram: Tri-State Buffer 

10.9.2 Design Method 

A simplified block diagram for the buffer is shown in 
figure 10-17. The A and B inputs/outputs are grouped into 
two sets, A and B. The select lines are grouped into the 
select set. Listing 10-10 shows the source file that describes 
the design. 

High-impedance and don't-care values are declared to 
simplify notation in the source file. The equations section 
describes the full function of the design. What appear to be 
unresolvable equations are written for A and B, with both 
sets appearing as inputs and outputs. The enable equations, 
however, enable only one set at a time as outputs; the other 
set functions as inputs to the buff er. 

Test vectors are written to test the buffer when either set is 
selected as the output set and for the case when neither is 
selected. The test vectors are written in terms of the 
previously declared sets so that the element values do not 
need to be listed separately. 

10-47 



Applications Guide 

module tsbuffer 
title 'bi-directional three state buffer 8 Nov 1987 
Brenda French & Mary Bailey FutureNet Division, Data 1/0 Corp' 

TSB1 device 1 F1S3 1 ; 

Pin 1,2; S1,SO 
A3,A2,A1,AO 
B3,B2,B1,BO 

Pin 12,13,14,1S; 
Pin 16,17,18,19; 

X,Z = .x •I .z.; 

equations 
A = B; 
B = A; 

Enable A = (Select == 1); 
Enable B = (Select == 2); 

test_vectors 
([Select, A, BJ-> A, BJ) 

[ 0 0, OJ-> z, ZJ; 
[ 0 I 1S, 1SJ -> z, ZJ; 

I x, SJ-> [ s, XJ; 
I x, 10J ·> [ 10 I XJ; 

2 I s, XJ-> x, SJ; 
2 I 10, XJ-> x, 10J; 

3 0, OJ-> z, ZJ; 
3 I 1S, 15J-> z, ZJ; 

end 

Select = CS1,SOJ; 
A CA3,A2,A1,AOJ; 
B CB3,B2,B1,BOJ; 

Listing 10-10. Source File: Tri-State Bi-Directional Buffer 

10-48 



Design Examples 

10.10 Blackjack Machine 

This section contains an advanced logic design described 
with ABEL and builds upon examples and concepts 
presented in the earlier sections of this manual. This 
design, a blackjack machine, is the combination of more 
than one basic logic design. Design specification, methods, 
and complete source files are given for all parts of the 
blackjack machine example, which contains the following 
logic designs: 

Multiplexer 
5-bit adder 
Binary to BCD converter 
State machine 

This example is a classic blackjack machine based on C.R. 
Clare's design in Designing Logic Systems Using State 
Machines (McGraw Hill, 1972). The blackjack machine 
plays the dealer's hand, using typical dealer strategies to 
decide, after each round of play, whether to draw another 
card or stand. 

The blackjack machine consists of these functions: a card 
reader that reads each card as it is drawn, control logic that 
tells it how to play each hand (based on the total point 
value of the cards currently held), and display logic that 
displays scores and status on the machine's four LEDs. (For 
the purposes of this example, we are assuming that the two 
digital display devices used to display the score have built
in seven-segment decoders.) 

To operate the machine, you insert the dealer's card into the 
card reader. The machine reads the value and, in the case 
of later card draws, adds it to the values of previously read 
cards for that hand. (Face cards are valued at 10 points, 
non-face cards are worth their face value, and aces are 
counted as either 1 or 11, whichever count yields the best 
hand.) If the point total is 16 or less, the GT16 line will be 

10-49 



Applications Guide 

asserted (active low) and the Hit LED will light up. This 
indicates that the dealer should draw another card. If the 
point total is greater than 16 but less than 22, no LEDs will 
light up (indicating that the dealer should draw no new 
cards). If the point total is 22 or higher, LT22 will be 
asserted (active low) and the Bust LED will light (indicating 
that the dealer has lost the hand). 

10-50 

\\ BUST \\ HIT 

Clk 

Restart 

=--+-1-1--c~~··a~~"-t ---------=-----< 
C>-

Figure 10-18. Schematic of a Blackjack Machine 
Implemented in Three PLDs 



Design Examples 

As Figure 10-18 shows, the blackjack machine is 
implemented in three PLDs: 1) a multiplexer-adder
comparator, which adds the value of the newly drawn card 
to the existing hand (and indicates an ace to the state 
machine); 2) a binary to binary-coded-decimal (BCD) 
converter, which takes in the five-bit binary score and 
converts it to two-digits of BCD for the digital display; and 
3) the blackjack controller, a state machine that contains the 
game logic. This logic includes instructions that determine 
when to add a card value, when to count an ace as 1, and 
when to count an ace as 11. 

Circuits that are a straight-forward function of a set of 
inputs and outputs are often most easily expressed in 
equations; the adder is such a circuit. The PLD for the 
adder function (identified as MUXADD in Figure 10-18) 
includes three elements: a multiplexer, the adder itself, and 
a comparator. The multiplexer selects either the value of 
the newly dealt card or one of the two fixed values used for 
the ace (ADDJO or SUBJO). The adder adds the value 
selected by the multiplexer to the previous score when 
triggered by the clock signal, ADDCLK. The comparator 
detects when an ace is present and passes this information 
on to the blackjack controller, BJACK. 

Designs with outputs that do not follow a specific pattern 
are most easily expressed as truth tables. Such is the case 
with the binary-to-BCD converter (identified in the 
schematic, figure 10-18, as BINBCD). This PLD converts 
five bits of binary input to BCD output for two digital 
display elements. 

The following text describes the internal logic design 
necessary to keep the card count, to control the play 
sequence, and to show the count on the digital display, or 
the state on the Hit and Bust LEDs. Neither the card reader 
nor the physical design is discussed here. It is assumed that 
the card reader provides a binary value representative of 
the card read. 

10-51 



Applications Guide 

The blackjack machine is implemented with three 
programmable logic devices. The device types and their 
functions are listed in table 10-4. The design has eight 
inputs, four of which are the binary encoded card values, 
VO-V3. The remaining four inputs are signals that indicate 
that the machine is to be restarted (Restart), that a card is 
in the reader (Cardin), that no card is in the reader 
(CardOut), and a clock signal (Clk) to synchronize the 
design to the card reader. Cardin, CardOut, and Clk are 
provided by the card reader. Restart is provided by a 
switch on the exterior of the machine. 

Table 10-4. Devices used in the Blackjack Machine 

Device 

P22V10 
Pl6L8 
Pl6R4 

Function in the Blackjack Machine 

Multiplexer/ Adder/Comparator 
Binary-BCD converter 
State machine 

10.10.1 Design Specification - MUXADD 

MUXADD consists of an input multiplexer, an adder, and a 
comparator. The multiplexer determines what value is 
added to the current score (by the adder); the value being 
(1) the contents of the external card reader (VO-VJ declared 
as Card), (2) a numeric value of +10, or (3) a numeric value 
of -10. Inputs AddlO and SublO from the controller (state 
machine) BJACK determine which of the three values the 
multiplexer selects for application to the adder. Card is 
applied to the adder when AddlO and SublO are active 
high, as generated by the BJACK controller. When AddlO 
becomes active low, 10 is added to the current score (to 
count an ace as 11 instead of I), and when SubJO is active 
low, -10 is added to the current score (to count an ace as I 
instead of 11 ). 

10-52 



Design Examples 

The adder provides an output named Score (SO-S4, which 
is the sum of the current adder contents and the value 
selected by the input multiplexer; i.e., the card reader 
contents, +I 0, or -10. The comparator monitors the 
contents of the external card reader (Card) and generates an 
output, is_Ace, to the BJACK controller that signifies that 
an ace is present in the card reader. 

10.10.2 Design Method - MUXADD 

MUXADD is implemented in a P22V10, and consists of a 
three-input multiplexer, a five-bit ripple adder, and a five
bit comparator. These circuit elements are defined in the 
equations shown in listing 10-11. For the multiplexer 
inputs, a set named Card defines inputs VO through V 4 as 
the value of the card reader, while inputs AddlO and SublO 
are used directly in the following equations to define the 
multiplexer. The multiplexer output to the adder is named 
Data and is defined by the equations 

Data = AddlO & SublO & Card 
# !AddlO & SublO & ten 
# AddlO & !SublO & minus_ten; 

The adder (MUXADD) contained in the P22Vl0 is a five
bit binary ripple adder that adds the current input from the 
multiplexer to the current score, with carry. The adder is 
clocked by a signal (AddClk) from the BJACK controller 
and is described with the following equations: 

Score := Data$ Score $ Carryln; 
CarryOut =Data & Score# (Data# Score) & Carryln; 
Reset = !Cir; 

In the above equations, Score is the sum of Data (the card 
reader output, value of ten, or value of minus ten), Score 
(the current or last calculated score), and Carryln (the 

10-53 



Applications Guide 

shifted value of Carryout described below). The new value 
of Score appears at the SO through S4 outputs of MUXADD 
at the time of the AddClk pulse generated by the BJACK 
controller (state machine). 

Before the occurrence of the AddClk clock pulse, an 
intermediate adder output appears at combinatorial outputs 
of the P22VIO labeled CO through C4 and defined as the set 
named Carryout shown below. A second set named 
Carryln defines the same combinatorial outputs as 
CarryOut, but with the outputs shifted one bit to the left as 
shown below. 

Carry In = [C4,C3,C2,C 1, O]; 
CarryOut = [ X,C4,C3,C2,Cl]; 

That is, the set declarations define Carryln as CarryOut but 
with the required shift to the left for application back to 
adder input. At the time of the AddClk pulse from the 
BJACK controller, Carryln is added to Score and Data by 
and exclusive-or operation. 

The comparator portion of MUXADD is defined with 

is Ace = Card == l · - ' 

which provides an input to the BJACK controller whenever 
the value provided by the card reader is 1. 

10.10.3 Test Vectors - MUXADD 

The test vectors shown in listing 10-11 verify operation of 
MUXADD by first clearing the adder so that Score is zero, 
then adding card reader values 7 and 10. The test vectors 
then input an ace (I) from the card reader (Card) to 
produce a Score of I and pull the is_ Ace output high. 
Subsequent vectors verify the -10 function of the input 
multiplexer and adder. 

10-54 



Design Examples 

module MuxAdd flag •-r3' 
title •5-bit ripple adder with input multiplex 
Michael Holley FutureNet Division, Data 1/0 Corp. 
Rednond WA 14 July 1987 1 

MuxAdd device 'P22V10'; 

AddClk,Clr,Add10,Sub10,is Ace 
V4,V3,V2,V1,VO -
S4,S3,S2,S1,SO 
C4,C3,C2,C1 
Reset 

pin 1, 9, 8, 7, 14; 
pin 6, 5, 4, 3, 2; 
pin 15, 16, 17, 18, 19; 
pin 20,21,22,23; 
node 25; 

X,C,L,H 

Card 
Score 
Carryln 
CarryOut 
ten 
minus_ten = 

" Input Multiplexer 

.x., .c., 0, 1; 

[V4,V3,V2,V1,VOJ; 
[S4,S3,S2,S1,SOJ; 
[C4,C3,C2,C1, OJ; 
[ X,C4,C3,C2,C1J; 
[ 0, 1, 0, 1, OJ; 
[ 1, 0, 1 , 1 , OJ ; 

Data Add10 & Sub10 & Card 

equations 
Score 

# !Add10 & Sub10 & ten 
# Add10 & !Sub10 & minus_ten; 

:= Data $ Score $ Carry!n; 

CarryOut = Data & Score # (Data # Score) & Carryln; 

Reset = !Clr; "Async reset node for registers 

is Ace = Card== 1; 

test vectors 
([AddClk,Clr,Add10,Sub10,CardJ -> [Score, i s_AceJ) 

[ L L H H x J -> [ 0 L J ; "Clear 
[ c H H H 7 J -> [ 7 . L J; 
[ c H H H 10 J -> [ 17 . L J; 
[ L L H H x J -> [ 0 L J ; "Clear 
[ c H H H 1 J -> [ 1 H J ; 
[ c H L H 1 J -> [ 11 H J; "Add 10 
[ c H H H 4 J -> [ 15 L J; 
[ c H H H 8 J -> [ 23 L J ; 
[ c H H L 8 J -> [ 13 L J; "Subtract 10 
[ c H H H 5 J -> [ 18 . L J; 

end _MuxAdd 

Listing 10-11. Source File: Multiplexer/ Adder /Comparator 

10-55 



Applications Guide 

10.10.4 Design Specification - BINBCD 

For display of the Score appearing at the output of 
MUXADD, a binary to bed converter is implemented in a 
Pl6L8. It is the function of the converter to accept the 
four lines of binary data generated by MUXADD and 
provide two sets of binary coded decmimal outputs for two 
bed display devices; one to display the units of the current 
score, and the other to display the tens. The four-bit 
output bcdl (DO-DJ)contains the units of the current score, 
and is connected to the high-order display digit. The two
bit output bcd2 (D4 and D5) contains the tens, and is fed to 
the low-order display digit. 

BINBCD also provides a pair of outputs to light the Bust 
and Hit LEDs. Bust is lit whenever Score is 22 or greater; 
while Hit is let whenever Score is 16 or less. 

10.10.5 Design Method - BINBCD 

The design of BINBCD is shown in the source file of listing 
10-12. The design of the converter is easily expressed with 
a truth table that lists the value of Score (inputs SO through 
S4 are declared as Score) for values of bcdl and bcd2. bcdl 
and bcd2 are sets that define the outputs that are fed to the 
two digital display devices. The truth table lists Score 
values up to 31 decimal. 

The truth table represents a method of expressing the 
design "manually." You could use a macro to create the 
truth table such as 

clear( binary); 
@repeat 32 { 

binary -> [binary/ I O,binary%1 O]; inc(binary);} 

As indicated in listing I 0-12 and described in paragraph 
I 0.10.6, this macro is used to generate the test vectors for 

10-56 



Design Examples 

the converter. You can examine the result of the macro by 
running the design with ABEL and the -e (expand) option. 
The generated * .LST and *.OUT files show the truth table 
created from the macro. 

The BINBCD design also provides the outputs LT22 and 
GT 16 to contol the Bust and Hit LEDs. A pair of equations 
generate an active-high LT22 signal to turn off the Bust 
LED whenever Score is less than 22, and an active-high 
GT 16 signal to turn off the Hit LED whenever Score is 
greater than 16. 

10.10.6 Test Vectors - BINBCD 

The test vectors shown in listing 10-12 verify operation of 
the LT22 and GT16 outputs of the converter by assigning 
various values for Score and checking for the corresponding 
outputs. 

The test vectors for the binary to bed converter are defined 
by means of the following macro: 

test_vectors (score-> [bcd2,bcdl]) 
clear( binary); 
@repeat 32 { 

binary-> [binary/10,binary%10]; inc(binary);} 

This macro generates a test vector with the variable binary 
set to 0 by the macro macro (a) {@const ?a=O}; (contained 
in the BINBCD.ABL source file shown in listing 10-12), 
followed by 31 additional vectors provided by the @repeat 
directive. The latter 31 vectors are generated by 
incrementing the value of the variable binary by a factor of 
1 (see inc macro (a) {@canst ?a=?a+l;}; in listing 10-12) 
for each vector. On the output side of the test vectors, the 
division arithmetic operation (/) is used to create the output 
for bcd2 (tens display digit), while the remainder from 
(modulus) operator is used to create the output for bed 1 

10-57 



Applications Guide 

(units display digit). In the BINBCD.DOC file, the test 
vectors appear as follows when BINBCD.ABL is run on 
ABEL with the -v option. 

12 [0000 O· - - ----] -> [- --- -LLL LLL-J; 
13 [1000 0--- ----] -> [- --- -LLL LLH-J; 
14 [0100 0-- - ----] -> [- --- ·LLL LHL-J; 
15 [1100 0- - - ----] -> [- --- -LLL LHH-J; 
16 [0010 0--- ----] -> [- --- -LLL HLL-J; 
17 [1010 0--- ----] -> [- --- -LLL HLH-]; 
18 [0110 0--- ----] -> [- --- ·LLL HHL-J; 
19 [1110 0--- ---- ] -> [- --- ·LLL HHH·J; 
20 [0001 0--- ----] -> [- --- -LLH LLL-]; 
21 [1001 0--- ----] -> [- --- -LLH LLH-J; 
22 [0101 0- - - ----] -> [- --. -LHL LLL-J; 
23 [1101 0--- ----] -> [- --- -LHL LLH-J; 
24 [0011 0--- ----] -> [- --- ·LHL LHL-J; 
25 [1011 0- - - ----] -> [- --- -LHL LHH-l; 
26 [0111 0- - - ----] -> [- --- -LHL HLL-]; 
27 [ 1111 0- - - ----] -> [- --- -LHL HLH-l; 
28 [0000 1 - - - ----] -> [- --- -LHL HHL·l; 
29 [1000 1 - - - ----] -> [- --- -LHL HHH-l; 
30 [0100 1- - - ----] -> [- --- -LHH LLL-]; 
31 [1100 1 - - - ----] -> [- --- -LHH LLH-l; 
32 [0010 1- - - ----] -> [- --- -HLL LLL-J; 
33 [1010 1- - - ----] -> [- --- -HLL LLH-l; 
34 [0110 1 - - - ----] -> [- --- -HLL LHL-l; 
35 [1110 1- - - ----] -> [- --- -HLL LHH-l; 
36 [0001 1 - - - ----] -> [- --- -HLL HLL-]; 
37 [1001 1 - - - ----] -> [- --- -HLL HLH-l; 
38 [0101 1 - - - - - - - ] -> [- --- -HLL HHL-]; 
39 [1101 1 - - - ----] -> [- --- -HLL HHH · l; 
40 [0011 1 - - - ----] -> [- --- -HLH LLL ·]; 
41 [1011 1 - - - ----] -> [- --- -HLH LLH-l; 
42 [0111 1- - - ----] -> [- --- -HHL LLL- l; 
43 [1111 1 - - - ----] -> [- --- -HHL LLH-J; 

The use of macros and directives to create test vectors is 
described in more detail in Chapter 12. 

10-58 



Design Examples 

module binbcd flag •-r3' 
title -
•comparator and binary to bed decoder for Blackjack Machine 
Michael Holley Data 1/0 Corp 25 June 1987' 

" The 5 -bit binary CO - 31) score is converted into two BCD outputs. 
" The interger division '/' and the modulus operator 1 %1 are used to 
" extract the individual digits from the two digit score. 
" 'Score% 10' will yield the •units' and 
" 'Score/ 10' will yield the 'tens' 
II 

" The 1 GT16 1 and 'LT22' outputs are for the state machine controller. 

binbcd device 'P16L8'; 

pin 5,4,3,2, 1; S4,S3,S2,S1,SO 
score = [S4,S3,S2,S1,S0l; 

LT22,GT16 

D5,04 
bcd2 

D3,02,D1 ,DO 
bcd1 

pin 12, 13; 

pin 14, 15; 
= [05 ,04]; 

pin 16,17, 18,19; 
[03,02,D1 ,00]; 

" Digit separation macros 
binary 
clear 

O; "scratch variable 

inc 

equations 
LT22 
GT16 

test vectors 

macro (a) {@const ?a=O}; 
macro (a) {@const ?a=?a+1;}; 

(score < 22); 
(score > 16); 

score 
1 
6 
8 

16 
17 
18 
20 
21 
22 
23 
24 

-> [GT16,LT22l) 
-> [ 0 1 ] ; 
-> [ 0 1 ] ; 
->[0 1 l; 
-> [ 0 1 ] ; 
-> [ 1 1 ] ; 
-> [ 1 1 ] ; 
-> [ 1 1 ] ; 
-> [ 1 1 ] ; 
-> [ 1 0 ] ; 
-> [ 1 0 ] ; 
-> [ 1 0 ] ; 

"Bust 
"Hit I Stand 

Listing 10-12. Source File: Binary to BCD Converter 
(continued on next page) 

10-59 



Applications Guide 

@page 
truth table score -> [bcd2,bcd1J > 

0 -> [ 0 0 J; 
1 -> [ 0 1 ] ; 
2 -> [ 0 2 ] ; 
3 -> [ 0 I 3 ] ; 
4 -> [ 0 I 4 l; 
5 -> [ 0 I 5 l; 
6 -> [ 0 I 6 l; 
7 -> [ 0 7 ] ; 
8 -> [ 0 I 8 J; 
9 -> [ 0 I 9 ] ; 

10 -> [ 1 0 l; 
11 -> [ 1 1 ] ; 
12 -> [ 1 2 ] ; 
13 -> [ 1 I 3 J; 
14 -> [ 1 I 4 l; 
15 -> [ 1 I 5 l; 
16 -> [ 1 I 6 ] ; 
17 -> [ 1 7 ] ; 
18 -> [ 1 I 8 l; 
19 -> [ 1 9 ] ; 
20 -> [ 2 0 J; 
21 -> [ 2 1 ] ; 
22 -> [ 2 2 ] ; 
23 -> [ 2 I 3 ] ; 
24 -> [ 2 I 4 ] ; 
25 -> [ 2 5 J; 
26 -> [ 2 6 ] ; 
27 -> [ 2 7 ] ; 
28 -> [ 2 I 8 l; 
29 -> [ 2 9 J; 
30 -> [ 3 0 J; 
31 -> [ 3 1 ] ; 

This truth table could be replaced with the following macro. 
clear(binary); 
@repeat 32 { 

binary -> [binary/10,binary"/.10J; inc(binary);} 

The test vectors will demonstrate the use of the macro. 

est vectors (score-> [bcd2,bcd1]) 
- clear(binary); 

@repeat 32 { 
binary-> [binary/10,binary%10l; inc(binary);} 

end binbcd 

Listing 10-12. (continued) 

10-60 



Design Examples 

10.10.7 Design Specification - BJACK 

BJACK (the blackjack controller) is technically a state 
machine; that is, a circuit capable of storing an internal 
state reflecting prior events. State machines use sequential 
logic, branching to new states and generating outputs on the 
basis of both the stored states and external inputs. 

In the case of the controller, the state machine stores states 
that reflect the following blackjack machine conditions: 

the value of Score (in one of the following ranges 
of decimal values): 0 to 16, 17 to 21, or 22+ 

the status of the card reader (card in or card out) 

ace present in the card reader. 

On the basis of these stored states, plus input from each 
newly drawn card, the blackjack controller decides whether 
or not a + 10 or -10 value is to be sent to the adder. 

10.10.8 Design Method - BJACK 

The ability of ABEL to accept design input in a variety of 
forms is especially helpful in the case of state machines. 
The easiest way to express a state machine design is with a 
state diagram. Any other form of design expression would 
be tedious to develop and would be likely to contain errors. 

In describing a state machine, the first step is to develop a 
bubble diagram. Figure 10-19 shows a bubble diagram 
(pictorial state diagram) for the controller that indicates 
state transitions and the conditions that cause those 
transitions. Transitions are shown by arrows, and the 
conditions causing the transitions are written alongside the 
arrow. 

10-61 



Applications Guide 

You must then express the bubble diagram in a the form 
shown in state_diagram portion of listing 10-13. There is 
a one-to-one correlation between the bubble diagram and 
the state diagram described in the source file (listing 10-
13 ). Table 10-5 provides a more detailed description of the 
state identifiers (state machine states) illustrated in the 
bubble diagram and listed in the source file. 

Table 10-5. States of the Blackjack State Machine 

State Identifier Description 

Clear Clear the state machine, adder, and displays. 

ShowHit Indicate that another card is needed. Hit 
indicator is lit. 

AddCard Add the value present at the adder input to 
the current count. 

AddlO Add the fixed value 10 to the current count, 
effectively giving an ace a value of 11. 

Wait Wait until a card is taken out of the reader. 

Testl 7 Test the current count for a value less than 17. 

Test22 Test the current count for a value less than 22. 

SublO Add the fixed value -10 to the current count, 
effectively subtracting 10 and restoring an ace 
to 1 after it was an 11. 

ShowBust Indicate that no more cards are needed. Bust 
indicator is lit. 

ShowStand Indicate that another card is needed. Neither· 
Hit nor Bust indicators are lit. 

10-62 



Design Examples 

Note that in listing 10-13, each of the state identifiers 
(Clear, ShowHit, etc.) are defined as sets having binary 
values. These values were chosen to minimize the number 
of product terms used in the Pl6R6. 

Restart ~ Low 
Dr Power Up 

LT22 

AddCard 
isAce & ! Ace 

-~ CardOut ~ High 

! LT22 & Ace 

! l T22 & ! Ace 

Figure 10-19. Pictorial State Diagram: Blackjack Machine 

10-63 



Applications Guide 

Operation of the state machine proceeds as follows if no 
aces are drawn: If a card is needed from the reader, the 
state machine goes to state ShowHit. When Cardin goes 
low, meaning that a card has been read, a transition to state 
AddCard is made. The card value is added to the current 
score or count value. The machine goes to Wail state until 
the card is withdrawn from the reader. The machine goes 
to Test17 state. If the score is less than 17, another card is 
drawn. If the score is greater than or equal to 17, the 
machine goes to state Test22. If the score is less than 22, 
the machine goes to the ShowStand state. If the score is 22 
or greater, a transition is made to the ShowBust state. In 
either the ShowStand or ShowBust state, a transition is 
made to Clear (to clear the state register and adder) when 
Restart goes low. When Restart goes back to high, the state 
machine returns to ShowHit state and the cycle begins 
again. 

Operation of the state machine when an ace is drawn is 
essentially the same. A card is drawn and the score is 
added. If the card is an ace and no ace has been drawn 
previously, the state machine goes to state AddlO, and ten is 
added to the count, in effect making the ace an 11. 
Transitions to and from Test17 and Test22 proceed as 
before. However, if the score exceeds 21, and an ace has 
been set to 11, the state machine goes to state SublO, IO is 
subtracted from the score, and the state machine goes to 
state Test17. 

10.10.9 Test Vectors - BJACK 

Listing I 0-13 shows three sets of test vectors; each set 
represents a different "hand" of play (as described above the 
set of vectors) and tests the different functions of the 
design. The Restart function is used to set the design to a 
known state between each hand and the state identifiers are 
used instead of the binary values which they represent. 

10-64 



Design Examples 

module Bjack flag •-r3' 
title 'BlackJack state machine controller 
Michael Holley & Kyu Lee Data 1/0 Corp. 23 Mar 1987' 

"Inputs 

"Outputs 

Bjack device 1 P16R6 1 ; 

Clk,Clk!N 
GT16,LT22 
is Ace 
Restart 
Cardln,CardOut 
Ena 

Sensor 
_In 
lnOut 
Out 

AddClk 
Add10 
Sub10 
Q2,Q1,QO 
Ace 

High,Low 
H,L,C,X 

Qstate 
Clear 
ShowHit 
AddCard 
Add 10 
IJait 
Test 17 
Test-22 
ShowStand 
ShowBust 
Sub_10 

pin 1,2; 
pin 3,4; 
pin 5; 
pin 6; 
pin 7,8; 
pin 11; 

"System clock 
"Score less than 17 and 22 
"Card is ace 
"Restart game 
"Card present switches 

[Cardln,CardOut]; 
[ 0 1 ] ; 
[ 1 1 ] ; 
[ 1 0 ] ; 

pin 12; 
pin 13; 
pin 14; 
pin 15, 16, 17; 
pin 18; 

1, O; 

"Adder clock 
"Input Mux control 
"Input Mux control 

"Ace Memory 

1,0,.C.,.X.; "test vector charactors 

[Add10,Sub10,Q2,Q1,QOJ; 
[ 1 1 1, 1, 11; 
[ 1 1 1, 1 ' 0] ; 
[ 1 1 0' 0' 0] ; 
[ 0 1 0' 0 I 0]; 
[ 1 1 0, 0, 1l; 
[ 1 1 0' 1 ' 0] ; 
[ 1 1 0, 1, 1]; 
[ 1 1 1 I Q' 0] ; 
[ 1 1 1, 0, 1l; 
[ 1 0 0, 0, 1]; 

equations 
Qstate := Clear & !Restart; 

Listing 10-13. Source File: State Machine (Controller) 
(continued on next page) 

10-65 



Applications Guide 

@page 
state_diagram Qstate 

10-66 

State Clear: AddClk = !ClkIN; 
Ace := Low; 
goto ShowHit; 

State ShowHit: AddClk = Low; 
Ace := Ace; 
if (Cardln==Low) then AddCard else ShowHit; 

State AddCard: AddClk = !ClkIN; 
Ace := Ace; 
if (is_Ace & !Ace) then Add_10 else Wait; 

State Add_10: AddClk 
Ace 
goto 

= !Clk!N; 
:= High; 
Wait; 

State Wait: AddClk = Low; 
Ace := Ace; 
if (CardOut==Low) then Test_17 else Wait; 

State Test_17: AddClk = Low; 
Ace := Ace; 
if !GT16 then ShowHit else Test_22; 

State Test 22: AddClk = Low; 
Ace := Ace; 
case LT22 

!LT22 & !Ace 
!LT22 & Ace 

endcase; 

State Sub_10: AddClk = !Clk!N; 
Ace := Low; 
goto Test_17; 

State ShowBust: AddClk = Low; 
Ace := Ace; 
goto ShowBust; 

State ShowStand: AddClk = Low; 
Ace := Ace; 
goto ShowStand; 

ShowStand; 
ShowBust; 
Sub_10; 

Listing 10-13. (continued) 



Design Examples 

@page 
test vectors 'Assume two cards that total between 16 and 21' 
([Ena,Clk,ClkIN,GT16,LT22,is_Ace,Restart,Sensorl -> [Ace,Qstate,AddClkl) 

[ L c L L H L L Out l -> [ X ,Clear H l; 
[ L c L L H L L Out ] -> [ L ,Clear H l; 
[ L c L L H L H Out ] -> [ L ,ShowHit L l; 

[ L c L L H L H ,InOut -> [ L ,ShowHit L l; 
[ L I c L L H L H In -> [ L ,AddCard H l; 
[ L c L I L H L H In -> [ L ,Wait L l; 
[ L c L L H L H , InOut -> [ L ,Wait L l; 
[ L c L I L H L H Out l -> [ L , Test_ 17 L l ; 
[ L c L L H L H Out ] -> [ L ,ShowHit L l; 
[ L c L L H L H Out l -> [ L ,ShowHit L l; 

L c L L H L H In -> [ L ,AddCard H l ; 
L c L H H L H I In -> [ L ,Wait L l ; 
L c L H H L H , InOut l -> [ L ,Wait L l ; 
L c L H H L H Out l -> [ L ,Test_17 L l ; 
L c L H H L H Out l -> [ L ,Test_22 I L l; 
L c L H H L H Out l -> [ L ,ShowStand, L l; 
L c L H H L H Out l -> [ L ,ShowStand, L l ; 
L c L H H L L Out ] -> [ L ,Clear H l ; 

test vectors 'Assume 2 Aces and another card that total between 16 and 21' 
CCEna,Clk,ClkIN,GT16,LT22,is_Ace,Restart,sensorl -> [Ace,Qstate,AddClkl) 

[ L c L L H L L Out l -> [ L ,Clear H l; 
[ L I c L L H L H Out l -> [ L ,ShowHit L l; 

[ L c L L H H H , InOut l -> [ L ,ShowHit L l; 
[ L I c L L H H H In l -> [ L ,AddCard H l; 
[ L c L L H H H In l -> [ L ,Add_10 H l; 
[ L c L L H H H I In l -> [ H ,Wait L l; 
[ L c L L H L H , InOut l -> [ H ,Wait L l; 
[ L I c L I L H L H Out l -> [ H ,Test_17 L l; 
[ L c L L H L H Out l -> [ H ,ShowHit L l; 
[ L c L L H L H Out l -> [ H ,ShowHit L l; 

[ L c L L H H H In -> [ H ,AddCard H l; -[ L c L L H H H In -> [ H ,Wait L l; 
[ L I c L L H L H , InOut l -> [ H ,Wait L l; 
[ L c L L H L H Out l -> [ H ,Test_17 L l; 
[ L I c L I L H L H Out l -> [ H ,ShowHit L l; 
[ L I c L I L H L H Out l -> [ H ,ShowHit L l; 

Listing 10-13. (continued) 

10-67 



Applications Guide 

[ L c L L H L H In ·> [ H ,AddCard H ] ; 
[ L c L H H L H I In ·> [ H ,Wait L ] ; 
[ L c L H H L H I InOut -> [ H ,Wait L ] ; 
[ L c L H H L H Out -> [ H ,Test_17 L ] ; 
[ L I c L H H L H Out ·> [ H ,Test_22 I L ] ; 
[ L c L H H L H Out ·> [ H ,ShowStand, L ] ; 
[ L I c L H I H L H Out ·> [ H ,ShowStand, L ] ; 
[ L I c L H H L L Out -> [ H ,Clear H ] ; 

@page 
test vectors 'Assume an Ace and 2 cards that total between 16 and 21' 
([Ena,Clk,ClkIN,GT16,LT22,is_Ace,Restart,Sensor] -> [Ace,Qstate,AddClk]) 

[ L c L L I H L L Out ] ·> [ L ,Clear H ] ; 
[ L c L L I H L H I Out ] -> [ L ,ShowHit L l; 
[ L c L L I H H H I InOut ] ·> [ L ,ShowH it L ] ; 
[ L c L L I H H H In ] ·> [ L ,AddCard H ] ; 
[ L c L L H H H In ] -> [ L ,Add_10 H ] ; 
[ L I c L L I H H H I In ] -> [ H ,Wait L ] ; 
[ L I c L L I H L H I lnOUt ] ·> [ H ,Wait L ] ; 
[ L I c L L I H L H Out ] -> [ H , Test_17 L ] ; 
[ L c L L H L H Out ] -> [ H ,ShowHi t L ] ; 

[ L I c L L H L H Out -> [ H ,ShowHit L ] ; 
[ L I c L L H L H In -> [ H ,AddCard H ] ; 
[ L c L L H L H In ] -> [ H ,Wait L l; 
[ L I c L L I H L H I InOut ] ·> [ H ,Wait L ] ; 
[ L c L L H L H Out ] ·> [ H ,Test_17 L ] ; 
[ L I c L L H L H Out ] ·> [ H ,ShowHit I L ] ; 
[ L c L L I H L H Out ] ·> [ H ,ShowHit L ] ; 

[ L c L L H L H In l -> [ H ,AddCard H ] . 
I 

[ L I c L H I L L H I In ] -> [ H ,Wait L ] ; 
[ L I c L H L L H I InOut ] -> [ H ,Wait L ] ; 
[ L I c L H L L H Out ] ·> [ H ,Test_17 L ] ; 
[ L I c L H I L L H Out ] -> [ H ,Test_22 L ] ; 
[ L c L H L L H Out ] ·> [ H ,Sub_10 H ] ; 
[ L I c L H I H L H Out ] -> [ L ,Test_17 L ] ; 
[ L I c L H I H I L H Out ] -> [ L , Test_22 I L ] ; 
[ L I c L H H L H Out ] -> [ L ,ShowStand, L ] ; 
[ L I c L H H L H Out ] -> [ L ,ShowStand, L ] ; 
[ L I c L H H L L 

end 
Out ] ·> [ L ,Clear H ] ; 

Listing 10-13. (continued) 

10-68 



11. Design Considerations 

General information and considerations that you may find 
useful as you design logic with ABEL are contained in this 
chapter. This chapter contains: 

11.1 Using State Machines 
11.2 Solving Timing Problems with REDUCE 
11.3 Passing Arguments From the Command Line 
11.4 Effect of Equation Polarity on Reduction Speed 

11-1 



Applications Guide 

11.1 Using State Machines 

State machines are one of the more powerful features of 
ABEL, but some care should be taken in organizing the 
state diagram and in ordering the states within it. This 
section describes some of the steps you can take to make 
state diagrams easy to read and maintain and to avoid some 
potential problems. The most common problem 
encountered with state machines is that too many product 
terms are created for the chosen device. This problem 
arises because state machines often have many different 
states and complex state transitions. The topics discussed in 
the following subsections will help you avoid this problem 
by reducing the number of required product terms. 

The following subsections provide information related to 
state machines: 

11-2 

11.1.1 
11.1.2 
11.1.3 
11.1.4 

11.1.5 

11.1.6 
11.1.7 

Use Identifiers Rather Than Numbers for States 
"Power On" Register States 
Design With Registers, not With Outputs 
Unsatisfied Transition Conditions, D-Type Flip
Flops 
Unsatisfied Transition Conditions, Other Flip
Flops 
Number Adjacent States for One Bit Changes 
Use State Register Outputs to Identify States 



Design Considerations 

11.1.1 Use Identifiers Rather Than Numbers for States 

As you develop a state diagram, you need to label the 
various states and state transitions. It is best to label the 
states with identifiers that have been assigned constant 
values rather than labeling the states directly with numbers. 
This allows you to change the state transitions easily or to 
change the state register values associated with each state. 

A state machine has different "states" that describe the 
outputs and transitions of the machine at any given point. 
Typically, each state is given a name, and the state machine 
is described in terms of transitions from one state to 
another. In a real device, such a state machine is 
implemented with registers that contain enough bits to 
assign a unique number to each state. The states are 
actually bit values in the register, and these bit values are 
used along with other signals to determine state transitions. 

In writing a state diagram with ABEL, you should follow 
the same design procedure of first describing the machine 
with names for the states, and then assigning state register 
bit values to the state names. 

For an example, see listing 11-1, which lists the source file 
for a state machine named "sequence." (This state machine 
is also discused section 10.5.) In the state diagram, 
identifiers (A, B, and C) are used to specify the states. 
These identifiers are assigned a constant decimal value in 
the declaration section of the source file that identify the 
the bit values in the state register for each state. Note that 
A, B, and C are only identifiers, they do not indicate the bit 
pattern of the state machine. It is their declared values that 
define the value of the state register (sreg) for each state. 
The declared values are 0, 1, and 2. 

11-3 



Applications Guide 

module sequence flag •-r3' 
title 'State machine exalJ1)le D. B. Pellerin - FutureNet'; 

d1 device 'p16r4'; 

q1,q0 
clock,enab,start,hold,reset 
abort 
in_B, in_C 
sreg 

"State Values •.. 
A = O; B 1 • I 

pin 14 I 15; 
pin 1, 11,4,2,3; 
pin 17; 
pin 12,13; 

[q1 I qOl; 

c 2; 

state_diagram sreg; 
State A: " Hold in state A until start is active. 

in B = 0· 
in-C = a: 

- I 

IF (start & !reset) THEN B WITH abort := O; 
ELSE A WITH abort := abort; 

State B: " Advance to state C unless reset 
in B = 1; " or hold is active. Turn on abort 
in=C = O; " indicator if reset. 
IF (reset) THEN A WITH abort := 1; 
ELSE IF Chold) THEN B WITH abort := O; 
ELSE C WITH abort := O; 

State C: " Go back to A unless hold is active 
11 Reset overrides hold. in B = O; 

in-C = 1· 
IF-(hold1 & !reset) THEN C WITH abort := O; 
ELSE A WITH abort := 0; 

test_vectors([clock,enab,start,reset,holdl->[sreg,abort,in_B,in_Cl) 
[ -P· I 0 0 0 0 ] -> [ A 0 0 0 ] ; 
[ .c. 0 0 0 0 ] -> [ A 0 0 0 l; 
[ .c. 0 1 0 0 ] -> [ B 0 1 0 l; 
[ .c. 0 0 0 0 ] -> [ c 0 0 1 ] ; 

.c. 0 1 0 0 ] -> [ A 0 0 0 ] ; 

.c. 0 1 0 0 ] -> [ B 0 1 0 ] ; 

.c. 0 0 1 0 ] -> [ A 1 0 0 ] ; 

.c. 0 0 0 0 ] -> [ A 1 0 0 ] ; 

.c. 0 1 0 0 ] -> [ B 0 1 0 ] ; 

.c. 0 0 0 1 ] -> [ B 0 1 I 0 ] ; 

.c. 0 0 0 1 ] -> [ B 0 1 0 ] ; 

.c. 0 0 0 0 ] -> [ c 0 0 1 ] ; 
end 

Listing 11-1. Source File: State Machine 

11-4 

'1 



Design Considerations 

11.1.2 "Power On" Register States 

Your state machine design might depend on a specific 
starting state, and, therefore, you must know what the 
"power-on" state of a device's register is. If the register 
powers on in a state that is not defined in the state diagram 
description of the state machine, the next state is undefined 
and unknown unless your design specifically accounts for 
this situation. Therefore, you should account for the 
power-on state of the device you are using or make sure 
that your design goes to a known state at power-on time. 

11.1.3 Designing With Programmable Polarity Outputs 

With devices featuring programmable polarity on the 
outputs of the registers, you must be keep in mind that the 
register outputs may be programmed to the complement of 
the device outputs. This is important because all the sets 
and clears are on the registers rather than on the 
programmable device outputs, and because you are 
concerned with the states (register outputs) themselves 
rather than with the outputs at the device pins. The final 
outputs can be handled separately. 

11.1.4 Unsatisfied Transition Conditions, D-Type Flip-Flops 

For each state described in a state diagram, you specify the 
transitions to the next state and the conditions that 
influence those transitions. For devices with D-type flip
flops, if none of the stated conditions is met, the state 
register, shown in figure 11-1, is cleared to all O's on the 
next clock pulse. This action causes the state machine to go 
to the state that corresponds to the cleared state register, or, 
the "cleared-register state." This can either be used to your 
advantage, or cause problems, depending on your design. 

11-5 



Applications Guide 

FO 

Figure 11-1. D-Type Register with False Inputs 

You can use this action to eliminate some conditions in your 
state diagram and some product terms in the converted 
design. Rather than having a condition for a transition to 
the cleared-register state, that transition can be left 
implicit. If none of the other transition conditions is met, 
the machine will go to the cleared state. This same fact can 
cause problems if the cleared state is undefined in the state 
diagram, because if the transition conditions are not met for 
any state, the machine will go to the undefined cleared 
state, and remain in that state. 

In general, this means that you should always have a state 
assigned to the cleared-register state. Or, you must define 
every possible condition so that some condition is always 
met for each state. But, the automatic transition to the 
cleared-register state can also be used to your advantage by 
eliminating product terms and explicit definitions of 
transitions. 

11.1.5 Unsatisfied Transition Conditions, Other Flip-Flops 

11-6 

If none of the state conditions is met in a state machine that 
employs J-K, R-S, and T-type flip-flops, the state machine 
does not advance to the next state as it should, but holds its 
present state. This is due to the low input to the register 



Design Considerations 

from the OR array output. In such a case, the state 
machine can "get stuck" and will not change state. (This 
holding action can be used to advantage in some designs.) 

To prevent this condition from occurring, you can use the 
complement array provided in some devices, such as the 
F 105 and F 159, to detect a "no conditions met" situation and 
reset the state machine to a known state. An example of 
using the complement array is shown in listing 13-7. (In 
this example, the feedback afforded by the array resets a 
counter to zero, but could be used to set a state machine.) 

11.1.6 Number Adjacent States for One-Bit Changes 

The number of product terms produced by a state diagram 
can be reduced greatly by a careful choice of state register 
bit values. Your state machine should be described with 
symbolic names for the states, as described in section 11.1.1. 
Then if you assign the numeric constants to these names so 
that the state register bits change by only one bit at a time 
as the state machine goes from state to state, the number of 
product terms required to describe the state transitions is 
reduced. 

For example, take the states, A, B, C, and D, which go 
from one state to the other alphabetically. The simplest 
choice of bit values for the state register is a simple 
numeric sequence. The simplest choice is not, however, the 
most efficient. Take, for example, the following simple 
and preferred choices for bit value assignments: 

Simple Preferred 
State Bit Values Bit Values 

A 00 00 
B 01 01 
c 10 11 
D 11 10 

11-7 



Applications Guide 

Notice that the pref erred bit values cause a change of only 
one bit as the machine moves from state B to C, 'whereas 
the simple choices for the bit values cause a change in both 
bit values for the same transition, The pref erred bit values 
will produce fewer product terms. 

One specialized case occurs when the language processor 
reports that too many product terms were produced for one 
of the state register bits. If this occurs, you should 
reorganize the bit values so that as the state machine moves 
from state to state, the bit for which there are too many 
terms changes in value as few times as possible. 

Obviously, the choice of optimum bit values for specific 
states can require some tradeoffs; you may have to optimize 
for one bit, and, in the process, increase the value changes 
for another. The overall object should be to eliminate as 
many product terms as necessary to fit the design into the 
device. 

11-8 



Design Considerations 

11.1.7 Use State Register Outputs To Identify States 

Sometimes it is necessary to identify specific states of a 
state machine and signal on an output that the machine is in 
one of these specific states. Equations and outputs can be 
saved if you organize the state register bit values so that one 
bit in the state register determines whether the machine is 
in a state of interest. Take, for example, the following 
sequence of states in which it is required that the Cn states 
are identified: 

State Register Bit Values 
State Name Q3 Q2 Ql 

A 0 0 0 
B 0 0 1 
Cl 1 0 1 
C2 1 1 1 
C3 1 1 0 
D 0 1 0 

This choice of state register bit values allows Q3 to be used 
as a flag to indicate when the machine is in any of the Cn 
states. Whenever Q3 is high, the machine is in one of the 
Cn states. Q3 can be assigned directly to an output pin on 
the device. Notice also that these bit values change by only 
one bit as the machine cycles through the states, as is 
recommended in section 11.1.6. 

11-9 



Applications Guide 

11.2 Solving Timing Problems with REDUCE 

Timing problems sometimes occur in logic circuits where 
propagation delays vary throughout the design or where one 
path to an output is longer or shorter than others. Many 
methods exist to eliminate such hazards, one of them being 
the introduction of redundancy into the circuit. If you use 
this technique, you must be aware that the reduction pass of 
the language processor, when run at reduction level 2 or 3, 
is designed to eliminate redundancy, whether it was 
intentional or not. Thus, if you run REDUCE (the 
reduction pass) at -r2 (reduction level 2) or at -r3 
(reduction level 3), you will counteract any attempts at 
solving timing problems by the introduction of redundancy. 
Reduction levels 0 and I do not eliminate redundant terms 
and may be used safely with intentionally redundant logic. 

Figure 11-2 shows a circuit that has a timing problem 
because both the complement of the signal C and the 
uncomplemented signal are used. Notice that the part of 
the circuit using !C has one additional unit of propagation 
delay. 

F 

Figure 11-2. Circuit Using an Input and Its Complement 

11-10 



Design Considerations 

Thus the output F defined by the equation: 

F = B & !C # !A & C 

which uses both C and its complement experiences a glitch 
as C undergoes a transition from l to 0, as shown in the 
timing diagram in Figure ll-3. 

The hazard can be eliminated by the introduction of a 
redundant term(1>, !A & B, so that the full equation 
becomes: 

F = B & !C # !A & C # !A & B 

This new equation does, in fact, remove the timing 
problem. But, if the language processor is run with level 2 
or level 3 reduction in effect, the redundant term will be 
eliminated, resulting in the original equation with the 
hazard present. 

Information on the language processor, the reduction pass, 
and the different reduction levels is presented in sections 
4.1 and 4.4. 

(1) Harris Programmable Logic (HPL TM) Application Note 106, Hazard 

Free Logic Design, Steven Bennett. 

11-11 



Applications Guide 

A 

B 

c 

!C 

B&!C 

!A&C 

F LJ 
I 
I 

Figure 11-3. Timing Diagram for F = B & !C # !A & C 

11-12 



Design Considerations 

11.3 Selecting Devices at the Command 
Line 

Dummy arguments can be used within a source file so that 
variable values can be passed from the command line when 
the ABEL language processor is invoked. This section 
describes such a use of dummy arguments to provide a 
variable device type to the memory address decoder 
presented in section 10.1. 

Device types must always be chosen explicitly before an 
ABEL logic description can be converted to a programmer 
load file. This requirement arises because the language 
processor uses device-specific information to convert logic 
descriptions to programmer load files and to check designs 
for compatibility with the device. The processor detects 
design errors such as too many product terms for the chosen 
device, too many inputs or outputs and other device
dependent restrictions. The device type is specified in the 
declarations section of the source file with a device 
declaration. 

The situation could exist in which many devices are suited 
to a particular logic design problem but in which the 
availability of any certain part is uncertain, or where power 
requirements dictate the use of one part in one system 
design and another in a different system, both to provide 
the same function. Given such a situation, it would be 
convenient to specify the device type when the source file 
is processed rather than having to edit the file before each 
run. 

This idea is used in the example logic design, M6809D, 
shown in listing 11-2. M6809D allows the user to specify 
the device type from the language processor command line 
rather than in the source file itself. Thus, the same source 
file can be used to create many different programmer load 
files for different devices. M6809D also provides a default 
device type so that if none is specified, a Pl4L4 is used by 

11-13 



Applications Guide 

default. Dummy arguments and directives are used to 
create the variable device type, as follows. 

The variable device type is implemented in three of the 
first eleven lines of the source file. These three lines are 
discussed in detail here; the remainder of the source file is 
described in section 10.1. 

Line 1: 

module M6809D (dev); 

The first line of the source file is a MODULE statement 
that names the module M6809D and indicates that a dummy 
argument, dev, is to be used within the module. When the 
language processor is invoked, an argument can be passed to 
the module, as shown here: 

abel m6809d -aP16L8 

This command line invokes the language processor to 
process the file named m6809d.abl. The argument Pl6L8 
will be substituted for dev wherever dev is preceded by a 
question mark in the source file. (A Pl6H8 or Fl53 can 
also be used.) The question mark is a required marker that 
must precede all dummy arguments where values are to be 
substituted in their place. 

Line 8: 

@ifnb (?dev) { U09 device '?dev'; 
@message 'Using "?dev".'}; 

Line 8 uses the "IF NOT BLANK" directive, @IFNB, to 
insert the appropriate device declaration into the source 
file. If the value passed for dev is not blank, the text 
enclosed by the left and right braces is inserted into the 
source with the value of dev substituted. The text within 
the braces is a standard device declaration followed by the 

11-14 



Design Considerations 

@MESSAGE directive. @MESSAGE causes the text within 
single quotes to be written to the terminal. In this case, the 
message indicates what device is being used. 

For example, if the argument Pl6L8 were passed from the 
command line, as shown above, line 8 would cause, 

U09 device 'Pl 6L8'; 

to be inserted into the source for processing. 

Line 10: 

@ifb (?dev) { U09 device 'Pl4L4'; 
@message 'Using "Pl4L4".'}; 

Line 10 functions similarly to line 8 but covers the opposite 
situation: If no device type is passed from the command 
line, the device type of Pl4L4 is used. This is because ?dev 
would be blank, and the text enclosed by braces would be 
inserted into the source. 

Lines 1, 8, and 10 allow the user to pass a device type to 
the source file when it is processed. If no device type is 
specified, a default value is used. Arguments can be passed 
to any source file in a similar manner. The dummy 
argument must be specified in the MODULE statement, the 
argument is preceded by a question mark in the module 
wherever substitution is desired, and the argument value is 
passed to the source when the language processor is 
invoked. 

11-15 



Applications Guide 

module m6809d Cdev) 
title 16809 memory decode 
Jean Designer Data 1/0 Corp Redmond ~A 24 Feb 1987' 

11 The device type may be specified on the co111Tiand line with 
11 ABEL m6809d -aP16L8 

@ifnb C?dev) { U09d device 1 ?dev 1 ; @message 'Using 11?dev11 • 1}; 

@ifb (?dev) { U09d device 'P14L4'; @message 'Using 11 P14L4 11 • 1}; 

A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6; 
ROM1,IO,ROM2,DRAM pin 14,15, 16,17; 

H,L,X 1,0, .X.; 
Address CA15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,Xl; 

equations 
!DRAM (Address <= AhDFFF); 

!10 = (Address>= AhEOOO) & (Address<= AhE7FF); 

!ROM2 (Address >= AhFOOO> & (Address <= AhF7FF); 

!ROM1 (Address >= AhF800); 

test vectors (Address -> [ROM1,ROM2,IO,DRAMl) 
AhOOOO -> [ H, H, H, L l i 
Ah4000 -> [ H, H, H, L l; 
Ah8000 -> [ H, H, H, L l; 
AhCOOO -> [ H, H, H, L ] ; 
AhEOOO -> [ H, H, L, H ] ; 
AhE800 -> [ H, H, H, H ] ; 
AhFOOO -> [ H, L, H, H ] ; 
AhF800 -> [ L, H, H, H ] ; 

end m6809d 

Listing 11-2. Device Type Passed From Command Line, 
Memory Address De.coder 

11-16 



12. Simulation 

The simulation facility is a powerful feature of ABEL that 
allows you to find and correct design errors before 
programmable logic devices are programmed. This can 
mean great savings in time and expense during the logic 
design cycle. By simulating the operation of a part, you can 
make sure that a design is correct before you program the 
part, thus eliminating trial-and-error programming and 
testing of devices. Simulation is performed by the 
SIMULA TE step of the language processor. 

SIMULA TE simulates the actual operation of a programmed 
device, as opposed to simply simulating the logic 
description provided in the source file. This is an 
important distinction. Simple simulation of the logic 
description, as contained in the source file, would not take 
the device that is to be programmed into account, and, 
clearly, such simulation would not truly indicate whether 
the programmed device would function as desired. To 
simulate the real operation of the device, device specific 
information must be used in conjunction with the 
programming information. This is how ABEL performs 
simulation. 

SIMULA TE does not evaluate the Boolean equations, truth 
tables, or state diagrams contained in the source file. 
SIMULA TE uses the test vectors that you provide, the 
programmer load file created by previous steps of the 
language processor, and device characteristics to simulate 
the operation of the programmed device. 

12-1 



Applications Guide 

The information contained in this section explains some of 
the finer points of using the simulation facility and gives 
some suggestions concerning its use. Each subsection covers 
a separate topic. The subsections are: 

12.1 Test Vectors and Simulation 
12.2 Trace Levels and Breakpoints 
12.3 Debugging State Machines 
12.4 Multiple Test Vector Tables 
12.5 Using Macros and Directives to Create Test Vectors 
12.6 Don't Cares in Simulation 
12.7 Preset, Reset and Reload Registers 
12.8 Asynchronous Circuits 

12.1 Test Vectors and Simulation 

SIMULA TE simulates the operation of a programmed 
device, but the simulation output is only as good as the 
input you provide with your test vectors. With test vectors, 
you specify the required outputs (at declared device pins) 
for given input combinations (at declared device pins). 
SIMULA TE applies the inputs specified in the test vectors 
to your design and compares the required outputs with the 
actual outputs; if there is a difference between the required 
and actual outputs, an error is indicated. However, if you 
do not specify outputs for some combination of inputs, that 
combination of inputs is not applied to the design, and 
therefore is not tested. It is to your advantage to create 
complete sets of test vectors that test all functions of your 
logic design, and to use SIMULA TE regularly as design 
changes are made. 

12-2 

NOTE: The nodes shown on ABEL logic diagrams are 
outputs for writing equations; for example, the OR terms 
for the JK flip/flops in an Fl59. These nodes cannot be 
used as direct flip/flop inputs for simulation test vectors. 



Simulation 

12.2 Trace Levels and Breakpoints 

Through careful use of trace levels and breakpoints, you 
can easily control the amount of information that 
SIMULA TE provides and make the analysis of a faulty 
design much easier. SIMULATE provides everything from 
simple error messages indicating that the actual outputs 
differ from the outputs you predicted in your test vectors to 
detailed information about the states of internal registers 
and gates of a device during simulation. It is suggested that 
you first simulate a design at the lowest trace level (level 0) 
to determine whether any errors exist. Once you find 
errors, use the higher trace levels (2, 3, 4, or 5) successively 
to increase the amount of information provided until you 
have enough information to solve the problem. Examples 
of the output produced by the different trace levels are 
given in section 4.6. 

With small designs, you can rerun SIMULA TE (or use 
EZSIM) with different trace levels to obtain the level of 
information you desire or need. With a larger or more 
complex design with many test vectors, however, this may 
result in so much information that you have difficulty 
finding that which is pertinent to the error. This is when 
breakpoints become helpful. Assume that you have run a 
simulation and detected an error in the twentieth test vector 
out of fifty vectors. You want to see more information to 
determine the cause of the error. If you simply rerun 
SIMULA TE with a higher trace level, more detailed 
information will be collected for every one of the fifty test 
vectors, when in fact you only need detailed information 
for the vector 20. If you run SIMULA TE with breakpoints 
set before and after test vector 20, the higher level of 
information will be provided only for that vector, thus 
reducing significantly the amount of information collected. 

12-3 



Applications Guide 

Detailed information on the different trace levels and on 
using breakpoints is provided in section 4.6. In summary: 

• Simulate designs at trace level 0 to determine the 
existence of errors. 

• Once an error is found, increase the trace level until 
you have enough information to correct the error. 

• Use breakpoints to limit simulation data collection to 
the vectors of concern. 

12-4 

\ 



Simulation 

12.3 Debugging State Machines 

State machines can be difficult to debug once an error 
occurs because each state is dependent on previous states 
and points to next state. A simple error in the description 
of one state transition can cause an incorrect output that 
cascades through the state machine causing so many errors 
during simulation that the original error is difficult to 
isolate. Therefore, when you debug state machines of any 
size, you should periodically force (with your test vectors) 
the machine to a known state and then let the state 
transitions take place. In this manner, you limit the 
cascading of errors to a smaller number of states and make 
it much easier to find initial errors. 

It is also helpful with large state machines to start with a 
small set of test vectors that tests only part of the state 
machine's function. When operation of that function has 
been verified, add a set of test vectors that test another 
function, then add another, and so on, until you have tested 
the full function of the state machine. Combining this 
technique of gradual simulation with the forcing vectors 
discussed above greatly simplifies the testing of large state 
machines. 

In summary, to test and debug larger state machines: 

• Write small sets of test vectors that test individual 
functions of the state machine, and gradually add them 
to the simulation. 

• Add test vectors that periodically force the machine to 
known states to eliminate cascading of errors. 

12-5 



Applications Guide 

12.4 Multiple Test Vector Tables 

More than one set of test vectors can be used to simulate 
the function of a device. This may be useful in the 
representation of the test in the source file. Take for 
example, the source file presented in listing 12-1 that 
describes AND and NAND gates implemented on the same 
device as well as the test vectors used to simulate the 
operation of that device. The test vectors are described in 
two separate sections. The first test vectors section lists the 
test vectors that simulate the operation of the AND portion 
of the design, and the second section tests the NAND 
function. With the test vectors written as they are, in two 
separate sections, the correspondence between test vectors 
and the function being tested is readily apparent in the 
source file. 

In a similar manner, anytime you have two or more distinct 
functions being performed by the same device, you may 
want to describe the vectors in separate sections for each 
function. You are not, however, required to do so. 

12-6 



Simulation 

module simple 
title 'Simple ABEL example 
Dan Poole Data 1/0 Corp 15.0ct 1987 1 

U7 
A1,A2,A3 
N1,N2,N3 
AND,NAND 

device 'P14H4'; 
pin 1,2,3; 
pin 4,5,6; 
pin 14, 15; 

equations 
AND = A1 & A2 & A3; 

!NANO = N1 & N2 & N3; 

test vectors 'Test And Gate' 
( [A1,A2,A3l ->AND 

[ 0 I 0 I 0] -> 0; 
[ 1 I 0 I 0] -> 0; 
[ 0 I 1, 0] -> 0; 
[ 0, 0, 11 -> O; 
[ 1, 1, 1l -> 1; 

test vectors 'Test Nand Gate' 

end simple 

( [N1,N2,N3] ->NANO 
[ 0 I 0 I 0] -> 1; 
[ 1 I 0 I 0] -> 1; 
[ 0 I 1 I 0] · > 1 ; 
[ 0, 0, 1l -> 1; 
[ 1, 1, 11 -> O; 

Listing 12-1. Source File With Multiple Test Vectors 
Sections 

12-7 



Applications Guide 

12.5 Using Macros and Directives to Create 
Test Vectors 

Macros and directives can be used to write test vectors in a 
concise form that is often helpful in large designs that 
require many test vectors to fully test the device operation. 
In this section, two examples of using macros and directives 
to create test vectors are shown for a simple design. The 
advantages gained through writing test vectors in this way 
are even greater for more complicated designs. 

Listing 12-2 shows a modified version of the memory 
address decoder presented in section 10.1. In this version, a 
macro and the @IRP directive are used to create the test 
vectors. The macro between is defined after the constant 
and set declarations and before the equations section. The 
between macro uses the @IF directive to produce the 
character "L" if an address is in a given range and the 
character "H" if the address is not in that range. 

The macro has three dummy arguments, a, b, and c, whose 
values are supplied when the macro is invoked. Argument 
a represents the address that either falls or does not fall in 
the range between arguments band c. The body of the 
macro is specified in the block defined by the outermost 
left and right braces. Within the block, the @IF directive is 
used to check the value supplied for a against the range 
values supplied for b and c. The @IF directive itself 
contains blocks that contain the "L" or "H" character. If the 
condition in parentheses following the @IF directive is true, 
the block following the condition is inserted into the text. 
Thus, there are two @IF directives: the first produces an 

12-8 

"L" if the address is in the range; the second produces an 
"H" if the address is out of the range. 



Simulation 

module m6809b 
title 16809 memory decode 
Jean Designer Data 1/0 Corp Redmond WA 24 Feb 1987' 

U09b device 'P14L4'; 
A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6; 
ROM1,IO,ROM2,DRAM pin 14,15, 16,17; 

H,L,X = 1,0,.X.; 
Address = [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,Xl; 

11 This macro will return an 'L' if the address Ca) is between the 
11 two limits Cb,c), otherwise it returns an 'H'. 
between macro (a,b,c) 

{@if CC?a>=?b)&C?a<=?c)){L}@if!((?a>=?b)&(?a<=?c)){H}}; 

equations 
!DRAM (Address <= AhDFFF); 

! JO (Address >= AhEOOO) & (Address <= AhE7FF); 

!ROM2 (Address >= AhFOOO) & (Address <= AhF7FF); 

!ROM1 (Address >= AhF800); 

test vectors (Address·> [DRAM, IO, ROM2, ROM1J) 
- @!RP addrs (AhOOOO,Ah8000,AhE100,AhE800,AhF100,AhFC00) { 

end rro809b 

?addrs ·> [between C?addrs,AhOOOO,AhDFFF), 
between (?addrs,AhEOOO,AhE7FF), 
between (?addrs,AhFOOO,AhF7FF), 
between C?addrs,AhF800,AhFFFF)J; 

II DRAM 
II JO 
II ROM2 
II ROM1} 

Listing 12-2. Test Vectors Described With a Macro and 
@IF and @IRP Directives 

12-9 



Applications Guide 

Now that the between macro has been defined, it can be 
used in the test vectors section to help build the test vectors. 
The @IRP directive invokes between to insert the "L" or "H" 
needed to properly define the vectors. @IRP causes the 
block following it (that text enclosed by braces), to be 
repeated once for each value contained in the parentheses in 
the @IRP statement. Each time the block is repeated, one 
of those values is successively substituted for the dummy 
argument addrs declared in the @IRP statement. This 
means that the block will be repeated six times, and addrs 
will take on six different values each time between is 
invoked in the block. addrs is substituted for a in the 
macro and the values for band care given explicitly. The 
resulting source is shown in the expanded listing produced 
by the PARSE step of the language processor. This listing, 
shown in listing 12-3, shows how the directive and macro 
were expanded to produce the test vectors. The listing was 
produced by PARSE with the -E parameter. 

In the second source file, shown in listing 12-4, the 
@CONST and @REPEAT directives are used in 
conjunction with the between macro to create the test 
vectors for the same design. The definition of between is 
identical to that used in the previous example. @REPEAT 6 
causes the block containing the vectors to be repeated 6 
times. Within that block, @CONST is used to increment the 
value of addrs before the next repetition of the block. 
Listing 12-5 shows the expanded output produced by the 
PARSE step of the language processor invoked with the - E 
parameter. Notice that in the test vectors shown in the 
listing, the constant addrs appears instead of the actual 
numeric value that the constant represents. The correct 
value is retained internally, and these test vectors are 
functionally the same as those shown in listing 12-3. 

12-10 



Simulation 

0001elrnodule m6809b 
0002eltitle 16809 memory decode 
0003e!Jean Designer Data 1/0 Corp Redmond YA 24 Feb 1984' 
0004el 
0005el 
0006el 
0007el 
0008el 
0009el 
0010el 
0011el 

U09b device 1 P14L4 1 ; 

A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6; 
ROM1,IO,ROM2,DRAM pin 14,15, 16,17; 

H,L,X = 1,0, .X.;; 
Address= CA15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,Xl; 

0012el 11 This macro will return an 'L' if the address (a) is between the 
0013el 11 two limits Cb,c), otherwise it returns an 'H'. 
0014elbetween macro (a,b,c) 
0015el {@if ((?a>=?b)&C?a<=?c)){L}@if!((?a>=?b)&(?a<=?c)){H}}; 
0016el 
0017elequations 
0018el !DRAM = (Address <= AhDFFF); 
0019el 
0020el 
0021el 
0022el 
0023el 
0024el 
0025el 

! JO 

!ROM2 

!ROM1 

(Address >= AhEOOO) & (Address <= AhE7FF); 

(Address >= AhFOOO) & (Address <= AhF7FF); 

= (Address >= AhF800); 

0026eltest_vectors (Address·> [DRAM, JO, ROM2, ROM1l) 
0027el 
0028el 
0029el 
0030el 
0031el 
0032el 
0033el 
0034el 
0035el 
0036el 
0037el 
0038el 
0039el 
0040el 
0041el 
0042el 
0043el 
0044el 

AhQOOO ·> [ L • 
H, 
H, 
Hl; 

Ah8000 ·> [ L, 

AhE100 ·> 

H, 
H, 
Hl; 

[ H, 
L, 
H, 
Hl; 

AhE800 ·> [ H, 

II DRAM 
II IO 
II ROM2 
II ROM1 

II DRAM 
II IO 
II ROM2 
II ROM1 

II DRAM 
II JO 
II ROM2 
II ROM1 

II DRAM 

Listing 12-3. PARSE Output (partial) Showing Expanded 
Vectors for a Macro and @IF /@IRP Directives 

12-11 



Applications Guide 

module m6809c 
title 16809 memory decode 
Jean Designer Data 1/0 Corp Redmond WA 24 Feb 1987' 

U09c device 'P14L4'; 
A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6; 
ROM1,IO,ROM2,DRAM pin 14, 15, 16, 17; 

H,L,X = 1,0,.X.; 
Address= [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,Xl; 

11 This macro will return an 'L' if the address (a) is between the 
11 two limits (b,c), otherwise it returns an 'H'. 
between macro (a,b,c) 

{@if ((?a>=?b>&C?a<=?c)){L}@if!((?a>=?b)&C?a<=?c)){H}}; 

equations 
!DRAM 

!IO 

!ROM2 

!ROM1 

(Address <= AhDFFF); 

(Address >= AhEOOO) & (Address <= AhE7FF>; 

(Address >= AhFOOO) & (Address <= AhF7FF); 

(Address >= AhF800); 

test_vectors (Address-> [DRAM, IO, ROM2, ROM1l) 
@CONST addrs = AhDOOO; 
@REPEAT 6 { 

addrs -> [between (addrs,AhOOOO,AhDFFF), 
between (addrs,AhEOOO,AhE7FF), 
between (addrs,AhFOOO,AhF7FF), 
between (addrs,AhFBOO,AhFFFF)l; 

@CONST addrs = addrs + Ah800;} 
end m6809c 

Listing 12-4. Test Vectors Described With a Macro, 
@CONST and @REPEAT Directives 

12-12 

II DRAM 
II IO 
II ROM2 
II ROM1 



Simulation 

0001elmodule m6809c 
0002eltitle 16809 memory decode 
0003e!Jean Designer Data 1/0 Corp Redmond WA 24 Feb 1984' 
0004el 
0005el 
0006el 
0007el 
OOOBel 
0009el 
0010el 
0011el 

U09c device 1P14L4'; 
A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6; 
ROM1, IO,ROM2,DRAM pin 14, 15, 16, 17; 

H,L,X = 1,0,.X.;; 
Address= [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,Xl; 

0012el 11 This macro will return an 'L' if the address (a) is between the 
0013el 11 two limits (b,c), otherwise it returns an 'H'. 
0014elbetween macro (a,b,c) 
0015el {@if ((?a>=?b)&(?a<=?c)){L}@if!((?a>=?b)&(?a<=?c)){H}}; 
0016el 
0017elequations 
0018el !DRAM = (Address <= AhDFFF); 
0019el 
0020el 
0021el 
0022el 
0023el 
0024el 
0025el 

! IO 

!ROM2 

!ROM1 

= (Address >= AhEOOO) & (Address <= AhE?FF); 

(Address >= AhFOOO) & (Address <= AhF?FF); 

(Address >= AhF800); 

0026eltest_vectors (Address -> [DRAM, IO, ROM2, ROM1l) 
0027el 
0028el 
0029el 
0030el 
0031el 
0032el 
0033el 
0034el 
0035el 
0036el 
0037el 
0038el 
0039el 
0040el 

add rs 

add rs 

addrs 

-> [ LI 
H, 
H, 
Hl; 

-> L, 
H, 
H, 
Hl; 

-> [ H, 
L, 

II DRAM 
II IO 
II ROM2 
II ROM1 

II DRAM 
II IO 
II ROM2 
II ROM1 

II DRAM 
II IO 

Listing 12-5. PARSE Output (partial) with Expanded Output 
for a Macro and @CONST /@REPEAT Directives 

12-13 



Applications Guide 

12.6 Don't Cares in Simulation 

In ABEL you can use the special constant .X. in a test 
vector to denote a don't care input or output. The .X. tells 
the ABEL simulator to choose a value for the input 
designated by the .X. in the test vector(s). The default 
value used in the simulator for the don't care inputs is zero; 
however, the don't care flag (-Xn) can be used in the 
SIMULA TE command line to specify zero or one (0 or 1) 
for the don't care value. (Refer also to section 4.6.) 

Input pins that are not specified in the test vectors are 
given the default don't care value zero (0) by the simulator 
unless the don't care flag is set to -Xl. In this case. all 
unspecified pins will be assigned a value of 1 in the test 
vectors. 

If you experience trouble with devices not working in a 
circuit or programmer/tester, it may be helpful to recheck 
the don't care assumptions. There may be a combination of 
l's and O's in a test vector that needs to be checked by the 
ABEL simulator. 

NOTE: The Data I/O LogicPak, Model 60, and Unisite 
programmers do not test the device in the same manner as 
the ABEL simulator. If the LogicPak displays ERROR 75 
you may determine the failed vector and pins by using the 
programmer /Logic Pak in the terminal mode as described in 
the LogicPak manual. 

Also, the simulator checks the design with a single level for 
the don't care inputs. while the target circuit may place 
other levels on the input during actual operation of the 
device. For complete simulation, you must run the 
SIMULA TE operation with the don't cares set to 0 (flag 
-XO). and then again with them set to 1 (flag -Xl). 

12-14 



l!Kldule findout flag '-t1' 
title 'The ABEL si11JJlator will find the output levels 
Ngoc Nicholas FutureNet - Data 1/0 8 Nov 1987 1 

F1 device 'P16L8'; 

A,B, Y1 I Y2 pin 1,2,14,15; 

X = .X.; 

equations 
!Y1 = A # B; 
!Y2 = A $ B; 

test_vectors 
C CA, BJ -> CY1 I Y2]) 

CO,D] -> C X, X]; 
co I 1] -> C X, X]; 
C1,0] -> C X, X]; 
C1 I 1] -> C X, X]; 

end 

Simulation 

Listing 12-6. Assignment of Don't Care Value (.x.) to 
Design Outputs 

Output pins that are not specified in the test vectors are 
disregarded by the simulator and no error will be indicated 
due to conflict between a specified value and the value 
determined by the simulator. The .X. constant at an output 
pin tells the simulator not to compare the outputs (the 
output produced by the design and the output specfied in 
the test vector) but still allow them to be displayed. Listing 
12-6 shows how the .X. value can be assigned to the outputs 
prior to the SIMULA TE step of the language processor. 

12-15 



Applications Guide 

Silll.llate ABEL(tm) 3.00 

The ABEL simulator will find the output levels 
Ngoc Nicholas FutureNet · Data I/0 8 Nov 1985 

File:'findout.out' Module:'findout' Device:'F1' Part:'P16L8 1 

Vector 1 
Vector In [00 .................. J 
Device Out [ .........•. ZZHHZZZZ.J 
Vector Out [ .•........... XX ....• ] 

Vector 2 
Vector In [01 .•......•.....•..• J 
Device Out [ ......•.... ZZLLZZZZ.J 
Vector Out [ ............. XX ••..• ] 

Vector 3 
Vector In [10 ....•.....•....... J 
Device Out [ ..........• ZZLLZZZZ.J 
Vector Out [ ..••......... XX .•... J 

Vector 4 
Vector In [11. .........•......• J 
Device Out [ .....••.... ZZLHZZZZ.J 
Vector Out [ ......•....•. XX •.... J 

4 out of 4 vectors passed. 

Listing 12-7. SIMULATE Results with Outputs Specified 
as Don't Care 

Using trace level 1, 2, or 3, you can observe the actual 
output values determined by the simulator. In listing 12-7, 
the X entries (in the test vectors) for pins 14 and 15 allow 
the simulator to display an H or L to indicate the output 
value for the specified inputs. (All unused inputs are set to 
the default condition, 0.) The N entries indicate outputs 
that are not to be tested. 

12-16 



Simulation 

12.7 Preset and Preload Registers 

Preset, reset, and preload are terms used to define a specific 
action and resultant output of one or more registers 
contained in a programmable logic device. Preset forces all 
register outputs to one, reset forces all register outputs to 
zero, and preload forces all registers to specified states. 
Synchronous preset, reset, and preload functions require a 
clock input. Asynchronous functions require no clock 
input. 

Several programmable logic devices contain registers that 
can be preset, reset, or preloaded. To verify the operation 
of these devices, appropriate test vectors must be written 
and placed in the source file. These test vectors allow the 
SIMULA TE step of the language processor to verify 
operation of the design by performing the required 
operations of these registers. 

NOTE: ABEL assumes that devices have inversion between 
the register outputs and the device outputs. When 
preloading devices that have non-inverting outputs or that 
have outputs programmable to non-inverting, the data to be 
preloaded must be complemented to obtain the desired 
preload condition. 

Also note that it is not possible to preset and preload at the 
same time. Preset and preload must not contend during 
preload with other inputs, preset, or register functions. 

12-17 



Applications Guide 

12.7.1 Special Preset Considerations 

Certain programmable logic devices, such as Fl05 and 
F 167, do not respond to the first clock pulse following a 
preset condition (invoked by power-on or the preset input). 
These devices allow normal clocking only after a high-to
low transition of the clock input following the preset 
condition. This means that simulation for these devices 
requires an additional test vector following the preset 
condition just to provide the high-to-low transition of the 
clock input, thereby allowing normal clocking to take place 
without the loss of a clock pulse. 

To illustrate the preset considerations for these devices, a 
four-state counter with clock and preset inputs is presented 
in listing 12-8, along with the test vectors required to 
properly verify the design. The equation for the preset 
condition is written using the dot extension for the two 
registers (see section 13.3). This counter is targeted for a 
circuit that provides a power-on preset condition; so the 
test vectors must verify operation of the counter after 
power-on preset as well as after the preset input has been 
active. 

Figure 12-1 is a timing diagram that shows the action of the 
test vectors in listing 12-8. As indicated in figure 12-1, the 
preset input overrides the clock input and when held high, 
inhibits clocking of the counter. Assuming that the device 
is powered-up in the preset condition, the first test vector 
pulls the clock input high while the second vector pulls it 
low to provide the high-to-low transition on the clock line, 
required for normal clocking. 

12-18 



Simulation 

module _preset flag '-KY' "leave unused OR terms connected 
title 12-bit counter to demonstrate power on preset 21 Nov 1987 
Michael Holley FutureNet Division, Data 1/0 Corp' 

preset device 1 F167 1 ; 

Clk,Hold 
PR 
P1,PO 

Ck .C.; 

equations 

[P1 .PR,PO.PR] 

[P1 .R,PO l 
[P1 ,PO.Rl 
[P1 I PO ] 
[P1 .R,PO.Rl 

test vectors 
( [Clk,PR,Holdl 

pin 1,2; 
pin 16; 
pin 15, 14; 

= PR "preset 

:= ! P1 & !PO & 
:= ! P1 & PO & 
:= P1 & !PO & 
:= P1 & PO & 

-> [P1 ,PO]) 

"Preset/Enable 

!Hold; " state 0 
!Hold; " state 1 
! Hold; " state 2 
!Hold; " state 3 

[ 1 I 0, 0 ] -> 3; 11 Provides a High-to-Low on clock 
[ 0 I 0, 0 ] -> 3; 11 to enable clocking 
[ Ck, 0, 0 ] -> O· I 

[ Ck, 0, 0 ] -> 1; 
[ Ck, 0, 0 ] -> 2· I 11 Hold count 
[ Ck, 0, 1 ] -> 2· I 

[ Ck, 0, 0 ] -> 3· I 

[ Ck, 0 I 0 ] -> O· I "Roll over 
[ Ck, 0, 0 ] -> 1; 
[ 1 I 1, 0 ] -> 3· I 

11 Preset high 
[ 1 I 0, 0 ] -> 3; " Preset low 
[ Ck, 0 I 0 ] -> O· I 

[ Ck, 0, 0 ] -> 1 • I 

Notes on preset from the Signetics Data Sheet 

The PR input provides an asynchronous preset to logic 1 1 1 of all 
State and output Register bits. Preset overrides the Clock, and 
when held High, clocking is inhibited and all outputs are High. 
Normal clocking resumes with the first clock pulse following 
a High-to-Low clock transition after PR goes Low. 

The power on preset also inhibites clocking until a High·to-Low 
clock transition. This is provided by the first 2 test vectors. 

nd 

Listing 12-8. Test Vectors for Special Preset Conditions 

12-19 



Applications Guide 

The next six test vectors provide clock inputs to increment 
the counter through all states and back to state one. As 
indicated in figure 12-1, the 9th test vector invokes the 
preset function while the 10th test vector pulls the preset 
input low and maintains the clock input high. The 10th test 
vector allows the preset line to go low before the high-to
low transition of the clock. The preset line must go low 
before the clock so that the high-to-low clock transition 
can enable the clock pulse of the l l th test vector. The 
high-to-low transition that follows the 10th test vector 
resumes normal clocking of the device. 

If the 2nd and l 0th test vectors are not included in the 
source file, the clock pulse of the 3rd and l l th vectors 
would be lost. That is, the high-to-low transition of the 
clock pulses in these vectors would cause the resumption of 
normal clocking, but do not increment the counter as 
required by the design. 

VECTOR I I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 110 111 112 I 

vcc 
P1 __ J 
Pb __ 

CLOCK 
I 

I CLOCKING 
ENABLED 

I 

\CLOCKING 
ENABLED 

Preset overrides clock, and when held high, clocking 
is inhibited and the registers are high. Normal clock
ing resumes with the first clock pulse following a 
high-to-low clock transition after preset goes low. 

Figure 12-1. Timing Diagram Showing Test Vector Action 

12-20 



Simulation 

12.7.2 TTL Preload 

Certain programmable logic devices, such as the Fl59 FPLS 
(field programmable logic sequencer) allow internal 
registers to be forced (preloaded) to a known state by means 
of the TTL preload function. Figure 12-2 shows a typical 
FPLS layout. To preload the output register in such a 
device, four conditions must be present: 

1. The output is placed in the high-impedence state. 

2. The desired register state is placed on the output pin. 

3. The load control term is activated. 

4. A clock pulse is applied to the clock input. 

(LOGIC TERMS) (CONTROL TERMS) 
P R L D 

Figure 12-2. Internal Register of the F159 

O.E. 

12-21 



Applications Guide 

The fifth test vector in listing 12-9 shows how each of the 
above conditions are met. In the fifth test vector: 

• the OE (Ena) pin is held at I 

• the output (FO) is pulled low by inserting a 0 in the 
input side of the test vector 

• a I is applied to the LOAD input which activates the 
load control term (LA) 

• a clock pulse is provided by the C (.C.) applied to the 
clock input. 

module TTLload 
title 'TTL load example 
Brenda French FutureNet · Data 1/0 21 Nov 1987' 

TTL59 device 1 F159 1 ; 

C,L,H,X,Z = .C.,0, 1, .X., .Z.; 

Clk,J_IN,K_IN,LOAD,Ena,FO 

FO istype 'reg_JK'; 

equations 

test vectors 

FO.OE 
!FO 

FO.K 
FO.L 

= !Ena; 
:= J_IN; 
= K IN· - , 
= LOAD; 

- ([Clk,Ena,J_IN,K_IN,LOAD,rO] 
[ c , L 1 0 , 0 , Xl 
[ c , L 0 , 1 , 0 , Xl 
[ c , L 1 , 1 , 0 , Xl 
[ c , L , 1 , 1 , 0 , Xl 
[ c , H , 0 , 0 1 , 0] 
[ 0 , L 0 , 0 , 0 , Xl 
[ c , L , 1 , 1 , 0 , Xl 

end 

pin 1,2,3,4,11,12; 

·> FO) 
·> 0 • , "Set 
·> 1 ; "Reset 
·> 0 • , "Toggle 
·> 1 ; "Toggle 
·> x ; "Load 
·> 0 • , "Test 
·> 1 ; "Toggle 

Listing 12-9. Invoking the TTL Preload Function 

12-22 



Simulation 

The sixth test vector tests to make sure the register was 
loaded with the 0 applied to the output by the fifth test 
vector. The sixth test vector enables the output (Ena at 0) 
and allows the output to be tested (FO = X on the input 
side and 0 on the output side of the vector) while holding 
the clock input at 0. 

12. 7 .3 Supervoltage Pre load 

Supervoltage preload allows the setting of registers, within 
certain devices such as the Pl6R4, to the logic levels placed 
on their registered outputs. Supervoltage preload is 
accomplished by means of the P test condition (.P. special 
constant) that is used to "jam load" registers within the logic 
device to the desired state. When the P test condition is 
applied to the clock pin, the logic level applied to the 
register output is loaded into the register. Devices with 
separate banks of registers require that the P test condition 
be applied to each clock pin. Also during preload, certain 
device pins, such as the output enable pin, may have to be 
in a defined state. 

To verify the pre load operation, use a separate test vector to 
test the outputs. This vector must follow the vectors that 
perform the pre load operation. 

Supervoltage preload can be used to test state machine 
designs that could assume one or more illegal states, or 
designs that contain branch conditions. An illegal state for 
a state machine is a state that the design does not allow, but 
the device is capable of assuming under certain conditions 
(such as power-up or noise). 

A typical decade counter, having states 0 through 9, and 
made up of four registers could possible assume any of six 
additional (and illegal) states (10 through 15). The design 
of this decade counter should be such that whenever an 

12-23 



Applications Guide 

illegal state is achieved, the next clock pulse returns the 
counter to the 0 state. During simulation it is necessary to 
not only test the counter for normal up/down/clear 
operation (performed by the test vectors) but also to insure 
that it will clock to state SO from any illegal state. 

To test that a decade counter will clock to state 0 from any 
illegal state, it is necessary to do two things: 

1. Define all illegal states to be tested. 

2. Create test vectors that verify the return to state 0 from 
any illegal state. 

To define the illegal states for a decade counter, it is 
necessary to define the illegal states (i.e., I 0 through 15). 
The example in listing 12-10 shows that the following 
additional entries are included to define the six illegal 
states. 

SlO= "b0101; 
Sll= "bOIOO; 
Sl2= "bOOI l; 
Sl3= "b0010; 
Sl4= "bOOOI; 
Sl5= "bOOOO; 

To verify that the design will recover from each of the 
illegal states, appropriate test vectors are included as shown 
in listing 12-11. This group of test vectors preloads the 
device to each possible illegal state and then verifies that 
the device clock to state SO. The test vectors preload the 
counter by means of the .P. special constant applied to the 
clock pin and a logic high applied to the output enable (OE) 
pin. The test vector that follows the preload test vector 
verifies the result of the preload operation, while the 
following test vector verifies the clocking of the counter 
from the illegal state to state SO. 

12-24 



module cnt10p flag '-r3' 
title 'decimal counter 
Note: preload the data on pins into the registers 

Simulation 

Denny Siu FutureNet Division, Data 1/0 Corp 4 Oct 1987' 

U10p device 'P16R4'; 

Clk,Clr,OE 
03,02,01,QO 

Ck,X,Z,P 

" Counter States 
so = "b1111; 
S1 = "b1110; 
S2 = "b1101; 
S3 = "b1100; 

pin 1,2, 11; 
pin 14, 15, 16, 17; 

.c. I .x., .z., .P.; 

S4 = "b1011; 
S5 = "b1010; 
S6 = "b1001; 
S7 = "b1000; 

S8 = "b0111; 
S9 = "b0110; 
S10= "b0101; 
S11= "b0100; 

S12= "b0011; 
S13= "b0010; 
S14= "b0001; 
S15= "bOOOO; 

Listing 12-10. The Illegal States Defined 

12-25 



Applications Guide 

module cnt10p flag •-r3' 
title 'decimal counter 
Note: preload the data on pins into the registers 
Denny Siu FutureNet Division, Data 1/0 Corp 4 Oct 1987' 

U10p device 'P16R4'; 

Clk,Clr,OE 
Q3,Q2,Q1,QO 

Ck,X,Z,P 

" Counter States 
so = "b1111; 
S1 = "b1110; 
S2 = "b1101; 
S3 = "b1100; 

pin 1,2, 11; 
pin 14, 1S, 16, 17; 

.c. , .x., .z., .P.; 

S4 = "b1011; 
SS = "b1010; 
S6 = "b1001; 
S7 = "b1000; 

S8 = "b0111; 
S9 = "b0110; 
S10= "b0101; 
S11= "b0100; 

state_diagram [Q3,Q2,Q1,Q0] 
State SO: IF !Clr THEN S1 ELSE SO; 

State S1: IF !Clr THEN S2 ELSE SO; 

State S2: IF !Clr THEN S3 ELSE SO; 

State S3: IF !Clr THEN S4 ELSE SO; 

State S4: IF !Clr THEN SS ELSE SO; 

State SS: IF !Clr THEN S6 ELSE SO; 

State S6: IF !Clr THEN S7 ELSE SO; 

State S7: IF !Clr THEN S8 ELSE SO; 

State S8: IF !Clr THEN S9 ELSE SO; 

State S9: GOTO SO; 

S12= "b0011; 
S13= "b0010; 
S14= "b0001; 
S1S= "bOOOO; 

Listing 12-11. Test Vectors for Illegal States 
continued on next page 

12-26 



Simulation 

@page 
test vectors 

( [Clk ,OE, Clr l -> [Q3,Q2,Q1 ,QOl > 
[ Ck , 0, 1 ] -> SO; 
[ Ck , 0, 0 ] -> S1; 
[ Ck , 0, 0 ] -> S2; 
[ Ck I 0, 0 ] -> S3; 
[ Ck I 0, 0 ] -> S4-

I 

[ Ck I 0, 0 ] -> SS; 
[ Ck , 1, 0 ] -> z . 

I 

[ Ck , 0, 0 ] -> S7; 
[ 0 I 0, 0 ] -> S7; 
[ Ck I 0, 0 ] -> S8; 
[ Ck I 0, 0 ] -> S9; 
[ Ck I 0, 0 ] -> SO; 
[ Ck I 0, 0 ] -> S1; 
[ Ck I 0, 0 ] -> S2; 
[ Ck I 0, 1 ] -> SO; 

test vectors •preload to illegal states' 
(-[Clk ,OE, Clr,[Q3,Q2,Q1,Q0]] -> [Q3,Q2,Q1,Q0]) 

[ p I 1, 0 S10 ] -> x ; 
[ 0 I 0 I 0 x ] -> S10; 
[ Ck I 0 I 0 x ] -> so ; 
[ p I 1, 0 S11 ] -> x ; 
[ 0 I 0, 0 x ] -> S11; 
[ Ck I 0, 0 x ] -> so ; 
[ p I 1, 0 S12 ] -> x ; 
[ 0 , 0, 0 X l -> S12; 
[ Ck I 0, 0 x ] -> so ; 
[ p I 1, 0 S13 ] -> x ; 
[ 0 I 0, 0 x ] -> S13; 
[ Ck I 0, 0 x ] -> so ; 
[ p I 1, 0 S14 ] -> x ; 
[ 0 , 0 I 0 x ] -> S14; 
[ Ck I 0, 0 x ] -> so ; 
[ p I 1, 0 S15 ] -> x ; 
[ 0 I 0 I 0 I x ] -> S15; 
[ Ck I 0 I 0 x ] -> so ; 

end cnt10p 

Listing 12-11 (continued) 

12-27 



Applications Guide 

An example of a state machine that contains branch 
conditions is given in section 10.10 (blackjack machine). If 
it was not possible to preload the state machine to each 
branch condition, it would be necessary to repeat the test 
vectors down to the Test22 state for each branch of the 
Test22 state. The test vectors in listing 12-12 show how 
this state machine can be preloaded to test these three 
branches of the design. 

test_vectors ' Test 3 way branch at Test22' 
([Ena,Clk,LT22,Ace,QstateJ ·> [Ace,Qstate ] ) 

[ 1 I• p •I x 1 , Test22J ·> [ x, x ] ; 
[ 0 I Q I 1 x I x ] ·> [ H, Test22 ] ; "Verify preload 
[ 0 I c I 1 x I x ] ·> [ H, Shows tandJ ; 

[ 1 I• p •I x 0 ,Test22J ·> [ X, x ] ; 
[ 0 I 0 I 0 x I x ] ·> [ L, Test22 ] ; 
[ 0 I c I 0 x I x ] ·> [ L, ShowStandJ; 

[ 1 ,.P., X 1 ,Test22J ·> [ X, X J; 
[ 0 , C , 0 X , X J ·> [ H, sUB10 J; 

Listing 12-12. Using Test Vectors to Preload A 
State Machine 

12.7.4 Preset/Reset Controlled by Product Term 

In programmable logic devices such as the P22V10, preset 
and reset functions can be controlled by product terms 
placed in the "equations" portion of the ABEL source file. 
(Note that in devices that have programmable polarity at 
the output of the registers, preset and reset functions may 
complement the output pins.) An example of controlling 
the preset and reset functions is given in listing 12-13. In 
this listing, two nodes within the P22Vl0 are declared as 
the reset and preset functions. (Nodes are internal signal 
lines defined by Data I/Oto aid in the programming of 
parts with internal signals. Refer to section 5.4 for 
additional details on nodes.) The declared nodes are nodes 
25 and 26. Appendix C lists nodes 25 and 26 of the P22Vl0 
as useable for the reset and preset functions. 

12-28 



Simulation 

module reset22 
title 'Demonstrates Asynchronous Reset and Synchronous Preset 
Dave Pellerin FutureNet Division, Data I/0 Corp 8 Nov 1987 1 

reset22 device 1 P22V10 1 ; 

Clk,I1,I2,R,S,T Pin 1,2,3,4,5,6; 
Q1,Q2 Pin 14, 15; 
reset,preset Node 25,26; 

Q2,Q1 
Ck,Z,H,L 
Input 
Output 

equations 

istype 'pos'; 
.C., .z., 1, O; 
[I2,I1l; 

= [Q2,Q1]; 

Output := Input; "Registered buffer 

reset R & !T; 

preset S & !T; 

test vectors 
([Clk,Input,R,S,Tl ·> Output) 

[ Ck, 0 ,0,0,0] ·> O· I 

[ Ck, 1 ,0,0,01 ·> 1. 
I 

[ Ck, 2 ,0,0,1] ·> 2· I 

[ 0 I 3 ,0,0,1] ·> 2· I "Hold 
[ Ck, 3 ,0,0,1] ·> 3· I 

[ 0 I 3 ,1,0,1] ·> 3· I "Reset = R & 
[ 0 I 3 ,1,0,0] ·> O· I "Async Reset 

!T 

[ 0 I 0 ,0,1,0] ·> O; "Preset requires 
[ Ck, 0 ,0,1,0] ·> 3· I "Sync Preset 

end 

clock 

Listing 12-13. Controlling Reset/Preset by Product Term 

12-29 



Applications Guide 

In the P22VIO, the reset is asynchronous while preset is 
synchronous (to the clock input). The test vectors in listing 
12-13 verify the reset and preset functions. The first three 
vectors verify the loading of input data. (Note that the 
third vector pulls the T input high; this is in preparation for 
T to be pulled low later in the simulation.) The fourth 
vector verifies operation of the clock input by changing the 
input data without providing a clock input. The sixth 
vector verifies that the R input without a low T input will 
not provide the asynchronous reset. 

The seventh vector verifies operation of the asynchronous 
reset by pulling the T input low. The next vector verifies 
that a high S input and low T input do not preset the device 
without the clock input. The final vector verifies the 
synchronous preset by providing the clock pulse and testing 
the output for both output pins at logic high (decimal 3). 

12. 7 .5 Preset/Reset Controlled by Pin 

Some devices, such as the P32Rl6, have a direct Preset 
coming from a pin. Be sure to include this in the test 
vectors or simulation error·s may occur. 

12.7.6 Power-Up States 

Some devices power up with registers set to I, some set to 0 
and some set to an unknown value. For example, some TI 
devices power up with registers set and outputs low while 
some AMD devices power up with registers clear and 
outputs high. The first test vector should place the device 
in a known state. The ABEL simulator assumes D, JK, and 
T registers power up to 0 and RS registers power up to I. 

12-30 



Simulation 

12.8 Asychronous Circuits 

In some asynchronous circuits, the ABEL simulator may not 
maintain the output state and will report an error. In these 
cases, the device outputs should be specified on both sides 
of the test vector. Figure 12-3 shows a common cross
coupled flip-flop, an asynchronous circuit that can cause 
erroneous error reporting by the simulator. 

The problem with such an asynchronous circuit is that it 
can power-up in an undetermined state. That is, either 
output can be high or low, depending on the electrical 
characteristics the device. In order for the simulator to 
verify the functionality of the circuit, it must be made to 
assume some beginning state for the outputs. Test vectors 
are used to define the output states so that the simulator can 
test the design. 

Listing 12-14 shows two sets of test vectors that could be 
used to test the design of a cross-coupled flip-flop such as 
that shown in figure 12-3. The first set of test vectors 
defines the inputs only, and tests the outputs for the desired 
results. Because of the circuit's asynchronous nature, the 
simulator may not be able to maintain the output state and 
may report an error. 

The second set of test vectors specifies the outputs on both 
sides of each vector. If the outputs are not defined in this 
manner, the simulator may report an error due to the 
conflict between outputs tied back to the inputs. The 
second set of test vectors defines the outputs for the 
simulator and prevents any error indications due to the 
asynchronous nature of the circuit. 

12-31 



Applications Guide 

A 

B 

Figure 12-3. A Cross-Coupled Flip-Flop 

module __ flipflop 
title 'Simulation of an asynchronous flip flop 
Lloyd Hyden Data I/O Corp 21 Nov 1987' 

flipflop device 'P16L8 1 ; 

A,B, Y1 ,Y2 pin 1,2, 13, 14; 

equations 
Y1 
Y2 

test_vectors 
([A, Bl 

[1, 0] 
[1, 1l 
[0, 1] 
[1, 1] 

test vectors 

!(A&Y2); 
= !(B & Y1); 

-> [Y1,Y2l) 
-> [ 0, 11; 
-> [ 0, 1]; 
-> [ 1, 0] ; 
-> [ 1, 0] ; 

- ( [A,B, Y1 I Y2l -> [Y1 I Y2l) 

end 

[1,0, 0, 1] -> [ 0, 1l; 
[1,1, 0, 1] -> [ 0, 11; 
[0 I 1 I 1 I 0] "> [ 1 I 0] i 
[1, 1, 1 I 0] · > [ 1, 0] i 

"Cross coupled flip flop 

Y1 

Y2 

Listing 12-14. Using the Input Side of the Test Vectors 
to Define Outputs 

12-32 



13. Using Features of Advanced Devices 

This chapter contains information that will help you utilize 
the features of the more advanced programmable logic 
devices. Subjects dealt with in this section include devices 
with enable-type outputs, configurable output macro cells, 
and the use of internal device nodes. 

13.1 Output Enables 

There are three types of output enables used in 
programmable logic devices; pin controlled, term controlled, 
and configurable. Each of these output enables, and how it 
is implemented in ABEL, is discussed in the following 
paragraphs. 

13.1.1 Pin Controlled Output Enable 

The pin controlled output enable is illustrated in figure 13-
1. Here, the output enable input is a specific device pin; 
FO is high-impedance for OE, and is active for !OE. The 
pin controlled output enable is not included in the design 
equations but should be included in all test vectors. 

13-1 



Applications Guide 

FO 

OE 

Figure 13-1. Output Enable Controlled by Device Pin 

13.1.2 Term Controlled Output Enable 

13-2 

An example of a term controlled output enable is shown in 
Figure 13-2. In this example, the product term that enables 
pin FO is A&B. The equation in the ABEL source file 
would be: 

enable FO = A&B; 

or, optionally 

FO.OE =A & B; 

For output pins that select a multiplexer, .OE must be used 
to specify the output enable. For other output pins, .OE or 
ENABLE can be used. See section 13.3.2 for more 
information on dot extension notation. 



Features of Advanced Devices 

For devices that have a negative output enable, a ! can be 
placed on either side of the equation as follows 

!FO.OE = A & B; 
FO.OE = !(A & B); 

!enable FO = A & B; 
enable FO = !(A & B); 

When the ENABLE keyword is used, any ! operator placed 
after the ENABLE keyword, but before the equation is 
ignored, for example 

enable !FO = A & B; 

is equivalent to 

enable FO = A & B; 

Figure 13-2. Output Enable Controlled by Product Term 

13-3 



Applications Guide 

13.1.3 Configurable Output Enable 

The configurable output enable is one that, through the use 
of a device feature called a 'select multiplexer' can be made 
to operate in any of four distinct modes: 

• All related outputs are controlled by a device pin. 

• All related outputs are controlled by a device term. 

• All related outputs are enabled at all times. 

• All related outputs are disabled at all times. 

Figure 13-3 shows a typical select multiplexer that can 
select any one of the four modes, by means of a pair of 
fuses. For devices with this type of output enable, you may 
specify the type of enable you wish to have on the device 
with a combination of ISTYPE statements and equations. 

To configure the output enable for pin FO to be controlled 
by a device pin, add the following ISTYPE statement to the 
declarations section of your source file: 

FO.OE istype 'pin'; 

and, if the device allows you to choose a pin or pin polarity 
for the enable, write an equation to specify which pin is to 
be used, and it's polarity: 

FO.OE =!OE; 

To specify that an output enable is to be controlled by a 
term in the device, declare the enable as follows: 

FO.OE istype 'eqn'; 

and write an equation for the enable 

13-4 



Features of Advanced Devices 

FO.OE =A & B; 

To specify that an output is to be always enabled or 
disabled, declare the enable with 

FO.OE istype 'fuse'; 

and indicate the desired state of the output enable by 
writing an equation of the form 

FO.OE = l; 
or 

FO.OE = O; 

For most devices and designs, the use of the ISTYPE 
statement to configure the selectable enable is optional since 
ABEL can normally determine the type of output enable 
required from the form of equation you write. 

More detailed information on the use of select multiplexers 
can be found in section 13.5. 

SELECT 
DEVICE PIN 1 1----------t llJX 

EQUATION --Lr---------1 

OUTPUT 
PIN 

Figure 13-3. Typical Multiplexer for Output Enable Modes 

13-5 



Applications Guide 

13.2 Output Macro Cell Control with ISTYPE 

As we have seen, the ISTYPE statement can be used to 
specify the exact configuration of programmable output 
enables. The ISTYPE statement is also used to precisely 
configure other device features, such as output polarity, 
selectable feedback, register bypass and type, and other 
macro cell features. Figure 13-4 shows how various 
ISTYPE statements affect the macro cell configuration. 

13.2.1 Controlling Macro Cell Polarity 

Output polarity is controlled by entering "pos" or "neg" in 
the ISTYPE statment. The ISTYPE statement for Q18 (see 
listing 13-1) is an example of controlling the output polarity 
to negative. For a positive output, this statement would be 

Q 18 lsType 'pos,reg,feed _reg'; 

The output polarity (positive or negative) of the macro cell 
device will affect the DeMorgan's equation inversion, and 
can result an excess of product terms. For example, a 
typical equation, such as 

YI = (A # B) & (C # D) & (E # F); 

will reduce to the following three product terms for a 
negative output. 

13-6 

!YI= (!A & !B 
#!C& !D 
#!E & !F); 



Features of Advanced Devices 

>----.---io Q t----1 Q12 

012 ISTYPE 'POS, REG, FEED_DR'; 

>-----<O Q t----t 018 

018 ISTYPE 'NEG, REG, FEED_flEG'; 

013 ISTYPE 'POS, COM, FEED_?IN'; 

Figure 13-4. Controlling Macro Cells with ISTYPE 

However, if a positive output is specified, the same 
equation requires eight product terms, as follows 

Yl =(A & C & E 
#A & C & F 
#A & D & E 
#A & D & F 
#B & C & E 
#B & C & F 
#B & D & E 
#B & D & F); 

13-7 



Applications Guide 

When dealing with programmable polarity devices, where 
the output can be programmed as negative or positive, some 
consideration should be given to polarity. For most 
programmable polarity devices, ABEL defaults to a negative 
selection when the polarity is not specified. In some 
devices this can mean a design will not fit into the device 
(causing a "too many terms for output" error message), 
although it would if positive polarity was specified for the 
outputs. 

13.2.2 Controlling Macro Cell Feedback Point 

Listing 13-1 also shows that the ISTYPE statement can be 
used to explicitly state the macro cell configuration, such as 
in the case of output Ql2. Or, the ISTYPE statement can 
be used to state the feedback point only, leaving the 
polarity and register/combinatorial selection to be 
determined by ABEL from the equations. In the example 
listing, the ISTYPE statement defines the Q 14 output as a 
feedback from the OR function only. The equation 

!QI4 := D2 & D3 

further defines Ql4 as a negative, registered output. 

13-8 



Features of Advanced Devices 

module me flag 1 -f' 
title 'Controlling output macro cells 
Brian Ourwood FutureNet 29 July 1987' 

me device 'E0310'; 

Clk,02,03,04,05,06,07 
08,09,011,Q12,Q13,Q14 
Q15,Q16,Q17,Q18,Q19 

"Explicity state macro cell 
Q12 IsType 
Q13 Is Type 
Q18 Is Type 

pin 1,2,3,4,5,6,7; 
pin 8,9,11,12, 13,14; 
pin 15,16, 17, 18, 19; 

configuration 
'pos,reg,feed_or'; 
'pos com feed pin'· 
1 neg:reg:feed=reg 1 ; 

"Let equations determine resister/corrbinatorial and polarity 
Q14 IsType •feed_or'; 
Q15,Q16,017 IsType 'feed_pin'; 

Ck,X,Z 

equations 
012.RE = 06; 
012.PR = 07; 

.C. , .X., .Z.; 

"Async Reset 
"Sync Preset 

test vectors c cclk,06,on ·> [Q12,Q14 ,Q18]) 
[ 0, 1, 0] ·> [ 0 I 1 • 1 ] ; 
[ 0, 0, 1l ·> [ 0 I 1 I 1 ] ; 
[ Ck, 0, 1] ·> [ 1 I 0 0 l; 
[ 0, 1, Ol ·> [ 0 I 1 I 1 ] ; 

"Reset 

"Preset 
"Reset 

equations 
Q12 
Q13 

:= 02 & 03; 
Q12 & 04; 

"Feedback from the OR 

test vectors ([Clk,02,03,04] ·> [Q12,Q13]) 
[ Ck, 1, 1, 1 l -> [ 1 I 1 ] ; 
[ 0,1,0,1] ·> [ 1 • 0 ] ; 
[ Ck, 0 I 1, 1] -> [0,0l; 
[ 0,1,1,1] -> [ 0 I 1 ]j 

with clock 

Listing 13-1. Controlling Macro Cells with ISTYPE 
(continued on next page) 

13-9 



Applications Guide 

@page 

equations 
!014 := 02 & 03; 
015 = 03 & 04; 

"Registered NegativE 
"Combinatorial Positive 

test vectors ([Clk,02,03,04] -> [!014,015]) 
[ Ck, 1 I 1, 1] -> [ 1 I 1 ] ; 
[ Ck, 1, 0, 1 l -> [ 0 I 0 ] ; 
[ Ck, 1, 1, OJ -> [ 1 I 0 ] ; 
[ Ck, 0 I 1, 1] -> [ 0 I 1 ] ; 

equations "bidirectional buffer 
016 = 017; enable 016 = 04; 
017 = 016; enable 017 = !04; 

test vectors ( [04,016,017] 

equations 
018 
019 

[ 1, x, 
[ 1 I x, 
[ 0 I 0, 
[ 0, 1 I 

:= 05 & !018; 
Clk; 

test vectors ([Clk,05] 
[ Ck, 0] 
[ Ck, 1l 
[ Ck, 1l 
[ 0 I 1l 
[ 1 I 1] 

end 

0] 
1] 
Xl 
Xl 

-> 
-> 
-> 
-> 
-> 
-> 

-> co16,orn > 
-> [ 0, Xl; 
-> [ 1 I Xl; 
-> [ x, 0]; 
-> [ x, 1]; 

[018,019]) 
[ 0, 0]; 
[ 1, 0]; 
[ 0, 0]; 
[ 0, 0]; 
[ 1, 1]; 

Listing 13-1. (continued) 

13-10 



Features of Advanced Devices 

13.2.3 Selecting or Bypassing Device Registers 

Figure 13-5 shows an output macro cell that allows the 
specification of whether the output register is bypassed to 
provide a combinatorial output, or selected to provide a 
registered output (other selectable features have been 
omitted for clarity). ABEL will normally choose whether to 
bypass or select the register based on the form of equation 
written for that output; the use of "=" in the equation 
indicates that the output is to be combinatorial (register 
bypassed,) and the use of ":=" indicates that the output is to 
be registered. 

For situations where you need to explicitly declare the 
configuration of the register (as in the case of devices with 
multiple feedback or configurable input registers) you can 
use the statement 

FO istype 'reg'; 

to indicate that the register for pin FO is to be selected, or 

FO istype 'com'; 

to indicate that the register is to be bypassed. 

>-----10 Q 

Figure 13-5. Macro Cell, Configurable to Combinatorial 
or Registered Output. 

13-11 



Applications Guide 

13.2.4 Controlling Register Type 

For devices with selectable register types, such as the FI59, 
the register type may be selected by using one of the 
attributes "reg_D", "reg_JK", "reg_RS", "reg_T", "reg_G", 
or "reg_JKD" to indicate which register type is desired. 
For example, to select a JK type register for an output in 
the Fl59, use the statement: 

FO istype 'reg_JK'; 

The selection of a register type may be made independently 
of whether the register has been bypassed (istype 'com') or 
selected (istype 'reg'). 

13.2.5 Selectable Product Term Sharing 

Some devices allow you to specify whether an output may 
share product terms from another output or internal node. 
To specify that the terms are to be shared, use the statement 

FO,Fl istype 'share'; 

13-12 



Features of Advanced Devices 

13.3 Controlling Device Nodes 

When designing for devices with complex macro cells and 
features, it is often necessary to refer to internal nodes 
within the device. All such internal nodes have been given 
numbers specific to each device, and these numbers may be 
found on the logic diagram for the device. 

13.3.1 Using Node Numbers 

In the P22Vl0 device, reset and preset functions appear on 
the logic diagram as nodes 25 and 26. These nodes may be 
declared and used in the same way you would declare and 
use an actual device output. 

In listing 13-2, the declaration statements assign the 
identifiers "reset" and "preset" to nodes 25 and 26. Once 
declared, the identifiers can be used in equations to specify 
the logic for each signal. 

The test vectors for this design verify that the device 
registers will be asynchronously reset when pins 4 and 6 are 
pulled high and low respectively, and that the device will 
be synchronously preset on the next clock pulse when pins 5 
and 6 are pulled high and low, respectively. 

13-13 



Applications Guide 

module reset22 
title 'Demonstrates Asynchronous Reset and Synchronous Preset 
Dave Pellerin FutureNet Division, Data 1/0 Corp 8 Nov 1987' 

reset22 device 'P22V10'; 

Clk,11,12,R,S,T 
Q1,Q2 
reset,preset 

Q2,Q1 
Ck,Z,H,L 
Input 
Output 

Pin 1,2,3,4,5,6; 
Pin 14, 15; 
Node 25,26; 

i stype 'pos'; 
.c., .z., 1, O; 
[12,11]; 

= [Q2,Q1]; 

equations 
output := Input; "Registered buffer 

reset R & !T; 

preset S & !T; 

test vectors 
CCClk,Input,R,S,Tl ·> Output) 

[ Ck, 0 ,o,o,oJ ·> O; 
[ Ck, 1 ,0,0,0] ·> 1. 

' [ Ck, 2 ,0,0, 1l ·> 2· 
' [ 0 I 3 ,0,0, 1l ·> 2· I "Hold 

[ Ck, 3 ,o,o, 1l ·> 3· I 

[ 0 I 3 ,1,0,1] ·> 3· I "Reset = R & 
[ 0 ' 3 '1,0,0] ·> O· I "A sync Reset 

!T 

( 0 I 0 ,0, 1,0] ·> O· I "Preset requires 
[ Ck, 0 ,0,1,0] ·> 3· 

' 
"Sync Preset 

end 

clock 

Listing 13-2. Using Node Numbers for Reset/Preset Functions 

13-14 



Features of Advanced Devices 

13.3.2 Using Dot Extension Notation 

For most device nodes it is easier to refer to the required 
node by using dot extension notation. For example, the 
reset term (node 25) of the P22Vl0 could be accessed by 
writing an equation of the form: 

Q2.RE = R & !T; 

Similarly, the preset term (node 26) could be referred to 
with the equation: 

Q2.PR = S & !T; 

When dot extension notation is used, there is no need to 
declare the node in the declaration section of your ABEL 
source file. Listing 13-3 shows the P22Vl0 design example 
using dot extension notation for the reset and preset 
functions. Note that node numbers are not used in this 
example to declare the reset and preset nodes. The dot 
extensions supported in the ABEL language are listed 
below, and detailed information about which devices can 
use these dot extensions is contained in Appendix C . 

. AP asynchronous preset 

.AR asynchronous reset 

.C clock input 

.FC function (mode) control 

.J J input of J-K flip-flop 

.K K input of J-K flip-flop 

.L load input for registers 

.OE output enable 

.PR register preset 

.Q register feedback 

.R R input of RS flip-flop 

.S S input of RS flip-flop 

.RE register reset 

13-15 



Applications Guide 

module reset22a 
title 'Demonstrates Asynchronous Reset and Synchronous Preset 
Dave Pellerin FutureNet - Data I/0 Corp 8 Nov 1985' 

reset22a device 'P22V10'; 

Clk,11,12,R,S,T 
Q1 ,Q2 

Pin 1,2,3,4,5,6; 
Pin 14, 15; 

Q2,Q1 
Ck,Z,H,L 
Input 
output 

equations 

output 

Q2.RE 

Q2.PR 

test vectors 

istype 'pos'; 
.c., .Z., 1, O; 
[12,I1l; 

= [Q2,Q1]; 

:= Input; "Registered buffer 

R & !T; 

= S & !T; 

C[Clk,Input,R,S,Tl -> Output) 
[ Ck, 0 ,0,0,01 -> O· I 

[ Ck, 1 ,0,0,01 -> 1. 
I 

[ Ck, 2 ,0,0,1l -> 2· I 

[ 0 I 3 ,0,0,1l -> 2· I "Hold 
[ Ck, 3 ,0,0, 1l -> 3· I 

[ 0 I 3 ,1,0,1] -> 3· I "Reset = R & 
[ 0 I 3 ,1,0,0l -> O· I "Async Reset 

!T 

[ 0 I 0 ,0, 1,0l -> O· I "Preset requires 
[ Ck, 0 ,0,1,0l -> 3· I "Sync Preset 

end 

clock 

Listing 13-3. Using Dot Extensions for Reset/Preset Functions. 

13-16 



Features of Advanced Devices 

13.4 More On Feedback 

Most programmable logic devices provide feedback from 
some or all of their outputs. In simple cases, you need only 
refer to the output pin name as an input in your design 
equations, and the feedback will be properly used. Figure 
13-6 shows a portion of a Pl6R4 logic diagram and 
illustrates how the feedback is routed in the device for 
registered and combinatorial output pins. We have seen in 
earlier examples such as the four-bit counter/multiplexer 
described in section 10.4, how the feedback is used for 
devices such as this. In some cases, however, you will need 
to use more explicit syntax to indicate what kind of 
feedback you require. 

Figure 13-6. Registered and Combinatorial Feedback (P16R4) 

13.4.1 Selectable Feedback Type 

Some devices, such as the £0310, allow the selection of 
which feedback path you wish to use for each device 
output. Figure 13-7 shows the logic diagram for one output 

13-17 



Applications Guide 

HUX 
Feedback for 'FEED_OA' 

HUX 
Feedback for 'FEED_REG' 

MUX 
Feedback for 'FEEO_pIN' 

Figure 13-7. Selectable Feedback Paths (E0310) 

13-18 



Features of Advanced Devices 

of a E03 l 0 and illustrates the three selectable feedback 
paths. Section 13.2.2 describes how to configure the 
feedback for devices such as this using the ISTYPE 
statement. Once the feedback type has been specified in 
your design, no special equation syntax is required to use 
the feedback in your equations. 

13.4.2 Multiple Feedback Paths 

Devices with multiple feedback paths, such as the P32VX10 
device shown in figure 13-8, require that you not only 
configure the device to indicate the register bypass and 
feedback paths; you must also use special dot extension 
notation to indicate which feedback path you are referring 
to in your equations. 

For example, listing 13-4 shows an ABEL source file that 
demonstrates how to configure and use the outputs of a 
P32VX10. In the declarations section of the ABEL source 
file, output pins are declared and the ISTYPE statement is 
used to configure the output polarity of pins Ql4 through 
Ql7. 

Figure 13-8. Configurable Macro Cell (32VX10) 

13-19 



Applications Guide 

module test32vx 
title •controlling feedback for MM! 32VX10 
Kim- Fu Lim FutureNet 29 Nov 1987' 

test32vx device 
Clk,12,13,14,15,16 
17,18,19,110,111,113 
014,015,016,017,018 
019,020,021,022,023 
AP,SR 

014 istype •neg'; 
015 istype 'pos'; 
016 istype 'neg'; 
017 istype •neg'; 

'P32VX10A'; 
pin 1,2,3,4,5,6; 
pin 7,8,9,10,11, 13; 
pin 14, 15,16,17,18; 
pin 19,20,21,22,23; 
node 25,26; 

equations 
014.0E ! 113; 
014.FC 14; 

!014 := 12 & 13; 

015.0E ! 113; 
015.FC 14; "Bypass register with 14 
015 := 12 & 13; 

016.FC 1 • I "Bypass register always 
016 := 015; "Feedback from pin 

017.FC 1 • I "Bypass register always 
017 := 015.0; "Feedback from O 

test vectors 
( [Clk, 12, 13, 14, 113,015,016) -> [014,015,016,017)) 

[.C. I 0, 0, 0, 0 I .x. I .X.] -> [ 1 I 0 . 0 I 0 ] ; 
[.C. I 1, 1 • 0, 0 •. x. I .X.] -> [ 0 • 1 I 1 . 1 ] ; 
[.C. • 0, 0, 0, 0 , .X., .X.] -> [ 1 . 0 I 0 . 0 J; 
[ 0 . 0, 0, 0, 1 I .x .•. X.] -> [.Z., .Z., .X., 0 ] ; 
[ 0 I 0, 0, 0, 1 I 0 , .X.J -> [.Z., .X., 0 0 l; 
[ 0 I 0, 0, 0, 1 . 1 I .X.] -> [.Z ••• x. I 1 0 ] ; 
[ 0 I 0, 0, 1, 0 I .x., .X.] -> [ 1 . 1 I 1 0 J; 
[ 0 . 1, 1, 1, 0 , .X., .X.J -> ( 0 I 0 I 0 0 J; 

end 

Listing 13-4. Output Configurations for a P32VX10 

13-20 



Features of Advanced Devices 

The P32VX10 register bypass feature allows the bypass of 
the register to be controlled via a product term. The 
equations for Q16.FC and Q17.FC cause the control terms 
for these pins to be programmed to always select the 
register. Register bypass for pins Q 14 and Q 15 are 
controlled dynamically in the design equations by input pin 
14. 

In the design equations, pin feedback is specified for pin 
Q 15 by ref erring to Q 15 as an input, and register feedback 
is specified by referring to Q 15.Q as an input. 

13.4.3 The .Q Dot Extension 

In the previous example, register feedback was indicated in 
the design by using the .Q dot extension when referring to a 
signal as an input in the equations. Figure 13-9 shows a 
typical registered output, and where you should assume that 
the .Q signal originates when you use it in equations; 
although this is not necessarily where the device feedback 
actually comes from. 

Figure 13-9. Location of the Q Signal in Registered Devices 

13-21 



Applications Guide 

In most devices, as in figure 13-9, the register feedback 
does not actually originate at the Q output of the register, 
but at the complement output. The PARSE module will 
invert the feedback if it comes from the complement 
output. This can be seen in the "original equations" section 
of the DOCUMENT output (*.DOC) when the -qO 
parameter is specified on the ABEL command line. 

For the purpose of writing equations, however, you should 
assume the polarity of the .Q signal is the same as the 
polarity of the Q output of the register, regardless of any 
inversion the output may have after the register. 

13-22 



Features of Advanced Devices 

13.5 Using Select Multiplexers 

Section 13.1 showed how a configurable output enable can 
be controlled using a combination of ISTYPE statements 
and equations. These ABEL language features may be used 
to control a variety of configurable features in complex 
devices. 

Figure 13-10 shows an output macro cell for an E 1800 
device. This device has selectable clock and enable lines, 
allowing each macro cell to operate in one of the following 
modes: 

• Clocked from dedicated pin, enable from a term 

• Clocked from a term, always enabled 

As seen in figure 13-10, two select multiplexers are 
controlled by a single fuse. This means that only one 
ISTYPE statement is required to configure both select 
multiplexers. For example, to indicate that the macro cell 
for pin FO is to be configured for clocking from 
term/enabled always, you could write write the statement 

FO.OE istype 'fuse'; 

in combination with an equation such as 

FO.OE = l; 

Because the both select multiplexers are controlled by one 
fuse, you could indicate the same configuration with the 
declaration 

FO.C istype 'eqn'; 

13-23 



Applications Guide 

If you attempt to configure the select multiplexers in a way 
that conflicts, such as 

FO.C 
FO.OE 

is type 
is type 

'eqn'; 
'eqn'; 

then ABEL will produce an error. 

Figure 13-10. Output Macro-Cell for the E1800 

13-24 



Features of Advanced Devices 

13.6 Using Selectable Register Types 

Many devices, such as the Fl59/7 /5 and E0600/900, allow 
you control the register type for outputs. There are two 
types of register controls; fuse controlled and term 
controlled. The fuse controlled register is specified by 
using the ISTYPE statement. The following register types 
may be specified in an ISTYPE statement: 

reg_D 
reg_JK 
reg_ RS 
reg_T 
reg_G 
reg_JKD 

D type register 
JK type register 
RS type register 
T type register 
G type latch/gated clock 
D/JK controllable register 

For example, the statement 

FO is type 'reg_ D'; 

will configure the register for output FO as a D type flip
flop. 

For term controlled register types, the .FC dot extension is 
used to write equations for register type control. For 
example, the equation 

FO.FC = 12 & 13; 

indicates that the register type is controlled by pins 12 and 
13, and the equation 

FO.FC = l; 
or 

FO.FC = O; 

indicates that the register type should be fixed. The actual 
type of register that results from this equation depends on 
what device is being used. 

13-25 



Applications Guide 

13.7 4-Bit Shifter/Counter Design 

When writing equations for outputs with multiple input 
registers (JK and RS register types) you must use dot 
extension syntax to access the second input to the register. 
For example, to write an equation for the K input to a JK 
register, use the dot extension .K. 

The following example, a shifter/counter, uses the 
controllable register type features of an Fl 59 device. 

13.7.1 The F159 Logic Diagram 

Figure 13-11 is a logic diagram of the F 159 FPLS and 
shows the details of the eight registered-output macro cells. 
The shifter/counter design used in this example employs the 
lower four of these outputs. Note that the registers in this 
device are dynamically programmable as either J-K or D
type flip-flops by means of the FC line. Dynamic 
programming of the flip-flops is possible as long as the 
fuses on the MO through M 3 lines remain intact and are not 
blown. (If any of the Mx fuses are blown, the associated 
register becomes a J-K flip-flop permanently. 

The dynamic programming of the output registers allows 
the use of J-K flip-flops when the counter mode is 
selected, and D-type when the shift function is selected. 
This is ideal since J-Ks are better suited to counters and D
types are better suited to shifters. 

13-26 



Features of Advanced Devices 

,@~~JffeL®~t C ~ ~ l I ¢ ¢ 
~r ........ ,. ,.,,,. ~ ,, ~ EAjEe 

9 83 
2100 

lD-Dx, _J~ -
8 82 

1 e, 
+ 2102 I 

I -D- _HD t- ---ill Bo 
I i Xo 2103 ]' "s2i-=- P~R + ------~--r- J a . .. r F, 
2092J.---~ CK 111-;f r~~~-

~ JU~ fi4o--~ J a r Fo 

2093~~-M~ j-S,K 

-w-l~;. L K -- -

+ -- --~ !(!;;r-r-1 -- r Fs 
2094+-- - - CK Jrr-i-'®'"'tI ~ . t-o: + -B ~~ -p 
-~ r F4 

20,95+-- M4 CK I no K ~-" )., 
I .. ~p~,._,. 
+- MiA JT 0}9 r F, 

2096 · ,~ ~ < CK TII "-'@-<er 1~ ~ iv ~ .--'---'-. F, 
Tcf911-,_, ~ JT 0 . r -_r;:_ 31 CK 

1111 ~ -tr TI ~ : )., 

...@ r-. ' ' 

~l ,__,. Mi A IJ: Q ' J 13 Fi 
2098 n ~ _c,_ K CK TII ~-er It:: .B r.---ril. [,.: r Fo 
20991 1.7 ~g,1 ~Tl~ j5i1 

-tj53 I '"'B ~ TI ,!__, . 

CK~CK 

Figure 13-11. Logic Diagram of the F159 FPLS (partial) 

13-27 



Applications Guide 

13.7.2 Examination of the Source File 

The source file for the shifter/counter is shown in listing 
13-5. Pin declarations are made to define inputs and 
outputs; and a node declaration is made to declare the RA 
node (to provide the clear function for the counter). An 
ISTYPE statement is used to configure the four outputs 
(FO-F3) as reg_JKD. 

Sets are used to define the mode control lines and the 
configuration of these lines for each of the shifter/counter 
modes. Inputs JKD, and I1 through /3 are defined as 
"mode". Under "mode", each shifter/counter function is 
defined as specific inputs to JKD and I1 through /3 (pins 2 
through 5). The four outputs (FO-F3) are defined as 
"count", which is used in the first equation to configure the 
output enable input. (Refer also to section 13.1.3.) 

The next equation defines the FC (J-K/D-type flip-flop 
function control) line as equal to input line JKD (pin 2). 
Only FO.FC is used, since all flip-flops in the Fl59 share a 
common flip-flop control. The remaining equations define 
the operation of the shifter/counter. Some rules apply to 
these latter equations and are explained in the following 
sections 13.7.3 and 13.7.4. The final equation defines the 
reset input to the flip-flops (RA, node 25) as equal to input 
line I 3 pulled high. That is, 

RA= (mode== Clear) 

which is equal to 

13-28 

RA = [I3 ,12,11 ,JKD] == [ l ,X,X,X] 
= I3 



Features of Advanced Devices 

module shiftcnt flag •-t1' 
title 'universal counter I shift register 
Bjorn Benson Data 1/0 Corp 25 Nov 1987' 

IFL4 device 'F159'; 

pin 1,2,3,4,5, 11; 
pin 12,13,14,15; 
istype 1 reg_JKD 1 ; 

Clk,JKD,11,12,13,0E 
FO,F1,F2,F3 
F3,F2,F1,FO 
H,L,X,Z,Ck 1,0,.x.,.z.,.c.; 

11 Define counter/shift modes 
mode [13,12,11,JKD]; 
Down [ 0, 1, 0, 1 ] ; 
Up [0,0,1,1]; 
Clear [ 1, X, X, X l; 

Left 
Right 

II [13,12,11,JKD] 
[ 0, 1, 0, 0 ] ; 
[ 0, 0, 1, 0 ] ; 

count [F3, F2, F1 I FO]; 11 Group register outputs into set 

equations 
11 Count Down JK (T) Flip/Flop 

!FO .- (mode == Down) 
FO.K (mode == Down) ; 

!F1 .- (mode == Down) & FO; 
F1 .K (mode == Down) & FO; 

!F2 := (mode == Down) & F1 & FO; 
F2.K (mode == Down) & F1 & FO; 

!F3 := (mode == Down) & F2 & F1 & FO; 
F3.K (mode == Down) & F2 & F1 & FO; 

11 Count Up JK CT) Flip/Flop 
[! FO,FO.K] .- (mode == Up) ; 
[!F1,F1.K] := (mode == Up) & ! FO; 
[! F2, F2.K] := (mode == Up) & ! F1 & ! FO; 
[! F3,F3.K] := (mode == Up) & !F2 & ! F1 & !FO; 

11 Shift Left D Flip/Flop 
!FO := (mode == Left) & !F3; 
!F1 := (mode == Left) & ! FO; 
!F2 := (mode == Left) & ! F1; 
!F3 := (mode == Left) & ! F2; 

II Shift Right D Flip/Flop 
!FO := (mode == Right) & ! F1; 
! F1 := (mode == Right) & ! F2; 
!F2 := (mode == Right) & ! F3; 
!F3 := (mode == Right) & ! FO; 

Listing 13-5. A Shifter/Counter in an F159 
(continued on next page) 

13-29 



Applications Guide 

@page 
equations 

[F3.0E,F2.0E,F1.0E,F0.0E] = !OE; 
[F3.FC,F2.FC,F1.FC,F0.FC] JKD; 
[F3.RE,F2.RE,F1.RE,FO.RE] = (mode == Clear); 

test vectors 
C[Clk,OE,mode l ·> count) 

[ Ck, L, Clear] ·> !O 11 Count Up and Shift Left 
[ Ck, L,Up ] ·> ! 1 
[ Ck, L,Up ] ·> !2 
[ Ck, L,Up ] ·> !3 
[ Ck, L,Left l -> !6 
[ Ck, L,Left l -> ! 12 
[ Ck, H,Left l -> z 

[ Ck, L,Clearl -> "b1111; 11 Shift right 
[ Ck, L,Down ] -> "bOOOO; 
[ Ck, L,Down ] -> "b0001; 
[ Ck, L,Rightl -> "b1000; 
[ Ck, L,Rightl -> "b0100; 
[ Ck, L,Rightl -> "b0010; 
[ Ck, L,Rightl -> "b0001; 

[ Ck, L,Clearl -> "b1111; 11 Shift left 
[ Ck, L,Up ] -> "b1110; 
[ Ck, L,Left l -> "b1101; 
[ Ck, L,Left l -> "b1011; 
[ Ck, L,Left l -> "b0111; 
[ Ck, L,Left ] -> "b1110; 

[ Ck, L, Clear] -> !O 11 Count up 
[ Ck, L,Up ] -> ! 1 
[ Ck, L,Up ] -> !2 
[ Ck, L,Up ] -> !3 
[ Ck, L,Up ] -> !4 
[ Ck, L,Up ] -> !5 ; 
[ Ck, L,Up ] -> !6 ; 
[ Ck, L,Up ] -> !7 ; 
[ Ck, L,Up ] -> !8 ; 
[ Ck, L,Up ] -> !9 ; 
[ Ck, L,Up ] -> ! 10 
[ Ck, L,Up ] -> ! 11 
[ Ck, L,Up ] -> ! 12 
[ Ck, L,Up ] -> ! 13 
[ Ck, L,Up ] -> ! 14 
[ Ck, L,Up ] -> !15 
[ Ck, L,Up ] -> !O 

end 

Listing 13-5. (continued) 

13-30 



Features of Advanced Devices 

13. 7 .3 Combining Equations 

The equations in the "Count Down" portion of the source 
file can be written as shown, or you can combine pairs of 
equations that are identical on the righthand side. That is, 
the two equations 

!FO := (mode == Down); 
FO.K =(mode== Down); 

may be written as the single equation 

[!FO,FO.K] :=(mode== Down); 

The latter equation shows how the two equations have been 
ORed into a single equation without altering the specified 
design of the device. Similarly, 

!F2 :=(mode== Down) & Fl & FO; 
F2.K = (mode == Down) & Fl & FO; 

may be written as 

[!F2,F2.K] :=(mode== Down) & Fl & FO; 

13. 7 .4 Specifying the Flip-Flop Inputs 

To specify the flip-flop inputs, the dot extension notation 
given in the Device Nodes appendix is used directly in the 
equations. For example, the J and K inputs of the flip-flop 
associated with the F 1 output of the F 159 may be noted as 
Fl.J and FI.K, as shown in the upper portion of figure 13-
12. The inputs for other flip-flops in the design may be 
noted in a similar manner as shown below. 

[Fl.J,Fl.K] := (mode == Down) 
[F2.J,F2.K] :=(mode== Down) & Fl & FO; 
[F3.J,F3.K] :=(mode== Down) & F2 & Fl & FO; 

13-31 



Applications Guide 

This method of flip-flop input notation, shown in the 
following equations, eliminates the need to declare the 
nodes for the flip-flop inputs. 

Instead of being noted as described above, the J input (but 
not the K input) can also be noted in terms of the 
registered output, as shown in the lower portion of figure 
13-12. This is due to the fact that whatever logic level is 
placed on the J input of the register appears at its output. 
(In figure 13-12, the complement of the output is used due 
to the inverter in the Fl59 output.) For example, the 
equations 

[Fl.J,Fl.K] := (mode == Down) 
[F2.J,F2.K] :=(mode== Down) & Fl & FO; 
[F3.J,F3.K] :=(mode== Down) & F2 & Fl & FO; 

could be written as 

[!Fl,Fl.K] :=(mode== Down) 
[!F2,F2.K] :=(mode== Down) & Fl & FO; 
[!F3,F3.K] :=(mode== Down) & F2 & Fl & FO; 

If a J input is noted in one equation as "Fl.J" and in another 
as "!Fl" (the name of the registered output), an 
inconsistency is introduced into the design equations that 
will result in an error. The equations 

[F2.J,F2.K] :=(mode== Down) & Fl & FO; 
[F3.J,F3.K] :=(mode== Down) & F2 & Fl & FO; 

consistently define the J inputs, however the equations 

[!F2,F2.K] :=(mode== Down) & Fl & FO; 
[F3.J,F3.K] :=(mode== Down) & F2 & Fl & FO; 

note the J input in the two different ways. 

13-32 



Features of Advanced Devices 

In the last example, a J input is noted in terms of its J input 
node and another as the inverse of its registered output. 
This type of inconsistency will result in a fusemap error 
when the design is processed by ABEL. It is important to 
decide on the form used to specify the J inputs and use 
only that form. 

F1.J 
----lj 

_F1_. K __ --1 K 

_!F_1 ----iJ 

_F1_.K __ --1 K 

FLIP
FLOP 

FLIP
FLOP 

Figure 13-12. Flip-Flop Input Notation Examples 

13.7.5 Test Vectors 

The test vectors in listing 13-5 are divided into four groups 
for the sake of functional clarity. The first group simply 
clears the device and then makes it count up three 
increments and then shift left twice. This test is provided 
to show the operation of the design when it is run through 
the ABEL simulator and then displayed as shown in listing 

13-33 



Applications Guide 

13-6 (described in text which follows). The second group 
of test vectors tests the shift right function by first clearing 
the counter to all positive outputs and then decrementing it 
to a single positive output. The last four vectors shift the 
positive bit across the outputs. The third group of vectors 
operates in a similar manner to test the shift left function. 
The last group of test vectors test the counter from state 0 
through state 15 and then wraparound back to state 0. 

The first group of test vectors provide a test, which when 
the source file of listing 13-5 is run through the ABEL 
simulator, generate the trace information shown in listing 
13-6. (Listing 13-6 is a partial printout of the "shftcnt.SIM" 
file generated by the SIMULA TE element of the ABEL 
language processor. Listing 13-6 shows the SIMULATE 
results of the first six test vectors contained in listing 13-5.) 
The input side of the first test vector shows that pin 5 is 
high to clear the counter. On the output side of the vector, 
node 25 (the RA reset register bank A function) is high to 
clear the counter registers; outputs FO through F3 show that 
the counter outputs are all high, indicating the reset 
condition (the Fl59 has negative register outputs). 

13-34 



Features of Advanced Devices 

SilllJlate ABEL(tm) 3.xx 

universal counter I shift register 
Bjorn Benson Data I/0 9 Mar 1987 

File:'shiftcnt.out• Module:'shiftcnt' Device:'IFL4' Part:'F159' 

***** Count Up and Shift Left ***** 

Vector 1 
Vector In [CXXX1 ••••• 0 .••••••..•••••..•...•••....•••••••••••••• ] 
Device Out [ ••••• ZZZZ .• HHHHZZZZ.LLLLHLLL ..•.••.• LLLLLLLLLLLLLLLL] 
Vector Out [ •••••••••.. HHHH •..•••....••.••.•••.•.••••.•••••..••• l 

Vector 2 
Vector In [C1100 ..••. 0 ••••••••••••••.•••••...•......•..•...•... ] 
Device Out [ ••••• ZZZZ •. LHHHZZZZ.HLLLLLLL ...•••.. HHLLLLLLHHLLLLLL] 
Vector Out [ .•••.••.••. LHHH ••..•....•••...••••••...•.........••. ] 

Vector 3 
Vector In [C1100 ••••. 0 .•••....•.•..•••••..••••••••••••••••..••• ] 
Device Out [ ••••• ZZZZ .• HLHHZZZZ.HLLLLLLL ••••.••• HLLLLLLLHLLLLLLL] 
Vector Out [ ..•••....•• HLHH •••••••••••••••••..••.•......•....••. l 

Vector 4 
Vector In [C1100 ..••• 0 •..••••••.•...••.••.••.••.•....•••...•••. ] 
Device Out [ ••••• ZZZZ •• LLHHZZZZ.HLLLLLLL ••.•.••• HHHLLLLLHHHLLLLL] 
Vector Out [ ••••..••••• LLHH ••.•.••...••.••.•••••..•••••..••••... ] 

Vector 5 
Vector In [C0010 ••••• 0 •••••••..•••..••....•••.....•••..••••••.• ] 
Device Out [ ••••. ZZZZ •• HLLHZZZZ.LLLLLLLL ••.••.•• LLLLLLLLLLHHLLLL] 
Vector Out [ ••••.•••••• HLLH ••••.•••..•..••.•..•••...•••...•.•.•. ] 

Vector 6 
Vector In [C0010 ••••• 0 •.••••.••.•.•.•••••.••••••••••••••••••••• ] 
Device Out [ ••••. ZZZZ •• HHLLZZZZ.LLLLLLLL ••.••.•• LLLLLLLLHLLHLLLL] 
Vector Out [ ..•.•••...• HHLL. .••••...••••....••............•..••. ] 

Listing 13-6. SIMULATE Output (Partial) for the 
Shifter /Counter 

13-35 



Applications Guide 

The second vector of listing 13-6 shows the change in the 
mode inputs to the count-up function, i.e., pins 4 and 5 at 
logic high. On the output side of the vector, the FO pin 
(pin 12) is negative and the FC line (node 21) is now active 
to place the flip-flops in the J-K mode as described in 
section 13.7.1. The third and fourth vectors show that the 
mode selected on the input side remains the count-up 
function while the FO through F3 outputs increment in a 
binary fashion to a count of three (decimal). 

The fifth vector shows that the mode is changed to the 
shift-left function and the FO through F3 outputs shift as a 
result to provide an output of six (decimal). The sixth 
vector provides a second shift-left function, resulting in a 
shifter output equal to 12 (decimal) or C (hexadecimal). 

13-36 



Features of Advanced Devices 

13.8 Using Complement Arrays 

The complement array is a unique feature that is found in 
some logic sequencers. The following example shows a 
typical use; i.e., termination of a counter sequence. 

Transition equations may be used to express the design of 
counters and state machines in some devices that contain 
J-K and/or R-S flip-flops. A transition equation expresses 
a state of the circuit as a variation of, or an adjustment to, 
the previous state. This type of equation eliminates the 
need to specify each node of the circuit, but only those that 
require a transition to the opposite state. 

An example of transition equations usage is shown in listing 
13-7, a source file for a decade counter having a single 
(clock) input and a single latched output. The purpose of 
this counter is to divide the clock input by a factor of ten 
and generate a 50% duty-cycle squarewave output. The 
device uses for this design is an Fl05 FPLS. In addition to 
its registered outputs, this device contains a set of "buried" 
(or feedback) registers whose outputs are fed back to the 
product term inputs. COMP, PO, Pl, P2, and P3 are default 
names for the outputs that are defined in the Fl05 device 
file for nodes 49 and 37 through 40. If no other name for 
these nodes is declared (and none other is in listing 13-7) 
the default names are used. 

Before examining the equations in listing 13-7, note that 
the decade counter design is shown in figure 13-13. Figure 
13-13 is an abbreviated logic diagram of the Fl05 that 
shows the "buried" (no output pins) registers arranged as a 
counter having feedback paths back to the inputs by means 
of product terms. The counter registers are designated PO 
through P3 by default in the Fl05. These node designations 
can then be used in the equations. The output register is 
declared as FO. 

13-37 



Applications Guide 

Node 49, the complement array feedback, is declared (as 
COMP) so that it can be entered into each of the equations. 
In this design, the complement array feedback is used to 
wrap the counter back around to zero from state nine, and 
also to reset it to zero in the event an illegal counter state is 
encountered. Any illegal state (and also state 9) will result 
the absence of an active product term to hold node 49 at a 
logic low. When node 49 is low, figure 13-13 shows that 
product term 9 resets each of the feedback registers so that 
the counter is set to state zero. (To simplify the following 
description of the equations in listing 13-7, node 49 and the 
complement array feedback are temporarily ignored.) 

The first equation states that the FO (output) register is set 
(to provide the counter output) and the PO register is set 
when registers PO, Pl, P2, and P3 are all reset (counter at 
state zero) and the clear input is low. Figure 13-13 shows 
how the fuses are blown to fullfill this equation; the 
complemented outputs of the registers (with the clear input 
low) form product term 0. Product term 0 sets register PO 
to increment the decade counter to state l, and sets register 
FO to provide an output at pin 18. 

13-38 



Features of Advanced Devices 

module decade 
title 'Decade Counter - Uses Canplement Array and Default Node Names 
Michael Holley FutureNet Division, Data 1/0 Corp 8 Dec 1987• 

TE10 
Clk,Clr,FO,PR 

State 
H,L,Ck,X 

equations 

device 'F105'; 
pin 1,8, 18, 19; 

[P3,P2,P1,P0l; "State Registers 
= 1, 0, .C., .X-; 

[P3.AP,P2.AP,P1.AP,P0.AP,F0.AP] =PR; "Async Preset Option 

"Output Next State Present State 
[FO COMP, PO ] := !P3 & !P2 & !P1 & !PO & !Clr; 
[ COMP, P1 ,PO.Rl := !P3 & !P2 & !P1 & PO & !Clr; 
[ COMP, PO ] := !P3 & !P2 & P1 & !PO & !Clr; 
[ COMP, P2 ,P1 .R,PO.Rl := !P3 & !P2 & P1 & PO & !Clr; 
[ COMP, PO ] := !P3 & P2 & !P1 & !PO & !Clr; 
[FO.R, COMP, P1 ,PO.Rl := !P3 & P2 & !P1 & PO & !Clr; 
[ COMP, PO ] := !P3 & P2 & P1 & !PO & !Clr; 
[ COMP,P3,P2.R,P1.R,PO.Rl := !P3 & P2 & P1 & PO & !Clr; 
[ COMP, PO ] := P3 & !P2 & !P1 & !PO & !Clr; 
[ P3.R,P2.R,P1.R,P0.Rl := !COMP; 

Input 
110 to 1 
111 to 2 
"2 to 3 
113 to 4 
114 to 5 
115 to 6 
116 to 7 
117 to 8 
118 to 9 
"Clear 

"After Preset, inhibit clock until a High-to-Low clock transition. 

test_vectors ( [Clk,PR,Clrl -> [_State,FO ] ) 
[ 1 I 0, 0 ] -> ["b1111, Hl; " Power-on Preset 
[ Ck, 0, 1 l -> [ 0 I Hl; 11 Clear to 0 
[ Ck, 0, 0 l -> [ 1 I Hl; 
[ Ck, 0, 0 l -> [ 2 I Hl; 
[ 1 I 1, 0 ] -> ["b1111, Hl; 11 Preset high 
[ 1 ' 0, 0 ] -> ["b1111, Hl; " Preset low 
[ Ck, 0, 0 l -> [ 0 Hl; 11 COMP forces to State 0 
[ Ck, 0, 0 l -> [ 1 , Hl; 
[ Ck, 0, 0 l -> [ 2 I Hl; 
[ Ck, 0, 0 l -> [ 3 , Hl; 
[ Ck, 0, 0 l -> [ 4 , Hl; 
[ Ck, 0, 0 l -> [ 5 , Hl; 
[ Ck, 0, 0 l -> [ 6 I Ll; 
[ Ck, 0, 0 l -> [ 7 , Ll; 
[ Ck, 0, 0 l -> [ 8 ' Ll; 
[ Ck, 0, 0 l -> [ 9 ' Ll; 
[ Ck, 0, 0 l -> [ 0 I Ll; 
[ Ck, 0, 0 l -> [ 1 , Hl; 
[ Ck, 0, 0 l -> [ 2 , Hl; 
[ Ck, 0, 1 l -> [ 0 , Hl; " Clear 

end 

Listing 13-7. Transition Equations for a Decade Counter 

13-39 



Applications Guide 

The second equation performs a transition from state I to 
state 2 by setting the P 1 register and resetting the PO 
register. (The .R dot extension described in section 13.3.2 
is used to define the reset input of the registers.) In state 2, 
the FO register remains set, maintaining the high output. 
The third equation again sets the PO register to achieve state 
3 (PO and P 1 both set), while the fourth resets PO and P 1, 
and sets P2 for state 4, and so on. 

Wraparound of the counter from state 9 to state 0 is 
achieved by means of the complement array node (node 49). 
The last equation defines state 0 (P3, P2, Pl, and PO all 
reset) as equal to !COMP, that is, node 49 at a logic low. 
When this equation is processed by ABEL, the fuses are 
blown as indicated in figure 13-13. Figure 13-13 shows 
that state 9 (PO and P 3 set) provides no product term to pull 
node 49 high. As a result, the !COMP signal is true to 
generate product term 9 and reset all the "buried" registers 
to zero. 

13-40 



CLR 1 2-

0 1 2 

NOTE: CLOCK INPUT 
NOT SHOWN 
ON SCHEMATIC 

Features of Advanced Devices 

--;;::-" 
'::! 

" --;;::;; 
':::! 

" 
3 4 5 6 7 8 9 

49 
PO 

s 
R 

Dt-f 
~ 
Mt 

s FO-® 

R 

CLK (INPUTJJUUUUUlIUlJlJlJ 
' ' ' 

FO (OUTPUT)_j----L___J--

Figure 13-13. Abbreviated FlOS Schematic 

13-41 



Applications Guide 

13.9 Equations for XOR PALs 

When writing equations for XOR PALs, you should use 
parentheses to group those parts of the equation that go on 
either side of the XOR. This is because the XOR operator 
($) and the OR operator (#) have the same priority in 
ABEL. See example OCT AL.ABL. 

13.10 JK Flip-Flop Emulation 

JK flip-flops may be emulated using a variety of circuitry 
found in programmable devices. When a T-type flip-flop 
is available, JK flip-flops can be emulated by ANDing the 
Q output of the flip-flop with the K input. The IQ output 
is then ANDed with the J input. This specific approach is 
useful in devices such as the Intel/ Altera £0600 and £0900. 
Figure 13-14 illustrates the circuitry and the boolean 
expression: 

K 
Q 

J 

Q : = (J & ! Q) II (K & Q) 

Figure 13-14. JK Flip-Flop Emulation Using T Flip-Flop 

A D flip-flop can be used with an XOR gate in the absence 
of a T flip-flop to emulate a JK flip-flop. This technique 
is useful in devices such as the MMI 22RX8 or the AMD 
P20XRP8. The circuitry and boolean expression is as 
shown below in figure 13-15: 

13-42 



Features of Advanced Devices 

(l 

T 

Q: = T $ Q 

Figure 13-15. T Flip-Flop Emulation Using D Flip-Flop 

Finally, a JK flip-flop can also be emulated by combining 
the D flip-flop emulation of a T flip-flop in figure 13-15 
with the circuitry of figure 13-14. Figure 13-16 illustrates 
this concept: 

K 

J 

Q : = (Q) $ (J & ! Q # K & Q) 

Integrated Circuit in Digital Electronics 
Arpad Barna and Dan Porat 
John Whiley & Sons 1973 

Q 

Figure 13-16. JK Flip-Flop Emulation, D Flip-Flop With XOR 

The above logic circuitry was derived from Integrated 
Circuits in Digital Electronics, Arpad Barna and Dan Porat, 
John Wiley and Sons, 1973. 

13-43 



Applications Guide 

13-44 



Appendix A. Error Messages 

This appendix contains listings of the error messages you 
may encounter while using the ABEL language processor or 
any of the utilities provided with the ABEL software 
package. The error messages are divided into four 
subsections: 

A. I General Error Messages 

A.2 Non-fatal Simulation Error Messages 

A.3 TOABEL Error Messages 

A.4 IFLDOC Error Messages 

A.5 IFLDOC Warning Messages 

A.6 ABELLIB Error Messages 

A.7 JEDABEL Error Messages 

Within the subsections, the actual error messages appear in 
smaller typeface. Most of the error messages are listed with 
a brief description; however those that are self-explanatory 
are just listed. The symbol 'xxx' in an error message 
indicates that some actual text or numeric value appears in 
that location in the message. That text or information may 
vary depending on the condition causing the error. 

Additional information regarding a particular error message 
can usually be obtained by using the index located at the 
back of the manual. 

A-1 



Appendices 

A.1 General Error Messages 

The following error messages may be displayed on the 
screen during execution of ABEL programs. 

A.1.1 Command Line Errors 

Command line errors indicate that an error was made on the 
command line when one of the language processor programs 
was invoked. These errors can occur when a program is 
invoked directly, or from a batch file. 

GLOBAL COMMAND LINE ERRORS 

illegal argument •xxx' 

An invalid argument (flag) has been specified on the 
command line. 

A-2 

unable to open input file •xxx• 

unable to open output file •xxx• 

The output file specified can not be created, due to an 
invalid file name, path or drive specification, or lack 
of disk space. 

input and output file names may not be the same 

All file names specified to ABEL programs must have 
unique names to avoid over-writing input files. 

illegal value for flag •xxx' 

A command line argument (flag) that requires a 
numeric value has been specified with an invalid value. 



Error Messages 

list and input file names may not be the same 

list and output file names may not be the same 

All file names specified to ABEL programs must have 
unique names to avoid over-writing input files. 

only one input file allowed, •xxx' 

You have specified more than one input file, either by 
using the '-I' command line flag, or by omitting the 
dash('-') character from another command line 
argument. Any command line argument not prefixed 
with a dash is assumed to be an input file name. 

only one output file allowed, •xxx' 

More than one output file name was specified using the 
'-0' flag. 

only one listing file allowed, •xxx• 

More than one list file was specified using the '-L' 
flag. 

file name too long 

File names specified to ABEL programs must not 
exceed the file name length limits of the operating 
system, and the full file name (including path and 
drive specification) must not exceed 127 characters (64 
characters on MS-DOS systems.) 

A-3 



Appendices 

FUSEMAP COMMAND LINE ERRORS 

illegal value for unused terms •xxx•, valid= y,n 

The value specified using the '-K' flag is invalid; 
valid values are 'y' or 'n'. 

illegal value for checksun •xxx•, valid= 0, 1 or 2 

The value specified using the '-C' flag is invalid; value 
may be 'O', 'l', or '2'. 

illegal type of output file •xxx•, valid= 0,82,83,87 or 88 

The value specified using the '-D' flag is invalid. 

illegal type of output file for wide PROM's with wordsize>8 

The value specified using the ' - D' flag is not 
appropriate for the device specified in the design. 

SIMULA TE COMMAND LINE ERRORS 

A-4 

no device specified 

The device type must be specified to SIMULA TE by 
using the '-N' command line flag. 

illegal trace level •xxx•, values= 0, 1, 2, 3, 4 or 5 

The value specified using the '-T' flag is invalid. 

illegal default X value •xxx•, values= 0 or 1 

The value specified using the '-X' flag is invalid. 



Error Messages 

illegal default Z value •xxx•, values= 0 or 1 

The value specified using the '-Z' flag is invalid. 

illegal breakpoint 

The breakpoint information specified using the '-B' 
flag is incorrect. On MS-DOS systems, you must use a 
period (' .') to seperate breakpoint fields, instead of a 
comma. 

A.1.2 Fatal Errors 

Can't find device file •xxx• 

The specified device file cannot be found. 
ABEL programs attempt to find device files by first 
searching for the device file itself, and if no file is 
found, attempt to find the device file in the device file 
library 'abel3lib.dev'. 

The search is performed first in the current (default) 
directory, then in the directory indicated in the 
'abel3dev' variable and, if the device file is still not 
found, all directories in your 'path' variable. 

Equation for •xxx• needs reduction 

Use the next highest level of reduction to eliminate this 
error. 

A-5 



Appendices 

A-6 

Equation for •xxx' is not sums-of-products 

There are two reasons for these errors: 
1. The input file to FUSEMAP is not the output file 

from REDUCE. 

2. You used operators other than&, # and ! (and$ 
for PROMs) and did only a "-RO" reduction in 
REDUCE. Run REDUCE with a stronger 
reduction level. 

Error writing •xxxx' file 

The output file can no longer be written to. This can 
arise when a disk is too full, or if the disk data has 
been damaged. 

Illegal operator in equation for •xxx• 

Use the next highest level of reduction to eliminate this 
error. 

Illegal term element at •xxx' 

Use the next highest level of reduction. 

Memory overflow 

Memory overflow can occur for any of the following 
reasons: 
1. Too many equations or test vectors. 
2. Equations are too complex. 
3. Equations have too many XOR ($) operators. 
4. Insufficient free memory available. 
5. Too many symbols. 

(Refer to section 11.6 information on reducing the 
number of product terms.) 



Error Messages 

PALs and FPLAs can only be output to a JEDEC file 

The output file type must be specified with the "-DO" 
option (JEDEC format) or left unspecified for PALs 
and FPLAs. 

Premature end of source file 

The input file specified is incomplete, possibly due to 
errors in a previous ABEL program. 

PRC*!s can not be output to a JEDEC file 

For PROMs, the output file type must be specified 
with the "-Dxx" option where xx is not 0. 

Too many errors 

PARSE terminates execution when many errors are 
detected in a source file. 

Wrong version of intermediate file 

The intermediate file specified as input to an ABEL 
program was generated by an incompatable (older) 
version of an ABEL program. 

A-7 



Appendices 

A.1.3 Intermediate File Errors 

A-8 

Intermediate files are created by one program in the ABEL 
language processor and used by one or more of the other 
programs. If there are errors in an intermediate file, it is 
likely that subsequent programs needing 
that file will not operate correctly. 

File not produced by PARSE 

The intermediate file specified as input to TRANSFOR 
was not produced by PARSE. 

File not produced by TRANSFOR 

The intermediate file specified as input to REDUCE 
was not produced by TRANSFOR. 

File not produced by FUSEMAP 

The intermediate file specified as input to SIMULA TE 
was not produced by FUSEMAP. 

File not produced by REDUCE 

The intermediate file specified as input to FUSEMAP 
was not produced by REDUCE 



Error Messages 

File not produced by ABEL 3.x 

The file was not produced by ABEL 3.x versions of the 
ABEL programs. 

Intermediate file error: TGxxx 

An error was detected in the input to TRANSFOR. 
This may be caused by: 

1. An input file generated by PARSE that 
contained errors. 

2. A hardware failure. 
3. The file has been modified. 

Intermediate file error: RGxxx 

An error was detected in the input to REDUCE. This 
may be caused by: 

1. An input file generated by PARSE that 
contained errors. 

2. A hardware failure. 
3. The file has been modified. 

Intermediate file error: FGxxx 

An error was detected in the input to PLDMAP. This 
may be caused by: 

1. Using an input file generated by REDUCE 
that contained errors. 

2. A hardware failure. 
3. The file has been modified. 

Intermediate file error: SGxxx 

These errors occur in SIMULA TE for the following 
reasons: 

1. 
2. 
3. 

Error in a previous pass. 
Hardware failure. 
The file has been modified. 

A-9 



Appendices 

Intermediate file error: DGxxx 

These errors in DOCUMENT mean one of the 
following: 

1. Error in an earlier pass. 
2. Hardware failure. 
3. The file has been modified. 

A.1.4 Logical Errors 

Logical errors are device-related errors and point to 
elements of your design that cannot be implemented on the 
chosen device, or which are implemented incorrectly. 

Logical errors may be created by mistakes in the source file 
or by errors in your design. 

Attribute for •xxx• is 'latch' but pin is register 

This input has the wrong attribute assigned to it. 
Rewrite your attribute definitions or use a different 
part. 

Attribute for •xxx• is 'register' but pin is latch 

This input has the wrong attribute assigned to it. 
Rewrite your attribute definitions or use a different 
part. 

can't map equation for •xxx• with ISTYPE •xxx• 

A-10 

The device has a select multiplexer type internal node 
that can not be programmed using the combination of 
attribute and equation specified in the design. 



Error Messages 

can't map equation for select iaJX •xxx• - use ISTYPE 

The device has a select multiplexer type internal node 
that can not be programmed with the equation 
specified in the design. Use an ISTYPE statement to 
configure the multiplexer properly, or rewrite the 
equation to match the type of node available in the 
device. 

Can't use an XOR for •xxx' 

The XOR operator is not supported for pin 'xxx'. Use a 
stronger reduction to eliminate the XORs. 

Enable for •xxx• is a pin, not equation 

Enable for this pin is not term controllable. 

Enable of •xxx• can only be a constant or a pin 

The enable for this pin can only be programmed in a 
few ways. Examine the device and change the enable so 
that it matches the part. 

Enable of •xxx• has already been prograrrmed 

The enable for this pin is also the enable for other pins 
and it has already been programmed. Rewrite your 
equations to eliminate repeat programming of the 
enable. 

Enable of •xxx• has already been set for this group 

The enable for this pin can only be done in groups and 
the enable for the group that includes this output has 
already been set. Rewrite your equations so that the 
enable of this pin is not reprogrammed. 

A-11 



Appendices 

Illegal constant for output •xxx• 

The only allowable constants are 0 and 1: 1 for 
connecting fuses, and 0 for blowing them. 

Illegal pin for enable of •xxx• 

The enable for this pin can only be programmed in a 
few ways. Examine the device and change the enable so 
that it matches the part. 

Inverted input not allowed from •xxx' 

The pin (or node) 'xxx' does not allow the given type 
of input. Rewrite your equations to use the other type. 

Node number •xxx• is not defined for this device 

You have specified (declared) a pin or node that is not 
defined for the device. Refer to the logic diagrams 
supplied with the ABEL package to identify device 
pins and nodes. 

Nunber must be 1 or !O for enable of •xxx' 

The enable for this pin can only be programmed in a 
few ways. Examine the device and change the enable so 
that it matches the part. 

Output •xxx• used more than once 

A-12 

Some pins can be accessed in more than one way. You 
have equations referencing this pin in more than one 
way. Rewrite your equations to use only one method. 



Error Messages 

Pin can only be negative logic for enable of 'xxx' 

The enable for this pin can only be programmed in a 
few ways. Examine the device and change the enable so 
that it matches the part. 

Pin nunber •xxx' is not defined for this device 

You have specified (declared) a pin or node that is not 
defined for the device. Refer to the logic diagrams 
supplied with the ABEL package to identify device 
pins and nodes. 

Pin or node •xxx• is already defined as •xxx' 

You have defined the pin or node with multiple names. 

Positive input not allowed from •xxx• 

The input from this pin/node can be only of one type. 
Rewrite your equations to use the other type. 

Select mux •xxx' respecified 

The indicated select multiplexer type internal node has 
been specified with a type that conflicts with a 
previous usage. Examine the logic diagram for the 
device and use ISTYPE statement or rewrite equations 
to properly configure the select multiplexer node. 

Signal •xxx• is not in device •xxx• 

You have specified a pin or node that is not declared in 
the device. 

A-13 



Appendices 

Signal •xxx• used or defined as corrbinational 

The indicated signal has been declared as a 
combinatorial signal, or is a programmable type and 
has been used previously as a combinatorial signal. 

Signal •xxx• used or defined as registered 

The indicated signal has been declared as a registered 
signal, or is a programmable type and has been used 
previously as a registered signal. 

Single fuse equation for •xxx' must be a constant 

The only allowable constants are 0 and 1: 1 for 
connecting fuses, and 0 for blowing them. 

Status of •xxx• register has already been set for this group. 

The selection of registered/non-registered pins in this 
part can only be done in groups, and it has already 
been done for the group that includes this pin. Rewrite 
your equations so that all the outputs in this group are 
of the same type ('=' or ':='). 

Too many terms for FPLA array at output •xxx' 

The equation for 'xxx' required too many terms 
programmed into the FPLA. Use a stronger reduction. 

Too many terms for output •xxx• 

A-14 

There are not enough logic terms in the part to 
program your equation. Either use a stronger reduction 
(-r2 for example) or rewrite your equations to 
use fewer terms. 



Error Messages 

•xxx' attribute not allowed on this device 

You have specified a programmable attribute that is 
not supported on the device. 

•xxx• cannot be enabled 

You have written an enable equation for a pin that 
cannot have an enable equation. 

'xxx' cannot be progralllTied inverted 

The equation for 'xxx' has the wrong polarity for this 
pin and the pin can not be programmed to change 
polarities. Either rewrite your equations or use a 
stronger reduction which will automatically convert 
your equations to the correct polarity. 

'xxx' has no enable 

'xxx' is pin or node identifier. 

'xxx' has no registered feedback 

You have used pin 'xxx' as an input or feedback pin 
but it does not have those features. Rewrite your 
equations so they do not use this pin as an input. 

•xxx• is a registered pin 

You have used the wrong type of assignment for this 
pin. Use ":=" for ~egistered pins and"=" for non
registered pins. , 

'xxx' is an invalid output 

'xxx' is pin or node identifier 

A-15 



Appendices 

•xxx' is not an input pin 

Your equation attempts to make use of input or 
feedback from a pin in the part that is not an input pin 
and/or has no feedback. 

•xxx• is not an input/progral!lllable pin 

You have used a pin, that is not an input, as an input 
in an equation. 

•xxx' is not an output pin 

You have specified a pin that is not an output pin as an 
output pin. 

•xxx' is not a registered pin 

You have used the wrong type of assignment for this 
pin. Use ":=" for registered pins and "=" for non
registered pins. 

'xxx' is not in sums-of-products form 

Specify a stronger reduction level and process again. 

A-16 



Error Messages 

A.1.5 Preprocessor Errors 

Preprocessor errors are syntax errors detected by the 
preprocessor step of PARSE. The ABEL source is 
preprocessed before it is actually parsed; the preprocessor 
expands macros and acts on directives. To correct a 
preprocessor error, the source file must be fixed to 
eliminate the indicated error. The possible error indications 
are listed below. Refer to the ABEL Language Reference 
Manual for the correct syntax for the ABEL source files. 

(' expected 

'; ' expected 

'=' expected 

•xxx• actual argLJTients expected 

Block expected 

Constant label expected 

Durrmy argument expected 

Identifier expected 

Label expected 

Number expected 

Number is too large 

Radix •xxx• is not one of 2, 8, 10 or 16 

String expected 

A-17 



Appendices 

A.1.6 Syntax Errors 

Syntax errors are detected by PARSE and indicate missing, 
incorrect, or incomplete elements and structures in the 
ABEL source file. Correct syntax errors by eliminating the 
error in the source file. The PARSE listing file may aid you 
in this. The listing file contains pointers that indicate 
approximately where in a line the error occurs, followed by 
the error message describing the error. To correct a syntax 
error, the source file must be fixed to eliminate the 
indicated error. The possible error indications are listed 
below, with a brief explanation where the message may not 
self-explanatory. Refer to the ABEL Language Reference 
Manual for the correct syntax for the ABEL source files. 

')' expected 

1 -> 1 expected 

' : ' expected 

• :+: • or 1 :*: • expected 

1 :> 1 expected 

1 :> 1 or '->' expected 

';' expected 

'=' or ':=' expected 

'l ' expected 

'THEN' expected 

A-18 



Error Messages 

•xxx' actual argLments specified on conmand line 

Number of arguments found after the MODULE 
keyword is less than that on the command line. 

Actual argLment length exceeds •xxx' chars 

Bad Element •xxx' in range 

An intermediate identifier name produced as a result of 
a range is undefined. 

Block expected 

Can't have letters irrbedded in a nLmber 

Can't map set onto a different sized set 

Can't map set onto a non-set element 

Sets cannot be assigned to numbers, signals or special 
constants; they can only be assigned to other sets. 

Cannot operate on signal •xxx' 

Can only operate on constants in this context. 

Closing " of string not found 

Closing '}' of block not found 

A-19 



Appendices 

Declaration keyword expected 

The valid declaration keywords are: 
PIN 
NODE 
MACRO 
DEVICE 
IS TYPE 
LIBRARY 

Device_label expected 

Digit not in radix •xxx' 

Don't know what device to use 

Either an "IN device_id" is necessary or no device was 
ever specified. 

Durrmy argument •xxx• not recognized 

The dummy argument found after the "?" was not 
specified previously. 

Element expected 

A set, identifier, number, special constant, or 
parenthetical expression was expected here. 

Enables are not registered 

'GOTO', 'IF' or 'CASE' expected 

Fuse m.mber expected 

Identifier expected 

Identifier length exceeds •xxx' chars 

A-20 



Error Messages 

Illegal character •xxx' in source file 

'xxx' is the decimal value of the bad character. 

Illegal operation on special constant 

Illegal set in state diagram header 

Check for illegal nested sets in header 

Inconsistency in number of parameters 

The number of labels on the left side of a declaration 
keyword did not match the number of declarations on 
the right side of the declaration keyword. 

Industry part nurrber string expected 

Invalid equation for •fuse' type output, must specify value 

Invalid equation for 'pin' type output, must specify signal name 

You have written an equation for a select multiplexer 
type node that does not match the type specified in an 
ISTYPE statement. 

Invalid flag string •xxx• 

Invalid set range 

Keyword •xxx• is out of context 

Label •xxx• is already defined 

Label expected 

Max of •xxx• elements in set was exceeded 

A-21 



Appendices 

Mismatch in nunt>er of set elements 

Sets with different numbers of elements in them cannot 
be operated on with a binary operator. 

'MODULE' expected 

Module label doesn't match •xxx• 

If a label is used after the END statement at the end of 
a module, that label must match the label used with the 
MODULE statement that began the module. 

Multiple mapping to signal •xxx• 

An attempt was made to assign more than one test 
condition to a single signal. 

Negative declaration not allowed 

Negative declarations are only allowed for pins and 
nodes. 

No more than •xxx• args are declared 

More actual arguments are used than there were 
dummy arguments specified. 

Nunt>er expected 

Numeric overflow 

A-22 

A number which requires more than 32 bits to 
represent it was specified. 



Error Messages 

Obsolete dot extension - use pin attribute instead 

You have used the '.M' dot extension, which has been 
obsoleted by the ISTYPE 'reg_D' or 'reg_JK' pin 
attribute. Use an ISTYPE statement or control the 
register type with the '.FC' dot extension. 

Only one label allowed 

Operator not allowed 

Section keyword or 'END' expected 

A section begins with one of the following keywords: 
EQUATIONS 
TRUTH TABLE 
ST A TE DIAGRAM 
TEST VECTORS 
FUSES 

Signal not allowed 

Signal nunber for •xxx• is way too large 

Signal or .X. expected 

Source line length exceeds •xxx• chars 

Special constant must end with a '·' 

Special constant not allowed 

String expected 

String length exceeds •xxx• chars 

A-23 



Appendices 

Suffix xxx not legal in this context 

A shorthand node suffix has been specifed that is not 
supported for the signal specified. 

Undefined co111Jiler directive 1 @1 xxx" 

Undefined label •xxx• 

Undefined label •xxx•, maybe •xxx• was meant 

Undefined operation on sets 

Undefined operation on signal 

Undefined special constant •xxx• 

Undefined token 

A character was found outside of a valid context in the 
source file. 

Unrecognized attribute •xxx• 

Unrecognized industry part number •xxx• 

The indicated device is not supported by ABEL. 

Use 1# 1 for OR instead of 'I' 

A-24 



Error Messages 

A.1. 7 Device File/Internal Errors 

Device file and internal errors appear as follows: 

Device file error: 1xxx 1 

"xxx" is a number indicating the type of device file 
error. Any of these errors point to an error in a device 
specification file, to a hardware error, or possibly to a 
bug in the program. If a device file error occurs, note 
the number of the device file error and contact your 
Data 1/0 representative. 

Internal error: YYxxx 

YY is a two character code indicating the program that 
failed and xxx is the number of the internal error. If a 
device file error occurs, and all hardware is operating 
normally, note the number of the device file error and 
contact your Data 1/0 representative. 

Internal error: 'xxx', line 1xxx 1 

If this error occurs, note the file and line numbers 
indicated and contact your Data 1/0 representative. 

A-25 



Appendices 

A.2 Non-Fatal Simulation Errors 

Non-fatal simulation errors indicate that something is not 
quite right in the design, but the condition is not severe 
enough to terminate the simulation process. Pay close 
attention to these errors, they may point to errors in the 
design that could cause problems in a programmed device. 

Device unstable 

The device did not stabilize within 20 iterations. 

Both inputs high on RS flip-flop: •xxx' 

Both 'R' and 'S' inputs to the flip-flop were true, 
resulting in unknown output value. 

See data sheet for correct operation of device. Note the 
states of nodes controlling flip-flops. 

Flip-flop inputs during load: •xxx• 

See data sheet for correct operation of device. Note the 
states of nodes controlling flip-flops. 

K input high while flip-flop in D mode: •xxx' 

The 'K' input to a JK-D type flip-flop was found to 
be true when the flip-flop was operating in D mode. 

See data sheet for correct operation of device. Note the 
states of nodes controlling flip-flops. 

Output not High-Z during load : •xxx• 

A-26 

See data sheet for correct operation of device. Note the 
states of nodes controlling flip-flops. 



Error Messages 

A.3 TOABEL Error Messages 

Fatal error 701 Invalid comnand line argunent 

Fatal error 702 Duplicate input and output file name 

Fatal error 703 Error opening input file 

Fatal error 704 Error opening output file 

Fatal error 705 Device not supported 

Fatal error 706 Unexpected end of file encountered 

Fatal error 707 Error writing output file 

Syntax error 710 Invalid symbol 1 : 1 

Syntax error 711 Not a valid pin identifier 

Syntax error 712 Duplicate pin identifier 

Syntax error 713 No device found in input file 

Syntax error 714 Missing 'C' 

Syntax error 715 Too many elements in enable expression 

Syntax error 716 Expected pin identifier 

Syntax error 717 ':' expected 

Syntax error 718 Undefined pin identifier 

Syntax error 719 Invalid symbol in test vector 

A-27 



Appendices 

A.4 IFLDOC Errors 

A.4.1 Command Line Errors 

Too many input options at •xxx• 

This error is caused by specifying more than three 
input parameters. This also can be caused by having 
unintentional spaces inside a parameter. 

Missing · in •xxx•; 

This error occurs if a "-" is not the first character of a 
parameter entered on the command line. 

Unrecognized parameter, •xxx• 

This error occurs if a character other than "i", "I", "o", 
"O", "n", or "N" is entered as a parameter. 

Multiple input files 

More than one input file was specified on the 
command line. A maximum of one is valid. 

Multiple output files 

More than one output file was specified on the 
command line. A maximum of one is valid. 

Multiple devices 

More than one device was specified on the command 
line. A maximum of one is valid. 

No device type specified 

A device type must be specified. 

A-28 

\ 



Error Messages 

Input and output files have the same name 

The input and output files must have different names. 

Can't open the file named •xxx' 

The input or output file named 'xxx' specified with the 
- I or -0 flags cannot be opened. 

Unknown device type, •xxx• 

The device, 'xxx', is not supported, or the device type 
was entered incorrectly. 

A.4.2 Diagnostic Errors 

Diagnostic errors in IFLDOC indicate that either a 
hardware failure has occurred or there is a bug in the 
program. If you can't locate a hardware failure, contact 
your Data I/0 representative. Diagnostic errors are 
presented in the following form: 

Diagnostic Error: •xxx' 

A.4.3 JEDEC Input File Errors 

Unrecognized field identifier, •xxx' 

This error occurs when an illegal field identifier is 
encountered in the JEDEC input file. 

Missing '*' or End of File 

IFLDOC was unable to find a "*" or EOF marker at the 
end of a JEDEC field. 

A-29 



Appendices 

The JEDEC file contains references to fuses beyond the maximun for 
this device 

This error occurs when the JEDEC file references more 
fuses than are available in the specified device. For 
example, if the JEDEC file references fuse number 
5000 in a device with only 200 fuses, this error occurs. 
Check to see that the device type specified on the 
command line matches the JEDEC file. 

Unrecognized character in JEDEC field, •x• 

A character other than "I" or "O" was found in the fuse 
field. 

Default fuse value specified after fuse field reached 

A-30 

To prevent the loss of fuse information, the fuse 
default value must be specified before any fuse fields 
("L" fields) in the JEDEC file. This error occurs when a 
default value is found after a fuse field. 

_, 



Error Messages 

A.5 IFLDOC Warning Messages 

The following messages are warnings that potential errors 
may exist in the JEDEC input file, but that those errors are 
not of a severity that warrants terminating the program. 

The nurrber of fuses in this device is not equal to the nunber 
given in the JEDEC QF field 

You may have the wrong JEDEC file for the device 
specified on the command line. Check for a match 
between the JEDEC file and the specified device type. 

The JEDEC file may contain less information than is necessary 

You may have the wrong JEDEC file for the device 
specified on the command line. Check for a match 
between the JEDEC file and the specified device type. 

A-31 



Appendices 

A.6 ABELLIB Error Messages 

bad library -- no directory count 

bad library -- no directory offset 

bad library -- directory entry 

The library file specified contains invalid data. Possible 
causes include: using a library file that was generated 
on a different operating system; using a library that has 
been modified; hardware (disk) problems. 

can't create file •xxxxxxxx' 

The indicated file could not be created when 
attempting to extract it from the library, due to a lack 
of disk space, or hardware problems. 

can't read file •xxxxxxxx• 

The indicated file could not be found or read when 
attempting to add it to the library. 

can't create library file 

can't write library file 

ABELLIB was unable to create or write the file due to 
a lack of disk space, hardware problems, or incorrectly 
specified library file name or path. 

file •xxxxxx' not in library 

The indicated file was not found in the library file. 

A-32 



Error Messages 

A. 7 JEDABEL/SIMUAL TE Error Messages 

The following errors can occur while reading a defective 
JEDEC file. These errors will terminate execution of 
JEDABEL and display the message 

JEDEC File Error at line xx. 

followed by one of the following: 

Fuse address •nnn' exceeds fuse limit 1nnn 1 • 

While processing a string of fuses, the calculated fuse 
address exceeded the maximum allowable fuse address 
for the device. This error could be caused by selecting 
the wrong device. 

L field address exceeds fuse limit 'nnn•. 

The fuses specified in the L field exceeded the 
maximum allowable fuse address for the device. This 
error could be caused by selecting the wrong device. 

QF value •nnn' doesn't match nLJllber of fuses in the device file 

The number of fuses specified in the JEDEC QF field 
doesn't agree with the device file. This error could be 
caused by selecting the wrong device. 

QP value 1 nnn 1 doesn't match nLJllber of pins in the device file 

The number of pins specified in the JEDEC QP file 
doesn't agree with the device file. This error could be 
caused by selecting the wrong device. 

A-33 



Appendices 

QV value •nnn' doesn't is greater than maximllll nllllber of vectors 
al lowed 

There is insufficient memory allocated by JEDABEL 
for the number of test vectors in the JEDEC file. 

Illegal fuse state 'x' at fuse address •nnn'. 

The allowable fuse states are 11011 and 11 111 • 

Illegal default fuse state 'x'. 

The allowable default fuse states are 11011 and 11 l ". 

File Fuse Checksllll = nnnn 
Hex nunber expected 

The fuse checksum contains illegal characters. The 
fuse checksum can consist only of hexadecimal 
characters (i.e., 0-F). 

RAM Fuse Checksum = nnnn 
Hex nunber expected 

The fuse checksum contains illegal characters. The 
RAM checksum can consist only of hexadecimal 
characters (i.e., 0-F). 

File Fuse Checksllll = nnnn 
Hex nunber too large 

The fuse checksum contains too many characters. 

RAM Fuse Checksum = nnnn 
Hex nunber too large 

The fuse checksum contains too many characters. 

A-34 



Error Messages 

The following warnings can occur while reading a defective 
JEDEC file. Warnings will be displayed with the message 

JEDEC File Warning at line xx. 

followed by one of the following: 

Skipping unknown JEDEC field 'x'. 

A reserved field identifier was used. 

Illegal default test condition 'x'. 

The allowable default test conditions are "O" and "l ". 

A-35 



Appendices 

A-36 



APPENDIX B. JEDEC Standard Number 3A 

B.1 Introduction 

This appendix defines a format for the transfer of 
information between a data preparation system and a logic 
device programmer. This format provides for, but is not 
limited to, the transfer of fuse, test, identification, and 
comment information in an ASCII representation. This 
format defines the "intermediate code" between device 
programmers and data preparation systems. It does not 
define device architecture nor does it define programming 
algorithms or the device specific information for accessing 
the fuses or cells. 

The standard includes a simple transmission protocol based 
on traditional PROM formats that allow a device 
programmer to share a computer serial port with a terminal. 
This simple protocol is not a complete communications 
protocol and does not do retries or error correction. This 
protocol is not required if the device programmer has local 
storage, such as a floppy disk. 

Field programmable logic devices may require more testing 
than programmable memories, so the standard defines a 
simple functional testing format. This test vector format is 
not a general purpose parametric test language. Figure B-1 
provides an example of a PLD Data File. 

B-1 



Appendices 

B-2 

<STX>File for PLO 12S8 Created on 8-Feb-85 3:05PM 
6809 memory decode 123-0017-001 
Joe Engineer Advanced Logic Corp* 
QP20* QF448* QV8* 
FO* XO* 
LOOOO 1111101111111111111111111111* 
L0028 1011111111111111111111111111* 
L0056 1110111111111111111111111111* 
L0112 0101011101111011111111111111* 
L0224 0101011110111011111111111111* 
L0336 0101011101110111111111111111* 
V0001 OOOOOOXXXNXXXHHHLXXN* 
V0002 010000XXXNXXXHHHLXXN* 
V0003 100000XXXNXXXHHHLXXN* 
V0004 110000XXXNXXXHHHLXXN* 
V0005 111000XXXNXXXHLHHXXN* 
V0006 111010XXXNXXXHHHHXXN* 
V0007 111100XXXNXXXHHLHXXN* 
V0008 111110XXXNXXXLHHHXXN* 
C124E*<ETX>8A76 

Figure B-1. Example of a PLD Data File 



JEDEC Standard Number 3A 

8.2 Summary of Programming and Testing 
Fields 

The programming and testing information is contained in 
various fields. To comply with the standard, the device 
programmer, tester, and development system must provide 
and recognize certain fields. Table B-1 lists the field 
identifiers and descriptions. 

Table B-1. Field Identifiers and Descriptions 

Identifier 

(n/a) 
N 
QF 
QP 
QV 

F 
L 
c 

x 
v 
p 

D 
G 
R,S,T 
A 

Description 

Design specification 
Note 
Number of fuses in device 
Number of pins in test vectors *** 
Maximum number of test vectors *** 

Default fuse state * 
Fuse list* 
Fuse checksum 

Default test condition ** 
Test vectors ** 
Pin sequence ** 

Device (obsolete) 
Security fuse 
Signature analysis 
Access time 

* 
** 
*** 

Programmer must recognize 
Tester must recognize 
Development system must provide 

B-3 



Appendices 

8.3 Special Notations and Definitions 

B.3.1 Notational Conventions 

B-4 

In addition to the descriptions and examples, this document 
uses the Backus-Naur Form (BNF) to define the syntax of 
the data transfer format. BNF is a shorthand notation that 
follows these rules: 

• "::=" means "is defined as". 

• Characters enclosed by single quotes are literals 
(required). 

• Angle brackets enclose identifiers. 

• Square brackets enclose optional items. 

• Braces (curly brackets) enclose a repeated item. 
The item may appear zero or more times. 

• Vertical bars indicate a choice between items. 

• Repeat counts are given by a :n suffix. For example, 
a six- digit number would be defined as "<number>" 
::= <digit>:6." 

For example, in words, the definition of a person's name 
reads: 

The full name consists of an optional title followed by 
a first name, a middle name, and a last name. The 
person may not have a middle name or may have 
several middle names. The titles consist of: Mr., Mrs., 
Ms., Miss, and Dr. 



JEDEC Standard Number 3A 

BNF syntax: 

<full name>::=[ <title>] <f.name> { <m.name>} <I.name> 

<title> ::= 'Mr.' I 'Mrs.' I 'Ms.' I 'Miss' I 'Dr.' 

Examples: 

Miss Mary Ann Smith 

Mr. John Jacob Joseph Jones 

Tom Anderson 

B-5 



Appendices 

B.3.2 BNF Rules and Definitions 

B-6 

The following standard definitions are used throughout the 
rest of this document: 

<digit> ::= I 'O' I 'I' I '2' I '3' I '4' 
I '5' I '6' I '7' I '8' I '9' 

<hex-digit> ::= <digit> 
I 'A' I 'B' I 'C' I 'D' I 'E' I 'F' 

<binary-digit> ::= 'O' I 'I' 

<number> :: = <digit> {<digit>} 

<del> ::= <space> I <carriage return> 

<delimiter> ::= <del> { <del>} 

<printable character> ::= <ASCII 20 hex ... 7E hex> 

<control character> 

<STX> 
<ETX> 
<carriage return> 
<line feed> 
<space> 

<valid character> 

<field character> 

::= <ASCII 00 hex ... IF hex> 
I <ASCII 7F hex> 

::= <ASCII 02 hex> 
::= <ASCII 03 hex> 
::= <ASCII OD hex> 
::= <ASCII OA hex> 
::= <ASCII 20 hex> I ' ' 

::= <printable character> 
I <carriage return> I <line feed> 

::= <ASCII 20 hex ... 29 hex> 
I <ASCII 2B hex ... 7E hex> 
I <carriage return> I <line feed> 



JEDEC Standard Number 3A 

B.4 Transmission Protocol 

B.4.1 Protocol Syntax 

This simple STX-ETX protocol is based on traditional 
PROM formats that allow a device programmer to share a 
serial computer port with a terminal. The transmission 
consists of a start-of-text (STX) character, various fields, 
and end-of-text (ETX) character, and a transmission 
checksum. The character set consists of the printable ASCII 
characters and four control characters (STX, ETX, CR, 
LF). Other control characters should not be used because 
they can produce undesirable side-effects in the receiving 
equipment. 

Syntax of the transmission protocol: 

<format> ::= <STX> {<field>} <ETX> <xmit checksum> 

B-7 



Appendices 

B.4.2 Computing the Transmission Checksum 

The transmission checksum is the 16 bit sum ,i.e., modulo 
65,535, of all ASCII characters transmitted between and 
including the STX and ETX. (Figure B-2.) The parity bit is 
excluded in the calculation. 

Syntax of the transmission checksum: 

<xmit checksum> ::= <hex-digit>:4 

random text <return><line feed> = 0000 
<STX>TEST*<return><line feed> 02+54+45+53+54+2A+OD+OA = 0183 
QF0384*<return><line feed> 51+46+30+33+38+34+2A+OD+OA = 01A7 
FO* <return><[ ine feed> 46+30+2A+20+20+0D+OA = OOF7 
L10 101*<return><line feed> 4C+31+30+20+31+30+31+2A+OD+OA = 01AO 
<ETX>05C4 <return> random text 03 = 0003 

05C4 

Figure B-2. Computing the Transmission Checksum 

B.4.3 Disabling the Transmission Checksum 

B-8 

Some computer operating systems do not allow the user to 
control what characters are sent, especially at the end of a 
line. The receiving equipment should always accept a 
dummy value of "0000" as a valid checksum. This dummy 
checksum is a method of disabling the transmission 
checksum. 



JEDEC Standard Number 3A 

B. 5 Data Fields 

B.5.1 General Field Syntax 

In general, each field in the format starts with an 
identifier, followed by the information, and terminated 
with an asterisk. For example, "C 1234*" specifies that the 
checksum of the fuse data is 1234. The design 
specification header does not have an identifier and must 
be the first field in the transmission, immediately 
followed by the STX character. 

Syntax of fields: 

<field> ::= [<delimiter>] <field identifier> 
{<field character>} '*' 

<field identifier> ::= I 'A' I 'C' I'D' I 'F' I 'G' 
I 'L' I 'N' I 'P' I 'Q' I 'R' 
I 'S' I 'T' I 'V' I 'X' 

<reserved identifier> ::= I 'B' I 'E' I 'H' I 'I' I 'J' 

B.5.2 Field Identifiers 

I 'K' I 'M' I 'O' I 'U' I 'W' 
I 'Y' I 'Z' 

Each field begins with a single character identifi, that 
identifies the field type. Multiple character ident.fiers can 
be used to create sub-fields (for example, "Al", "A$", or 
"AB3"). The field is terminated with an asterisk. 
Therefore, asterisks cannot be embedded within the field. 
While not required, carriage returns and line feeds should 
be used to improve the readability of the format. Reserved 
identifiers currently have no function and are reserved for 
future use. Receiving equipment should ignore fields 
starting with reserved identifiers. The meanings of the 
field identifiers are given in Table B-2. 

B-9 



Appendices 

Table B-2. Field Identifiers (* reserved for future use) 

A - Access Time 
B-* 
C - Checksum 
D - Device type 
E - * 
F - Default fuse state 
G - Security fuse 
H - * 
I - * 
J - * 
K - * 
L - Fuse list 
M - * 

B-10 

N - Note 
0 - * 
P - Pin sequence 
Q - Value 
R - Resulting vector 
S - Starting vector 
T - Test cycles 
u - * 
V - Test vector 
w - * 
X - Default test condition 
y - * 
Z-* 



JEDEC Standard Number 3A 

B.6 Comment and Definition Fields 

B.6.1 Design Specification Field 

The design specification is the first field in the format. It 
must be included and it does not have an identifier to 
signal its start. An asterisk terminates the field. The 
contents of the design specification are not defined but 
should consist of: 

• User's name and company 

• Date, part number, and revision 

• Manufacturer's device number 

• Other information 

Syntax of the Design Specification: 

<design specification> ::= {<field character>} '*' 

Example: 

File for PLO 12S8 
Created on 8-Feb-85 3:05PM 
6809 memory decode 123-0017-001 
Joe Engineer Advance Logic Corp * 

If none of the above information is required, a blank field 
consisting of the terminating asterisk is a valid design 
specification. 

B.6.2 Note Field (N) 

The note field is used to place notes and comments in the 
data file. The note field(s) may appear anywhere in the 
file and the receiving equipment may ignore this field. 

B-11 



Appendices 

Syntax of the Note Field: 

<note> ::= 'N' <field characters> '*' 

Example: 

N Following vectors were modified for ACME 123 tester* 

B.6.3 Device Definition Field (D) (Obsolete) 

This field is now obsolete. It has been eliminated to ensure 
that the format is device and technology independent. 

B.6.4 Value Field ( QF, QP, QV) 

The Q field expresses values or limits which must be 
provided to the receiving equipment. The following three 
subfields are defined: 

• The F subfield for the number of fuses. 

• The P subfield for the number of pins or test 
conditions in the test vector. 

• The V subfield for the maximum number of test 
vectors. 

These values enable the receiving device to allocate 
memory efficiently and perform certain calculations. The 
QF field tells the receiving equipment how much memory 
to reserve for fuse data, the number of fuses to set to the 
default condition, and the number of fuses to include in 
the fuse checksum. 

B-12 



JEDEC Standard Number 3A 

The value fields must occur before any device 
programming or testing fields in the data file. Files with 
only testing fields do not require the QF field and files 
with only programming fields do not require the QP and 
QV fields. 

Syntax for Value Fields: 

<fuse limit> ::= 'QF' <number> '*' 

<number of pins> ::= 'QP' <number> '*' 

<vector limit> ::= 'QV' <number> '*' 

Example: 

QF1024* 
QP24* 
QV250* 

Indicates device has 1024 fuses 
Indicates device has 24 pins 
Indicates a maximum of 250 test vectors 

B-13 



Appendices 

B. 7 Device Programming Fields 

B.7.1 Syntax and Overview 

Each fuse or cell of a device is assigned a decimal number 
and has two possible states: a zero, specifying a low 
resistance link (a logical connection between two points); 
or a one, specifying a high resistance link (no logical 
connection between two points). The fuse numbers start at 
zero and are consecutive to the maximum fuse number. 
For example, a device with 2048 fuses would have fuse 
numbers between 0 and 2047. Fuse information describing 
the state of each fuse in the device is given by three 
fields. All user programmable fuses or cells may be 
specified with an L field. There are no separate fields for 
control terms or architecture fuses. 

Syntax of Fuse Information fields: 

<fuse information> ::= [<default state>] <fuse list> 
{<fuse list>} [<fuse checksum>] 

<default state> ::= 'F' <binary-digit> '*' 

<fuse list> ::= 'L' <number> <delimiter> 
{<binary-digit> [<delimiter>} '*' 

<fuse checksum> ::= 'C' <hex-digit>:4 '*' 

Example: 

B-14 

FO* 
LOOOO 01001110 00001000 11110000 11111111 01010001* 
C021A* 



JEDEC Standard Number 3A 

B.7 .2 Fuse Default States field (F) 

The F field defines the states of fuses that are not 
explicitly defined in the L fields. If no F field is 
specified, all fuse states must be defined after the QF 
field and before the first L field. 

Example: 

FO* Set default to 0 

B. 7 .3 Fuse List field (L) 

The L field starts with a decimal fuse number and is 
followed by a stream of fuse states (0 and 1 ). The fuse 
number may include leading zeros. For example, "Ll2" 
and "L0012" are the same. A space and/or a carriage 
return must separate the fuse number from the fuse states. 
The stream of fuse states can be as long as desired (up to 
the maximum allowable fuse number). 

If the state for a fuse is specified more than once, the last 
state replaces all previous states specified for that fuse. 
This allows a file to be modified or "patched" by 
appending new fuse states to the file. 

Example: 

LOOOO 
111110111111111111111111111 
101111111111111111111111111 
111011111111111111111111111 
000000000000000000000000000* 

B-15 



Appendices 

Example: 

LOOOO 
11111011111111111111111111110111111111 
1111111111111111 
11101111111 
1111111111111111 
00000000000000000000000000* 

Example: 

LOO 111110111111111111111111111* 
L28 101111111111111111111111111* 
L56 111011111111111111111111111* 
L84 000000000000000000000000000* 

B. 7 .4 Fuse Checksum field 

The fuse information checksum field is used to detect 
transmitting and receiving errors. The checksum is for the 
entire device (fuse number 0 to the maximum fuse 
number set by the QF field), not just the fuse states sent. 
If multiple C fields are received, only the last is 
significant. 

The field contains the 16-bit sum, i.e., modulo 65,535, of 
the 8-bit words containing the fuse states for the entire 
device. The 8-bit words are formed as shown in Figure B-
3 and the computation of the fuse checksum is as shown 
in Figure B-4. 

B-16 



JEDEC Standard Number 3A 

word 00 lmsbl 
Fuse No. 7 6 5 4 3 2 0 

word 01 lmsbl 
Fuse No. 15 14 13 12 11 10 9 8 

------------------------------

word 62 lmsbl 
Fuse No. · 

I lsbl 
499 498 497 496 

Figure B-3. 8-bit Words Formed From Fuse States 
for Checksum 

OF500* 
FO* 
LOOOO 01001110 00001000 11110000 11111111 01010001* 
C0212A* 

Fuse 
Number MSB LSB 

0000 0 1 1 1 0 0 1 0 72 

0008 0 0 0 1 0 0 0 0 10 
0016 0 0 0 0 1 1 1 OF 
0024 11111111 FF 

0032 1 0 0 0 1 0 1 0 8A 
0040 0 0 0 0 0 0 0 0 00 
0048 0 0 0 0 0 0 0 0 00 

--------
0488 0 0 0 0 0 0 0 0 00 
0496 .... 0 0 0 0 00 

Fuse checksum 021A 

Figure B-4. Computing the Fuse Checksum 

B-17 



Appendices 

B.8 Device Testing Fields 

B.8.1 Syntax and Overview 

Functional test information is specified by test vectors 
containing test conditions for each device pin. 

Syntax of Functional Test Information: 

B-18 

<function test> ::= [<default test condition>] 
[<pin list>] <test vector> 
{<test vector>} 

<default test condition> ::= 'X' <binary digit> '*' 

<pin list> ::= 'P' <pin number>:N '*' 

<pin number> ::= <delimiter> <number> 

N ::= number of pins on device 

<test vector> ::= 'V' <number> <delimiter> 
<test condition>:N '*' 

<test condition> ::= <digit> I 'B' I 'C' I 'F' I 'H' I 'K' I 
'L' I 'N' I 'P' I 'X' I 'Z' 

<reserved condition>::= 'A' I'D' I 'E' I 'G' I 'I' I 'J' I 
'M' I 'O' I 'Q' I 'R' I 'S' I 'T' I 
'U' I 'V' I 'W' I 'Y' I 'Z' 



JEDEC Standard Number 3A 

Table B-3. Test Conditions 

0 Drive input low 
Drive input high 

2-9 - Drive input to super voltage 2-9 
B - Buried register preload 
C Drive input low, high, low 
F Float input or output 
H Test output high 
K - Drive input high, low, high 
L - Test output low 
N - Power pins and outputs not tested 
P - Preload registers 
X - Output not tested, input default level 
Z Test input or output for high impedance 

B.8.2 Default Test Condition Field (X) 

The X field defines the input logic level for test vectors 
not explicitly defined for the "don't care" test condition. 
The X field will set test vectors 1 through the maximum 
(set by QV) to the default input test condition. If the X 
field is used, it must be specified after the QV and QP 
fields and before the first test vector. 

Example: 

X1* Set default test condition to 1 

In the following example vectors 2 and 5 would default to 
the "don't care" value of 0 and no outputs would be tested 
for vectors 2 and 5. 

B-19 



Appendices 

Example: 

QVS* 
QP20* 
XO* 
V0001 101010000NOZLLHHZ11N* 
V0003 111XXXXXXNOZHHLLZ11N* 
V0004 011XXXXXXNOZLHLHZ11N* 

B.8.3 Test Vectors 

Each test vector contains N test conditions where N is the 
number of pins on the device. Table B-3 lists the 
conditions that can be specified for device pins. 

The V field starts with a decimal vector number, followed 
by a space, then by a series of test conditions for each 
pin, and terminated by an asterisk. The vector number 
may include leading zeros. 

Example: 

V0001 OOOOOOXXXNXXXHHHLXXN* 
V0002 010000XXXNXXXHHHLXXN* 
V0003 100000XXXNXXXHHHLXXN* 
V0004 110000XXXNXXXHHHLXXN* 

The vectors are applied in numerical order to the device 
being tested. The highest numbered vector to be applied is 
defined by the QV field. If a vector is not specified 
during a data transfer, the default value or a vector from 
a previous transfer will be used. If the same numbered 
vector is specified more than once, the data in the last 
vector replaces any data contained in previous vectors 
with that number. This allows the set of test vectors to be 
modified or "patched" without transferring the entire set. 

B-20 



JEDEC Standard Number 3A 

B.8.4 Pin Sequence 

The conditions contained in test vectors are applied to the 
device pins in numerical order from left to right unless 
specified otherwise with the P field. (The leftmost 
condition is applied to pin 1, and the rightmost condition 
is applied to pin 20 of a 20 pin device, for example. The 
timing sequence is not defined. A test condition may be 
applied to pin 5 before or after pin 4.) The P field 
indicates and alternative correspondence between the test 
conditions and the pin numbers. 

Example: 

p 1 2 3 4 5 6 14 15 16 17 7 8 9 10 11 12 13 18 19 20* 

V0001 111000HLHHNNNNNNNNNN* 
V0002 100000HHHLNNNNNNNNNN* 

Vector 1 will apply 111000 to pins 1 through 6 and HLHH 
to pins 14 through 17. Pins 7 through 13 and 18 through 
20 are not tested (N). 

B.8.5 Test Conditions 

The test condition logic levels are defined by the device 
technology; for example, TTL, CMOS, ECL. The 0 and 1 
test conditions apply a steady state logic level to the 
device pin. The device tester should allow the applied 
input conditions to be overridden by bi-directional 
(input/output) device pins. The X or "don't care" test 
condition applies the default level defined by the X field. 
The F test condition applies a high impedance to the 
device pin. 

B-21 



Appendices 

The sequence that the input conditions are applied to the 
device is not defined, so multiple vectors should be used 
when the sequence is important. The following example 
ensures that pin 4 transitions to a logic level 1 before pin 
3. 

V01 XXOOXXXXXNXXXXXXXXXN* 
V02 XX01XXXXXNXXXXXXXXXN* 
V03 XX11XXXXXNXXXXXXXXXN* 

The test conditions 2 through 9 apply a non-standard or 
super voltage to the device. This may be used to access 
special test modes. The levels are defined for each device 
and test vectors utilizing super voltages could damage 
"second source" devices. 

The C test condition applies a logic level 0 until all other 
inputs are stable (and device timing specifications are 
met), then switches to a logic level 1 and returns to a logic 
level 0 before the outputs are tested. The K test condition 
goes from 1 to 0 to 1 in a similar manner. For devices 
more than one clock input, multiple test vectors should be 
used to ensure the proper clocking sequence. The N test 
condition is used for power pins and other outputs not 
tested. 

After all inputs have stabilized, including clock, the 
output tests are performed. The L test for a logic level 0 
and the H test for a logic level I. 

The Z test condition tests that an output is in a high 
impedance condition. 

B-22 



JEDEC Standard Number 3A 

B.8.6 Register Preload 

Register Preload means forcing or "jam loading" a register 
to a known state. Three types of register preloading, "in
circuit", "output register", and "buried register" are 
defined. The "in-circuit" preload is accomplished with 
dedicated input pins or internal control logic and uses 
normal in-circuit logic levels. The standard input and 
clock test conditions may be used to preload the registers 
in these devices. The "output register" and "buried 
register" preload use non-standard levels or "super 
voltages" to access special modes to preload the registers. 

Because super voltages are unique for each device, the 
following generic methods will allow one set of test 
vectors to work with "second source" devices. The device 
programmer/tester will apply the specific super voltage 
algorithm for each device type. 

The "output register" method is used for devices with 
registers connected to device pins. A P test condition is 
used to "jam load" registers to a desired state. When the P 
test condition is applied to the clock pin, the logic level on 
the register output pin is loaded into the register according 
to the logic configuration of the device. During preload 
certain device pins may have to be in a defined state, such 
as an output enable control pin. 

For devices with separate banks of registers, the P test 
condition is applied to the each clock pin. For example, if 
pin 1 clocks bank A and pin 2 clocks bank B, a P on pin 2 
would preload bank B. 

The 0 and I input conditions should be used instead of the 
L and H output test conditions. If the preload must be 
verified, use a separate test vector to test the outputs. 

B-23 



Appendices 

Example: (16R4 type programmable array logic device) 

V1 PXXXXXXXXN1XX1101XXN* Preload 
V2 OXXXXXXXXNOXXHHLHXXN* Test' (don't clock) 
V3 CXXXXXXXXNOXXHLHLXXN* Next State 

The "buried register" method can be used for devices with 
internal registers not connected to device pins. This may 
also be used for registers connected to device pins. The 
preload test vector has a "B" in the first position followed 
by a single digit then followed by the register states and 
terminated with an asterisk. The preload test vector is the 
same length as the other test vectors and the unused 
positions are filled with don't cares. The device registers 
to be preloaded are assigned an index number starting at 
I. 

<test vector> ::= 'V' <number> <delimiter> 
'B' <digit> <test conditions>:N-2 '*' 

In the following example a 20 pin device with 6 buried 
registers is preloaded to "110100". 

V27 B0110100XXXXXXXXXXXX* (preload vector) 
V28 010101001NOXXHHLLXXN* (normal vector) 

The digit in second position of the preload test vector is 
used to allow more registers than pins. A 20 pin device 
with 30 registers would require two preload vectors. 

V05 B0110100101010101010* Cpreload first 18) 
V06 B111010010001XXXXXXX* (preload next 12) 

The Hand L test conditions can be used to verify the 
state of the buried registers. 

B-24 



JEDEC Standard Number 3A 

8.9 Programmer/Tester Options 

B.9.1 Security Fuse (G) 

The security fuse(s) of certain logic devices may be 
enabled for programming by sending a 1 in the G field. 
The security fuse prevents the reading of the fuse states. 
Syntax for the Security Fuse Field: 

<security fuse> ::= 'G' <binary-digit> '*' 

Example: 

G 1 * Enable security fuse programming. 

B.9.2 Signature Analysis Test (S, R, T) 

Signature Analysis tests are specified by the S, R, and T 
fields. The S field defines the starting vector for the test. 
The possible states are 0 and 1. The R field contains the 
resulting vector or test-sum. The T field denotes the 
number of test cycles to be run. 

Syntax for Signature Analysis Test: 

<starting vector> ::= 'S' <test condition>:N '*' 
<resulting vector> ::= 'R' <hex-digit>:8 '*' 
<test cycles> ::= 'T' <number> '*' 

N ::= number of pins on device 

Example: 

S010001000011100011110110* 
R5BCD34A7* 
T01* 

B-25 



Appendices 

B.9.3 Access Time (A) 

The A field defines the propagation delay for test vectors 
in one nanosecond increments. This field may include 
optional subfields. 

Syntax for Access Time 

<access time> ::= 'A' {<field characters>} <number> '*' 

Example: 

A25* 
APD25* 

B.10 Data File Examples 

<STX> 

* 
LOOOO 
11111011111111111111111111111011111111111111111111111111 
11101111111111111111111111110000000000000000000000000000 
01010111011110111111111111110000000000000000000000000000 
00000000000000000000000000000000000000000000000000000000 
01010111101110111111111111110000000000000000000000000000 
00000000000000000000000000000000000000000000000000000000 
01010111011101111111111111110000000000000000000000000000 
00000000000000000000000000000000000000000000000000000000* 
<ETX>5718 

Figure B-5. Minimum File for Device Programmer as Defined 
in JEDEC Standard No. 3, October 1983 

B-26 



JEDEC Standard Number 3A 

File for PLO 1258 Created on 8-Feb-85 3:05PM 
6809 memory decode 123-0017-001 
Joe Engineer Advanced Logic Corp * 
QF0448* 
FO* 
LOOO 1111101111111111111111111111* 
L028 1011111111111111111111111111* 
L056 1110111111111111111111111111* 
L112 0101011101111011111111111111* 
L224 0101011110111011111111111111* 
L336 0101011101110111111111111111* 
C124E* 

Figure B-6. Data File for Device Programming 

File for PLO 1258 Created on 8-Feb-85 3:05PM 
6809 memory decode 123-0017-001 
Joe Engineer Advanced Logic Corp * 
QP20* QV8* 
V0001 OOOOOOXXXNXXXHHHLXXN* 
V0002 010000XXXNXXXHHHLXXN* 
V0003 100000XXXNXXXHHHLXXN* 
V0004 110000XXXNXXXHHHLXXN* 
V0005 111000XXXNXXXHLHHXXN* 
V0006 111010XXXNXXXHHHHXXN* 
V0007 111100XXXNXXXHHLHXXN* 
V0008 111110XXXNXXXLHHHXXN* 

Figure B-7. Data File for Device Testing 

B-27 



Appendices 

File for PLO 12S8 Created on 8-Feb-85 3:05PM 
6809 memory decode 123-0017-001 
Joe Engineer Advanced Logic Corp* 
QP20* N Nllllber of pins* 
QF0448* N Nllllber of fuses* 
QV8* N Nllllber of vectors* 
G1* N Program security fuse* 
FO* N Default fuse state* 
XO* N Default test condition* 

N Fuse RAM Data* 
LOOOO 
1111101111111111111111111111 
1011111111111111111111111111 
1110111111111111111111111111* 
L0112 
0101011101111011111111111111* 
L0224 
0101011110111011111111111111* 
L0336 
0101011101110111111111111111* 
N Test Vectors* 
V0001 OOOOOOXXXNXXXHHHLXXN* 
V0002 010000XXXNXXXHHHLXXN* 
V0003 100000XXXNXXXHHHLXXN* 
V0004 110000XXXNXXXHHHLXXN* 
V0005 111000XXXNXXXHLHHXXN* 
V0006 111010XXXNXXXHHHHXXN* 
V0007 111100XXXNXXXHHLHXXN* 
V0008 111110XXXNXXXLHHHXXN* 
N Fuse RAM checksum* 
C124E* 
N Signature Analysis test information* 
T01* 
SOOOOOOOOOOOOOOOOOOOO* 
R95E4B822* 

B-28 

Figure B-8. Data File for Programming and Testing 
with Options 



JEDEC Standard Number 3A 

File for PLO 1258 Created on 8-Feb-85 3:05PM 
6809 memory decode 123-0017-001 
Joe Engineer Advanced Logic Corp * 
QP20* Qf 448* QV8* 
FO* 
V1 OOOOOOOOONOOOHHHLOON* 
V2 010000000NOOOHHHLOON* 
V3 100000000NOOOHHHLOON* 
V4 110000000NOOOHHHLOON* 
LO 1111101111111111111111111111* 
L28 1011111111111111111111111111* 
L56 1110111111111111111111111111* 
L84 0000000000000000000000000000* 
L112 0101011101111011111111111111* 
L224 0101011110111011111111111111* 
L336 0101011101110111111111111111* 
L140 1111111111111111111111111111* 
L140 0000000000000000000000000000* 
C124E* 
V8 111111111N111HHHL11N* 
V6 111010000NOOOHHHHOON* 
V7 111100000NOOOHHLHOON* 
VS 111000000NOOOHLHHOON* 
V8 111110000NOOOLHHHOON* 

Figure B-9. Data File Showing Position Independence 
of fields 

B-29 



Appendices 

B-30 



Appendix C. Programmable Logic Device 
Information 

This appendix provides information that pertains to specific 
types of programmable logic devices. The types of 
information provided in this appendix includes: 

programming support for specific devices 

special ABEL considerations for certain devices 

device node numbers (assigned by Data 1/0) and their 
functions 

C.1 ABEL Support for Specific Devices 

C.1.1 PROM Support 

ABEL supports PROMs based on memory size (32 x 8 or 
1024 x 4). Ignoring the pin numbers on the chip diagram, 
it is possible to use ABEL's RA9P8 file (512 x 8) for 
AMD's 27Sl5 (24 pins), 27S27 (22 pins) or 27SZ9 (20 pins). 
The chip diagram will match the 20 pin device.· See the 
CNTlOROM.ABL example on disk or tape for a state 
diagram design. This example also shows how to program 
the power-up initialize words available on the RA10R8 and 
RA11R8. 

C-1 



Appendices 

C.1.2 Devices Supported by TOABEL 

The PALASM (version 1.0 only) to ABEL conversion 
utility, TO ABEL, supports the following devices: 

P10H8 P10L8 P12H6 P12L6 
P14H4 P14L4 P16C1 P16H2 
P16H8 P16HD8 P16L2 P16L8 
P16LD8 P16P8 P16R4 P16RP4 
P16R6 P16RP6 P16R8 P16RP8 
P12H10 P12L10 P14H8 P14L8 
P16H6 P16L6 P18H4 P18L4 
P20C1 P20H2 P20L10 P20L2 
P20L8 P20R4 P20RS4 P20R6 
P20R8 P20RS8 P20X10 P20X4 
P20X8 P22V10 P20RS10 

C.1.3 Devices Supported by IFLDOC 

C-2 

The Signetics TM _style program table generator supports the 
following devices: 

F100 F153 F161 F168 
F103 F155 F162 F173 
F105 F157 F163 F839 
F151 F159 F167 F2605 
F506 F507 F179 F253 
F273 F405 



Programmable Device Information 

C.2 Specific Device Information 

C.2.1 Altera and Intel EPLDs 

The following devices are supported. 

ABEL Altera Intel Turbo Bits Miser Bits 
E0310 EP300 
E0310 EP310 5C031 
E0320 EP320 5C032 2914,2915 2912,2913 
E0600 EP600 5C060 6480,6481 
E0900 EP900 5C090 17400. 17401 
E1210 EP1200 5C121 
E1800 EP1800 5C180 

The E0600 and E0900 register mode may be controlled with 
the ISTYPE statement. This version only supports the D 
(reg D) and T (reg T) register modes. Emulation for JK 
and RS may be done with equations. Refer to the Language 
section in User Notes for more information about emulation 
of JK flip flops. 

Turbo bits allow selection of either speed or power 
consumption tradeoffs within a device. The default mode 
is to program turbo bits. To avoid programming the turbo 
bits, use the following syntax (using the E0600 as an 
example): 

FUSES[6480,6481l=Ab00 

Miser bits (in devices that have them) are active by default. 
When turbo bits are programmed, miser bits must be 
disabled. Each bit pair must be programmed identically, 
that is, both bits must be I or both bits must be 0. 

C-3 



Appendices 

C.2.2 AMD 

Due to conflicting device names, the following AMD parts 
have been assigned alternative names for use with ABEL: 

AMD Name ABEL Name AMD Name ABEL Name 
22P10 P22AP10 22XP10 P22XP10 
20RP4 P20ARP4 20XRP4 P20XRP4 
20RP6 P20ARP6 20XRP6 P20XRP6 
20RP8 P20ARP8 20XRP8 P20XRP8 
20RP10 P20ARP10 20XRP10 P20XRP10 

C.2.3 Exel 78C800 

For support of this device contact EXEL directly at the 
address below. Exel provides MultiMaptm software which, 
when used with ABEL, supports this device. 

Exel Microelectronics, Inc. 
2150 Commerce Drive 
San Jose, CA 95131 

C.2.4 Lattices GALs 

C-4 

The Lattice series 20 and 24 GALs each have three device 
files. Selection of the correct one is based on three simple 
rules. For most designs the registered model can be used. 

1. If the design requires registers, use the Pl6V8R, 
P 16Z8R, or P20V8R. 

2. If the combinatorial design requires feedback, use 
the P16V8C, Pl6Z8C, or P20V8C. 

3. If the combinatorial design requires eight product 
terms per output, use the P16V8S, P16Z8S, or 
P20V8S. 



Programmable Device Informatfon 

The models are controlled by two fuses, ACO and SYN, as 
show in the following table. 

P16V8R 
P16V8C 
P16V8S 

Devices 
P16Z8R 
P16Z8C 
P16Z8S 

P20V8R 
P20V8C 
P20V8S 

Model 
Registered 
Corrbinatorial 
Small PAL 

1 

0 

SYN 
0 

The User Signature Word can be programmed with the 
FUSES statement. See DEM016V8.ABL for a complete 
GAL design example. 

C.2.5 MMI P20RA10 and P16RA8 

The P20RA10 and Pl6RA8 outputs will be registered unless 
you set the preset and reset nodes high for combinatorial 
operation. This differs from previous version of ABEL. 
The P20RA10 and Pl6RA8 register nodes may be accessed 
by the "." extensions to the signal names. 

Preset 
Enable 

Node Extensions 

.PR 

.OE 
Reset .RE 
Clock .C 

The enable can be specified either with the ".OE" or an 
enable statement. See the example, PORT.ABL. 

C-5 



Appendices 

C.2.6 MMI P32VX10A and P22RX8A 

In these devices, the XOR gates can be used either as a 
conventional gate that XORs two product terms, or as a 
programmable inverter. The method for specifying the dual 
feedback and macro cell configuration with ABEL 3.0 
differs from that of previous versions. Designs developed 
using an earlier version of ABEL may not work without 
some changes. Refer to chapter 13 of this manual for 
information on how to use multiple feedback paths and how 
to configure the macro cell using ISTYPE statements. 

C.2.7 MMI P16X4/Pl6A4 

The example, LIMIT.ABL, demonstrates the use of macros 
to control the input pairs for arithmetic PALs, such as the 
Pl6X4. 

C.2.8 Ricoh and VTI EPALs 

The VTI and RICOH EPALs allow product term sharing 
between two adjacent outputs and the product terms can be 
used by both outputs at the same time. However, this 
feature is not directly supported by ABEL. The example 
file ORXOR.ABL demonstrates one method of utilizing this 
feature. 

C.2.9 Signetics 

C-6 

Signetics has changed their product numbering system. All 
82 device prefixes were replaced with PL. For example, 
828159 became PLS159 with the numbering change. For 
ABEL 3.0, the numbering of these device has been changed 
further. In ABEL 3.0, the 82S has been dropped from the 
device name so that, for example, the device file for the 
F82S159 is now named simply F159. To support the old 



Programmable Device Information 

numbering system (that may appear in existing ABEL 
source files) each of the following devices is provided with 
duplicate device files, one for each device number: 

Old Device Name 

F82Sl00 
F82Sl03 
F82Sl53 
F82Sl73 

New Device Name 

FlOO 
Fl03 
Fl53 
Fl73 

All other devices with the F82S prefix (such as the 
F82Sl 59) are no longer supported by ABEL 3.0 and only 
the new device files are provided, such as Fl59, Fl63, etc. 

Also changed for ABEL 3.0 is the way in which "output 
enables" are specified. Thus, designs for these devices 
developed using an earlier version of ABEL may require 
some changes. The ENABLE keyword should no longer be 
used to specify enable equations; instead, you should write 
an equation for the .OE extension of the signal name. The 
example SHIFTCNT.ABL demonstrates how to write enable 
equations. Refer also to chapter 13 of this manual for 
information on term controlled output enables. 

For the Fl59 family, the flip/flop control term cannot be 
used in equations as an input to the complement array (fuse 
2091 is always blown). This limitation should not affect 
most designs and, in those rare cases where it does, the fuse 
may be controlled with the FUSES statement. 

The Truth Table and State Diagram sections default to D 
flip/flop equations. This default may be changed be 
changed by setting the pin attribute to 'Reg_JK' with an 
ISTYPE statement to configure the register a a JK type, or 
'Reg_JKD' to configure the register as a controllable type 
(assumed to be JK). The control term may be referenced 
by the .FC dot extension. 

C-7 



Appendices 

C-8 

The .M dot extension should not be used; instead, use and 
ISTYPE statement to configure the register. 

Most of the internal nodes can be accessed with"." 
extensions appended to the signal names. 

Node Extension Notation 

Load 
Preset 
Reset 
Enable 

.L 

.PR 

.RE 

.OE 

J input .J 
K input .K 
Mode Fuse .M 
FF control .FC 

The complement term may be addressed with nodes shown 
below: 

Node Number Name 

Fl79 32 comp 
F405 29,30 comp 1, comp2 
F473 28 comp 
F105 49 comp 
F155 28 comp 
F157 28 comp 
F159 28 comp 
F167 43 comp 
F168 45 comp 

The complement term may be referred to in your ABEL 
source file with the name COMP, with no need to declare 
COMP in the declarations section of the source file. 

For the Fl05 family of devices, the buried registers may be 
referred to as PO through PS, with no node declaration 
required. 



Programmable Device Information 

C.2.10 F405 

The F405 is supported with a single device file in ABEL 
3.0. This device featurs a select multiplexer that is used to 
configure the clocks. The example DEM0405.ABL 
demonstrates the use of this device. Refer to chapter 13 of 
this manual for more information on the select multiplexer. 

C.3 Device Nodes 

Table C-1 lists the nodes used by ABEL along with the 
names given to those nodes by the manufacturer. Refer also 
to the manufacturer's logic diagrams or those supplied in 
the Programmable Logic Device Schematics publication. 
Device names are given in boldface followed by the number 
of pins on the device; node numbers follow. Detailed 
information about device nodes used in an ABEL design 
can be obtained by specifying the DOCUMENT flags -S 
and -Fl on the ABEL command line. Refer also to the 
ABEL Language Reference and Applications Guide for 
information on the use of nodes. 

C-9 



Appendices 

Table C-1. Nodes Used by ABEL 

Node 
No. Notation Name Function 

F105 (28 Pins) 
29 
30 
31 
32 
33 
34 
3S 
36 
37 
38 
39 
40 
41 
42 
43 
44 
4S 
46 
47 
48 
49 

.R 

.R 

.R 

.R 

.R 

.R 

.R 

.R 

.R 

.R 

.R 

.R 

.R 

.R 

FlSS (20 Pins) 

RFO Rf /f input for FO (pin 18) 
RFl Rf /f input for Fl (pin 17) 
RF2 Rf /f control for F2 (pin 16) 
RF3 f/f input for F3 (pin lS) 
RF4 Rf /f input for F4 (pin 13) 
RFS Rf/ input for FS (pin 12) 
RF6 R f/f input for F6 (pin 11) 
RF7 R f /f input for F7 (pin 10) 
PO Sf /f input (and output) for PO 
Pl S f/f input (and output) for Pl 
P2 S f/f input (and output) for P2 
P3 S f/f input (and output) for P3 
P4 S f/f input (and output) for P4 
PS S f /f input (and output) for PS 
RPO R f/f input for PO 
RPI Rf /f input for Pl 
RP2 R f/f input for P2 
RP3 R f/f input for P3 
RP4 R f/f input for P4 
RPS R f/f input for PS 
COMP Complement term at offset 44 

21 .FC FC f/f mode control 
22 .PR PB 
23 .RE RB 
24 .PR PA 
2S .RE RA 
26 .L LB 
27 .L LA 

C-10 

B group f /f preset 
B group f /f reset 
A group f /f preset 
A group f /f reset 
B group f /f load 
A group f /f load 



Programmable Device Information 

Table C-1. (cont.) 

Node 
No. Notation Name Function 

28 
33 
34 
35 
36 
37 
38 
39 
40 

COMP complementary node at offset 32 
KO K f /f input for FO (pin 14) 
Kl K f/f input for Fl (pin 15) 
K2 K f /f input for F2 (pin 16) 
K3 K f/f input for F3 (pin 17) 

.K 

.K 

.K 

.K 

.J 

.J 

.J 

.J 

K4 JO f/f alt. input for FO (pin 14) 
JI J f /f alt. input for Fl (pin 15) 
J2 J f /f alt. input for F2 (pin 16) 
J3 J f /f alt. input for F3 (pin 17) 

F157 (20 Pins) 
21 .FC FC f/f mode control 
22 .PR PB B group f /f preset 
23 RE RB B group f/f reset 
24 .PR PA A group f /f preset 
25 .RE RA A group f /f reset 
26 .L LB B group f/f load 
27 .L LA A group f/f load 
28 COMP complement node at offset 32 
35 .K KO K f/f input for FO (pin 13) 
36 .K Kl K f/f input for Fl (pin 14) 
37 .K K2 K f /f input for F2 (pin 15) 
38 .K K3 K f /f input for F3 (pin 16) 
39 .K K4 K f /f input for F4 (pin 17) 
40 .K K5 K f/f input for F5 (pin 18) 
41 .J JO J f/f alt. input for FO (pin 13) 
42 .J JI J f/f alt. input for Fl (pin 14) 
43 .J J2 J f /f alt. input for F2 (pin 15) 
44 .J J3 J f/f alt. input for F3 (pin 16) 
45 .J J4 J f/f alt. input for F4 (pin 17) 
46 .J 15 J f/f alt. input for F5 (pin 18) 

C-11 



Appendices 

Table C-1. (cont.) 

Node 
No. Notation Name Function 

F159 (20 Pins) 
21 .FC FC f /f mode control 
22 .PR PB B group f/f preset 
23 .RE RB B group f/f reset 
24 .PR PA A group f/f preset 
25 .RE RA A group f/f reset 
26 .L LB B group f/f load 
27 .L LA A group f /f load 
28 COMP complement node at offset 32 
37 .K KO K f/f input for FO (pin 12) 
38 .K Kl K f/f input for Fl (pin 13) 
39 .K K2 K f /f input for F2 (pin 14) 
40 .K K3 K f/f input for F3 (pin 15) 
41 .K K4 K f/f input for F4 (pin 16) 
42 .K KS K f /f input for F5 (pin 17) 
43 .K K6 K f/f input for F6 (pin 18) 
44 .K K7 K f/f input for F7 (pin 19) 
45 .J JO J f /f alt. input for FO (pin 12) 
46 .J JI J f/f alt. input for Fl (pin 13) 
47 .J J2 J f/f alt. input for F2 (pin 14) 
48 .J J3 J f /f alt. input for F3 (pin 15) 
49 .J J4 J f/f alt. input for F4 (pin 16) 
50 .J JS J f/f alt. input for F5 (pin 17) 
Sl .J J6 J f /f alt. input for F6 (pin 18) 
S2 .J J7 J f/f alt. input for F7 (pin 19) 

F167 (24 Pins) 
25 .R RFO Rf /f input for FO (pin 9) 
26 .R RFI R f/f input for Fl (pin 10) 
27 .R RF2 R f /f input for F2 (pin 11) 
28 .R RF3 R f/f input for F3 (pin 13) 
29 .R RPO R f /f input for PO (pin 14) 
30 .R RPI R f/f input for Pl (pin IS) 

C-12 



Programmable Device Information 

Table C-1. (cont.) 

Node 
No. Notation Name Function 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

EP300 
21 
22 

.R 

.R 

.R 

.R 

.R 

.R 

P7 S f /f input (and output) for P7 
P6 S f/f input (and output) for P6 
P5 S f /f input (and output) for P5 
P4 S f/f input (and output) for P4 
P3 S f /f input (and output) for P3 
P2 S f /f input (and output) for P2 
RP7 R f/f input for P7 
RP6 R f/f input for P6 
RP5 R f /f input for P5 
RP4 R f/f input for P4 
RP3 R f/f input for P3 
RP2 R f/f input for P2 
COMP Complement term at offset 45 

R 
p 

Reset term at fuse 2628 
Preset term at fuse 2592 

P22V10 (24 Pins) 
25 R 
26 p 

Reset term at fuse 0000 
Preset term at fuse 5764 

C-13 



Appendices 

C-14 



Appendix D. Syntax Diagrams 

This appendix contains syntax diagrams that formally and 
completely define the ABEL design language. Section D. l 
explains how to read the syntax diagrams. The diagrams 
begin in section D.2. 

D.1 How to Read Syntax Diagrams 

Each diagram is preceded on the left side by the name of 
the language element defined. Follow the diagram in the 
direction of the arrows to the far right where the diagram 
ends with a right arrow. In general, the flow is from left to 
right and top to bottom. Where an intersection exists with a 
choice of two or more paths, you may follow any one of 
them. In the example below, you can follow path A, B, or 
c. 

j \ .. 

D-1 



Appendices 

D-2 

When a path diverges from the main line path and loops 
back on it, you can follow this loop as many times as 
desired. For example, 

D 

indicates that you can circle around loop D as many times 
as needed before proceeding along the straight line path E 
to the right. 

Certain shapes in the diagram are significant. The are: 

( ) 
0 

Oblong shapes and circles indicate 
keywords and punctuation that must 
be entered as shown. 

Rectangles indicate elements that are 
defined by other diagrams. 



D.2 ABEL Syntax Diagrams 

end-of-line 

white
space
char 

white
space 

comment 

identifier 

string 

line-feed 

vertical
tab 

form-feed 

space 

tab 

end-of-line 

~~~-~-'--+•~l_w_h_i'_:h_-:_;_•_ce___,rl-~~~~----

char

letter

char

Syntax Diagrams

D-3

Appendices

block char CD-
end-of-line

block

label ·I identifier]

label-list cc9y

~ binary- c .. ,)
number binary

I digit

octal-number)~ c.,) octal

I digit

;=&\ decimal- C 1

)
I

number digit

C.1)
hex-number .. 8 hex

I digit

D-4

Syntax Diagrams

number

special-const .Z .

. C .

. F .

. K .

. X

.SV2 .

. SV3 .

. SV4 .

. SV5

.SV6 .

. SV7

.SVB .

. SV9 .

. P

dummy-arg .. I identifier

D-5

Appendices

D-6

dummy
arg-list

actual-arg

actual-arg-list

set

rel-op

expression

Syntax Diagrams

add-opp

mul-op

una-op

element

D-7

Appendices

exp-elem expression

element

factor

8
· I exp-elem ~

~ una-op

q p term factor

mu I-op

simple q p expression term

add-op

expression simple
expression

rel-op

input-file

~ ;o:rl eof

module

module~label ~

D-8

section equation
block

state
diagram

truth
table

test
vectors

Syntax Diagrams

dummy
arg-list

module module-label ------------------

flags

title

declarations

section

END

module
label

D-9

Appendices

title ----(TITLE)--j~ __ •_'_'i-ng_~I 'C()J

D-10

declarations

constant
declaration

const-exp

device-label

device-list

constant
declaration

device
declaration

signal
declaration

node
declaration

macro
declaration

type
declaration

label-list

-----. .. -ii exprnssion 1-I------

____ __,,.,~! label

~
label

'

device
declaration

signal"
declaration

device
list

signal-number-~---..;
list

DEVICE

label

Syntax Diagrams

string

PIN

NODE

D-11

Appendices

attribute POS

NEG

REG

COM

EON

PIN

SHARE

D-12

· ams Syntax Diagr

"'"""-I \.'/ 1"_bel ~~Tfi_ ~1

type-declaration

Ii bra ry·dec I a ration

I value

assign-op

D-13

Appendices

WHEN expression THEN

equation-""'-----'"''---------------------------

equation
list

equation
block

trvector-list

D-14

const-expr

const-expr

const-expr

ENABLE

assign-op

ELSE equation

equation-list

const-expr

Syntax Diagrams

truth-table device-label

element element

trvector-list

goto ---•-<(GOTO }--i

expression THEN const-exp

ELSE

canst-exp

with

expression const-exp
case

CASE with

D-15

Appendices

condition

state

state
diagrarn

vector

vector-list

test
vectors

D-16

STATE

condition

STATE~

DIAGRAM

goto

if then

case

const-exp

element

~~vectm ~

TESL
VECTORS

string

vector
list

lvalue

equation-list

device-label element

state

...

device-label

!value

Syntax Diagrams

co1npiler directive radix

inclurle

repeat

"P

irpc

ifiden

ifidex

ifb

ifnb

if def

ifndef

message

alternate

standard

ex pr

canst

page

exit

D-17

Appendices

alternate -----.-•-<€AL TERNA T~I------..-

con st @CONST label const-exp

exit~

ex pr @EXPR canst-exp

block

include -----•-(@INCLUDE}--j file"spec

irp @IRP dummy-arg actual-arg-list

block

irpc @IRPC dummy-arg actual-arg

block

if @IF expression block

ifiden @IFIDEN

block

D-18

Syntax Diagrams

ifniden @IFNIDEN actual-arg

---------- -- ------------~

~--'-''_"_ck _ __JL-------------------~-

ifb @IFB
actual-

arg block

ifnb ~ actual-
arg

block

if def @IFDEF label block

ifndef @IFNDEF label block

message • (@MESSAGE)--j string

page .,. c @PAGE)

radix @RADIX
constant

exp

repeat @REPEAT
constant-

block
exp

standard • ~STANDAR~

D-19

Appendices

D-20

Appendix E. ASCII Table

ASCII in Decimal and Hexadecimal

Decimal Hex Char Decimal Hex Char Decimal Hex Char

0 00 NUL 43 2B + 86 56 v
1 01 SOH 44 2C 87 57 w
2 02 STX 45 2D 88 58 x
3 03 ETX 46 2E 89 59 y

4 04 EOT 47 2F I 90 5A z
5 05 ENO 48 30 0 91 5B [

6 06 ACK 49 31 1 92 5C I
7 07 BEL 50 32 2 93 50 l
8 08 BS 51 33 3 94 5E /\

9 09 HT 52 34 4 95 5F
~

10 OA LF 53 35 5 96 60
11 OB VT 54 36 6 97 61 a
12 oc FF 55 37 7 98 62 b
13 OD CR 56 38 8 99 63 c
14 OE so 57 39 9 100 64 d
15 OF SI 58 3A : 101 65 e
16 10 OLE 59 3B 102 66 f
17 11 DC1 60 3C < 103 67 g
18 12 DC2 61 30 = 104 68 h
19 13 DC3 62 3E > 105 69 i
20 14 DC4 63 3F ? 106 6A j
21 15 NAK 64 40 @ 107 6B k
22 16 SYN 65 41 A 108 6C I
23 17 ETB 66 42 B 109 60 m
24 18 CAN 67 43 c 110 6E n
25 19 EM 68 44 D 111 6F 0

26 1A SUB 69 45 E 112 70 p
27 1B ESC 70 46 F 113 71 q
28 1C FS 71 47 G 114 72 r
29 1D GS 72 48 H 115 73 s
30 1E RS 73 49 I 116 74 t

31 1F us 74 4A j 117 75 u
32 20 SP 75 4B K 118 76 v
33 21 ! 76 4C L 119 77 w
34 22 " 77 40 M 120 78 x
35 23 # 78 4E N 121 79 y
36 24 $ 79 4F 0 122 7A z
37 25 % 80 50 p 123 7B I
38 26 & 81 51 Q 124 7C I
39 27 82 52 R 125 70 l
40 28 (83 53 s 126 7E ,....,
41 29) 84 54 T 127 7F DEL
42 2A * 85 55 u

E-1

Appendices

E-2

Appendix F. Set Operations

Set operations are applied according to normal rules of
Boolean algebra, as described below. In the rules, upper
case letters are used to denote set names, and lower-case
letters are used to denote elements of a set. the letters, k
and n are used as subscripts to the elements and to the sets.
A subscript following a set name (upper-case letter)
indicates how many elements the set contains. Thus, the
notation, Ak, indicates that set A contains k elements. ak-l

is the (k-J)th element of set A. a1 is the first element
of set A.

!Ak ::=[!ab !ak-1, ... , !a 1]

-Ak ::= .!Ak + 1

ENABLE Ak :: = [ENABLE ab ENABLE ak_ 1, ... , ENABLE a 1]

Ak & Bk::= [ak & bk, ak-1 & bk-1, ... , 01 & b1]

Ak #Bk :: = [ak #bk, ak-1 # bk-1, ... , a1 # b1]

Ak $Bk :: = [ak $bk- ak-1 $ bk-1, ... , 01 $ b1]

Ak !$Bk :: = [ak !$bk< ak-1 !$ bk-1, ... , 01 !$ b1]

Ak ==Bk::= (ak ==bk) &
(ak-1 == bk-1) & ... & (01 == b1)

Ak !=Bk::= (ak !=bk)# (ak-1 != bk-1) # ... # (01 != b1)

Ak + Bk :: = Dk
where:
dn :: = On $ bn $ Cn-1
Cn ::=(On & bn) #(On & Cn-1l # (bn & Cn-1)
co::= 0

Ak < Bk :: = ck
where:

Cn ::=(!On & (bn #Cn-1) #an & bn & Cn-1) != 0
co::= 0

F-1

Appendices

F-2

Index

-A parameter, 4-12
-B parameter, 4-30, 47
-C parameter, 4-24
-D parameter, 4-23, 25
-E parameter, 4-11
-E parameter, 8-16
-E parameter, 9-1
-F parameter, 4-63
- H parameter

example of, 4-12
-H parameter, 4-12
-J parameter, 4-24
-K parameter, 4-25
-L parameter, 4-11
-N parameter, 4-29, 33, 6-2, 6
-P parameter, 4-12, 8-16, 9-1
-Q parameter, 4-63, 13-22
-R parameter, 4-18
-T parameter, 4-28
-U parameter, 4-31
-W parameter, 4-32, 47
-X parameter, 4-31, 52
-Y parameter, 4-13
-Z parameter, 4-31

A
ABELLIB, 6-4
Active low operator, 8-11
Actual arguments, 7-33, 9-6, 8, 9, 11, 13, 15
Adder, 10-52
Addition operator, 7-14
Address decoder, 10-5
Altera ELPDs, C-3
AL TERNA TE directive, 9-2

Index-I

Index

AMD devices, C-4
AND operator, 7-13
AND rules, 4-16, 19
AP notation, 4-44
AR notation, 4-44
Argument substitution, 4-12, 7-33
Arguments, 7-33

actual, 7-33, 9-11
actual and dummy, 9-6, 8, 9, 11, 13, 15
dummy, 7-33, 8-16, 9-11
example of, 7-33
placeholders for, 7-33

Arithmetic operators, 7-14
priority of, 7 -17

ASCII
valid characters, 7 -2

Assignment operators, 7 -17
clocked/unclocked, 7-20

Asynchronous circuits
testing of, 12-30

Attributes
pin and node, 8-19

B
Barrel shifter

example of, 10-31
Bases for numeric values, 7-9
Batch file processing, 4-3
Batch files, 3-12

creating, 4-8
BCD converter, 10-51
Bi-directional buffer

example of, 10-46
Binary numbers, 7 -9, 9-17
Binary-to-BCD converter, 10-51
BINBCD, 10-51
Blackjack machine

functional components, 10-51
operation, 10-49

Index-2

Blocking test, 7-32
Boolean algebra

rules of, 4-19
Braces

use of, 7-32
Breakpoints, 4-43, 51

example of, 4-51
use of, 12-3

Breakpoints in simulation, 4-30
Bubble diagram, 10-61
Buffered outputs

enabled/disabled, 4-52
Buried registers, 13-37

c
CASE statement, 8-36

example of, 8-36
Character set

valid characters, 7-2
Checksum

disabling, 4-24
Circumflex, 7-9
CK notation, 4-44
Clock inputs, 4-36, 53, 12-17

in simulation, 12-18
Clocked assignment, 7-28
Clocked inputs, 7-11
Clocked operator, 7 -1 7
Combinational outputs, 8-27, 12-10, 13-11

with registers, 7-27
Combining equations, 13-31
Command line, 3-12, 11-13

example of, 3-13, 4-10
Comments, 7 - 7
Communications link, 5-1
Comparator circuit

example of, 10-41
Complement array, 13-40
Complement operator, 7-20

Index

Index-3

Index

Conditional directive, 9-5, 6, 7, 8, 9, 10, 11
Conditions, 7-20
CONST directive, 9-3
Constant declaration, 3-3, 9, 8-14, 11-12
Constant directive, 10-57
Constant values, 8-14
Constants, 7-11, 8-14

collection of, 7-23
declaring, 9-3
example of, 10-20, 44
examples of, 8-15
used in test vectors, 10-29

Controlling registers, 13-25
Conventions

notation, 1-12
Conversion

JEDEC to equations, 6-6
Conversion programs, 6-1, 2, 6
Counters

D

illegal states, 12-23
preloading states, 12-24

D-type flip-flops, 13-26
Data format

JEDEC, B-1
Data translation codes, 4-26
Decade counter

testing of, 12-23
Decimal numbers, 7-9, 9-17
Declarations, 8-8

CONSTANT, 3-9, 8-14
DEVICE, 3-8
macro, 8-16
NODE, 3-9, 13-37
PIN, 3-9

Delimiters
for strings, 7-6

Demultiplexer

Index-4

example of, 10-13
Design errors

types of, 11-13
Design files, 3-1
Device (chip) diagram, 4-62
Device declaration, 3-2, 8, 8-9
Device files

maintenance of, 6-4
specify path, 4-13

Device files, 4-5
Device libraries, 4-5
Device library

maintenance of, 6-4
Device library manager, 6-4
Device names

AMD, C-4
Device part number, 8-9
Device pin selection

during simulation, 32
Device programmer, 5-1

connections to, 5-3
Device programmer, 5-1

specifying, 6-2
Device type and simulation, 4-29
Devices, 8-9

multiple, 10-50
Directives

@ALTERNATE, 9-2
@CONST, 9-3, 10-57, 12-10
@EXIT, 9-4
@EXPR (expression), 9-4
@IF, 9-5, 12-8
@IFB, 9-6
@IFDEF, 9-7
@IFIDEN, 9-8
@IFNB, 9-9, 11-14
@IFNDEF, 9-10
@IFNIDEN, 9-11
@INCLUDE, 9-12

Index

Index-5

Index

@IRP, 9-13, 12-8
@IRPC, 9-15
@MESSAGE, 9-16, 11-15
@PAGE, 9-16
@RADIX, 9-17
@REPEAT, 9-18
@STANDARD, 9-19, 10-57, 12-10
expanded, 12-10
text included by, 4-11, 12

Directives, 7-32, 10-57
Display decoder

example of, 10-36
Display messages, 9-16
Division operator, 7-14
DOCUMENT, 1-4

output file, 4-63
DOCUMENT output

header for, 8-7
PALSM format, 4-61

Documentation file, 4-7
Don't care condition, 7-11
Don't care values, 4-31, 11-7
Don't cares, 1-3

default values, 12-14
in test vectors, I 0-48

Dot extensions, 13-15, 21
Double quotes

use of, 7-7
Downloading files, 1-8

design to programmer, 5-1
PROM design to programmer, 5-5

Dummy arguments
with macros, 12-8

Dummy arguments, 7-33, 8-16, 9-6, 8, 9, 11, 13, 15, 11-13
Duplicated identifiers, 7-21

lndex-6

E
Elements, 7-20
ELPDs

devices supported, C-3
ELSE, 7-20
ENABLE, 7-20, 10-14
ENABLE keyword, 13-2
ENDWITH statement

example of, 8-39
Equal operator, 7 -15
Equal to notation, 10-42
Equations, 7-20

example of error, 4-13
examples of, 7-21
original, 4-62
ORing of, 13-31
ORing together, 10-24
reduced, 4-18, 62
shown in documentation, 4-63
specific to device, 8-25
sum of products, 10-32
transformed, 4-62

Equations reduction
selection of level, 4-18

EQUATIONS statement, 3-10, 8-25
example of, 8-25

Error messages
command line, A-2
design related, A-10
device file, A-25
device related, A-10
fatal errors, A-5
intermediate files, A-8
preprocessor, A-1 7
simulation, A-26
syntax, A-18

Error reporting, 4-28, 38
Errors

detection of, 12-4

Index

Index-7

Index

Errors in simulation, 12-30
Examples

-B parameter, 4-30
-H parameter, 4-12
-N parameter, 4-29
-N parameter, 6-3
-W parameter, 4-32
- Y parameter, 4-13
@CONST directive, 9-3, 12-10
@EXPR directive, 9-4
@IF directive, 12-8
@IF directive, 9-5
@IFB directive, 11-16
@IFB directive, 9-6
@IFDEF directive, 9-7
@IFIDEN directive, 9-8
@IFNB directive, 9-9, 11-16
@IFNDEF directive, 9-10
@IFNIDEN directive, 9-11
@INCLUDE directive, 9-12
@IRP directive, 9-13, 12-8
@IRPC directive, 9-15
@MESSAGE directive, 9-16
@PAGE directive, 9-16
@RADIX directive, 9-17
@REPEAT directive, 9-18, 12-10
adder, 10-49
adder w/look ahead, 10-54
address decoder, 3-5, 10-5
barrel shifter, 10-31
bi-directional buffer, 10-46
binary/bed converter, 10-49
blackjack machine, 10-49
blocks, 7-32
breakpoints, 4-51
CASE statement, 8-36
chained IF-THEN-ELSE, 8-35
clock input, 4-37
combinatorial ouptut, 13-10

Index-8

combining equations, 13-31
command line, 3-13, 4-10
comments, 7-7
comparator circuit, 10-41
constant declarations, 8-15, 11-12
constants, 10-22, 44
decade counter, 13-37
declarations, 3-5
demultiplexer, 10-13
device names, 8-9
display decoder, 10-36
DOCUMENT output, 4-63
dot extensions, 13-15
downloadling files, 5-5
dummy arguments, 12-8
ENDWITH statement, 8-39
equations, 3-5, 7-21, 31
EQUATIONS statement, 8-25
error in equation, 4-13
error in truth table, 4-13
expressions, 10-20
feedback circuit, 4-53, 57
FLAG statement, 8-6, 10-38
four-state counter, 12-18
fuses section, C-3
identifiers, 7-5
IF-THEN-ELSE, 8-34
IFLDOC command, 6-3
inserting files, 9-12
ISTYPE statement, 8-20, 23, 13-4, 6
JEDABEL "source" file, 6-6
macro cell feedback, 13-8
macro cell polarity, 13-6
macro usage, 8-17, 18
macros, 7-30, 10-44, 12-8
multiple devices, 4-24
multiplexer, 10-9, 49
node declaration, 8-13
numeric values, 7-9

Index

Index-9

Index

ORing equations, 7-22
passing arguments, 8-4
pin declaration, 8-11
FUSEMAP command line, 4-23
preload testing, 12-21
preload vectors, 12-27
preset testing, 12-18
product term sharing, 10-42
range within a set, 7-24
reduce product terms, 13-6
registered output, 13-10
relational expressions, 10-33, 11-16, 20
relational operators, 7 -16
repeating blocks, 9-13
reset vectors, 12-27
reset/preset, 13-16
ripple adder, 10-53
select register type, 13-25
sequencer, 10-27
set notation, 10-7
sets, 7-23, 10-22, 44
shifter/counter, 13-26
shorthand notation, 13-9, 20
SIMULATE command, 4-29, 30
simulation error, 4-38
simulation output, 4-40, 42, 47
simulation waveform, 4-49
source file, 3-5
source file processing, 3-13
state diagram, 8-32
state machine, 10-27, 49
synchronous counter, 10-17
test vectors, 3-5, 8-44
TITLE statement, 8-7
TRANSFOR command line, 4-17
transition equations, 13-38
truth table, 1-3, 8-28, 10-56
two trace levels, 4-51
use of JK flip-flops, 13-26, 42

Index-IO

use of nodes, 13-14
use of T flip-flops, 13-42
valid expressions, 7-19
valid identifiers, 7 -3

Exclusive NOR operator, 7-13
Exclusive OR operator, 4-19, 7-13
Exclusive-ORs

converting, 4-19
Exel devices

support of, C-4
Exorcisor data format, 4-26
Exormax format, 4-26
Expanded directives, 12-10
Expanded macros, 12-10
Expanded output

parser, 4-11, 12
Expanding test vectors, 10-34
Expression

relational, I 0-10
Expressions

convert to digits, 9-4
definition of, 7 -17
examples of, 7-19, 10-20
priority of, 7-17

EZSIM.BA T, 4-60

F
F405 support, C-8
Fl59 family

flip-flop control, C-7
node extensions, C-7

FC notation, 4-44
Feedback

combinatorial output, 13-17
multiple paths, 13-11, 19
registered output, 13-17
selectable paths, 13-17

Index

Index-II

Index

Feedback circuit
asynchronous, 4-57
example of, 4-53, 57
synchronous, 4-53

Feedback in designs, 4-53
Feedback registers, 13-37
File extension

Files

.ABL, 3-13

.DOC, 4-6

.LST, 4-6

.OUT, 4-6

.SIM, 4-6

.TM?, 4-6

created by ABEL, 3-14, 4-6
downloading, 1-8
for logic programmer, 1-8
supplied with ABEL, 1-9

FLAG statement, 3-2, 6, 8, 8-6
example of, 10-38

Flip-flops, 13-32
emulation of JK-type, 13-42
emulation of T-type, 13-42

Floating input, 7-11
Form feed character, 7-1
Form feeds, 9-16
Format codes, 5-6
Functional testing, 8-42
Fuse map, 4-62, 63

shown in documentation, 4-63
Fuse numbers, 4-43

specifying, 8-40
FUSEMAP program

example command line, 4-23
Fuses

setting value of, 8-40
unused, 4-25

Fuses section, 8-40
example of, C-3

Index-12

G
GOTO statement, 8-38
Greater than notation, I 0-42
Greater than operator, 7-15

H
Hardware required, 1-7
Hexadecimal notation, 11-6
Hexadecimal numbers, 7-9, 9-17
High impedance condition, 7-11
High-impedance values, 4-31

in test vectors, I 0-48
High-Z values, 4-31

I
Identifiers, 7-3

duplicated, 7-21
examples of usage, 7-5
ORing together, 7-21
pin and node, 8-19
reserved, 7-4
rules and examples, 7-3
useof,11-3

IF directive, 9-5, 12-8
IF-THEN-ELSE, 8-34

chained statements, 8-35
IFB directive, 9-6
IFDEF directive, 9-7
IFIDEN directive, 9-8
IFLDOC, 6-2

devices supported, C-2
IFNB directive, 9-9, 11-14
IFNDEF directive, 9-10
IFNIDEN directive, 9-11
INI notation, 4-44
IN2 notation, 4-44
INCLUDE directive, 4-5, 9-12

Index

Index-13

Index

Include files, 4-5
specify path, 4-12

Input file
Document, 4-62
IFLDOC, 6-2
JEDABEL, 6-6
PLDMAP, 4-22
Reduce, 4-18
Simulate, 4-27
to parser, 4-11
TOABEL, 6-1
Transfor, 4-16

Input files
Simulate, 4-33

Inputs
clock~ 12-17

Inserting files, 8-24, 9-12
Intel EPLDs, C-3
Intel Intellec 8/MDS format, 4-26
Intel MCS-86 Hex format, 4-26
Intermediate output file, 4-7
Internal nodes, 13-13
IRP directive, 9-13, 12-8
IRPC directive, 9-15
ISTYPE statement, 8-19, 13-19

example of, 8-20, 23

J
J-K flip-flops, 13-26, 42
JEDABEL, 6-6
JEDEC format, B-1

selecting for ouptut, 4-25

K
Keywords, 7-2, 4

device, 8-9
enable, 10-14, 13-2
node, 8-12
pin, 8-10

Index-14

L
Lattice G ALs

device files for, C-5
LD notation, 4-44
Less than notation, 10-42
Less than operator, 7-15
Libraries, 4-5
LIBRARY statement, 4-5, 8-24
License, 1-15
Line endings, 7-1
Line feed character, 7 -1
Line length, 7-1
Listing file, 4-13
Logic equations

use of, 10-52
Logic operators

symbols defined, 10-51
Logic reduction, 4-18

level 1, 4-19
level 2, 4-20
PRESTO, 4-20

Logical operators, 7-13
alternate set, 9-2
priority of, 7 -17

M
Macro cell polarity

default value, 13-8
Macro cells

£1800, 13-23
programmable, 13-26
select register type, 13-12
selecting feedback, 13-8
setting polarity, 13-6

Macro declaration, 8-16

Index

Index-15

Index

Macros, 7-32, 33, 10-57, 59
circular reference, 8-19
examples of, 8-17, 10-44
expanding, 4-11, 12, 12-10
internal constants, 9-3

MCS-86 Hexadecimal format, 4-26
MESSAGE directive, 9-16, 11-15
Messages

passing to display, 11-15
Miser bits, C-3
MMI devices

register nodes, C-6
MODULE statement, 3-2, 7, 8-3

assigning a name, 8-7
definition of, 8-1
passing arguments, 8-4

Modules
multiple, 10-50

Modulus operator, 7 -14
Motorola Exormax/Exorciser format, 4-26
Multiple device designs, 8-25
Multiple devices, 4-24
Multiple errors, 12-5
Multiple feedback, 13-11, 19
Multiplexer

example of, 10-9
Multiplication operator, 7-14
MUXADD, 10-52

N
Node attributes, 8-12, 19
Node declaration, 3-3, 9, 8-12, 13-37

valid strings, 8-12
Node identifiers, 8-12, 19
Node names, C-9
Node numbers, 4-43, 13-13, C-9

Index-16

Nodes, 8-12, 13-13
complement feedback, 13-37
declarations for, 13-14
declaring attributes, 8-20
equations for, 13-15
functions of, C-9
listing by device, C-9
register preset, 12-27
register reset, 12-27

Not equal operator, 7-15
NOT operator, 7-13
Notation

for dot extensions, 13-15, 31
for flip-flops, 13-32
simulation files, 4-44

Notation conventions, 1-12
Numbering systems, 7-9
Numbers

changing the base, 9-17
hexadecimal, 11-6

Numeric values
accuracy of, 7-8

0

by alpha characters, 7-9
default base, 7-8

Octal numbers, 7-9, 9-17
OE notation, 4-44
One complement, 7-13
Operator, range, 7-23
Operators

alternate, 9-2
arithmetic, 7-14
assignment, 7-17
logical, 7 -13
priority of, 7-17
relational, 7-15
standard ABEL, 9-2
unsigned, 7 -15

Index

Index-17

Index

used in equations, 7 -17
using alternate, 9-2

OR gate outputs, 4-43
OR notation, 4-44
OR operator, 7-13
OR rules, 4-16, 19
ORing equations, 10-24
Output buffers, 7-20
Output enable

active low, 13-3
configurable, 13-4
configured by ISTYPE, 13-4
controlled by pin, 13-4
controlled by term, 13-4
pin controlled, 13-1
select multiplexer, 13-4
term controlled, 13-2

Output enable notation, 13-2
Output enable pin, 10-21
Output files, 3-14, 4-6

Document, 4-62
documentation, 4-7
for device programmer, 4-23
IFLDOC, 6-2
intermediate, 4-7
JEDABEL, 6-6
PARSE, 4-6, 11
FUSEMAP, 4-22
REDUCE, 4-18
SIMULA TE, 4-27
simulation, 4-7
to programmer, 4-7
TOABEL, 6-1
TRANSFOR, 4-16

Output polarity
macro cells, 13-6

Outputs
checking states, 12-16
combinatorial/registered, 13-11

Index-18

p
PAGE directive, 9-16
PALASM, 4-61, 6-1
Parameters

-Q, 13-22
in the source file, 8-6

Parentheses
use of, 7-18

Parser, 1-4, 4-9
input file, 4-11
listing output file, 4-11
output file, 4-6, 11
output listing file, 4-13

Passing arguments, 8-4, 11-13
Path

write programmer file, 4-24
Periods

use of, 7-11
Pin

output enable, 10-21
Pin attributes, 8-10, 19
Pin declaration, 3-2, 9, 8-10

valid strings, 8-10
Pin identifiers, 8-10, 19
Pin/node attributes

combinatorial, 8-21
configure mode, 8-23
feedback path, 8-22
latch input, 8-22
polarity, 8-21
registered, 8-21

Pins, 8-10
declaring attributes, 8-20

PLD files, 4-5
PLD-Linx, 1-1
PLD programmer, 5-2

Index

Index-19

Index

PLD type
simulation, 4-29
specifying, 4-29

PLD-CADAT, 1-1
PLDtest, 1-1
Power up states, 3-11
Preload function

supervoltage, 12-23
Preload registers, 7-11, 12-17

state machine, 12-27
Preload test vector, 10-29
Preload testing, 12-21
Preset registers, 4-31, 12-17
Preset test vector

example of, 10-35
Preset testing, 12-18
PRESTO reduction, 4-18
Processing parameters

in the source file, 8-6
Processing steps, 4-4
Product description, 1-3
Product term sharing, l 0-42
Product terms

too many for a device, 11-2
Programmable device pins, 8-10
Programmable devices

choosing, 11-13
specifying type, 11-14

Programmable polarity, 8-29
Programmer files, 1-8

supported formats, 4-25
Programmer load file

header for, 8-7
specify checksum, 4-24
specify path, 4-24

Programmer load files, 4-7, 5-1
data translation codes, 4-26

PROMlink, 1-1, 3-15, 5-1, 5

lndex-20

PRO Ms
devices supported, C-1
simulation, 4-33

Propagation delays, 11-10
PT notation, 4-44

Q
Q node

of a register, 13-21
Quotation marks

R

use of double, 7-7
use of single, 7-6

RADIX directive, 9-17
Range operator, 7-23
Reduce, 1-4
Reducing design size, 10-42
Reduction

PRESTO, 4-18
rules for, 4-16, 19
simple, 4-18

Reduction levels
selection of, 4-18
using different, 11-10

Register bypass feature, 13-21
Register outputs, 4-43
Register preset

by pin, 12-29
by product term, 12-27

Register reset
by pin, 12-29
by product term, 12-27

Register type
control of, 13-25

Register values
state machines, 11-7

Index

Index-21

Index

Registered outputs. 8-27. 13-10, 11
setting/resetting. 4-31
specifying types. 13-12
with combinatorial. 7-27

Registers
buried. 13-37
feedback. 13-37
power up states, 3-11
preload. 12-23
preload testing. 12-21
preloading. 12-17
presetting, 12-17
programmable. 13-26
programmable polarity. 8-29
reset/preset, 4-31, 13-14
resetting, 12-17

Relational expressions. 10-10
example of, 10-33, 11-16, 20

Relational operators, 7-15
examples of, 7-16
priority of, 7 -17

Remainder operator, 7 -14
REPEAT directive, 9-18. 10-57
Repeating blocks, 9-13, 15
Reserved identifiers. 7 -4
Reset registers, 12-17
Reset/preset functions, 13-13. 14
Ricoh EPALs

term sharing. C-6
Ripple adder

example, 10-52

s
Select multiplexers, 13-23

control of, 13-23
Sequencer

example of, 10-27
Set assignments

equivalent, 7-26

Index-22

Set notation
example of, 10-7

Set operations
valid, 7-27

Sets, 7-23
example of, 7-23, 10-20, 44
restrictions on, 7-27
use of, 13-28

Setting registers, 4-31
Shift operators, 7-14
Shifter/counter example, 13-26
Shorthand notation, C-9
Signals

collection of, 7 - 23
Signetics devices

numbering, C-7
Signetics format, 6-2
SIMULATE, 1-4
SIMULA TE output

all test vectors, 4-40
example of, 4-38, 40, 42

Simulation
abbreviated test, 4-60
all device information, 4-43
breakpoints, 4-30
changing trace levels, 4-30
designs w/feedback, 4-53
devices with feedback, 4-34
information levels, 4-28
large output files, 4-43
mechanics of, 4-34
OR gate outputs, 4-43
output file notation, 4-44
re-test batch file, 4-60
register outputs, 4-43
selecting device pins, 4-32
selecting test vectors, 4-30
show all steps, 4-42
specify device type, 4-29, 4-33

Index

Index-23

Index

stabilized outputs, 4-28, 34
suppress test vectors, 4-30
test iterations, 4-28, 34
trace level 0, 4-38
trace level l, 4-39
trace level 2, 4-42
trace level 3, 4-43
trace level 4, 4-47
trace level 5, 4-49, 52
trace levels, 12-3
two trace levels, 4-51
unspecified inputs, 4-52
unspecified outputs, 12-15
waveform example, 4-48, 49, 51
waveform output, 4-47
with clock inputs, 4-36

Simulation errors, 4-28
Simulation output file, 4-7

errors only, 4-38
Simulation reports

all device internals, 4-28
device nodes and fuses, 4-28
false errors, 12-30
errors and test vectors, 4-28
errors only, 4-28
trace level 2, 4-36
waveform display, 4-29

Single quotes
use of, 7-6

Software updates, 1-14
Source file

by JEDABEL, 6-6
Constant declaration, 3-3, 9, 8-14
declarations, 8-8
Device declaration, 3-2, 8
Equations statement, 3-10
example of, 3-5
example of processing, 3-13
Flag statement, 3-6

Index-24

include other file, 9-12
line endings, 7-1
line length, 7-1
Macro statement, 8-16
Module statement, 8-3
Node declaration, 3-3, 9, 8-12
Parser, 4-9
Pin declaration, 3-2, 9, 8-10
repeating a block, 9-13, 15
substituting portions, 8-16
syntax, 7-1
test vectors, 3-11
Title statement, 8-7

Source files, 1-4, 3-1, 4-11
Source file statements, 3-2

Flag, 3-2, 8
Module, 3-2, 7
Title, 3-2, 8

SP notation, 4-44
Spaces

use of, 7-2
Special constant .X., 12-15
Special constants, 7-11, 12-24
SR notation, 4-44
Stabilized outputs, 4-28, 34
STANDARD directive, 9-19
State diagrams, 8-30

example of, 10-61
example of, 8-32

STATE DIAGRAM statement, 8-31
State identifiers, 10-62
State machines, 8-30, 11-2

choosing bit values, 11-7
D-type flip-flops, 11-5
errors in, 12-5
example of, 10-27
faulty conditions, 11-5, 7
pictoral diagram, 10-63
power-on state, 11-5

Index

Index-25

Index

preload registers, 12-27
state values, 10-62
test branch functions, 12-27
testing, 12-5

State registers
identification of, 11-3

Statements
CASE, 8-36
constant declaration, 8-14
device declaration, 8-9
ENDWITH, 8-39
EQUATIONS, 3-10, 8-25
FLAG, 3-8, 8-6
GOTO, 8-38
IF-THEN-ELSE, 8-34, 10-28
ISTYPE, 8-19, 13-6
LIBRARY, 8-24
macro declaration, 8-16
MODULE, 3-7, 8-3
node declaration, 8-12
pin declaration, 8-10
STATE DIAGRAM, 8-31, 10-28
TITLE, 3-8, 8-7

Strings, 7-6
Subtraction operator, 7-14
Sum of products equations, 10-32
Super voltage, 7-11
Super voltage preload, 12-23
Symbol table, 4-62
Synchronous counter

example of, 10-17
Syntax, 7-1

T
T-type flip-flop, 4-19, 13-42
Test iterations, 4-28, 34
Test vector table, 8-43

Index-26

Test vectors, 3-11, 4-62, 8-42
asynchronous circuits, 12-30
branch conditions, 12-27
by directives/macros, 12-8
bypassing, 12-4
C inputs, 4-36
C and K signals, 4-36
don't care values, 4-31, 12-14
emulate clock, 12-18
example of, 8-44
expansion of, 10-34
for large designs, 12-8
generated by SIMULATE, 4-36
high impedance values, 10-48
high-Z values, 4-31
macro and directive, 10-58
multiple sections, 12-6
preload register function, 10-29, 12-23, 12-29
shifter/counter, 13-34
test reset/preset, 12-29
unspecified pins, 12-15
using don't cares, 10-48
using specific, 12-3
with clock pulse, 12-22
with load control, 12-22

Testing techniques
state machines, 12-5

THEN, 7-20
3-state buffers, 7-20
Timing problems, 11-10
TITLE statement, 3-2, 8, 8-7

example of, 8-7
TOABEL, 6-1

devices supported, C-2
Too many terms, 13-8
Trace levels

changing in simulation, 12-3
in simulation, 4-28

Index

Index-27

Index

Transferring
design to programmer, 5-1
PROM design to programmer, 5-5

TRANSFOR
example of, 4-17
input file, 4-16
operation of, 4-16

Transform, 1-4
Transition equations

definition of, 13-37
3-state buffers, 7-20
Truth tables, 8-26, 10-56

example of, 1-3
example of, 8-28
example of error, 4-13
macro and directive, 10-56
use of, 10-51

Turbo bits, C-3
Twos complement operator, 7-14

u
Unclocked assignment, 7-28
U nclocked operator, 7-17
Unsigned operators, 7 -15
Unused fuses

connecting/ disconnecting, 4-25
Updates to software, 1-14
Utility programs, 6-1, 2, 6

v
Variables

placeholders for, 7-33
use of, 7-33

Variable values, 11-13
Vectors, 8-42
Vertical tab character, 7 -1
VTI EPALs

term sharing, C-6

Index-28

w
Warranty, 1-15
Waveform display, 4-29
Waveform output

more than 14 pins, 4-49
Waveform simulation, 4-47
WHEN, 7-20
WITH-ENDWITH statement, 8-39

x
X parameter, 12-14
XOR rules, 4-16, 19

Index

Index-29

Index

Index-30

ABEL 3.1

User Notes

984-0029-002

January 1989 984-0029-002

This document contains the latest information available at the time of

preparation. Therefore, it may contain descriptions of functions not implemented

at manual distribution time.

Data 1/0 Corporation provides this manual "as is," without warranty of any kind,

either expressed or implied. Data 1/0 reserves the right to make improvements

and/or changes in this document or in the product and/or program(s) described

herein at any time. Information on these changes will be incorporated in new

editions of this publication.

Data 1/0 Corporation

10525 Willows Road

Redmond, Washington 98073-9746 USA

206-881-6444

Copyright 1987, 1988, 1989, Data 1/0 Corporation. All rights reserved.

No part of this manual may be copied or reproduced in any form or by any means

without the prior written consent of Data I/O Corporation.

ABEL, DASH, PLD-CADAT, PLDtest, and PSF are trademarks of

Data 1/0 Corporation

IBM is a registered trademark of, and IBM PC/XT and IBM AT are

trademarks of International Business Machines Corporation

Microsoft, MS-DOS, and PC-DOS are registered trademarks of Microsoft

Corporation

VT is a trademark of Digital Equipment Corporation

ABEL 3.1 User Notes

The following information is provided to supplement the
ABEL™ documentation. The example files mentioned can
be found on the distribution media, either disk or tape,
depending upon how you received the ABEL software.

Notes-I

ABEL 3.1 User Notes

Device Support

The devices listed on this and the following pages are
supported by ABEL 3.1. Devices that have not been
verified are listed on the last page under "Preliminary
Device Support."

Mfg. Device #of ABEL Mfg. Device #of ABEL
Part# File Pins Ver. Part# File Pins Ver.

Altera 16R4 P16R4 20 1.0
1200 E1210 40 3.0 16R4B P16R4 20 1.0
1210 E1210 40 3.0 16R4BP P16R4 20 1.0
1800 E1800 68 3.0 16R4D P16R4 20 1.0
1810 E1800 64 3.0 16R4H P16R4 20 1.0
300 E0310 20 2.0 16R6 P16R6 20 1.0
310 E0310 20 2.0 16R6B P16R6 20 1.0
320 E0320 20 1.0 16R6BP P16R6 20 1.0
600 E0600 24 2.0 16R6D P16R6 20 1.0
610 E0600 24 2.0 16R6H P16R6 20 1.0
900 E0900 40 2.1 16R8 P16R8 20 1.0
910 E0900 40 2.1 16R8B P16R8 20 1.0

16R8BP P16R8 20 1.0
Advanced Micro Devices 16R8D P16R8 20 1.0
10H20G8 EC20G8M 24 3.0 16R8H P16R8 20 1.0
10H20P8 EC20P8M 24 2.1 16RA8 P16RA8 20 2.0
10H8 P10H8 20 1.0 16RP4A P16RP4 20 1.0
10L8 P10L8 20 1.0 16RP6A P16RP6 20 1.0
12H6 P12H6 20 1.0 16RP8A P16RP8 20 1.0
12L10 P12L10 24 1.0 16X4 P16X4 20 2.1
12L6 P12L6 20 1.0 18L4 P18L4 24 1.0
14H4 P14H4 20 1.0 18P8 P18P8 20 1.0
14L4 P14L4 20 1.0 18U8 P18EU8 20 3.0
14L8 P14L8 24 1.0 20C1 P20C1 24 1.0
16A4 P16X4 20 2.1 20EG8 EC20EG8A 24 3.0
16C1 P16C1 20 1.1 20EV8 EC20EV8A 24 2.1
16H2 P16H2 20 1.0 20L10 P20L 10 24 1.0
16H8 P16H8 20 1.0 20L2 P20L2 24 1.0
16HD8 P16HD8 20 1.0 20L8 P20L8 24 1.0
16L2 P16L2 20 1.0 20L8A P20L8 24 1.0
16L6 P16L6 20 1.0 20L8A P20L8C 28 3.1
16L8 P16L8 20 1.0 20L8B P20L8C 28 3.1
16L8B P16L8 20 1.0 20P10 P20AP10 24 2.1
16L8BP P16L8 20 1.0 20R4 P20R4 24 1.0
16L8D P16L8 20 1.0 20R4A P20R4 24 1.0
16L8H P16L8 20 1.0 20R4A P20R4C 28 3.1
16LD8 P16LD8 20 1.0 20R4B P20R4C 28 3.1
16P2 P16P2 20 1.0 20R6 P20R6 24 1.0
16P8A P16P8 20 1.0 20R6A P20R6 24 1.0

Notes-2

ABEL 3.1 User Notes

Mfg. Device #of ABEL Mfg. Device # of ABEL
Part# File Pins Ver. Part# File Pins Ver.

20R6A P20R6C 28 3.1 C16R4Z P16R4 20 1.0
20R6B P20R6C 28 3.1 C16R6 P16R6 20 1.0
20R8 P20R8 24 1.0 C16R6Q P16R6 20 1.0
20R8A P20R8 24 1.0 C16R6Z P16R6 20 1.0
20R8A P20R8C 28 3.1 C16R8 P16R8 20 1.0
20R8B P20R8C 28 3.1 C16R8Q P16R8 20 1.0
20RA10 P20RA10 24 2.0 C16R8Z P16R8 20 1.0
20RA10 P20RA10C 28 3.1 C20L8Z P20L8 24 1.0
20RP10 P20ARP10 24 2.1 C20L8Z P20L8C 28 3.1
20RP4 P20ARP4 24 2.1 C20R4Z P20R4 24 1.0
20RP6 P20ARP6 24 2.1 C20R4Z P20R4C 28 3.1
20RP8 P20ARP8 24 2.1 C20R6Z P20R6 24 1.0
20RS10 P20RS10 24 1.1 C20R6Z P20R6C 28 3.1
20RS4 P20RS4 24 1.1 C20R8Z P20R8 24 1.0
20RS8 P20RS8 24 1.1 C20R8Z P20R8C 28 3.1
20S10 P20S10 24 1.1 C20RA10Z P20RA10 24 2.0
20X10 P20X10 24 1.1 C22V10 P22V10 24 1.0
20X10A P20X10 24 1.1 C22V10 P22V10C 28 3.1
20X4 P20X4 24 1.1 C22VF10 P22VF10 24 3.0
20X4A P20X4 24 1.1 CE20RA10 P20RA10 24 2.0
20X8 P20X8 24 1.1 CE22V10 P22V10 24 1.0
20X8A P20X8 24 1.1 PLS105 F105 28 1.0
20XP10 P20XP10 24 2.1 PLS167 F167 24 1.0
20XRP10 P20XRP10 24 2.1 PLS168 F168 24 2.0
20XRP4 P20XRP4 24 2.1
20XRP6 P20XRP6 24 2.1 ATMEL
20XRP8 P20XRP8 24 2.1 22V10 P22V10 24 1.0
22IP6 P22IP6 24 3.1 22V10 P22V10C 28 3.1
22P10 P22AP10 24 2.1 750 P750 24 3.0
22RX8 P22RX8A 24 2.1
22V10 P22V10 24 1.0
22V10 P22V10C 28 3.1 Cypress
22XP10 P22XP10 24 2.1 12L10 P12L10 24 1.0
23S8 P23S8 20 3.0 14L8 P14L8 24 1.0
26V12 P26V12 28 3.1 16L6 P16L6 24 1.0
29M16 P29M16 24 3.0 16L8A P16L8 20 1.0
29MA16 P29MA16 24 3.0 16R4A P16R4 20 1.0
32R16 P32R16 40 1.0 16R6A P16R6 20 1.0
32R16 P32R16C 44 3.1 16R8A P16R8 20 1.0
32VX10 P32VX10A 24 3.0 18L4 P18L4 24 1.0
64R32 P64R32 84 2.0 20G10 P20G10 24 2.1
64R32 P64R32G 88 3.1 20L10 P20L10 24 1.0
6L16A P6L16 24 1.1 20L2 P20L2 24 1.0
8L14A P8L14 24 1.1 20L8 P20L8 24 1.0
C16L8 P16L8 20 1.0 20R4 P20R4 24 1.0
C16L8Q P16L8 20 1.0 20R6 P20R6 24 1.0
C16L8Z P16L8 20 1.0 20R8 P20R8 24 1.0
C16R4 P16R4 20 1.0 22V10 P22V10 24 1.0
C16R4Q P16R4 20 1.0 22V10 P22V10C 28 3.1

Notes-3

ABEL 3.1 User Notes

Mfg. Device # of ABEL Mfg. Device # of ABEL
Part# File Pins Ver. Part# File Pins Ver.

7C330 P330A 28 3.1 77212 P16R8 20 1.0
7C331 P331 28 3.1 77215 P16H8 20 1.0

m16 P16P8 20 1.0

· EXEL Microelectronics International CMOS
78C800 XL78COO 24 2.1 Technology

153 F153 20 1.0
Fairchild Semiconductor 173 F.173 24 2.0
16L8 P16L8 20 1.0 18CV8 P18CV8 20 2.1
16P8 P16P8 20 1.0 20CG10 P20CG10 24 3.1
16R4 P16R4 20 1.0 22CV10 P22CV10Z 24 3.0
16R6 P16R6 20 1.0 22CV10Z P22CV10Z 24 3.0
16R8 P16R8 20 1.0 253 F253 20 3.0
16RP4 P16RP4 20 1.0 273 F273 24 3.0
16RP6 P16RP6 20 1.0
16RP8 P16RP8 20 1.0 Intel
20L8 P20L8 24 1.0 5AC312 E5AC312 24 3.1
20P8 P20P8 24 2.0 5C031 E0310 20 2.0
20R4 P20R4 24 1.0 5C032 E0320 20 1.0
20R6 P20R6 24 1.0 5C060 E0600 24 2.0
20R8 P20R8 24 1.0 5C090 E0900 40 2.1
20RP4 P20RP4 24 2.0 5C121 E1210 40 3.0
20RP6 P20RP6 24 2.0 5C180 E1800 68 3.0
20RP8 P20RP8 24 2.0
93Z458 F100 28 1.0 Lattice Semiconductor
93Z459 F100 28 1.0 10H8 P10H8 20 1.0

10H8A P10H8 20 1.0
Gould Electronics 10L8 P10L8 20 1.0
173 F173 24 2.0 10L8A P10L8 20 1.0
18CV8 P18CV8 20 2.1 10P8 P10P8 20 1.0
20CG10 P20CG10 24 3.1 10P8A P10P8 20 1.0
22CV10 P22CV10Z 24 3.0 12H6 P12H6 20 1.0
253 F253 20 3.0 12H6A P12H6 20 1.0
273 F273 24 3.0 12L6 P12L6 20 1.0

12L6A P12L6 20 1.0
Harris 12P6 P12P6 20 1.0
16LC8 P16P8 20 1.0 12P6A P12P6 20 1.0
16LC8L P16P8 20 1.0 14H4 P14H4 20 1.0
16PC8 P16P8 20 1.0 14H4A P14H4 20 1.0
16RC4 P16RP4 20 1.0 14H8 P14H8 24 1.0
16RC4L P16RP4 20 1.0 14H8A P14H8 24 1.0
16RC6 P16RP6 20 1.0 14L4 P14L4 20 1.0
16RC6L P16RP6 20 1.0 14L4A P14L4 20 1.0
16RC8 P16RP8 20 1.0 14L8 P14L8 24 1.0
16RC8L P16RP8 20 1.0 14L8A P14L8 24 1.0
77153 F153 20 1.0 14P4 P14P4 20 1.0
mo9 P16L8 20 1.0 14P4A P14P4 20 1.0
77210 P16R4 20 1.0 14P8 P14P8 24 1.0
77211 P16R6 20 1.0 14P8A P14P8 24 1.0

Notes-4

ABEL 3.1 User Notes

Mfg. Device # of ABEL Mfg. Device # of ABEL
Part# File Pins Ver. Part# File Pins Ver.

16H2 P16H2 20 1.0 20P2 P20P2 24 1.0
16H2A P16H2 20 1.0 20P2A P20P2 24 1 .0
16H6 P16H6 24 1.0 20P8 P20P8 24 2.0
16H6A P16H6 24 1 .0 20P8A P20P8 24 2.0
16H8 P16H8 20 1.0 20R4 P20R4 24 1.0
16H8A P16H8 20 1.0 20R4 P20R4C 28 3.1
16L2 P16L2 20 1.0 20R4A P20R4 24 1.0
16L2A P16L2 20 1.0 20R4A P20R4C 28 3.1
16L6 P16L6 24 1.0 20R6 P20R6 24 1.0
16L6A P16L6 24 1.0 20R6 P20R6C 28 3.1
16L8 P16L8 20 1.0 20R6A P20R6 24 1 .0
16L8A P16L8 20 1.0 20R6A P20R6C 28 3.1
16P2 P16P2 20 1.0 20R8 P20R8 24 1.0
16P2A P16P2 20 1.0 20R8 P20R8C 28 3.1
16P6 P16P6 24 1 .0 20R8A P20R8 24 1.0
16P6A P16P6 24 1.0 20R8A P20R8C 28 3.1
16P8 P16P8 20 1.0 20RP4 P20RP4 24 2.0
16P8A P16P8 20 1.0 20RP4A P20RP4 24 2.0
16R4 P16R4 20 1.0 20RP6 P20RP6 24 2.0
16R4A P16R4 20 1.0 20RP6A P20RP6 24 2.0
16R6 P16R6 20 1.0 20RP8 P20RP8 24 2.0
16R6A P16R6 20 1.0 20RP8A P20RP8 24 2.0
16R8 P16R8 20 1.0 20V8 P20V8 24 2.0
16R8A P16R8 20 1.0 20V8A P20V8 24 2.0
16RP4 P16RP4 20 1.0 39V18 F39V18 24 3.0
16RP4A P16RP4 20 1.0 6001 F6001 24 3.1
16RP6 P16RP6 20 1.0
16RP6A P16RP6 20 1.0 National Semiconductor
16RP8 P16RP8 20 1.0 10016LC4 EC16LC4N 24 3.0
16RP8A P16RP8 20 1.0 10016LC8 EC16LC8N 24 3.0
16V8 P16V8 20 2.0 10016LD4 EC16LD4N 24 3.0
16V8A P16V8 20 2.0 10016LD8 EC16LD8N 24 3.0
16Z8 P16Z8 24 3.0 10016P8 EC16P8N 24 3.0
18H4 P18H4 24 1.0 10016RC4 EC16RC4N 24 3.0
18H4A P18H4 24 1.0 10016RC8 EC16RC8N 24 3.0
18L4 P18L4 24 1.0 10016RD4 EC16RD4N 24 3.0
18L4A P18L4 24 1.0 10016RD8 EC16RD8N 24 3.0
18P4 P18P4 24 1.0 1016LC4 EC16LC4N 24 3.0
18P4A P18P4 24 1.0 1016LC8 EC16LC8N 24 3.0
20H2 P20H2 24 1.0 1016LD4 EC16LD4N 24 3.0
20H2A P20H2 24 1.0 1016LD8 EC16LD8N 24 3.0
20H8 P20H8 24 1.0 1016P8 EC16P8N 24 3.0
20H8A P20H8 24 1.0 1016RC4 EC16RC4N 24 3.0
20L2 P20L2 24 1.0 1016RC8 EC16RC8N 24 3.0
20L2A P20L2 24 1.0 1016RD4 EC16RD4N 24 3.0
20L8 P20L8 24 1.0 1016RD8 EC16RD8N 24 3.0
20L8 P20L8C 28 3.1 10H8 P10H8 20 1.0
20L8A P20L8 24 1.0 10L8 P10L8 20 1.0
20L8A P20L8C 28 3.1 10P8 P10P8 20 1.0

Notes-5

ABEL 3.1 User Notes

Mfg. Device #of ABEL Mfg. Device #of ABEL
Part# File Pins Ver. Part# File Pins Ver.

12H6 P12H6 20 1.0 20L8A P20L8C 28 3.1
12L10 P12L10 24 1.0 20L8B P20L8 24 1.0
12L6 P12L6 20 1.0 20L8B P20L8C 28 3.1
12P6 P12P6 20 1.0 20L80 P20L8 24 1.0
14H4 P14H4 20 1.0 20P2 P20P2 24 1.0
14H8 P14H8 24 1.0 20P8 P20P8 24 2.0
14L4 P14L4 20 1.0 20P8B P20P8 24 2.0
14L8 P14L8 24 1.0 20R4 P20R4 24 1.0
14P4 P14P4 20 1.0 20R4A P20R4 24 1.0
14P8 P14P8 24 1.0 20R4A P20R4C 28 3.1
16C1 P16C1 20 1.1 20R4B P20R4 24 1.0
16H2 P16H2 20 1.0 20R4B P20R4C 28 3.1
16H6 P16H6 20 1.0 20R4D P20R4 24 1.0
16H6 P16H6 24 1.0 20R6 P20R6 24 1.0
16H8 P16H8 20 1.0 20R6 P20R6C 28 3.1
16L2 P16L2 20 1.0 20R6A P20R6 24 1.0
16L6 P16L6 24 1.0 20R6A P20R6C 28 3.1
16L8 P16L8 20 1.0 20R6B P20R6 24 1.0
16L8B P16L8 20 1.0 20R6B P20R6C 28 3.1
16L8D P16L8 20 1.0 20R6D P20R6 24 1.0
16P2 P16P2 20 1.0 20R8 P20R8 24 1.0
16P6 P16P6 24 1.0 20R8 P20R8C 28 3.1
16P8 P16P8 20 1.0 20R8A P20R8 24 1.0
16R4 P16R4 20 1.0 20R8A P20R8C 28 3.1
16R4B P16R4 20 1.0 20R8B P20R8 24 1.0
16R4D P16R4 20 1.0 20R8B P20R8C 28 3.1
16R6 P16R6 20 1.0 20R8D P20R8 24 1.0
16R6B P16R6 20 1.0 20RA10 P20RA10 24 2.0
16R6D P16R6 20 1.0 20RA10 P20RA10C 28 3. 1
16R8 P16R8 20 1.0 20RP4 P20RP4 24 2.0
16R8B P16R8 20 1.0 20RP4B P20RP4 24 2.0
16R8D P16R8 20 1.0 20RP6 P20RP6 24 2.0
16RA8 P16RA8 20 2.0 20RP6B P20RP6 24 2.0
16RP4 P16RP4 20 1.0 20RP8 P20RP8 24 2.0
16RP6 P16RP6 20 1.0 20RP8B P20RP8 24 2.0
16RP8 P16RP8 20 1.0 20V8 P20V8 24 2.0
16V8 P16V8 20 2.0 20X10 P20X10 24 1.1
18F8 P18F8 20 1.0 20X10A P20X10 24 1. 1
18H4 P18H4 24 1.0 20X4 P20X4 24 1.1
18L4 P18L4 24 1.0 20X4A P20X4 24 1. 1
18P4 P18P4 24 1.0 20X8 P20X8 24 1.1
20C1 P20C1 24 1.0 20X8A P20X8 24 1. 1
20H2 P20H2 24 1.0 22F10 P22F10 24 1.0
20H8 P20H8 24 1.0 39V18 F39V18 24 3.0
20L10 P20L10 24 1.0 77X104 F105 28 1.0
20L2 P20L2 24 1.0 77X105 F105 28 1.0
20L8 P20L8 24 1.0 77X167 F167 24 1.0
20L8 P20L8C 28 3 .1 87X104 F105 28 1.0
20L8A P20L8 24 1.0 87X105 F105 28 1.0

Notes-6

ABEL 3.1 User Notes

Mfg. Device #of ABEL Mfg. Device # of ABEL
Part# File Pins Ver. Part# File Pins Ver.

87X153B F153 20 1.0 Signetics
87X167 F167 24 1.0 CK2605 F2605 20 2.0
87X839 F839 24 1 • 1 CK2678 F2678 20 3.1
87X840 F839 24 1.1 PLC105 F105 28 1.0
C16P8 P16P8 20 1.0 PLC153 F153 20 1.0
C16RP4 P16RP4 20 1.0 PLC159 F159 20 1.0
C16RP6 P16RP6 20 1.0 PLC16V8 P16SV8 20 3.1
C16RP8 P16RP8 20 1.0 PLC20V8 P20SV8 24 3.1

PLC473 F473 24 2.1
PLX PLHS153 F153 20 1.0
448 P448 24 3.0 PLHS16L8 P16L8 20 1.0

PLHS18P8 P18P8 20 1.0
Ricoh PLHS473 F473 24 2.1
10P8A P10P8 20 1.0 PLHS501 F501 52 2.1
10P8B P10P8 20 1.0 PLS100 F100 28 1.0
12P6A P12P6 20 1.0 PLS101 F100 28 1.0
12P6B P12P6 20 1.0 PLS102 F103 28 1.0
14P4A P14P4 20 1.0 PLS103 F103 28 1.0
14P4B P14P4 20 1.0 PLS104 F105 28 1.0
16P2A P16P2 20 1.0 PLS105 F105 28 1.0
16P2B P16P2 20 1.0 PLS150 F151 20 2.1
16P6A P16P6 20 1.0 PLS151 F151 20 2.1
16P8A P16P8 20 1.0 PLS152 F153 20 1.0
16P8B P16P8 20 1.0 PLS153 F153 20 1.0
16RP4A P16RP4 20 1.0 PLS154 F155 20 2.1
16RP4B P16RP4 20 1.0 PLS155 F155 20 2.1
16RP6A P16RP6 20 1.0 PLS156 F157 20 1.0
16RP6B P16RP6 20 1.0 PLS157 F157 20 1.0
16RP8A P16RP8 20 1.0 PLS158 F159 20 1.0
16RP8B P16RP8 20 1.0 PLS159 F159 20 1.0
241 P241 24 3.1 PLS159A F159 20 1.0

PLS161 F161 24 1.0
Samsung Semiconductor PLS162 F162 24 2.1
16L8 P16L8 20 1.0 PLS163 F163 24 2.0
16R4 P16R4 20 1.0 PLS166 F167 24 1.0
16R6 P16R6 20 1.0 PLS167 F167 24 1.0
16R8 P16R8 20 1.0 PLS168 F168 24 2.0
16V8 P16V8 20 2.0 PLS173 . F173 24 2.0
20L10 P20L10 24 1.0 PLS179 F179 24 2.1
20L8 P20L8 24 1.0 PLUS153 F153 20 1.0
20R4 P20R4 24 1.0 PLUS16L8 P16L8 20 1.0
20R6 P20R6 24 1.0 PLUS16R4 P16R4 20 1.0
20R8 P20R8 24 1.0 PLUS16R6 P16R6 20 1.0
22V10 P22V10 24 1.0 PLUS16R8 P16R8 20 1.0

PLUS173 F173 24 2.0
SEEQ Technology PLUS20L8 P20L8 24 1.0
20RA10Z P20RA10 24 2.0 PLUS20R4 P20R4 24 1.0

PLUS20R6 P20R6 24 1.0
PLUS20R8 P20R8 24 1.0

Notes-7

ABEL 3.1 User Notes

Mfg. Device # of ABEL Mfg. Device #of ABEL
Part# File Pins Ver. Part# File Pins Ver.

PLUS405 F405 28 3.0 16RP8 P16RP8 20 1.0
16V8 P16V8 20 2.0

Sprague Solid State 18H4 P18H4 24 1.0
12LC10 P12L10 24 1.0 18L4 P18L4 24 1.0
14LC8 P14L8 24 1.0 18P4 P18P4 24 1.0
16LC6 P16L6 24 1.0 20H2 P20H2 24 1.0
16LC8 P16L8 20 1.0 20H8 P20H8 24 1.0
16RC4 P16R4 20 1.0 20L2 P20L2 24 1.0
16RC6 P16R6 20 1.0 20L8 P20L8 24 1.0
16RC8 P16R8 20 1.0 20L8 P20L8C 28 3.1
18LC4 P18L4 24 1.0 20P2 P20P2 24 1.0
20LC10 P20L10 24 1.0 20P8 P20P8 24 2.0
20LC2 P20L2 24 1.0 20R4 P20R4 24 1.0
20LC8 P20L8 24 1.0 20R4 P20R4C 28 3.1
20RC4 P20R4 24 1.0 20R6 P20R6 24 1.0
20RC6 P20R6 24 1.0 20R6 P20R6C 28 3.1
20RC8 P20R8 24 1.0 20R8 P20R8 24 1.0
20XC10 P20X10 24 1.1 20R8 P20R8C 28 3.1
20XC4 P20X4 24 1.1 20RP4 P20RP4 24 2.0
20XC8 P20X8 24 1.1 20RP6 P20RP6 24 2.0

20RP8 P20RP8 24 2.0
SGS-Thomsen 20V8 P20V8 24 2.0

Microelectronics
10H8 P10H8 20 1.0 Texas Instruments
10L8 P10L8 20 1.0 10016ET6 EC16ET6 24 3.0
10P8 P10P8 20 1.0 10016P8 EC16P8N 24 3.0
12H6 P12H6 20 1.0 10016TE6 EC16TE6 24 3.0
12L6 P12L6 20 1.0 10H16ET6 EC16ET6 24 3.0
12P6 P12P6 20 1.0 10H16P8 EC16P8N 24 3.0
14H4 P14H4 20 1.0 10H16TE6 EC16TE6 24 3.0
14H8 P14H8 24 1.0 10KH16P8 EC16P8N 24 3.0
14L4 P14L4 20 1.0 16H8 P16H8 20 1.0
14L8 P14L8 24 1.0 16HD8 P16HD8 20 1.0
14P4 P14P4 20 1.0 16L8 P16L8 20 1.0
14P8 P14P8 24 1.0 16L8A P16L8 20 1 .0
16H2 P16H2 20 1.0 16L8H P16L8 20 1.0
16H6 P16H6 20 1.0 16LD8 P16LD8 20 1.0
16H8 P16H8 20 1.0 16N8 P16N8 20 3.0
16L2 P16L2 20 1.0 16R4 P16R4 20 1 .0
16L6 P16L6 24 1.0 16R4A P16R4 20 1.0
16L8 P16L8 20 1.0 16R4H P16R4 20 1 .0
16P2 P16P2 20 1.0 16R6 P16R6 20 1 .0
16P6 P16P6 24 1.0 16R6A P16R6 20 1 .0
16P8 P16P8 20 1.0 16R6H P16R6 20 1 .0
16R4 P16R4 20 1.0 16R8 P16R8 20 1 .0
16R6 P16R6 20 1.0 16R8A P16R8 20 1.0
16R8 P16R8 20 1.0 16R8H P16R8 20 1.0
16RP4 P16RP4 20 1.0 16RSP4 P16RSP4 20 2. 1
16RP6 P16RP6 20 1.0 16RSP6 P16RSP6 20 2. 1

Notes-8

ABEL 3.1 User Notes

Mfg. Device #of ABEL Mfg. Device #of ABEL
Part# File Pins Ver. Part# File Pins Ver.

16RSP8 P16RSP8 20 2.1 R19R8 P19R8R 24 1.1
16SP8 P16SP8 20 2.1 T19L8 P19L8L 24 2.1
1810 E1800 64 3.0 T19R4 P19R4L 24 1. 1
18N8 P18N8 20 3.0 T19R6 P19R6L 24 1.1
20L10 P20L10 24 1.0 T19R8 P19R8L 24 1. 1
20L8 P20L8 24 1.0
20L8A P20L8 24 1.0 VTI
20L8A P20L8C 28 3.1 10H8 P10H8 20 1.0
20R4 P20R4 24 1.0 10L8 P10L8 20 1.0
20R4 P20R4C 28 3.1 10P8 P10P8 20 1.0
20R4A P20R4 24 1.0 12H6 P12H6 20 1.0
20R4A P20R4C 28 3.1 12L6 P12L6 20 1.0
20R6 P20R6 24 1.0 12P6 P12P6 20 1.0
20R6 P20R6C 28 3.1 14H4 P14H4 20 1.0
20R6A P20R6 24 1.0 14H8 P14H8 24 1.0
20R6A P20R6C 28 3 .1 14L4 P14L4 20 1.0
20R8 P20R8 24 1.0 14L8 P14L8 24 1.0
20R8 P20R8C 28 3. 1 14P4 P14P4 20 1.0
20R8A P20R8 24 1.0 14P8 P14P8 24 1.0
20R8A P20R8C 28 3.1 16H2 P16H2 20 1.0
20RSP4 P20RSP4 24 2 .1 16H6 P16H6 24 1.0
20RSP6 P20RSP6 24 2. 1 16H8 P16H8 20 1.0
20RSP8 P20RSP8 24 2. 1 16L2 P16L2 20 1.0
20SP8 P20SP8 24 2.1 16L6 P16L6 24 1.0
20X10 P20X10 24 1.1 16L8 P16L8 20 1.0
20X4 P20X4 24 1 • 1 16P2 P16P2 20 1.0
20X8 P20X8 24 1 • 1 16P6 P16P6 24 1.0
22V10 P22V10 24 1.0 16P8 P16P8 20 1.0
22V10 P22V10C 28 3.1 16R4 P16R4 20 1.0
22VP10 P22VP10 24 3.0 16R6 P16R6 20 1.0
506 F506 24 3.0 16R8 P16R8 20 1.0
507 F507 24 3.0 16RP4 P16RP4 20 1.0
529 F529 20 2.1 16RP6 P16RP6 20 1.0
610 E0600 24 2.0 16RP8 P16RP8 20 1.0
82S105 F105 28 1.0 16V8 P16V8 20 2.0
82S105A F105 28 1.0 18H4 P18H4 24 1.0
82S167 F167 24 1.0 18L4 P18L4 24 1.0
839 F839 24 1.1 18P4 P18P4 24 1.0
840 F839 24 1.1 20H2 P20H2 24 1.0
910 E0900 40 2 .1 20H8 P20H8 24 1.0
C16L8 P16L8 20 1.0 20L2 P20L2 24 1.0
C16R4 P16R4 20 1.0 20L8 P20L8 24 1.0
C16R6 P16R6 20 1.0 20L8 P20L8C 28 3 .1
C16R8 P16R8 20 1.0 20P2 P20P2 24 1.0
C18V8 P18V8 20 3.0 20P8 P20P8 24 2.0
C22V10 P22V10 24 1.0 20R4 P20R4 24 1.0
R19L8 P19L8R 24 1. 1 20R4 P20R4C 28 3.1
R19R4 P19R4R 24 1. 1 20R6 P20R6 24 1.0
R19R6 P19R6R 24 1. 1 20R6 P20R6C 28 3.1

Notes-9

ABEL 3.1 User Notes

Mfg. Device # of ABEL
Part# File Pins Ver.

20R8 P20R8 24 1.0
20R8 P20R8C 28 3.1
20RP4 P20RP4 24 2.0
20RP6 P20RP6 24 2.0
20RP8 P20RP8 24 2.0
20V8 P20V8 24 2.0
VP10P8 P10P8 20 1.0
VP12P6 P12P6 20 1.0
VP14P4 P14P4 20 1.0
VP16P2 P16P2 20 1.0
VP16P8 P16P8 20 1.0
VP16RP4 P16RP4 20 1.0
VP16RP6 P16RP6 20 1.0
VP16RP8 P16RP8 20 1.0
VP16V8 P16V8 24 2.0

Notes-10

ABEL 3.1 User Notes

Preliminary Device Support

Support for the following devices is based on preliminary
device specifications. The ABEL device files listed below
have not been verified by programming actual devices.
Errors found, if any, may not be corrected until the next
release of ABEL.

*

EC16ET6
EC16LC4N
EC16LC8N
EC16LD4N
EC16LD8N
EC16RC4N
EC16RC8N
EC16RD4N
EC16RD8N
EC16TE6
EC20EG8A
EC20EV8A
EC20G8M
E5AC324
P16N8
P16Z8
P20G10Z
P22RA8
P2500
P2500PC*
P26V12
P332

(National)
(National)
(National)
(National)
(National)
(National)
(National)
(National)
(National)
(National)
(National)
(National)
(National)
(Intel)
(Tl)

(Lattice)
(I CT)
(Tl)

(Atmel)
(Atmel)
(Seeq)
(Cypress)

Use device file P2500PC when running the MS-DOS version of ABEL. For

other platforms, use the P2500 device file.

Notes-11

ABEL 3.1 User Notes

Xilinx LCA Support

ABEL 3.1 provides support for Xilinx Logic Cell
Array™ (LCA). ABEL 3.1 includes a device
architecture file named LCA50, which consists of 24
macrocells, 24 inputs, 24 outputs, ground (GND) and
power (Vee). This file gives LCA designers the full
capabilities of ABEL for debugging at the equations, or
behavioral, level rather than at the fusemap level. In
addition, ABEL 3.1 produces a file in PDS format ·
which may be used as input for LCA design
compilation.

Included in the ABEL 3.1 product package are
documented examples and tips for designing with
LCAs. These materials aid engineers who are
beginning new LCA designs or who are migrating
designs from PLDs into LCAs. The examples include
drawings generated by means of DASH, FutureNet's
schematic entry product, which designers can modify
to create their own designs.

32VX10 Design Considerations with ABEL 3.1

When writing the combinatorial equation for the 32VX10A,
please note the following points:

1. Do not use Istype 'com' to define the output as
combinatorial. Use the FC extension as defined below.

2. The FC extension (function mode control) must be used
and must be written as combinatorial. The output
multiplexer is controlled by a product term which
needs to be set for all fuses open and the product term
high. This sets it to be permanently combinatorial.
For example:

Ql6.FC = I; "bypass register always

Notes-12

ABEL 3.1 User Notes

3. The equations must be written as registered no matter
whether you want it to be registered or combinatorial.
For example:

Ql6 := Ql5; "feedback from pin

The source file on the following page demonstrates the
combinatorial setup:

module deep
Data 1/0 Corp. Diane Pagel
deep device 'P32VX10A'
Clk,IN1,IN2 pin 1,2,3;
Q15 pin 15;

equations

Nov 23, 1988

Q15.FC IN1; "Bypass register with IN1
Q15 := IN2;

Test vectors

([Clk, IN1, IN2l ·>

[. c., 0, 0] ->

[. c., 0, 1 ·>

[. c., 0, 0 ->

[0 , 1, 0 ·>

[0 , , , , ·>

[0 , 1, 0 ·>

[0 , 1, ->

end

"rust write this as registered equation even
"though you want it to be combinatorial.

[Q15])
[0] i
[,] i
[0] i
[1] i "combinatorial, showing the toggling
[0] i "of the output Q15. Q15 is inverted
[1] i "from IN2. IN1 is set high for
[0] i "this test case.

Notes-13

ABEL 3.1 User Notes

Register Preloads in the Simulator

When using a preload vector as the first test vector in the
simulator, and the device being used has asynchronous
presets, it may be desirable to use a "dummy" vector before
the preload vector (i.e. all "don't cares"). The dummy
vector prevents the possibility of the simulator initialization
from destroying the preload data. Care should be taken
when setting don't cares to l; when preloading registers to
the 1 state, be sure to define values for the resets of the
preloaded registers. If the resets are not defined, the
registers will be reset after the preload operation, and the
preloaded data will be lost.

State Machine Polarity

Mixed polarities in state machines can be accomplished in
ABEL by inverting the values for the variable in the
appropriate column. For example, with the following state
definitions:

Qstate = [AddlO,SublO,Q2,Ql,QO);
Clear = [1 1 1, 1, 1) ;
ShowHit = [1 1 1, 1, 0] ;
Add Card = [1 1 o, o, 0);
Add 10 = [0 1 o, o, 0] ;
Wait = [1 1 o, o, 1) ;
Test 17 = [1 1 o, 1, 0); -
Test 22 = [1 1 o, 1, 1);
Showstand = [1 1 1, o, 0] ;
ShowBust = [1 1 1, o, 1) ;
Sub 10 = [1 0 o, o, 1) ;

you can change the polarity by inverting the values in the
Q2 column as follows:

Notes-14

ABEL 3.1 User Notes

Qstate = [AddlO,SublO,Q2,Ql,QO];
Clear = [1
ShowHit = [1
Add Card = [1
Add 10 = [0
Wait = [1
Test 17 = [1 -
Test 22 = [1
Showstand = [1
ShowBust = [1
Sub 10 = [1

Sets

The following source equation:

WHEN 1 THEN [x,y] := 1;
ELSE [x,y] := O;

1
1
1
1
1
1
1
1
1
0

produces the following original equations:

[x,y] := (1) & [1, 1];
[x,y] := (!1) & [O,O];

and the following transformed equations:

x : = 0;
y := 1;

o, 1, 1] ;
o, 1, 0] ;
1, 0, 0] ;
1, o, 0] ;
1, o, 1] ;
1, 1, 0] ;
1, 1, 1] ;
o, o, 0] ;
o, o, 1] ;
1, o, 1] ;

which are not the expected results. The reason for the
above equations is the constant (1) in [x, y] : = (1) &
[1,1];

Notes-15

ABEL 3.1 User Notes

One solutions to this is:

WHEN [1,1] THEN [x,y] := 1;
ELSE [x,y] := O;

which makes the sets the same size. Another solution is:

WHEN !O THEN [x,y] := 1;
ELSE [x, y] := 0;

which expands !O to the width of the set.

Different Pins with the Same Name

When declaring pins, do not use the same name on different
pins in the same device. There is a current limitation in the
parse program that causes an internal error when more than
one pin in a device has the same name.

Constants

A new include file CONST ANTS.INC is supplied with
ABEL 3.1 which contains definitions for the most used
ABEL constants. This file may be included in your design
by means of the following the command:

@LIBRARY CONST ANTS

Notes-16

ABEL 3.1 User Notes

XOR Polarity

An active low XOR output can be used as an active high
output by forcing a 'l' at one input of the XOR gate. The
equation below for QI is an example of how to do this.
The (G # G) has to be used because the TRANSFOR
module converts X $ I into ! (X), which is the desired
action in most other cases.

xorinv device 1 P20X4 1 ;

A,B,C,D,E,F,G
Clk,OE,Q1,Q2

X,Ck = .X., .C.;

fuses [1064, 1105] = [1, 1l;

equations

pin 2,3,4,5,6,7,8;
pin 1,13,17,18;

!Q1 := CA & B & C # D & E & F) $ CG # !G); "Active High
!Q2 := CA & B & C # D & E & F); "Active Low

The full example can be found in XORINV.ABL.

Notes-17

ABEL 3.1 User Notes

F6001 Logic Macrocells

You must specify the desired configuration for the input
logic macrocells on the F6001 using either of two methods.
The first method is to use the include file "F600 l ". and
using the macros ILMC or IOLMC with the proper bit
settings. The bit settings are:

(1, 1) Async Input
(1,0) Registered Input
(0,0) Latched Input

See "DEM06001.ABL" for an example of how to use the
macros.

The second method is to use an "istype" statement on one of
the pins. Use:

istype 'com'; for async input
istype 'reg'; for registered input
istype 'latch'; for latched input

If you don't specify the configuration, the fuses may
default to an incorrect setting.

Using PLDtest 1.3 With ABEL 3.1

JEDEC files generated by ABEL 3.1 now contain the
version number of the device file that was used. When
PLDtest reads the device name from the JEDEC file, it
picks up the version as part of the name, causing the
default device name in the prompt to be incorrect. You
will have to type in the correct device name, and not use
the default.

When using the .OUT file generated by ABEL 3.1 with
PLDtest, you will get an error message indicating the file
was not generated by ABEL. This is because new features

Notes-18

ABEL 3.1 User Notes

have been added to ABEL that required the version number
in the .OUT file to be changed.

In order to correct this (on DOS systems), create a file with
the following lines in it:

2
V200;
E

If you are running DOS 2.x or 3.x, and:

2RV300"'ZV200
E

if you have DOS 4.0 or later (""'Z" is entered by pressing the
CTRL and Z keys). For example, if this file is called
"FIX", and the file you want to change is "ABEL.OUT,"
type:

EDLIN ABEL.OUT < FIX

This will modify the .OUT file so it will work with
PLDtest.

Notes-19

ABEL 3.1

SYSTEM SPECIFIC INFORMATION

MS-DOS

097-0007-002

January 1989 097-0007-002

This document contains the latest information available at the time of

preparation. Therefore, it may contain descriptions of functions not implemented

at manual distribution time.

Data I/O Corporation provides this manual "as is," without warranty of any kind,

either expressed or implied. Data I/O reserves the right to make improvements

and/or changes in this document or in the product and/or program(s) described

herein at any time. Information on these changes will be incorporated in new

editions of this publication.

Data I/O Corporation

10525 Willows Road

Redmond, Washington 98073-9746 USA

206-881-6444

Copyright 1987, 1988, 1989, Data I/O Corporation. All rights reserved.

No part of this manual may be copied or reproduced in any form or by any means

without the prior written consent of Data I/O Corporation.

ABEL, DASH-ABEL, PLD-CADAT, PLDtest, and PSF are trademarks of

Data I/O Corporation

IBM is a registered trademark of, and IBM PC/XT and IBM AT are

trademarks of International Business Machines Corporation

Microsoft, MS-DOS, and PC-DOS are registered trademarks of Microsoft

Corporation

VT is a trademark of Digital Equipment Corporation

Table of Contents

1 Installing ABEL on a Fixed Disk System
1.1 Requirements 1-1
1.2 Copy Protection Systems 1-1
1.3 Automatic Installation 1-2
1.3.1 Software Installation - 5.25" Diskettes 1-2
1.3.2 Software Installation - 3.5" Diskettes 1-3
1.3.3 Copy Protection System Installation 1-4
1.4 Manual Installation 1-7
1.4.1 Software Installation - 5.25" Diskettes 1-8
1.4.2 Software Installation - 3.5" Diskettes 1-8
1.4.3 Copy Protection System Installation 1-9
1.5 Install the Text Editor 1-12
1.6 Edit AUTOEXEC.BAT 1-13
1.6.1 For Automatically Installed ABEL 1-13
1.6.2 For Manually Installed ABEL 1-14
1.7 Edit CONFIG .SYS 1-16
1.8 Operating Notes 1-16
1.8.1 Stack Overflow 1-16
1.8.2 Use of Commas in Command Line 1-17
1.8.3 Device File and Library Paths 1-17
1.8.4 Extracting Device Files 1-18
1.8.5 Device File Compatibility 1-18
1.8.6 The PSF Menu Program 1-18

2 Installing ABEL on a Dual-Drive Floppy
Disk System

2.1 Requirements 2-1
2.2 Creating Your ABEL Program Disk 2-2
2.3 Creating Your Working Disk 2-2
2.4 Setting the Path and Default Drive 2-4

111

System Specific Information

3 Using the Personal Silicon Foundry (PSF)
Menu

3.1 Accessing the Main Menu 3-1
3.2 The Run Series Menu 3-3
3.3 The Parse Menu 3-5
3.4 The Transform Menu 3-7
3.5 The Reduce Menu 3-8
3.6 The Fusemap Menu 3-10
3.7 The Simulate Menu 3-11
3.8 The Document Menu 3-13
3.9 The Utilities Menu 3-15

4 The Terminal Emulator Utility
4.1 Term-100 Features 4-2
4.2 The Term-100 Files 4-3
4.3 Modifying the Batch Files 4-4
4.4 Running Term-100 4-5
4.5 The Term-100 Configuration File 4-5
4.6 Default Settings 4-6
4.7 Term-100 Commands and Functions 4-7
4.8 Transferring Files, General Mode 4-10
4.8.1 JEDEC File Transfer, PLDS to Computer 4-10
4.8.2 JED EC Transfer, Computer to PLDS 4-12
4.9 Transferring Files, General Mode 4-15
4.9.l Upload Operation 4-15
4.9.2 Download Operation 4-16
4.9.3 Recapturing the Unisite Screen 4-16
4.10 Term- I 00 Error Messages 4-17

IV

1. Installing ABEL on a Fixed Disk System

1.1 Requirements

To run ABEL with MS-DOS/PC-DOS operating systems,
you must have:

MS-DOS/PC-DOS 3.1 or greater

At least 384K of RAM

Note: The PLD device files contained within the file
ABEL3LIB.DEV (contained on Disk I) differ in format
from the device files currently used by related Data 1/0
products. The device files provided with PLDtest, PLD
CADA T, and PLD-Linx can reside on the same system as
ABEL3LIB.DEV without any conflict.

1.2 Copy Protection Systems

ABEL 3.1 is protected by either a disk-based protection
mechanism, or a connector-type protection device,
depending on whether you are updating from ABEL 3.0 or
installing ABEL for the first time. The disk-based
protection mechanism consists of a progam named
ABELFUSE.COM, which is located on the Copy Protection
Disk of your ABEL 3.1 distribution disk set. This program
may be installed to a fixed disk or a floppy disk. The
connector-type protection device plugs into the parallel
printer port of your computer. Detailed information
regarding the copy protection systems is given in section
1.3.3.

1-1

System Specific Information

1.3 Automatic Installation

The following procedures describe how to install ABEL 3.1
software on your computer by using the provided INST ALL
program. The INST ALL program provides automatic
installation of ABEL, device files, utilities, and examples.
Directories \DAT AIO, \DAT AIO\LIB3, \DAT AIO\ABEL,
and \DAT AIO\LCA are created if they do not already
exist. Separate procedures are given for installing with
5.25" and 3.5" diskettes.

1.3.1 Software Installation - 5.25" Diskettes

1-2

To install the ABEL software on a standard fixed disk,
insert Disk 1 in drive A. Then type:

A: \INST ALL<Enter>

Automatic installation of ABEL, device files, utilities, and
related examples will begin. Directories \DAT AIO,
\DATAIO\LIB3, \DATAIO\ABEL, and \DATAIO\LCA
are created if they do not already exist.

Note: If the message "cannot create directory" appears, the
install program has attempted to create a directory that
already exists on your system. Disregard this operating
system message.

As installation continues, you will be prompted to remove
and insert disks as necessary. All of the files on Disk I will
be copied to the fixed disk and placed in either the
C:\DA T AIO directory or the C:\DA T AIO\LIB directory.

When prompted, remove Disk 1 and insert Disk 2 in drive
A. All of the files on Disk 2 will be copied to the
C:\DAT AIO directory. After the files are copied, you will
again be prompted to remove Disk 2 and insert Disk 3. The
files on Disk 3 will be copied to the C:\DATAIO directory.

Fixed Disk System

Remove Disk 3, and insert Disk 4 into drive A. All of the
files from Disk 4 will be placed on the fixed disk in the
C:\DA T AIO and the C:\DA T AIO\ABEL directories.
Repeat the procedure for Disk 5 and additional files will be
copied to directories C:\DA T AIO, C:\DA T AIO\LIB3, and
C:\DA T AIO\LCA.

Note: If you are updating from a previous version of
ABEL, you must remove the file named PSF.EXE from
your system (if it is present) since the installation procedure
does not delete or overwrite this file. Be sure you do not
remove the file named PSF.BAT.

At this point, you are finished with the installation of the
ABEL software. Proceed to installation of the copy
protection system.

1.3.2 Software Installation - 3.5" Diskettes

To install the ABEL software on a standard fixed disk,
insert Disk 1 in drive A. Then type:

A:\INST ALL<Enter>

Automatic installation of ABEL, device files, utilities, and
related examples will begin. Directories \DAT AIO,
\DAT AIO\LIB3, \DAT AIO\ABEL, and \DAT AIO\LCA
are created if they do not already exist.

Note: If the message "cannot create directory" appears, the
install program has attempted to create a directory that
already exists on your system. Disregard this operating
system message.

1-3

System Specific Information

As installation continues, you will be prompted to remove
and insert disks as necessary. All of the files on Disk 1 will
be copied to the fixed disk and placed in either the
C:\DA T AIO directory or the C:\DA TAIO\LIB directory.

When prompted, remove Disk 1, and insert Disk 2 into
drive A. All of the files from Disk 2 will be placed on the
fixed disk in the C:\DAT AIO and the C:\DA T AIO\ABEL
directories. Repeat the procedure for Disk 3 and additional
files will be copied to directories C:\DA T AIO,
C:\DA T AIO\LIB3, and C:\DA T AIO\LCA.

Note: If you are updating from a previous version of
ABEL, you must remove the file named PSF.EXE from
your system (if it is present) since the installation procedure
does not delete or overwrite this file. Be sure you do not
remove the file named PSF.BAT.

At this point, installation of the ABEL software is
complete. Proceed with copy protection system installation.

1.3.3 Copy Protection System Installation

If you are installing ABEL on your system for the first time
(i.e., you are not updating from ABEL 3.0), you must install
the hardware security device as described in section 1.3.3.1.
If you are updating to ABEL 3.1 from 3.0, you must install
the file ABELFUSE.COM from the Copy Protection Disk as
described in section 1.3.3.2.

1.3.3.1 Installing the Hardware Security Device

1-4

Locate the parallel port at the back panel of your computer.
If you are not certain which connection is the parallel port,
refer to the documentation supplied with your computer or
expansion boards. If a printer cable is attached to the
parallel port, disconnect it and perform the following steps.

Fixed Disk System

If a printer is not connected to the parallel port, simply
perform steps 1 through 4.

1. Locate the security device and the short (approximately
12-inch) interconnection cable provided, The
interconnection cable has a male DB-25 connector at
one end and a female DB-25 connector at the other
end. The security device is also equipped with male
and female connectors.

2. Connect the male connector of the security device to
the interconnection cable and snug the retaining
screws.

3. Connect the free end (the male connector end) of the
interconnection cable to the parallel port of your
computer and snug the retaining screws.

4. If you disconnected a printer from the parallel port,
reconnect the printer to the female connector of the
security device using the cable that was previously
connected to the computer.

1.3.3.2 Installing/Removing the ABELFUSE.COM File

When upgrading from ABEL 3.0 to 3.1, you must overwrite
the existing ABELFUSE.COM file with the file provided on
the Copy Protection Disk. If you need to move ABEL from
one computer to another, and it was installed with the
ABELFUSE.COM file, you must remove ABELFUSE.COM
as described in the procedure which follows the installation.

INSTALLATION

To install ABELFUSE.COM, remove/slide the write-protect
tab on the Copy Protection Disk and insert it into a floppy
disk drive.

1-5

System Specific Information

1-6

NOTE TO 5.25" DISKETTE USERS: DO NOT insert the
Copy Protection Disk into a 1.2 megabyte disk drive unless
this is the only drive in your system. The 1.2 megabyte
disk drive could cause the disk to become unreadable in a
360K drive.

Type the command:

drive:COPY-KEY drivel drive2<Enter>

where drive and drivel are the letter designation of the
floppy drive containing the Copy Protection Disk, and
drive2 is the destination where ABELFUSE.COM is to be
installed. No colons are required in the arguments for the
source and destination drives.

Follow the on-screen instruction to automatically install the
copy-protected program ABELFUSE.COM in the directory
C:\DA T AIO on your fixed disk. You are allowed to make
only one installation of ABELFUSE.COM.

Remove the Copy Protection Disk and place it in a safe
place with the other ABEL distribution disks. Also, be sure
to set the DPROTECT environment variable to N as
described under Edit AUTOEXEC.BAT later in this
section.

REMOVAL

If you wish to remove ABEL from a fixed disk (such as
when moving ABEL to a different computer), and
ABELFUSE.COM is in the directory \DAT AIO (the
directory used when ABEL is installed by means of COPY -
KEY.BAT), insert the Copy Protection Disk into a floppy
disk drive and type the following command:

Fixed Disk System

NOTE TO 5.25" DISKETTE USERS: DO NOT insert the
Copy Protection Disk into a 1.2 megabyte disk drive unless
this is the only drive in your system. The 1.2 megabyte
disk drive could cause the disk to become unreadable in a
360K drive~

drive:DEL-KEY drivel drive2<Enter>

where drive and drive2 are the letter designation of the
floppy drive containing the Copy Protection Disk, and
drivel is the drive where ABELFUSE.COM is currently
installed. DEL-KEY will prompt for installation of the
product disk. The Copy Protection Disk is the product disk.
No colons are required in the arguments for the source and
destination drives.

ABELFUSE.COM will automatically be removed from the
DAT AIO directory of your fixed disk. The number of
allowable installations will be incremented back to one on
the Copy Protection Disk. All other ABEL files may be
deleted with the normal DOS DELETE command.

1.4 Manual Installation

The standard (automatic) installation, described in the
previous paragraphs, will satisfy most needs. If you have a
system with multiple fixed disks, fixed disks with letter
designators other than C, or if you wish to place the ABEL
files into a different directory structure, you may need to
perform the manual installation described below. Because
automatic installation is recommended, manual installation
is only provided as an alternative for those users with
systems configured in a non-standard manner.

To manually install ABEL on fixed disk systems, you must
copy the executable files to the fixed disk. Copy these files
into a directory which is on the DOS path (specified using
the DOS PATH command). Copy ABEL3LIB.DEV to a

1-7

System Specific Information

directory or subdirectory which is on the DOS path (not
necessarily the same subdirectory as the executable files) or
copy ABEL3LIB.DEV to the directory designated by the
environment variable ABEL3DEV (see the SET
ABEL3DEV = explanation in section 1.6).

1.4.1 Software Installation - 5.25" Diskettes

1-8

To install the ABEL software manually, insert Disk l into
drive A. Enter the following commands to copy the ABEL
utilities onto the fixed disk:

COPY A:*.* drive:\directory <Enter>

drive: is the letter designation (A-P) of the destination
drive and \directory is the destination directory on the fixed
disk system. Remove Disk 1, and repeat the DOS copy
command for disks 2 and 3.

To copy the contents of disk 4, use the commands:

COPY A:*.* drive:\directory <Enter>
COPY A:\EXAMPLES*.* drive:\directory <Enter>

To copy the contents of disk 5, use the commands:

COPY A:*.* drive:\directory <Enter>
COPY A:\LCA*.* drive:\directory <Enter>

Note: If you are updating from a previous version of
ABEL, you must remove the file named PSF.EXE from
your system (if it is present) since the installation procedure
does not delete or overwrite this file. Be sure you do not
remove the file named PSF.BAT.

This completes installation of the ABEL software.

Fixed Disk System

1.4.2 Software Installation - 3.5" Diskettes

To install the ABEL software manually, insert Disk 1 into
drive A. Enter the following commands to copy the ABEL
utilities onto the fixed disk:

COPY A:*.* drive:\directory <Enter>

drive: is the letter designation (A-P) of the destination
drive and \directory is the destination directory on the fixed
disk system.

To copy the contents of disk 2, use the commands:

COPY A:*.* drive:\directory <Enter>
COPY A:\EXAMPLES\ * .* drive:\directory <Enter>

To copy the contents of disk 3, use the commands:

COPY A:*.* drive:\directory <Enter>
COPY A:\LCA \ *. * drive:\directory <Enter>

Note: If you are updating from a previous version of
ABEL, you must remove the file named PSF.EXE from
your system (if it is present) since the installation procedure
does not delete or overwrite this file. Be sure you do not
remove the file named PSF.BAT.

This completes installation of the ABEL software.

1.4.3 Copy Protection System Installation

If you are installing ABEL on your system for the first time
(i.e., you are not updating from ABEL 3.0), you must install
the hardware security device as described in section 1.4.3.1.
If you are updating to ABEL 3.1 from 3.0, you must install
the file ABELFUSE.COM from the Copy Protection Disk as
described in section 1.4.3.2.

1-9

System Specific Information

1.4.3.1 Installing the Hardware Security Device

Locate the parallel port at the back panel of your computer.
If you are not certain which connection is the parallel port,
refer to the documentation supplied with your computer or
expansion boards. If a printer cable is attached to the
parallel port, disconnect it and perform the following steps.
If a printer is not connected to the parallel port, simply
perform steps 1 through 4.

1. Locate the security device and the short (approximately
12-inch) interconnection cable provided. The
interconnection cable has a male DB-25 connector at
one end and a female DB-25 connector at the other
end. The security device is also equipped with male
and female connectors.

2. Connect the male connector of the security device to
the interconnection cable and snug the retaining
screws.

3. Connect the free end (the male connector end) of the
interconnection cable to the parallel port of your
computer and snug the retaining screws.

4. If you disconnected a printer from the parallel port,
reconnect the printer to the female connector of the
security device using the cable that was previously
connected to the computer.

1.4.3.2 Installing/Removing the ABELFUSE.COM File

1-10

When upgrading from ABEL 3.0 to 3.1, you must overwrite
the existing ABELFUSE.COM file with the file provided on
the Copy Protection Disk. If you need to move ABEL from
one computer to another, and it was installed with the

Fixed Disk System

ABELFUSE.COM file, you must remove ABELFUSE.COM
as described in the procedure which follows the installation.

INSTALLATION

To install ABELFUSE.COM, remove/slide the write-protect
tab on the Copy Protection Disk and insert it into a floppy
disk drive.

1-11

System Specific Information

1-12

NOTE TO 5.25" DISKETTE USERS: DO NOT insert the
Copy Protection Disk into a 1.2 megabyte disk drive unless
it is the only floppy drive in your system. The 1.2
megabyte disk drive could cause the disk to become
unreadable in a 360K drive.

To install the protected program ABELFUSE.COM, first
make your current directory the directory into which you
wish to install ABELFUSE.COM. This directory must be
on the path. Type the command:

drive:KEYINST /h p= drivel t=drive2 <Enter>

where drive and drivel represent the letter designating the
floppy drive containing the Copy Protection Disk, and
drive2 is the destination where ABELFUSE.COM is to be
installed. You are allowed only one installation of
ABELFUSE.COM.

Remove the Copy Protection Disk and place it in a safe
place with the other ABEL distribution disks. Also, be sure
to set the DPROTECT environment variable to N as
described under Edit AUTOEXEC.BAT later in this
section.

REMOVAL

To manually remove the ABELFUSE.COM file from a
fixed disk, insert the Copy Protection Disk into a floppy
disk drive.

NOTE TO 5.25" DISKETTE USERS: DO NOT insert the
Copy Protection Disk into a 1.2 megabyte disk drive unless
this is the only drive in your system. The 1.2 megabyte
disk drive could cause the disk to become unreadable in a
360K drive.

Fixed Disk System

Make the current directory the directory containing
ABELFUSE.COM.

Type the following command:

drive:KEYINST <Enter>

and follow the instructions. drive is the letter designating
the floppy drive where the Copy Protection Disk is located.
The Copy Protection Disk is the product disk.

This command will remove ABELFUSE.COM from the
current directory, if it is there, and restore the number of
installations to one.

NOTE: If for some reason ABELFUSE.COM is not
temoved, use the utility command, SGCHMOD, which is
supplied on the Copy Protection Disk. This command will
allow ABELFUSE.COM to be removed with the DOS
DELETE command. With the Copy Protection Disk in a
floppy drive and the current directory set to the directory
containing ABELFUSE.COM, type the following command:

drive:SGCHMOD ABELFUSE.COM 00 <Enter>

where drive is the letter designating the disk drive
containing the Copy Protection Disk. Now delete
ABELFUSE.COM with the DOS DELETE command.

1.5 Install a Text Editor

Several ABEL functions require a text editor. At this point
you must install a text editor of your choice, if not already
done. You must use a text editor that produces a standard
ASCII file.

1-13

System Specific Information

1.6 Edit AUTOEXEC.BAT

Use your ASCII text editor to modify or create an
AUTOEXEC.BAT file that will accommodate the
requirements of ABEL.

Refer to 1.6.l if you automatically installed ABEL and 1.6.2
if you manually installed ABEL on your fixed disk.

1.6.1 For Automatically Installed ABEL

If a PA TH command is already present in the
AUTOEXEC.BAT file, append the following to the end of
the existing PA TH command:

;C:\DATAIO

If no PA TH command exists, add the following command
to the A UTOEXEC.BA T file:

1-14

PA TH=C:\ COM;C:\DA T AIO

Add the following command to the AUTOEXEC.BAT file,
in addition to the above path information:

SET ABEL3DEV =C:\DA T AIO\LIB3

If you plan to to use the communications program
TERM.COM to communicate with a programming device,
add the following command to the AUTOEXEC.BAT file:

MODE COM1:9600,N,8,l

If you have installed another text editor in a directory other
than C:\COM or C:\DA T AIO, you may wish to put that
directory in the search path. For example, if you have
copied your text editor into a new directory named
\EDITOR, use the following path command:

Fixed Disk System

PA TH=C:\COM;C:\DA T AIO;C:\EDITOR

After making the above changes and/or additions, save the
new AUTOEXEC.BAT file.

You should also add the following command to the file to
avoid any possible conflict with PC compatibles that do not
support parallel port, LPT3:

SET DPROTECT = <parallel port number>

where parallel port number is the number of the parallel
(printer) port in which the protection device is plugged.
Legal entries for parallel port number are l, 2, 3, and N.
Use the N (not used) value if you are using the
ABELFUSE.COM/COPY - KEY software protection system
described earlier in this section.

If you don't add the SET DPROTECT command, the ABEL
programs will automatically scan the parallel ports,
including LPT3, to determine where the protection device is
plugged in. If your particular PC does not support LPT3 in
the conventional manner, and this environment variable is
not set, unpredictable system actions may occur.

1.6.2 For Manually Installed ABEL

If a PA TH command is already present in the
AUTO EXEC.BAT file, append the following to the end of
the existing PA TH command:

;drive:\directory

where drive:\directory are the drive and directory where
you placed the ABEL executable files.

1-15

System Specific Information

If no PA TH command exists, add the following commands
to the AUTOEXEC.BAT file:

PA TH=drive:\directory

Again, drive:\directory are the drive and directory where
you placed the ABEL executable files.

Add the following command to the A UTOEXEC.BA T file,
in addition to the above path information:

SET ABEL3DEV=drive:\directory

drive:\directory in the SET command are the drive and
directory where you placed the ABEL3DEV.LIB file.

If you plan to to use the communications program
TERM.COM to communicate with a programming device,
add the following command to the AUTOEXEC.BAT file:

MODE COM1:9600,N,8,l

If you have installed another text editor, you may wish to
put that directory in the search path. For example, if you
have copied your text editor into a new directory named
\EDITOR, use the following path command:

1-16

PA TH=drive:\directory\drive :\EDITOR

After making the above changes and/or additions, save the
new AUTOEXEC.BA T file.

Fixed Disk System

1.7 Edit CONFIG.SVS

Using a text editor, modify your CONFIG.SYS file, or
create a new one, and add the following to specify at least
eight buffers, at least fifteen open file handles, and
ANSI.SYS:

BUFFERS=8
FILES=l5
DEVICE=C:\ANSI.SYS

The ABEL PLD Compiler will run faster with the
BUFFERS set to 40 in the CONFIG.SYS file; however,
more RAM is used.

The device configuration command specifies the ANSI.SYS
device driver to provide the extended screen and keyboard
functions for use of the Personal Silicon Foundry (PSF)
feature of the ABEL package.

Reboot your system by pressing <Ctrl>, <Alt> and at
the same time. When the system reboots, your new
CONFIG .SYS file and A UTOEXEC.BA T file will take
effect and ABEL will be ready to use.

1.8 Operating Notes

The following information should be kept in mind when
operating ABEL 3.1 under MS-DOS.

1.8.1 Stack Overflow

If the error "***** ST ACK OVERFLOW *****" occurs
while running any ABEL program (i.e. PARSE,
TRANSFOR, REDUCE), the stack size must be increased
to accommodate the ABEL design being processed. To do
this, modify the ABEL.BAT batch file. Adjacent to the

1-17

System Specific Information

name of the module in which the error occurred, insert an
equals ("=") sign and the new size of the stack in decimal.
The default size is 6K bytes, so a value larger than 6144 is
appropriate. For example, to increase the TRANSFOR
stack size to 8K bytes, change the TRANSFOR command
line to read:

TRANSFOR =8192 -i%1.tm1 -o%1.tm2

Note that there should be no space after the equal sign.

1.8.2 Use of Commas in the Command Line

The -Bnl ,n2[,n3] flag for SIMULATE now allows periods
instead of commas to separate the numbers. This is useful
when running SIMULATE from a .BAT file, as MS-DOS
converts commas to spaces, causing command line errors in
SIMULA TE. Periods are also allowed in the -W flag.

1.8.3 Device File and Library Paths

1-18

ABEL looks first for a separate device file. It then looks
for the ABEL3LIB.DEV library. This search sequence is
repeated in each directory as follows:

1. First looks in the default directory.

2. Next looks in the directory specified by the
ABEL3DEV DOS environment string.

3. Finally looks in all other directories specified by the
PA TH environment string.

Fixed Disk System

1.8.4 Extracting Device Files

ABEL3LIB.DEV contains files for all supported PLDs. If
you are going to use only a few logic devices, and don't
need the entire device library, you can use the library
manager, ABELLIB.EXE, to copy selected files to your
working disk. With ABELLIB, you can add, delete,
replace, and extract files from ABEL3LIB.DEV (supplied
on Disk 1) as well as list its contents. Refer to Chapter 6 in
the ABEL 3.x manual for information on ABELLIB.EXE.

1.8.5 DeYice File Compatibility

The PLD device files contained within the file
ABEL3LIB.DEV differ in format from the device files
currently used by related Data 1/0 products. The device
files provided with PLDtest, PLD-CADAT, and PLD-Linx
can reside on the same disk as ABEL3LIB.DEV without any
conflict as long as the PLD files are not extracted from
ABEL3LIB.DEV.

1.8.6 The PSF Menu Program

It is important that the COMSPEC path is set so
COMMAND.COM can be found by the PSFMENUS.EXE
program. Errors will occur in the PSF program if
COMMAND.COM cannot be found.

1-19

System Specific Information

1-20

2. Installing ABEL on a Dual-Drive Floppy
Disk System

2.1 Requirements

To run ABEL with MS-DOS/PC-DOS operating systems,
you must have:

MS-DOS/PC-DOS 3.1 or greater

At least 384K of RAM

ABEL 3.1 is supplied on five floppy disks, Disks 1 though
5. To use ABEL on your dual-drive floppy disk system,
you'll need to copy the ABEL programs to one or more
program disks, depending on whether your disk drive is
360K, 720K, or 1.2M bytes. You will also need to copy
several of the files from Disk 1 and Disk 3 to a working
disk.

Note: The procedures that follow assume that you have
either a 720K or 1.2M floppy drive in your system on
which to create your ABEL Program Disk as described in
section 2.3. If you have two 360K drives, you must use two
disks for the ABEL Program Disk. Add the necessary files,
normally placed on a working disk as described in section
2.3, to either or both of the two 360K disks. The DOS path
must be set to include both drives of your system so that
ABEL has access to the files on both 360K disks.

2-1

System Specific Information

2.2 Creating Your ABEL Program Disk

2-2

Your ABEL program disk will contain the ABEL modules
used to process a logic design contained in an ABEL source
file. Using DOS, copy the following files from Disk 1,
Disk 2, and Disk 3 to a formatted system disk:

PARSE.EXE
TRANSFOR.EXE
REDUCE.EXE
ABEL.BAT

FUSEMAP.EXE
SIMULA TE.EXE
DOCUMENT.EXE
ESPRESSO.EXE

To use ABEL, you must install the protected program
ABELFUSE.COM onto your program disk. Insert your
program disk (created as described above) into drive A and
log onto drive A.

Insert the Copy Protection Disk into the other (360K)
floppy disk drive, hereafter referred to as drive B. DO
NOT insert the Copy Protection Disk into a 1.2 megabyte
disk drive; the disk may become unreadable when later
placed in a 360K drive.

Type the command:

B:KEYINST /f p=B t=A <Enter>

This provides you with your ABEL program disk. Use this
disk in drive A when running ABEL.

Dual-Drive Floppy Disk Systems

2.3 Creating Your Working Disk

When using ABEL, the working disk is used in drive B. To
create the working disk, format a disk using the DOS
FORMAT command. Do not use the /S flag as this will add
DOS files that diminish the amount of disk space available
for use by ABEL. Copy COMMAND.COM from a bootable
DOS disk to the working disk. Copy the following files
from Disk l to the formatted working disk:

ABEL3LIB.DEV (device file library)
TERM-100.EXE (Terminal emulator)
UNISITE.BAT (Configures TERM-100 for UniSite)
TERM.BAT (Configures TERM-100 for general use)
GEN9600.CFG (Selects 9600 baud and general use)
GEN19200.CFG (Selects 19200 baud and general use)
UNI9600.CFG (Selects 9600 baud for UniSite)
UNI19200.CFG (Selects 19200 baud for UniSite)

ABEL3LIB.DEV contains files for all supported PLDs. If
you are going to use only a few logic devices, and don't
need the entire device library, you can use the library
manager, ABELLIB.EXE, to copy selected files to your
working disk. With ABELLIB, you can add, delete,
replace, and extract files from ABEL3LIB.DEV (supplied
on the Disk 1) as well as list its contents. Refer to Chapter
6 of the ABEL 3.x manual for information on
ABELLIB.EXE.

NOTE: To perform the examples given in the ABEL
Manual, you need to copy M6809A.ABL to your working
disk. If you did not copy the ABEL3LIB.DEV file to your
working disk, you will also need to copy P14L4.DEV to
your working disk. After you have run the examples, both
files may be deleted if no longer needed.

2-3

System Specific Information

2.4 Setting the Path and Default Drive

2-4

To use ABEL, insert the program disk in drive A and the
working disk in drive B. At the DOS prompt, set the path
and default drive as follows:

PATH= A:\
B:

(You can insert these commands in the AUTOEXEC.BAT
file of your boot disk using the ASCII editor of your
choice.)

3. Using the Personal Silicon Foundry (PSF)
Menu

The ABEL Utilities disk contains a batch file named
PSF.BAT used to invoke the Personal Silicon Foundry
menus. After these programs are copied to your system as
described in Chapter 1 or 2, you can, as an option, access
and use the Personal Silicon Foundry menus to execute
ABEL and related functions.

Note: Personal Silicon Foundry is for the IBM-PC/XT /AT
and compatibles. To run PSF you must have 512K of RAM
plus an EGA, VGA, or monochrome graphics board
installed in your computer. A mouse is also recommended
for using the menus. Any mouse that is compatible with
the Microsoft mouse driver will perform satisfactorily. If
you do not have a mouse, you can use the +and - keys (on
the right side of the keyboard) for the left and right mouse
buttons respectively.

3.1 Accessing the Main Menu

When ABEL is installed in accordance with the instructions
contained in Chapter 1 the path is set so that entering

PSF

on the DOS command line will access the main PSF menu.
Move the mouse pointer to highlight the Logic Synthesis
selection and press the right mouse button. This displays
the list of menus available for running ABEL. You can
select any of these menus by moving the pointer to
highlight the desired function and pressing the right mouse
button.

3-1

System Specific Installation

3-2

The PSF menus contain one or more of the following
command buttons (which can can be selected by moving the
pointer to the button and pressing the left mouse button):

RUN
ESC
EDIT
LIST

The RUN button initiates processing by invoking the
necessary program(s) and passing the file names and other
parameters entered on the menu.

The ESC button cancels the entries made to the menu amd
returns you to the opening PSF menu.

The EDIT button invokes the text editor in menus where it
is meaningful to edit the contents of a file. When editing is
complete, the system returns to the current menu.

The LIST button directs the output file generated by
running the Simulate and Document operations to the
display.

Personal Silicon Foundry

3.2 The Run Series Menu

The following table describes each of the menu selections
available on the Run Series menu with references to the
ABEL 3.1 manual.

Table 3-1. The Run Series Menu

PARAMETER

Program Series:
ABEL

Program Series:
EZSim

Program Series:

MEANING

This selection runs the ABEL source
file through all modules of the ABEL
language processor. Refer to
"Processing an ABEL Source File" in
Chapter 3 of the ABEL 3.1 manual.

This selection runs the ABEL source
file only through the Parse,
Transform, and Simulate modules of
the ABEL language processor. Refer
to "EZSIM" in Chapter 4 of the
ABEL 3.1 manual.

Other Combination This selection allows you to pick
which modules of the ABEL
language processor to run the ABEL
source file through. Selection and
de-selection of the different modules
is made by clicking the left mouse
button on the list of programs that
appears below the Program Series
window. Initially, all programs are
selected. See also "Creating Your
Own Batch or Command Files" in
Chapter 3 of the ABEL 3.1 manual.

3-3

System Specific Installation

3-4

PARAMETER MEANING

ABEL File Name Enter the name of the ABEL source
file in this dialog box. Refer to
Chapter 3 of the ABEL 3.1 manual.

Include File Path Enter the DOS path of the include
file in this dialog box. Refer to
"@INCLUDE Directive" in Chapter 9
of the ABEL 3.1 manual.

JEDEC File Path Enter the DOS path of the JEDEC
file that will be generated by ABEL
in this dialog box. Refer to
"FUSEMAP Directive" in Chapter 4
of the ABEL 3.1 manual.

Program Arguments Enter any pertinent command line
flags in this dialog box. Use any of
the parameters associated with the
individual program of the ABEL
language processor (except -1, -0,
and -B). Refer also to "ABEL Batch
Processing" in Chapter 4 of the
ABEL 3.1 manual.

NOTE: Each of the ABEL menus allows you to enter file
names. If you do not specify a file extension, the default
file extension used by ABEL will be inserted when the
Enter key is pressed.

Personal Silicon Foundry

3.3 The Parse Menu

The following table describes each of the menu selections
available on the Parse menu with references to the ABEL
3.1 manual.

Table 3-2. The Parse Menu

PARAMETER

Input File Name

Output File Name

List File Name

List File:
Yes/No

MEANING

Enter the name of the ABEL source
file in this dialog box. Refer to
"Parse" in Chapter 4 of the ABEL 3.1
manual.

Enter the name of the file for the
parser output. If no file name is
entered here, the output will be
directed to the standard output
device (usually the monitor). Refer
to "Parse" in Chapter 4 of the ABEL
3.1 manual.

If a list file is desired, enter the
name of the file in this dialog box.
If no list file name is entered here, a
list file name will be created which
has the form <input_filename>.LST.

This selection causes a list file to be
either created or not created by the
parser. Refer to the - L flag in
Chapter 4 of the ABEL 3.1 manual.

3-5

System Specific Installation

PARAMETER

Options:
Expanded

Options:
Normal

Options:
Directives

3-6

MEANING

This selection causes the parsed and
expanded source code to be written
to the list file. Refer to the - E flag
in Chapter 4 of the ABEL 3.1
manual.

This selection causes the paser to
operate with default values.

This selection lists the directives that
caused code to be added to the source
file. Refer to the - P flag in Chapter
4 of the ABEL 3.1 manual.

Personal Silicon Foundry

3.4 The Transform Menu

The following table describes each of the menu selections
available on the Transform menu with references to the
ABEL 3.1 manual.

Table 3-3. The Transform Menu

PARAMETER MEANING

Input File Name Enter the name of the intermediate
file created by the parser in this
dialog box. Refer to "Transfor" in
Chapter 4 of the ABEL 3.1 manual.

Output File Name Enter the name of the file for the
transform output to be written to. If
no file name is entered here, the
input file name will be used and the
transform program will assign a
.TM2 extension. Refer to "Transfor"
in Chapter 4 of the ABEL 3.1
manual.

3-7

System Specific Installation

3.5 The Reduce Menu

3-8

The following table describes each of the menu selections
available on the Reduce menu with references to the
ABEL 3.1 manual.

Table 3-4. The Reduce Menu

PARAMETER MEANING

Input File Name Enter the name of the intermediate
file created by the Transform
program in this dialog box. Refer to
"Reduce" in Chapter 4 of the ABEL
3.1 manual.

Output File Name Enter the name of the file for the
Reduce output to be written to. If
no file name is entered here, the
output will be directed to the
standard output device (usually the
monitor). Refer to "Reduce" in
Chapter 4 of the ABEL 3.1 manual.

Reduction Level:
None

Reduction Level:
Simple

This selection is equivalent to the
-RO flag described in the Reduce
section in Chapter 4 of the ABEL 3.1
manual.

This selection is equivalent to the
-RI flag described in the Reduce
section in Chapter 4 of the ABEL 3.1
manual.

PARAMETER

Reduction Level:
PRESTO

Reduction Level:
PRESTO by Pin

Reduction Level:
ESPRESSO

Reduction Level:

Personal Silicon Foundry

MEANING

This selection is equivalent to the
-R2 flag described in the Reduce
section in Chapter 4 of the ABEL 3.1
manual.

This selection is equivalent to the
-R3 flag described in the Reduce
section in Chapter 4 of the ABEL 3.1
manual.

This selection is equivalent to the
-R4 flag described in the "Reduce"
section in Chapter 4 of the ABEL 3.1
manual.

Use In-File Setting This selection causes the parser to use
flags coded into the ABEL source
file.

3-9

System Specific Installation

3.6 The Fusemap Menu

The following table describes each of the menu selections
available on the Fusemap menu with references to the
ABEL 3.1 manual.

Table 3-5. The Fusemap Menu

PARAMETER MEANING

Input File Name Enter the name of the intermediate
file created by the Reduce program
in this dialog box. Ref er to
"Fusemap" in Chapter 4 of the ABEL
3.1 manual.

Output File Name Enter the name of the file for the
Fusemap output to be written to.
Refer to "Fusemap" in Chapter 4 of
the ABEL 3.1 manual.

Output Format:

Checksum:

3-10

These selections are mutually
exclusive and allow you to select the
desired format of the programmer
load file.

Select None to omit STX, ETX, and
the checksum from the programmer
load file. Select Dummy to include
STX, ETX, and a dummy
transmission checksum in the
programmer load file. Select Full to
include STX, ETX, and the
transmission checksum in the
programmer load file. Ref er to the
-C flag in the "Fusemap" section,
Chapter 4 of the ABEL 3.1 manual.

Personal Silicon Foundry

PARAMETER MEANING

Unused OR Fuses Select Connect to leave unused fuses
connected. Select Don't Connect to
disconnect unused fuses. Select Use
In-File Setting to use the setting
coded in the ABEL source file.

3. 7 The Simulate Menu

The following table describes each of the menu selections
available on the Simulate menu with references to the
ABEL 3.1 manual.

Table 3-6. The Simulate Menu

PARAMETER MEANING

Input File Name Enter the name of the intermediate
file created by the Fusemap program,
or the programmer load file in
JEDEC format, in this dialog box.
Refer to "Simulate" in Chapter 4 of
the ABEL 3.1 manual.

Output File Name Enter the name of the simulation
output file. Refer to "Simulate" in
Chapter 4 of the ABEL 3.1 manual.

Device Type Enter the industry part number for
the device if simulation is performed
independently from ABEL.

3-11

System Specific Installation

3-12

PARAMETER

Trace Level

Break Points
Trace Level:

Break Points
Vectors: First/Last

Watch Points

Don't Cares/High Z

MEANING

Select the desired simulation trace
level. Trace levels are described in
the "Simulate" section (- T flag) of
Chapter 4 in the ABEL 3.1 manual.

Enter the number of the trace level
to be invoked for the test vectors
specified under Vectors: First/Last.
Refer to the - B flag in Chapter 4 of
the ABEL 3.1 manual.

Enter the numbers of the vectors that
specify the beginning and ending
break points for the specified trace
level to be effective.

Enter the numbers of the device pins
to "watch" when trace levels 3, 4, or
5 are specified. Refer to the - W flag
in Chapter 4 of the ABEL 3.1
manual.

Select High to set ".X" and ".Z" values
to logic high, and Low to set these
values to logic low. This allows you
to override the default values for
don't cares and high impedance
output during simulations as
described in Chapter 4 of the ABEL
3.1 manual. The Use In-File Setting
to assume default values for don't
cares and high impedance values.

Personal Silicon Foundry

3.8 The Document Menu

The following table describes each of the menu selections
available on the Document menu with references to the
ABEL 3.1 manual.

Table 3-7. The Document Menu

PARAMETER

Input File Name

Output File Name

List Fusemap
and/or Terms

MEANING

Enter the name of the intermediate
file created by the Fusemap program.
Refer to "Document" in Chapter 4 of
the ABEL 3.1 manual.

Enter the name of the design
documentation file described in
Chapter 4 of the ABEL 3.1 manual.

These selections are equivalent to the
-Fn flags described in the
"Document" section in Chapter 4 of
the ABEL 3.1 manual. The None
selection is the same as specifying no
-F flag, the Complete Fuseplot
selection is the same as the -FO flag,
Number of Terms is the same as the
- F 1 flag, and Brief Fuseplot is the
same as the - F2 flag.

3-13

System Specific Installation

PARAMETER

Equation Options

Chip Diagram

Other Options:

3-14

MEANING

The Original Equations selection
corresponds to the -QO flag described
in the "Document" section in Chapter
4 of the ABEL 3.1 manual. The
Transformed Equations selection
corresponds to the -QI flag, and the
Reduced Equations selection
corresponds to the -Q2 flag. The
P ALASM equations selection
corresponds to the -Q3 flag.

You can select any or all of the
Equation Options.

The None selection deletes the device
diagram from the output file. The
DIP selection produces the device
diagram in DIP form, while the
PLCC selection produces the device
diagram in PLCC form. The Device
Default selection produces the device
diagram in the form determined by
the device file.

The Vectors selection corresponds to
the - V flag described in the
"Document" section in Chapter 4 of
the ABEL 3.1 manual. The Symbols
selection corresponds to the -S flag.

Personal Silicon Foundry

3.9 The Utilities Menu

The following table describes each of the menu selections
available on the Utilities menu with references to the
ABEL 3.1 manual.

Table 3-8. The Utilities Menu

PARAMETER MEANING

ToAbel -
Input File Name Enter the name of the PALASM

(version 1.0 or earlier) file to be
converted.

ToAbel -
Output File Name Enter the name of the ABEL file to

be created by ToAbel.

JedAbel -
Input File Name Enter the name of the JEDEC file

(*.JED) to be converted to equations.

JedAbel -
Output File Name Enter the name of the ABEL file to

be created by JedAbel.

JedAbel - Map
Output File Name Enter the name of the map output

file. The default extension is .MAP.

JedAbel -
Device Type Enter the industry name of the

device in the JEDEC file (e.g.,
Pl4L4, 22IP6, etc.)

3-15

System Specific Installation

PARAMETER

IFL Document -
Input File Name

IFL Document -

MEANING

Enter the name of the JEDEC file
(*.JED) to be converted to a listing
file.

Output File Name Enter the name of the file that will
contain the Signetics Program Logic
Tables.

IFL Document -
Device Type

3-16

Enter the industry name of the
device in the JEDEC file (e.g.,
Pl4L4, 22IP6, etc.)

4. The Terminal Emulator Utility

Term-100 is a VT -100 terminal emulation program written
to run on an IBM PC/XT /AT or compatible computer. It is
a program which makes the PC act like a VT-100 terminal
and allows the user to communicate with other computers or
machines (such as UniSite and other Data 1/0 logic
programmers) and transfer files between them. Term-100
supports operation up to 19 ,200 baud and software
handshaking (Xon/Xoff). It also supports 8-bit data
transfers which permits the efficient transfer of files using
any of the binary data formats supported by UniSite. Term-
100 has two operating modes, General (G) and UniSite (U).
General mode causes Term-100 to perform like a VT -100
terminal, while the UniSite mode adds some additional
features. These features allow easier operation when
controlling a UniSite programmer from the PC. This mode
automatically opens and closes files when transferring data
files with UniSite, which frees the user from having to
direct the terminal emulator to do so at the appropriate
times.

4-1

System Specific Installation

4.1 Term-100 Features

4-2

TERM-100.EXE is a VTIOO-like terminal emulator
program that provides:

Control of UniSite on any PC or compatible

Use of file transfer operations between UniSite and the
host PC without leaving the UniSite menus

Binary file transfer between UniSite and a PC

Automatic file transfer operations that eliminate the
need for direct user interaction with the terminal
emulator

Configuration file to specify UniSite/General operation
mode and to set communication parameters

Send/receive data in 7- or 8-bit mode

Automatic file closure at the end of upload and
download operations

Reports of data communication errors

Commands for displaying and changing the current
directory

Terminal Emulation

4.2 The Term-100 Files

The following files accompany the Term-100 program and
perform the indicated functions.

UNISITE.BA T Batch file used to invoke Term-100
(UniSite mode)

UNI9600.CFG Configuration file (UniSite mode, 9600
baud)

UNII 9200.CFG Configuration file (UniSite mode, 19200
baud)

TERM.BAT Batch file used to invoke Term-100
(General Mode)

GEN9600.CFG Configuration file (General mode, 9600
baud)

GEN19200.CFG Configuration file (General mode, 19200
baud)

TERM-100.EXE Terminal emulator program

4-3

System Specific Installation

4.3 Modifying the Batch Files

4-4

There are two batch files provided with TERM-100. By
default, these files use 9600 baud configuration files.
(Configuration files are discussed in section 4.5.) For 19200
baud operation, you can edit these files and change the
configuration file name to UNI19200.CFG, which is the
name for the configuration file that specifies 19200 baud
operation to TERM-100. For example:

UNISITE.BAT (original file)

Rem: Term-100 will use GEN9600.CFG from ABEL3DEV directory.
if not (%ABEL3DEV%) == () TERM-100 %ABEL3DEV%\UNI9600.CFG

Rem: Term-100 will use GEN9600.CFG from local directory if
Rem: ABEL3DEV not defined
if (%ABEL3DEV%) == () TERM-100 UNI9600.CFG

UNISITE.BA T (modified file)

Rem: Term-100 will use GEN9600.CFG from ABEL3DEV directory.
if not (%ABEL3DEV%) == () TERM-100 %ABEL3DEV%\UNI19200.CFG

Rem: Term-100 will use GEN9600.CFG from local directory if
Rem: ABEL3DEV not defined
if (%ABEL3DEV%) == () TERM-100 UNI19200.CFG

Modify the TERM.BAT file in a similar fashion if you will
be using Term-100 in the General mode (not necessary for
operation with UniSite only).

Terminal Emulation

4.4 Running Term-100

After installing the Term-100 files, simply enter:

UNISITE <Enter>
GENERAL <Enter>

(for UniSite mode)
(for General mode)

to start Term-100. When Term-100 is started, it will read a
configuration file to set the operating mode (General or
UniSite) and set the various communication port parameters
(baud rate, parity, etc.).

4.5 The Term-100 Configuration File

Term-100 uses a configuration file to specify the mode
(UniSite/General) and the communication parameters. This
file is read when Term-100 is invoked. These files are
expected to be in the directory pointed to by the
environment variable ABEL3DEV (normally the
\DAT AIO\LIB3 directory). If this variable is not defined,
then the files are expected to be in the current directory. If
Term-100 does not find the configuration file, the message

Unable to Use Config File

will be printed on the screen and Term-100 will use the
default settings (refer to Default Settings).

Four configuration files are included with Term-100, and
the user should create any additional configuration files
desired. The configuration file must conform to the
following specifications:

1. The first line of the file must specify the mode: either
General (G) or UniSite (U). Upper or lower case may
be used and only the first character of the word is
significant.

4-5

System Specific Installation

2. The second line must specify the baud rate. The
complete number is required, ie. 9600, not 96.

3. The third line specifies the parity (N/E/0). Upper or
lower case may be used and only the first character of
the word is significant.

4. The fourth line specifies the number of bits per
character (7 or 8).

5. The fifth line specifies the number of stop bits (I or 2).

Note: Comments can follow the first word (or
character) as long as they are separated from the word
by a space. The line must end with a line feed. Pressing
<Enter> is optional.

4.6 Default Settings

4-6

The following are the factory default settings and are used
if no configuration file is present:

Parameter Factory Default Setting

Mode
Baud Rate
Parity
Bits per Character
Stop Bits

G (General)
9600
N (None)
8
l

Terminal Emulation

4.7 Term-100 Commands and Functions

Term-100 has two help screens. One can be invoked when
in the General (G) mode and the other can be invoked
when in the UniSite (U) mode. Table 4-1 describes the
menu and functions applicable to the General (G) mode.
Table 4-2 lists the functions that can be invoked when in
the UniSite (U) mode.

Table 4-1. General Mode Commands/Functions

COMMAND FUNCTION

Shift Fl

Shift F2

Shift F3

Shift F4

Shift F5

Alt Fl

Transfer file from PC to coml serial port.

Transfer file to PC from coml serial port.

Close file (to be used in conjunction with Shft
Fl and Shft F2)

Toggle local echo on/off (off - full duplex,
on - half duplex)

Toggle on line / off line

Terminates the Term-100 program and returns
to DOS (closes any open files).

4-7

System Specific Installation

4-8

Table 4-1. (cont.)

COMMAND FUNCTION

Alt F2

Alt F3

Alt F4

Switches between text mode and binary mode
for transferring files to COMI:. Control-Z,
Control-C, Line-Feed, and Null characterss
are stripped from the files sent to COMI: in
text mode. When transferring a file from the
PC to a host while in text mode, an EOF
character will be sent after the data to indicate
the end of the file. In binary mode, all
characters are transmitted. Binary mode is the
recommended mode for operation with
UniSite.

CAUTION: Do not use text mode to transmit
files in JEDEC or binary format. Filtering of
control characters may result.

Displays the Term-100 Help screen.

Displays the current end-of-file character for
text mode file transfers. To change this
character, enter the hexadecimal value of the
desired control character (ASCII I through
IF). Press <enter> to select the new chara.cter.
The default setting is Control-Z (lA Hex).
This parameter only applies to text mode. If
text mode is used, the EOF character must
match that which is selected on the UniSite
Communications Parameters screen.

Note: Term-100 operating in the U (UniSite)
mode automatically closes the file after
UPLOAD and DOWNLOAD operations.

Terminal Emulation

Table 4-1. (cont.)

COMMAND FUNCTION

Alt F5

Alt F6

Change directory: Allows the user to change
directories from within Term-100. Enter the
path for the directory you want to change to.
You may change to a different drive also by
entering the drive letter followed by a colon
(A:\UTIL).

Display current directory: displays the current
directory without exiting Term-100.

Table 4-2. UniSite Mode Commands and Functions

COMMAND FUNCTION

Alt F 1 Terminates the Term-100 program and returns to
DOS (closes any open files).

Alt F2 Switches between text mode and binary mode for
transferring files to COMl:. Control-Z, Control
C, Line-Feed, and Null characterss are stripped
from the files sent to COMI: in text mode. When
transferring a file from the PC to a host while in
text mode, an EOF character will be sent after
the data to indicate the end of the file. In binary
mode, all characters are transmitted. Binary mode
is the recommended mode for operation with
UniSite.

4-9

System Specific Installation

Table 4-2. (cont.)

COMMAND FUNCTION

CAUTION: Do not use text mode to transmit
files in JEDEC or binary format. Filtering of
control characters may result.

Alt F3 Displays the Term-100 Help screen.

Alt F4 Displays the current end-of-file character for
text mode file transfers. To change this
character, enter the hexadecimal value of the
desired control character (ASCII 1 through IF).
Press <enter> to select the new character. The
default setting is Control-Z (IA Hex). This
parameter only applies to text mode. If text mode
is used, the EOF character must match that
which is selected on the UniSite Communications
Parameters screen.

Note: Term-100 operating in the U (UniSite)
mode automatically closes the file after UPLOAD
and DOWNLOAD operations.

4-10

Alt F5 Change directory: Allows the user to change
directories from within Term-100. Enter the path
for the directory you want to change to. You may
change to a different drive also by entering the
drive letter followed by a colon (A:\UTIL).

Alt F6 Display current directory: displays the current
directory without exiting Term-100.

Terminal Emulation

The status line at the bottom of the screen displays the
current settings of various Term-100 parameters and also
indicates how to access the Term-100 help screen ALT F3.
The fields on the status line are shown below.

The Caps-Lock key is enabled
The Num-Lock key is in the Number mode
The file-transfer mode is set to Text mode

[Caps]
[Num]
[Text]
[Bin]
[EOF]

The file-transfer mode is set to Binary mode
Indicates the end of file character (only used for
file transfers in text mode)

4.8 Transferring Files, General Mode

4.8.1 JEDEC File Transfer, PLDS to Computer

In this example, a JEDEC format device file must be
loaded into the programmer RAM (part of the
Programmable Logic Development System, PLDS) and be
ready to be downloaded to the computer.

1. Set the Model 29 programmer to full-duplex (echo)
operation by entering the following key sequence
from the front panel of the programmer:

SELECT C E START 0 START

2. Enter the logic terminal mode (TRC) from the Model
29 programmer by entering:

SELECT E l ST ART

3. Run the TERM-100 program by typing the following
(from the computer keyboard):

TERM

4-11

System Specific Installation

Your computer is now emulating a dumb (VT52)
terminal and the TERM-100 program menu is
displayed on the screen.

4. Prepare TERM-100 to receive a file by selecting the
full-duplex mode from the menu (TERM-100
defaults to full-duplex at start-up):

F7

(toggles between full-duplex and half-duplex
operation)

5. Select the Create Disk File function by entering:

F4 <file name>

to receive the transmitted file. You can also specify a
disk drive and path, if desired.

6. Prepare the programmer to transmit the JEDEC file
by typing (from the computer keyboard):

c

You should see the device file scroll down the screen
as it is being written into the disk file.

7. Using the TERM-100 Terminate File Transfer
function, close the file when transmission is complete
by entering:

4-12

F2

This example is concluded and the JEDEC file
transfer from the programmer to your computer is
complete. There are other steps in the sequence of

Terminal Emulation

downloading a file from the programmer to the
computer using TERM-100. The preceding method is
the most direct, and requires the least number of
steps.

4.8.2 JEDEC File Transfer, Computer to PLDS

In this example, a JEDEC format device file must be
created and saved to disk. If you are performing these
examples in sequence, you can transfer the same device
file from Example I back to the programmer (part of the
Programmable Logic Development System, PLDS). Ensure
that the COMI: serial port is correctly configured.

I. Run the TERM-100 program by typing the following
characters from the computer keyboard:

TERM

2. Ensure that the Model 29 is in full-duplex mode. If
not, enter the following key sequences from the
programmer front panel:

SELECT C E START 0 START

3. Enter the Logic Terminal mode (from the front panel
of the Model 29 programmer) by entering:

SELECT E 1 ST ART

The logic programmer menu will be displayed,
including the Command prompt. Most of this menu
will overwrite the TERM-100 program menu on the
screen, except for the status block. The TERM-100
status block and the Command prompt indicate that
you can interact with the TERM- I 00 program and
the programmer through the terminal emulator.

4-13

System Specific Installation

4-14

4. At the Command prompt (from the computer) type:

Command: I xxxxxx

where: 1 is the menu selection that allows you to
specify the family /pinout code for the device to be
programmed. The xxxxxx represents, and is replaced
by, the device family /pinout code number that you
supply.

5. Prepare the programmer to receive a JEDEC file. At
the Command prompt (from the computer) type:

Command:B

6. To recall the complete TERM-100 menu, enter:

F3

The TERM-100 menu will be displayed.

7. Prepare TERM-100 to transmit a file by specifying
the appropriate transmission mode (use binary mode
to transmit JEDEC files). From the TERM-100
menu, press:

F6

(this toggles between Binary and Text modes)

See the status field at the bottom of the screen-
TERM-100 defaults to Binary mode at start-up.

8. Set TERM-100 for full-duplex (TERM-100 defaults
to full-duplex at start-up):

F7

(toggles between full- and half-duplex operation)

Terminal Emulation

9. Select the Send Disk File function from the TERM-
100 menu:

FS <file name> RETURN

to transmit the file. The file being transmitted must
be for the same device family /pinout code as that
previously entered from the menu. You can also
specify a disk drive and path, if desired.

When the file transfer .is complete, the Command
prompt will be displayed.

10. Using the TERM-100 Terminate File Transfer
function, close the file by pressing:

F2

This concludes the example of the JEDEC file transfer
from your computer to the programmer.

The examples provided in this section describe only two
of the possibilities for using Term-100. Note that both
examples make use of features or capabilities that
originate from programmer menu option selections and
programmer/pak Select Code functions.

When your programmer is set in Terminal Remote Control
mode and TERM-100 has converted your computer into a
programmer terminal, all of these programmer/pak
features or capabilities are accessible. Refer to the Model
60A/H and/or LogicPak manuals for more information on
the use of these features and capabilities.

4-15

System Specific Installation

4.9 Transferring Files, UniSite Mode

A special host command named Transfer is used by
UniSite to communicate with Term-100.

Only the first two characters (TR) in either upper or
lower case are necessary, or you may type TRANSFER.
The Transfer command should be followed by a file name
and ended with a carriage return. There should be at least
one blank to separate the command and the file name.
Extra blanks are ignored. To transfer a file between the
PC and UniSite, enter the command Transfer followed by
the file name on the host command line of UniSite. The
file will be automatically opened and closed on the PC at
the appropriate times.

4.9.1 Upload Operation

4-16

1. When you are in the More Commands/Transfer
Data/Upload menu, the destination field must reflect
which serial port the PC is connected to.

2. In the Upload Data to Host field at the bottom of the
screen, enter the following:

transfer file name <enter>

or alternately

tr file name <enter>

The file will be transferred.

Terminal Emulation

4.9.2 Download Operation

1. When you are in the More Commands/Transfer
Data/Download menu, the Source field must reflect
which serial port the PC is connected to. (Terminal or
Remote; Terminal is used for most operations with a
PC.)

2. In the Download Data from Host field at the bottom
of the screen, enter the following:

transfer file name <enter>

or alternately

tr file name <enter>

4.9.3 Recapturing the UniSite Screen

Anytime you want to repaint the UniSite screen, enter

CTRLR

4-17

System Specific Installation

4.10 Term-100 Error Messages

4-18

Term-100 will report the following errors:

Parity Error - The parity of the data received did not
correspond with the parity setting of the UART in the PC.
Make sure the parity settings in the PC and UniSite are
the same.

Framing Error - The received character did not contain a
valid stop bit. Make sure the baud rates of the PC and
UniSite match.

Overrun Error - The UART received another character
before the previous one was read by the processor, causing
data to be lost. Try using a slower baud rate or eliminate
any background programs currently running on the PC.

Transfer Error - This indicates Term-100 did not close
the file on the PC automatically. Make sure the Term-100
mode is set to UniSite (U). If the mode is correct, try
using the pacing delay feature on UniSite, or a slower
baud rate.

Unable to use config file - Term-100 either couldn't find
the configuration file or there was an error detected in the
configuration file. During installation of ABEL, the
configuration files are loaded into the LIB3 directory.
Make sure the environment variable ABEL3DEV is
defined and points to this or some other directory that
contains the configuration files. Or, you can put the files
in the directory you are currently running from. Check
the contents of the configuration file used (UNI9600.CFG
by default) to ensure there are no syntax errors. If this
error occurs, Term-100 will use the default parameters.

Terminal Emulation

Default comm param used - Term-100 detected a syntax
error in the communication parameters specified in the
configuration file. Term-100 will use the mode specified
in the file. However, it will use the default values for the
communication parameters. Make sure the syntax and
values specified in the configuration file are correct.

Not enough memory for Term-100 - This indicates there
is not enough free memory available in the PC. Term-100
requires a minimum of 48K bytes of RAM. Remove other
programs from memory or add more RAM.

4-19

System Specific Installation

4.11 Troubleshooting

4-20

If you cannot invoke Term-100 or are having difficulty
with the transfer command, check the following:

I. Invoke the Term-100 Help screen and make sure the
mode of Term-100 is set to UniSite (U). (This is
determined by the configuration file used).

2. When you are using the TR (Transfer) command,
make sure you are using the correct syntax on the
host command line of UniSite.

3. If the UniSite screen is not present on the PC screen,
press

CTRLR

to repaint the UniSite screen.

4. Be 'sure to type

UNI SITE (upper case)

to invoke Term-100. Do not type

TERM-100

since this will prevent use of the UNISITE.BA T batch
file which is necessary for setting the configuration
parameters.

Make sure UniSite terminal port baud rate matches
the Term-100 baud rate. The UniSite factory default
setting is 9600 baud.

Glossary

Asynchronous: An asynchronous circuit is one in which the
outputs change at any time, depending on the order in
which the inputs change. (See synchronous)

Batch file: A file containing operating system commands to
perform a series of operations.

Combinatorial/combinational: This type of circuit is a
collection of logic gates with a set of inputs and outputs.
The outputs are a direct function of the inputs, and no
storage elements are present.

Command line: A line of text entered by the user to start a
program.

Directive: An instruction to the language processor that
directs it to perform a specific task, such as including text
in an ABEL source file.

Functional testing: Testing of a programmed logic device so
see that it operates as required.

Fuse map: A representation of the fuses in a programmable
logic device that shows which fuses are blown
(disconnected) or left intact (connected).

Identifier: A name or label used in a source file to
reference pins, nodes, sets, constants, keywords, or output
pins.

Intermediate file: A file created by the language processor
program that is used to pass data to the next program in the
processing. Each program of the language processor creates
its own intermediate file.

Glossary-I

Glossary

JEDEC (Joint Electronic Device Engineering Council):
Used in the documentation to signify a standard data
format for transfer of programming data to logic
programmers.

Keyword: An identifier that is part of the ABEL language.

Language processor: A collection of programs that process
the source files to create programmer load files, perform
simulation, perform logic reduction, and create design
documentation.

Logic description: Boolean equations, truth tables, or state
diagrams that describe one or more logic functions.

Logic reduction: The process of reducing user supplied logic
descriptions to a near-minimal form so that the number of
product terms required to implement a function is reduced.

Macro: A user-defined function that can be used to include
text in a source file.

Module: A complete ABEL unit that contains everything
necessary to describe one or more complete logic functions.
One or more modules make up a source file.

Nodes. Pseudo-pins in a programmable logic device,
defined by Data 1/0, that have internally accessible signals
that do not appear as output pins of the device. Nodes
allow the user to write equations using these internal
signals.

PRESTO: A logic reduction algorithm developed by
Antonin Svoboda. Described in the paper, "A State
Machine Synthesizer - SMS" by Douglas W. Brown
(Proceedings of the 18th Design Automation Conference,
IEEE, June 1981, pp 301-305.)

Glossary-2

Glossary

Parse: To process a source file, checking for correct
language syntax, developing tables of user-defined
identifiers, and implementing the function of language
keywords.

Programmer load file: A file produced by the ABEL
language processor that contains the fuse states and test
vectors necessary to program and test programmable logic
devices.

Registered: A registered output is one that is the output of a
clocked storage device.

Section: As used in the "test vectors section", "equations
section", "truth table section", and "state diagram section",
indicates one complete set of test vectors, group of Boolean
equations, truth table, or state diagram associated with a
particular logic device.

Sequential: A sequential circuit contains logic gates and
storage elements that retain values resulting from earlier
input values.

Sets: Groups of constants, input signals, output signals, or
nodes that are operated on as a whole according to Boolean
algebra rules.

Simulation: The testing of the function of a logic design
before a logic device is programmed. Simulation applies
user-supplied inputs to the logic function and compares the
outputs obtained with predicted outputs.

Source file: Input to the language processor. A file
containing one or more complete modules that describe
logic designs.

Glossary-3

Glossary

State diagram: An ABEL construct that allows direct
specification of state machine designs in a form that
describes next states and outputs as a function of inputs and
the current state. The term state diagram is also used to
describe a pictorial representation of the state transitions of
a state machine.

State machine: A logic design containing a state register
whose bit value represents the current state, and that
undergoes transitions to one state from another based on the
current state and inputs.

Synchronous: A synchronous circuit is one in which the
outputs change value only upon application of a clock pulse
regardless of when the state of the inputs changed.

Syntax: The order, structure, and rules of a language.

Test vectors: An ABEL construct used to specify required
or expected outputs for a given set of inputs. Test vectors
are used for logic simulation.

Truth table: An ABEL construct that describes the outputs
of a logic design as a function of the inputs in a tabular
form.

Twos complement: A form of binary complementation in
which all the bits of a binary number are complemented
(inverted) and then I is added to the number. Adding the
twos complement of a first number to a second number is
the same as subtracting the first from the second.

Glossary-4

