

Table of Contents

1.1 Introduction 1-1 28000 Processor
1.2 General Organizationt P | Overview
1.3 Architectural Features e e 1-1
General-Purpose Register Fileo i 1-2 l
Instruction Set i 1-2
Data Types ..ot 1-2
Addressing Modes 1-2
Multiple Memory Address Spacesuuu i 1-3
System/Normal Mode of Operationuuuiieeaanaaeeaan.. 1-3
Separate I/O Address Spacest 1-3
Interrupt Structure 1-3
Multi-Processing 1-4
Large Address Space of the Z8001 1-4
Segmented Addressingof theZ8001 e 1-4
Memory Management 1-4
1.4 Benefits of the Architecture 1-5
Code Density 1-5
Compiler Efficiency oo i 1-5
Operating System SUpPOTt oottt e 1-5
Support for Many Types of Data Structurescovovuiiuninnnno .. 1-6
Two CPU Versions: Z8001 and Z8002t et 1-6
1.5 Extended Instruction Facility ..., 1-6
L6 SUMMATY . .ot 1-6
2.1 Introduchionii i 2-1 Architecture
2.2 General Organizationouuuiii i 2-1
2.3 Hardware Interface i, .. . 2-3 2
Address/Data Lines i 2-3
Segment Number (Z8001 only)oooui 2-3
Bus Timing 2-3
SHALUS oo 2-3
CPU Control 2-4
BusControl e e 2-4
Interrupts ... o 2-4
Segment Trap Request (Z8001 only) e 2-4
Multi-Micro Control 2-4
System Inputs 2-4
2.4 TIMING ..o 2-4
2.5 AdAress SpPacest 2-4
Memory Address Space 2-4
/O AdAress Space . ..o .ot 2-5
2.6 General-Purpose Registers i ... [P 2-5
2.7 Special-Purpose Registers i, 2-7
Program Status Registers i, 2-7
Program Status Area Pointer 2-7
Refresh Counter 2-7
2.8 Instruction Execution 2-7
2.9 Instructions 2-7
Instruction Formats 2-8
2.10Data Types ..o e 2-8
1T Addressing Modes 2-8
<.12Extended Processing Architecture0 e 2-8

Table of Contents (c.ui.q)

{

213Exceptions 2-9 Architecture
Reset ... 2-9 (Continued)
Traps o 2-9
Interrupts 2-9 2
Trap and Interrupt Service Proceduresoou 2-9
3.1 Introduction 3-1 Address Spaces
3.2 Typesof Address Spacesouuuuee 3-1
3.3 VO AAress Spaceo.uuuuie i 3-1 3
3.4 Memory Address Spaces 3-2
Addressable Data Elements 3-2
Segmented and Nonsegmented Addressesoouooonoo . 3-2
Segmentation and Memory Management i 3-3
4.1 Introduction 4-] CPU Operation
4.2 Operating Stateso.uuiu e 4-1
Running State 4-1 4
Stop/Refresh State 4-1
Bus-Disconnect State i 4-1
Effectof Reseto 4-1
4.3 Instruction Execution 4-2
Running-State Modes 4-2
Segmented and Nonsegmented Modes 4-2
Normal and System Modes 4-3
4.4 Extended Instructions 4-4
3.1 Introduction 5-1 Addressing Modes
5.2 Use of CPUReQISErsttt 5-2
5.3 Addressing Mode Descriptionsouiiii 5-2 5
5.4 Descriptions and Examples (Z8002 and Z8001 Nonsegmented Mode) 5-3
Register (R) ... oo 5-3
Immediate (IM) 5-3
Indirect Register (IR) 5-3
Direct Address (DAY 5-4
Index (R) . oo 5-4
Relative Address (RA) 5-4
Base Address (BA) 5-5
Base Index (BX)o 5-6
5.5 Descriptions and Examples (Segmented Z8001) 5-6
Register (R) ... oo 5-6
Immediate (IM) 5-6
Indirect Register (IR) 5-7
Direct Address (DA) 5-7
Index (X) .. oo 5-8
Relative Address (RA)o 5-8
Base Address (BA)o 5-9
Base Index (BX) 5-10

.

6.1 Introduction e 6-1 Instruction Set
6.2 Functional Summary 6-1
Load and Exchange Instructions 6-2 6
Arithmetic Instructions O 6-2
Logical Instructions o 6-3
Program Control Instructionsoouooeo 6-3
Bit Manipulation Instructionsoo oo 6-4
Rotate and Shift Instructions 6-4
Block Transfer and String Manipulation Instructions e 6-5
Input/Output Instructionscooo i 6-6
CPU Control Instructionsooiuron 6-6
Extended Instructions 6-7
6.3 Processor Trapsc.uuuinue 6-7
6.4 Condition Codesoooiiiie 6-8
6.5 Instruction Interrupts and Trapsooueomrrone 6-8
6.6 Notation and Binary Encodingooooi 6-9
6.7 Z8000 Instruction Descriptions and Formatscoooooroo .. 6-11
6.8 EPA Instruction Templatescooioe e 6-167
7.1 Introduction 7-1 Exceptions
7.2 Interruptso.ou 7-1
Non-Maskable Interrupt (NMI) o 7-1 7
Vectored Interrupt (VI) ... 7-1
Nonvectored Interrupt (NVI) 7-1
7.3 Traps ..o 7-1
Extended Instruction Trapo, 7-1
Privileged Instruction Trap 7-1
System Call Trapt 7-1
Segment Trapo 7-1
7.4 Reset .. o 7-2
7.5 Interrupt Disabling 7-2
7.6 Interrupt and Trap Handling oo, 7-2
Acknowledge Cycle 7-2
Status Saving 7-2
Loading New Program Status0 o 7-3
Executing the Service Routine 7-4
Returning from an Interrupt or Trapooueerei 7-4
7.7 Priorityo 7-4
8.1 Introduction 8-1 Refresh
8.2 Refresh Cycles 8-1
8.3 PeriodicRefresh 8-1 8
8.4 Stop-State Refresh 8-1

_ Y
Table of Contents (continuca) /

—

9.1 Introduction -9-1 External Interface
9.2 BusOperationso 9-1
9.3 CPUPINs . ..o 9-2 9
Transaction Pins 9-2 '
BusControl Pins 9-2
Interrupt/Trap Pins 9-2
Multi-Micro Pins 9-3
CPUCONIrol ... 9-3
9.4 Transactions 9-3
WA 9-4
Memory Transactions e 9-4
/O Transactions oo 9-6
EPU Transfer Transactionsoo.o oo 9-7
Interrupt/Trap Acknowledge Transactionsc.oourooo. ... 9-8
Internal Operations and Refresh Transactions 9-8
9.5 CPU and Extended Processing Unit Interaction 9-10
9.6 Requests 9-10
Interrupt/Trap Request 9-11
Bus Request 9-11
Resource Request 9-12
Stop Request ... 9-12
9.7 Reset ... o . 9-13
Hardware Information A-l Appendix
Z8000 Family Specifications o B-1 Appendix
Programmers Quick Reference C-1 Appendix
Glossary of Terms D-1 Appendix

1.1 Intro-
duction

This chapter provides a summary description
of the advanced architecture of the Z8000
Microprocessor, with special attention given to
those architectural features that set the Z8000
CPU apart from its predecessors. A complete

Chapie:j 1
Z8000 Processor Overview

overview of the architecture is provided in
Chapter 2, with detailed descriptions of the
various aspects of the processor provided in
succeeding chapters.

1.2 General
Organization

Zilog's Z8000 microprocessor has been
designed to accommodate a wide range of
applications, from the relatively simple to the
large and complex. The Z8000 CPU is offered
in two versions: the Z8001 and the Z8002. Each
CPU comes with an entire family of support
components: a memory management unit, a
DMA controller, serial and parallel I/O
controllers, and extended processing units—all
compatible with Zilog’s Z-Bus. Together with
other Z8000 Family components, the advanced
CPU architecture provides in an LSI micro-
processor design the flexibility and sophisti-
cated features usually associated with mini- or
mainframe computers.

The major architectural features of the Z8000
CPU that enhance throughput and processing
power are a general purpose register file,
system and normal modes of operation, multi-
ple addressing spaces, a powerful instruction
set, numerous addressing modes, multiple
stacks, sophisticated interrupt structure, a rich
set of data types, separate I/O address spaces
and, for the Z8001, a large address space and
segmented memory addressing. Each of these
features is treated in detail in the next section.

These architectural features combine to pro-
duce a powerful, versatile microprocessor. The

benefits that result from these features are
code density, compiler éfficiency, support for
typical operating system operations, and com-
plex data structures. These topics are treated
in Section 1.3. _

The CPU has been designed so that a power-
ful memory management system can be used to
improve the utilization of the main memory
and provide protection capabilities for the
system. This is discussed in Section 1.3.12.
Although memory management is an optional
capability—the Z8000 CPU is an extremely
sophisticated processor without memory
management—the CPU has explicit features to
facilitate integrating an external memory
management device into a Z8000 system con-
figuration.

Finally, care has been taken to provide a
very general mechanism for extending the
basic instruction set through the use of extern
al devices (called Extended Processing
Units—EPUs). In general, an EPU is dedicated
to performing complex and time-consuming
tasks so as to unburden the CPU. Typical tasks
for specialized EPUs include floating-point
arithmetic, data base search and maintenance
operations, network interfaces, and many
others. This topic is treated in Section 1.5.

1.3 Architec-
tural Features

The architectural resources of the Z8000
CPU include sixteen 16-bit general-purpose
registers, seven data types ranging from bits to
32-bit long words and byte strings, eight user-
selectable addressing modes, and an instruc-
tion set more powerful than that of most mini-
computers. The 110 distinct instruction types
combine with the various data types and
addressing modes to form a rich set of 414
instructions. Moreover, the set exhibits a high
degree of regularity: more than 90% of the
instructions can use any of five main address-
ing modes, with 8-bit byte, 16-bit word, and
32-bit long-word data types.

The CPU generates status signals indicating
the nature of the bus transaction that is being
attempted; these can be used to implement
sophisticated systems with multiple address
spaces-—memory areas dedicated to specific

uses. The CPU also has two operating modes,
system and normal, which can be used to
separate operating system functions from nor-
mal applications processes. 1/O operations
have been separated from memory accesses,
further enchancing the capability and integrity
of Z8000-based systems, and a sophisticated
interrupt structure facilitates the efficient
operation of peripheral I/O devices. Moreover,
the Extended Processing Unit (EPU) capability
of the Z8000 allows the CPU to unload many
time-consuming tasks onto external devices.

Special features of the Z8000 have been
introduced to facilitate the implementation of
multiple processor systems. In addition, the
Z8001 CPU has a large, segmented addressing
capability that greatly extends the applica-
bility of microprocessors to large system
applications.

1-1

1.3.1 General-Purpose Register File. The
heart of the Z8000 CPU architecture is a file of
sixteen 16-bit general-purpose registers. These
general-purpose registers give the Z8000 its
power and flex1b1hty and add to its regular
instruction structure.

General-purpose registers can be used as
accumulators, memory pointers or index reg-
isters. Their major advantage is that the partic-
ular use to which they are put can vary during
the course of a program as the needs of the
program change. Thus, the general-purpose
register file avoids the critical bottlenecks of
an implied or dedicated register architecture,
which must save and restore the contents of
dedicated registers when more registers of a
particular type are needed than are supplied
by the processor.

The Z8000 CPU register file can be
addressed in several ways: as 16 byte registers
(occupying fhe-u-ppep half of the file) or as 16
word registers or, by using the reqgister pairing
mechanism, as eight long-word (32-bit) reg-
isters or as four quadruple-word (64-bit) reg-
isters. Because of this register flexibility, it is
not necessary (for example) for a Z8000 user to
dedicate a 32-bit register to hold a byte of
data. Registers can be used efficiently in
the Z8000.

1.3.2 Instruction Set. A powerful instruction
set is one of the distinguishing characteristics
of the Z8000. The instruction set is one
measure of the flexibility and versatility of a
computer. Having a given operation imple-
mented in hardware saves memory and
improves speed. In addition, completeness of
the operations available on a particular data
type is frequently more important than addi-
tional, esoteric instructions, which are unlikely
to affect performance significantly. The Z8000
CPU provides a full complement of arithmetic,
logical, branch, I/O, shift, rotate, and string
instructions. In addition, special instructions
have been included to facilitate multiprocess-
ing, multiple processor configurations, and
typical high level language and operating
system functions. The general philosophy of
the instruction set is two-operand register-
memory operations, which include as a special
subset register-register operations. However,
to improve code density, a few memory-
memory operations are used for string manipu-
lation. The two-address format reflects the most
frequently occurring operations (such as

A — A + B). Also, having one of the
operands in a rapidly accessible general-
purpose register facilitates the use of inter-
mediate results generated during a
calculation.

The majority of operatons deal with byte,
word, or long-word operands, thereby pro-
viding a high degree of reqularity. Also
included in the instruction set are compact,
one-word instructions for the most frequently
used operations, such as branching short R

- distances in a program.

_The instruction set contains some notable
additions to the standard repertoire of earlier
microprocessors. The Load and Exchange
group of instructions has been expanded to
support operating system functions and con-
version of existing microprocessor programs.
The usual arithmetic instructions can now deal
with higher-precision operands, while hard-
ware multiply and divide instructions have also
been added. The Bit Manipulation instructions
can use calculated values to specify the bit
position within a byte or word as well as to
specify the position statically in the instruc-
tion. The Rotate and Shift instructions are con-
siderably more flexible than those in previous
microprocessors. The String instructions are
useful in translating between different char-
acter codes. Multiple-processor configurations
are supported by special instructions.

1.3.3 Data Types. Many data types are sup-
ported by the Z8000 architecture. A data type
is supported when it has a hardware represen-
tation and instructions which directly apply to
it. New data types can always be simulated in
terms of basic data types, but hardware sup-
port provides faster and more convenient
operations. The basic data type is the byte,
which is also the basic addressable element.
The architecture also supports the following
data types: words (16 bits), long words (32
bits), byte strings, and word strings. In
addition, bits are fully supported and
addressed by number within a byte or word.
BCD digits are supported and represented as
two 4-bit digits in a byte. Arrays are supported
by the Indexed addressing mode (see 1.3.4
and Chapter 5). Stacks are supported by the
instruction set and by an external device (the
Memory Management Unit, MMU) available
with the Z8001.

1.3.4 Addressing Modes. The addressing
mode, which is the way an operand is speci-
fied in an instruction, determines how an
address is generated. The Z8000 CPU offers
eight addressing modes. Together with the
large number of instructions and data types,
they improve the processing power of the
CPU. The addressing modes are Register,
Immediate, Indirect Register, Direct Address,
Index, Relative Address, Base Address, and
Base Index. Several other addressing modes
are implied by specific instructions, including
autoincrement. The first five modes listed

1-2

above are basic addressing modes that are
used most frequently and apply to most
instructions having more than one addressing
mode. (In the Z8002, Base Address and Index

modes are 1dentxc§l., and Ln tl&e 'QE)OI, $8 wrett
Addressing capg}axggg oy
all instructions, usxnga}le emory Manage-

ment UnitAND THE DiRecT or INDEXED ADPRE%G

MoDE
1.3.5 Multiple Memory Kddress Spaces. The

Z8000 CPU facilitates the use of multiple
address spaces. When the Z8000 CPU
generates an address, it also outputs signals
indicating the particular internal activity which”
led to the memory request: instruction fetch,
operand reference, or stack reference. This
information can be used in two ways: to
increase the memory space available to the
processor (for example, by putting programs in
one space and data in another); or to protect
portions of the memory and allow only certain
types of accesses (for example, by allowing
only instruction fetches from an area desig-
nated to contain proprietary software). The
Memory Management Unit (MMU) has been
designed to provide precisely these kinds of
protection features by using the CPU-
generated status information.

1.3.6 System/Normal Mode of Operation.
The Z8000 CPU can run in either system mode
or normal mode. In system mode, all of the
instructions can be executed and all of the
CPU registers can be accessed. This mode is
intended for use by programs performing
operating system functions. In normal mode,
some instructions may not be executed (e.q.,
I/O operations), and the control registers of
the CPU are inaccessible. In general, this
mode of operation is intended for use by appli-
cation programs. This separation of CPU
resources promotes the integrity of the system,
since programs operating in normal mode can-
not access those aspects of the CPU which deal
with time dependent or system-interface
events.

Programs executing in normal mode which
have errors can always reproduce those errors
for debugging purposes simply by re-exe-
cuting the program with its original data. Pro-
grams using facilities available only in system
mode may have errors due to timing consider-
ations (e.g. based upon the frequency of disk
requests and disk arm-position) that are harder
to debug because these errors are not easily
reproduced. Thus, the preferred method of
program development is to partition the task
into a portion which can be performed without
those resources accessible only in system mode
(which will usually be the bulk of the task) and
a portion requiring system mode resources.
The classic example of this partitioning comes
from current minicomputer and mainframe
systems: the operating system runs in system

mode and the individual users write their pro-
grams to run in normal mode.

To turther support the system/normal mode
dichotomy, there are two copies of the stack
pointer—one for a system mode stack and
another for a normal mode stack. These two
stacks facilitate the task switching involved
when interrupts or traps occur. To insure that
the normal stack is free of system information,
the information saved on the occurrence of
interrupts or traps is always pushed on the

system stack before the new program status is
loaded.

1.3.7 Separate I/0 Address Spaces. The
Z8000 Architecture distinguishes between
memory and I/O spaces and thus requires
specific I/O instructions. This architectural
separation allows better protection and has
more potential for extension. The use of
separate I/O spaces also conserves the limited
Z8002 data memory space. There are in fact
two separate I/O address spaces: standard I/O
and special I/O. The main advantage of these
two spaces is to provide for two types of
peripheral support chips—standard /O per-
ipherals and special I/O peripherals—devices
such as the Z8010 Memory Management Unit
that do not respond to standard I/O com-
mands, but do respond to special I/O com-
mands. A second advantage of these two
spaces is that they allow 8-bit peripherals to
attach to the low-order eight bits (standard
I/O) or to the high-order eight bits (special
I/O) of the processor Address/Data bus.

The increased speed requirements of future
microprocessors are likely to be achieved by
tailoring memory and I/O references to their
respective, characteristic reference patterns
and by using simultaneous I/Q and memory
referencing. These future possibilities require
an architectural separation today. Memory-
mapped l/O is still possible, but loss of protec-
tion and lack of expandability are severe
problems.

1.3.8 Interrupt Structure. The sophisticated
interrupt structure of the Z8000 allows the pro-
cessor to continue performing useful work
while waiting for peripheral events to occur.
The elimination of periodic polling and idling
loops (typically used to determine when a
device is ready to transmit data) increases the
throughput of the system. The CPU supports
three types of interrupts. A non-maskable
interrupt represents a catastrophic event which
requires immediate handling to preserve
system integrity. In addition, there are two
types of maskable interrupts: non-vectored
interrupts and vectored int lépts. The latter

- . RATE.
proyides an q__gto atic cal tmterrupt process-
ing%%%fi?x%gn cfg‘pgel?fa‘lgn(; gr'f ! }?ee\?eaétor pre-

sented by the peripheral to the Z8000.

1-3

The Z8000 has implemented a priority system
for handling interrupts. Vectored interrupts
have higher priority than non-vectored inter-
rupts. This priority scheme allows the efficient

control of many peripheral devices in a 28000

system.

An interrupt causes information relating to
the currently executing program (program -
status) to be saved on a special system stack
with a code describing the reason for the
switch. This allows recursive task switches to
occur while leaving the normal stack undis-
tulgge%i sl?y system information. The state pro-
grarr?'\to handle the interrupt (new program
status) is loaded from a special area in
memory, the program status area, designated
by a pointer resident in the CPU.

The use of the stack and of a pointer to the
program status area is a specific choice made
to allow architectural compatibility if new
interrupts or traps are added to the
architecture.

1.3.9 Multi-Processing. The increase in micro-
processor computing power that the Z8000
represents makes simple the design of
distributed processing systems having many
low-cost microprocessors running dedicated
processes.

The Z8000 provides some basic mechanisms
that allow the sharing of address spaces among
different microprocessors. Large segmented
address spaces and the support for external
memory management make this possible. Also,
a resource request bus is provided which, in
conjunction with software, provides the exclu-
sive use of shared critical resources. These
mechanisms, and new peripherals such as the
Z-FIO, have been designed to allow easy asyn-
chronous communication between different

CPUs.

1.3.10 Large Address Space for the Z8001.
For many applications, a basic address space
of 64K bytes is insufficient. A large address
space increases the range of applications of a
system by permitting large, complex programs
and data sets to reside in memory rather than
be partitioned and swapped into a small
memory as needed. A large address space
greatly simplifies program and data manage-
ment. In addition, large address spaces and
memories reduce the need for minimizing pro-
gram size and permit the use of higher level
languages. The segmented version of the
Z8000 generates 23-bit addresses, for a basic
address space of 8 megabytes (8M or 8,388,
608 bytes).

1.3.11 Segmented Addressing of the Z8001.
The segmented version of the 28000 CPU
divides its 23-bit addresses into a 7-bit seg-
ment number and a 16-bit segment offset. The
segment number serves as a logical name of a
segment; it is not altered by the effective

-space, 'the instructions could reside in one seg-

address calculation (by indexing, for exam-

ple). This corresponds to the way memory is
typically used by a program—one portion of
the memory is set aside to hold instructions,
another for data. In a segmented address

" ment (or several different modules in different

segments), and each data set could reside in a
separate segment. One advantage of segmenta-
tion is that it speeds up address calculation
and relocation. Thus, segmentation allows the
use of slower memories than linear addressing
schemes allow. In addition, segments provide
a convenient way of partitioning memory so
that each partition is given particular access
attributes (for example, read-only). The Z8000
approach to segmentation (simultaneous access
to a large number of segments) is necessary if
all the advantages of segmentation are to be
realized. A system capable of directly access-
ing only, say, four segments would lack the
needed flexibility and would be constrained by
address space limitations.

1.3.12 Memory Management. Memory
management consists primarily of dynamic
relocation, protection, and sharing of memory.
It offers the following advantages: providing a
logical structure to the memory space that is
independent of the actual physical location of
data, protecting the user from inadvertent
mistakes such as attempting to execute data,
preventing unauthorized access to memory
resources or data, and protecting the operation
system from disruption by the users.

The address manipulated by the program-
mer, used by instructions, and output by the
segmented Z8000 CPU are called logical
addresses. The external memory management
system takes the logical addresses and trans-
forms them into physical addresses required
for accessing the memory. This address trans-
formation process is called relocation, which
makes user software independent of the physi-
cal memory. Thus, the user is freed from
specifying where information is actually
located in the physical memory.

The segmented Z8000 CPU supports memory
management both with segmented addressing
and with program-status information. A seg-
mented addressing space allows individual
segments to be treated differently.

Program status information generated by the
CPU permits an external memory management
device to monitor the intended use of each
memory access. Thus, illegal types of access
can be suppressed and memory segments pro-
tected from unintended or unwanted modes of
use. For example, system tables could be pro-
tected from direct user access. This added pro-
tection capability becomes more important as
microprocessors are applied to large, complex
tasks.

1-4

1.4 Benefits of
the Architec-
ture

EiCErT RE »

The features of the Z8000 Architecture com-
bine to provide several significant benefits:
improvements in code density, compiler effi-
ciency, operating system sﬁpport, and support
for high level data structures.

1.4.1 Code Density. Code density affects both
processor speed and memory utilization. Code
compaction saves memory space—an especial-
ly important factor in smaller systems—and
improves processor speed by reducing the
number of instruction words that must be
fetched and decoded. The Z8000 offers several
advantages with respect to code density. The
most frequently used instructions are encoded
in single-word formats. Fewer instructions are
needed to accomplish a given task and a con-
sistent and regular architecture further
reduces the number of instructions required.

Code density is achieved in part by the use
of special “short” formats for certain instruc-
tions which are shown by statistical analysis to
be most frequently used by assemblers. A
"short offset” mechanism has also been provid-
ed to allow a 2-word segmented address to be
reduced to a single word; this format may be
used by assemblers and compilers.

The largest reduction in program size and
increase in speed results from the consistent
and regular structure of the architecture and
from the more powerful instruction set— factors
that substantially reduce the number of
instructions required for a task. The architec-
ture is more reqgular relative to preceding
microprocessers because its registers, address
modes, and data types can be used in a more
orderly fashion. Any general-purpose register
can be specified as an acculumator, index reg-
ister, or base register. With a few exceptions,
all basic addressing modes can be used with
all instructions, as can the various data types.

General-purpose registers do not have to be
changed as often as registers dedicated to a
specific purpose. This reduces program size,
since frequent load and store operations are
not required.

1.4.2 Compiler Efficiency. For microprocessor
users, the transition from assembly language to
high-level languages allows greater freedom
from architectural dependency and improves
ease of programming. However, rather than
adapt the architecture to a particular high-
level language, the Z8000 was designed as a
general-purpose microprocessor. (Tailoring a
processor for efficiency in one language often
leads to inefficiency in unrelated languages.)
For the Z8000, language support has been pro-
vided through the inclusion of features
designed to minimize typical compilation and
code-generation problems. Among these
features is the regularity of the Z8000 address-

ing modes and data types. Access to
parameters and local variables on the pro-
cedure stack is supported by the “Index With
Short Offset” addressing mode, as well as the
Base Address and Base Index addressing
modes. In addition, address arithmetic is aided
by the Increment and Decrement instructions.

Testing of data, logical evaluation, initializa-
tion, and comparison of data are made possi-
ble by the instructions Test, Test Condition
Codes, Load Immediate Into Memory, and
Compare Immediate With Memory. Since com-
pilers and assemblers frequently manipulate
character strings, the instructions Translate,
Translate And Test, Block Compare, and Com-
pare String all result in dramatic speed
improvements over software simulations of
these important tasks. In addition, any register
except zero can be used as a stack pointer by
the Push and Pop instructions.

1.4.3 Operating System Support. Interrupt
and task-switching features are included to
improve operating system implementations.
The memory-management and compiler-
support features are also quite important.

The interrupt structure has three levels: non-
maskable, non-vectored, and vectored. When
an interrupt occurs, the program status is
saved on the stack with an indication of the
reason for this state-switching before a new
program status is loaded from a special area of
memory. The program status consists of the
flag register, the control bits, and the program

counter. The reason for the occurrence is
encoded in a vector that is read from the sys-
tem bus and saved on the stack. In the case of
a vectored interrupt, the vector also deter-
mines a jump table address that points to the
interrupt processing routine.

The inclusion of system and normal modes
improves operating system organization. In the
system mode, all operations are allowed; in the
normal mode, certain system instructions are
prohibited. The System Call instruction allows
a controlled switch of mode, and the imple-
mentation of traps enforces these restrictions.

Traps result in the same type of program
status-saving as interrupts: in both cases, the
information saved is pushed on to a system
stack that keeps the normal stack undisturbed.
The Load Multiple instruction allows the con-
tents of registers to be saved efficiently in
memory or on the stack. Running programs
can cause program status changes under
direct software control with the Load Program
Status instruction.

Finally, exclusion and serialization can be
achieved with the “atomic” Test And Set
instruction that synchronizes asynchronous
cooperating processes.

1-5

THE INDEK poD

1.4.4 Support for Many Types of Data Struc-
tures. A data structure is a logical organiza-
tion of primitive elements (byte, word, etc.)
whose format and access conventions are well-
defined. Common data structures include
arrays, lists, stacks, and strings. Since data
structures are high-level constructs frequently
used in programming, processor performance
is significantly enchanced if the CPU provides
mechanisms for efficiently manipulating them.
The Z8000 offers such mechanisms.

In many applications, one of the most fre-
quently encountered data structures is the
array. Arrays are supported in the Z8000 by
the Base Index addressing modesand by seg-
mented addressing. The Base Index addressing
mode allows the use of pointers into an array
(i.e., offsets from the array’s starting address).
Segmented addressing allows an array to be
assigned to one segment, which can be refer-
enced simply by segment number.

Lists occur more frequently than arrays in
business applications and in general data pro-
cessing. Lists are supported by Indirect Reg-
ister and Base Address addressing modes. The
Base Index addressing mode is also useful for
more complex lists.

Stacks are used in all applications for nest-
ing oF routines, block structured languages,
and interrupt handling. Stacks are supported
by the Push and Pop instructions, and multiple
stacks may be implemented based on the
general-purpose registers of the Z8000. In

addition, two hardware stack pointers are used
to assign separate stacks to system and normal
operating modes, thereby further supporting
the separation of system and normal operating
environments discussed earlier.

Byte and word strings are supported by the
Translate and Translate And Test instructions.
Decimal strings use the Decimal Adjust
instruction to do decimal arithmetic on strings
of BCD data, packed two characters per byte.
The Rotate Digit instructions also manipulate
4-bit data.

1.4.5 Two CPU Versions: Z8001 and Z8002.
The Z8000 CPU is offered in two versions: the
Z8001 48-pin segmented CPU and the Z8002
40-pin nonsegmented CPU. The main differ-
ence between the two is addressing range. The
Z8001 can directly address 8M bytes of
memory; the Z8002 directly addresses 64K
bytes. The Z8001 has a non-segmented mode of
operation which permits it to execute programs
written for the Z8002.

Not all applications require the large
address space of the Z8001; for these appli-
cations the Z8002 is recommended. Moreover,
many multiple-processor systems can be imple-
mented with one Z8001 and several Z8002s,
instead of exclusively using Z8001s. Since the
same assembler generates code for both CPUs,
users can buy only the power they require
without having to worry about software incom-
patibility between processors.

-
e

1.5 Extended
Instruction
Facility

The Z8000 architecture has a mechanism for
extending the basic instruction set through the
use of external devices. Special opcodes have
been set aside to implement this feature. When
the CPU encounters an instruction with these
opcodes in its instruction stream, it will per-
form any indicated address calculation and
data transfer; otherwise, it will treat the
“extended instruction” as being executed by
the external device. Fields have been set aside
in these extended instructions which can be
interpreted by external devices (Extended Pro-

cessing Units—EPUs) as opcodes. Thus, by
using appropriate EPUs, the instruction set of
the Z8000 can be extended to include special-
ized instructions.

In general, an EPU is dedicated to perform-
ing complex and time-consuming tasks in
order to unburden the CPU. Typical tasks suit-
able for specialized EPUs include floating-
point arithmetic, data base search and main-
tenance operations, network interfaces,
graphics support operations—a complete list
would include most areas of computing.

1.6 Summary

The architectural sophistication of the Z8000
microprocessor is on a level comparable with
that of the minicomputer. Features such as
large address spaces, multiple memory spaces,
segmented addresses, and support for multiple
processors are beyond the capabilities of the
traditional mimieemputer. The benefits of this

MACRbee €900

architecture—code density, compiler support,
and operating system support—greatly
enhance the power and versatility of the CPU.
The CPU features that support an external
memory management system also enhance the
CPU'’s applicability to large system
environments.

1-6

2.1 Intro-
duction

This chapter provides an overview of the
Z8000 CPU architecture. The basic hardware,
operating modes and instruction set are all
described. Differences between the two ver-
sions of the Z8000 (the nonsegmented Z8002

‘Brehitecture

Chapter 2

and the segmented Z8001) are noted where
appropriate. Most of the subjects covered here
are also treated with greater detail in later
chapters of the manual.

2.2 General

Figure 2.1 contains a block diagram that

m An exceptioh-handling control, which pro-

Organization shows the major elements of the Z8000 CPU, cesses interrupts and traps.
namely: B A refresh control, which generates memory
B A 16-bit internal data bus, which is used to refresh cycles.
move address and data within the CPU. Each of these elements is explained in the
® A Z-Bus interface, which controls the inter- following sections. All of the elements are
action of the CPU with the outside world. common to both the Z8001 CPU and the Z8002
W A set of 16 general-purpose registers, which Cfpt g gggocélffereélce_s bstfweent}tlhe two};/er s1fons
is used to contain addresses and data. ot the are cerived trom the number o
)]] bits in the addresses they generate. The 78002
® Four spec1al-purpos.e registers, which con- always generates a 16-bit linear address, while
trol the CPU operation. the Z8001 always generates a 23-bit segmented
m An Arithmetic and Logic Unit, which is address (that is, an address composed of a
used for manipulating data and generating 7-bit segment number and a 16-bit offset).
addresses.
B An instruction execution control, which
fetches and executes Z8000 instructions.
{— - - — -
I REFRESH l
CONTROL l
GENERAL ARITHMETIC
I PURPOSE LOGIC
REGISTERS <E> UNIT t I
|
I COUNTER l
I <L INTERNAL DATA BUS ‘> NS e
I I iNsTRUCTION “ |
| L Jeirren” Prosna
REGISTERS t I
INSTRUCTION
I EXECUTION F———— EXCEPTION |
CONTROL F— _pc 9 HANDLING
l Fow CONTROL |
Z8Qo0cCP© —
Figure 2-1. Z8000 CPU Functional Block Diagram
26-0001-5900 2-1

2.2 General Figure 2.2 gives a system-level view of the Management Units (MMUs) that offer sophis-
Organization Z8000. It is important to realize that the Z8000 ticated memory allocation and protection
(Continued) CPU comes with a whole family of support features.
components. The Z8000 Family has been
designed to allow the easy implementation of
powerful systems. The major elements of such _
a system might include: B A large number of possible peripheral

devices interfaced to the Z-Bus th
B The Z-Bus, a multiplexed address/data ovices mieriaced to 1he us through

! Universal Peripheral Controllers (UPCs),
shared bus that links the components of the Serial Communication Controllers (SCCs),

B One or more Direct Memory Access (DMA)
controllers for high-speed data transfers.

system. Counter-Timer and Parallel I/O Controllers
m A 78001 or Z8002 CPU. (CIOs) or other Z-Bus peripheral
® One or more Extended Processing Units - controllers.
(EPUs), which are dedicated to performing B One or more FIFO I/O Interface Units
specialized, time-consuming tasks. (FIOs) for elastic buffering between the
B A memory sub-system, which in Z8001 CPU and another device, such as another
systems can include one or more Memory CPU in a distributed processing system.

PERIPHERALS

upC
EPU DMA - cio

EPU DMA scC

28000 <lL o j’>
P
FI10

MMU
Z8001 ONLY
MMU

o

MEMORY

Figure 2-2. Z8000 System Configuration

2-2 26-0001-0901

2.3 Hardware

Figure 2.3 shows the Z8000 pins grouped

Interface according to function. The Z8001 is packaged
in a 48-pin DIP and the Z8002 is packaged in a
. . cys . - S ADis [w—>
40-pin DIP. The eight additional pins on the sus) . | P DG
28001 are the seven segment-number lines and “mm{ e L ADqy |
the segment trap. Except for those eight, all AD;; f—s-
. . . . ~«——1 READ/WRITE ADqy fu—m
pins on the two CPU versions are identical. <~ NormaLETETER N bl
The Z8000 is a Z-Bus CPU; thus, activity on ~«—] evrEAWoRD ADg |
the pins is governed by the Z-Bus protocols STATUS Apy [«—> | ADDRESS!
(see The Z-Bus Summary). These protocols Dl ::’ : ::’ bl DATA RUS
specify two types of activities: transactions, —] s,: A,,: .
which cover all data movement (such as -«—isT, AD, |
memory references or I/O operations), and ey ze001 :g“ :
requests, which cover interrupts and requests coumo._{ —|sor 28092 v D
for bus or resource control. The following is a AD, |-
briet overview of the Z8000 pin functions; com- { —>| BUSRa — 1 =N~ zéo07
plete descriptions are found in Chapter 9. contnol| < s Ir ::: e "8'?'-"1
2.3.1 Address/Data Lines. These 16 lines —| : SNy [—> SE“E"T:
alternately carry addresses and data. The INTERRUPTS g el (numeer |
addresses may be those of memory locations or : snj _ :
I/O ports. The bus timing signal lines MULTI-MICRO { "y Y |
described below indicate what kind of informa- CONTROL} =—{¥o | seament |
tion the Address/Data lines are carrying. LT
2.3.2 Segment Number (Z8001 only). These T 1 t T
seven lines encode the address of up to 128 +5V GND LK RESET
relocatable memory segments. The segment
signals become valid before the address offset
signals, thus supporting address relocation by Figure 2-3. Z8000 Pin Functions
the memory managment system.
2.3.3 Bus Timing. These three lines include to determine when the multiplexed Address/
Address Strobe (AS), Data Strobe (DS) and Data Bus holds addresses or data. The Memory
Memory Request (MREQ). They are used to Request signal can be used to time control
signal the beginning of a bus transaction and signals to a memory system.
ST,-STp Definition 2.3.4 Status. These lines function to indicate
the kind of transaction on the bus (STy-STy),
0000 Internal operation whether it is a read or write (R/W, where High
0001 Memory refresh
0010 /O reference is Read and Low is Write), whether it is on
0011 Special IO reference byte or word data (B/W, High = byte,
0100 Segment trap acknowledge Low = word), and whether the CPU is
0101 Non-maskable interrupt acknowledge operating in normal mode or system mode
0110 Non—vecto-red interrupt acknowledge (N/S High = normal, Low = system). The
0111 Vectored interrupt acknowledge ! . ! ol
1000 Data memory request ST,-STj; lines also encode additional
1001 Stack memory request characteristics of the bus transactions, as Table
1010 Data memory request (EPU) 2.1 shows. The availability of status information
1011 Stack memory request (EPU) defining the type of bus transaction in advance
b1oo Instruction space access of data transmission allows bidirectional
1101 Instruction fetch, first word
1110 EPA Transfer drivers and other external hardware elements
1111 Reserved to be enabled before data is transferred.
Table 2.1 Status Line Codes
C8071-0089 2-3

2.3 Hardware 2.3.5 CPU Control. These inputs allow exter-

Interface
(Continued)

nal devices to delay the operation of the CPU.
The WAIT line, when active (Low), causes the
CPU to idle in the middle of a bus transaction,
taking extra clock cycles until the WAIT line
goes inactive; it is typically input by memory
or I/O peripherals which operate more slowly
than the CPU. The Stop (STOP) line halts

internal CPU operation when the first word of

an instructior¥has been fetched. This signal is
useful for single-step instruction execution dur-
ing debugging operations and for enabling
Extended Processing Units to halt the CPU
temporarily.

2.3.6 Bus Control. These lines provide the
means for other devices, such as direct
memory access (DMA) controllers, to gain
exclusive use of the system bus, i.e., the signal
lines that are common to several devices in a
system. The external device requesting control
of the bus inputs a bus request (BUSREQ); the
CPU responds with a bus acknowledge
(BUSACK) after three-starting, or electrically
neutralizing, the Address/Data Bus, Bus Tim-
ing lines, Status lines, and Control lines. The
Z-Bus allows a daisy chain to be used to

enforce a priority among several external
devices.

2.3.7 Interrupts. Three interrupt inputs are
provided: non-maskable interrupts (NMI), vec-
tored interrupts (VI) and non-vectored inter-
rupts (NVI). These permit external devices to
suspend the CPU’s execution of its current
program and begin executing an interrupt ser-
vice routine.

2.3.8 Segment Trap Request (Z8001

only). This input to the CPU is used by an
external memory-management system to indi-
cate that an illegal memory access has been
attempted.

2.3.9 Multi-Micro Control. The Multi-Micro In
(MI) and Multi-Micro Qut (MO) lines are used
in conjunction with instructions such as MSET
and MREQ to coordinate multiple-CPU sys-
tems. They allow exclusive use by one CPU of
a shared resource in a multiple-CPU system.

2.3.10 System Inputs. The four inputs shown
at the bottom of Figure 3 include +5 V power,
ground, a single-phase clock signal and a CPU
reset. The reset function is described in
Chapter 7.

2.4 Timing

Figure 2.4 shows the three basic timing
periods of the Z8000: a clock cycle, a bus
transaction, and a machine cycle. A clock
cycle (sometimes called a T-state) is one cycle
of the CPU clock, starting with a rising edge.
A bus transaction covers a single data move-
ment on the CPU bus and will last for three or
more clock cycles, starting with a falling edge

MACHINE

of AS and ending with a rising edge of DS. A
machine cycle covers one basic CPU operation
and always starts with a bus transaction. A
machine cycle can extend beyond the end of a
transaction by an unlimited number of clock
cycles. Appendix A contains a complete
description of Z8000 timing.

CYCLE

BUS
TRANSACTION

<——+ CLOCK CYCLE

le——

CPU CLOCK I l | | I I l | I | | I I I | | |

/

A4

\/

N/

Figure 2-4. Basic Timing Periods

2.5 Address
Spaces

The Z8000 supports two main address
spaces corresponding to the two different kinds
of locations that can be addressed:

W Memory Address Space. This consists of the
addresses of all locations in the main
memory of the computer system.

B [/O Address Space. This consists of the
addresses of all /O ports through which
peripheral devices are accessed.

For more information on address spaces, con-
sult Chapter 3.

2.5.1 Memory Address Space. Memory
address space can be further subdivided into
Program Memory address space, Data Memory
address space, and Stack Memory address
space, each for both normal and system
modes.

The particular space addressed is deter-
mined by the external circuitry from the code
appearing at the CPU’s output status pins
(STy-ST3) and the state of the Normal/System
signal (N/S pin). Data memory reference, stack
memory reference, and program memory

/

2-4

26-0001-06902

—

{

2.5 Address
Spaces
(Continued)

reference each correspond to a different status
code at the STy-ST; outputs, allowing three
address spaces to be distinguished for each of
two operating modes, giving six address
spaces in all. Each of the six address spaces
has a range as great as the addressing ability
of the processor. For the nonsegmented 28002,
each address space can have up to 64K bytes,
giving a potential total system capacity of 384K
bytes of directly addressable memory. The
segmented Z8001, on the other hand, provides
up to 48M bytes of directly addressable mem-
ory due to the 23-bit segmented addresses.
Segmentation is a means of partitioning
memory into variable-size segments so that a
variety of useful functions may be

permitted:,
including: IMPLEMENTED,

W Protection mechanisms that prevent a user
from referencing data belonging to others,
attempting to modify read-only data or over-
flowing a stack.

® Virtual memory, which permits a user to
write functioning programs under the
assumption that the system contains more
memory than is actually available.

£{ oCATING
® Dynamic %efeoea-t-ren which allows the place-
ment blocks of data in physical memory

independently of user addresses, allowing
better management of the memory resources
and sharing of data and programs.

The signals provided on the segmented
Z8001 CPU assist in implementing these
features, although additional software and
external circuitry (such as the 28010 MMU) is
generally required to take full advantage of
them. Chapter 3 contains an extensive discus-
sion of segmentation and the Z8001.

2.5.2 I/O Address Space. [/O addresses are
represented as 16-bit words for both the Z8001
and Z8002.

‘There are two I/O address spaces, Standard
I/O and Special I/O, which are both separate
from the memory address space. Each I/O
space is accessed through a separate set of /O
instructions, which can be executed only when
the CPU is operating in system mode.

Standard I/O instructions transfer data
between the CPU and peripherals and Special
I/O instructions transfer data to or from exter-
nal CPU support circuits such as the Z8010
MMU. Access to Standard or Special I/O
space is distinguished by the status lines
(STp-STj3).

2.6 General-

The Z8000 CPU contains 16 general-purpose

RHO-RL7, which may be used as accumulators,

Purpose registers, each 16 bits wide. Any general- overlap the first eight word registers. Register
Registers purpose register can.be used for any instruc- grouping for larger operands include eight
tion operand (except for minor exceptions double-word (32-bit) registers, RRO-RR14, A“-:R &5‘2;?;"2:
described at the beginning of Chapter 5). which are used by a few instructions such as Rao~Rq .
Figure 2.5 shows these general-purpose reg- Multiply, Divide, and Extend Sign. ?
isters. They allow data formats ranging from As Figure 2.5 illustrates, the CPU has two
bytes to quadruple words. The word registers hardware stack pointers, one dedicated to each
are specified in assembly-language statements of the two basic operating modes, system and
as RO through R15. Sixteen byte registers,
Z8001 Z8002
aro (Ro [7 RHO ol7 RLO 0] "0[rof7_ RHO 7 AL |
R [15 RH1 T RLI 0] m[is AH1 j ALY o]
[w2 1 RL2] oo R2[RHZ RL2] e
e ’ as[RH3 j RL3] . { raf RK3 RLS]
Raf RHA : RLA] Re[RHa ALA]
h { s AHS I RLS] RR‘{ as| RHS RLS]
e { L AHE j RLG | Ras e ' Re[AHE] fas
A T ; RLT 1 Rz [AHT RLE RLT7]
R“[rs [15 o] “‘[s[5 o]
aof] RQ8 !] Ra8
RR10 [mol 1 RR10 [mol___ J
an [1 R | 1
"m[rz[] Rmzl mz[]
LE] maf 1
R'TW Rat2 A] Ron
R14 NORMAL STACK POINTER (SEG. NO.) R14 .
AR R1s* [SYSTEM STACK POINTER (OFFSET) " { m:ii s;i‘::ss:::':(:(:::s:]j
R1S L NORMAL STACK POINTER (OFFSET}
Figure 2-5a. Z8001 General-Purpose Registers Figure 2-5b. Z8002 General-Purpose Registers
(Register Address Space) (Registers Address Space)
C8064-0207 C8064-0208 2-5

2.6 General- normal. The segrﬁented Z8001 uses a two-word mode. The normal stack pointer is used for

Purpose stack pointer for each mode (R14'/R15' or subroutine calls in user programs. In normal-
Registers R14/R15), whereas the nonsegmented Z8002 mode operation only the normal stack pointer
(Continued) uses only one word for each mode (R15’ is accessible. In system-mode operation, the

or R15).

system stack pointer is directly accessible as ' j
The system stack pointer is used for savin

ne of the general-purpose registers. Theuser \

status information when an interrupt or tra
occurs and for supporting calls in system

stack pointer can be accessed as a special con-
trol register.

2.7 Special-
Purpose
Registers

In addition to the general-purpose registers,
there are special-purpose registers. These
include the Program Status registers, the Pro-
gram Status Area Pointer, and the Refresh
Counter; they are illustrated for both CPU ver-
sions in Figure 2.6. Each register can be
manipulated in software executing in system
mode, and some are modified automatically by
certain operations.

2.7.1 Program Status Registers. These
registers include the Flag and Control Word
(FCW) and the Program Counter (PC). They
are used to keep track of the state of an exe-
cuting program.

In the nonsegmented Z8002, the Program
Status registers consist of two words: one each
for the FCW and the PC. In the segmented
28001, there are four words: one reserved
word, one word for the FCW and two words for
the segmented PC.

The low-order byte of the Flag and Control
Word (FCW) contains the six status flags, from
which the condition codes used for control of
program looping and branching are derived.
The six flags are:

Carry (C), which generally indicates a carry
out of the high-order bit position of a register
being used as an accumulator.

Zero (Z), which is generally used to indicate
that the result of an operation is zero.

Sign (S), which is generally used to indicate
that the result of an operation is a negative
number.

15 0

ooaoonnooonouonoIREssnvzn
I||1|1|||1|||111l""”“J

FLAG AND
Issalsmlzmlws[uwsl o 0 o] c I z l s]PNlnAI H I] u] CONTROL
L1 i WORD

L°l]) I°1°1°|°1°|°|°|T]

L SEGMENT OFFSET
1 1 1 | 1 1 1 1 1 E
28001 Program Status Registers

SEGMENT NUMBER
1] | 1

PROGAAM
COUNTER

| ! i l__1]

15 0
SEGMENT NUMBER

m I °) °]
UPPER OFFSET

I [T i S I]°|°|°1°|“|°|°1°]

Program Status Area Pointer
1 8 o

l L4 1 1

I°|°|°|°1°|°|

78001
4

15
l:sl 1.1 “IYE 11

28001 Refresh Counter

Parity/Overflow (P/V), which is generally used
to indicate either parity (after logical opera-
tions on byte operands) or overflow (after
arithmetic operation).

Decimal-Adjust (D), which is used in BCD
arithmetic to indicate the type of instruction
that was executed (addition or subtraction).

Half Carry (H), which is used to convert the
binary result of a previous decimal addition or
subtraction into the correct decimal (BCD)
result.

Section 6.3 provides more detail on these
flags.

The control bits, which occupy the high-
order byte of the FCW, are used to enable
various interrupts or to control CPU operating
modes. The control bits are:

Non-Vectored Interrupt Enable (NVIE), Vec-
tored Interrupt Enable (VIE). These bits deter-
mine whether or not the CPU will accept non-
vectored or vectored interrupts (see Section

2.13).

System/Normal Mode (S/N). When this bit is
set to one, the CPU is operating in system
mode; when cleared to zero, the CPU is in
normal mode (see Section 2.8). The CPU out-

put status line (N/S pin) is the complement of
this bit.

Extended Processor Architecture (EPA)
Mode. When this bit is set to one, it indicates

that the system contains Extended Processing
Units, and hence extended instructions

15
lolsmlznlvnsluwslo 0 n]clzls[wvlnalul [o] CONTROL
1 | 1 WORD

[ADDRESS
]] | i 1 | L 1

PROGRAM
i 1 | i { { 1 COUNTER

Z8002 Program Status Registers

UPPER POINTER
Ll | | °1°|°|°1°|°:"|“—I

Z8002 Program Status Area Pointer

15 14 9 8 0
[us l RATE ROW
L1 L1 {1]

28002 Refresh Counter

Figure 2-6. CPU Special Registers

2-6

C8002-0283 26-0001-0903

2.7 Special
Purpose
Registers
(Continued)

encountered in the CPU instruction stream are
executed (see Section 2.12). When this bit is
cleared to zero, extended instructions are
trapped for software emulation.

Segmentation Mode (SEG). This bit is imple-

mented only in the Z8001; it is always cleared
in the nonsegmented Z8002. When set to one,
the CPU is operating in segmented mode, and
when cleared to zero, the CPU is operating in
nonsegmented mode (see Section 2.8).

2.7.2 Program Status Area Pointer

(PSAP). The Program Status Area Pointer
points to an array of progam status values
(FCW and PC) in main memory called the Pro-
gram Status Area. & New Program Status reg-

ister value?)%afetched from this area when an
interrupt or trap occurs. As shown in Figure
2.6, the PSAP comprises either one word (non-
segmented Z8002) or two words (segmented
Z8001); for either configuration, the lower byte
of the pointer must be zero. Refer to Chapter 7
for more details about the Program Status Area
and its layout.

2.7.3 Refresh Counter. The CPU contains a
programmable counter that can be used to
refresh dynamic memory automatically. The
refresh counter register consists of a 9-bit row
counter, a 6-bit rate counter and an enable bit
(Figure 2.6). Refer to Chapter 8 for details of
the refresh mechanism.

2.8 Instruction
Execution

In the normal course of events, the Z8000
CPU will spend most of its time fetching
instructions from memory and executing them.
This process is called the running state of the
CPU. The CPU also has two other states that it
occasionally enters.

Stop/Refresh State. This is really one state,
although it may be entered in two different
ways: either automatically for a periodic
memory refresh; or when the STOP line is acti-
vated. In this state, program execution is
temporarily suspended and the CPU makes use
of the Refresh Counter to generate refreshes.
For more information, consult Chapter 8.

Bus-Disconnect State. This is the state the
CPU enters when the DMA, or some other bus
requester, takes over the bus. Program execu-
tion is suspended and the CPU disconnects
itself from the bus. See Chapter 7 for more
information.

While the CPU is in the running state, it can
either be handling interrupts or executing

instructions. If it is executing instructions, the
78000 can be in the system or normal execu-
tion mode. In system mode, privileged instruc-
tions (such as those which perform I/O) can be
executed; in normal mode they cannot. This
dichotomy allows the creation of operatifig
system software, which controls CPU resources
and is protected from application program
action.

In addition, the CPU will be in either seg-
mented or nonsegmented mode. In segmented
mode, which is available only on the Z8001,
the program uses 23-bit segmented addresses
for memory accesses; in nonsegmented mode,
which is available on both CPUs, the program
uses 16-bit nonsegmented addresses for mem-
ory accesses.

While executing instructions, the mode of
the CPU is controlled by bits in the FCW (Sec-
tion 2.8). While handling interrupts, the CPU
is always in system mode and, for the Z8001, in
segmented mode.

2.9 Instructions The Z8000 instruction set contains over 400

different instructions which are formed by
combining the 110 distinct instruction types
(opcodes) with the various data types and
addressing modes. The complete set is divided
into the following groups:

Load and Exchange for register-to-register
and register-to-memory operations, including
stack management.

Arithmetic for arithmetic operations, including
multiply and divide, on data in either registers
or memory. Compare, increment, and decre-
ment functions are included.

Logical for Boolean operations on data in
registers or memory.

Program Control for program branching (con-
ditional or unconditional), calls, and returns.

Bit Manipulation for setting, resetting and
testing individual bits of bytes or words in
registers or memory.

Rotate and Shift for bytes, words, or for shifts
only, long words, within registers.

Block Transfer and String Manipulation for
automatic memory-to-memory transfers of data
blocks or strings, including compare and
translate functions.

Input/Qutput for transfers of data between I/O
ports and memory or registers.

Extended for operations involving Extended
Processing Units.

CPU Control for accessing special registers,
controlling the CPU operating state, synchro-
nizing multiple-processor operation, enabling/
disabling interrupts, mode selection, and
memory refresh. ’

Chapter 6 contains details on the full instruc-
tion set.

2-7

2.9.1 Instruction Ft;}iﬁats. Formats of the

A COMPACT INSTRUCTION FORMAT

2.9
Instructions instructions are shown in Figure 2.7. The two Lon i'r1'f‘r.52'”£.“:'s.]
(Continued) most significant bits in the instruction word .
N . . CALL RELATIVE
determine whether the compact instruction for- o] T e T
mat (A) or the general instruction format (B) is J—
used. Compact formats encode the four most w o] & [e]
frequently used instructions into single words, DECREMENT AND JUMP ON NON-ZERO
thereby saving on instruction-memory usage ooz 1] T T Tw] T olsel]
and increasing execution speed. As long as
the two most significant bits are not logic ones,
3 B. GENERAL INSTRUCTION FORMAT (FIRST WORD)
the general format applies. In the general for- addressing
mat, the two most significant bits in conjunc- moc
tion with the source-register field are sufficient worn " [_Z] " obcods " W] 'source | destination]
for specitying any of the five main addressing addressing
modes. Source and destination fields are four WORD OR . r/l T IR Py
bits wide for addressing the 16 general- LONG WORD spco e | S
pUI‘pOSG registers . Note: W indicates Word (1) or Byte {0)
Figure 2-7. Instruction Formats
2.10 Data The Z8000 supports manipulation of eight B Unsigned byte decimal integer
Types data types. Five of these have fixed lengths; 8 Dynamic-length string of byte data
the other three have lengths that can vary
dynamically. Each data type is supported by a ® Dynamic-length string of word data
number of instructions which operate upon it B Dynamic-length stack of word data
directly. These data types are: Bits can be manipulated in registers or
m Bit memory. Binary and decimal integers and
W Signed and unsigned byte, word, long logical values can be manipulated in registers
word, or quadruple word binary integer only, although operands can be fetched direct-
) ly from memory. Addresses are manipulated
B Byte- or word-length logical value and-used-only in registers, and strings and
® Word (nonsegmented) or long word stacks A&Ewe manipulated only in memory.
(segmented) address
2.11 The information included in Z8000 instruc- in the location whose address is the sum of the
Addressing tions consists of the function to be performed, contents of an index value in a register and an
Modes the type and size of data elements to be address in the instruction.

manipulated; and the location of the data
elements. Locations are designated using one
of the following eight addressing modes:

Register Mode. The data element is located in
one of the 16 general-purpose registers.

Immediate Mode. The data element is located
in the instruction.

Indirect Register Mode. The data element can
be found in the location whose address is in a
register.

Direct Address Mode. The data element can
be found in the location whose address is in
the instruction.

Index Mode. The data element can be found

Relative Address Mode. The data element can
be found in the location whose address is the
sum of the contents of the program counter
and a displacement in the instruction.

Base Address Mode. The data element can be
found in the location whose address is the sum
of a base address in a register and a displace-
ment in the instruction.

Base Index Mode. The data element can be
found in the location whose address is the sum
of a base address in one register and an index
value in another register.

Chapter 5 defines and illustrates the eight
addressing modes.

2.12 Extended
Processing
Architecture

An important feature of the Z8000 CPU
architecture is the Extended Processing
Architecture (EPA) facility. This facility pro-
vides a mechanism by which the basic instruc-
tion set of the CPU can be extended via exter-
nal devices, called Extended Processing Units
(EPUs). A special set of instructions, called
extended instructions, is used to control this
feature. When the CPU encounters one of

these extended instructions in its instruction
stream, it will either trap to a software trap
handler to process the instruction or it will
perform the data transfer portion of the
instruction (leaving the data manipulation part
of the instruction to the EPU). Whether the
CPU traps or transfers data depends on the
setting of the EPA bit in the FCW.

26-0001-0904

-

2.12 Extended
Processing
Architecture
(Continued)

The underlying philosophy behind the EPA
feature is a view of the CPU as an instruction
processor—the CPU fetches instructions,
fetches data associated with the instruction,
performs the operations and stores the result.
Extending the number of operations performed
does not affect the instruction fetch and
address calculation portion of the CPU activi-
ty. The extended instructions exploit this

feature—the CPU fetches the instruction and
performs any address calculation that may be
needed. It also generates the timing signals for
the memory access if data must be transferred
between memory and the processor.
But the actual data manipulation is handled by
the EPU. The Extended Processing Architec-
ture is explained more fully in Chapter 4.

2.13
Exceptions

Three events can alter the normal execu-
tion of a ZB00O program: hardware interrupts
that occur when a peripheral device needs ser-
vice, synchronous software traps that occur
when an error condition arises, and system
reset. Chapter 7 contains a detailed descrip-
tion of exceptions and how they are handled.

2.13.1 Reset. a system reset overrides all other
operating conditions. It puts the CPU in a
known state and then causes a new program
status to be fetched from a reserved area of
memory to reinitialize the Flag and Control

Word (FCW) and the Program Counter (PC).

2.13.2 Traps. Traps are synchronous events
that are usually triggered by specific instruc-
tions and recur each time the instruction is
executed with the same set of data and the
same process or state. The four kinds of traps
are:

Extended instruction attempted in non-EPA
mode. The current instruction is an EPU
instruction, but the system is not in EPA mode.
This trap allows system software to either
simulate instruction or abort the program.

Privileged instruction attempted in normal
mode. The current instruction is privileged
(I/O for example), but the CPU is in normal
mode.

System Call (SC) instruction. This instruction
provides a controlled access from normal-mode
to system-mode operation.

Segmentation violation (supplied by external
circuit). A segmentation violation, such as
using an olfset larger than the defined length
of the segment, can be made to cause an
external memory management system to signal
a segmentation trap. This can occur only with
the segmented Z8001.

2.13.3 Interrupts. Interrupts are asynchronous
events typically triggered by peripheral
devices needing attention. The three kinds of
interrupts associated with the three interrupt

lines of the CPU are:

Non-maskable interrupts (NMI). These inter-
rupts cannot be disabled and are usually
reserved for critical external events that
require immediate attention.

Vectored interrupts (VI). These interrupts
cause eight bits of the vector output by the
interrupting device to be used to select a par-
ticular interrupt service procedure to which
the program automatically branches.

Non-vectored interrupts (NVI). These inter-
rupts are maskable interrupts which are all
handled by the same interrupt procedure.

2.13.4 Trap and Interrupt Service Pro-
cedures. Interrupts and traps are handled
similarly by the Z8000 CPU. The Z8000 CPU
automatically acknowledges interrupt and pro-
cesses traps in system mode. In the case of the
segmented Z8001, the CPU uses the segmented
mode regardless of its mode at the time of
interrupt or trap. The program status informa-
tion in effect just prior to the interrupt or trap
is pushed onto the system stack. An additional
word, which serves as an identifier for the
interrupt or trap, also is pushed onto the
system stack, where it can be accessed by the
interrupt or trap handler. The Program Status
registers are loaded with new status informa-
tion obtained from the Program Status Area of
memory. Then control is transferred to the ser-
vice procedure, whose address is now located
in the Program Counter. For details of inter-
rupt and trap handling, refer to Chapter 7.

INTERRUWPT RERNESTS AND SECAENTATION

TRap REQUESTS ARE ACCEPTED AFTER THE
ComPLET o0 oF THE, INSTRUCT lops EYE€cuTon
DuRing, wHicH Ty WELE mApe.
THE INSTRUCTIo0 Ex€cuTtion
FETCH TRASS ACTIom 15 us

AT THE Eub of

) A 5Puious INSTRWeTIO N
UALLY PERForn €D BEFoRE

THE IBTERRUPT 0 ACKmowtE€GE SEQuence BE c1r'3)
BUT THE PRoGRAM CoquTER (S NoT AFFECTED BY
THE <PuRlous FETCH,

2-9

3.1 Intro-
duction

Programs and data may be located in the
main memory of the computer system or in
peripheral devices. In either case, the location
of the information must be specified by an
address of some sort before that information
can be accessed. A set of these addresses is
called an address space.

The Z8000 supports two different types of
addresses and thus two categories of address
spaces:

B Memory addresses, which specify locations
in main memory.

W /O addresses, which specify the ports
through which peripheral devices are
accessed.

Chapter 3
Address Spaces

The CPU genei;ates addresses during four
types of operations:

W Instruction fetches, described in Chapter 4.

®m Operand fetches and stores, described in
Chapter 5.

B FException processing, described in
Chapter 7.

B Refreshes, described in Chapter 8.

Timing information concerning addresses is
described in Chapter 9.

3.2 Types of

Within the two general types of address

B Data Spaces (status = 1000 or 1010), nor-

Address spaces (memory and I/O), it is possible to dis- mal mode (N/S = 1) or system mode
Spaces tinguish several subcategories. Figure 3.1 (N/S = 0). These spaces may be used to
shows the address spaces that are available on address the data that user or system pro-
both the Z8001 and the Z8002. grams operate on.
The c'lifferen_ce between the 28001 and the m Stack Spaces (status = 1001 or 1011), nor-
Z8002 lies not in the numbgr and type gf . mal mode (N/S = 1) or system mode
address §paces,.but rather in the organization (N/S = 0). These spaces can be used to
and maximum size qf each space. For the address the system and normal program
Z8001, each of the six memory address spaces stacks.
contains 8M byte addresses grouped into 128 _
segments, for a total memory addressing capa- W Standard I/O Space (status = 0010). This
bility of 48M bytes. For the Z8002, each mem- space addresses all the I/O ports that are
ory space is a homogeneous collection of 64K used for Z8000 peripherals.
byte addresses. In both the Z8001 and the 8 Special I/0 Space (status = 0011). This
28002, the /O address spaces contain 64K port space addresses ports in CPU support chips
addresses. When an address is used to access (such as the Z8010 Memory Management
data, the address spaces may be distinguished Unit).
by the state of the status lines (STg-ST3) (which
is determined by the way the address was
generated) and by the value of the Normal/ MEMORY ADDRESS SPACES 11O ADDRESS SPACES
System line (N/S) (which is determined by the SYSTEM MODE | NORMAL MODE SYSTER o0&
state of the S/N bit in the FCW). STANDARD 1O
INSTRUCTIONS { INSTRUCTIONS
B [nstruction Space (status = 1100 or 1101), DATA DATA SPECIAL IO
normal mode (N/S = 1) or system mode STACK STACK
(N/S = 0). These spaces typically address
memory that contains user programs
" (normal).or system programs (system). Figure 3-1. Address Spaces on the Z8001 and Z8002
- 3.3I/0 All I/O addresses are represented by 16-bit The address of a 16-bit port may be even or
. Address words. Each of the ports addressed is either odd for both address spaces. In standard I/O
Spaces eight or 16 bits wide. Transfer to or from 16-bit space, byte ports must have an odd address; in
ports always involves word data and, for 8-bit special I/O space, byte ports must have an
ports, byte data. even address.
26-0001-0905 3-1

3.4 Memory

Each memory address space in the Z8002, or
each segment in each memory address space
on the Z8001, can be viewed as addressing a
string of 64K bytes numbered consecutively in
ascending order. The 8-bit byte is the basic
addressable element in Z8000 memory address
spaces. However, there are three other
addressable data elements

g | Bn‘s, in elther bytes or words
W 16-bit words.
W 32-bit long words.

3.4.1 Addressable Data Elements. The nature
of the data element being addressed depends
on the instruction being executed. As Chapter
6 explains in detail, different assembler
mnemonics are used for addressing bytes,
words, and long words. Moreover, only certain
instructions can address bits.

A bit can be addressed by specifying a byte
or word address and the number of the bit
within the byte (0-7) or word (0-15). Bits are
numbered right-to-left, from the least to the

most significant. This is consistent with the
convention that bit n corresponds to position
2n in the conventional representation of -
positive binary numbers (see Figure 3.2).
The address of a data type longer than one
byte (word or long word) is the same as the ('
address of the byte with the lowest memory)

_.address within the word or long word (Figure
7.2). This'is the leftmost highest-order, or

most significant byte of the word or long word.

Word or long word addresses are always
even-numbered. Low bytes of words are stored
at odd-numbered memory locations and high
bytes at even-numbered locations. Byte
addresses can be either even- or odd-
numbered.

Certain memory locations are reserved for
system-reset handling. These are described
fully in Chapter 7. Except for these reserved
locations, there are no memory addresses
specifically designated for a particular
purpose.

BITS IN A BYTE

[I[!ll[lll[llI!llsnsmAwonn

Address n

L. ...]

Address n (even)

BYTE

Address n + 1

UPPER BYTE I
i) T i

LOWER BYTE I WORD
I S T |

Address n

Address n + 1

Address n + 2

Address n + 3

| UPPER WORD/UPPER BYTE I 1
e 1 L 1 1 1 1 L 1 F 1 Il L 1
LONG WORD

[L L I 1 i i

l LOWER WORD/LOWER BYTE |
N TS W N N S |

Figure 3-2. Addressable Data Elements

3.4.2 Segmented and Non-Segmented
Addresses. The two versions of the Z8000 CPU
generate two kinds of addresses with different
lengths. The Z8002 generates a 16-bit address
specilying one of 64K bytes. The Z8001 gener-
ates a 23-bit segmented address. A segmented
address consists of a 7-bit segment number,
which specifies one of 128 segments, and a
16-bit offset, which specifies one of up to 64K
bytes in the segment . Each segment is an

¢ independent collection of bytes; thus, instruc-

(L'V Eﬁp tions and multiple byte data elements cannot

cross segment boundaries. Some of the advan-
tages of address segmentation are outlined in

% Section 3.4.3.

Figure 3.3 shows the format of segmented
and nonsegmented addresses. Nonsegmented
addresses are 16 bits long and thus can be
stored in word registers (Rn) or in memory as

word-length addressable elements. The 23-bit
segmented addresses are embedded in a 32-bit
long word and thus can be stored in a long
word register (RRn) or a long word memory
element.

It is important to realize that even though
the Z8001 can operate in nonsegmented mode
(Chapter 4), it always generates segmented
addressesy

WMW £ NT HUMBE E
Non-Segménted Mcmory Address

£ING '?uppuED BY

. {28002 Only) . PQ;M“P\
CounNTER
L. . ., AoRess .155(,,,5»\'&
Segmented Memory Address NV’M h ’
(28001 Only)
15 14 8 7 0
|o.o.ololololo.o

0} SEGMENT #
R T
OFFSET
Y VRS W TR W S il et T S VO SR S WY

15 0

Figure 3-3. Segmented and Non-Segmented
Address Formats

26-0001-0906 26-0001-0907

3.4 Memory 3.4.3 Segmentation and Memory Manage- B Support for multiple, independently execut-
Address ment. Addresses manipulated by the pro- ing programs that can share access to com-
Spaces grammer, used by instructions, and output by mon code and data.
(Continued) the Z8001 are called “logical adfires.ses. An m Protection from unauthorized or uninten-
external memory-management circuit can tional access to data or programs.
translate logical addresses into physical .])
(actual) memory addresses and perform certain W Detection of ObVIOUSIY incorrect use of
checks to insure data and programs are prop- memory by an executing program.
erly accessed. B Separation of users from system functions.
Tfhe ZB(R}Q I\f/Iem(t)'ry I\f/Iantahgement Urtntd(MMU) Segmentation in the Z8001 helps support
beriorms this tunction ior the segmente memory management in two ways:
addresses produced by the Z8001 CPU. A Y . g Y
single MMU keeps a descriptor for each of 64 ® By allowing part of an address (the segment
segments. This descriptor tells where in number) to be OUtPUt by the CPU early in a
physical memory the segment lies, how long memory cyf:le. T.hls keeps access to th? seg-
the segment is, and what kind of accesses can ment d§scr iptor n the MMU from adding to
be made to the segment. The MMU uses these the basic access time of the memory.
descriptors to translate logical segment ® By providing a standard, variable-sized unit
numbers and offsets into 24-bit physical of memory for the protection, sharing, and
addresses (as shown in Figure 3.4). At the movement of data.
same tlrpe, the MIC\;IU (l:hecks for such errors as In addition, segmentation is the natural
writing 1r113to'a read-on zs};egment or a system model for the support of modular programs
segmerﬁzM?}ng acges§e dy a EOHSYStgfn pdro- and data in a multi-programming environment.
gl:am. hs ar;4 esigned to ebcom ne tsg It efficiently supports re-entrant programs by
that more than 64 segments can be supporte providing data relocation for different tasks
at once.) using common code.
Some of the benefits of the memory manage- More information about the MMU and
ment features provided by the MMU are: memory management can be found in An
® Provision for flexible and efficient allocation Introduction to the Z8010 MMU Memory
of physical memory resources during the Management Unit and in the Z8010 MMU
execution of programs. Technical Manual.
LOGICAL
{virtual)
ADDRESSING PHYSICAL
sez:::‘r] r— MEMORY
RE
| | Z°
| |]
SEGMENT 1 }]
s i £
e s
l | o
ms g / | :/f/ 0 "E'
SEGMENT 2 /I,E ! D
18 0 OFFSET }] : u
L4 TS T S N ?FFISE'E Lod i |ﬂ FROP]leG { g/f/
i
/rg 1
Iz | =
I 7/ EE
| w av
P ES @
SEGMENT N { |
| T %
] I 5=
| 1 @
!
—d
SEGMENT 127 / T
Segments of physical
memory can be loaded
from peripheral devices
through the CPU or DMA.
Figure 3-4. Segmented Address Translation
26-0001-0908 3-3

4.1 Intro-
duction

This chapter gives a fundamental description

of the operating states of the Z8000 CPU and
the process of instruction execution. The
details of instruction execution are described
in Chapters 5 and 6. Other detailed aspects of

Chapter 4
CPU Operation

Z8000 operation are given in Chapter 7
(Exceptions) and Chapter 8 (Refresh). Chapter
9 describes CPU operations as they are mani-
fest on the external pins of the CPU.

4.2 Operating

States

The Z8000 CPU has three operating states:
Running state, Stop/Refresh state, and Bus-
Disconnect state. Running state is the usual
state of the processor: the CPU is executing
instructions or handling exceptions. Stop/
Refresh state is entered when the STOP line is
asserted or the refresh counter indicates that a
periodic refresh should be done. In this state,
memory refresh transactions are generated
continually (see Chapter 8). Bus-Disconnect
state is entered when the CPU acknowledges a
bus request and gives up control of the system
bus. Figure 4.1 shows the three states and the
conditions that cause state transitions.

4.2.1 Running State. While the CPU is in
Running state, it is either executing instruc-
tions (as described in Section 4.3) or handling
exceptions (as described in Chapter 7). The
CPU is normally in Running state, but will
leave this state in response to one of three con-
ditions:

B The refresh mechanism indicates that a
periodic refresh needs to be done, in which
case the CPU temporarily enters Stop/
Refresh state.

STOP RELEASED, OR
PERIODIC REFRESH
COMPLETED

BUSREQ RELEASED, —
STOP ASSERTED, OR
STOP INACTIVE PERIODIC REFRESH

REQUESTED

STOP/REFRESH
STATE

BUS-
DISCONNECT
STATE

BUSREQ RELEASED,
STOP ACTIVE

BUSREQ ASSERTED,
AND ACKNOWLEDGED ON
BUSACK

Figure 4-1. Operating States and Transistions

B An external stop request pushes the CPU
into Stopped state.

B An external bus request pushes the CPU
into Bus-Disconnect state.

4.2.2 Stop/Refresh State. While the CPU is in
Stop/Refresh state, it generates a continuous
stream of refresh cycles (as discussed in Chap-
ter 8) and does not perform any other func-
tions. This state provides for the generation of
memory refreshes by the CPU and allows
external devices to suspend CPU operation.
This feature can be used to force single-step
operation of the processor or to synchronize
the CPU with an Extended Processing Unit (as
described in Section 4.4).

The CPU enters Stop/Refresh state when the
refresh mechanism needs to do a refresh or
when the stop line is activated. It leaves Stop/
Refresh state when neither of these conditions
hold or when a bus request causes the CPU to
enter Bus-Disconnect state.

4.2.3 Bus-Disconnect State. While the CPU is
in Bus-Disconnect state, it does nothing. It
enters Bus-Disconnect state from either Run-
ning state or Stop/Refresh state when a bus
request has been received on BUSREQ and
acknowledged on BUSACK as (described in
Chapter 9). While in this state, it disconnects
itself from the bus by 3-stating its output. It
will leave Bus-Disconnect state when the exter-
nal bus request has been received. Note that
Bus-Disconnect state is highest in priority in
that the presence of a bus request will force
the CPU into this state, regardless of any con-
ditions indicating that a different state should
be entered.

4.2.4 Effect of Reset. Activation of the CPU's
RESET line puts the CPU in a nonoperational
state within five clock cycles, regardless of its
previous state or the states of its other inputs.
The CPU will remain in this state until REGET
is deactivated. When this occurs, the
processor enters one of the three operating
states described above, depending on the state
of BUSREQ and STOP inputs. Reset is more
fully described in Chapters 7 and 9.

26-0001-0909

41

4.3 Instruction
Execution

While the CPU is in Running state and exe-
cuting instructions, it is controlled by the Pro-
gram Status registers (Figure 4.2). The Pro-
gram Counter gives the address from which
instructions are fetched, the flags control
branching (as described in Chapter 6), and
the control bits determine the mode in which
the CPU updates (see Section 4.3) and the
interrupts that are masked (see Chapter 7).

Instruction execution consists of the repeated
application of two steps:

H Fetch one or more words comprising a
single instruction from the program memory
address space at the address specified by
the Program Counter (PC).

m Perform the operation specified by the
instruction and update the Program Counter
and flags in the Program Status registers.

The operation performed by an instruction
and the way the flags are updated depends on
the particular instruction being executed and
is described in Chapter 6. For most instruc-
tions, the PC value is updated to point to the
word immediately following the last word of the
instruction. The effect of this is that instruc-
tions are fetched sequentially from memory.
Exceptions to this are Branch, Call, and
Return instructions, which cause the PC to be
set to a value generated by the instruction.
This causes a transfer of control with execution
continuing at the new address in PC. The
exact operation of these instructions is
described in Chapter 6.

The Z8000 CPU is able to overlap the fetch-
ing of one instruction with the operation of the
previous instruction. This facility, called
Instruction Look-Ahead, is illustrated in Figure
4.3. This shows the execution of a series of

Ro[7

o
£
»
=
o
o

=4

Rt [1s

RQO

A2 |

R3[|

Ra |

Rs |

Re |

LI LIl ite]

GENERAL
PURPOSE
REGISTERS

El
4
@

L=

RQ8

=

RQ12

Figure 4-2. General-Purpose Registers

memory-to-register instructions, such as a
value in memory being added to the value in a
general-purpose register. Part of each instruc-
tion is fetched while the previous instruction

execution is being completed. This mechanism N

provides faster execution speed than the
typical alternative of fetching each instruction
only after the prior instruction has completed
execution.

After executing an instruction and in some
cases (explained in Chapters 6 and 7) during
an instruction’s execution, the CPU checks to
see if there are any traps or interrupts pending
and not masked. If so, it temporarily suspends
instruction execution and begins a standard
exception-handling sequence. This sequence,
which is described fully in Chapter 7, causes
the value of the Program Status registers to be
saved and a new value loaded. Instruction exe-
cution then continues with a new PC value and
Flag and Control Word value. The effect is to
switch the execution of the CPU from one pro-
gram to another.

4.3.1 Running-State Modes. While the CPU is
executing instructions, its mode will be con-
trolled by two control bits in the FCW: the
systém/normal mode bit (S/N) and the segmen-
tation mode bit (SEG).

4.3.2 Segmented and Nonsegmented

Modes. The segmentation mode of the CPU
(segmented or nonsegmented) determines the
size and format of addresses that are directly
manipulated by programs. In segmented mode
(SEG = 1), programs manipulate 23-bit seg-
mented addresses; in nonsegmented mode
(SEG = 0), programs generate 16-bit nonseg-
mented addresses. There are also the following
differences in the address portion of instruc-
tions, which are executed due to the difference
in address size:

® Indirect and Base Registers are 32-bit
registers in segmented mode and 16-bit
registers in nonsegmented mode.

m Address-embedded instructions are always
16-bits in nonsegmented mode. They consist
of a 7-bit segment number and either an
8-bit or 16-bit offset in segmented mode.

Segmented mode is available only on the
Z8001 CPU; on the Z8002, the segment bit is
always forced to zero, indicating nonseg-
mented mode. Because the Z8001 supports
segmented and nonsegmented modes, it is
possible to run programs written for the Z8002
on the 28001 without alteration. The reverse is
not possible. The Z8001 CPU always generates
segmented addresses, even when operating in
nonsegmented mode. When a memory access

4-2

26-0001-0910

)

4.3 Instruction is made in nonsegmented mode, the offset of

Execution
(Continued)

the segmented address is the 16-bit address
generated by the program, and the segment
number is the value of the segment number
tield of the Program Counter.

4.3.3 Normal and System Modes. The opera-
tion mode of the CPU (system mode or normal
mode) determines which instructions can be
executed and which Stack Pointer register

is used.

In system mode (S/N = 1), all instructions
can be executed. While in normal mode, cer-
tain privileged instructions that alter sensitive
parts of the machine state (such as I/O opera-
tions or changes to control registers) cannot be
executed.

The second distinction between system and
normal mode is access to the system or normal
Stack Pointer. As shown in Figure 4.2, there
are two copies of the Stack Pointer registers
(Register 15 in the Z8002 and Registers 14 and
15 in the Z8001): one for normal mode and one
for system mode. When in normal mode, a
reference to the Stack Pointer register by an
instruction will access the normal Stack
Pointer. When in system mode, an access to
the Stack Pointer register will reference the

system Stack Pointer, unless the Z8001 is run-
ning in nonsegmented system mode, in which
case a reference to R14 will access the normal
mode R14. This is summarized in Table 4.1.

In normal mode, the system Stack Pointer is
not accessible; in system mode the normal
Stack Pointer is accessed by using a special
Load Control instruction (described in
Chapter 6).

The CPU switches modes whenever the Pro-
gram Status Control bits change. This can
happen when a privileged load control instruc-
tion is executed or when an exception (inter-
rupt, trap, or reset) occurs. There is a special
instruction (system call) whose sole purpose is
to generate a trap and thus provide a con-
trolled transition for normal to system mode.

The distinction between normal/system mode
allows the construction of a protected operat-
ing system. This is a program that runs in
system mode and controls the system's
resources, managing the execution of one or
more application programs which run in nor-
mal mode. Normal and system modes, along
with Memory Protection, provide the basis for
protecting the operating system from malfunc-
tions of application programs.

Register System Mode Normal Mode
Referenced by
Instruction Segmented Nonsegmented Segmented Nonsegmented
Rl4 System R14 Normal R14 Normal R14 Normal R14
RIS System R15 System R15 Normal R15 Normal R15
RR14 System R14 Normal R14 Normal R14 Normal R14
System R15 System R15 Normal R15 Normal R15

Note: Z8002 always runs in nonsegmented mode.

Table 4.1 Registers Accessed by References to R14 and R15.

L INSTRUCTION AND DATA FETCH EXECUTION]

INSTRUCTION AND DATA FETCH

EXECUTION l

INSTRUCTION AND DATA FETCH I EXECUTION I

Figure 4-3. Instruction Look Ahead

26-0001-0911

4-3

4.4 Extended
Instructions

The Z8000 CPU supports six extended
instructions, which can be executed
cooperatively by the CPU and an external
Extended Processing Unit. The execution of
these instructions is controlled by the EPA
control bit in the FCW,

When the EPA bit is zero, it indicates that
there is no Extended Processing Unit con-
nected to the CPU and causes the CPU to trap
(as explained in Chapter 7) when it encounters
an extended instruction. This allows the opera-
tion of the extended instruction to be simulated
by software running on the CPU.

If the EPA bit is set, it indicates that an
Extended Processing Unit is connected to the
CPU in order to process the operation encoded
in the extended instruction. The CPU will fetch
the extended instruction and perform any
address calculation required by that instruc-

tion. If the instruction specifies the transfer of
data, the CPU will generate the timing signals
for this transfer. The CPU will fetch and begin
executing the next instruction in its instruction
stream. The Extended Processing Unit is /
expected to monitor the CPU's activity, partici-
pate in extended instruction data transfers
initiated by the CPU, and execute the

extended instruction. While the Extended Pro-
cessing Unit is executing the instruction, the
CPU can be fetching and executing further
instructions. If the CPU fetches another
extended instruction before the Extended Pro-
cessing Unit is finished executing a previous
instruction, the STOP line may be used to
delay the CPU until the previous instruction is
complete. This process is described more fully
in Chapters 6 and 9.

)

4-4

Chapter 5
Addressing Modes

(opcode). These operands may reside in CPU
registers or memory locations. The modes by
which references are made to operands are
called “addressing modes.” Figure 5.1 illus-
trates these modes. Not all instructions can use
all addressing modes; some instructions can
use only a few, and some instructions use none
at all. In Figure 5.1, the term “operand’ refers
to the data to be operated upon.

This chapter describes the eight addressing
modes used by instructions to access data in
memory or CPU registers. Separate sets of
examples for the nonsegmented and segmented
modes of operation are given at the end of the
chapter.

An instruction is a consecutive list of one or
more words aligned at even-numbered byte
addresses in memory. Most instructions have
operands in addition to an operation code

5.1 Intro-
duction

Addressing Mode Operand Addressing Operand Value
In the Instruction In a Register In Memory
R
. The content of the
Register | recisten aooress | el | opsnmﬂ register
IM
Immediate In the instruction
“IR
Indirect 1 r _l The of the location
REGISTER ADDRESS]-—-»l A OPERAND whose address is in the
Register [| L regist
DA ,
The content of the location
Direct I A F = OPERAND I whose address is in the
Address . instruction
X
The content of the loca-
Ind REGISTER ADDRESS ——{ INDEX tion whose address is the
ndex address in the instruction
A + OPERAND
e - plus the content of the
working register.
RA The content of the location
e YALLE whose address is the
Relative °r of the program
Addr I DISPLACEMENT]I + l OPERAND] counter, offset by the
ess displacement in the
instruction
*
BA The content of the location
Base REGISTER ADDRESS BASE ADDRESS whose address is the
DISPLACEMENT + OPERAND address in the register,
Address - offset by the displacement
in the instruction
*
BX The content of the loca-
Base REGISTER ADDRESS BASE ADDRESS tion whose address is
Index REGISTER ADORESS }—»| INDEX the address in a register

plus the index value in
another register.

*Do not use RO or RRO for these operands.

Figure 5-1. Addressing Modes

26-0001-0912 5-1

5.2 Use of

The 16 general-purpose CPU registers can,

CPU Registers with the exceptions noted below, be used in

any of the following ways:

m As accumulators, where the data to be
manipulated resides within the register.

® As pointers, where the value in the register
is the memory address of the operand,
rather than the operand itself. In string and
stack instructions, the pointers may be auto-
matically stepped either forward or back-
ward through memory locations.

m As index or base registers, where the con-
tents of the register and the word(s) follow-
ing the instruction are combined to produce
the address of the operand. This allows effi-
cient access to a variety of data structures.

There are two exceptions to the above uses
of general-purpose registers:

m Register RO (or the double register RRO in
segmented mode) cannot be used as an
indirect register, base register, index
register, or software stack pointer.

m Register R15' (or the double register RR14’
in the Z8001) is used in acknowledging
interrupts and therefore can never be used
as an accumulator in system-mode
operation. The system-mode registers, R14'
and R15’, are automatically accessed when
R14, R1S, or RR14 are referenced by
instructions executed in system mode.

In addition to the general-purpose use of
Z8000 registers, the following registers are
used for special purposes:

m Register R15 (or the double register RR14 in
the Z8001) is used as a stack pointer for
subroutine calls and returns.

m The byte register RH1 is used in the
translate instructions (TRDB, TRDRB, TRIB,
TRIRB) and the translate and test instruc-
tions (TRTDB, TRTDRB, TRTIB, TRTIRB).

m Register RO is used in extended instructions.

In Relative Address (RA) mode, the Program
Counter (PC) is used instead of a general-
purpose CPU register to supply the base
address for an effective address calculation.

The Program Counter normally is used only to
keep track of the next instruction to be exe-
cuted; whenever an instruction is fetched from
memory, the PC is incremented to point to the
next instruction. For addressing purposes,
however, the updated PC serves as a base for
referencing an operand relative to the location
of an instruction. Operands specified by rela-
tive addressing reside in the program address
space if the memory system distinguishes
between program and data or stack address
spaces.

Two of the addressing modes, Direct
Address and Index, involve an I/O or memory
address as part of the instruction. I/O
addresses are always 16 bits long, as are non-
segmented memory addresses (Z8002), so these
addresses occupy one word in the instruction.
Segmented addresses generated by the Z800!
are 23 bits long. Within an instruction, a seg-
mented address may occupy either two words
(16-bit long offset) or one word (8-bit short
offset).

As Figure 5.2 illustrates, bit 7 of the seg-
ment number byte distinguishes the two for-
mats. When this bit is set, the long-offset
representation is implied. When the bit is
cleared, the short-offset address representation
is implied. For a short-offset address, the
23-bit segmented address is reduced to 16 bits
by omitting the eight most significant bits of
the offset, which are assumed to be zero.

8 7 0

15
I 1 | segment number
i 1 L 1 L

I long offset]
1 Il 1 1 1 1 1 1 i 1 1 1 L

i L

15 8 7 0

I 0 I segment number short oftset l
1 ' 1 1 J 1 1 I\ 1 1 1 L 1

NOTE: Shaded area is reserved.

Figure 5-2. Segmented Memory Address
Within Instruction.

5.3 Addressing The following pages contain descriptions of

Mode
Descriptions

the addressing modes of the Z8000. Each

description:

® Explains how the operand address is
calculated,

m Indicates which address space (Register,
I/O, Special I/O, Data Memory, Stack
Memory, or Program Memory) the operand
is located in,

m Shows the assembly language format used to
specify the addressing mode, and

m Works through an example.

The descriptions are grouped into two sec-
tions—one for nonsegmented CPUs, the other
for segmented CPUs. Users of the Z8002 need
refer to the first section only; users of the
Z8001 in nonsegmented mode should also refer
to the first section, while users of Z8001 in
segmented mode should refer to the second
section.

5-2 26-0001-0913

5.4 Descrip-
tions and
Examples

(Z8002 and

In this section, the addressing modes of both
the Z8002 and the nonsegmented mode Z8001
are described.

'5.4.1 Register (R). In the Register addressing

Z8001 Nonseg- mode the instruction processes data taken
mented Mode) from a specified general-purpose register.

Storing data in a register allows shorter
instructions and faster execution than occurs
with instructions that access memory.

INSTRUCTION REGISTER

IiPERATIONl REGISTERHOPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register
address space. The register length (byte,
word, register pair, or register quadruple) is
specified by the instruction opcode.

Assembler language format:

RHn, RLn Byte register
Rn Word register

RBn Double-word register
RQn Quadruple-word register

Example of R mode:

LD R2, R3 load the contents of!

IR3 into R2!

Before Execution

R2 | A6BS8
R3 |9A20

After

Execution

R2 J9A20
R3 |9A20

5.4.2 Immediate (IM). The Immediate address-
ing mode is the only mode that does not indi-
cate a register or memory address as the
source operand. The data processed by the
instruction is in the instruction.

INSTRUCTION
OPERATION

WORD(S) | OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is
often used to initialize registers. The Z8000 is
optimized for this function, providing several
short immediate instructions to reduce the
length of programs.

Assembler language format (see also
Chapter 6):

#data »
Example of IM mode:
LDB RH2 #%55 !load hex 55 into RH2!

Before Execution

2 [e7z)

After Execution

R2 [5589)]

5.4.3 Indirect Register (IR). In the Indirect
Register addressing mode, the data processed
is not the value in the specified register.
Instead, the register holds the address of

the data.

INSTRUCTION
OPERATION | REGISTER

REGISTER MEMORY

ADDRESMERAND—I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE REGISTER.

A single word register is used to hold the
address. Any general-purpose word register
can be used except RO.

Depending on the instruction, the operand
specified by IR mode will be located in either
[/O address space (I/O instructions), Special
/O address space (Special 1/O instructions),
or data or stack memory address spaces. For
non-I/O references, the operand will be in
stack memory space if the stack pointer (R15)
is used as the indirect register; otherwise, the
operand will be in data memory space.

The Indirect Register mode may save space
and reduce execution time when consecutive
locations are referenced. This mode can also
be used to simulate more complex addressing
modes, since addresses can be computed
before the data is accessed.

Assembler language format (see also
Chapter 6):

@Rn
Example of IR mode:

LD R2,@R5 load R2 with thel
!data addressed by the!
!contents of R5!

Before Execution Memory
R2 | 030F :
R3 | 0005 170A | A023
R4 | 2000 170C |0BOE
R5 | 170C 170E .|10DQ
After Execution)
R2 | OBOE
R3] 0005
R4 1} 2000
R5 | 170C

26-0001-0914 26-0001-08915 26-0001-0916

5-3

5.4 Descrip-
tions and
Examples
(Z8002 and
Z8001 Nonseg-
mented Mode)
(Continued)

5.4.4 Direct Address (DA). In the Direct
Addressing mode, the data processed is found
at the address specified in the instruction.

INSTRUCTION
OPERATION

MEMORY

—1 OPERAND—I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE INSTRUCTION.

WORD(S)] ADDRESS

Depending upon the instruction, the oper-
and specified by DA mode will be either in I/O
space (I/O instructions), in Special I/O space
(Special I/O instructions), or in data
memory space. ,

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Program Counter.)

Assembler language format (see also
Chapter 6):

address either memory, 1/O, or

Special 1/0O
Example of DA mode:

LDB RH2,%65E23 load RH2 with the!
ldata in address!

15E23!
Before Execution Memory
R2 [6789 :
5E22 10106
5E24 | 0304

After Execution

R [563]

5.4.5 Index (X). In the Index Addressing
mode, the instruction processes data located at
an indexed address in memory. The indexed
address is computed by adding the address
specified in the instruction to an “index’’ con-
tained in a word register, also specified by the
instruction. Indexed addressing allows random
access to tables or other complex data struc-
tures where the address of the base of the table
is known, but the particular element index
must be computed by the program.

REGISTER

ﬂ INDEX I—v

ADDRESS +

INSTRUCTION
OPERATION I REGISTER

MEMORY

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

Any word register can be used as the index
reqgister except RO.

Operands specified by X mode are always in
the data memory address space, except when
Index Addressing is used with the Jump and
Call instructions. In these cases, the
destination, computed by adding the index

register contents to the base address, is in
program memory space.

Assembler language format (see also
Chapter 6):

(Rn)
Example of X mode:
LD R4,%231A(R3)

address

lload into R4 the con-!
ltents of the memory!
!location whosel
laddress is 231A +1
Ithe value in R3!

Before Fxecution Memory
R3 [01FE :
R4 |203A 2516 | F3C2
2518 3DOE
251A |7ADA
Address Calculation
231A
+0l1FE
2518

After Execution

R3 |OIFE
R4 |3DOE

5.4.6 Relative Address (RA). In the Relative
Addressing mode, the data processed is found
at an address relative to the current instruc-
tion. The instruction spec